

Wolverine Project

QUARTZ MINING LICENSE QML-0006

2007 ANNUAL REPORT

Prepared by: Yukon Zinc Corporation Vancouver, British Columbia

March 31, 2008

Table of Contents

Table of Contents	i				
List of Tables	ii				
List of Figures	iii				
List of Pictures	iii				
List of Appendices	iv				
1 Introduction	1				
1.1 Project Overview	1				
1.2 2007 Reporting Requirements					
2 Construction Activities	5				
2.1 Water Supply	5				
2.1.1 Intercepted Water from Underground Workings	5				
2.1.2 Go Creek Watershed	5				
2.1.3 Wolverine Watershed	5				
2.1.4 Total Water Consumption	5				
2.2 Access Road Construction	7				
2.2.1 Pitch Creek	9				
2.2.2 Putt Creek	13				
2.2.3 Mulligan Creek	17				
2.2.4 Bunker creek	19				
2.3 Surface Water Treatment Infrastructure					
2.3.1 Settling Sump Construction	22				
2.3.2 Water Treatment Sump Winterization	24				
2.3.3 Decommissioning of Portal Settling Sumps	24				
2.4 Temporary Waste Rock and Ore Storage Facility					
2.5 Land Treatment Facility					
2.6 Site Roads					
2.7 Construction Camp					
2.8 Potable Water Wells					
3 Monitoring Activities	29				
3.1 Wildlife Monitoring					
3.2 Geochemical Characterization					
3.2.1 Acid Base Accounting	31				
3.2.2 Shake Flask Testing	31				
3.3 Weather Monitoring	34				
3.4 Piezometer Monitoring	35				
3.5 Water Quality Monitoring	37				
3.6 Hydrology Monitoring	42				
3.7 Sediment Quality Monitoring	43				
3.8 Benthic and Perinhyton Monitoring	43				
3.9 Groundwater Well Monitoring	45				
4 Progressive Reclamation	48				
4.1 Native Seed Mixes	18				
4.2 Roadside Borrow Pit Seeding Test Plots					
4.3 Campbell Creek Gorge Borrow Site					
Ongoing Testwork 52					
5.1 Underground Water Quality Model					
one one provide much quality model					

i

	5.1.1	Waste Rock and Paste Backfill Humidity cells	
	5.1.2	DMS Humidity cells	55
	5.2	Tailings Humidity Cells	
	5.3	Biopass System and Biological Selenium Reduction	
6	Spill	Reporting	58
7	Socie	peconomic Information	
8	2008	Activities	
2	2000		

List of Tables

Table 1-1	QML annual report information requirements and corresponding report section	. 2
Table 1-2	Summary of reports submitted for the Wolverine Project in 2007	. 4
Table 2-1	Minor permits required for road construction and operation of the contractor's	
	construction camp	. 8
Table 3-1	2007 Wildlife Monitoring Log	29
Table 3-2	2007 Wildlife Monitoring Log (cont'd)	30
Table 3-3	2007 acid base accounting results for borrow and excavation sites	32
Table 3-4	Shake flask testing results for borrow and excavation sites	33
Table 3-5	Required water quality station sampling frequency and 2007 sampling summary	38
Table 3-6	Annual average water quality at SNM stations C-PS, UTMD, WRSS and WTSP	39
Table 3-7	Annual average water quality at SNM stations W9, W12 and W16	41
Table 3-8	Bioassay results for 2007	42
Table 3-9	Monthly stream velocity measurements	43
Table 3-10) W9, W12 and W16 sediment quality monitoring results 2007 (Lab Report A740740))
	2	44
Table 3-11	l Groundwater monitoring well water quality sampling and water level monitoring . 4	45
Table 3-12	2 Groundwater water quality monitoring results 2007	47
Table 4-1	Wolverine Project – Custom Seed Mixture	48
Table 5-1	Waste rock, paste backfill and ore humidity cell composition and duration of	
	operation	53
Table 5-2	Waste rock, paste backfill and ore humidity cell results for 2007	54
Table 5-3	DMS float humidity cell composition and duration of operation	55
Table 5-4	DMS float humidity cell results for 2007	55
Table 5-5	Tailings humidity cell composition and duration of operation	56
Table 5-6	Tailings humidity cell annual range of achieved values for 2007	57
Table 7-1	Goods and services procured from Ross River, Watson Lake and the Yukon for 2007	7
		58

List of Figures

Figure 2-1 Site surface infrastructure end of 2007	6
Figure 2-2 Monthly average daily water consumption 2007	7
Figure 2-3 Pitch creek culvert installation design plan drawing	10
Figure 2-4 Pitch creek culvert installation design profile drawing	10
Figure 2-5 Putt creek culvert installation plan drawing	13
Figure 2-6 Putt creek culvert installation design profile drawing	14
Figure 2-7 Mulligan Creek culvert installation design profile drawing	17
Figure 2-8 Mulligan Creek culvert installation design profile drawing	17
Figure 2-9 Bunker creek bridge general layout drawing	20
Figure 2-10 Surface water treatment infrastructure	23
Figure 2-11 Potential potable water production well sites	28
Figure 3-1 Mean, maximum and minimum temperatures (°C) by month	34
Figure 3-2 2007 monthly precipitation	35
Figure 3-3 Piezometer locations and co-ordinates	36
Figure 3-4 Potentiometric elevations with recorded precipitation	37
Figure 3-5 Surface water quality monitoring sites	40
Figure 3-6 Groundwater monitoring well locations	46

List of Pictures

Picture 2-1 Access Road near km 3, heading south towards the mine site	8
Picture 2-2 Access Road near km 18, heading south towards the mine site	8
Picture 2-3 Borrow pit near km 4+00.	9
Picture 2-4 Photo plate of Pitch Creek, August 26 th , 2007	11
Picture 2-5 Photo plate of Pitch Creek, September 18 th to 23 rd , 2007	12
Picture 2-6 Photo plate of Putt Creek, August 25 th , 2007	14
Picture 2-7 Photo plate of Putt Creek, September 16 th – 17 th , 2007	15
Picture 2-8 Photo plate of Putt Creek, September 16 th – 17 th , 2007	16
Picture 2-9 Photo plate of Mulligan Creek, August - September, 2007	18
Picture 2-10 Installation of a 30 ft temporary bridge on timber abutments at Bunker Creek	21
Picture 2-11 Bunker Creek temporary bridge, looking south	21
Picture 2-12 Completed CDS (September 24 th , 2007)	22
Picture 2-13 Completed Sprung Structures over the WIS and WDS (October 2007)	24
Picture 2-14 Radiant heaters within the Sprung Structure over the WDS sump (September 20	07)
	24
Picture 2-15 Temporary waste rock and ore storage facility (October 2007)	25
Picture 2-16 Completed land treatment facility cell 2 prior to acceptance of soil (September	
18th, 2007)	26
Picture 4-1 Staked test plots, with center staked line corresponding to center of area in Figur	e 4-
1	49
Picture 4-2 Bank re-contouring down slope of the road through the Campbell Creek gorge (w	vest
side)	50
Picture 4-3 Bank re-contouring upslope of the road through the Campbell Creek gorge (west	F 1
side)	51

List of Appendices

(Content contained on enclosed CD)

- Appendix A Environmental Monitoring Reports
- Appendix B Acid Base Accounting and Shake Flask Testing Lab Reports
- Appendix C Groundwater Quality Lab Reports
- Appendix D Humidity Cell Update Reports (AMEC and MEA)
- Appendix E Inotec report: Treatability and Bench-Scale Bioreactor Testing of Water for Selenium Removal

1 Introduction

This Annual Report has been prepared to satisfy requirements contained within Quartz Mining License QML-0006 (QML) Section 10.5 a) to z) for activities that occurred during the period of January 1st to December 31st, 2007 at the Wolverine Project.

The report has been divided into the following sections:

- Section 1 provides a brief overview of the Wolverine Project and regulatory requirements
- Section 2 details construction activities
- Section 3 summarizes monitoring results
- Section 4 details progressive reclamation activities
- Section 5 outlines ongoing lab test work results
- Section 6 provides a summary of spill reporting
- Section 7 summarizes socioeconomic information
- Section 8 provides the proposed development activities anticipated for 2008.

Table 1-1 outlines the QML Annual Report information requirements and the corresponding Report section where the information is provided.

1.1 Project Overview

The Wolverine Project is an underground mining project that will produce copper, lead and zinc concentrates. The Wolverine Project is located within the Finlayson District in the south-eastern Yukon, approximately 280 km east of Whitehorse, 190 km northwest of Watson Lake and 135 km southeast of Ross River, near the headwaters of the Wolverine Lake watershed. The Finlayson area is within the Kaska Nation traditional territory which, in the Yukon, is comprised of the Ross River Dena Council (RRDC) and the Liard First Nation (LFN). In 2005, YZC signed a Socio-Economic Participation Agreement and a Traditional Knowledge Protocol Agreement with the RRDC, on behalf of the Kaska Nation. These agreements provide a basis for participation by all Kaska Nation members in project exploration and development activities.

The Wolverine Project property, originally staked in 1973, was extensively explored over the past two decades. In early 2005, a Type B Water Licence (QZ01-051) and Mining Land Use Permit (LQ00140) were issued to allow for advanced exploration activities. Under these approvals, Yukon Zinc completed test mining and detailed infill diamond drilling programs. A Quartz Mining License (QML-0006) and a Type A Water Licence (QZ04-065), to allow for the development and operation of the mine, were issued in December 2006 and October 2007, respectively.

The project will include operation of an underground mine with surface ramp access to produce 1400 t/d of mill feed ore. The industrial complex will include a truck shop, mill, laboratory and office buildings. Power is supplied by diesel gensets and local distribution system. Mine operation will require approximately 150 people who will live on-site in a self-contained camp. Waste water from the camp will be treated with a biological sewage treatment plant and discharged to Go Creek. Milling will involve crushing, dense media separation (DMS), and two-stage grinding followed by differential flotation processes.

QML Section	Requirement	Report Section Where Addressed
10.5 a)	A summary of mining activities at the mine.	Section 1
10.5 b)	A map showing all structures, works and installations associated with the Undertaking.	Section 2
10.5 c)	The total amount of ore and waste removed from the mine.	N/A ¹
10.5 d)	The total amount and the average head grade of ore processed through the mill.	N/A
10.5 e)	The total amount and grade of all stockpiled ore.	N/A
10.5 f)	The total amount and grade of concentrate produced, stockpiled, and transported from the Undertaking.	N/A
10.5 g)	As-built drawings of the mine and of all structures, works and installations constructed or altered in the mine.	N/A
10.5 h)	Details respecting any action taken as a result of the recommendations made by the engineer in relation to the inspection referred to in paragraph 10.1.	N/A
10.5 i)	A summary of any updates to estimates of ore reserves and mine life, including reserve category, tonnage and grade.	N/A
10.5 j)	A summary of any underground stability incidents.	N/A
10.5 k)	A summary of paste backfill placement activities conducted and their locations in the mine.	N/A
10.5 l)	A summary of humidity cell tests undertaken for waste rock and paste backfill.	Section 5
10.5 m)	A summary of quantity and related analysis of leachate collected from paste backfill.	N/A
10.5 n)	The total amount of tailings deposited in the tailings impoundment.	N/A
10.5 o)	An evaluation of the performance of the tailings facility, including an estimate of remaining available storage capacity in the facility.	N/A
10.5 p)	The data generated from the full depth sampling of the tailings.	N/A
10.5 q)	A summary of any hydrogeology studies undertaken and related analysis of these data, including groundwater flow pathways as influenced by underground workings.	N/A
10.5 r)	A summary and evaluation of data results from the field pilot test of the bio- pass system.	N/A (Section 5 – lab testwork)
10.5 s)	A summary of surface water quality monitoring, including any acute lethality testing conducted.	Section 3
10.5 t)	A summary of groundwater quality monitoring in wells downslope of the mine workings.	Section 3
10.5 u)	A summary of the programs undertaken for environmental monitoring and surveillance as outlined in the Monitoring and Surveillance Plan and the Wildlife Protection Plan, including an analysis of these data and any action taken or adaptive management strategies implemented to monitor or address any changes in environmental performance.	Monitoring – Sections 2 and 3 Ongoing Testwork – Section 5 ²
10.5 v)	A summary of progressive and ongoing reclamation activities.	Section 4
10.5 w)	A summary of proposed development and production for the coming year.	Section 8
10.5 x)	A summary of activities related to care and maintenance of the Undertaking, including any temporary closure activities, if applicable.	IN/A
10.5 y)	A summary of spills and accidents that occurred as a result of the Undertaking.	Section 7
10.5 z)	A summary of the previous and projected use of the access road, including maintenance work conducted, a summary of the level of traffic, access control issues, wildlife incidents and other accidents, and upgrade or maintenance work planned for the upcoming year.	Section 2

Table 1-1 QML annual report information requirements and corresponding report section

Notes: 1 - N/A = information not available due to project phase in the initial stages of construction in 2007 (e.g., no mine or mill operations) 2 - Monitoring and Surveillance Plan and the Wildlife Protection Plan in preparation

All water from the milling process will be pumped to the tailings facility for reuse or will be discharged following treatment through a high density sludge and bioreactor processes. Treated water from the tailings facility will be discharged to Go Creek. Waste rock from the mine will be stored temporarily on a waste rock pad. This material will subsequently be mixed with cement, DMS float material, and tailings to produce a paste for backfill in the mined-out stopes.

Site access is via air or a 26 km long all season access road that connects with the Robert Campbell Highway at km 190. Metal concentrates will be trucked, via the mine access road, to the Robert Campbell Highway and then south to Stewart, BC for transportation via ocean freighter to various smelters in Asia.

The primary activities in 2007 included monitoring, continued dewatering of the underground mine, and construction of infrastructure required to commence development of or support the main facilities, including:

- Mine access road (Phase 1) construction
- Waste rock pad Phase 2 construction
- Land Treatment Farm Cell 2 construction
- Potable water well installations
- Camp foundation preparation
- Water treatment facility winterization

1.2 2007 Reporting Requirements

As summarized in Table 1-2, numerous reports were submitted to Yukon Energy, Mines and Resources and the Yukon Water Board in 2007 as per the requirements of QML-0006, Type A Water Licence QZ04-065, Type B Water Licence QZ01-051 and Quartz Mining Land Use Approval LQ00140.

In 2007, YZC was compliant with all reporting requirements of the four major permits. Although the effective date of the A Licence is October 4, 2007, the purpose of the A Licence is for quartz mining and milling. YZC has not undertaken any activities requiring the use of water or the deposition of waste for milling or mining, and is not planning on using water or depositing waste as outlined by the A Licence Application or Licence until 2008. The effective date of the Licence determines subsequent requirements such as monthly monitoring and reporting. All 2007 activities requiring the use of water or deposition of waste were permitted under B Licence QZ01-051, and monitoring and monthly reporting was completed as per B Licence conditions. In 2008, monitoring as per the A Licence requirements will be triggered by the onset of activities pertaining to quartz milling and mining. Reporting will be conducted according to the A Licence reporting schedule, with rationale provided for what monitoring activities have or have not been conducted.

Table 1-2 S	Summary of repor	ts submitted for t	the Wolverine	Project in 2007
-------------	------------------	--------------------	---------------	-----------------

Report Title	Licence* and Section Requirement	Date Submitted
Phase 2 All Weather Access Road Plan (V2)	QML 7.4	16-Jan-07
November 2006 Surveillance Network Monitoring Program Monthly Report	BLic 43	16-Jan-07
Revised Documentation in support of Water Use Application QZ04-065 – Volume 1,2,3	A Lic	23-Jan-07
December 2006 Surveillance Network Monitoring Program Monthly Report	BLic 43	2-Feb-07
Temporary Closure Plan (V2006-01)	QML 8.2	3-Feb-07
Type B Water Licence 2006 Annual Report	BLic 15	7-Feb-07
Mining Land Use Permit 2006 Annual Report	MLU 7	7-Feb-07
Quartz Mining License 2006 Annual Report	QML 10.5	7-Feb-07
January 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	28-Feb-07
February 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	27-Mar-07
General Site Plan (V2007-03)	QML 7	6-Apr-07
March 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	13-Apr-07
May 22, 2007 Fuel Cache – Drum Leak Spill Report	BLic 12, MLU 4	24-May-07
April 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	28-May-07
May 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	25-Jun-07
June 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	27-Jul-07
July 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	30-Aug-07
August 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	28-Sep-07
September 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	22-Oct-07
Heritage Resource Protection Plan (V2006-01)	QML 12.4	26-Nov-07
October 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	30-Nov-07
Revised Water Management and Treatment Plan	BLic 39+53, MLU 93-95	14-Dec-07
Temporary Waste Rock and Ore Storage Facility As-Constructed Report	BLic 39, MLU 92	14-Dec-07
November 2007 Surveillance Network Monitoring Program Monthly Report	BLic 43	14-Dec-07
Reclamation and Closure Plan (V2007-02) (Draft for review)	QML 8.5	14-Dec-07

*BLic = Type B Water Licence (QZ01-051); MLU = Mining Land Use Permit (LQ00140); QML = Quartz Mining License (QML-0006); ALic = Type A Water Licence (QZ04-065).

2 Construction Activities

The focus of the 2007 advanced exploration and development activities included continued dewatering of the underground test mine built in 2005, and construction of infrastructure to support water storage and treatment and the future mine development. Figure 2-1 details the location of major surface infrastructure as of the end of 2007 and the sections below describe the main construction activities undertaken in 2007.

2.1 Water Supply

Under the Type B Water Licence, YZC is authorized to obtain water from Go Creek and Wolverine Lake and to remove intercepted water from the underground workings up to 203 m³ of water per day. The three uses of water in 2007 include mine rehabilitation using mine recharge water, potable water well drilling and domestic purposes at camp.

2.1.1 Intercepted Water from Underground Workings

Recharge water from the underground workings was either discharged from the mine either for treatment, or used within the mine for shotcreting.

Mine recharge average rate, based on sump volumes and filling rates, was calculated to be approximately 1.1 L/s throughout 2007. In June and December the flow rate was calculated to be 1.3 L/s and 0.94 L/s, respectively. On average, the daily mine recharge rate in 2007 was 95 m^3 /day.

Shotcreting of the mine walls required ~ 400 L of water per 1000 kg bag of shotcrete. 50 bags and 22 bags of shotcrete were used during 15 days in August and during 2 days in October, respectively. Hence, a total of 28.8 m³, or ~79 L per day (over the year), of treated water was recycled for shotcreting in 2007, after settling in the surface sumps.

2.1.2 Go Creek Watershed

Water from Go Creek was required in August and November 2007 for the installation of potable water wells (required for the new mining camp). Drilling used $\sim 20 \text{ m}^3$ of water per day, and was in operation for a total of 12 days.

2.1.3 Wolverine Watershed

Water pumped from Wolverine Lake was filtered for potable water uses in the exploration camp kitchen and dry facilities. Based on a conservative estimate of 232 L per person per day (for showering, hand washing, laundry, food preparation and consumption, and dishwashing) the maximum amount of water used per day in 2007 was 5.75 m^3 per day (25 people in camp) and the minimum was 2.07 m³ per day (9 people in camp). There are no flushing toilets in Wolverine Camp, and therefore, toilets are not a contributor to camp water consumption.

2.1.4 Total Water Consumption

The water intercepted daily from the underground workings in the 2007 advanced exploration program was 110 m³. The water used for shotcreting in 2007 totaled 28.8 m³. The water consumed daily from Go Creek and Wolverine Lake was 20 m³ and 2.07 m³ to 5.75 m³, respectively, for a maximum daily water use of 105.5 m³, and an average water consumption of 99.5 m³/day for 2007. Figure 2-2 shows the average daily water usage per month and the camp occupancy for the 2007 program.

Figure 2-1 Site surface infrastructure end of 2007

Figure 2-2 Monthly average daily water consumption 2007

2.2 Access Road Construction

In spring 2007, YZC started construction on the 24 km access road from the Robert Campbell Highway to the mine site. The objective was to complete a one-lane road that would permit transportation of supplies, equipment and fuel to site (Phase 1). The Phase 1 road alignment will be widened (to ensure slope stability and road safety) to a Phase 2 level prior to the transport of concentrate from site. Prior to the onset of road construction, several reports prepared by Yukon Engineering Services Inc. (YES) and YZC containing design specifications, sampling and monitoring details, and drawings were submitted to EMR, including:

- All Weather Access Road Plan (June 2006)
- Phase 1 All Weather Access Road (October 25, 2006)
- Phase 2 All Weather Access Road (January 16, 2007)
- Wolverine Project General Site Plan, Version 2007-03 (April 6, 2007)

The submission of these plans satisfied requirements of QML-0006, including information pertaining to the location and design of the gate installed to prevent public use of the access road. As required, the gate was installed within thirty days of obtaining approval of the plan.

In addition to the requirements outlined in QML-0006 and these reports, YZC also obtained three minor permits for road construction and operation of the contractor's construction camp (Table 2-1).

Permit	YTG Issuing	Purpose	Date Issued	Expiry Date
	Dept.			
Resource Access	Highways and	To construct access from	March 17,	March 17, 2008
Permit #1560	60 Public Works Robert Campbell Highway km		2007	
		190.		
Quarry Permit	Energy, Mines	Required for gravel extraction	July 10, 2007	Aug. 31, 2007
07/2224	and Resources	from YTG pit		
Permit to Install a	Health and	Required for the access road	Aug. 10, 2007	
Sewage Disposal	Social	contractor's construction		
System #320	Services	camp		

Table 2-1 Minor permits required for road construction and operation of the contractor's construction camp.

The completed Phase 1 road at two locations (km 3 and km 18) and an example of a borrow pit (km 4) excavated for roadbed material are provided in Picture 2-1 to Picture 2-3.

Picture 2-1 Access Road near km 3, heading south towards the mine site.

Picture 2-2 Access Road near km 18, heading south towards the mine site.

Picture 2-3 Borrow pit near km 4+00.

During construction, additional culvert installation and bank stabilization plans were developed when conditions warranted. Plans were developed for Pitch and Putt Creeks (July 8, 2007), Mulligan Creek (July 20, 2007) and Bunker Creek (August 3, 2007). A brief description of the works conducted, plans and pictures at these four creeks are provided below.

As required by QML-0006, within sixty days of completing construction of the access road to the Phase 2 level, YZC will submit an as-built report containing as-built drawings (of the access road, stream crossings, drainage or sediment control structures, staging areas, pull-outs, gates, etc.), and descriptions of any reclamation activities undertaken or to be undertaken in relation to any borrow sites used in construction of the access road.

2.2.1 Pitch Creek

Pitch Creek, located at station 2+740, sits in a depression perpendicular to the road right-of-way. To allow for a bypass road to be constructed upstream of the ultimate culvert location, a diversion channel was excavated and a temporary culvert (900 mm) was installed. Due to spring conditions in early June, the culvert installation location was filled with approximately 1-2 m of ice and required removal with an excavator using a hydro-axe. On July 5th during a site inspection, YTG EMR Mining and YTG Water Resources Inspectors were concerned with 1) the stability of slopes adjacent to Pitch and Putt Creeks due to continued heavy spring rains, and 2) the ultimate culvert alignment and plans for diversions and erosion control. A stop work order was issued on July 5th and lifted shortly thereafter following a conference call with representatives from with EMR, YES, YZC and the inspectors and submission of report documenting plans for bank stability and culvert installation (Figure 2-3 and 2-4).

The permanent culvert (1200 mm) was installed and the water diverted by July 13th. This site was monitored daily during inclement weather and weekly or bi-weekly during drier weather. By September 23rd, all areas near Pitch Creek ROW had been covered with a layer of slate/shale material to harden up the slopes and prevent erosion from high levels of flow and/or impact of

glaciation. Organic materials were placed on top of the rocky material and grass seed applied. Erosion control matting was installed in both ditch channels draining to the outlet. The substrate matting was seeded with grass mixture, and the matting was secured with trenches and staples. The outlet of Pitch Creek directs flow back into original channel. Pictures Picture 2-4Picture 2-5 document these activities.

Figure 2-3 Pitch creek culvert installation design plan drawing

Figure 2-4 Pitch creek culvert installation design profile drawing

Picture 2-4 Photo plate of Pitch Creek, August 26th, 2007

Picture 2-5 Photo plate of Pitch Creek, September 18thto 23rd, 2007

2.2.2 Putt Creek

Putt Creek is located at station 2+885 in a moderate depression. Pre-disturbance, the channel was heavily vegetated with shrubby willow and other riparian species. Similar to Pitch Creek, activities commenced on June 15th and willows and trees were removed using a hydro-axe. Due to heavy rains and frozen ground conditions, the instream work at the temporary culvert site was postponed until July 14th when soils had thawed and drained significantly.

A diversion channel and temporary culverts (1000 mm and 600 mm) were installed in mid-July to allow road work to continue beyond this point. Stockpiled road material was filled in around the culverts and riprap and silt fencing was installed near culvert inlets.

In mid September, the permanent culvert was installed and rip rap was placed at both the inlet and outlet. All banks were lined with geotextile and riprapped. Temporary diversion culverts were removed and the diversion channel was filled in. Ditching was completed with erosion control matting installed in areas most susceptible to erosion (i.e. northeast channel). Picture 2-6 to 2-8 document these activities.

Figure 2-5 Putt creek culvert installation plan drawing

Figure 2-6 Putt creek culvert installation design profile drawing

Picture 2-6 Photo plate of Putt Creek, August 25th, 2007

Picture 2-7 Photo plate of Putt Creek, September 16th – 17th, 2007

Picture 2-8 Photo plate of Putt Creek, September 16th – 17th, 2007

2.2.3 Mulligan Creek

Mulligan Creek, located at station 4+940, is a small ephemeral creek. On July 21st, a diversion ditch was constructed, geotextile placed along the channel and a temporary culvert (800 mm) was installed. Once the creek bed dried up, a permanent culvert was placed in the original stream channel alignment, and the diversion channel was decommissioned.

Figure 2-7 Mulligan Creek culvert installation design profile drawing

Figure 2-8 Mulligan Creek culvert installation design profile drawing

Picture 2-9 Photo plate of Mulligan Creek, August - September, 2007

2.2.4 Bunker creek

Bunker Creek is located at station 10+250. In mid-August, a temporary 30' single span bridge was installed upstream from the ultimate location of the 70' bridge (Figure 2-9), where the existing geotechnical trail crossed the creek.

The riparian area was hand cleared 5 m back from the creek and beyond that to the existing roadbed. Fill material was padded from the edge of the riparian vegetation to the edge of the creek. Shale material was used as a base padding for the log abutments that were placed on each side of the creek to support the temporary bridge. Bridge blocking consisted of placing 30' logs on top of the abutments to increase stability and prevent sediment from entering the creek. Geotechnical liner was laid over the padding and woven through the bridge blocking to act as a barrier. Silt fencing was installed at each corner of the bridge for additional sediment control. For erosion control, ditch blocks were installed on the east approach along the cut slope and a drain was added half way down the slope using geotechnical liner and logs. Pictures 2-10 and 2-11 show the bridge being installed and operational.

During Phase 2 road construction, binwall abutments will be constructed and the 70' bridge installed.

Figure 2-9 Bunker creek bridge general layout drawing

Picture 2-10 Installation of a 30 ft temporary bridge on timber abutments at Bunker Creek.

Picture 2-11 Bunker Creek temporary bridge, looking south.

2.3 Surface Water Treatment Infrastructure

Water treatment was conducted underground from January through May 2007, until warmer weather enabled the surface infrastructure to be used for water storage and treatment. From June to December 2007 water treatment with ferric sulphate dosing was conducted in-line as water was pumped from underground settling sumps to the surface settling and treatment sumps. Figure 2-10 details the location of the surface water treatment sumps with respect to the mine portal. In late August, winterizing of the water storage and treatment infrastructure commenced; a settling sump was constructed inside an existing coverall building to provide initial settling or water storage during the winter months (see Section 2.3.1). Temporary Sprung structures were erected over the water treatment plant inlet (WIS) and discharge (WDS) sumps (see Section 2.3.2).

2.3.1 Settling Sump Construction

Construction of the coverall dirty sump (CDS) contained within a pre-existing coverall structure commenced August 31^{st} . The sump has a design volume of 540 m³ and additional design details and design drawings are provided in the *Wolverine Project Water Management and Treatment Plan* (December 2007). The completed sump is shown in Picture 2-12. A weighted silt curtain was installed (not shown in Picture 2-12) to enhance settling of solids. The sump was constructed to support the existing surface water treatment sumps, should additional settling be required, but the sump was not used in 2007. Visual monitoring was conducted daily throughout the September construction period and the applicable Environmental Monitoring reports are provided in Appendix A.

Picture 2-12 Completed CDS (September 24th, 2007)

Soil samples were taken of the material removed from the native ground during sump construction. Acid base accounting (ABA) analysis returned potentially acid generating (PAG) results (see Section 0), and based on geochemical review by from AMEC Earth and Environmental (AMEC), shake flask testing was performed. All analyzed parameters in the shake flask test samples were below *Canadian Metal Mining Effluent Regulation Schedule 4* (MMER) limits of deleterious substances, by at least one order of magnitude, and were therefore characterized by AMEC as non-acid generating (NAG), and deemed satisfactory for use in construction activities. The excavated material was used to line the temporary waste rock pad Phase 2 extension (see Section 2.4).

Figure 2-10 Surface water treatment infrastructure

2.3.2 Water Treatment Sump Winterization

To prevent freezing over the 2007/2008 winter period, the WIS and WDS were covered with temporary Sprung Structures and radiant heaters were installed (Picture 2-13 and Picture 2-14, respectively). Daily monitoring of the installation was conducted September 13th to October 15th inclusively and the applicable Environmental Monitoring reports are provided in Appendix A.

Picture 2-13 Completed Sprung Structures over the WIS and WDS (October 2007)

Picture 2-14 Radiant heaters within the Sprung Structure over the WDS sump (September 2007)

2.3.3 Decommissioning of Portal Settling Sumps

The portal settling sumps include the portal dirty sump (PDS) and clean sump (PCS) (see Figure 2-10) and were used from May to October 2007 for initial treatment and settling of all the water pumped from the underground test mine prior to being either discharged to Go Creek, or pumped to the lower treatment ponds for further ferric sulphate treatment. Some slumping of the bank west of the PCS was observed following spring melt, and a geotechnical engineer was consulted to evaluate the risks associated with the slumping. Upon his recommendations, the bank was monitored routinely throughout the season and the sumps were decommissioned in the winter. The associated Environmental Monitoring reports are provided in Appendix A.

2.4 Temporary Waste Rock and Ore Storage Facility

The temporary waste rock and ore storage facility currently contains $\sim 14,600 \text{ m}^3$ of material generated during the 2005 underground test mine construction.

In late summer the pad was extended ~150 m to the north to allow for storage of ~65,000 m³ of material that will be generated during the pre-production development program. Details and asconstructed drawings are contained in the *Temporary Waste Rock and Ore Storage Facility as-Constructed Report and Drawings Advanced Exploration Phase* (December 2007).

The storage pad and collection sump were either monitored daily during rain events and construction activities, or weekly (Environmental Monitoring reports provided in Appendix A). Material excavated from the construction of the CDS (Section 2.3.1) and the 150-man camp site (Section 2.7) was used to line the Phase 2 extension (Picture 2-15), and the geochemical results are summarized Section 0.

Picture 2-15 Temporary waste rock and ore storage facility (October 2007)

2.5 Land Treatment Facility

A 60 m³ land treatment facility cell was constructed in June 2006 to bio-remediate hydrocarbon contaminated soil resulting from a diesel spill in August 2006 (Cell 1 in Figure 2-1). In September 2007, a second cell (Cell 2 in Figure 2-1) was constructed to bio-remediate ~400 m³ of hydrocarbon contaminated soil stored on-site from various diesel spills, as well as excess material from Cell 1. The completed cell, prior to the transfer of soil, is shown in Picture 2-16. Details of the 2007 cell construction, and origin and treatment of all the material stored at the land treatment facility area are provided in the *Land Treatment Facility 2007 Annual Report* (March 2008). The land treatment facility was monitored daily to weekly June 12th through October 9th; weekly Environmental Monitoring reports are provided in Appendix A.

Picture 2-16 Completed land treatment facility cell 2 prior to acceptance of soil (September 18th, 2007)

2.6 Site Roads

2007 activities along the site roads (that connect the airstrip to the exploration camp (Figure 2-1)) focused on sediment and erosion control measures such as re-contouring of slopes, armoring of ditches, and re-vegetation. Monitoring was conducted frequently from mid-May through to the onset of winter at the beginning of October, and reports for the various sections of road are summarized in weekly Environmental Monitoring reports provided Appendix A. Erosion control activities included silt fence installation, geotextile fabric bedding underneath cobble, and seeding of re-contoured slopes. Additional information on progressive reclamation activities are provided in Section 4.

2.7 Construction Camp

In late June 2007, grubbing and clearing of an area for a 150-man construction camp commenced. The camp site is located east of the portal area. The rectangular pad is approximately 64 m x 240 m (see Figure 2-1). The pad was leveled by moving soil from the north end to the south end (as detailed in the Environmental Monitoring reports in Appendix A), and was surveyed in October 2007 to establish the grades and boundaries for additional design work.

2.8 Potable Water Wells

Potable water wells to supply the 150-man camp were investigated and drilled in 2007, with supervision by Water Management Consultants (WMC). After examining the 2005 and 2006 groundwater monitoring well results, WMC focused the site investigation to three potential producing water well sites – A, B and C (Figure 2-11). From August 21^{st} to September 3^{rd} , WMC supervised drilling at sites A and B. One test well (TW07-1) and one production well (PW07-1) were installed at site B. A second drilling program was conducted in November to establish a back-up production well at site B (PW07-2). Inflow pumping rates and water quality testing was conducted in August and November to determine viability for use as a potable water source for the construction camp.

PW07-2 was sampled at the beginning and near the end of the pump test and most metals of concern decreased by at least one order of magnitude during this seven hour period. The PW07-1 water quality was sampled after 4.5 hours of development when the water was running clear.

Initial results indicate that water treatment will be required to remove iron and manganese. Additional testwork will be conducted prior to plant design to confirm the 2007 results.

Pump tests at TW07-1 and PW07-2 indicated flow rates of 1.3 L/s and 0.3 L/s, respectively. As 0.3 L/s is needed for potable water at the 150-man camp, wells PW07-1 and PW07-2 have adequate flow. The construction of the drill pads and the installation of the wells were summarized in weekly Environmental Monitoring reports (Appendix A).

Figure 2-11 Potential potable water production well sites

3 Monitoring Activities

Monitoring conducted throughout 2007 included wildlife monitoring, geochemical characterization (acid base accounting and shake flasking testing), weather monitoring, piezometer water levels, surface water quality, hydrological assessments, groundwater quality, stream sediment quality, and benthic and periphyton characterization. The surface water and sediment monitoring described below is further detailed in the *Type B Water Licence QZ01-051 Annual Report 2007* (January 2008), which includes the lab reports that comprise the tables pertaining to the water and sediment quality results (for Type B Water Licence QZ01-051 Surveillance Network Monitoring sites). Surface disturbance monitoring are provided in the Environmental personnel, and results of the monitoring of various sites was recorded on a monitoring tracking sheet filled out by on-site Environmental Technician, and is provided in Appendix A.

3.1 Wildlife Monitoring

A log of wildlife observations was kept throughout 2007 (Table 3-1). The Wildlife Protection Plan (required as per Part 12.3 of the QML) is currently in preparation.

Date	Time	Location	Species	# of Animals	Activity
25-Feb	1330	In camp	Squirrel	1	Around offices, in trees
12-Mar	1800	In camp	Weasel	1	
18-Mar	1200	Site Road - km 5	Ptarmigan	~20	
27-Mar	1140	In camp	Marten	1	Around tool shack
27-Mar	1300	Site Road	Wolf	1	Black wolf near portal
27-Mar	1700	Site Road - km 2.5	Wolf	1	Black wolf
14-Apr	500	In camp	Porcupine	1	Near pantry
15-Apr	500	In camp	Wolf	1	Near pantry
15-Apr	1330	In camp	Moose	1	Young bull
16-Apr	700	On lake	Wolf	4	
26-Apr	600	In camp	Fox	1	Red fox at kitchen window
6-May	900	Site Road - km 3	Robin	1	
11-May	700	On lake	Wolf	2	
12-May	-	Site Road - km 1	Grouse	1	Seen continuously
14-May	1320	Site Road - km 1	Eagle	3	two bald and one golden eagle circling
18-May	715	In camp	Rabbit	1	Near rec centre
20-May	800	In camp	Porcupine	1	Near fire pit
25-May	1750	On lake	Loon	1	Near little Wolverine Lake
2-Jun	-	Site Road - Km 1	Grouse	1	crossing road
2-Jun	-	Site Road - Km 1	Porcupine	1	crossing road
2-Jun	-	Site Road - Km 1	Grizzly	1	running up road and into bush
27-Jun	1500	Airstrip	Moose	2	Cow and calf
29-Jun	730	In camp	Moose	2	Cow and calf on lake shore, swam away

 Table 3-1
 2007 Wildlife Monitoring Log

Table 3-2 2007 Wildlife Monitoring Log (cont'd)

Date	Time	Location	Species	# of Animals	Activity
5-Jul	1600	In camp	Rabbit	1	
11-Jul	740	Site Road - Km 1	Moose	1	Large Bull moose
17-Jul	1845	On lake	Loon	1	Loon on little wolverine lake
21-Jul	-	In camp	Rabbit	1	
26-Jul	930	Site Road - Km 3	Moose	1	Young bull, approx 3 yrs
27-Jul	1900	Site Road - Km 1	Porcupine	1	
28-Jul	900	Site Road - Km 1	Wolf	1	Black wolf
29-Jul	1145	Airstrip	Caribou	1	Bull caribou
29-Jul	2100	In camp	Grizzly	1	On beach in front of the kitchen
30-Jul	1500	Highway	Lynx	4	Money creek - lynx and 3 kittens
30-Jul	1545	Highway	Wolf	1	Lone wolf at Nooga creek
5-Aug	1615	Site Road - Km 3	Moose	1	Cow on high road
11-Aug	1000	Portal	Moose	2	Cow and calf
11-Aug	700	Site Road - Km 1	Grizzly	none	Bear feces
22-Aug	1800	Airstrip	Grizzly	1	playing with fuel drums
30-Aug	1400	In camp	Black Bear	1	Near camp heli pad
3-Sep	700	Airstrip	Canada Goose	16	
27-Oct	-	Access Road	Moose	1	Km 18 - Bull
27-Oct	-	Access Road	Moose	1	Km 20 - Bull
29-Oct	-	Access Road	Caribou	3	Km 16
30-Oct	-	Access Road	Moose	2	Km 23
3-Nov	-	Access Road	Fox	1	Km 18
13-Nov	-	Access Road	Moose	2	Km 22 - bull and cow
15-Nov	-	Access Road	Moose	2	Km 19 - bull and cow
16-Nov	-	Access Road	Caribou	2	Km 16
17-Nov	-	Access Road	Moose	3	Km 22
17-Nov	-	Airstrip	Fox	1	
8-Dec	1130	Access Road	Wolf	2	On lake south of Km 14
8-Dec	945	Access Road	Ptarmigan	~40	Flying at Km 18
9-Dec	830	In camp	Fox	1	Snooping around camp, often seen around site
16-Dec	1030	Access Road	Moose	3	Km 22 - cow and two calves
17-Dec	1200	Access Road	Moose	1	Km 24 - Ione cow
20-Dec	-	Access Road	Owl	1	Km 5
20-Dec	-	Access Road	Fox	1	Km 22

3.2 Geochemical Characterization

Geochemical characterization via acid base accounting was conducted on native material to establish metal leaching potential: all material that was deemed non-acid generating material (NAG) based on criterion provided by AMEC Earth and Environmental (AMEC) (as detailed in *General Site Plan (Version 2007-03)*) was used in construction activities; material that was deemed potentially acid generating material (PAG) was sent for shake flask testing.

3.2.1 Acid Base Accounting

Acid base accounting was conducted to establish neutralization potential, acid generation potential and metal leaching potential of borrow sources or excavated sites. The following analyses were conducted: paste pH, total sulphur (Total S), sulphate sulphur (Sulphate), sulphide sulpher (by difference) (Sulphide) and neutralization potential (NP). The results are summarized in Table 3-3 and full lab results provided in Appendix B. Samples labeled "km 2 old road A & B", "New Camp Site" (from lab report VA07090006), and "New Camp Road" were all deemed NAG based on the ABA results in Table 3-3 using the AMEC criterion. All other samples summarized in Table 3-3 were deemed PAG and were sent to ALS Environmental Laboratories (ALS) for shake flask testing.

3.2.2 Shake Flask Testing

If acid base accounting results offer evidence that the borrow sources are potentially acid generating, as was the case at four sites (Gorge, km 2.5 on the upper road, 150-man camp, and coverall settling sump material), further testing to quantify the metal leaching potential of the material was required. Shake flask testing involved a 24 hour 3:1 deionized water to rock extraction procedure, and the resulting leachate was analyzed for pH and metals using ICP-MS. These results are presented in Table 3-4, and the full lab reports are presented in Appendix B. Leachate pH values ranged from 6.51 to 7.86 and are well within the acceptable range in pH as regulated by the MMER. Regulated metals arsenic, copper, lead, nickel and zinc were all at least one order of magnitude below the MMER guidelines. As such, all material samples analyzed in 2007 for ABA and shake flask were deemed NAG, and appropriate for use during construction.
Table 3-3 2007 acid base accounting results for borrow and excavation sites.

							ABA Te	st Resu	lts				
		Parameter	Paste pH	Fizz Rating	NP	AP	NNP	NPR	Total S	Sulph ate	Sulphi de	ABA	
		Units			kg CaCO	kg CaCO	kg CaCO	-	%	S %	S %	based Acid	Shake flask test result
Location	Sample ID	Lab Report			3/t rock	3/t rock	3/t rock					Potential*	
Gorge	VTM NAD 83 E-0439851 N-6810944	VA07040287	6.2	1	4	6.6	-3	0.61	0.21	0.19	0.02	PAG	NAG - See Shake Flask Report L539652
Gorge	VTM NAD 83 E-0438265 N-6812448	VA07040287	7.2	1	8	0.9	7	8.53	0.03	<0.01	0.03	PAG	NAG - See Shake Flask Report L539652
km 2.5 on the lower site road	km 2.5	VA07048595	6.6	1	5	1.9	3	2.67	0.06	0.05	0.01	PAG	NAG - See Shake Flask Testing Report L539652
km 2 on the upper site road	km 2 old road A & B	VA07065971	7.7	1	10	0.3	10	32	0.01	0.01	<0.01	NAG	
			7.7	1	12	0.3	12	38.4	0.01	0.01	<0.01	NAG	
150-man camp site	New Camp Site	VA07073067	7	1	7	0.6	6	11.2	0.02	0.01	0.01	PAG	NAG - See Shake Flask Report L539652
150-man camp site	New Camp Site	VA07090006	8	1	13	0.6	12	20.8	0.02	0.01	0.01	NAG	
Material from coverall settling sump	Coverall	VA07090006	7.6	1	6	6.9	-1	0.87	0.22	0.22	<0.01	PAG	NAG - See Shake Flask Report L557308
Access road to 150-man camp site	New Camp Road	VA07090006	8	1	14	0.6	13	22.4	0.02	<0.01	0.02	NAG	

*Based on criterion provided by AMEC Earth and Environmental (as detailed in the General Site Plan Version 2007-03).

Table 3-4	Shake flask	testing	results for	borrow an	d excavation s	sites.
Iunicoli	onune muon	count	i courto i or	bollow un	a cheatanton i	JICCD

Sample ID	MMER*	NEW CAMP SITE	KM 2.5	PORTAL BORROW SITE	GORGE BORROW SITE	COVERALL MATERIAL
Date Sampled		02-Aug-07	02-Aug-07	02-Aug-07	02-Aug-07	20-Sep-07
ALS Sample ID		L539652	L539652	L539652	L539652	L557308
Leachable Anions & Nutrients						
рН	6.0-9.0	7.03	6.51	7.86	7.26	7.76
Leachable Metals				· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·
Aluminum (Al)		4.09	1.37	0.0272	3.46	0.134
Antimony (Sb)		0.00016	0.0072	<0.00010	0.0008	0.00078
Arsenic (As)	0.5	0.00108	0.00689	0.00018	0.002	0.00133
Barium (Ba)		0.0629	0.13	1.81	0.158	0.0205
Beryllium (Be)		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Boron (B)		<0.010	<0.010	<0.010	<0.010	<0.010
Cadmium (Cd)		<0.000050	0.000467	0.000054	0.000202	0.000436
Calcium (Ca)		0.6	0.6	19.3	2.2	20.1
Chromium (Cr)		0.00857	0.00542	0.00308	0.03850	<0.00050
Cobalt (Co)		0.00584	0.00068	<0.00010	0.0058	0.00019
Copper (Cu)	0.3	0.03200	0.02620	0.00931	0.04920	0.00701
Iron (Fe)		3.02	1.9	0.084	2.68	0.218
Lead (Pb)	0.2	0.001240	0.015900	<0.00020	0.006170	0.008520
Lithium (Li)		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Magnesium (Mg)		0.81	0.27	3.18	3.63	1.77
Manganese (Mn)		0.26300	0.05320	0.00352	0.13100	0.01300
Mercury (Hg)		<0.000050	<0.000050	<0.000050	<0.000050	<0.00010
Molybdenum (Mo)		0.00060	0.00817	0.00160	0.00243	0.00689
Nickel (Ni)	0.5	0.00874	0.00286	0.00058	0.0661	0.00083
Phosphorus (P)		<0.30	0.53	<0.30	<0.30	<0.30
Potassium (K)		<2.0	<2.0	<2.0	<2.0	<2.0
Selenium (Se)		<0.0010	0.0036	<0.0010	<0.0010	0.0021
Silicon (Si)		6.80	4.13	3.08	7.56	3.29
Silver (Ag)		0.000085	0.000357	0.00001	0.000131	0.000011
Sodium (Na)		<2.0	<2.0	<2.0	<2.0	<2.0
Strontium (Sr)		0.0031	0.0365	0.0735	0.0084	0.0428
Thallium (TI)		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin (Sn)		<0.00030	<0.00030	<0.00040	<0.00020	<0.00010
Titanium (Ti)		0.12	0.032	<0.010	0.082	<0.010
Uranium (U)		0.000177	0.001140	0.000063	0.000249	0.001330
Vanadium (V)		0.0171	0.0244	<0.0010	0.014	<0.0010
Zinc (Zn)	0.5	<0.010	0.0198	<0.0070	0.0356	0.0142

*MMER Schedule 4: Limits of deleterious substances

3.3 Weather Monitoring

Weather is logged continuously on an hourly basis via a "HOBO Onset" weather station located near south end of the airstrip. The station was installed May 10th, 2006 and collects the following data: temperature, relative humidity, solar radiation in and out, wind speed and direction, and barometric pressure. The weather station is downloaded approximately every two months by an Environmental Technician.

The mean, maximum, and minimum temperatures recorded by the weather station in 2007 are presented in Figure 3-1. The values for August were interpolated from July and September values due to battery failure in August. The mean monthly temperature at the project site in 2007 was -3°C. Mean monthly temperatures are below freezing October through April and above freezing May through September. The minimum recorded temperature in 2007 was -36.4°C and the maximum recorded temperature was 24.4°C.

Figure 3-1 Mean, maximum and minimum temperatures (^oC) by month

The monthly precipitation for 2007, as recorded by the HOBO weather station, is presented in Figure 3-2. Again, August values were interpolated from September and July values due to battery failure in early August. June was the wettest month with 58.14 mm of precipitation and December and January were the driest months with no recorded precipitation (precipitation falling as snow in that period).

Figure 3-2 2007 monthly precipitation

3.4 Piezometer Monitoring

Piezometers installed northeast of the mine portal in two exploration boreholes monitor groundwater conditions in the mineralized zones at the anticipated depth of mining, as shown in Figure 3-3. A graph of potentiometric elevations from deep and shallow piezometer locations PZ-A and PZ-B is presented in Figure 3-4, with precipitation measurements included. PZ-A was not downloaded after October 2007, due to lack of access from snow depth, and as such, there is no data for PZ-A in November and December 2007. There was an increase in the water level with spring freshet in late May and early June; nevertheless, PZ-B levels returned to the levels measured in early 2007 by the end of December 2007.

Figure 3-3 Piezometer locations and co-ordinates

Figure 3-4 Potentiometric elevations with recorded precipitation

3.5 Water Quality Monitoring

Water quality, sediment and hydrology monitoring was conducted as per the Type B Water Licence QZ01-051 Surveillance Network Monitoring (SNM) Program. Sites were sampled more frequently than required and additional sites were also monitored to supplement the database information provided within the *Wolverine Project Environmental Assessment Report* (October 2005). The water quality stations required and actual sampling frequencies are summarized in Table 3-5, and locations are shown in Figure 3-5.

The sampling frequency of sites W9, W12, W16, UTMD, WRSS, C-PS and WTSP were set by the Type B water Licence. All other sites were sampled monthly, where possible, to provide the baseline water quality of the watersheds surrounding the Wolverine Project. It is important to note that many of these sites are also included in the Type A Water Licence QZ04-065 monitoring requirements (sampling as per the A Licence requirements will be triggered by the onset of activities pertaining to quartz milling and mining).

Clarification pertaining to sample collection sites and nomenclature is as follows:

- UTMD represents water collected underground in the underground settling sump.
- WRSS represents water sampled at the collection sump at the south end of the temporary waste rock and ore storage facility.
- C-PS represents the portal area collection sumps (PCS and PDS), as water is initially treated as it is pumped from the underground to the PDS, and flows via gravity into the PCS before being pumped to the WTSP.
- WTSP is represented by the water treatment plant (WTP) inlet sump (WIS) and WTP discharge sump (WDS) and receives the final treatment from the C-PS prior to being discharged to Go Creek.

- AWP-SP does not apply as an aggregate wash plant was not constructed.
- T1, R1 and R2 refer to the tailings pond, the retention pond and discharge from the retention pond, respectively, and are not yet constructed.

	Requ Sam													
Water	Frequ	iency*					Sam	pling C	Condu	cted				
Quality	B-	A-												
Station	Licence	Licence	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
W9	Q	M**	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
W12	Q	М	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
W16	М	М	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
UTMD	М	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
WRSS	W	-					Х	Х	Х	Х	Х	Х		
C-PS	W	-					Х	Х	Х	Х	Х	Х		
WTSP	W	-					Х	Х	Х	Х	Х	Х	Х	Х
AWP-SP	W	_												
W1	-	М	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
W8	-	М	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
W14	-	М	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
W15	-	М	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
W18	-	-								Х				
W21	-	М				Х	Х	Х	Х	Х	Х	Х	Х	
W22	-	М									Х	Х	Х	
W31	-	М				Х	Х	Х	Х	Х	Х	Х		
W40	-	М	X		х	X	X	X	X	X	X	X	Х	
W42A	-	_					X	X	X					
W42B	-	_					X	X	X	Х				
W44	-	_					х	Х	Х	Х				
W47	-	_	X				х	Х	Х	Х				
W71	-	М	X		х	Х	X	X	X	X	Х	Х	Х	
W72	-	М	X		X	X	X	X	X	X	X	X	X	
W73	-	М	X		X	X	X	X	X	X	X	X	X	
W75	-	-	Х		Х		Х	Х	Х	Х				
W80	-	M**	X	Х	х	Х	х	Х	Х	Х	Х	Х	Х	
W81	-	М		X	X	X	X	X	X	X	X	X	X	
W82	-	M**	X	X		X	X	X	X	X	X	X	X	
W83	-	-	Х	Х		Х	Х	Х	Х	Х				
W84	-	-	Х	Х	Х	Х		Х	Х	Х				
L1	-	М	x	х	x	х	х	х	х	х		х	х	
P1	-	-					X	X	X	X				
P2	-	_					X	X	X	X				
P3	_	_					X	X	X	X				
T1	_	М												
R1	-	D**												
R2	-	C												

Table 3-5 Required water quality station sampling frequency and 2007 sampling summary

M = Monthly, W = Weekly, Q = Quarterly, C = Continuous flow monitoring when discharging from the Retention Pond (R1)

**Sampling is daily at W80 and R1 when discharging from R1 and weekly at W82 and W9 when discharging into Wolverine Creek

For lake and creek sampling locations, water samples were analyzed for physical parameters, total suspended solids (TSS), dissolved and total metals (by ICP-MS) and dissolved organic carbon. Mine water samples were analyzed for physical parameters, TSS, dissolved and total metals (by ICP-MS as well as the hydride method for selenium analysis) and mercury (by CVAS).

Water quality at UTMD, WRSS, C-PS and WTSP were taken weekly when possible, and often more frequently as required for water treatment. The annual average water quality results for these stations are summarized in Table 3-6 for the parameters with discharge limits outlined in the Type B Water Licence.

Parameters (mg/L)	ADL*	UTMD (n=154)	C-PS (n=31)	WTSP (n=30)	WRSS (n=26)
TSS	15	149.0	24.8	10.8	5.9
Ammonia Nitrogen	2.5	0.072	0.036	0.049	0.124
Total Arsenic	0.1	0.011	0.002	0.001	0.001
Total Cadmium	0.02	0.009	0.001	0.001	0.004
Total Copper	0.2	0.194	0.013	0.006	0.011
Total Lead	0.2	0.177	0.022	0.008	0.004
Total Nickel	0.5	0.010	0.006	0.005	0.013
Total Selenium	0.015	0.031	0.022	0.012	0.100
Total Zinc	0.5	0.850	0.111	0.053	0.190

Table 3-6	Annual average wa	er quality at SNM stati	ons C-PS, UTMD,	WRSS and WTSP
-----------	-------------------	-------------------------	-----------------	---------------

*ADL = Allowable discharge limits for a grab sample as per the Type B Water Licence; bold numbers indicate values greater than the ADL

Water quality in the underground test mine (UTMD) was representative of incoming groundwater affected by the mineral rich zone located at the lower half of the test mine. UTMD water quality typically has TSS, selenium and zinc concentrations above the ADLs. With ferric sulphate treatment and initial settling, total zinc and TSS levels drop, as can be seen in the average C-PS water quality results (Table 3-6). Total selenium remains the parameter of concern for additional ferric sulphate treatment in the WTSP sumps. Prior to discharge, all water quality at the WTSP sumps is tested to ensure it is better than the ADLs. As shown in Table 3-6, concentrations are often an order of magnitude lower than the ADLs once the settling and treatment phases are complete (see WRSS column). The waste rock collection sump (WRSS) water quality had parameter concentrations below the ADLs for all parameters except for selenium, which was consistently ten times higher than the discharge limit. As such, when required, WRSS water was trucked to the WTSP area for treatment with C-PS water.

Figure 3-5 Surface water quality monitoring sites

<u>9</u> –ordin 9 98 27 52 53 54 97 40 16 33 55 74 15 41	ates (1 Site W31 W42A W42B W44 W47 W71 W71 W73 W80 W81 W80 W81 W82 W82 W82 W84	GPS NAD83) Easting 441219 440604 440551 442632 440550 452343 450430 442684 439402 438322	Northing 6809593 6810315 6810294 6807913 6810055 6810246 6810246 6810105 6804142 6807551 6811087 6811087 6811227
		NCES KE	55375 7575

W40

WOLVERINE PROJECT

SURFACE WATER QUALITY MONITORING SITES

Rev.

Water quality samples at stations W9 (Wolverine Creek), W12 and W16 (Go Creek) were taken approximately monthly (more frequently than required by the Type B Water Licence), and the annual average water quality results are summarized in Table 3-7. Water quality results at W9, W12 and W16 in 2007 were comparable to concentrations measured in 2005 and 2006¹. Typically Wolverine Creek had higher metals concentrations than Go Creek, sometimes by an order of magnitude. Zinc concentrations are several orders of magnitude higher at W9, which is to be expected, due to the mineralized zone in the upper Wolverine watershed.

Parameters (mg/L)	CCME (mg/L)	W9	W12	W16	Total Motals	COME			
Physical Parameters		n=11	n=11	n=12	(mg/L)	(mg/L)	W9	W12	W16
Conductivity		241.78	144.22	129.89	Phosphorus (P)		0.0127	0.0145	0.0125
Hardness		133.35	75.10	68.35	Potassium (K)		1.02	0.60	0.47
Total Suspended Solids	25 ¹	9.82	7.00	15.18	Selenium (Se)	0.001	0.0033	0.0008	0.0006
Total Dissolved Solids		157.64	104.91	90.55	Silicon (Si)		3.16	3.20	2.98
рН	6.5-9.0	8.09	7.91	7.92	Silver (Ag)	0.0001	0.000022	0.00003	0.00001
Turbidity		1.46	0.82	1.25	Sodium (Na)		0.9518	0.9718	0.9591
DOC		2.36	2.27	2.41	Strontium (Sr)		0.1119	0.0446	0.0372
Major Anions					Thallium (TI) 0.0008		0.000003	<0.00005	<0.00005
Alkalinity-Total		99.13	60.40	58.87	Vanadium (V)		0.0004	0.0004	0.0003
Bromide		<0.1	<0.1	<0.1	Zinc (Zn)	0.03	0.1556	0.0034	0.0049
Chloride		0.70	<0.5	0.60	Dissolved Metals (mg/L)	1	I	
Fluoride		0.11	0.06	0.05	Aluminum (Al)		0.0051	0.0061	0.0077
Sulphate		32.46	13.78	8.98	Antimony (Sb)		0.0001	0.00005	0.0001
Nutrient Parameters	I	•	•		Arsenic (As)		0.0003	0.0003	0.0002
Ammonial Nitrogen	1.4-1.5 ²	<0.005	0.005	0.008	Cadmium (Cd)		0.0014	0.0000	0.0001
Nitrate Nitrogen	13	0.199	0.069	0.075	Calcium (Ca)		39.95	23.40	23.32
Nitrite Nitrogen		0.003	0.003	0.004	Chromium (Cr)		0.0003	0.0002	0.0003
Total Phosphate		0.011	0.016	0.011	Cobalt (Co)		0.000010	0.000025	0.000032
Dissolved Ortho-		0.008	0.005	0.005	Copper (Cu)		0.0009	0.0006	0.0006
Phosphate					Iron (Fe)		0.0180	0.0206	0.0187
Total Metals (mg/L)	1	•	•		Lead (Pb)		0.000053	0.000047	0.000040
Aluminum (Al)	0.1	0.0666	0.0589	0.0563	Magnesium (Mg)		8.15	4.06	2.46
Antimony (Sb)		0.0002	0.0001	0.00004	Manganese (Mn)		0.0012	0.0098	0.0148
Arsenic (As)	0.005	0.0005	0.0004	0.0003	Mercury (Hg)		0.00001	0.00001	<0.00001
Cadmium (Cd)	0.00008 ³	0.0016	0.00002	0.0001	Molybdenum (Mo)		0.0008	0.0004	0.0004
Calcium (Ca)		40.04	23.54	23.43	Nickel (Ni)		0.0038	0.0007	0.0001
Chromium (Cr)	0.0089	0.0006	0.0007	0.0007	Phosphorus (P)		0.005	0.003	0.005
Cobalt (Co)		0.0001	0.0001	0.0001	Potassium (K)		1.015	0.597	0.4902
Copper (Cu)	0.002 ⁴	0.0019	0.0009	0.0010	Selenium (Se)		0.0033	0.0009	0.0007
Iron (Fe)	0.3	0.1856	0.1315	0.1155	Silicon (Si)		3.10	3.14	2.88
Lead (Pb)	0.002 ³	0.0003	0.0001	0.0001	Silver (Ag)		<0.000005	0.00001	<0.000005
Magnesium (Mg)		8.155	4.103	2.504	Sodium (Na)		0.952	0.968	0.930
Manganese (Mn)		0.0145	0.0175	0.0195	Strontium (Sr)		0.1098	0.0446	0.0376
Mercury (Hg)		0.000015	0.000020	0.000010	Thallium (TI)		0.000003	<0.00002	<0.00002
Molybdenum (Mo)		0.0009	0.0005	0.0004	Vanadium (V)		0.00011	0.00011	0.00013
Nickel (Ni)	0.065 ³	0.0049	0.0007	0.0005	Zinc (Zn)		0.1349	0.0025	0.0041

 Table 3-7 Annual average water quality at SNM stations W9, W12 and W16

Note: *Bold numbers indicate exceedances of CCME guidelines for the protection of aquatic life. As per CCME guidelines: 1. Maximum induced TSS is 25 mg/L for 24 hours when background is less than or equal to 25; 2. At pH 8, temp $1-10^{\circ}$ C; 3. For hardness = 60-120 mg/L CaCO₃; 4. For hardness = 0-120 mg/L CaCO₃

1. Provided in Type B Water Licence QZ01-051 Annual Report 2005 (dated April 3, 2006), and Annual Report 2006 (dated March 29, 2007).

All discharges are also required to pass a 96 hour LC_{50} fish bioassay standard. Table 3-8 summarizes the results of the monthly 2007 bioassays. Since previous 2006 bioassay reports¹ all achieved a >100% LC₅₀, it was determined, in conjunction with Golder Associates Ltd., to limit the testing to a single toxicity test at 100% concentration. Hence, the January through July reports present the percentage survival of the test species after 96 hours in a 100% concentration test sample. In mid-August YZC reverted back to 96 hour LC₅₀ testing subsequent to an unexplainable laboratory test result (Table 3-8).

Bioassay results for both the untreated (January) and treated (February through December) water samples repeatedly achieved positive results.

Lab Report	Sample Identification	Sample Collection Date (Time)	96-h % Survival in 100% (v/v) Test Sample	96-h LC ₅₀ (95% Confidence Limits) [% vol/vol]
0700022	UTMD-ut	January 15, 2007	90	-
0700056	Bioassay Feb 13 07	February 13, 2007 (0830h)	100	-
0700096	UTMD 4-2T	March 13, 2007 (1230 h)	100	-
0700144	April YZC Bioassy	April 13, 2007 (0730 h)	100	-
0700198	UTMD3T	May 13, 2007 (1400h)	100	-
0700334	WTSP2	July 30, 2007 (2000h)	100	-
0700250	WTSP-1T	August 14, 2007	-	>100
0700350	WTSP-2T	August 14, 2007	-	>100
0700351	WTSP-1T	August 15, 2007*	0/100	>100
0700356	Bioassay WTSP-2T	August 17, 2007 (0700h)	100	-
0700205	WTSP-2T	September 11, 2007 (0900)	-	>100
0700393	CPS-1T	September 11, 2007 (0930)	-	>100
0700424	WTSP-2T	October 2, 2007 (1250h)	-	>100
0700470	WTSP-1T	November 2, 2007	-	>100
0700502	WTSP-2T	November 19, 2007 (1400h)	-	>100
0700548	WTSP-2T	December 10, 2007 (1045h)	-	>100

 Table 3-8 Bioassay results for 2007

*Note: Two tests were conducted 100% concentration with WTSP-1T water sampled August 15th, 2007, the first achieved a 0% survival, the second, a 100% survival.

3.6 Hydrology Monitoring

Hydrological assessments are required quarterly at monitoring stations W9 and W12 and monthly at station W16 as per the Type B Water Licence. To ensure consistent monitoring, water level sensors are located at stations W9 and W12, and 3.4 km downstream of W16 at W80 (same stream reach). Water levels are measured hourly by the sensor, and monthly stream velocity measurements (Table 3-8) are taken manually when possible using a flow probe. Conversion of water level height to flow is done by plotting the manual measurements of water level versus volumetric flow and determining the trendline relationship. This relationship is then used to convert the hourly sensor water levels to hourly volumetric flow.

	Flow (m ³ /s)							
Station	W9	W12	W80					
Jan	0.004	0.070	0.038*					
Feb	-	-	-					
Mar	-	-	-					
Apr	0.006	0.024	0.020*					
Мау	0.072	-	-					
Jun	0.030	1.239	0.580*					
Jul	0.053	0.567	0.600					
Aug	0.034	0.360	0.350					
Sep	0.024	-	0.260					
Oct	0.016	0.140	0.080					
Nov	0.022	0.150	0.049					
Dec	-	-	-					

Table 3-9 Monthly stream velocity measurements

*Indicates manual hydrology taken at W16 at time of the water quality sampling campaign, not at W80

3.7 Sediment Quality Monitoring

Sediment monitoring is required annually during summer low flows for W9, W12 and W16 for total metals. Samples were taken at the end of August 2007 in triplicate, and analyzed by ICP-MS. Sediment quality results are summarized in Table 3-10.

Values that exceed the *CCME (2004) Interim Sediment Quality Guidelines* (Sediment Guidelines) are presented as bold text in Table 3-10. Average concentrations for Cd, Cu As and Zn were above Sediment Guidelines at W9; average Cd and Cu concentrations were above Sediment Guidelines at W12; and average Cd, Cu and Zn concentrations were above Sediment Guidelines at W16. Total metal concentrations in the sediments found in Wolverine Creek (W9) are higher than those found in Go Creek (W12, W16), sometimes by an order of magnitude. These results are to be expected due to the mineralized zone in the upper Wolverine watershed. 2007 sediment concentrations are similar to 2005 and 2006¹ concentrations.

3.8 Benthic and Periphyton Monitoring

Periphyton and benthic invertebrate samples were collected at five creek sites (W9, W12, W16, W17 and W18) in the Wolverine project area to supplement the baseline database. W17 was established upstream of W16 and downstream of the Go Creek control site, W18.

The samples were collected between August 25^{th} and 27^{th} from natural substrates (cobble in riffle habitat) using standard methods (Resource Information Standards Committee, 1997, Freshwater Biological Sampling Manual). Three samples were collected at each site for periphyton (for biomass and taxonomy analyses) by scraping a known area (sample disc area of 7.8 cm², three scrapings, total area of 23.4 cm²). Three samples were also collected for benthic invertebrates (taxonomy analyses) using a Hess sampler, with each sample being a composite of three Hess settings (2 mm, 500 µm and 175 µm mesh size). A lake transect of Little Wolverine Lake was also conducted where five benthic invertebrate samples were collected in composites of three. The results of both the periphyton and benthic invertebrate samples are still pending and are expected to be completed by the end of April 2008. Upon receipt of these results, an addendum report will be submitted.

¹ Provided in Type B Water Licence QZ01-051 Annual Report 2005, dated April 3, 2006, and Annual Report 2006, dated March 29, 2007.

								-	-	
	Site	W9A	W9B	W9C	W12A	W12B	W12C	W16A	W16B	W16C
Parameters	Date	25-Aug	25-Aug	25-Aug	26-Aug	26-Aug	26-Aug	26-Aug	26-Aug	26-Aug
Total Metals by ICPMS (mg/kg)	ISQG (mg/kg)									
Aluminum (Al)	Γ -	8890	9200	8550	11400	11700	12500	16000	15400	14600
Antimony (Sb)	-	1.5	1.8	1.7	0.3	0.3	0.3	0.1	0.2	0.2
Arsenic (As)	5.9	12.2	11.2	12	5.7	6.2	5.4	2	2.3	3.1
Barium (Ba)	-	382	569	398	248	252	264	122	149	175
Beryllium (Be)	-	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
Bismuth (Bi)	-	0.2	0.4	0.2	0.1	0.1	0.1	<0.1	<0.1	<0.1
Cadmium (Cd)	0.6	22	32.1	25.1	1.02	1.15	1.16	1.73	2.06	2.41
Calcium (Ca)	-	11300	16700	12200	4290	5210	5030	5490	6380	5970
Chromium (Cr)	37.3	21	20	20	31	30	33	57	56	55
Cobalt (Co)	-	11.1	11	11.7	11.7	12	12.2	18.6	17.6	17.8
Copper (Cu)	35.7	60	98.1	70	38.1	38.8	43.5	47.2	50.9	44.9
Iron (Fe)	-	23600	23700	21700	23900	25500	25200	26500	24800	25600
Lead (Pb)	35	19.5	22.8	19.6	8.7	8.8	9.3	2.1	2.3	2.2
Magnesium (Mg)	-	7280	6880	6970	6870	7320	7220	13100	11900	11900
Manganese (Mn)	-	867	1020	1000	992	1060	886	698	577	995
Mercury (Hg)	0.17	<0.05	0.07	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Molybdenum (Mo)	-	2.2	2.2	2.4	0.6	0.6	0.6	0.5	0.5	0.6
Nickel (Ni)	-	118	157	131	30.8	30.6	31.8	39.4	38.3	38.1
Phosphorus (P)	-	1410	1580	1420	737	750	758	832	957	872
Potassium (K)	-	1030	964	936	459	494	485	329	344	319
Selenium (Se)	-	3.1	5.9	3.8	1.5	1.5	2.1	0.8	1.1	1.6
Silver (Ag)	-	0.36	0.57	0.39	0.15	0.2	0.19	0.09	0.12	0.09
Sodium (Na)	-	<100	<100	<100	<100	<100	<100	<100	<100	<100
Strontium (Sr)	-	48.6	68.5	53.3	16.1	18.4	17.7	13.2	16.6	15.9
Thallium (TI)	-	0.11	0.13	0.11	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tin (Sn)	-	0.2	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1
Titanium (Ti)	-	385	310	377	390	403	419	981	867	910
Vanadium (V)	-	47	35	36	29	28	30	39	40	39
Zinc (Zn)	123	3340	4390	3440	112	109	118	149	151	161
Zirconium (Zr)	-	0.6	0.6	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Table 3-10	W9.	W12 and W16	sediment	quality	monitoring	results	2007 (1	Lah Re	port A	174074	()
	···-,	The and the to	scument	quanty	monitoring	i courto .		Luo Ite	portr	1, 10, 1	v ,

*Post-scripts A,B,C indicate triplicate sampling; ISGQ=interim sediment quality guideline (CCME, 2004); bold numbers indicate that ISGQ is exceeded

3.9 Groundwater Well Monitoring

Groundwater wells installed in 2005 and 2006 monitor the groundwater quality downslope of the underground mine in both the Go and Wolverine Creek watersheds. Figure 3-6 shows the location of the 2005 (MW05-X) and 2006 (MW06-X) installed groundwater wells, as well as the proposed (MW07-X) wells. No new groundwater monitoring wells were installed in 2007, however, two wells located downstream of the seepage dam (MW07-2) and upstream of the tailings facility (MW07-3) will be installed at the commencement of construction within the area.

Improvements to the 2005 and 2006 installed wells were made in the summer of 2007 and included the following:

- Installation of dedicated Waterra tubing in all the wells.
- Retrofitting of the standpipes to prevent leaking.
- Construction of foundation monuments as needed.

Monitoring of the groundwater wells was performed monthly where possible, however, during the winter months many of the well heads were frozen, and to prevent damage to the level loggers installed in the wells, samples were not taken at these locations. All groundwater samples were filtered in-line to prevent sample contamination and analyzed for physical parameters, major anions, nutrient parameters and dissolved metals (by ICP-MS). Table 3-11 summarizes the water quality sampling and/or water level monitoring dates of the groundwater monitoring wells. Average groundwater quality results are presented in Table 3-12 and the full lab reports are provided in Appendix C.

					S	ampling	in 200)7*				
Sample Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
05-1A				X	X	X	X	X	X	X		
05-1B				X	X	X	X	X	X	X		
05-2A					X	X	X	X	X	X		
05-2B					X	X	X	X	X	X		
05-3A			X	X	X	X	X	X	X	X		
05-3B			X	X	X	X	X	X	X	X		
05-4A						X	X	X	X	X		
05-4B						X	X	X	X	X		
05-5A			X	X	X	X	X	X	X	X		
05-5B			X	X	X	X	X	X	X	X		
05-7A						X	X	X	X	X		
05-7B				X	X	X	X	X	X	X		
06-8S			X	X	X	X	X	X	X	X		
06-8D			X	X	X	X	X	X	X			
06-9S			X	X	X	X	X	X	X	X		
06-9M			X	X	X	X	X	X	X	X		
06-10S			X	X	X	X	X	X	X	X		
06-10M			X	X	X	X	X	X	X	X		
06-10D			X	X	X	X	X	X	X	X		
06-11S			X	X		X	X	X	X	X		
06-12S			X	X	X	X	X	X	X	X		

 Table 3-11 Groundwater monitoring well water quality sampling and water level monitoring

*Blue indicates that water quality and water levels were monitored; Red indicates that only water levels were monitored

Figure 3-6 Groundwater monitoring well locations

Sample name Parameters (mo/L)	05-1A n=3	05-1B n=5	05-2A n=4	05-2B n=5	05-3A n=3	05-38 n=4	05-4A n=2	05-4B n=3	05-5A n=8	05-5B n=3	05-7A n=4
Physical Parameters	2	0-11			2	£-11	7-11	0	0-1	2-1	-
Conductivity	255.3	294.8	396.8	251.6	289.7	243.5	324.7	228.0	488.4	295.7	4383.8
Dissolved Hardness Tintal Susnended Solids	135.7 <4	166.6 26.7	223.5 F	135.8 24.8	154.0 4	119.2	171.0	108.7	286.8	160.3 <4	1610.8 <4
Total Dissolved Solids	157.3	179.4	244.5	154.0	186.7	158.3	204.7	142.0	296.8	176.3	1155.8
pH Turhiditv	8.0 8.73	7.8 53.46	8.1 7.78	7.9 74.28	8.0 10.07	7.8	8.1 033	7.8 8 33	8.2 13.46	8.0 4.87	12.1 0.55
DOC	0.50	5.78	1 00	1.08	0.70	1.10	0.80	06.0	1.00	0.70	5.28
Major Anions	100 2	1578	180.0	176.8	1170	080	110.7	R7 7	231 U	107.7	1132 E
Bromide	40.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	±.0	<0.1
Chloride	1.3 0.51	1.8 n 17	21 0.20	0.8	3.5 N 33	1.8 0.18	1.4 0 03	0.7	20 277	1.1 0.26	3.1
Sulphate	30.73	4.70	32.00	6.54	33.30	34.88	52.63	43.10	34.13	42.20	8.63
Nutrient Parameters Ammonial Nitrogen	0 114	0 109	0.088	0.043	0.017	0.037	0.023	0.037	0.074	0.014	0.068
Nitrate Nitrogen	<0.002	0.017	0.004	0.018	0.098	0.275	0.027	0.002	0.004	0.006	0.032
Nitrite Nitrogen	0.005	0.022	0.003	0.039	<0.002	 0.002 0.002 	0.002	<0.002	0.003	<0.002	0.004
Dissolved Ortho-Phosphate	0.019	0.019	0.005	0.050	0.009	0.005	0.003	0000	0.008	0.005	0.004
Dissolved Metals											
Aluminum (AI)	0.0012	0.02/8	0.0134	0.0196	0.0004	80000	0.0016	0/00/0	5100.0 2700.0	0.0022	/ 95000
Arsenic (As)	0.0089	0.0057	0.0007	0.0287	0.0005	0.0006	0.0003	0.0064	0.0033	0.0014	0.0006
Cadmium (Cd)	0.00006	0.00001	0.00002	0.00002	0.00633	0.01105	0.00004	0.00316	0.00002	0.00003	0.00002
Calcium (Ca)	45.00	64.18 0 0006	59.10	42.22	51.87	39.68	62.07	38.53	76.51	53.30	648.50 0.0066
Cohalt (Co)	0,000	0.0000		0.00035	0.00039	0.00066	0.0005	0.00257	0.00032	N 00049	0.00037
Copper (Cu)	<0.0001	0.0002	0.0007	0.0006	0.0002	0.0024	0.0003	0.0003	<0.0001	0.0002	0.0044
Iron (Fe)	1.52	17.79	0.99	8.56	0.78	0.22	0.03	1.09	1.14	0.46	0.01
Lead (Pb)	0.00003	0.00004	0.00008	0.00020	0.00012	0.00018	<0.00002	0.00029	<0.00002	0.00016	0.00190
Mandanese (Mn)	00.C	4.80 0.633	15.5U 0.175	47.7 271 F	0.04	4.09	0.60	2.55	0.104	0.00	
Mercury (Ha)	<0.00001	<0.00001	<0.0001	<0.00001	<0.00001	<0.0001	<0.0001	<0.0001	<0.00001	<0.0001	<0.0001
Molybdenum (Mo)	0.00617	0.00117	0.00283	0.00181	0.00098	0.00071	0.00558	0.00111	0.00804	0.00218	0.00448
Nickel (Ni)	0.0011	0.0008	0.0008	0.0014	0.0041	0.0032	<0.0005	0.0069	0.0010	0.0025	0.0140
Phosphorus (P)	0.1 100,000,000,000,000,000,000,000,000,00	0.32	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1 71105	<0.1	40.1 7.05
Potassium (K)	1.33	0.9672	27872	U./9/4	1.18200006/	1.14/	2.34	1.8/3333333	1./4125	U.8U8666667	0004
Selenium (Se)	CUUU.U>	4 00	<u.uuu5< td=""><td><0.0005 AT &</td><td>100000/JUU.U</td><td>06710.0</td><td>5 20 CUUUU></td><td><0.0005</td><td>2 88</td><td>c000.02</td><td>100.0</td></u.uuu5<>	<0.0005 AT &	100000/JUU.U	06710.0	5 20 CUUUU>	<0.0005	2 88	c000.02	100.0
Silver (Ad)	<0.0001	<0.0001>	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00	<0.0001	<0.0001	<00001
Sodium (Na)	1.76	1.16	0.59	2.91	1.31	4.80	1.36	1.13	0.67	0.85	4.70
Strontium (Sr)	0.140	0.138	0.158	0.093	0.134	0.140	0.182	0.139	0.132	0.104	1.046
Thallium (TI)	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Vanadium (V)	<0.00005	0.000942	0.00009	0.000263333	<0.00005	<0.00005	<0.00005	0.00007	0.00008	<0.00005	0.00107
	0000-0	4-00-0	00000	1400.0	2010	3.55	0400.0	24 1 - 2	40000	- 2000	00000
Sample name	05-7B	06-8S	06-8D	S6-90	M6-90	06-10S	06-10M	06-10D	06-11S	06-12S	
Parameters (mg/L)	n=7	n=5	n=4	n=6	n=3	n=5	n=7	n=4	0=5 ⊓=5	n=8	
Physical Parameters											
Conductivity	156.0	176.0	457.8	260.0	368.3	279.2	473.3	467.8	327.0	828.9 226 E	
Dissolved Hardness Tidal Suchended Solide	1.11	10.0	2/U.8	141.3 5	0	134.8	209.4 0.7	5/2.0 2.6	1//.4 <4	0.055 45	
Total Dissolved Solids	102.6	119.3	292.0	171.3	230.7	178.4	290.9	288.5	204.8	591.0	
Ha	8.4	7.7	8.3	8.2	8.2	8.2	8.2	8.3	8.3	8.3	
Turbidity	1.70	1.38	1.53	1.07	16.23	0.40	29.14	46.18	0.42	0.87	
DOC	0.66	1.50	0.70	1.13	1.40	1.17	0.75	0.60	0.93	1.25	
Major Anions		1 41									
Alkalinity-Total	83.5 2.5	58.5	226.0	110.2	176.7	114.4	203.7	238.5	136.2	141.1	
Chloride	-0.1 6.6	25 25	1.0-	37	1.0/	30	23		2.0.1	0.000000000000000000000000000000000000	
Fluoride	0.14	0.21	0.97	0.53	1.01	0.25	0.79	1.01	2.15	1.1	
Sulphate	12.76	26.00	29.10	23.27	23.50	29.34	51.13	18.23	33.30	287.75	
Nutrient Parameters	10.047	0000	0.074	0000	0000	2000	0.050	100	0 420	0.467	
Nitrate Nitroden	0.015	0.026	<0.002	0.004	0.003	0.006	0.002	<0.002	0.002	0.005	
Nitrite Nitrogen	0.002	0.005	<0.002	<0.002	0.003	<0.002	0.006	0.005	<0.002	0.004	
Total Phosphate	0.044	0.028	0.007	0.348	0.066	0.037	0.039	0.018	0.027	0.029	
Dissolved Ortho-Phosphate	0.038	0.014	0.006	0.245	0.017	0.033	0.007	0.008	0.023	0.034	
Dissolved Metals	00000	1000		01000	10000	10000	0,000	10000	00100	10001	
Aluminum (Al) Antimony (Sh)	0.0007	0.0111	0.0007	0.0001	0.0015	4c00.0	0.0001	0.0006	0.0011	0.0014	
Arsenic (As)	0.0011	0.0014	0.0050	0 0091	0,0009	0.0048	0.0003	0.0003	0.0038	0.0033	
Cadmium (Cd)	0.00003	0.00002	<0.00001	0.00002	0.00002	<0.00001	0.00001	0.00001	0.00006	0.00002	
Calcium (Ca)	27.10	25.17	62.05	48.37	65.00	47.08	86.67	74.75	51.06	104.14	
Chromium (Cr)	0.0004	0.0002	0.0003	0.0003	<0.0002	0.0002	<0.0002	0.0002	0.0004	0.0004	
Coper (Cu)	0,000	0.0007	0.0001	0.0007	c00000	0.00018	0.0003	<0.0001	0.0001	0.0001	
Iron (Fe)	0.05	1.31	0.21	0.41	1.29	0.12	2.81	4.13	0.17	0.17	
Lead (Pb)	0.00007	0.00005	0.00003	0.00014	0.00006	0.00004	0.00006	0.00011	0.00005	0.00003	
Magnesium (Mg)	2.34	3.06	27.00	4.75	12.00	3.94	12.43	20.65	11.68	18.10	
Manganese (Mn)	0.113	0.692	0.056	0.154	0.166	0.083	0.237	0.102	0.073	0.312	
Molvbdenum (Mo)	0.01023	0.00314	0.00140	0.00679	0.00437	0.00192	0.00205	0.00390	0.02860	0.00913	
Nickel (Ni)	0.0023	0.0126	0.0016	0.0009	<0.0006	0.0018	0.0011	0.0011	0.0013	0.0018	
Phosphorus (P)	<0.1	≤0.1	40.1	0.3	<0.1	40.1	<0.1	6.1	<0.1	40.1	
Potassium (K)	0.858625	1.183833333	1.8675	1.027833333	1.996666667	1.35	1.814285714	2.5175	1.9 P. 00067	2.74	
Selenium (Se) Silicon (Si)	3.04	563	0.0000	ennn'ns	200002		200002	59 E	0.00000 4.5.8	7 QG	
Silver (Aa)	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.0000	
Sodium (Na)	1.72	3.89	0.62	1.60	0.52	8.41	2.90	1.18	4.15	57.53	
Structium (Sr)	0.051	0.076	0 163	0.180	0.080	0 166	0 142	0.160	0.102	0.362	

4 **Progressive Reclamation**

Reclamation activities were undertaken at four locations in 2007: two borrow sites along the site road between the exploration camp and the portal, and two culvert locations along the mine access road (Pitch and Putt Creeks). Minimal reclamation work was conducted on the site access road because the road is only complete to Phase 1, and Phase 2 will require additional surface works to install permanent culverts and expand the road profile to ensure bank stability and safe operating conditions (eg.., addition of pull-out bays). Section 2.2.1 and 2.2.2 describe culvert installation and reclamation activities at Pitch and Putt Creeks, respectively.

4.1 Native Seed Mixes

Arctic Alpine Seed Ltd. designed a mix of native seed for roadside and slope applications that have been used to re-seed the areas described below (Table 4-1).

	Common Name	% in	Application
Use	Species	Mixture	Rate
	Violet wheat grass		
	Agropyron violaceum	40	
	Slender wheat grass		
Roadside	Agoropyron pauciflorum	10	30kg/ha
	Tickle Grass		
	Agrostis scabra	5	
	Sheep Fescue		
	Festuca ovina	20	
	Arctic Fescue		
	Festuca saximontana	25	
	Violet wheat grass		
	Agropyron violaceum	50	
	Fowl Blue grass		
	Poa palustris	10	
	Tickle Grass		
Slope	Agrostis scabra	5	40kg/ha
	Tufted Hair Grass		
	Deschampsia caespitosa	10	
	Arctic Fescue		
	Festuca saximontana	25	

Table 4-1 Wolverine Project – Custom Seed Mixture

4.2 Roadside Borrow Pit Seeding Test Plots

Seeding test plots were established along the lower site road between the exploration camp and portal to assess the two seed mixes with and without the use of harrowing. A total of seven test plots were established, including three control plots (Figure 4-1; Picture 4-1). On each of the four 5 m x 37 m rectangular plots, 400 g of seed was applied. Two of the four seeded test plots were harrowed. One of the unseeded control plots was harrowed and two were not harrowed. As the test plots were established and seeded in early August, and the growing season is generally from June through August, monitoring will continue in spring 2008 to assess the success of seed germination and benefit of harrowing.

Figure 4-1 Diagram of seeded and control test plots, with and without harrowing.

Picture 4-1 Staked test plots, with center staked line corresponding to center of area in Figure 4-1

4.3 Campbell Creek Gorge Borrow Site

The objective of reclamation activities at the gorge borrow site on the west side of Campbell Creek was to stabilize and seed the old borrow pit banks (on the upslope side of the road) and to decrease the slope of the bank on the down slope side of the road to minimize erosion and possible sedimentation towards Campbell Creek.

This section of road through the gorge has a ~21% grade, and surface runoff along the road and borrow site drains into the borrow pit and towards Campbell Creek. Slopes were stabilized by recontouring and leveling to provide land forms that conform to the surrounding terrain and provide suitable seedbeds. Organic stockpile material was used in conjunction with growth media to promote re-vegetation. Both areas in the gorge area were seeded in mid-September using the slope seed mix. As this was done late in the growing season, monitoring of re-vegetation success will commence in spring 2008. Pictures 4-2 and 4-3 document reclamation activities down slope and upslope of the road, respectively.

Picture 4-2 Bank re-contouring down slope of the road through the Campbell Creek gorge (west side)

Picture 4-3 Bank re-contouring upslope of the road through the Campbell Creek gorge (west side)

5 Ongoing Testwork

Testwork continues in order to support underground water quality model updates and includes waste rock, paste backfill and dense media separation (DMS) float humidity cells. Other ongoing testwork includes tailings humidity cells (started in 2005) and biological treatment for selenium reduction lab work.

5.1 Underground Water Quality Model

A water quality model was developed to predict the expected metal concentrations of the flooded mine at closure. The model utilized the current mine plan and extensive ongoing kinetic testing data to predict the loads of metals that may be released into the mine once it floods. The model used conservative assumptions regarding the geochemistry of the mine in order to provide a 'worse-case' estimate of the mine water quality.

Based on the findings of the water quality prediction, elevated concentrations of metals are predicted to occur in the mine water following flooding of the mine. Predicted concentrations are similar to those observed at existing mine sites with a similar geological and mineralogical setting. Equilibrium modeling of the predicted (mass-loading) concentration suggests that expected metals concentrations will be reduced due to solubility constraints on several of the metals. However, this reduction is pH dependent and will occur only at circum-neutral pH values.

The updated mass balance concentrations are summarized in the AMEC report provided in Appendix D, which includes data from the waste rock and paste backfill humidity cells and the DMS float humidity cells presented below.

5.1.1 Waste Rock and Paste Backfill Humidity cells

Waste rock, paste backfill and ore humidity cells have been operating since 2005. Table 5-1 summarizes the composition, the date operation begun and the weeks in operation as of December 31^{st} , 2007.

De-ionized water (500 ml) was added weekly to each humidity cell and the leachate was analyzed for the parameters outlined in Table 5-2. The results of the humidity cell leachate analysis conducted in 2007 is summarized in the AMEC report provided in Appendix D, and showed an overall trend of near constant rate of release or slight decrease of calculated loadings. The range of values achieved over the 2007 monitoring period is summarized in Table 5-2. The data is presented as a range of concentrations achieved in 2007. If a range is not presented (i.e. <0.0002 instead of 0.0002-0.0003) then the parameter consistently achieved a result less than the reportable detection limit of the analyzing laboratory.

Humidity Cell	Composition	Date Started	Weeks in operation as of December 31, 2007
HC1	Rhyolite/rhyolite fragmental	22-Dec-05	106
HC2	Iron formation	22-Dec-05	106
HC3	Rhyolite/rhyolite fragmental	22-Dec-05	106
HC4	Rhyolite/rhyolite fragmental	22-Dec-05	106
HC5	Calcite-pyrite exhalite	22-Dec-05	106
HC6	Calcite-pyrite exhalite	22-Dec-05	106
HC7	Carbonaceous argillite	22-Dec-05	106
HC8	Carbonaceous argillite	22-Dec-05	106
HC9	Non-carbonaceous argillite	12-Jan-06	103
HC10	Non-carbonaceous argillite	12-Jan-06	103
HC11	Iron formation	12-Jan-06	103
HC12	Rhyolite/argillite	12-Jan-06	103
HC13	Rhyolite/argillite	12-Jan-06	103
HC14	Ore	16-Feb-06	98
HC15	Ore	16-Feb-06	98
HC16	Ore	16-Feb-06	98
HC20	NP* depleted ore	23-May-06	84
HC21	NP depleted ore	23-May-06	84
HC22	NP depleted ore	23-May-06	84
T1	Paste backfill	23-May-06	84
T2	Paste backfill	23-May-06	84

Table 5-1 Waste rock, paste backfill and ore humidity cell composition and duration of operation

