Appendix 7.10 Wildlife

Contents

Appendix 7.10-1Methods for Habitat Models by VECCAppendix 7.10-2Wildlife Species List

Appendix 7.10-1 Methods for Habitat Models by VECC

Appendix 7.10-1 Methods for Habitat Models by VECC

In the following wildlife models incorporated into the EIA and are provided by VECC. As a component of these habitat models, species-specific disturbance buffers to anthropogenic disturbances were applied to all project component footprints for the construction/operations/decommissioning scenario, and to some project component footprints for the closure scenario. Anthropogenic disturbances associated with the wildlife models are thus provided first.

Wildlife Disturbance Coefficients and Zones of Influence

Current and predicted anthropogenic disturbances to the landscape and the human activities associated with them can cause wildlife to avoid otherwise suitable habitat. All wildlife models below, assumes that habitat suitability is reduced by the presence of human disturbance. Disturbance features were categorized into classes. Zones of Influence (ZOI) were then assigned based on the best available knowledge of species avoidance to these disturbance types (Table 1). Disturbance coefficients were then assigned to each ZOI. Habitat suitability was reduced within each ZOI. Thus, any habitat that falls within the ZOI (including the actual footprint) is considered affected and the rating of the habitat is adjusted according to the projected impact (see Table1).

Table 1 Zones of Influence and associated habitat rating adjustments by Wildlife VECC

		Moose	;	Gri	izzly B	ear		Sheep)		Lynx			Marter	า	0	Caribo	u
Anthropogenic Disturbance Type	Footprint	Buffer (m)	Rating	Footprint	Buffer (m)	Adjustment	Footprint	Buffer (m)	Rating									
Clearings / Camps	0	250	0.75	6	800	+3	0	350	0.5	0	250	0.75	0	100	0.75	0	100	0.5
Cutlines	0.75	100	0.75	N/A	400	+1	0	N/A	N/A	0.75	N/A	N/A	0.75	N/A	N/A	0	100	0.5
Industrial Liquid dump/depot	0	250	0.5	6	800	+3	0	500	0.5	0	250	0.75	0	100	0.75	0	500	0.5
Structure (buildings/campgrounds)	0	100	0.75	6	400	+1	0	500	0.5	0	250	0.75	0	100	0.75	0	500	0.5
Main Roads	0	250	0.5	6	800	+3	0	500	0.5	0	250	0.75	0	100	0.75	0	500	0.5
Main Road - ground level, loose surface, operational road	0	250	0.5	6	800	+3	0	500	0.5	0	250	0.75	0	100	0.75	0	500	0.5
Secondary Road - ground level, hard surface, operational road	0	100	0.75	6	800	+3	0	350	0.5	0	N/A	N/A	0	100	0.75	0	500	0.5
Limited-use, Cart, Track, Road, or Drill Road	0	100	0.75	6	400	+1	0	350	0.5	0.75	0	N/A	0.75	N/A	N/A	0	100	0.5
Airstrip	0	300	0.5	6	800	+3	0	500	0.5	0	250	0.75	0	100	0.75	0	500	0.5
Mine Site	0	250	0.25	6	400	+1	0	500	0.5	0	250	0.75	0	100	0.75	0	500	0.5

Note: Habitat suitability may be reduced within the footprint and/or a buffer zone by multiplying the HSI value by the disturbance coefficient or by adjusting the habitat suitability rating. For example, a disturbance coefficient of 0.25 will reduce the HSI value by 75% or increasing the suitability rating by 3 (+3) will reduce the 6 point scale habitat rating by 50%.

Caribou

Habitat models for winter and fall caribou habitat in the RSA included data from aerial telemetry studies on the Finlayson Caribou Herd between 1982 and 2004 (data provided by Farnell, 2005), satellite imagery interpretations, and key wildlife habitat areas identified by environment Yukon for the Finlayson Caribou herd (data provided by Farnell 2005).

Fall and winter caribou habitat models were completed in 3 steps including a supervised sattelitte imagery classification; validation between habitat polygons and aerial telemetry data, and a ranking scheme using of suitable habitats from the satellite imagery classification in context with confirmed key wildlife habitat areas in the RSA. Each of these steps is discussed below, in order of application.

I - As an initial step in he modeling process, supervised satellite imagery interpretations were conducted based on vegetation and caribou habitat assessments conducted within the Wolverine Project LSA. Specifically, four caribou habitat types were classified through this process at an accuracy of 76% confirmation. These four habitat types are defined by the following; provided for each is an associated picture depicting the typical habitat type below each description:

1. Forested stands (defined by a minimum 5% canopy closure) having significant terrestrial lichen cover.

2. Forested stands defined by a minimum 5% canopy closure) not having significant terrestrial lichen cover.

3. Shrub cover stands as defined in the Vegetation Section (including Shrub Ecosystems, Scrub birch medium/tall shrub, Willow-scrub birch medium/tall shrub, Willow medium/tall shrub, and Dwarf Shrub, Herb, Grass, and Lichen Ecosystems) having significant terrestrial lichen cover.

4. Alpine or open grassland areas having significant terrestrial lichen cover.

II- Next, the locations of winter and aerial telemetry relocations (survey locations and aerial telemetry locations) were compared to each of the four habitat types identified above (I) to assess predictive capability. Through this process the two habitat types were found to be most predictable in identifying winter habitat suitability and two habitat types were found to be most predictable in identifying winter habitat suitability (Table 2)

Habitat Type	Habitat Type as defined from supervised satellite imagery interpretations (defined in I)				
Winter Caribou	1. Forested stands defined by a minimum 5% canopy closure) not having significant terrestrial lichen cover; and				
Habitat	2. Forested stands (defined by a minimum 5% canopy closure) having significant terrestrial lichen cover.				
Fall Caribou Habitat	 Shrub cover stands as defined in the Vegetation Section (including Shrub Ecosystems, Scrub birch medium/tall shrub, Willow-scrub birch medium/tall shrub, Willow medium/tall shrub, and Dwarf Shrub, Herb, Grass, and Lichen Ecosystems) having significant terrestrial lichen cover. Alpine or open grassland areas having significant terrestrial lichen cover. 				
	2. Alphic of open grassiand areas having significant terrestrial fichen cover.				

Table	e 2: Habitat	types used	to Define	Winter a	nd Fall (Caribou Habitats

The accuracy of the predicted winter habitat and fall habitat classification to predict the presence of caribou locations in the RSA was assessed at approximately 90% during the winter and 80% during the fall, assuming a very conservative 100m location error on all aerial locations used in this assessment (Figure 1-1 and 1-2).

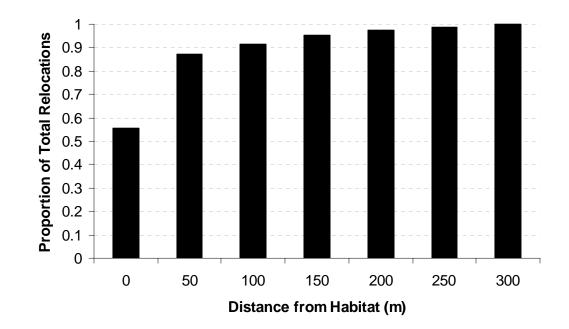


Figure 1-1 Proportion of Winter Caribou Locations in the RSA within Proximity to Satellite Imagery Habitat Interpretations n=186

Figure 1-2 Proportion of Fall Caribou Locations in the RSA within Proximity to Satellite Imagery Habitat Interpretations n=1221

III- As a final step a ranking scheme was used to define fall and winter caribou habitats within the LSA using a confirmation approach from key wildlife habitat areas identified in the RSA by Environment Yukon. A Priority rating for each habitat type is as well assessed, whereby the higher the priority rating (1 is high and 4 is low priority) the higher the quality of the habitat. For Fall Caribou Habitat this ranking scheme is as follows:

Priority 1: "Confirmed Habitat Areas" = All fall caribou habitat (as identified above) that are located within the Key Wildlife Habitat Polygons for caribou in the fall season within the RSA.

Priority 2: "Un-Confirmed Habitat Areas" = All fall caribou habitat (as identified above) that are not located within the Key Wildlife Habitat Polygons for caribou in the fall season.

Priority 3: "Confirmed Habitat Areas" in Zone of Influence = All fall caribou habitat (as identified above) that are located within the Key Wildlife Habitat Polygons for caribou in the fall season within the RSA and that area as well within a ZOI from anthropogenic disturbances.