*NP = Neutralization potential

 Table 5-2 Waste rock, paste backfill and ore humidity cell results for 2007

Cell Parameter	HC1	HC2	HC3* ¹	HC4	HC5	HC6	HC7	HC8	HC9	HC10	HC11
(mg/L) pH	667 - 775	71 - 794	2.19 - 2.97	69 - 773	732 - 799	7.28 - 7.96	674 - 7.82	707 - 7.89	727 - 7.98	733 - 812	723 - 8.02
Cond.	33.3 - 102.5	76.56 - 139.19	811 - 4100	93.69 - 189.69	133.43 - 223.99	191.1 - 363.42	55.58 - 105.72	68.24 - 178.61	61.53 - 158.36	144.01 - 319.51	108.27 - 218.34
Acidity (pH 8.3)	1.42 - 6.69	1.39 - 7.77	210 - 2190	1.76 - 7.23	1.66 - 8.38	1.49 - 7.7	1.54 - 5.72	1.4 - 11.1 176 - 4711	1.49 - 6.69	1.03 - 8.81	1.39 - 7.7
Sulphate	2 - 10	1 - 18	204 - 3310	22 - 67	28 - 59	79 - 158	15 - 34	14 - 34	8 - 25	12 - 39	12 - 52
Hardness	17.2 - 51.8	38.9 - 82.4	20.8 - 56.5	39.5 - 87.7	71.9 - 115	108 - 198	30.2 - 54.1	37.5 - 74.9	41.4 - 71.9	81.6 - 113	48.1 - 111
Sb	0.0006 - 0.0025	0.012 - 0.58 0.0032 - 0.0084	< 0.0002 - 0.001	0.007 - 0.085 0.0008 - 0.0035	0.008 - 0.25	< 0.001 - 0.073	0.0003 - 0.0013	0.018 - 0.17	0.02 - 0.17	0.008 - 0.19	< 0.0002 - 0.001
As	< 0.0002 - 0.0021	0.0005 - 0.0032	0.0014 - 0.025	0.0005 - 0.0016	< 0.0002 - 0.0004	< 0.0002 - 0.0004	< 0.0002 - 0.0004	< 0.0002 - 0.0007	0.0002 - 0.0008	0.0003 - 0.0008	< 0.0002 - 0.0004
Ba Be	0.035 - 0.122	0.119 - 0.308	0.01 - 0.021	0.022 - 0.045	0.026 - 0.043	0.011 - 0.022	0.011 - 0.027	0.0091 - 0.022	0.042 - 0.078	0.118 - 0.175	0.08 - 0.206
Bi	< 0.0002	< 0.0002	0.0007 - 0.019	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
B	< 0.01 - 0.02	< 0.01 - 0.02	0.03 - 0.06	< 0.01 - 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01 - 0.01	< 0.01 - 0.02
Ca	5.76 - 17.8	14.3 - 30.9	1.65 - 5.2	9.8 - 22.2	24.6 - 39.7	31 - 56.1	11.2 - 20.2	10.7 - 22	12.5 - 22.8	24.3 - 32.4	15.1 - 34.4
Cr	< 0.0002 - 0.0011	< 0.0002 - 0.0009	0.0032 - 0.026	< 0.0002 - 0.0005	< 0.0002 - 0.0004	< 0.0002 - 0.0003	< 0.0002 - 0.0003	< 0.0002 - 0.0006	< 0.0002 - 0.0005	< 0.0002 - 0.0004	< 0.0002 - 0.0005
Co Cu	< 0.0002 - 0.0002 0.0002 - 0.0037	< 0.0002	0.0096 - 0.1 0.401 - 0.918	< 0.0002 - 0.0002 0.001 - 0.0037	< 0.0002 0.0034	< 0.0002 < 0.0023	0.0002 - 0.0008	< 0.0002 0.0002 - 0.015	< 0.0002	< 0.0002	< 0.0002
Fe	< 0.01 - 0.18	< 0.01 - 0.05	23.4 - 891	< 0.01 - 0.76	< 0.01 - 0.14	< 0.01 - 0.1	0.01 - 0.11	< 0.01 - 0.19	< 0.01 - 0.09	< 0.01 - 0.07	< 0.01 - 0.12
Pb Ti	< 0.0002 - 0.0015 < 0.0002 - 0.0022	0.0003 - 0.0016	0.114 - 0.556 0.0084 - 0.027	< 0.0002 - 0.0028 0.0007 - 0.0037	< 0.0002 - 0.0003 0.0003 - 0.0027	< 0.0002 0.0005 - 0.0028	< 0.0002 < 0.0002 - 0.0019	< 0.0002 - 0.0005 < 0.0002 - 0.002	< 0.0002 - 0.0009 0.0004 - 0.0029	< 0.0002 - 0.0004 < 0.001 - 0.0024	< 0.0002 - 0.0009 0.0005 - 0.0027
Mg	0.64 - 1.77	0.75 - 2.04	3.61 - 12	3.63 - 8.28	2.55 - 4.87	7.36 - 16.2	0.52 - 0.9	2.43 - 5.45	2.39 - 4.02	4.92 - 8.23	2.5 - 6.96
Mn	0.013 - 0.146	0.053 - 0.104	0.033 - 0.105	0.056 - 0.129	0.041 - 0.09	0.017 - 0.051	0.104 - 0.25	0.023 - 0.052	0.0087 - 0.06	0.0021 - 0.059	0.11 - 0.447
Mo	< 0.0001 - 0.0002	0.0012 - 0.0028	< 0.0001	0.0003 - 0.0011	< 0.002	< 0.001	0.0003 - 0.0007	< 0.0001 - 0.0004	0.0011 - 0.0022	0.001 - 0.0022	0.0002 - 0.0007
Ni	0.0004 - 0.0031	< 0.0002 - 0.0004	0.0094 - 0.064	< 0.0002 - 0.0005	< 0.0002 - 0.0004	< 0.0002 - 0.0003	0.0011 - 0.007	0.0003 - 0.0006	< 0.0002 - 0.0005	0.0002 - 0.0008	0.0002 - 0.0012
Р К	< 0.03	< 0.03 - 0.04 0.04 - 0.15	< 0.03 - 0.38 0.68 - 2.02	< 0.03 0.47 - 1.44	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Se	0.0004 - 0.0014	0.0098 - 0.028	0.012 - 0.053	0.0089 - 0.022	0.0007 - 0.0017	0.0004 - 0.0008	0.001 - 0.0027	0.0005 - 0.0018	< 0.0002 - 0.0033	0.0011 - 0.0024	0.0005 - 0.0018
S1 Ag	0.16 - 0.89	0.39 - 1.12 < $0.00005 - 0.00012$	13.6 - 42.5 < $0.00005 - 0.00086$	0.54 - 1.45	0.38 - 0.78 < 0.00005 - 0.00009	0.08 - 0.22	0.18 - 0.8	0.34 - 0.98 < 0.00005 - 0.00009	0.56 - 1.38	0.78 - 1.82 < $0.00005 - 0.00007$	0.33 - 1.15
Na	0.02 - 0.29	0.01 - 1.14	0.4 - 1.49	0.02 - 0.56	< 0.01 - 0.62	0.01 - 0.25	0.02 - 0.39	0.02 - 0.41	0.04 - 0.34	0.05 - 0.42	0.03 - 0.97
Sr	0.027 - 0.091	0.207 - 0.428	0.0096 - 0.023	0.034 - 0.098	0.113 - 0.175	0.208 - 0.393	0.015 - 0.028	0.02 - 0.051	0.068 - 0.125	0.223 - 0.342	0.097 - 0.229
n	< 0.00002	0.00004 - 0.00014	0.0017 - 0.0098	0.00003 - 0.00024	< 0.00002 - 0.00004	< 0.0002	< 0.0002 - 0.00016	< 0.0002 - 0.00004	< 0.0002 - 0.00012	< 0.0002 - 0.00003	0.00002 - 0.0001
Th	< 0.0001	< 0.0001	0.038 - 1.58	< 0.0001 - 0.0008	< 0.0001 - 0.0003	< 0.0001 - 0.0002	< 0.0001 - 0.0004	< 0.0001 - 0.0003	< 0.0001 - 0.0003	< 0.0001 - 0.0002	< 0.0001 - 0.0002
Sn Ti	< 0.0002 - 0.0004	< 0.0002 - 0.0015	< 0.0002 - 0.0008 0.0003 - 0.0021	< 0.0002	< 0.0002 - 0.0005	< 0.0002 - 0.0005	< 0.0002 - 0.0004	< 0.0002 - 0.0003	< 0.0002 - 0.0003	< 0.0002 - 0.0003	< 0.0002
U	< 0.0001 - 0.0002	< 0.0001 - 0.0003	0.0029 - 0.012	0.0006 - 0.0047	0.0003 - 0.0008	0.0002 - 0.0009	< 0.0001 - 0.0003	0.0001 - 0.0005	0.0002 - 0.0008	0.0001 - 0.0003	< 0.0001 - 0.0002
V Zn	< 0.0002 < 0.001 - 0.09	< 0.0002 - 0.0003	0.0004 - 0.0021 0.15 - 1.35	< 0.0002 - 0.0002 0.002 - 0.046	< 0.0002	< 0.0002 < 0.001 - 0.031	< 0.0002	< 0.0002	< 0.0002 - 0.0003	< 0.0002 - 0.0004 < 0.001 - 0.066	< 0.0002
Zr	< 0.002	< 0.002	< 0.002 - 0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
*1 = Alkalinity w	as not taken in 2007, and is	instead presented as acidit	y (pH 4.5)								
Cell	HC12	HC13	HC14	HC15	HC16	HC20* ²	HC21	HC22* ²	TI	T2	1
Cell Parameter (mg/L)	HC12	HC13	HC14	HC15	HC16	HC20* ²	HC21	HC22* ²	TI	T2	
Cell Parameter (mg/L) pH Cond	HC12	HC13	HC14 4.29 - 7.06 173 55 - 313 58	HC15	HC16	HC20* ²	HC21 6.66 - 7.78 191 53 - 568 75	HC22* ² 3.63 - 4.79 582 4 - 1737 79	T1 6.68 - 8.18 921 14 - 2315 14	T2 7.58 - 8.07 957 40 - 2245 32	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3)	HC12 7.17 - 7.99 69.78 - 166.46 1.4 - 6.5	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22	HC20* ² 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41	HC21 6.66 - 7.78 181.53 - 568.75 11.38 - 31.44	HC22* ² 3.63 - 4.79 582.4 - 1737.79 188.5 - 586.6	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Colobat	HC12 7.17 - 7.99 69.78 - 166.46 1.4 - 6.5 32.85 - 65.78 0 - 25	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 4 - 67	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 7.6 - 129	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 97 - 236	HC20* ² 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 500 - 500	HC21 6.66 - 7.78 181.53 - 568.75 11.38 - 31.44 6.69 - 41.36 9 - 217	HC22* ² 3.63 - 4.79 582.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 2.31 - 100	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 605 - 1644	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55 31.75 - 54.78 4.9 - 150	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness	HC12 7.17 - 7.99 60.78 - 166.46 1.4 - 6.5 32.85 - 65.78 10 - 25 46 - 91.9	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209	HC20* ² 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 109 - 690 7.3 - 115	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 72.1 - 266	HC22* ² 3.63 - 4.79 582.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 356	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55 31.75 - 54.78 548 - 1581 545 - 1600	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al	HC12 7.17 • 7.99 60.78 • 166.46 1.4 • 6.5 32.85 • 65.78 10 • 25 46 • 91.9 < 0.001 • 0.11 0.000	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 2.0021 - 0.002	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.089	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 <0.001 - 0.13 <0.022	HC20* ² 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 109 - 690 7.3 - 115 0.82 - 4.1 0.000	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 72.1 - 266 < 0.001 - 0.12 0.002	HC22* ² 3.63 - 4.79 582.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 356 1.29 - 5.96	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.005	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55 31.75 - 54.78 548 - 1581 545 - 1600 0.002 - 0.082	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As	HC12 7.17 - 7.99 69.78 - 166.46 1.4 - 6.5 32.85 - 65.78 10 - 25 46 - 91.9 < 0.001 - 0.11 0.0003 - 0.0009 < 0.0002 - 0.0003	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.0001 - 0.003 0.0003 - 0.0009	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.089 0.016 - 0.03 0.004 - 0.024	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 <0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035	HC20* ² 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 109 - 690 7.3 - 115 0.82 - 4.1 0.0018 - 0.008 0.033 - 0.166	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038	HC22* ² 3.63 - 4.79 582.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 356 1.29 - 5.96 0.0006 - 0.0031 0.041 - 0.181	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55 31.75 - 54.78 548 - 1581 545 - 1600 0.002 - 0.082 0.02 - 0.029 0.01 - 0.049	
Cell Parameter (mg/L) pH Cond. Alidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba	HC12 7.17 - 7.99 69.78 - 166.46 1.4 - 6.5 32.85 - 65.78 10 - 25 46 - 91.9 < 0.001 - 0.11 0.0003 - 0.0009 < 0.0002 - 0.0003 0.003 - 0.055	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 1.4 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.0009 0.067 - 0.127	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079	$\begin{array}{c ccccc} & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 <0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 0.039 - 0.096	HC20* ² 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 109 - 690 7.3 - 115 0.82 - 4.1 0.0018 - 0.008 0.033 - 0.166 0.025 - 0.046	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068	HC22* ² 3.63 - 4.79 \$2.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 336 1.29 - 5.96 0.0066 - 0.0031 0.041 - 0.181 0.018 - 0.046	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55 31.75 - 54.78 548 - 1581 545 - 1600 0.002 - 0.029 0.01 - 0.049 0.015 - 0.023	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Be Bi	HC12 $7.17 \cdot 7.99$ $69.78 \cdot 166.46$ $1.4 \cdot 6.5$ $32.85 \cdot 65.78$ $10 \cdot 25$ $46 \cdot 91.9$ $< 0.001 \cdot 0.11$ $0.0003 \cdot 0.0009$ $< 0.0002 \cdot 0.0003$ $0.03 \cdot 0.055$ < 0.0002 < 0.0002	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 1.4 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.009 0.067 - 0.127 < 0.0002 < 0.0002	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0002	HC15 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 0.039 - 0.096 < 0.0002 < 0.0002	HC20*2 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 109 - 690 7.3 - 115 0.82 - 4.1 0.0018 - 0.008 0.033 - 0.166 0.025 - 0.046 < 0.0002 < 0.0002	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0002	HC22* ² 3.63 - 4.79 \$2.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 336 1.29 - 5.96 0.0006 - 0.0031 0.041 - 0.181 0.018 - 0.046 < 0.0002 - 0.0005 < 0.0002	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002	T2 7.58 - 8.07 967.49 - 2245.32 3.18 - 8.55 31.75 - 54.78 548 - 1581 545 - 1600 0.002 - 0.029 0.01 - 0.029 0.01 - 0.049 0.015 - 0.023 < 0.0002 < 0.0002	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Bi Bi B	HC12 7.17 \cdot 7.99 69.78 \cdot 166.46 1.4 \cdot 6.5 32.85 \cdot 65.78 10 \cdot 25 46 \cdot 91.9 < 0.001 \cdot 0.11 0.0003 \cdot 0.0009 < 0.0002 \cdot 0.0003 0.03 \cdot 0.055 < 0.0002 < 0.001 \cdot 0.01	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.0009 0.067 - 0.127 < 0.0002 < 0.011 - 0.01	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0002 < 0.011 - 0.04	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.089 0.016 - 0.03 0.004 - 0.024 0.034 - 0.078 < 0.0002 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 0.039 - 0.096 < 0.0002 < 0.001 - 0.01	HC20*2 3.62 - 4.1 264.94 - 1077.11 112.21 - 639.41 4.6 - 16.05 109 - 650 7.3 - 115 0.82 - 4.1 0.0018 - 0.008 0.033 - 0.166 0.026 - 0.046 < 0.0002 - 0.0004 < 0.0002 < 0.01 - 0.02	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.00041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0002 < 0.001 - 0.01	$\begin{array}{c c} HC22^{*2} \\\hline 3.63 & - 4.79 \\ $82.4 & - 1737.79 \\ 188.5 & - 586.6 \\ 1.36 & - 15.62 \\ 321 & - 1020 \\ 46.6 & - 356 \\ 1.29 & - 5.96 \\ 0.0006 & - 0.0031 \\ 0.041 & - 0.181 \\ 0.018 & - 0.046 \\ < 0.0002 & - 0.0005 \\ < 0.0012 \\ < 0.011 & - 0.02 \\ \end{array}$	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002 < 0.0002 0.01 - 0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) PH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Cd Ca	HC12 $7.17 \cdot 7.99$ $69.78 \cdot 166.46$ $1.4 \cdot 6.5$ $32.85 \cdot 65.78$ $10 \cdot 25$ $46 \cdot 91.9$ $< 0.001 \cdot 0.11$ $0.0003 \cdot 0.0050$ < 0.0002 < 0.0002 $< 0.001 \cdot 0.01$ < 0.0002 < 0.0002 $< 0.001 \cdot 0.01$ < 0.0002 < 0.0002 $< 0.01 \cdot 0.01$	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 1.4 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.0009 0.067 - 0.127 < 0.0002 < 0.001 - 0.01 < 0.0002 < 0.01 - 0.01 < 0.0002 < 0.01 - 20.8	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 <0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0002 < 0.001 - 0.04 0.181 - 0.335 29.4 - 54.1	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.089 0.016 - 0.03 0.004 - 0.078 < 0.0002 < 0.0002 < 0.001 0.0484 - 0.149 28.1 - 70.5	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 0.039 - 0.096 < 0.0002 < 0.0002 < 0.001 - 0.01 0.0688 - 0.742 3.65 - 83.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0085 0.00241 - 0.038 0.02 - 0.068 < 0.0002 < 0.0002 < 0.001 - 0.01 0.107 - 0.335 16 - 61 1	HC22* ² 3.63 - 4.79 \$82.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 356 1.29 - 5.96 0.0006 - 0.0031 0.041 - 0.181 0.018 - 0.046 < 0.0002 - 0.0005 < 0.0002 < 0.01 - 0.02 1.17 - 4.1 15 - 112	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002 < 0.0002 0.01 - 0.1 0.0024 - 0.0067 206 - 625	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) PH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.0003 - 0.003 0.0003 - 0.0127 < 0.0002 < 0.01 - 0.01 < 0.0002 < 0.01 - 0.01 < 0.0002 < 0.01 - 29.8 < 0.0002 - 0.0005	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0002 < 0.0002 < 0.001 - 0.04 0.181 - 0.335 2.9.4 - 54.1 < 0.0002 - 0.0005	$\begin{array}{c ccccc} & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	HC16 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccc} & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.00041 - 0.038 0.02 - 0.068 < 0.0002 < 0.001 - 0.01 0.107 - 0.335 16 - 61.1 < 0.0002 - 0.0007	HC22* ² 3.63 - 4.79 \$82.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 356 1.29 - 5.96 0.0006 - 0.0031 0.041 - 0.181 0.018 - 0.046 < 0.0002 - 0.0005 < 0.0002 < 0.01 - 0.02 1.17 - 4.1 15 - 112 < 0.0002 - 0.0007	$\begin{array}{c c} T1 \\ \hline & 6.68 & - 8.18 \\ 921.14 & - 2315.14 \\ 3.57 & - 9.53 \\ 31.72 & - 73.13 \\ 506 & - 1644 \\ 530 & - 1610 \\ 0.003 & - 0.075 \\ 0.015 & - 0.025 \\ 0.015 & - 0.025 \\ 0.016 & - 0.032 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0005 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Co	HC12 7.17 \cdot 7.99 69.78 \cdot 166.46 1.4 \cdot 6.5 32.85 \cdot 65.78 10 \cdot 25 46 \cdot 91.9 $<$ 0.001 \cdot 0.11 0.0003 \cdot 0.0009 $<$ 0.0002 \cdot 0.0003 0.03 \cdot 0.055 < 0.0002 $<$ 0.001 \cdot 0.01 < 0.00002 $<$ 0.01 \cdot 0.01 < 0.00002 $<$ 0.01 \cdot 0.01 < 0.00002 $<$ 0.001 \cdot 0.01 < 0.00002 $<$ 0.002 \cdot 0.0005 < 0.00002 < 0.00002 < 0.0005 < 0.00002 < 0.0005 < 0.005 <	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 699 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.0001 - 0.003 0.0003 - 0.002 < 0.0002 < 0.001 - 0.01 <0.0002 < 0.001 - 0.01 <0.0002 1.31 - 29.8 <0.0002 < 0.0002 < 0.0	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0002 < 0.0002 < 0.001 - 0.04 0.181 - 0.335 29.4 - 54.1 < 0.0002 - 0.0005 0.0008 - 0.0023 0.0008 - 0.0023 0.0008 - 0.0023 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC16 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC21 6.66 - 7.78 181.53 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0007 0.0025 - 0.0011 0.012 - 0.025	HC22* ² 3.63 - 4.79 \$\$2.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 356 1.29 - 5.96 0.0006 - 0.0031 0.041 - 0.181 0.018 - 0.046 < 0.0002 - 0.0005 < 0.0002 < 0.01 - 0.02 1.17 - 4.1 15 - 112 < 0.0002 - 0.0007 0.0093 - 0.052 3.00 - 202	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002 < 0.0002 0.01 - 0.1 0.0024 - 0.0067 206 - 625 < 0.0002 - 0.004 0.0022 - 0.014 0.0022 - 0.014	$\begin{array}{c} \textbf{12} \\ \hline 7.58 + 8.07 \\ 967.49 + 2245.32 \\ 3.18 + 8.55 \\ 31.75 + 54.78 \\ 548 + 1581 \\ 545 + 1600 \\ 0.002 + 0.029 \\ 0.01 + 0.029 \\ 0.01 + 0.029 \\ 0.015 + 0.023 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016 \\ < 0.0016$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Cr Co Cu Fe	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.0009 0.067 - 0.127 < 0.0002 < 0.0002 < 0.001 - 0.01 <0.00002 < 0.0002 < 0.0	$\begin{array}{c} \textbf{HC14} \\ \hline 4.29 & - 7.06 \\ 173.55 & - 313.58 \\ 7.92 & - 21.5 \\ -1.05 & - 21.52 \\ 76 & - 138 \\ 75.6 & - 139 \\ < 0.001 & - 0.14 \\ 0.0061 & - 0.0093 \\ 0.0032 & - 0.015 \\ 0.047 & - 0.079 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0003 \\ < 0.0023 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.01 \\ < 0.009 \\ < 0.01 \\ < 0.009 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.01 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.0003 \\ < 0.000$	$\begin{array}{c ccccc} & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	HC16 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} HC21 \\\hline\\ \hline\\ 6.66 & - 7.78 \\181.53 & - 568.75 \\11.38 & - 31.44 \\6.69 & - 41.36 \\82 & - 317 \\7.1 & - 266 \\< 0.001 & - 0.12 \\0.0047 & - 0.0065 \\0.0041 & - 0.038 \\0.02 & - 0.068 \\0.0002 & - 0.068 \\< 0.0002 \\< 0.0002 \\< 0.0002 \\< 0.0002 \\\\ - 0.001 & - 0.1 \\0.0025 & - 0.011 \\0.01 & - 0.084 \\< 0.01 & - 0.1 \\\end{array}$	$\begin{array}{c c} HC22^{*2} \\\hline\\ 3.63 &- 4.79 \\582.4 &- 1737.79 \\188.5 &- 586.6 \\1.36 &- 15.62 \\321 &- 1020 \\46.6 &- 335 \\1.29 &- 5.96 \\0.0006 &- 0.0031 \\0.018 &- 0.046 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0007 \\0.0003 &- 0.052 \\3.09 &- 20.2 \\1.08 &- 8.07 \\\end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{3.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 0.075 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.016} & - 0.032 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0007 \\ \textbf{206} & - 625 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0005 \\ \textbf{0.0022} & - 0.014 \\ \textbf{0.0032} & - 0.019 \\ \textbf{<} 0.01 & - 0.52 \end{array}$	$\begin{array}{c} \textbf{T2} \\ \hline \textbf{7.58} & - 8.07 \\ \textbf{967.49} & - 2245.32 \\ \textbf{3.18} & - 8.55 \\ \textbf{31.75} & - 54.78 \\ \textbf{548} & - 1581 \\ \textbf{545} & - 1500 \\ \textbf{0.002} & - 0.082 \\ \textbf{0.012} & - 0.029 \\ \textbf{0.015} & - 0.029 \\ \textbf{0.015} & - 0.023 \\ \textbf{<0.0002} \\ \textbf{<0.00015} \\ \textbf{<0.0018} \\ \textbf{<0.011} \\ \textbf{<0.0026} \\ \textbf{<0.001} \\ \textbf{<0.077} \end{array}$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Cd Ca Cr Cr Co Cu Fe Pb Pb	HC12 7.17 \cdot 7.99 69.78 \cdot 166.46 1.4 \cdot 6.5 32.85 \cdot 65.78 10 \cdot 25 46 \cdot 91.9 $<$ 0.001 \cdot 0.11 0.0003 \cdot 0.0009 $<$ 0.0002 \cdot 0.0003 0.03 \cdot 0.055 < 0.0002 < 0.0002 $<$ 0.01 \cdot 0.01 $<$ 0.0002 \cdot 0.00051 $6.82 \cdot$ 13.5 < 0.0002 <	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0067 - 0.1027 < 0.0002 < 0.0002 < 0.0002 1.31 - 29.8 < 0.0002 < 0	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.001 - 0.04 0.0093 - 0.0023 < 0.0019 - 0.0093 < 0.005 - 0.121 < 0.002	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.089 0.016 - 0.03 0.004 - 0.024 0.034 - 0.078 < 0.0002 < 0.0005 < 0.0006 = 0.0026 0.0026 < 0.0028 < 0.01 - 0.1 0.032 - 0.091	HC16 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} HC20^{*2} \\ \hline & & & \\ \hline & & \\ \hline & & \\ 264.94 & - & & 1077.11 \\ 112.21 & - & & 639.41 \\ 4.6 & - & & 16.05 \\ 109 & - & & 690 \\ 7.3 & - & & 115 \\ 0.82 & - & 4.1 \\ 0.0018 & - & & 0.008 \\ 0.026 & - & & 0.004 \\ \hline & & & \\ <0.0002 & - & & 0.0004 \\ \hline & & & \\ <0.0002 & - & & 0.0004 \\ \hline & & & \\ <0.0002 & - & & 0.002 \\ \hline & & & \\ <0.0017 & - & & 0.045 \\ 3.05 & - & & 19 \\ 1.96 & - & 10.1 \\ 0.017 & - & & 0.049 \\ \hline & & 0.0027 & - & 0.0077 \\ \hline \end{array}$	$\begin{array}{c c} HC21 \\\hline \\ \hline \\ 6.66 & - 7.78 \\\hline \\ 181.53 & - 568.75 \\\hline \\ 11.38 & - 31.44 \\\hline \\ 6.69 & - 41.36 \\\hline \\ 82 & - 317 \\\hline \\ 7.1 & - 266 \\\hline \\ < 0.001 & - 0.12 \\\hline \\ 0.0047 & - 0.0065 \\\hline \\ 0.0041 & - 0.038 \\\hline \\ 0.002 & - 0.068 \\\hline \\ < 0.0002 \\\hline \\ < 0.0007 \\\hline \\ 0.0007 \\\hline \\ 0.0007 \\\hline \\ 0.0007 \\\hline \\ \end{array}$	$\begin{array}{c} HC22^{*2} \\ \hline \\ 3.63 - 4.79 \\ 582.4 - 1737.79 \\ 188.5 - 586.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ < 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.01 - 0.02 \\ 1.17 - 4.1 \\ 15 - 112 \\ 0.0002 - 0.0007 \\ 0.0093 - 0.052 \\ 3.09 - 20.2 \\ 1.08 - 8.07 \\ 0.0097 - 0.071 \\ 0.0097 - 0.071 \\ 0.0097 - 0.071 \\ 0.0097 - 0.071 \\ 0.0097 - 0.071 \\ 0.0097 - 0.071 \\ 0.0097 - 0.071 \\ 0.0097 \\ 0.011 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.0007 \\ 0.0011 \\ 0.002 \\ 0.001 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.000 \\ 0.002 \\ 0.000 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.002 \\ 0.000 $	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.0015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.0102} & - \textbf{0.002} \\ \textbf{<} \textbf{0.0002} \\ \textbf{0.016} & \textbf{-} \textbf{0.25} \\ \textbf{0.0002} & \textbf{0.0067} \\ \textbf{206} & \textbf{-} \textbf{625} \\ \textbf{0.0002} & \textbf{0.019} \\ \textbf{<} \textbf{0.0024} & \textbf{0.0067} \\ \textbf{0.0022} & \textbf{0.014} \\ \textbf{0.0032} & \textbf{0.019} \\ \textbf{<} \textbf{0.019} \\ \textbf{<} \textbf{0.0002} \\ \textbf{.00002} \\ \textbf{.00002} \\ \textbf{.00003} \\ \textbf{.0002} \\ \textbf{.00008} \\ \textbf{.00002} \\ \textbf{.00008} \end{array}$	$\begin{array}{c} \textbf{12} \\ \hline \textbf{7.58} & - 8.07 \\ \textbf{967.49} & - 2245.32 \\ \textbf{3.18} & - 8.55 \\ \textbf{31.75} & - 54.78 \\ \textbf{548} & - 1581 \\ \textbf{545} & - 1500 \\ \textbf{0.002} & - 0.082 \\ \textbf{0.012} & - 0.029 \\ \textbf{0.015} & - 0.029 \\ \textbf{0.015} & - 0.029 \\ \textbf{0.015} & - 0.023 \\ \textbf{-} 0.0002 \\ \textbf{-} 0.0001 \\ \textbf{-} 0.0011 \\ \textbf{-} 0.002 \\ \textbf{-} 0.0002 \\ \textbf{-} 0.0000 \\ \textbf{-} 0.0002 \\ \textbf{-} 0.0000 \\ $	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness As Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Cr Co Cu Fe Pb Li Mg	$\begin{array}{c ccccc} HC12 \\\hline & 7.17 & - 7.99 \\ 69.78 & - 166.46 \\ 1.4 & - 6.5 \\ 32.85 & - 65.78 \\ 10 & - 25 \\ 46 & - 91.9 \\ < 0.0001 & - 0.11 \\ 0.0003 & - 0.0009 \\ < 0.00002 & - 0.0003 \\ 0.033 & - 0.055 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.00002 \\ < 0.0002 \\ < 0.0$	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.0067 - 0.127 < 0.0002 < 0.000	$\begin{array}{c cccc} HC14 \\ \hline 4.29 & - 7.06 \\ 173.55 & - 313.58 \\ 7.92 & - 21.5 \\ -1.05 & - 21.52 \\ 76 & - 138 \\ 75.6 & - 139 \\ < 0.001 & - 0.14 \\ 0.0061 & - 0.0093 \\ 0.0032 & - 0.015 \\ 0.047 & - 0.079 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0003 \\ < 0.0019 & - 0.0093 \\ < 0.019 & - 0.0093 \\ < 0.012 & - 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.00$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC16 6.82 - 7.5 219.03 - 486.83 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 0.011 0.06688 - 0.742 36.5 - 82.2 < 0.0007 - 0.0032 0.0007 - 0.0032 0.0042 - 0.028 < 0.001 - 0.023 0.039 - 0.2 < 0.002 - 0.0023 0.039 - 0.2 < 0.0023 - 0.0023	$\begin{array}{c ccccc} HC20^{*2} \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ 264.94 & - & 1077.11 \\ 112.21 & - & 639.41 \\ 4.6 & - & 16.05 \\ 109 & - & 690 \\ 7.3 & - & 115 \\ 0.82 & - & 4.1 \\ 0.0018 & - & 0.008 \\ 0.033 & - & 0.066 \\ 0.026 & - & 0.046 \\ < 0.0002 & - & 0.0004 \\ \hline & & \\ < 0.0002 & - & 0.0004 \\ \hline & & \\ < 0.0002 & - & 0.0004 \\ \hline & & \\ < 0.0002 & - & 0.02 \\ 0.037 & - & 3.76 \\ 1.7 & - & 24.1 \\ < 0.0002 & - & 0.0022 \\ 0.0083 & - & 0.045 \\ 3.05 & - & 19 \\ 1.96 & - & 10.1 \\ 0.017 & - & 0.049 \\ 0.0007 & - & 0.0063 \\ 0.75 & - & 13.4 \\ \hline \end{array}$	$\begin{array}{c c} HC21 \\\hline \\ 6.66 & - 7.78 \\ 181.53 & - 568.75 \\ 11.38 & - 31.44 \\ 6.69 & - 41.36 \\ 82 & - 317 \\ 77.1 & - 266 \\ < 0.001 & - 0.12 \\ 0.0047 & - 0.0065 \\ 0.0041 & - 0.038 \\ 0.022 & - 0.068 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ 0.0002 \\ < 0.0007 \\ 0.0003 \\ 7.8 & - 27.5 \\ \end{array}$	$\begin{array}{c c} HC22^{*2} \\\hline\\ 3.63 & - 4.79 \\582.4 & - 1737.79 \\188.5 & - 586.6 \\1.36 & - 15.62 \\321 & - 1020 \\46.6 & - 335 \\1.29 & - 5.96 \\0.0006 & - 0.0031 \\0.018 & - 0.041 \\0.018 & - 0.046 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0007 \\0.0093 & - 0.052 \\3.09 & - 20.2 \\1.08 & 8.07 \\0.0097 & - 0.071 \\0.002 & - 0.001 \\1.66 & - 26.6 \\\end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.0015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.016} & \textbf{0.032} \\ \textbf{<} \textbf{0.0002} \\ \textbf{<} \textbf{0.0016} \\ \textbf{0.0022} & \textbf{0.0067} \\ \textbf{0.0022} & \textbf{0.0016} \\ \textbf{0.0022} & \textbf{0.019} \\ \textbf{<} \textbf{<} \textbf{0.013} & \textbf{0.0069} \\ \textbf{3.68} & \textbf{15.6} \end{array}$	$\begin{array}{c} \textbf{12} \\ \hline \textbf{7.58} & - 8.07 \\ \textbf{967.49} & - 2245.32 \\ \textbf{3.18} & - 8.55 \\ \textbf{31.75} & - 54.78 \\ \textbf{548} & - 1581 \\ \textbf{545} & - 1500 \\ \textbf{0.002} & - 0.029 \\ \textbf{0.015} & - 0.029 \\ \textbf{0.015} & - 0.029 \\ \textbf{0.015} & - 0.023 \\ \textbf{-} 0.0002 \\ \textbf{-} 0.00018 \\ \textbf{-} 0.011 \\ \textbf{-} 0.0018 \\ \textbf{-} 0.011 \\ \textbf{-} 0.002 \\ \textbf{-} 0.0002 \\ \textbf{-} 0.0009 \\ \textbf{-} 0.0012 \\ \textbf{-} 0.00067 \\ \textbf{-} 15.2 \end{array}$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Cr Co Cu Fe Pb Li Mg Mn	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.007 - 0.127 < 0.0002 < 0.0002	$\begin{array}{c cccc} HC14 \\ \hline 4.29 & - 7.06 \\ 173.55 & - 313.58 \\ 7.92 & - 21.5 \\ -1.05 & - 21.52 \\ 76 & - 138 \\ 75.6 & - 139 \\ < 0.001 & - 0.14 \\ 0.0061 & - 0.0093 \\ 0.0032 & - 0.015 \\ 0.047 & - 0.079 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0003 \\ < 0.0019 & - 0.0093 \\ < 0.019 & - 0.0093 \\ < 0.011 & - 0.09 \\ 0.065 & - 0.121 \\ < 0.0002 & - 0.002 \\ 0.49 & - 0.99 \\ 0.351 & - 0.62 \\ \end{array}$	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.03 0.016 - 0.03 0.004 - 0.024 0.034 - 0.178 < 0.0002 <	HC16 6.82 - 7.5 219.03 - 486.83 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC21 6.66 - 7.78 181.53 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.010 - 0.01 0.017 - 0.335 16 - 61.1 < 0.0002 - 0.0084 < 0.011 - 0.11 0.012 - 0.038 < 0.0007 - 0.0038 7.8 - 27.5 0.339 - 1.7	HC22* ² 3.63 - 4.79 582.4 - 1737.79 188.5 - 586.6 1.36 - 15.62 321 - 1020 46.6 - 335 1.29 - 5.96 0.0006 - 0.0031 0.041 - 0.181 0.018 - 0.046 < 0.0002 - 0.0005 < 0.0002 < 0.01 - 0.02 1.17 - 4.1 15 - 112 < 0.0002 - 0.0007 0.0093 - 0.052 3.09 - 20.2 1.08 - 8.07 0.0097 - 0.071 0.002 - 0.011 1.66 - 26.6 0.573 - 2.68	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.0015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.0102} & - 0.002 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0003 \\ \textbf{<} 0.0005 \\ \textbf{3.68} \\ \textbf{<} 15.6 \\ \textbf{0.174} & - 1.04 \\ \textbf{<} 0.002 \\ \textbf{<} 0.0005 \\ \textbf{<} $	$\begin{array}{c} \textbf{12} \\ \hline \textbf{7.58} & - 8.07 \\ 967.49 & - 2245.32 \\ 3.18 & - 8.55 \\ 31.75 & - 54.78 \\ 548 & - 1581 \\ 545 & - 1600 \\ 0.002 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.015 & - 0.029 \\ 0.0012 & - 0.007 \\ 0.0018 & - 0.011 \\ 0.0031 & - 0.026 \\ 0.0012 & - 0.0067 \\ 3.76 & - 15.2 \\ 0.78 & - 0.736 \\ \hline \end{array}$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Cr Co Cu Cr Co Cu Fe Pb Li Mg Mn Hg (ug/L) Mo	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.007 - 0.127 < 0.0002 < 0.0002	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.001 - 0.04 0.0002 - 0.0003 < 0.0019 - 0.0093 < 0.012 - 0.002 0.005 - 0.121 < 0.0002 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.002 < 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 < 0.0002 < 0.0002 - 0.0039 < 0.0002 - 0.0032 < 0.0002 - 0.0032 < 0.0002 - 0.0032 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.011 0.0039 - 0.2 < 0.0012 - 0.0023 0.043 0.039 - 0.2 0.0023 0.43 - 1.78 0.189 0.0039 - 0.0039 0.0039	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} HC21 \\\hline \\ \hline \\ 6.66 & - 7.78 \\ 181.53 & - 568.75 \\ 11.38 & - 31.44 \\ 6.69 & - 41.36 \\ 82 & - 317 \\ 72.1 & - 266 \\ < 0.001 & - 0.12 \\ 0.0047 & - 0.0065 \\ 0.0041 & - 0.038 \\ 0.022 & - 0.068 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0025 & - 0.011 \\ 0.01 & - 0.084 \\ < 0.01 & - 0.1 \\ 0.0002 & - 0.00038 \\ 7.8 & 27.5 \\ 0.399 & - 1.7 \\ < 0.02 \\ < 0.0006 & - 0.0012 \\ \end{array}$	$\begin{array}{c c} HC22^{*2} \\\hline 3.63 & - 4.79 \\582.4 & - 1737.79 \\188.5 & - 586.6 \\1.36 & - 15.62 \\3.21 & - 1020 \\46.6 & - 335 \\1.29 & - 5.96 \\0.0006 & - 0.0031 \\0.018 & - 0.041 \\0.018 & - 0.046 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.001 \\0.0093 & - 0.052 \\- 0.0003 & - 0.052 \\- 0.0007 & - 0.071 \\0.002 & - 0.011 \\1.66 & - 26.6 \\0.573 & - 2.68 \\& - 0.02 \\- 0.0001 & - 0.0003 \\\end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.0015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.015} & \textbf{0.025} \\ \textbf{0.016} & \textbf{0.032} \\ \textbf{< 0.0002} \\ \textbf{< 0.0004} \\ \textbf{< 0.0022} \\ \textbf{< 0.0008} \\ \textbf{< 0.0013} \\ \textbf{< 0.0069} \\ \textbf{3.68} \\ \textbf{< 15.6} \\ \textbf{< 0.174} \\ \textbf{< 0.025} \\ \textbf{< 0.0074} \\ \textbf{< 0.025} \\ \textbf{< 0.005} \\ < 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Cr Co Cu Cr Co Cu Fe Pb Li Mg Mn Hg (ug/L) Mo Ni	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.007 - 0.127 < 0.0002 < 0.010 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0001	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.01 - 0.04 0.0018 - 0.035 29.4 - 54.1 < 0.0002 - 0.0003 < 0.0019 - 0.0093 < 0.012 - 0.002 0.005 - 0.121 < 0.002 < 0.02 0.002 < 0.002 < 0.02 0.002 < 0.002 < 0.001 < 0.002 < 0.005 < 0.0012 < 0.005 </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 - 0.011 0.0688 - 0.742 36.5 82.2 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.001 - 0.002 < 0.002 - 0.0032 0.039 - 0.2 < 0.001 - 0.0023 0.039 - 0.2 < 0.002 - 0.0023 0.43 - 1.78 0.189 - 1.15 < 0.002 - 0.0039 0.0007 - 0.0039</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c} HC21 \\ \hline \\ 6.66 & - 7.78 \\ 181.53 & - 568.75 \\ 11.38 & - 31.44 \\ 6.69 & - 41.36 \\ 82 & - 317 \\ 72.1 & - 266 \\ < 0.001 & - 0.12 \\ 0.0047 & - 0.0065 \\ 0.0041 & - 0.038 \\ 0.02 & - 0.068 \\ < 0.0002 \\ < 0.0007 \\ 0.0025 & - 0.011 \\ 0.01 & - 0.084 \\ < 0.01 & - 0.1 \\ 0.0002 & - 0.0007 \\ 0.0007 & - 0.0038 \\ 7.8 & 27.5 \\ 0.399 & - 1.7 \\ < 0.02 \\ < 0.0006 & - 0.0012 \\ 0.0094 & - 0.047 \\ \hline \end{array}$</td> <td>$\begin{array}{c c} HC22^{*2} \\\hline\\ 3.63 & - 4.79 \\582.4 & - 1737.79 \\188.5 & - 586.6 \\1.36 & - 15.62 \\3.21 & - 1020 \\46.6 & - 335 \\1.29 & - 5.96 \\0.0006 & - 0.0031 \\0.018 & - 0.041 \\0.018 & - 0.046 \\< 0.0002 & - 0.0005 \\- 0.0002 & - 0.0015 \\- 0.0002 & - 0.0015 \\- 0.0002 & - 0.0011 \\1.66 & - 26.6 \\0.573 & - 2.68 \\- 0.02 \\< 0.0001 & - 0.0003 \\- 0.0003 \\- 0.0003 \\- 0.0003 \\- 0.0003 \\- 0.026 \\- 0.0026 \\- 0.0003 \\- 0.000$</td> <td>$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.003} & - 0.075 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.032 \\ \textbf{0.0002} & \textbf{0.0002} \\ \textbf{0.0002} & \textbf{0.0002} \\ \textbf{0.0002} & \textbf{0.0002} \\ \textbf{0.0002} & - 0.0005 \\ \textbf{0.0022} & - 0.004 \\ \textbf{0.00022} & - 0.014 \\ \textbf{0.0002} & - 0.009 \\ \textbf{0.0002} & - 0.0008 \\ \textbf{0.0013} & - 0.0069 \\ \textbf{3.68} & 15.6 \\ \textbf{0.174} & - 1.04 \\ \textbf{< 0.025} \\ \textbf{0.0014} & - 0.025 \\ \textbf{0.0014} & - 0.021 \\ \end{array}$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 - 0.011 0.0688 - 0.742 36.5 82.2 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.001 - 0.002 < 0.002 - 0.0032 0.039 - 0.2 < 0.001 - 0.0023 0.039 - 0.2 < 0.002 - 0.0023 0.43 - 1.78 0.189 - 1.15 < 0.002 - 0.0039 0.0007 - 0.0039	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} HC21 \\ \hline \\ 6.66 & - 7.78 \\ 181.53 & - 568.75 \\ 11.38 & - 31.44 \\ 6.69 & - 41.36 \\ 82 & - 317 \\ 72.1 & - 266 \\ < 0.001 & - 0.12 \\ 0.0047 & - 0.0065 \\ 0.0041 & - 0.038 \\ 0.02 & - 0.068 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0025 & - 0.011 \\ 0.01 & - 0.084 \\ < 0.01 & - 0.1 \\ 0.0002 & - 0.0007 \\ 0.0007 & - 0.0038 \\ 7.8 & 27.5 \\ 0.399 & - 1.7 \\ < 0.02 \\ < 0.0006 & - 0.0012 \\ 0.0094 & - 0.047 \\ \hline \end{array}$	$\begin{array}{c c} HC22^{*2} \\\hline\\ 3.63 & - 4.79 \\582.4 & - 1737.79 \\188.5 & - 586.6 \\1.36 & - 15.62 \\3.21 & - 1020 \\46.6 & - 335 \\1.29 & - 5.96 \\0.0006 & - 0.0031 \\0.018 & - 0.041 \\0.018 & - 0.046 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\< 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0005 \\- 0.0002 & - 0.0015 \\- 0.0002 & - 0.0015 \\- 0.0002 & - 0.0011 \\1.66 & - 26.6 \\0.573 & - 2.68 \\- 0.02 \\< 0.0001 & - 0.0003 \\- 0.0003 \\- 0.0003 \\- 0.0003 \\- 0.0003 \\- 0.026 \\- 0.0026 \\- 0.0003 \\- 0.000$	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.003} & - 0.075 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.032 \\ \textbf{0.0002} & \textbf{0.0002} \\ \textbf{0.0002} & \textbf{0.0002} \\ \textbf{0.0002} & \textbf{0.0002} \\ \textbf{0.0002} & - 0.0005 \\ \textbf{0.0022} & - 0.004 \\ \textbf{0.00022} & - 0.014 \\ \textbf{0.0002} & - 0.009 \\ \textbf{0.0002} & - 0.0008 \\ \textbf{0.0013} & - 0.0069 \\ \textbf{3.68} & 15.6 \\ \textbf{0.174} & - 1.04 \\ \textbf{< 0.025} \\ \textbf{0.0014} & - 0.025 \\ \textbf{0.0014} & - 0.021 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Co Cu Ca Cr Co Cu Fe Pb Li Mg Mn Hg (ug/L) Mo Ni P K	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.007 - 0.127 < 0.0002 < 0.001 < 0.03 < 0.56 - 1.45	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 = 0.049 0.0019 - 0.0093 < 0.012 0.0065 - 0.121 < 0.0002 < 0.002 0.005 - 0.021 < 0.002 < 0.02 < 0.002 < 0.02 0.005 - 0.0012 0.0005 - 0.0012 0.0005 < 0.005 <	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001 - 0.089 0.016 - 0.03 0.004 - 0.024 0.034 - 0.078 < 0.0002 < 0.0028 < 0.001 < 0.0028 < 0.001 < 0.002 < 0.0021 < 0.0021 < 0.0020 < 0.0028 < 0.0022 0.088 - 1.78 0.128 - 0.445 < 0.0039 0.0005 < 0.0005 < 0.0005	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 < 0.0002 < 0.0002 0.0002 < 0.0002 0.0039 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 0.0042 0.0032 0.0042 0.028 < 0.001 0.002 0.039 0.2 < 0.002 0.0023 0.43 1.78 0.189 1.15 < 0.02 0.0067 < 0.03	$\begin{array}{c ccccc} HC20*^2 \\ \hline & 3.62 & - & 4.1 \\ 264.94 & - & 1077.11 \\ 112.21 & - & 639.41 \\ 4.6 & - & 16.05 \\ 109 & - & 690 \\ 7.3 & - & 115 \\ 0.82 & - & 4.1 \\ 0.0018 & - & 0.008 \\ 0.033 & - & 0.166 \\ 0.026 & - & 0.046 \\ < 0.0002 & - & 0.0004 \\ \hline & < 0.0002 \\ < 0.001 & - & 0.02 \\ 0.037 & - & 3.76 \\ 1.7 & - & 24.1 \\ < 0.0002 & - & 0.0022 \\ 0.0083 & - & 0.0022 \\ 0.0083 & - & 0.045 \\ 3.05 & - & 19 \\ 1.96 & - & 10.1 \\ 0.017 & - & 0.049 \\ 0.0077 & - & 0.049 \\ 0.0077 & - & 0.003 \\ 0.75 & - & 13.4 \\ 0.201 & - & 1.73 \\ \hline & < 0.002 \\ < 0.0001 & - & 0.0006 \\ 0.039 & - & 0.274 \\ \hline & < 0.03 \\ 0.32 & - & 1.41 \\ \hline \end{array}$	$\begin{array}{c} \textbf{HC21} \\ \hline & 6.66 & 7.78 \\ 181.33 & 558.75 \\ 11.38 & 31.44 \\ 6.69 & 41.36 \\ 82 & 317 \\ 72.1 & 266 \\ < 0.001 & 0.12 \\ 0.0047 & 0.0065 \\ 0.0041 & 0.038 \\ 0.02 & 0.008 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0025 & 0.011 \\ 0.01 & 0.01 \\ 0.0002 & 0.0007 \\ 0.0002 & 0.0007 \\ 0.0002 & 0.0007 \\ 0.0007 & 0.0038 \\ 7.8 & 27.5 \\ 0.399 & 1.7 \\ < 0.02 \\ 0.0006 & 0.0012 \\ 0.0094 & 0.047 \\ < 0.03 \\ 0.055 & 1.53 \\ \end{array}$	$\begin{array}{c} HC22^{*2} \\ \hline 3.63 & - 4.79 \\ 582.4 & - 1737.79 \\ 188.5 & - 586.6 \\ 1.36 & - 15.62 \\ 321 & - 1020 \\ 46.6 & - 335 \\ 1.29 & - 5.96 \\ 0.0006 & - 0.0031 \\ 0.041 & - 0.181 \\ 0.018 & - 0.046 \\ < 0.0002 & - 0.0005 \\ < 0.0002 \\ < 0.01 & - 0.02 \\ 1.17 & - 4.1 \\ 15 & - 112 \\ < 0.0002 & - 0.0002 \\ < 0.01 & - 0.02 \\ 1.17 & - 4.1 \\ 15 & - 112 \\ < 0.0002 & - 0.0007 \\ 0.0093 & - 0.052 \\ 3.09 & - 20.2 \\ 1.08 & - 8.07 \\ 0.0097 & - 0.071 \\ 0.002 & - 0.011 \\ 1.66 & - 26.6 \\ 0.573 & - 2.68 \\ < 0.02 \\ < 0.0001 & - 0.0003 \\ 0.046 & - 0.326 \\ < 0.03 \\ 0.27 & - 1.88 \\ \end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline & 6.68 & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.0015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.016} & - 0.032 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0004 \\ \textbf{<} 0.019 \\ \textbf{<} 0.013 \\ \textbf{<} 0.00069 \\ \textbf{3.68} \\ \textbf{<} 15.6 \\ \textbf{$0.174 + 1.04 \\ \textbf{<} 0.02 \\ \textbf{$0.0014 + 0.025 \\ \textbf{$0.0014 + 0.021 \\ \textbf{<} 0.03} \\ \textbf{$0.077 - 2.02 \\ \textbf{<} 0.001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.03 \\ \textbf{<} 0.7 \\ \textbf{<} 2.02 \\ \textbf{<} 0.001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.03 \\ \textbf{<} 0.7 \\ \textbf{<} 2.02 \\ \textbf{<} 0.001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.031 \\ \textbf{<} 0.057 \\ \textbf{<} 2.02 \\ \textbf{<} 0.001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.031 \\ \textbf{<} 0.051 \\ \textbf{<} 0.001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.031 \\ \textbf{<} 0.057 \\ \textbf{<} 2.02 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.011 \\ \textbf{<} 0.031 \\ \textbf{<} 0.057 \\ \textbf{<} 2.00 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0001 \\ \textbf{<} 0.011 \\ \textbf{<} 0.0011 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Ca Cr Co Cu Ca Ca Cr Co Cu Fe Pb Li Mg Mn Hg (ug/L) Mo Ni P K Se	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c cccc} HC14 \\ \hline 4.29 & - 7.06 \\ 173.55 & - 313.58 \\ 7.92 & - 21.5 \\ -1.05 & - 21.52 \\ 76 & - 138 \\ 75.6 & - 139 \\ < 0.001 & - 0.14 \\ 0.0061 & - 0.0993 \\ 0.0032 & - 0.015 \\ 0.047 & - 0.079 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0003 \\ < 0.001 \\ - 0.049 \\ 0.0003 \\ < 0.003 \\ = 0.0093 \\ < 0.01 \\ = 0.0093 \\ < 0.01 \\ < 0.002 \\ 0.0005 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 0.0002 < 0.0002 0.0039 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 0.0042 0.0032 0.0042 0.0028 < 0.001 0.2 < 0.002 0.0023 0.039 0.2 < 0.002 0.0023 0.043 1.78 0.189 1.15 < 0.02	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \textbf{HC21} \\ \hline & 6.66 & 7.78 \\ 181.33 & 558.75 \\ 11.38 & 31.44 \\ 6.69 & 41.36 \\ 82 & 317 \\ 72.1 & 266 \\ < 0.001 & 0.12 \\ 0.0047 & 0.0065 \\ 0.0041 & 0.038 \\ 0.02 & 0.068 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0025 & 0.011 \\ 0.01 & 0.084 \\ < 0.011 & 0.01 \\ 0.0002 & 0.0007 \\ 0.0007 & 0.0038 \\ 7.8 & 27.5 \\ 0.399 & 1.7 \\ < 0.02 \\ 7.8 & 27.5 \\ 0.399 & 1.7 \\ < 0.02 \\ 0.0006 & 0.0012 \\ 0.0094 & 0.047 \\ < 0.03 \\ 0.55 & 1.33 \\ 0.112 & 0.533 \\ \end{array}$	$\begin{array}{c} HC22^{*2} \\ \hline 3.63 & - 4.79 \\ 582.4 & - 1737.79 \\ 188.5 & - 586.6 \\ 1.36 & - 15.62 \\ 321 & - 1020 \\ 46.6 & - 335 \\ 1.29 & - 5.96 \\ 0.0006 & - 0.0031 \\ 0.041 & - 0.181 \\ 0.018 & - 0.046 \\ 0.0002 & - 0.0005 \\ < 0.0002 \\ < 0.01 & - 0.02 \\ 1.17 & - 4.1 \\ 15 & - 112 \\ < 0.0002 & - 0.0005 \\ < 0.0002 \\ < 0.01 & - 0.02 \\ 1.17 & - 4.1 \\ 15 & - 112 \\ < 0.0002 & - 0.0001 \\ 0.0093 & - 0.052 \\ 3.09 & - 20.2 \\ 1.08 & - 8.07 \\ 0.0097 & - 0.071 \\ 0.002 & - 0.011 \\ 1.66 & - 26.6 \\ 0.573 & - 2.68 \\ < 0.02 \\ < 0.001 & - 0.003 \\ 0.046 & - 0.326 \\ < 0.03 \\ 0.27 & - 1.88 \\ 0.733 & - 2.93 \\ \end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline & 6.68 & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 10510 \\ \textbf{0.0015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.016} & - 0.032 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0004 \\ \textbf{<} 0.019 \\ \textbf{<} 0.013 \\ \textbf{<} 0.00069 \\ \textbf{3.68} \\ \textbf{<} 15.6 \\ \textbf{$0.174 + 1.04 \\ \textbf{<} 0.02 \\ \textbf{$0.0014 + 0.025 \\ \textbf{$0.0014 + 0.025 \\ \textbf{$0.0014 + 0.021 \\ \textbf{<} 0.03 \\ $0.67 - 2.02 \\ \textbf{$0.247 + 1.06 \\ \textbf{$0.66 \\ \textbf{$0.247 + 1.06 \\ \textbf{$0.66 \\ \textbf{$0.247 + 1.06 \\ \textbf{$0.66 \\ \textbf{$0.56 \\ \textbf{$0.247 + 1.06 \\ \textbf{$0.66 \\ \textbf{$0.56 \\ \textbf{$0.56$	$\begin{array}{c} \textbf{12} \\ \hline \textbf{7.58} & = 8.07 \\ \textbf{967.49} & = 2245.32 \\ \textbf{3.18} & = 8.55 \\ \textbf{31.75} & = 54.78 \\ \textbf{548} & = 1581 \\ \textbf{545} & = 1600 \\ \textbf{0.002} & = 0.029 \\ \textbf{0.01} & = 0.029 \\ \textbf{0.015} & = 0.023 \\ \textbf{0.015} & = 0.023 \\ \textbf{0.0002} \\ \textbf{0.015} & = 0.023 \\ \textbf{0.0002} \\ \textbf{0.0015} & = 0.0001 \\ \textbf{0.0015} & = 0.0001 \\ \textbf{0.0015} & = 0.0081 \\ \textbf{211} & = 627 \\ \textbf{0.0002} \\ \textbf{0.0018} & = 0.011 \\ \textbf{0.0031} & = 0.026 \\ \textbf{0.0012} & = 0.0007 \\ \textbf{0.0012} & = 0.00067 \\ \textbf{3.76} & = 15.2 \\ \textbf{0.002} \\ \textbf{0.001} & = 0.026 \\ \textbf{< 0.002} \\ \textbf{0.0012} & = 0.00067 \\ \textbf{3.76} & = 15.2 \\ \textbf{0.008} & = 0.029 \\ \textbf{0.001} & = 0.027 \\ \textbf{0.001} & = 0.007 \\ \textbf{< 0.03} & = 0.04 \\ \textbf{0.77} & - 2.26 \\ \textbf{0.235} & = 0.666 \\ \end{array}$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.001 - 0.003 0.007 - 0.127 < 0.0002 < 0.0003 < 0.56 - 1.45 < 0.00044 < 0.56 - 1.65 < 0.00054	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 = 0.047 = 0.0023 0.0019 - 0.0093 < 0.011 - 0.049 0.0055 - 0.121 < 0.0002 < 0.002 0.0005 - 0.0012 0.0005 - 0.0012 0.0005 - 0.0012 0.0005 < 0.003 0.1 - 0.28 0.104 - 0.22 0.29 - 0.82	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.000 < 0.0002 0.000 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 0.0042 0.028 < 0.001 0.2 < 0.002 0.0023 0.043 1.78 0.189 1.15 < 0.022 0.0067 < 0.033 0.61 0.007 0.619	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 317 7.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0025 - 0.011 0.01 - 0.084 < 0.010 - 0.1 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0004 - 0.047 < 0.038 0.55 - 1.53 0.112 - 0.533 0.73 - 1.83 0.073 - 1.839	$\begin{array}{c} HC22^{*2} \\ \hline 3.63 & - 4.79 \\ 582.4 & - 1737.79 \\ 188.5 & - 586.6 \\ 1.36 & - 15.62 \\ 321 & - 1020 \\ 46.6 & - 335 \\ 1.29 & - 5.96 \\ 0.0006 & - 0.0031 \\ 0.041 & - 0.181 \\ 0.018 & - 0.046 \\ 0.0002 & - 0.0005 \\ < 0.0002 \\ < 0.01 & - 0.02 \\ 1.17 & - 4.1 \\ 15 & - 112 \\ < 0.0002 & - 0.0005 \\ < 0.0002 \\ < 0.01 & - 0.02 \\ 1.17 & - 4.1 \\ 15 & - 112 \\ < 0.0002 & - 0.0001 \\ 0.0093 & - 0.052 \\ 3.09 & - 20.2 \\ 1.08 & - 8.07 \\ 0.0097 & - 0.071 \\ 0.0097 & - 0.071 \\ 0.0097 & - 0.071 \\ 0.002 & - 0.011 \\ 1.66 & - 26.6 \\ 0.573 & - 2.68 \\ < 0.02 \\ < 0.0001 & - 0.0003 \\ 0.046 & - 0.326 \\ < 0.03 \\ 0.27 & - 1.88 \\ 0.733 & - 2.93 \\ 1.95 & - 9.22 \\ 0.001 & - 0.0009 \end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.016} & - 0.032 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0004 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0008 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0008 \\ \textbf{<} 0.0013 \\ \textbf{<} 0.00069 \\ \textbf{3.68} \\ \textbf{<} 15.6 \\ \textbf{0.174} \\ \textbf{<} 0.022 \\ \textbf{<} 0.0004 \\ \textbf{<} 0.0011 \\ \textbf{<} 0.001 \\ \textbf{<} 0.0011 \\ \textbf{<} 0.003 \\ \textbf{<} 0.67 \\ \textbf{<} 2.02 \\ \textbf{<} 0.494 \\ \textbf{<} 0.0005 \\ \textbf{<} 0.0004 \\ \textbf{<} 0.0011 \\ \textbf{<} 0.0001 \\ \textbf{<} 0.0011 \\ \textbf{<} 0.0011 \\ \textbf{<} 0.0001 \\ \textbf{<} 0.00001 \\ \textbf{<} 0.0001 \\ \textbf{<} 0.00001 \\ \textbf{<} 0.00$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} HC14 \\ \hline 4.29 & - 7.06 \\ 173.55 & - 313.58 \\ \hline 7.92 & - 21.5 \\ -1.05 & - 21.52 \\ \hline 76 & - 138 \\ \hline 75.6 & - 139 \\ < 0.001 & - 0.14 \\ 0.0061 & - 0.0993 \\ 0.0032 & - 0.015 \\ 0.047 & - 0.079 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0003 \\ < 0.015 \\ 0.0002 \\ - 0.002 \\ 0.0006 \\ < 0.0012 \\ 0.0006 \\ < 0.0012 \\ 0.0006 \\ < 0.0012 \\ 0.0005 \\ < 0.0018 \\ 0.0018 \\ 0.00018 \\ 0.00018 \\ 0.0018 \\ 0.0018 \\ \end{array}$	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.000 < 0.0002 0.000 < 0.0002 0.0039 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 0.0042 0.028 < 0.001 0.02 0.0039 0.2 < 0.002 0.0023 0.043 1.78 0.189 1.15 < 0.02 0.0027 0.0007 0.0037 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} HC22^{*2} \\\hline & 3.63 - 4.79 \\ 582.4 - 1737.79 \\ 188.5 - 586.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.01 - 0.02 \\ 1.17 - 4.1 \\ 15 - 112 \\ < 0.0002 - 0.0005 \\ < 0.0002 \\ 0.0093 - 0.052 \\ 3.09 - 20.2 \\ 1.08 - 8.07 \\ 0.0097 - 0.071 \\ 0.0093 - 0.052 \\ 3.09 - 20.2 \\ 1.08 - 8.07 \\ 0.0097 - 0.071 \\ 0.002 - 0.011 \\ 1.66 - 2.66 \\ 0.573 - 2.68 \\ < 0.02 \\ < 0.003 \\ 0.046 - 0.326 \\ < 0.03 \\ 0.27 - 1.88 \\ 0.733 - 2.93 \\ 1.95 - 9.22 \\ 0.0001 - 0.00089 \\ 0.06 - 0.67 \\ \end{array}$	$\begin{array}{c} \textbf{T1} \\ \hline \textbf{6.68} & - 8.18 \\ \textbf{921.14} & - 2315.14 \\ \textbf{3.57} & - 9.53 \\ \textbf{31.72} & - 73.13 \\ \textbf{506} & - 1644 \\ \textbf{530} & - 1610 \\ \textbf{0.003} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.015} & - 0.025 \\ \textbf{0.016} & - 0.032 \\ \textbf{<} 0.0002 \\ \textbf{<} 0.0003 \\ \textbf{<} 0.0013 \\ \textbf{<} 0.0005 \\ \textbf{<} 0.00013 \\ \textbf{<} 0.0013 \\ \textbf{<} 0.00013 \\ \textbf{<} 0.00003 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.0009 0.067 - 0.127 < 0.0002 < 0.0003 < 0.001 < 0.003 < 0.002 < 0.0003 < 0.001 < 0.02 < 0.001 < 0.003 < 0.02 < 0.0003 < 0.02 < 0.001 < 0.003 < 0.02 < 0.001 < 0.003 < 0.02 < 0.001 < 0.003 < 0.003 < 0.003 < 0.001 < 0.002 < 0.001 < 0.002 < 0.0005 < 0.1.45 < 0.0004 < 0.005 < 0.11 - 0.8 < 0.0005 < 0.01 - 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 0.001<br < 0.002 0.001<br < 0.002 0.001<br < 0.002 0.001<br < 0.002 0.001<br 0.003<br 0.001<br </td <td>HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 = 0.015 0.0039 < 0.01 - 0.049 0.055 - 0.121 < 0.002 < 0.0012 < 0.002 < 0.0012 < 0.0012 < 0.0012 < 0.0018 < 0.0018 < 0.002 < 0.0018 < 0.002 < 0.002 <!-- redots - 0.0018<br--><!-- redots - 0.0018<br--><!-- redots - 0.002<br--><!-- redots - 0.002<br--><</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 0.0002 < 0.0002 0.0039 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0007 0.0032 0.0042 0.028 < 0.001 0.023 0.0039 0.2 < 0.0002 0.0023 0.0042 0.0023 < 0.002 0.0023 0.0042 0.0020</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0002 - 0.0011 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0006 - 0.0012 0.0041 - 0.047 < 0.033 0.55 - 1.53 0.112 - 0.533 0.73 - 1.83 < 0.00005 - 0.0028 0.057 - 0.55 0.066 - 0.228 < 0.0002</td> <td>$\begin{array}{c c} HC22*^2 \\\hline & 3.63 - 4.79 \\ \$\$2.4 - 1737.79 \\ 188.5 - \$\$86.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.0001 \\ 0.0003 \\ 0.002 \\ < 0.003 \\ 0.0001 \\ - 0.003 \\ 0.003 \\ 0.027 \\ - 1.88 \\ 0.733 \\ - 2.93 \\ 1.95 \\ - 9.22 \\ 0.0001 \\ - 0.00089 \\ 0.06 \\ - 0.67 \\ 0.0099 \\ - 0.0038 \\ \hline \end{array}$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td>	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.0093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 = 0.015 0.0039 < 0.01 - 0.049 0.055 - 0.121 < 0.002 < 0.0012 < 0.002 < 0.0012 < 0.0012 < 0.0012 < 0.0018 < 0.0018 < 0.002 < 0.0018 < 0.002 < 0.002 redots - 0.0018<br redots - 0.0018<br redots - 0.002<br <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 0.0002 < 0.0002 0.0039 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0002 0.0032 < 0.0007 0.0032 0.0042 0.028 < 0.001 0.023 0.0039 0.2 < 0.0002 0.0023 0.0042 0.0023 < 0.002 0.0023 0.0042 0.0020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0002 - 0.0011 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0006 - 0.0012 0.0041 - 0.047 < 0.033 0.55 - 1.53 0.112 - 0.533 0.73 - 1.83 < 0.00005 - 0.0028 0.057 - 0.55 0.066 - 0.228 < 0.0002	$\begin{array}{c c} HC22*^2 \\\hline & 3.63 - 4.79 \\ $$2.4 - 1737.79 \\ 188.5 - $$86.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0001 \\ 0.0003 \\ 0.002 \\ < 0.003 \\ 0.0001 \\ - 0.003 \\ 0.003 \\ 0.027 \\ - 1.88 \\ 0.733 \\ - 2.93 \\ 1.95 \\ - 9.22 \\ 0.0001 \\ - 0.00089 \\ 0.06 \\ - 0.67 \\ 0.0099 \\ - 0.0038 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Cd Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	$\begin{array}{c} \textbf{HC12} \\ \hline \\ $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0007 - 0.127 < 0.0002 < 0.0003 < 0.002 < 0.0003 < 0.002 < 0.0003 < 0.002 < 0.0003 < 0.023 3.54 - 8.55 0.0054 - 0.044 < 0.02 < 0.0001 < 0.003 0.56 - 1.45 < 0.00005 < 0.11 - 0.8 0.207 - 0.516 < 0.0002 < 0.0002 < 0.00004	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.0019 - 0.0093 < 0.019 - 0.0093 < 0.012 - 0.002 < 0.003 < 0.012 < 0.028 < 0.0018 < 0.028 < 0.0018 < 0.029 < 0.0018 < 0.002 < 0.0018 < 0.002 < 0.0012 < 0.0024	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 - 0.0035 < 0.0002 - 0.0032 < 0.0002 - 0.0032 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.001 - 0.011 0.039 - 0.2 < 0.0007 - 0.0032 0.0042 - 0.0028 < 0.002 - 0.0023 0.003 - 0.039 0.002 - 0.003 0.003 - 0.012	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.00038 7.8 - 27.5 0.399 - 1.7 < 0.02 < 0.0006 - 0.0012 0.0007 - 0.0038 7.8 - 27.5 0.0094 - 0.047 < 0.033 0.55 - 1.53 0.112 - 0.533 0.73 - 1.83 < 0.00005 - 0.0028 0.005 - 0.55 0.066 - 0.228 < 0.0002 0.001 - 0.0034	$\begin{array}{c c} HC22^{*2} \\\hline & 3.63 - 4.79 \\ 582.4 - 1737.79 \\ 188.5 - 586.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0001 \\ 0.002 \\ 0.003 \\ 0.002 \\ < 0.001 \\ 1.15 \\ - 112 \\ < 0.0002 \\ < 0.0007 \\ 0.0093 \\ < 0.007 \\ 0.0093 \\ < 0.001 \\ 0.002 \\ < 0.001 \\ 0.003 \\ 0.044 \\ < 0.326 \\ < 0.00 \\ < 0.003 \\ 0.27 \\ - 1.88 \\ 0.733 \\ - 2.28 \\ < 0.001 \\ - 0.0003 \\ 0.046 \\ - 0.326 \\ < 0.003 \\ 0.27 \\ - 1.88 \\ 0.733 \\ - 2.28 \\ 0.001 \\ - 0.0003 \\ 0.006 \\ - 0.67 \\ 0.0099 \\ - 0.038 \\ < 0.0012 \\ - 0.0016 \\ - 0.0516 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Cell Parameter (mg/L) pH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	$\begin{array}{c ccccc} HC12 \\\hline & 7.17 & - 7.99 \\ 69.78 & - 166.46 \\ 1.4 & - 6.5 \\ 32.85 & - 65.78 \\ 10 & - 25 \\ 46 & - 91.9 \\ < 0.001 & - 0.11 \\ 0.0003 & - 0.0009 \\ < 0.0002 & - 0.0003 \\ < 0.0002 & - 0.0001 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0005 \\ < 0.0002 & - 0.0000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.0005 \\ < 0.0001 & - 0.92 \\ 0.033 & - 0.078 \\ < 0.00002 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00001 \\ < 0.00002 \\ < 0.00001 \\ < 0.00001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.$	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0007 - 0.127 < 0.0002 < 0.0003 < 0.002 < 0.0003 < 0.003 < 0.002 < 0.0003 < 0.002 < 0.0003 < 0.003 < 0.023 < 0.003 < 0.023 < 0.003 < 0.004 < 0.0005 < 0.11 - 0.8 < 0.0002 < 0.00004 < 0.00004 < 0.00004 < 0.00005 < 0.11 - 0.8 < 0.00004 < 0.00004 < 0.00004 < 0.00004 < 0.00005 < 0.11 - 0.8 < 0.00004 < 0.00004 < 0.00004 < 0.00004 < 0.00005 < 0.11 - 0.8 < 0.00004 < 0.00004 < 0.00004 < 0.00005 < 0.11 - 0.8 < 0.00004 < 0.00004 < 0.00004 < 0.00005 < 0.11 - 0.8 < 0.00004 < 0.00004 < 0.00005 < 0.11 - 0.8 - 0.0001<br - 0.0001<br </td <td>HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.0019 - 0.0093 < 0.019 - 0.0093 < 0.019 - 0.0093 < 0.012 - 0.002 < 0.003 < 0.012 < 0.028 < 0.0018 < 0.028 < 0.0018 < 0.0018 < 0.002 < 0.0018 < 0.0024 < 0.0001 < 0.0024 < 0.0001</td> <td>HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001</td> - 0.089 0.016 - 0.031 0.004 - 0.024 0.034 - 0.078 < 0.0002	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.0019 - 0.0093 < 0.019 - 0.0093 < 0.019 - 0.0093 < 0.012 - 0.002 < 0.003 < 0.012 < 0.028 < 0.0018 < 0.028 < 0.0018 < 0.0018 < 0.002 < 0.0018 < 0.0024 < 0.0001 < 0.0024 < 0.0001	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 - 0.0002 < 0.0002 - 0.0035 < 0.0002 - 0.0002 < 0.0002 - 0.0032 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.0007 - 0.0032 0.0042 - 0.0023 0.0042 - 0.0023 0.003 - 0.22 < 0.0002 - 0.003 0.003 - 0.39 0.0005 - 0.00058 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0002 - 0.0017 0.0002 - 0.0017 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0006 - 0.0012 0.0004 - 0.047 < 0.033 0.55 - 1.53 0.112 - 0.533 0.73 - 1.83 < 0.00005 - 0.0028 0.005 - 0.55 0.066 - 0.228 < 0.0001	$\begin{array}{c c} HC22^{*2} \\\hline\hline\\ 3.63 &- 4.79 \\582.4 &- 1737.79 \\188.5 &- 586.6 \\1.36 &- 15.62 \\3.21 &- 1020 \\46.6 &- 335 \\1.29 &- 5.96 \\0.0006 &- 0.0031 \\0.041 &- 0.181 \\0.018 &- 0.046 \\0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0005 \\< 0.0002 &- 0.0007 \\0.0093 &- 0.02 \\1.17 &- 4.1 \\15 &- 112 \\< 0.0002 &- 0.0007 \\0.0093 &- 0.022 \\1.08 &- 8.07 \\0.0097 &- 0.071 \\0.002 &- 0.011 \\1.66 &- 26.6 \\0.0573 &- 2.68 \\< 0.02 \\< 0.0001 &- 0.0003 \\0.046 &- 0.326 \\< 0.03 \\0.27 &- 1.88 \\0.733 &- 2.93 \\1.95 &- 9.22 \\0.0001 &- 0.0003 \\0.0059 &- 0.038 \\< 0.0001 &- 0.0003 \\0.0059 &- 0.0316 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001 &- 0.0001 \\< 0.0001$	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002 < 0.0002 0.01 - 0.1 0.0024 - 0.0067 206 - 625 < 0.0002 - 0.014 0.0032 - 0.019 < 0.010 - 0.52 0.0002 - 0.008 0.0013 - 0.008 0.0013 - 0.008 0.0013 - 0.008 0.0013 - 0.008 0.0013 - 0.025 0.0014 - 0.011 < 0.02 0.0074 - 1.04 < 0.03 0.67 - 2.02 0.047 - 1.05 2 - 4.94 < 0.00005 - 0.0013 0.077 - 1.33 0.403 - 2.14 < 0.0001 < 0.0001 < 0.0021 < 0.0011 - 0.0032 < 0.0001 <	$\begin{array}{c} 12\\ \hline 7.58 & - 8.07\\ 967.49 & - 2245.32\\ 3.18 & - 8.55\\ 31.75 & - 54.78\\ 548 & - 1581\\ 545 & - 1600\\ 0.002 & - 0.029\\ 0.01 & - 0.049\\ 0.015 & - 0.023\\ < 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0002\\ - 0.0007\\ - 0.0001\\ - 0.007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0007\\ - 0.0005\\ - 0.0001\\ - 0.007\\ - 0.0001\\ - 0.0001\\ - 0.0003\\ - 0.0001\\ - 0.0003\\ $	
Cell Parameter (mg/L) PH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba	$\begin{array}{c ccccc} HC12 \\\hline & 7.17 & .7.99 \\ 69.78 & .166.46 \\ 1.4 & .6.5 \\ 32.85 & .65.78 \\ 10 & .25 \\ 46 & .91.9 \\ < 0.001 & .0.11 \\ 0.0003 & .0.0009 \\ < 0.0002 & .0.0003 \\ < 0.0002 & .0.0003 \\ < 0.0002 & .0.0003 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0026 \\ < 0.01 & .0.05 \\ < 0.0002 & .0.0026 \\ < 0.01 & .0.05 \\ < 0.0002 & .0.0026 \\ < 0.01 & .0.05 \\ < 0.0002 & .0.0026 \\ < 0.01 & .0.05 \\ < 0.0002 & .0.0026 \\ < 0.001 & .0.0099 \\ < 0.002 & .0.0029 \\ < 0.0001 & .0.0099 \\ < 0.002 & .0.0005 \\ < 0.0001 & .0.0009 \\ < 0.00005 \\ < 0.00005 \\ < 0.00005 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.00007 \\ < 0.$	HC13 7.26 \sim 8.06 98.83 \sim 229.44 1.34 \sim 6.99 31.73 \sim 69.11 14 \sim 57 47.3 \sim 69.11 14 \sim 57 47.3 \sim 107 \sim 0.003 \sim 0.0003 \sim 0.0002 \sim 0.002 \sim 0.002 \sim 0.002 \sim 0.002 \sim 0.002 \sim 0.003 \sim 5.5 0.0037 \sim 0.023 \sim 0.003 \sim 5.6 \sim 0.002 \sim 0.001 \sim 0.002 \sim 0.0001 </td <td>HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.019 - 0.099 0.065 - 0.121 < 0.002 - 0.002 0.099 0.031 - 0.62 < 0.02 0.0066 - 0.0012 0.0015 - 0.0028 < 0.03 0.1 - 0.28 0.029 - 0.82 < 0.00015 - 0.0018 0.03 < 0.029 - 0.82 < 0.0001 - 0.024 < 0.0001 < 0.0002 - 0.0002</td> <td>HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001</td> - 0.089 0.016 - 0.03 0.004 - 0.024 0.034 - 0.078 < 0.0002	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.019 - 0.099 0.065 - 0.121 < 0.002 - 0.002 0.099 0.031 - 0.62 < 0.02 0.0066 - 0.0012 0.0015 - 0.0028 < 0.03 0.1 - 0.28 0.029 - 0.82 < 0.00015 - 0.0018 0.03 < 0.029 - 0.82 < 0.0001 - 0.024 < 0.0001 < 0.0002 - 0.0002	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 - 0.0035 < 0.0002 - 0.0032 < 0.0002 - 0.0032 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.0007 - 0.0032 0.0042 - 0.0028 < 0.0002 - 0.0023 0.0042 - 0.0023 < 0.0002 - 0.0023 0.003 - 0.319 0.003 - 0.319 0.003 - 0.320 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0002 - 0.0017 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0006 - 0.0012 0.0006 - 0.0012 0.0006 - 0.0012 0.0005 - 0.55 0.066 - 0.228 < 0.0001 < 0.0001 < 0.0001	$\begin{array}{c c} HC22*^2 \\\hline & 3.63 - 4.79 \\ 582.4 - 1737.79 \\ 188.5 - 586.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ < 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0001 \\ 0.002 \\ < 0.0007 \\ 0.0093 \\ - 0.021 \\ 1.17 - 4.1 \\ 15 - 112 \\ < 0.0002 - 0.0007 \\ 0.0093 \\ - 0.022 \\ 1.08 \\ - 8.07 \\ 0.007 \\ - 0.007 \\ 0.0093 \\ - 0.022 \\ 1.08 \\ - 8.07 \\ 0.007 \\ - 0.001 \\ 0.0003 \\ - 0.002 \\ < 0.001 \\ - 0.0003 \\ 0.046 \\ - 0.326 \\ < 0.00 \\ - 0.003 \\ 0.046 \\ - 0.326 \\ < 0.003 \\ 0.033 \\ - 0.002 \\ - 0.011 \\ - 0.0089 \\ 0.06 \\ - 0.7 \\ 0.0059 \\ - 0.038 \\ < 0.0002 \\ - 0.0013 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0011 \\ < 0.0001 \\ < 0.0011 \\ < 0.0001 \\ < 0.0011 \\ < 0.0002 \\ - 0.0011 \\ < 0.0011 \\ < 0.0002 \\ - 0.0011 \\ < 0.0011 \\ < 0.0002 \\ - 0.0011 \\ < 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ < 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ < 0.002 \\ - 0.0011 \\ - 0.002 \\ - 0.0011 \\ - 0.001 \\ - 0.002 \\ - 0.0011 \\ - 0.001 \\ - 0.002 \\ -$	T1 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.33 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002 0.01 - 0.1 0.0024 - 0.0067 206 - 625 < 0.0002 - 0.014 0.0032 - 0.019 < 0.001 - 0.52 0.0002 - 0.009 3.68 - 15.6 0.174 - 1.04 < 0.02 0.0074 - 0.025 0.013 - 0.025 0.013 - 0.005 3.68 - 15.6 0.174 - 1.04 < 0.02 0.0074 - 0.025 0.014 - 0.01 < 0.03 0.67 - 2.02 0.027 - 1.06 2 - 4.94 < 0.00005 - 0.0013 0.071 - 1.33 0.403 - 2.14 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 - 0.0005	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Cell Parameter (mg/L) PH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Co Ca Cr Co Cu Fe Pb Li Mg Mn Hg (ug/L) Mo Ni P K Se Si Si Ss Si Ss Si Ss Si Si Sr Te Th Sn Sn Ti U U	$\begin{array}{c ccccc} HC12 \\\hline & 7.17 & .7.99 \\ 69.78 & .166.46 \\ 1.4 & .6.5 \\ 32.85 & .65.78 \\ 10 & .25 \\ 46 & .91.9 \\ < 0.001 & .0.11 \\ 0.0003 & .0.0009 \\ < 0.0002 & .0.0003 \\ < 0.0002 & .0.0003 \\ < 0.0002 & .0.0003 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0002 & .0.0005 \\ < 0.0001 & .0.0009 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.00000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.0000 \\ < 0.000 $	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 4.73 - 107 0.019 - 0.23 0.001 - 0.003 0.0003 - 0.0009 0.067 - 0.127 < 0.0002 < 0.0003 < 0.0002 < 0.0003 < 0.003 < 0.65 < 1.45 < 0.0005 < 0.11 - 0.8 < 0.0005 < 0.11 - 0.8 < 0.207 - 0.516 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.00002 < 0.00004 < 0.0001 < 0.0001	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.0019 - 0.0093 < 0.019 - 0.0093 < 0.019 - 0.0093 < 0.0019 - 0.0093 < 0.0019 - 0.0093 < 0.0019 - 0.0093 < 0.0019 - 0.0093 < 0.002 - 0.002 0.0065 - 0.121 < 0.002 - 0.002 < 0.023 < 0.033 0.1 - 0.28 0.033 0.1 - 0.28 0.033 0.1 - 0.28 0.029 - 0.822 < 0.00015 - 0.00018 0.032 - 0.0002 < 0.0001 < 0.0002 - 0.0002 < 0.0001 < 0.0002 - 0.0002	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 <0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 <0.0002 0.0002 <0.0002 - 0.0003 <0.0002 - 0.0032 <0.0007 - 0.0032 0.0042 - 0.028 <0.0007 - 0.0032 0.0042 - 0.028 <0.0007 - 0.0032 0.0042 - 0.0023 0.0042 - 0.0023 0.003 - 0.22 <0.0002 - 0.0037 0.003 - 0.39 0.002 - 0.39	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0002 - 0.0017 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0006 + 0.0012 0.0005 - 0.012 0.0006 + 0.0012 0.0005 - 0.55 0.066 - 0.228 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001	$\begin{array}{c c} HC22*^2 \\\hline 3.63 & - 4.79 \\ $$2.4 & -1737.79 \\ 188.5 & -586.6 \\ 1.36 & -15.62 \\ 321 & -1020 \\ 46.6 & -335 \\ 1.29 & -5.96 \\ 0.0006 & -0.0031 \\ 0.041 & -0.181 \\ 0.018 & -0.046 \\ < 0.0002 & -0.0005 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0001 \\ 0.0003 \\ < 0.002 \\ < 0.0007 \\ 0.0093 \\ < 0.002 \\ < 0.0001 \\ 0.0003 \\ < 0.002 \\ < 0.001 \\ 0.003 \\ < 0.002 \\ < 0.001 \\ 0.002 \\ < 0.001 \\ 0.003 \\ < 0.002 \\ < 0.001 \\ 0.003 \\ < 0.002 \\ < 0.001 \\ - 0.003 \\ 0.046 \\ < 0.036 \\ < 0.038 \\ < 0.002 \\ < 0.001 \\ - 0.0038 \\ < 0.002 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0024 \\ - 0.0018 \\ \end{aligned}$	TI 6.68 - 8.18 921.14 - 2315.14 3.57 - 9.53 31.72 - 73.13 506 - 1644 530 - 1610 0.003 - 0.075 0.015 - 0.025 0.01 - 0.091 0.016 - 0.032 < 0.0002 < 0.0002 0.01 - 0.1 0.0024 - 0.0067 206 - 625 < 0.0002 - 0.014 0.0032 - 0.019 < 0.010 - 0.52 0.0002 - 0.0008 0.0013 - 0.025 0.0013 - 0.025 0.0022 - 0.014 0.0032 - 0.019 < 0.002 - 0.008 0.0013 - 0.025 0.0014 - 0.025 0.0074 - 1.04 < 0.02 0.0074 - 1.04 < 0.02 0.0074 - 1.04 < 0.03 0.67 - 2.02 0.047 - 1.03 0.0403 - 2.14 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 - 0.0009 < 0.0001 - 0.0094 < 0.	$\begin{array}{c} \textbf{12} \\ \hline 7.58 & - 8.07 \\ 967.49 & - 2245.32 \\ 3.18 & - 8.55 \\ 31.75 & - 54.78 \\ 548 & - 1581 \\ 545 & - 1600 \\ 0.002 & - 0.029 \\ 0.01 & - 0.049 \\ 0.015 & - 0.023 \\ < 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0002 \\ - 0.0001 \\ - 0.0001 \\ - 0.0007 \\ - 0.0001 \\ - 0.0007 \\ - 0.0007 \\ - 0.0002 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.0007 \\ - 0.000 \\ - 0.000 \\ - 0.009 \\ - 0.002 \\ - 0.009 \\ - 0.001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0001 \\ - 0.0002 \\ - 0.0009 \\ - 0.0001 \\ - 0.0003 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ - 0.0000 \\ $	
Cell Parameter (mg/L) PH Cond. Acidity (pH 8.3) Alkalinity Sulphate Hardness Al Sb As Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Cd Ca Cr Co Cu Fe Pb Li Mg Min Hg (ug/L) Mo Ni P K Se Si Si Sr Te Th Sn Ti U V V Zn	HC12 7.17 \cdot 7.99 69.78 \cdot 166.46 1.4 \cdot 6.5 32.85 \cdot 65.78 10 \cdot 25 46 \cdot 91.9 $<$ 0.001 \cdot 0.11 0.0003 \cdot 0.0055 < 0.0002 $<$ 0.0002 \cdot 0.0003 $<$ 0.01 \cdot 0.01 $<$ 0.0002 \cdot 0.0005 $<$ 0.0002 \cdot 0.0009 $<$ 0.0007 \cdot 0.0009 $<$ 0.0000 \cdot 0.0009 $<$ 0.0000 \cdot 0.0009 $<$ 0.0002 \cdot 0.00004 < 0.03 0.13 \cdot 0.38 < 0.00005 $<$ 0.01 \cdot 0.53 < 0.0002 < 0.0002	HC13 7.26 - 8.06 98.83 - 229.44 1.34 - 6.99 31.73 - 69.11 14 - 57 47.3 - 107 0.019 - 0.23 0.0003 - 0.003 0.0003 - 0.0127 < 0.0002 < 0.01 - 0.01 < 0.0002 < 0.01 - 0.01 < 0.0002 < 0.01 - 0.01 < 0.0002 < 0.001 - 0.01 < 0.0002 < 0.001 - 0.01 < 0.0002 < 0.001 - 0.03 < 0.0002 - 0.0006 < 0.0002 - 0.0006 < 0.0002 - 0.0006 < 0.0002 - 0.0008 < 0.0001 - 0.031 < 0.00002 < 0.0001 - 0.031 < 0.0002 < 0.0002 - 0.0001 < 0.0002 < 0.0001 - 0.031 < 0.0002 < 0.0002 - 0.0003	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.0019 - 0.0093 < 0.019 - 0.0093 < 0.019 - 0.0093 < 0.0019 - 0.0093 < 0.0019 - 0.0093 < 0.0019 - 0.0093 < 0.0019 - 0.0023 0.0065 - 0.121 < 0.002 - 0.002 < 0.022 0.0066 - 0.012 0.0015 - 0.0026 < 0.033 0.1 - 0.28 0.033 0.1 - 0.28 0.033 0.1 - 0.28 0.033 0.1 - 0.28 0.033 0.1 - 0.28 0.033 < 0.0012 < 0.002 < 0.0014 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0001 < 0.0002 <	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 7.5 219.03 486.88 12.78 37.22 8.19 25.63 87 226 93.1 209 <0.001 0.13 0.0041 0.029 0.0065 0.035 0.039 0.096 <0.0002 <0.0002 <0.0002 <0.0035 <0.0002 <0.0035 <0.0002 <0.0035 <0.0002 <0.0032 <0.0007 0.0033 0.0042 0.028 <0.0007 0.0033 0.0042 0.028 <0.0002 0.0023 0.039 0.2 <0.0002 0.0037 0.039 0.02 0.003 0.037 0.002 0.0037 0.003 0.033 0.002 0.00058 0.003 0.033 0.002 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HC21 6.66 - 7.78 181.33 - 568.75 11.38 - 31.44 6.69 - 41.36 82 - 31.7 72.1 - 266 < 0.001 - 0.12 0.0047 - 0.0065 0.0041 - 0.038 0.02 - 0.068 < 0.0002 < 0.0007 0.0002 - 0.0017 0.0007 - 0.0038 7.8 - 27.5 0.399 - 1.7 < 0.02 0.0006 + 0.0012 0.0006 + 0.0012 0.0006 + 0.0012 0.0005 - 0.55 0.066 - 0.228 < 0.0001 < 0.000	$\begin{array}{c c} HC22*^2 \\\hline & 3.63 - 4.79 \\ $$2.4 - 1737.79 \\ 188.5 - $$86.6 \\ 1.36 - 15.62 \\ 321 - 1020 \\ 46.6 - 335 \\ 1.29 - 5.96 \\ 0.0006 - 0.0031 \\ 0.041 - 0.181 \\ 0.018 - 0.046 \\ < 0.0002 - 0.0005 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0001 \\ 0.002 \\ < 0.0007 \\ 0.0093 \\ - 0.021 \\ 1.17 - 4.1 \\ 15 - 112 \\ < 0.0002 - 0.0007 \\ 0.0093 \\ - 0.022 \\ 1.08 \\ - 8.07 \\ 0.007 \\ - 0.007 \\ 0.0093 \\ - 0.022 \\ 1.08 \\ - 8.07 \\ 0.007 \\ - 0.001 \\ - 0.003 \\ 0.046 \\ - 0.366 \\ < 0.003 \\ 0.046 \\ - 0.326 \\ < 0.003 \\ 0.046 \\ - 0.326 \\ < 0.003 \\ 0.033 \\ - 0.002 \\ - 0.011 \\ 1.66 \\ - 26.6 \\ < 0.003 \\ 0.033 \\ - 0.002 \\ - 0.001 \\ - 0.0003 \\ 0.033 \\ < 0.0002 \\ - 0.013 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ < 0.0018 \\ < 0.0001 \\ - 0.0018 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ < 0.0002 \\ - 0.0118 \\ - 0.0002 \\ - 0.0118 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0002 \\ - 0.0018 \\ - 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Cell Parameter (mg/L) PH Cond. Acidity (pH 8.3) Alkalimity Sulphate Hardness B B B Cd Ca Cr Co Ca Cr Ca Ca Cr Ca Ca Cr Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	HC12 7.17 \cdot 7.99 69.78 \cdot 166.46 1.4 \cdot 6.5 32.85 \cdot 65.78 10 \cdot 25 46 \cdot 91.9 $<$ 0.001 \cdot 0.11 0.0003 \cdot 0.0055 < 0.0002 $<$ 0.0002 \cdot 0.0003 $<$ 0.01 \cdot 0.01 $<$ 0.0002 \cdot 0.0005 $<$ 0.0002 \cdot 0.0007 \cdot 0.0009 $<$ 0.0007 \cdot 0.0009 $<$ 0.0007 \cdot 0.0009 $<$ 0.0002 \cdot 0.0009 $<$ 0.0002 \cdot 0.0009 $<$ 0.0001 \cdot 0.0009 $<$ 0.0002 \cdot 0.0009 $<$ 0.0002 \cdot 0.0004 < 0.03 0.13 \cdot 0.38 < 0.00005 $<$ 0.017 \cdot 0.53 < 0.0002 < 0.0005 < 0.0002 < 0.0005 < 0.0002 < 0.0005 < 0.0002 < 0.0005 < 0.0002 < 0.00002 < 0.00002 < 0.00002 < 0.0002 <	HC13 7.26 \sim 8.06 98.83 \sim 229.44 1.34 \sim 6.99 31.73 \sim 69.11 14 \sim 57 47.3 \sim 107 0.019 \sim 0.23 0.001 \sim 0.003 0.0002 \sim 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.001 $<$ 0.0018 $<$ 0.0011 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0001 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0002 $<$ 0.0001 $<$ 0.0002	HC14 4.29 - 7.06 173.55 - 313.58 7.92 - 21.5 -1.05 - 21.52 76 - 138 75.6 - 139 < 0.001 - 0.14 0.0061 - 0.093 0.0032 - 0.015 0.047 - 0.079 < 0.0002 < 0.0003 < 0.0019 - 0.0093 < 0.002 - 0.002 0.0065 - 0.1211 < 0.002 - 0.002 < 0.002 < 0.002 < 0.002 < 0.003 < 0.012 0.0066 - 0.012 0.0015 - 0.0028 < 0.003 < 0.0012 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0000	HC15 7.1 - 7.69 164.09 - 343.87 3.68 - 14.62 17.6 - 37.3 46 - 167 74 - 181 < 0.001	HC16 6.82 - 7.5 219.03 - 486.88 12.78 - 37.22 8.19 - 25.63 87 - 226 93.1 - 209 < 0.001 - 0.13 0.0041 - 0.029 0.0065 - 0.035 < 0.0002 0.0002 < 0.0002 - 0.0003 < 0.0002 - 0.0032 < 0.0002 - 0.0032 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.0007 - 0.0032 0.0042 - 0.028 < 0.0002 - 0.0023 0.0042 - 0.0023 0.0042 - 0.0023 0.002 - 0.003 0.003 - 0.39 0.0002 - 0.00058 </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c} HC21 \\ \hline & 6.66 & - 7.78 \\ 181.53 & - 568.75 \\ 11.38 & - 31.44 \\ 6.69 & + 41.36 \\ 82 & - 31.7 \\ 72.1 & - 266 \\ < 0.001 & - 0.12 \\ 0.0047 & - 0.0065 \\ 0.0041 & - 0.038 \\ 0.02 & - 0.068 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ - 0.0038 \\ 7.8 & - 27.5 \\ 0.399 & - 1.7 \\ < 0.02 \\ 0.0006 & - 0.0012 \\ 0.0006 & - 0.0012 \\ 0.0006 & - 0.0012 \\ 0.0006 & - 0.012 \\ 0.0005 & - 0.0038 \\ 0.55 & - 1.53 \\ 0.112 & - 0.333 \\ 0.73 & - 1.83 \\ < 0.00005 & - 0.0028 \\ 0.005 & - 0.55 \\ 0.066 & - 0.228 \\ < 0.0002 \\ < 0.0001 \\$</td> <td>$\begin{array}{c c} HC22*^2 \\\hline & 3.63 & - 4.79 \\ \$\$2.4 & -1737.79 \\ 188.5 & -586.6 \\ 1.36 & -15.62 \\ 321 & -1020 \\ 46.6 & -335 \\ 1.29 & -5.96 \\ 0.0006 & -0.0031 \\ 0.041 & -0.181 \\ 0.018 & -0.046 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0015 \\ < 0.0002 & -0.0011 \\ 1.66 & -26.6 \\ 0.057 & -2.68 \\ < 0.02 \\ < 0.0001 & -0.0003 \\ 0.046 & -0.326 \\ < 0.03 \\ 0.27 & -1.88 \\ 0.73 & -2.68 \\ < 0.03 \\ 0.27 & -1.88 \\ 0.73 & -2.68 \\ < 0.00 \\ 0.0035 & -0.031 \\ 0.0061 & -0.0003 \\ 0.046 & -0.326 \\ < 0.003 \\ 0.27 & -1.88 \\ 0.73 & -2.93 \\ 1.95 & -9.22 \\ 0.0061 & -0.0003 \\ 0.0135 & -0.0516 \\ < 0.0001 & -0.0018 \\ < 0.0002 & -0.0018 \\ < 0.0002 & -0.0018 \\ < 0.0002 \\ -0.0018 \\ < 0.0002 \\ \end{array}$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} HC21 \\ \hline & 6.66 & - 7.78 \\ 181.53 & - 568.75 \\ 11.38 & - 31.44 \\ 6.69 & + 41.36 \\ 82 & - 31.7 \\ 72.1 & - 266 \\ < 0.001 & - 0.12 \\ 0.0047 & - 0.0065 \\ 0.0041 & - 0.038 \\ 0.02 & - 0.068 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0002 \\ < 0.0007 \\ 0.0002 \\ - 0.0038 \\ 7.8 & - 27.5 \\ 0.399 & - 1.7 \\ < 0.02 \\ 0.0006 & - 0.0012 \\ 0.0006 & - 0.0012 \\ 0.0006 & - 0.0012 \\ 0.0006 & - 0.012 \\ 0.0005 & - 0.0038 \\ 0.55 & - 1.53 \\ 0.112 & - 0.333 \\ 0.73 & - 1.83 \\ < 0.00005 & - 0.0028 \\ 0.005 & - 0.55 \\ 0.066 & - 0.228 \\ < 0.0002 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ < 0.0001 \\ $	$\begin{array}{c c} HC22*^2 \\\hline & 3.63 & - 4.79 \\ $$2.4 & -1737.79 \\ 188.5 & -586.6 \\ 1.36 & -15.62 \\ 321 & -1020 \\ 46.6 & -335 \\ 1.29 & -5.96 \\ 0.0006 & -0.0031 \\ 0.041 & -0.181 \\ 0.018 & -0.046 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0005 \\ < 0.0002 & -0.0015 \\ < 0.0002 & -0.0011 \\ 1.66 & -26.6 \\ 0.057 & -2.68 \\ < 0.02 \\ < 0.0001 & -0.0003 \\ 0.046 & -0.326 \\ < 0.03 \\ 0.27 & -1.88 \\ 0.73 & -2.68 \\ < 0.03 \\ 0.27 & -1.88 \\ 0.73 & -2.68 \\ < 0.00 \\ 0.0035 & -0.031 \\ 0.0061 & -0.0003 \\ 0.046 & -0.326 \\ < 0.003 \\ 0.27 & -1.88 \\ 0.73 & -2.93 \\ 1.95 & -9.22 \\ 0.0061 & -0.0003 \\ 0.0135 & -0.0516 \\ < 0.0001 & -0.0018 \\ < 0.0002 & -0.0018 \\ < 0.0002 & -0.0018 \\ < 0.0002 \\ -0.0018 \\ < 0.0002 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

March 2008

5.1.2 DMS Humidity cells

In February 2006 three "DMS float" cells were established to predict the weathering characteristics and leachate quality of the float material from the dense media separation (DMS) process, as summarize in Table 5-3. The results of the humidity cell leachate analysis conducted in 2007 is summarized in the AMEC report provided in Appendix D, and showed an overall trend of near constant rate of release or slight decrease of calculated loadings. The range of values achieved over the 2007 monitoring period is summarized in Table 5-4. If a range is not presented (i.e., <0.0002 instead of 0.0002-0.0003) then the parameter consistently achieved a results less than the reportable detection limit of the analyzing laboratory.

Humidity Cell	Composition	Date Started	Weeks in operation as of December 31, 2007
HC17	DMS float	21-Feb-06	97
HC18	DMS float	21-Feb-06	97
HC19	DMS float	21-Feb-06	97

Table 5-3 DMS float humidity cell composition and duration of operat
--

Table 5-4 DMS float humidity cell results for 2007

Cell Parameter (mg/L)	HC17	HC18	HC19	Cell Parameter (mg/L)	HC17	HC18	HC19
pН	6.55 - 7.63	7.03 - 7.61	6.94 - 7.59	Mg	1.33 - 3.52	1.39 - 4.66	1.55 - 2.68
Cond.	78.75 - 212.6	60.94 - 205.6	74.1 - 191.44	Mn	0.019 - 0.213	0.017 - 0.153	0.047 - 0.138
(pH 8.3)	1.09 - 5.14	1.22 - 4.63	1 - 4.2	Hg (ug/L)	< 0.02 - 0.02	< 0.02 - 0.05	< 0.02 - 0.08
Alkalinity	10.38 - 22.59	10.47 - 20.74	8.98 - 17.67	Мо	0.0035 - 0.013	0.0015 - 0.0071	0.002 - 0.0067
Sulphate	20 - 82	13 - 67	19 - 70	Ni	0.0006 - 0.019	0.0004 - 0.022	0.0021 - 0.024
Hardness	34 - 114	26.2 - 96.5	31.5 - 82.6	Р	< 0.03	< 0.03	< 0.03
AI	0.004 - 0.11	0.002 - 0.26	0.001 - 0.1	к	0.44 - 1.47	0.11 - 0.42	0.09 - 0.26
Sb	0.0077 - 0.026	0.0057 - 0.018	0.0048 - 0.018	Se	0.012 - 0.04	0.011 - 0.028	0.022 - 0.039
As	0.0017 - 0.004	9 0.0008 - 0.0028	0.0011 - 0.0034	Si	0.27 - 6.44	0.15 - 6.18	0.14 - 0.54
Ва	0.0093 - 0.024	0.0054 - 0.022	0.0081 - 0.022	Ag	< 0.00005 - 0.00022	< 0.00005 - 0.0011	< 0.00005 - 0.0002
Be	< 0.0002 - 0.000	2 < 0.0002	< 0.0002	Na	0.02 - 0.89	0.03 - 0.63	0.02 - 0.24
Bi	< 0.0002 - 0.000	2 < 0.0002	< 0.0002	Sr	0.024 - 0.078	0.023 - 0.084	0.029 - 0.086
В	< 0.01 - 0.02	< 0.01 - 0.01	< 0.01	Te	< 0.0002	< 0.0002	< 0.0002
Cd	0.00082 - 0.006	2 0.00052 - 0.0039	0.0012 - 0.0036	ті	0.00027 - 0.00088	0.0007	0.00061 - 0.002
Ca	11.2 - 39.8	8.19 - 33.2	10.1 - 28.6	Th	< 0.0001 - 0.0002	< 0.0001	< 0.0001
Cr	< 0.0002 - 0.001	< 0.0002 - 0.0016	< 0.0002 - 0.003	Sn	< 0.0002 - 0.0023	< 0.0002 - 0.0007	< 0.0002 - 0.0008
Co	0.0003 - 0.001	< 0.0002 - 0.0009	0.0002 - 0.0017	Ti	< 0.0002 - 0.0005	< 0.0002 - 0.0008	< 0.0002 - 0.0003
Cu	0.0003 - 0.013	0.0004 - 0.0052	0.0012 - 0.0083	U	0.0008 - 0.0045	0.0006 - 0.0056	0.0006 - 0.004
Fe	< 0.01 - 0.03	< 0.01 - 0.04	< 0.01 - 0.04	V	< 0.0002 - 0.0002	< 0.0002 - 0.0004	< 0.0002
Pb	0.0002 - 0.001	5 < 0.0002 - 0.0015	0.0004 - 0.0044	Zn	0.009 - 0.28	0.007 - 0.13	0.04 - 0.28
Li	0.0003 - 0.002	1 < 0.0002 - 0.0019	< 0.0002 - 0.002	Zr	< 0.002	< 0.002	< 0.002

5.2 Tailings Humidity Cells

Table 5-5 summarizes the tailings humidity cells in operation and those decommissioned, including date started and weeks in operation as of December 31^{st} , 2007. In June and July 2005 static testing of tailings was initiated. The tailings were generated from lock-cycle tests carried out to simulate the milling process to produce three tailings sub-streams: ~2% pre-float concentrate, ~88% rougher tails, and ~10% cleaner scavenger tails. The composite ore samples include the following:

- Combined Lynx ore with dilution rock composite tailings (LD) Combines all three tailings streams generated from ore with dilution rock from the Lynx ore zone.
- Combined Wolverine composite ore with dilution rock tailings (WD) Combines all three tailings streams generated from ore with dilution rock from the Wolverine ore zone.
- Combined overall ore composite tailings (OA) Combines the tailings generated from using only ore from the Wolverine and Lynx ore zones, and does not include any dilution rock.
- Combined overall diluted ore composite tailings (OD) Combines the three tailings streams generated by using ore and dilution rock from both Wolverine and Lynx ore zones.

Humidity cells LD and WD were decommissioned in October 2006, as the ore zones will not be mixed independently and therefore the overall composite samples are representative.

The results of the tailings humidity cell leachate analysis conducted in 2007, summarized in the Marsland Environmental Associates (MEA) report provided in Appendix D, showed an overall trend of near constant rate of release or slight decrease of calculated loadings. The range of values achieved over the 2007 monitoring period is summarized in Table 5-6. If a range is not presented (i.e. <0.0002 instead of 0.0002-0.0003) then the parameter consistently achieved a results less than the reportable detection limit of the analyzing laboratory.

Humidity Cell	Composition	Date Started	Weeks in operation as of December 31, 2007
LD	Tailings - Lynx zone diluted ore composite	22-Jul-05	Complete – 63 Weeks
WD	Tailings - Wolverine zone diluted ore composite	22-Jul-05	Complete – 63 Weeks
OA	Tailings - Overall ore composite	6-Jun-05	134
OD	Tailings - Overall diluted ore composite	22-Jul-05	127

 Table 5-5 Tailings humidity cell composition and duration of operation

		_			_				_			_	
Cell Parameter (mg/L)		OA			OD		Cell Parameter (mg/L)		OA			DC	
рН	4.65	-	6.9	3.35	-	7.04	Li	0.0009	-	0.0116	0.0011	-	0.0023
Cond.	181	-	777	197	-	1280	Mg	0.134	-	7.08	0.162	-	44.3
Acidity (pH 8.3)	2	-	26	3	-	463	Mn	0.120	-	1.15	0.14	-	1.19
Alkalinity	3	-	9	3	-	21	Hg (ug/L)	62.5	-	75.8	117	-	153
Sulphate	71	-	400	320	-	880	Мо	0.00010	-	0.00143	0.00026	-	0.00158
AI	0.0006	-	0.00163	0.0013	-	0.00512	Ni	< 0.0001	-	0.0043	0.0074	-	0.0128
Sb	0.00004	-	0.0041	0.00006	-	0.0031	Р	0.00272	-	0.01	< 0.0001	-	0.030
As	< 0.0005	-	0.0045	< 0.0005	-	0.005	К	0.00201	-	0.34	0.0016	-	0.780
Ва	0.0035	-	0.0246	0.0024	-	0.0246	Se	0.114	-	3.90	0.169	-	2.030
Ве	<	0.0	1	< 0.01	-	0.02	Si	0.13	-	0.19	0.15	-	0.170
Bi	< 0.0007	-	0.0022	< 0.001	-	0.001	Ag	0.00006	-	0.143	0.00003	-	0.052
В	0.003	-	0.3	0.0009	-	0.49	Na	0.02	-	0.162	0.030	-	0.248
Cd	0.119	-	0.237	0.0468	-	0.409	Sr	0.142	-	0.254	0.239	-	0.423
Ca	5.37	-	104	16.5	-	166	TI	0.0023	-	0.0038	0.0025	-	0.0037
Cr	0.0003	-	0.06	0.0003	-	0.04	Sn	0.0003	-	0.0005	0.0004	-	0.0009
Co	0.00087	-	0.0114	0.00106	-	0.00861	Ti	< ().00(02	< 0	.000)2
Cu	0.0012	-	0.0036	0.0018	-	0.0079	U	< 0	.000	02	0.00002	-	0.00005
Fe	<	0.0	1	(J.03	į	V	0.00006	-	0.00009	< 0.00006	-	0.002
Pb	0.00001	-	0.0183	0.00005	-	0.0056	Zn	3.55	-	6.26	1.74	-	2.7

Table 5-6	Tailings	humidity	cell annual	range of	achieved	values for	r 2007
-----------	----------	----------	-------------	----------	----------	------------	--------

5.3 Biopass System and Biological Selenium Reduction

The Biopass system is a contingency measure to ensure that mine discharge from the backfilled mine workings does not affect the environmental integrity of Wolverine Creek and Little Wolverine Lake. The Monitoring and Surveillance Plan, as per the requirements outlined in QML Section 12.2, will be prepared in 2008. A description of the field test and proposed location of the Biopass system, including its construction details, operational protocols and a monitoring plan will be included in that document. The field test is scheduled to commence within the first year or two of operations once 'typical' mine water quality is available. Results of efforts undertaken to test the Biopass system under site conditions, should they be completed within the next two years, will be incorporated into the next revision of the Reclamation and Closure Plan (due December 2009) and summarized in the corresponding A Licence and Quartz Mining License annual reports.

Laboratory testing of biological selenium reduction continued in 2007. Starting in 2005, testwork has been ongoing to determine water treatment requirements necessary to treat the tailings facility waste water prior to discharge into Go Creek. The main element of concern in the tailings water (produced by lock-cycle metallurgical testwork) was selenium, with influent concentrations of 9 mg/L. The A-Licence discharge limit is 0.02 mg/L. Testwork has focused on 2-stage treatment using first a high density sludge process with iron salt addition followed by a polishing stage utilizing biological reduction. Testwork was conducted in 2007 focused on additional bioreactor process lab testwork. Bioreactor testwork was conducted by Inotec at the University of Utah, and the work was supervised by Lorax Environmental Services (Lorax).

In 2007, four tests were conducted on two reactor types – a biochemical-enhanced material reactor and an electro-biochemical reactor. The Inotec report *Treatability and Bench-scale*

Bioreactor Testing of Waters for Selenium Removal (January 31st, 2008), provided in Appendix E, details the results of the 2007 testwork and recommendations for pilot plant testing.

6 Spill Reporting

One spill was reported in 2007. On May 22^{nd} , 2007 a release of approximately 660 L of diesel fuel from improperly sealed fuel drums was observed at a fuel cache area. Approximately 192 m³ of contaminated soil was removed and a diversion ditch was constructed to minimize contamination of ground and surface water. Excavated material was temporarily stored at soil storage locations #3 and #4 prior to transfer to Cell 2 in September 2007. The YZC spill report and follow up report from Lorax Environmental Services were submitted in May and July 2007, respectively, and are also available in the *LTF Annual Report 2007* (submitted March 2008).

7 Socioeconomic Information

As per the EA Screening Report commitment, YZC is required to report annually on the number of Yukoners and non-Yukoners employed at the mine and the value of goods and services procured within Ross River, Watson Lake and the Yukon as a whole. Over the course of the year, 39 Yukoners and 5 non Yukoners were employed at the project site. The value of goods and services procured are provided in Table 7-1.

Table 7-1	Goods and service	s procured from	Ross River.	Watson L	ake and the	Yukon for	2007
Table /-1	Goods and set vice.	, procurcu nom	Russ River,	viacou L	and and the	I ukon tot	2007

Location	Value of Goods/Services
Watson Lake	\$67,385
Ross River	\$151,587
Yukon	\$3,325,108

YZC is also required to report annually on the numbers associated with promotions, training and advancement opportunities for Yukon-based mine employees. This requirement is not applicable until the mine is operating.

8 2008 Activities

The development of surface infrastructure and the underground in 2008 is dependent upon a production decision and project financing. Should the project be fully financed in 2008, the following activities will commence (seasonal conditions permitting), including:

- pre-production underground development
- clear, strip and bulk excavate the industrial complex and tailings facility areas
- establish the permanent camp and potable water wells
- establish the concrete batch plant
- pour building foundations at the industrial complex, erect buildings and install/build internal workings

These activities are detailed in *General Site Plan* (Version 2007-03; April 2007). Once a production decision is made, a revised *General Site Plan*, including an updated project development scheduled, will be submitted to EMR. In the interim, current site operation, maintenance, and monitoring activities will continue as described herein.

Appendix A Environmental Monitoring Reports

The following table summarized the Environmental Monitoring Reports included in Appendix A, the monitoring period and the date of the monitoring report submission.

The table preceding the monitoring reports provides a summary of the dates monitoring was conducted, when and why (rain events, weekly as per a license, etc.) monitoring was reported, and when and why monitoring was completed.