Priority 4: "Un-Confirmed Habitat Areas" in Zone of Influence = All fall caribou habitat (as identified above) that are not located within the Key Wildlife Habitat Polygons for caribou in the fall season within the RSA and that area as well within a ZOI from anthropogenic disturbances.

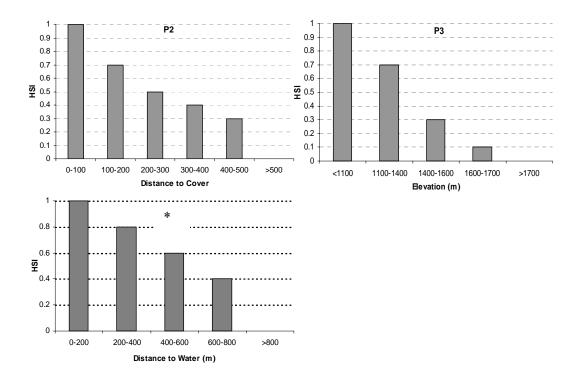
For Winter Caribou Habitat this ranking scheme is as follows:

Priority 1: "Confirmed Habitat Areas" = All winter habitat (as identified above) that is located within the Key Wildlife Habitat Polygons for caribou in the winter season within the RSA.

Priority 2: "Confirmed Habitat Areas" in Zone of Influence = All winter caribou habitat (as identified above) that are located within the Key Wildlife Habitat Polygons for caribou in the winter season within the RSA and that area as well within a ZOI from anthropogenic disturbances.

Moose

The method used for predicting habitat availability for moose incorporate a habitat suitability index (HSI) modeling approach for ecosystems mapped in the LSA. Model parameters for each species HSI model was derived and validated given (1) a field assessment of ecosystem units in the LSA by a wildlife biologist and (2) a literature review of habitats used by moose. The relationship between habitat parameters and suitability rating for moose is depicted in Figure 1-3. A mathematical function for predicting habitat based upon each habitat parameter is provided in Equation 1-2. A list of selected references supporting habitat parameters assumed for moose is provided in Table 1-5.


Table 1-3 Relationship between Habitat Parameters and Winter Habitat Suitability Index for Moose

HSI Moose Browse Rating Scheme by Vegetation Type				
Vegetation Type	Map Code	HSI: Forage Rating		
Forested Ecosystems				
Open subalpine forest	SF	0.2		
Open white spruce forest	PC	1.0		
Open black spruce forest	BS	0.3		
Open lodgepole pine-spruce forest	LS	0.2		
Open lodgepole pine forest	LP	0.2		
Open lodgepole pine-aspen forest	LT	0.5		

P1

Open trembling aspen-spruce (pine) forest	TS	0.8
Shrub Ecosystems		
Scrub birch medium/tall shrub	DB	0.8
Willow-scrub birch medium/tall shrub	WD	1.0
Willow medium/tall shrub	WT	1.0
Dwarf Shrub, Herb, Grass, and Lichen Ecosystems		
Wet sedge herb	SH	0.7
Mesic mixed herb	MH	0.3
Heather-avens dwarf shrub	AS	0.0
Alectoria-cladina-cetraria fruticose lichen	AC	0.0

Figure 1-3

Notes: * Distance to cover is based on distance to nearest forestland with >5% canopy closure. ** Distance to water is calculated from NTDB satellite imagery.

Table 1-4 P5 HSI for Anthropogenic Disturbances

				Moose			
Disturbance Class	Disturbance Feature	Assumptions	Footprint: Disturbance Coefficient	Buffer width (m)	Disturbance Coefficient		
Mine	Mine Foot Print	During Construction and Operations	0.0	250m	0.25		
Linear	Primary roads	Assume high use in absence of better information	0.0	250m	0.5		
Structures	Secondary Roads / Trails	Assume low use in absence of better information	0.0	100m	0.75		

Seismic and Cutlines	Cut Line	Assume low use in absence of better information (i.e., age), assume 'soft edge' and narrow	0.75	100m	0.75
Structures	Building & Structures	Assume low use in absence of better information	0.0	100m	0.75
Transportation	Airfield	Assume high use in absence of better information	0.0	300m	0.5

Notes: Roads and trails created by resource exploration activities may be avoided by moose as a direct result of sensory disturbance or due to increased hunting pressure. Disturbance to the landscape and the human activities associated with them can cause wildlife to avoid otherwise suitable habitat. This model assumes that habitat suitability is reduced by the presence of human disturbance. Disturbance coefficients were assigned to each disturbance feature. Habitat suitability was reduced within the footprint and or a buffer distance from each disturbance feature by multiplying the HSI values by the disturbance coefficient. For example, a disturbance coefficient of 0.25 will reduce the HSI value by 75%.

Equation 1-2: Mathematical function used to determine the winter habitat suitability index for moose.

ł	$HSI_{Food} = P^1_{Browse Cover}$
ł	$HSI_{Cover} = P^2_{Distance to Cover} \times P^3_{Elevation}$
I	$HSI_{Overall} = [(0.6 \text{ x } HSI_{Food} + 0.4 \text{ x } HSI_{Over}) \text{ x } P^4_{Distance to Water}] \text{ x } P5_{Disturbance Coefficient}$

Table 1-5Supporting Literature for each Habitat Parameter used in the
Winter Moose HSI Model

Species	Parameter	References
Moose	P1 - % Cover Browse	Banfield 1974; Silver 1976; Wolff & Cowling 1981; Sambaa k'e
		Development Corporation 2004; Johnson & Rutton 1993; Nowlin 1978;
		Walton-Rankin 1977; Synergy West Ltd. 1973; Westworth et al. 1989.
	P2 – Distance to Forest	Doerr 1983; Nietfeld et al 1984; Pierce & Peek 1984; Telfer 1978; 1984;
	Cover	Eccles et al. 1986; Eccles & Duncan 1988; Mytton & Keith 1981.
	P3 - Elevation	Ruttan 1974; Eccles et al. 1986; Serrouya R. and D'Eon, R. 2002;
		Matchett 1985; Simpson et al. 1988.
	P4 – Distance to Water	(Prescott et al. 1973; Ruttan 1974; Sambaak k'e Development
		Corporation 2004; Rolley & Keith 1980; Mytton & Keith 1981; Brackett
		et al. 1985; Salter et al. 1986; Jingfors et al. 1987; Eccles & Duncan
		1988; Telfer 1984.

Thinhorn Sheep

For sheep, biophysical attributes that typically define primary winter range include escape terrain, distance from escape terrain, aspect and elevation. A habitat Suitability Index (HSI) for sheep winter habitat was developed based on the following algorithm that assigns and combines relative attribute values for each polygon on the study area map.

 $HSI = (P1 \times 0.35) + (P2 \times 0.25) + (P3 \times 0.25) + (P4 \times 0.15)$

The HSI algorithm predicts winter sheep habitat on a scale between 0 and 5. Habitats predicted to have HSI values greater than or equal to 3 were defined as suitable winter mountain sheep habitat and were outlined on the study area map (Figure xx).

The four primary habitat variables (P1 to P4) were identified using data from a digital elevation model as a raster in a Geographic Information System (GIS) with 25m-pixel resolution. A minimum area of five hectares was used as a final step in mapping habitat polygons. In ranked order of importance, the four model attributes are described below.

Distance from Escape Terrain was considered the most important defining element in delineating the boundaries of winter habitat. Based on review of available literature, an inverse linear relationship between distance and escape terrain outwards to 250 m was used predict this element of ideal winter habitat (P1 in Figure xx below). Distance from esacpe terrain varies with other conditions not included in is model, including quality and availability of forage and herd size where larger group sizes (>10) are thought to venture further from escape terrain, presumably because of group dynamics where individuals find security in numbers (Risenhoover and Bailey 1985; Rachlow and Bower 1988).

Slope Steepness is important for sheep due to the security it provides from predators (Geist 1971; Hoefs and Cowan 1979; Festa-Bianchet 1988; Frid 1999). This is particularly important during lambing season. Willard and Tilton (1982) found that wintering bighorn sheep primarily used slopes that were between 36% and 80% steep with selection for slopes that were greater than 80% steep. A study of sheep wintering thinhorn sheep habitat in northeastern British Columbia found similar winter observations, and observed use of less steep slopes during the rut and summer seasons (K. Parker, pers. comm., 2005). In the Savannah Field winter model algorithm, ideal slope steepness was defined as slopes ranging between 45° and 60° (P2 in Figure xx below).

<u>Aspect</u> is important for sheep as it directly influences solar radiation and prevailing winds. Solar radiation affects metabolic rates in mountain ungulates and the length of growing season for forage plants. Both solar radiation and prevailing winds affect snow depths and availability of forage during winter months. Consequently, on northern latitudes, ungulates tend to utilize south and southwest facing slopes, something that's been well documented in past studies (Geist 1971; Hoefs and Cowan 1979; Risenhoover and Bailey 1985) (P3 in Figure xx below).

Elevation is important in that sheep utilize subalpine and alpine areas with preference for mid-elevations during winter. In the Wolverine Project Area the winter model algorithm, ideal elevations were influenced by heights of land (ca. 2000 m) with preference ranging between 1000 m and 1800 m (P4 in Table 1-4 below).

Table 1-4Relationships between Habitat Parameters and Habitat Suitability
for Thinhorn Sheep Winter Habitat

Distance from Escape Terrain (45-60)	Habitat Rating (1-5)
0 to 50m	5
51m to 100m	4
101m to 150m	3
151m to 200m	2
201m to 250m	1

Parameter 1 – Distance from 45-60 degree steep slopes (P1)

251-300m	0
301-350m	0

Parameter 2 - Slope steepness (P2)

Slope Steepness	Habitat Rating (1-5)
20° to 25°	1
26° to 30°	2
31° to 35°	3
36° to 40°	4
41° to 45°	4
46° to 50°	4
51° to 55°	4
56° to 60°	4
61° to 65°	2
66° to 70°	1

Parameter 3 - Slope aspect (P3)

Aspect	Habitat Rating (1-5)
100° to 120°	1
121° to 140°	2
141° to 160°	2
161° to 180°	4
181° to 200°	5
201° to 220°	5
221° to 240°	5
241° to 260°	5
260° to 280°	3
281° to 300°	2
300 to 320	1

Parameter 4 – **Elevation (P4)**

Elevation	Habitat Rating (1-5)
400 – 500m	1
500-600	1
600 -700	1
700 - 800	2
800 - 900	2
900 -1000	3
1000 - 1100	4
1100 - 1200	5
1200 - 1300	5
1300 - 1400	5
1400 - 1500	5
1500- 1600	5
1600 - 1700	5
1700 - 1800	5
1800 - 1900	4
1900+	3

Grizzly Bear

The suitability of a particular habitat type for grizzly bears is determined by the quality of the vegetation as well other attributes of the habitat. The effects of these attributes on northern interior grizzly bear habitat suitability are incorporated in the models using various assumptions (Table 1-6 and 1-7, respectively). Assumptions are based on season and the needs of an individual bear. The habitat ratings for grizzly bears in the area utilized a 6-category rating scheme for grizzlies. Thus the ratings scheme for grizzly bear habitat includes very high (1), high (2), moderate (3), low (4), very low (5) and no value (6) categories. A rule for making a habitat rating call based on two vegetation parameters (% herbaceous cover and % berry bearing cover) is provided in Table 1-8.

Season	Variable	Parameter	Priority	Class	Rating	Comments
Grizzly Bear	Vegetation	% Herbaceous	1	>50	1	
Habitat,		Cover (grasses and		10 - 50	2	
Spring Forage		herbs)		<10	4	
(May1 to June		% berry bearing	2	>30%	1	
30)		shrub cover		10-30	2	
				1 - 10	4	
				<1	6	
	Adjustment	Slope Aspect	See modifier adjustment table			
		Human Activity	See modifie	er adjustment table	e	
		Fire	See modifie	er adjustment tabl	e	

Table 1-7 Habitat Ratings for Grizzly Bear Summer/Fall Forage Habitat

Season	Variable	Parameter	Priority	Class	Rating	Comments
Grizzly Bear	Vegetation	% berry bearing	1	>30%	1	
Habitat,	_	shrub cover		10 - 30	2	
Summer/Fall				1 - 10	4	
Forage				<1	6	
(July 15 to		% Herbaceous	2	>50	1	
Nov. 10)		Cover (grasses and		10 - 50	2	
		herbs)		<10	3	
	Modifiers	Fire	See modifier adjustment table			
		Human Activity	See modifier adjustment table			

Table 1-8Decision Rules for Ranking Vegetation Parameters Based on Two
Vegetation Types

Rank of 1 st Priority Attribute	Rank of 2 nd Priority Attribute	Resulting Rank A	Rank of 1 st Priority Attribute	Rank of 2 nd Priority Attribute	Resulting Rank A
1	1	1	4	1	3
1	2	1	4	2	3
1	3	2	4	3	4
1	4	2	4	4	4
1	5	3	4	5	4
1	6	4	4	6	5
2	1	2	5	1	3

2	2	2	5	2	4
2	3	2	5	3	4
2	4	3	5	4	5
2	5	3	5	5	5
2	6	4	5	6	5
3	1	2	6	1	3
3	2	3	6	2	4
3	3	3	6	3	5
3	4	3	6	4	5
3	5	4	6	5	6
3	6	5	6	6	6

Modifiers to Habitat Ratings:

Aspect

Slopes having at least 10 degrees of slope steepness were distinguished from remainder of relatively flat terrain by the aspects (azimuth) that these slopes face. Habitats on south, southwest, west and southeast facing slopes receive greater solar isolation, which results in earlier snowmelt and earlier access to spring forage. The rating adjustments used for spring grizzly bear habitats based on slope aspect is provided in Table 1-9, below.

Table 1-9 Spring Grizzly Bear Habitat Rating Adjustments for Aspect

Season	Variable	Class (slope Azimuth)	Habitat Rating Adjustment
Grizzly Bear Habitat,	Slope Aspect	South, Southwest $(160^\circ - 240^\circ)$	<u>↑</u> 2
Spring Forage		West (245° to 300°), Southeast (110° to 160°)	↑1
		East (60° to 110°)	$\downarrow 2$
		North, Flat (300° to 60°)	↓3

Development and Human disturbances

Habitat availability for grizzly bears may be impacted in a number of ways resulting from anthropogenic disturbances: direct habitat loss (or gain) resulting from removal or alteration of habitat (human-caused or natural in origin), reduced habitat effectiveness of otherwise effective habitat as a result of noise, human presence, or other factors, or increased mortality due to increased trapping pressure as access is created in previously undisturbed areas (see Table 1-10 below).

Table 1-10Grizzly Bear Habitat Rating Adjustments for AnthropogenicDisturbances

Grizzly Bear Habitat Type	Disturbance Type	Disturbance Footprint	Zone of Influence Buffer Distance (m)	Habitat Rating Adjustment
Spring and	Clearings / Camps	6	0 - 800m	↓3
Summer/Fall	Cutlines	N/A	0-400m	↓1

Habitat Ratings	Industrial	6	0-800m	↓ 3
	Liquid dump/depot			
	Structure:	6	0-400	↓1
	- buildings			
	- campgrounds			
	Main Road	6	0-800	↓3
	Main, ground level, loose	6	0-800m	↓3
	surface, operational road			
	Secondary, ground level, hard	6	0-800	↓3
	surface, operational road			
	Limited-use, Cart, Track,	6	0-400	$\downarrow 1$
	Road, or drill road			
	Airstrip	6	From ends: 0 – 800	↓3
	Mine site		From sides: 0-400	↓1

Fire

Grizzly bear habitat ratings were adjusted using fire coefficients for a burned area within the project LSA (Table 8-3), and a zone of influence around human activity (Table 1-11) to account for the natural and human-caused factors that may change habitat effectiveness for grizzlies.

Table 1-11 Fire Adjustments for Grizzly Bear Models

Fire Modifier Table	Original Habitat Rating	Adjustment with presence of fire
Spring Feeding or Summer/Fall	1-2	1
Feeding Grizzly Bear Habitat	3	2
	4	3
	5	4
	6	6

Fire modifier rationale:

- 1. The fire occurred less than 5 years ago.
- 2. Based on field investigations little shrub or herbaceous growth has occurred since the fire.
- 3. Herbaceous cover and shrub growth peak in young stands will improve the overall habitat rating in these areas.