			Monitoring	l		Monitoring								
Site	Monitor	ing	g Period	Date of Report	Site	Monito	ring	Period	Date of Report					
	From		То			From		То						
Airst	rip/Go Creek		-	•	Portal Clean Sump (PCS)									
	11-Sep-07			11-Sep-07		19-Apr-07	-	29-Apr-07	29-Apr-07					
	3-Jun-07	-	11-Jun-07	11-Jun-07		15-May-07	-	20-May-07	20-May-07					
	13-Nov-07	-	19-Nov-07	19-Nov-07		5-Jun-07	-	11-Jun-07	11-Jun-07					
	4-Dec-07		10-Dec-07	10-Dec-07		12-Jun-07	-	18-Jun-07	18-Jun-07					
Cove	rall Dirty Su	np	(CDS)			19-Jun-07	-	25-Jun-07	25-Jun-07					
	31-Aug-07	-	22-Sep-07	22-Sep-07		26-Jun-07	-	2-Jul-07	2-Jul-07					
	23-Sep-07	-	1-Oct-07	1-Oct-07		3-Jul-07		9-Jul-07	9-Jul-07					
Fuel	Cache					10-Jul-07	-	16-Jul-07	16-Jul-07					
	22-May-07	-	28-May-07	28-May-07	Porta	al Diesel Stor	rag	e Tanks						
	29-May-07	-	4-Jun-07	4-Jun-07		22-May-07	-	28-May-07	28-May-07					
	5-Jun-07	-	11-Jun-07	11-Jun-07		26-Jun-07	-	2-Jul-07	2-Jul-07					
	10-Jul-07	-	16-Jul-07	16-Jul-07		3-Jul-07	-	9-Jul-07	9-Jul-07					
Land	Treatment F	ac	ility (LTF)			6-Aug-07 - 13-Aug-07 13-Aug-07								
	12-Jun-07	-	18-Jun-07	18-Jun-07	Exca	vation of Me	cha	nic Shop						
	26-Jun-07	-	2-Jul-07	2-Jul-07		24-Jul-07	-	30-Jul-07	30-Jul-07					
	3-Jul-07	-	9-Jul-07	9-Jul-07		31-Jul-07	-	6-Aug-07	6-Aug-07					
	10-Jul-07	-	16-Jul-07	16-Jul-07		7-Aug-07	-	13-Aug-07	13-Aug-07					
	17-Jul-07	-	23-Jul-07	23-Jul-07		14-Aug-07	-	21-Aug-07	21-Aug-07					
	24-Jul-07	-	30-Jul-07	30-Jul-07	km 1	.4 - 1.5 (Cam	pbe	ell Creek Cro	ssing)					
	12-Sep-07	-	18-Sep-07	18-Sep-07		15-May-07	-	17-May-07	17-May-07					
	19-Sep-07	-	1-Oct-07	1-Oct-07		18-May-07	-	25-May-07	25-May-07					
	2-Oct-07	-	9-Oct-07	9-Oct-07		26-May-07	-	28-May-07	28-May-07					
150-	Man Camp si	te				29-May-07	-	4-Jun-07	4-Jun-07					
	26-Jun-07	-	2-Jul-07	2-Jul-07		5-Jun-07	-	11-Jun-07	11-Jun-07					
	3-Jul-07	-	9-Jul-07	9-Jul-07		19-Jun-07	-	25-Jun-07	25-Jun-07					
	10-Jul-07	-	19-Jul-07	19-Jul-07		26-Jun-07	-	2-Jul-07	2-Jul-07					
	17-Jul-07	-	23-Jul-07	23-Jul-07		14-Aug-07	-	20-Aug-07	20-Aug-07					
	24-Jul-07	-	30-Jul-07	30-Jul-07		21-Aug-07	-	27-Aug-07	27-Aug-07					
	31-Jul-07	-	6-Aug-07	6-Aug-07										
	7-Aug-07	-	13-Aug-07	13-Aug-07										
	14-Aug-07	-	20-Aug-07	20-Aug-07										

			Monitoring			Monitoring							
Site	Monitor	ing	Period	Date of Report	Site	Monitor	Date of Report						
	From		То			From		То					
km 1	.5 (south of C	Can	npbell Creek)	Wast	aste rock pad (WRP)							
	9-May-07			9-May-07		25-Apr-07	-	29-Apr-07	29-Apr-07				
	15-May-07	-	17-May-07	17-May-07		15-May-07	-	21-May-07	21-May-07				
	18-May-07	-	24-May-07	24-May-07		29-May-07	-	4-Jun-07	4-Jun-07				
	25-May-07	-	29-May-07	29-May-07		5-Jun-07	-	11-Jun-07	11-Jun-07				
	29-May-07	-	4-Jun-07	4-Jun-07		12-Jun-07	-	18-Jun-07	18-Jun-07				
	5-Jun-07	-	11-Jun-07	11-Jun-07		19-Jun-07	-	25-Jun-07	25-Jun-07				
	26-Jun-07	-	2-Jul-07	2-Jul-07		26-Jun-07	-	2-Jul-07	2-Jul-07				
km 1	.6 (~150 m so	out	h of km 1.5)			3-Jul-07	-	9-Jul-07	9-Jul-07				
	18-May-07	-	21-May-07	21-May-07		7-Aug-07	-	13-Aug-07	13-Aug-07				
	22-May-07	-	28-May-07	28-May-07		14-Aug-07	-	21-Aug-07	21-Aug-07				
	29-May-07	-	4-Jun-07	4-Jun-07		21-Aug-07	-	28-Aug-07	28-Aug-07				
	5-Jun-07	-	11-Jun-07	11-Jun-07		4-Sep-07	-	10-Sep-07	10-Sep-07				
km 2	(culvert loca	atio	n)			11-Sep-07	-	22-Sep-07	22-Sep-07				
	10-May-07	-	11-May-07	11-May-07		23-Sep-07	-	1-Oct-07	1-Oct-07				
	19-Jun-07	-	25-Jun-07	25-Jun-07	Wast	e rock sump	(W	/RS)					
km 2	.1 (upper roa	d f	rom gorge to	portal area)		20-Apr-07	-	26-Apr-07	26-Apr-07				
	12-Jun-07	-	18-Jun-07	18-Jun-07		15-May-07	-	21-May-07	21-May-07				
Spru	ng Stuctures	;				22-May-07	-	28-May-07	28-May-07				
	13-Sep-07	-	22-Sep-07	22-Sep-07		29-May-07	-	4-Jun-07	4-Jun-07				
	22-Sep-07	-	1-Oct-07	1-Oct-07		5-Jun-07	-	11-Jun-07	11-Jun-07				
	2-Oct-07	-	9-Oct-07	9-Oct-07		12-Jun-07	-	18-Jun-07	18-Jun-07				
	9-Oct-07	-	15-Oct-07	15-Oct-07		19-Jun-07	-	25-Jun-07	25-Jun-07				
Pota	ble Water We	ell C	Drill Sites			26-Jun-07	-	2-Jul-07	2-Jul-07				
	21-Aug-07	-	3-Sep-07	3-Sep-07		3-Jul-07	-	9-Jul-07	9-Jul-07				

x	Monitored		Reporte	d due t	o chang	e in con	diton		Repo	rted due to	rain ev	ents	Reported we	ekly	Wator Drill	Monitoring on Sprung	hold							Fuel	Diacol					П	old road	Now Comp	Portal	Water Drill	Sprung	
Site name	km 1.4-1.5	Km 1.5	Km 1.6	Km 2	Fuel Cache	Diesel tanks	PCS	WRS	WRP	Go Creel	LTF	old road K2.1	New Camp Site	Portal Material	Water Drill Sites	Constructio n	New LTF	CDS	Site name	km 1.4-1.5	Km 1.5	Km 1.6	Km 2	Fuel Cache	Diesel tanks	PCS	WRS	WRP	Go Creek	LTF	old road K2.1	New Camp Site	Portal Material	Water Drill Sites	Sprung Construction	New LTF CDS
1-Apr-07																			Date 17-Aug-07	x	x	v	,		x	x	x	x	x	Ţ			x			
3-Apr-07																			19-Aug-07	x	x	~	×	~	×	×	x	x	x	^		x	x			
5-Apr-07 6-Apr-07											_								21-Aug-07 22-Aug-07	x	x	x	x	x	x	x	x	x	x	x		×	x	×		
7-Apr-07 8-Apr-07							-		-							-			23-Aug-07 24-Aug-07	x	x				x	x	x	x	x	x		x	x	x		
9-Apr-07 10-Apr-07							_												25-Aug-07 26-Aug-07	x x	x x				x	x	_						х			
11-Apr-07 12-Apr-07																			27-Aug-07 28-Aug-07	x x	x x			x	x	x	x	x	x				x	x		
13-Apr-07 14-Apr-07																			29-Aug-07 30-Aug-07	x x	x x			х	x	x x	x x	x x	х				x x	x x		
15-Apr-07 16-Apr-07		x																	31-Aug-07 1-Sep-07	x x	x x			x	x	x x	x x	x x					x x	x		
17-Apr-07 18-Apr-07																			2-Sep-07 3-Sep-07	x	x			x	x	x	x x	x x		x			x	x		
19-Apr-07 20-Apr-07							x	x											4-Sep-07 5-Sep-07	x	x					x	x x	x	x x			x	x			
21-Apr-07 22-Apr-07		x					X												6-Sep-07 7-Sep-07	x	x				x	x	x	x	x				x			
23-Apr-07 24-Apr-07	x	v				v		v	v										9-Sep-07	x	x	v	,	x	x	x	x	x	х	x		x	x			
26-Apr-07	×	~				^	×	^	x										11-Sep-07 12-Sep-07	x	x	x	x	*	×	×	x	x		v		*	x			
28-Apr-07 29-Apr-07	x	x					x	x	x										13-Sep-07 14-Sep-07	x	x	x	x		x	x	x	x		^		х	x			
30-Apr-07 1-May-07																			15-Sep-07 16-Sep-07			x	x		x	x	x	x		x		х	x			
2-May-07 3-May-07									<u> </u>		-								17-Sep-07 18-Sep-07	x	x	x	x		x	x	x	x				x	x x		x	x
4-May-07 5-May-07																			19-Sep-07 20-Sep-07						x	x x							x x		x x	x x
6-May-07 7-May-07																			21-Sep-07 22-Sep-07	x	x	x	x		x x	x x	x	x					x x		x x	x x x x
8-May-07 9-May-07		x																	23-Sep-07 24-Sep-07	x	x	x	x		x	x	x x	x x		x		x	x x		x x	x x x
10-May-07 11-May-07				x															25-Sep-07 26-Sep-07						x		x	x					x		x	x x x
13-May-07																			28-Sep-07 29-Sep-07	x	x	x	x		x		x	x				¥	x		x	x x
15-May-07 16-May-07	x x	x x		E			x x	x	x x									E	30-Sep-07 1-Oct-07	x	X	x	x		x	_	x x	x x		E			x		x x	x x x x
17-May-07 18-May-07	x x	x x	x				x x	x x	x x										2-Oct-07 3-Oct-07											\square					x x	x
19-May-07 20-May-07	x	x x	x x				x x	x x	x x									\square	4-Oct-07 5-Oct-07						x x	-	-	-		⊢					x	x
21-May-07 22-May-07	x	x	x x		x	x		x	x x										6-Oct-07 7-Oct-07						x										x x	x
23-May-07 24-May-07	x	x	x		x	x		x	x										8-Oct-07 9-Oct-07						v										x	x
26-May-07	x	x	x		x	x		x	x										11-Oct-07 12-Oct-07						x										x	
28-May-07 29-May-07	x	x	x		x	×	-	x	x										13-Oct-07 14-Oct-07						x										x	
30-May-07 31-May-07	x x	x x			x x	x x			x x										15-Oct-07 16-Oct-07						x x										x	
1-Jun-07 2-Jun-07	x x	x x			x x	x x			x x										17-Oct-07 18-Oct-07						x											
3-Jun-07 4-Jun-07	x x	x			x	x			x	x									19-Oct-07 20-Oct-07																	
5-Jun-07 6-Jun-07	x	x			x	x	x	x	x	x									21-Oct-07 22-Oct-07 23-Oct-07						x											
8-Jun-07 9-Jun-07	x	x			×	×	x	x	x	x									24-Oct-07 25-Oct-07						x											
10-Jun-07 11-Jun-07	x x	x x			x x	x x	x x	x x	x x	x x									26-Oct-07 27-Oct-07						x		_									
12-Jun-07 13-Jun-07	x x	x x				x x	x x	x x	x x		x x								28-Oct-07 29-Oct-07						x											
14-Jun-07 15-Jun-07	x x	x x				x	x	x	x		x								30-Oct-07 31-Oct-07						x											
16-Jun-07 17-Jun-07	x	x				x	x	x	x		x								1-Nov-07 2-Nov-07																	
19-Jun-07	x	x				x	x	x	x		x								4-Nov-07						x											
21-Jun-07 22-Jun-07	x	x				x	x	x	x		x								6-Nov-07 7-Nov-07						x											
23-Jun-07 24-Jun-07	x x	x x				x x	x x	x x	x x		x x								8-Nov-07 9-Nov-07																	
25-Jun-07 26-Jun-07	x x	x x				x x	x x	x x	x x	x	x x								10-Nov-07 11-Nov-07						x											
27-Jun-07 28-Jun-07	x x	x x				x x	x x	x x	x x	x x	x x	x x	x						12-Nov-07 13-Nov-07						x x											
29-Jun-07 30-Jun-07	x	x				x	x	x	x	x	x	x	x						14-Nov-07 15-Nov-07																	
2-Jul-07	X X	x				x	××	x	x	x	×××	×	× 						17-Nov-07			<u> </u>			x x				¥	Ħ						
4-Jul-07 5-Jul-07	x	x		1		x	x	x	x	x	×	x	x					F	19-Nov-07 20-Nov-07			-			x		1		x	F						
6-Jul-07 7-Jul-07	x x	x		E		x	x	x	x	x	x	x x						E	21-Nov-07 22-Nov-07			E		_	x		_		x x	H						
8-Jul-07 9-Jul-07	x x	x x		E		x x	x x	x x	x x	x x	x x	x x	x						23-Nov-07 24-Nov-07											\square		x x				
10-Jul-07 11-Jul-07	x x	x x	x	x		x	x x	x x	x	x x	x	x x	x					\square	25-Nov-07 26-Nov-07						x					ЬÍ		x x				
12-Jul-07 13-Jul-07	x x	x				X	x	x	x	x	x	x x							27-Nov-07 28-Nov-07			<u> </u>			x					H		x				
14-Jul-07 15-Jul-07	X X Y	X X Y	x	×	x	×	x	x	x	x	x	X X Y	¥						23-NOV-07 30-Nov-07 1-Dec.07			<u> </u>	H		X							x				
17-Jul-07 18-Jul-07	x	x	x	×	×	x	x	x	x	x	x	x	x			-			2-Dec-07 3-Dec-07			—								Ħ		x				
19-Jul-07 20-Jul-07	x	x x		L		x x	x	x x	x x	x	x		x x						4-Dec-07 5-Dec-07						x					H						
21-Jul-07 22-Jul-07	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x				E	6-Dec-07 7-Dec-07		E									\square						
23-Jul-07 24-Jul-07	x	x x	x	x	x x	x	x x	x	x	x	x	x	x	x x				\square	8-Dec-07 9-Dec-07							Ĩ	-		x x	ЬĮ						
25-Jul-07 26-Jul-07	x	x	x	x	x	x	x	x	x	x	x		x	x				H	10-Dec-07 11-Dec-07			<u> </u>								H						
27-Jul-07 28-Jul-07	x	x	×	×	×	x	x	x	x	x	x		x	x					12-Dec-07 13-Dec-07			<u> </u>														
30-Jul-07 31-Jul-07	x	x	x	x	^		x	x	x	x	Â			× x				H	15-Dec-07 16-Dec-07								1			H						
1-Aug-07 2-Aug-07	x x	x	x x	x x	x x	x x	x	x x	x x	x	x x		<u>x</u>	x x				E	17-Dec-07 18-Dec-07			E								Ħ						
3-Aug-07 4-Aug-07	x x	x x	x x	x	x	x	x x	x	x	x	x			x x					19-Dec-07 20-Dec-07							\neg	\exists			H						
5-Aug-07 6-Aug-07	x x	x	x	×	x	x	x	x x	x	x	x		x	x x				E	21-Dec-07 22-Dec-07											⊢						
7-Aug-07 8-Aug-07	x	x	~		~	x	x	~	-	~	-		~	x				E	23-Dec-07 24-Dec-07			<u> </u>			X					Ħ						
10-Aug-07	x x x	x x	×	*	×	x	x x y	x x x	x x x	x	×		x x x	x x x					26-Dec-07 27-Dec-07			<u> </u>			×					Ħ						
12-Aug-07 13-Aug-07	x	x		E			x	x	x	x x				x x				E	28-Dec-07 29-Dec-07			L	E		Ė		_	_		E						
14-Aug-07 15-Aug-07	x x	x x		E	E	x x	x x	x x	x x		x		x	x x				E	30-Dec-07 31-Dec-07				E		x					Ħ						
16-Aug-07	x	x	1	1	1	1	×	× ×	×	1 ×	1		v					1				1	1		1					1						

Wolverine Project Environmental Inspection Form

Part 1 – Site Description						
Date and Time: June 3 rd – June 11 th .	Inspector(s): M.K., J.G & J.S.					
Site Name: Go Creek	Location/Co-ordinates: Go Creek crossing at entrance to Airstrip					
Site Location Description: Where Go Creek crosses the site road, at entrance of airstrip. The outflow is from						

water collecting in the watershed to the east. Go Creek carries on to the south to Money Creek. The defined channel fans out after crossing the site road. In the wetland area the channel re-forms. Area dominated by willows and wetland species. Channel near the culvert is well armoured from natural fluvial till (rip/rap). High flows during rain events and melt due to extent of collection area in watershed.

Weather Conditions: Sunny and hot June 3rd, 4th, 5th. Mostly mixed sun and cloud, some rain and milder temperatures June 6th to June 11th.

Part 2 – Site Assessment

Activity: Heavy flows that peaked on June 3rd as a result of spring melt resulted in installation of new culverts and diversion of channel.

Site Description:

June 3rd - Heavy flows caused overflow of the two existing culverts, washing over road and onto airstrip. Creek was diverted through end of airstrip and another culvert was installed to try a minimize impact/erosion to road/airstrip. Another culvert was installed along diversion ditch to allow for crossing.

June 4th – Flows remained very high, but were being handled well by culverts in place.

June 7th – Heavy flows have slowed, allowing diversion channel to be closed, while still leaving a spillway for the event of another heavy flow/heavy rainfall.

Assessed Risk: Med (High risk for erosion and sediment inflow downstream during peak flow and construction. Risk by the 7th was lowered due to reduced flows.)

Photos Attached: Go Creek

Samples Taken: none

Additional Information Attached: none

Part 3 – Mitigation Requirements

Mitigation Required:

- Remove silt fencing from area west side of airstrip

- Armouring with rip rap of banks on the west and east side of both sets of culverts.

Mitigation Condition: F. Work to be continued as flows lower and equipment/operators become available

Part 4 – Monitoring Requirements

Follow-up Monitoring: Continue to monitor site and condition of road erosion etc.

Monitoring Frequency: During periods of high flows, heavy rainfall, or road/airstrip improvements

Reporting Requirements

Wolverine Project Environmental Inspection Form – Photos

Wolverine Project Environmental Inspection Form – Photos

Wolverine Project Environmental Inspection Form

Part 1 – Site Description									
Date and Time: September 11 th , 2007	Inspector(s): James Spencer								
Site Name: Airstrip_S	Location/Co-ordinates: South End of Airstrip @ Go Creek Crossing								
Site Location Description: Directly adjacent to Go Cree and drains in to Go Creek. Approximately 7.5 Meters f	ek where a tributary from a spring crosses a drill road rom edge of Go Creek banks.								
Weather Conditions:	T (00)								
Date Conditions	Temp (°C)								
TT-Sep-07 Summy and warm									
Part 2 – Site Assessment									
Activity: Hauling freight and fuel through the lower drill area to soften in the wetland and area surrounding a sr	road joining the south end of the airstrip has caused the mall stream crossing the road.								
Site Description: The road is too close to Go Creek and the wetted perimeter is not a great location for heavy traffic. Upland there are drier rocky soils that will be more suitable for vehicle traffic than the loamy organic material in the wetland									
Assessed Risk: Med									
Photos Attached: Airstrip_S - 1									
Samples Taken: N/A									
Additional Information Attached: N/A									
Part 3 – Mitigation Requirements									
Mitigation Required: Move road up slope and install culvert across drainage or begin preparing the ultimate road to make it suitable for heavy traffic. The area affected will be re-contoured and seeded and no new traffic is to pass through the area.									
Mitigation Condition: P									
Part 4 – Monitoring Requirements									
Follow-up Monitoring: Ensure area is blocked off from t	raffic								
Monitoring Frequency: If change in condition									
Reporting Requirements:									

Part 1 – Site Description			
Date and Time: November 13 th - 19 th , 2007	Inspector(s): James Spencer		
Site Name: Go Creek	Location/Co-ordinates: Access Road crossing at Go Creek		
Site Location Description: Temporary culvert installation will divert into a new channel upstream of the culvert and below to cut out the bend in the Creek. Area is cleared to the stream bank. Meandering Creek in Oxbow pattern difficult for straight crossing of creek and concerns over how to install culvert. See Figure 1. to be amended as planning continues. Potentially sensitive stream bank running parallel to the road access.			
Weather Conditions: 13-Nov-07Clear and warm 14-Nov-07Clear and warm 15-Nov-07Overcast, low cloud and light snow 16-Oct-07Clear and sunny 17-Oct-07Clear and sunny 18-Oct-07overcast and light snow 19-Nov-07Clear and sunny Part 2 – Site Assessment	-7 -9 -8 -10 -8 -10		
Activity: Preparation for temporary culvert installation. Two 1m culverts 40' long placed side by side. No clear path ahead yet. May use geotextile for temporary armouring of new creek bed. Culverts undersized for spring runoff. Can you move road to the right of access to avoid slumping in the creek?			
Site Description: The area had been grubbed to the stream bank on both sides of the road access when Artic first pushed the road through in October. Major immediate concern is Creek running parallel to road and getting filled in from snow clearing ploughing. Need to see more detailed plans for the final Diversion channels etc. to be incorporated at a			
Assessed Risk: Med			
Photos Attached:			
Samples Taken: No			
Additional Information Attached: Yes, Preliminary plan d	rawing		
Part 3 – Mitigation Requirements			
Mitigation Required: Ensure diversion is executed proper Control practices used depending on the path taken forw below grade of creek bed. Geotech underneath culvert a bank and bed. Review ESC practices. Mitigation Condition: N/A	rly, with plugs installed and proper Sediment and Erosion vard. Culvert on compacted and ¾ crush 1/3 of diameter and possibly in temporary channel to help with armouring		
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Monitor planning and construction	process for the culvert installation		
Monitoring Frequency: Daily until culvert successfully ins	stalled.		
Reporting Requirements: Maintain communication with	/P		

Site Name: Go Creek	
	Rode
	Figure1 Randy's Sketch
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps
Photo 1 - 11/18/07 – Go Creek Looking North	Photo 2 - 09/11/07 – Pit full of water with pumps

	olverine Project		
Environmental Inspection Form			
Part 1 – Site Description			
Date and Time: December 4 th -10 th , 2007	Inspector(s): James Spencer		
Site Name: Go Creek	Location/Co-ordinates: Access Road crossing at Go Cree	s Road crossing at Go Creek	
Site Location Description: Temporary culvert installation will divert into a new channel upstream of the culvert and below to cut out the bend in the Creek. Area is cleared to the stream bank. Meandering Creek in Oxbow pattern difficult for straight crossing of creek and concerns over how to install culvert. Potentially sensitive stream bank running parallel to the road access.			
Weather Conditions:			
04-Dec-07 clear		-28	
05-Dec-07 clear		-25	
06-Dec-07 clear		-12	
07-Dec-07 clear		-20	
08-Dec-07 clear		-19	
09-Dec-07 Mixed sun and cloud		-17	
10-Dec-07 windy from the south, light snow -		-13	
Part 2 – Site Assessment			
Activity: Preparation for temporary culvert installation. Two 1.2m culverts 60' long placed side by side, geotextile used to stabilize the installation. The skew was minimized to line up the natural channel with the culvert while allowing for enough road width. Material pushed from hill on north side of culvert from the right of way to provide for fill. Culvert placed on shaley gravel with a small fraction of bony pit-run			
Site Description: The area had been grubbed to the stream bank on both sides of the road access when Artic first pushed the road through in October. One section of the creek that paralleled the road was bypassed. The Culvert is in place and the creek diverted to course through the culverts. Winter conditions have reduced stream to a trickle so water is freezing and damming and not running through the culverts. Road base is 15M and road top is 5M with 2:1 shoulders and 1M of fill over the culverts. Culverts centered and installed 3-8" below creek grade on inlet and 2- 4' above grade on outlet, skewed at 15 degrees from perpendicular to road.			
Assessed Risk: Low			
Photos Attached: 4			
Samples Taken: No			
Additional Information Attached: No			
Part 3 – Mitigation Requirements			

Mitigation Required: All ESC practices that could reasonably be incorporated during winter conditions were put in place. Work performed in dry by plugging upstream side while work in progress. Semi-circular excavation shape used for channel to minimize flow velocities. Grade maintained at 2%-4% to match the grade of the original stream path. Banks of new excavation will need silt fence and encourage re-vegetation in spring time. May need to reinforce stream bed with larger bony material to prevent excessive stream bank erosion. We had no ³/₄ crush to place the culvert and no sand or fine grained material so used the material available at site. Minimal compaction as ground is frozen and dry. Compacted with the hoe bucket. Rip Rap will be placed on outflow and inflow in early spring to minimize erosion

Mitigation Condition: Good, check for debris build up at inflow

Part 4 – Monitoring Requirements

Follow-up Monitoring: Will monitor again in the Spring as ground thaws

Monitoring Frequency: On Hold

Reporting Requirements: Change in Condition

Part 1 – Site Description			
Date and Time: August 31 st – September 22 nd , 2007	Inspector(s): James Spencer		
Site Name: Coverall Dirty Sump (CDS) Location/Co-ordinates: lower laydown area			
Site Location Description: A settling pond built within a	pre-existing coverall at the lower laydown area		
Weather Conditions:			
Date Conditions	Temp (°C)		
31-Aug-07 Rain intermittent throughout day, clearing in	the afternoon 10		
01-Sep-07 Rain all morning, clearing in afternoon to su	n 8		
02-Sep-07 Mix of clouds, and sun. Rain intermittent	13		
03-Sep-07 Sunny in the morning, cloudy in the afternoo	on 12		
04-Sep-07 Very frosty, Sun in the morning, overcast in	the afternoon 8		
05-Sep-07 Sunny with clouds	8		
06-Sep-07 Cloudy or overcast	11		
07-Sep-07 Cloudy with sunny breaks and occasional sl	nort showers 12		
08-Sep-07 Frost in morning, overcast	7		
09-Sep-07 Overcast	8		
10-Sep-07 Very gray all day, some showers in evening	10		
11-Sep-07 Sunny and warm	15		
12-Sep-07 Sunny and warm	14		
13-Sep-07 Sunny and warm	14		
14-Sep-07 Mixed Sull and Cloud	13		
16-Sep-07 Bright suppy	14		
17-Sep-07 Cool and overcast dusting of spow on high	neaks 0		
18-Sep-07 cool and light flurries	9 8		
19-Sep-07 Overcast with flurries throughout the day	6		
20-Sep-07 Elurries clearing in the afternoon			
20-06p-07 Flurries, cleaning in the afternoon low overcast			
22-Sep-07 Clear breaks, cloudy	6		
Part 2 – Site Assessment			
Activity: Construction of sump			
Site Description: Sump will be built within the coverall, as close to the edges as possible, with lock trenches being filled in by hand, (see attached design drawing)			
Assessed Risk: low			
Photos Attached: CDS - 4			
Samples Taken: Yes (ABA and shake flask)			
Additional Information Attached: CDS Design Drawing			
Part 3 –Mitigation Requirements			
Mitigation Required: No			
Mitigation Condition:			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Once water is in the sump, ensure that the liner does not fall in			
Monitoring Frequency: Weekly, as per B-Licence requirements			
Reporting Requirements: B-Licence			

Wolverine Project Environmental Inspection Form – Photos

Part 1 – Site Description			
Date and Time: September 23 rd – October 1 st , 2007	Inspector(s): James Spencer		
Site Name: Coverall Dirty Sump (CDS)	Location/Co-ordinates: lower laydown area		
Site Location Description: A settling pond built within a	pre-existing coverall at the lower laydown area		
Weather Conditions:			
Date Conditions	Temp (°C)		
23-Sep-07 mixed overcast flurries	-4		
24-Sep-07 mixed rain and flurries	0		
25-Sep-07 rain showers all day, clearing in evening	5		
26-Sep-07 Overcast, foggy	-2		
27-Sep-07 Overcast, foggy	-3		
28-Sep-07 Some clearing still overcast with low ceilings	-1		
29-Sep-07 coolish, broken cloud cover	-5		
30-Sep-07 Cool show humes	-2		
Part 2 – Site Assessment	-1		
Activity: Construction of sump			
Site Description: Sump was built within the coverall, with	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask)	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: Iow Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached:	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached: Part 3 –Mitigation Requirements	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached: Part 3 –Mitigation Requirements Mitigation Required: No	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached: Part 3 –Mitigation Requirements Mitigation Required: No Mitigation Condition:	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached: Part 3 –Mitigation Requirements Mitigation Required: No Mitigation Condition: Part 4 –Monitoring Requirements	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached: Part 3 –Mitigation Requirements Mitigation Required: No Mitigation Condition: Part 4 –Monitoring Requirements Follow-up Monitoring: Water sampling once upper ponde	lock trenches being filled in by hand.		
Site Description: Sump was built within the coverall, with Assessed Risk: low Photos Attached: 2 Samples Taken: Yes (ABA and shake flask) Additional Information Attached: Part 3 –Mitigation Requirements Mitigation Required: No Mitigation Condition: Part 4 –Monitoring Requirements Follow-up Monitoring: Water sampling once upper ponds Monitoring Frequency: Weekly, as per B-Licence require	lock trenches being filled in by hand.		

Part 1 – Site Description			
Date and Time: May 22 nd – 28 th ,2007 Inspector(s): James Spencer			
Site Name: Fuel Cache	Location/Co-ordinates: Just past km 3 pad on east side of site road		
Site Location Description: A low point of ground that drains through the upper bank and on to the pad during the melt. Also discovered a small spring at the southeast corner of the pad. Total affected area 125m ² . Wolverine Creek ~250 m SE.			
Weather Conditions:			
Date Conditions	Temp (°C)		
22-May-07 Clear and Sunny	14		
23-May-07 Clear and Sunny	15		
24-May-07 Clear and Sunny	15		
25-May-07 Clear and Sunny	15		
26-May-07 Cooler and light rain, front approaching from s	outh 8		
27-May-07 Sunny and hot	15		
28-May-07 Sunny and warm	15		
Part 2 – Site Assessment			
Activity: Fueling station had diesel barrels stored on side diesel on to pad over the course of the winter since Nove	es that began to leak in winter and spilled 660 liters of ember 5 th .		
Site Description: Area drying up through week. Pads no	t picking up hydrocarbon. Still smell diesel in some soil		
Assessed Risk: Low			
Photos Attached: Fuel Cache - 6			
Samples Taken: 7 samples of contaminated soil for LEP	H/HEPH/VPH analysis		
Additional Information Attached: Spill Report			
Part 3 – Mitigation Requirements			
Mitigation Required: Dug two trenches on 25 th , 26 th around the site to divert the surface water and subsurface flows that were contacting the spill site. Continue to apply pads to the open ponding, very little visible hydrocarbon, all soaked in to soil. 10 - 20 liters of hydrocarbon metabolizing bacteria to be applied with pump up sprayer by June 5 th , 2007. ~77 m ³ of contaminated material to be hauled to contaminated soil storage area. ~30m ³ of material wtill to remove.			
Mitigation Condition: G			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Watch for any new contamination,	continue to replace pads		
Monitoring Frequency: Daily.			
Reporting Requirements: QMLU-0006, QZ01-051			

#701 – 475 Howe Street Vancouver, British Columbia Canada V6C 2B3

Telephone: (604) 682-5474 Toll-free: 1-877-682-5474 Fax: (604) 682-5404

> info@yukonzinc.com www.yukonzinc.com

Wolverine Project - Spill Report

Report Date: May 24, 2007

Date and time of spill: Unknown, first observed diesel staining around drum storage area May 22, 2007

Date and time reported to government: May 25, 2007 11:30 am (24hr Yukon Spill Report Line); Reported to EMR and Water Resources Inspectors at 10 am May 25, 2007

Location and map co-ordinates: Diesel fuel cache in previously disturbed area along road route just north of the portal area. GPS Coordinates: UTM 09V 439409m E, 6811157m N (Elevation =1343m) (see attached photos and map)

Party Responsible: Yukon Zinc Corporation

Product Spilled and Quantity: Diesel, approximately 660 L. Two 205 L drums were nearly empty, one drum was ³/₄ empty and two drums were ¹/₄ empty. Upon discovery of the staining, it was estimated that between 50 to 150 L had spilled (reportable quantity for diesel is 200 L). Upon removal of the drums and start of excavation, the estimate was revised.

Cause and Effect of Spill: Fuel was delivered from Trans North Helicopters on November 5th, 2006 and January 5th, 2007. Most of the fuel delivery was pumped to the envirotanks near the portal and surplus fuel was transfer to empty drums. In total there were 60 drums that were filled and tightened with bung wrenches. Of the five drums that leaked, two drums had defective seals and three drums did not have seals. The drums had been placed on their sides to prevent contamination from rain water.

Status of spill (terminated or continuing): Terminated

Extent of Contamination: Diesel migrated from the barrels and followed the terrain sloping to the north east where it terminated approximately 50 m from the drum cache location (see attached photos). Based on excavations conducted May 24^{th} , most of the soil contamination is confined to a 5 m x 5 m area directly beneath the stored drums. The depth of penetration of the spill in this area varies (0.2 m to 0.6 m) and post-excavation samples will be taken by an external consultant to ensure that the remaining soil is not contaminated.

Factors affecting spill or recovery (temperatures, wind, snow, ice, terrain, buildings, etc.): Initially, it was difficult at first to ascertain which barrels had leaked due to spring

snow melt and a surface seep in the area. It was also difficult to ascertain the degree of contamination as the area is fairly wet (see attached photos – note that area is wet from surface runoff).

Containment (natural, booms, dykes or other)/**no containment:** Hydrocarbon absorbent pads were placed in the small areas of pooling water, but are not showing evidence of hydrocarbons.

Action (if any) taken or proposed to control, recover, clean up or dispose of spill: At 5:30 pm on May 22^{nd} five drums in the area where the ground was stained were righted after being identified as the sources of the spill (cache A in the photos). On May 23^{rd} , the remaining 55 drums were righted to prevent any possible leakage. They were then moved towards the north end of the cache area, away from the spill area (cache B in the photos), and tarped. The 55 remaining drums did not show any signs of leaking. The spill area was delineated prior to excavation of the contaminated material (see Photo 1). Three loads (~7.5 m³ each) were hauled to a lined area near the airstrip and tarped. On May 24^{th} a further four loads (~7.5 m³ each) were moved. YZC has limited the amount of excavation to minimize seepage of groundwater into the excavation site. A diversion ditch is being constructed upslope of the area to prevent clean water from entering the site. A hydrocarbon metabolizing bacterial culture will be applied to the affected area, and confirmatory sampling of the area will be conducted by Lorax Environmental Services Ltd. on June 4^{th} , 2007.

Do you require assistance? No assistance is required.

Hazards to persons, property or environment (fire, drinking water, threat to fish or wildlife): No hazards – nearest water body is Wolverine Creek, ~100 m to the southwest. The road between the camp and portal parallels the cache area to the west (Wolverine Creek is on the other side of the road).

Agencies on site: None. 24hr Yukon Spill Report Line and Energy, Mines and Resources notified on May 25, 2007.

Others notified of spill: Pamela Ladyman, VP Environment and Raymond Mah, Chief Operating Officer, Yukon Zinc Corporation. Ross River Dena Council and Liard First Nation (May 25, 2007).

Comments and/or recommendations/further action required:

YZC will store the contaminated material in a lined and covered area until it is trucked offsite to an approved facility in August 2007. Lorax Environmental Services Ltd. will conduct confirmatory sampling of the excavated area and provide additional direction as necessary.

Reported by:	Jimmy Spencer, Environmental Technician, Yukon Zinc Corporation
Location:	Wolverine Camp
Telephone:	(604) 678-4928 ext. 3
Reported to:	Pamela Ladyman, VP Environment and Community Affairs, YZC
Telephone:	(604) 682-5474 x 246 or (604) 644-7655

Photo 1. Aerial photo of site prior to spill; red outline depicts the affected area. Photo taken May 1, 2007 looking east.

Photo 2. Arrangement of stored diesel drums in Cache A with spilled containers placed upright. The sealed drums are on their side to prevent contamination by rain water. Taken May 23, 2007.

Photo 3. Area of spill (Cache A) with righted drums that had leaked. Note: Wetted area is from seeping surface water. No product was observed in puddles. Taken May 23, 2007

Photo 5. After the drums were moved from Cache A north to Cache B; midway through excavation of the contaminated soil. The red line outlines the contaminated area viewed from the north-west, looking down the site road towards the portal area. Taken May 23, 2007.

Part 1 – Site Description			
Date and Time: May 29 th – June 4 th ,2007 Inspector(s): Melissa Kirby & Jennie Gjertsen			
Site Name: Fuel Cache Location/Co-ordinates: Just past km 3 pad on or road			
Site Location Description: A low point of ground that dra melt. Also discovered a small spring at the southeast co Creek around 250 m to the SE.	ins through the upper bank and on to the pad during the print of the pad. Total affected area ~125 m ² . Wolverine		
Date Conditions	Temp (°C)		
29-May-07 Sunny and warm	9		
30-May-07 Rain intermix with some sun hail late in the d	ay 10		
31-May-07 Sunny	15		
1-Jun-07 Sunny	15		
2-Jun-07 Sunny	16		
3-Jun-07 Sunny and hot	22		
4-Jun-07 Sunny and hot	27		
Part 2 – Site Assessment			
Activity: Continued excavation and cleanup of contaminated soil Government inspection done by Steve Colp.			
 Contaminated soil removed to storage facility (cells of Diversion ditch retaining water as well as shallower of No longer any "sheen" to water All remaining fuel barrels tarped and roped Spill pads still soiling slightly Sprayed with bacterial cleanup spray Ground continues to have a diesel smell 	closed up with tarps) dug out site (south end)		
Assessed Risk: Low			
Photos Attached: -			
Samples Taken: -			
Additional Information Attached: -			
Part 3 – Mitigation Requirements			
 Mitigation Required: Bacterial spraying needs to be repeated Have consultant Justin Stockwell remove more soil s Once results confirmed, either remove/treat more of parameters, fill in diversion ditches and even out sur- 	amples site if it still shows contamination. If within acceptable face		
Mitigation Condition: G			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Watch for any new contamination			
Monitoring Frequency: Monitoring can be discontinued u	ntil results of samples are received.		
Reporting Requirements: QMLU-0006, QZ01-051			

1

Part 1 – Site Description			
Date and Time: June 5 th – June 11 th ,2007 Inspector(s): James Spencer and Jennie G		ertsen	
Site Name: Fuel Cache		Location/Co-ordinates: Just past km 3 pad on east side road	
Site Location melt. Also di Creek around	Description: A low point of ground that dra scovered a small spring at the southeast co d 250 m to the SE.	ains through the upper bank and on to the pac orner of the pad. Total affected area ~125 m ²	d during the . Wolverine
Weather Con	iditions: Conditions	т	emp (°C)
5-Jun-07	Sunny and hot in morning, rainy in afternoon		20
6-Jun-07	Windy and cloudy during day, rain at night		12
7-Jun-07	Rain last night, cloudy in morning clearing to	sunny in afternoon	12
8-Jun-07	Sunny and mild		15
9-Jun-07	Sunny and warm		15
10-Jun-07	Cloudy and chilly all day, clearing at night		10
11-Jun-07	Cloudy with sunny periods		15
Part 2 – Site	Assessment		
Activity: Non	e		
Site Descript	ion:		
- Areas un	der water are not draining/drying		
- Flows fro	m mountains remain high and may be affect	cting the volume of water in the diversion ditch	า
Assessed Risk: Low			
Photos Attached: -			
Samples Taken: Soil samples collected by Justin Stockwell. Collected ten samples and sent them off for			
LEPH/HEPH/VPH analysis.			
Additional Information Attached: -			
Part 3 –Mitig	ation Requirements		
 Mitigation Required: Bacterial spraying needs to be repeated Once results confirmed, either remove/treat more of site if it still shows contamination. If within acceptable parameters, fill in diversion ditches and even out surface. 			ceptable
Mitigation Co	Mitigation Condition: G		
Part 4 –Mon	itoring Requirements		
Follow-up Mo	onitoring: Watch for any new contamination	•	
Monitoring Fi	Monitoring Frequency: On hold until results of soil analysis have been received		
Reporting Re	quirements: QMLU-0006, QZ01-051		

Part 1 – Site Description			
Date and Time: July 10 th – July 16 th , 2007 Inspector(s): Jennie Gjertsen and Mary McDou			
Site Name: Fuel Cache	Location/Co-ordinates: Just past km 3 pad on east road	t side	
Site Location Description: A low point of gro melt. Also discovered a small spring at the Creek around 250 m to the SE.	ound that drains through the upper bank and on to the pad during southeast corner of the pad. Total affected area ~125 m ² . Wolve	the rine	
Weather Conditions:	T ₁ (2 0)		
Date Conditions			
11- Jul-07 Cloudy and cool	a warming in afternoon 16		
12- Jul-07 Cool and cloudy			
12-50-07 Cool and cloudy	20		
14- Jul-07 Sunny with clouds	20		
15-Jul-07 Sunny with clouds in afternoon	25		
16-Jul-07 Heavy rain in morning, cloudy in	afternoon and clearing in evening 18		
Part 2 – Site Assessment			
Activity:			
 All unsealed fuel barrels that were tarpe machinery on site. The remaining barrel 	d have been removed to either the access road site or used to fu s have seals intact.	el	
 Report from Lorax was received. Only one soil sample was over commercial limits (sample #8 in report), it was collected from directly underneath the area the initial contamination area. 			
Site Description: Site contains very little standing water and a	ppears for the most part to be dry.		
Assessed Risk: Low			
Photos Attached: Fuel Cache - 2			
Samples Taken: -			
Additional Information Attached: -			
Part 3 – Mitigation Requirements			
Mitigation Required:			
Diversion ditch and smear zone can be filled LEPH was collected.	in, but not the area where the contaminated soil that was over in	n	
Mitigation Condition: G			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: watch for new contan	ination from sealed barrels		
Monitoring Frequency: weekly, after reclamation	ation to site has occurred		
Reporting Requirements: QMLU-0006, QZ0	1-051		

T

Part 1 – Site Description		
Date and Time: June 12 th – June 18 th , 2007 Inspector(s): James Spencer		
Site Name: LTF Location/Co-ordinates: East side of airstrip buknoll		ip built up on
Site Location Description: The LTF was designed to hole containment cell(actual as-built size is 28 m long x 5 m we been lined with a layer of clay to allow turning of the win	ld and treat 90 m ³ of soil within a 30 m long wide), with the soil windrowed to 0.5 m high drows monthly, without damaging the liner	y x 6 m wide n. The LTF has
Weather Conditions:		
Date Conditions		Temp (°C)
12-Jun-07 Cloudy in morning, sunny and hot in the	afternoon, rain in the evening	18
13-Jun-07 Sunny and warm in morning, cloudy in ai	ternoon, rain in the evening	14
14-Jun-07 Cloudy with some sun, showers in the all	ternoon, cleaning in the evening.	14
16-Jun-07 Mixed Sun and cloud, small storm system	ns all day	16
17-Jun-07 Mixed Sun and cloud, small storm system	ns all day	15
18-Jun-07 Rain heavy at times, mixed sun and clou	d	14
Part 2 – Site Assessment		
Activity:		
- Windrowing of hydrocarbon contaminated soil for su	mmer remediation period.	
Site is over capacity for the amount of material store	d there and no windrows are in place, also	no barrel to
contain any overflow if water capacity is limited. Mat liner. See photo #1.	erial has collected on the edge of the berm	outside of the
Site Description: Treatment cell for ~60 m ³ of hydrocar	bon contaminated soil	
Assessed Risk: Med		
Photos Attached: LTF - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required:		
Move contaminated material off of the cell sides		
 Remove any excess material to a soil storage area t 	hat exceeds the 0.5 m height	
Soil to be turned and windrowed to encourage bioremediation		
Mitigation Condition: June 11-16, P. June 18, G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor for water overflow		
Monitoring Frequency: During rain events or if condition	changes	
Reporting Requirements: LTF Permit 4202-24-022		

Part 1 – Site Description			
Date and Time: June 26 th - July 2 nd , 2007 Inspector(s): Jennie Gjertsen			
Site Name: LTF Location/Co-ordinates: East side of airstrip built knoll		on	
Site Location Description: The LTF was designed to hold and treat 90 m^3 of soil within a 30 m long x 6 m wide containment cell(actual as-built size is 28 m long x 5 m wide), with the soil windrowed to 0.5 m high. The LTF has been lined with a layer of clay to allow turning of the windrows monthly, without damaging the liner.			
Weather Conditions:			
26-Jun-07 Cloudy		18	
27-Jun-07 Thunderstorm in AM, cloudy with sunr	y periods in afternoon	17	
28-Jun-07 Cloudy with showers, some sunny bre	aks	17	
29-Jun-07 Rain heavy in the morning, cloudy with	n showers in afternoon, clearing	15	
1 Jul 07 Hoovy roin of night and all morning ro	im in alternoon	18	
2- Jul-07 natchy clouds with suppy breaks	in an anemoon, roggy in evening	12	
Part 2 – Site Assessment		10	
Activity: Windrows in place and removal of tarp has result threatening to overflow the liner. Site Description: Treatment cell for ~60 m ³ of hydrocard	Ited in pooling of water during heavy rain fall. Water	is	
Assessed Risk: High			
Photos Attached: LTF			
Samples Taken:			
Additional Information Attached:			
Part 3 – Mitigation Requirements			
Mitigation Required: Re-tarping of LTF during rainfall even	ents and removal when sunny.		
Mitigation: June 29 th : 800 litres of contaminated water removed to used/empty fuel barrels. Site remains uncovered until word from Vancouver office regarding compliance standards for re-tarping.			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Monitor for excess water flow			
Monitoring Frequency: During rain events or if condition	changes		
Reporting Requirements: LTF Permit 4202-24-022			
		-	

Part 1 – Site Description			
Date and Time: July 3 rd – July 9 th , 2007	Inspector(s): Jennie Gjertsen		
Site Name: LTF	Location/Co-ordinates: East side of airstrip built up on knoll		
Site Location Description: The LTF was designed to hold and treat 90 m ³ of soil within a 30 m long x 6 m wide containment cell(actual as-built size is 28 m long x 5 m wide), with the soil windrowed to 0.5 m high. The LTF has been lined with a layer of clay to allow turning of the windrows monthly, without damaging the liner.			
 Weather Conditions: 3-Jul-07 cloudy with scattered showers 4-Jul-07 Thunderstorms in AM with hail, clearing in afternoon to patchy clouds 5-Jul-07 Rain overnight, clearing to sun in afternoon, late afternoon showers 6-Jul-07 Rain overnight and during day, cloudy in afternoon 7-Jul-07 Cloudy throughout day, showers 8-Jul-07 Showers and cloudy 9-Jul-07 Cloudy with sunny periods 			
Part 2 – Site Assessment			
Activity: 400 litres of contaminated water was removed from LTF to prevent overflow from liner. Barrels of contaminated water were moved into the centre of the LTF to act as a high point for tarping, although not achieving the desired affect. Water pooling on tarp needs to be removed after any rainfall to prevent more water entering LTF.			
Site Description: Treatment cell for ~60 m ³ of hydrocarbon contaminated soil			
Assessed Risk: Med			
Photos Attached: LTF			
Samples Taken:			
Additional Information Attached:			
Part 3 – Mitigation Requirements			
Mitigation Required: Re-tarping of LTF during rainfall events and removal when sunny.			
Mitigation Condition: Fair			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Monitor for excess water flow			
Monitoring Frequency: During rain events or if condition changes			
Reporting Requirements: LTF Permit 4202-24-022			

Part 1 – Site Description				
Date and Time: July 10 th - July 16 th , 2007	Inspector(s): Jennie Gjertsen			
Site Name: LTF	Location/Co-ordinates: East side of airstrip built up on knoll			
Site Location Description: The LTF was designed to hold and treat 90 m ³ of soil within a 30 m long x 6 m wide containment cell(actual as-built size is 28 m long x 5 m wide), with the soil windrowed to 0.5 m high. The LTF has been lined with a layer of clay to allow turning of the windrows monthly, without damaging the liner.				
Weather Conditions: 9-Jul-07 Cloudy with sunny periods 10-Jul-07 Cloudy and cool 11-Jul-07 Sunny and windy, cool in morning, warming in afternoon 12-Jul-07 Cool and cloudy 13-Jul-07 Sunny with clouds, warm 14-Jul-07 Sunny with clouds 15-Jul-07 Sunny, clouds in afternoon				
Part 2 – Site Assessment				
Activity: Windrows are still in place; site has been tarped and untarped several times. Nine barrels (1800L) of contaminated water have been removed.				
Site Description: Treatment cell for ~60 m ³ of hydrocarbon contaminated soil				
Assessed Risk: Med				
Photos Attached: LTF (1)				
Samples Taken:				
Additional Information Attached:				
Part 3 – Mitigation Requirements				
Mitigation Required: Some way of tarping LTF for easier removal/replacement. The alternative would be to even out windrows and make LTF into a temporary storage facility to allow maintenance to be minimized. Windrows need to be turned monthly.				
Mitigation Condition: fair; pooling of water on top of tarp requires frequent removal to prevent pulling tarp from edges.				
Part 4 –Monitoring Requirements				
Follow-up Monitoring: Monitor for excess water flow				
Monitoring Frequency: During rain events or if condition changes				
Reporting Requirements: LTF Permit 4202-24-022				

Part 1 – Site Description				
Date and Time: July 17 th - July 23 rd , 2007	Inspector(s): Jennie Gjertsen			
Site Name: LTF	Location/Co-ordinates: East side of airstrip built up on knoll			
Site Location Description: The LTF was designed to hold and treat 90 m ³ of soil within a 30 m long x 6 m wide containment cell(actual as-built size is 28 m long x 5 m wide), with the soil windrowed to 0.5 m high. The LTF has been lined with a layer of clay to allow turning of the windrows monthly, without damaging the liner.				
Weather Conditions:17-Jul-07Mixed Sun and cloud, warm, rain in even18-Jul-07Mixed Sun and cloud, warm19-Jul-07Fog in morning then sunny followed by cl20-Jul-07Mixed sun and cloud, no rain21-Jul-07Light rain in morning, sunny afternoon, he22-Jul-07Mixed sun and cloud, no rain23-Jul-07Rain overnight, clearing to sun in afternoon	ing 20 20 loud in afternoon 20 eavy rain early evening 20 19 on, late afternoon showers 21			
Part 2 – Site Assessment				
Activity: Windrows are still in place; Barrels have been removed from the cell to prepare for turning in to a storage facility that will shed water, 9 barrels slung out with excavator on to pad. Tarp replaced to gather the majority of pooling water. Site Description: Treatment cell for ~60 m ³ of hydrocarbon contaminated soil				
Assessed Risk: Med				
Samples Taken:				
Additional Information Attached:				
Part 3 –Mitigation Requirements				
Mitigation Required: We will even out windrows and make LTF into a temporary storage facility to allow maintenance to be minimized. Not sure yet on method.				
Mitigation Condition: fair, pooling of water on top of tarp requires frequent removal to prevent pulling tarp from edges.				
Part 4 –Monitoring Requirements				
Follow-up Monitoring: Monitor for excess water flow				
Monitoring Frequency: During rain events or if condition changes				
Reporting Requirements: LTF Permit 4202-24-022				

Part 1 – Site Description				
Date and Time: July 24 th - July 30 th , 2007	Inspector(s): James Spencer			
Site Name: LTF	Location/Co-ordinates: East side of airstrip built up on knoll			
Site Location Description: The LTF was designed to hold and treat 90 m ³ of soil within a 30 m long x 6 m wide containment cell(actual as-built size is 28 m long x 5 m wide), with the soil windrowed to 0.5 m high. The LTF has been lined with a layer of clay to allow turning of the windrows monthly, without damaging the liner.				
Weather Conditions: 24-Jul-07 Sunny most of day until showers late afternoon 25-Jul-07 Rain at night, Rain in afternoon, sunny in morning 26-Jul-07 Mixed Sun and scattered cloud, No rain, black flys, cool 3 deg. In morning 27-Jul-07 Rain throughout day, short sunny breaks 28-Jul-07 Sunny all morning thunder showers threatening at 2pm 29-Jul-07 Sunny all day, isolated rain showers		22 18 22 18 22 23		
Part 2 – Site Assessment				
Activity: Windrows have been flattened, tarps were placed on top to separate from capping material, 13 loads (~100m3) of material used to cap the LTF in a convex shape. Two 30x50 tarps placed on top and drainage in place to shed water.				
Assessed Risk: Low				
Photos Attached: LTF (3)				
Samples Taken:				
Additional Information Attached:				
Part 3 – Mitigation Requirements				
Mitigation Required: When road is through we will re-excavate and separate good material. Contaminated material will be shipped out.				
Mitigation Condition: Excellent, all water is shed and draining away from the LTF cell				
Part 4 –Monitoring Requirements				
Follow-up Monitoring: N/A				
Monitoring Frequency: Only if condition changes				
Reporting Requirements: LTF Permit 4202-24-022				

Part 1 – Site Description			
Date and Time: September $12^{th} - 18^{th}$, 2007		Inspector(s): James Spencer	
Site Name: Installation of new LTF cell		Location/Co-ordinates: North-east side of airstrip	
Site Location Description: An original LTF was undersized, and consequent fuel spills have resulted in ~400 m3 of hydrocarbon contaminated material requiring storage & bioremediation. As such, an amendment to LTF permit 4202-24-022 was received in September, 2007. This 50 m x 55 m cell is the result of the amendment.			
Weather Co	onditions:		
Date	Conditions	Temp (°C)	
12-Sep-07	Sunny and warm	14	
13-Sep-07	Sunny and warm	14	
14-Sep-07	Mixed sun and cloud	13	
15-Sep-07	rain showers all day, clearing in afternoon	11	
16-Sep-07 Bright sunny 14			
17-Sep-07 Cool and overcast, dusting of snow on high peaks		ks 9	
18-Sep-07	cool and light flurries	8	
Part 2 – Sit	e Assessment		
Activity: Construction of LTF cell			
Site Description: Area north east of the airstrip will be cleared and lined, with a water collection sump at the west side.			
Assessed Risk: Low			
Photos Attached: LTF - 7			
Samples Taken:			
Additional Information Attached:			
Part 3 –Mitigation Requirements			
Mitigation Required: The water level in the sump needs to be monitored as per the "LTF operation and monitoring manual"			
Mitigation Condition:			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Soil needs to be placed in the LTF			
Monitoring Frequency: As weather events warrant, and at least twice a month April - October of each year			

Reporting Requirements: LTF Permit 4202-24-022

Part 1 – Site Description		
Date and Time: September 19 th – October 1 st , 2007	Inspector(s): James Spencer	
Site Name: new LTF cell Location/Co-ordinates: North-east side of		
Site Location Description: An original LTF was undersized function of hydrocarbon contaminated material needed treatment was received in September, 2007. This 50 m x 55 m cel	ed, and consequent fuel spills have resulted in ~400 m3 . As such, an amendment to LTF permit 4202-24-022 I is the result of the amendment.	
Weather Conditions:	- (10)	
Date Conditions	Temp (°C)	
23-Sep-07 mixed overcast flurries	-4	
24-Sep-07 mixed rain and flurries	0	
25-Sep-07 rain snowers all day, clearing in evening	5	
26-Sep-07 Overcast, foggy	-2	
27-Sep-07 Overcast, toggy	-3	
28-Sep-07 Some clearing still overcast with low ceilings	-1	
29-Sep-07 coolish, broken cloud cover -5		
30-Sep-07 Cool snow flurries		
Part 2 – Site Assessment	-1	
 Activity: Movement of soil into the LTF cell and extending the sump to maximize the liner. The initial sump was built smaller than the liner, and as such will be extended. The berms around the cell are also to be covered in dirt to lock in the liner. The water that has accumulated in the sump was pumped out into organics. 		
Site Description: LTF cell north of the airstrip		
Assessed Risk: Low		
Photos Attached: LTF - 5		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: The water level in the sump needs to be monitored as per the "LTF operation and monitoring manual".		
Mitigation Condition:		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Water treatment options are to be explored		
Monitoring Frequency: As weather events warrant, and at least twice a month April - October of each year		
Reporting Requirements: LTF Permit 4202-24-022		

Part 1 – Site Description			
Date and Time: October 2 nd – October 9 th , 2007	Inspector(s): Mary McDougall		
Site Name: new LTF cell	Location/Co-ordinates: North-east side of airstrip		
Site Location Description: An original LTF was undersized, and consequent fuel spills have resulted in ~400 m ³ of hydrocarbon contaminated material needed treatment. As such, an amendment to LTF permit 4202-24-022 was received in September, 2007. This 50 m x 55 m cell is the result of the amendment.			
Weather Conditions:			
Date Conditions	Temp (°C)		
02-Oct-07 Overcast with sunny breaks	-2		
03-Oct-07 Overcast with snow flurries	-5		
04-Oct-07 Overcast with sunny breaks; windy and cold	-8		
05-Oct-07 Overcast and continuous snow flurries; windy	and cold -4		
06-Oct-07 High overcast, breaking clouds	-4		
07-Oct-07 Flurries all day	-3		
08-Oct-07 Flurries off and on all day			
09-Oct-07 High overcast, breaking clouds	-2		
Part 2 – Site Assessment			
Activity: Tarping the soil in the cell to minimize contaminated water in the spring Folding the soil storage berm over itself to prevent snow accumulation			
Site Description: LTF cell north of the airstrip			
Assessed Risk: Low			
Photos Attached: LTF - 5			
Samples Taken:			
Additional Information Attached:			
Part 3 –Mitigation Requirements			
Mitigation Required: The water level in the sump needs to be monitored as per the "LTF operation and monitoring manual".			
Mitigation Condition:			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Water treatment options are being explored with Filterco			
Monitoring Frequency: As weather events warrant, and at least twice a month April-October of each year			
Reporting Requirements: LTF Permit 4202-24-022			

Part 1 – Site Description			
Date and Time: Ju	ne 26 th – July 2 nd , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Construction Camp Site Location/Co-ordinates: Entrance north of WRP		f WRP	
Site Location Description: Large cleared area where work is undergoing to construct new construction camp. The front of the cleared area lies above site km 5 and above a wetted area, whereas the back runs up a slope. Wetted area (Wedge pond) percolates through to Go Creek. Site was staked out by Randy Olafson.			tion camp. The a slope. Wetted
Weather Condition	IS:		
Date Conditions Temp		Temp (°C)	
26-Jun-07 Cloudy		18	
27-Jun-07 Thunderstorm in AM, cloudy with sunny periods in afternoon		17	
28-Jun-07	Cloudy with showers, some sunny brea	ks	17
29-Jun-07	Rain heavy in the morning, cloudy with	showers in afternoon, clearing	15
30-Jun-07	Cloudy most of the day, sunny and war	m in afternoon	18
1-Jul-07	Heavy rain at night and all morning, rain	n all afternoon, foggy in evening	12
2-Jul-07	patchy clouds with sunny breaks		15
Part 2 – Site Asse	essment		
Activity: Clearing of land in preparation for construction. Organics and topsoil have been stripped back and stockpiled at south end near entrance of camp. A pipe was installed as a temporary culvert to prevent access road washout during period of high rainfall/runoff.			
Site Description: Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water. No evidence of collapsing or erosion, but should be monitored as work is ongoing.			
Assessed Risk: Lo	W		
Photos Attached: New Camp - 4			
Samples Taken: -			
Additional Information Attached: -			
Part 3 –Mitigation Requirements			
Mitigation Required: none			
Mitigation Condition: G			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Watch down slope for signs of erosion and slumping			
Monitoring Frequency: Weekly as work on site progresses			
Reporting Requirements: QMLU-0006, QZ01-051			

Part 1 – Site Description			
Date and Time: July 3 rd - July 9 th , 2007	Inspector(s): Jennie Gjertsen		
Site Name: New Camp	Location/Co-ordinates: Entrance north of WRP		
Site Location Description: Large cleared area where w front of the cleared area lies above site km 5 and abov area (Wedge pond) percolates through to Go Creek.	vork is undergoing to construct new construction camp. The ve a wetted area, whereas the back runs up a slope. Wetted Site was staked out by Randy Olafson.		
Weather Conditions:			
Date Conditions	Temp (°C)	_	
3-Jul-07 cloudy with scattered showers	18		
4-Jul-07 Thunderstorms in AM with hail, clearing in aft	ternoon to patchy clouds 16		
5-Jul-07 Rain overnight, clearing to sun in afternoon, I	ate afternoon showers 18		
6-Jul-07 Rain overnight and during day, cloudy in after	rnoon 15 15		
8- Jul-07 Showers and cloudy	15		
9-Jul-07 Cloudy with sunny periods	20		
Part 2 – Site Assessment			
Activity: Clearing of land in preparation for construction	n continues.		
 Site Description: Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water. No evidence of collapsing or erosion, but should be monitored as work is ongoing. 			
Assessed Risk: Low			
Photos Attached: NewCamp -3			
Samples Taken:			
Additional Information Attached:			
Part 3 –Mitigation Requirements			
Mitigation Required: none			
Mitigation Condition: G			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Watch down slope for signs of erosion and slumping			
Monitoring Frequency: Weekly as work on site progresses			
Reporting Requirements: QMLU-0006, QZ01-051			

Inspector(s): Jennie Gjertsen Location/Co-ordinates: Entrance north of WRP		
Location/Co-ordinates: Entrance north of WRP		
work is undergoing to construct new construction camp. Th ve a wetted area, whereas the back runs up a slope. Wette Site was staked out by Randy Olafson.	e d	
Temp (°C)		
13		
ning in afternoon 16		
12		
20		
22		
20 20 and clearing in evening 18		
٦.		
 Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water. 		
e monitored as work is ongoing.		
Assessed Risk: Low		
Photos Attached: NewCamp - 3		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: none		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch down slope for signs of erosion and slumping, as well as high sedimentation during rain events.		
Monitoring Frequency: Weekly as work on site progresses		
Reporting Requirements:		
	Location/Co-ordinates: Entrance north of WKP work is undergoing to construct new construction camp. The e a wetted area, whereas the back runs up a slope. Wetter Site was staked out by Randy Olafson. Image: Construct new construction camp. The back runs up a slope. Wetter Site was staked out by Randy Olafson. Image: Construct new construction camp. The prime (°C) 13 ning in afternoon 16 12 20 21 22 25 on and clearing in evening 18 n. a hill the primary concern is that construction and stripping ntains natural pools of water. e monitored as work is ongoing. errosion and slumping, as well as high sedimentation during SSES	

Part 1 – Site Description		
Date and Time: July 17 th - July 23 rd , 2007	Inspector(s): James Spencer	
Site Name: New Camp	Location/Co-ordinates: Entrance north of WRP	
Site Location Description: Large cleared area where w front of the cleared area lies above site km 5 and abov area (Wedge pond) percolates through to Go Creek.	vork is undergoing to construct new cor e a wetted area, whereas the back run Site was staked out by Randy Olafson.	nstruction camp. The s up a slope. Wetted
Weather Conditions:		
Date Conditions		Temp (°C)
17-Jul-07Mixed Sun and cloud, warm, rain in evening20		20
18-Jul-07 Mixed Sun and cloud, warm		20
19-Jul-07 Fog in morning then sunny followed by c	cloud in afternoon	20
20-Jul-07 Mixed sun and cloud, no rain		22
21-Jul-07 Light rain in morning, sunny afternoon, h	eavy rain early evening	20
22-Jul-07 Mixed sun and cloud, no rain		19
23-Jul-07 Rain overnight, clearing to sun in atterno	oon, late atternoon showers	21
Part 2 – Site Assessment		
Activity: Continued preparation of land for construction	. Filling south end and cutting North er	nd.
 Site Description: Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water. No evidence of collapsing or erosion, but should be monitored as work is ongoing. 		
Assessed Risk: Low		
Photos Attached: NewCamp - 2		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: none		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch down slope for signs of erosion and slumping, as well as high sedimentation during rain events.		
Monitoring Frequency: Weekly as work on site progresses		
Reporting Requirements:		

Part 1 – Site Description		
Date and Time: July 24 th - July 30 th , 2007 Inspector(s): James Spencer		
Site Name: New Camp Location/Co-ordinates: Entrance north of WRP		
Site Location Description: Large cleared area where we The front of the cleared area lies above site km 5 and a Wetted area (Wedge pond) percolates through to Go C	vork is undergoing to construct new construction camp. above a wetted area, whereas the back runs up a slope. Creek. Site was staked out by Randy Olafson.	
Weather Conditions:	T (10)	
Date Conditions Temp (
24-Jul-07 Sulling most of day until showers rate alternoon 25- Jul-07 Rain at night Rain in afternoon sunny in morr	ing 18	
26-Jul-07 Mixed Sun and scattered cloud. No rain, black	flys. cool 3dea. In morning 22	
27-Jul-07 Rain throughout day, short sunny breaks	18	
28-Jul-07 Sunny all morning thunder showers threatenin	g at 2pm 22	
29-Jul-07 Sunny all day, isolated rain showers	23	
30-Jul-07 Mixed rain and sun	20	
Part 2 – Site Assessment		
Activity: Continued preparation of land for construction	. Filling south end cutting North end.	
Site Description:		
Due to the location of the new site being on top of a	a hill the primary concern is that construction and	
stripping does not get too close to the down-slope	which contains natural pools of water.	
No evidence of collapsing or erosion, but should be monitored as work is ongoing.		
Assessed Risk: Low		
Photos Attached: NewCamp - 2		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: none		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch down slope for signs of erosion and slumping, as well as high sedimentation during rain events.		
Monitoring Frequency: Weekly as work on site progresses		
Reporting Requirements:		

Wolverine Project Environmental Inspection Form – Photos

Part 1 – Site Description		
Date and Time: July 31 st – August 6 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: New Camp	Location/Co-ordinates: Entrance north of WRP	
Site Location Description: Large cleared area where work is undergoing to construct new construction camp. The front of the cleared area lies above site km 5 and above a wetted area, whereas the back runs up a slope. Wetted area (Wedge pond) percolates through to Go Creek. Site was staked out by Randy Olafson.		
Weather Conditions:		
Date Conditions Temp (°C)		
31-Jul-07 Sunny in morning, thunderstorms in afte	rnoon, clearing in evening 22	
01-Aug-07 Sunny in morning, thunderstorms in after	rnoon, clearing in evening 18	
02-Aug-07 Sunny with clouds	20	
03-Aug-07 Sunny	22	
04-Aug-07 Sunny	23	
05-Aug-07 cloudy	18	
06-Aug-07 Cloudy with rain	15	
Part 2 – Site Assessment		
Activity: Continued preparation of land for construction site to be done soon.	. Filling south end cutting North end. Final surveying of	
Site Description:		
 Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water. 		
 No evidence of collapsing or erosion, but should be monitored as work is ongoing. 		
Assessed Risk: Low		
Photos Attached: NewCamp - 4		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: none		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch down slope for signs of erosion and slumping, as well as high sedimentation during rain events.		
Monitoring Frequency: Weekly as work on site progresses		
Reporting Requirements:		

Part 1 – Site Description		
Date and Time: August 7 th – August 13 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: New Camp	Location/Co-ordinates: Entrance north of WRP	
Site Location Description: Large cleared area where work is undergoing to construct new construction camp. The front of the cleared area lies above site km 5 and above a wetted area, whereas the back runs up a slope. Wetted area (Wedge pond) percolates through to Go Creek. Site was staked out by Randy Olafson.		
Weather Conditions:		
Date Conditions	Temp (°C)	
7-Aug-07 cloudy in the morning with rain clearin	ig in afternoon 14	
8-Aug-07 Cool mostly cloudy, rain	n morning 12	
10-Aug-07 Sulling with cloudy periods, very cool	11 Homing 10	
11-Aug-07 Cloudy and cool	12	
12-Aug-07 Frost in morning, sunny	15	
13-Aug-07 Cloudy and warm	17	
Part 2 – Site Assessment		
Activity: Continued preparation of land for construction of site to be done soon. Alternate entrance from road h	. Filling and cutting has been completed. Final surveying has been put in place to minimize entrance slope.	
Site Description:		
 Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water. 		
 No evidence of collapsing or erosion, but should be 	e monitored as work is ongoing.	
Assessed Risk: Low		
Photos Attached: NewCamp - 3		
Samples Taken: Soil sample taken from pile in camp that will be used for WRP fill material. Another soil sample was taken from hill adjacent to entrance that will be used to lift the road, to further reduce the slope.		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: none		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch down slope for signs of erosion and slumping, as well as high sedimentation during rain events.		
Monitoring Frequency: Weekly as work on site progresses		
Reporting Requirements:		

Part 1 – Site Description			
Date and Time: August 14 th – August 20 th , 2007	Inspector(s): James Spencer		
Site Name: New Camp Location/Co-ordinates: Entrance north of WRP		of WRP	
Site Location Description: Large cleared area where work is undergoing to construct new construction camp. The front of the cleared area lies above site km 5 and above a wetted area, whereas the back runs up a slope. Wetted area (Wedge pond) percolates through to Go Creek. Site was staked out by Randy Olafson.			
Weather Conditions:			
Date Conditions		Temp (°C)	
14-Aug-07 Heavy rain over night, low cloud and fe	og in morning, clearing in afternoon	15	
15-Aug-07 Sunny bluebird, hot		26	
16-Aug-07 Sunny bluebird, hot		24	
17-Aug-07 Sunny bluebird, hot		27	
18-Aug-07 Sunny bluebird, hot		24	
19-Aug-07 Hot in morning, broken cloud in afterne	oon, rain at airstrip	23	
20-Aug-07 hot most of day, some broken cloud, ra	ain in evening	26	
Part 2 – Site Assessment			
Activity:			
- Continued preparation of land for construction.			
Filling and cutting has been completed.			
Material at end of Camp to be spread in to lifts over	- aroa		
Final automotion of city to be spread in to into over	alea.		
- Final surveying of site to be done soon.			
 Alternate entrance from road has been put in place 	to minimize entrance slope.		
Site Description:			
Due to the location of the new site being on top of a hill the primary concern is that construction and stripping does not get too close to the down-slope which contains natural pools of water.			
- No evidence of collapsing or erosion, but should be monitored as work is ongoing.			
Assessed Risk: Low			
Photos Attached: NewCamp - 2			
Samples Taken: none			
Additional Information Attached:			
Part 3 –Mitigation Requirements			
Mitigation Required: none			
Mitigation Condition: G			
Port 4. Monitoring Poquiromonto			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Watch down slope for signs of erosion and slumping, as well as high sedimentation during rain events.			
Monitoring Frequency: Weekly as work on site progresses			
Reporting Requirements:			

Part 1 – Site Description		
Date and Time: April 19 th – 29 th , 2007	Inspector(s): James Spencer	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill All water from the portal pad drains in to this sump. It m	on a steep bank 80% grade that has not re-vegetated fully. Thust be monitored during high rain or melt events.	
Weather Conditions: Starting to warm up a bit +5 deg.	C on April 29 th	
Part 2 – Site Assessment		
Activity: Water draining in to sump threatens to overflow	v and west bank has a slump	
Site Description: Surface melt continues to run down portal entrance road and follows past the portal and shop to the PCS. Also the west bank has slumping of a small section.		
Assessed Risk: High		
Photos Attached: PCS - 2		
Samples Taken: No		
Additional Information Attached:		
Part 3 – Mitigation Requirements		
Mitigation Required: Need to immediately pump out the PCS in to the Water Truck to drop water levels.		
Mitigation Condition: P - None in place until water truck running		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch levels closely and monitor slump		
Monitoring Frequency: Daily		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: May 15 th - 20 th , 2007	Inspector(s): James Spencer	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill on a steep bank 80% grade that has not re-vegetated fully. All water from the portal pad drains in to this sump. It must be monitored during high rain or melt events.		
Weather Conditions:		
Date Conditions	Temp (°C)	
15-May-07 Sunny	9	
16-May-07 Sunny	9	
17-May-07 Snow overnight, snowing lightly day	0	
18-May-07 Overcast	5	
19-May-07 Sunny	9 12	
Port 2 Site Accessment	12	
Part 2 – Site Assessment		
Activity: Water draining in to sump threatens to overflow and the west bank has a slump		
Site Description: Surface melt continues but is slowing in this area and diversion trench dug at top of portal to divert water away from PCS. West bank, slumping of a small section still visible but unchanged and drying out.		
Assessed Risk: Low		
Photos Attached: PCS - 3		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: Later in season will seed the west bank to help stabilize		
Mitigation Condition: G, water no longer filling sump, bank is stable		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch slumping		
Monitoring Frequency: Weekly during rain events or whe	n mitigation applied	
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 5 th – 11 th , 2007	Inspector(s): James Spencer and Jennie Gjertsen	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill on a steep bank 80% grade that has not re-vegetated fully. All water from the portal pad drains in to this sump. It must be monitored during high rain or melt events.		
Weather Conditions:		
Date Conditions	Temp (°C)	
5-Jun-07Sunny and hot in morning, rainy in afternoon20		
6-Jun-07 Windy and cloudy during day, rain at night 12		
7-Jun-07 Rain last night, cloudy in morning clearing to	sunny in atternoon 12	
8-Jun-07 Sunny and mild	15	
9-Jun-07 Sunny and warm	15	
11- Jun-07 Cloudy with suppy periods	10	
Part 2 – Site Assessment	13	
Activity: No activity other than water treatment		
Site Description: Surface melt has finished in this area, slumping can still be observed on the west bank, but there also seems to be some slumping into the sump as well.		
Assessed Risk: Medium		
Photos Attached: PCS - 2		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Later in season will seed the west bank to help stabilize		
May have to add more soil to west bank to try and s	stabilize	
Mitigation Condition: F, Appears to be relatively stable,	but this may change during periods of heavy rainfall	
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch slumping on either sides of west bank		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 12 th - 18 th , 2007	Inspector(s): James Spencer	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill on a steep bank 80% grade that has not re-vegetated fully. All water from the portal pad drains in to this sump. It must be monitored during high rain or melt events.		
Weather Conditions:		
Date Conditions	Temp (°C	
12-Jun-07 Cloudy in morning, sunny and hot in the afternoo	on, rain in the evening 18	
13-Jun-07 Sunny and warm in morning, cloudy in afternoon, rain in the evening		
14-Jun-07 Cloudy with some sun, showers in the afternoon	clearing in the evening.	
15-Jun-07 Mixed sun and cloud, small storm systems all da	17	
16-Jun-07 Mixed sun and cloud, small storm systems all da	16	
17- lun-07 Mixed sun and cloud, small storm systems all da	NY 15	
19 Jun 07 Pain boow at times mixed sup and cloud	13 14	
To-Sull-Of Italit fleavy at times, flixed sull and cloud	14	
Part 2 – Site Assessment		
Activity: No activity other than water treatment		
Site Description: Continue monitoring of slumping on West bank		
Assessed Risk: Medium		
Photos Attached: PCS - 1		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Later in season will seed the west bank to bein stabilize		
Max have to a did many as it to west bank to the paraletability		
- May have to add more soil to west bank to try and stabilize		
Mitigation Condition: F: Appears to be relatively stable, but this may change during periods of heavy rainfall		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch slumping on either sides of west bank		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 19 th – 25 th , 2007	Inspector(s): James Spencer	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill on All water from the portal pad drains in to this sump. It must	a steep bank 80% grade that has not re-vegetated fully. st be monitored during high rain or melt events.	
Weather Conditions:		
Date Conditions	Temp (°C)	
19-Jun-07 Cloudy with Sunny periods	15	
20-Jun-07 Windy from south, mostly sunny	18	
21-Jun-07 Hazy, smoke clouds, sun and haze, no rain	20	
22-Jun-07 Hot and Sunny, rain storms through day	21	
23-Jun-07 Hot and Sunny, rain storms through day	21	
24-Jun-07 Hot in morning rain storm afternoon	22	
25-Jun-07 Usual weather, hot with intermittent storms	20	
Part 2 - Site Assessment		
Activity: No activity other than water treatment		
Site Description: Investigation by geotechnical engineer; cracks not discovered at toe of slope by engineer indicating that the natural ground is still holding. No major difference from last year when same crack was observed. New crack though off shoulder of PCS seen in photo #2		
Assessed Risk: Medium		
Photos Attached: PCS - 2		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required:		
- Later in season will seed the west bank to help stabilize		
- May have to add more soil to west bank to try and stabilize		
- Use compacted lifts and re-slope to a reasonable (35 degrees , 2:1	
- Use compacted lins and re-slope to a reasonable 35 degrees ~2.1		
Mitigation Condition: F: Appears to be relatively stable, but this may change during periods of heavy rainfall or over time eventually will need maintenance but may be tolerable in the short term.		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Watch slumping on either sides of west bank		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 26 th - July 2 nd , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill or fully. All water from the portal pad drains in to this sump.	a steep bank 80% grade that has not re-vegetated It must be monitored during high rain or melt events.	
Weather Conditions:		
Date Conditions	Temp (°C)	
26-Jun-07 Cloudy 18		
27-Jun-07 Thunderstorm in AM, cloudy with sunny per	iods in afternoon 17	
28-Jun-07 Cloudy with showers, some sunny breaks	17	
29-Jun-07 Rain heavy in the morning, cloudy with show	vers in afternoon, clearing 15	
30-Jun-07 Cloudy most of the day, sunny and warm in	atternoon 18	
1-Jul-07 Heavy rain at hight and all morning, rain all 2- Jul-07 Patchy clouds with suppy broaks	anemoon, loggy in evening 12	
Part 2 - Site Assessment		
Activity: Water treatment, sump used for initial ferric sulplunderground, prior to being pumped to the lower laydown	nate treatment in-line as water is pumped from the area sumps for final ferric sulphate treatment.	
Site Description:		
Still awaiting report from geotechnical engineer.		
Fracturing along bank does not appear to have chang	ed despite heavy rainfall	
- Ground where work was done putting in spillway is saturated and soft as it settles.		
Assessed Risk: Medium		
Photos Attached: PCS - 3		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required:		
- Later in season will seed the west bank to help stabilize		
May have to add more soil to west bank to try and stabilize		
Lise compacted lifts and resione to a reasonable 35 degrees ~ 2.1		
Mitigation Condition: F, Appears to be relatively stable, but this may change during periods of heavy rainfall or over time eventually will need maintenance but may be tolerable in the short term.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch slumping on either sides of west bank, Spillway between PDS and PCS needs to be monitored closely until ground dries and settles.		
Monitoring Frequency: Weekly during rain events or when mitigation applied		

Reporting Requirements: QMLU-0006, QZ01-051

Part 1 – Site Description		
Date and Time: July 3 rd – July 9 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: At North end of Portal Site	
Site Location Description: A 575 m ³ sump bu	illt in to fill on a steep bank 80% grade that has not re-vegetated	
Weather Conditions:	o this sump. It must be monitored during high rain of meit events.	
Date Conditions	Temp (°C)	
2-Jul-07 patchy clouds with suppy breaks	15	
3-Jul-07 cloudy with scattered showers	18	
4-Jul-07 Thunderstorms in AM with hail, cle	aring in afternoon to patchy clouds 16	
5-Jul-07 Rain overnight, clearing to sun in a	fternoon, late afternoon showers 18	
6-Jul-07 Rain overnight and during day, clo	udy in afternoon 15	
7-Jul-07 Cloudy throughout day, showers	15	
8-Jul-07 Showers and cloudy	15	
9-Jul-07 Cloudy with sunny periods	20	
Part 2 – Site Assessment		
Activity: Water treatment, sump used for initia	al ferric sulphate treatment in-line as water is pumped from the	
	wei laydown area sumps for final terric sulphate treatment.	
Site Description:		
 Still awaiting report from geotechnical eng 	gineer.	
 Fracturing along bank does not appear to 	have changed despite heavy rainfall.	
- Ground where work was done putting in s	pillway is saturated and soft as it settles.	
Ground surrounding spillway has dried sli	ghtly and is more stable, but still remains a risk.	
Assessed Risk: Medium		
Photos Attached: PCS - 4		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Will seed bank this week or next, when seed arrives.		
May have to add more soil to west bank to try and stabilize		
- Iviay have to add more soli to west park to try and stabilize		
- Use compacted lifts and resiope to a reasonable 35 degrees ~2:1		
Mitigation Condition: Fair: Appears to be relatively stable, but this may change during periods of heavy rainfall or over time.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch slumping on either sides of west bank, Spillway between PDS and PCS needs to be monitored closely as ground continues to stabilize and settle.		
Monitoring Frequency: daily with weekly reporting.		
Monitoring i requeriey, dany with weekly reporting.		

Reporting Requirements: QMLU-0006, QZ01-051

Part 1 – Site Description		
Date and Time: July 10 th – July 16 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Portal Clean Sump (PCS)	Location/Co-ordinates: North end of Portal Site	
Site Location Description: A 575 m ³ sump built in to fill of fully. All water from the portal pad drains in to this sump events.	on a steep bank 80% grade that has not re-vegetated b. It must be monitored during high rain or melt	
Weather Conditions:		
Date Conditions	Temp (°C)	
9-Jul-07 Cloudy with sunny periods	20	
10-Jul-07 Cloudy and cool	13	
11-Jul-07 Sunny and windy, cool in morning, warming	g in afternoon 16	
12-Jul-07 Cool and cloudy	12	
13-Jul-07 Sunny with clouds, warm	20	
15- Jul-07 Sunny will clouds	22	
16-Jul-07 Heavy rain in morning, cloudy in afternoon	and clearing in evening 18	
Part 2 – Site Assessment		
Activity: Water treatment, sump used for initial ferric sul underground, prior to being pumped to the lower laydow	phate treatment in-line as water is pumped from the	
Site Description:		
Still awaiting report from geotechnical engineer.		
Fracturing along bank does not appear to have char	hand	
Boyogotation on clones is becoming more apparent	but area still requires cooding	
 Revegetation on slopes is becoming more apparent, but area still requires seeding. 		
Assessed Risk: Medium		
Photos Attached: PCS - 4		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Will seed bank next week, as seed has yet to arrive		
May have to add more soil to west bank to try and stabilize		
Lise compacted lifts and regione to a reasonable 35 degrade - 2:1		
Mitigation Conditions E. Appears to be relatively stable, but this may change during a stight of here winted		
iviligation Condition: F, Appears to be relatively stable, but this may change during periods of heavy rainfall or over time.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch slumping on either sides of west bank, Spillway between PDS and PCS needs to be monitored closely as ground continues to stabilize and settle		
Monitoring Frequency: daily with weekly reporting.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: May 22 nd – 28 th , 2007	Inspector(s): James Spencer	
Site Name: Diesel Tanks	Location/Co-ordinates: At Portal pad	
Site Location Description: Located at the portal are two double walled 5000 L gasoline storage tank. Water colle diverted around the tanks to prevent contamination of su	double walled diesel tanks (122 m ³ apiece) and one ecting beneath the tanks is contained, and water is urface water.	
Weather Conditions:		
Date Conditions	Temp (°C)	
22-May-07 Clear and Sunny	14	
23-May-07 Clear and Sunny	15	
24-May-07 Clear and Sunny	15	
25-May-07 Clear and Sunny	15	
26-May-07 Cooler and light rain, front approaching fro	om south 8	
27-May-07 Sunny and hot	15	
28-May-07 Sunny and warm	15	
Part 2 – Site Assessment		
Activity: Fuelling station to be maintained in good working	ng order.	
Site Description: Area drying up through week. Pads sti	II picking up hydrocarbons.	
Assessed Risk: Low		
Photos Attached: Diesel Tanks - 5		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required: Continue to apply pads, 1 litre of hydrocarbon metabolizing bacteria to be applied with pump up sprayer by June 5 th , 2007		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for any new contamination, continue to replace pads		
Monitoring Frequency: Daily.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 26 th - July 2 nd . 2007	Inspector(s): Jennie Gjertsen	
Site Name: Diesel Tanks	Location/Co-ordinates: At Portal pa	ıd
Site Location Description: Located at the portal are two double walled 5000 L gasoline storage tank. Water colle diverted around the tanks to prevent contamination of su	double walled diesel tanks (122 m ³ a ecting beneath the tanks is contained urface water.	piece) and one , and water is
Weather Conditions:		T
Date Conditions		
26-Jun-07 Cloudy	via da ima afterna a c	18
27-Jun-07 I nunderstorm in Aivi, cloudy with sunny pe	riods in atternoon	17
28-Jun-07 Cloudy with showers, some sunny breaks		17
29-Jun-07 Rain heavy in the morning, cloudy with sho	owers in afternoon, clearing	15
30-Jun-07 Cloudy most of the day, sunny and warm in	n afternoon	18
1-Jul-07 Heavy rain at night and all morning, rain al	l afternoon, foggy in evening	12
2-Jul-07 patchy clouds with sunny breaks		15
Part 2 – Site Assessment		
Activity: Fueling station to be maintained in good workin	ng order.	
Site Description: No noticeable changes under/around main tanks. Inspectors on site June 28 th - suggested that there may be a leak at the wooden box leading from tanks to portal generators. I observed none, but have placed spill pads down for monitoring.		
Assessed Risk: Low		
Photos Attached: -		
Samples Taken: No		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: Applied pads and needs monitoring for a week or so to detect if there is a leak or not.		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for any new contamination, continue to replace pads		
Monitoring Frequency: Daily.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: July 3 rd - July 9 th , 2007	Inspector(s): Jennie Gjersten	
Site Name: Diesel Tanks	Location/Co-ordinates: At Portal pad	
Site Location Description: Located at the portal are two double walled 5000 L gasoline storage tank. Water colle diverted around the tanks to prevent contamination of su	double walled diesel tanks (122 m ³ apiece) and one ecting beneath the tanks is contained, and water is inface water.	
Weather Conditions:	Temp (°C)	
Date Conditions 2- Iul-07 patchy clouds with suppy breaks 15		
3-Jul-07 cloudy with scattered showers	18	
4-Jul-07 Thunderstorms in AM with hail, clearing in afterno	on to patchy clouds 16	
5-Jul-07 Rain overnight, clearing to sun in afternoon, late a	afternoon showers 18	
6-Jul-07 Rain overnight and during day, cloudy in afternoo	n 15	
7-Jul-07 Cloudy throughout day, showers	15	
8-Jul-07 Showers and cloudy	15	
9-Jul-07 Cloudy with sunny periods	20	
Part 2 – Site Assessment		
Activity: Fueling station to be maintained in good workin	g order.	
Site Description: No noticeable changes under/around main tanks. Inspectors on site June 28 th - suggested that there may be a leak at the wooden box leading from tanks to portal generators. Spill pads that were placed down to monitor potential leak have not shown any signs of fuel contamination. Will continue to monitor site daily.		
Assessed Risk: Low		
Photos Attached: Diesel tanks - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required: none required at this time		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for any new contamination.		
Monitoring Frequency: Daily. Report Weekly.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: August 6 th - August 13 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Diesel Tanks	Location/Co-ordinates: At Portal pad	
Site Location Description: Located at the portal are two double walled 5000 L gasoline storage tank. Water col diverted around the tanks to prevent contamination of s	b double walled diesel tanks (122 m ³ apiece) and one lecting beneath the tanks is contained, and water is surface water.	
Weather Conditions:		
Date Conditions	Temp (°C)	
7-Aug-07 cloudy in the morning with rain clearing	ng in afternoon 14	
8-Aug-07 Cool mostly cloudy, rain	12	
9-Aug-07 Sunny with cloudy periods, very cool	in morning 18	
10-Aug-07 Cloudy and cool	11	
11-Aug-07 Cloudy and cool	12	
12-Aug-07 Frost in morning, sunny	15	
13-Aug-07 Cloudy and warm	17	
Part 2 – Site Assessment		
Activity: Fuelling station to be maintained in good work	ing order.	
Site Description: Line inspected August 11 th , and noticed a possible leak from around some of the fittings on the motor between the diesel tanks and the generators. Spill pads were put down as a method of further detection.		
Assessed Risk: Med		
Photos Attached: -		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required: Tightening and sealing of fittings required to stop possible leak and prevent further incident		
Mitigation Condition: G		
August 12 th - the fittings were sealed and tightened.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for any new contamination.		
Monitoring Frequency: Daily. Report Weekly.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: July 24 th - July 30 th , 2007	Inspector(s): James Spencer	
Site Name: Shop Material @ Portal	Location/Co-ordinates: Inside Procon Shop	West End
Site Location Description: Approximately 4' of materia 40' by 25' area. Tarp separates the top 3" from the so	l underneath the floor of the Procon shop to l il beneath it. No environmental risks from ac	be removed in tivity.
Weather Conditions:		
Date Conditions	<i>.</i>	Temp (°C)
24-Jul-07 Sunny most of day until showers late a	24-Jul-07 Sunny most of day until showers late afternoon 22 25-Jul-07 Dain at night. Dain in afternoon 22	
25-Jul-07 Rain at hight, Rain in alternoon, sunny 26- Jul-07 Mixed Sun and scattered cloud. No rain	n honning black flies, cool 3dea, In morning	10
27-Jul-07 Rain throughout day short suppy breat	ks	18
28-Jul-07 Sunny all morning thunder showers thr	eatening at 2pm	22
29-Jul-07 Sunny all day, isolated rain showers		23
30-Jul-07 Mixed rain and sun		20
Part 2 – Site Assessment		
Activity: Removing the material, separating the contam a concrete floor	inated material from non-contaminated mate	rial and pouring
Site Description: Approximately 50m ³ of material was hauled out prior to consultation with environmental staff and has been sent out for VPH/LEPH/HEPH testing. The remainder of the material will be hauled out separating potentially contaminated soil		
Assessed Risk: Low		
Photos Attached: Shop Material – 4		
Samples Taken: Yes for VPH/LEPH/HEPH		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: When samples come back material will be stockpiled above the portal or if it is contaminated it will be hauled to a temporary storage area covered and hauled out.		
Mitigation Condition: Excellent, soil is tarped and stored and waiting for results.		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Check every two days		
Monitoring Frequency: Daily		
Reporting Requirements: This week only unless condition changes		

Part 1 – Site Description		
Date and Time: July 31 st – August 6 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Shop Material at Portal	Location/Co-ordinates: Inside Procon Shop	West End
Site Location Description: Approximately 4' of material by 25' area. Tarp separates the top 3" from the soil ben environments at risk from activity	underneath the floor of the Procon shop to be leath it. Mixture of organics and till material.	e removed 40' No
Weather Conditions:		
Date Conditions		Temp (°C)
31-Jul-07 Sunny in morning, thunderstorms in a	fternoon, clearing in evening	22
01-Aug-07 Sunny in morning, thunderstorms in a	fternoon, clearing in evening	18
02-Aug-07 Sunny with clouds		20
03-Aug-07 Sunny		22
04-Aug-07 Sunny		23
05-Aug-07 cloudy		18
06-Aug-07 Cloudy with rain		15
Part 2 – Site Assessment		
Activity: Removal of shop soil, separating the contamina was used to stabilize the walls and will be used on the f	ated material from non-contaminated material loor to create a concrete pad.	. Shotecrete
Site Description: Results for the material that was removed have been received and are awaiting analysis. Further material was removed and has been separated into potentially contaminated soil from un-contaminated soil. Two samples were taken from the material that was removed from on top of the liner. One sample was taken from the removed material that originated underneath the liner. These samples will be tested for LEPH/HEPH.		
Assessed Risk: Low		
Photos Attached: Shop Material - 4		
Samples Taken: 3 for LEPH/HEPH		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required: When samples are analyzed, clean soil will be stockpiled above the portal and contaminated soil will be hauled to a temporary storage area covered and hauled out.		
Mitigation Condition: Excellent, soil is tarped and stored and waiting for results.		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Check every two days		
Monitoring Frequency: Daily		
Reporting Requirements: This week only unless condition changes		

٦

Part 1 – Site Description		
Date and Time: August 7 th – August 13 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Shop Material at Portal	Location/Co-ordinates: Inside Procon Shop West End	
Site Location Description: Approximately 4' of material by 25' area. Tarp separates the top 3" from the soil ber environments at risk from activity	underneath the floor of the Procon shop to be removed 40' neath it. Mixture of organics and till material. No	
Weather Conditions:		
Date Conditions	Temp (°C)	
7-Aug-07 cloudy in the morning with rain clearing	in afternoon 14	
8-Aug-07 Cool mostly cloudy, rain	12	
9-Aug-07 Sunny with cloudy periods, very cool in	morning 18	
10-Aug-07 Cloudy and cool	11	
11-Aug-07 Cloudy and cool	12	
12-Aug-07 Frost in morning, sunny	15	
13-Aug-07 Cloudy and warm	17	
Part 2 – Site Assessment		
Activity: No activity. Waiting for results of LEPH/HEPH a	and BTEX testing of material.	
Site Description: Two results of the three samples taken from the large original pile of soil came back under contamination regulations. The third sample taken was over allowable limits. Mitigation is on hold until the results of the second set of samples are returned.		
Assessed Risk: Low		
Photos Attached: Shop Material – 4		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required: When samples are analyzed, clean soil will be stockpiled above the portal and contaminated soil will be hauled to a temporary storage area and covered until it can be removed from site.		
Mitigation Condition: Good, soil is tarped and stored. Mitigation on hold until results of testing have been received.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Check every two days		
Monitoring Frequency: Daily		
Reporting Requirements: Change in condition		

Part 1 – Site Description		
Date and Time: August 14 th – August 21 st , 2007	Inspector(s): James Spencer	
Site Name: Shop Material at Portal	Location/Co-ordinates: Outside Procon Shop on Pad	
Site Location Description: Approximately 4' of material by 25' area. Tarp separates the top 3" from the soil ben environments at risk from activity	underneath the floor of the Procon shop was removed 40' leath it. Mixture of organics and till material. No	
Weather Conditions:		
Date Conditions	Temp (°C)	
14-Aug-07 Heavy rain over night, low cloud and fog	in morning, clearing in afternoon 15	
15-Aug-07 Sunny bluebird, hot	26	
16-Aug-07 Sunny bluebird, hot	24	
17-Aug-07 Sunny bluebird, hot	27	
18-Aug-07 Sunny bluebird, hot	24	
19-Aug-07 Hot in morning broken cloud in afternoo	n rain at airstrin 23	
20-Aug-07 bot most of day, some broken cloud, rair	nin evening 26	
Part 2 – Site Assessment		
Activity: No activity. Waiting for results of LEPH/HEPH a	and BTEX testing of material.	
Site Description: Two results of the three samples taken from the large original pile of soil came back under contamination regulations. The third sample taken was over allowable limits. Mitigation is on hold until the results of the second set of samples are returned. Pile C results were received under regulations		
Assessed Risk: Low		
Photos Attached: Shop Material -2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required: When samples are analyzed, clean soil will be stockpiled above the portal and contaminated soil will be hauled to a temporary storage area and covered until it can be removed from site. Pile C removed to borrow pit above Portal.		
Mitigation Condition: Good, Pile A and B soil tarped and stored. Mitigation on hold until results of testing have been received.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Check every two days		
Monitoring Frequency: Daily		
Reporting Requirements: Change in condition		

Part 1 – Site Description		
Date and Time: May 15 th – 17 th , 2007	Inspector(s): James Spencer	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~21% grade. The upslope cut bank is disturbed and devoid of vegetation. The ditch runs parallel and drains into the borrow pit toe. Campbell Creek is ~10 m from the toe of the road, and is the main parameter of concern for sediment and erosion control measures.		
Weather Conditions:	7 (0)	
Date Conditions		
16-May-07 Sunny	9	
17-May-07 Snow overnight, snowing lightly day	0	
Part 2 – Site Assessment		
Activity: Continued road work and work on slope		
Site Description:		
- Steep slope both sides of road		
- Fracturing on west side by curvent		
Assessed Risk: Low to Medium - site has been stable	as peak run-off nears	
Photos Attached: K1.4 -1.5 - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required:		
- Waiting for ground to thaw before can work on upper cut slope Approx. 3 weeks.		
- Reclaim the cut slope in 4 weeks around June 12 th .		
Cut back to 1.5:1 grade and spread subsoil and org	janics on open pit.	
- Silt Fence outer perimeter of old road and slope al	ong old road once ground thaws a little more May 26"	
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: Weekly or when mitigation app	lied	
Reporting Requirements: QML-0006, QZ01-051		

Site Name: K1.4-1.5

Part 1 – Site Description		
Date and Time: May 18 th – 25 th , 2007	Inspector(s): James Spencer	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~21% grade. The upslope cut bank is disturbed and devoid of vegetation. The ditch runs parallel and drains into the borrow pit toe. Campbell Creek is ~10 m from the toe of the road, and is the main parameter of concern for sediment and erosion control measures.		
Weather Conditions:		
Date Conditions	Temp (°C)	
18-May-07 Overcast	5	
19-May-07 Sunny	9	
20-May-07 Overcast in Morning, Sunny With Showers a	fternoon 12	
21-May-07 Clear all day, sunny warm in sun, Cool brisk	North wind 12	
22-May-07 Clear and Sunny	14	
23-May-07 Clear and Sunny	15	
24-May 07 Clear and Sunny 15		
25-May-07 Clear and Sunny	15	
Part 2 – Site Assessment		
Activity: Continued road work and work on slope		
Site Description: - Steep slope both sides of road - Fracturing on "west" side by culvert		
Assessed Risk: Low to Medium - site has been stable f	or peak part of run-off and fill banks are drying out	
Photos Attached: K1.4 -1.5 - 1		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
 Mitigation Required: Waiting for ground to thaw before can work on upper cut slope Approx. 3 weeks. Reclaim the cutslope in 4 weeks around June 12th. Cut back to 1.5:1 and spread subsoil and organics on open pit. Silt Fence outer perimeter of old road and slope along old road once ground thaws a little more May 26th 		
Mitigation Condition: G The reworked fill slope near the culvert is holding well. Previously it was slumping. Still need to add material there on east fill slope.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QML-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: May 26 th - May 28 th , 2007	Inspector(s): James Spencer	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~21% grade. The upslope cut bank is disturbed and devoid of vegetation. The ditch runs parallel and drains into the borrow pit toe. Campbell Creek is ~10 m from the toe of the road, and is the main parameter of concern for sediment and erosion control measures.		
Weather Conditions: Date Conditions	Temp (°C)	
6-May-07Cooler and light rain, front approaching from south87-May-07Sunny and hot15		
28-May-07 Sunny and warm	15	
Part 2 – Site Assessment Activity: Continued road work and work on slope		
Site Description: - Steep slope both sides of road - Fracturing on "west" side by culvert		
Assessed Risk: Low to Medium - Still peak run-off fill banks continue to dry out, frost and ground ice melting		
Photos Attached: K1.4 – 1.5 - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
 Mitigation Required: Waiting for ground to thaw before can work on upper cut slope Approx. 3 weeks. Reclaim the cut slope in 4 weeks around June 12th. Cut back to 1.5:1 and spread subsoil and organics on open pit. Silt Fence outer perimeter of old road and slope along old road can do anytime, should get done before major rainfall but labour and management busy with fuel spill. 		
Mitigation Condition: G The reworked fill slope near the culvert is holding well. Previously it was slumping. Still need to add material there on east fill slope.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: Weekly, during rain events or when mitigation applied		
Reporting Requirements: QML-0006, QZ01-051		

Site Name: K1.4-1.5

Part 1 – Site Description		
Date and Time: May 29 th -June 4 th , 2007	Inspector(s): Melissa Kirby & Jennie Gjertsen	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~21% grade. The upslope cut bank is disturbed and devoid of vegetation. The ditch runs parallel and drains into the borrow pit toe. Campbell Creek is ~10 m from the toe of the road, and is the main parameter of concern for sediment and erosion control measures.		
Weather Conditions:		
Date Conditions	Temp (°C)	
29-May-07 Sunny and warm	9	
30-May-07 Rain intermix with some sun hail late in the c	lay 10	
31-May-07 Sunny	15	
1-Jun-07 Sunny	15	
2-Jun-07 Sunny	16	
3-Jun-07 Sunny and hot	22	
4-Jun-07 Sunny and hot	27	
Part 2 – Site Assessment		
Activity: Continued road work and work on slope		
Site Description: Steep slope both sides of road Fracturing on "west" side by culvert 		
Assessed Risk: Low to Medium - dependant on rainfa	II	
Photos Attached: K1.4 – 1.5 - 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required:		
Waiting for ground to thaw before can work on upp	er cut slope Approx. 3 weeks.	
Reclaim the cut slope in 4 weeks around lune 12 th		
Cut back to 1.5:1 and enroad subsoil and organics on open pit		
- Out back to 1.0.1 and spicad subson and olygenes on open pit. Cilt Eanon outer perimeter of old read and along along old read can do anytime, should get done before major		
rainfall.	ing old load can do anytime, should get done before major	
 Corner of road to be pulled out from steep "west" be Removal of 1-2m from top of hill will lower slope an 	ank to prevent further erosion. d provide more material for road work.	
	•	
Mitigation Condition: June 1 - Borrow pit established at top of hill, pushed back tree line (30m x 30m area.) June 1 - Material pushed back to slope, more material needed		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: During rain events or when mit	gation applied, or work activity starts	
Reporting Requirements: QML-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 5 th – June 11 th , 2007	Inspector(s): James Spencer & Jennie Gjertsen	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~21% grade. The upslope cut bank is disturbed and devoid of vegetation. The ditch runs parallel and drains into the borrow pit toe. Campbell Creek is ~10 m from the toe of the road, and is the main parameter of concern for sediment and erosion control measures.		
Weather Conditions:	T (10)	
Date Conditions		
6-Jun-07 Windy and cloudy during day rain at nigh	t 12	
7-Jun-07 Rain last night, cloudy in morning clearin	g to sunny in afternoon 12	
8-Jun-07 Sunny and mild	13	
9-Jun-07 Sunny and warm	15	
10-Jun-07Cloudy and chilly all day, clearing at night10		
Part 2 – Site Assessment	15	
Activity: No road work being done in area this week		
Site Description:		
 Steep slope both sides of road 		
Fracturing on "west" side by culvert		
- organics from top of slope starting to slump down		
Assessed Risk: Low to Medium - dependant on rainfall		
Photos Attached: K1.4-1.5 - 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Work to upper cut slope.		
- Reclaim after middle of June.		
- Cut back to 1.5:1 and spread subsoil and organics on open pit.		
Silt Fence outer perimeter of old road and slope along old road.		
Corner of road to be pulled out from steep "west" bank to prevent further erosion.		
Removal of 1-2m from top of hill will lower slope and provide more material for road work.		
Mitigation Condition:		
No work has been done in last week due to requirements elsewhere on site		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: During rain events or when mitigation applied		
Reporting Requirements: QML-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 19 th – June 25 th , 2007	Inspector(s): James Spencer	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~, devoid of vegetation. The ditch runs parallel and drains the toe of the road, and is the main parameter of conce	21% grade. The upslope cut bank is disturbed and into the borrow pit toe. Campbell Creek is ~10 m from rn for sediment and erosion control measures.	
Weather Conditions:		
Date Conditions	Temp (°C)	
19-Jun-07 Cloudy with Sunny periods	15	
20-Jun-07 Windy from south, mostly sunny	18	
21-Jun-07 Hazy, smoke clouds, sun and haze, no ra	in 20	
22-Jun-07 Hot and Sunny, rain storms through day	21	
23-Jun-07Hot and Sunny, rain storms through day	21	
24-Jun-07 Hot in morning, rain storm afternoon	22	
Part 2 – Site Assessment		
Activity: Cutting off the knoll at the top of the gorge at k	1.4 to use as borrow material to cap the new road	
Site Description:		
 Steep slope both sides of road 		
Fracturing on "west" side, by culvert		
organics from top of along starting to alumn down		
- organics from top of slope starting to slump down		
Assessed Risk: Low to Medium - dependant on rainfall		
Photos Attached: K1.4 - 1.5 - 1		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required:		
Work to upper cut slope.		
- Reclaim after middle of June.		
- Cut back to 1.5:1 and spread subsoil and organics on open pit.		
 Silt Fence outer perimeter of old road and slope alo 	ng old road.	
 Corner of road to be pulled out from steep "west" ba 	Ink to prevent further erosion.	
 Removal of 1-2m from top of hill will lower slope and provide more material for road work. 		
Mitigation Condition:		
(P) No real effects on the area from new activity but the whole area needs to be seeded and upper slope re- worked before seeding		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: During rain events or when mitigation applied		
Penerting Production MI 0006 0701 051		
Reporting Requirements: QIVIL-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 26 th – July 2 nd , 2007	Inspector(s): Jennie Gjertsen	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach to Gorge	
Site Location Description: The section of road with a ~ vegetation. The ditch runs parallel and drains into the b road, and is the main parameter of concern for sedime	21% grade. The upslope cut bank is disturbed and devoid of porrow pit toe. Campbell Creek is ~10 m from the toe of the nt and erosion control measures.	
Weather Conditions:		
Date Conditions	Temp (°C)	
26-Jun-07 Cloudy	18	
27-Jun-07 Thunderstorm in AM, cloudy with sun	ny periods in afternoon 17	
28-Jun-07 Cloudy with showers, some sunny bre	eaks 17	
29-Jun-07 Rain heavy in the morning, cloudy wit	h showers in afternoon, clearing 15	
30-Jun-07 Cloudy most of the day, sunny and w	arm in afternoon 18	
1-Jul-07 Heavy rain at night and all morning, ra	ain all afternoon, foggy in evening 12	
2-Jul-07 patchy clouds with sunny breaks	15	
Part 2 – Site Assessment		
Activity: None, topping of road complete		
Site Description:		
 Steep slope both sides of road 		
 Fracturing on "west" side by culvert 		
 organics have stopped slumping 		
Heavy rainfall caused significant runoff down east s	slope and down road	
slope on downside of culverts vary saturated		
Assessed Risk: Low to Medium - dependant on rainfa	11	
Photos Attached: K1.4-1.5 - 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Work to upper cut slope. Reclaim after middle of Ju	ine. Cut back to 1.5:1 and spread subsoil and organics on	
open pit.		
 Silt Fence outer perimeter of old road and slope ald 	ong old road.	
 Corner of road to be pulled out from steep "west" be 	ank to prevent further erosion.	
Removal of another half metre from top of hill will lower slope and provide more material for road work.		
Seeding required to both slopes. A good site for test plots.		
Mitigation Condition:		
(P) No real effects on the area from new activity but the whole area needs to be seeded and upper slope re-worked before seeding		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: During rain events or when mitigation applied		
Reporting Requirements: OMI -0006_0701-051		
Reporting Requirements: QML-0006, Q201-051		

Part 1 – Site Description		
Date and Time: Aug 14 th – Aug 20 th , 2007	Inspector(s): James Spencer	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approach	to Gorge
Site Location Description: The section of road with a ~ vegetation. The ditch runs parallel and drains into the b road, and is the main parameter of concern for sedime	21% grade. The upslope cut bank is disturbed a corrow pit toe. Campbell Creek is ~10 m from the nt and erosion control measures.	and devoid of he toe of the
Weather Conditions:		
Date Conditions		Temp (°C)
14-Aug-07 Heavy rain over night, low cloud and f	fog in morning, clearing in afternoon	15
15-Aug-07 Sunny bluebird, hot		26
16-Aug-07 Sunny bluebird, hot		24
17-Aug-07 Sunny bluebird, hot		27
18-Aug-07 Sunny bluebird, hot		24
19-Aug-07 Hot in morning, broken cloud in aftern	10on, rain at airstrip	23
20-Aug-07 Hot most of day, some broken cloud,	rain in evening	26
Part 2 – Site Assessment		
Activity: -		
Site Description:		
The upslope cut bank at the borrow pit is unstable and	steep 80% grade. The fill banks have been grade	aded but the
section over the culvert is too steep (1.3:1) and we nee	ed a longer culvert to do much work there. Som	ne armouring
could be applied to help stabilize the area. After a sum	mer of no vegetation and rains rills and gullies	are starting to
form and fine sediment transport into the north culvert i	is visible. No major instabilities other than the b	oorrow pit.
Assessed Risk: Medium - dependant on rainfall		
Photos Attached: K1.4-1.5 - 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
 Mitigation Required: Cut back the borrow pit to 2:1 and pull down subsoil and organics on open pit. Silt Fence outer perimeter of old road and slope along old road. Corner of road to be pulled out from steep "west" bank to prevent further erosion. If this does not mitigate the situation then the culverts need to be extended Soil to be re-worked for seeding required end of September Armouring of high flow areas 		
Mitigation Condition:		
No real effects on the area from new activity but the wh	nole area needs to be seeded and upper slope r	re-worked
before seeding		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank, and look for failure signs		
Monitoring Frequency: During rain events or when mitigation applied		
Reporting Requirements: QML-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: Aug 21 st - 27 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: K1.4 – 1.5	Location/Co-ordinates: South facing approact	ch to Gorge
Site Location Description: The section of road with a ~ vegetation. The ditch runs parallel and drains into the b road, and is the main parameter of concern for sedime	21% grade. The upslope cut bank is disturbed porrow pit toe. Campbell Creek is ~10 m from nt and erosion control measures.	d and devoid of the toe of the
Weather Conditions:		Tomp (°C)
21-Aug-07 Suppy in the morning, cloudy in the ar	fternoon	20
22-Aug-07 Suffry in the morning, cloudy in the a	it the day	20
23-Aug-07 Cold in the morning with thundershow	vers clouds and rain all day	15
24-Aug-07 Rain in the morning, cloudy		14
25-Aug-07 Mostly cloudy, some showers		15
26-Aug-07 Frost in morning, sunny		12
27-Aug-07 Sunny, some rain/hail		12
Part 2 – Site Assessment		
Activity: Work done to minimize sedimentation into Car	npbell Creek	
Site Description:		
 Organics at top of slope cut back, and angle reduced, organics spread over top portion of slope. Slope has been stepped to direct road runoff into vegetation. Stepped area has been ditched and filled with large rocks to reduce the speed of runoff water. A culvert extension was added to the north culvert and the grade of the area at the culvert discharge was reduced 		
A diversion ditch was dug out and cobbled to prevent water from entering the northern culvert and approximately 1m was cut off to remove a crushed section.		
Assessed Risk: Low		
Photos Attached: K1.4-1.5 - 8		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required:		
- Silt Fence outer perimeter of old road and slope along old road.		
Soil to be re-worked for seeding required end of September		
- Armouring of high flow areas		
Mitigation Condition:		
Good; seeding, armouring and fencing to follow soon, but all heavy equipment work has finished.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs		
Monitoring Frequency: During rain events or when mitigation applied		
Reporting Requirements: QML-0006, QZ01-051		

Site Name: K1.4-1.5

Site Name: K1.4-1.5

Environmental Inspection Form	Version: April 27, 200
Part 1 – Site Description	
Report Date and Time: May 9 th , 2007	Inspector(s): Mary McDougall
Site Name: km 1.5	Location/Co-ordinates:
Site Location Description:	
Culvert under road for Campbell Creek	
Weather Conditions: Sunny, flurries, cloudy	v. ~ 5 C
Part 2 – Site Assessment	
Activity: Need to install rin-ran and geotech fences to	prevent runoff from entering the creek
reced to instan rip rap and geoteen renees to	prevent runon nom entering the creek
Site Description:	
No activity currently, however, with increas	sed runoff, the sediment needs to be mitigated.
Assessed Risk: Med	
Photos Attached: yes (see below)	
Samples Taken: no	
Additional Information Attached: no	
Part 3 – Mitigation Requirements	
Mitigation Required:	
Installing rip-rap up the ditches and along the banks of the creeks to minimize sediment flow into the creek. Geo- tech "fences" were also installed ~ 100m and 200m up the road from the creek	
Mitigation Condition: One silt fence installe	ed, existing mitigation very poor.
Part 4 – Monitoring Requirements	
Follow-up Monitoring:	
Monitor sediment flow into the creek, if it c	continues, install more geotech fences up slope
Monitoring Frequency: Daily	
Reporting Requirements: QML-0006, QZ01-051	
1	

Pre-Installation Photos

North view of water flowing down the ditches into Campbell Creek

Silt flowing into the culvert

Looking South

View looking North

Geo-tech fence installation

Looking South

Part 1 – Site Description		
Date and Time: May 15 th – 17 th , 2007	Inspector(s): James Spencer	
Site Name: K1.5	Location/Co-ordinates: Culverts at Campbell Creek	
Site Location Description: Slope entering the gorge w 2006 with ditches on the east side directing runoff into	ith Campbell Creek at it's base. The road was built in fall Campbell Creek.	
Weather Conditions: Date Conditions 15-May-07 Sunny	Temp (°C) 9	
16-May-07 Sunny 17-May-07 Snow overnight, snowing lightly day	9 0	
Part 2 – Site Assessment		
Activity: Monitoring of rip-rap installed May 9th		
Site Description: No activity currently, however, with in	ncreased runoff, the sediment needs to be mitigated.	
Assessed Risk: Low to Medium - site has been stabl	e for peak part of run-off	
Photos Attached: K1.4 – 1.5 - 4		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
 Mitigation Required: Will re-cobble the fill side of the culverts to 1.5:1 but may have to wait for lower flows. Will monitor that slope and pull back as required until flows are down and organics unfrozen. Start date ~ June 11th. 		
Mitigation Condition: G		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly fill b	ank at culverts and look for failure signs	
Monitoring Frequency: Weekly or when mitigation app	blied	
Reporting Requirements: QMLU-0006, QZ01-051		

Site Name: K1.4-1.5

Part 1 – Site Description		
Date and Time: May 18 th – 24 th , 2007	Inspector(s): James Spencer	
Site Name: K1.5	Location/Co-ordinates: Culverts at Campbell Creek	
Site Location Description: Slope entering the gorge wit 2006 with ditches on the east side directing runoff into	th Campbell Creek at its base. The road was built in fa Campbell Creek.	ll
Weather Conditions:	Tomp (ŝ
18-May-07 Overcast		<u>c)</u>
19-May-07 Sunny	9	
20-May-07 Overcast in Morning Suppy With Showers a	fternoon 12	
21-May-07 Clear all day suppy warm in sup. Cool brisk	North wind 12	
22-May 07 Clear and Sunny	12 14	
23-May-07 Clear and Sunny	15	
24-May-07 Clear and Sunny	15	
Part 2 – Site Assessment		
Activity: No activity this week		
Site Description: No activity currently, however, with in	creased runoff, the sediment needs to be mitigated.	
Assessed Risk: Low to Medium - site stable through pe	eak runoff, banks drying up	
Photos Attached: K1.5 - 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required:		
Will re-cobble the fill side of the culverts to 1.5:1 but may have to wait for lower flows.		
Will monitor that slope and pull back as required until flows are down and organics unfrozen		
Start date \sim lune 11 th		
Mitigation Condition: G Rip rap and slopes are holding		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: : Monitor banks, particularly fill bank at culverts and look for failure signs		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: May 25 th – 29 th , 2007	Inspector(s): James Spencer	
Site Name: K1.5	Location/Co-ordinates: Culverts at Campbell Creek	
Site Location Description: Slope entering the gorge wi 2006 with ditches on the east side directing runoff into	th Campbell Creek at its base. The road was built in fall Campbell Creek.	
Weather Conditions:	Temp (°C)	
25-May-07 Clear and Suppy	15	
26-May-07 Cooler and light rain, front approaching from	south 8	
27-May-07 Sunny and hot	15	
28-May-07 Sunny and warm	15	
29-May-07 Sunny and warm	9	
Part 2 – Site Assessment		
Activity: No activity this week		
Site Description: No activity currently, however, with increased runoff, the sediment needs to be mitigated.		
Assessed Risk: Low to Medium - site stable through pe	eak runoff, banks drying up	
Photos Attached: K1.5 - 5		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required:		
- Will re-cobble the fill side of the culverts to 1.5:1 bu	It may have to wait for lower flows.	
Will monitor that slope and pull back as required until flows are down and organics unfrozen.		
Start date ~ June 11 th .		
Mitigation Condition: G Rip rap and slopes are holding		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: : Monitor banks, particularly fill bank at culverts and look for failure signs		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Site Name: K1.5

Part 1 – Site Description		
Date and Tin	ne: May 29 th – June 4 th	Inspector(s): M.K. and J.G.
Site Name: K	(1.5	Location/Co-ordinates: Culverts at Campbell Creek
Site Location 2006 with dit	Description: Slope entering the gorge with ches on the east side directing runoff into	th Campbell Creek at its base. The road was built in fall Campbell Creek.
Weather Cor	nditions:	
Date	Conditions	Temp (°C)
29-May-07	Sunny and warm	9 10
30-May-07	Rain intermix with some sun hair late in the c	Jay 10
31-Way-07	Sunny	15
2- Jun-07	Suppy	15
2-Jun-07	Suppy and hot	22
4-Jun-07	Sunny and hot	22
Part 2 – Site	Assessment	
Activity: Slop	e work being done on slope north of Cam	obell Creek
, tourny r erop		
June 1 - A berm has been built up to try and detour most slope runoff through vegetation and into creek June 3 - Campbell Creek has very high runoff June 3 rd . Water started to erode in corner of creek (East side of road, culvert on north side)		
Assessed Risk: Low to Medium - Area compromised during high runoff June 3rd		
Photos Attached: K 1.5 - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required: Will re-cobble the fill side of the culverts to 1.5:1 but may have to wait for lower flows. Will monitor that slope and pull back as required until flows are down and organics unfrozen. Start date ~ June 11 th .		
Mitigation Condition: G		
Rip rap and slopes are holding except during very high flows on June 3 rd and 4 th , some eroding in corner.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: : Monitor banks, particularly fill bank at culverts and look for failure signs		
Monitoring Frequency: During rain events, when mitigation applied or work activity takes place		
Reporting Requirements: QMLU-0006, QZ01-051		

Form: EM07-01

Part 1 – Site Description		
Date and Time: June 5 th - June 11 th , 2007	Inspector(s): James Spencer and Jennie Gjertsen	
Site Name: K1.5	Location/Co-ordinates: Culverts at Campbell Creek	
Site Location Description: Slope entering the gorge with 2006 with ditches on the east side directing runoff into C	n Campbell Creek at its base. The road was built in fall Campbell Creek.	
Weather Conditions:		
Date Conditions	Temp (°C)	
5-Jun-07 Sunny and hot in morning, rainy in afterno	oon 20	
6-Jun-07 Windy and cloudy during day, rain at nigh	t 12	
7-Jun-07 Rain last night, cloudy in morning clearing	g to sunny in afternoon 12	
8-Jun-07 Sunny and mild	15	
9-Jun-07 Sunny and warm	15	
10-Jun-07 Cloudy and chilly all day, clearing at night	10	
11-Jun-07 Cloudy with sunny periods	15	
Part 2 – Site Assessment		
Activity: Pipe installed in ditch so that old road can be a	ccessed without creating high sedimentation in creek	
 Heavy flows continue in creek. Area has not been affected by very much erosion, culverts seem to be holding well, heavy sedimentation into creek has not been observed. Assessed Risk: Low to Medium - If high flow continues, further erosion to current mitigation could occur Photos Attached: K1.5 - 2 		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
 Mitigation Required: Re-cobble the fill side of the culverts to 1.5:1 but need to wait for lower flows. Longer culverts should be installed Diversion of creek into main two Campbell Creek culverts, and leave the northern culvert for periods of very bigh flow. This will hopefully lower the risk of collapse of the west slope near the exit of culvert. 		
Mitigation Condition: G		
Rin ran and slones are holding		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: : Monitor banks, particularly fill b	ank at culverts and look for failure signs	
Monitoring Frequency: During rain events, high flows, observed sediment movement, or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Site Name: K1.5

Part 1 – Site Description		
Date and Time: June 26 th – July 2 nd , 2007	Inspector(s): Jennie Gjertsen	
Site Name: K1.5	Location/Co-ordinates: Culverts at Campbell Creek	
Site Location Description: Slope entering the gorge w 2006 with ditches on the east side directing runoff into	th Campbell Creek at its base. The road was built in fall Campbell Creek.	
Weather Conditions:		
Date Conditions	Temp (°C)	
26-Jun-07 Cloudy 18		
27-Jun-07Thunderstorm in AM, cloudy with sunny periods in afternoon17		
28-Jun-07 Cloudy with showers, some sunny to	vith showers in afternoon, clearing 15	
30-Jun-07 Cloudy most of the day suppy and	warm in afternoon 18	
1-Jul-07 Heavy rain at night and all morning.	rain all afternoon, foggy in evening 12	
2-Jul-07 patchy clouds with sunny breaks	15	
Part 2 – Site Assessment		
Activity: Heavy rainfall affecting sedimentation into Ca	npbell Creek	
 Site Description: Heavy flows continue in creek Heavy sedimentation into creek observed due to heavy rainfall and runoff from road slopes. All three slopes converging in one place on road, draining straight into creek. 		
Assessed Risk: Low to Medium, dependant on rainfall.		
Photos Attached: K1.5 - 4		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required:		
Re-cobble the fill side of the culverts to 1.5:1 but need to wait for lower flows.		
- Longer culverts should be installed		
 Diversion of creek into main two Campbell Creek culverts, and leave the northern culvert for periods of very 		
high flow. This will hopefully lower the risk of collapse of the west slope near the exit of culvert		
Mitigation Condition: F		
Rip rap and slopes are holding, west slope very saturated by culvert exits.		
July 1- water from road slopes diverted to run through vegetation instead of draining directly into Campbell creek (north culvert).		
Ditch on south side of culverts had water steps put in place to try and filter some sedimentation.		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor banks, particularly fill bank at culverts and look for failure signs		
Monitoring Frequency: Weekly, and daily during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Site Name: K1.5

Part 1 – Site Description		
Date and Time: May 18 th – 21 st , 2007	Inspector(s): James Spencer	
Site Name: K1.6	Location/Co-ordinates: 150m North of K1.5	
Site Location Description: The site faces southwest a water to Campbell Creek ~150m downstream, slope is	nd is the cut slope above the road. The ditch is bringing s 12% grade	
Weather Conditions:		
Date Conditions	Temp (°C)	
18-May-07 Overcast	5	
19-May-07 Sunny 20-May-07 Overcast in Morning Sunny With Showers	9 Sternoon 12	
21-May-07 Clear all day, sunny warm in sun. Cool brisk	North wind 12	
Part 2 – Site Assessment		
Activity: Ditch was dug out deeper to accommodate f	ow	
Site Description: Melt is becoming heavier so sedime	nt laden water is reaching Campbell Creek.	
Assessed Risk: Medium		
Photos Attached: K1.6 - 4		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required:		
Will insert culvert (slope drain) to reduce sediment load at Campbell creek by reducing volume and velocity		
Mitigation Condition: F mitigation in place consists of a few check dams		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: : Monitor sediment load in ditch and reaching K1.5		
Monitoring Frequency: Weekly during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Site Name: K1.6

Date and Time: May 22 nd – 28 th , 2007 Inspector(s): James Spencer Site Name: K1.6 Location/Co-ordinates: 150m North of K1.5 Site Location Description: The site faces southwest and is the cut slope above the road. Ground ice and permafrost with pine, willow and mosses is melting and unstable. The area affected is 20m x 5m. Oozing soils and subsoil and overburden are blocking the ditch and sending sediment downstream. There is a ditch cut and water is undercutting the slope. Weather Conditions: Temp (*C) 22-May-07 Clear and Sunny 14 23-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 25-May-07 Clear and Sunny 15 26-May-07 Coler and Sunny 15 28-May-07 Coler and Sunny 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 - Site Assessment Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken:	Part 1 – Site Description			
Site Name: K1.6 Location/Co-ordinates: 150m North of K1.5 Site Location Description: The site faces southwest and is the cut slope above the road. Ground ice and permafrost with pine, willow and mosses is melting and unstable. The area affected is 20m x 5m. Oozing soils and subsoil and overburden are blocking the ditch and sending sediment downstream. There is a ditch cut and water is undercuting the slope. Weather Conditions:	Date and Time: May 22 nd – 28 th , 2007	Inspector(s): James Spencer		
Site Location Description: The site faces southwest and is the cut slope above the road. Ground ice and permafrost with pine, willow and mosses is melting and unstable. The area affected is 20m x 5m. Oozing soils and subsoil and overburden are blocking the ditch and sending sediment downstream. There is a ditch cut and water is undercutting the slope. Weather Conditions: Date Conditions Temp (*C) 22-May-07 Clear and Sunny 14 23-May-07 Clear and Sunny 15 25-May-07 Clear and Sunny 15 26-May-07 Clear and Sunny 15 26-May-07 Clear and Sunny 15 28-May-07 Clear and Sunny 15 28-May-07 Clear and Sunny 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 - Site Assessment Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated.	Site Name: K1.6	Location/Co-ordinates: 150m North of K1.5		
Weather Conditions: Temp (*C) 22-May-07 Clear and Sunny 14 23-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 25-May-07 Clear and Sunny 15 26-May-07 Clear and Sunny 15 28-May-07 Coler and light rain, front approaching from south 8 27-May-07 Sunny and hot 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 - Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. <	Site Location Description: The site faces southwest and is the cut slope above the road. Ground ice and permafrost with pine, willow and mosses is melting and unstable. The area affected is 20m x 5m. Oozing soils and subsoil and overburden are blocking the ditch and sending sediment downstream. There is a ditch cut and water is undercutting the slope.			
Date Conditions Temp (*C) 22-May-07 Clear and Sunny 14 23-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 25-May-07 Clear and Sunny 15 26-May-07 Colear and Sunny 15 26-May-07 Colear and Sunny 15 28-May-07 Colear and Sunny 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 – Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - - Additional Information Attached: - -	Weather Conditions:			
22-May-07 Clear and Sunny 14 23-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 25-May-07 Coler and Sunny 15 26-May-07 Coler and Sunny 15 26-May-07 Coler and Ight rain, front approaching from south 8 27-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 – Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 – Mitigation Requirements Mitigation Required: . Will need to re-grade the cut slope cut off overhang. . Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. . May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitig	Date Conditions	Temp (°C)		
23-May-07 Clear and Sunny 15 24-May-07 Clear and Sunny 15 25-May-07 Clear and Sunny 15 26-May-07 Cooler and light rain, front approaching from south 8 27-May-07 Sunny and hot 15 28-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 – Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 – Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. My require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 – Monitoring Requirements	22-May-07 Clear and Sunny	14		
24-May-07 Clear and Sunny 15 25-May-07 Clear and Sunny 15 26-May-07 Cooler and light rain, front approaching from south 8 27-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 - Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - - Additional Information Attached: - - Part 3 - Mitigation Requirements - Mitigation Required: - Will need to re-grade the cut slope cut off overhang. - Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. - Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 -Monitoring Requirements Follow-un Monitoring: Monitor sediment load in ditch and reaching K1 5 check slope stability.	23-May-07 Clear and Sunny	15		
25-May-07 Clear and Sunny 15 26-May-07 Cooler and light rain, front approaching from south 8 27-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 - Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 -Monitoring Requirements Eollow-un Monitoring: Monitor sediment load in ditch and reaching K1 5, check slope stability.	24-May-07 Clear and Sunny	15		
26-indy-07 Cooler and light rain, front approaching from south 8 27-May-07 Sunny and hot 15 28-May-07 Sunny and warm 15 Part 2 – Site Assessment Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 – Mitigation Requirements Mitigation Required: - Will need to re-grade the cut slope cut off overhang. - Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. - May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. - Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. - Part 4 – Monitoring Requirements - Follow-un Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	25-May-07 Clear and Sunny	15		
27-May-07 Sumy and warm 15 28-May-07 Sumy and warm 15 Part 2 - Site Assessment 15 Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Required: . Will need to re-grade the cut slope cut off overhang. . Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. . May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 - Monitoring Requirements Follow-un Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	26-May-07 Cooler and light rain, front approaching from	1 south 8		
Part 2 - Site Assessment Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 - Monitoring Requirements Follow-un Monitoring: Monitor sediment load in ditch and reaching K1.5 check slope stability.	27-May-07 Sunny and not	15		
Part 2 - Site Assessment Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 -Monitoring Requirements Follow-un Monitoring: Monitor sediment load in ditch and reaching K1 5 check slope stability	28-May-07 Sullity and Wallin	15		
Activity: Culvert was installed for reducing volume/velocity to Campbell Creek Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Will need to re-grade the cut slope cut off overhang Insulate and vegetate the area but must wait for thaw so that ground and organics are workable May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 -Monitoring Requirements Eollow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	Part 2 – Site Assessment			
Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated. Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 –Mitigation Requirements Mitigation Required: - Will need to re-grade the cut slope cut off overhang. - Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. - May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements	Activity: Culvert was installed for reducing volume/velocity to Campbell Creek			
Assessed Risk: Medium Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Will need to re-grade the cut slope cut off overhang Insulate and vegetate the area but must wait for thaw so that ground and organics are workable May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 -Monitoring Requirements Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	Site Description: Flows undercutting bank and on May 21 st in the p.m. a slope failure around 5m x 3m blocked the ditch and the road was damaged. Area of ground ice still melting and oozing out of bank and remains unstable. Not dangerous but needs to be mitigated.			
Photos Attached: K 1.6 - 6 Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Will need to re-grade the cut slope cut off overhang Insulate and vegetate the area but must wait for thaw so that ground and organics are workable May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 -Monitoring Requirements Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	Assessed Risk: Medium			
Samples Taken: - Additional Information Attached: - Part 3 –Mitigation Requirements Mitigation Required: - Will need to re-grade the cut slope cut off overhang Insulate and vegetate the area but must wait for thaw so that ground and organics are workable May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	Photos Attached: K 1.6 - 6			
 Additional Information Attached: - Part 3 –Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements 	Samples Taken: -			
 Part 3 –Mitigation Requirements Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements 	Additional Information Attached: -			
 Mitigation Required: Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements 	Part 3 – Mitigation Requirements			
 Will need to re-grade the cut slope cut off overhang. Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements 	Mitigation Required:			
 Insulate and vegetate the area but must wait for thaw so that ground and organics are workable. May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements 	Will need to re-grade the cut slope cut off overhand	g.		
 May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements 	Insulate and vegetate the area but must wait for th	aw so that ground and organics are workable.		
 May require geoteen and mater to insulate along with permanost tolerant and wet lowing vegetation to reclaim. Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability. 	May require destech and mulch to insulate along with permatrost tolerant and wet loving vegetation to			
Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually. Part 4 –Monitoring Requirements Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	reclaim.	with permanost tolerant and wet loving vegetation to		
Part 4 –Monitoring Requirements	Mitigation Condition: F mitigation not possible until thaw is further along, slope continues to recede gradually.			
Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability	Part 4 – Monitoring Requirements			
i onow up morntoning. Mornton obumbert ibud in ditori and redoning reno, oneor slope stability				
Monitoring Frequency: Weekly during rain events or when mitigation applied				
Reporting Requirements: QMLU-0006, QZ01-051	Reporting Requirements: QMLU-0006, QZ01-051			

Site Name: K1.6

Wolverine Project Environmental Inspection Form – Photos

Form: EM07-01

Part 1 – Site Description			
Date and Time: May 2	29 th – June 4 th , 2007	Inspector(s): Melissa Kirby and Jennie Gjertsen	
Site Name: K1.6		Location/Co-ordinates: 150m North of K1.5	
Site Location Description: The site faces southwest and is the cut slope above the road. Ground ice and permafrost with pine, willow and mosses is melting and unstable. The area affected is 20m x 5m. Oozing soils and subsoil and overburden are blocking the ditch and sending sediment downstream. There is a ditch cut and water is undercutting the slope.			
Weather Conditions:			
Date Conc	litions	Temp ((°C)
29-May-07	Sunny and warm	9	
30-May-07	Rain intermix with some sun hail la	te in the day 10)
31-May-07	Sunny	15	5
1-Jun-07	Sunny	15	5
2-Jun-07	Sunny	16	3
3-Jun-07	Sunny and hot	22	2
4-Jun-07	Sunny and hot	27	7
Part 2 – Site Assess	ment		
Activity: Continued ro	ad work, no work on bank/slope		
Site Description: Melting and oozing has slowed/stopped from vegetation. Installed culvert is helping to reduce Campbell creek water. Roadway continues to shift as a result of melting of permafrost.			
Assessed Risk: Mediu	um		
Photos Attached: -			
Samples Taken: -			
Additional Information	Attached: -		
Part 3 – Mitigation Re	equirements		
 Mitigation Required: Will need to re-gra Insulate and vege May require geote reclaim. Roadway requires 	ade the cut slope cut off overhang tate the area but must wait for th ech and mulch to insulate along v another 0.5m of material and or	g. aw so that ground and organics are workable. vith permafrost tolerant and wet loving vegetation to rading until settled	
Mitigation Condition:	= mitigation not possible until tha	w is further along slope continues to recede gradua	illy
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5, check slope stability			
Monitoring Frequency: Weekly during rain events or when mitigation applied			

Reporting Requirements: QMLU-0006, QZ01-051

Part 1 – Site Description		
Date and Time: June 5 th – June 11 th , 2007	Inspector(s): James Spencer and Jennie Gjertsen	
Site Name: K1.6	Location/Co-ordinates: 150m North of K1.5	
Site Location Description: The site faces southwest permafrost with pine, willow and mosses is melting a soils and subsoil and overburden are blocking the dif cut and water is undercutting the slope.	and is the cut slope above the road. Ground ice and nd unstable. The area affected is 20m x 5m. Oozing ch and sending sediment downstream. There is a ditch	
Weather Conditions:		
Date Conditions	Temp (°C)	
5-Jun-07 Sunny and hot in morning, rainy in afterne	oon 20	
6-Jun-07 Windy and cloudy during day, rain at nigh	t 12	
7-Jun-07 Rain last night, cloudy in morning clearin	g to sunny in afternoon 12	
8-Jun-07 Sunny and mild	15	
9-Jun-07 Sunny and warm	15	
10-Jun-07 Cloudy and chilly all day, clearing at night	10	
11-Jun-07 Cloudy with sunny periods	15	
Part 2 – Site Assessment		
Activity: Continued road work, no work on bank/slope		
-Melting and draining through vegetation can no longer be observed, but ground and vegetation continue to shift. Some trees have fallen along roadway. -Low water flow through ditch.		
Assessed Risk: Low		
Photos Attached: K1.6 - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required:		
- Will need to re-grade cut slope, cut off overhang, insulate and vegetate the area but must wait for thaw so that ground and organics are workable.		
May require geotech and mulch to insulate along with permafrost tolerant and wet loving vegetation to reclaim.		
- Roadway requires another 0.5m of material and grading until settled. Old road will be used in conjunction with new road to allow work to occur.		
Mitigation Condition: F mitigation not possible until th	aw is further along, slope continues to recede gradually	
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Monitor sediment load in ditch and reaching K1.5. Check slope stability		
Monitoring Frequency: During rain events, high flows, observed movement or when mitigation applied		

Reporting Requirements: QMLU-0006, QZ01-051

Environmental Inspection Form	Version: April 27, 2007	
Part 1 – Site Description		
Report Date and Time: May 10 th -11 th , 2007 8:30am	Inspector(s): Mary McDougall	
Site Name: Km 2	Location/Co-ordinates:	
Site Location Description: Culvert under road Not close to any fish bearing streams About 2km run to Little Wolverine lake via W Weather Conditions:	Volverine Creek	
Date Conditions	Temp (°C)	
10-May-07 Overcast, sunny breaks, warm in	the sunshine 5	
11-May-07 Overcast, sunny breaks, warm in	the sunshine 6	
Part 2 – Site Assessment		
Activity: Need to install rip-rap to minimize runoff		
Site Description: A culvert was installed over the winter to impute sides and bottom of the water trail need to Assessed Risk: Low Photos Attached: K2 - 6	rove water flow under the road. Ditching was improved in April, and be rip-rapped to minimize runoff	
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required: Installing rip-rap up the ditches and along the banks to minimize sediment flow. The NE side is to be completely armored, the SW side is to be armored as much as possible (i.e. As far as the backhoe can reach from the road, since the side slopes are very soft and not safe to drive on) Mitigation Condition: No existing mitigation		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Monitor sediment flow, if it continues, install	geotech fences up slope	
Monitoring Frequency: Discontinued low risk, will file report if situat Reporting Requirements: QMLU-0006, QZ01-	tion changes 051	

Pre-Installation Photos

North view of the north-east side of the road

Looking south-east at the south slope

Rip-rap installation (looking North-West)

Post-Installation Photos

Installation in progress, view looking east

Completed north side, looking northwest

Completed north side; view looking west

Part 1 – Site Description			
Date and Tim	e: June 19 th – 25 th , 2007	Inspector(s): James Spencer	
Site Name: K	2	Location/Co-ordinates: K2 new Road with cu	lvert
Site Location The area that to Wolverine road and surr accommodate	Description: supports the culvert and the area that su Lake via Wolverine Creek. Around 1km a rounding area is on fairly flat ground with e the road building	urrounds and drains in to the creek. The creek way. Lots of willows and shrubbery downstrea some rolling features. The area has been grub	drains in am. The obed to
Weather Con	ditions:		(0.0)
Date 19-Jun-07 20-Jun-07 21-Jun-07 22-Jun-07 23-Jun-07 24-Jun-07	Cloudy with Sunny periods Windy from south, mostly sunny Hazy, smoke clouds, sun and haze, no rain Hot and Sunny, rain storms through day Hot and Sunny, rain storms through day Hot sunny morning , rain storm in afternoon	T	emp (°C) 15 18 20 21 21 21 21
Part 2 – Site	Assessment		
Activity: Pull I outflow of cul	back strippings onto sloped fill bank, rewo vert.	ork the edge of the road and perimeter of inflow	v and
Site Description: Jun 19 – 23, site is not landscaped, organics are not pulled back over the stripped area Erosion is therefore not being minimized. New culvert installed last week and banks are more stable.			
Assessed Ris	sk: Low, Does not threaten a sensitive ha	abitat, no threats of failure	
Photos Attached: K2 - 2			
Samples Tak	en: -		
Additional Information Attached: -			
Part 3 –Mitigation Requirements			
 Mitigation Required: Pull back organics and landscape the area Seed the area 			
Mitigation Condition: June 19-23 ; June 23-25, G			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Watch for any changes in stability of culvert, a			
Monitoring Frequency: Discont'd, no risk, reactivate if work takes place			
Reporting Requirements: QMLU-0006, QZ01-051			

Т

Part 1 – Site Description			
Date and Time: June 12 th -18 th , 2007	Inspector(s): James Spencer		
Site Name: K2.1 Old Road	Location/Co-ordinates: At Top of south sid	le of Gorge	
Site Location Description: A seasonal creek that drain slope and the road grade is also steep. The water flow Relatively low flows most of time and seasonal high flow	ns the upper watershed to the east. It is on a w is a long distance from Wolverine Creek, ~ ows.	a steep 1.5km.	
Weather Conditions:			
Date Conditions		Temp (°C)	
12-Jun-07 Cloudy in morning, sunny and hot in the atte	ernoon, rain in the evening	18	
13-Jun-07 Sunny and Warm in morning, cloudy in alter	noon, rain in the evening	14 14	
14-Jun-07 Mixed Sun and cloud small storm systems	all day	14	
16-Jun-07 Mixed Sun and cloud, small storm systems	all day	16	
17-Jun-07 Mixed Sun and cloud, small storm systems	all dav	15	
18-Jun-07 Rain heavy at times, mixed sun and cloud		14	
Part 2 – Site Assessment			
Activity: No use of road until reactivated. Seasonal melt water had excavated an impassable trench. Needed culvert Installation, culvert installation complete and handling flows. Capped with local material.			
Site Description: Flows continue to erode the road base but are likely to slow down as melt water subsides. On June 14 th culvert installation takes place photo #1-3, June 15 th site is running clean and culvert handling entire flow 9 photo #4			
Assessed Risk: Low			
Photos Attached: K2.1 Old Road - 4			
Samples Taken: -			
Additional Information Attached: -			
Part 3 – Mitigation Requirements			
Mitigation Required:			
- Install 30' culvert			
- Build check dams upstream			
- Armour culvert			
Mitigation Condition: June 14 th P, none there ; June 15 th G check dams slowing flows and culvert protected and running clean			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Check that installation is handlin monitor sediment flows.	ng flows and road remains hard and isn't sof	tening up,	
Monitoring Frequency: Jun 14 th daily, during rain events. Jun 15 th , discontinued, low risk and stable			
Reporting Requirements: QMLU-0006, QZ01-051	Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description			
Date and Time: September 13 th – 22 nd , 2007	Inspector(s): James Spencer		
Site Name: Sprung Structures	Location/Co-ordinates: Lower Laydown Area		
Site Location Description: Two Sprung structures (80' laydown area to provide shelter for the WDS & WIS ov install propane radiant heaters and pool covers to prev Arctic construction is providing assistance to the Sprun	x 90' & 90' x 105') are being installed at the lower ver the 07/08 winter period. Superior Propane is to vent the ponds from freezing.		
Weather Conditions:			
Date Conditions	Temp (°C)		
11-Sep-07 Sunny and warm	15		
12-Sep-07 Sunny and warm	14		
13-Sep-07 Sunny and warm	14		
14-Sep-07 Mixed sun and cloud	13		
15-Sep-07 rain showers all day, clearing in afternoon	11		
16-Sep-07 Bright sunny	14		
17-Sep-07 Cool and overcast, dusting of snow on high pe	eaks 9		
18-Sep-07 cool and light flurries	8		
19-Sep-07 Overcast, with flurries throughout the day	6		
20-Sep-07 Flurries, clearing in the afternoon	7		
21-Sep-07 Flurries, rain in camp in the afternoon, low overcast			
22-Sep-07 Clear breaks, cloudy	6		
Part 2 – Site Assessment			
Activity: The south side of the WIS and creek side of both ponds needed to be upgraded to allow room for the crane to move around the ponds, this was done by YZC operators.			
Site Description: Lower laydown area, over the pends			
Site Description. Lower laydown area, over the points			
Assessed Risk: The environmental risk is low, althoug ponds was necessary to prevent material from falling of	h caution when upgraded in the road access around the down into the creek.		
Photos Attached: Sprung Structures - 7			
Samples Taken: -			
Additional Information Attached: -			
Part 3 –Mitigation Requirements			
Mitigation Required: none			
Mitigation Condition: G			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Watch down slope for signs of erosion and slumping			
Monitoring Frequency: Daily as work progresses			
Reporting Requirements: QMLU-0006, QZ01-051			

Date and Time: September 23" - October 1", 2007 Inspector(s): James Spencer Site Name: Sprung Structures Location/Co-ordinates: Lower Laydown Area Site Location Description: Two Sprung structures (80' x 90' & 90' x 105') are being installed at the lower laydown area to provide shelter for the WDS & WIS over the 07/08 winter period. Superior Propane is to install propane radiant heaters and pool covers to prevent the ponds from freezing. Arctic construction is providing assistance to the Sprung company. Weather Conditions: Date Conduions Temp ('C) 23-Sep-07 mixed overcast flurries -4 24-Sep-07 mixed overcast flurries -4 24-Sep-07 mixed overcast flurries -4 24-Sep-07 mixed anian and flurries 0 25-Sep-07 Overcast, foggy -2 27-Sep-07 Coolshow flurries -3 28-Sep-07 Overcast, foggy -2 27-Sep-07 Coolshow flurries -2 29-Sep-07 Coolshow flurries -2 201-Oct-07 Colshow flurries -2 201-Oct-07 Overcast, tings -1 29-Sep-07 Coverast with sunny breaks -1 29-Sep-07 Coverast with sunny breaks -1 Part 2 - Site Assessment -2 -2 Activity: The road upgrading is complete, th	Part 1 – Site Description			
Site Name: Sprung Structures Location/Co-ordinates: Lower Laydown Area Site Location Description: Two Sprung structures (80' × 90' × 90' × 105') are being installed at the lower laydown area to provide shelter for the WDS & WIS over the 07/08 winter period. Superiod Propane radiant heaters and pool covers to prevent the ponds from freezing. Arctic construction is providing assistance to the Sprung company. Weather Conditions: Temp (*C) 23-Sep-07 mixed overcast flurries -4 25-Sep-07 rain showers all day, clearing in evening 5 25-Sep-07 Overcast, fogy -2 27-Sep-07 rain showers all day, clearing in evening 5 26-Sep-07 Overcast, fogy -2 27-Sep-07 coolish, broken cloud over -3 328-Sep-07 Some clearing still overcast with low ceilings -1 29-Sep-07 coolish, broken cloud over -5 30-Sep-07 Cool stom furries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 - Site Assessment -4 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lowe nvironmental risk, however, p	Date and Time: September 23 rd – October 1 st , 2007	Inspector(s): James Spencer		
Site Location Description: Two Sprung structures (80' x 90' x 90' x 105') are being installed at the lower laydown area to provide sheller for the WDS & WIS over the 07/08 winter period. Superior Propane is to install propane radian heaters and pool covers to prevent the ponds from freezing. Arctic construction is providing assistance to the Sprung company. Weather Conditions: Pate Conditions: Date Conditions: Date Condition: Date Co	Site Name: Sprung Structures	Location/Co-ordinates: Lower Laydown Area		
Weather Conditions: Temp (*C) 23-Sep-07 mixed overcast flurries -4 24-Sep-07 mixed rain and flurries 0 25-Sep-07 rain showers all day, clearing in evening 5 26-Sep-07 Overcast, foggy -2 27-Sep-07 Some clearing still overcast with low ceilings -1 29-Sep-07 cools now flurries -2 201-Oct-07 Overcast with sunny breaks -1 Part 2 – Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lower laydown area, over the ponds. - Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. - Photos Attached: 14 - - Samples Taken: none - - Additional Information Attached: - - Part 4 -Monitoring Requirements - - Follo	Site Location Description: Two Sprung structures (80' laydown area to provide shelter for the WDS & WIS ov propane radiant heaters and pool covers to prevent the Arctic construction is providing assistance to the Sprun	x 90' & 90' x 105') are being installed at the lower er the 07/08 winter period. Superior Propane is to install ponds from freezing. g company.		
Date Conditions Temp (*C) 23-Sep-07 mixed overcast flurries -4 24-Sep-07 mixed rain and flurries 0 25-Sep-07 rain showers all day, clearing in evening 5 26-Sep-07 Overcast, foggy -2 27-Sep-07 Overcast, foggy -3 28-Sep-07 Some clearing still overcast with low ceilings -1 28-Sep-07 colish, broken cloud cover -5 30-Sep-07 Cool snow flurries -2 01-Oct-07 Overcast with sumy breaks -1 Part 2 – Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lower laydown area, over the ponds. -1 Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. -1 Photos Attached: 14	Weather Conditions:			
23-Sep-07 mixed overcast flurries -4 24-Sep-07 mixed rain and flurries 0 25-Sep-07 rain showers all day, clearing in evening 5 26-Sep-07 Overcast, foggy -2 27-Sep-07 Overcast, foggy -3 28-Sep-07 Some clearing still overcast with low ceilings -1 29-Sep-07 coolish, broken cloud cover -5 30-Sep-07 Cool snow flurries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 - Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lower laydown area, over the ponds. - Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14	Date Conditions	Temp (°C)		
24-Sep-07 mixed rain and flurries 0 25-Sep-07 rain showers all day, clearing in evening 5 26-Sep-07 Overcast, foggy -2 27-Sep-07 Overcast, foggy -3 28-Sep-07 context, broken cloud cover -5 30-Sep-07 cooles, broken cloud cover -5 30-Sep-07 Cool snow flurries -2 01-02t-07 Overcast with sunny breaks -1 Part 2 – Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lower laydown area, over the ponds. - Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. - Photos Attached: 14	23-Sep-07 mixed overcast flurries	-4		
25-Sep-07 rain showers all day, clearing in evening 5 26-Sep-07 Overcast, foggy -2 27-Sep-07 Overcast, foggy -3 28-Sep-07 Some clearing still overcast with low ceilings -1 29-Sep-07 coolish, broken cloud cover -5 30-Sep-07 Cool snow flurries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 - Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Low environmental risk, however, personal caution must be taken when working around the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. - Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. - Photos Attached: 14 - - Samples Taken: none - - Additional Information Attached: - - Part 3 - Mitigation Requirements - - Mitigation Condition: N/A - - Part 4 - Monitoring: Watch down slope for signs of erosion and slumping	24-Sep-07 mixed rain and flurries	0		
26:Sep-07 Overcast, foggy -2 27:Sep-07 Overcast, foggy -3 28:Sep-07 Some clearing still overcast with low ceilings -1 29:Sep-07 coolish, broken cloud cover -5 30:Sep-07 Cool snow flurries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 – Site Assessment Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. Site Description: Lower laydown area, over the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 – Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 – Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	25-Sep-07 rain showers all day, clearing in evening	5		
27.58ep.07 Overcast, toggy -3 28-Sep.07 Some clearing still overcast with low ceilings -1 29-Sep.07 Coolish, broken cloud cover -5 30-Sep.07 Cool snow flurries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 - Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -3 Site Description: Lower laydown area, over the ponds. -3 Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. -3 Photos Attached: 14	26-Sep-07 Overcast, foggy	-2		
28-sep-07 Some clearing still overcast with low cellings -1 29-sep-07 coolish, broken cloud cover -5 30-Sep-07 Cool snow flurries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 – Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lower laydown area, over the ponds.	27-Sep-07 Overcast, foggy	-3		
29-Sep-07 Coolish, broken cloud cover -5 30-Sep-07 Cool snow flurries -2 01-Oct-07 Overcast with sunny breaks -1 Part 2 – Site Assessment Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. Site Description: Lower laydown area, over the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 – Mitigation Requirements Mitigation Condition: N/A Part 4 –Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	28-Sep-07 Some clearing still overcast with low ceilings			
30-Sep-07 Cool show humles -1 Part 2 - Site Assessment -1 Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. -1 Site Description: Lower laydown area, over the ponds. -1 Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. -1 Photos Attached: 14 -1 Samples Taken: none -1 Additional Information Attached: -1 Part 3 - Mitigation Requirements -1 Mitigation Condition: N/A -1 Part 4 - Monitoring Requirements -1 Follow-up Monitoring: Watch down slope for signs of erosion and slumping -1 Monitoring Frequency: Daily as work progresses -1 Reporting Requirements: QMLU-0006, QZ01-051 -1	29-Sep-07 coolish, broken cloud cover	-5		
Part 2 - Site Assessment Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. Site Description: Lower laydown area, over the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 - Mitigation Requirements Mitigation Condition: N/A Part 4 - Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	01 Oct 07 Overget with suppy breaks	-2		
Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. Site Description: Lower laydown area, over the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 - Mitigation Requirements Mitigation Condition: N/A Part 4 - Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Part 2 Site Assessment	-1		
Activity: The road upgrading is complete, the installation of the Sprung Structures and the propane heaters continues. Site Description: Lower laydown area, over the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 - Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 - Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051				
Site Description: Lower laydown area, over the ponds. Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 -Mitigation Requirements Mitigation Condition: N/A Part 4 -Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Activity: The road upgrading is complete, the installatio continues.	n of the Sprung Structures and the propane heaters		
Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds. Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 -Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 -Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Site Description: Lower laydown area, over the ponds.			
Photos Attached: 14 Samples Taken: none Additional Information Attached: Part 3 - Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 - Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Assessed Risk: Low environmental risk, however, personal caution must be taken when working around the ponds.			
Samples Taken: none Additional Information Attached: Part 3 –Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 –Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Photos Attached: 14			
Additional Information Attached: Part 3 -Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 -Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Samples Taken: none			
Part 3 – Mitigation Requirements Mitigation Required: none Mitigation Condition: N/A Part 4 – Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Additional Information Attached:			
Mitigation Required: none Mitigation Condition: N/A Part 4 –Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Part 3 – Mitigation Requirements			
Mitigation Condition: N/A Part 4 –Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Mitigation Required: none			
Part 4 – Monitoring Requirements Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Mitigation Condition: N/A			
Follow-up Monitoring: Watch down slope for signs of erosion and slumping Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Part 4 –Monitoring Requirements			
Monitoring Frequency: Daily as work progresses Reporting Requirements: QMLU-0006, QZ01-051	Follow-up Monitoring: Watch down slope for signs of erosion and slumping			
Reporting Requirements: QMLU-0006, QZ01-051	Monitoring Frequency: Daily as work progresses			

Part 1 – Site Description			
Date and Time: October 2 nd – October 9 th , 2007	Inspector(s): Mary McDougall		
Site Name: Sprung Structures	Location/Co-ordinates: Lower Laydown Area		
Site Location Description: Two Sprung structures (80 laydown area to provide shelter for the WDS & WIS or install propane radiant heaters and pool covers to pre-	x 90' & 90' x 105') are being installed at the lower ver the 07/08 winter period. Superior Propane is to vent the ponds from freezing.		
Weather Conditions:	ig company.		
Date Conditions	Temp (°C)		
02-Oct-07 Overcast with sunny breaks	-2		
03-Oct-07 Overcast with snow flurries	-5		
04-Oct-07 Overcast with sunny breaks; windy and cold	-8		
05-Oct-07 Overcast and continuous snow flurries; wind	y and cold -4		
06-Oct-07 High overcast, breaking clouds	-4		
07-Oct-07 Flurries all day	-3		
08-Oct-07 Flurries off and on all day	-2		
Part 2 – Site Assessment	-2		
Activity: Continued installation of Sprung Structures an	nd propane heaters		
Site Description: Lower laydown area, over the ponds).		
Assessed Risk: The environmental risk is low, although caution when working around the sumps because the liner is very slippery and tools have been dropped in the sumps.			
Photos Attached: 9			
Samples Taken: -			
Additional Information Attached: -			
Part 3 – Mitigation Requirements			
Mitigation Required: none			
Mitigation Condition: N/A			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Watch down slope for signs of erosion and slumping			
Monitoring Frequency: Daily as work progresses			
Reporting Requirements: QMLU-0006, QZ01-051			

Part 1 – Site Description			
Date and Time: October 9 th – October 15 th , 2007	Inspector(s): James Spencer		
Site Name: Sprung Structures	Location/Co-ordinates: Lower Laydown Area		
Site Location Description: Two Sprung structures (80' laydown area to provide shelter for the WDS & WIS ov install propane radiant heaters and pool covers to prev Arctic construction is providing assistance to the Spru	x 90' & 90' x 105') are being installed at the lower ver the 07/08 winter period. Superior Propane is to vent the ponds from freezing.		
Weather Conditions:			
Date Conditions	Temp (°C)		
9-Oct-07 High overcast, breaking clouds	-2		
10-Oct-07 Mixed sun and cloud, overcast 7000	-1		
11-Oct-07 Mixed sun and cloud, snow overnight fround	8° -2		
12-Oct-07 Suffry all day flice	0		
14-Oct-07 Sunny beautiful all day	2		
15-Oct-07 mixed sun and cloud			
Part 2 – Site Assessment			
Activity: On October 12 th , the Sprung structures were complete. Superior still needs to install aquastats and thermostats, and to complete safety items: ladders, extinguishers and solar blankets.			
Site Description: Lower laydown area, over the ponds			
Assessed Risk: The environmental risk is low, although caution when working around the ponds is always necessary.			
Photos Attached: 5			
Samples Taken: -			
Additional Information Attached: -			
Part 3 – Mitigation Requirements			
Mitigation Required: none			
Mitigation Condition: N/A			
Part 4 – Monitoring Requirements			
Follow-up Monitoring: Monitoring of the Sprung Structure installation is complete.			
Monitoring Frequency: N/A			
Reporting Requirements: QMLU-0006, QZ01-051			

Part 1 – Site Description	
Date and Time: August 21 st - September 3 rd , 2007	Inspector(s): Jennie Gjertsen
Site Name: Drill sites A and B	Location/Co-ordinates:
	Site A – 0441343, 6809565
	Site B - 0440619, 6810072

Site Location Description:

A- To the East of the airstrip, behind the location for the new LTF. Area contains low shrubs, mosses, and is fairly well drained, no waterways are located closeby.

B- In the Go Creek watershed, close to MW05-1 groundwater wells. Go Creek drainage streams run through area.

Date	Conditions	Temp (°C)
21-Aug-07	Sunny in the morning, cloudy in the afternoon	20
22-Aug-07	Warm with thundershowers throughout the day	20
23-Aug-07	Cold in the morning with thundershowers, clouds and rain all day	15
24-Aug-07	Rain in the morning, cloudy	14
25-Aug-07	Mostly cloudy, some showers	15
26-Aug-07	Frost in morning, sunny	12
27-Aug-07	Sunny, some rain/hail	12
28-Aug-07	Sunny	14
29-Aug-07	Sunny with some cloud in afternoon	10
30-Aug-07	Cloudy	13
31-Aug-07	Rain intermittent throughout day, clearing in the afternoon	10
1-Sep-07	Rain all morning, clearing in afternoon to sun	8
2-Sep-07	Mix of clouds, and sun. Rain intermittent	13
3-Sep-07	Sunny in the morning, cloudy in the afternoon	12

Part 2 – Site Assessment

Activity: Drilling for potable water wells

Site B was drilled first. Material from the airstrip was brought in on an old drill road to establish pads for drilling and to maintain a driveable access road. A test well was originally installed, and followed up with a permanent well. Both of the wells are outside of 30m from Go Creek. A temporary wooden stopper was used to stop the test well from discharging, but both wells will need some other kind of permanent stopper.

Site A was drilled second. Three attempts were made to drill but due to a failure in equipment (the weld on the steel casings), none were successful. Two steel casings remain in the ground at the site at from near the surface to a depth of approximately 40 feet. The location of the steel casings have been staked and flagged.

Site Description: Areas have been cleaned up, except for one fuel barrel remaining at site A.

Assessed Risk: Low

Photos Attached: Drillsite A (4 photos), Drillsite B (4 photos)

Samples Taken: Water sample from permanent well PW07-1, sent to Maxxam

Additional Information Attached: -

Part 3 – Mitigation Requirements

Mitigation Required:

Little. The road to site B will remain, as further development of the permanent well is likely to occur in the upcoming months. As site A is next to the future location of the new LTF, recovering with organics can be done as that project is worked on.

Mitigation Condition: Good

Part 4 – Monitoring Requirements

Follow-up Monitoring: Monitor banks, particularly cut bank look for failure signs

Monitoring Frequency: During rain events or when mitigation applied

Reporting Requirements: QMLU-0006, QZ01-051

Site Name: Drill Site A 08/31/07 **Drill site A facing North** Drill cleaning facing NE at airstrip 08/31/07 After teardown at site A facing NW 09/02/07 Steel casing underground marked with stakes 09/02/07

Part 1 – Site Description		
Date and Time: April 25 th – 29 th ,2007	Inspector(s): James Spencer	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock and material generated during the 2005 underground test min- storage pad, and a water collection sump.	ore storage facility currently contains ~14,600 m ³ of e construction, and consists of a waste rock and ore	
Weather Conditions: Still 2-3' snow but surface melt start	ing at lower elevations.	
Part 2 – Site Assessment		
Activity: Monitoring started as we began to move water fr	om the PCS to the WRP to prevent overflow at PCS	
Site Description: Surface melt continues. Added a total or rising in pond with about 0.75m freeboard on 29 th	f 12 loads: 7 loads by 25 th , 5 loads by 29 th . Levels	
Assessed Risk: Med		
Photos Attached: 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required: Pump out water to WDS if levels threaten to overflow. Need to treat the pond when thawed and discharge.		
Mitigation Condition: P		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke and watch water levels		
Monitoring Frequency: Daily, during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description	
Date and Time: May 15 th – 21 st ,2007	Inspector(s): James Spencer
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N
Site Location Description: The temporary waste rock and ore storage facility currently contains ~14,600 m ³ of material generated during the 2005 underground test mine construction, and consists of a waste rock and ore storage pad, and a water collection sump.	
Weather Conditions:	
15-May-07 Sunny	9
16-May-07 Sunny	9
17-May-07 Snow overnight, snowing lightly day	0
18-May-07 Overcast	5
20-May-07 Overcast in Morning Suppy With Showers after	ernoon 12
21-May-07 Clear all day, sunny warm in sun. Cool brisk N	orth wind 12
Part 2 – Site Assessment	
Activity: Treat water collected on pad with ferric sulphate to remove selenium and other metals.	
Site Description: Levels rising in pond about 0.5m freeboard on May 19 th , dropped 1' on 21 st	
Assessed Risk: Med	
Photos Attached: 3	
Samples Taken: Water samples taken on May 19 th and May 21 st	
Additional Information Attached:	
Part 3 –Mitigation Requirements	
Mitigation Required: Pump out water to WDS if levels threaten to overflow. Treatment completed on WRP. Results due on May 25 th .	
Mitigation Condition: F, Looks like surface melt is subsiding	
Part 4 –Monitoring Requirements	
Follow-up Monitoring: Watch for slumping of earthen dyke and watch water levels.	
Monitoring Frequency: Daily, during rain events or when mitigation applied	
Reporting Requirements: QMLU-0006, QZ01-051	

Part 1 – Site Description		
Inspector(s): Jennie Gjertsen and Melissa Kirby		
Location/Co-ordinates: 6810410 E 440584 N		
and ore storage facility currently contains ~14,600 m ³ of mine construction, and consists of a waste rock and ore		
9		
day 10		
15		
15		
16		
22		
27		
Site Description: Earthen dyke slumping at base, as well as face looking up at road. Soil is very saturated on other side of dyke.		
Photos Attached: -		
Samples Taken: Weekly water quality samples		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Need to discharge as soon as results allow, to reduce risk of saturation of soil.		
Need to do some work on sides of pad to prevent slumping into water		
Miller Constitues Forthern dates all heating and the		
Miligation Condition: Earthen dyke still holding well.		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke level.		
Monitoring Frequency: Daily, during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 5 th – June 11 th , 2007	Inspector(s): James Spencer and Jennie Gjertsen	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a material generated during the 2005 underground test n storage pad, and a water collection sump.	and ore storage facility currently contains ~14,600 m ³ of nine construction, and consists of a waste rock and ore	
Weather Conditions:5-Jun-07Sunny and hot in morning, rainy in afternoon206-Jun-07Windy and cloudy during day, rain at night127-Jun-07Rain last night, cloudy in morning clearing to sunny in afternoon128-Jun-07Sunny and mild159-Jun-07Sunny and warm1510-Jun-07Cloudy and chilly all day, clearing at night10		
Part 2 – Site Assessment	15	
Activity: Water treatment		
Site Description: Earthen dyke slumping at base, and	along east face	
Assessed Risk: Med		
Photos Attached: 1		
Samples Taken: Weekly water quality samples		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: Discharge when treatment passes WQ parameters. Requires more material being placed on east face		
Mitigation Condition: F, Earthen dyke still holding well, but east face continues to lose material into sump		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke level, and off of slope		
Monitoring Frequency: Weekly, during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

WRP water collected within pad, after ferric sulphate treatment (facing S)

Part 1 – Site Description		
Date and Time: June 12 th – June 18 th , 2007	Inspector(s): James Spencer	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a material generated during the 2005 underground test r storage pad, and a water collection sump.	and ore storage facility currently contains ~14,600 m ³ of nine construction, and consists of a waste rock and ore	
Weather Conditions:12-Jun-07Cloudy in morning, sunny and hot in the afternoon, rain in the evening1813-Jun-07Sunny and warm in morning, cloudy in afternoon, rain in the evening1414-Jun-07Cloudy with some sun, showers in the afternoon, clearing in the evening.1415-Jun-07Mixed Sun and cloud, small storm sytems all day1716-Jun-07Mixed Sun and cloud, small storm sytems all day1617-Jun-07Mixed Sun and cloud, small storm sytems all day1518-Jun-07Rain heavy at times, mixed sun and cloud14		
Part 2 – Site Assessment		
Activity: Water treatment		
Site Description: Earthen dyke slumping at base, and dropping.	along east face. Water evaporating and water level	
Assessed Risk: Med		
Photos Attached: 2		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: Discharge when treatment passes WQ parameters. Stable and no more material required to be added to dyke		
Mitigation Condition: G, Earthen dyke holding better and drying up, water levels dropping		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke and water level		
Monitoring Frequency: Weekly, during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: June 19 th – June 25 th , 2007	Inspector(s): James Spencer	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a m ³ of material generated during the 2005 underground and ore storage pad, and a water collection sump.	and ore storage facility currently contains ~14,600 test mine construction, and consists of a waste rock	
 Weather Conditions: 19-Jun-07 Cloudy with Sunny periods 20-Jun-07 Windy from south, mostly sunny 21-Jun-07 Hazy, smoke clouds, sun and haze, no rain 22-Jun-07 Hot and Sunny, rain storms through day 23-Jun-07 Hot and Sunny, rain storms through day 	15 18 20 21 21	
Part 2 – Site Assessment		
Activity: Water treatment in-situ did not drop selenium concentrations to below discharge limits, therefore the water stored at the WRP was trucked to the WDS for further treatment with ferric sulphate.		
Site Description: Earthen dyke slumping at base, and dropping (21 st photo). ~80 m ³ of water removed with v	along east face. Water evaporating and water level water truck to WDS on June 22 nd & 23 rd (23 rd photo)	
Assessed Risk: Low		
Photos Attached: 2		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: Stable and no more material required to be added to dyke		
Mitigation Condition: G, Earthen dyke holding better and drying up, water levels dropping		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke and water level		
Monitoring Frequency: June 19 th : Weekly, during rain events or when mitigation applied		
sure 25 . Discontinued monitoring because the water was removed and the risk was ciminated		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description			
Date and Time: Ju	ne 26 th – July 2 nd , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Tempo facility	orary waste rock and ore storage	Location/Co-ordinates: 6810410 E 440584 N	1
Site Location Desc material generated storage pad, and a	ription: The temporary waste rock a during the 2005 underground test r water collection sump.	and ore storage facility currently contains ~14,6 nine construction, and consists of a waste rock	500 m ³ of and ore
Weather Condition 26-Jun-07 27-Jun-07 28-Jun-07 29-Jun-07 30-Jun-07 1-Jul-07	s: Cloudy Thunderstorm in AM, cloudy with sunr Cloudy with showers, some sunny bre Rain heavy in the morning, cloudy with Cloudy most of the day, sunny and wa Heavy rain at night and all morning, rain	ny periods in afternoon eaks h showers in afternoon, clearing arm in afternoon ain all afternoon, foogy in evening	18 17 17 15 18 12
2-Jul-07	patchy clouds with sunny breaks		15
Part 2 – Site Asse	essment		
Activity: None, rer of water remaining	naining water unable to be moved di in pad.	ue to water truck pump being broken. Probably	/ one truck
Site Description: E	East face continues to slump (roadsid	de). Very little water remaining in pad.	
Assessed Risk: Lo	W		
Photos Attached: 1			
Samples Taken:			
Additional Information Attached:			
Part 3 – Mitigation Requirements			
Mitigation Required: work to be done on east face when pad extension starts			
Mitigation Condition: G, Earthen dyke holding better and drying up, water levels negligible.			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: Watch for slumping of earthen dyke, and east face.			
Monitoring Frequency: Only needed in rain events or when area undergoes further work.			
Reporting Requirements: QMLU-0006, QZ01-051			

Part 1 – Site Description		
Date and Time: July 3 rd – July 9 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a material generated during the 2005 underground test r storage pad, and a water collection sump.	and ore storage facility currently contains ~14,600 m ³ of nine construction, and consists of a waste rock and ore	
Weather Conditions:3-Jul-07cloudy with scattered showers184-Jul-07Thunderstorms in AM with hail, clearing in afternoon to patchy clouds165-Jul-07Rain overnight, clearing to sun in afternoon, late afternoon showers186-Jul-07Rain overnight and during day, cloudy in afternoon157-Jul-07Cloudy throughout day, showers158-Jul-07Showers and cloudy159-Jul-07Cloudy with sunny periods20		
Part 2 – Site Assessment		
Activity: None, water truck still broken. Probably one t	ruck of water remaining in pad.	
Site Description: East face continues to slump (roadsi	de). Very little water remaining in pad.	
Assessed Risk: Low		
Photos Attached: 1		
Samples Taken:		
Additional Information Attached:		
Part 3 –Mitigation Requirements		
Mitigation Required: work to be done on east face when pad extension starts, or more waste rock added to slumping face.		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke, and east face.		
Monitoring Frequency: Only needed in rain events or when area undergoes further work.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: August 7 th - August 13 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a m ³ of material generated during the 2005 underground and ore storage pad, and a water collection sump.	and ore storage facility currently contains ~14,600 test mine construction, and consists of a waste rock	
Weather Conditions:7-Aug-07cloudy in the morning with rain clearing in afternoon148-Aug-07Cool mostly cloudy, rain129-Aug-07Sunny with cloudy periods, very cool in morning1810-Aug-07Cloudy and cool1711-Aug-07Cloudy and cool1212-Aug-07Frost in morning, sunny1813-Aug-07Cloudy and warm17		
Part 2 – Site Assessment		
Activity: Water has been removed from Pad. Work is starting on area for pad extension and lining. August 10 th – Area grubbed August 11 th – Organics removed and stockpiled at organics pile for new camp site Site Description: Liner and clay lined sides and bottom. Area has been cleared, for liner installation. Probably some fill required before installation of liner. Surveyor to site next week. Assessed Risk: Low Photos Attached: 8: 4 before grubbing, 4 after grubbing Samples Taken: soil sampled at new camp site for ABA testwork to determine if it can be used for filling and levelling. Additional Information Attached: N/A Part 3 –Mitigation Requirements		
Mitigation Required: work to be done on east face when pad extension starts, or sloping of slumping face. Grubbing of area for extension has revealed a pretty steep slope now no longer covered in vegetation. Construction supervisor to do some road work to lessen slope in the following weeks. Mitigation Condition: Good		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen berm, and east face.		
Monitoring Frequency: Daily during construction then when there is a change of condition and work being one in area.		
Reporting Requirements: B Licence		

Part 1 – Site Description		
Date and Time: August 14 th - August 21 st , 2007	Inspector(s): James Spencer	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock m ³ of material generated during the 2005 underground and ore storage pad, and a water collection sump.	and ore storage facility currently contains ~14,600 d test mine construction, and consists of a waste rock	
Weather Conditions:		
14-Aug-07 Heavy rain over night, low cloud and fog in n	norning, clearing in afternoon 15	
15-Aug-07 Sunny bluebird, hot	26	
16-Aug-07 Sunny bluebird, hot	24	
17-Aug-07 Sunny bluebird, hot	27	
18-Aug-07 Sunny bluebird, hot	24	
19-Aug-07 Hot in morning, broken cloud in afternoon, ra	ain at airstrip 23	
20-Aug-07 hot most of day, some broken cloud, rain in	evening 26	
21-Aug-07 Sunny in the morning, cloudy in the afternoo	n 20	
Part 2 – Site Assessment		
Activity: Extension of Phase I pad to Phase II		
Site Description: Haul road above waste rock pad widened and area surveyed and being cut to accommodate liner and 2:1 grades. Cutting down road and areas where lock trench will be dug on the banks		
Assessed Risk: Low		
Photos Attached: 3		
Samples Taken: soil sampled at new camp site that can be used for filling and levelling.		
Additional Information Attached: N/A		
Part 3 –Mitigation Requirements		
Mitigation Required: None required		
Mitigation Condition: N/A		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch for slumping of earthen dyke, and east face.		
Monitoring Frequency: Daily during construction and when there is a change of condition and work being done in area.		
Reporting Requirements: B licence		

Yukon Zinc

Part 1 – Site Description			
Date and Time: Augus	st 21 st - August 28 th , 2007	Inspector(s): Jennie Gjertsen	
Site Name: Temporal facility	ry waste rock and ore storage	Location/Co-ordinates: 6810410 E 440584	4 N
Site Location Description: The temporary waste rock and ore storage facility currently contains ~14,600 m ³ of material generated during the 2005 underground test mine construction, and consists of a waste rock and ore storage pad, and a water collection sump.			
Weather Conditions: 21-Aug-07 22-Aug-07 23-Aug-07 24-Aug-07 25-Aug-07 26-Aug-07 27-Aug-07 28-Aug-07	Sunny in the morning, cloudy in the Warm with thundershowers throug Cold in the morning with thunders Rain in the morning, cloudy Mostly cloudy, some showers Frost in morning, sunny Sunny, some rain/hail Sunny	ne afternoon ghout the day howers, clouds and rain all day	20 20 15 14 15 12 12 12 14
Part 2 – Site Assess	ment		
Activity: Packer was in this week to strengthen and pack basin of the new pad. Water from inside the pad was removed and pumped to the waste rock sump. The clay berm was removed and the old liner exposed, so that welding of the old liner and the new liner could take place. Lock trench was started in preparation for liner installation			
Site Description: Area has been prepped for liner			
Assessed Risk: Low			
Photos Attached:			
Samples Taken: none			
Additional Information Attached: none			
Part 3 – Mitigation Re	equirements		
Mitigation Required: None required			
Mitigation Condition: G			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: As liner is installed, make sure that it is not compromised by equipment or rocks			
Monitoring Frequency: When there is a change of condition and work being done in area.			

Reporting Requirements: QMLU-0006, QZ01-051

Part 1 – Site Description			
Date and Time: Sept 4 th - Sept 10 th ,2007 Inspector(s): Jennie Gjertsen			
Site Name: Temporary waste rock and ore storage Location/Co-ordinates: 6810410 E 440584 facility		584 N	
Site Location Desc of material genera ore storage pad, a	cription: The temporary waste rock a ted during the 2005 underground tes nd a water collection sump.	Ind ore storage facility currently contains - It mine construction, and consists of a wat	~14,600 m ³ ste rock and
Weather Condition	IS:		
4-Sep-07 Very frosty, Sun in the morning, overcast in the afternoon 8		8	
5-Sep-07	Sunny with clouds		8
6-Sep-07	Cloudy or overcast		11
7-Sep-07	Cloudy with sunny breaks and occasio	nal short showers	12
8-Sep-07	Frost in morning, overcast		7
9-Sep-07	Overcast		8
10-Sep-07	Very gray all day, some showers in eve	ening	10
Part 2 – Site Asse	essment		
Activity: WRP liner	installation.		
Site Description: Geotextile has been laid down and welded for entire base of pad. Welding of liner approximately one third complete. Looking to finish welding liner on Friday. Project will be completed once area is covered with another layer of geotextile and then lined with clay.			
Assessed Risk: Lo	W		
Photos Attached: 4			
Samples Taken: none			
Additional Information Attached: none			
Part 3 –Mitigation Requirements			
Mitigation Required: None required			
Mitigation Condition: N/A			
Part 4 –Monitoring Requirements			
Follow-up Monitoring: As liner is installed, make sure that it is not compromised by equipment or rocks			
Monitoring Frequency: Daily until completion of Phase II and then when there is a change of condition and work being done in area.		dition and	
Reporting Requirements: B Licence			

Part 1 – Site Description		
Date and Time: Sept 11 th - Sept 22 nd ,2007	Inspector(s): James Spencer	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a of material generated during the 2005 underground tes ore storage pad, and a water collection sump.	nd ore storage facility currently contains ~14,600 m ³ t mine construction, and consists of a waste rock and	
Weather Conditions:		
11-Sep-07 Sunny and warm	15	
12-Sep-07 Sunny and warm	14	
13-Sep-07 Sunny and warm	14	
14-Sep-07 Mixed sun and cloud	13	
15-Sep-07 rain showers all day, clearing in afternoon	11	
16-Sep-07 Bright sunny	14	
17-Sep-07 Cool and overcast, dusting of snow on high pea	aks 9	
18-Sep-07 cool and light flurries	8	
19-Sep-07 Overcast, with flurries throughout the day	6	
20-Sep-07 Flurries, clearing in the afternoon	7	
21-Sep-07 Flurries, rain in camp in the afternoon, low over	cast 5	
22-Sep-07 Clear breaks, cloudy	6	
Part 2 – Site Assessment		
Activity: WRP liner installation.		
Site Description: Completion of liner installation, and beginning to line the WRP with material from the new camp site.		
Assessed Risk: Low		
Photos Attached: 8		
Samples Taken: none		
Additional Information Attached: none		
Part 3 – Mitigation Requirements		
Mitigation Required: None required		
Mitigation Condition: N/A		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Until the clay lining is complete		
Monitoring Frequency: Daily until completion of Phase II addition and then when there is a change of condition and work being done in area.		
Reporting Requirements: B Licence		

Part 1 – Site Description		
Date and Time: Sept 23 rd – Oct 1 st , 2007	Inspector(s): James Spencer	
Site Name: Temporary waste rock and ore storage facility	Location/Co-ordinates: 6810410 E 440584 N	
Site Location Description: The temporary waste rock a of material generated during the 2005 underground tes ore storage pad, and a water collection sump.	nd ore storage facility currently contains ~14,600 m ³ t mine construction, and consists of a waste rock and	
Weather Conditions:23-Sep-07mixed overcast flurries24-Sep-07mixed rain and flurries25-Sep-07rain showers all day, clearing in evening25-Sep-07Overcast, foggy26-Sep-07Overcast, foggy27-Sep-07Overcast, foggy28-Sep-07Some clearing still overcast with low ceilings29-Sep-07coolish, broken cloud cover30-Sep-07Cool snow flurries-2		
Part 2 – Site Assessment	- 1	
Activity: Complete WRP clay lining		
Site Description: Line the WRP with clay from the new camp site area for ore placement from the north, and waste rock placement from the south.		
Assessed Risk: Low		
Photos Attached: 3		
Samples Taken: none		
Additional Information Attached: none		
Part 3 – Mitigation Requirements		
Mitigation Required: None required		
Mitigation Condition: G		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Finished clay lining on the 24 th , therefore no more monitoring required unless changes occur		
Monitoring Frequency: When there is a change of condition and work being done in area.		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: April 20 th – 26 th ,2007	Inspector(s): James Spencer	
Site Name: WRS	Location/Co-ordinates: Water collection sump at southwest corner of pad	
Site Location Description: Approximately 221 m ³ lined waste rock pile. All water there drains through to the V at north end of sump. Sits in Go Creek drainage.	I sump. Designed to collect contaminated storage from WRS Ore and waste rock piled ~100' high and steep (1.5:1)	
Weather Conditions: Still 2-3' snow but surface melt s	tarting at lower elevations.	
Part 2 – Site Assessment		
Activity: Monitoring started as we monitor the surface melt and ground melt through spring run-off.		
Site Description: Surface melt starting to show wetting in sump around 1m freeboard, levels rising ~1" day		
Assessed Risk: Med		
Photos Attached: WRS - 2		
Samples Taken: -		
Additional Information Attached: -		
Part 3 – Mitigation Requirements		
Mitigation Required: Pump out water to WDS if levels and discharge ASAP.	threaten to overflow. Need to treat the pond when thawed	
Mitigation Condition: G		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Watch water levels		
Monitoring Frequency: Daily, during rain events or whe	en mitigation applied	
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: May 15 th – 21 st ,2007	Inspector(s): James Spencer	
Site Name: WRS	Location/Co-ordinates: Water collection sump at southwest corner of pad	
Site Location Description: Approximately 221 m ³ lined sump. Designed to collect contaminated storage from waste rock pile. All water there drains through to the WRS Ore and waste rock piled ~100' high and steep (1.5:1) at north end of sump. Sits in Go Creek drainage.		
Weather Conditions:		
15-May-07 Sunny	9	
16-May-07 Sunny	9	
17-May-07 Snow overnight, snowing lightly day		
18-May-07 Overcast		
19-May-07 Sunny 9		
20-May-07 Overcast in Morning, Sunny With Showers afternoon		
21-May-07Clear all day, sunny warm in sun, Cool brisk North wind12		
Part 2 – Site Assessment		
Activity: Monitoring started, monitor the surface melt and ground melt through spring run-off.		
Site Description: Surface melt starting to show wetting in sump, around 1m freeboard, levels rising ~1" day		
Assessed Risk: Med		
Photos Attached: WRS - 3		
Samples Taken: -		
Additional Information Attached: -		
Part 3 –Mitigation Requirements		
Mitigation Required: Pump out water to WDS if levels threaten to overflow. Need to treat the pond when thawed and discharge ASAP.		
Mitigation Condition: G		
Part 4 – Monitoring Requirements		
Follow-up Monitoring: Watch water levels		
Monitoring Frequency: Daily, during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Part 1 – Site Description		
Date and Time: May 22 nd – 28 th ,2007	Inspector(s): James Spencer	
Site Name: WRS	Location/Co-ordinates: Water collection sump at southwest corner of pad	
Site Location Description: Approximately 221 m ³ lined sump. Designed to collect contaminated storage from waste rock pile. All water there drains through to the WRS Ore and waste rock piled ~100' high and steep (1.5:1) at north end of sump. Sits in Go Creek drainage.		
Weather Conditions:		
22-May-07 Clear and Sunny	14	
23-May-07 Clear and Sunny	15	
24-May-07 Clear and Sunny		
25-May-07 Clear and Sunny		
26-May-07 Cooler and light rain, front approaching from south		
27-May-07 Sunny and hot		
28-iviay-07 Sunny and warm 15		
Part 2 – Site Assessment		
Activity: Monitoring started as we monitor the surface melt and ground melt through spring run-off.		
Site Description: Surface melt continues, water rising 1" per day, 0.30 m freeboard		
Assessed Risk: Med		
Photos Attached: WRS		
Samples Taken: yes, water quality, May 24,26,28		
Additional Information Attached:		
Part 3 – Mitigation Requirements		
Mitigation Required: Pump out water to WDS if levels threaten to overflow. Treated pond on May 22, 23, results due May 31 st .		
Mitigation Condition: G		
Part 4 –Monitoring Requirements		
Follow-up Monitoring: Watch water levels		
Monitoring Frequency: Daily, during rain events or when mitigation applied		
Reporting Requirements: QMLU-0006, QZ01-051		

Date and Time: May 29 th to June 4 th , 2007 Inspector(s): Jennie Gjertsen and Melissa Kirby Site Name: WRS Location/Co-ordinates: Water collection sump at southwest corner of pad Site Location Description: Approximately 221th ³ lined sump. Designed to collect contaminated storage from waste rock pile. All water there drains through to the WRS Ore and waste rock piled ~100' high and steep (1.5:1) at north end of sump. Sits in Ge Creek drainage. Weather Conditions: 9 29-May-07 Sunny and warm 9 30-May-07 Sunny and hot 22 4-Jun-07 Sunny and hot 21 Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Samples Taken: - Additional Information Attached: - Part 3 –Mitigation Requirements Mitigation Condition: G <t< th=""><th>Part 1 – Site Description</th><th></th></t<>	Part 1 – Site Description	
Site Name: WRS Location/Co-ordinates: Water collection sump at southwest corner of pad Site Location Description: Approximately 221m ³ lined sump. Designed to collect contaminated storage from waste rock pile. All water there drains through to the WRS Ore and waste rock piled ~100' high and steep (1.5:1) at north end of sump. Sits in Go Creek drainage. Weather Conditions: 9 29-May-07 Sunny and warm 9 30-May-07 Rain intermix with some sun hail late in the day 10 11-May-07 Sunny 15 -Joun-07 Sunny and hot 22 4-Jou-07 Sunny and hot 22 4-Jun-07 Sunny and hot 27 Part 2 – Site Assessment 27 Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 –Mitigation Requirements Image: Steep Ste	Date and Time: May 29 th to June 4 th , 2007	Inspector(s): Jennie Gjertsen and Melissa Kirby
Site Location Description: Approximately 221m ³ lined sump. Designed to collect contaminated storage from waste rock pile. All water there drains through to the WRS Ore and waste rock piled ~100' high and steep (1.5:1) at north end of sump. Sits in Go Creek drainage. Weather Conditions: 29-May-07 Sunny and warm 9 30-May-07 Rain intermix with some sun hail late in the day 10 31-May-07 Sunny 7 Rain intermix with some sun hail late in the day 10 31-May-07 Sunny 15 1-Jun-07 Sunny 15 2-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 22 Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Condition: G Part 4 - Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Site Name: WRS	Location/Co-ordinates: Water collection sump at southwest corner of pad
Weather Conditions: 9 29-May-07 Sunny and warm 9 30-May-07 Rain intermix with some sun hail late in the day 10 31-May-07 Sunny 15 1-Jun-07 Sunny 15 2-Jun-07 Sunny 16 3-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 27 Part 2 – Site Assessment 27 Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 – Mitigation Requirements Image: Samples Taken: - Image: Samples Taken: - Additional Information Attached: - Image: Samples Taken: - Image: Samples Taken: - Mitigation Condition: G Image: Samples Samples Image: Samples Samples Samples Part 4 – Monitoring Requirements Image: Samples Samples Image: Samples Samples Follow-up Monitoring: Watch water levels Image: Samples Samples Image: Samples Samples Monitoring Frequency: Daily during rain events or when	Site Location Description: Approximately 221m ³ lined su waste rock pile. All water there drains through to the WF at north end of sump. Sits in Go Creek drainage.	ump. Designed to collect contaminated storage from RS Ore and waste rock piled ~100' high and steep (1.5:1)
29-May-07 Sunny and warm 9 30-May-07 Rain intermix with some sun hail late in the day 10 31-May-07 Sunny 15 1-Jun-07 Sunny 15 2-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 27 Part 2 - Site Assessment 27 Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - - Samples Taken: - - Additional Information Attached: - - Part 3 - Mitigation Requirements - Mitigation Condition: G - Part 4 - Monitoring Requirements - Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051 -	Weather Conditions:	
30-May-07 Rain intermix with some sun hail late in the day 10 31-May-07 Sunny 15 1-Jun-07 Sunny 15 2-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 22 Part 2 - Site Assessment 27 Part 2 - Site Assessment 27 Activity: None 27 Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - 28 Samples Taken: - 24 Additional Information Attached: - 29 Part 3 - Mitigation Requirements 20 Mitigation Condition: G 20 Part 4 - Monitoring Requirements 20 Monitoring: Watch water levels 20 Monitoring Frequency: Daily during rain events or when mitigation applied 20 Reporting Requirements: QMLU-0006, QZ01-051 20	29-May-07 Sunny and warm	9
31-May-07 Sunny 15 1-Jun-07 Sunny 16 3-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 22 Part 2 - Site Assessment 27 Part 2 - Site Assessment 27 Activity: None 25 Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - 25 Samples Taken: - 3-diditional Information Attached: - Part 3 - Mitigation Requirements 25 Mitigation Condition: G 26 Part 4 - Monitoring Requirements 27 Monitoring: Watch water levels 26 Monitoring Frequency: Daily during rain events or when mitigation applied 27 Reporting Requirements: QMLU-0006, QZ01-051 27	30-May-07 Rain intermix with some sun hail late in the da	y 10
1-Jun-07 Sumy 15 2-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 27 Part 2 - Site Assessment Activity: None Site Assessment Activity: None Site Assessment Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Required: - Image: Samples Taken: - Mitigation Required: - Image: Samples Taken: - Mitigation Required: - Image: Samples Taken: - Mitigation Condition: G Image: Samples Taken: - Mitigation Condition: G Image: Samples Taken: - Follow-up Monitoring: Watch water levels Image: Samples Taken: - Monitoring Frequency: Daily during rain events or when mitigation applied Image: Samples Taken: - Reporting Requirements: QMLU-0006, QZ01-051 Image: Samples Taken: -	31-May-07 Sunny	15
2-Jun-07 Sunny 16 3-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 27 Part 2 – Site Assessment Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 – Mitigation Requirements Mitigation Condition: G Image: Second cols of the second cols of	1-Jun-07 Sunny	15
3-Jun-07 Sunny and hot 22 4-Jun-07 Sunny and hot 27 Part 2 - Site Assessment 27 Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Image: Condition: G Mitigation Condition: G Image: Condition: G Part 4 - Monitoring Requirements Image: Condition: Condition: G Follow-up Monitoring: Watch water levels Image: Condition applied Reporting Requirements: QMLU-0006, QZ01-051 Image: Condition: Condit	2-Jun-07 Sunny	16
4-Jun-07 Sunny and hot 27 Part 2 - Site Assessment	3-Jun-07 Sunny and hot	22
Part 2 - Site Assessment Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Condition: G Part 4 - Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	4-Jun-07 Sunny and hot	27
Activity: None Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Mitigation Condition: G Part 4 -Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Part 2 – Site Assessment	
Site Description: Surface melt has slowed and overflow not as much a concern Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Condition: G Part 4 - Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Activity: None	
Assessed Risk: Low, except during periods of high rainfall Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 - Mitigation Requirements Mitigation Required: - Mitigation Condition: G Part 4 - Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Site Description: Surface melt has slowed and overflow	not as much a concern
Photos Attached: - Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Mitigation Condition: G Part 4 -Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Assessed Risk: Low, except during periods of high rainfa	all
Samples Taken: - Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Mitigation Condition: G Part 4 -Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Photos Attached: -	
Additional Information Attached: - Part 3 -Mitigation Requirements Mitigation Required: - Mitigation Condition: G Part 4 -Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Samples Taken: -	
Part 3 –Mitigation Requirements Mitigation Required: - Mitigation Condition: G Part 4 –Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Additional Information Attached: -	
Mitigation Required: - Mitigation Condition: G Part 4 –Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Part 3 – Mitigation Requirements	
Mitigation Condition: G Part 4 –Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Mitigation Required: -	
Part 4 – Monitoring Requirements Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Mitigation Condition: G	
Follow-up Monitoring: Watch water levels Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Part 4 – Monitoring Requirements	
Monitoring Frequency: Daily during rain events or when mitigation applied Reporting Requirements: QMLU-0006, QZ01-051	Follow-up Monitoring: Watch water levels	
Reporting Requirements: QMLU-0006, QZ01-051	Monitoring Frequency: Daily during rain events or when	mitigation applied
	Reporting Requirements: QMLU-0006, QZ01-051	

Part 1 – Site Description						
Date and Time: June 5 th – 11 th , 2007	Inspector(s): James Spencer and Jennie Gjertsen					
Site Name: WRS	Location/Co-ordinates: Water at southwest corner of pad					
Site Location Description: Approximately 221m ³ lined waste rock pile. All water there drains through to the V (1.5:1) at north end of sump. Sits in Go Creek drainag	sump. Designed to collect contaminated storage from VRS Ore and waste rock piled ~100' high and steep e.					
Weather Conditions:						
Part 2 – Site Assessment						
Activity: Water treatment						
Site Description: no changes have been observed. Me	It has finished with no overflow from the sump.					
Assessed Risk: Med						
Photos Attached: WRS - 1						
Samples Taken: -						
Additional Information Attached: -						
Part 3 – Mitigation Requirements						
Mitigation Required: none						
Mitigation Condition: G						
Part 4 – Monitoring Requirements						
Follow-up Monitoring: Watch water levels						
Monitoring Frequency: Daily						
Reporting Requirements: QMLU-0006, QZ01-051						

Part 1 – Site Description							
Date and Time: June 12 th – 18 th , 2007	Inspector(s): James Spencer						
Site Name: WRS	Location/Co-ordinates: Water collection s southwest corner of pad	sump at					
Site Location Description: Approximately 221 m ³ lined waste rock pile. All water there drains through to the V (1.5:1) at north end of sump. Sits in Go Creek drainag	sump. Designed to collect contaminated s VRS Ore and waste rock piled ~100' high a e.	storage from and steep					
Weather Conditions:12-Jun-07Cloudy in morning, sunny and hot in the after13-Jun-07Sunny and warm in morning, cloudy in afterned14-Jun-07Cloudy with some sun, showers in the afterned15-Jun-07Mixed Sun and cloud, small storm systems al16-Jun-07Mixed Sun and cloud, small storm systems al17-Jun-07Mixed Sun and cloud, small storm systems al18-Jun-07Rain heavy at times, mixed sun and cloudPart 2 – Site Assessment	noon, rain in the evening oon, rain in the evening oon, clearing in the evening. I day I day I day	18 14 14 17 16 15 14					
Activity: Water treatment							
Site Description: Melt has finished with no overflow fro	om the sump. Evaporation continues to low	ver water					
Assessed Risk: Med							
Samples Taken:							
Additional Information Attached:							
Part 3 –Mitigation Requirements							
Mitigation Required: none							
Mitigation Condition: G, Water levels still 5-6' from ove	rflow, June 16: Water levels 8" from overflo	ow					
Part 4 –Monitoring Requirements							
Follow-up Monitoring: Watch water levels							
Monitoring Frequency: June 12 th Daily, During rain even changes noted	Monitoring Frequency: June 12 th Daily, During rain events or changes noted, June 18 th Weekly, rain or changes noted						
Reporting Requirements: QMLU-0006, QZ01-051							

Part 1 – Site Description						
Date and Time: June 19 th – 25 th , 2007	Inspector(s): James Spencer					
Site Name: WRS	Location/Co-ordinates: Water collection sump at southwest corner of pad					
Site Location Description: Approximately 221 m ³ lined waste rock pile. All water there drains through to the V (1.5:1) at north end of sump. Sits in Go Creek drainag	sump. Designed to collect contaminated storage from VRS Ore and waste rock piled ~100' high and steep e.					
Weather Conditions: 19-Jun-07 Cloudy with Sunny periods 20-Jun-07 Windy from south, mostly sunny 21-Jun-07 Hazy, smoke clouds, sun and haze, no rain 22-Jun-07 Hot and Sunny, rain storms through day 23-Jun-07 Hot and Sunny, rain storms through day 24-Jun-07 Hot in morning, rain storm afternoon	15 18 20 21 21 22					
Part 2 – Site Assessment						
Activity: Water treatment						
Site Description: Melt has finished with no overflow from levels throughout the week. Still minor risk of WRP room statements of WRP room statements of WRP room statements and statements of the statement of the	om the sump. Evaporation continues to lower water ck slipping in to sump and overflowing the area					
Assessed Risk: Med						
Photos Attached: WRS - 1						
Samples Taken: -						
Additional Information Attached: -						
Part 3 – Mitigation Requirements						
Mitigation Required: Waiting for water quality results, the discharge	nen will pump out water and transfer to WDS for					
Mitigation Condition: G, June 19, water levels 11" from	overflow June 24: Water levels 14" from overflow					
Part 4 – Monitoring Requirements						
Follow-up Monitoring: Watch water levels						
Monitoring Frequency: Weekly, rain or changes noted						
Reporting Requirements: QMLU-0006, QZ01-051						

Part 1 – Site Description						
Date and Time: June 26 th - July 2 nd , 2007	Inspector(s): Jennie Gjertsen					
Site Name: WRS	Location/Co-ordinates: Water collection sump at southwest corner of pad					
Site Location Description: Approximately 221 m^3 line waste rock pile. All water there drains through to the (1.5:1) at north end of sump. Sits in Go Creek draina	d sump. Designed to collect contaminated storage from WRS Ore and waste rock piled ~100' high and steep uge.					
Weather Conditions:26-Jun-07Cloudy27-Jun-07Thunderstorm in AM, cloudy with sunn28-Jun-07Cloudy with showers, some sunny brea29-Jun-07Rain heavy in the morning, cloudy with30-Jun-07Cloudy most of the day, sunny and wa1-Jul-07Heavy rain at night and all morning, rai2-Jul-07patchy clouds with sunny breaks	18y periods in afternoon17aks17showers in afternoon, clearing15rm in afternoon18n all afternoon, foggy in evening1515					
Part 2 – Site Assessment						
Activity: Water treatment. Several attempts to help ev minutes at a time	aporation by spraying water onto WRP rock for ten					
Site Description: Evaporation continues to lower wat rock slipping in to sump and overflowing the area.	er levels throughout the week. Still minor risk of WRP					
Assessed Risk: Med						
Photos Attached: WRS						
Samples Taken:						
Additional Information Attached:						
Part 3 – Mitigation Requirements						
Mitigation Required: Retreating is ongoing, must exer saturation and slipping of material. Ditching is require to minimize rainfall runoff into sump.	cise caution when spraying the waste rock to avoid d in the road across from the top of the waste rock pad,					
Mitigation Condition: G, water level was not affected a	idversely my rain					
Part 4 – Monitoring Requirements						
Follow-up Monitoring: Watch water levels						
Monitoring Frequency: Weekly, rain or changes noted						
Reporting Requirements: QMLU-0006, QZ01-051						

Part 1 – Site Description						
Date and Time: July 3 rd – July 9 th , 2007	Inspector(s): Jennie Gjertsen					
Site Name: WRS	Location/Co-ordinates: Water at southwest corner of pad					
Site Location Description: Approximately $221m^3$ lined waste rock pile. All water there drains through to the V (1.5:1) at north end of sump. Sits in Go Creek drainage	sump. Designed to collect contaminated storage from /RS Ore and waste rock piled ~100' high and steep je.					
Weather Conditions: 3-Jul-07 cloudy with scattered showers 4-Jul-07 Thunderstorms in AM with hail, clearing in aft 5-Jul-07 Rain overnight, clearing to sun in afternoon, la 6-Jul-07 Rain overnight and during day, cloudy in after 7-Jul-07 Cloudy throughout day, showers 8-Jul-07 Showers and cloudy 9-Jul-07 Cloudy with sunny periods Part 2 – Site Assessment Activity: Water treatment	ernoon to patchy clouds 16 ate afternoon showers 18 noon 15 15 15 20					
Site Description: Evaporation continues to lower water levels throughour Still minor risk of WRP rock slipping in to sump and ove Ditching work was done this week on the road above the during periods of melt/runoff/rainfall Assessed Risk: Low	the week. erflowing the area. he WRS, to minimize the water flowing into the sump					
Photos Attached: WRS						
Samples Taken:						
Additional Information Attached:						
Part 3 – Mitigation Requirements						
Mitigation Required: Retreating is ongoing, must exerc saturation and slipping of material.	se caution when spraying the waste rock to avoid					
Mitigation Condition: G, water level was not affected ad	lversely my rain					
Part 4 – Monitoring Requirements						
Follow-up Monitoring: Watch water levels						
Monitoring Frequency: Weekly, rain or changes noted						
Reporting Requirements: QMLU-0006, QZ01-051						

Appendix B Acid Base Accounting and Shake Flask Testing Lab Reports

Appendix B includes the following lab reports:

From ALS Laboratory Group – Minerals Division – ALS Chemex: VA07040287 VA07048595 VA07065971 VA07073067 VA07090006

From ALS Laboratory Group – Environmental Division: L539652 L557308

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: YUKON ZINC CORPORATION 701-475 HOWE ST VANCOUVER BC V6C 2B3

OA-ELE07

S-CAL06

Page: 1 Finalized Date: 2-MAY-2007 Account: MPO

LECO

CE	RTIFICATE VA07040	287		SAMPLE PREPARATIO	N
			ALS CODE	DESCRIPTION	
Project: WOLVERINE P.O. No.: This report is for 2 Rock samp 24-APR-2007. The following have access	les submitted to our lab in Var	ncouver, BC, Canada on certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
PAMELA LADYMAN	RANDY ULAFSON			ANALYTICAL PROCEDUF	RES
			ALS CODE	DESCRIPTION	INSTRUMENT
			S-GRA06 S-GRA06a OA-VOL08 S-IR08	Sulfate Sulfur-carbonate leach Sulfate Sulfur (HCI leachable) Basic Acid Base Accounting Total Subbur (Leco)	LECO

To: YUKON ZINC CORPORATION ATTN: PAMELA LADYMAN 701-475 HOWE ST VANCOUVER BC V6C 2B3

Plesder

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Paste pH

Sulfide Sulfur (calculated)

Keith Rogers, Executive Manager Vancouver Laboratory

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: YUKON ZINC CORPORATION 701-475 HOWE ST VANCOUVER BC V6C 2B3 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 2-MAY-2007 Account: MPO

Project: WOLVERINE

										CERTIFI	CATE (OF ANALYSIS	VA07040287	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA-VOL08 MPA ICaCO3/10001 0.3	OA-VOL08 NNP ICaCO3/1000t 1	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 NP tCaCO3/1000t 1	OA-ELE07 pH Unity 0.1	OA-VOL08 Ratio (N Unity 0.01	S-IR08 S % 0.01	S-GRA06 S % 0.01	S-CAL06 S % 0.01	S-GRA06a S % 0.01		
VTM NAD 83 E-0439851 N-681094 VTM NAD 83 E-0438265 N-681244	8 3	9.32 8.84	6.6 0.9	-3 7	1	4 8	6.2 7.2	0.61 8.53	0.21 0.03	0.19 <0.01	0.02 0.03	0.20 <0.01		
							·							

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

5: YUKON ZINC CORPORATION 701-475 HOWE ST VANCOUVER BC V6C 2B3

S-IR08

OA-ELE07

S-CAL06

Page: 1 Finalized __e: 1-JUN-2007 Account: MPO

INSTRUMENT

LECO

LECO

LECO

SAMPLE PREPARATION

ANALYTICAL PROCEDURES

DESCRIPTION

DESCRIPTION

Received Sample Weight

Fine crushing - 70% <2mm

Pulverize split to 85% <75 um

Sulfate Sulfur-carbonate leach

Sulfate Sulfur (HCI leachable)

Basic Acid Base Accounting

Sulfide Sulfur (calculated)

Total Sulphur (Leco)

Paste pH

Split sample - riffle splitter

Sample login - Rcd w/o BarCode

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

CER	RTIFICATE VA07048	595	
			ALS CODE
Project: WOLVERINE P.O. No.: This report is for 1 Rock sample 16-MAY-2007. The following have access to PAMELA LADYMAN	e submitted to our lab in Vanc o data associated with this RANDY OLAFSON	ouver, BC, Canada on certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31
			ALS CODE S-GRA06 S-GRA06a OA-VOL08

YUKON ZINC CORPORATION
ATTN: RANDY OLAFSON
701-475 HOWE ST
VANCOUVER BC V6C 2B3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

aurence (1)

Lawrence Ng, Laboratory Manager - Vancouver

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com >: YUKON ZINC CORPORATION 701-475 HOWE ST VANCOUVER BC V6C 2B3 Page: 2 - A Toy → Pages: 2 (A) Finalized Date: 1-JUN-2007 Account: MPO

Project: WOLVERINE

									(CERTIFI	CATE C	DF ANALYSIS	VA07048595
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0,02	OA-VOL08 MPA tCaCO3/1000t 0.3	OA-VOL08 NNP tCaCO3/1000t 1	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 NP tCaCO3/1000t 1	OA-ELE07 pH Unity 0.1	OA-VOL08 Ratio (N Unity 0.01	S-IR08 S % 0.01	S-GRA06 S % 0.01	S-CAL06 S % 0.01	S-GRA06a S % 0.01	
КМ 2.5	146-	3.08	1.9	3	1	5	6.6 7 5 , 5	2.67 72	0.06	0.05 ∠ C	0.01 - 390	0.05	
	X												

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschempex.com 10	-o: YUK 701-4 VAN	ON ZINC CORP 175 HOWE ST COUVER BC V6	ORATION C 2B3	Page: 1 Finalized Date: 12-JUL-2007 Account: MPO
CERTIFICATE VA0706597	∇		SAMPLE PREPAR	ATION
/ RECEIVED	िति	ALS CODE	DESCRIPTION	
Project: WOLVERINE P.O. No.: This report is for 2 Rock samples submitted to our lab in Vancouver, BC, Canada o 25-JUN-2007. The following have access to data associated with this certificate: PAMELA LADYMAN RANDY OLAFSON	17 41 n 12	WEI-21 CRU-QC LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Crushing QC Test Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	Ī
			ANALYTICAL PROC	EDURES
		ALS CODE	DESCRIPTION	INSTRUMENT
		S-GRA06 S-GRA06a OA-VOL08 S-IR08	Sulfate Sulfur-carbonate leach Sulfate Sulfur (HCI leachable) Basic Acid Base Accounting Total Sulphur (Leco) Basto pH	LECO
		S-CAL06	Sulfide Sulfur (calculated)	LECO

To: YUKON ZINC CORPORATION ATTN: PAMELA LADYMAN 701-475 HOWE ST VANCOUVER BC V6C 2B3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Sulfide Sulfur (calculated)

aurence

Lawrence Ng, Laboratory Manager - Vancouver

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1
 To: YUKON ZINC CORPORATION

 701-475 HOWE ST

 VANCOUVER BC V6C 2B3

Page: 2 - A Totar # Pages: 2 (A) Finalized Date: 12-JUL-2007 Account: MPO

Project: WOLVERINE

CERTIFICATE OF ANALYSIS VA07065971

Samp	le Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA-VOL08 MPA tCaCO3/1000t 0.3	OA-VOL08 NNP tCaCO3/1000t 1	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 NP tCaCO3/1000t 1	OA-ELE07 pH Unity 0.1	OA-VOL08 Ratio (N Unity 0.01	S-IR08 S % 0.01	S-GRA06 S % 0.01	S-CAL06 S % 0.01	S-GRA06a S % 0.01	
КМ 2 КМ 2	OLD ROAD A		4.76 4.64	0.3 0.3	10 12	1	10 12	7.7 7.7	32.00 38.40	0.01 0.01	0.01 0.01	<0.01 <0.01	<0.01 0.01	

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com	KON ZINC CORP 475 HOWE ST NCOUVER BC V6	ORATION IC 2B3	Page: 1 Finalized Date: 25-JUL-2007 Account: MPO
CERTIFICATE VA07073067	-	SAMPLE PREPARA	ΓΙΟΝ
	ALS CODE	DESCRIPTION	
Project: Wolverine P.O. No.: This report is for 1 Rock sample submitted to our lab in Vancouver, BC, Canada on 13-JUL-2007. The following have access to data associated with this certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
PAMELA LADYMAN MARY MCDOUGALL RANDY OLAFSON		ANALYTICAL PROCE	DURES
	ALS CODE	DESCRIPTION	INSTRUMENT
	S-GRA06 S-GRA06a QA-VQL08	Sulfate Sulfur-carbonate leach Sulfate Sulfur (HCI leachable) Basic Acid Base Accounting	LECO
	S-IR08	Total Sulphur (Leco) Paste nH	LECO
	S-CAL06	Sulfide Sulfur (calculated)	LECO

To: YUKON ZINC CORPORATION ATTN: PAMELA LADYMAN 701-475 HOWE ST VANCOUVER BC V6C 2B3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

aurence (1)

Lawrence Ng, Laboratory Manager - Vancouver

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com : YUKON ZINC CORPORATION 701-475 HOWE ST VANCOUVER BC V6C 2B3

Page: 2 - A Totar# Pages: 2 (A) Finalized Date: 25-JUL-2007 Account: MPO

Project: Wolverine

Г

										CERTIF	ICATE	OF ANALYSIS	VA07073067
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA-VOL08 MPA tCaCO3/1000t 0.3	OA-VOL08 NNP tCaCO3/1000t 1	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 NP tCaCO3/1000t 1	OA-ELE07 pH Unity 0.1	OA-VOL08 Ratio (N Unity 0.01	S-IR08 S % 0.01	S-GRA06 S % 0.01	S-CAL06 S % 0.01	S-GRA06a S % 0.01	
NEW CAMP SITE		7.42	0.6	6	1	7	7.0	11.20	0.02	0.01	0.01	<0.01	
1		1											

ALS PI	ALS Cheme <i>CELLENCE IN ANALYTICAL CHEME</i> S Canada Ltd. 2 Brooksbank Avenue orth Vancouver BC V7J 2C1 none: 604 984 0221 Fax: 604 984 0218 www	SED 26 2007	KON ZINC CORP -475 HOWE ST NCOUVER BC V6	ORATION C 2B3	Page: 1 Finalized Date: 19-SEP-2007 Account: MPO
	CERTIFICATE VA070900	D6		SAMPLE PREPARA	TION
.		°. A	ALS CODE	DESCRIPTION	
Project: WOLVERINE P.O. No.: This report is for 3 Soil sa 16-AUG-2007. The following have acc	amples submitted to our lab in Vancou ess to data associated with this co	uver, BC, Canada on ertificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
PAMELA LADYMAN	MARY MCDOUGALL			ANALYTICAL PROCE	DURES
			ALS CODE	DESCRIPTION	INSTRUMENT
			S-GRA06 S-GRA06a OA-VOL08	Sulfate Sulfur-carbonate leach Sulfate Sulfur (HCI leachable) Basic Acid Base Accounting	LECO
			OA-ELE07	Paste pH	LECO

S-CAL06

To: YUKON ZINC CORPORATION ATTN: PAMELA LADYMAN 701-475 HOWE ST VANCOUVER BC V6C 2B3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Sulfide Sulfur (calculated)

aurence (1)

Lawrence Ng, Laboratory Manager - Vancouver

LECO

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

D: YUKON ZINC CORPORATION 701-475 HOWE ST VANCOUVER BC V6C 2B3

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 19-SEP-2007 Account: MPO

Project: WOLVERINE

Г

										CERTIF	ICATE	OF ANALYSIS	VA07090006	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA-VOL08 MPA tCaCO3/1000t 0.3	OA-VOL08 NNP tCaCO3/1000t 1	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 NP tCaCO3/1000t 1	OA-ELE07 pH Unity 0.1	OA-VOL08 Ratio (N Unity 0.01	S-IR08 S % 0.01	S-GRA06 S % 0.01	S-CAL06 S % 0.01	S-GRA06a S % 0.01		
NEW CAMP SITE COVERALL NEW CAMP ROAD		6.10 6.20 5.70	0.6 6.9 0.6	12 -1 13	1 1 1	13 6 14	8.0 7.6 8.0	20.80 0.87 22.40	0.02 0.22 0.02	0.01 0.22 <0.01	0.01 <0.01 0.02	0.01 0.18 0.01		

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

1

	ANALY	TICAL REPORT	
YUKON ZINC CORP	ORATION		
ATTN: PAMELA LAI	DYMAN	Reported On:	21-AUG-07 03:50 PM
701 - 475 HOWE STI	REET		
VANCOUVER BC V	6C 2B3		
Lab Work Order #:	L539652	Date Received	1: 08-AUG-07
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	WOLVERINE - 1614		
Other Information:			
Comments:			
	TGC	the	
	Timothy Guy Crowth General Manager, V	er ancouver	
	For any questions about this repor	please contact your Account Manager:	
	An	dre Langlais	

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L539652 CONTD.... PAGE 2 of 3 21-AUG-07 15:50

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date	L539652-1 02-AUG-07	L539652-2 02-AUG-07	L539652-3 02-AUG-07	L539652-4 02-AUG-07	
	Sampled Time Client ID	14:00 NEW CAMP	13:00 KM 2.5	13:40 PORTAL	16:30 GORGE	
Grouping	Analyte	SITE		BORROW SITE	BORROW SITE	
SOIL						
Leachable Anions & Nutrients	рН (рН)	7.03	6.51	7.86	7.26	
Leachable Metals	Aluminum (AI)-Leachable (mg/L)	4.09	1.37	0.0272	3.46	
	Antimony (Sb)-Leachable (mg/L)	0.00016	0.00720	<0.00010	0.00080	
	Arsenic (As)-Leachable (mg/L)	0.00108	0.00689	0.00018	0.00200	
	Barium (Ba)-Leachable (mg/L)	0.0629	0.130	1.81	0.158	
	Beryllium (Be)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Boron (B)-Leachable (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Leachable (mg/L)	<0.000050	0.000467	0.000054	0.000202	
	Calcium (Ca)-Leachable (mg/L)	0.616	0.576	19.3	2.19	
	Chromium (Cr)-Leachable (mg/L)	0.00857	0.00542	0.00308	0.0385	
	Cobalt (Co)-Leachable (mg/L)	0.00584	0.00068	<0.00010	0.00580	
	Copper (Cu)-Leachable (mg/L)	0.0320	0.0262	0.00931	0.0492	
	Iron (Fe)-Leachable (mg/L)	3.02	1.90	0.084	2.68	
	Lead (Pb)-Leachable (mg/L)	0.00124	0.0159	<0.00020	0.00617	
	Lithium (Li)-Leachable (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Magnesium (Mg)-Leachable (mg/L)	0.81	0.27	3.18	3.63	
	Manganese (Mn)-Leachable (mg/L)	0.263	0.0532	0.00352	0.131	
	Mercury (Hg)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Leachable (mg/L)	0.000595	0.00817	0.00160	0.00243	
	Nickel (Ni)-Leachable (mg/L)	0.00874	0.00286	0.00058	0.0661	
	Phosphorus (P)-Leachable (mg/L)	<0.30	0.53	<0.30	<0.30	
	Potassium (K)-Leachable (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Selenium (Se)-Leachable (mg/L)	<0.0010	0.0036	<0.0010	<0.0010	
	Silicon (Si)-Leachable (mg/L)	6.80	4.13	3.08	7.56	
	Silver (Ag)-Leachable (mg/L)	0.000085	0.000357	0.000010	0.000131	
	Sodium (Na)-Leachable (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Strontium (Sr)-Leachable (mg/L)	0.00305	0.0365	0.0735	0.00835	
	Thallium (TI)-Leachable (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Leachable (mg/L)	<0.00030	<0.00030	<0.00040	<0.00020	
	Titanium (Ti)-Leachable (mg/L)	0.120	0.032	<0.010	0.082	
	Uranium (U)-Leachable (mg/L)	0.000177	0.00114	0.000063	0.000249	
	Vanadium (V)-Leachable (mg/L)	0.0171	0.0244	<0.0010	0.0140	
	Zinc (Zn)-Leachable (mg/L)	<0.010	0.0198	<0.0070	0.0356	

Reference Information

L539652 CONTD.... PAGE 3 of 3 21-AUG-07 15:50

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

HG-SHKFLSK-CVAFS-VA Soil Mercury by CVAFS (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-SHKFLSK-ICP-VA Soil Metals by ICPOES (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water . The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-SHKFLSK-MS-VA Soil Metals by ICPMS (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma - mass spectrophotometry (EPA Method 6020A).

PH-SHKFLSK-MAN-VA Soil pH by Manual Meter (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-SHKFLSK-PCT-VA Soil pH by PCT (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water . The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

BC MINISTRY OF ENERGY AND MINES

BC MINISTRY OF ENERGY AND MINES

BC MINISTRY OF ENERGY AND MINES

BC MINISTRY OF ENERGY AND MINES

BC MINISTRY OF ENERGY AND MINES

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	ANALYTIC	AL REPORT		
YUKON ZINC CORP	ORATION			
ATTN: PAMELA LA	DYMAN	Re	eported On:	18-OCT-07 05:31 PM
701 - 475 HOWE ST	REET			
VANCOUVER BC V	6C 2B3			
Lab Work Order #:	L557308		Date Receive	d: 21-SEP-07
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	WOLVERINE-1614			
Other Information:				
Comments:	Joyce Chow General Manager, Vanci	buver		
	For any questions about this report ple	ase contact your Accoun	t Manager:	
	Andre	Langlais		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L557308 CONTD.... PAGE 2 of 3 18-OCT-07 17:25

ALS LABORATORY GROUP ANALYTICAL REPORT

Grouping	Sample ID Description Sampled Date Sampled Time Client ID	L557308-1 20-SEP-07 10:00 COVERALL MATERIAL		
Brouping				
SOIL				
Leachable Anions & Nutrients	рН (рН)	7.76		
Leachable Metals	Aluminum (Al)-Leachable (mg/L)	0.134		
	Antimony (Sb)-Leachable (mg/L)	0.00078		
	Arsenic (As)-Leachable (mg/L)	0.00133		
	Barium (Ba)-Leachable (mg/L)	0.0205		
	Beryllium (Be)-Leachable (mg/L)	<0.00050		
	Bismuth (Bi)-Leachable (mg/L)	<0.00050		
	Boron (B)-Leachable (mg/L)	<0.010		
	Cadmium (Cd)-Leachable (mg/L)	0.000436		
	Calcium (Ca)-Leachable (mg/L)	20.1		
	Chromium (Cr)-Leachable (mg/L)	<0.00050		
	Cobalt (Co)-Leachable (mg/L)	0.00019		
	Copper (Cu)-Leachable (mg/L)	0.00701		
	Iron (Fe)-Leachable (mg/L)	0.218		
	Lead (Pb)-Leachable (mg/L)	0.00852		
	Lithium (Li)-Leachable (mg/L)	<0.0050		
	Magnesium (Mg)-Leachable (mg/L)	1.77		
	Manganese (Mn)-Leachable (mg/L)	0.0130		
	Mercury (Hg)-Leachable (mg/L)	<0.00010		
	Molybdenum (Mo)-Leachable (mg/L)	0.00689		
	Nickel (Ni)-Leachable (mg/L)	0.00083		
	Phosphorus (P)-Leachable (mg/L)	<0.30		
	Potassium (K)-Leachable (mg/L)	<2.0		
	Selenium (Se)-Leachable (mg/L)	0.0021		
	Silicon (Si)-Leachable (mg/L)	3.29		
	Silver (Ag)-Leachable (mg/L)	0.000011		
	Sodium (Na)-Leachable (mg/L)	<2.0		
	Strontium (Sr)-Leachable (mg/L)	0.0428		
	Thallium (TI)-Leachable (mg/L)	<0.00010		
	Tin (Sn)-Leachable (mg/L)	<0.00010		
	Titanium (Ti)-Leachable (mg/L)	<0.010		
	Uranium (U)-Leachable (mg/L)	0.00133		
	Vanadium (V)-Leachable (mg/L)	<0.0010		
	Zinc (Zn)-Leachable (mg/L)	0.0142		

Reference Information

L557308 CONTD.... PAGE 3 of 3 18-OCT-07 17:25

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)	ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
---	---------------	--------	------------------	---------------------------------------

HG-SHKFLSK-CVAFS-VA Soil Mercury by CVAFS (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water . The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-SHKFLSK-ICP-VA Soil Metals by ICPOES (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-SHKFLSK-MS-VA Soil Metals by ICPMS (SHAKEFLASK)

BC MINISTRY OF ENERGY AND MINES

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma - mass spectrophotometry (EPA Method 6020A).