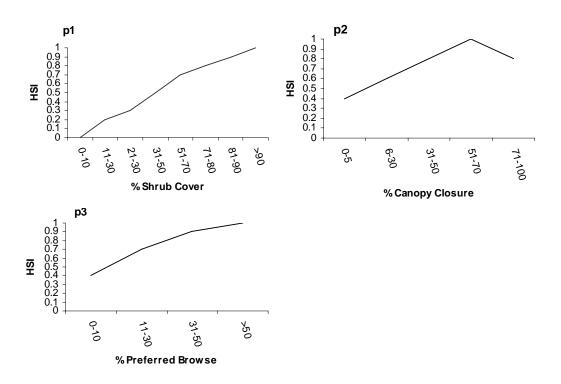
Beaver Habitat Availability Methods

Beaver habitat availability was defined by incorporating mapping from aerial photograph interpretations with an aerial survey conducted from helicopters to confirm beaver presence. Identifying adequate beaver habitat from the air required consideration of several factors. It is acknowledged that landscapes used by beavers do not provide a static ecological picture, but instead are dynamic. These habitats can change drastically in a short period of time (Foote, 2005). As such beaver habitat was categorized at the following three levels for the baseline assessment.

Potential Areas or Suitable Wetland Habitats: Any low lying, relatively flat areas that have evidence of permanent water and creeks or rivers with semi-permanent flow

Past Areas: Any suitable wetland habitat that has evidence of previous beaver inhabitation such as dams, lodges or caches. These areas included old beaver meadows, as these areas may be re-inhabited by new beavers (Foote, 2005).

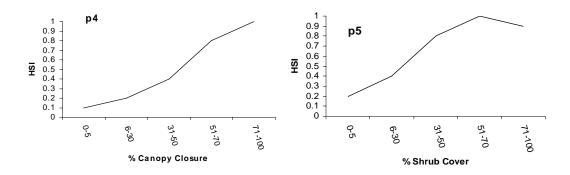
Present Areas: Any suitable wetlands with evidence of active beaver colonization. Active beaver colonies were delineated only as possible during the aerial survey, defined by beaver observations or observations of beaver food caches and or fresh beaver sign.


As the initial step to identifying beaver habitat, suitable wetland habitat areas (as defined above) were delineated based on aerial photograph interpretations within the Wolverine Project LSA. Secondly, an aerial presence / absence survey was conducted from helicopter on September 10, 2005, within a survey extent defined by all areas of suitable wetland habitat delineated in the LSA. Aerial survey navigation was conducted using topographic maps assisted by a global positioning system (GPS) to collect GPS waypoints for beaver presence and to collect flight path data from the helicopter during the survey. A digital camera was used to record images of wetland habitats, beavers, and their associated lodges, dams and food caches. Lastly, habitats containing presence of active beaver colonies were identified. To ensure correct classification of active beaver colonies, the aircraft circled beaver lodges until the observer was confident that the lodge was either active or inactive. The primary criterion for an active lodge is the presence of a fresh feed pile within 150 m of the lodge (Novak 1987). Other criteria used to locate and classify active beaver colonies included: sightings of beaver(s), maintained dams, high water levels in ponds, fresh cuttings, or fresh mud on a lodge (Popko and Veitch 1998).

As above, beaver habitat availability was mapped in the LSA, with a provision for three levels of habitat quality. In this context habitat quality is defined in terms of (a) mapping confidence and (b) risk to the beaver population if habitat is impacted. Present areas or suitable wetland habitats with confirmed presence of active beaver colonies have the highest level of habitat quality, while suitable wetlands not identified to have any presence of beaver activities have the lowest level of habitat quality (Figure 1-5)

Lynx and Snowshoe Hare Habitat Availability Methods

Methods for predicting habitat availability for lynx and snowshoe hare habitat, incorporate a habitat suitability index (HSI) modeling approach for ecosystems mapped in the LSA (See vegetation Section 7.9). Model parameters for each species HSI model were derived and validated given (1) a field assessment of ecosystem units in the LSA by a wildlife biologist and (2) a literature review of habitats used by lynx and snowshoe hare. The relationship between habitat parameters and suitability rating for each species is depicted in Figure 1-6 (snowshoe hare) and Figure 1-7 (lynx). Mathematical functions for predicting habitat based upon each habitat parameter, are provided in Equations 1-3 and 1-4. A list of selected references supporting habitat parameters assumed for both snowshoe hare and lynx are provided in Table 1-12.


Figure 1-6 Relationship between Habitat Parameters and Habitat Suitability Index for Snowshoe Hare

Equation 1-3: Mathematical function used to define habitat suitability index for snowshoe hare habitat.

 $HSI_{Cover} = (0.8 \text{ x } P1_{Shrub Cover}) + (0.2 \text{ x } P2_{Canopy Cover})$ $HSI_{Food} = (P1_{Shrub Cover} \text{ x } P3_{\%Preferred Browse})$ $HSI_{Overall} = (0.5 \text{ x } HSI_{Food}) + (0.5 \text{ x } HSI_{Cover})$

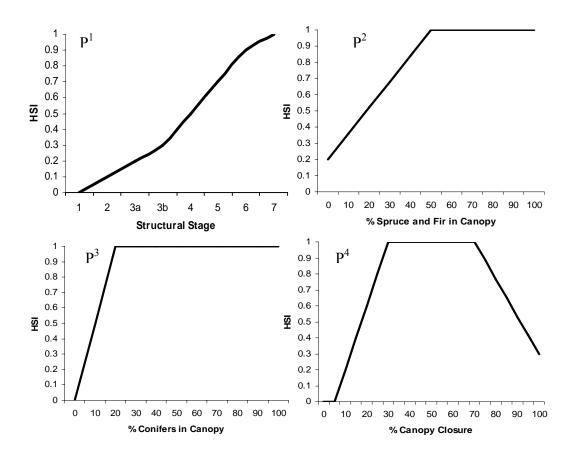
Figure 1-7 Relationship between Habitat Parameters and Habitat Suitability Index for Lynx

Equation 1-4: Mathematical function used to define habitat suitability index for lynx habitat.

$$HSI_{Food} = Snowshoe hare overall HSI$$
$$HSI_{Cover} = [0.5 \text{ x } P^4_{Canopy Cover}] + [0.5 \text{ x } P^5_{Shrub Cover})]$$
$$HSI_{Overall} = [(0.8 \text{ x } HSI_{Food}) + (0.2 \text{ x } HSI_{Cover})]$$

 Table 1-12 Supporting literature for lynx and snowshoe hare habitat parameter definitions used in the HSI model.

Species	Parameter	Reference
Snowshoe Hare	P1 – Shrub Cover	(Duncan et al. 1986; Eccles et al. 1986)
	P2 – Canopy Closure	(Grange 1932; Adams 1959; Telfer 1972; Dolbeer and
		Clark 1975; Walski and Mautz 1977; Orr and Dodds
		1982)
	P3 – Preferred Browse Cover	(Dodds 1960; Keith and Surrendi 1971; Bookhout 1965;
		Pease et al. 1979; Keith et al. 1984; Trapp 1962;
		O'Farrell 1965; Wolff 1978)
Lynx	P1 – Canopy Closure	(Soper 1964, Banfield 1974, Smith 1993)
	P2 – Shrub Cover	(Soper 1964, Banfield 1974, Smith 1993)


American Marten Winter Habitat Availability Methods

Although it is known that marten utilize a wider variety of habitat types and consume a broader array of food items during the summer than in the winter, the available literature

is not specific about this animal's summer habitat requirements. However, it is highly unlikely that summer habitat needs are limiting for marten. Therefore, the evaluation model concentrates on identifying the key features associated with the winter habitat requirements of the marten.

Methods for predicting habitat availability for American Marten winter habitat, incorporate a habitat suitability index (HSI) modeling approach for ecosystems mapped in the LSA (See vegetation section 7.9). Model parameters for the American marten HSI model were derived and validated given (1) a field assessment of ecosystem units in the LSA by a wildlife biologist and (2) a literature review of habitats used by the American marten. The relationship between habitat parameters and suitability rating for the American marten is depicted in Figure 1-8. A mathematical function for predicting winter habitat based upon each winter habitat parameter, is provided in Equation 1-5. Two supporting HSI models for predicting American marten winter habitat (Takats et al, 1999; and Allen, 1983) have been incorporated in this approach. A list of selected references supporting habitat parameters assumed for American marten are provided in Table 1-13.