PH-SHKFLSK-PCT-VA Soil pH by PCT (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia" BC Ministry of Energy and Mines, (Dr. William A. Price, 1997). In summary, the sample is extracted at a 3:1 liquid to solids ratio for 24 hours using deionized water. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Appendix C Groundwater Quality Lab Reports

Appendix C includes the following lab reports from Maxxam Analytics Inc.:

A710946 A717990 A719951 A724712 A725184 A731839 A741295 A745736 A748794

Your C.O.C. #: 08192705

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/03/26

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A710946 Received: 2007/03/19, 14:20

Sample Matrix: Water

Samples Received: 3

	Date	Date	
Analyses Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water 3	2007/03/20	2007/03/20 ING413 Rev.1.7	Based on SM2320B
Bromide (IC-EC) 3	N/A	2007/03/22 BRN SOP-00002 V1.0	SM 4110 B
Chloride by Automated Colourimetry () 3	N/A	2007/03/20 BRN-SOP 00116	Based on EPA 325.2
Conductance - water 3	N/A	2007/03/20 ING413 REV 1.7	Based on SM-2510B
Hardness (calculated as CaCO3) 3	N/A	2007/03/19	
Mercury (dissolved; low level) 3	2007/03/20	2007/03/21 BRN SOP-00044 V1.0	Based on EPA 245.1
Elements by ICP-AES (dissolved) 3	2007/03/21	2007/03/21 BRN SOP-00040 V1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) () 3	2007/03/21	2007/03/21 BRN SOP-00042 V1.0	Based on EPA 200.8
Ammonia (N) 3	N/A	2007/03/21 ING232 Rev.3.5	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level 3	N/A	2007/03/21 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) (low level) 3	N/A	2007/03/21 ING233 Rev.4.4	EPA 353.2
Nitrogen - Nitrate (as N) 3	N/A	2007/03/19	
pH Water 3	N/A	2007/03/20 BRN SOP-00014 V2.0	Based on SM-4500H+B
Sulphate by Automated Colourimetry () 3	N/A	2007/03/20 BRN-SOP 00117 V1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue) 3	N/A	2007/03/21 ING443 Rev.5.1	APHA 2540C
Total Suspended Solids () 3	N/A	2007/03/20 ING444 Rev.2.3	Based on SM - 2540 D
Turbidity 3	N/A	2007/03/20 BRN SOP-00021 V2.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Your C.O.C. #: 08192705

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/03/26

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		E71194	E71195		E71196		
Sampling Date		2007/03/14	2007/03/14		2007/03/14		
COC Number		08192705	08192705		08192705		
	Units	05-5A	06-9S	RDL	06-12S	RDL	QC Batch
			i				
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	0.1	<0.1	0.1	1538447
Calculated Parameters							
Nitrate (N)	mg/L	0.007	0.005	0.002	0.003	0.002	1531601
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	290	138	0.5	262	0.5	1531600
Alkalinity (Total as CaCO3)	mg/L	236	102	0.5	112	0.5	1532831
Anions							
Dissolved Sulphate (SO4)	mg/L	24.3	26.1	0.5	372	5	1532237
Chloride (Cl)	mg/L	3.2	4.9	0.5	5.8	0.5	1532186
Nutrients							
Ammonia (N)	mg/L	0.086	0.019	0.005	0.139	0.005	1534850
Nitrate plus Nitrite (N)	mg/L	0.007	0.005	0.002	0.003	0.002	1534788
Nitrite (N)	mg/L	<0.002	<0.002	0.002	<0.002	0.002	1534820
Physical Properties							
Conductivity	uS/cm	498	267	1	983	1	1532568
рН	pH Units	8.2	8.1	0.1	8.0	0.1	1532556
Physical Properties							
Total Suspended Solids	mg/L	5	<4	4	<4	4	1531999
Total Dissolved Solids	mg/L	336	186	10	658	10	1531948
Turbidity	NTU	21.9	0.3	0.1	0.2	0.1	1529965
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		E71194	E71195	E71196		
Sampling Date		2007/03/14	2007/03/14	2007/03/14		
	Units	08192705 05-5A	08192705 06-9S	08192705 06-12S	RDL	QC Batch
Dissolved Metals by ICP						
Dissolved Boron (B)	mg/L	<0.008	<0.008	0.031	800.0	1536998
Dissolved Calcium (Ca)	mg/L	76.5	47.2	79.5	0.05	1536998
Dissolved Iron (Fe)	mg/L	1.58	0.046	0.008	0.005	1536998
Dissolved Magnesium (Mg)	mg/L	24.0	4.88	15.5	0.05	1536998
Dissolved Phosphorus (P)	mg/L	<0.1	0.3	<0.1	0.1	1536998
Dissolved Silicon (Si)	mg/L	4.06	4.48	6.34	0.05	1536998
Dissolved Sodium (Na)	mg/L	0.76	2.20	118	0.05	1536998
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	0.005	1536998
Dissolved Metals by ICPMS						
Dissolved Aluminum (Al)	ug/L	1.1	4.1	7.4	0.2	1534607
Dissolved Antimony (Sb)	ug/L	1.07	0.11	2.07	0.05	1534607
Dissolved Arsenic (As)	ug/L	1.4	6.3	4.3	0.1	1534607
Dissolved Barium (Ba)	ug/L	106	48.3	21.4	0.02	1534607
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	0.05	1534607
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	0.05	1534607
Dissolved Cadmium (Cd)	ug/L	0.01	0.01	0.03	0.01	1534607
Dissolved Chromium (Cr)	ug/L	0.8	0.3	0.4	0.2	1534607
Dissolved Cobalt (Co)	ug/L	0.30	<0.02	0.72	0.02	1534607
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	0.1	1534607
Dissolved Lead (Pb)	ug/L	<0.02	0.02	0.02	0.02	1534607
Dissolved Lithium (Li)	ug/L	1.9	1.1	8.7	0.2	1534607
Dissolved Manganese (Mn)	ug/L	545	105	210	0.02	1534607
Dissolved Molybdenum (Mo)	ug/L	8.11	6.81	29.7	0.02	1534607
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	2.8	0.5	1534607
Dissolved Potassium (K)	ug/L	1510	1270	3270	50	1534607
Dissolved Selenium (Se)	ug/L	0.6	<0.5	0.8	0.5	1534607
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	0.01	1534607
Dissolved Strontium (Sr)	ug/L	133	164	253	0.01	1534607
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	0.05	1534607
Dissolved Tin (Sn)	ug/L	0.09	0.09	1.36	0.05	1534607
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	0.5	1534607
Dissolved Uranium (U)	ug/L	9.79	0.31	11.9	0.01	1534607
Dissolved Vanadium (V)	ug/L	0.07	0.21	2.46	0.05	1534607
RDL = Reportable Detection Li	mit				_	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		E71194	E71195	E71196						
Sampling Date		2007/03/14	2007/03/14	2007/03/14						
COC Number		08192705	08192705	08192705						
	Units	05-5A	06-9S	06-12S	RDL	QC Batch				
Dissolved Zinc (Zn)	ug/L	<0.5	<0.5	<0.5	0.5	1534607				
Mercury by CVAA										
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	0.01	1533209				
RDL = Reportable Detection Limit										

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

General Comments

Results relate only to the items tested.

Yukon Zinc Corporation Attention: PAMELA LADYMAN Client Project #: P.O. #: Site Reference:

Quality Assurance Report

Maxxam Job Number: VA710946

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1529965 CK	SPIKE	Turbidity	2007/03/20		103	%	80 - 120
	BLANK	Turbidity	2007/03/20	<0.1		NTU	
	RPD	Turbidity	2007/03/20	NC		%	25
1531948 CK	MATRIX SPIKE	Total Dissolved Solids	2007/03/21		98	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/03/21		100	%	80 - 120
	BLANK	Total Dissolved Solids	2007/03/21	<10		ma/L	
	RPD	Total Dissolved Solids	2007/03/21	1.5		%	25
1531999 FS1	MATRIX SPIKE			-			-
	[F71195-01]	Total Suspended Solids	2007/03/20		94	%	N/A
	SPIKE	Total Suspended Solids	2007/03/20		98	%	N/A
	BLANK	Total Suspended Solids	2007/03/20	<4		ma/L	
	RPD [F71196-01]	Total Suspended Solids	2007/03/20	NC		····g, _ %	25
1532186 NN	MATRIX SPIKE	Chloride (CI)	2007/03/20	110	111	%	80 - 120
1002100 111	SPIKE	Chloride (Cl)	2007/03/20		101	%	80 - 120
		Chloride (Cl)	2007/03/20	~0.5	101	ma/l	00 120
	PPD	Chloride (Cl)	2007/03/20			111g/ L	20
1522227 NN		Discolved Sulphoto (SO4)	2007/03/20	NC	109	/0 0/	20 75 125
1552257 1010	OUVE	Dissolved Sulphate (SO4)	2007/03/20		100	70 0/	75 - 125
	SPIRE	Dissolved Sulphate (SO4)	2007/03/20	0.5	95	%	80 - 120
	BLANK	Dissolved Sulphate (SO4)	2007/03/20	<0.5		mg/L	
	RPD	Dissolved Sulphate (SO4)	2007/03/20	1.4		%	20
1532556 MM3	SPIKE	pH	2007/03/20		102	%	96 - 104
	RPD [E71196-01]	рН	2007/03/20	0.2		%	25
1532568 MM3	SPIKE	Conductivity	2007/03/20		100	%	80 - 120
	BLANK	Conductivity	2007/03/20	<1		uS/cm	
	RPD	Conductivity	2007/03/20	0.9		%	25
1532831 MM3	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/03/20		102	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/03/20		96	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/03/20	0.5, R	DL=0.5	mg/L	
	RPD	Alkalinity (Total as CaCO3)	2007/03/20	3.9		%	25
1533209 JT3	MATRIX SPIKE	Dissolved Mercury (Hg)	2007/03/21		110	%	70 - 130
	QC STANDARD	Dissolved Mercury (Ha)	2007/03/21		102	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/03/21		86	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/03/21	<0.01		ua/L	
	RPD	Dissolved Mercury (Hg)	2007/03/21	NC		%	25
1534607 441	MATRIX SPIKE	Dissolved Arsenic (As)	2007/03/21	110	111	%	75 - 125
1004007 7011		Dissolved Cadmium (Cd)	2007/03/21		107	%	75 - 125
		Dissolved Chromium (Cr)	2007/03/21		106	%	75 - 125
		Dissolved Cabalt (Co)	2007/03/21		100	0/	75 125
		Dissolved Coppor (Cu)	2007/03/21		105	/0 0/	75 125
		Dissolved Lood (Bb)	2007/03/21		112	70 0/	75 - 125
		Dissolved Lead (PD)	2007/03/21		112	% 0/	75 - 125
		Dissolved Selenium (Se)	2007/03/21		106	%	75 - 125
		Dissolved Thallium (TI)	2007/03/21		108	%	75 - 125
		Dissolved Zinc (Zn)	2007/03/21		106	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/03/21		95	%	75 - 125
		Dissolved Cadmium (Cd)	2007/03/21		96	%	75 - 125
		Dissolved Chromium (Cr)	2007/03/21		106	%	75 - 125
		Dissolved Cobalt (Co)	2007/03/21		109	%	75 - 125
		Dissolved Copper (Cu)	2007/03/21		106	%	75 - 125
		Dissolved Lead (Pb)	2007/03/21		105	%	75 - 125
		Dissolved Selenium (Se)	2007/03/21		91	%	75 - 125
		Dissolved Thallium (TI)	2007/03/21		97	%	75 - 125
		Dissolved Zinc (Zn)	2007/03/21		100	%	75 - 125
	BLANK	Dissolved Aluminum (Al)	2007/03/21	<0.2		ua/L	
		Dissolved Antimony (Sb)	2007/03/21	<0.05		ua/l	
		Dissolved Arsenic (As)	2007/03/21	<0.00		ug/L	
1			2001/00/21	-0.1		ug/L	

Yukon Zinc Corporation Attention: PAMELA LADYMAN Client Project #: P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: VA710946

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1534607 AA1	BLANK	Dissolved Barium (Ba)	2007/03/21	<0.02		ug/L	
		Dissolved Beryllium (Be)	2007/03/21	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/03/21	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/03/21	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/03/21	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/03/21	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/03/21	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/03/21	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/03/21	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/03/21	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/03/21	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/03/21	<0.5		ug/L	
		Dissolved Potassium (K)	2007/03/21	<50		ug/L	
		Dissolved Selenium (Se)	2007/03/21	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/03/21	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/03/21	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/03/21	<0.05		ua/L	
		Dissolved Tin (Sn)	2007/03/21	< 0.05		ua/L	
		Dissolved Titanium (Ti)	2007/03/21	<0.5		ua/L	
		Dissolved Uranium (U)	2007/03/21	< 0.01		ua/L	
		Dissolved Vanadium (V)	2007/03/21	< 0.05		ua/l	
		Dissolved Zinc (Zn)	2007/03/21	<0.5		ua/l	
	RPD	Dissolved Aluminum (Al)	2007/03/21	0.5		~g/= %	25
		Dissolved Antimony (Sh)	2007/03/21	3.4		%	25
		Dissolved Arsenic (As)	2007/03/21	23		%	25
		Dissolved Barium (Ba)	2007/03/21	2.0		%	25
		Dissolved Bandin (Ba)	2007/03/21	NC		%	25
		Dissolved Bismuth (Bi)	2007/03/21	NC		70 0/_	25
		Dissolved Distriction (DI)	2007/03/21	1 0		/0 0/_	25
		Dissolved Cadmium (Cd)	2007/03/21	1.9 NC		/0 0/.	25
		Dissolved Childhildhi (Cr)	2007/03/21	NC		/0 0/	25
		Dissolved Copper (Cu)	2007/03/21			70	20
		Dissolved Copper (Cu)	2007/03/21	0.5		70 0/	20
		Dissolved Lead (PD)	2007/03/21	3.1		70 0/	20
		Dissolved Lithium (Li)	2007/03/21			% 0(25
		Dissolved Manganese (Mn)	2007/03/21	2.8		%	25
		Dissolved Molybdenum (Mo)	2007/03/21	0.4		%	25
		Dissolved Nickel (Ni)	2007/03/21	NC		%	25
		Dissolved Potassium (K)	2007/03/21	2.5		%	25
		Dissolved Selenium (Se)	2007/03/21	NC		%	25
		Dissolved Silver (Ag)	2007/03/21	NC		%	25
		Dissolved Strontium (Sr)	2007/03/21	3.9		%	25
		Dissolved Thallium (TI)	2007/03/21	NC		%	25
		Dissolved Tin (Sn)	2007/03/21	NC		%	25
		Dissolved Titanium (Ti)	2007/03/21	NC		%	25
		Dissolved Uranium (U)	2007/03/21	1.6		%	25
		Dissolved Vanadium (V)	2007/03/21	NC		%	25
		Dissolved Zinc (Zn)	2007/03/21	6.6		%	25
1534788 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/03/21		104	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/03/21		105	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/03/21	<0.002		mg/L	
	RPD [E71194-01]	Nitrate plus Nitrite (N)	2007/03/21	NC		%	25
1534820 BB3	SPIKE	Nitrite (N)	2007/03/21		101	%	80 - 120
	BLANK	Nitrite (N)	2007/03/21	<0.002		mg/L	
	RPD [E71194-01]	Nitrite (N)	2007/03/21	NC		%	25
1534850 NN	MATRIX SPIKE	Ammonia (N)	2007/03/21		71 (1)	%	80 - 120
		· ·			()		

Yukon Zinc Corporation Attention: PAMELA LADYMAN Client Project #: P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: VA710946

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1534850 NN	SPIKE	Ammonia (N)	2007/03/21		108	%	80 - 120
	BLANK	Ammonia (N)	2007/03/21	<0.005		mg/L	
	RPD	Ammonia (N)	2007/03/21	NC		%	25
1536998 GS2	BLANK	Dissolved Boron (B)	2007/03/21	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/03/21	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/03/21	<0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/03/21	<0.05		mg/L	
		Dissolved Phosphorus (P)	2007/03/21	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/03/21	<0.05		mg/L	
		Dissolved Sodium (Na)	2007/03/21	<0.05		mg/L	
		Dissolved Zirconium (Zr)	2007/03/21	<0.005		mg/L	
	RPD	Dissolved Boron (B)	2007/03/21	NC		%	25
		Dissolved Calcium (Ca)	2007/03/21	1.0		%	25
		Dissolved Iron (Fe)	2007/03/21	2.4		%	25
		Dissolved Magnesium (Mg)	2007/03/21	1.3		%	25
		Dissolved Phosphorus (P)	2007/03/21	NC		%	25
		Dissolved Sodium (Na)	2007/03/21	1.3		%	25
		Dissolved Zirconium (Zr)	2007/03/21	NC		%	25
1538447 AH3	MATRIX SPIKE	Bromide (Br)	2007/03/22		113	%	80 - 120
	SPIKE	Bromide (Br)	2007/03/22		112	%	80 - 120
	BLANK	Bromide (Br)	2007/03/22	<0.1		mg/L	
	RPD	Bromide (Br)	2007/03/22	NC		%	25

N/A = Not Applicable NC = Non-calculable RPD = Relative Percent Difference

1) Matrix Spike invalid due to high sample concentration.

Your C.O.C. #: 08193654

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/05/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A717990 Received: 2007/05/03, 13:05

Sample Matrix: Water # Samples Received: 4

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	4	2007/05/07	2007/05/07 ING413 Rev.1.7	Based on SM2320B
Bromide (IC-EC)	4	N/A	2007/05/08 BRN SOP-00002 V1.0	SM 4110 B
Chloride by Automated Colourimetry ()	4	N/A	2007/05/08 BRN-SOP 00116	Based on EPA 325.2
Conductance - water	4	N/A	2007/05/07 ING413 REV 1.7	Based on SM-2510B
Hardness (calculated as CaCO3)	4	N/A	2007/05/04	
Mercury (dissolved; low level)	4	2007/05/03	2007/05/04 BRN SOP-00044 V1.0	Based on EPA 245.1
Elements by ICP-AES (dissolved)	4	2007/05/03	2007/05/03 BRN SOP-00040 V1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) ()	4	2007/05/03	2007/05/04 BRN SOP-00042 V1.0	Based on EPA 200.8
Ammonia (N)	4	N/A	2007/05/05 ING232 Rev.3.5	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	4	N/A	2007/05/04 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) (low level)	4	N/A	2007/05/04 ING233 Rev.4.4	EPA 353.2
Nitrogen - Nitrate (as N)	4	N/A	2007/05/04	
pH Water	4	N/A	2007/05/07 BRN SOP-00014 V2.0	Based on SM-4500H+B
Orthophosphate by Konelab ≬	4	N/A	2007/05/04 ING236 Rev. 2.0	SM 4500 PF
Sulphate by Automated Colourimetry ()	4	N/A	2007/05/08 BRN-SOP 00117 V1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	4	N/A	2007/05/07 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	4	N/A	2007/05/09 ING237 Rev.5.0	SM 4500
Total Suspended Solids ()	4	N/A	2007/05/08 ING444 Rev.2.3	Based on SM - 2540 D
Turbidity	4	N/A	2007/05/08 BRN SOP-00021 V2.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Your C.O.C. #: 08193654

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/05/11

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F12001	F12002		F12003		
Sampling Date		2007/04/26	2007/04/27		2007/04/26		
COC Number		08193654	08193654		08193654		
	Units	05-5A	06-10M	RDL	06-12S	RDL	QC Batch
	1		1			1	1
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	0.1	<0.1	0.1	1612826
Calculated Parameters							
Nitrate (N)	mg/L	0.002	<0.002	0.002	0.013	0.002	1604990
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	257	256	0.5	319	0.5	1604989
Alkalinity (Total as CaCO3)	mg/L	225	204	0.5	158	0.5	1611085
Anions							
Orthophosphate (P)	mg/L	0.006	0.006	0.001	0.050	0.001	1606576
Dissolved Sulphate (SO4)	mg/L	36.2	61.3	0.5	285	5	1612088
Dissolved Chloride (Cl)	mg/L	0.9	<0.5	0.5	<0.5	0.5	1612084
Nutrients							
Ammonia (N)	mg/L	0.115	0.063	0.005	0.195	0.005	1608720
Nitrate plus Nitrite (N)	mg/L	0.002	<0.002	0.002	0.013	0.002	1606140
Nitrite (N)	mg/L	<0.002	<0.002	0.002	<0.002	0.002	1606143
Total Phosphorus (P)	mg/L	<0.005	<0.005	0.005	0.052	0.005	1605724
Physical Properties							
Conductivity	uS/cm	481	488	1	871	1	1611223
рН	pH Units	8.2	8.2	0.1	8.6	0.1	1611089
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	4	<4	4	1611350
Total Dissolved Solids	mg/L	298	316	10	642	10	1609295
Turbidity	NTU	0.4	2.6	0.1	2.8	0.1	1611190
RDL = Reportable Detection L	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F12004		
Sampling Date		2007/04/27		
COC Number	Units	08193654 05-7B	RDI	OC Batch
		0010		go Baton
Misc. Inorganics				
Bromide (Br)	mg/L	<0.1	0.1	1612826
Calculated Parameters				
Nitrate (N)	mg/L	0.032	0.002	1604990
Misc. Inorganics				
Dissolved Hardness (CaCO3)	mg/L	86.5	0.5	1604989
Alkalinity (Total as CaCO3)	mg/L	72.5	0.5	1611085
Anions				
Orthophosphate (P)	mg/L	0.014	0.001	1606576
Dissolved Sulphate (SO4)	mg/L	14.1	0.5	1612088
Dissolved Chloride (Cl)	mg/L	<0.5	0.5	1612084
Nutrients				
Ammonia (N)	mg/L	<0.005	0.005	1608720
Nitrate plus Nitrite (N)	mg/L	0.032	0.002	1606140
Nitrite (N)	mg/L	<0.002	0.002	1606143
Total Phosphorus (P)	mg/L	0.021	0.005	1605724
Physical Properties				
Conductivity	uS/cm	175	1	1611223
рН	pH Units	8.0	0.1	1611089
Physical Properties				
Total Suspended Solids	mg/L	<4	4	1611350
Total Dissolved Solids	mg/L	120	10	1609295
Turbidity	NTU	6.1	0.1	1611190

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F12001	F12002	F12003	F12004		
Sampling Date		2007/04/26	2007/04/27	2007/04/26	2007/04/27		
COC Number	Units	08193654 05-5A	08193654 06-10M	08193654 06-12S	08193654 05-7B	RDI	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	0.024	<0.008	0.008	1605407
Dissolved Calcium (Ca)	mg/L	68.9	83.6	102	29.9	0.05	1605407
Dissolved Iron (Fe)	mg/L	0.017	0.176	0.007	0.179	0.005	1605407
Dissolved Magnesium (Mg)	mg/L	20.7	11.4	15.6	2.87	0.05	1605407
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1605407
Dissolved Silicon (Si)	mg/L	3.82	3.78	9.04	3.82	0.05	1605407
Dissolved Sodium (Na)	mg/L	1.49	2.86	65.6	1.59	0.05	1605407
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1605407
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	0.6	<0.2	2.3	99.7	0.2	1606260
Dissolved Antimony (Sb)	ug/L	4.33	0.05	1.90	0.32	0.05	1606260
Dissolved Arsenic (As)	ug/L	1.1	0.1	4.1	1.9	0.1	1606260
Dissolved Barium (Ba)	ug/L	80.9	38.7	24.9	102	0.02	1606260
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1606260
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1606260
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	0.03	0.04	0.01	1606260
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1606260
Dissolved Cobalt (Co)	ug/L	0.35	0.07	0.77	0.57	0.02	1606260
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	0.1	2.4	0.1	1606260
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.05	0.12	0.02	1606260
Dissolved Lithium (Li)	ug/L	3.4	2.2	9.6	2.9	0.2	1606260
Dissolved Manganese (Mn)	ug/L	237	244	364	159	0.02	1606260
Dissolved Molybdenum (Mo)	ug/L	10.3	2.11	12.3	12.0	0.02	1606260
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	2.0	4.9	0.5	1606260
Dissolved Potassium (K)	ug/L	2040	1690	2260	915	50	1606260
Dissolved Selenium (Se)	ug/L	1.2	<0.5	0.5	<0.5	0.5	1606260
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1606260
Dissolved Strontium (Sr)	ug/L	143	148	441	69.3	0.01	1606260
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1606260
Dissolved Tin (Sn)	ug/L	0.14	<0.05	0.20	0.48	0.05	1606260
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	0.9	6.1	0.5	1606260
Dissolved Uranium (U)	ug/L	18.2	8.61	13.3	0.46	0.01	1606260
Dissolved Vanadium (V)	ug/L	0.09	0.12	3.29	2.10	0.05	1606260
RDL = Reportable Detection Li	imit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A717990 Report Date: 2007/05/11 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F12001	F12002	F12003	F12004					
Sampling Date		2007/04/26	2007/04/27	2007/04/26	2007/04/27					
COC Number		08193654	08193654	08193654	08193654					
	Units	05-5A	06-10M	06-12S	05-7B	RDL	QC Batch			
	_		-	-	-					
Dissolved Zinc (Zn)	ug/L	2.4	<0.5	10.2	1.9	0.5	1606260			
Mercury by CVAA										
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1604885			
RDL = Reportable Detection Limit										

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

General Comments

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA717990

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1604885 JT3	MATRIX SPIKE	Dissolved Mercury (Hg)	2007/05/04		92	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/05/04		101	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/05/04		94	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/05/04	<0.01		ug/L	
	RPD	Dissolved Mercury (Hg)	2007/05/04	NC		%	25
1605407 GS2	BLANK	Dissolved Boron (B)	2007/05/03	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/05/03	< 0.05		mg/L	
		Dissolved Iron (Fe)	2007/05/03	<0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/05/03	< 0.05		mg/L	
		Dissolved Phosphorus (P)	2007/05/03	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/05/03	<0.05		mg/L	
		Dissolved Sodium (Na)	2007/05/03	<0.05		mg/L	
		Dissolved Zirconium (Zr)	2007/05/03	< 0.005		mg/L	
	RPD	Dissolved Calcium (Ca)	2007/05/03	0		%	25
		Dissolved Magnesium (Mg)	2007/05/03	0.3		%	25
1605724 SC2	MATRIX SPIKE	Total Phosphorus (P)	2007/05/09		86	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/05/09		101	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/05/09	<0.005		mg/L	
	RPD	Total Phosphorus (P)	2007/05/09	NC		%	25
1606140 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/05/04		101	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/05/04		101	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/05/04	<0.002		mg/L	
	RPD [F12003-01]	Nitrate plus Nitrite (N)	2007/05/04	8.0		%	25
1606143 BB3	MATRIX SPIKE	Nitrite (N)	2007/05/04		102	%	80 - 120
	SPIKE	Nitrite (N)	2007/05/04		100	%	80 - 120
	BLANK	Nitrite (N)	2007/05/04	<0.002		mg/L	
	RPD [F12003-01]	Nitrite (N)	2007/05/04	NC		%	25
1606260 AA1	MATRIX SPIKE	Dissolved Arsenic (As)	2007/05/04		109	%	75 - 125
		Dissolved Cadmium (Cd)	2007/05/04		109	%	75 - 125
		Dissolved Chromium (Cr)	2007/05/04		105	%	75 - 125
		Dissolved Cobalt (Co)	2007/05/04		106	%	75 - 125
		Dissolved Copper (Cu)	2007/05/04		107	%	75 - 125
		Dissolved Lead (Pb)	2007/05/04		105	%	75 - 125
		Dissolved Selenium (Se)	2007/05/04		106	%	75 - 125
		Dissolved Thallium (TI)	2007/05/04		108	%	75 - 125
		Dissolved Zinc (Zn)	2007/05/04		121	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/05/04		100	%	75 - 125
		Dissolved Cadmium (Cd)	2007/05/04		97	%	75 - 125
		Dissolved Chromium (Cr)	2007/05/04		115	%	75 - 125
		Dissolved Cobalt (Co)	2007/05/04		110	%	75 - 125
		Dissolved Copper (Cu)	2007/05/04		112	%	75 - 125
		Dissolved Lead (Pb)	2007/05/04		108	%	75 - 125
		Dissolved Selenium (Se)	2007/05/04		106	%	75 - 125
		Dissolved Thallium (TI)	2007/05/04		106	%	75 - 125
		Dissolved Zinc (Zn)	2007/05/04		108	%	75 - 125
	BLANK	Dissolved Aluminum (Al)	2007/05/04	<0.2		ug/L	
		Dissolved Antimony (Sb)	2007/05/04	<0.05		ug/L	
		Dissolved Arsenic (As)	2007/05/04	<0.1		ug/L	
		Dissolved Barium (Ba)	2007/05/04	<0.02		ug/L	
		Dissolved Beryllium (Be)	2007/05/04	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/05/04	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/05/04	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/05/04	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/05/04	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/05/04	<0.1		ug/L	

Quality Assurance Report (Continued)

Maxxam Job Number: VA717990

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1606260 AA1	BLANK	Dissolved Lead (Pb)	2007/05/04	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/05/04	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/05/04	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/05/04	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/05/04	<0.5		ug/L	
		Dissolved Potassium (K)	2007/05/04	<50		ug/L	
		Dissolved Selenium (Se)	2007/05/04	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/05/04	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/05/04	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/05/04	< 0.05		ug/L	
		Dissolved Tin (Sn)	2007/05/04	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/05/04	<0.5		ug/L	
		Dissolved Uranium (U)	2007/05/04	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/05/04	0.07, R	RDL=0.05	ug/L	
		Dissolved Zinc (Zn)	2007/05/04	<0.5		ug/L	
	RPD	Dissolved Aluminum (Al)	2007/05/04	4.3		%	25
		Dissolved Antimony (Sb)	2007/05/04	NC		%	25
		Dissolved Arsenic (As)	2007/05/04	NC		%	25
		Dissolved Barium (Ba)	2007/05/04	0.5		%	25
		Dissolved Bervllium (Be)	2007/05/04	NC		%	25
		Dissolved Bismuth (Bi)	2007/05/04	NC		%	25
		Dissolved Cadmium (Cd)	2007/05/04	0.3		%	25
		Dissolved Chromium (Cr)	2007/05/04	NC		%	25
		Dissolved Cobalt (Co)	2007/05/04	NC		%	25
		Dissolved Copper (Cu)	2007/05/04	24		%	25
		Dissolved Lead (Pb)	2007/05/04			70 0/2	25
		Dissolved Lithium (Li)	2007/05/04	NC		70 0/	25
		Dissolved Littlium (Li)	2007/05/04	1.4		/0 0/	25
		Dissolved Malybdapum (Ma)	2007/05/04	1.4		-70 0/	20
		Dissolved Niekel (Nii)	2007/05/04	1.5		70	20
		Dissolved Nickel (Ni)	2007/05/04	2.6		70 0/	20
		Dissolved Potassium (K)	2007/05/04	0.4		%	25
		Dissolved Selenium (Se)	2007/05/04	2.7		%	25
		Dissolved Sliver (Ag)	2007/05/04	NC		%	25
		Dissolved Strontium (Sr)	2007/05/04	0.3		%	25
		Dissolved Thallium (TI)	2007/05/04	NC		%	25
		Dissolved Tin (Sn)	2007/05/04	NC		%	25
		Dissolved Titanium (Ti)	2007/05/04	NC		%	25
		Dissolved Uranium (U)	2007/05/04	2.6		%	25
		Dissolved Vanadium (V)	2007/05/04	NC		%	25
		Dissolved Zinc (Zn)	2007/05/04	3.0		%	25
1606576 SC2	MATRIX SPIKE	Orthophosphate (P)	2007/05/04		96	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/05/04		102	%	80 - 120
	BLANK	Orthophosphate (P)	2007/05/04	<0.001		mg/L	
	RPD [F12002-01]	Orthophosphate (P)	2007/05/04	10.6		%	20
	RPD [F12004-01]	Orthophosphate (P)	2007/05/04	18.8		%	20
1608720 SC2	MATRIX SPIKE	Ammonia (N)	2007/05/05		103	%	80 - 120
	SPIKE	Ammonia (N)	2007/05/05		106	%	80 - 120
	BLANK	Ammonia (N)	2007/05/05	<0.005		mg/L	
	RPD	Ammonia (N)	2007/05/05	NC		%	25
1609295 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/05/07		106	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/05/07		102	%	80 - 120
	BLANK	Total Dissolved Solids	2007/05/07	<10		mg/L	
	RPD	Total Dissolved Solids	2007/05/07	0		%	25
1611085 MM3	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/05/07		95	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/05/07		96	%	80 - 120
		, , , , , , , , , , , , , , , , , , , ,					

Quality Assurance Report (Continued)

Maxxam Job Number: VA717990

2C Type 3LANK	Parameter	Analyzed				
<u>2C Type</u> 3LANK	Parameter					
3LANK		yyyy/mm/dd	Value	Recovery	Units	QC Limits
	Alkalinity (Total as CaCO3)	2007/05/07	<0.5		mg/L	
SPIKE	рН	2007/05/07		102	%	96 - 104
₹PD	pH	2007/05/07	0.4		%	25
SPIKE	Turbidity	2007/05/08		102	%	80 - 120
3LANK	Turbidity	2007/05/08	<0.1		NTU	
₹PD [F12004-01]	Turbidity	2007/05/08	0		%	25
PIKE	Conductivity	2007/05/07		99	%	80 - 120
3LANK	Conductivity	2007/05/07	1, I	RDL=1	uS/cm	
۲PD	Conductivity	2007/05/07	0.5		%	25
/ATRIX SPIKE	Total Suspended Solids	2007/05/08		105	%	N/A
3PIKE	Total Suspended Solids	2007/05/08		98	%	N/A
3LANK	Total Suspended Solids	2007/05/08	<4		mg/L	
₹PD	Total Suspended Solids	2007/05/08	NC		%	25
/ATRIX SPIKE	Dissolved Chloride (Cl)	2007/05/08		102	%	80 - 120
SPIKE	Dissolved Chloride (Cl)	2007/05/08		106	%	80 - 120
3LANK	Dissolved Chloride (Cl)	2007/05/08	<0.5		mg/L	
₹PD	Dissolved Chloride (Cl)	2007/05/08	0		%	20
/ATRIX SPIKE	Dissolved Sulphate (SO4)	2007/05/08		107	%	75 - 125
SPIKE	Dissolved Sulphate (SO4)	2007/05/08		96	%	80 - 120
3LANK	Dissolved Sulphate (SO4)	2007/05/08	<0.5		mg/L	
۲PD	Dissolved Sulphate (SO4)	2007/05/08	0.01		%	20
/ATRIX SPIKE	Bromide (Br)	2007/05/08		116	%	80 - 120
SPIKE	Bromide (Br)	2007/05/08		106	%	80 - 120
3LANK	Bromide (Br)	2007/05/08	<0.1		mg/L	
<pd< td=""><td>Bromide (Br)</td><td>2007/05/08</td><td>NC</td><td></td><td>%</td><td>25</td></pd<>	Bromide (Br)	2007/05/08	NC		%	25
ble ble						
	ATRIX SPIKE PIKE ANK PD ATRIX SPIKE PIKE ANK PD e e cent Difference	ATRIX Dissolved Chloride (Cl) PD Dissolved Chloride (Cl) ATRIX SPIKE Dissolved Sulphate (SO4) PIKE Dissolved Sulphate (SO4) ANK Dissolved Sulphate (SO4) PD Dissolved Sulphate (SO4) PIKE Bromide (Br) PIKE Bromide (Br) ANK Bromide (Br) PIKE Bromide (Br) PO Bromide (Br) PO Bromide (Br)	ATRIX Dissolved Chloride (Cl) 2007/05/08 PD Dissolved Chloride (Cl) 2007/05/08 ATRIX SPIKE Dissolved Sulphate (SO4) 2007/05/08 PIKE Dissolved Sulphate (SO4) 2007/05/08 ANK Dissolved Sulphate (SO4) 2007/05/08 PD Dissolved Sulphate (SO4) 2007/05/08 PD Dissolved Sulphate (SO4) 2007/05/08 PIKE Bromide (Br) 2007/05/08 PIKE Bromide (Br) 2007/05/08 PIKE Bromide (Br) 2007/05/08 ANK Bromide (Br) 2007/05/08 PD Bromide (Br) 2007/05/08 Pactor E Pactor Pactor E Pactor Pactor E Pactor Pactor Pactor Pactor Pactor Pactor	ANK Dissolved Chloride (Cl) 2007/05/08 <0.5 PD Dissolved Chloride (Cl) 2007/05/08 0 ATRIX SPIKE Dissolved Sulphate (SO4) 2007/05/08 0 PIKE Dissolved Sulphate (SO4) 2007/05/08 0 ANK Dissolved Sulphate (SO4) 2007/05/08 0 ANK Dissolved Sulphate (SO4) 2007/05/08 0.01 ATRIX SPIKE Bromide (Br) 2007/05/08 0.01 ANK Bromide (Br) 2007/05/08 <0.1	ANK Dissolved Chloride (Cl) 2007/05/08 <0.5 PD Dissolved Chloride (Cl) 2007/05/08 0 ATRIX SPIKE Dissolved Sulphate (SO4) 2007/05/08 107 PIKE Dissolved Sulphate (SO4) 2007/05/08 96 ANK Dissolved Sulphate (SO4) 2007/05/08 <0.5	Arkit Dissolved Chloride (Cl) 2007/05/08 <0.5 Ing/L PD Dissolved Chloride (Cl) 2007/05/08 0 % ATRIX SPIKE Dissolved Sulphate (SO4) 2007/05/08 107 % PIKE Dissolved Sulphate (SO4) 2007/05/08 96 % _ANK Dissolved Sulphate (SO4) 2007/05/08 <0.5

Your C.O.C. #: 08193817

Attention: Pamela Ladyman

Yukon Zinc CorporationVANCOUVER701-475 Howe StreetVancouver, BCCANADAV6C 2B3

Report Date: 2007/05/23

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A719951 Received: 2007/05/15, 15:00

Sample Matrix: Water # Samples Received: 4

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	4	2007/05/16	2007/05/18 ING413 Rev.1.7	Based on SM2320B
Bromide (IC-EC)	4	N/A	2007/05/16 BRN SOP-00002 V1.0	SM 4110 B
Chloride by Automated Colourimetry	4	N/A	2007/05/18 BRN-SOP 00116	Based on EPA 325.2
Carbon (DOC)	4	N/A	2007/05/15 ING211 Rev. 2.4	Based on SM-5310C
Hardness (calculated as CaCO3)	4	N/A	2007/05/17	
Mercury (dissolved; low level)	4	2007/05/15	2007/05/17 BRN SOP-00044 V1.0	Based on EPA 245.1
Elements by ICP-AES (dissolved)	4	2007/05/16	2007/05/16 BRN SOP-00040 V1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) ()	4	2007/05/16	2007/05/16 BRN SOP-00042 V1.0	Based on EPA 200.8
Ammonia (N)	4	N/A	2007/05/17 ING232 Rev.3.5	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	4	N/A	2007/05/16 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) (low level)	4	N/A	2007/05/16 ING233 Rev.4.4	EPA 353.2
Nitrogen - Nitrate (as N)	4	N/A	2007/05/17	
pH Water	4	N/A	2007/05/18 BRN SOP-00014 V2.0	Based on SM-4500H+B
Orthophosphate by Konelab ()	4	N/A	2007/05/17 ING236 Rev. 2.0	SM 4500 PF
Sulphate by Automated Colourimetry	4	N/A	2007/05/18 BRN-SOP 00117 V1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	4	N/A	2007/05/17 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	4	N/A	2007/05/18 ING237 Rev.5.0	SM 4500
Total Suspended Solids ()	4	N/A	2007/05/16 ING444 Rev.2.3	Based on SM - 2540 D
Turbidity	4	N/A	2007/05/17 BRN SOP-00021 V2.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Your C.O.C. #: 08193817

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/05/23

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		F25180	F25181		F25182		
Sampling Date		2007/05/09	2007/05/09		2007/05/10		
COC Number		08193817	08193817		08193817		
	Units	05-05A	06-10M	RDL	06-12S	RDL	QC Batch
	1				I		1
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	0.1	<0.1	0.1	1626720
Calculated Parameters							
Nitrate (N)	mg/L	0.003	<0.002	0.002	0.003	0.002	1624800
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	297	282	0.5	353	0.5	1624799
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	0.5	2.1	0.5	1624258
Alkalinity (Total as CaCO3)	mg/L	236	196	0.5	151	0.5	1626965
Anions							
Orthophosphate (P)	mg/L	0.005	0.006	0.001	0.043	0.001	1628341
Dissolved Sulphate (SO4)	mg/L	37.3	67.9	0.5	287	5	1630466
Dissolved Chloride (Cl)	mg/L	2.4	4.1	0.5	3.0	0.5	1630441
Nutrients							
Ammonia (N)	mg/L	0.069	0.066	0.005	0.193	0.005	1627969
Nitrate plus Nitrite (N)	mg/L	0.003	0.003	0.002	0.008	0.002	1625779
Nitrite (N)	mg/L	<0.002	0.006	0.002	0.005	0.002	1625780
Total Phosphorus (P)	mg/L	<0.005	<0.005	0.005	0.042	0.005	1627199
Physical Properties							
рН	pH Units	8.4	8.3	0.1	8.4	0.1	1626962
Physical Properties							
Total Suspended Solids	mg/L	<4	5	4	<4	4	1625602
Total Dissolved Solids	mg/L	278	288	10	576	10	1627572
Turbidity	NTU	3.2	39.8	0.1	<0.1	0.1	1624779
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID F25183 Sampling Date 2007/05/13 COC Number 08193817 Units 05-7B RDL QC Batch Misc. Inorganics Bromide (Br) mg/L <0.1 0.1 1626720 Calculated Parameters Nitrate (N) mg/L 0.015 0.002 1624800 Misc. Inorganics Dissolved Hardness (CaCO3) 81.8 0.5 1624799 mg/L Dissolved Organic Carbon (C) 0.7 0.5 mg/L 1624258 Alkalinity (Total as CaCO3) 62.3 0.5 1626965 mg/L Anions 0.001 Orthophosphate (P) mg/L 0.033 1628341 Dissolved Sulphate (SO4) mg/L 6.2 0.5 1630466 Dissolved Chloride (CI) 0.5 1630441 mg/L 8.1 Nutrients 0.006 0.005 1627969 Ammonia (N) mg/L Nitrate plus Nitrite (N) mg/L 0.015 0.002 1625779 0.002 1625780 Nitrite (N) mg/L < 0.002 Total Phosphorus (P) mg/L 0.032 0.005 1627199 Physical Properties pН pH Units 8.0 0.1 1626962 Physical Properties Total Suspended Solids <4 4 1625602 mg/L Total Dissolved Solids 10 1627572 mg/L 88 Turbidity NTU 0.2 0.1 1624779 RDL = Reportable Detection Limit

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		F25180	F25181	F25182	F25183		
Sampling Date		2007/05/09	2007/05/09	2007/05/10	2007/05/13		
	Units	08193817 05-05A	08193817 06-10M	08193817 06-12S	08193817 05-7B	RDI	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	0.009	<0.008	0.008	1626698
Dissolved Calcium (Ca)	mg/L	79.5	93.7	112	28.7	0.05	1626698
Dissolved Iron (Fe)	mg/L	0.518	2.81	<0.005	0.028	0.005	1626698
Dissolved Magnesium (Mg)	mg/L	23.9	11.7	18.2	2.46	0.05	1626698
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1626698
Dissolved Silicon (Si)	mg/L	4.04	4.19	9.74	3.96	0.05	1626698
Dissolved Sodium (Na)	mg/L	0.50	3.38	60.2	1.72	0.05	1626698
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1626698
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	1.2	0.9	2.6	22.6	0.2	1625199
Dissolved Antimony (Sb)	ug/L	5.44	<0.05	1.99	0.13	0.05	1625199
Dissolved Arsenic (As)	ug/L	3.1	<0.1	4.0	0.8	0.1	1625199
Dissolved Barium (Ba)	ug/L	56.6	47.0	23.4	65.3	0.02	1625199
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1625199
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1625199
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	0.02	0.04	0.01	1625199
Dissolved Chromium (Cr)	ug/L	0.3	<0.2	<0.2	<0.2	0.2	1625199
Dissolved Cobalt (Co)	ug/L	0.33	0.07	0.62	0.27	0.02	1625199
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	0.7	0.1	1625199
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	<0.02	0.04	0.02	1625199
Dissolved Lithium (Li)	ug/L	3.1	2.4	9.1	0.7	0.2	1625199
Dissolved Manganese (Mn)	ug/L	160	186	407	151	0.02	1625199
Dissolved Molybdenum (Mo)	ug/L	7.48	2.00	8.20	9.80	0.02	1625199
Dissolved Nickel (Ni)	ug/L	0.8	<0.5	1.3	2.8	0.5	1625199
Dissolved Potassium (K)	ug/L	1670	1950	2770	848	50	1625199
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1625199
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1625199
Dissolved Strontium (Sr)	ug/L	135	151	375	53.4	0.01	1625199
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1625199
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	0.07	0.10	0.05	1625199
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	1.3	0.5	1625199
Dissolved Uranium (U)	ug/L	22.8	9.94	13.1	0.19	0.01	1625199
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	2.27	2.04	0.05	1625199
RDL = Reportable Detection Li	imit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A719951 Report Date: 2007/05/23 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		F25180	F25181	F25182	F25183				
Sampling Date		2007/05/09	2007/05/09	2007/05/10	2007/05/13				
COC Number		08193817	08193817	08193817	08193817				
	Units	05-05A	06-10M	06-12S	05-7B	RDL	QC Batch		
			-	-					
Dissolved Zinc (Zn)	ug/L	2.9	<0.5	<0.5	0.8	0.5	1625199		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1623865		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

General Comments

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA719951

QA/QC			Date				
Batch			Analvzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value	Recovery	Units	QC Limits
1623865 JT3	MATRIX SPIKE		,,,,,		,		
	[F25183-01]	Dissolved Mercury (Ha)	2007/05/17		89	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/05/17		99	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/05/17		88	%	80 - 120
		Dissolved Mercury (Hg)	2007/05/17	<0.01	00	ug/l	00 120
	RPD [F25182_01]	Dissolved Mercury (Hg)	2007/05/17	NC		0/	25
	PDD [E25102-01]	Dissolved Mercury (Hg)	2007/05/17	NC		70 0/	25
1624259 MV		Dissolved Mercury (rig)	2007/05/17	NC	106	/0	00 120
1024230 1017		Dissolved Organic Carbon (C)	2007/05/15		100	/0	80 120
	SPIRE	Dissolved Organic Carbon (C)	2007/05/15	0.5	107	~~~~~~~~//	80 - 120
		Dissolved Organic Carbon (C)	2007/05/15	<0.5		mg/∟	
400 1770 014	RPD [F25183-01]	Dissolved Organic Carbon (C)	2007/05/15	NC		%	20
1624779 CK	SPIKE	Turbidity	2007/05/17		99	%	80 - 120
	BLANK	Turbidity	2007/05/17	<0.1		NIU	
	RPD [F25183-01]	Turbidity	2007/05/17	NC		%	25
1625199 AA1	MATRIX SPIKE						
	[F25180-01]	Dissolved Arsenic (As)	2007/05/16		122	%	75 - 125
		Dissolved Cadmium (Cd)	2007/05/16		108	%	75 - 125
		Dissolved Chromium (Cr)	2007/05/16		110	%	75 - 125
		Dissolved Cobalt (Co)	2007/05/16		113	%	75 - 125
		Dissolved Copper (Cu)	2007/05/16		112	%	75 - 125
		Dissolved Lead (Pb)	2007/05/16		102	%	75 - 125
		Dissolved Selenium (Se)	2007/05/16		118	%	75 - 125
		Dissolved Thallium (TI)	2007/05/16		103	%	75 - 125
		Dissolved Zinc (Zn)	2007/05/16		115	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/05/16		104	%	75 - 125
	-	Dissolved Cadmium (Cd)	2007/05/16		101	%	75 - 125
		Dissolved Chromium (Cr)	2007/05/16		118	%	75 - 125
		Dissolved Cobalt (Co)	2007/05/16		122	%	75 - 125
		Dissolved Copper (Cu)	2007/05/16		116	%	75 - 125
		Dissolved Lead (Pb)	2007/05/16		105	70 0/	75 - 125
		Dissolved Selenium (Se)	2007/05/16		105	0/	75 125
		Dissolved Thellium (TI)	2007/05/10		105	/0	75 125
		Dissolved Thailum (T)	2007/05/10		100	/0 0/	75 125
		Dissolved Aluminum (Al)	2007/05/16	.0.2	115	70 	75-125
	DLAINK	Dissolved Aluminum (Al)	2007/05/16	<0.2		ug/L	
		Dissolved Antimony (Sb)	2007/05/16	<0.05		ug/L	
		Dissolved Arsenic (As)	2007/05/16	<0.1		ug/L	
		Dissolved Barium (Ba)	2007/05/16	<0.02		ug/L	
		Dissolved Beryllium (Be)	2007/05/16	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/05/16	< 0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/05/16	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/05/16	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/05/16	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/05/16	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/05/16	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/05/16	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/05/16	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/05/16	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/05/16	<0.5		ug/L	
		Dissolved Potassium (K)	2007/05/16	<50		ug/L	
		Dissolved Selenium (Se)	2007/05/16	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/05/16	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/05/16	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/05/16	< 0.05		ug/l	
		Dissolved Tin (Sn)	2007/05/16	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/05/16	<0.00		ug/L	
			2007/00/10	-0.0		ug/L	

Quality Assurance Report (Continued)

Maxxam Job Number: VA719951

QA/QC			Date				l
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1625199 AA1	BLANK	Dissolved Uranium (U)	2007/05/16	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/05/16	<0.05		ug/L	
		Dissolved Zinc (Zn)	2007/05/16	<0.5		ug/L	
	RPD [F25180-01]	Dissolved Aluminum (Al)	2007/05/16	2.0		%	25
		Dissolved Antimony (Sb)	2007/05/16	1.6		%	25
		Dissolved Arsenic (As)	2007/05/16	1.6		%	25
		Dissolved Barium (Ba)	2007/05/16	1.9		%	25
		Dissolved Beryllium (Be)	2007/05/16	NC		%	25
		Dissolved Bismuth (Bi)	2007/05/16	NC		%	25
		Dissolved Cadmium (Cd)	2007/05/16	NC		%	25
		Dissolved Chromium (Cr)	2007/05/16	NC		%	25
		Dissolved Cobalt (Co)	2007/05/16	0.3		%	25
		Dissolved Copper (Cu)	2007/05/16	NC		%	25
		Dissolved Lead (Pb)	2007/05/16	NC		%	25
		Dissolved Lithium (Li)	2007/05/16	5.6		%	25
		Dissolved Manganese (Mn)	2007/05/16	1.0		%	25
		Dissolved Malybdenum (Mo)	2007/05/16	3.5		%	25
		Dissolved Nickel (Ni)	2007/05/16	NC		%	25
		Dissolved Potassium (K)	2007/05/16	1		70 9/2	25
		Dissolved Foldssidin (R)	2007/05/16	NC		70 9/	25
		Dissolved Scientum (Se)	2007/05/10	NC		/0 0/	25
		Dissolved Streptium (Sr)	2007/05/16			70 0/	20
		Dissolved Strontium (SI)	2007/05/16	0.8		70	20
		Dissolved Thailum (11)	2007/05/16	NC		70 0/	25
		Dissolved Till (SII)	2007/05/16	NC		% 0/	20
		Dissolved Litanium (11)	2007/05/16	NC		%	25
		Dissolved Uranium (U)	2007/05/16	0.5		%	25
		Dissolved Vanadium (V)	2007/05/16	NC		%	25
4005000 504		Dissolved Zinc (Zn)	2007/05/16	4.9	400	%	25
1625602 FS1		Total Suspended Solids	2007/05/16		103	%	N/A
	SPIKE	Total Suspended Solids	2007/05/16		102	%	N/A
	BLANK	Total Suspended Solids	2007/05/16	<4		mg/L	
	RPD	Total Suspended Solids	2007/05/16	NC		%	25
1625779 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/05/16		110	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/05/16		105	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/05/16	<0.002		mg/L	
	RPD	Nitrate plus Nitrite (N)	2007/05/16	NC		%	25
1625780 BB3	SPIKE	Nitrite (N)	2007/05/16		108	%	80 - 120
	BLANK	Nitrite (N)	2007/05/16	< 0.002		mg/L	
1626698 GS2	BLANK	Dissolved Boron (B)	2007/05/16	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/05/16	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/05/16	< 0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/05/16	<0.05		mg/L	
		Dissolved Phosphorus (P)	2007/05/16	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/05/16	< 0.05		mg/L	
		Dissolved Sodium (Na)	2007/05/16	<0.05		mg/L	
		Dissolved Zirconium (Źr)	2007/05/16	<0.005		ma/L	
	RPD	Dissolved Boron (B)	2007/05/16	0.6		%	25
		Dissolved Calcium (Ca)	2007/05/16	0.2		%	25
		Dissolved Iron (Fe)	2007/05/16	0.4		%	25
		Dissolved Magnesium (Mg)	2007/05/16	0.7		%	25
1		Dissolved Phosphorus (P)	2007/05/16	NC		%	25
1		Dissolved Silicon (Si)	2007/05/16	0.7		%	25
1		Dissolved Sodium (Na)	2007/05/16	0.7		%	25
1		Dissolved Zirconium (7r)	2007/05/16			70 0/_	20
1626720 442	MATRIX COIKE	Bromide (Br)	2007/05/16	NC	110	70 0/_	20 80 - 120
1020120 AITS	WATKIN OF INC		2007/03/10		110	/0	00-120

Quality Assurance Report (Continued)

Maxxam Job Number: VA719951

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value	Recovery	Units	QC Limits
1626720 AH3	SPIKE	Bromide (Br)	2007/05/16		106	%	80 - 120
	BLANK	Bromide (Br)	2007/05/16	<0.1		mg/L	
	RPD	Bromide (Br)	2007/05/16	2.9		%	25
1626962 CK	SPIKE	pH	2007/05/18		102	%	96 - 104
	RPD	рН	2007/05/18	0		%	25
1626965 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/05/18		99	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/05/18		99	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/05/18	<0.5		mg/L	
	RPD	Alkalinity (Total as CaCO3)	2007/05/18	0.1		%	25
1627199 SC2	MATRIX SPIKE	Total Phosphorus (P)	2007/05/18		85	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/05/18		109	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/05/18	<0.005		mg/L	
	RPD	Total Phosphorus (P)	2007/05/18	NC		%	25
1627572 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/05/17		104	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/05/17		102	%	80 - 120
	BLANK	Total Dissolved Solids	2007/05/17	<10		mg/L	
	RPD	Total Dissolved Solids	2007/05/17	0		%	25
1627969 SC2	MATRIX SPIKE	Ammonia (N)	2007/05/17		90	%	80 - 120
	SPIKE	Ammonia (N)	2007/05/17		85	%	80 - 120
	BLANK	Ammonia (N)	2007/05/17	<0.005		mg/L	
	RPD	Ammonia (N)	2007/05/17	NC		%	25
1628341 BB3	MATRIX SPIKE	Orthophosphate (P)	2007/05/17		92	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/05/17		89	%	80 - 120
	BLANK	Orthophosphate (P)	2007/05/17	<0.001		mg/L	
	RPD	Orthophosphate (P)	2007/05/17	NC		%	20
1630441 SC2	MATRIX SPIKE	Dissolved Chloride (Cl)	2007/05/18		111	%	80 - 120
	SPIKE	Dissolved Chloride (CI)	2007/05/18		106	%	80 - 120
	BLANK	Dissolved Chloride (CI)	2007/05/18	<0.5		mg/L	
	RPD [F25180-01]	Dissolved Chloride (CI)	2007/05/18	NC		%	20
1630466 SC2	MATRIX SPIKE	Dissolved Sulphate (SO4)	2007/05/18		107	%	75 - 125
	SPIKE	Dissolved Sulphate (SO4)	2007/05/18		98	%	80 - 120
	BLANK	Dissolved Sulphate (SO4)	2007/05/18	<0.5		mg/L	
	RPD [F25180-01]	Dissolved Sulphate (SO4)	2007/05/18	0.6		%	20
N/A = Not Applic NC = Non-calcu RPD = Relative	cable lable Percent Difference						
	Burnaby: 8	577 Commerce Court V5A 4N5	5 Lelephone(604) 444-4808	3 Fax(604)	444-4511		

Your C.O.C. #: 08194179, 08194180

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/06/21

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A724712 Received: 2007/06/11, 12:15

Sample Matrix: Water # Samples Received: 13

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	6	2007/06/15	2007/06/18 BRN SOP-00264 R2.0	Based on SM2320B
Alkalinity - Water	7	2007/06/16	2007/06/19 BRN SOP-00264 R2.0	Based on SM2320B
Bromide (IC-EC)	13	N/A	2007/06/18 BRN SOP-00251 R1.0	SM 4110 B
Chloride by Automated Colourimetry	13	N/A	2007/06/19 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	6	N/A	2007/06/14 BRN SOP-00224 R3.0	Based on SM-5310C
Carbon (DOC)	6	N/A	2007/06/21 BRN SOP-00224 R3.0	Based on SM-5310C
Conductance - water	6	N/A	2007/06/18 BRN SOP-00264 R2.0	Based on SM-2510B
Conductance - water	7	N/A	2007/06/19 BRN SOP-00264 R2.0	Based on SM-2510B
Fluoride	13	N/A	2007/06/19 ING222 Rev.4.2	Based SM - 4500 F C
Hardness (calculated as CaCO3)	13	N/A	2007/06/19	
Mercury (dissolved; low level)	13	2007/06/15	2007/06/19 BRN SOP-00205	Based on EPA 245.1
Elements by ICP-AES (dissolved)	13	2007/06/18	2007/06/18 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) ()	13	2007/06/18	2007/06/19 BRN SOP-00204	Based on EPA 200.8
Ammonia (N)	6	N/A	2007/06/15 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Ammonia (N)	7	N/A	2007/06/20 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	6	N/A	2007/06/15 ING233 Rev.4.4	Based on EPA 353.2
Nitrate+Nitrite (N) (low level	7	N/A	2007/06/18 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) (low level)	6	N/A	2007/06/15 ING233 Rev.4.4	EPA 353.2
Nitrite (N) (low level)	7	N/A	2007/06/18 ING233 Rev.4.4	EPA 353.2
Nitrogen - Nitrate (as N)	6	N/A	2007/06/15	
Nitrogen - Nitrate (as N)	7	N/A	2007/06/19	
pH Water	6	N/A	2007/06/16 BRN SOP-00264 R2.0	Based on SM-4500H+B
pH Water	7	N/A	2007/06/19 BRN SOP-00264 R2.0	Based on SM-4500H+B
Orthophosphate by Konelab ()	13	N/A	2007/06/19 BRN SOP-00235 R3.0	SM 4500 PF
Sulphate by Automated Colourimetry	13	N/A	2007/06/19 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	13	N/A	2007/06/19 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	6	N/A	2007/06/18 BRN SOP-00236 R4.0	SM 4500
Total Phosphorus	7	N/A	2007/06/20 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids ()	12	N/A	2007/06/19 BRN SOP-00277 R2.0	Based on SM - 2540 D
Turbidity	6	N/A	2007/06/15 BRN SOP-00265 R3.0	SM - 2130B
Turbidity	7	N/A	2007/06/16 BRN SOP-00265 R3.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Your C.O.C. #: 08194179, 08194180

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/06/21

CERTIFICATE OF ANALYSIS

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61517	F61522	F61523	F61524		
Sampling Date		2007/06/06	2007/06/06	2007/06/06	2007/06/06		
COC Number		08194179	08194179	08194179	08194179		
	Units	MW 06-9S	MW 06-9M	MW 06-10S	MW 06-10M	RDL	QC Batch
	1	[1		1	l
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1682862
Fluoride (F)	mg/L	0.88	1.05	0.26	0.83	0.01	1683352
Calculated Parameters							
Nitrate (N)	mg/L	0.002	<0.002	<0.002	<0.002	0.002	1677717
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	144	217	141	277	0.5	1677716
Dissolved Organic Carbon (C)	mg/L	0.8	<0.5	0.7	<0.5	0.5	1676425
Alkalinity (Total as CaCO3)	mg/L	114	191	116	202	0.5	1679751
Anions							
Orthophosphate (P)	mg/L	0.179	0.004	0.054	0.003	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	24.4	10.2	29.5	53.0	0.5	1683577
Dissolved Chloride (Cl)	mg/L	<0.5	0.7	4.9	0.9	0.5	1683546
Nutrients							
Ammonia (N)	mg/L	0.016	0.008	0.017	0.057	0.005	1678793
Nitrate plus Nitrite (N)	mg/L	0.002	<0.002	<0.002	<0.002	0.002	1678985
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	<0.002	0.002	1678992
Total Phosphorus (P)	mg/L	0.323	0.075	0.051	0.056	0.005	1678360
Physical Properties							
Conductivity	uS/cm	266	364	296	467	1	1679748
рН	pH Units	8.2	8.3	8.2	8.3	0.1	1679724
Physical Properties							
Total Suspended Solids	mg/L	5	13	<4	10	4	1685560
Total Dissolved Solids	mg/L	164	204	180	286	10	1684412
Turbidity	NTU	0.8	18.1	0.3	39.7	0.1	1677261
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61526	F61527	F61528	F61530		
Sampling Date		2007/06/06	2007/06/08	2007/06/08	2007/06/08		
COC Number		08194179	08194179	08194179	08194179		
	Units	MW 06-10D	MW 05-05A	MW 05-02A	MW 05-02B	RDL	QC Batch
Misc Inorganics							
		0.4	0.4	0.4	0.4	0.4	4000000
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1682862
Fluoride (F)	mg/L	1.08	2.34	0.31	0.08	0.01	1683352
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	0.002	0.004	0.003	0.002	1680238
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	278	301	231	131	0.5	1680237
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	<0.5	1.0	0.5	1690790
Alkalinity (Total as CaCO3)	mg/L	237	235	179	131	0.5	1680539
Anions							
Orthophosphate (P)	mg/L	0.003	0.003	0.003	0.004	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	21.8	35.6	33.3	5.9	0.5	1683577
Dissolved Chloride (Cl)	mg/L	3.4	2.5	1.8	0.5	0.5	1683546
Nutrients							
Ammonia (N)	mg/L	0.043	0.044	0.077	<0.005	0.005	1686567
Nitrate plus Nitrite (N)	mg/L	0.003	0.004	0.006	0.003	0.002	1681596
Nitrite (N)	mg/L	0.002	0.002	0.002	<0.002	0.002	1681637
Total Phosphorus (P)	mg/L	0.025	0.009	0.006	0.100	0.005	1683540
Physical Properties							
Conductivity	uS/cm	463	494	392	254	1	1680537
рН	pH Units	8.4	8.4	8.2	8.0	0.1	1680532
Physical Properties							
Total Suspended Solids	mg/L	13	<4	<4	38	4	1685560
Total Dissolved Solids	mg/L	272	288	234	160	10	1684412
Turbidity	NTU	49.4	13.3	7.6	34.2	0.1	1680460
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61531	F61532		F61539		
Sampling Date		2007/06/08	2007/06/07		2007/06/07		
COC Number		08194179	08194179		08194179		
	Units	MW 05-07A	MW 05-07B	QC Batch	MW 06-08D	RDL	QC Batch
Mice Inergenies	1						1
wisc. inorganics				-			
Bromide (Br)	mg/L	<0.1	<0.1	1682862	<0.1	0.1	1682862
Fluoride (F)	mg/L	0.11	0.14	1683352	0.98	0.01	1683352
Calculated Parameters							
Nitrate (N)	mg/L	0.044	0.005	1680238	<0.002	0.002	1677717
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	2420	75.4	1680237	276	0.5	1677716
Dissolved Organic Carbon (C)	mg/L	9.5	0.5	1690790	<0.5	0.5	1676425
Alkalinity (Total as CaCO3)	mg/L	811	56.1	1680539	228	0.5	1679751
Anions							
Orthophosphate (P)	mg/L	0.002	0.027	1684483	0.004	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	7.2	14.8	1683577	29.0	0.5	1683577
Dissolved Chloride (Cl)	mg/L	6.5	5.0	1683546	<0.5	0.5	1683546
Nutrients							
Ammonia (N)	mg/L	0.064	<0.005	1686567	0.074	0.005	1678793
Nitrate plus Nitrite (N)	mg/L	0.049	0.007	1681596	<0.002	0.002	1678985
Nitrite (N)	mg/L	0.005	0.002	1681637	<0.002	0.002	1678992
Total Phosphorus (P)	mg/L	0.013	0.041	1683540	0.008	0.005	1678360
Physical Properties							
Conductivity	uS/cm	3010	158	1680537	457	1	1679748
рН	pH Units	12.1	8.3	1680532	8.4	0.1	1679724
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	1685560	<4	4	1685560
Total Dissolved Solids	mg/L	1050	102	1684412	268	10	1684412
Turbidity	NTU	<0.1	<0.1	1680460	1.5	0.1	1677261
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61540		F61541		
Sampling Date		2007/06/07		2007/06/11		
COC Number		08194180		08194180		
	Units	MW 06-08S	QC Batch	TRAVEL BLANK	RDL	QC Batch
Misc. Inorganics						
Bromide (Br)	mg/L	<0.1	1682862	<0.1	0.1	1682862
Fluoride (F)	mg/L	0.28	1683352	0.01	0.01	1683352
Calculated Parameters						
Nitrate (N)	mg/L	0.016	1677717	<0.002	0.002	1680238
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	70.4	1677716	<0.5	0.5	1680237
Dissolved Organic Carbon (C)	mg/L	3.3	1676425		0.5	
Alkalinity (Total as CaCO3)	mg/L	90.9	1679751	0.7	0.5	1680539
Anions						
Orthophosphate (P)	mg/L	0.005	1684483	<0.001	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	21.9	1683577	<0.5	0.5	1683577
Dissolved Chloride (CI)	mg/L	2.6	1683546	<0.5	0.5	1683546
Nutrients						
Ammonia (N)	mg/L	0.126	1678793	<0.005	0.005	1686567
Nitrate plus Nitrite (N)	mg/L	0.018	1678985	<0.002	0.002	1681596
Nitrite (N)	mg/L	0.002	1678992	<0.002	0.002	1681637
Total Phosphorus (P)	mg/L	0.030	1678360	<0.005	0.005	1683540
Physical Properties						
Conductivity	uS/cm	234	1679748	1	1	1680537
рН	pH Units	8.1	1679724	6.3	0.1	1680532
Physical Properties						
Total Suspended Solids	mg/L	7	1685560		4	
Total Dissolved Solids	mg/L	140	1684412	<10	10	1684412
Turbidity	NTU	3.3	1677261	<0.1	0.1	1680460
RDL = Reportable Detection Li	mit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61517	F61522	F61523	F61524		
Sampling Date		2007/06/06	2007/06/06	2007/06/06	2007/06/06		
	Units	MW 06-9S	MW 06-9M	MW 06-10S	08194179 MW 06-10M	RDL	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1681696
Dissolved Calcium (Ca)	mg/L	49.4	66.6	49.8	90.0	0.05	1681696
Dissolved Iron (Fe)	mg/L	0.121	0.256	0.207	4.84	0.005	1681696
Dissolved Magnesium (Mg)	mg/L	5.05	12.3	4.10	12.7	0.05	1681696
Dissolved Phosphorus (P)	mg/L	0.2	<0.1	<0.1	<0.1	0.1	1681696
Dissolved Silicon (Si)	mg/L	4.09	3.98	3.96	3.89	0.05	1681696
Dissolved Sodium (Na)	mg/L	1.37	0.45	9.03	3.15	0.05	1681696
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1681696
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	7.3	0.6	5.3	3.7	0.2	1682735
Dissolved Antimony (Sb)	ug/L	0.08	<0.05	0.39	<0.05	0.05	1682735
Dissolved Arsenic (As)	ug/L	5.4	0.3	5.3	0.4	0.1	1682735
Dissolved Barium (Ba)	ug/L	51.9	181	24.9	45.4	0.02	1682735
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Cadmium (Cd)	ug/L	0.02	0.01	<0.01	<0.01	0.01	1682735
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1682735
Dissolved Cobalt (Co)	ug/L	0.03	0.06	0.19	0.09	0.02	1682735
Dissolved Copper (Cu)	ug/L	0.2	0.2	<0.1	<0.1	0.1	1682735
Dissolved Lead (Pb)	ug/L	0.25	0.05	0.03	<0.02	0.02	1682735
Dissolved Lithium (Li)	ug/L	0.8	2.8	0.9	2.2	0.2	1682735
Dissolved Manganese (Mn)	ug/L	115	322	90.0	235	0.02	1682735
Dissolved Molybdenum (Mo)	ug/L	5.68	3.60	1.99	2.02	0.02	1682735
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	1.4	<0.5	0.5	1682735
Dissolved Potassium (K)	ug/L	1040	2060	1220	1950	50	1682735
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1682735
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1682735
Dissolved Strontium (Sr)	ug/L	161	85.4	164	142	0.01	1682735
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Tin (Sn)	ug/L	0.08	<0.05	<0.05	0.84	0.05	1682735
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1682735
Dissolved Uranium (U)	ug/L	0.21	0.49	8.51	5.45	0.01	1682735
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	0.18	<0.05	0.05	1682735
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61517	F61522	F61523	F61524				
Sampling Date		2007/06/06	2007/06/06	2007/06/06	2007/06/06				
COC Number		08194179	08194179	08194179	08194179				
	Units	MW 06-9S	MW 06-9M	MW 06-10S	MW 06-10M	RDL	QC Batch		
			-			_			
Dissolved Zinc (Zn)	ug/L	1.1	<0.5	0.6	<0.5	0.5	1682735		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1680240		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61526	F61527	F61528	F61530		
Sampling Date		2007/06/06	2007/06/08	2007/06/08	2007/06/08		
	Units	MW 06-10D	MW 05-05A	MW 05-02A	MW 05-02B	RDL	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	0.009	<0.008	<0.008	<0.008	0.008	1681696
Dissolved Calcium (Ca)	mg/L	75.0	80.5	61.2	43.1	0.05	1681696
Dissolved Iron (Fe)	mg/L	5.04	1.25	1.17	7.42	0.005	1681696
Dissolved Magnesium (Mg)	mg/L	22.1	24.3	18.9	5.58	0.05	1681696
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1681696
Dissolved Silicon (Si)	mg/L	4.00	3.85	3.75	5.79	0.05	1681696
Dissolved Sodium (Na)	mg/L	1.39	0.40	0.64	9.85	0.05	1681696
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1681696
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	19.6	2.3	44.9	88.4	0.2	1682735
Dissolved Antimony (Sb)	ug/L	1.08	6.66	0.07	0.09	0.05	1682735
Dissolved Arsenic (As)	ug/L	0.3	4.7	0.9	35.4	0.1	1682735
Dissolved Barium (Ba)	ug/L	78.8	47.2	50.8	217	0.02	1682735
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Cadmium (Cd)	ug/L	<0.01	0.02	0.01	0.03	0.01	1682735
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1682735
Dissolved Cobalt (Co)	ug/L	0.03	0.24	0.14	0.92	0.02	1682735
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	0.7	0.6	0.1	1682735
Dissolved Lead (Pb)	ug/L	0.14	<0.02	0.12	0.20	0.02	1682735
Dissolved Lithium (Li)	ug/L	3.7	3.1	2.6	1.9	0.2	1682735
Dissolved Manganese (Mn)	ug/L	97.6	92.8	164	1560	0.02	1682735
Dissolved Molybdenum (Mo)	ug/L	4.50	7.15	2.82	1.72	0.02	1682735
Dissolved Nickel (Ni)	ug/L	<0.5	1.1	0.7	1.4	0.5	1682735
Dissolved Potassium (K)	ug/L	2740	1610	2080	1420	50	1682735
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1682735
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1682735
Dissolved Strontium (Sr)	ug/L	169	135	159	123	0.01	1682735
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Tin (Sn)	ug/L	4.96	0.13	0.20	0.06	0.05	1682735
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	2.0	2.2	0.5	1682735
Dissolved Uranium (U)	ug/L	3.41	24.7	8.67	0.63	0.01	1682735
Dissolved Vanadium (V)	ug/L	0.08	<0.05	0.09	0.62	0.05	1682735
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61526	F61527	F61528	F61530				
Sampling Date		2007/06/06	2007/06/08	2007/06/08	2007/06/08				
COC Number		08194179	08194179	08194179	08194179				
	Units	MW 06-10D	MW 05-05A	MW 05-02A	MW 05-02B	RDL	QC Batch		
		-							
Dissolved Zinc (Zn)	ug/L	3.8	5.0	0.9	4.7	0.5	1682735		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1680240		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61531	F61532	F61539	F61540		
Sampling Date		2007/06/08	2007/06/07	2007/06/07	2007/06/07		
	Units	MW 05-07A	MW 05-07B	MW 06-08D	MW 06-08S	RDL	QC Batch
		1					
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	0.008	<0.008	<0.008	800.0	1681696
Dissolved Calcium (Ca)	mg/L	969	26.3	64.4	23.4	0.05	1681696
Dissolved Iron (Fe)	mg/L	0.012	0.066	0.258	2.32	0.005	1681696
Dissolved Magnesium (Mg)	mg/L	<0.05	2.36	27.9	2.92	0.05	1681696
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1681696
Dissolved Silicon (Si)	mg/L	0.23	3.82	4.63	5.90	0.05	1681696
Dissolved Sodium (Na)	mg/L	8.47	1.81	0.80	6.28	0.05	1681696
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1681696
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	49.6	36.7	6.0	13.3	0.2	1682735
Dissolved Antimony (Sb)	ug/L	0.12	0.13	0.39	8.93	0.05	1682735
Dissolved Arsenic (As)	ug/L	0.7	1.2	5.8	2.4	0.1	1682735
Dissolved Barium (Ba)	ug/L	3220	37.7	47.8	66.2	0.02	1682735
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Cadmium (Cd)	ug/L	0.02	0.03	<0.01	0.01	0.01	1682735
Dissolved Chromium (Cr)	ug/L	7.7	0.4	0.3	<0.2	0.2	1682735
Dissolved Cobalt (Co)	ug/L	0.57	0.22	0.38	2.01	0.02	1682735
Dissolved Copper (Cu)	ug/L	7.3	1.0	0.1	0.1	0.1	1682735
Dissolved Lead (Pb)	ug/L	4.12	0.07	0.04	0.06	0.02	1682735
Dissolved Lithium (Li)	ug/L	48.3	0.4	2.6	1.0	0.2	1682735
Dissolved Manganese (Mn)	ug/L	0.58	124	51.4	702	0.02	1682735
Dissolved Molybdenum (Mo)	ug/L	4.83	9.07	1.36	2.83	0.02	1682735
Dissolved Nickel (Ni)	ug/L	16.6	0.7	2.0	3.9	0.5	1682735
Dissolved Potassium (K)	ug/L	13600	845	1870	984	50	1682735
Dissolved Selenium (Se)	ug/L	1.7	0.6	0.6	1.8	0.5	1682735
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1682735
Dissolved Strontium (Sr)	ug/L	2010	46.1	162	59.6	0.01	1682735
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1682735
Dissolved Tin (Sn)	ug/L	0.70	0.23	0.08	0.12	0.05	1682735
Dissolved Titanium (Ti)	ug/L	1.0	2.1	0.6	1.3	0.5	1682735
Dissolved Uranium (U)	ug/L	<0.01	0.09	12.7	0.04	0.01	1682735
Dissolved Vanadium (V)	ug/L	0.58	0.97	0.33	1.43	0.05	1682735
RDL = Reportable Detection Li	mit		•	•	•		,

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61531	F61532	F61539	F61540				
Sampling Date		2007/06/08	2007/06/07	2007/06/07	2007/06/07				
COC Number		08194179	08194179	08194179	08194180				
	Units	MW 05-07A	MW 05-07B	MW 06-08D	MW 06-08S	RDL	QC Batch		
Dissolved Zinc (Zn)	ug/L	269	1.5	2.8	0.9	0.5	1682735		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1680240		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61541		
Sampling Date		2007/06/11		
COC Number		08194180		
	Units	BLANK	RDL	QC Batch
	1			
Dissolved Metals by ICP				
Dissolved Boron (B)	mg/L	<0.008	0.008	1681696
Dissolved Calcium (Ca)	mg/L	<0.05	0.05	1681696
Dissolved Iron (Fe)	mg/L	<0.005	0.005	1681696
Dissolved Magnesium (Mg)	mg/L	<0.05	0.05	1681696
Dissolved Phosphorus (P)	mg/L	<0.1	0.1	1681696
Dissolved Silicon (Si)	mg/L	<0.05	0.05	1681696
Dissolved Sodium (Na)	mg/L	0.09	0.05	1681696
Dissolved Zirconium (Zr)	mg/L	<0.005	0.005	1681696
Dissolved Metals by ICPMS				
Dissolved Aluminum (Al)	ug/L	<0.2	0.2	1682735
Dissolved Antimony (Sb)	ug/L	<0.05	0.05	1682735
Dissolved Arsenic (As)	ug/L	<0.1	0.1	1682735
Dissolved Barium (Ba)	ug/L	0.10	0.02	1682735
Dissolved Beryllium (Be)	ug/L	<0.05	0.05	1682735
Dissolved Bismuth (Bi)	ug/L	<0.05	0.05	1682735
Dissolved Cadmium (Cd)	ug/L	<0.01	0.01	1682735
Dissolved Chromium (Cr)	ug/L	<0.2	0.2	1682735
Dissolved Cobalt (Co)	ug/L	<0.02	0.02	1682735
Dissolved Copper (Cu)	ug/L	<0.1	0.1	1682735
Dissolved Lead (Pb)	ug/L	<0.02	0.02	1682735
Dissolved Lithium (Li)	ug/L	<0.2	0.2	1682735
Dissolved Manganese (Mn)	ug/L	<0.02	0.02	1682735
Dissolved Molybdenum (Mo)	ug/L	<0.02	0.02	1682735
Dissolved Nickel (Ni)	ug/L	<0.5	0.5	1682735
Dissolved Potassium (K)	ug/L	<50	50	1682735
Dissolved Selenium (Se)	ug/L	<0.5	0.5	1682735
Dissolved Silver (Ag)	ug/L	<0.01	0.01	1682735
Dissolved Strontium (Sr)	ug/L	0.02	0.01	1682735
Dissolved Thallium (TI)	ug/L	<0.05	0.05	1682735
Dissolved Tin (Sn)	ug/L	<0.05	0.05	1682735
Dissolved Titanium (Ti)	ug/L	<0.5	0.5	1682735
Dissolved Uranium (U)	ug/L	<0.01	0.01	1682735
RDL = Reportable Detection Lir	nit			

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		F61541						
Sampling Date		2007/06/11						
COC Number		08194180						
	Units	TRAVEL BLANK	RDL	QC Batch				
Dissolved Vanadium (V)	ug/L	<0.05	0.05	1682735				
Dissolved Zinc (Zn)	ug/L	<0.5	0.5	1682735				
Mercury by CVAA								
Dissolved Mercury (Hg)	ug/L	<0.01	0.01	1680240				
RDL = Reportable Detection Limit								

Driven by service and Science www.maxxamanalytics.com

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Sample F61531-01 pH Water: pH result greater than the highest calibration standard of pH 12.

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA724712

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1676425 MX	MATRIX SPIKE	Dissolved Organic Carbon (C)	2007/06/14		110	%	80 - 120
	SPIKE	Dissolved Organic Carbon (C)	2007/06/14		98	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/06/14	<0.5		mg/L	
	RPD	Dissolved Organic Carbon (C)	2007/06/14	1.1		%	20
1677261 CK	SPIKE	Turbidity	2007/06/15		102	%	80 - 120
	BLANK	Turbidity	2007/06/15	<0.1		NTU	
	RPD	Turbidity	2007/06/15	NC		%	25
1678360 MX	MATRIX SPIKE	Total Phosphorus (P)	2007/06/18		94	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/06/18		100	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/06/18	< 0.005		mg/L	
	RPD	Total Phosphorus (P)	2007/06/18	0.04		%	25
1678793 SC2	MATRIX SPIKE	Ammonia (N)	2007/06/15		97	%	80 - 120
	SPIKE	Ammonia (N)	2007/06/15		87	%	80 - 120
	BLANK	Ammonia (N)	2007/06/15	<0.005		mg/L	
	RPD	Ammonia (N)	2007/06/15	NC		%	25
1678985 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/06/15		103	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/06/15		104	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/06/15	< 0.002		mg/L	
	RPD	Nitrate plus Nitrite (N)	2007/06/15	5.3		%	25
1678992 BB3	MATRIX SPIKE	Nitrite (N)	2007/06/15		104	%	80 - 120
	SPIKE	Nitrite (N)	2007/06/15		101	%	80 - 120
	BLANK	Nitrite (N)	2007/06/15	< 0.002		mg/L	
	RPD	Nitrite (N)	2007/06/15	NC		%	25
1679724 CK	SPIKE	рН	2007/06/16		101	%	96 - 104
	RPD	рН	2007/06/16	0.3		%	25
1679748 CK	SPIKE	Conductivity	2007/06/18		101	%	80 - 120
	BLANK	Conductivity	2007/06/18	<1		uS/cm	
	RPD	Conductivity	2007/06/18	1.2		%	25
1679751 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/06/18		91	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/06/18		97	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/06/18	<0.5		mg/L	
	RPD	Alkalinity (Total as CaCO3)	2007/06/18	0.7		%	25
1680240 JT3	MATRIX SPIKE						
	[F61541-01]	Dissolved Mercury (Hg)	2007/06/19		109	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/06/19		114	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/06/19		102	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/06/19	<0.01		ug/L	
	RPD [F61517-01]	Dissolved Mercury (Hg)	2007/06/19	NC		%	25
	RPD [F61541-01]	Dissolved Mercury (Hg)	2007/06/19	NC		%	25
1680460 CK	SPIKE	Turbidity	2007/06/16		101	%	80 - 120
	BLANK	Turbidity	2007/06/16	<0.1		NTU	
	RPD	Turbidity	2007/06/16	0.6		%	25
1680532 CK	SPIKE	pH	2007/06/19		101	%	96 - 104
	RPD [F61527-01]	pH	2007/06/19	0.1		%	25
1680537 CK	SPIKE	Conductivity	2007/06/19		101	%	80 - 120
	BLANK	Conductivity	2007/06/19	<1		uS/cm	
	RPD [F61527-01]	Conductivity	2007/06/19	1.0		%	25
1680539 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/06/19		98	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/06/19		98	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/06/19	<0.5		mg/L	
	RPD [F61527-01]	Alkalinity (Total as CaCO3)	2007/06/19	1.2		%	25
1681596 BB3		Nitrate plus Nitrite (N)	2007/06/18		97	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/06/18		103	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/06/18	< 0.002		mg/L	<u> </u>
	KPD	Nitrate plus Nitrite (N)	2007/06/18	2.9		%	25

Quality Assurance Report (Continued)

Maxxam Job Number: VA724712

QA/QC			Date				
Batch		Parameter	Analyzed	Value	Baaayany	Linita	OC Limita
1691627 PP2		Nitrito (N)	2007/06/18	value	Recovery	Units 0/	
1001037 003		Nitrite (N)	2007/06/18		101	/0 9/2	80 - 120
		Nitrite (N)	2007/06/18	~0.002	101	/0 ma/l	00 - 120
	RPD	Nitrite (N)	2007/06/18	<0.002 NC		111g/L	25
1681696 GS2	BLANK	Dissolved Boron (B)	2007/06/18			ma/l	20
1001000 002		Dissolved Calcium (Ca)	2007/06/18	<0.000		mg/L	
		Dissolved Iron (Fe)	2007/06/18	< 0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/06/18	< 0.05		ma/l	
		Dissolved Phosphorus (P)	2007/06/18	<0.1		ma/l	
		Dissolved Silicon (Si)	2007/06/18	< 0.05		ma/L	
		Dissolved Sodium (Na)	2007/06/18	< 0.05		mg/L	
		Dissolved Zirconium (Źr)	2007/06/18	<0.005		mg/L	
	RPD	Dissolved Boron (B)	2007/06/18	NC		%	25
		Dissolved Calcium (Ca)	2007/06/18	0.7		%	25
		Dissolved Iron (Fe)	2007/06/18	NC		%	25
		Dissolved Magnesium (Mg)	2007/06/18	0.7		%	25
		Dissolved Phosphorus (P)	2007/06/18	NC		%	25
		Dissolved Sodium (Na)	2007/06/18	0.3		%	25
		Dissolved Zirconium (Zr)	2007/06/18	NC		%	25
1682735 AA1	MATRIX SPIKE						
	[F61541-01]	Dissolved Arsenic (As)	2007/06/19		112	%	75 - 125
		Dissolved Cadmium (Cd)	2007/06/19		111	%	75 - 125
		Dissolved Chromium (Cr)	2007/06/19		101	%	75 - 125
		Dissolved Cobalt (Co)	2007/06/19		107	%	75 - 125
		Dissolved Copper (Cu)	2007/06/19		111	%	75 - 125
		Dissolved Lead (Pb)	2007/06/19		107	%	75 - 125
		Dissolved Selenium (Se)	2007/06/19		118	%	75 - 125
		Dissolved Thallium (TI)	2007/06/19		105	%	75 - 125
		Dissolved Zinc (Zn)	2007/06/19		116	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/06/19		100	%	75 - 125
		Dissolved Cadmium (Cd)	2007/06/19		104	%	75 - 125
		Dissolved Coholt (Co)	2007/06/19		100	% %	75 125
		Dissolved Coppor (Cu)	2007/06/19		112	/0 0/	75 125
		Dissolved Lead (Pb)	2007/06/19		107	70 9/	75 - 125
		Dissolved Selenium (Se)	2007/06/19		107	%	75 - 125
		Dissolved Thallium (TI)	2007/06/19		107	%	75 - 125
		Dissolved Zinc (Zn)	2007/06/19		106	%	75 - 125
	BLANK	Dissolved Aluminum (Al)	2007/06/19	<0.2		ua/L	10 .20
		Dissolved Antimony (Sb)	2007/06/19	< 0.05		ua/L	
		Dissolved Arsenic (As)	2007/06/19	<0.1		ug/L	
		Dissolved Barium (Ba)	2007/06/19	< 0.02		ug/L	
		Dissolved Beryllium (Be)	2007/06/19	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/06/19	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/06/19	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/06/19	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/06/19	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/06/19	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/06/19	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/06/19	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/06/19	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/06/19	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/06/19	<0.5		ug/L	
		Dissolved Potassium (K)	2007/06/19	<50		ug/L	
		Dissolved Selenium (Se)	2007/06/19	<0.5		ug/L	

Quality Assurance Report (Continued)

Maxxam Job Number: VA724712

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1682735 AA1	BLANK	Dissolved Silver (Ag)	2007/06/19	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/06/19	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/06/19	<0.05		ug/L	
		Dissolved Tin (Sn)	2007/06/19	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/06/19	<0.5		ug/L	
		Dissolved Uranium (U)	2007/06/19	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/06/19	<0.05		ug/L	
		Dissolved Zinc (Zn)	2007/06/19	<0.5		ug/L	
	RPD [F61517-01]	Dissolved Aluminum (Al)	2007/06/19	3.6		%	25
		Dissolved Antimony (Sb)	2007/06/19	NC		%	25
		Dissolved Arsenic (As)	2007/06/19	0.8		%	25
		Dissolved Barium (Ba)	2007/06/19	2.0		%	25
		Dissolved Beryllium (Be)	2007/06/19	NC		%	25
		Dissolved Bismuth (Bi)	2007/06/19	NC		%	25
		Dissolved Cadmium (Cd)	2007/06/19	NC		%	25
		Dissolved Chromium (Cr)	2007/06/19	NC		%	25
		Dissolved Cobalt (Co)	2007/06/19	NC		%	25
		Dissolved Copper (Cu)	2007/06/19	NC		%	25
		Dissolved Lead (Pb)	2007/06/19	3.6		%	25
		Dissolved Lithium (Li)	2007/06/19	NC		%	25
		Dissolved Manganese (Mn)	2007/06/19	1.5		%	25
		Dissolved Malybdenum (Mo)	2007/06/19	0.1		%	25
		Dissolved Nickel (Ni)	2007/06/19	NC		%	25
		Dissolved Potassium (K)	2007/06/19	2.6		%	25
		Dissolved Selenium (Se)	2007/06/19	NC		%	25
		Dissolved Silver (Ag)	2007/06/19	NC		%	25
		Dissolved Strontium (Sr)	2007/06/19	23		70 9/2	25
		Dissolved Strollium (SI)	2007/06/19	2.5		70 9/	25
		Dissolved Thailuth (T)	2007/06/19	NC		70 0/	25
		Dissolved Titanium (Ti)	2007/06/19	NC		/0 0/.	25
		Dissolved Hranium (11)	2007/06/19			70 0/	20
		Dissolved Vanadium (V)	2007/06/19	0.5		70	20
		Dissolved Variadium (V)	2007/06/19	NC		% 0/	25
		Dissolved Zinc (Zi)	2007/06/19	NC		% 0/	25
	RPD [F61541-01]	Dissolved Aluminum (Al)	2007/06/19	NC		% 0/	25
		Dissolved Antimony (Sb)	2007/06/19	NC		%	25
		Dissolved Arsenic (As)	2007/06/19	NC		%	25
		Dissolved Barium (Ba)	2007/06/19	NC		%	25
		Dissolved Beryllium (Be)	2007/06/19	NC		%	25
		Dissolved Bismuth (Bi)	2007/06/19	NC		%	25
		Dissolved Cadmium (Cd)	2007/06/19	NC		%	25
		Dissolved Chromium (Cr)	2007/06/19	NC		%	25
		Dissolved Cobalt (Co)	2007/06/19	NC		%	25
		Dissolved Copper (Cu)	2007/06/19	NC		%	25
		Dissolved Lead (Pb)	2007/06/19	NC		%	25
		Dissolved Lithium (Li)	2007/06/19	NC		%	25
		Dissolved Manganese (Mn)	2007/06/19	NC		%	25
		Dissolved Molybdenum (Mo)	2007/06/19	NC		%	25
		Dissolved Nickel (Ni)	2007/06/19	NC		%	25
		Dissolved Potassium (K)	2007/06/19	NC		%	25
		Dissolved Selenium (Se)	2007/06/19	NC		%	25
		Dissolved Silver (Ag)	2007/06/19	NC		%	25
		Dissolved Strontium (Sr)	2007/06/19	NC		%	25
		Dissolved Thallium (TI)	2007/06/19	NC		%	25
		Dissolved Tin (Sn)	2007/06/19	NC		%	25
		Dissolved Titanium (Ti)	2007/06/19	NC		%	25

Quality Assurance Report (Continued)

Maxxam Job Number: VA724712

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1682735 AA1	RPD [F61541-01]	Dissolved Uranium (U)	2007/06/19	NC		%	25
		Dissolved Vanadium (V)	2007/06/19	NC		%	25
		Dissolved Zinc (Zn)	2007/06/19	NC		%	25
1682862 AH3	MATRIX SPIKE	Bromide (Br)	2007/06/18		110	%	80 - 120
	SPIKE	Bromide (Br)	2007/06/18		105	%	80 - 120
	BLANK	Bromide (Br)	2007/06/18	<0.1		mg/L	
	RPD	Bromide (Br)	2007/06/18	NC		%	25
1683352 WAY	MATRIX SPIKE	Fluoride (F)	2007/06/19		115	%	80 - 120
	SPIKE	Fluoride (F)	2007/06/19		108	%	80 - 120
	BLANK	Fluoride (F)	2007/06/19	<0.01		mg/L	
	RPD	Fluoride (F)	2007/06/19	0		%	25
1683540 SC2	MATRIX SPIKE	Total Phosphorus (P)	2007/06/20		90	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/06/20		105	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/06/20	<0.005		mg/L	
	RPD	Total Phosphorus (P)	2007/06/20	NC		%	25
1683546 SC2	MATRIX SPIKE	Dissolved Chloride (CI)	2007/06/19		106	%	80 - 120
	SPIKE	Dissolved Chloride (CI)	2007/06/19		100	%	80 - 120
	BLANK	Dissolved Chloride (CI)	2007/06/19	<0.5		mg/L	
	RPD	Dissolved Chloride (CI)	2007/06/19	0.2		%	20
1683577 SC2	MATRIX SPIKE	Dissolved Sulphate (SO4)	2007/06/19		110	%	75 - 125
	SPIKE	Dissolved Sulphate (SO4)	2007/06/19		91	%	80 - 120
	BLANK	Dissolved Sulphate (SO4)	2007/06/19	<0.5		mg/L	
	RPD	Dissolved Sulphate (SO4)	2007/06/19	0.1		%	20
1684412 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/06/19		104	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/06/19		106	%	80 - 120
	BLANK	Total Dissolved Solids	2007/06/19	<10		mg/L	
	RPD	Total Dissolved Solids	2007/06/19	0.4		%	25
1684483 MX	MATRIX SPIKE	Orthophosphate (P)	2007/06/19		94	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/06/19		94	%	80 - 120
	BLANK	Orthophosphate (P)	2007/06/19	<0.001		mg/L	
	RPD	Orthophosphate (P)	2007/06/19	NC		%	20
1685560 FS1	MATRIX SPIKE	Total Suspended Solids	2007/06/19		101	%	N/A
	SPIKE	Total Suspended Solids	2007/06/19		101	%	N/A
	BLANK	Total Suspended Solids	2007/06/19	<4		mg/L	
	RPD	Total Suspended Solids	2007/06/19	0		%	25
1686567 SC2	MATRIX SPIKE	Ammonia (N)	2007/06/20		108	%	80 - 120
	SPIKE	Ammonia (N)	2007/06/20		99	%	80 - 120
	BLANK	Ammonia (N)	2007/06/20	<0.005		mg/L	
	RPD	Ammonia (N)	2007/06/20	NC		%	25
1690790 MX	MATRIX SPIKE	Dissolved Organic Carbon (C)	2007/06/21		108	%	80 - 120
	SPIKE	Dissolved Organic Carbon (C)	2007/06/21		103	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/06/21	<0.5		mg/L	
	RPD	Dissolved Organic Carbon (C)	2007/06/21	0.2		%	20
N/A = Not Applic NC = Non-calcul	able						

RPD = Relative Percent Difference

Your C.O.C. #: 08194554

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/06/20

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A725184 Received: 2007/06/13, 14:25

Sample Matrix: Water # Samples Received: 9

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	9	2007/06/15	2007/06/18 ING413 Rev.1.7	Based on SM2320B
Bromide (IC-EC)	9	N/A	2007/06/18 BRN SOP-00002 V1.0	SM 4110 B
Chloride by Automated Colourimetry	9	N/A	2007/06/19 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	9	N/A	2007/06/15 ING211 Rev. 2.4	Based on SM-5310C
Conductance - water	9	N/A	2007/06/18 ING413 REV 1.7	Based on SM-2510B
Fluoride	9	N/A	2007/06/19 ING222 Rev.4.2	Based SM - 4500 F C
Hardness (calculated as CaCO3)	9	N/A	2007/06/18	
Mercury (dissolved; low level)	9	2007/06/15	2007/06/19 BRN SOP-00044 V1.0	Based on EPA 245.1
Elements by ICP-AES (dissolved)	9	2007/06/15	2007/06/15 BRN SOP-00040 V1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) (9	2007/06/18	2007/06/18 BRN SOP-00042 V1.0	Based on EPA 200.8
Ammonia (N)	9	N/A	2007/06/15 ING232 Rev.3.5	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	9	N/A	2007/06/15 ING233 Rev.4.4	Based on EPA 353.2
Nitrite (N) (low level)	9	N/A	2007/06/15 ING233 Rev.4.4	EPA 353.2
Nitrogen - Nitrate (as N)	9	N/A	2007/06/15	
pH Water	9	N/A	2007/06/16 BRN SOP-00014 V2.0	Based on SM-4500H+B
Orthophosphate by Konelab ()	9	N/A	2007/06/19 BRN SOP-00235 R3.0	SM 4500 PF
Sulphate by Automated Colourimetry	9	N/A	2007/06/19 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	9	N/A	2007/06/16 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	9	N/A	2007/06/18 ING237 Rev.5.0	SM 4500
Total Suspended Solids ()	9	N/A	2007/06/19 ING444 Rev.2.3	Based on SM - 2540 D
Turbidity	9	N/A	2007/06/15 BRN SOP-00021 V2.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Your C.O.C. #: 08194554

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/06/20

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		F63763	F63770	F63771	F63772		
Sampling Date		2007/06/10	2007/06/10	2007/06/10	2007/06/10		
COC Number		08194554	08194554	08194554	08194554	+	
	Units	MW 05-1B	MW 05-5B	MW 05-3A	MW 05-3B	RDL	QC Batch
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1682862
Fluoride (F)	mg/L	0.34	0.28	0.28	0.20	0.01	1683352
Calculated Parameters							
Nitrate (N)	mg/L	0.017	0.006	0.178	0.238	0.002	1677848
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	130	160	140	129	0.5	1677847
Dissolved Organic Carbon (C)	mg/L	<0.5	0.8	0.9	<0.5	0.5	1678764
Alkalinity (Total as CaCO3)	mg/L	110	108	97.7	85.8	0.5	1679751
Anions							
Orthophosphate (P)	mg/L	0.045	0.003	0.004	0.003	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	14.6	44.1	33.4	37.0	0.5	1683577
Dissolved Chloride (Cl)	mg/L	1.0	1.5	3.5	3.1	0.5	1683546
Nutrients							
Ammonia (N)	mg/L	0.194	0.017	<0.005	<0.005	0.005	1678793
Nitrate plus Nitrite (N)	mg/L	0.022	0.006	0.178	0.238	0.002	1678985
Nitrite (N)	mg/L	0.005	<0.002	<0.002	<0.002	0.002	1678992
Total Phosphorus (P)	mg/L	0.200	0.006	<0.005	<0.005	0.005	1678360
Physical Properties							
Conductivity	uS/cm	245	302	268	253	1	1679748
рН	pH Units	8.2	8.1	8.1	8.0	0.1	1679724
Physical Properties							
Total Suspended Solids	mg/L	5	<4	<4	<4	4	1683575
Total Dissolved Solids	mg/L	114	156	158	138	10	1680644
Turbidity	NTU	18.8	3.7	3.4	0.2	0.1	1677261

RDL = Reportable Detection Limit

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63773	F63774		F63775		
Sampling Date		2007/06/10	2007/06/10		2007/06/10		
COC Number		08194554	08194554		08194554		
	Units	MW 05-1A	MW 05-4A	RDL	MW 06-12S	RDL	QC Batch
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	0.1	<0.1	0.1	1682862
Fluoride (F)	mg/L	0.53	0.90	0.01	1.14	0.01	1683352
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	<0.002	0.002	<0.002	0.002	1677848
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	136	174	0.5	314	0.5	1677847
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	0.5	1.6	0.5	1678764
Alkalinity (Total as CaCO3)	mg/L	101	112	0.5	132	0.5	1679751
Anions							
Orthophosphate (P)	mg/L	0.009	0.003	0.001	0.018	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	29.6	56.8	0.5	273	5	1683577
Dissolved Chloride (CI)	mg/L	2.5	1.4	0.5	<0.5	0.5	1683546
Nutrients							
Ammonia (N)	mg/L	0.128	0.023	0.005	0.194	0.005	1678793
Nitrate plus Nitrite (N)	mg/L	0.004	0.003	0.002	<0.002	0.002	1678985
Nitrite (N)	mg/L	0.006	0.002	0.002	<0.002	0.002	1678992
Total Phosphorus (P)	mg/L	<0.005	<0.005	0.005	0.022	0.005	1678360
Physical Properties							
Conductivity	uS/cm	263	334	1	801	1	1679748
рН	pH Units	8.1	8.2	0.1	8.2	0.1	1679724
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	4	<4	4	1683575
Total Dissolved Solids	mg/L	146	188	10	494	10	1680644
	NITLI	7.0	0.4	0.1	0.1	0.1	1677261

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63776	F63777		
Sampling Date		2007/06/10	2007/06/10		
COC Number	Unite	08194554	08194554		OC Batch
	Units	WW 03-4B	100-113		
Misc. Inorganics					
Bromide (Br)	mg/L	<0.1	<0.1	0.1	1682862
Fluoride (F)	mg/L	0.50	2.17	0.01	1683352
Calculated Parameters					
Nitrate (N)	mg/L	0.003	<0.002	0.002	1677848
Misc. Inorganics					
Dissolved Hardness (CaCO3)	mg/L	113	191	0.5	1677847
Dissolved Organic Carbon (C)	mg/L	0.9	<0.5	0.5	1678764
Alkalinity (Total as CaCO3)	mg/L	69.4	137	0.5	1679751
Anions					
Orthophosphate (P)	mg/L	0.006	0.016	0.001	1684483
Dissolved Sulphate (SO4)	mg/L	47.8	30.4	0.5	1683577
Dissolved Chloride (Cl)	mg/L	0.7	1.8	0.5	1683546
Nutrients					
Ammonia (N)	mg/L	0.032	0.162	0.005	1678793
Nitrate plus Nitrite (N)	mg/L	0.003	<0.002	0.002	1678985
Nitrite (N)	mg/L	<0.002	<0.002	0.002	1678992
Total Phosphorus (P)	mg/L	0.007	0.027	0.005	1678360
Physical Properties					
Conductivity	uS/cm	239	326	1	1679748
рН	pH Units	8.0	8.3	0.1	1679724
Physical Properties					
Total Suspended Solids	mg/L	<4	<4	4	1683575
Total Dissolved Solids	mg/L	132	160	10	1680644
	NTU	12.8	0.4	01	1677261

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63763	F63770	F63771	F63772		
Sampling Date		2007/06/10	2007/06/10	2007/06/10	2007/06/10		
	Units	08194554 MW 05-1B	08194554 MW 05-5B	08194554 MW 05-3A	08194554 MW 05-3B	RDL	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1680303
Dissolved Calcium (Ca)	mg/L	44.0	53.3	47.0	43.4	0.05	1680303
Dissolved Iron (Fe)	mg/L	3.74	0.306	0.393	<0.005	0.005	1680303
Dissolved Magnesium (Mg)	mg/L	4.82	6.68	5.48	5.05	0.05	1680303
Dissolved Phosphorus (P)	mg/L	0.2	<0.1	<0.1	<0.1	0.1	1680303
Dissolved Silicon (Si)	mg/L	5.08	2.99	4.05	4.07	0.05	1680303
Dissolved Sodium (Na)	mg/L	1.67	0.80	1.15	1.15	0.05	1680303
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1680303
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	7.0	4.7	0.5	1.1	0.2	1681481
Dissolved Antimony (Sb)	ug/L	0.07	0.13	0.26	0.13	0.05	1681481
Dissolved Arsenic (As)	ug/L	6.1	1.4	0.5	0.4	0.1	1681481
Dissolved Barium (Ba)	ug/L	212	36.0	55.3	73.2	0.02	1681481
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1681481
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1681481
Dissolved Cadmium (Cd)	ug/L	0.01	0.03	7.92	13.4	0.01	1681481
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1681481
Dissolved Cobalt (Co)	ug/L	0.11	0.47	0.25	<0.02	0.02	1681481
Dissolved Copper (Cu)	ug/L	0.3	0.2	0.2	3.9	0.1	1681481
Dissolved Lead (Pb)	ug/L	0.04	0.16	0.10	0.28	0.02	1681481
Dissolved Lithium (Li)	ug/L	0.4	0.9	0.7	0.9	0.2	1681481
Dissolved Manganese (Mn)	ug/L	233	439	75.6	2.81	0.02	1681481
Dissolved Molybdenum (Mo)	ug/L	3.28	2.36	1.05	0.65	0.02	1681481
Dissolved Nickel (Ni)	ug/L	0.7	2.9	3.0	2.9	0.5	1681481
Dissolved Potassium (K)	ug/L	1200	710	958	918	50	1681481
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	11.5	13.9	0.5	1681481
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1681481
Dissolved Strontium (Sr)	ug/L	115	103	121	122	0.01	1681481
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1681481
Dissolved Tin (Sn)	ug/L	1.73	0.59	1.22	<0.05	0.05	1681481
Dissolved Titanium (Ti)	ug/L	0.9	<0.5	<0.5	<0.5	0.5	1681481
Dissolved Uranium (U)	ug/L	0.09	3.96	2.69	1.27	0.01	1681481
Dissolved Vanadium (V)	ug/L	0.53	<0.05	<0.05	<0.05	0.05	1681481
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A725184 Report Date: 2007/06/20 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63763	F63770	F63771	F63772				
Sampling Date		2007/06/10	2007/06/10	2007/06/10	2007/06/10				
COC Number		08194554	08194554	08194554	08194554				
	Units	MW 05-1B	MW 05-5B	MW 05-3A	MW 05-3B	RDL	QC Batch		
Dissolved Zinc (Zn)	ug/L	2.3	29.8	786	1080	0.5	1681481		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1680240		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63773	F63774	F63775	F63776		
Sampling Date		2007/06/10	2007/06/10	2007/06/10	2007/06/10		
COC Number	Unito	08194554	08194554	08194554	08194554		OC Batab
	Units	WW 05-1A	WW 05-4A	10100-123			NC Daton
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	0.013	<0.008	0.008	1680303
Dissolved Calcium (Ca)	mg/L	45.1	63.0	95.6	40.2	0.05	1680303
Dissolved Iron (Fe)	mg/L	0.614	0.031	<0.005	1.34	0.005	1680303
Dissolved Magnesium (Mg)	mg/L	5.65	3.99	18.3	3.07	0.05	1680303
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1680303
Dissolved Silicon (Si)	mg/L	4.62	3.57	8.37	6.17	0.05	1680303
Dissolved Sodium (Na)	mg/L	1.74	1.38	58.1	1.14	0.05	1680303
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1680303
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	0.5	2.0	1.2	19.3	0.2	1681481
Dissolved Antimony (Sb)	ug/L	0.09	0.10	1.37	0.11	0.05	1681481
Dissolved Arsenic (As)	ug/L	7.4	0.5	2.8	6.5	0.1	1681481
Dissolved Barium (Ba)	ug/L	23.4	83.8	17.9	53.8	0.02	1681481
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1681481
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1681481
Dissolved Cadmium (Cd)	ug/L	0.01	0.02	0.01	3.83	0.01	1681481
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1681481
Dissolved Cobalt (Co)	ug/L	<0.02	0.05	0.42	2.76	0.02	1681481
Dissolved Copper (Cu)	ug/L	<0.1	0.2	<0.1	0.7	0.1	1681481
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	<0.02	0.50	0.02	1681481
Dissolved Lithium (Li)	ug/L	0.6	0.4	7.3	0.6	0.2	1681481
Dissolved Manganese (Mn)	ug/L	224	737	197	2930	0.02	1681481
Dissolved Molybdenum (Mo)	ug/L	5.42	5.79	5.77	1.02	0.02	1681481
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	1.0	6.4	0.5	1681481
Dissolved Potassium (K)	ug/L	1210	1990	2500	1690	50	1681481
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	0.5	<0.5	0.5	1681481
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1681481
Dissolved Strontium (Sr)	ug/L	140	182	343	143	0.01	1681481
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1681481
Dissolved Tin (Sn)	ug/L	<0.05	0.14	0.36	0.17	0.05	1681481
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	1.1	0.5	1681481
Dissolved Uranium (U)	ug/L	0.06	0.70	13.8	0.24	0.01	1681481
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	1.36	0.07	0.05	1681481
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A725184 Report Date: 2007/06/20 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63773	F63774	F63775	F63776				
Sampling Date		2007/06/10	2007/06/10	2007/06/10	2007/06/10				
COC Number		08194554	08194554	08194554	08194554				
	Units	MW 05-1A	MW 05-4A	MW 06-12S	MW 05-4B	RDL	QC Batch		
Dissolved Zinc (Zn)	ug/L	5.3	2.7	<0.5	189	0.5	1681481		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1680240		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63777		
Sampling Date		2007/06/10		
COC Number	Unite	08194554	וחפ	OC Batch
	Units	WW 00-113	NDL	
Dissolved Metals by ICP				
Dissolved Boron (B)	mg/L	<0.008	0.008	1680303
Dissolved Calcium (Ca)	mg/L	56.9	0.05	1680303
Dissolved Iron (Fe)	mg/L	0.271	0.005	1680303
Dissolved Magnesium (Mg)	mg/L	11.8	0.05	1680303
Dissolved Phosphorus (P)	mg/L	<0.1	0.1	1680303
Dissolved Silicon (Si)	mg/L	4.50	0.05	1680303
Dissolved Sodium (Na)	mg/L	3.15	0.05	1680303
Dissolved Zirconium (Zr)	mg/L	<0.005	0.005	1680303
Dissolved Metals by ICPMS				
Dissolved Aluminum (Al)	ug/L	35.0	0.2	1681481
Dissolved Antimony (Sb)	ug/L	0.50	0.05	1681481
Dissolved Arsenic (As)	ug/L	3.6	0.1	1681481
Dissolved Barium (Ba)	ug/L	41.9	0.02	1681481
Dissolved Beryllium (Be)	ug/L	<0.05	0.05	1681481
Dissolved Bismuth (Bi)	ug/L	<0.05	0.05	1681481
Dissolved Cadmium (Cd)	ug/L	0.05	0.01	1681481
Dissolved Chromium (Cr)	ug/L	<0.2	0.2	1681481
Dissolved Cobalt (Co)	ug/L	0.21	0.02	1681481
Dissolved Copper (Cu)	ug/L	<0.1	0.1	1681481
Dissolved Lead (Pb)	ug/L	0.05	0.02	1681481
Dissolved Lithium (Li)	ug/L	2.4	0.2	1681481
Dissolved Manganese (Mn)	ug/L	96.9	0.02	1681481
Dissolved Molybdenum (Mo)	ug/L	21.4	0.02	1681481
Dissolved Nickel (Ni)	ug/L	<0.5	0.5	1681481
Dissolved Potassium (K)	ug/L	1300	50	1681481
Dissolved Selenium (Se)	ug/L	0.5	0.5	1681481
Dissolved Silver (Ag)	ug/L	<0.01	0.01	1681481
Dissolved Strontium (Sr)	ug/L	97.7	0.01	1681481
Dissolved Thallium (TI)	ug/L	<0.05	0.05	1681481
Dissolved Tin (Sn)	ug/L	0.08	0.05	1681481
Dissolved Titanium (Ti)	ug/L	<0.5	0.5	1681481
Dissolved Uranium (U)	ug/L	4.62	0.01	1681481
Dissolved Vanadium (V)	ug/L	1.71	0.05	1681481
RDL = Reportable Detection Li	mit			

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

Maxxam ID		F63777							
Sampling Date		2007/06/10							
COC Number		08194554							
	Units	MW 06-11S	RDL	QC Batch					
		-	_						
Dissolved Zinc (Zn)	ug/L	<0.5	0.5	1681481					
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	0.01	1680240					
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: JS

General Comments

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA725184

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1677261 CK	SPIKE	Turbidity	2007/06/15		102	%	80 - 120
	BLANK	Turbidity	2007/06/15	<0.1		NTU	
	RPD [F63777-01]	Turbidity	2007/06/15	NC		%	25
1678360 MX	MATRIX SPIKE	Total Phosphorus (P)	2007/06/18		94	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/06/18		100	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/06/18	<0.005		mg/L	
	RPD	Total Phosphorus (P)	2007/06/18	0.04		%	25
1678764 MX	MATRIX SPIKE						
	[F63777-01]	Dissolved Organic Carbon (C)	2007/06/15		113	%	80 - 120
	SPIKE	Dissolved Organic Carbon (C)	2007/06/15		95	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/06/15	<0.5		mg/L	
	RPD [F63777-01]	Dissolved Organic Carbon (C)	2007/06/15	NC		%	20
1678793 SC2	MATRIX SPIKE	Ammonia (N)	2007/06/15		97	%	80 - 120
	SPIKE	Ammonia (N)	2007/06/15		87	%	80 - 120
	BLANK	Ammonia (N)	2007/06/15	<0.005		mg/L	
	RPD	Ammonia (N)	2007/06/15	NC		%	25
1678985 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/06/15		103	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/06/15		104	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/06/15	< 0.002		mg/L	
	RPD	Nitrate plus Nitrite (N)	2007/06/15	5.3		%	25
1678992 BB3	MATRIX SPIKE	Nitrite (N)	2007/06/15		104	%	80 - 120
	SPIKE	Nitrite (N)	2007/06/15		101	%	80 - 120
	BLANK	Nitrite (N)	2007/06/15	<0.002		mg/L	
	RPD	Nitrite (N)	2007/06/15	NC		%	25
1679724 CK	SPIKE	рН	2007/06/16		101	%	96 - 104
	RPD	рН	2007/06/16	0.3		%	25
1679748 CK	SPIKE	Conductivity	2007/06/18		101	%	80 - 120
	BLANK	Conductivity	2007/06/18	<1		uS/cm	
	RPD	Conductivity	2007/06/18	1.2		%	25
1679751 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/06/18		91	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/06/18		97	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/06/18	<0.5		mg/L	
	RPD	Alkalinity (Total as CaCO3)	2007/06/18	0.7		%	25
1680240 JT3	MATRIX SPIKE	Dissolved Mercury (Hg)	2007/06/19		109	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/06/19		114	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/06/19		102	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/06/19	<0.01		ug/L	
	RPD	Dissolved Mercury (Hg)	2007/06/19	NC		%	25
1680303 GS2	BLANK	Dissolved Boron (B)	2007/06/15	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/06/15	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/06/15	<0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/06/15	<0.05		mg/L	
		Dissolved Phosphorus (P)	2007/06/15	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/06/15	<0.05		mg/L	
		Dissolved Sodium (Na)	2007/06/15	<0.05		mg/L	
		Dissolved Zirconium (Zr)	2007/06/15	<0.005		mg/L	
	RPD	Dissolved Calcium (Ca)	2007/06/15	1.4		%	25
		Dissolved Magnesium (Mg)	2007/06/15	2.2		%	25
1680644 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/06/16		104	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/06/16		104	%	80 - 120
	BLANK	Total Dissolved Solids	2007/06/16	<10		mg/L	
	RPD	Total Dissolved Solids	2007/06/16	1.2		%	25
1681481 AA1	MATRIX SPIKE						
1	[F63763-01]	Dissolved Arsenic (As)	2007/06/18		122	%	75 - 125
		Dissolved Cadmium (Cd)	2007/06/18		109	%	75 - 125

Quality Assurance Report (Continued)

Maxxam Job Number: VA725184

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1681481 AA1	MATRIX SPIKE						
	[F63763-01]	Dissolved Chromium (Cr)	2007/06/18		111	%	75 - 125
		Dissolved Cobalt (Co)	2007/06/18		111	%	75 - 125
		Dissolved Copper (Cu)	2007/06/18		115	%	75 - 125
		Dissolved Lead (Pb)	2007/06/18		116	%	75 - 125
		Dissolved Selenium (Se)	2007/06/18		123	%	75 - 125
		Dissolved Thallium (TI)	2007/06/18		109	%	75 - 125
		Dissolved Zinc (Zn)	2007/06/18		100	%	75 - 125
	SDIKE	Dissolved Arsenic (As)	2007/06/18		00	70 9/	75 - 125
		Dissolved Alsenic (AS)	2007/06/18		99	70 9/	75 125
		Dissolved Chromium (Cd)	2007/06/18		110	/0	75 125
		Dissolved Childhildhi (Ci)	2007/06/18		110	70	75 - 125
		Dissolved Coball (Co)	2007/06/18		106	% 0/	75 - 125
		Dissolved Copper (Cu)	2007/06/18		109	%	75 - 125
		Dissolved Lead (Pb)	2007/06/18		109	%	75 - 125
		Dissolved Selenium (Se)	2007/06/18		100	%	75 - 125
		Dissolved Thallium (TI)	2007/06/18		110	%	75 - 125
		Dissolved Zinc (Zn)	2007/06/18		119	%	75 - 125
	BLANK	Dissolved Aluminum (Al)	2007/06/18	<0.2		ug/L	
		Dissolved Antimony (Sb)	2007/06/18	<0.05		ug/L	
		Dissolved Arsenic (As)	2007/06/18	<0.1		ug/L	
		Dissolved Barium (Ba)	2007/06/18	<0.02		ug/L	
		Dissolved Beryllium (Be)	2007/06/18	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/06/18	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/06/18	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/06/18	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/06/18	< 0.02		ug/L	
		Dissolved Copper (Cu)	2007/06/18	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/06/18	< 0.02		ua/L	
		Dissolved Lithium (Li)	2007/06/18	<0.2		ua/L	
		Dissolved Manganese (Mn)	2007/06/18	< 0.02		ug/l	
		Dissolved Molybdenum (Mo)	2007/06/18	<0.02		ug/l	
		Dissolved Nickel (Ni)	2007/06/18	<0.5		ug/L	
		Dissolved Potassium (K)	2007/06/18	<50		ug/L	
		Dissolved Selenium (Se)	2007/06/18	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/06/18	<0.0		ug/L	
		Dissolved Strontium (Sr)	2007/06/18	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/06/18	<0.01		ug/L	
		Dissolved Thaildin (1)	2007/06/18	<0.05		ug/L	
		Dissolved Till (SII)	2007/06/18	<0.05		ug/L	
		Dissolved Hanium (11)	2007/06/18	<0.5		ug/L	
		Dissolved Vanadium (V)	2007/06/18	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/06/18	<0.05		ug/L	
		Dissolved Zinc (Zn)	2007/06/18	<0.5		ug/L	
	RPD [F63763-01]	Dissolved Aluminum (Al)	2007/06/18	6.4		%	25
		Dissolved Antimony (Sb)	2007/06/18	NC		%	25
		Dissolved Arsenic (As)	2007/06/18	2.4		%	25
		Dissolved Barium (Ba)	2007/06/18	0.5		%	25
		Dissolved Beryllium (Be)	2007/06/18	NC		%	25
		Dissolved Bismuth (Bi)	2007/06/18	NC		%	25
		Dissolved Cadmium (Cd)	2007/06/18	NC		%	25
		Dissolved Chromium (Cr)	2007/06/18	NC		%	25
		Dissolved Cobalt (Co)	2007/06/18	4.5		%	25
		Dissolved Copper (Cu)	2007/06/18	NC		%	25
		Dissolved Lead (Pb)	2007/06/18	NC		%	25
		Dissolved Lithium (Li)	2007/06/18	NC		%	25
		Dissolved Manganese (Mn)	2007/06/18	2.4		%	25
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA725184

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1681481 AA1	RPD [F63763-01]	Dissolved Molybdenum (Mo)	2007/06/18	5.6		%	25
		Dissolved Nickel (Ni)	2007/06/18	NC		%	25
		Dissolved Potassium (K)	2007/06/18	0.5		%	25
		Dissolved Selenium (Se)	2007/06/18	NC		%	25
		Dissolved Silver (Ag)	2007/06/18	NC		%	25
		Dissolved Strontium (Sr)	2007/06/18	0.6		%	25
		Dissolved Thallium (TI)	2007/06/18	NC		%	25
		Dissolved Tin (Sn)	2007/06/18	0.5		%	25
		Dissolved Titanium (Ti)	2007/06/18	NC		%	25
		Dissolved Uranium (U)	2007/06/18	1.1		%	25
		Dissolved Vanadium (V)	2007/06/18	3.8		%	25
		Dissolved Zinc (Zn)	2007/06/18	NC		%	25
1682862 AH3	MATRIX SPIKE	Bromide (Br)	2007/06/18		110	%	80 - 120
	SPIKE	Bromide (Br)	2007/06/18		105	%	80 - 120
	BLANK	Bromide (Br)	2007/06/18	<0.1		mg/L	
	RPD	Bromide (Br)	2007/06/18	NC		%	25
1683352 WAY	MATRIX SPIKE						
	[F63775-01]	Fluoride (F)	2007/06/19		115	%	80 - 120
	SPIKE	Fluoride (F)	2007/06/19		108	%	80 - 120
	BLANK	Fluoride (F)	2007/06/19	<0.01		ma/L	
	RPD [F63775-01]	Fluoride (F)	2007/06/19	0		%	25
1683546 SC2	MATRIX SPIKE	Dissolved Chloride (CI)	2007/06/19		106	%	80 - 120
	SPIKE	Dissolved Chloride (Cl)	2007/06/19		100	%	80 - 120
	BLANK	Dissolved Chloride (Cl)	2007/06/19	<0.5		ma/L	
	RPD [F63763-01]	Dissolved Chloride (Cl)	2007/06/19	NC		%	20
1683575 FS1	MATRIX SPIKE	Total Suspended Solids	2007/06/19		101	%	N/A
	SPIKE	Total Suspended Solids	2007/06/19		104	%	N/A
	BLANK	Total Suspended Solids	2007/06/19	<4		ma/L	
	RPD [F63773-01]	Total Suspended Solids	2007/06/19	NC		%	25
1683577 SC2	MATRIX SPIKE	Dissolved Sulphate (SO4)	2007/06/19	-	110	%	75 - 125
	SPIKE	Dissolved Sulphate (SO4)	2007/06/19		91	%	80 - 120
	BLANK	Dissolved Sulphate (SO4)	2007/06/19	<0.5	•	ma/l	
	RPD [F63763-01]	Dissolved Sulphate (SO4)	2007/06/19	0.6		%	20
1684483 MX	MATRIX SPIKE	Orthophosphate (P)	2007/06/19		94	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/06/19		94	%	80 - 120
	BLANK	Orthophosphate (P)	2007/06/19	<0.001		ma/L	00 120
	RPD [F63774-01]	Orthophosphate (P)	2007/06/19	NC		%	20

NC = Non-calculable

RPD = Relative Percent Difference

Your C.O.C. #: 08195073, 08195074

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/07/25

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A731839 Received: 2007/07/18, 09:45

Sample Matrix: Water # Samples Received: 21

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	21	2007/07/19	2007/07/19 BRN SOP-00264 R2.0	Based on SM2320B
Bromide (IC-EC)	21	N/A	2007/07/23 BRN SOP-00251 R1.0	SM 4110 B
Chloride by Automated Colourimetry	21	N/A	2007/07/19 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	21	N/A	2007/07/23 BRN SOP-00224 R3.0	Based on SM-5310C
Conductance - water	21	N/A	2007/07/19 BRN SOP-00264 R2.0	Based on SM-2510B
Fluoride	21	N/A	2007/07/19 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness (calculated as CaCO3)	21	N/A	2007/07/25	
Mercury (dissolved; low level)	21	2007/07/18	2007/07/19 BRN SOP-00205	Based on EPA 245.1
Elements by ICP-AES (dissolved)	21	2007/07/24	2007/07/24 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) ()	21	2007/07/20	2007/07/20 BRN SOP-00204	Based on EPA 200.8
Ammonia (N)	21	N/A	2007/07/24 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	21	N/A	2007/07/18 BRN SOP-00233 R1.0	Based on EPA 353.2
Nitrite (N) (low level)	21	N/A	2007/07/18 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	21	N/A	2007/07/19	
pH Water	21	N/A	2007/07/19 BRN SOP-00264 R2.0	Based on SM-4500H+B
Orthophosphate by Konelab ()	21	N/A	2007/07/23 BRN SOP-00235 R3.0	SM 4500 PF
Sulphate by Automated Colourimetry	21	N/A	2007/07/19 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	21	N/A	2007/07/19 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	21	N/A	2007/07/24 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids ()	21	N/A	2007/07/23 BRN SOP-00277 R2.0	Based on SM - 2540 D
Turbidity	21	N/A	2007/07/19 BRN SOP-00265 R3.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Your C.O.C. #: 08195073, 08195074

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/07/25

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09427		G09429		
Sampling Date		2007/07/12		2007/07/12		
COC Number	Unite	08195073	PDI	08195073	PDI	OC Batch
	Units	10100 03-1A	TRDL			
Misc. Inorganics						
Bromide (Br)	mg/L	<0.1	0.1	<0.1	0.1	1747480
Fluoride (F)	mg/L	0.51	0.01	0.19	0.01	1741119
Calculated Parameters						
Nitrate (N)	mg/L	<0.002	0.002	0.023	0.002	1739452
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	133	0.5	177	0.5	1739451
Dissolved Organic Carbon (C)	mg/L	0.5	0.5	5.7	0.5	1747851
Alkalinity (Total as CaCO3)	mg/L	102	0.5	175	0.5	1740766
Anions						
Orthophosphate (P)	mg/L	0.002	0.001	0.008	0.001	1747002
Dissolved Sulphate (SO4)	mg/L	25.0	0.5	1.4	0.5	1741802
Dissolved Chloride (CI)	mg/L	0.5	0.5	<0.5	0.5	1741751
Nutrients						
Ammonia (N)	mg/L	0.083	0.005	0.067	0.005	1749684
Nitrate plus Nitrite (N)	mg/L	0.002	0.002	0.072	0.002	1739498
Nitrite (N)	mg/L	0.003	0.002	0.049	0.002	1739502
Total Phosphorus (P)	mg/L	0.020	0.005	0.60	0.05	1740956
Physical Properties						
Conductivity	uS/cm	245	1	315	1	1740764
рН	pH Units	8.0	0.1	7.9	0.1	1740760
Physical Properties						
Total Suspended Solids	mg/L	<4	4	13	4	1747095
Total Dissolved Solids	mg/L	160	10	212	10	1742046
Turbidity	NTU	16.1	0.1	33.4	0.1	1739497

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09430	G09431	G09432	G09433		
Sampling Date		2007/07/12	2007/07/12	2007/07/13	2007/07/13		
COC Number	Unite	08195073	08195073	08195073	08195073		
	Units	WW 05-2A	WW 05-2B	WW 05-3A	WW 05-3B	IRDL	UC Batch
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1747480
Fluoride (F)	mg/L	0.30	0.08	0.31	0.18	0.01	1741119
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	0.023	0.085	0.226	0.002	1739452
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	220	132	147	99.9	0.5	1739451
Dissolved Organic Carbon (C)	mg/L	<0.5	0.8	0.6	1.3	0.5	1747851
Alkalinity (Total as CaCO3)	mg/L	185	124	111	87.1	0.5	1740766
Anions							
Orthophosphate (P)	mg/L	0.004	0.007	0.004	0.004	0.001	1747002
Dissolved Sulphate (SO4)	mg/L	27.4	6.5	30.9	33.0	0.5	1741802
Dissolved Chloride (Cl)	mg/L	0.9	1.0	<0.5	0.5	0.5	1741751
Nutrients							
Ammonia (N)	mg/L	0.063	0.028	<0.005	0.058	0.005	1749684
Nitrate plus Nitrite (N)	mg/L	<0.002	0.066	0.085	0.226	0.002	1739498
Nitrite (N)	mg/L	<0.002	0.043	<0.002	<0.002	0.002	1739502
Total Phosphorus (P)	mg/L	<0.005	0.233	<0.005	<0.005	0.005	1740956
Physical Properties							
Conductivity	uS/cm	385	246	277	240	1	1740764
pН	pH Units	8.2	8.0	8.0	7.9	0.1	1740760
Physical Properties							
Total Suspended Solids	mg/L	<4	27	<4	<4	4	1747095
Total Dissolved Solids	mg/L	262	160	194	160	10	1742046
Turbidity	NTU	1.6	114	10.4	1.5	0.1	1739497

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09434	G09435	G09436	G09437		
Sampling Date		2007/07/14	2007/07/14	2007/07/13	2007/07/13		
COC Number		08195073	08195073	08195073	08195073		
	Units	MW 05-4A	MW 05-4B	MW 05-5A	MW 05-5B	RDL	QC Batch
	1					-	1
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1747480
Fluoride (F)	mg/L	0.93	0.52	2.23	0.27	0.01	1741119
Calculated Parameters							
Nitrate (N)	mg/L	0.023	0.002	<0.002	<0.002	0.002	1739452
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	167	104	280	156	0.5	1739451
Dissolved Organic Carbon (C)	mg/L	0.7	1.0	1.7	<0.5	0.5	1747851
Alkalinity (Total as CaCO3)	mg/L	110	66.5	228	108	0.5	1740766
Anions							
Orthophosphate (P)	mg/L	0.004	0.006	0.004	0.004	0.001	1747002
Dissolved Sulphate (SO4)	mg/L	52.0	41.7	33.4	39.6	0.5	1741802
Dissolved Chloride (Cl)	mg/L	<0.5	<0.5	0.9	0.7	0.5	1741751
Nutrients							
Ammonia (N)	mg/L	<0.005	0.042	0.081	0.013	0.005	1749684
Nitrate plus Nitrite (N)	mg/L	0.023	0.002	<0.002	<0.002	0.002	1739498
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	<0.002	0.002	1739502
Total Phosphorus (P)	mg/L	<0.005	0.007	0.015	<0.005	0.005	1740956
Physical Properties							
Conductivity	uS/cm	319	221	478	290	1	1740764
рН	pH Units	8.1	7.8	8.2	8.1	0.1	1740760
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	5	<4	4	1747095
Total Dissolved Solids	mg/L	220	142	288	191	10	1742046
Turbidity	NTU	0.4	8.7	13.2	3.0	0.1	1739497
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		G09440	G09441	G09442	G09443		
Sampling Date		2007/07/12	2007/07/12	2007/07/11	2007/07/11		
COC Number		08195074	08195074	08195074	08195074		
	Units	MW 05-7A	MW 05-7B	MW 06-8S	MW 06-8D	RDL	QC Batch
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1747480
Fluoride (F)	mg/L	0.12	0.14	0.17	0.96	0.01	1741119
Calculated Parameters							
Nitrate (N)	mg/L	0.030	0.010	0.047	<0.002	0.002	1739452
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	393	71.5	63.7	262	0.5	1739451
Dissolved Organic Carbon (C)	mg/L	7.3	<0.5	1.2	<0.5	0.5	1747851
Alkalinity (Total as CaCO3)	mg/L	213	61.3	54.1	230	0.5	1740766
Anions							
Orthophosphate (P)	mg/L	0.003	0.041	0.006	0.005	0.001	1747002
Dissolved Sulphate (SO4)	mg/L	14.0	13.7	14.9	28.2	0.5	1741802
Dissolved Chloride (Cl)	mg/L	1.1	<0.5	<0.5	0.7	0.5	1741751
Nutrients							
Ammonia (N)	mg/L	0.048	0.038	0.030	0.063	0.005	1749684
Nitrate plus Nitrite (N)	mg/L	0.033	0.010	0.058	<0.002	0.002	1739498
Nitrite (N)	mg/L	0.003	<0.002	0.011	<0.002	0.002	1739502
Total Phosphorus (P)	mg/L	0.007	0.043	0.037	0.008	0.005	1740956
Physical Properties							
Conductivity	uS/cm	695	146	140	450	1	1740764
рН	pH Units	11.5	8.5	7.8	8.3	0.1	1740760
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	<4	<4	4	1747095
Total Dissolved Solids	mg/L	353	96	92	266	10	1742046
Turbidity	NTU	<0.1	<0.1	2.0	2.0	0.1	1739497

RDL = Reportable Detection Limit

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09444	G09445	G09446	G09447		
Sampling Date		2007/07/14	2007/07/14	2007/07/11	2007/07/11		
COC Number		08195074	08195074	08195074	08195074		
	Units	MW 06-9S	MW 06-9M	MW 06-10S	MW 06-10M	RDL	QC Batch
	1	[1		1	I
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1747480
Fluoride (F)	mg/L	0.56	1.02	0.28	0.78	0.01	1741119
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	0.003	0.009	<0.002	0.002	1739452
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	133	205	136	262	0.5	1739451
Dissolved Organic Carbon (C)	mg/L	1.1	1.4	1.4	0.9	0.5	1747851
Alkalinity (Total as CaCO3)	mg/L	109	171	118	208	0.5	1740766
Anions							
Orthophosphate (P)	mg/L	0.235	0.004	0.022	0.004	0.001	1747002
Dissolved Sulphate (SO4)	mg/L	22.9	30.1	28.4	43.5	0.5	1741802
Dissolved Chloride (Cl)	mg/L	<0.5	<0.5	<0.5	0.9	0.5	1741751
Nutrients							
Ammonia (N)	mg/L	0.018	0.057	0.015	0.043	0.005	1749684
Nitrate plus Nitrite (N)	mg/L	<0.002	0.006	0.009	<0.002	0.002	1739498
Nitrite (N)	mg/L	<0.002	0.003	<0.002	0.006	0.002	1739502
Total Phosphorus (P)	mg/L	0.396	0.057	0.044	0.067	0.005	1740956
Physical Properties							
Conductivity	uS/cm	249	363	275	463	1	1740764
рН	pH Units	8.2	8.2	8.1	8.3	0.1	1740760
Physical Properties							
Total Suspended Solids	mg/L	<4	5	<4	10	4	1747095
Total Dissolved Solids	mg/L	154	238	168	304	10	1742046
Turbidity	NTU	1.1	17.1	0.5	48.5	0.1	1739497
RDL = Reportable Detection L	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09448	G09449		G09450		
Sampling Date		2007/07/11	2007/07/13		2007/07/12		
COC Number		08195074	08195074		08195074		
	Units	MW 06-10D	<u> MW 06-11S</u>	RDL	MW 06-12S	RDL	QC Batch
Misc. Inorganics							
Bromide (Br)	mg/L	<0.1	<0.1	0.1	<0.1	0.1	1747480
Fluoride (F)	mg/L	1.01	2.10	0.01	1.13	0.01	1741119
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	<0.002	0.002	0.002	0.002	1739452
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	266	162	0.5	331	0.5	1739451
Dissolved Organic Carbon (C)	mg/L	<0.5	0.7	0.5	0.6	0.5	1747851
Alkalinity (Total as CaCO3)	mg/L	242	133	0.5	141	0.5	1740766
Anions							
Orthophosphate (P)	mg/L	0.003	0.016	0.001	0.027	0.001	1747002
Dissolved Sulphate (SO4)	mg/L	15.5	31.3	0.5	263	5	1741802
Dissolved Chloride (Cl)	mg/L	0.9	<0.5	0.5	<0.5	0.5	1741751
Nutrients							
Ammonia (N)	mg/L	0.117	0.088	0.005	0.115	0.005	1749684
Nitrate plus Nitrite (N)	mg/L	0.002	<0.002	0.002	0.002	0.002	1739498
Nitrite (N)	mg/L	0.007	<0.002	0.002	<0.002	0.002	1739502
Total Phosphorus (P)	mg/L	0.019	0.021	0.005	0.037	0.005	1740956
Physical Properties							
Conductivity	uS/cm	460	310	1	777	1	1740764
рН	pH Units	8.3	8.3	0.1	8.3	0.1	1740760
Physical Properties							
Total Suspended Solids	mg/L	11	<4	4	<4	4	1747095
Total Dissolved Solids	mg/L	286	218	10	604	10	1742046
Turbidity	NTU	53.9	0.4	0.1	0.3	0.1	1739497
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09427	G09429	G09430	G09431		
Sampling Date		2007/07/12	2007/07/12	2007/07/12	2007/07/12		
COC Number	Unito	08195073	08195073	08195073	08195073		OC Batab
	Units	WW 05-1A		10100 UJ-ZA			NC Daten
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1751853
Dissolved Calcium (Ca)	mg/L	44.0	61.7	57.8	41.0	0.05	1751853
Dissolved Iron (Fe)	mg/L	3.79	14.5	0.559	10.3	0.005	1751853
Dissolved Magnesium (Mg)	mg/L	5.55	5.47	18.3	7.14	0.05	1751853
Dissolved Phosphorus (P)	mg/L	<0.1	0.7	<0.1	0.2	0.1	1751853
Dissolved Silicon (Si)	mg/L	2.07	5.47	3.77	4.75	0.05	1751853
Dissolved Sodium (Na)	mg/L	1.80	1.08	0.58	1.18	0.05	1751853
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1751853
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	1.9	36.4	2.8	1.3	0.2	1745540
Dissolved Antimony (Sb)	ug/L	0.39	0.08	<0.05	<0.05	0.05	1745540
Dissolved Arsenic (As)	ug/L	1.8	12.8	0.5	36.0	0.1	1745540
Dissolved Barium (Ba)	ug/L	31.1	441	48.2	243	0.02	1745540
Dissolved Beryllium (Be)	ug/L	0.06	0.09	<0.05	0.06	0.05	1745540
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Cadmium (Cd)	ug/L	0.14	<0.01	<0.01	<0.01	0.01	1745540
Dissolved Chromium (Cr)	ug/L	0.3	<0.2	<0.2	<0.2	0.2	1745540
Dissolved Cobalt (Co)	ug/L	0.02	0.34	0.05	0.44	0.02	1745540
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1745540
Dissolved Lead (Pb)	ug/L	0.03	<0.02	<0.02	<0.02	0.02	1745540
Dissolved Lithium (Li)	ug/L	0.5	1.3	2.2	0.4	0.2	1745540
Dissolved Manganese (Mn)	ug/L	268	746	181	1510	0.02	1745540
Dissolved Molybdenum (Mo)	ug/L	7.91	0.92	2.30	1.37	0.02	1745540
Dissolved Nickel (Ni)	ug/L	1.6	0.7	<0.5	<0.5	0.5	1745540
Dissolved Potassium (K)	ug/L	1160	1050	1970	512	50	1745540
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1745540
Dissolved Strontium (Sr)	ug/L	139	163	158	81.1	0.01	1745540
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Tin (Sn)	ug/L	<0.05	0.07	0.10	<0.05	0.05	1745540
Dissolved Titanium (Ti)	ug/L	<0.5	1.4	<0.5	<0.5	0.5	1745540
Dissolved Uranium (U)	ug/L	<0.01	0.11	7.46	0.26	0.01	1745540
Dissolved Vanadium (V)	ug/L	<0.05	1.74	<0.05	0.07	0.05	1745540
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A731839 Report Date: 2007/07/25 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09427	G09429	G09430	G09431					
Sampling Date		2007/07/12	2007/07/12	2007/07/12	2007/07/12					
COC Number		08195073	08195073	08195073	08195073					
	Units	MW 05-1A	MW 05-1B	MW 05-2A	MW 05-2B	RDL	QC Batch			
Dissolved Zinc (Zn)	ug/L	3.5	0.6	<0.5	<0.5	0.5	1745540			
Mercury by CVAA										
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1739364			
RDL = Reportable Detection Limit										

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09432	G09433	G09434	G09435		
Sampling Date	-	2007/07/13	2007/07/13	2007/07/14	2007/07/14		
COC Number	Unite	08195073	08195073	08195073	08195073	PDI	OC Batch
	onits				MW 03-4B		NO Datem
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1751853
Dissolved Calcium (Ca)	mg/L	49.3	32.3	60.7	36.9	0.05	1751853
Dissolved Iron (Fe)	mg/L	0.696	0.317	0.045	1.26	0.005	1751853
Dissolved Magnesium (Mg)	mg/L	5.74	4.66	3.82	2.84	0.05	1751853
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1751853
Dissolved Silicon (Si)	mg/L	4.09	4.12	3.43	6.16	0.05	1751853
Dissolved Sodium (Na)	mg/L	1.32	11.4	1.37	1.15	0.05	1751853
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1751853
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	0.2	1.0	1.5	1.0	0.2	1745540
Dissolved Antimony (Sb)	ug/L	0.21	0.18	0.09	0.07	0.05	1745540
Dissolved Arsenic (As)	ug/L	0.5	0.6	0.3	7.0	0.1	1745540
Dissolved Barium (Ba)	ug/L	54.4	123	81.9	48.3	0.02	1745540
Dissolved Beryllium (Be)	ug/L	<0.05	0.08	0.08	0.08	0.05	1745540
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Cadmium (Cd)	ug/L	6.55	7.21	0.03	3.21	0.01	1745540
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1745540
Dissolved Cobalt (Co)	ug/L	0.42	0.99	0.06	2.55	0.02	1745540
Dissolved Copper (Cu)	ug/L	0.2	1.6	0.3	0.2	0.1	1745540
Dissolved Lead (Pb)	ug/L	0.11	0.23	<0.02	0.08	0.02	1745540
Dissolved Lithium (Li)	ug/L	0.8	3.0	0.7	0.8	0.2	1745540
Dissolved Manganese (Mn)	ug/L	126	113	760	2920	0.02	1745540
Dissolved Molybdenum (Mo)	ug/L	0.97	0.74	5.20	1.08	0.02	1745540
Dissolved Nickel (Ni)	ug/L	3.9	4.0	<0.5	5.6	0.5	1745540
Dissolved Potassium (K)	ug/L	1050	1150	2120	1750	50	1745540
Dissolved Selenium (Se)	ug/L	7.1	12.2	<0.5	<0.5	0.5	1745540
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1745540
Dissolved Strontium (Sr)	ug/L	135	181	191	142	0.01	1745540
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	0.13	<0.05	0.05	1745540
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Uranium (U)	ug/L	3.04	1.10	0.70	0.21	0.01	1745540
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A731839 Report Date: 2007/07/25 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09432	G09433	G09434	G09435		
Sampling Date		2007/07/13	2007/07/13	2007/07/14	2007/07/14		
COC Number		08195073	08195073	08195073	08195073		
	Units	MW 05-3A	MW 05-3B	MW 05-4A	MW 05-4B	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	797	649	3.0	180	0.5	1745540
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1739364
RDL = Reportable Detection Li	mit			1		2	-

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09436	G09437	G09440	G09441		
Sampling Date		2007/07/13	2007/07/13	2007/07/12	2007/07/12	_	
COC Number	Units	08195073 MW 05-5A	08195073 MW 05-5B	08195074 MW 05-7A	08195074 MW 05-7B	RDI	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	800.0	1751853
Dissolved Calcium (Ca)	mg/L	74.5	51.6	157	25.1	0.05	1751853
Dissolved Iron (Fe)	mg/L	1.49	0.478	<0.005	<0.005	0.005	1751853
Dissolved Magnesium (Mg)	mg/L	22.9	6.50	<0.05	2.13	0.05	1751853
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1751853
Dissolved Silicon (Si)	mg/L	3.97	3.24	2.96	3.97	0.05	1751853
Dissolved Sodium (Na)	mg/L	0.86	0.80	3.15	1.63	0.05	1751853
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1751853
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	2.2	0.8	134	6.6	0.2	1745540
Dissolved Antimony (Sb)	ug/L	3.78	<0.05	0.58	0.12	0.05	1745540
Dissolved Arsenic (As)	ug/L	3.2	1.3	0.7	1.2	0.1	1745540
Dissolved Barium (Ba)	ug/L	63.6	35.8	521	36.1	0.02	1745540
Dissolved Beryllium (Be)	ug/L	0.07	0.10	0.06	0.07	0.05	1745540
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	0.01	0.02	0.01	1745540
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	1.5	<0.2	0.2	1745540
Dissolved Cobalt (Co)	ug/L	0.37	0.45	<0.02	0.09	0.02	1745540
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	3.3	0.2	0.1	1745540
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.32	0.09	0.02	1745540
Dissolved Lithium (Li)	ug/L	3.3	1.2	9.4	<0.2	0.2	1745540
Dissolved Manganese (Mn)	ug/L	176	517	0.25	109	0.02	1745540
Dissolved Molybdenum (Mo)	ug/L	8.54	2.04	6.83	9.24	0.02	1745540
Dissolved Nickel (Ni)	ug/L	<0.5	2.2	<0.5	<0.5	0.5	1745540
Dissolved Potassium (K)	ug/L	1800	797	5010	811	50	1745540
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	0.8	<0.5	0.5	1745540
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1745540
Dissolved Strontium (Sr)	ug/L	128	104	377	47.2	0.01	1745540
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Tin (Sn)	ug/L	0.07	<0.05	0.51	<0.05	0.05	1745540
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Uranium (U)	ug/L	20.5	3.10	<0.01	0.13	0.01	1745540
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	2.82	1.37	0.05	1745540
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A731839 Report Date: 2007/07/25 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09436	G09437	G09440	G09441		
Sampling Date		2007/07/13	2007/07/13	2007/07/12	2007/07/12		
COC Number		08195073	08195073	08195074	08195074		
	Units	MW 05-5A	MW 05-5B	MW 05-7A	MW 05-7B	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	1.9	29.8	4.7	1.5	0.5	1745540
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1739364
RDL = Reportable Detection Li	mit			•		3	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09442	G09443	G09444	G09445		
Sampling Date		2007/07/11	2007/07/11	2007/07/14	2007/07/14		
COC Number	Units	08195074 MW 06-85	08195074 MW 06-8D	08195074 MW 06-95	08195074 MW 06-9M	RDI	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1751853
Dissolved Calcium (Ca)	mg/L	21.1	60.5	45.8	62.5	0.05	1751853
Dissolved Iron (Fe)	mg/L	1.34	0.177	0.620	1.99	0.005	1751853
Dissolved Magnesium (Mg)	mg/L	2.69	27.0	4.65	11.8	0.05	1751853
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	0.4	<0.1	0.1	1751853
Dissolved Silicon (Si)	mg/L	5.46	4.71	4.29	3.67	0.05	1751853
Dissolved Sodium (Na)	mg/L	3.30	0.59	1.90	0.52	0.05	1751853
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1751853
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	4.6	8.5	3.8	1.8	0.2	1745540
Dissolved Antimony (Sb)	ug/L	25.0	0.09	<0.05	0.08	0.05	1745540
Dissolved Arsenic (As)	ug/L	1.3	4.4	9.5	1.1	0.1	1745540
Dissolved Barium (Ba)	ug/L	55.0	46.5	49.4	133	0.02	1745540
Dissolved Beryllium (Be)	ug/L	0.10	0.10	0.07	0.05	0.05	1745540
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Cadmium (Cd)	ug/L	0.01	<0.01	0.02	0.03	0.01	1745540
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1745540
Dissolved Cobalt (Co)	ug/L	2.43	0.36	0.03	0.06	0.02	1745540
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1745540
Dissolved Lead (Pb)	ug/L	0.04	<0.02	<0.02	0.06	0.02	1745540
Dissolved Lithium (Li)	ug/L	0.7	2.5	1.1	2.5	0.2	1745540
Dissolved Manganese (Mn)	ug/L	757	67.8	158	114	0.02	1745540
Dissolved Molybdenum (Mo)	ug/L	3.49	1.44	6.98	4.66	0.02	1745540
Dissolved Nickel (Ni)	ug/L	4.7	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Potassium (K)	ug/L	1170	1860	1270	1870	50	1745540
Dissolved Selenium (Se)	ug/L	0.8	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1745540
Dissolved Strontium (Sr)	ug/L	62.7	166	176	78.8	0.01	1745540
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Tin (Sn)	ug/L	0.05	<0.05	<0.05	0.18	0.05	1745540
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Uranium (U)	ug/L	0.03	10.9	0.39	1.39	0.01	1745540
Dissolved Vanadium (V)	ug/L	0.28	0.12	0.09	<0.05	0.05	1745540
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A731839 Report Date: 2007/07/25 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09442	G09443	G09444	G09445		
Sampling Date		2007/07/11	2007/07/11	2007/07/14	2007/07/14		
COC Number		08195074	08195074	08195074	08195074		
	Units	MW 06-8S	MW 06-8D	MW 06-9S	MW 06-9M	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	3.6	1.1	1.1	4.1	0.5	1745540
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1739364
RDL = Reportable Detection Li	mit		•			3	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09446	G09447	G09448	G09449		
Sampling Date		2007/07/11	2007/07/11	2007/07/11	2007/07/13		
COC Number	Unite	08195074	08195074	08195074	08195074	PDI	OC Batch
	Units	10100 00-103					NC Daton
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1751853
Dissolved Calcium (Ca)	mg/L	47.6	83.9	73.1	46.0	0.05	1751853
Dissolved Iron (Fe)	mg/L	0.182	4.41	4.55	0.183	0.005	1751853
Dissolved Magnesium (Mg)	mg/L	4.10	12.7	20.3	11.5	0.05	1751853
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1751853
Dissolved Silicon (Si)	mg/L	4.14	3.96	3.62	4.57	0.05	1751853
Dissolved Sodium (Na)	mg/L	7.16	2.76	1.09	3.83	0.05	1751853
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1751853
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	5.5	3.8	3.1	18.1	0.2	1745540
Dissolved Antimony (Sb)	ug/L	0.34	<0.05	0.38	2.08	0.05	1745540
Dissolved Arsenic (As)	ug/L	5.0	0.3	0.3	3.1	0.1	1745540
Dissolved Barium (Ba)	ug/L	23.6	43.2	78.4	41.1	0.02	1745540
Dissolved Beryllium (Be)	ug/L	0.06	0.10	0.10	0.05	0.05	1745540
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Cadmium (Cd)	ug/L	<0.01	<0.01	<0.01	0.05	0.01	1745540
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1745540
Dissolved Cobalt (Co)	ug/L	0.14	0.05	<0.02	0.05	0.02	1745540
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1745540
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	<0.02	0.10	0.02	1745540
Dissolved Lithium (Li)	ug/L	0.8	2.0	4.0	19.7	0.2	1745540
Dissolved Manganese (Mn)	ug/L	91.6	259	112	62.5	0.02	1745540
Dissolved Molybdenum (Mo)	ug/L	1.84	2.02	3.24	30.3	0.02	1745540
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Potassium (K)	ug/L	1200	1790	2390	2030	50	1745540
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1745540
Dissolved Strontium (Sr)	ug/L	168	139	168	97.8	0.01	1745540
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1745540
Dissolved Tin (Sn)	ug/L	0.07	<0.05	0.10	0.32	0.05	1745540
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1745540
Dissolved Uranium (U)	ug/L	8.25	4.52	1.00	4.53	0.01	1745540
Dissolved Vanadium (V)	ug/L	0.10	<0.05	<0.05	0.93	0.05	1745540
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A731839 Report Date: 2007/07/25 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09446	G09447	G09448	G09449		
Sampling Date		2007/07/11	2007/07/11	2007/07/11	2007/07/13		
COC Number		08195074	08195074	08195074	08195074		
	Units	MW 06-10S	MW 06-10M	MW 06-10D	MW 06-11S	RDL	QC Batch
	_	-					
Dissolved Zinc (Zn)	ug/L	1.3	0.7	0.8	0.7	0.5	1745540
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1739364
RDL = Reportable Detection Li	mit		•	•		3	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G09450		
Sampling Date		2007/07/12		
	Units	MW 06-12S	RDL	QC Batch
				1
Dissolved Metals by ICP				
Dissolved Boron (B)	mg/L	0.013	0.008	1751853
Dissolved Calcium (Ca)	mg/L	102	0.05	1751853
Dissolved Iron (Fe)	mg/L	0.095	0.005	1751853
Dissolved Magnesium (Mg)	mg/L	18.3	0.05	1751853
Dissolved Phosphorus (P)	mg/L	<0.1	0.1	1751853
Dissolved Silicon (Si)	mg/L	8.06	0.05	1751853
Dissolved Sodium (Na)	mg/L	45.7	0.05	1751853
Dissolved Zirconium (Zr)	mg/L	<0.005	0.005	1751853
Dissolved Metals by ICPMS				
Dissolved Aluminum (Al)	ug/L	1.6	0.2	1745540
Dissolved Antimony (Sb)	ug/L	1.08	0.05	1745540
Dissolved Arsenic (As)	ug/L	2.9	0.1	1745540
Dissolved Barium (Ba)	ug/L	22.2	0.02	1745540
Dissolved Beryllium (Be)	ug/L	<0.05	0.05	1745540
Dissolved Bismuth (Bi)	ug/L	<0.05	0.05	1745540
Dissolved Cadmium (Cd)	ug/L	<0.01	0.01	1745540
Dissolved Chromium (Cr)	ug/L	<0.2	0.2	1745540
Dissolved Cobalt (Co)	ug/L	0.45	0.02	1745540
Dissolved Copper (Cu)	ug/L	<0.1	0.1	1745540
Dissolved Lead (Pb)	ug/L	<0.02	0.02	1745540
Dissolved Lithium (Li)	ug/L	8.3	0.2	1745540
Dissolved Manganese (Mn)	ug/L	284	0.02	1745540
Dissolved Molybdenum (Mo)	ug/L	4.96	0.02	1745540
Dissolved Nickel (Ni)	ug/L	<0.5	0.5	1745540
Dissolved Potassium (K)	ug/L	2780	50	1745540
Dissolved Selenium (Se)	ug/L	<0.5	0.5	1745540
Dissolved Silver (Ag)	ug/L	<0.01	0.01	1745540
Dissolved Strontium (Sr)	ug/L	361	0.01	1745540
Dissolved Thallium (TI)	ug/L	<0.05	0.05	1745540
Dissolved Tin (Sn)	ug/L	0.14	0.05	1745540
Dissolved Titanium (Ti)	ug/L	1.2	0.5	1745540
Dissolved Uranium (U)	ug/L	13.4	0.01	1745540
Dissolved Vanadium (V)	ug/L	0.73	0.05	1745540
RDL = Reportable Detection Li	nit			

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxwana ID		000450	1							
Maxxam ID		G09450								
Sampling Date		2007/07/12								
COC Number		08195074								
	Units	MW 06-12S	RDL	QC Batch						
		-								
Dissolved Zinc (Zn)	ug/L	0.7	0.5	1745540						
Mercury by CVAA										
Dissolved Mercury (Hg)	ug/L	<0.01	0.01	1739364						
RDL = Reportable Detection Limit										

Driven by service and Science www.maxxamanalytics.com

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Sample G09440-01 pH Water: pH result greater than the highest calibration standard of pH 10.

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA731839

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1739364 JT3	MATRIX SPIKE						
	[G09427-01]	Dissolved Mercury (Hg)	2007/07/19		100	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/07/19		101	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/07/19		86	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/07/19	< 0.01		ug/l	
	RPD [G09427-01]	Dissolved Mercury (Hg)	2007/07/19	NC		~g/= %	25
	RPD [G09430-01]	Dissolved Mercury (Hg)	2007/07/19	NC		%	25
1739497 CK		Turbidity	2007/07/19		102	%	80 - 120
1100401 010		Turbidity	2007/07/19	~0.1	102	NTU	00 120
		Turbidity	2007/07/19	<0.1		0/	25
1730/08 BB3	MATRIX SPIKE	Tarbiany	2007/07/19	0.4		70	20
1753430 005		Nitrata plus Nitrita (N)	2007/07/18		100	0/	80 120
	[009430-01]	Nitrate plus Nitrite (N)	2007/07/18		100	/0 0/	80 - 120
		Nitrate plus Nitrite (N)	2007/07/18	.0.002	104	-70 	00 - 120
		Nitrate plus Nitrite (N)	2007/07/18	<0.002		mg/L	05
4700500 000	RPD [G09436-01]	Nitrate plus Nitrite (N)	2007/07/18	NC		%	25
1739502 BB3	MATRIX SPIKE						
	[G09436-01]	Nitrite (N)	2007/07/18		99	%	80 - 120
	SPIKE	Nitrite (N)	2007/07/18		102	%	80 - 120
	BLANK	Nitrite (N)	2007/07/18	<0.002		mg/L	
	RPD [G09436-01]	Nitrite (N)	2007/07/18	NC		%	25
1740760 CK	SPIKE	рН	2007/07/19		102	%	96 - 104
	RPD [G09446-01]	рН	2007/07/19	0.4		%	25
1740764 CK	SPIKE	Conductivity	2007/07/19		101	%	80 - 120
	BLANK	Conductivity	2007/07/19	<1		uS/cm	
	RPD [G09446-01]	Conductivity	2007/07/19	0.7		%	25
1740766 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/07/19		93	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/07/19		100	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/07/19	<0.5		mg/L	
	RPD [G09446-01]	Alkalinity (Total as CaCO3)	2007/07/19	1.2		%	25
1740956 YS	MATRIX SPIKE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-
	[G09431-01]	Total Phosphorus (P)	2007/07/24		112	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/07/24		100	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/07/24	< 0.005		ma/l	
	RPD [G09431-01]	Total Phosphorus (P)	2007/07/24	0.4		%	25
1741119 WAY	MATRIX SPIKE	Fluoride (F)	2007/07/19	0	106	%	80 - 120
	SPIKE	Fluoride (F)	2007/07/19		106	%	80 - 120
		Fluoride (F)	2007/07/19	<0.01	100	ma/l	00 120
	RPD [G09436-01]	Fluoride (F)	2007/07/19	2.8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25
17/1751 NN	MATRIX SPIKE	Dissolved Chloride (Cl)	2007/07/19	2.0	04	70 9/	80 - 120
1741751 1010		Dissolved Chloride (CI)	2007/07/19		107	70 9/	80 - 120
		Dissolved Chloride (CI)	2007/07/19	-0.5	107	70 ma/l	00 - 120
		Dissolved Chloride (CI)	2007/07/19	<0.5 NC		111g/ L	20
1741000 NN		Dissolved Chlonde (CI)	2007/07/19	NC	110	70	20 75 105
1741602 ININ	MATRIA SPIKE	Dissolved Sulphate (SO4)	2007/07/19		112	% 0/	75 - 125
	SPIRE	Dissolved Sulphate (SO4)	2007/07/19		90	70 	80 - 120
		Dissolved Sulphate (SO4)	2007/07/19	0.8, R	DL=0.5	mg/∟	00
4740040 504	RPD [G09437-01]	Dissolved Sulphate (SO4)	2007/07/19	0.7	404	%	20
1/42046 FS1		Total Dissolved Solids	2007/07/19		104	% 0/	80 - 120
	SPIKE	Total Dissolved Solids	2007/07/19	10	104	%	80 - 120
	BLANK	I otal Dissolved Solids	2007/07/19	<10		mg/L	- -
	KPD	I otal Dissolved Solids	2007/07/19	1		%	25
1745540 AA1	MATRIX SPIKE						
	[G09427-01]	Dissolved Arsenic (As)	2007/07/20		110	%	75 - 125
		Dissolved Cadmium (Cd)	2007/07/20		111	%	75 - 125
		Dissolved Chromium (Cr)	2007/07/20		108	%	75 - 125
		Dissolved Cobalt (Co)	2007/07/20		108	%	75 - 125
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA731839

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1745540 AA1	MATRIX SPIKE						
	[G09427-01]	Dissolved Copper (Cu)	2007/07/20		108	%	75 - 125
		Dissolved Lead (Pb)	2007/07/20		108	%	75 - 125
		Dissolved Selenium (Se)	2007/07/20		107	%	75 - 125
		Dissolved Thallium (TI)	2007/07/20		107	%	75 - 125
		Dissolved Zinc (Zn)	2007/07/20		106	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/07/20		92	%	75 - 125
		Dissolved Cadmium (Cd)	2007/07/20		101	%	75 - 125
		Dissolved Chromium (Cr)	2007/07/20		112	%	75 - 125
		Dissolved Cobalt (Co)	2007/07/20		113	%	75 - 125
		Dissolved Copper (Cu)	2007/07/20		113	%	75 - 125
		Dissolved Lead (Pb)	2007/07/20		106	%	75 - 125
		Dissolved Selenium (Se)	2007/07/20		99	%	75 - 125
		Dissolved Thallium (TI)	2007/07/20		107	%	75 - 125
		Dissolved Zinc (Zn)	2007/07/20		105	%	75 - 125
		Dissolved Aluminum (AI)	2007/07/20	02 P		70 UQ/I	75-125
	DLAINN	Dissolved Antimony (Sh)	2007/07/20	0.3, K	DL=0.2	ug/L	
		Dissolved Anumony (SD)	2007/07/20	<0.05		ug/L	
		Dissolved Alsenic (As)	2007/07/20	<0.1		ug/L	
		Dissolved Barlum (Ba)	2007/07/20	<0.02		ug/L	
		Dissolved Beryllium (Be)	2007/07/20	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/07/20	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/07/20	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/07/20	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/07/20	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/07/20	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/07/20	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/07/20	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/07/20	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/07/20	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/07/20	<0.5		ug/L	
		Dissolved Potassium (K)	2007/07/20	<50		ug/L	
		Dissolved Selenium (Se)	2007/07/20	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/07/20	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/07/20	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/07/20	<0.05		ug/L	
		Dissolved Tin (Sn)	2007/07/20	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/07/20	<0.5		ug/L	
		Dissolved Uranium (U)	2007/07/20	<0.01		ua/L	
		Dissolved Vanadium (V)	2007/07/20	< 0.05		ua/L	
		Dissolved Zinc (Zn)	2007/07/20	<0.5		ua/L	
	RPD [G09427-01]	Dissolved Aluminum (Al)	2007/07/20	2.5		%	25
		Dissolved Antimony (Sb)	2007/07/20	3.1		%	25
		Dissolved Arsenic (As)	2007/07/20	0.4		%	25
		Dissolved Barium (Ba)	2007/07/20	1.5		%	25
		Dissolved Beryllium (Be)	2007/07/20	NC		%	25
		Dissolved Bismuth (Bi)	2007/07/20	NC		%	25
		Dissolved Cadmium (Cd)	2007/07/20	0		%	25
		Dissolved Chromium (Cr)	2007/07/20	NC		%	25
		Dissolved Cobalt (Co)	2007/07/20	NC		70 0/_	20
		Dissolved Copper (Cu)	2007/07/20	NC		70 0/	20
		Dissolved Lead (Ph)	2007/07/20	NC		/0 0/_	20
		Dissolved Lithium (Li)	2007/07/20			70 0/	20
		Dissolved Littium (LI)	2007/07/20	NU 0 4		/0 0/	20
		Dissolved Waliganese (Will)	2007/07/20	3.1 0.5		70 0/	25
		Dissolved Nickol (Ni)	2007/07/20	0.5		70 0/	20
		DISSUIVED INICKEI (INI)	2007/07/20	NC		70	25

Quality Assurance Report (Continued)

Maxxam Job Number: VA731839

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1745540 AA1	RPD [G09427-01]	Dissolved Potassium (K)	2007/07/20	4.1		%	25
		Dissolved Selenium (Se)	2007/07/20	NC		%	25
		Dissolved Silver (Ag)	2007/07/20	NC		%	25
		Dissolved Strontium (Sr)	2007/07/20	4.2		%	25
		Dissolved Thallium (TI)	2007/07/20	NC		%	25
		Dissolved Tin (Sn)	2007/07/20	NC		%	25
		Dissolved Titanium (Ti)	2007/07/20	NC		%	25
		Dissolved Uranium (U)	2007/07/20	NC		%	25
		Dissolved Vanadium (V)	2007/07/20	NC		%	25
		Dissolved Zinc (Zn)	2007/07/20	4.3		%	25
	RPD [G09446-01]	Dissolved Aluminum (Al)	2007/07/20	0.07		%	25
		Dissolved Antimony (Sb)	2007/07/20	1.2		%	25
		Dissolved Arsenic (As)	2007/07/20	0.8		%	25
		Dissolved Barium (Ba)	2007/07/20	2.1		%	25
		Dissolved Bervllium (Be)	2007/07/20	NC		%	25
		Dissolved Bismuth (Bi)	2007/07/20	NC		%	25
		Dissolved Cadmium (Cd)	2007/07/20	NC		%	25
		Dissolved Chromium (Cr)	2007/07/20	NC		%	25
		Dissolved Cobalt (Co)	2007/07/20	3.4		%	25
		Dissolved Copper (Cu)	2007/07/20	NC		%	25
		Dissolved Lead (Pb)	2007/07/20	NC		%	25
		Dissolved Lithium (Li)	2007/07/20	NC		%	25
		Dissolved Manganese (Mn)	2007/07/20	14		%	25
		Dissolved Molybdenum (Mo)	2007/07/20	1.4		%	25
		Dissolved Nickel (Ni)	2007/07/20	NC		/0 %	25
		Dissolved Potassium (K)	2007/07/20	1.2		70 9/2	25
		Dissolved Folgasium (R)	2007/07/20	NC		70 0/	25
		Dissolved Selenium (Se)	2007/07/20	NC		/0 0/	25
		Dissolved Streatium (Sr)	2007/07/20	0.4		/0 0/.	25
		Dissolved Shorilium (SI)	2007/07/20	0.4		70 0/	20
		Dissolved Thailuni (1)	2007/07/20	NC		70 0/	20
		Dissolved Till (SII)	2007/07/20	NC		70 0/	20
		Dissolved Litanium (11)	2007/07/20			% 0/	25
		Dissolved Uranium (U)	2007/07/20	0.01		70 07	20
		Dissolved Vanadium (V)	2007/07/20	NC		%	25
4747000 1/0		Dissolved Zinc (Zn)	2007/07/20	NC	00	%	25
1747002 15	MATRIX SPIKE	Orthophosphate (P)	2007/07/23		96	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/07/23	0.004	102	%	80 - 120
	BLANK	Orthophosphate (P)	2007/07/23	<0.001		mg/L	
	RPD [G09427-01]	Orthophosphate (P)	2007/07/23	NC		%	20
	RPD [G09450-01]	Orthophosphate (P)	2007/07/23	1.1		%	20
1747095 FS1	MATRIX SPIKE						
	[G09446-01]	Total Suspended Solids	2007/07/23		106	%	N/A
	SPIKE	Total Suspended Solids	2007/07/23		103	%	N/A
	BLANK	Total Suspended Solids	2007/07/23	<4		mg/L	
	RPD [G09445-01]	Total Suspended Solids	2007/07/23	NC		%	25
1747480 AH3	MATRIX SPIKE	Bromide (Br)	2007/07/23		113	%	80 - 120
	SPIKE	Bromide (Br)	2007/07/23		105	%	80 - 120
	BLANK	Bromide (Br)	2007/07/23	<0.1		mg/L	
	RPD	Bromide (Br)	2007/07/23	NC		%	25
1747851 MX	MATRIX SPIKE	Dissolved Organic Carbon (C)	2007/07/23		111	%	80 - 120
	SPIKE	Dissolved Organic Carbon (C)	2007/07/23		106	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/07/23	<0.5		mg/L	
	RPD [G09433-01]	Dissolved Organic Carbon (C)	2007/07/23	NC		%	20
1749684 NN	MATRIX SPIKE	Ammonia (N)	2007/07/24		95	%	80 - 120
	SPIKE	Ammonia (N)	2007/07/24		98	%	80 - 120
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA731839

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1749684 NN	BLANK	Ammonia (N)	2007/07/24	<0.005		mg/L	
	RPD [G09432-01]	Ammonia (N)	2007/07/24	NC		%	25
1751853 GS2	BLANK	Dissolved Boron (B)	2007/07/24	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/07/24	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/07/24	< 0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/07/24	< 0.05		mg/L	
		Dissolved Phosphorus (P)	2007/07/24	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/07/24	< 0.05		mg/L	
		Dissolved Sodium (Na)	2007/07/24	<0.05		mg/L	
		Dissolved Zirconium (Zr)	2007/07/24	< 0.005		mg/L	
	RPD [G09448-01]	Dissolved Boron (B)	2007/07/24	NC		%	25
		Dissolved Calcium (Ca)	2007/07/24	0.8		%	25
		Dissolved Iron (Fe)	2007/07/24	0.7		%	25
		Dissolved Magnesium (Mg)	2007/07/24	0.8		%	25
		Dissolved Phosphorus (P)	2007/07/24	NC		%	25
		Dissolved Silicon (Si)	2007/07/24	0.4		%	25
		Dissolved Sodium (Na)	2007/07/24	7.4		%	25
		Dissolved Zirconium (Zr)	2007/07/24	NC		%	25
N/A = Not Applic NC = Non-calcul	able able						
RPD = Relative I							

Your C.O.C. #: 08196685, 08196686

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/09/13

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A741295 Received: 2007/09/05, 14:45

Sample Matrix: Water # Samples Received: 24

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	24	2007/09/06	2007/09/06 BRN SOP-00264 R2.0	Based on SM2320B
Bromide by IC ()	14	N/A	2007/09/10 CAL SOP-00041	IC
Bromide by IC ()	10	N/A	2007/09/11 CAL SOP-00041	IC
Chloride by Automated Colourimetry	24	N/A	2007/09/11 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	24	N/A	2007/09/10 BRN SOP-00224 R3.0	Based on SM-5310C
Conductance - water	24	N/A	2007/09/06 BRN SOP-00264 R2.0	Based on SM-2510B
Fluoride	24	N/A	2007/09/07 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness (calculated as CaCO3)	24	N/A	2007/09/12	
Mercury (dissolved; low level)	24	2007/09/07	2007/09/10 BRN SOP-00205	Based on EPA 245.1
Mercury - Total (CVAA,LL)	24	2007/09/07	2007/09/10 BRN SOP-00205	Based on EPA 245.1
Elements by ICP-AES (dissolved)	24	2007/09/11	2007/09/11 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) Ø	24	2007/09/10	2007/09/11 BRN SOP-00204	Based on EPA 200.8
Elements by ICPMS (as rec; low level) g	24	2007/09/10	2007/09/10 BRN SOP-00204	Based on EPA 200.8
Elements by ICPMS (total) Ø	24	N/A	2007/09/12 BRN SOP-00204	Based on EPA 200.8
Elements by ICP-AES (total)	24	N/A	2007/09/10 BRN SOP-00201 R1.0	Based on EPA 6010B
Ammonia (N)	24	N/A	2007/09/12 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	24	N/A	2007/09/10 BRN SOP-00233 R1.0	Based on EPA 353.2
Nitrite (N) (low level)	24	N/A	2007/09/10 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	24	N/A	2007/09/11	
pH Water	24	N/A	2007/09/06 BRN SOP-00264 R2.0	Based on SM-4500H+B
Orthophosphate by Konelab Ø	24	N/A	2007/09/10 BRN SOP-00235 R3.0	SM 4500 PF
Sulphate by Automated Colourimetry	24	N/A	2007/09/11 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	24	N/A	2007/09/07 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	24	N/A	2007/09/12 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids Ø	24	N/A	2007/09/12 BRN SOP-00277 R2.0	Based on SM - 2540 D
Turbidity	24	N/A	2007/09/06 BRN SOP-00265 R3.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary

(2) SCC/CAEAL

Your C.O.C. #: 08196685, 08196686

Attention: PAMELA LADYMAN

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/09/13

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81592	G81593	G81594	G81595		
Sampling Date		2007/09/02	2007/09/02	2007/09/01	2007/09/01		
COC Number		08196685	08196685	08196685	08196685		
	Units	MW 05-1A	MW 05-1B	MW 05-2A	MW 05-2B	RDL	QC Batch
Misc. Inorganics							
Fluoride (F)	mg/L	0.49	0.13	0.28	0.08	0.01	1833861
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	0.027	<0.002	<0.002	0.002	1830801
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	138	191	228	140	0.5	1830799
Dissolved Organic Carbon (C)	mg/L	<0.5	4.9	<0.5	0.8	0.5	1836780
Alkalinity (Total as CaCO3)	mg/L	97.7	172	179	124	0.5	1831744
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	<0.01	0.01	1836721
Orthophosphate (P)	mg/L	0.045	0.010	0.004	0.215	0.001	1836533
Dissolved Sulphate (SO4)	mg/L	37.6	<0.5	33.9	9.1	0.5	1838888
Dissolved Chloride (Cl)	mg/L	1.0	<0.5	<0.5	<0.5	0.5	1838884
Leachable Metals							
Total Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1836311
Nutrients							
Ammonia (N)	mg/L	0.132	0.081	0.090	0.072	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	<0.002	0.070	<0.002	<0.002	0.002	1836734
Nitrite (N)	mg/L	<0.002	0.043	<0.002	<0.002	0.002	1836737
Total Phosphorus (P)	mg/L	0.045	0.270	<0.005	0.226	0.005	1838312
Physical Properties							
Conductivity	uS/cm	258	327	400	255	1	1831742
рН	pH Units	8.0	7.3	8.0	7.8	0.1	1831740
Physical Properties							
Total Suspended Solids	mg/L	<4	31	<4	21	4	1838425
Total Dissolved Solids	mg/L	166	222	242	160	10	1835207
Turbidity	NTU	0.8	32.6	5.8	97.0	0.1	1827894
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81596	G81597	G81598	G81599		
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/02		
COC Number		08196685	08196685	08196685	08196685		
	Units	MW 05-3A	MW 05-3B	MW 05-4A	MW 05-4B	RDL	QC Batch
			1			1	
Misc. Inorganics							
Fluoride (F)	mg/L	0.40	0.19	0.97	0.55	0.01	1833861
Calculated Parameters							
Nitrate (N)	mg/L	0.030	0.316	0.030	0.002	0.002	1830801
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	175	119	172	109	0.5	1830799
Dissolved Organic Carbon (C)	mg/L	0.6	0.9	0.9	0.8	0.5	1836780
Alkalinity (Total as CaCO3)	mg/L	130	86.2	110	67.3	0.5	1831744
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	<0.01	0.01	1836721
Orthophosphate (P)	mg/L	0.019	0.006	0.003	0.014	0.001	1836533
Dissolved Sulphate (SO4)	mg/L	35.6	34.6	49.1	39.8	0.5	1838888
Dissolved Chloride (Cl)	mg/L	<0.5	<0.5	<0.5	<0.5	0.5	1838884
Leachable Metals							
Total Selenium (Se)	ug/L	2.7	11.0	<0.5	<0.5	0.5	1836311
Nutrients							
Ammonia (N)	mg/L	0.017	0.015	<0.005	0.037	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	0.030	0.316	0.030	0.002	0.002	1836734
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	<0.002	0.002	1836737
Total Phosphorus (P)	mg/L	0.008	<0.005	<0.005	<0.005	0.005	1838312
Physical Properties							
Conductivity	uS/cm	324	246	321	224	1	1831742
рН	pH Units	7.8	7.6	8.1	7.6	0.1	1831740
Physical Properties							
Total Suspended Solids	mg/L	4	<4	<4	<4	4	1838425
Total Dissolved Solids	mg/L	208	168	206	152	10	1835207
Turbidity	NTU	16.4	0.3	0.2	3.5	0.1	1827894
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81600	G81601		G81602		
Sampling Date		2007/09/02	2007/09/02		2007/09/02		
COC Number	11	08196685	08196685		08196685		
	Units	MW 05-5A	WW 05-5B	RDL	WW 05-6A	RDL	QC Batch
Misc. Inorganics							
Fluoride (F)	mg/L	2.30	0.28	0.01	0.18	0.01	1833861
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	0.006	0.002	0.002	0.002	1830801
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	291	159	0.5	88.1	0.5	1830799
Dissolved Organic Carbon (C)	mg/L	0.5	0.5	0.5	0.9	0.5	1836780
Alkalinity (Total as CaCO3)	mg/L	232	109	0.5	70.3	0.5	1831744
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	0.01	<0.01	0.01	1836721
Orthophosphate (P)	mg/L	0.019	0.006	0.001	0.56	0.01	1836533
Dissolved Sulphate (SO4)	mg/L	33.8	42.0	0.5	16.3	0.5	1838888
Dissolved Chloride (Cl)	mg/L	<0.5	<0.5	0.5	<0.5	0.5	1838884
Leachable Metals							
Total Selenium (Se)	ug/L	<0.5	<0.5	0.5	<0.5	0.5	1836311
Nutrients							
Ammonia (N)	mg/L	0.061	0.014	0.005	0.006	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	0.003	0.006	0.002	0.002	0.002	1836734
Nitrite (N)	mg/L	0.005	<0.002	0.002	<0.002	0.002	1836737
Total Phosphorus (P)	mg/L	0.012	<0.005	0.005	0.776	0.005	1838312
Physical Properties							
Conductivity	uS/cm	497	299	1	180	1	1831742
рН	pH Units	8.0	7.9	0.1	7.8	0.1	1831740
Physical Properties							
Total Suspended Solids	mg/L	5	<4	4	<4	4	1838425
Total Dissolved Solids	mg/L	318	194	10	118	10	1835207
Turbidity	NTU	18.6	5.3	0.1	4.8	0.1	1827894
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81603		G81617		
Sampling Date		2007/09/01		2007/09/01		
COC Number		08196685		08196686		
	Units	MW 05-6B	RDL	MW 05-7A	RDL	QC Batch
Mica Inorganica						
		0.04	0.01	0.07	0.01	4000004
	mg/∟	0.04	0.01	0.07	0.01	1033001
Calculated Parameters						
Nitrate (N)	mg/L	0.209	0.002	0.025	0.002	1830801
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	101	0.5	2160	0.5	1830799
Dissolved Organic Carbon (C)	mg/L	1.0	0.5	1.3	0.5	1836780
Alkalinity (Total as CaCO3)	mg/L	83.4	0.5	2100	1	1831744
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	0.01	<0.01	0.01	1836721
Orthophosphate (P)	mg/L	0.017	0.001	0.006	0.001	1836533
Dissolved Sulphate (SO4)	mg/L	7.3	0.5	<0.5	0.5	1838888
Dissolved Chloride (Cl)	mg/L	<0.5	0.5	2.5	0.5	1838884
Leachable Metals						
Total Selenium (Se)	ug/L	0.9	0.5	0.7	0.5	1836311
Nutrients						
Ammonia (N)	mg/L	<0.005	0.005	0.068	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	0.213	0.002	0.025	0.002	1836734
Nitrite (N)	mg/L	0.004	0.002	<0.002	0.002	1836737
Total Phosphorus (P)	mg/L	<0.005	0.005	<0.005	0.005	1838312
Physical Properties						
Conductivity	uS/cm	183	1	8120	1	1831742
рН	pH Units	8.0	0.1	12.5	0.1	1831740
Physical Properties						
Total Suspended Solids	mg/L	<4	4	<4	4	1838425
Total Dissolved Solids	mg/L	102	10	1840	10	1835207
Turbidity	NTU	0.2	0.1	0.8	0.1	1827894
RDL = Reportable Detection Lir	mit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Sampling Date 2007/09/01 2007/09/02 2007/09/02 2007/09/03/1 COC Number 08196686 08196868 0819686 08196868 0819686 0819686	Maxxam ID		G81618		G81619	G81620		
COC Number 08196686 0819686 0819768 0819686	Sampling Date		2007/09/01		2007/09/02	2007/08/31		
Units MW 05-7B QC Batch 05-7B-98 MW 06-8S RDL QC Batch QC Batch 05-7B-98 Misc. Inorganics mg/L 0.13 1833861 0.13 0.17 0.01 1833861 Calculated Parameters mg/L 0.019 1830801 0.022 0.018 0.002 183087 Mirate (N) mg/L 0.019 1830801 0.022 0.018 0.002 183087 Misc. Inorganics <td< th=""><th>COC Number</th><th></th><th>08196686</th><th></th><th>08196686</th><th>08196686</th><th></th><th></th></td<>	COC Number		08196686		08196686	08196686		
Misc. Inorganics mg/L 0.13 1833861 0.13 0.17 0.01 183386 Fluoride (F) mg/L 0.13 1833861 0.13 0.17 0.01 183386 Calculated Parameters Nitrate (N) mg/L 0.019 1830801 0.022 0.018 0.002 183080 Dissolved Hardness (CaCO3) mg/L 75.2 1830790 74.7 74.0 0.5 18307 Aikalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 18367 Anions 1836721 <0.01 <0.01 183848 183683 0.045 0.023 0.001 183653 0.045 0.023 0.001 183653 16		Units	MW 05-7B	QC Batch	MW 05-7B-98	MW 06-8S	RDL	QC Batch
Misc. Inorganics mg/L 0.13 1833861 0.13 0.17 0.01 183388 Fluoride (F) mg/L 0.013 1833861 0.13 0.17 0.01 183388 Calculated Parameters mg/L 0.019 1830801 0.022 0.018 0.002 183080 Misc. Inorganics 1					0012.00	1		
Fluoride (F) mg/L 0.13 1833861 0.13 0.17 0.01 183384 Calculated Parameters mg/L 0.019 1830801 0.022 0.018 0.002 183080 Nitrate (N) mg/L 0.019 1830801 0.022 0.018 0.002 183080 Misc. Inorganics mg/L 75.2 1830799 74.7 74.0 0.5 183079 Dissolved Organic Carbon (C) mg/L 0.8 1836780 0.7 0.9 0.5 183674 Alkalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions mg/L <0.01 1836721 <0.01 <0.01 183843 Orthophosphate (P) mg/L 0.045 183653 0.045 0.023 0.01 183843 Dissolved Sulphate (SO4) mg/L 12.4 183888 12.2 24.9 0.5 183843 Leachable Metals mg/L <0.05 1836311 <0.5	Misc. Inorganics							
Calculated Parameters mg/L 0.019 1830801 0.022 0.018 0.002 183080 Nitrate (N) mg/L 0.019 1830801 0.022 0.018 0.002 183080 Misc. Inorganics mg/L 75.2 1830799 74.7 74.0 0.5 183079 Dissolved Organic Carbon (C) mg/L 0.8 1836780 0.7 0.9 0.5 183674 Alkalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions mg/L <-0.01	Fluoride (F)	mg/L	0.13	1833861	0.13	0.17	0.01	1833861
Nitrate (N) mg/L 0.019 1830801 0.022 0.018 0.002 183080 Misc. Inorganics mg/L 75.2 1830799 74.7 74.0 0.5 183079 Dissolved Hardness (CaCO3) mg/L 0.8 1836780 0.7 0.9 0.5 183074 Dissolved Organic Carbon (C) mg/L 0.8 1836780 0.7 0.9 0.5 183674 Alkalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions mg/L <0.01 1836721 <0.01 <0.01 183844 Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.001 183865 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183864 Leachable Metals mg/L <0.5 1836311 <0.5 <0.5 183637 Nutrients ug/L <0.07 1841342 <0.027 0.002	Calculated Parameters							
Misc. Inorganics mg/L 75.2 1830799 74.7 74.0 0.5 183079 Dissolved Hardness (CaCO3) mg/L 0.8 1836780 0.7 0.9 0.5 183074 Dissolved Organic Carbon (C) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions mg/L <0.01 1836721 <0.01 <0.01 183844 Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.001 183653 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183884 Leachable Metals 1838311 <0.5	Nitrate (N)	mg/L	0.019	1830801	0.022	0.018	0.002	1830801
Dissolved Hardness (CaCO3) mg/L 75.2 1830799 74.7 74.0 0.5 183079 Dissolved Organic Carbon (C) mg/L 0.8 1836780 0.7 0.9 0.5 183674 Alkalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions	Misc. Inorganics							
Dissolved Organic Carbon (C) mg/L 0.8 1836780 0.7 0.9 0.5 1836740 Alkalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions Image: Carbon (C) mg/L <0.01 1836721 <0.01 <0.01 183642 Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.01 183642 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183888 Dissolved Chloride (Cl) mg/L <0.5 1838884 <0.5 <0.5 183888 Leachable Metals Image: Carbon (C) mg/L <0.5 1836311 <0.5 <0.5 183633 Nutrients Image: Carbon (C) mg/L 0.007 1841342 <0.05 0.027 0.005 184134 Almonia (N) mg/L 0.007 1841342 <0.002 0.021 0.002 183673 Nitrate plus Nitrite (N) mg/L </td <td>Dissolved Hardness (CaCO3)</td> <td>mg/L</td> <td>75.2</td> <td>1830799</td> <td>74.7</td> <td>74.0</td> <td>0.5</td> <td>1830799</td>	Dissolved Hardness (CaCO3)	mg/L	75.2	1830799	74.7	74.0	0.5	1830799
Alkalinity (Total as CaCO3) mg/L 66.5 1831744 61.3 54.6 0.5 183174 Anions mg/L <0.01 1836721 <0.01 <0.01 183844 Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.001 183653 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183884 Leachable Metals mg/L <0.5 1836311 <0.5 <0.5 183884 Leachable Metals mg/L <0.5 1836311 <0.5 <0.5 183633 Nutrients mg/L 0.007 1841342 <0.005 0.027 0.008 184134 Nitrate plus Nitrite (N) mg/L 0.007 1841342 <0.002 0.002 1836737 <0.002 0.002 1836737 Nitrate plus Nitrite (N) mg/L 0.0047 1838312 0.043 0.031 0.005 183837 Physical Properties mg/L 0.047 18383174<	Dissolved Organic Carbon (C)	mg/L	0.8	1836780	0.7	0.9	0.5	1836780
Anions mg/L <0.01 1836721 <0.01 <0.01 183844 Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.001 183653 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183888 Dissolved Chloride (Cl) mg/L <0.5	Alkalinity (Total as CaCO3)	mg/L	66.5	1831744	61.3	54.6	0.5	1831744
Dissolved Bromide (Br) mg/L <0.01 1836721 <0.01 <0.01 183844 Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.01 183653 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183888 Dissolved Chloride (Cl) mg/L <0.5	Anions							
Orthophosphate (P) mg/L 0.045 1836533 0.045 0.023 0.01 183653 Dissolved Sulphate (SO4) mg/L 12.4 1838888 12.2 24.9 0.5 183888 Dissolved Chloride (Cl) mg/L <0.5	Dissolved Bromide (Br)	mg/L	<0.01	1836721	<0.01	<0.01	0.01	1838483
Dissolved Sulphate (SO4) mg/L 12.4 183888 12.2 24.9 0.5 183884 Dissolved Chloride (Cl) mg/L <0.5	Orthophosphate (P)	mg/L	0.045	1836533	0.045	0.023	0.001	1836533
Dissolved Chloride (Cl) mg/L <0.5 1838884 <0.5 <0.5 0.5 183888 Leachable Metals ug/L <0.5 1836311 <0.5 <0.5 0.5 183888 Total Selenium (Se) ug/L <0.5 1836311 <0.5 <0.5 0.5 183633 Nutrients Image: Colored Co	Dissolved Sulphate (SO4)	mg/L	12.4	1838888	12.2	24.9	0.5	1838888
Leachable Metals ug/L <0.5 1836311 <0.5 <0.5 183637 Nutrients <	Dissolved Chloride (Cl)	mg/L	<0.5	1838884	<0.5	<0.5	0.5	1838884
Total Selenium (Se) ug/L <0.5 1836311 <0.5 <0.5 183637 Nutrients mg/L 0.007 1841342 <0.005 0.027 0.005 1841343 Ammonia (N) mg/L 0.019 1836734 0.022 0.021 0.002 183673 Nitrate plus Nitrite (N) mg/L 0.019 1836737 <0.002 0.003 0.002 183673 Nitrite (N) mg/L <0.002 1836737 <0.002 0.003 0.002 183673 Total Phosphorus (P) mg/L 0.047 1838312 0.043 0.031 0.005 183837 Physical Properties mg/L 0.047 1838742 150 168 1 183174 pH pH Units 9.0 1831740 8.4 7.6 0.1 183174 Potal Suspended Solids mg/L 112 1838425 <4 <4 4 183842 Total Dissolved Solids mg/L 112 1835207 98 112 10 183252 RDL = Reportable Detection Limit NTU 0.	Leachable Metals							
Nutrients mg/L 0.007 1841342 <0.005 0.027 0.005 1841342 Ammonia (N) mg/L 0.019 1836734 0.022 0.021 0.002 1836737 Nitrate plus Nitrite (N) mg/L <0.002	Total Selenium (Se)	ug/L	<0.5	1836311	<0.5	<0.5	0.5	1836311
Ammonia (N) mg/L 0.007 1841342 <0.005 0.027 0.005 184134 Nitrate plus Nitrite (N) mg/L 0.019 1836734 0.022 0.021 0.002 1836737 Nitrite (N) mg/L <0.002	Nutrients							
Nitrate plus Nitrite (N) mg/L 0.019 1836734 0.022 0.021 0.002 1836737 Nitrite (N) mg/L <0.002	Ammonia (N)	mg/L	0.007	1841342	<0.005	0.027	0.005	1841342
Nitrite (N) mg/L <0.002 1836737 <0.002 0.003 0.002 1836737 Total Phosphorus (P) mg/L 0.047 1838312 0.043 0.031 0.005 183837 Physical Properties Conductivity uS/cm 153 1831742 150 168 1 183174 pH pH Units 9.0 1831740 8.4 7.6 0.1 183174 Physical Properties Total Suspended Solids mg/L <4	Nitrate plus Nitrite (N)	mg/L	0.019	1836734	0.022	0.021	0.002	1836734
Total Phosphorus (P) mg/L 0.047 1838312 0.043 0.031 0.005 183837 Physical Properties Image: Conductivity us/cm 153 1831742 150 168 1 183174 pH pH Units 9.0 1831740 8.4 7.6 0.1 183174 Physical Properties Image: Conductivity us/cm 1831740 8.4 7.6 0.1 183174 PH pH Units 9.0 1831740 8.4 7.6 0.1 183174 Physical Properties Image: Conductive transmission of the transmission	Nitrite (N)	mg/L	<0.002	1836737	<0.002	0.003	0.002	1836737
Physical Properties Image: mark transform <	Total Phosphorus (P)	mg/L	0.047	1838312	0.043	0.031	0.005	1838312
Conductivity uS/cm 153 1831742 150 168 1 183174 pH pH Units 9.0 1831740 8.4 7.6 0.1 183174 Physical Properties mg/L <4 1838425 <4 <4 183842 Total Suspended Solids mg/L 112 1835207 98 112 10 1835207 Total Dissolved Solids mg/L 112 1827894 1.7 0.2 0.1 1827894 RDL = Reportable Detection Limit K	Physical Properties							
pH pH Units 9.0 1831740 8.4 7.6 0.1 1831740 Physical Properties Image: Constraint of the state o	Conductivity	uS/cm	153	1831742	150	168	1	1831742
Physical Properties Image: March and	рН	pH Units	9.0	1831740	8.4	7.6	0.1	1831740
Total Suspended Solids mg/L <4 1838425 <4 <4 1838425 Total Dissolved Solids mg/L 112 1835207 98 112 10 1835207 Turbidity NTU 0.2 1827894 1.7 0.2 0.1 1827894	Physical Properties							
Total Dissolved Solids mg/L 112 1835207 98 112 10 1835207 Turbidity NTU 0.2 1827894 1.7 0.2 0.1 1827894 RDL = Reportable Detection Limit Image: Control of the section control of	Total Suspended Solids	mg/L	<4	1838425	<4	<4	4	1838425
Turbidity NTU 0.2 1827894 1.7 0.2 0.1 1827894 RDL = Reportable Detection Limit Image: Constraint of the second seco	Total Dissolved Solids	mg/L	112	1835207	98	112	10	1835207
RDL = Reportable Detection Limit	Turbidity	NTU	0.2	1827894	1.7	0.2	0.1	1827894
RDL = Reportable Detection Limit								
	RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81621	G81622	G81623	G81624		
Sampling Date		2007/09/01	2007/09/02	2007/09/02	2007/08/31		
COC Number		08196686	08196686	08196686	08196686		
	Units	MW 06-8D	MW 06-9S	MW 06-9M	MW 06-10S	RDL	QC Batch
	1		1			1	
Misc. Inorganics							
Fluoride (F)	mg/L	0.95	0.41	0.97	0.22	0.01	1833861
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	<0.002	0.002	<0.002	0.002	1830801
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	270	143	213	115	0.5	1830799
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	<0.5	<0.5	0.5	1836780
Alkalinity (Total as CaCO3)	mg/L	222	113	168	111	0.5	1831744
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	<0.01	0.01	1838483
Orthophosphate (P)	mg/L	0.007	0.406	0.042	0.040	0.001	1836533
Dissolved Sulphate (SO4)	mg/L	28.8	21.6	30.2	29.4	0.5	1838888
Dissolved Chloride (Cl)	mg/L	3.7	<0.5	<0.5	<0.5	0.5	1838884
Leachable Metals							
Total Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1836311
Nutrients							
Ammonia (N)	mg/L	0.069	0.019	0.064	0.010	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	<0.002	<0.002	0.002	<0.002	0.002	1836734
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	<0.002	0.002	1836737
Total Phosphorus (P)	mg/L	0.006	0.416	0.066	0.045	0.005	1838312
Physical Properties							
Conductivity	uS/cm	468	263	378	274	1	1831742
рН	pH Units	8.2	8.3	8.2	8.3	0.1	1831740
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	<4	<4	4	1838425
Total Dissolved Solids	mg/L	294	170	250	184	10	1835207
Turbidity	NTU	1.6	2.2	13.5	0.4	0.1	1827894
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81625	G81626	G81627		
Sampling Date		2007/08/31	2007/08/31	2007/09/03		
COC Number	11-21-2	08196686	08196686	08196686		
	Units	MW 06-10M			RDL	QC Batch
Misc. Inorganics						
Fluoride (F)	mg/L	0.79	0.98	2.15	0.01	1833861
Calculated Parameters						
Nitrate (N)	mg/L	0.002	<0.002	0.002	0.002	1830801
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	271	274	169	0.5	1830799
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	0.8	0.5	1836780
Alkalinity (Total as CaCO3)	mg/L	207	236	134	0.5	1831744
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	0.01	1838483
Orthophosphate (P)	mg/L	0.020	0.015	0.027	0.001	1836533
Dissolved Sulphate (SO4)	mg/L	38.7	19.2	33.6	0.5	1838888
Dissolved Chloride (Cl)	mg/L	2.8	2.4	<0.5	0.5	1838884
Leachable Metals						
Total Selenium (Se)	ug/L	<0.5	<0.5	<0.5	0.5	1836311
Nutrients						
Ammonia (N)	mg/L	0.059	0.059	0.133	0.005	1841342
Nitrate plus Nitrite (N)	mg/L	0.002	<0.002	0.002	0.002	1836734
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	0.002	1836737
Total Phosphorus (P)	mg/L	0.027	0.022	0.025	0.005	1838312
Physical Properties						
Conductivity	uS/cm	479	475	326	1	1831742
рН	pH Units	8.2	8.2	8.4	0.1	1831740
Physical Properties						
Total Suspended Solids	mg/L	7	7	<4	4	1838425
Total Dissolved Solids	mg/L	256	288	194	10	1835207
Turbidity	NTU	49.9	57.1	0.5	0.1	1827894
RDL = Reportable Detection Lir	mit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81628							
Sampling Date		2007/09/02							
COC Number		08196686							
	Units	MW 06-12S	RDL	QC Batch					
Misc. Inorganics									
Fluoride (F)	mg/L	1.09	0.01	1833861					
Calculated Parameters									
Nitrate (N)	mg/L	<0.002	0.002	1830801					
Misc. Inorganics									
Dissolved Hardness (CaCO3)	mg/L	358	0.5	1830799					
Dissolved Organic Carbon (C)	mg/L	0.8	0.5	1836780					
Alkalinity (Total as CaCO3)	mg/L	143	0.5	1831744					
Anions									
Dissolved Bromide (Br)	mg/L	0.05	0.01	1838483					
Orthophosphate (P)	mg/L	0.028	0.001	1836533					
Dissolved Sulphate (SO4)	mg/L	274	5	1838888					
Dissolved Chloride (Cl)	mg/L	<0.5	0.5	1838884					
Leachable Metals									
Total Selenium (Se)	ug/L	<0.5	0.5	1836311					
Nutrients									
Ammonia (N)	mg/L	0.143	0.005	1841342					
Nitrate plus Nitrite (N)	mg/L	0.003	0.002	1836734					
Nitrite (N)	mg/L	0.002	0.002	1836737					
Total Phosphorus (P)	mg/L	0.019	0.005	1838312					
Physical Properties									
Conductivity	uS/cm	799	1	1831742					
рН	pH Units	8.3	0.1	1831740					
Physical Properties									
Total Suspended Solids	mg/L	<4	4	1838425					
Total Dissolved Solids	mg/L	578	10	1835207					
Turbidity	NTU	0.7	0.1	1827894					
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81592	G81593	G81594	G81595		
Sampling Date		2007/09/02	2007/09/02	2007/09/01	2007/09/01		
	Units	MW 05-1A	MW 05-1B	MW 05-2A	MW 05-2B	RDL	QC Batch
			1				1
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	800.0	1839659
Dissolved Calcium (Ca)	mg/L	45.9	67.8	60.7	42.5	0.05	1839659
Dissolved Iron (Fe)	mg/L	0.166	23.4	1.05	8.63	0.005	1839659
Dissolved Magnesium (Mg)	mg/L	5.59	5.28	18.6	8.24	0.05	1839659
Dissolved Phosphorus (P)	mg/L	<0.1	0.3	<0.1	0.2	0.1	1839659
Dissolved Silicon (Si)	mg/L	4.91	4.91	3.66	4.43	0.05	1839659
Dissolved Sodium (Na)	mg/L	1.75	0.90	0.57	1.08	0.05	1839659
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1839659
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	1.3	36.2	1.4	1.0	0.2	1837543
Dissolved Antimony (Sb)	ug/L	<0.05	0.06	<0.05	<0.05	0.05	1837543
Dissolved Arsenic (As)	ug/L	17.4	4.8	0.7	36.2	0.1	1837543
Dissolved Barium (Ba)	ug/L	22.9	558	52.1	253	0.02	1837543
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	0.05	<0.05	0.05	1837543
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Chromium (Cr)	ug/L	<0.2	0.9	<0.2	<0.2	0.2	1837543
Dissolved Cobalt (Co)	ug/L	<0.02	0.15	0.04	0.19	0.02	1837543
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1837543
Dissolved Lead (Pb)	ug/L	0.02	<0.02	<0.02	<0.02	0.02	1837543
Dissolved Lithium (Li)	ug/L	0.2	0.8	2.5	<0.2	0.2	1837543
Dissolved Manganese (Mn)	ug/L	209	768	170	914	0.02	1837543
Dissolved Molybdenum (Mo)	ug/L	5.19	0.52	2.90	1.43	0.02	1837543
Dissolved Nickel (Ni)	ug/L	0.6	1.1	0.7	<0.5	0.5	1837543
Dissolved Potassium (K)	ug/L	1620	989	2680	818	50	1837543
Dissolved Selenium (Se)	ug/L	<0.5	0.8	<0.5	<0.5	0.5	1837543
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Strontium (Sr)	ug/L	140	141	153	82.6	0.01	1837543
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Titanium (Ti)	ug/L	<0.5	1.5	<0.5	<0.5	0.5	1837543
Dissolved Uranium (U)	ug/L	0.13	0.03	8.22	0.30	0.01	1837543
Dissolved Vanadium (V)	ug/L	<0.05	0.83	<0.05	<0.05	0.05	1837543
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81592	G81593	G81594	G81595		
Sampling Date		2007/09/02	2007/09/02	2007/09/01	2007/09/01	_	
	Units	08196685 MW 05-1A	08196685 MW 05-1B	08196685 MW 05-24	08196685 MW 05-2B	RDI	OC Batch
	Units						do Baton
Dissolved Zinc (Zn)	ug/L	1.1	<0.5	<0.5	<0.5	0.5	1837543
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835312
Total Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835313
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	43.2	60.3	56.3	39.0	0.05	1837752
Total Iron (Fe)	mg/L	0.135	11.0	0.446	7.25	0.005	1837752
Total Magnesium (Mg)	mg/L	5.15	4.76	17.4	7.57	0.05	1837752
Total Phosphorus (P)	mg/L	<0.1	0.1	<0.1	0.2	0.1	1837752
Total Silicon (Si)	mg/L	4.63	4.44	3.41	4.08	0.05	1837752
Total Sodium (Na)	mg/L	1.61	0.78	0.53	0.97	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	3.3	17.5	2.6	2.8	0.2	1837295
Total Antimony (Sb)	ug/L	<0.05	0.06	<0.05	<0.05	0.05	1837295
Total Arsenic (As)	ug/L	15.7	2.1	0.6	31.1	0.1	1837295
Total Barium (Ba)	ug/L	22.6	473	47.0	235	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	<0.05	0.08	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.02	<0.01	<0.01	<0.01	0.01	1837295
Total Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	<0.02	0.13	0.04	0.20	0.02	1837295
Total Copper (Cu)	ug/L	<0.1	0.1	<0.1	0.1	0.1	1837295
Total Lead (Pb)	ug/L	0.02	<0.02	<0.02	<0.02	0.02	1837295
Total Lithium (Li)	ug/L	0.5	1.5	2.5	0.3	0.2	1837295
Total Manganese (Mn)	ug/L	215	792	186	974	0.02	1837295
Total Molybdenum (Mo)	ug/L	5.61	0.41	3.07	1.48	0.02	1837295
Total Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837295
Total Potassium (K)	ug/L	1280	806	1930	638	50	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	143	145	157	87.7	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	0.05	0.12	0.05	<0.05	0.05	1837295
RDL = Reportable Detection	Limit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81592	G81593	G81594	G81595				
Sampling Date		2007/09/02	2007/09/02	2007/09/01	2007/09/01				
COC Number		08196685	08196685	08196685	08196685				
	Units	MW 05-1A	MW 05-1B	MW 05-2A	MW 05-2B	RDL	QC Batch		
			-	-		-	-		
Total Titanium (Ti)	ug/L	<0.5	0.6	<0.5	<0.5	0.5	1837295		
Total Uranium (U)	ug/L	0.11	0.02	7.62	0.27	0.01	1837295		
Total Vanadium (V)	ug/L	<0.05	0.35	<0.05	0.07	0.05	1837295		
Total Zinc (Zn)	ug/L	1.8	0.9	0.8	1.1	0.5	1837295		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81596	G81597	G81598	G81599		
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/02	-	
	Units	MW 05-3A	MW 05-3B	MW 05-4A	MW 05-4B	RDL	QC Batch
						·	
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1839659
Dissolved Calcium (Ca)	mg/L	59.3	39.7	62.5	38.5	0.05	1839659
Dissolved Iron (Fe)	mg/L	1.25	0.130	0.023	0.676	0.005	1839659
Dissolved Magnesium (Mg)	mg/L	6.60	4.82	3.79	3.06	0.05	1839659
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1839659
Dissolved Silicon (Si)	mg/L	3.91	4.05	3.13	6.01	0.05	1839659
Dissolved Sodium (Na)	mg/L	1.46	4.93	1.34	1.09	0.05	1839659
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1839659
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	0.4	<0.2	1.3	0.7	0.2	1837543
Dissolved Antimony (Sb)	ug/L	0.25	0.13	0.11	0.09	0.05	1837543
Dissolved Arsenic (As)	ug/L	0.4	0.7	0.2	5.7	0.1	1837543
Dissolved Barium (Ba)	ug/L	59.4	100	81.0	49.1	0.02	1837543
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Cadmium (Cd)	ug/L	4.52	10.6	0.06	2.45	0.01	1837543
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837543
Dissolved Cobalt (Co)	ug/L	0.50	0.32	0.03	2.40	0.02	1837543
Dissolved Copper (Cu)	ug/L	<0.1	0.5	0.3	0.1	0.1	1837543
Dissolved Lead (Pb)	ug/L	0.14	0.19	<0.02	<0.02	0.02	1837543
Dissolved Lithium (Li)	ug/L	0.3	1.7	0.2	0.4	0.2	1837543
Dissolved Manganese (Mn)	ug/L	166	30.0	572	2750	0.02	1837543
Dissolved Molybdenum (Mo)	ug/L	0.91	0.75	5.76	1.23	0.02	1837543
Dissolved Nickel (Ni)	ug/L	5.3	3.3	<0.5	5.7	0.5	1837543
Dissolved Potassium (K)	ug/L	1540	1430	2910	2180	50	1837543
Dissolved Selenium (Se)	ug/L	3.5	12.8	<0.5	<0.5	0.5	1837543
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Strontium (Sr)	ug/L	147	133	174	133	0.01	1837543
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	0.11	<0.05	0.05	1837543
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Uranium (U)	ug/L	3.82	1.21	0.59	0.23	0.01	1837543
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
RDL = Reportable Detection Li	mit		•	•			

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81596	G81597	G81598	G81599		
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/02		
	Units	08196685 MW 05-34	MW 05-3B	MW 05-44	08196685 MW 05-4R	RDI	QC Batch
							de Baten
Dissolved Zinc (Zn)	ug/L	857	895	2.0	147	0.5	1837543
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835312
Total Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835313
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	54.6	39.1	58.2	35.8	0.05	1837752
Total Iron (Fe)	mg/L	1.07	0.063	0.012	0.665	0.005	1837752
Total Magnesium (Mg)	mg/L	6.17	4.62	3.53	2.85	0.05	1837752
Total Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1837752
Total Silicon (Si)	mg/L	3.64	3.91	2.95	5.69	0.05	1837752
Total Sodium (Na)	mg/L	1.29	3.22	1.21	0.98	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	2.1	2.2	2.9	2.7	0.2	1837295
Total Antimony (Sb)	ug/L	0.28	0.14	0.11	0.10	0.05	1837295
Total Arsenic (As)	ug/L	0.7	<0.1	0.2	4.9	0.1	1837295
Total Barium (Ba)	ug/L	56.1	87.6	75.5	47.2	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	4.44	12.1	0.07	2.49	0.01	1837295
Total Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	0.52	0.22	0.03	2.59	0.02	1837295
Total Copper (Cu)	ug/L	0.2	2.1	0.5	0.2	0.1	1837295
Total Lead (Pb)	ug/L	0.11	0.11	0.02	0.03	0.02	1837295
Total Lithium (Li)	ug/L	1.1	1.5	0.9	0.8	0.2	1837295
Total Manganese (Mn)	ug/L	177	18.9	586	2850	0.02	1837295
Total Molybdenum (Mo)	ug/L	1.01	0.77	6.25	1.27	0.02	1837295
Total Nickel (Ni)	ug/L	4.5	3.0	<0.5	5.5	0.5	1837295
Total Potassium (K)	ug/L	1230	1110	2190	1640	50	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	149	140	181	135	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	<0.05	<0.05	0.16	0.08	0.05	1837295
RDL = Reportable Detection	n Limit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81596	G81597	G81598	G81599				
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/02				
COC Number		08196685	08196685	08196685	08196685				
	Units	MW 05-3A	MW 05-3B	MW 05-4A	MW 05-4B	RDL	QC Batch		
		-							
Total Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837295		
Total Uranium (U)	ug/L	3.70	1.24	0.58	0.22	0.01	1837295		
Total Vanadium (V)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295		
Total Zinc (Zn)	ug/L	815	976	3.6	141	0.5	1837295		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81600	G81601	G81602	G81603		ļ
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/01	<u> </u>	<u> </u>
COC Number	Units	08196685 MW 05-54	08196685 MW 05-5B	08196685 MW 05-64	08196685 MW 05-6B	RDI	OC Batch
							<u></u>
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	800.0	1839659
Dissolved Calcium (Ca)	mg/L	77.8	53.1	29.9	35.8	0.05	1839659
Dissolved Iron (Fe)	mg/L	1.62	0.498	0.947	<0.005	0.005	1839659
Dissolved Magnesium (Mg)	mg/L	23.6	6.50	3.29	2.87	0.05	1839659
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	0.8	<0.1	0.1	1839659
Dissolved Silicon (Si)	mg/L	3.80	3.31	6.76	4.16	0.05	1839659
Dissolved Sodium (Na)	mg/L	0.46	0.87	2.78	1.39	0.05	1839659
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1839659
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	1.9	1.1	1.0	7.4	0.2	1837543
Dissolved Antimony (Sb)	ug/L	4.38	<0.05	0.33	0.06	0.05	1837543
Dissolved Arsenic (As)	ug/L	4.0	1.5	6.1	0.3	0.1	1837543
Dissolved Barium (Ba)	ug/L	63.2	40.5	49.4	149	0.02	1837543
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Cadmium (Cd)	ug/L	0.02	0.02	0.01	0.01	0.01	1837543
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837543
Dissolved Cobalt (Co)	ug/L	0.34	0.47	0.49	0.39	0.02	1837543
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	0.6	0.1	1837543
Dissolved Lead (Pb)	ug/L	<0.02	0.07	<0.02	<0.02	0.02	1837543
Dissolved Lithium (Li)	ug/L	2.8	0.7	<0.2	<0.2	0.2	1837543
Dissolved Manganese (Mn)	ug/L	167	489	295	171	0.02	1837543
Dissolved Molybdenum (Mo)	ug/L	7.71	2.17	3.92	1.15	0.02	1837543
Dissolved Nickel (Ni)	ug/L	0.9	3.0	1.4	4.8	0.5	1837543
Dissolved Potassium (K)	ug/L	2080	1210	1540	1140	50	1837543
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	0.9	0.9	0.5	1837543
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Strontium (Sr)	ug/L	123	106	28.8	47.0	0.01	1837543
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Tin (Sn)	ug/L	<0.05	0.12	0.15	<0.05	0.05	1837543
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Uranium (U)	ug/L	20.5	2.95	0.28	0.18	0.01	1837543
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
RDL = Reportable Detection Li	imit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81600	G81601	G81602	G81603		
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/01	_	
	Units	08196685 MW 05-54	08196685 MW 05-5B	08196685 MW 05-64	08196685 MW 05-6B	RDI	OC Batch
							<u>i do Baton</u>
Dissolved Zinc (Zn)	ug/L	2.2	29.9	0.6	<0.5	0.5	1837543
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835312
Total Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835313
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	72.8	50.0	28.2	31.9	0.05	1837752
Total Iron (Fe)	mg/L	1.14	0.419	0.803	<0.005	0.005	1837752
Total Magnesium (Mg)	mg/L	22.1	6.08	3.08	2.53	0.05	1837752
Total Phosphorus (P)	mg/L	<0.1	<0.1	0.7	<0.1	0.1	1837752
Total Silicon (Si)	mg/L	3.58	3.12	6.42	4.04	0.05	1837752
Total Sodium (Na)	mg/L	0.41	0.80	2.74	1.33	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	3.1	3.0	3.6	11.1	0.2	1837295
Total Antimony (Sb)	ug/L	4.50	0.12	0.37	0.07	0.05	1837295
Total Arsenic (As)	ug/L	3.0	1.3	5.4	0.3	0.1	1837295
Total Barium (Ba)	ug/L	57.7	37.6	47.5	132	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.02	0.01	0.01	0.02	0.01	1837295
Total Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	1.0	0.2	1837295
Total Cobalt (Co)	ug/L	0.35	0.49	0.48	0.35	0.02	1837295
Total Copper (Cu)	ug/L	<0.1	<0.1	<0.1	1.0	0.1	1837295
Total Lead (Pb)	ug/L	<0.02	<0.02	<0.02	0.04	0.02	1837295
Total Lithium (Li)	ug/L	3.1	1.3	<0.2	0.6	0.2	1837295
Total Manganese (Mn)	ug/L	163	515	315	145	0.02	1837295
Total Molybdenum (Mo)	ug/L	8.26	2.20	4.34	1.45	0.02	1837295
Total Nickel (Ni)	ug/L	<0.5	2.4	0.8	4.2	0.5	1837295
Total Potassium (K)	ug/L	1560	930	1220	987	50	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	126	110	31.2	49.9	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	0.09	0.06	0.31	0.12	0.05	1837295
RDL = Reportable Detection	Limit					_	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81600	G81601	G81602	G81603					
Sampling Date		2007/09/02	2007/09/02	2007/09/02	2007/09/01					
COC Number		08196685	08196685	08196685	08196685					
	Units	MW 05-5A	MW 05-5B	MW 05-6A	MW 05-6B	RDL	QC Batch			
Total Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837295			
Total Uranium (U)	ug/L	21.7	2.85	0.27	0.17	0.01	1837295			
Total Vanadium (V)	ug/L	<0.05	<0.05	<0.05	0.18	0.05	1837295			
Total Zinc (Zn)	ug/L	4.1	29.1	2.7	1.7	0.5	1837295			
RDL = Reportable Detection Limit										