Figure 1-8 Relationship between Habitat Parameters and Winter Habitat Suitability Index for Marten

Equation 1-5: Mathematical function used to define habitat suitability index for American marten winter habitat.

$$HSI = P^{1} x (P^{2} x P^{3} x P^{4})^{1/2}$$

Table 1-13Supporting Literature for each Model Parameter used in the
Winter HSI Model for American Marten

Habitat Variable	Supporting Literature
Species composition (P2, P3)	Thompson and Curran, 1995; Sheburne and Bissonette, 1944; Corn and Raphael, 1992; Allen, 1982; Buskirk, 1984; Strickland and Douglas, 1987.
Tree Canopy Height (P3)	Allen, 1982; Buskirk, 1984; Strickland and Douglas, 1987.
Structural Stage (P1)	Allen, 1982; Buskirk, 1984; Strickland and Douglas, 1987; Steventon and Major, 1982; Hargis et al., 1999; Bateman, 1968; Spencer et al., 1983.

Song Bird Community Methods

Impacts on the songbird community from the proposed development were assessed using both a habitat and population approach.

The habitat assessment involved quantifying the amount of songbird habitat (i.e., broad habitat classes) available within the LSA during baseline, construction and operations scenarios. Broad habitat classes were selected to reflect general bird habitat requirements, as reported in previous bird community analyses (e.g., Machtans and Latour 2003, Kirk et al. 1996). Changes in the availability of broad habitat classes resulting from project development were considered to reflect changes in the bird community in the LSA (e.g., decrease in forest dependent species and increase in habitat generalists).

The population assessment involved quantifying the abundance (i.e., number) of birds that occur within the LSA during baseline, construction and operations scenarios. Abundance estimates were calculated for (1) individual songbird species within each broad habitat class, (2) combined species within each broad habitat class, and (3) combined species across all broad habitat classes. Bird abundance was calculated by multiplying bird density (i.e., number / ha) within a given broad habitat class by the area (ha) of the given broad habitat class. Because bird surveys have not been conducted within or adjacent to the LSA (Scott Herron, pers. comm.; Wendy Nixon, pers. comm.), data from other studies conducted in similar habitat classes in the LSA. A list of birds and their associated density by habitat class, including a reference to the source data, is provided in Table 1-14, below.

Table 1-14(a) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
American Pipit	Anthus rubescens	V106/V107/V108/V112/V115/V202/V212/V300/V303	1.26	Westworth Associates, 1998b
American Pipit	Anthus rubescens	V16/V109 - Alpine fir medium/tall shrub	0.05	Westworth Associates, 1998b
Bohemian Waxwing	Bombycilla garrulus	V17-Open White Spruce	0.03	Cooper et al, 2004
Bohemian Waxwing	Bombycilla garrulus	V19 - Open Black Spruce	0.03	Cooper et al, 2004
Ruffed Grouse	Bonasa umbellus	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Common Redpoll	Carduelis flammea	V113 - Black spruce - shrub birch medium/tall shrub	0.02	Cooper et al, 2004
Pine Siskin	Carduelis pinus	V16 - Open alpine forest	1.77	Westworth Associates, 1998b
Pine Siskin	Carduelis pinus	V16/V109 - Alpine fir medium/tall shrub	0.15	Westworth Associates, 1998b
Pine Siskin	Carduelis pinus	V18 - Open Black Spruce	0.15	Westworth Associates, 1998a
Pine Siskin	Carduelis pinus	V30 - Open trembling aspen - spruce (pine) forest	0.07	Westworth Associates, 1998b
Hermit Thrush	Catharus guttatus	V16 - Open alpine forest	0.19	Westworth Associates, 1998b
Hermit Thrush	Catharus guttatus	V18 - Open Black Spruce	0.04	Westworth Associates, 1998b
Hermit Thrush	Catharus guttatus	V21 - Open lodgepole pine - spruce forest	0.03	Westworth Associates, 1998b
Hermit Thrush	Catharus guttatus	V113 - Black spruce - shrub birch medium/tall shrub	0.02	Cooper et al, 2004
Hermit Thrush	Catharus guttatus	V16/V109 - Alpine fir medium/tall shrub	0.15	Westworth Associates, 1998b
Hermit Thrush	Catharus guttatus	V17-Open White Spruce	0.08	Cooper et al, 2004
Hermit Thrush	Catharus guttatus	V19 - Open Black Spruce	0.08	Cooper et al, 2004
Hermit Thrush	Catharus guttatus	V22 - Open lodgepole pine forest	0.08	Cooper et al, 2004
Hermit Thrush	Catharus guttatus	V30 - Open trembling aspen - spruce (pine) forest	0.31	Westworth Associates, 1998a
Hermit Thrush	Catharus guttatus	V16 - Open alpine forest	0.22	Westworth Associates, 1998a
Hermit Thrush	Catharus guttatus	V18 - Open Black Spruce	0.06	Cooper et al, 2004
Hermit Thrush	Catharus guttatus	V21 - Open lodgepole pine - spruce forest	0.04	Westworth Associates, 1998a
Swainson's Thrush	Catharus ustulatus	V17-Open White Spruce	0.30	Cooper et al, 2004
Swainson's Thrush	Catharus ustulatus	V18 - Open Black Spruce	0.14	Westworth Associates, 1998a
Swainson's Thrush	Catharus ustulatus	V19 - Open Black Spruce	0.29	Westworth Associates, 1998a
Swainson's Thrush	Catharus ustulatus	V21 - Open lodgepole pine - spruce forest	0.20	Westworth Associates, 1998b
Swainson's Thrush	Catharus ustulatus	V22 - Open lodgepole pine forest	0.05	Westworth Associates, 1998b
Swainson's Thrush	Catharus ustulatus	V30 - Open trembling aspen - spruce (pine) forest	0.28	Westworth Associates, 1998a

Table 1-14(b) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources (cont'd) Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Swainson's Thrush	Catharus ustulatus	V30 - Open trembling aspen - spruce (pine) forest	0.06	Westworth Associates, 1998b
Swainson's Thrush	Catharus ustulatus	V30 - Open trembling aspen - spruce (pine) forest	0.16	Cooper et al, 2004
Swainson's Thrush	Catharus ustulatus	V17-Open White Spruce	0.16	Cooper et al, 2004
Swainson's Thrush	Catharus ustulatus	V18 - Open Black Spruce	0.10	Cooper et al, 2004
Swainson's Thrush	Catharus ustulatus	V19 - Open Black Spruce	0.14	Cooper et al, 2004
Swainson's Thrush	Catharus ustulatus	V21 - Open lodgepole pine - spruce forest	0.43	Westworth Associates, 1998a
Swainson's Thrush	Catharus ustulatus	V22 - Open lodgepole pine forest	0.16	Cooper et al, 2004
Swainson's Thrush	Catharus ustulatus	V30 - Open trembling aspen - spruce (pine) forest	0.49	Cooper et al, 2004
Olive-sided Flycatcher	Contopus cooperi	V16 - Open alpine forest	0.06	Westworth Associates, 1998b
Common Raven	Corvus corax	V16 - Open alpine forest	0.05	Westworth Associates, 1998a
Yellow-rumped Warbler	Dendroica coronata	V16 - Open alpine forest	0.06	Westworth Associates, 1998a
Yellow-rumped Warbler	Dendroica coronata	V22 - Open lodgepole pine forest	0.77	Westworth Associates, 1998b
Yellow-rumped Warbler	Dendroica coronata	V17-Open White Spruce	0.25	Westworth Associates, 1998a
Yellow-rumped Warbler	Dendroica coronata	V17-Open White Spruce	0.22	Cooper et al, 2004
Yellow-rumped Warbler	Dendroica coronata	V18 - Open Black Spruce	0.35	Westworth Associates, 1998a
Yellow-rumped Warbler	Dendroica coronata	V18 - Open Black Spruce	0.28	Westworth Associates, 1998b
Yellow-rumped Warbler	Dendroica coronata	V30 - Open trembling aspen - spruce (pine) forest	0.64	Westworth Associates, 1998a
Yellow-rumped Warbler	Dendroica coronata	V30 - Open trembling aspen - spruce (pine) forest	0.49	Westworth Associates, 1998b
Yellow-rumped Warbler	Dendroica coronata	V30 - Open trembling aspen - spruce (pine) forest	0.16	Cooper et al, 2004
Yellow-rumped Warbler	Dendroica coronata	V16/V109 - Alpine fir medium/tall shrub	0.04	Westworth Associates, 1998b
Yellow-rumped Warbler	Dendroica coronata	V19 - Open Black Spruce	0.14	Cooper et al, 2004
Yellow-rumped Warbler	Dendroica coronata	V21 - Open lodgepole pine - spruce forest	0.56	Westworth Associates, 1998b
Yellow-rumped Warbler	Dendroica coronata	V16 - Open alpine forest	0.59	Westworth Associates, 1998b
Yellow-rumped Warbler	Dendroica coronata	V22 - Open lodgepole pine forest	0.16	Cooper et al, 2004
Yellow-rumped Warbler	Dendroica coronata	V17-Open White Spruce	0.24	Cooper et al, 2004
Yellow-rumped Warbler	Dendroica coronata	V18 - Open Black Spruce	0.18	Cooper et al, 2004
Yellow-rumped Warbler	Dendroica coronata	V30 - Open trembling aspen - spruce (pine) forest	0.41	Cooper et al, 2004
Blackpoll Warbler	Dendroica striata	V17-Open White Spruce	0.14	Cooper et al, 2004

Table 1-14(c) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Blackpoll Warbler	Dendroica striata	V19 - Open Black Spruce	0.08	Cooper et al, 2004
Blackpoll Warbler	Dendroica striata	V113 - Black spruce - shrub birch medium/tall shrub	0.03	Cooper et al, 2004
Townsend's Warbler	Dendroica townsendi	V18 - Open Black Spruce	0.33	Westworth Associates, 1998a
Townsend's Warbler	Dendroica townsendi	V21 - Open lodgepole pine - spruce forest	0.04	Westworth Associates, 1998a
Townsend's Warbler	Dendroica townsendi	V16 - Open alpine forest	1.14	Westworth Associates, 1998b
Townsend's Warbler	Dendroica townsendi	V17-Open White Spruce	0.68	Westworth Associates, 1998a
Townsend's Warbler	Dendroica townsendi	V19 - Open Black Spruce	1.71	Westworth Associates, 1998a
Townsend's Warbler	Dendroica townsendi	V30 - Open trembling aspen - spruce (pine) forest	0.11	Westworth Associates, 1998a
Townsend's Warbler	Dendroica townsendi	V18 - Open Black Spruce	1.80	Westworth Associates, 1998b
Townsend's Warbler	Dendroica townsendi	V21 - Open lodgepole pine - spruce forest	2.04	Westworth Associates, 1998b
Pileated Woodpecker	Dryocopus pileatus	V30 - Open trembling aspen - spruce (pine) forest	0.10	Westworth Associates, 1998a
Alder Flycatcher	Empidonax alnorum	V104 - Willow medium/tall shrub	0.08	Cooper et al, 2004
Alder Flycatcher	Empidonax alnorum	V113 - Black spruce - shrub birch medium/tall shrub	0.07	Cooper et al, 2004
Alder Flycatcher	Empidonax alnorum	V19 - Open Black Spruce	2.35	Westworth Associates, 1998b
Yellow-bellied Flycatcher	Empidonax flaviventris	V18 - Open Black Spruce	0.04	Cooper et al, 2004
Hammond's Flycatcher	Empidonax hammondii	V30 - Open trembling aspen - spruce (pine) forest	0.29	Westworth Associates, 1998b
Hammond's Flycatcher	Empidonax hammondii	V18 - Open Black Spruce	0.71	Westworth Associates, 1998a
Hammond's Flycatcher	Empidonax hammondii	V21 - Open lodgepole pine - spruce forest	0.48	Westworth Associates, 1998a
Hammond's Flycatcher	Empidonax hammondii	V22 - Open lodgepole pine forest	0.10	Westworth Associates, 1998b
Hammond's Flycatcher	Empidonax hammondii	V30 - Open trembling aspen - spruce (pine) forest	2.13	Westworth Associates, 1998a
Least Flycatcher	Empidonax minimus	V30 - Open trembling aspen - spruce (pine) forest	0.88	Westworth Associates, 1998b
Least Flycatcher	Empidonax minimus	V30 - Open trembling aspen - spruce (pine) forest	1.55	Cooper et al, 2004
Horned Lark	Eremophila alpestris	V106/V107/V108/V112/V115/V202/V212/V300/V302	0.94	Westworth Associates, 1998b
Spruce Grouse	Falcipennis canadensis	V18 - Open Black Spruce	0.02	Cooper et al, 2004
Wilson's Snipe	Gallinago delicata	V113 - Black spruce - shrub birch medium/tall shrub	0.02	Cooper et al, 2004
Common Yellowthroat	Geothlypis trichas	V104/V105/V101/V105	0.49	Cooper et al, 2004
Common Yellowthroat	Geothlypis trichas	V19 - Open Black Spruce	0.59	Westworth Associates, 1998b
Varied Thrush	Ixoreus naevius	V18 - Open Black Spruce	0.04	Westworth Associates, 1998b

Table 1-14(d) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Varied Thrush	Ixoreus naevius	V21 - Open lodgepole pine - spruce forest	0.03	Westworth Associates, 1998b
Varied Thrush	Ixoreus naevius	V16 - Open alpine forest	0.15	Westworth Associates, 1998b
Varied Thrush	Ixoreus naevius	V16/V109 - Alpine fir medium/tall shrub	0.04	Westworth Associates, 1998b
Varied Thrush	Ixoreus naevius	V30 - Open trembling aspen - spruce (pine) forest	0.11	Westworth Associates, 1998a
Varied Thrush	Ixoreus naevius	V18 - Open Black Spruce	0.58	Westworth Associates, 1998a
Varied Thrush	Ixoreus naevius	V21 - Open lodgepole pine - spruce forest	0.05	Westworth Associates, 1998a
Dark-eyed Junco	Junco hyemalis	V16 - Open alpine forest	0.24	Westworth Associates, 1998a
Dark-eyed Junco	Junco hyemalis	V18 - Open Black Spruce	0.46	Westworth Associates, 1998b
Dark-eyed Junco	Junco hyemalis	V17-Open White Spruce	0.25	Westworth Associates, 1998a
Dark-eyed Junco	Junco hyemalis	V17-Open White Spruce	0.22	Cooper et al, 2004
Dark-eyed Junco	Junco hyemalis	V30 - Open trembling aspen - spruce (pine) forest	0.11	Westworth Associates, 1998a
Dark-eyed Junco	Junco hyemalis	V30 - Open trembling aspen - spruce (pine) forest	0.72	Westworth Associates, 1998b
Dark-eyed Junco	Junco hyemalis	V113 - Black spruce - shrub birch medium/tall shrub	0.02	Cooper et al, 2004
Dark-eyed Junco	Junco hyemalis	V16/V109 - Alpine fir medium/tall shrub	0.87	Westworth Associates, 1998b
Dark-eyed Junco	Junco hyemalis	V19 - Open Black Spruce	0.14	Cooper et al, 2004
Dark-eyed Junco	Junco hyemalis	V21 - Open lodgepole pine - spruce forest	0.13	Westworth Associates, 1998a
Dark-eyed Junco	Junco hyemalis	V22 - Open lodgepole pine forest	0.37	Westworth Associates, 1998b
Dark-eyed Junco	Junco hyemalis	V16 - Open alpine forest	0.29	Westworth Associates, 1998b
Dark-eyed Junco	Junco hyemalis	V18 - Open Black Spruce	0.14	Cooper et al, 2004
Dark-eyed Junco	Junco hyemalis	V17-Open White Spruce	0.08	Cooper et al, 2004
Dark-eyed Junco	Junco hyemalis	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Swamp Sparrow	Melospiza georgiana	V104/V105/V101/V108	0.65	Cooper et al, 2004
Swamp Sparrow	Melospiza georgiana	V113 - Black spruce - shrub birch medium/tall shrub	0.03	Cooper et al, 2004
Lincoln's Sparrow	Melospiza lincolnii	V104/V105/V101/V107	0.33	Cooper et al, 2004
Lincoln's Sparrow	Melospiza lincolnii	V113 - Black spruce - shrub birch medium/tall shrub	0.42	Cooper et al, 2004
Lincoln's Sparrow	Melospiza lincolnii	V17-Open White Spruce	0.03	Cooper et al, 2004
Lincoln's Sparrow	Melospiza lincolnii	V18 - Open Black Spruce	0.10	Cooper et al, 2004
Lincoln's Sparrow	Melospiza lincolnii	V19 - Open Black Spruce	0.11	Cooper et al, 2004
Townsend's Solitaire	Myadestes townsendi	V16 - Open alpine forest	0.10	Westworth Associates, 1998a