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81617	G81618	G81619	G81620		
Sampling Date		2007/09/01	2007/09/01	2007/09/02	2007/08/31		
COC Number	Unite	08196686	08196686	08196686	08196686	BDI	OC Batch
	Units			05-7B-98	WW 00-03	NDL	
				I			1
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1839659
Dissolved Calcium (Ca)	mg/L	866	26.6	26.4	24.6	0.05	1839659
Dissolved Iron (Fe)	mg/L	<0.005	0.005	<0.005	1.24	0.005	1839659
Dissolved Magnesium (Mg)	mg/L	<0.05	2.15	2.14	3.05	0.05	1839659
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1839659
Dissolved Silicon (Si)	mg/L	0.16	4.05	4.03	5.43	0.05	1839659
Dissolved Sodium (Na)	mg/L	3.28	1.79	1.77	3.51	0.05	1839659
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1839659
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	26.2	5.3	5.9	5.5	0.2	1837543
Dissolved Antimony (Sb)	ug/L	0.06	0.12	0.13	13.9	0.05	1837543
Dissolved Arsenic (As)	ug/L	0.1	1.1	1.1	1.2	0.1	1837543
Dissolved Barium (Ba)	ug/L	1300	40.2	38.0	52.0	0.02	1837543
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Cadmium (Cd)	ug/L	<0.01	0.03	0.02	0.02	0.01	1837543
Dissolved Chromium (Cr)	ug/L	8.1	<0.2	<0.2	<0.2	0.2	1837543
Dissolved Cobalt (Co)	ug/L	0.24	0.05	0.06	3.42	0.02	1837543
Dissolved Copper (Cu)	ug/L	1.7	<0.1	<0.1	0.2	0.1	1837543
Dissolved Lead (Pb)	ug/L	1.85	<0.02	<0.02	0.07	0.02	1837543
Dissolved Lithium (Li)	ug/L	36.6	<0.2	<0.2	0.5	0.2	1837543
Dissolved Manganese (Mn)	ug/L	0.03	79.3	86.7	722	0.02	1837543
Dissolved Molybdenum (Mo)	ug/L	1.97	9.69	10.7	3.35	0.02	1837543
Dissolved Nickel (Ni)	ug/L	12.4	<0.5	<0.5	7.5	0.5	1837543
Dissolved Potassium (K)	ug/L	3400	960	837	1340	50	1837543
Dissolved Selenium (Se)	ug/L	0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Strontium (Sr)	ug/L	687	44.5	46.4	73.4	0.01	1837543
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Tin (Sn)	ug/L	0.30	<0.05	<0.05	0.12	0.05	1837543
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Uranium (U)	ug/L	<0.01	0.17	0.17	0.04	0.01	1837543
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81617	G81618	G81619	G81620		
Sampling Date		2007/09/01	2007/09/01	2007/09/02	2007/08/31	<u> </u>	<u> </u>
COC Number	Unito	08196686	08196686	08196686	08196686		OC Batab
	Units			05-7B-98	14144 00-03	NDL	
			[/ aa	[
Dissolved Vanadium (V)	ug/L	0.08	1.03	1.12	<0.05	0.05	1837543
Dissolved Zinc (Zn)	ug/L	47.5	<0.5	<0.5	8.1	0.5	1837543
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835312
Total Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835313
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	836	25.0	25.3	23.9	0.05	1837752
Total Iron (Fe)	mg/L	<0.005	0.006	0.006	1.23	0.005	1837752
Total Magnesium (Mg)	mg/L	<0.05	1.98	2.03	2.91	0.05	1837752
Total Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1837752
Total Silicon (Si)	mg/L	0.15	3.83	3.89	5.18	0.05	1837752
Total Sodium (Na)	mg/L	2.83	1.63	1.64	3.26	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	40.1	8.1	8.1	5.4	0.2	1837295
Total Antimony (Sb)	ug/L	0.08	0.14	0.17	13.2	0.05	1837295
Total Arsenic (As)	ug/L	0.5	1.2	1.3	1.3	0.1	1837295
Total Barium (Ba)	ug/L	939	36.4	38.0	50.2	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	0.07	<0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.01	0.04	0.03	0.02	0.01	1837295
Total Chromium (Cr)	ug/L	9.9	<0.2	<0.2	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	0.16	0.06	0.06	3.92	0.02	1837295
Total Copper (Cu)	ug/L	9.6	0.2	1.0	<0.1	0.1	1837295
Total Lead (Pb)	ug/L	2.44	<0.02	<0.02	0.03	0.02	1837295
Total Lithium (Li)	ug/L	31.8	0.3	<0.2	0.5	0.2	1837295
Total Manganese (Mn)	ug/L	0.09	92.3	94.5	796	0.02	1837295
Total Molybdenum (Mo)	ug/L	2.00	10.8	10.6	3.33	0.02	1837295
Total Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	8.0	0.5	1837295
Total Potassium (K)	ug/L	2350	791	827	1280	50	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	589	46.3	48.8	79.3	0.01	1837295
RDL = Reportable Detection	Limit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81617	G81618	G81619	G81620		
Sampling Date		2007/09/01	2007/09/01	2007/09/02	2007/08/31		
COC Number		08196686	08196686	08196686	08196686		
	Units	MW 05-7A	MW 05-7B	MW	MW 06-8S	RDL	QC Batch
				05-7B-98			
		-	_	-	-	_	_
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	0.56	0.08	0.07	0.11	0.05	1837295
Total Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837295
Total Uranium (U)	ug/L	<0.01	0.17	0.18	0.03	0.01	1837295
Total Vanadium (V)	ug/L	0.25	1.27	1.38	0.10	0.05	1837295
Total Zinc (Zn)	ug/L	70.1	1.8	1.9	8.1	0.5	1837295
RDL = Reportable Detection	n Limit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81621	G81622	G81623	G81624		
Sampling Date		2007/09/01	2007/09/02	2007/09/02	2007/08/31	<u> </u>	
COC Number	Unite	08196686 MW 06-8D	08196686	08196686	08196686 MW 06-10S	PDI	OC Batch
	Toring			11111 00-5111			NO Daten
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1839659
Dissolved Calcium (Ca)	mg/L	63.2	49.5	65.9	40.6	0.05	1839659
Dissolved Iron (Fe)	mg/L	0.246	0.782	1.62	0.041	0.005	1839659
Dissolved Magnesium (Mg)	mg/L	27.2	4.64	11.9	3.27	0.05	1839659
Dissolved Phosphorus (P)	mg/L	<0.1	0.4	<0.1	<0.1	0.1	1839659
Dissolved Silicon (Si)	mg/L	4.56	4.22	3.54	5.41	0.05	1839659
Dissolved Sodium (Na)	mg/L	0.59	1.44	0.59	14.4	0.05	1839659
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1839659
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	5.3	4.4	2.2	6.9	0.2	1837543
Dissolved Antimony (Sb)	ug/L	0.17	<0.05	<0.05	0.33	0.05	1837543
Dissolved Arsenic (As)	ug/L	5.2	12.2	1.4	4.4	0.1	1837543
Dissolved Barium (Ba)	ug/L	48.8	53.6	115	20.4	0.02	1837543
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Cadmium (Cd)	ug/L	<0.01	0.02	0.01	<0.01	0.01	1837543
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837543
Dissolved Cobalt (Co)	ug/L	0.34	0.06	0.04	0.11	0.02	1837543
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1837543
Dissolved Lead (Pb)	ug/L	0.02	<0.02	<0.02	0.03	0.02	1837543
Dissolved Lithium (Li)	ug/L	2.6	0.5	2.2	1.5	0.2	1837543
Dissolved Manganese (Mn)	ug/L	52.8	183	61.2	48.7	0.02	1837543
Dissolved Molybdenum (Mo)	ug/L	1.41	7.16	4.85	2.32	0.02	1837543
Dissolved Nickel (Ni)	ug/L	1.1	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Potassium (K)	ug/L	1960	998	2060	1910	50	1837543
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Strontium (Sr)	ug/L	152	182	77.0	145	0.01	1837543
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	<0.05	0.15	0.05	1837543
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Uranium (U)	ug/L	12.7	0.42	1.86	5.76	0.01	1837543
Dissolved Vanadium (V)	ug/L	<0.05	0.09	<0.05	0.19	0.05	1837543
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81621	G81622	G81623	G81624		
Sampling Date		2007/09/01	2007/09/02	2007/09/02	2007/08/31		
COC Number	Unite	08196686	08196686	08196686	08196686		OC Batch
	Units	WW 00-0D	11111 00-33		10100-103	INDL	
Dissolved Zinc (Zn)	ug/L	<0.5	<0.5	<0.5	1.4	0.5	1837543
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835312
Total Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835313
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1837752
Total Calcium (Ca)	mg/L	59.5	46.2	62.2	43.4	0.05	1837752
Total Iron (Fe)	mg/L	0.214	0.748	1.48	0.112	0.005	1837752
Total Magnesium (Mg)	mg/L	25.2	4.27	11.1	3.47	0.05	1837752
Total Phosphorus (P)	mg/L	<0.1	0.4	<0.1	<0.1	0.1	1837752
Total Silicon (Si)	mg/L	4.30	3.99	3.37	4.44	0.05	1837752
Total Sodium (Na)	mg/L	0.52	1.35	0.53	8.84	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	9.8	5.6	3.9	7.0	0.2	1837295
Total Antimony (Sb)	ug/L	0.20	0.05	<0.05	0.36	0.05	1837295
Total Arsenic (As)	ug/L	4.7	11.7	1.4	4.9	0.1	1837295
Total Barium (Ba)	ug/L	46.2	50.0	107	21.7	0.02	1837295
Total Beryllium (Be)	ug/L	0.06	<0.05	<0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.01	0.02	0.01	<0.01	0.01	1837295
Total Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	0.35	0.07	0.03	0.14	0.02	1837295
Total Copper (Cu)	ug/L	0.3	0.3	<0.1	<0.1	0.1	1837295
Total Lead (Pb)	ug/L	0.09	<0.02	<0.02	0.02	0.02	1837295
Total Lithium (Li)	ug/L	2.7	0.6	2.4	1.1	0.2	1837295
Total Manganese (Mn)	ug/L	52.6	189	63.0	74.9	0.02	1837295
Total Molybdenum (Mo)	ug/L	1.40	7.21	4.97	1.90	0.02	1837295
Total Nickel (Ni)	ug/L	0.8	<0.5	<0.5	<0.5	0.5	1837295
Total Potassium (K)	ug/L	1830	968	1900	1520	50	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	159	191	79.7	167	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	0.08	0.09	0.07	0.13	0.05	1837295
RDL = Reportable Detectior	n Limit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81621	G81622	G81623	G81624					
Sampling Date		2007/09/01	2007/09/02	2007/09/02	2007/08/31					
COC Number		08196686	08196686	08196686	08196686					
	Units	MW 06-8D	MW 06-9S	MW 06-9M	MW 06-10S	RDL	QC Batch			
	_									
Total Titanium (Ti)	ug/L	<0.5	<0.5	0.5	<0.5	0.5	1837295			
Total Uranium (U)	ug/L	12.3	0.40	1.86	6.80	0.01	1837295			
Total Vanadium (V)	ug/L	0.08	0.10	<0.05	0.11	0.05	1837295			
Total Zinc (Zn)	ug/L	2.8	1.6	0.9	2.1	0.5	1837295			
RDL = Reportable Detection Limit										

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81625	G81626	G81627	G81628		
Sampling Date		2007/08/31	2007/08/31	2007/09/03	2007/09/02		
	Units	08196686 MW 06-10M	08196686 MW 06-10D	08196686 MW 06-11S	08196686 MW 06-12S	RDI	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	0.012	800.0	1839659
Dissolved Calcium (Ca)	mg/L	86.8	75.9	48.6	112	0.05	1839659
Dissolved Iron (Fe)	mg/L	4.17	4.64	0.181	0.262	0.005	1839659
Dissolved Magnesium (Mg)	mg/L	13.2	20.6	11.4	19.2	0.05	1839659
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1839659
Dissolved Silicon (Si)	mg/L	3.85	3.68	4.63	7.70	0.05	1839659
Dissolved Sodium (Na)	mg/L	2.84	1.18	4.42	42.2	0.05	1839659
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1839659
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	10.7	7.6	14.5	1.1	0.2	1837543
Dissolved Antimony (Sb)	ug/L	<0.05	0.64	1.15	0.71	0.05	1837543
Dissolved Arsenic (As)	ug/L	0.4	0.3	4.2	3.1	0.1	1837543
Dissolved Barium (Ba)	ug/L	47.5	84.2	43.5	23.3	0.02	1837543
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Cadmium (Cd)	ug/L	0.01	<0.01	0.07	0.01	0.01	1837543
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	<0.2	0.2	1837543
Dissolved Cobalt (Co)	ug/L	0.05	<0.02	0.04	0.55	0.02	1837543
Dissolved Copper (Cu)	ug/L	0.3	<0.1	<0.1	<0.1	0.1	1837543
Dissolved Lead (Pb)	ug/L	0.08	0.08	0.03	<0.02	0.02	1837543
Dissolved Lithium (Li)	ug/L	2.0	3.7	28.1	8.8	0.2	1837543
Dissolved Manganese (Mn)	ug/L	250	99.5	43.5	331	0.02	1837543
Dissolved Molybdenum (Mo)	ug/L	2.16	4.23	35.6	4.73	0.02	1837543
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837543
Dissolved Potassium (K)	ug/L	2060	2630	2590	3190	50	1837543
Dissolved Selenium (Se)	ug/L	<0.5	0.5	0.6	<0.5	0.5	1837543
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837543
Dissolved Strontium (Sr)	ug/L	133	163	98.7	349	0.01	1837543
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837543
Dissolved Tin (Sn)	ug/L	0.08	0.21	0.41	0.17	0.05	1837543
Dissolved Titanium (Ti)	ug/L	0.8	0.6	<0.5	1.0	0.5	1837543
Dissolved Uranium (U)	ug/L	3.23	2.22	4.45	14.2	0.01	1837543
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	0.74	0.35	0.05	1837543
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		G81625	G81626	G81627	G81628		
Sampling Date		2007/08/31	2007/08/31	2007/09/03	2007/09/02		
COC Number	Unite	08196686	08196686	08196686	08196686	PDI	OC Batch
	Units				10100-123	INDE	NO Datem
Dissolved Zinc (Zn)	ug/L	3.4	<0.5	0.7	<0.5	0.5	1837543
Mercury by CVAA							
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835312
Total Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1835313
Total Metals by ICP							
Total Boron (B)	mg/L	<0.008	<0.008	<0.008	0.010	0.008	1837752
Total Calcium (Ca)	mg/L	82.6	69.6	47.6	104	0.05	1837752
Total Iron (Fe)	mg/L	4.21	4.32	0.182	0.222	0.005	1837752
Total Magnesium (Mg)	mg/L	12.1	19.2	10.8	18.0	0.05	1837752
Total Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1837752
Total Silicon (Si)	mg/L	3.64	3.48	4.46	7.24	0.05	1837752
Total Sodium (Na)	mg/L	2.54	1.09	4.11	38.5	0.05	1837752
Total Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1837752
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	6.8	11.7	18.3	7.3	0.2	1837295
Total Antimony (Sb)	ug/L	<0.05	0.87	0.98	0.75	0.05	1837295
Total Arsenic (As)	ug/L	0.5	0.4	4.1	3.0	0.1	1837295
Total Barium (Ba)	ug/L	43.7	74.8	41.8	22.5	0.02	1837295
Total Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Cadmium (Cd)	ug/L	0.01	0.02	0.08	<0.01	0.01	1837295
Total Chromium (Cr)	ug/L	<0.2	<0.2	0.6	<0.2	0.2	1837295
Total Cobalt (Co)	ug/L	0.06	0.03	0.06	0.58	0.02	1837295
Total Copper (Cu)	ug/L	0.1	0.2	<0.1	<0.1	0.1	1837295
Total Lead (Pb)	ug/L	0.05	0.05	0.03	0.05	0.02	1837295
Total Lithium (Li)	ug/L	1.7	3.4	16.9	7.9	0.2	1837295
Total Manganese (Mn)	ug/L	262	95.5	65.3	341	0.02	1837295
Total Molybdenum (Mo)	ug/L	2.23	4.23	30.0	4.49	0.02	1837295
Total Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1837295
Total Potassium (K)	ug/L	1940	2420	2000	2960	50	1837295
Total Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1837295
Total Strontium (Sr)	ug/L	144	163	103	353	0.01	1837295
Total Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1837295
Total Tin (Sn)	ug/L	0.13	0.37	0.37	0.23	0.05	1837295
RDL = Reportable Detectior	n Limit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A741295 Report Date: 2007/09/13 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

	-	-	-	-	-		4			
Maxxam ID		G81625	G81626	G81627	G81628					
Sampling Date		2007/08/31	2007/08/31	2007/09/03	2007/09/02					
COC Number		08196686	08196686	08196686	08196686					
	Units	MW 06-10M	MW 06-10D	MW 06-11S	MW 06-12S	RDL	QC Batch			
					-					
Total Titanium (Ti)	ug/L	0.7	0.6	<0.5	1.8	0.5	1837295			
Total Uranium (U)	ug/L	3.60	2.44	4.05	13.8	0.01	1837295			
Total Vanadium (V)	ug/L	<0.05	<0.05	0.97	0.32	0.05	1837295			
Total Zinc (Zn)	ug/L	3.2	3.0	1.1	1.4	0.5	1837295			
RDL = Reportable Detection Limit										

Driven by service and Science www.maxxamanalytics.com

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

General Comments

Some metals dissolved > total in this job, reanalyzed & confirmed. Possible field-filtered contamination on dissolved metal bottle or there is a discrepancy between samples taken.

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Sample G81617-01 pH Water: pH result greater than the highest calibration standard of pH 10.

Sample G81617-01 Total Dissolved Solids (Filt. Residue): pH result greater than the highest calibration standard of pH 10. Possible matrix interference.

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA741295

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1827894 CK	SPIKE	Turbidity	2007/09/06		99	%	N/A
	BLANK	Turbidity	2007/09/06	<0.1		NTU	
	RPD [G81601-01]	Turbidity	2007/09/06	1.1		%	25
	RPD [G81628-01]	Turbidity	2007/09/06	0.7		%	25
1831740 CK	SPIKE	рН	2007/09/06		101	%	96 - 104
	RPD [G81601-01]	рН	2007/09/06	0.9		%	25
1831742 CK	SPIKE	Conductivity	2007/09/06		101	%	80 - 120
	BLANK	Conductivity	2007/09/06	<1		uS/cm	
	RPD [G81601-01]	Conductivity	2007/09/06	0.3		%	25
1831744 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/09/06		98	%	N/A
	SPIKE	Alkalinity (Total as CaCO3)	2007/09/06		94	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/09/06	<0.5		mg/L	
	RPD [G81601-01]	Alkalinity (Total as CaCO3)	2007/09/06	1.3		%	25
1833861 WAY	MATRIX SPIKE	Fluoride (F)	2007/09/07		110	%	80 - 120
	SPIKE	Fluoride (F)	2007/09/07		103	%	80 - 120
	BLANK	Fluoride (F)	2007/09/07	<0.01		mg/L	
	RPD [G81601-01]	Fluoride (F)	2007/09/07	2.2		%	25
1835207 FS1	MATRIX SPIKE						
	[G81628-01]	Total Dissolved Solids	2007/09/07		96	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/09/07		104	%	80 - 120
	BLANK	Total Dissolved Solids	2007/09/07	<10		mg/L	
	RPD [G81628-01]	Total Dissolved Solids	2007/09/07	2.1		%	25
1835312 JT3	MATRIX SPIKE	Dissolved Mercury (Hg)	2007/09/10		107	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/09/10		118	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/09/10		98	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/09/10	<0.01		ug/L	
	RPD [G81617-01]	Dissolved Mercury (Hg)	2007/09/10	NC		%	25
1835313 JT3	MATRIX SPIKE	Total Mercury (Hg)	2007/09/10		108	%	70 - 130
	QC STANDARD	Total Mercury (Hg)	2007/09/10		116	%	80 - 120
	SPIKE	Total Mercury (Hg)	2007/09/10		95	%	80 - 120
	BLANK	Total Mercury (Hg)	2007/09/10	<0.01		ug/L	
	RPD [G81617-01]	Total Mercury (Hg)	2007/09/10	NC		%	25
1836311 AA1	MATRIX SPIKE	Total Selenium (Se)	2007/09/10		112	%	75 - 125
	SPIKE	Total Selenium (Se)	2007/09/10		98	%	75 - 125
	BLANK	Total Selenium (Se)	2007/09/10	<0.5		ug/L	
	RPD [G81628-01]	Total Selenium (Se)	2007/09/10	NC		%	25
1836533 TS1	MATRIX SPIKE	Orthophosphate (P)	2007/09/10		87	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/09/10		102	%	80 - 120
	BLANK	Orthophosphate (P)	2007/09/10	<0.001		mg/L	
	RPD [G81628-01]	Orthophosphate (P)	2007/09/10	1.4		%	20
1836721 JD1	Calibration Check	Dissolved Bromide (Br)	2007/09/10		114	%	83 - 117
	MATRIX SPIKE	Dissolved Bromide (Br)	2007/09/10		113	%	80 - 120
	BLANK	Dissolved Bromide (Br)	2007/09/10	< 0.01		ma/l	
	RPD	Dissolved Bromide (Br)	2007/09/10	NC		%	20
1836734 BB3	MATRIX SPIKE			-			-
	[G81622-01]	Nitrate plus Nitrite (N)	2007/09/10		118	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/09/10		107	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/09/10	< 0.002		ma/l	00 .20
	RPD [G81622-01]	Nitrate plus Nitrite (N)	2007/09/10	NC		%	25
1836737 BB3	MATRIX SPIKE		2001/00/10	NO		70	20
	[G81622-01]	Nitrite (N)	2007/09/10		105	%	80 - 120
	SPIKE	Nitrite (N)	2007/03/10		00	%	80 - 120
		Nitrite (N)	2007/03/10	~0.002	33	ma/l	00 - 120
	RPD [C81622_01]	Nitrite (N)	2007/03/10			0∕_	25
1836780 MY	MATRIX CONCE	Dissolved Organic Carbon (C)	2007/03/10	NC	107	70 0/_	20 80 - 120
1030700 101	WATNA SFILE	Dissolved Organic Carbon (C)	2007/09/10		107	/0	00 - 120

Quality Assurance Report (Continued)

Maxxam Job Number: VA741295

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	vyvy/mm/dd	Value	Recovery	Units	QC Limits
1836780 MX	SPIKE	Dissolved Organic Carbon (C)	2007/09/10		106	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/09/10	< 0.5		ma/L	
	RPD [G81623-01]	Dissolved Organic Carbon (C)	2007/09/10	NC		%	20
1837295 AA1	MATRIX SPIKE	Total Arsenic (As)	2007/09/12		107	%	75 - 125
10012007811		Total Cadmium (Cd)	2007/09/12		110	%	75 - 125
		Total Chromium (Cr)	2007/09/12		110	%	75 - 125
		Total Cobalt (Co)	2007/09/12		113	70 0/2	75 - 125
		Total Coppor (Cu)	2007/09/12		116	0/	75 125
		Total Copper (Cu)	2007/09/12		110	/0 0/	75 125
		Total Leau (FD)	2007/09/12		117	70	75 - 125
		Total Thamun (Tr)	2007/09/12		110	70	75 - 125
			2007/09/12		110	70	75 - 125
	SPIKE	Total Arsenic (As)	2007/09/12		103	%	75 - 125
		Total Cadmium (Cd)	2007/09/12		100	%	75 - 125
		Total Chromium (Cr)	2007/09/12		107	%	75 - 125
		Total Cobalt (Co)	2007/09/12		110	%	75 - 125
		Total Copper (Cu)	2007/09/12		114	%	75 - 125
		Total Lead (Pb)	2007/09/12		112	%	75 - 125
		Total Thallium (TI)	2007/09/12		109	%	75 - 125
		Total Zinc (Zn)	2007/09/12		109	%	75 - 125
	BLANK	Total Aluminum (Al)	2007/09/12	0.3, F	RDL=0.2	ug/L	
		Total Antimony (Sb)	2007/09/12	<0.05		ug/L	
		Total Arsenic (As)	2007/09/12	<0.1		ug/L	
		Total Barium (Ba)	2007/09/12	<0.02		ug/L	
		Total Beryllium (Be)	2007/09/12	0.07, F	RDL=0.05	ug/L	
		Total Bismuth (Bi)	2007/09/12	< 0.05		ug/L	
		Total Cadmium (Cd)	2007/09/12	<0.01		ua/L	
		Total Chromium (Cr)	2007/09/12	< 0.2		ua/L	
		Total Cobalt (Co)	2007/09/12	< 0.02		ug/l	
		Total Copper (Cu)	2007/09/12	< 0.1		ug/L	
		Total Lead (Pb)	2007/09/12	<0.02		ug/L	
		Total Lithium (Li)	2007/09/12	<0.02		ug/L	
		Total Manganese (Mn)	2007/09/12	~0.02		ug/L	
		Total Molybdenum (Mo)	2007/09/12	<0.02		ug/L	
		Total Nickel (Ni)	2007/09/12	<0.02		ug/L	
		Total Potassium (K)	2007/09/12	~50		ug/L	
		Total Silver (Ag)	2007/09/12	~0.01		ug/L	
		Total Strontium (Sr)	2007/09/12	<0.01		ug/L	
		Total Shollium (SI)	2007/09/12	<0.01		ug/L	
		Total Thailium (T)	2007/09/12	<0.05		ug/L	
		Total Tin (Sn)	2007/09/12	<0.05		ug/L	
		Total Intanium (11)	2007/09/12	<0.5		ug/L	
		Total Uranium (U)	2007/09/12	<0.01		ug/L	
		Total Vanadium (V)	2007/09/12	<0.05		ug/L	
		Total Zinc (Zn)	2007/09/12	<0.5		ug/L	
	RPD	Total Aluminum (Al)	2007/09/12	1.1		%	25
		Total Antimony (Sb)	2007/09/12	NC		%	25
		Total Arsenic (As)	2007/09/12	NC		%	25
		Total Barium (Ba)	2007/09/12	2.8		%	25
		Total Beryllium (Be)	2007/09/12	NC		%	25
		Total Bismuth (Bi)	2007/09/12	NC		%	25
		Total Cadmium (Cd)	2007/09/12	NC		%	25
		Total Chromium (Cr)	2007/09/12	NC		%	25
		Total Cobalt (Co)	2007/09/12	NC		%	25
		Total Copper (Cu)	2007/09/12	6.0		%	25
		Total Lead (Pb)	2007/09/12	NC		%	25
		Total Manganese (Mn)	2007/09/12	1.6		%	25
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA741295

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1837295 AA1	RPD	Total Molybdenum (Mo)	2007/09/12	7.4		%	25
		Total Nickel (Ni)	2007/09/12	NC		%	25
		Total Potassium (K)	2007/09/12	3.8		%	25
		Total Silver (Ag)	2007/09/12	NC		%	25
		Total Strontium (Sr)	2007/09/12	0.2		%	25
		Total Thallium (TI)	2007/09/12	NC		%	25
		Total Tin (Sn)	2007/09/12	NC		%	25
		Total Titanium (Ti)	2007/09/12	NC		%	25
		Total Uranium (U)	2007/09/12	8.1		%	25
		Total Vanadium (V)	2007/09/12	NC		%	25
		Total Zinc (Zn)	2007/09/12	NC		%	25
1837543 AA1	MATRIX SPIKE	Dissolved Arsenic (As)	2007/09/11		113	%	75 - 125
		Dissolved Cadmium (Cd)	2007/09/11		107	%	75 - 125
		Dissolved Chromium (Cr)	2007/09/11		108	%	75 - 125
		Dissolved Cobalt (Co)	2007/09/11		105	%	75 - 125
		Dissolved Copper (Cu)	2007/09/11		111	%	75 - 125
		Dissolved Lead (Pb)	2007/09/11		113	%	75 - 125
		Dissolved Selenium (Se)	2007/09/11		113	%	75 - 125
		Dissolved Thallium (TI)	2007/09/11		107	%	75 - 125
		Dissolved Zinc (Zn)	2007/09/11		115	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/09/11		103	%	75 - 125
		Dissolved Cadmium (Cd)	2007/09/11		95	%	75 - 125
		Dissolved Chromium (Cr)	2007/09/11		110	%	75 - 125
		Dissolved Cobalt (Co)	2007/09/11		106	%	75 - 125
		Dissolved Copper (Cu)	2007/09/11		105	%	75 - 125
		Dissolved Lead (Pb)	2007/09/11		106	%	75 - 125
		Dissolved Selenium (Se)	2007/09/11		96	%	75 - 125
		Dissolved Thallium (TI)	2007/09/11		104	%	75 - 125
		Dissolved Zinc (Zn)	2007/09/11		98	%	75 - 125
	BLANK	Dissolved Aluminum (Al)	2007/09/11	0.3, F	RDL=0.2	ug/L	
		Dissolved Antimony (Sb)	2007/09/11	<0.05		ug/L	
		Dissolved Arsenic (As)	2007/09/11	<0.1		ug/L	
		Dissolved Barium (Ba)	2007/09/11	<0.02		ug/L	
		Dissolved Beryllium (Be)	2007/09/11	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/09/11	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/09/11	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/09/11	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/09/11	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/09/11	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/09/11	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/09/11	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/09/11	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/09/11	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/09/11	<0.5		ug/L	
		Dissolved Potassium (K)	2007/09/11	<50		ug/L	
		Dissolved Selenium (Se)	2007/09/11	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/09/11	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/09/11	0.01, R	RDL=0.01	ug/L	
		Dissolved Thallium (TI)	2007/09/11	<0.05		ug/L	
		Dissolved Tin (Sn)	2007/09/11	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/09/11	<0.5		ug/L	
		Dissolved Uranium (U)	2007/09/11	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/09/11	<0.05		ug/L	
		Dissolved Zinc (Zn)	2007/09/11	0.7, F	RDL=0.5	ug/L	_
	KPD [G81620-01]	Dissolved Aluminum (Al)	2007/09/11	5.6		%	25

Quality Assurance Report (Continued)

Maxxam Job Number: VA741295

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1837543 AA1	RPD [G81620-01]	Dissolved Antimony (Sb)	2007/09/11	1.5		%	25
		Dissolved Arsenic (As)	2007/09/11	2.0		%	25
		Dissolved Barium (Ba)	2007/09/11	0.5		%	25
		Dissolved Beryllium (Be)	2007/09/11	NC		%	25
		Dissolved Bismuth (Bi)	2007/09/11	NC		%	25
		Dissolved Cadmium (Cd)	2007/09/11	NC		%	25
		Dissolved Chromium (Cr)	2007/09/11	NC		%	25
		Dissolved Cobalt (Co)	2007/09/11	0.8		%	25
		Dissolved Copper (Cu)	2007/09/11	NC		%	25
		Dissolved Lead (Pb)	2007/09/11	NC		%	25
		Dissolved Lithium (Li)	2007/09/11	NC		%	25
		Dissolved Manganese (Mn)	2007/09/11	2.1		%	25
		Dissolved Molybdenum (Mo)	2007/09/11	1.1		%	25
		Dissolved Nickel (Ni)	2007/09/11	2.6		%	25
		Dissolved Potassium (K)	2007/09/11	0.6		%	25
		Dissolved Selenium (Se)	2007/09/11	NC		%	25
		Dissolved Silver (Ag)	2007/09/11	NC		%	25
		Dissolved Strontium (Sr)	2007/09/11	1.7		%	25
		Dissolved Thallium (TI)	2007/09/11	NC		%	25
		Dissolved Tin (Sn)	2007/09/11	NC		%	25
		Dissolved Titanium (Ti)	2007/09/11	NC		%	25
		Dissolved Uranium (U)	2007/09/11	NC		%	25
		Dissolved Vanadium (V)	2007/09/11	NC		%	25
		Dissolved Zinc (Zn)	2007/09/11	5.3		%	25
1837752 GS2	BLANK	Total Boron (B)	2007/09/10	<0.008		mg/L	
		Total Calcium (Ca)	2007/09/10	<0.05		mg/L	
		Total Iron (Fe)	2007/09/10	<0.005		mg/L	
		Total Magnesium (Mg)	2007/09/10	<0.05		mg/L	
		Total Phosphorus (P)	2007/09/10	<0.1		mg/L	
		Total Silicon (Si)	2007/09/10	<0.05		mg/L	
		Total Sodium (Na)	2007/09/10	<0.05		mg/L	
		Total Zirconium (Źr)	2007/09/10	<0.005		mg/L	
	RPD	Total Boron (B)	2007/09/10	NC		%	25
		Total Calcium (Ca)	2007/09/10	3.1		%	25
		Total Iron (Fe)	2007/09/10	12.3		%	25
		Total Magnesium (Mg)	2007/09/10	0.9		%	25
		Total Sodium (Na)	2007/09/10	2.2		%	25
		Total Zirconium (Zr)	2007/09/10	NC		%	25
1838312 MX	MATRIX SPIKE	Total Phosphorus (P)	2007/09/12		95	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/09/12		89	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/09/12	< 0.005		mg/L	
	RPD [G81618-01]	Total Phosphorus (P)	2007/09/12	2.1		%	25
1838425 FS1	MATRIX SPIKE						
	[G81627-01]	Total Suspended Solids	2007/09/12		107	%	N/A
	SPIKE	Total Suspended Solids	2007/09/12		102	%	N/A
	BLANK	Total Suspended Solids	2007/09/12	<4		mg/L	
	RPD [G81595-01]	Total Suspended Solids	2007/09/12	3.4		%	25
	RPD [G81626-01]	Total Suspended Solids	2007/09/12	NC		%	25
1838483 JD1	Calibration Check	Dissolved Bromide (Br)	2007/09/11		108	%	83 - 117
	MATRIX SPIKE						
	[G81625-01]	Dissolved Bromide (Br)	2007/09/11		107	%	80 - 120
	BLANK	Dissolved Bromide (Br)	2007/09/11	<0.01		mg/L	
	RPD [G81625-01]	Dissolved Bromide (Br)	2007/09/11	NC		%	20
1838884 NN	MATRIX SPIKE	Dissolved Chloride (Cl)	2007/09/11		105	%	80 - 120
	SPIKE	Dissolved Chloride (Cl)	2007/09/11		105	%	80 - 120
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA741295

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1838884 NN	BLANK	Dissolved Chloride (Cl)	2007/09/11	<0.5		mg/L	
	RPD [G81594-01]	Dissolved Chloride (Cl)	2007/09/11	NC		%	20
	RPD [G81627-01]	Dissolved Chloride (Cl)	2007/09/11	NC		%	20
1838888 NN	MATRIX SPIKE	Dissolved Sulphate (SO4)	2007/09/11		98	%	75 - 125
	SPIKE	Dissolved Sulphate (SO4)	2007/09/11		102	%	80 - 120
1	BLANK	Dissolved Sulphate (SO4)	2007/09/11	<0.5		mg/L	
	RPD [G81594-01]	Dissolved Sulphate (SO4)	2007/09/11	0.4		%	20
	RPD [G81627-01]	Dissolved Sulphate (SO4)	2007/09/11	1		%	20
1839659 GS2	BLANK	Dissolved Boron (B)	2007/09/11	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/09/11	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/09/11	< 0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/09/11	<0.05		mg/L	
		Dissolved Phosphorus (P)	2007/09/11	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/09/11	<0.05		mg/L	
		Dissolved Sodium (Na)	2007/09/11	<0.05		mg/L	
		Dissolved Zirconium (Zr)	2007/09/11	< 0.005		mg/L	
1841342 NN	MATRIX SPIKE	Ammonia (N)	2007/09/12		96	%	80 - 120
	SPIKE	Ammonia (Ň)	2007/09/12		94	%	80 - 120
	BLANK	Ammonia (N)	2007/09/12	< 0.005		mg/L	
	RPD [G81618-01]	Ammonia (N)	2007/09/12	NC		%	25
		\$ <i>\$</i>					
N/A = Not Applic	able						
NC = Non-calcul	lable						
RPD = Relative	Percent Difference						

Your C.O.C. #: 08198148, 08198150

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/10/11

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A745736 Received: 2007/09/26, 14:05

Sample Matrix: Water # Samples Received: 16

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	15	2007/09/29	2007/10/01 BRN SOP-00264 R2.0	Based on SM2320B
Alkalinity - Water	1	2007/10/02	2007/10/03 BRN SOP-00264 R2.0	Based on SM2320B
Bromide by IC ()	16	N/A	2007/10/04 CAL SOP-00041	IC
Chloride by Automated Colourimetry	16	N/A	2007/10/04 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	16	N/A	2007/10/02 BRN SOP-00224 R3.0	Based on SM-5310C
Conductance - water	15	N/A	2007/10/01 BRN SOP-00264 R2.0	Based on SM-2510B
Conductance - water	1	N/A	2007/10/03 BRN SOP-00264 R2.0	Based on SM-2510B
Fluoride	16	N/A	2007/10/02 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness (calculated as CaCO3)	15	N/A	2007/10/01	
Hardness (calculated as CaCO3)	1	N/A	2007/10/03	
Mercury (dissolved; low level)	15	2007/09/28	2007/10/01 BRN SOP-00205	Based on EPA 245.1
Mercury (dissolved; low level)	1	2007/10/04	2007/10/05 BRN SOP-00205	Based on EPA 245.1
Elements by ICP-AES (dissolved)	15	2007/09/30	2007/09/30 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICP-AES (dissolved)	1	2007/10/02	2007/10/02 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) @	15	2007/10/01	2007/10/01 BRN SOP-00204	Based on EPA 200.8
Elements by ICPMS (dissolved) @	1	2007/10/02	2007/10/03 BRN SOP-00204	Based on EPA 200.8
Ammonia (N)	15	N/A	2007/10/01 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Ammonia (N)	1	N/A	2007/10/03 BRN SOP-00231 R3.0	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	15	N/A	2007/10/01 BRN SOP-00233 R1.0	Based on EPA 353.2
Nitrate+Nitrite (N) (low level	1	N/A	2007/10/03 BRN SOP-00233 R1.0	Based on EPA 353.2
Nitrite (N) (low level)	15	N/A	2007/10/01 BRN SOP-00233 R1.0	EPA 353.2
Nitrite (N) (low level)	1	N/A	2007/10/03 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	15	N/A	2007/10/02	
Nitrogen - Nitrate (as N)	1	N/A	2007/10/04	
pH Water	15	N/A	2007/10/01 BRN SOP-00264 R2.0	Based on SM-4500H+B
pH Water	1	N/A	2007/10/03 BRN SOP-00264 R2.0	Based on SM-4500H+B
Orthophosphate by Konelab Ø	15	N/A	2007/10/01 BRN SOP-00235 R3.0	SM 4500 PF
Orthophosphate by Konelab Ø	1	N/A	2007/10/09 BRN SOP-00235 R3.0	SM 4500 PF
Sulphate by Automated Colourimetry	16	N/A	2007/10/04 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	5	N/A	2007/10/04 ING443 Rev.5.1	APHA 2540C
Total Dissolved Solids (Filt. Residue)	11	N/A	2007/10/05 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	16	N/A	2007/10/05 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids Ø	15	N/A	2007/10/02 BRN SOP-00277 R2.0	Based on SM - 2540 D
Total Suspended Solids Ø	1	N/A	2007/10/04 BRN SOP-00277 R2.0	Based on SM - 2540 D
Turbidity	15	N/A	2007/09/29 BRN SOP-00265 R3.0	SM - 2130B
Turbidity	1	N/A	2007/10/01 BRN SOP-00265 R3.0	SM - 2130B

Your C.O.C. #: 08198148, 08198150

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/10/11

CERTIFICATE OF ANALYSIS -2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary (2) SCC/CAEAL

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		H19272		H19275	H19276		
Sampling Date		2007/09/21		2007/09/21	2007/09/21		
COC Number	11	08198148		08198148	08198148		
	Units	WW 05-1B	QC Batch	MW 05-2A	MW 05-2B		QC Batch
Misc. Inorganics							
Fluoride (F)	mg/L	0.12	1879545	0.28	0.08	0.01	1879545
Calculated Parameters							
Nitrate (N)	mg/L	0.002	1877204	<0.002	0.028	0.002	1876242
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	171	1878798	215	132	0.5	1876082
Dissolved Organic Carbon (C)	mg/L	9.0	1880256	1.0	1.6	0.5	1880256
Alkalinity (Total as CaCO3)	mg/L	158	1879674	177	125	0.5	1876193
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	1886324	<0.01	<0.01	0.01	1886324
Orthophosphate (P)	mg/L	0.013	1885958	0.007	0.008	0.001	1877438
Dissolved Sulphate (SO4)	mg/L	0.5	1886098	33.4	7.3	0.5	1886098
Dissolved Chloride (Cl)	mg/L	2.5	1886078	3.5	<0.5	0.5	1886078
Nutrients							
Ammonia (N)	mg/L	0.096	1882954	0.122	0.045	0.005	1876239
Nitrate plus Nitrite (N)	mg/L	0.004	1883474	0.003	0.096	0.002	1878082
Nitrite (N)	mg/L	0.002	1883523	0.004	0.068	0.002	1878084
Total Phosphorus (P)	mg/L	0.285	1884857	<0.005	0.226	0.005	1884857
Physical Properties							
Conductivity	uS/cm	296	1879669	410	253	1	1876192
рН	pH Units	7.9	1879617	8.1	7.9	0.1	1876191
Physical Properties							
Total Suspended Solids	mg/L	39	1884782	5	20	4	1878944
Total Dissolved Solids	mg/L	182	1888023	240	148	10	1888023
Turbidity	NTU	86.7	1877779	16.1	82.5	0.1	1875939
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		H19277		H19278		
Sampling Date		2007/09/23		2007/09/21		
COC Number	Unito	08198148		08198148		OC Batab
	Units	IVIV UD-DA	KUL	A0-CU WIW	RDL	
Misc. Inorganics						
Fluoride (F)	mg/L	2.40	0.01	0.17	0.01	1879545
Calculated Parameters						
Nitrate (N)	mg/L	<0.002	0.002	<0.002	0.002	1876242
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	278	0.5	86.6	0.5	1876082
Dissolved Organic Carbon (C)	mg/L	0.8	0.5	1.1	0.5	1880256
Alkalinity (Total as CaCO3)	mg/L	231	0.5	79.1	0.5	1876193
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	0.01	<0.01	0.01	1886324
Orthophosphate (P)	mg/L	0.014	0.001	0.57	0.01	1877438
Dissolved Sulphate (SO4)	mg/L	38.4	0.5	12.5	0.5	1886098
Dissolved Chloride (Cl)	mg/L	<0.5	0.5	1.0	0.5	1886078
Nutrients						
Ammonia (N)	mg/L	0.068	0.005	<0.005	0.005	1876239
Nitrate plus Nitrite (N)	mg/L	0.003	0.002	<0.002	0.002	1878082
Nitrite (N)	mg/L	0.003	0.002	<0.002	0.002	1878084
Total Phosphorus (P)	mg/L	0.019	0.005	0.54	0.05	1884857
Physical Properties						
Conductivity	uS/cm	494	1	184	1	1876192
рН	pH Units	8.0	0.1	7.9	0.1	1876191
Physical Properties						
Total Suspended Solids	mg/L	<4	4	<4	4	1878944
Total Dissolved Solids	mg/L	288	10	100	10	1888023
Turbidity	NTU	18.0	0.1	6.3	0.1	1875939

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		H19279	H19280	H19281	H19282		
Sampling Date		2007/09/21	2007/09/21	2007/09/21	2007/09/22		
COC Number		08198148	08198148	08198148	08198148		
	Units	MW 05-6B	MW 05-7A	MW 05-7B	MW 06-8S	RDL	UC Batch
Misc. Inorganics							
Fluoride (F)	mg/L	0.04	0.08	0.13	0.20	0.01	1879545
Calculated Parameters							
Nitrate (N)	mg/L	0.184	0.027	0.007	0.022	0.002	1876242
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	101	1470	78.6	81.2	0.5	1876082
Dissolved Organic Carbon (C)	mg/L	<0.5	3.0	0.6	0.6	0.5	1880256
Alkalinity (Total as CaCO3)	mg/L	92.1	1410	67.3	50.2	0.5	1876193
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	<0.01	0.01	1886324
Orthophosphate (P)	mg/L	0.009	0.005	0.052	0.009	0.001	1877438
Dissolved Sulphate (SO4)	mg/L	8.0	4.7	14.8	30.9	0.5	1886098
Dissolved Chloride (Cl)	mg/L	<0.5	2.1	<0.5	2.4	0.5	1886078
Nutrients							
Ammonia (N)	mg/L	<0.005	0.092	0.017	0.021	0.005	1876239
Nitrate plus Nitrite (N)	mg/L	0.184	0.030	0.007	0.022	0.002	1878082
Nitrite (N)	mg/L	<0.002	0.003	<0.002	<0.002	0.002	1878084
Total Phosphorus (P)	mg/L	0.006	<0.005	0.051	<0.005	0.005	1884857
Physical Properties							
Conductivity	uS/cm	197	5710	157	173	1	1876192
рН	pH Units	8.1	12.4	8.9	7.7	0.1	1876191
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	<4	<4	4	1878944
Total Dissolved Solids	mg/L	130	1380	112	148	10	1889387
Turbidity	NTU	<0.1	0.3	<0.1	0.8	0.1	1875939

RDL = Reportable Detection Limit

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		H19283	H19284	H19285	H19286		
Sampling Date		2007/09/22	2007/09/23	2007/09/22	2007/09/22		
COC Number		08198148	08198150	08198150	08198150		
	Units	MW 06-8D	MW 06-9S	MW 06-10S	MW 06-10M	RDL	QC Batch
Mice Inergenies							
Fluoride (F)	mg/L	0.97	0.40	0.24	0.79	0.01	1879545
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	<0.002	<0.002	<0.002	0.002	1876242
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	275	144	144	267	0.5	1876082
Dissolved Organic Carbon (C)	mg/L	0.7	1.5	1.4	0.6	0.5	1880256
Alkalinity (Total as CaCO3)	mg/L	224	111	115	205	0.5	1876193
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	<0.01	0.01	1886324
Orthophosphate (P)	mg/L	0.009	0.205	0.020	0.006	0.001	1877438
Dissolved Sulphate (SO4)	mg/L	30.4	22.3	29.7	44.6	0.5	1886098
Dissolved Chloride (Cl)	mg/L	0.5	2.4	1.1	3.0	0.5	1886078
Nutrients							
Ammonia (N)	mg/L	0.079	0.025	0.025	0.045	0.005	1876239
Nitrate plus Nitrite (N)	mg/L	<0.002	<0.002	<0.002	0.006	0.002	1878082
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	0.007	0.002	1878084
Total Phosphorus (P)	mg/L	0.006	0.209	0.020	0.007	0.005	1884857
Physical Properties							
Conductivity	uS/cm	456	259	278	473	1	1876192
рН	pH Units	8.2	8.2	8.2	8.1	0.1	1876191
Physical Properties							
Total Suspended Solids	mg/L	<4	<4	<4	14	4	1878944
Total Dissolved Solids	mg/L	340	192	194	290	10	1889387
Turbidity	NTU	1.0	0.2	0.3	19.7	0.1	1875939
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		H19287	H19288		H19289		
Sampling Date		2007/09/22	2007/09/23		2007/09/21		
COC Number	11	08198150	08198150		08198150		
	Units	MW 06-10D	MW 06-115	RDL	NIV 06-125	RDL	QC Batch
Misc. Inorganics							
Fluoride (F)	mg/L	0.95	2.27	0.01	1.12	0.01	1879545
Calculated Parameters							
Nitrate (N)	mg/L	<0.002	0.002	0.002	<0.002	0.002	1876242
Misc. Inorganics							
Dissolved Hardness (CaCO3)	mg/L	276	180	0.5	373	0.5	1876082
Dissolved Organic Carbon (C)	mg/L	0.6	1.3	0.5	1.9	0.5	1880256
Alkalinity (Total as CaCO3)	mg/L	239	138	0.5	146	0.5	1876193
Anions							
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	0.01	0.05	0.01	1886324
Orthophosphate (P)	mg/L	0.010	0.025	0.001	0.046	0.001	1877438
Dissolved Sulphate (SO4)	mg/L	16.4	35.8	0.5	277	5	1886098
Dissolved Chloride (Cl)	mg/L	1.6	2.6	0.5	<0.5	0.5	1886078
Nutrients							
Ammonia (N)	mg/L	0.066	0.146	0.005	0.190	0.005	1876239
Nitrate plus Nitrite (N)	mg/L	<0.002	0.002	0.002	<0.002	0.002	1878082
Nitrite (N)	mg/L	<0.002	<0.002	0.002	<0.002	0.002	1878084
Total Phosphorus (P)	mg/L	0.005	0.028	0.005	0.051	0.005	1884857
Physical Properties							
Conductivity	uS/cm	473	337	1	780	1	1876192
рН	pH Units	8.2	8.3	0.1	8.3	0.1	1876191
Physical Properties							
Total Suspended Solids	mg/L	7	<4	4	<4	4	1878944
Total Dissolved Solids	mg/L	308	244	10	606	10	1889387
Turbidity	NTU	24.3	0.3	0.1	1.7	0.1	1875939
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19272		H19275	H19276		
Sampling Date		2007/09/21		2007/09/21	2007/09/21		
COC Number	L lucito	08198148	OC Datak	08198148	08198148		OC Datak
	Units		QC Batch	WW 05-2A	IVIVV US-ZB	RDL	QC Batch
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	1880059	<0.008	<0.008	0.008	1876535
Dissolved Calcium (Ca)	mg/L	60.9	1880059	56.9	40.0	0.05	1876535
Dissolved Iron (Fe)	mg/L	24.6	1880059	1.14	8.21	0.005	1876535
Dissolved Magnesium (Mg)	mg/L	4.71	1880059	17.6	7.84	0.05	1876535
Dissolved Phosphorus (P)	mg/L	0.3	1880059	<0.1	0.2	0.1	1876535
Dissolved Silicon (Si)	mg/L	4.66	1880059	3.41	3.96	0.05	1876535
Dissolved Sodium (Na)	mg/L	0.95	1880059	0.65	1.05	0.05	1876535
Dissolved Zirconium (Zr)	mg/L	<0.005	1880059	<0.005	<0.005	0.005	1876535
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	31.9	1881704	1.4	1.2	0.2	1878224
Dissolved Antimony (Sb)	ug/L	<0.05	1881704	0.08	<0.05	0.05	1878224
Dissolved Arsenic (As)	ug/L	3.0	1881704	1.1	27.8	0.1	1878224
Dissolved Barium (Ba)	ug/L	477	1881704	46.7	288	0.02	1878224
Dissolved Beryllium (Be)	ug/L	<0.05	1881704	<0.05	<0.05	0.05	1878224
Dissolved Bismuth (Bi)	ug/L	<0.05	1881704	<0.05	<0.05	0.05	1878224
Dissolved Cadmium (Cd)	ug/L	<0.01	1881704	0.01	<0.01	0.01	1878224
Dissolved Chromium (Cr)	ug/L	0.7	1881704	0.3	0.5	0.2	1878224
Dissolved Cobalt (Co)	ug/L	0.10	1881704	0.13	0.11	0.02	1878224
Dissolved Copper (Cu)	ug/L	<0.1	1881704	<0.1	<0.1	0.1	1878224
Dissolved Lead (Pb)	ug/L	<0.02	1881704	<0.02	<0.02	0.02	1878224
Dissolved Lithium (Li)	ug/L	1.1	1881704	2.6	0.4	0.2	1878224
Dissolved Manganese (Mn)	ug/L	694	1881704	180	941	0.02	1878224
Dissolved Molybdenum (Mo)	ug/L	0.48	1881704	3.13	3.11	0.02	1878224
Dissolved Nickel (Ni)	ug/L	<0.5	1881704	<0.5	<0.5	0.5	1878224
Dissolved Potassium (K)	ug/L	769	1881704	2030	674	50	1878224
Dissolved Selenium (Se)	ug/L	<0.5	1881704	<0.5	<0.5	0.5	1878224
Dissolved Silver (Ag)	ug/L	<0.01	1881704	<0.01	<0.01	0.01	1878224
Dissolved Strontium (Sr)	ug/L	130	1881704	158	87.1	0.01	1878224
Dissolved Thallium (TI)	ug/L	<0.05	1881704	<0.05	<0.05	0.05	1878224
Dissolved Tin (Sn)	ug/L	<0.05	1881704	<0.05	<0.05	0.05	1878224
Dissolved Titanium (Ti)	ug/L	1.3	1881704	<0.5	<0.5	0.5	1878224
Dissolved Uranium (U)	ug/L	0.02	1881704	8.58	0.23	0.01	1878224
Dissolved Vanadium (V)	ug/L	0.85	1881704	<0.05	<0.05	0.05	1878224
RDL = Reportable Detection Li	mit						

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19272		H19275	H19276						
Sampling Date		2007/09/21		2007/09/21	2007/09/21						
COC Number		08198148		08198148	08198148						
	Units	MW 05-1B	QC Batch	MW 05-2A	MW 05-2B	RDL	QC Batch				
Dissolved Zinc (Zn)	ug/L	<0.5	1881704	<0.5	0.5	0.5	1878224				
Mercury by CVAA											
Dissolved Mercury (Hg)	ug/L	<0.01	1885974	<0.01	<0.01	0.01	1873918				
RDL = Reportable Detection Limit											

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19277	H19278	H19279	H19280		
Sampling Date		2007/09/23	2007/09/21	2007/09/21	2007/09/21		
	Units	MW 05-5A	MW 05-6A	MW 05-6B	MW 05-7A	RDL	QC Batch
							1
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1876535
Dissolved Calcium (Ca)	mg/L	74.4	29.5	36.1	589	0.05	1876535
Dissolved Iron (Fe)	mg/L	1.27	0.390	<0.005	<0.005	0.005	1876535
Dissolved Magnesium (Mg)	mg/L	22.4	3.13	2.74	<0.05	0.05	1876535
Dissolved Phosphorus (P)	mg/L	<0.1	0.6	<0.1	<0.1	0.1	1876535
Dissolved Silicon (Si)	mg/L	3.57	6.31	3.91	0.44	0.05	1876535
Dissolved Sodium (Na)	mg/L	0.32	3.86	1.37	4.71	0.05	1876535
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1876535
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	1.3	2.6	13.3	36.9	0.2	1878224
Dissolved Antimony (Sb)	ug/L	6.05	0.47	<0.05	0.19	0.05	1878224
Dissolved Arsenic (As)	ug/L	4.4	4.5	<0.1	0.2	0.1	1878224
Dissolved Barium (Ba)	ug/L	44.6	49.3	146	1730	0.02	1878224
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	<0.01	0.01	0.01	1878224
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	0.3	4.3	0.2	1878224
Dissolved Cobalt (Co)	ug/L	0.32	0.29	0.17	<0.02	0.02	1878224
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	0.6	5.1	0.1	1878224
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	<0.02	0.90	0.02	1878224
Dissolved Lithium (Li)	ug/L	2.7	<0.2	<0.2	49.2	0.2	1878224
Dissolved Manganese (Mn)	ug/L	81.5	341	62.4	0.06	0.02	1878224
Dissolved Molybdenum (Mo)	ug/L	7.40	3.61	0.80	4.45	0.02	1878224
Dissolved Nickel (Ni)	ug/L	1.1	0.7	3.7	5.0	0.5	1878224
Dissolved Potassium (K)	ug/L	1520	1200	870	8120	50	1878224
Dissolved Selenium (Se)	ug/L	<0.5	0.6	0.9	0.7	0.5	1878224
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1878224
Dissolved Strontium (Sr)	ug/L	125	36.2	49.2	1080	0.01	1878224
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224
Dissolved Tin (Sn)	ug/L	<0.05	1.03	<0.05	0.49	0.05	1878224
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1878224
Dissolved Uranium (U)	ug/L	25.8	0.33	0.23	<0.01	0.01	1878224
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	<0.05	0.62	0.05	1878224
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A745736 Report Date: 2007/10/11 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19277	H19278	H19279	H19280				
Sampling Date		2007/09/23	2007/09/21	2007/09/21	2007/09/21				
COC Number		08198148	08198148	08198148	08198148				
	Units	MW 05-5A	MW 05-6A	MW 05-6B	MW 05-7A	RDL	QC Batch		
Dissolved Zinc (Zn)	ug/L	4.0	<0.5	<0.5	19.0	0.5	1878224		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1873918		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19281	H19282	H19283	H19284		
Sampling Date		2007/09/21	2007/09/22	2007/09/22	2007/09/23		
	Units	MW 05-7B	MW 06-8S	MW 06-8D	MW 06-9S	RDL	QC Batch
					1		
Dissolved Metals by ICP							
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1876535
Dissolved Calcium (Ca)	mg/L	27.6	27.1	63.8	49.8	0.05	1876535
Dissolved Iron (Fe)	mg/L	0.005	0.949	0.185	0.044	0.005	1876535
Dissolved Magnesium (Mg)	mg/L	2.37	3.29	28.0	4.69	0.05	1876535
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	0.2	0.1	1876535
Dissolved Silicon (Si)	mg/L	4.04	5.60	4.59	4.19	0.05	1876535
Dissolved Sodium (Na)	mg/L	1.76	3.59	0.53	1.40	0.05	1876535
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1876535
Dissolved Metals by ICPMS							
Dissolved Aluminum (Al)	ug/L	4.9	1.8	3.3	4.7	0.2	1878224
Dissolved Antimony (Sb)	ug/L	0.09	6.10	0.20	0.07	0.05	1878224
Dissolved Arsenic (As)	ug/L	0.5	1.0	5.0	11.5	0.1	1878224
Dissolved Barium (Ba)	ug/L	40.0	52.9	48.0	43.5	0.02	1878224
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	<0.01	0.02	0.01	1878224
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	0.3	0.2	1878224
Dissolved Cobalt (Co)	ug/L	0.06	5.12	0.29	0.05	0.02	1878224
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1878224
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.02	0.04	0.02	1878224
Dissolved Lithium (Li)	ug/L	<0.2	0.8	3.1	0.7	0.2	1878224
Dissolved Manganese (Mn)	ug/L	96.4	693	47.1	170	0.02	1878224
Dissolved Molybdenum (Mo)	ug/L	9.85	3.04	1.35	6.92	0.02	1878224
Dissolved Nickel (Ni)	ug/L	<0.5	14.2	1.1	<0.5	0.5	1878224
Dissolved Potassium (K)	ug/L	882	1380	1900	910	50	1878224
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1878224
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1878224
Dissolved Strontium (Sr)	ug/L	49.7	86.6	166	192	0.01	1878224
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224
Dissolved Tin (Sn)	ug/L	<0.05	0.07	<0.05	<0.05	0.05	1878224
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1878224
Dissolved Uranium (U)	ug/L	0.10	0.03	13.1	0.49	0.01	1878224
Dissolved Vanadium (V)	ug/L	0.28	<0.05	<0.05	0.06	0.05	1878224
RDL = Reportable Detection Li	mit						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A745736 Report Date: 2007/10/11 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19281	H19282	H19283	H19284				
Sampling Date		2007/09/21	2007/09/22	2007/09/22	2007/09/23				
COC Number		08198148	08198148	08198148	08198150				
	Units	MW 05-7B	MW 06-8S	MW 06-8D	MW 06-9S	RDL	QC Batch		
Dissolved Zinc (Zn)	ug/L	<0.5	67.0	<0.5	1.1	0.5	1878224		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1873918		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19285	H19286	H19287	H19288				
Sampling Date		2007/09/22	2007/09/22	2007/09/22	2007/09/23				
COC Number	Units	08198150 MW 06-10S	08198150	08198150 MW 06-10D	08198150	RDI	OC Batch		
	onits					NDL			
Dissolved Metals by ICP									
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	<0.008	0.008	1876535		
Dissolved Calcium (Ca)	mg/L	50.6	85.4	76.9	52.0	0.05	1876535		
Dissolved Iron (Fe)	mg/L	0.051	3.40	2.64	0.007	0.005	1876535		
Dissolved Magnesium (Mg)	mg/L	4.31	13.0	20.4	12.1	0.05	1876535		
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	<0.1	0.1	1876535		
Dissolved Silicon (Si)	mg/L	3.88	3.75	3.43	4.55	0.05	1876535		
Dissolved Sodium (Na)	mg/L	5.04	2.79	1.17	5.13	0.05	1876535		
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	<0.005	0.005	1876535		
Dissolved Metals by ICPMS									
Dissolved Aluminum (Al)	ug/L	3.6	2.6	3.3	12.1	0.2	1878224		
Dissolved Antimony (Sb)	ug/L	0.45	<0.05	0.39	0.92	0.05	1878224		
Dissolved Arsenic (As)	ug/L	5.2	0.3	0.2	4.5	0.1	1878224		
Dissolved Barium (Ba)	ug/L	23.9	40.0	67.7	42.7	0.02	1878224		
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224		
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224		
Dissolved Cadmium (Cd)	ug/L	<0.01	<0.01	0.01	0.06	0.01	1878224		
Dissolved Chromium (Cr)	ug/L	0.3	0.7	0.6	0.5	0.2	1878224		
Dissolved Cobalt (Co)	ug/L	0.22	0.04	<0.02	0.11	0.02	1878224		
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	1878224		
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.02	<0.02	0.02	1878224		
Dissolved Lithium (Li)	ug/L	1.2	2.2	4.5	18.9	0.2	1878224		
Dissolved Manganese (Mn)	ug/L	87.9	234	87.1	70.5	0.02	1878224		
Dissolved Molybdenum (Mo)	ug/L	1.59	1.98	3.46	28.5	0.02	1878224		
Dissolved Nickel (Ni)	ug/L	1.5	0.6	<0.5	0.6	0.5	1878224		
Dissolved Potassium (K)	ug/L	1330	1930	2390	2270	50	1878224		
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1878224		
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1878224		
Dissolved Strontium (Sr)	ug/L	179	146	173	112	0.01	1878224		
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	<0.05	0.05	1878224		
Dissolved Tin (Sn)	ug/L	0.05	<0.05	0.07	0.19	0.05	1878224		
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	<0.5	0.5	1878224		
Dissolved Uranium (U)	ug/L	8.63	3.69	1.82	4.80	0.01	1878224		
Dissolved Vanadium (V)	ug/L	0.07	<0.05	0.10	0.65	0.05	1878224		
RDL = Reportable Detection Limit									

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A745736 Report Date: 2007/10/11 Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19285	H19286	H19287	H19288				
Sampling Date		2007/09/22	2007/09/22	2007/09/22	2007/09/23				
COC Number		08198150	08198150	08198150	08198150				
	Units	MW 06-10S	MW 06-10M	MW 06-10D	MW 06-11S	RDL	QC Batch		
Dissolved Zinc (Zn)	ug/L	1.1	0.8	<0.5	<0.5	0.5	1878224		
Mercury by CVAA									
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	<0.01	0.01	1873918		
RDL = Reportable Detection Limit									

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19289						
Sampling Date		2007/09/21						
	Units	08198150 MW 06-129	BDI	OC Batch				
	Units	MW 00-120	INDE	do Baten				
Dissolved Metals by ICP								
Dissolved Boron (B)	mg/L	0.010	0.008	1876535				
Dissolved Calcium (Ca)	mg/L	117	0.05	1876535				
Dissolved Iron (Fe)	mg/L	0.536	0.005	1876535				
Dissolved Magnesium (Mg)	mg/L	19.9	0.05	1876535				
Dissolved Phosphorus (P)	mg/L	<0.1	0.1	1876535				
Dissolved Silicon (Si)	mg/L	7.37	0.05	1876535				
Dissolved Sodium (Na)	mg/L	38.6	0.05	1876535				
Dissolved Zirconium (Zr)	mg/L	<0.005	0.005	1876535				
Dissolved Metals by ICPMS								
Dissolved Aluminum (Al)	ug/L	0.4	0.2	1878224				
Dissolved Antimony (Sb)	ug/L	1.07	0.05	1878224				
Dissolved Arsenic (As)	ug/L	3.6	0.1	1878224				
Dissolved Barium (Ba)	ug/L	23.9	0.02	1878224				
Dissolved Beryllium (Be)	ug/L	<0.05	0.05	1878224				
Dissolved Bismuth (Bi)	ug/L	<0.05	0.05	1878224				
Dissolved Cadmium (Cd)	ug/L	<0.01	0.01	1878224				
Dissolved Chromium (Cr)	ug/L	<0.2	0.2	1878224				
Dissolved Cobalt (Co)	ug/L	0.71	0.02	1878224				
Dissolved Copper (Cu)	ug/L	<0.1	0.1	1878224				
Dissolved Lead (Pb)	ug/L	<0.02	0.02	1878224				
Dissolved Lithium (Li)	ug/L	8.3	0.2	1878224				
Dissolved Manganese (Mn)	ug/L	339	0.02	1878224				
Dissolved Molybdenum (Mo)	ug/L	3.95	0.02	1878224				
Dissolved Nickel (Ni)	ug/L	0.9	0.5	1878224				
Dissolved Potassium (K)	ug/L	2960	50	1878224				
Dissolved Selenium (Se)	ug/L	<0.5	0.5	1878224				
Dissolved Silver (Ag)	ug/L	<0.01	0.01	1878224				
Dissolved Strontium (Sr)	ug/L	383	0.01	1878224				
Dissolved Thallium (TI)	ug/L	<0.05	0.05	1878224				
Dissolved Tin (Sn)	ug/L	0.09	0.05	1878224				
Dissolved Titanium (Ti)	ug/L	<0.5	0.5	1878224				
Dissolved Uranium (U)	ug/L	14.6	0.01	1878224				
Dissolved Vanadium (V)	ug/L	0.52	0.05	1878224				
RDL = Reportable Detection Limit								

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

Maxxam ID		H19289						
Sampling Date		2007/09/21						
COC Number		08198150						
	Units	MW 06-12S	RDL	QC Batch				
Dissolved Zinc (Zn)	ug/L	<0.5	0.5	1878224				
Mercury by CVAA								
Dissolved Mercury (Hg)	ug/L	<0.01	0.01	1873918				
RDL = Reportable Detection Limit								

Driven by service and Science www.maxxamanalytics.com

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Sample H19280-01 pH Water: pH result is greater than the highest calibration standard of pH 10

Results relate only to the items tested.

Yukon Zinc Corporation Attention: Pamela Ladyman Client Project #: P.O. #: Site Reference:

Quality Assurance Report

Maxxam Job Number: VA745736

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1873918 JT3	MATRIX SPIKE	Dissolved Mercury (Hg)	2007/10/01		111	%	70 - 130
	QC STANDARD	Dissolved Mercury (Hg)	2007/10/01		110	%	80 - 120
	SPIKE	Dissolved Mercury (Hg)	2007/10/01		118	%	80 - 120
	BLANK	Dissolved Mercury (Hg)	2007/10/01	<0.01		ug/L	
	RPD	Dissolved Mercury (Hg)	2007/10/01	NC		%	25
1875939 CK	SPIKE	Turbidity	2007/09/29		101	%	80 - 120
	BLANK	Turbidity	2007/09/29	<0.1		NTU	
	RPD [H19275-01]	Turbidity	2007/09/29	3.7		%	25
1876191 CK	SPIKE	На	2007/10/01		99	%	96 - 104
	RPD [H19289-01]	Ha	2007/10/01	0		%	25
1876192 CK	SPIKE	Conductivity	2007/10/01		97	%	80 - 120
	BLANK	Conductivity	2007/10/01	<1		uS/cm	
	RPD [H19289-01]	Conductivity	2007/10/01	0.9		%	25
1876193 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/10/01	010	94	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/10/01		95	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/10/01	<0.5		ma/l	00 .20
	RPD [H19289-01]	Alkalinity (Total as CaCO3)	2007/10/01	13		%	25
1876239 NN	MATRIX SPIKE	Ammonia (N)	2007/10/01	1.0	96	%	80 - 120
10/ 0200 1111		Ammonia (N)	2007/10/01		97	%	80 - 120
		Ammonia (N)	2007/10/01	~0.005	51	ma/l	00 120
		Ammonia (N)	2007/10/01	<0.003		nng/∟ ∞	25
1976535 (Dissolved Boron (B)	2007/10/01	7.4 20.008		/0 ma/l	25
10/0555 052	DLAINN	Dissolved Colcium (Co)	2007/09/30	<0.008		mg/L	
		Dissolved Lice (Ea)	2007/09/30	<0.05		mg/L	
		Dissolved from (Fe)	2007/09/30	< 0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/09/30	<0.05		mg/L	
		Dissolved Phosphorus (P)	2007/09/30	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/09/30	<0.05		mg/∟	
		Dissolved Sodium (Na)	2007/09/30	<0.05		mg/∟	
		Dissolved Zirconium (Zr)	2007/09/30	<0.005		mg/∟	05
	RPD	Dissolved Boron (B)	2007/09/30	0.6		%	25
		Dissolved Calcium (Ca)	2007/09/30	0.1		%	25
		Dissolved Iron (Fe)	2007/09/30	NC		%	25
		Dissolved Magnesium (Mg)	2007/09/30	0.1		%	25
		Dissolved Phosphorus (P)	2007/09/30	NC		%	25
		Dissolved Silicon (Si)	2007/09/30	0.2		%	25
		Dissolved Sodium (Na)	2007/09/30	0.2		%	25
		Dissolved Zirconium (Zr)	2007/09/30	NC		%	25
1877438 CC3	MATRIX SPIKE						
	[H19285-01]	Orthophosphate (P)	2007/10/01		97	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/10/01		99	%	80 - 120
	BLANK	Orthophosphate (P)	2007/10/01	<0.001		mg/L	
	RPD [H19285-01]	Orthophosphate (P)	2007/10/01	5.0		%	20
	RPD [H19289-01]	Orthophosphate (P)	2007/10/01	7.4		%	20
1877779 CK	SPIKE	Turbidity	2007/10/01		100	%	80 - 120
	BLANK	Turbidity	2007/10/01	<0.1		NTU	
	RPD	Turbidity	2007/10/01	NC		%	25
1878082 BB3	SPIKE	Nitrate plus Nitrite (N)	2007/10/01		87	%	80 - 120
	BLANK	Nitrate plus Nitrite (N)	2007/10/01	< 0.002		mg/L	
1878084 BB3	SPIKE	Nitrite (N)	2007/10/01		98	%	80 - 120
	BLANK	Nitrite (N)	2007/10/01	< 0.002		mg/L	
1878224 AA1	MATRIX SPIKE					0	
	[H19275-01]	Dissolved Arsenic (As)	2007/10/01		113	%	75 - 125
		Dissolved Cadmium (Cd)	2007/10/01		110	%	75 - 125
		Dissolved Chromium (Cr)	2007/10/01		108	%	75 - 125
		Dissolved Cobalt (Co)	2007/10/01		104	%	75 - 125

Quality Assurance Report (Continued)

Maxxam Job Number: VA745736

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1878224 AA1	MATRIX SPIKE						
	[H19275-01]	Dissolved Copper (Cu)	2007/10/01		109	%	75 - 125
		Dissolved Lead (Pb)	2007/10/01		104	%	75 - 125
		Dissolved Selenium (Se)	2007/10/01		118	%	75 - 125
		Dissolved Thallium (TI)	2007/10/01		104	%	75 - 125
		Dissolved Zinc (Zn)	2007/10/01		112	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/10/01		93	%	75 - 125
		Dissolved Cadmium (Cd)	2007/10/01		91	%	75 - 125
		Dissolved Chromium (Cr)	2007/10/01		110	%	75 - 125
		Dissolved Cobalt (Co)	2007/10/01		109	%	75 - 125
		Dissolved Copper (Cu)	2007/10/01		103	%	75 - 125
		Dissolved Lead (Pb)	2007/10/01		101	%	75 - 125
		Dissolved Selenium (Se)	2007/10/01		.01	%	75 - 125
		Dissolved Thallium (TI)	2007/10/01		97	%	75 - 125
		Dissolved Zinc (Zn)	2007/10/01		99	%	75 - 125
	RI ANK	Dissolved Aluminum (Al)	2007/10/01	<02	00	ua/l	10 120
	DEANN	Dissolved Antimony (Sh)	2007/10/01	<0.2		ug/⊑ ⊔g/l	
		Dissolved Argenic (As)	2007/10/01	<0.05		ug/L	
		Dissolved Arsenic (AS)	2007/10/01	<0.02		ug/L	
		Dissolved Bandlium (Ba)	2007/10/01	<0.02		ug/L	
		Dissolved Bismuth (Bi)	2007/10/01	<0.05		ug/L	
		Dissolved Distriction (DI)	2007/10/01	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/10/01	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/10/01	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/10/01	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/10/01	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/10/01	<0.02		ug/L	
		Dissolved Lithium (Li)	2007/10/01	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/10/01	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/10/01	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/10/01	<0.5		ug/L	
		Dissolved Potassium (K)	2007/10/01	<50		ug/L	
		Dissolved Selenium (Se)	2007/10/01	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/10/01	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/10/01	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/10/01	<0.05		ug/L	
		Dissolved Tin (Sn)	2007/10/01	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/10/01	<0.5		ug/L	
		Dissolved Uranium (U)	2007/10/01	<0.01		ua/L	
		Dissolved Vanadium (V)	2007/10/01	<0.05		ua/L	
		Dissolved Zinc (Zn)	2007/10/01	<0.5		ua/L	
	RPD [H19275-01]	Dissolved Aluminum (Al)	2007/10/01	10.6		%	25
		Dissolved Antimony (Sb)	2007/10/01	NC		%	25
		Dissolved Arsenic (As)	2007/10/01	1.9		%	25
		Dissolved Barium (Ba)	2007/10/01	1.8		%	25
		Dissolved Beryllium (Be)	2007/10/01	NC		%	25
		Dissolved Bismuth (Bi)	2007/10/01	NC		%	25
		Dissolved Cadmium (Cd)	2007/10/01	NC		%	25
		Dissolved Chromium (Cr)	2007/10/01	NC		70 0/2	25
		Dissolved Cobalt (Co)	2007/10/01	20		70 0/	20
		Dissolved Coppor (Cu)	2007/10/01	3.Z		/0 0/	20
		Dissolved Copper (CU)	2007/10/01			70 0/	25
		Dissolved Lead (PD)	2007/10/01			70 0/	25
			2007/10/01	0.5		% 0/	25
		Dissolved Manganese (Mn)	2007/10/01	3.3		%	25
		Dissolved Molybdenum (Mo)	2007/10/01	1.8		%	25
		DISSOIVED NICKEI (NI)	2007/10/01	NC		%	25

Quality Assurance Report (Continued)

Maxxam Job Number: VA745736

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1878224 AA1	RPD [H19275-01]	Dissolved Potassium (K)	2007/10/01	3.0		%	25
		Dissolved Selenium (Se)	2007/10/01	NC		%	25
		Dissolved Silver (Ag)	2007/10/01	NC		%	25
		Dissolved Strontium (Sr)	2007/10/01	4.1		%	25
		Dissolved Thallium (TI)	2007/10/01	NC		%	25
		Dissolved Tin (Sn)	2007/10/01	NC		%	25
		Dissolved Titanium (Ti)	2007/10/01	NC		%	25
		Dissolved Uranium (U)	2007/10/01	2.5		%	25
		Dissolved Vanadium (V)	2007/10/01	NC		%	25
		Dissolved Zinc (Zn)	2007/10/01	NC		%	25
1878944 FS1	MATRIX SPIKE	Total Suspended Solids	2007/10/02		106	%	N/A
	SPIKE	Total Suspended Solids	2007/10/02		102	%	N/A
	BLANK	Total Suspended Solids	2007/10/02	<4		mg/L	
	RPD [H19276-01]	Total Suspended Solids	2007/10/02	NC		%	25
1879545 WAY	MATRIX SPIKE	Fluoride (F)	2007/10/02		102	%	80 - 120
	SPIKE	Fluoride (F)	2007/10/02		103	%	80 - 120
	BLANK	Fluoride (F)	2007/10/02	<0.01		ma/L	
	RPD [H19283-01]	Fluoride (F)	2007/10/02	3.5		%	25
1879617 CK	SPIKE	На	2007/10/03		99	%	96 - 104
1879669 CK	SPIKE	, Conductivity	2007/10/03		94	%	80 - 120
	BLANK	Conductivity	2007/10/03	<1	-	uS/cm	
1879674 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/10/03		92	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/10/03		95	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/10/03	<0.5		ma/L	
1880059 GS2	BLANK	Dissolved Boron (B)	2007/10/02	<0.008		ma/L	
		Dissolved Calcium (Ca)	2007/10/02	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/10/02	< 0.005		ma/L	
		Dissolved Magnesium (Mg)	2007/10/02	< 0.05		ma/L	
		Dissolved Phosphorus (P)	2007/10/02	<0.1		ma/L	
		Dissolved Silicon (Si)	2007/10/02	< 0.05		ma/L	
		Dissolved Sodium (Na)	2007/10/02	< 0.05		ma/L	
		Dissolved Zirconium (Zr)	2007/10/02	< 0.005		ma/L	
	RPD	Dissolved Boron (B)	2007/10/02	NC		%	25
		Dissolved Calcium (Ca)	2007/10/02	1.1		%	25
		Dissolved Iron (Fe)	2007/10/02	NC		%	25
		Dissolved Magnesium (Mg)	2007/10/02	NC		%	25
		Dissolved Phosphorus (P)	2007/10/02	NC		%	25
		Dissolved Silicon (Si)	2007/10/02	0.7		%	25
		Dissolved Sodium (Na)	2007/10/02	3.0		%	25
		Dissolved Zirconium (Zr)	2007/10/02	NC		%	25
1880256 SC2	MATRIX SPIKE	Dissolved Organic Carbon (C)	2007/10/02		97	%	80 - 120
	SPIKE	Dissolved Organic Carbon (C)	2007/10/02		100	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/10/02	<0.5		ma/L	
	RPD [H19279-01]	Dissolved Organic Carbon (C)	2007/10/02	NC		%	20
1881704 AA1	MATRIX SPIKE	Dissolved Arsenic (As)	2007/10/03		115	%	75 - 125
	-	Dissolved Cadmium (Cd)	2007/10/03		114	%	75 - 125
		Dissolved Chromium (Cr)	2007/10/03		101	%	75 - 125
		Dissolved Cobalt (Co)	2007/10/03		111	%	75 - 125
		Dissolved Copper (Cu)	2007/10/03		123	%	75 - 125
		Dissolved Lead (Pb)	2007/10/03		105	%	75 - 125
		Dissolved Selenium (Se)	2007/10/03		121	%	75 - 125
		Dissolved Thallium (TI)	2007/10/03		105	%	75 - 125
		Dissolved Zinc (Zn)	2007/10/03		118	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/10/03		97	%	75 - 125
		Dissolved Cadmium (Cd)	2007/10/03		105	%	75 - 125
		· · ·					-

Quality Assurance Report (Continued)

Maxxam Job Number: VA745736

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value	Recoverv	Units	QC Limits
1881704 AA1	SPIKE	Dissolved Chromium (Cr)	2007/10/03		108	%	75 - 125
		Dissolved Cobalt (Co)	2007/10/03		107	%	75 - 125
		Dissolved Copper (Cu)	2007/10/03		114	%	75 - 125
		Dissolved Lead (Pb)	2007/10/03		109	%	75 - 125
		Dissolved Selenium (Se)	2007/10/03		99	%	75 - 125
		Dissolved Thallium (TI)	2007/10/03		108	%	75 - 125
		Dissolved Zinc (Zn)	2007/10/03		100	%	75 - 125
	BI ANK	Dissolved Aluminum (Al)	2007/10/03	<0.2	100	ug/l	10 120
	DEAN	Dissolved Antimony (Sb)	2007/10/03	<0.0		ug/L	
		Dissolved Arsenic (As)	2007/10/03	<0.00		ug/L	
		Dissolved Barium (Ba)	2007/10/03	<0.1		ug/L	
		Dissolved Bandlin (Ba)	2007/10/03	<0.02		ug/L	
		Dissolved Bismuth (Bi)	2007/10/03	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/10/03	< 0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/10/03	<0.01		ug/L	
		Dissolved Chioffium (Cr)	2007/10/03	<0.2		ug/L	
		Dissolved Cobail (Co)	2007/10/03	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/10/03	<0.1		ug/L	
		Dissolved Lead (PD)	2007/10/03	<0.02		ug/L	
		Dissolved Lithium (LI)	2007/10/03	<0.2		ug/L	
		Dissolved Manganese (Mn)	2007/10/03	<0.02		ug/L	
		Dissolved Molybdenum (Mo)	2007/10/03	<0.02		ug/L	
		Dissolved Nickel (Ni)	2007/10/03	<0.5		ug/L	
		Dissolved Potassium (K)	2007/10/03	<50		ug/L	
		Dissolved Selenium (Se)	2007/10/03	<0.5		ug/L	
		Dissolved Silver (Ag)	2007/10/03	<0.01		ug/L	
		Dissolved Strontium (Sr)	2007/10/03	<0.01		ug/L	
		Dissolved Thallium (TI)	2007/10/03	<0.05		ug/L	
		Dissolved Tin (Sn)	2007/10/03	<0.05		ug/L	
		Dissolved Titanium (Ti)	2007/10/03	<0.5		ug/L	
		Dissolved Uranium (U)	2007/10/03	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/10/03	0.05, RI	DL=0.05	ug/L	
		Dissolved Zinc (Zn)	2007/10/03	<0.5		ug/L	
	RPD	Dissolved Aluminum (Al)	2007/10/03	0.8		%	25
		Dissolved Antimony (Sb)	2007/10/03	2.1		%	25
		Dissolved Arsenic (As)	2007/10/03	0.1		%	25
		Dissolved Barium (Ba)	2007/10/03	1.6		%	25
		Dissolved Beryllium (Be)	2007/10/03	NC		%	25
		Dissolved Bismuth (Bi)	2007/10/03	NC		%	25
		Dissolved Cadmium (Cd)	2007/10/03	NC		%	25
		Dissolved Chromium (Cr)	2007/10/03	NC		%	25
		Dissolved Cobalt (Co)	2007/10/03	NC		%	25
		Dissolved Copper (Cu)	2007/10/03	1.2		%	25
		Dissolved Lead (Pb)	2007/10/03	NC		%	25
		Dissolved Lithium (Li)	2007/10/03	NC		%	25
		Dissolved Manganese (Mn)	2007/10/03	2.3		%	25
		Dissolved Molybdenum (Mo)	2007/10/03	4.1		%	25
		Dissolved Nickel (Ni)	2007/10/03	NC		%	25
		Dissolved Potassium (K)	2007/10/03	1.5		%	25
		Dissolved Selenium (Se)	2007/10/03	NC		%	25
		Dissolved Silver (Ag)	2007/10/03	NC		%	25
		Dissolved Strontium (Sr)	2007/10/03	4.3		%	25
		Dissolved Thallium (TI)	2007/10/03	NC		%	25
		Dissolved Tin (Sn)	2007/10/03	NC		%	25
		Dissolved Titanium (Ti)	2007/10/03	NC		%	25
		Dissolved Uranium (U)	2007/10/03	NC		%	25
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA745736

QA/QC			Date				
Batch			Analvzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value	Recovery	Units	QC Limits
1881704 AA1	RPD	Dissolved Vanadium (V)	2007/10/03	NC	_	%	25
		Dissolved Zinc (Zn)	2007/10/03	NC		%	25
1882954 NN	MATRIX SPIKE	Ammonia (N)	2007/10/03		97	%	80 - 120
	SPIKE	Ammonia (N)	2007/10/03		91	%	80 - 120
	BLANK	Ammonia (N)	2007/10/03	<0.005	0.	ma/l	.20
	RPD	Ammonia (N)	2007/10/03	NC		%	25
1883474 BB3	MATRIX SPIKE	Nitrate plus Nitrite (N)	2007/10/03	110	109	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/10/03		106	%	80 - 120
		Nitrate plus Nitrite (N)	2007/10/03	<0.002	100	ma/l	00 120
	RPD	Nitrate plus Nitrite (N)	2007/10/03	NC		%	25
1883523 BB3	MATRIX SPIKE	Nitrite (N)	2007/10/03	NO	110	%	80 - 120
1000020 220	SPIKE	Nitrite (N)	2007/10/03		101	%	80 - 120
		Nitrite (N)	2007/10/03	~0.002	101	ma/l	00 120
	RPD	Nitrite (N)	2007/10/03	<0.002 NC		%	25
1884782 HD5	MATRIX SPIKE	Total Suspended Solids	2007/10/04		102	%	Ν/Δ
1004/02 1105	SPIKE	Total Suspended Solids	2007/10/04		102	%	N/A
		Total Suspended Solids	2007/10/04	-4	100	ma/l	
	RPD [H10272_01]	Total Suspended Solids	2007/10/04	5.0		mg/⊑ %	25
188/857 BB3	MATRIX SPIKE	Total Phosphorus (P)	2007/10/04	5.0	80	70 0/2	80 - 120
1004037 003		Total Phoenborus (P)	2007/10/05		111	70 9/	80 120
		Total Phosphorus (P)	2007/10/05	<0.005		/0 ma/l	00 - 120
		Total Phoenborus (P)	2007/10/05	<0.005		111g/ L 0/	25
1995059 002		Orthophosphoto (P)	2007/10/03	NC	102	/0 0/.	2J 80 120
1000900 000		Orthophosphate (P)	2007/10/09		102	70 0/	00 - 120 90 - 120
		Orthophosphate (P)	2007/10/09	-0.001	97	70 ma/l	80 - 120
		Orthophosphate (P)	2007/10/09	<0.001		111g/∟ ₀/	20
1005074 172		Dissolved Mercury (11g)	2007/10/09	0.9	100	70	70 120
1000974 J13	MAIRIA SPIRE	Dissolved Mercury (Hg)	2007/10/05		102	70 0/	70 - 130
		Dissolved Mercury (Hg)	2007/10/05		98	% 0/	80 - 120
	SPIRE	Dissolved Mercury (Hg)	2007/10/05	.0.01	07	<i>7</i> 0	80 - 120
	BLAINK	Dissolved Mercury (Hg)	2007/10/05	<0.01		ug/L	05
4000070 NINI		Dissolved Mercury (Hg)	2007/10/05	NC		%	25
1886078 NN			0007/40/04			0/	00 400
	[H19282-01]	Dissolved Chloride (CI)	2007/10/04		94	%	80 - 120
	SPIKE	Dissolved Chloride (CI)	2007/10/04		109	%	80 - 120
	BLANK	Dissolved Chloride (CI)	2007/10/04	<0.5		mg/L	00
4000000 NIN	RPD [H19282-01]	Dissolved Chloride (CI)	2007/10/04	NC		%	20
1886098 NN		Dissolved Sulphate (SO4)	2007/10/04		84	%	75 - 125
	SPIKE	Dissolved Sulphate (SO4)	2007/10/04		98	%	80 - 120
	BLANK	Dissolved Sulphate (SO4)	2007/10/04	<0.5		mg/L	
4000004 104	RPD [H19282-01]	Dissolved Sulphate (SO4)	2007/10/04	1.1		%	20
1886324 JD1	Calibration Check	Dissolved Bromide (Br)	2007/10/04		97	%	83 - 117
	MATRIX SPIKE		/				
	[H19281-01]	Dissolved Bromide (Br)	2007/10/04		94	%	80 - 120
	BLANK	Dissolved Bromide (Br)	2007/10/04	<0.01		mg/L	
	RPD [H19281-01]	Dissolved Bromide (Br)	2007/10/04	NC		%	20
1888023 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/10/04		98	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/10/04		94	%	80 - 120
	BLANK	Total Dissolved Solids	2007/10/04	<10		mg/L	
	RPD	Total Dissolved Solids	2007/10/04	0		%	25
1889387 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/10/05		106	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/10/05		116	%	80 - 120
	BLANK	Total Dissolved Solids	2007/10/05	16, R	DL=10	mg/L	
	RPD	Total Dissolved Solids	2007/10/05	0.7		%	25
N/A = Not Applic	cable						

NC = Non-calculable

Quality Assurance Report (Continued) Maxxam Job Number: VA745736

RPD = Relative Percent Difference

Your C.O.C. #: 08198361, 08198362

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/10/24

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A748794 Received: 2007/10/10, 15:25

Sample Matrix: Water # Samples Received: 15

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	14	2007/10/12	2007/10/12 BRN SOP-00264 R2.0	Based on SM2320B
Bromide by IC ()	14	N/A	2007/10/22 CAL SOP-00041	IC
Chloride by Automated Colourimetry	14	N/A	2007/10/12 BRN-SOP 00234 R1.0	Based on EPA 325.2
Carbon (DOC)	14	N/A	2007/10/12 BRN SOP-00224 R3.0	Based on SM-5310C
Conductance - water	14	N/A	2007/10/12 BRN SOP-00264 R2.0	Based on SM-2510B
Fluoride	15	N/A	2007/10/12 BRN SOP-00225 R1.0	Based SM - 4500 F C
Hardness (calculated as CaCO3)	13	N/A	2007/10/12	
Hardness (calculated as CaCO3)	1	N/A	2007/10/15	
Mercury (dissolved; low level)	14	2007/10/15	2007/10/17 BRN SOP-00205	Based on EPA 245.1
Mercury - Total (CVAA,LL)	1	2007/10/15	2007/10/17 BRN SOP-00205	Based on EPA 245.1
Elements by ICP-AES (dissolved)	13	2007/10/11	2007/10/11 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICP-AES (dissolved)	1	2007/10/12	2007/10/12 BRN SOP-00201 R1.0	Based on EPA 6010B
Elements by ICPMS (dissolved) @	14	2007/10/15	2007/10/15 BRN SOP-00204	Based on EPA 200.8
Elements by ICPMS (as rec; low level) @	1	2007/10/15	2007/10/15 BRN SOP-00204	Based on EPA 200.8
Elements by ICPMS (total) @	1	N/A	2007/10/12 BRN SOP-00204	Based on EPA 200.8
Elements by ICP-AES (total)	1	N/A	2007/10/12 BRN SOP-00201 R1.0	Based on EPA 6010B
Ammonia (N)	15	N/A	2007/10/15 BRN SOP-00221 R3.0	Based on SM-4500MH3G
Nitrate+Nitrite (N) (low level	15	N/A	2007/10/12 BRN SOP-00233 R1.0	Based on EPA 353.2
Nitrite (N) (low level)	15	N/A	2007/10/12 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	15	N/A	2007/10/12	
pH Water	14	N/A	2007/10/12 BRN SOP-00264 R2.0	Based on SM-4500H+B
Orthophosphate by Konelab Ø	15	N/A	2007/10/15 BRN SOP-00235 R3.0	SM 4500 PF
Sulphate by Automated Colourimetry	14	N/A	2007/10/12 BRN-SOP 00243 R1.0	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	14	N/A	2007/10/15 ING443 Rev.5.1	APHA 2540C
Total Phosphorus	15	N/A	2007/10/14 BRN SOP-00236 R4.0	SM 4500
Total Suspended Solids Ø	14	N/A	2007/10/16 BRN SOP-00277 R2.0	Based on SM - 2540 D
Turbidity	14	N/A	2007/10/10 BRN SOP-00265 R3.0	SM - 2130B

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Calgary

(2) SCC/CAEAL

Your C.O.C. #: 08198361, 08198362

Attention: Pamela Ladyman

Yukon Zinc Corporation VANCOUVER 701-475 Howe Street Vancouver, BC CANADA V6C 2B3

Report Date: 2007/10/24

CERTIFICATE OF ANALYSIS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ELKA DADMAND, Email: edadmand@maxxamanalytics.com Phone# (604) 444-4808 Ext:230

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38134	H38135	H38136		
Sampling Date		2007/10/06	2007/10/04	2007/10/06		
		12:00	17:45	11:00	_	
COC Number	Unito	08198361	08198361 MM05 2P	08198361		OC Batab
	Units		WIWU3-2B	IVIVUD-3D		
Misc. Inorganics						
Fluoride (F)	mg/L	0.09	0.06	0.16	0.01	1899991
Calculated Parameters						
Nitrate (N)	mg/L	<0.002	<0.002	0.318	0.002	1897353
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	164	144	129	0.5	1897351
Dissolved Organic Carbon (C)	mg/L	3.5	1.2	<0.5	0.5	1899247
Alkalinity (Total as CaCO3)	mg/L	149	130	84.9	0.5	1899075
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	0.01	1916583
Orthophosphate (P)	mg/L	0.021	0.016	0.006	0.001	1903404
Dissolved Sulphate (SO4)	mg/L	2.3	3.9	34.9	0.5	1899441
Dissolved Chloride (CI)	mg/L	<0.5	<0.5	<0.5	0.5	1899448
Nutrients						
Ammonia (N)	mg/L	0.108	0.026	<0.005	0.005	1902625
Nitrate plus Nitrite (N)	mg/L	0.005	0.002	0.318	0.002	1899313
Nitrite (N)	mg/L	0.010	0.005	<0.002	0.002	1899355
Total Phosphorus (P)	mg/L	0.196	0.169	<0.005	0.005	1899300
Physical Properties						
Conductivity	uS/cm	291	250	235	1	1899074
рН	pH Units	7.5	7.6	7.6	0.1	1899072
Physical Properties						
Total Suspended Solids	mg/L	43	18	<4	4	1905636
Total Dissolved Solids	mg/L	167	142	167	10	1903113
Turbidity	NTU	95.8	43.7	0.5	0.1	1895225
RDL = Reportable Detection Li	mit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38137	H38138							
Sampling Date		2007/10/04	2007/10/06							
		12:30	14:30	_						
COC Number	Unito	08198361	08198361		OC Batah					
	Units	IVIVUJ-JA		RDL						
Misc. Inorganics										
Fluoride (F)	mg/L	2.07	0.23	0.01	1899991					
Calculated Parameters										
Nitrate (N)	mg/L	<0.002	<0.002	0.002	1897353					
Misc. Inorganics										
Dissolved Hardness (CaCO3)	mg/L	300	165	0.5	1897351					
Dissolved Organic Carbon (C)	mg/L	<0.5	0.6	0.5	1899247					
Alkalinity (Total as CaCO3)	mg/L	225	107	0.5	1899075					
Anions										
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	0.01	1916583					
Orthophosphate (P)	mg/L	0.007	0.008	0.001	1903404					
Dissolved Sulphate (SO4)	mg/L	34.0	42.9	0.5	1899441					
Dissolved Chloride (Cl)	mg/L	<0.5	<0.5	0.5	1899448					
Nutrients										
Ammonia (N)	mg/L	0.071	0.011	0.005	1902625					
Nitrate plus Nitrite (N)	mg/L	<0.002	<0.002	0.002	1899313					
Nitrite (N)	mg/L	<0.002	<0.002	0.002	1899355					
Total Phosphorus (P)	mg/L	0.012	0.006	0.005	1899300					
Physical Properties										
Conductivity	uS/cm	477	295	1	1899074					
рН	pH Units	7.9	7.9	0.1	1899072					
Physical Properties										
Total Suspended Solids	mg/L	<4	<4	4	1905636					
Total Dissolved Solids	mg/L	280	182	10	1903113					
Turbidity	NTU	19.1	7.9	0.1	1895225					
RDL = Reportable Detection Li	mit	RDL = Reportable Detection Limit								

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38139		H38140		
Sampling Date		2007/10/05		2007/10/04		
COC Number		15:30		17:00		
	Units	MW05-6A	RDL	MW05-7B	RDL	QC Batch
	1 1					
Misc. Inorganics						
Fluoride (F)	mg/L	0.17	0.01	0.14	0.01	1899991
Calculated Parameters						
Nitrate (N)	mg/L	<0.002	0.002	0.008	0.002	1897353
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	84.8	0.5	78.1	0.5	1897351
Dissolved Organic Carbon (C)	mg/L	<0.5	0.5	<0.5	0.5	1899247
Alkalinity (Total as CaCO3)	mg/L	78.6	0.5	60.6	0.5	1899075
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	0.01	<0.01	0.01	1916583
Orthophosphate (P)	mg/L	0.59	0.01	0.050	0.001	1903404
Dissolved Sulphate (SO4)	mg/L	12.9	0.5	13.9	0.5	1899441
Dissolved Chloride (CI)	mg/L	<0.5	0.5	<0.5	0.5	1899448
Nutrients						
Ammonia (N)	mg/L	<0.005	0.005	0.016	0.005	1902625
Nitrate plus Nitrite (N)	mg/L	<0.002	0.002	0.008	0.002	1899313
Nitrite (N)	mg/L	<0.002	0.002	<0.002	0.002	1899355
Total Phosphorus (P)	mg/L	0.56	0.05	0.040	0.005	1899300
Physical Properties						
Conductivity	uS/cm	189	1	153	1	1899074
рН	pH Units	7.9	0.1	8.1	0.1	1899072
Physical Properties						
Total Suspended Solids	mg/L	<4	4	<4	4	1905636
Total Dissolved Solids	mg/L	114	10	93	10	1903113
- 1 · · · ·	NTU	4 1	0.1	0.3	0.1	1895225

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38141	H38142	H38143		
Sampling Date		2007/10/08	2007/10/08	2007/10/04		
		12:00	12:00	11:00		
COC Number	Unito	08198361	08198361	08198361		OC Batab
	Units	101000-05	1010000-00-90	101000-93		QC Batch
Misc. Inorganics						
Fluoride (F)	mg/L	0.22	0.20	0.41	0.01	1899991
Calculated Parameters						
Nitrate (N)	mg/L	<0.002	<0.002	<0.002	0.002	1897353
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	82.8	83.9	146	0.5	1897351
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	<0.5	0.5	1899247
Alkalinity (Total as CaCO3)	mg/L	49.7	51.2	112	0.5	1899075
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	0.01	1916583
Orthophosphate (P)	mg/L	0.019	0.019	0.201	0.001	1903404
Dissolved Sulphate (SO4)	mg/L	32.0	31.4	22.3	0.5	1899441
Dissolved Chloride (CI)	mg/L	<0.5	<0.5	<0.5	0.5	1899448
Nutrients						
Ammonia (N)	mg/L	0.014	0.015	0.020	0.005	1902625
Nitrate plus Nitrite (N)	mg/L	<0.002	<0.002	<0.002	0.002	1899313
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	0.002	1899355
Total Phosphorus (P)	mg/L	0.022	0.022	0.397	0.005	1899300
Physical Properties						
Conductivity	uS/cm	170	171	256	1	1899074
рН	pH Units	7.5	7.5	8.1	0.1	1899072
Physical Properties						
Total Suspended Solids	mg/L	<4	<4	<4	4	1905636
Total Dissolved Solids	mg/L	114	110	162	10	1903113
Turbidity	NTU	0.9	1.1	1.8	0.1	1895225
RDL = Reportable Detection Li	mit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38144	H38145	H38146		
Sampling Date		2007/10/08	2007/10/08	2007/10/08		
			16:30	15:45		
COC Number	Unito	08198362	08198362	08198362		OC Batab
	Units	101000-103		101000-113		
Misc. Inorganics						
Fluoride (F)	mg/L	0.23	0.74	2.08	0.01	1899991
Calculated Parameters						
Nitrate (N)	mg/L	0.003	0.002	<0.002	0.002	1897353
Misc. Inorganics						
Dissolved Hardness (CaCO3)	mg/L	138	271	185	0.5	1897351
Dissolved Organic Carbon (C)	mg/L	<0.5	<0.5	<0.5	0.5	1899247
Alkalinity (Total as CaCO3)	mg/L	112	204	139	0.5	1899075
Anions						
Dissolved Bromide (Br)	mg/L	<0.01	<0.01	<0.01	0.01	1916583
Orthophosphate (P)	mg/L	0.029	0.006	0.029	0.001	1903404
Dissolved Sulphate (SO4)	mg/L	29.7	48.9	35.4	0.5	1899441
Dissolved Chloride (Cl)	mg/L	<0.5	<0.5	<0.5	0.5	1899448
Nutrients						
Ammonia (N)	mg/L	0.020	0.062	0.164	0.005	1902625
Nitrate plus Nitrite (N)	mg/L	0.003	0.002	<0.002	0.002	1899313
Nitrite (N)	mg/L	<0.002	<0.002	<0.002	0.002	1899355
Total Phosphorus (P)	mg/L	0.025	<0.005	0.032	0.005	1899300
Physical Properties						
Conductivity	uS/cm	273	470	336	1	1899074
рН	pH Units	8.1	8.1	8.2	0.1	1899072
Physical Properties						
Total Suspended Solids	mg/L	<4	<4	<4	4	1905636
Total Dissolved Solids	mg/L	166	296	208	10	1903113
Turbidity	NTU	0.5	3.8	0.5	0.1	1895225
RDL = Reportable Detection Li	mit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38147	H38148		
Sampling Date		2007/10/08	2007/10/10		
COC Number		12:00	08108362		
	Units	MW06-12S	TRAVEL	RDL	QC Batch
			BLANK		
	, i			1	
wisc. Inorganics					
Fluoride (F)	mg/L	1.05	0.01	0.01	1899991
Calculated Parameters					
Nitrate (N)	mg/L	0.005	<0.002	0.002	1897353
Misc. Inorganics					
Dissolved Hardness (CaCO3)	mg/L	382		0.5	1897351
Dissolved Organic Carbon (C)	mg/L	0.5		0.5	1899247
Alkalinity (Total as CaCO3)	mg/L	146		0.5	1899075
Anions					
Dissolved Bromide (Br)	mg/L	0.06		0.01	1916583
Orthophosphate (P)	mg/L	0.024	<0.001	0.001	1903404
Dissolved Sulphate (SO4)	mg/L	271		5	1899441
Dissolved Chloride (Cl)	mg/L	<0.5		0.5	1899448
Leachable Metals					
Total Selenium (Se)	ug/L		<0.5	0.5	1903662
Nutrients					
Ammonia (N)	mg/L	0.128	<0.005	0.005	1902625
Nitrate plus Nitrite (N)	mg/L	0.005	<0.002	0.002	1899313
Nitrite (N)	mg/L	<0.002	<0.002	0.002	1899355
Total Phosphorus (P)	mg/L	0.015	<0.005	0.005	1899300
Physical Properties					
Conductivity	uS/cm	791		1	1899074
рН	pH Units	8.2		0.1	1899072
Physical Properties					
Total Suspended Solids	mg/L	<4		4	1905636
Total Dissolved Solids	mg/L	570		10	1903113
Turbidity	NTU	0.3		0.1	1895225
RDL = Reportable Detection Lir	nit				

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38134	H38135	H38136		
Sampling Date		2007/10/06	2007/10/04	2007/10/06		
COC Number		12:00	17:45	11:00 08198361		
	Units	MW05-1B	MW05-2B	MW05-3B	RDL	QC Batch
	1 1		1	1		T
Dissolved Metals by ICP					_	
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	0.008	1898462
Dissolved Calcium (Ca)	mg/L	58.0	44.6	43.3	0.05	1898462
Dissolved Iron (Fe)	mg/L	24.9	8.70	<0.005	0.005	1898462
Dissolved Magnesium (Mg)	mg/L	4.59	7.92	5.03	0.05	1898462
Dissolved Phosphorus (P)	mg/L	0.2	0.2	<0.1	0.1	1898462
Dissolved Silicon (Si)	mg/L	4.82	4.78	4.16	0.05	1898462
Dissolved Sodium (Na)	mg/L	1.27	1.50	1.73	0.05	1898462
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	0.005	1898462
Dissolved Metals by ICPMS						
Dissolved Aluminum (Al)	ug/L	25.4	3.9	0.6	0.2	1903584
Dissolved Antimony (Sb)	ug/L	<0.05	<0.05	0.11	0.05	1903584
Dissolved Arsenic (As)	ug/L	2.2	13.6	0.4	0.1	1903584
Dissolved Barium (Ba)	ug/L	465	267	74.4	0.02	1903584
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Cadmium (Cd)	ug/L	<0.01	<0.01	13.0	0.01	1903584
Dissolved Chromium (Cr)	ug/L	0.6	0.4	<0.2	0.2	1903584
Dissolved Cobalt (Co)	ug/L	0.09	0.07	<0.02	0.02	1903584
Dissolved Copper (Cu)	ug/L	0.1	<0.1	3.4	0.1	1903584
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.03	0.02	1903584
Dissolved Lithium (Li)	ug/L	1.3	0.7	1.5	0.2	1903584
Dissolved Manganese (Mn)	ug/L	668	814	2.53	0.02	1903584
Dissolved Molybdenum (Mo)	ug/L	0.51	1.77	0.68	0.02	1903584
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	2.6	0.5	1903584
Dissolved Potassium (K)	ug/L	778	582	1090	50	1903584
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	12.9	0.5	1903584
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	0.01	1903584
Dissolved Strontium (Sr)	ug/L	123	87.2	123	0.01	1903584
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Titanium (Ti)	ug/L	0.8	<0.5	<0.5	0.5	1903584
Dissolved Uranium (U)	ug/L	0.02	0.11	1.34	0.01	1903584
RDL = Reportable Detection L	imit			1		1