Table 1-14(e) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources (cont'd) Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Savannah Sparrow	Passerculus sandwichensis	V113 - Black spruce - shrub birch medium/tall shrub	0.03	Cooper et al, 2004
Fox Sparrow	Passerella iliaca	V113 - Black spruce - shrub birch medium/tall shrub	0.03	Cooper et al, 2004
Fox Sparrow	Passerella iliaca	V16 - Open alpine forest	0.63	Westworth Associates, 1998a
Fox Sparrow	Passerella iliaca	V16/V109 - Alpine fir medium/tall shrub	0.38	Westworth Associates, 1998b
Fox Sparrow	Passerella iliaca	V17-Open White Spruce	0.03	Cooper et al, 2004
Fox Sparrow	Passerella iliaca	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Gray Jay	Perisoreus canadensis	V17-Open White Spruce	0.05	Cooper et al, 2004
Gray Jay	Perisoreus canadensis	V18 - Open Black Spruce	0.08	Cooper et al, 2004
Gray Jay	Perisoreus canadensis	V19 - Open Black Spruce	0.08	Cooper et al, 2004
Downy Woodpecker	Picoides pubescens	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Hairy Woodpecker	Picoides villosus	V113 - Black spruce - shrub birch medium/tall shrub	0.02	Cooper et al, 2004
Pine Grosbeak	Pinicola enucleator	V17-Open White Spruce	0.03	Cooper et al, 2004
Pine Grosbeak	Pinicola enucleator	V18 - Open Black Spruce	0.02	Cooper et al, 2004
Pine Grosbeak	Pinicola enucleator	V19 - Open Black Spruce	0.03	Cooper et al, 2004
Black-capped Chickadee	Poecile atricapillus	V30 - Open trembling aspen - spruce (pine) forest	0.22	Westworth Associates, 1998b
Boreal Chickadee	Poecile hudsonica	V17-Open White Spruce	0.03	Cooper et al, 2004
Boreal Chickadee	Poecile hudsonica	V18 - Open Black Spruce	0.02	Cooper et al, 2004
Ruby-crowned Kinglet	Regulus calendula	V17-Open White Spruce	0.08	Cooper et al, 2004
Ruby-crowned Kinglet	Regulus calendula	V19 - Open Black Spruce	1.08	Westworth Associates, 1998b
Ruby-crowned Kinglet	Regulus calendula	V16 - Open alpine forest	0.26	Westworth Associates, 1998a
Ruby-crowned Kinglet	Regulus calendula	V16/V109 - Alpine fir medium/tall shrub	0.17	Westworth Associates, 1998b
Ruby-crowned Kinglet	Regulus calendula	V18 - Open Black Spruce	0.16	Cooper et al, 2004
Ruby-crowned Kinglet	Regulus calendula	V30 - Open trembling aspen - spruce (pine) forest	0.07	Westworth Associates, 1998b
Ruby-crowned Kinglet	Regulus calendula	V17-Open White Spruce	0.08	Cooper et al, 2004
Ruby-crowned Kinglet	Regulus calendula	V19 - Open Black Spruce	0.03	Cooper et al, 2004
Golden-crowned Kinglet	Regulus satrapa	V16 - Open alpine forest	0.10	Westworth Associates, 1998a
Golden-crowned Kinglet	Regulus satrapa	V16/V109 - Alpine fir medium/tall shrub	0.08	Westworth Associates, 1998b
Golden-crowned Kinglet	Regulus satrapa	V18 - Open Black Spruce	2.96	Westworth Associates, 1998b
Golden-crowned Kinglet	Regulus satrapa	V21 - Open lodgepole pine - spruce forest	2.70	Westworth Associates, 1998b

Table 1-14(f) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources (cont'd) Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Northern Waterthrush	Seiurus noveboracensis	V113 - Black spruce - shrub birch medium/tall shrub	0.03	Cooper et al, 2004
Northern Waterthrush	Seiurus noveboracensis	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
American Redstart	Setophaga ruticilla	V30 - Open trembling aspen - spruce (pine) forest	0.31	Westworth Associates, 1998b
American Redstart	Setophaga ruticilla	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Red-breasted Nuthatch	Sitta canadensis	V18 - Open Black Spruce	0.05	Westworth Associates, 1998b
Red-breasted Nuthatch	Sitta canadensis	V21 - Open lodgepole pine - spruce forest	0.08	Westworth Associates, 1998b
Red-breasted Nuthatch	Sitta canadensis	V16/V109 - Alpine fir medium/tall shrub	0.05	Westworth Associates, 1998b
Red-breasted Nuthatch	Sitta canadensis	V30 - Open trembling aspen - spruce (pine) forest	0.07	Westworth Associates, 1998b
Red-breasted Nuthatch	Sitta canadensis	V18 - Open Black Spruce	0.18	Westworth Associates, 1998a
Red-breasted Nuthatch	Sitta canadensis	V21 - Open lodgepole pine - spruce forest	0.20	Westworth Associates, 1998a
Yellow-bellied Sapsucker	Sphyrapicus varius	V17-Open White Spruce	0.03	Cooper et al, 2004
Yellow-bellied Sapsucker	Sphyrapicus varius	V30 - Open trembling aspen - spruce (pine) forest	0.90	Cooper et al, 2004
Yellow-bellied Sapsucker	Sphyrapicus varius	V17-Open White Spruce	0.41	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V17-Open White Spruce	0.19	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V18 - Open Black Spruce	1.26	Westworth Associates, 1998a
Chipping Sparrow	Spizella passerina	V19 - Open Black Spruce	1.40	Westworth Associates, 1998b
Chipping Sparrow	Spizella passerina	V21 - Open lodgepole pine - spruce forest	0.10	Westworth Associates, 1998a
Chipping Sparrow	Spizella passerina	V22 - Open lodgepole pine forest	0.89	Westworth Associates, 1998b
Chipping Sparrow	Spizella passerina	V104/V105/V101/V104	0.08	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V113 - Black spruce - shrub birch medium/tall shrub	0.20	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V17-Open White Spruce	0.41	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V18 - Open Black Spruce	0.16	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V19 - Open Black Spruce	0.30	Cooper et al, 2004
Chipping Sparrow	Spizella passerina	V21 - Open lodgepole pine - spruce forest	0.17	Westworth Associates, 1998b
Chipping Sparrow	Spizella passerina	V22 - Open lodgepole pine forest	0.16	Cooper et al, 2004
Lesser Yellowlegs	Tringa flavipes	V113 - Black spruce - shrub birch medium/tall shrub	0.03	Cooper et al, 2004
Lesser Yellowlegs	Tringa flavipes	V18 - Open Black Spruce	0.02	Cooper et al, 2004
Winter Wren	Troglodytes troglodytes	V18 - Open Black Spruce	0.66	Westworth Associates, 1998b