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38134	H38135	H38136		
Sampling Date		2007/10/06	2007/10/04	2007/10/06		
		12:00	17:45	11:00		
COC Number		08198361	08198361	08198361		
	Units	MW05-1B	MW05-2B	MW05-3B	RDL	QC Batch
			_			
Dissolved Vanadium (V)	ug/L	0.66	0.10	<0.05	0.05	1903584
Dissolved Zinc (Zn)	ug/L	<0.5	<0.5	1050	0.5	1903584
Mercury by CVAA						
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	0.01	1902161
RDL = Reportable Detection L	imit					

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38137	H38138		
Sampling Date		2007/10/04	2007/10/06		
COC Number		08198361	08198361		
	Units	MW05-5A	MW05-5B	RDL	QC Batch
Dissolved Metals by ICP					
Dissolved Boron (B)	mg/L	<0.008	<0.008	0.008	1898462
Dissolved Calcium (Ca)	mg/L	80.0	55.0	0.05	1898462
Dissolved Iron (Fe)	mg/L	1.40	0.602	0.005	1898462
Dissolved Magnesium (Mg)	mg/L	24.4	6.85	0.05	1898462
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	0.1	1898462
Dissolved Silicon (Si)	mg/L	3.92	3.41	0.05	1898462
Dissolved Sodium (Na)	mg/L	0.59	0.96	0.05	1898462
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	0.005	1898462
Dissolved Metals by ICPMS					
Dissolved Aluminum (Al)	ug/L	1.5	1.2	0.2	1903584
Dissolved Antimony (Sb)	ug/L	6.10	<0.05	0.05	1903584
Dissolved Arsenic (As)	ug/L	4.5	1.6	0.1	1903584
Dissolved Barium (Ba)	ug/L	47.9	39.4	0.02	1903584
Dissolved Beryllium (Be)	ug/L	0.06	<0.05	0.05	1903584
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	0.05	1903584
Dissolved Cadmium (Cd)	ug/L	0.02	<0.01	0.01	1903584
Dissolved Chromium (Cr)	ug/L	0.3	<0.2	0.2	1903584
Dissolved Cobalt (Co)	ug/L	0.28	0.54	0.02	1903584
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	0.1	1903584
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.02	1903584
Dissolved Lithium (Li)	ug/L	3.5	1.3	0.2	1903584
Dissolved Manganese (Mn)	ug/L	92.5	512	0.02	1903584
Dissolved Molybdenum (Mo)	ug/L	7.61	2.13	0.02	1903584
Dissolved Nickel (Ni)	ug/L	<0.5	2.3	0.5	1903584
Dissolved Potassium (K)	ug/L	1700	919	50	1903584
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	0.5	1903584
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	0.01	1903584
Dissolved Strontium (Sr)	ug/L	132	104	0.01	1903584
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	0.05	1903584
Dissolved Tin (Sn)	ug/L	<0.05	<0.05	0.05	1903584
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	0.5	1903584
Dissolved Uranium (U)	ug/L	25.0	3.11	0.01	1903584

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38137	H38138					
Sampling Date		2007/10/04	2007/10/06					
		12:30	14:30					
COC Number		08198361	08198361					
	Units	MW05-5A	MW05-5B	RDL	QC Batch			
			-					
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	0.05	1903584			
Dissolved Zinc (Zn)	ug/L	4.2	30.7	0.5	1903584			
Mercury by CVAA								
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	0.01	1902161			
RDL = Reportable Detection Limit								

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38139		H38140				
Sampling Date		2007/10/05		2007/10/04				
COC Number	-	15:30		17:00	+			
	Units	MW05-6A	QC Batch	MW05-7B	RDL	QC Batch		
			1		1	T		
Dissolved Metals by ICP								
Dissolved Boron (B)	mg/L	<0.008	1901224	0.009	0.008	1898462		
Dissolved Calcium (Ca)	mg/L	28.8	1901224	27.4	0.05	1898462		
Dissolved Iron (Fe)	mg/L	0.595	1901224	0.011	0.005	1898462		
Dissolved Magnesium (Mg)	mg/L	3.15	1901224	2.35	0.05	1898462		
Dissolved Phosphorus (P)	mg/L	0.7	1901224	<0.1	0.1	1898462		
Dissolved Silicon (Si)	mg/L	6.27	1901224	4.06	0.05	1898462		
Dissolved Sodium (Na)	mg/L	3.50	1901224	1.89	0.05	1898462		
Dissolved Zirconium (Zr)	mg/L	<0.005	1901224	<0.005	0.005	1898462		
Dissolved Metals by ICPMS								
Dissolved Aluminum (Al)	ug/L	1.7	1903584	6.1	0.2	1903584		
Dissolved Antimony (Sb)	ug/L	0.16	1903584	0.10	0.05	1903584		
Dissolved Arsenic (As)	ug/L	4.4	1903584	0.9	0.1	1903584		
Dissolved Barium (Ba)	ug/L	54.1	1903584	40.1	0.02	1903584		
Dissolved Beryllium (Be)	ug/L	<0.05	1903584	<0.05	0.05	1903584		
Dissolved Bismuth (Bi)	ug/L	<0.05	1903584	<0.05	0.05	1903584		
Dissolved Cadmium (Cd)	ug/L	<0.01	1903584	0.03	0.01	1903584		
Dissolved Chromium (Cr)	ug/L	<0.2	1903584	<0.2	0.2	1903584		
Dissolved Cobalt (Co)	ug/L	0.37	1903584	0.06	0.02	1903584		
Dissolved Copper (Cu)	ug/L	<0.1	1903584	<0.1	0.1	1903584		
Dissolved Lead (Pb)	ug/L	<0.02	1903584	<0.02	0.02	1903584		
Dissolved Lithium (Li)	ug/L	0.9	1903584	0.5	0.2	1903584		
Dissolved Manganese (Mn)	ug/L	352	1903584	98.6	0.02	1903584		
Dissolved Molybdenum (Mo)	ug/L	3.24	1903584	10.7	0.02	1903584		
Dissolved Nickel (Ni)	ug/L	<0.5	1903584	<0.5	0.5	1903584		
Dissolved Potassium (K)	ug/L	1310	1903584	903	50	1903584		
Dissolved Selenium (Se)	ug/L	1.4	1903584	<0.5	0.5	1903584		
Dissolved Silver (Ag)	ug/L	<0.01	1903584	<0.01	0.01	1903584		
Dissolved Strontium (Sr)	ug/L	35.1	1903584	48.5	0.01	1903584		
Dissolved Thallium (TI)	ug/L	<0.05	1903584	<0.05	0.05	1903584		
Dissolved Tin (Sn)	ug/L	0.48	1903584	<0.05	0.05	1903584		
Dissolved Titanium (Ti)	ug/L	<0.5	1903584	<0.5	0.5	1903584		
Dissolved Uranium (U)	ug/L	0.24	1903584	0.16	0.01	1903584		
RDL = Reportable Detection Limit								

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38139		H38140		
Sampling Date		2007/10/05		2007/10/04		
		15:30		17:00		
COC Number		08198361		08198361		
	Units	MW05-6A	QC Batch	MW05-7B	RDL	QC Batch
Dissolved Vanadium (V)	ug/L	<0.05	1903584	0.66	0.05	1903584
Dissolved Zinc (Zn)	ug/L	<0.5	1903584	<0.5	0.5	1903584
Mercury by CVAA						
Dissolved Mercury (Hg)	ug/L	<0.01	1902161	<0.01	0.01	1902161
RDL = Reportable Detection	Limit				·	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38141	H38142	H38143		
Sampling Date		2007/10/08	2007/10/08	2007/10/04		
COC Number		12:00	12:00	11:00 08198361		
	Units	MW05-8S	MW05-8S-98	MW06-9S	RDL	QC Batch
	1 1		1			1
Dissolved Metals by ICP						
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	0.008	1898462
Dissolved Calcium (Ca)	mg/L	27.7	28.1	50.6	0.05	1898462
Dissolved Iron (Fe)	mg/L	1.39	1.39	0.845	0.005	1898462
Dissolved Magnesium (Mg)	mg/L	3.31	3.33	4.85	0.05	1898462
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	0.4	0.1	1898462
Dissolved Silicon (Si)	mg/L	5.91	5.91	4.34	0.05	1898462
Dissolved Sodium (Na)	mg/L	3.66	3.72	1.46	0.05	1898462
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	0.005	1898462
Dissolved Metals by ICPMS						
Dissolved Aluminum (Al)	ug/L	3.4	3.6	2.9	0.2	1903584
Dissolved Antimony (Sb)	ug/L	6.14	5.49	<0.05	0.05	1903584
Dissolved Arsenic (As)	ug/L	1.3	1.4	11.1	0.1	1903584
Dissolved Barium (Ba)	ug/L	51.8	52.5	54.2	0.02	1903584
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Cadmium (Cd)	ug/L	0.02	0.02	0.01	0.01	1903584
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	<0.2	0.2	1903584
Dissolved Cobalt (Co)	ug/L	6.86	6.52	0.04	0.02	1903584
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	0.1	1903584
Dissolved Lead (Pb)	ug/L	0.04	0.03	<0.02	0.02	1903584
Dissolved Lithium (Li)	ug/L	1.1	1.3	1.0	0.2	1903584
Dissolved Manganese (Mn)	ug/L	679	633	178	0.02	1903584
Dissolved Molybdenum (Mo)	ug/L	3.01	3.14	7.02	0.02	1903584
Dissolved Nickel (Ni)	ug/L	20.9	19.3	<0.5	0.5	1903584
Dissolved Potassium (K)	ug/L	1390	959	699	50	1903584
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	0.5	1903584
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	0.01	1903584
Dissolved Strontium (Sr)	ug/L	84.8	84.7	196	0.01	1903584
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Tin (Sn)	ug/L	0.07	0.07	<0.05	0.05	1903584
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	0.5	1903584
Dissolved Uranium (U)	ug/L	0.02	0.02	0.47	0.01	1903584
RDL = Reportable Detection L	imit	1	1	1	_	<u>.</u>

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38141	H38142	H38143		
Sampling Date		2007/10/08	2007/10/08	2007/10/04		
		12:00	12:00	11:00		
COC Number		08198361	08198361	08198361		
	Units	MW05-8S	MW05-8S-98	MW06-9S	RDL	QC Batch
Dissolved Vanadium (V)	ug/L	0.08	0.06	<0.05	0.05	1903584
Dissolved Zinc (Zn)	ug/L	97.6	94.3	<0.5	0.5	1903584
Mercury by CVAA						
Dissolved Mercury (Ha)	ua/L	<0.01	<0.01	<0.01	0.01	1902161

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38144	H38145	H38146		
Sampling Date		2007/10/08	2007/10/08	2007/10/08		
COC Number		08198362	16:30	15:45	_	
	Units	MW06-10S	MW06-10M	MW06-11S	RDL	QC Batch
.	1		I		1	
Dissolved Metals by ICP						
Dissolved Boron (B)	mg/L	<0.008	<0.008	<0.008	0.008	1898462
Dissolved Calcium (Ca)	mg/L	48.6	86.9	54.1	0.05	1898462
Dissolved Iron (Fe)	mg/L	0.117	0.552	0.212	0.005	1898462
Dissolved Magnesium (Mg)	mg/L	4.15	13.1	12.2	0.05	1898462
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	<0.1	0.1	1898462
Dissolved Silicon (Si)	mg/L	4.39	3.69	4.85	0.05	1898462
Dissolved Sodium (Na)	mg/L	7.56	2.87	4.89	0.05	1898462
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	0.005	1898462
Dissolved Metals by ICPMS						
Dissolved Aluminum (Al)	ug/L	3.9	0.7	10.9	0.2	1903584
Dissolved Antimony (Sb)	ug/L	0.28	<0.05	1.14	0.05	1903584
Dissolved Arsenic (As)	ug/L	4.6	0.2	4.2	0.1	1903584
Dissolved Barium (Ba)	ug/L	24.7	36.9	43.2	0.02	1903584
Dissolved Beryllium (Be)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Bismuth (Bi)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Cadmium (Cd)	ug/L	<0.01	<0.01	0.05	0.01	1903584
Dissolved Chromium (Cr)	ug/L	<0.2	<0.2	0.3	0.2	1903584
Dissolved Cobalt (Co)	ug/L	0.19	0.03	0.17	0.02	1903584
Dissolved Copper (Cu)	ug/L	<0.1	<0.1	<0.1	0.1	1903584
Dissolved Lead (Pb)	ug/L	<0.02	<0.02	0.02	0.02	1903584
Dissolved Lithium (Li)	ug/L	1.5	2.1	14.3	0.2	1903584
Dissolved Manganese (Mn)	ug/L	84.5	233	72.1	0.02	1903584
Dissolved Molybdenum (Mo)	ug/L	1.84	2.02	30.0	0.02	1903584
Dissolved Nickel (Ni)	ug/L	<0.5	<0.5	<0.5	0.5	1903584
Dissolved Potassium (K)	ug/L	1180	1430	1680	50	1903584
Dissolved Selenium (Se)	ug/L	<0.5	<0.5	<0.5	0.5	1903584
Dissolved Silver (Ag)	ug/L	<0.01	<0.01	<0.01	0.01	1903584
Dissolved Strontium (Sr)	ug/L	175	140	105	0.01	1903584
Dissolved Thallium (TI)	ug/L	<0.05	<0.05	<0.05	0.05	1903584
Dissolved Tin (Sn)	ug/L	0.06	<0.05	0.18	0.05	1903584
Dissolved Titanium (Ti)	ug/L	<0.5	<0.5	<0.5	0.5	1903584
Dissolved Uranium (U)	ug/L	8.10	4.76	5.55	0.01	1903584
RDL = Reportable Detection Li	mit				·	

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38144	H38145	H38146		
Sampling Date		2007/10/08	2007/10/08	2007/10/08		
			16:30	15:45		
COC Number		08198362	08198362	08198362		
	Units	MW06-10S	MW06-10M	MW06-11S	RDL	QC Batch
Dissolved Vanadium (V)	ug/L	<0.05	<0.05	0.87	0.05	1903584
Dissolved Zinc (Zn)	ug/L	1.9	0.6	<0.5	0.5	1903584
Mercury by CVAA						
Dissolved Mercury (Hg)	ug/L	<0.01	<0.01	<0.01	0.01	1902161
RDL = Reportable Detection L	mit	•				•

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38147	H38148		
Sampling Date		2007/10/08	2007/10/10		
COC Number		08198362	08198362		
	Units	MW06-12S	TRAVEL	RDL	QC Batch
			BLANK		
Dissolved Metals by ICP					
Dissolved Boron (B)	mg/L	0.013		0.008	1898462
Dissolved Calcium (Ca)	mg/L	119		0.05	1898462
Dissolved Iron (Fe)	mg/L	0.009		0.005	1898462
Dissolved Magnesium (Mg)	mg/L	20.7		0.05	1898462
Dissolved Phosphorus (P)	mg/L	<0.1		0.1	1898462
Dissolved Silicon (Si)	mg/L	7.44		0.05	1898462
Dissolved Sodium (Na)	mg/L	36.4		0.05	1898462
Dissolved Zirconium (Zr)	mg/L	<0.005		0.005	1898462
Dissolved Metals by ICPMS					
Dissolved Aluminum (Al)	ug/L	1.2		0.2	1903584
Dissolved Antimony (Sb)	ug/L	1.15		0.05	1903584
Dissolved Arsenic (As)	ug/L	1.8		0.1	1903584
Dissolved Barium (Ba)	ug/L	23.2		0.02	1903584
Dissolved Beryllium (Be)	ug/L	<0.05		0.05	1903584
Dissolved Bismuth (Bi)	ug/L	<0.05		0.05	1903584
Dissolved Cadmium (Cd)	ug/L	<0.01		0.01	1903584
Dissolved Chromium (Cr)	ug/L	<0.2		0.2	1903584
Dissolved Cobalt (Co)	ug/L	0.78		0.02	1903584
Dissolved Copper (Cu)	ug/L	<0.1		0.1	1903584
Dissolved Lead (Pb)	ug/L	0.02		0.02	1903584
Dissolved Lithium (Li)	ug/L	7.5		0.2	1903584
Dissolved Manganese (Mn)	ug/L	325		0.02	1903584
Dissolved Molybdenum (Mo)	ug/L	3.50		0.02	1903584
Dissolved Nickel (Ni)	ug/L	<0.5		0.5	1903584
Dissolved Potassium (K)	ug/L	2190		50	1903584
Dissolved Selenium (Se)	ug/L	<0.5		0.5	1903584
Dissolved Silver (Ag)	ug/L	<0.01		0.01	1903584
Dissolved Strontium (Sr)	ug/L	393		0.01	1903584
Dissolved Thallium (TI)	ug/L	<0.05		0.05	1903584
Dissolved Tin (Sn)	ug/L	0.09		0.05	1903584
Dissolved Titanium (Ti)	ug/L	1.0		0.5	1903584
Dissolved Uranium (U)	ug/L	16.0		0.01	1903584
RDL = Reportable Detection Li	nit				

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38147	H38148		
Sampling Date		2007/10/08	2007/10/10		
COC Number		08198362	08198362		
	Units	MW06-12S	TRAVEL	RDL	QC Batch
			BLANK		
Dissolved Vanadium (V)	ug/L	0.60		0.05	1903584
Dissolved Zinc (Zn)	ug/L	0.9		0.5	1903584
Mercury by CVAA	_				
Dissolved Mercury (Hg)	ug/L	<0.01		0.01	1902161
Total Mercury (Hg)	ug/L		<0.01	0.01	1902162
Total Metals by ICP					
Total Boron (B)	mg/L		<0.008	0.008	1900967
Total Calcium (Ca)	mg/L		<0.05	0.05	1900967
Total Iron (Fe)	mg/L		<0.005	0.005	1900967
Total Magnesium (Mg)	mg/L		<0.05	0.05	1900967
Total Phosphorus (P)	mg/L		<0.1	0.1	1900967
Total Silicon (Si)	mg/L		<0.05	0.05	1900967
Total Sodium (Na)	mg/L		<0.05	0.05	1900967
Total Zirconium (Zr)	mg/L		<0.005	0.005	1900967
Total Metals by ICPMS					
Total Aluminum (Al)	ug/L		2.8	0.2	1900976
Total Antimony (Sb)	ug/L		<0.05	0.05	1900976
Total Arsenic (As)	ug/L		<0.1	0.1	1900976
Total Barium (Ba)	ug/L		0.02	0.02	1900976
Total Beryllium (Be)	ug/L		<0.05	0.05	1900976
Total Bismuth (Bi)	ug/L		<0.05	0.05	1900976
Total Cadmium (Cd)	ug/L		<0.01	0.01	1900976
Total Chromium (Cr)	ug/L		<0.2	0.2	1900976
Total Cobalt (Co)	ug/L		<0.02	0.02	1900976
Total Copper (Cu)	ug/L		0.2	0.1	1900976
Total Lead (Pb)	ug/L		0.03	0.02	1900976
Total Lithium (Li)	ug/L		<0.2	0.2	1900976
Total Manganese (Mn)	ug/L		0.08	0.02	1900976
Total Molybdenum (Mo)	ug/L		<0.02	0.02	1900976
Total Nickel (Ni)	ug/L		<0.5	0.5	1900976
Total Potassium (K)	ug/L		<50	50	1900976
Total Silver (Ag)	ug/L		<0.01	0.01	1900976
Total Strontium (Sr)	ug/L		0.02	0.01	1900976
RDL = Reportable Detection L	imit				

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

Maxxam ID		H38147	H38148		
Sampling Date		2007/10/08	2007/10/10		
		12:00			
COC Number		08198362	08198362		
	Units	MW06-12S	TRAVEL	RDL	QC Batch
			BLANK		
Total Thallium (TI)	ug/L		<0.05	0.05	1900976
Total Tin (Sn)	ug/L		<0.05	0.05	1900976
Total Titanium (Ti)	ug/L		<0.5	0.5	1900976
Total Uranium (U)	ug/L		<0.01	0.01	1900976
Total Vanadium (V)	ug/L		<0.05	0.05	1900976
Total Zinc (Zn)	ug/L		1.6	0.5	1900976
			<u>8-</u>		•
RDL = Reportable Detection	n Limit				

Driven by service and Science www.maxxamanalytics.com

Yukon Zinc Corporation Client Project #: Site Reference: Sampler Initials: MM

General Comments

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: VA748794

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1895225 CK	SPIKE	Turbidity	2007/10/10		102	%	80 - 120
	BLANK	Turbidity	2007/10/10	<0.1		NTU	
	RPD [H38140-01]	Turbidity	2007/10/10	NC		%	25
	RPD [H38147-01]	Turbidity	2007/10/10	NC		%	25
1898462 GS2	BLANK	Dissolved Boron (B)	2007/10/11	<0.008		mg/L	
		Dissolved Calcium (Ca)	2007/10/11	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/10/11	<0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/10/11	<0.05		mg/L	
		Dissolved Phosphorus (P)	2007/10/11	<0.1		mg/L	
		Dissolved Silicon (Si)	2007/10/11	<0.05		mg/L	
		Dissolved Sodium (Na)	2007/10/11	<0.05		mg/L	
		Dissolved Zirconium (Zr)	2007/10/11	<0.005		mg/L	
	RPD	Dissolved Calcium (Ca)	2007/10/11	0.2		%	25
		Dissolved Magnesium (Mg)	2007/10/11	0.2		%	25
1899072 CK	SPIKE	рН	2007/10/12		100	%	96 - 104
	RPD [H38137-01]	рН	2007/10/12	0.1		%	5
1899074 CK	SPIKE	Conductivity	2007/10/12		101	%	80 - 120
	BLANK	Conductivity	2007/10/12	<1		uS/cm	
	RPD [H38137-01]	Conductivity	2007/10/12	0.6		%	25
1899075 CK	MATRIX SPIKE	Alkalinity (Total as CaCO3)	2007/10/12		96	%	80 - 120
	SPIKE	Alkalinity (Total as CaCO3)	2007/10/12		94	%	80 - 120
	BLANK	Alkalinity (Total as CaCO3)	2007/10/12	<0.5		mg/L	
	RPD [H38137-01]	Alkalinity (Total as CaCO3)	2007/10/12	0.6		%	25
1899247 TS1	MATRIX SPIKE	Dissolved Organic Carbon (C)	2007/10/12		96	%	80 - 120
	SPIKE	Dissolved Organic Carbon (C)	2007/10/12		111	%	80 - 120
	BLANK	Dissolved Organic Carbon (C)	2007/10/12	<0.5		mg/L	
	RPD	Dissolved Organic Carbon (C)	2007/10/12	NC		%	20
1899300 YS	MATRIX SPIKE	T () D (D)					
	[H38143-01]	Total Phosphorus (P)	2007/10/14		92	%	80 - 120
	SPIKE	Total Phosphorus (P)	2007/10/14		94	%	80 - 120
	BLANK	Total Phosphorus (P)	2007/10/14	<0.005		mg/L	
4000040 000	RPD [H38143-01]	Total Phosphorus (P)	2007/10/14	0.4	400	%	25
1899313 BB3		Nitrate plus Nitrite (N)	2007/10/12		103	%	80 - 120
	SPIKE	Nitrate plus Nitrite (N)	2007/10/12		100	%	80 - 120
		Nitrate plus Nitrite (N)	2007/10/12	<0.002		mg/∟	05
4000055 000		Nitrate plus Nitrite (N)	2007/10/12	NC	405	%	25
1899355 BB3			2007/10/12		105	%	80 - 120
	SPIKE		2007/10/12	.0.000	99	%	80 - 120
			2007/10/12	<0.002		mg/∟	25
1000444 800		Nillille (N) Disselved Sulphoto (SO4)	2007/10/12	NC	101	% 0/	20 75 105
1699441 502	MATRIA SPIRE	Dissolved Sulphate (SO4)	2007/10/12		101	% 0/	75 - 125
	SPIRE	Dissolved Sulphate (SO4)	2007/10/12			70 ma/l	80 - 120
		Dissolved Sulphate (SO4)	2007/10/12	0.0, K	DL=0.5	mg/∟	20
1000140 800		Dissolved Sulphale (SO4)	2007/10/12	0.2	100	% 0/	20
1099440 302	NATRIA SPIRE	Dissolved Chlorida (CI)	2007/10/12		100	70 0/	00 - 120 90 - 120
		Dissolved Chloride (CI)	2007/10/12	-0.5	104	70 ma/l	00 - 120
		Dissolved Chloride (CI)	2007/10/12	<0.5 NC		mg/∟ ∞	20
1800001 WAY		Dissolved Chionde (Ci)	2007/10/12	NC.		70	20
I AVV 1666601	1428120.011	Eluoride (E)	2007/10/12		104	0/	80 120
	SPIKE	Fluoride (F)	2007/10/12		104	70 0/_	80 - 120
		Fluoride (F)	2007/10/12	~0.01	100	ma/l	00 - 120
	RDD [H38130_01]	Fluoride (F)	2007/10/12	_0.01 1 Ω		0∕_	25
1900967 692	RIANK	Total Boron (B)	2007/10/12	200 DZ		ma/l	20
1000007 002		Total Calcium (Ca)	2007/10/12			ma/l	
			2007/10/12	~0.00		mg/∟	

Quality Assurance Report (Continued)

Maxxam Job Number: VA748794

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1900967 GS2	BLANK	Total Iron (Fe)	2007/10/12	< 0.005		mg/L	
		Total Magnesium (Mg)	2007/10/12	<0.05		mg/L	
		Total Phosphorus (P)	2007/10/12	<0.1		mg/L	
		Total Silicon (Si)	2007/10/12	<0.05		ma/L	
		Total Sodium (Na)	2007/10/12	< 0.05		ma/L	
		Total Zirconium (Zr)	2007/10/12	< 0.005		ma/L	
1900976 AA1	MATRIX SPIKE	Total Arsenic (As)	2007/10/12		364 (1)	%	75 - 125
		Total Cadmium (Cd)	2007/10/12		104	%	75 - 125
		Total Chromium (Cr)	2007/10/12		102	%	75 - 125
		Total Cobalt (Co)	2007/10/12		111	%	75 - 125
		Total Copper (Cu)	2007/10/12		105	%	75 - 125
		Total Lead (Pb)	2007/10/12		100	%	75 - 125
		Total Thallium (TI)	2007/10/12		103	70 0/2	75 - 125
		Total Thailutti (T)	2007/10/12		103	/0 0/	75 125
	SDIKE	Total Arconia (An)	2007/10/12		102	/0 0/	75 125
	SPIKE	Total Alsenic (AS)	2007/10/12		90	70 0/	75 - 125
		Total Cadmium (Cd)	2007/10/12		100	% 0/	75 - 125
		Total Chromium (Cr)	2007/10/12		104	%	75 - 125
		Total Cobalt (Co)	2007/10/12		113	%	75 - 125
		Total Copper (Cu)	2007/10/12		110	%	75 - 125
		Total Lead (Pb)	2007/10/12		114	%	75 - 125
		Total Thallium (TI)	2007/10/12		107	%	75 - 125
		Total Zinc (Zn)	2007/10/12		108	%	75 - 125
	BLANK	Total Aluminum (Al)	2007/10/12	<0.2		ug/L	
		Total Antimony (Sb)	2007/10/12	<0.05		ug/L	
		Total Arsenic (As)	2007/10/12	<0.1		ug/L	
		Total Barium (Ba)	2007/10/12	<0.02		ug/L	
		Total Beryllium (Be)	2007/10/12	<0.05		ug/L	
		Total Bismuth (Bi)	2007/10/12	<0.05		ug/L	
		Total Cadmium (Cd)	2007/10/12	<0.01		ug/L	
		Total Chromium (Cr)	2007/10/12	<0.2		ug/L	
		Total Cobalt (Co)	2007/10/12	<0.02		ug/L	
		Total Copper (Cu)	2007/10/12	<0.1		ua/L	
		Total Lead (Pb)	2007/10/12	< 0.02		ua/L	
		Total Lithium (Li)	2007/10/12	<0.2		ua/L	
		Total Manganese (Mn)	2007/10/12	<0.02		ua/L	
		Total Molybdenum (Mo)	2007/10/12	< 0.02		ua/L	
		Total Nickel (Ni)	2007/10/12	< 0.5		ua/l	
		Total Potassium (K)	2007/10/12	<50		ua/l	
		Total Silver (Ag)	2007/10/12	<0.01		ug/L	
		Total Strontium (Sr)	2007/10/12	<0.01		ug/L	
		Total Thallium (TI)	2007/10/12	<0.01		ug/L	
		Total Tin (Sn)	2007/10/12	<0.05		ug/L	
		Total Titonium (Ti)	2007/10/12	<0.05		ug/L	
		Total Iranium (II)	2007/10/12	<0.0		ug/L	
		Total Vanadium (V)	2007/10/12	<0.01		ug/L	
		Total Zina (Zn)	2007/10/12	<0.05		ug/L	
	PDD	Total Aluminum (Al)	2007/10/12	<0.5 E E		uy/L	0 E
	INF U	Total Antimony (Sh)	2007/10/12	0.0		/0 0/	20
		Total Amuniony (SD)	2007/10/12	3.0 4 F		70 0/	25
		Total Arsenic (AS)	2007/10/12	1.5		% 0/	25
		I otal Barium (Ba)	2007/10/12	0.1		%	25
		Total Beryllium (Be)	2007/10/12	NC		%	25
		I otal Bismuth (BI)	2007/10/12	NC		%	25
		Total Cadmium (Cd)	2007/10/12	NC		%	25
		Total Chromium (Cr)	2007/10/12	NC		%	25
		I otal Cobalt (Co)	2007/10/12	NC		%	25
1							

Quality Assurance Report (Continued)

Maxxam Job Number: VA748794

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1900976 AA1	RPD	Total Copper (Cu)	2007/10/12	NC		%	25
		Total Lead (Pb)	2007/10/12	2.5		%	25
		Total Lithium (Li)	2007/10/12	5.4		%	25
		Total Manganese (Mn)	2007/10/12	0.08		%	25
		Total Molybdenum (Mo)	2007/10/12	0.6		%	25
		Total Nickel (Ni)	2007/10/12	NC		%	25
		Total Potassium (K)	2007/10/12	1.3		%	25
		Total Silver (Ag)	2007/10/12	NC		%	25
		Total Strontium (Sr)	2007/10/12	2.6		%	25
		Total Thallium (TI)	2007/10/12	NC		%	25
		Total Tin (Sn)	2007/10/12	NC		%	25
		Total Titanium (Ti)	2007/10/12	NC		%	25
		Total Uranium (U)	2007/10/12	0		%	25
		Total Vanadium (V)	2007/10/12	12.6		%	25
		Total Zinc (Zn)	2007/10/12	NC		%	25
1901224 GS2	BI ANK	Dissolved Boron (B)	2007/10/12	< 0.008		ma/l	
	22.000	Dissolved Calcium (Ca)	2007/10/12	<0.05		mg/L	
		Dissolved Iron (Fe)	2007/10/12	<0.005		mg/L	
		Dissolved Magnesium (Mg)	2007/10/12	<0.000		mg/L	
		Dissolved Phosphorus (P)	2007/10/12	<0.00		mg/L	
		Dissolved Silicon (Si)	2007/10/12	<0.1		mg/L	
		Dissolved Sodium (Na)	2007/10/12	<0.05		ma/L	
		Dissolved Zirconium (Zr)	2007/10/12	<0.00		mg/L	
	חסס	Dissolved Calcium (Ca)	2007/10/12	<0.003		0/	25
	RF D	Dissolved Magnosium (Mg)	2007/10/12	0.03		/0 0/.	25
1002161 172		Dissolved Margury (Hg)	2007/10/12	0.00	110	/0 0/	70 120
1902101 313		Dissolved Mercury (Hg)	2007/10/17		113	70 0/	70 - 130 90 - 130
		Dissolved Mercury (Hg)	2007/10/17		100	%	80 - 120
		Dissolved Mercury (Hg)	2007/10/17	-0.01	94	% 	80 - 120
		Dissolved Mercury (Hg)	2007/10/17	<0.01		ug/L	05
4000400 170		Dissolved Mercury (Hg)	2007/10/17	NC		%	25
1902162 JT3			0007/10/17		400		70 400
	[H38148-01]	Total Mercury (Hg)	2007/10/17		108	%	70 - 130
	QC STANDARD	Total Mercury (Hg)	2007/10/17		96	%	80 - 120
	SPIKE	Total Mercury (Hg)	2007/10/17		94	%	80 - 120
	BLANK	Total Mercury (Hg)	2007/10/17	< 0.01		ug/L	
	RPD [H38148-01]	Total Mercury (Hg)	2007/10/17	NC		%	25
1902625 NN	MATRIX SPIKE	Ammonia (N)	2007/10/15		96	%	80 - 120
	SPIKE	Ammonia (N)	2007/10/15		95	%	80 - 120
	BLANK	Ammonia (N)	2007/10/15	<0.005		mg/L	
	RPD [H38142-01]	Ammonia (N)	2007/10/15	NC		%	25
1903113 FS1	MATRIX SPIKE	Total Dissolved Solids	2007/10/15		102	%	80 - 120
	SPIKE	Total Dissolved Solids	2007/10/15		106	%	80 - 120
	BLANK	Total Dissolved Solids	2007/10/15	12, R	DL=10	mg/L	
	RPD	Total Dissolved Solids	2007/10/15	1.7		%	25
1903404 CC3	MATRIX SPIKE	Orthophosphate (P)	2007/10/15		99	%	80 - 120
	SPIKE	Orthophosphate (P)	2007/10/15		94	%	80 - 120
	BLANK	Orthophosphate (P)	2007/10/15	<0.001		mg/L	
	RPD [H38135-01]	Orthophosphate (P)	2007/10/15	13.6		%	20
1903584 AA1	MATRIX SPIKE						
	[H38134-01]	Dissolved Arsenic (As)	2007/10/15		113	%	75 - 125
		Dissolved Cadmium (Cd)	2007/10/15		108	%	75 - 125
1		Dissolved Chromium (Cr)	2007/10/15		109	%	75 - 125
1		Dissolved Cobalt (Co)	2007/10/15		116	%	75 - 125
		Dissolved Copper (Cu)	2007/10/15		113	%	75 - 125
		Dissolved Lead (Pb)	2007/10/15		114	%	75 - 125
			2001/10/10		117	70	10 120

Quality Assurance Report (Continued)

Maxxam Job Number: VA748794

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1903584 AA1	MATRIX SPIKE						
	[H38134-01]	Dissolved Selenium (Se)	2007/10/15		113	%	75 - 125
		Dissolved Thallium (TI)	2007/10/15		105	%	75 - 125
		Dissolved Zinc (Zn)	2007/10/15		116	%	75 - 125
	SPIKE	Dissolved Arsenic (As)	2007/10/15		99	%	75 - 125
		Dissolved Cadmium (Cd)	2007/10/15		99	%	75 - 125
		Dissolved Chromium (Cr)	2007/10/15		108	%	75 - 125
		Dissolved Cobalt (Co)	2007/10/15		115	%	75 - 125
		Dissolved Copper (Cu)	2007/10/15		111	%	75 - 125
		Dissolved Lead (Pb)	2007/10/15		115	%	75 - 125
		Dissolved Selenium (Se)	2007/10/15		98	%	75 - 125
		Dissolved Thallium (TI)	2007/10/15		110	%	75 - 125
		Dissolved Zinc (Zn)	2007/10/15		111	%	75 - 125
	BLANK	Dissolved Aluminum (Al)	2007/10/15	<0.2		ug/L	
		Dissolved Antimony (Sb)	2007/10/15	<0.05		ug/L	
		Dissolved Arsenic (As)	2007/10/15	<0.1		ug/L	
		Dissolved Barium (Ba)	2007/10/15	< 0.02		ug/L	
		Dissolved Beryllium (Be)	2007/10/15	<0.05		ug/L	
		Dissolved Bismuth (Bi)	2007/10/15	<0.05		ug/L	
		Dissolved Cadmium (Cd)	2007/10/15	<0.01		ug/L	
		Dissolved Chromium (Cr)	2007/10/15	<0.2		ug/L	
		Dissolved Cobalt (Co)	2007/10/15	<0.02		ug/L	
		Dissolved Copper (Cu)	2007/10/15	<0.1		ug/L	
		Dissolved Lead (Pb)	2007/10/15	< 0.02		ua/L	
		Dissolved Lithium (Li)	2007/10/15	<0.2		ua/L	
		Dissolved Manganese (Mn)	2007/10/15	< 0.02		ua/L	
		Dissolved Molvbdenum (Mo)	2007/10/15	< 0.02		ua/L	
		Dissolved Nickel (Ni)	2007/10/15	< 0.5		ua/L	
		Dissolved Potassium (K)	2007/10/15	<50		ua/L	
		Dissolved Selenium (Se)	2007/10/15	< 0.5		ua/l	
		Dissolved Silver (Ag)	2007/10/15	< 0.01		ua/l	
		Dissolved Strontium (Sr)	2007/10/15	< 0.01		ua/l	
		Dissolved Thallium (TI)	2007/10/15	<0.05		ug/L	
		Dissolved Tin (Sn)	2007/10/15	<0.00		ug/L	
		Dissolved Titanium (Ti)	2007/10/15	<0.5		ug/L	
		Dissolved Uranium (U)	2007/10/15	<0.01		ug/L	
		Dissolved Vanadium (V)	2007/10/15	<0.01		ug/L	
		Dissolved Zinc (Zn)	2007/10/15	<0.00		ug/L	
	RPD [H38134-01]	Dissolved Aluminum (Al)	2007/10/15	23		ug/∟ %	25
		Dissolved Antimony (Sb)	2007/10/15	NC.		%	25
		Dissolved Arsenic (As)	2007/10/15	7.0		%	25
		Dissolved Barium (Ba)	2007/10/15	0.05		%	25
		Dissolved Baryllium (Ba)	2007/10/15	0.05 NC		70 0/_	25
		Dissolved Bismuth (Bi)	2007/10/15	NC		/0 0/_	25
		Dissolved Cadmium (Cd)	2007/10/15	NC		70 0/_	25
		Dissolved Cadmium (Cd)	2007/10/15	NC		/0 0/.	25
		Dissolved Cobalt (Co)	2007/10/15			70 0/_	20
		Dissolved Coppor (Cu)	2007/10/15			70 0/	20
		Dissolved Lead (Ph)	2007/10/15			70 0/	20
		Dissolved Lithium (Li)	2007/10/15	12.5		70 0/	20
		Dissolved Manganasa (Mn)	2007/10/13	13.0 E A		/0 0/	20 25
		Dissolved Molybdonum (Ma)	2007/10/13	0.4 0.0		/0 0/	20
		Dissolved Nickel (Ni)	2007/10/13	0.2		70 0/	25
		Dissolved Nickel (NI)	2007/10/13			70 0/	25
		Dissolved Foldssium (So)	2007/10/15	0.0		70 0/	25
		Dissolved Seleriluiti (Se)	2007/10/13	NC		/0	20

Quality Assurance Report (Continued)

Maxxam Job Number: VA748794

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1903584 AA1	RPD [H38134-01]	Dissolved Silver (Ag)	2007/10/15	NC		%	25
		Dissolved Strontium (Sr)	2007/10/15	1.1		%	25
		Dissolved Thallium (TI)	2007/10/15	NC		%	25
		Dissolved Tin (Sn)	2007/10/15	NC		%	25
		Dissolved Titanium (Ti)	2007/10/15	NC		%	25
		Dissolved Uranium (U)	2007/10/15	NC		%	25
		Dissolved Vanadium (V)	2007/10/15	8.4		%	25
		Dissolved Zinc (Zn)	2007/10/15	NC		%	25
1903662 AA1	MATRIX SPIKE						
	[H38148-01]	Total Selenium (Se)	2007/10/15		106	%	75 - 125
	SPIKE	Total Selenium (Se)	2007/10/15		91	%	75 - 125
	BLANK	Total Selenium (Se)	2007/10/15	<0.5		ug/L	
	RPD [H38148-01]	Total Selenium (Se)	2007/10/15	NC		%	25
1905636 FS1	MATRIX SPIKE	Total Suspended Solids	2007/10/16		102	%	N/A
	SPIKE	Total Suspended Solids	2007/10/16		102	%	N/A
	BLANK	Total Suspended Solids	2007/10/16	<4		mg/L	
	RPD	Total Suspended Solids	2007/10/16	NC		%	25
1916583 JD1	Calibration Check	Dissolved Bromide (Br)	2007/10/22		105	%	83 - 117
	MATRIX SPIKE	Dissolved Bromide (Br)	2007/10/22		108	%	80 - 120
	BLANK	Dissolved Bromide (Br)	2007/10/22	<0.01		mg/L	
	RPD	Dissolved Bromide (Br)	2007/10/22	NC		%	20

N/A = Not Applicable

NC = Non-calculable RPD = Relative Percent Difference

(1) Spike invalid due to high sample concentration.

Appendix D Humidity Cell Update Reports (AMEC and MEA)

November 20, 2007

Yukon Zinc Corporation 701-475 Howe St. Vancouver BC V6C 2B3

Dear Pamela Ladyman

Re: Wolverine Project Waste Rock, Ore and Backfill Humidity Cell Release Rates Update

This letter report summarizes the most recent humidity cell release rates for Wolverine mine rock. Release rates from the humidity cells were last reported in January 2007 as part of AMEC Earth & Environmental's (AMEC) water quality estimate for the flooded underground workings. This included humidity cell data up until December 2006. Yukon Zinc Corporation (YZC) has requested that data collected following the January 2007 report be analysed to determine if any significant changes in the calculated release rates have occurred since that time.

Nineteen mine rock humidity cells are currently in operation; eight were initiated in December 2005, five in January 2006 and three each in February and March 2006. The duration of each humidity cell, as of October 4, 2007, is summarized below:

Humidity Cell	HC1 to HC8	HC9 to HC13	HC14 to HC16	HC17 to HC19	HC20 to HC22	T1 and T2
Start Date	22-Dec-05	12-Jan-06	16-Feb-06	21-Feb-06	23-May-06	23-May-06
No. Weeks	89	86	81	79	66	66

Figures 1 to 13 present calculated loadings for waste rock, ore, and backfill humidity cells. Visual inspection of the humidity cell loadings indicates that all parameters show a nearconstant rate of release or slight decrease since the last report. The pH values and sulphate loads have remained near-constant during this time. Since start up, three cells have began to produce consistently acidic (pH<5) leachates. These consist of two NP-depleted cells (HC20 and 22) and one rhyolite cell (HC3). Cell HC3 is composed of high sulphide (7.6%) low NP (7 kgCaCO₃/tonne) rock which is not considered to represent the bulk of the rhyolite rock in the deposit.

Exceptions to the general trend of constant or decreasing loads are as follows:

 Aluminium, copper, and iron loads in two NP-depleted ore cells (HC20 and 22) and one rhyolite cell (HC3) have increased;
- Cadmium and copper loads are variable to slightly increasing in all three ore cells (HC14, 15 and 16);
- Arsenic loads for two rhyolite cells (HC3 and 4) appear to be constant after week 67, though these loads are slightly higher than in previously reported data;
- Cadmium loads in one iron formation cell (HC2) have increased constantly and gradually since week 16;
- Lead loads for rhyolite cell HC3 had increased up to week 40, after which the load has been decreasing consistently; and,
- Silver loads tended to increase in NP-depleted ore cells to approximately week 56, after which silver loads in these cells have begun to decrease.

Release rates for all cells were calculated for steady-state conditions that exclude the first 20 weeks of data. Rates were calculated for the period ending December 2006, and for the period ending October 2007. These results are presented in Table 1 (attached) and are summarized by rock or material type. The relative percent difference (RPD) between rates reported for the two periods are also presented in Table 1. Although some increases in rates are observed for ore and NP-depleted ore cells (such as aluminium copper, iron and silver), in general the majority of the release rates for most of the material types have decreased since the last reporting period.

The revised release rates were incorporated into the underground water quality model to evaluate the potential impacts due to rate changes. A comparison of the expected mine water concentration as calculated in January is compared to the expected mine water concentration as calculated with the revised release rates and summarized in Table 2. In general, the estimated concentrations of the regulated parameters in the model have to decreased slightly. The iron concentration increased as a result of increased metal loads from one rhyolite humidity cell (HC3). This rhyolite sample is not representative of the bulk of the rhyolite in the underground workings, and as such, final concentrations are expected to be lower. Also, this water quality model does not take into account mineral solubility constraints and saturation conditions, which may result in lower iron concentrations than the model predicts.

The revised release rates for the humidity cells do not appear to be notably different from those reported in January 2007. The recalculated mass balance concentration of the underground mine water at closure suggests that the new rates will have relatively little effect.

2

	Mass balance concentration (mg/L)					
Parameter	Jan-07	Nov-07				
Sulphate	282	238				
Aluminum	0.50	0.64				
Antimony	0.08	0.07				
Arsenic	0.06	0.06				
Cadmium	0.24	0.24				
Copper	0.035	0.033				
Iron	0.49	1.16				
Lead	0.14	0.12				
Molybdenum	0.009	0.009				
Nickel	0.016	0.016				
Selenium	0.50	0.38				
Silver	0.002	0.088				
Zinc	8.0	7.7				

Table 2: Comparison of mass balance water quality model results

We trust this meets your needs at this time. Should you have any questions, please do not hesitate to contact the undersigned.

Jennifer Kavalench, B.Sc. Environmental Geoscientist

Steve Sibbick, M.Sc., P.Geo. Associate Geochemist Senior Review

Table 1: Mine Rock Release Rates

Mine Rock Release Rates (mg/m²/wk)*

Reported: 'January 2007	Relea	ase Rates (mg/m	²/wk)										
Material Type	Rock Type	Sulphate	AI	As	Cd	Cu	Fe	Pb	Мо	Ni	Se	Ag	Zn
Non-Carbonaceous Argillites	1	0.43	0.00092	0.000013	0.000001	0.000025	0.00021	0.000005	0.00004	0.000009	0.00003	0.000001	0.000054
Carbonaceous Argillites	2	1.75	0.00242	0.000019	0.000014	0.000056	0.00075	0.000017	0.00004	0.000104	0.00020	0.000004	0.002251
Calcite-Pyrite Exhalite	3	4.85	0.00168	0.000012	0.000002	0.000055	0.00071	0.000017	0.00002	0.000013	0.00011	0.000003	0.000121
Iron Formation	4	0.94	0.00165	0.000025	0.000006	0.000032	0.00042	0.000019	0.00003	0.000018	0.00060	0.000002	0.000187
Rhyolite/Argillite	5	0.89	0.00085	0.000012	0.000001	0.000024	0.00026	0.000009	0.00007	0.000009	0.00007	0.000001	0.000051
Rhyolite/Rhyolite Fragmental	6	7.07	0.27050	0.000057	0.000567	0.017435	0.18776	0.005853	0.00001	0.000759	0.00127	0.000004	0.055579
NP Depleted Ore		46.3	0.03295	0.007243	0.052376	0.144006	0.04242	0.003949	0.00003	0.019059	0.15594	0.000016	9.879771
Backfill (T1, T2 Hcell Data)		14.4	0.00047	0.000676	0.000051	0.000235	0.00165	0.000171	0.00038	0.000030	0.01270	0.000134	0.003373
Ore		13.6	0.00014	0.001275	0.017791	0.000325	0.00110	0.008856	0.00013	0.000264	0.03402	0.000005	0.601462

November 2007 (Current)	Relea	ase Rates (mg/m	² /wk)										
Material Type	Rock Type	Sulphate	AI	As	Cd	Cu	Fe	Pb	Мо	Ni	Se	Ag	Zn
Non-Carbonaceous Argillites	1	0.38	0.00075	0.000011	0.000001	0.000022	0.00021	0.000004	0.00003	0.00008	0.00003	0.000001	0.00006
Carbonaceous Argillites	2	1.61	0.00225	0.000018	0.000014	0.000060	0.00086	0.000015	0.00003	0.000100	0.00015	0.000003	0.00208
Calcite-Pyrite Exhalite	3	4.57	0.00128	0.000012	0.000002	0.000050	0.00072	0.000014	0.00002	0.000013	0.00008	0.000003	0.00015
Iron Formation	4	0.82	0.00130	0.000026	0.000010	0.000030	0.00042	0.000017	0.00004	0.000013	0.00047	0.000002	0.00026
Rhyolite/Argillite	5	0.69	0.00073	0.000011	0.000001	0.000020	0.00029	0.000007	0.00009	0.00008	0.00005	0.000001	0.00007
Rhyolite/Rhyolite Fragmental	6	7.30	0.36155	0.000066	0.000313	0.014907	0.62341	0.005628	0.00001	0.000504	0.00097	0.000003	0.03153
NP Depleted Ore		35.5	0.10473	0.006289	0.059309	0.368860	0.15551	0.002281	0.00002	0.012421	0.10434	0.000022	10.8186
Backfill (T1, T2 Hcell Data)		12.0	0.00024	0.000448	0.000057	0.000127	0.00088	0.000070	0.00025	0.000033	0.00816	0.000057	0.00346
Ore		10.4	0.00028	0.001159	0.017950	0.000508	0.00103	0.007856	0.00012	0.000256	0.02536	0.006557	0.57981

Relative Percent Difference (%)

	Relea	ase Rates (mg/m	² /wk)										
Material Type	Rock Type	Sulphate	AI	As	Cd	Cu	Fe	Pb	Мо	Ni	Se	Ag	Zn
Non-Carbonaceous Argillites	1	-12.6	-20.8	-19.6	20.3	-12.5	-3.10	-7.54	-17.7	-13.0	-18.5	3.32	2.74
Carbonaceous Argillites	2	-8.73	-7.29	-5.75	1.08	6.67	14.4	-9.10	-17.6	-4.24	-27.9	-3.86	-8.04
Calcite-Pyrite Exhalite	3	-5.94	-26.8	-1.21	-0.40	-10.8	1.94	-20.6	-12.1	-2.17	-35.9	1.93	22.0
Iron Formation	4	-12.7	-23.5	4.07	47.9	-8.89	-0.73	-11.5	10.1	-28.8	-22.6	7.73	30.9
Rhyolite/Argillite	5	-25.4	-15.4	-9.79	-0.25	-18.6	9.20	-24.2	27.5	-13.0	-25.8	6.33	35.9
Rhyolite/Rhyolite Fragmental	6	3.12	28.8	13.9	-57.6	-15.6	107	-3.92	20.2	-40.3	-26.7	-9.59	-55.2
NP Depleted Ore		-26.5	104	-14.1	12.4	87.7	114	-53.5	-7.16	-42.2	-39.7	31.1	9.07
Backfill (T1, T2 Hcell Data)		-17.7	-65.5	-40.6	11.7	-59.7	-61.4	-84.0	-38.8	7.76	-43.6	-81.2	2.50
Ore		-26.3	68.8	-9.50	0.89	44.1	-6.66	-12.0	-12.9	-2.92	-29.2	200	-3.67

*Calculated release rates exclude first 20 weeks of data

November 20, 2007

Yukon Zinc Corporation 701-475 Howe St. Vancouver BC V6C 2B3

Dear Pamela Ladyman

Re: Wolverine Project Dense Media Separation (DMS) Humidity Cell Release Rates Update

This letter report summarizes the most recent humidity cell release rates for three Wolverine DMS float humidity cells that have been in operation for 84 weeks. Release rates from the humidity cells were last reported in January 2007 as part of AMEC Earth & Environmental's (AMEC) water quality estimate for the flooded underground workings. This included humidity cell data up until December 2006. Yukon Zinc Corporation (YZC) has requested that data collected following the January 2007 report be analysed to determine if any significant changes in the calculated release rates have occurred since that time.

Figures 1 to 13 present calculated loadings for DMS float humidity cells. Visual inspection of the humidity cell loadings indicates that all parameters showed a generally decreasing rate of release up to week 71. After week 71, release rates have slightly increased. The pH values have remained near-constant and circum-neutral during this time.

Exceptions to the general trend of decreasing rates to week 71 followed by slightly increasing rates are as follows:

- Aluminium loads tend to fluctuate between 0.001 and 0.01 mg/kg/wk with few exceptions and no distinct trend;
- Arsenic loads are generally constant at approximately 0.0015 mg/kg/wk.
- Iron is consistently below or at the detection limit, yielding release rates between 0.004 and 0.02 mg/kg/wk, depending on the laboratory detection limit.
- Molybdenum loads increased slightly to week 58, and have been decreasing since that time.
- Silver loads are generally below detection throughout testing, except for in HC19, which has had low levels of detectable silver since week 70.

Release rates for all cells were calculated for steady-state conditions that exclude the first 20 weeks of data. Rates were calculated for the period ending December 2006, and for the period ending October 2007. These results are presented in Table 1. The relative percent difference (RPD) between rates reported for the two periods are also presented in Table 1. In general, release rates for DMS cells have increased, with the exception of sulphate.

	January 2007	November 2007	RPD (%)
Sulphate	2.34	2.33	-0.38
AI	0.00063	0.00070	10.7
As	0.00014	0.00015	5.25
Cd	0.00010	0.00012	14.8
Cu	0.000093	0.000133	35.4
Fe	0.00080	0.00085	5.51
Pb	0.000048	0.000060	23.3
Mo	0.00029	0.00033	14.2
Ni	0.00016	0.00029	55.7
Se	0.0019	0.0016	-13.8
Ag	0.000004	0.000005	25.7
Zn	0.0023	0.0037	45.9

Table 1: Comparison of release rates for DMS cells (mg/m²/wk)

DMS release rates are not included in the underground water quality model, as the DMS solids will be encapsulated in backfill and therefore will not contribute loads to the underground water quality. As such, the increased release rates from DMS float cells are not expected to have an affect on underground water quality, and will therefore not affect Wolverine's current closure plan.

We trust this meets your needs at this time. Should you have any questions, please do not hesitate to contact the undersigned.

Jennifer Kavalench, B.Sc. Environmental Geoscientist

Steve Sibblck, M.Sc., P.Geo. Associate Geochemist Senior Review

December 14, 2007

Yukon Zinc Corp. #701, 475 Howe St., Vancouver, BC, V6C 2B3

Ms. Pamela Ladyman, R.P. Bio. Manager. Environment and Community Affairs

Dear Ms. Ladyman:

Wolverine Tailings Humidity Cells Update

The following provides a summary of the Wolverine tailings humidity cells to November 27, 2007. The Lynx Zone Diluted Ore Composite and the Wolverine Zone Diluted Ore Composite humidity cells were decommissioned in October 2006 at Week 63 and post-decommissioning testwork was completed over the winter. The Overall Ore Composite (OC) and Overall Diluted ore composite (OD) tailings humidity cells continue to run and have reached weeks 129 and 123, respectively.

1. SUMMARY OF HUMIDITY CELL RESULTS

The pH of all cells has remained relatively constant generally between pH 6.5 and pH 7.0 (see Figure 1.1). All the Diluted Ore tailings cells experienced a temporary pH depression within the first 20 weeks, before rebounding. The Overall Ore Composite tailings did not experience this. It is surmised that the amount of thiosalt in solution (400 mg/L) did not exceed the rapid neutralization capacity of the tailings for the OC sample, whereas higher amounts of thiosalt (600-1200 mg/L) in the other cells clearly did. Once the initial flush of thiosalts was over (i.e., thiosalts dropped below 400 mg/L), the pH has been unaffected by these comparatively low concentrations.

There have been a few other instances when the pH dropped below pH 6.0 with the lowest pH in Cell OC at pH 4.7 at week 124. It should be noted that coincident with the low pH value at week 124, the sulphate production was measured at 28 mg/kg/wk well below the 5-week average. The low sulphate value is reflected in the lower conductivity. The lower pH is also reflected in the lower alkalinity and higher acidity values than previous and following cycles. In general, there appears to be some additional variability in the data fluctuations since week 109. These fluctuations do not appear to be occurring simultaneously in both Cell OD and OC, which suggests that the fluctuations are related to variability in reaction rates within the humidity cell and not artifacts of the laboratory testing. However, no trend in median pH is notable.

Figure 1.1 Wolverine Tailings Humidity Cells - pH

Acidity and alkalinity production rates remain low in both cells, consistent with the nearneutral pH and limited by calcite solubility.

Sulphate production rates remain constant with recent 5-week average production rates of 84 mg/kg/wk and 190 mg/kg/wk for Cells OC and OD, respectively.

Figure 1.3 Wolverine Tailings Humidity Cells - Sulphate

Both cells show an abundance of total sulphur (mostly as sulphide) remaining (98.5% and 96.2% for cells OC and OD, respectively).

Table 1.1 summarizes the range in loading rates for Se and Zn from recent weeks until the current sampling on November 27, 2007.

Table 1.1	Range in Leachate Elemental Loading Rate over past 20 weeks
	Thinge in Deachate Bremental Bouang Hate of er past 20 meens

ELEMENT	CELL OC LOADING RATE (mg/kg/wk)	CELL OD LOADING RATE (mg/kg/wk)
Se	0.049 - 0.062	0.066 - 0.087
Zn	1.4 - 1.9	0.68 - 0.92

Current Zn loadings in both Cell OC and OD are well below the initial flush values and also below their long term averages (see **Figure 1.4**).

Figure 1.4 Wolverine Tailings Humidity Cells - Zn Loading Rates

Se loadings have remained relatively constant over the testing period for both cells since the initial flush (see **Figure 1.5**). This is likely due to the relatively constant and neutral pH, but shows that soluble minerals still remain even after 2 years of leaching.

Figure 1.5 Wolverine Tailings Humidity Cells - Se Loading Rates

2. TIME TO ONSET OF ARD

In humidity cell testing, it is commonly assumed that sulphide oxidation is not taking place at a significant rate until flushing of all of the original sulphate measured during the pre-test ABA characterization is complete. Cells OC and OD are showing measurable sulphate in the leachate collected weekly. However, it is likely that a majority of the sulphate measured is due to flushing of the original sulphate within the sample with some sulphate produced due to sulphide oxidation. It is difficult to assess, however, what portion of the sulphate produced is due to sulphide oxidation, therefore the assumption is made that all sulphate is from flushing as explained above.

The time to sulphate sulphur depletion has been estimated to be 14 and 3 years for Cells OC and OD, respectively. Almost 50% of the initial sulphate has been removed from the OD cell, however less than 20% has been removed from the OC cell. As mentioned, this assumes that all the sulphate measured in the solution is due to flushing of the original sulphate. It is expected that eventually the sulphide oxidation rate would begin to increase with NP depletion and the onset of acidic conditions.

The time to Neutralization Potential (NP) depletion is required to estimate the time to onset of ARD within a laboratory humidity cell. However, the initial sulphate is still flushing from the cells, so it is not possible to ascertain what portion of the sulphate released is from sulphide oxidation. This renders the Carbonate Molar Ratio calculations invalid and precludes an accurate calculation of the time for NP depletion. Once the initial sulphate is believed to have flushed, NP depletion rates can be defined more explicitly. Even if all the current sulphate production from the past 20 weeks (the beginning of the recent instability in pH) were to be from sulphide oxidation, it would still take another 14 years in the laboratory humidity cell for all the Sobek-NP in Cell OC to become depleted. Without that assumption (or assuming only small a portion of the sulphate production is from sulphide oxidation), the time to NP depletion in the laboratory is currently estimated to be 1,600 and 1,100 years for cells OC and OD, respectively.

Based on these estimates, acid generation would not occur in the Wolverine tailings for many years. Nevertheless, elevated concentrations of selenium and zinc can be expected in any water contacting the tailings solids.

3. **RECOMMENDATIONS FOR DECOMMISSIONING**

Based on the conclusions reached in Section 2 above, it is recommended that one cell be decommissioned. It is not expected that acidic drainage will occur within these cells for a considerable period (>3 years) after which time the magnitude of associated elemental leaching rates could be used in further modeling and mitigation planning at the Wolverine site. Since the OD cell appears more likely to flush the initial sulphate sooner and thus more likely to achieve NP depletion sooner, it is suggested that the OC cell be decommissioned.

Although little has changed over the past 2 years, it is nevertheless recommended that decommissioning procedures and testwork follow the protocols laid out last year for the Wolverine and Lynx ore tailings cells, to provide confirmation of the similarities in geochemical behaviour. The test program repeats the pre-test characterization following the draft BC Guidelines for the Prediction of Metal Leaching and ARD. The leachate from the final week of humidity cell maintenance is subject to the full suite of analyses including: Cl, F, Hg, CN(T), CNO, CNS, NO₃, NH₃ and NH₄ in addition to the usual pH, acidity, alkalinity, sulphate and metals. Photos are taken of the tailings materials to document any visible evidence of oxidation. A Shake Flask Extraction is conducted to assess the degree of accumulation of oxidation products. The static testing includes expanded ABA, an ICP scan, and mineralogical evaluation (petrographics, XRD with Reitveld).

Yours truly, Marsland Environmental Associates Ltd.

1.CMU

Rob Marsland, P.Eng. Senior Environmental Engineer

Appendix E Inotec report: Treatability and Bench-Scale Bioreactor Testing of Water for Selenium Removal

TREATABILITY AND BENCH-SCALE BIOREACTOR TESTING OF WATERS FOR SELENIUM REMOVAL - FINAL REPORT

January 31, 2008

Prepared for:

Lorax Environmental Services Ltd. 2289 BURRARD STREET VANCOUVER, B.C. V6J 3H9 CANADA

TABLE OF CONTENTS

=

INTRODUCTION	1
Data Summary	1
Phase 1 Goals	1
Phase 2 Goals	1
BACKGROUND - BIOREACTOR TESTING	2
Phases 3 and 4	2
Water Samples	2
Water Chemistry Analysis	2
Water Samples Received	3
METHODS AND RESULTS	3
Re-evaluation of test microbes in new waters	3
Nucleic Acid Profiling	5
BIOREACTOR TESTING	7
Bioreactor Configuration and Operation	7
Bioreactor Testing Results and Discussion	7
Evaluation for pilot-scale tests	10
Additional Water Quality Criteria	11
BACKGROUND FOR PILOT-SCALE TESTING	12
Pre- and Post-Treatments	12
Pilot-Scale Treatment Size	12
Treatment Costing Assumptions	12
Cost Estimate	13
ATTACHMENT 1. BULK TAILINGS ANALYSIS	14
ATTACHMENT 2. BEMR ORP and pH PROFILES	17

EXECUTIVE SUMMARY

This report summarizes data presented in *Phase 1* and *2 reports* and presents new data gathered for Phases *3* and *4* that addresses bench-scale testing of three potential process waters and provides a cost breakdown for an on-site pilot-scale test. Good microbial growth and selenium reduction was obtained using a defined media and a molasses, yeast, phosphate media (MYP nutrient) at 3.75 gm/L molasses, 1.5 gm/L yeast extract, and 2.0 mg/L phosphate in waters containing ~4.3 mg/L selenium. DGGE profiling of the selected SF036, Z0, SF056, and Lorax-1 (L-1) microbial population and individual isolated microbial constituents was conducted and on-line database sequence comparisons yielded no matches with sequenced microorganisms. These microorganisms are unknowns at the genus and species level. Microbial stock cultures have been made and are available for pilot-scale testing.

Reactor testing was conducted in two new reactor types 1) a biochemical-enhanced material reactor (BEMR) and 2) an electro-biochemical reactor (EBR). Both had void volumes of ~700 mL and used mostly modified pumice as a microbial growth surface. *Phase 3* testing used water spiked with selenium to ~9 mg/L and nine buckets of visibly different waters, received as one process run. Two tests were made with these waters, one at ~4.3 mg/L selenium and one at ~15 mg/L selenium. The first tests used two BEMR in series with feed waters containing ~9 mg/L (spiked) selenium and nutrient addition to only the first bioreactor and produced effluents that averaged ~0.58 mg/L selenium using a total retention time of forty-four hours. In Test 2 the bioreactor configuration was changed to include a pretreatment step and used the feed waters containing ~9 mg/L selenium, with microbes and nutrient, to simulate a holding or equilibration pond, and removed an average of ~2.9 mg/L selenium. Test waters were again supplemented with 100 mL nutrient before entering reactor 1 as described for Test 1; no nutrients were added to the bottom of BEMR-2 during this test except what carried over from BEMR-1. A bioreactor retention time of forty-four hours produced a final effluent averaging ~0.029 mg/L selenium.

In Test 3 the bioreactor configuration was changed to eliminate the pretreatment step and waters containing ~4.3 mg/L selenium were introduced into BEMR-1 and BEMR-2 as in Test 1. In this test 100 mL of 3.75 gm/L MYP nutrient was added to the bottom of both BEMR-1 and BEMR-2 for a total of 200 mL nutrient once daily; the effluent was sampled at the top of BEMR-2. A total retention time of forty-four hours produced a final effluent averaging ~0.031 mg/L selenium. During Test 3, the EBR was started and operated in the same manner as the BEMRs. A retention time of twenty-two hours produced a final effluent averaging ~0.030 mg/L selenium. In Test 4 the bioreactor configuration was again changed to connect the BEMRs and EBR in series using new test waters containing ~15 mg/L selenium and a total retention time of sixty-six hours. Limited data gathered showed an effluent averaging ~0.47 mg/L selenium from the two stage BEMRs and a final effluent from the EBR averaging ~0.072 mg/L selenium. A number of additional metals identified as potential permitting criteria were also removed to a large extent by the bioreactors.

Testing and site conditions indicate that both pre and post treatment steps will be required and sizing is given for both a 1/10 and a 1/50 pilot-scale system. Treatment costing assumptions and items are provided for a 1/10 pilot-scale test running three months with a cost estimate just under \$163,000.00.

TREATABILITY AND BENCH-SCALE BIOREACTOR TESTING OF WATERS FOR SELENIUM REMOVAL - FINAL REPORT

INTRODUCTION

This report summarizes data presented in earlier reports, *Phases 1* and *2*, addressing selenium treatability and initial testing of several different potential process and waste waters for a new mine at the Wolverine Project, YK. *Phases 3* and *4* address bench-scale testing of several different process water samples and provides a cost breakdown for an on-site pilot-scale test. Limiting conditions with respect to treatability at this site are temperature and high selenium concentrations; up to 14 mg/L selenium. It is planned to run the selenium biotreatment system seasonally; six months of the year - spring through fall. Water samples were obtained from tailings pilot plant runs that simulated actual full-scale tailings plant waters; samples were received from *Lorax Environmental Services Ltd.*, 2289 Burrard Street, Vancouver, BC V6J 3H9. The waters received were examined using different methods to assess potential selenium treatability, including two newly developed selenium removal technologies demonstrated to enhance biofilm growth and metal removal.

Data Summary

Phase 1 Goals

- o Evaluation of pilot plant process water chemistry for microbial toxicity and required nutrient supplementation
- Qualitative assessment of biotreatability effectiveness at temperatures of 20° C and 4° C using site and repository microbes
- o Qualitative assessment of biotreatability effectiveness of several microbial mixtures

Phase 1 testing produced the following conclusions:

- Microbial screening successfully demonstrated that site microbes and two microbial populations were capable of good selenium reduction in site waters at ~20° C and to a lesser degree at 4° C
- Overall, the tests were very positive and provided a strong demonstration that biological selenium reduction was achievable in the waters tested
- If effluents containing higher levels of selenium, e.g., <50 ppb can be considered, they would be possible with considerable less development and capital investment

Phase 1 Recommendations:

- o Continue testing the microbial populations and site isolates in *Phase 2*
- o Continue investigation of microbial adaptation for lower temperature selenium reduction
- o Perform preliminary assessment of selenium removal using selected nutrient combinations

Phase 2 Goals

- o Select an optimal microbial population for selenium removal in process test waters received
- o Continue to qualitatively assess selenium removal at 20° C and 4° C
- o Perform preliminary assessment of selenium removal using selected nutrient combinations
- o Evaluate microbial selenium removal characteristics

Phase 2 testing produced the following conclusions:

- Several microbial isolates and microbial populations were capable of selenium reduction in site waters at ~24° C using an economical nutrient and a 72 hour retention time
 - A microbial population SF036, Z0, SF056, and Lorax-1 (L-1) will be used in bioreactor tests
 - Following mixed culture co-adaptation, site microbes volatized selenium to a high degree
- pH was not an issue, but the waters provided for the *Phase 2* tests did affect selenium reduction

= 1

- Cyanide or another contaminant removed with hydrogen peroxide made a significant difference in the selenium removal obtained
- Selenium concentration will require at least two treatment stages to remove selenium to <50 ppb
- Nutrient component levels formulated for *Phase 3* tests included sugars, protein (carbon), nitrogen, iron, magnesium, and phosphate
 - Nutrients were provided in test solutions containing molasses/soy (3.75 to 0.75 gm/L), yeast (1.5 to 0.75 gm/L), and phosphate (0.05 to 2 gm/L)
 - The best performing defined media contained 3.75 gm/L molasses/soy, 1.5 gm/L yeast, and .5 to 2.0 gm/L phosphate – MYP media
 - Growth rates in the MYP media were slower than in a rich commercially available trypticase soy microbial media
 - Microbial selenium reduction at ~4° C in the waters provided for the *Phase 2* tests was not acceptable

Phase 2 Recommendations:

- o Testing and evaluation should proceed to the next level of bench-scale reactor testing at 24° C
- o Testing can be conducted in two new, but tested, biotreatment system designs
 - Electro-biochemical reactor (EBR)
 - Biochemical-enhanced materials reactor (BEMR)
- o Profile microbial population using Denaturing Gradient Gel Electrophoresis (DGGE)
- o Continue to track selected microbial adaptation and selenium volatization

BACKGROUND - BIOREACTOR TESTING

Phases 3 and 4

Phases 3 and *4* have not been covered in a formal report and are reported here. This document reports on the bench-scale process tests using three different waters, evaluates bioreactor testing for an on-site pilot-scale test, and provides a rough cost estimate for this test. The objectives include:

- o Evaluate the new process waters received for microbial toxicity and required nutrient supplements
- o Re-evaluate the selected microbial population in the process waters for relative selenium reduction
- o Fingerprint the microbes identified as important for selenium reduction in site waters using DGGE
- Evaluate selenium reduction in two new bioreactor types a bio-electrochemical (BEC) reactor and a biochemical-enhanced microbial support materials (BEMS) reactor
- Use the developed nutrient containing 3.75 gm/L molasses/soy, 1.5 gm/L yeast, and 1.0 gm/L phosphate (continued *Phase 2* testing indicated a lower phosphate concentration could be used)
- Target a bioreactor effluent with selenium concentrations below 20 µg/L (ppb)
- o Assess technologies for pilot-scale and provide a rough cost estimate for on-site tests

Water Samples

Water Chemistry Analysis

Selenium and other metal concentrations in samples analyzed were obtained by direct ICP MS analysis of the sample or through a dilution of the sample by a factor of 10:1 or 100:1. Samples and sample dilutions were run against calibration curves constructed using response measurements on known calibration standards. For example, for the lower selenium concentrations, the following 0, 40, 80,120, and 240 ng Se/L calibration standards were used. When required the selenium or other metal concentrations in the calibration standards were revised, for example to 0, 25, 250 and 2500 ng/L. In addition, dilution factors were calculated so that the selenium and other metal concentrations in the resulting dilutions approximated one-half the Se concentration in the new high calibration standard. The new dilutions were then prepared and run on the ICP MS against the calibration standards at the revised concentration levels; detection limits were 2 ppb for selenium. Results presented are corrected for dilution.

Water Samples Received

Phase 3 testing was initiated with five buckets of waters initially received for *Phase 3* that did not contain any significant selenium or other contaminants. These pH ~7 waters did not have any visible precipitates, were initially thought to contain selenium, and be from a process run. Water samples received were re-analyzed three times with the same result, no selenium present. However, analysis of another water sample from the same run, held by *Lorax Environmental Services Ltd.*, was shown to contain selenium, but not enough to conduct the tests required. The five buckets of pH ~7 water were spiked to ~9 mg/L selenium and used to start reactor conditioning and initial reactor tests.

A second water sample received for *Phase 3* tests consisted of nine buckets of water, provided as one process run with the water chemistry listed under the Bulk Tailings analysis in *Attachment 1*. This set of water samples was reported to have a pH of ~10 and a selenium concentration of ~2.5 mg/L. The pH in all buckets was ~10; however, the selenium concentration varied considerably, from ~4.3 mg/L to ~15 mg/L selenium, as did the appearance of the waters, *Figure 1*. The clear solution, five buckets total, containing ~4.3 mg/L selenium was used along with the spiked solution described above for the bulk of the bioreactor testing.

Figure 1. Three different buckets of the nine buckets of test solution received for *Phase 3* testing. These buckets have a selenium concentration of between ~4.3 to 15 mg/L. This photo shows the difference in the solutions received for testing. The clear solution, five buckets total, was assayed at average value of ~4.3 mg/L selenium. The colored solutions contain the higher selenium amounts – there were two buckets each of the red and brown colored solutions. The red colored solutions contained ~15 mg Se/L and the brown colored solutions contain ~13 mg/L selenium; this analysis represents a 0.22 μ m filtered sample analysis. Observation: The amount of precipitate in the buckets increased two- to three-fold with time, over approximately two months, and was not a function of settling. Buckets were held at pH ~10, as received, until used in bioreactor or other testing.

METHODS AND RESULTS

Standard and modified methods were used for all microbial analyses conducted. Standard and modified methods were used in all procedural protocols and modified or 'special' analysis methods were used for qualitative microbial selenium evaluations. Data presented represents summary, combined, and average data from individual tests and the screening conducted.

Re-evaluation of test microbes in new waters

In this step, the new process waters received were evaluated for microbial toxicity and nutrient supplements required for good microbial growth and selenium reduction. Evaluation media was made with new test waters containing 4.3 mg/L selenium and various concentrations of nutrient components in a test matrix. Individual microbes were screened in this test procedure for relative growth and selenium reduction. *Figures 2, 3, and 4* depict good microbial growth and selenium reduction using a defined media and a molasses/soy, yeast, phosphate media (MYP nutrient) in waters

containing ~4.3 mg/L selenium. Growth tests were conducted in static test flasks held at ~24° C (Laboratory temperature); absorbance shown in *Figures 3 and 4* is correlated in a direct manner with microbial growth.

Figure 2a and 2b. 2a shows SF036, Z0, SF056, and Lorax-1 (L-1), the individual bioreactor test microbes, with good microbial growth and selenium reduction using a defined media. *2b* shows a screen for selenium reduction using three different media containing different amounts of selected media components. The best growth and selenium reduction is on the plate on the right of *Figure 2b*.

Figure 3. Sample growth curves of the selected microbial population in various media component concentrations.

= 4

Figure 4. Growth curves of individual test microbes and the test population mix in MYP nutrient over a 72 hour period at 24° C (Laboratory temperature).

Nucleic Acid Profiling

The following discussion is presented because initially these bacteria were sub-cultured together to enhance selenium reduction in the site microbes and in a bioreactor test population that later became defined as containing SF036, Z0, SF056, and Lorax-1 (L-1). It is now accepted that the vast majority of microbes have not yet been isolated, identified or characterized. This is largely due to a lack of knowledge of how these organisms survive and grow in natural habitats. When one also considers that a bacterium is often part of a larger more complex community or ecosystem with possible co-dependence on other members, it is understandable why traditional culturing techniques fail to accurately reflect the large microbial diversity in an environmental sample. Identification and classification of microbes is further confounded by a general absence of morphologically distinct features, thousands of bacterial species are classically categorized by a few different (~17) morphologies.

The advent of culture-independent techniques has transformed the field of microbiology. PCR-based techniques allow the classification of microorganisms based on particular genetic markers and the profiling of complex microbial communities on the basis of nucleic acid sequence diversity (including the uncultured majority). For the past 10 –15 years, microbiologists have relied upon DNA sequence information for microbial identification, based primarily on the genes encoding the small subunit RNA molecule of the ribosome (16S rRNA or SSU rRNA).

Functional constraints on the cellular nucleic acid translational apparatus limit variability in the 16S rRNA molecule, resulting in a high degree of sequence conservation; therefore, a high degree of matching between the same microbes from different sources and different growth conditions. So, even if microbes exchange genes for selenium reduction, the conservation of the rRNA gene sequence permits bacterial characterization and identification based on sequence information obtained from pure cultures or cloned genes from mixed communities. This is possible because rRNA sequence data is used to design phylogenetically conserved probes that target both individual and closely related groups of microorganisms without cultivation.

A principle repository of 16S rRNA sequences, the Ribosomal Database Project (RDP), currently maintains over 17,000 aligned entries representing 850 of 940 formally recognized prokaryotic genera, which are placed into 1,149 phylogenetic groups. Comparative DNA sequencing analysis is widely considered to be the best genotypic method for microbial identification. The most common approach is PCR amplification and sequencing of all or a 500 Base Pair portion of the 16S ribosomal RNA gene. Sequence data is then compared against a sequence database, which ideally contains only validated microbial sequences.

One technique, based on PCR amplification and sequencing of 16S ribosomal RNA, now routinely used is denaturing gradient gel electrophoresis (DGGE). DGGE is a genetic fingerprinting technique that is used to separate individual sequences from a complex mixture. DNA sequences with differing base composition have different melting properties when passed through an acrylamide gel containing an increasing gradient of a chemical denaturant. The melting temperature of a double stranded DNA fragment is influenced by hydrogen bonds formed between complementary base pairs and also by the attraction between neighboring bases on the same strand (known as stacking interactions). The order of bases on a strand determines the degree of stacking. A DNA molecule may therefore have several melting domains with characteristic melting temperatures. DGGE profiles of the selected microbial population and individual isolated microbial constituents were conducted and results are shown in *Figure 5*. As can be seen, all test microbes are quite similar, but slightly different, and the bands found on the individual test microbes are present in the population profile 4M.

DGGE bands were extracted, amplified, and sent for sequence analysis. The DGGE and amplified sequence analysis shows that all microbes tested appear closely related, but their sequences matched no known microbial sequences in the on-line databases; they are unknown at both the genus and species level but closely related. Metabolic tests have shown that these microbes are quite different metabolically. A previous database check of repository microbe SF036 had shown no matching sequences and cultures of all test microbes exhibited the same DGGE profile before and after sub-culturing.

Microbial stock cultures have been made and are available for pilot-scale testing.

1 2 3 4 5 6	
	1. Lorax1 (L-1) 2. SF036 3. SF056 4. ZO 5. 4M 6. Acidithiobacillus ferrooxidans

Figure 5. DGGE profiles of site microbial RNA from L-1 and ZO, two repository microbes, 4M - a mixture of all bioreactor test microbes, and a A. ferrooxidans control.

BIOREACTOR TESTING

Bioreactor Configuration and Operation

Both reactors contained modified pumice materials as the bulk of the microbial support surface. Each bioreactor has a void volume of approximately 700mls and test waters have a twenty-two hour retention time in each bioreactor. Each reactor has three sampling ports used to monitor conditions within the bioreactor at the bottom, middle, and top. Bioreactors were operated at Laboratory temperatures of $\sim 24^{\circ}$ C. Bioreactor feed water was added to a clean feed water container on a daily or every other day basis followed by adjustment of the pH between 6.8 and 7.2 using hydrochloric acid. For one test, nutrients, at 3.75 gm/L, were added every other day to a pretreatment container that contained two days of test waters spiked to 9 mg/L selenium. In all other tests shown, nutrients were added to one or each reactor separately at a rate of 3.75 gm/L on a daily basis by mixing the nutrient into a 100mls of pH adjusted test water and pumping it into the reactor over a five minute time period. The flow rate through the bioreactor was then readjusted for a twenty-two hour retention time and re-connected to the feed water container.

All reactors were tested with an economical nutrient solution containing 3.75 gm/L MYP nutrient added to test waters. Testing was initially conducted in two new biochemical-enhanced material reactors (BEMR) while a third electrobiochemical reactor (EBR) was being constructed and undergoing preliminary tests. The BEMRs were operated in series for a total retention time of forty-four hours. *Figure 6* depicts the two initial BEMRs tested; no photo of the EBR is provided because patent approval is still in progress. The EBR was constructed and operated in a manner similar to the BEMR; a twenty-two hour retention time was used in this reactor. In one test all three reactors were connected in series, two BEMRs followed by the EBR for a total retention time of sixty-six hours.

Bioreactor effluent samples were collected during nutrient addition into a sterile 50 ml tube. All samples, including paired feed samples were centrifuged for 30 minutes and filtered through a pre-filter followed by a 0.22 micron filter. Samples were preserved by adjusting the pH below 1 with nitric acid and stored at 4° C until analysis. pH and ORP measurements were made before nutrient addition using the three sampling ports; fifteen milliliter samples were collected, centrifuged for 10 minutes, and pH and ORP were measured.

Bioreactor Testing Results and Discussion

BEMR inoculation and start-up was initiated with waters spiked to 9 mg/l selenium at pH ~7. This water was from the first five buckets of waters initially received for *Phase 3* that did not initially contain any significant selenium or other contaminants. Bioreactors were started and operated for one month using these waters. A second water sample was received for *Phase 3* tests that consisted of nine buckets of water; five buckets containing a clear test solution were used for the bulk of the bioreactor testing; these buckets were the ones that closely matched the water chemistry shown in attachment 1. The selenium content of these waters was ~4.3 mg/L. The EBR was started using test waters containing ~4.3 mg/L selenium. The final tests, conducted with three reactors in series, two BEMRs followed by the EBR, with a total retention time of 66 hours used water from a bucket containing a redish precipitate and ~15 mg/L selenium. Testing results are presented in *Figure 7*.

Figure 6. Two BEMR in series using a retention time of twenty-two hour each for a total retention time of forty-four hours.

Figure 7. A comparison of a two-stage BEMR and a separate single-stage EBR comparison using a twenty-two hour retention time per stage for a forty-four hour overall retention time in the BEMRs and a twenty-two hour retention time in the EBR. Dashed lines show breaks in reactor testing that included reactor start-up, down time, and re-equilibration of bioreactors for new test solutions or test configurations. The BEMRs and EBR comparisons were made with one test water at ~4.3 mg/L selenium; the BEMRs tests used three different test waters. The BEMRs were used to test three different test water selenium concentrations ~9 mg/L (spiked), ~4.3 mg/L, and ~15 mg/L. The reactor data shown represents operation at one nutrient concentration; 3.75 g/L. Reactors were operated at Laboratory temperature ~24° C.

In Test 1 the bioreactors appear to still be approaching a steady state. In this test, waters containing ~9 mg/L selenium were introduced into the bottom of BEMR-1 and flowed from the bottom to the top of BEMR-1 then into the bottom of BEMR-2; effluents were sampled at the top of BEMR-1 and BEMR-2. Nutrients were added to the feed solution entering the bottom of BEMR-1 using 100 mL of 3.75 gm/L nutrient once daily; no nutrients were added to BEMR-2 during this test except what carried over from BEMR-1. Retention time in each BEMR stage was twenty-two hours for a total retention time of forty-four hours and produced a final effluent averaging ~0.58 mg/L selenium.

In Test 2 the bioreactor configuration was changed to include a pretreatment step in which the feed waters containing ~9 mg/L selenium were held at ~24° C for forty eight hours with microbes and 100 mL of nutrient before entering the bioreactor. This simulated holding pond, with no microbial support materials, removed an average of ~2.9 mg/L selenium. At this point, the test water now containing ~6.5 mg/L selenium was again supplemented with 100 mL of nutrient and continued to flow into BEMR-1 and BEMR-2 as in Test 1; no nutrients were added to BEMR-2 during this test except what carried over from BEMR-1. Retention time in each BEMR stage was twenty-two hours for a total retention time of forty-four hours and produced a final effluent averaging ~0.029 mg/L selenium, if the first data point in this test is not included.

In Test 3 the bioreactor configuration was changed to eliminate the pretreatment step in Test 2. In this test, waters containing ~4.3 mg/L selenium were introduced into BEMR-1 and BEMR-2 as in Test 1, but 100 mL nutrient was added to the bottom of both BEMR-1 and BEMR-2 for a total of 200 mL nutrient once daily; the effluent was sampled at the top of BEMR-2. Retention time in each BEMR stage was twenty-two hours for a total retention time of forty-four hours producing an average final effluent of ~0.031 mg/L selenium.

During Test 3, the EBR was started after a period of preliminary tests and operated independent of the BEMRs; no pretreatment step was included. Separate test waters were introduced into the bottom of the EBR and flowed to the top where the effluent was sampled. One hundred milliliters of 3.75 gm/L nutrient was added to the bottom of the EBR once daily. Retention time in the EBR was twenty-two hours and produced a final effluent of ~0.030 mg/L selenium if the initial data point is discarded.

In Test 4 the bioreactor configuration was again changed to connect the BEMRs and EBR in series using new test waters containing ~15 mg/L selenium and a different water chemistry than in Tests 1, 2, and 3; no pretreatment step was included. In this test, waters were introduced into the bottom of BEMR-1 - to the bottom of BEMR-2 - to the bottom of the EBR; 100 mL of 3.75 gm/L nutrient was added to the bottom all reactors for a total of 300 mL nutrient once daily. Retention time in each reactor stage was twenty-two hours for a total retention time of sixty-six hours and produced an effluent averaging ~0.47 mg/L selenium from the two stage BEMRs and a final effluent from the EBR averaging ~0.072 mg/L selenium.

Evaluation for pilot-scale tests

Several different water chemistries were tested in *Phase 3*; one was close to the provided target process water chemistry with ~4.3 mg/L selenium, and all three were samples were initially thought to be samples of potential water chemistry. A two stage BEMR system of a single stage EBR came close to meeting target discharge criteria of 20 ppb on two of the potential target water chemistries. Addition of another reactor stage or increased retention times should meet these goals, but selenium removal is dependent on the water chemistry, and initial selenium concentration. In assessment of reactor performance, using the five buckets containing ~4.3 gm/L selenium, good selenium reduction and removal was achieved in the BEMRs with a forty-four hour retention time and in the EBR with a twenty-two hour retention time. Oxidation–reduction potential and pH were measured at three points within each reactor and provided for the BEMRs as Attachment 2.

Testing results indicate that a holding pond can be used for slower but significant selenium reduction if treated with nutrients and microbes. The effectiveness of the holding pond could be increased by addition of a microbial support growth surface; however, this would reduce the effective size of the pond. There was no attempt to determine the trade-off between pond size and addition of microbial growth surface which would increase the reaction kinetics.

The single stage EBR, with a twenty-two hour retention time, had the same performance as the two-stage BEMRs with a forty-four hour retention time. The level of selenium removals should be improved in both systems with the addition of a holding pond with microbes and nutrients. *It is likely that target selenium goals of 20 ug/L would have been obtained if a holding pond, with microbial support materials, had been used ahead of the bioreactors in Test 3, Figure 7.*

Selenium removal was good within the BEMRs even as the oxidation-reduction potential dropped into the -200 to -250 mV range between samples 40 and 45. This range is lower than is often considered optimal for the best selenium removal and is due to the amount of nutrients added to the bioreactors. This profile decrease in ORP has been noted in bench- pilot- and full-scale bioreactors and indicates that even though lower nutrient levels exhibited lower growth rates, *Figure 3*, in the long term these lower nutrient concentrations will still develop a substantial biofilm that should function well for selenium removal with significantly lower nutrient concentrations. *In all full-scale biotreatment systems implemented to date, significantly less nutrients were required once biofilm establishment was complete.*

Therefore, it is appropriate to start out a pilot- or full-scale bioreactor with higher nutrient levels to establish a biofilm and then reduce the nutrients significantly once the biofilm is developed. In colder water temperatures the formation of microbial biofilms is slowed considerably and unless the water can be heated, the development of a robust biofilm can take many months. This means the drop in ORP, observed in the bench-scale reactors, may not be observed for a much longer time, but is a good indicator of a mature biofilm and excess nutrients. The pH increased within the BEMR environment as expected because the concentrated nutrient solution was slightly acidic even when made up with pH adjusted test water; it initially degrades into less acidic byproducts. The bench-scale reactors exhibited pH profiles similar to those observed in full-scale bioreactors. A similar pH profile would be expected during pilot-scale tests.

When nutrient levels in biotreatment systems are not well balanced and in some instances where they are well balanced, post treatment to reduce biological oxygen demand (BOD) is required. In colder climates and instances where the biotreatment systems are shut down for any period a post treatment system is required to reduce BOD.

Additional Water Quality Criteria

As *Phase 3* was being completed, a number of additional metals were identified as potential permitting criteria. As indicated in *Table 1*, the pumice materials used as a microbial growth support were a significant source of several metals of interest. This source of metals could be removed by using gravel or activated carbon, but the gravel would provide significantly less surface area for a microbial biofilm, therefore lower selenium reduction kinetics, and virgin activated carbon would be considerably more expensive. The two different bioreactor types removed different amounts of different metals; however a significant reduction in all metals of interest except copper and nickel was achieved. Copper, at these levels is a component in many nutrients; but the origin of the nickel increase is currently unknown in the BEMRs. *Table 1* data is average data from14 points throughout the experiment.

_Table 1. Additional Water Quality Criteria - Bench-Scale Bioreactors

		ELEMENT	<u>AI</u>	<u>s</u>	<u>Fe</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	<u>As</u>	<u>Mo</u>	Ag	<u>Cd</u>	<u>Sb</u>	<u>Pb</u>	Hg
	<u>ITEM</u>		<u>μg/L</u>	<u>mg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>	<u>μg/L</u>
	AVERAGE FEED WATERS		998.95	460.67	32.00	6.23	3.00	19.48	2.61	632.52	2.04	1.77	14.93	5.02	2.15
			400.00	404 70	477.07	0.04	2 00	04 77	0.07	F7 C4	0.00	0.40	0.04	0 77	2.44
I WO BR	AVERAGE BEMR-1 EFFLUENT	22 HR RETENTION	162.63	421.73	177.37	8.31	3.00	21.77	2.67	57.64	0.30	0.16	6.21	0.77	3.41
IN SERIES	AVERAGE BEMR-2 EFFLUENT	44 HR RETENTION	58.17	339.88	255.68	11.49	4.05	32.51	1.93	12.25	0.21	0.06	3.05	2.61	1.46
	AVERAGE EBR EFFLUENT	22 HR RETENTION	23.21	176.09	339.41	10.41	3.04	31.65	1.40	55.65	0.00	0.18	10.69	5.31	2.74
BR FILL	AVERAGE ELUTED FROM PUMICE*	(gm)	200.07	0.00	175.19	1.22	1.07	7.73	0.00	0.00	0.00	0.00	0.00	0.00	0.08

(BEMR) – Bio-enhanced Materials Reactor

(BER) – Bio-electrochemical reactor

* - Average of two pumice elutions in amount per gram of pumice. Second elution amounts generally decreased by 50% to 75% with the exception of mercury which did not decrease with the 2nd elution. Elutions carried out in a manner to approximate release over the course of the experiments. No new elements showed up in 2nd elution; might expect some elution of these elements to continue over the course of the experiments conducted.

BACKGROUND FOR PILOT-SCALE TESTING

Pre- and Post-Treatments

Considering the range of selenium values and water chemistry differences in the water samples tested in *Phases 1-3*, a pre-treatment stage is strongly recommended. This system should be sized to handle any larger than normal flow events such as those that normally occur in the spring and fall. A recommended system would consist of a holding or equilibration pond either unfilled or partially filled with a microbial growth support. Based on water chemistry and temperature, this pond should have a minimum retention time of seven days to two weeks; or based on a flow rate of 9 L/s, a void volume of ~13,000 m³ for two weeks retention time. A better estimate of pond size, optimal retention time, and an economical trade-off in microbial support surface fill depth can be determined during pilot-scale testing.

Post-treatment is required to reduce treatment system BOD, and will be required at this site due to temperatures and operational requirements; a post-treatment system is also usually required to deal process water chemistry changes. Post-treatment consists of an aerobic stage where the selenium treatment effluents would be aerated in contact with a dense microbial population. Usually this microbial population will be available in site waters and will ultimately consist of a portion of the selenium reducing population; some of the facultative anaerobes. The type of post-treatment system required is dependent on nutrient load and can vary from a conventional trickling filter to an actively aerated system.

Pilot-Scale Treatment Size

The project flow rate for full scale treatment is approximately 9 L/s; therefore, recommended flow rates for a large pilotscale test would be 0.7, 0.9, and 1.1 L/s or flow rates about one-tenth of the full-scale flow. Smaller pilot-scale tests can be conducted and are often designed around flow rates of 0.02% of the target flow rate or 0.14, 0.18, and 0.22 L/s. Test flow rates are not fixed and should be adjusted to meet site requirements. Based on 50% void volumes and retention times needed, estimated system sizes for the pilot-scale tests are presented in *Table 2* below.

Flow <u>Rate (L/s)</u>	Total Flow/ Tmt Cycle (L/Day)	Pre-treatment Size (m^3)	Treatment System Size (m^3)	Post-treatment Size (m^3)
0.14	12,096.0	406.4	79.8	14.5
0.18	15,552.0	522.5	102.6	18.7
0.22	19,008.0	638.7	125.5	22.8
0.7	60,480.0	2032.1	399.2	72.6
0.9	77,760.0	2612.7	513.2	93.3
1.1	95,040.0	3193.3	627.3	114.0

Table 2. Treatment System Component Size – Void Volume 50%.

Total Flow - Flow Rate L/sec*60 sec/min*60 min/hr*24 hrs/day

Pre-treatment Size – (Flow Rate L/sec*60 sec/min*60 min/hr*24 hrs/day*14 days)/1,000 L/m³*2 vv*1.2 sizing factor Treatment System – (Flow Rate L/sec*60 sec/min*60 min/hr*66 hrs)/1,000 L/m³*2 vv*1.2 sizing factor Post-Treatment Size – (Flow Rate L/sec*60 sec/min*60 min/hr*12 hrs)/1,000 L/m³*2 vv*1.2 sizing factor

Treatment Costing Assumptions

The following assumptions are made for the included pilot-scale cost estimate.

- o Site lodging and meals will be provided during time at site
- Testing time is June through August three months
- o Labor assistance by on-site personnel
- o Weekends or cycle time in Whitehorse, YK (~24 days) Transportation to Whitehorse
- o Power, pumps, tanks/ponds, piping, and water heater at site
- o Near-by gravel or pumice supply provided on site
- o Inoculum scale-up tanks can use treatment system tanks
- o Nutrient tank, costs, and transportation to site ~106 tons OR ~20,000 gal covered in cost estimate
- o 1/10 flow pilot-scale test

Cost Estimate

This is a rough estimate of costs for a 1/10 flow pilot-scale test for a period of three months. Costs will change upon further discussion and refinement of desired test period, test parameters, potential site personnel involvement, and materials that can be provided on site.

	Technical Director Consultant	Principal Engineer/ Scientist	Senior Engineer	Associate Engineer/ Scientist	Environmental Scientist Microbiologist	Technician	TOTAL HOURS	TOTAL LABOR \$
Hourly Billing Rate	\$185	\$120	\$80	\$83	\$54	\$36		
TASKS								
1. Project Management								
a. Coordination and Oversight	30			20	40		90	\$9,370.00
 b. Client Review Meetings 	16				16		32	\$3,824.00
Project Management Hours	46	0	0	20	56	0	122	
Project Management Subtotal Labor Dollars	\$8,510	\$0	\$0	\$1,660	\$3,024	\$0		\$13,194.00
2. Laboratory Optimization								
a. Water Characterization	4			8	16		28	\$2,268.00
b. Culture Screening	4				24		28	\$2,036.00
Laboratory Optimization Subtotal Hours	8	0	0	8	40	0	56	
Laboratory Optimization Subtotal Labor Dollars	\$1,480	\$0	\$0	\$664	\$2,160	\$0	\$4,304	\$4,304.00
3. Pilot-Scale Operations								
a. Bioreactor Preparation	40			16	160		216	\$17,368.00
b. Inoculum Preparation	40				160	40	240	\$17,480.00
c. Pilot-Scale Operation	40			16	160		216	\$17,368.00
d. Microbial Support	8				8	40	56	\$3,352.00
e. Report Preparation	24			16	24		64	\$7,064.00
Pilot-Scale Operations Hours	152	0	0	48	512	80	792	
Total Pilot-Scale Operations Labor Dollars	\$28,120	\$0	\$0	\$3,984	\$27,648	\$2,880		\$62,632.00
Total Project Hours	206	0	0	76	608	80	970	
Total Project Labor Dollars	\$38,110	\$0	\$0	\$6,308	\$32,832	\$2,880 Total Other	\$80,130 Direct Charges	\$80,130.00 \$82,351.50
						Total Estimated	l Project Fees	\$162,481.50

Cost Proposal for Pilot-Scale Study at Yukon Mine Site

Other Direct Charges (ODC's)

Air/Milea ge	Mileage Cost	Misc. Supplies	Nutrients	Equipment Lease	Lodging & Meals	TOTAL ODC's
	0.45					
2000	900.00					\$900.00
						\$0.00
\$9,600.00					\$2,880.00	\$12,480.00
Project Ma	nagement S	ubtotal ODC	's			\$13,380.00
400	180.00					\$180.00
	•					\$0.00
Laboratory	Optimizatio	on Subtotal	Subtotal ODC	''s		\$180.00
	-	\$2,000.00		\$3,700.00		\$5,700.00
	-	\$350.00	\$50,000.00			\$50,350.00
	-	\$2,000.00				\$2,000.00
	•					\$0.00
<u> </u>						φ 0. 00
Total Pilot-	Scale Oper	ations Subto	tal ODC's			\$58,050.00

Subtotal Other Direct Charges	\$71,610.00
Administrative and Handleing Fee @ 15%	\$10,741.50
Total Other Direct Charges	\$82,351.50

P.O. BOX 581229 • SALT LAKE CITY, UT 84158 • PHONE (801) 712-2760 • FAX (435) 647-9842

ATTACHMENT 1. BULK TAILINGS ANALYSIS

-

nvironmental Division	ALS
ANALYTICA	LREPORT
LORAX ENVIRONMENTAL SERVICES	Reported On: 27-SEP-07 11:13 AM
2289 BURRARD STREET	
VANCOUVER BC V6J 3H9	
ab Work Order # 1.550876	Date Received: 06-SEP-07
Project P.O. #: Job Reference: 474-1 YUKON ZINC Legal Site Desc: CofC Numbers:	
Other Information:	
Timothy Guy Crowther General Manager, Vancouv For any questions about this report please Andre La	er a contact your Account Manager. nglais
THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN HALL WITHOUT ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANAL	THE WIGTER AUTHORITY OF THE LABORATERY LYSIS, PLEASE CONTACT THE LABOR YOU

⁼14

L550876 CONTD.... PAGE 2 of 8 27-SEP-07 11:10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L550876-1	L550876-2	L550876-3	L550876-4	L550876-5
	Sampled Date	05-8EP-07	05-8EP-07	05-8EP-07	05-8EP-07	05-8EP-07
	Client ID	BULK TAILINGS	BULK TAILINGS	BULK TAUNGS	PB RO CONC	CU RO CONC
Grouping	Analyte	1 (9/10/11)	2 (12/13/17)	3 (14/15/16)		
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	802	834	697	411	463
	Conductivity (uS/cm)	1730	1830	1530	1110	1190
	pH (pH)	10.3	10.7	10.2	7.62	7.91
	Total Dissolved Solids (mg/L)	1550	1560	1330	875	952
	Total Suspended Solids (mg/L)	9.3	<3.0	5.3	<3.0	<3.0
	Turbidity (NTU)	7.38	0.57	3.48	13.9	19.9
Anions and	Ammonia as N (mg/L)	0.265	0.389	0.184	0.235	0.197
Nutriento	Alkalinity, Total (as CaCO3) (mg/L)	106	151	101	7.3	81.3
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (CI) (mg/L)	4.44	4.91	5.27	6.07	5.89
	Fluoride (F) (mg/L)	0.167	0.161	0.134	0.114	0.093
	Sulfate (SO4) (mg/L)	597	632	534	393	460
	Nitrate (as N) (mg/L)	0.556	0.550	0.459	0.434	0.473
	Nitrite (as N) (mg/L)	0.0167	0.0085	0.0115	0.0067	0.0059
	Ortho Phosphate as P (mg/L)	0.0042	0.0048	0.0029	0.0035	<0.0010
	Total Phosphate as P (mg/L)	0.213	0.142	0.130	0.242	0.0038
Cyanides	Cyanide, Weak Acid Diss (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
_	Cyanide, Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Thiocyanate (SCN) (mg/L)	<0.50	0.58	0.55	<0.50	0.69
Total Metals	Aluminum (Al)-Total (mg/L)	1.19	1.26	1.11	0.0219	0.0117
	Antimony (Sb)-Total (mg/L)	0.0287	0.0294	0.0301	0.0253	0.0598
	Arsenic (As)-Total (mg/L)	0.00789	0.00532	0.00611	0.00379	0.00458
	Barlum (Ba)-Total (mg/L)	0.190	0.188	0.174	0.120	0.160
	Beryllium (Be)-Total (mg/L)	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
	Bismuth (BI)-Total (mg/L)	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
	Boron (B)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Cadmium (Cd)-Totai (mg/L)	<0.0020	<0.0020	<0.0020	0.00229	0.00601
	Calclum (Ca)-Total (mg/L)	321	334	279	155	175
	Chromlum (Cr)-Total (mg/L)	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
	Cobalt (Co)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	0.00195
	Copper (Cu)-Total (mg/L)	0.00335	0.00095	0.00125	0.0118	0.0652
	Iron (Fe)-Total (mg/L)	0.308	0.039	0.158	0.048	1.02
	Lead (Pb)-Total (mg/L)	0.469	0.748	0.239	0.294	0.622
	Lithium (Li)-Total (mg/L)	<0.025	<0.025	<0.025	<0.025	<0.025
	Magnesium (Mg)-Total (mg/L)	<0.10	<0.10	<0.10	5.81	6.14
	Manganese (Mn)-Total (mg/L)	0.00548	0.00048	0.00208	0.146	2.98
	Molybdenum (Mo)-Total (mg/L)	0.661	0.696	0.562	0.0183	0.00529
	Nickel (NI)-Total (mg/L)	<0.0025	<0.0025	<0.0025	<0.0025	0.0546
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30

-

L550876 CONTD.... PAGE 4 of 8 27-SEP-07 11:10

ALS LABORATORY GROUP ANALYTICAL REPORT

T			1		1	10011000000010000000000	1
		Sample ID	L550876-1	L550876-2	L550876-3	L550876-4	L550876-5
		Description Sampled Date	05-8EP-07	05-8EP-07	05-8EP-07	05-SEP-07	05-8EP-07
		Sampled Time		SULK TALLINGS			011 80 0000
Grouping	Analyte	Gildin ID	1 (9/10/11)	2 (12/13/17)	3 (14/15/16)	PBROCONC	CORDCONC
WATER							
Total Metals	Potassium (K)-Total (mo/L)		8.2	7.4	6.4	57	5.4
	Selenium (Se)-Total (mg/L)		3.05	3.21	2.54	0.907	0.676
	Silicon (Si)-Total (mg/L)		0.149	0.110	0.148	0.145	1.05
	Silver (Ag)-Total (mg/L)		0.00262	0.00217	0.00122	0.00317	0.00849
	Sodium (Na)-Total (mg/L)		80.8	87.6	70.5	65.8	66.3
	Strontlum (Sr)-Total (mg/L)		0.859	0.876	0.747	0.396	0.433
	Thaillum (TI)-Total (mg/L)		0.00152	0.00154	0.00187	0.00721	0.0103
	Tin (Sn)-Total (mg/L)		0.00825	0.00897	0.0165	0.00126	0.00194
	Titanium (TI)-Totai (mg/L)		<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)		<0.000050	<0.000050	<0.000050	<0.000050	0.000520
	Vanadium (V)-Totai (mg/L)		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Zinc (Zn)-Total (mg/L)		0.314	0.486	0.293	0.190	2.44

ATTACHMENT 2. BEMR ORP and pH PROFILES

ATTACHMENT 2. OXIDATION REDUCTION POTENTIAL AND pH IN BEMRs

Oxidation Reduction Potential

⁼17