Table 1-14(g) Density of Individual Bird Species by Habitat Class, and Associated Background Information Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Winter Wren	Troglodytes troglodytes	V21 - Open lodgepole pine - spruce forest	0.14	Westworth Associates, 1998a
Winter Wren	Troglodytes troglodytes	V16 - Open alpine forest	0.24	Westworth Associates, 1998b
Winter Wren	Troglodytes troglodytes	V17-Open White Spruce	0.46	Westworth Associates, 1998a
Winter Wren	Troglodytes troglodytes	V18 - Open Black Spruce	0.76	Westworth Associates, 1998a
Winter Wren	Troglodytes troglodytes	V21 - Open lodgepole pine - spruce forest	0.24	Westworth Associates, 1998b
American Robin	Turdus migratorius	V30 - Open trembling aspen - spruce (pine) forest	0.06	Westworth Associates, 1998b
American Robin	Turdus migratorius	V104/V105/V101/V102	0.08	Cooper et al, 2004
American Robin	Turdus migratorius	V16/V109 - Alpine fir medium/tall shrub	0.04	Westworth Associates, 1998b
American Robin	Turdus migratorius	V17-Open White Spruce	0.08	Cooper et al, 2004
American Robin	Turdus migratorius	V19 - Open Black Spruce	0.03	Cooper et al, 2004
American Robin	Turdus migratorius	V21 - Open lodgepole pine - spruce forest	0.13	Westworth Associates, 1998b
American Robin	Turdus migratorius	V22 - Open lodgepole pine forest	0.09	Westworth Associates, 1998b
American Robin	Turdus migratorius	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Sharp-tailed Grouse	Tympanuchus phasianellus	V113 - Black spruce - shrub birch medium/tall shrub	0.02	Cooper et al, 2004
Orange-crowned Warbler	Vermivora celata	V30 - Open trembling aspen - spruce (pine) forest	0.85	Westworth Associates, 1998b
Orange-crowned Warbler	Vermivora celata	V113 - Black spruce - shrub birch medium/tall shrub	0.05	Cooper et al, 2004
Orange-crowned Warbler	Vermivora celata	V17-Open White Spruce	0.16	Cooper et al, 2004
Orange-crowned Warbler	Vermivora celata	V19 - Open Black Spruce	0.11	Cooper et al, 2004
Orange-crowned Warbler	Vermivora celata	V30 - Open trembling aspen - spruce (pine) forest	0.49	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V17-Open White Spruce	0.22	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V30 - Open trembling aspen - spruce (pine) forest	0.08	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V104/V105/V101/V109	0.08	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V18 - Open Black Spruce	0.20	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V22 - Open lodgepole pine forest	0.33	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V17-Open White Spruce	0.73	Cooper et al, 2004
Tennessee Warbler	Vermivora peregrina	V30 - Open trembling aspen - spruce (pine) forest	0.90	Cooper et al, 2004
Warbling Vireo	Vireo gilvus	V21 - Open lodgepole pine - spruce forest	0.04	Westworth Associates, 1998a
Warbling Vireo	Vireo gilvus	V30 - Open trembling aspen - spruce (pine) forest	0.30	Westworth Associates, 1998a
Warbling Vireo	Vireo gilvus	V30 - Open trembling aspen - spruce (pine) forest	1.77	Westworth Associates, 1998b

Table 1-14(h)Density of Individual Bird Species by Habitat Class, and Associated Background Information
Sources (cont'd)

Common	Scientific	Yukon Zinc Habitat	Density (mean # of birds/ha)	Reference
Warbling Vireo	Vireo gilvus	V30 - Open trembling aspen - spruce (pine) forest	0.16	Cooper et al, 2004
Warbling Vireo	Vireo gilvus	V17-Open White Spruce	0.03	Cooper et al, 2004
Warbling Vireo	Vireo gilvus	V18 - Open Black Spruce	0.59	Westworth Associates, 1998b
Warbling Vireo	Vireo gilvus	V21 - Open lodgepole pine - spruce forest	0.83	Westworth Associates, 1998b
Warbling Vireo	Vireo gilvus	V30 - Open trembling aspen - spruce (pine) forest	0.24	Cooper et al, 2004
Wilson's Warbler	Wilsonia pusilla	V16 - Open alpine forest	0.57	Westworth Associates, 1998b
Wilson's Warbler	Wilsonia pusilla	V16/V109 - Alpine fir medium/tall shrub	0.10	Westworth Associates, 1998b
Wilson's Warbler	Wilsonia pusilla	V18 - Open Black Spruce	1.76	Westworth Associates, 1998b
White-throated Sparrow	Zonotrichia albicollis	V104/V105/V101/V110	0.08	Cooper et al, 2004
White-throated Sparrow	Zonotrichia albicollis	V18 - Open Black Spruce	0.04	Cooper et al, 2004
White-crowned Sparrow	Zonotrichia leucophrys	V113 - Black spruce - shrub birch medium/tall shrub	0.41	Cooper et al, 2004
White-crowned Sparrow	Zonotrichia leucophrys	V16 - Open alpine forest	0.06	Westworth Associates, 1998a
White-crowned Sparrow	Zonotrichia leucophrys	V17-Open White Spruce	0.03	Cooper et al, 2004
White-crowned Sparrow	Zonotrichia leucophrys	V19 - Open Black Spruce	0.03	Cooper et al, 2004

Trumpeter Swan Breeding Habitat Availability Methods

Trumpeter swan breeding and nesting habitats were assessed within the LSA in order to identify potential project specific impacts on trumpeter swans. Trumpeter swan habitat availability was defined by incorporating mapping from aerial photograph interpretations with an aerial survey conducted from helicopters to confirm trumpeter swan presence. As the initial step to identifying trumpeter swan habitat, suitable wetland habitat areas (as defined above) were delineated based on aerial photograph interpretations within the Wolverine Project LSA. Secondly, an aerial presence / absence survey was conducted from helicopter on September 10, 2005, within a survey extent defined by all areas of suitable wetland habitat delineated in the LSA. Since suitable habitats for trumpeter swan are consistent with that for beavers, the aerial wetland survey for beavers and trumpeter swans were conducted together. Aerial survey navigation was conducted using topographic maps assisted by a global positioning system (GPS) to collect GPS waypoints for trumpeter swan presence and to collect flight path data from the helicopter during the survey. A digital camera was used to record images of wetland habitats, and trumpeter swans including adults and cygnets. Lastly, habitats containing presence of nesting and breeding trumpeter swans were identified. Trumpeter swan breeding habitat was categorized at the following two levels for the baseline assessment:

Potential Areas or Suitable Wetland Habitats: includes any lakes and marshes with permanent water and or slow moving creeks or rivers with semi-permanent flow, having emergent and submergent vegetation.

Present Areas: Any suitable wetlands with confirmed presence of breeding trumpeter swans observed during the aerial wetland survey or from any previous assessments, defined by presence of adult trumpeter swans with cygnets and or trumpeter swan nests.

In this context habitat quality is defined in terms of (a) mapping confidence and (b) risk to the trumpeter swan population if habitat is impacted. Present areas or suitable wetland habitats with confirmed presence of breeding trumpeter swans have the highest level of habitat quality, while suitable wetlands not identified to have any presence of trumpeter swans have the lowest level of habitat quality.

References

- Adams, L. 1959. An Analysis of a Population of Snowshoe Hares in Northwestern Montana. *Ecol. Monogr.* 29:141-170.
- Allen, A.W. 1982. Habitat suitability index models: Marten. U.S.D.I. Fish and Wildlife Service. FWS/OBS/-82/10.11. 9 pp.
- Banfield, A.W.F. 1974. The Mammals of Canada. Toronto, ON: Univ. of Toronto Press 438 pp.
- Banfield, A.W.F. 1974. The Mammals of Canada. Toronto, ON: Univ. of Toronto Press 438 pp.
- Bookhout, T.A. 1965. The Snowshoe Hare in Upper Michigan. Its Biology and Feeding Coactions with White-Tail Deer. Mich. Dept. Cons., Res. and Dev. Report No. 38. 191 pp.
- Buskirk, S.W. 1984. Seasonal use of resting sites by marten in south-central Alaska. J. Wildl. Manage. 48:950-953.
- Cooper, J.M., M. Wheatley, P.A. Chytyk, A. Deans, C. Holschuh, and S.M. Beauchesne. 2004. Potential impacts on birds in the Mackenzie Valley from pipeline clearings for the Mackenzie Gas Project. Prepared by Manning, Cooper and Associates, Errington, British Columbia, for the Canadian Wildlife Service, Yellowknife, Northwest Territories.

Dodds, D.G. 1960. Food Competition and Range Relationships of Moose and Snowshoe Hare in Newfoundland. *J. Wildl. Manage*. 24(1):52-60

- Doerr, J.G. 1983. Home Range Size, Movements and Habitat Use in Two Moose, Alces alces, Populations in Southeastern Alaska. Can. Field Nat. 97(1): 79-88.
- Dolbeer, R.A. and W.R. Clark. 1975. Population Ecology of Snowshoe Hares in the Central Rocky Mountains. J. Wildl. Manage. 39:535-549.
- Duncan, J.A., T.R. Eccles and R.E. Salter. 1986. *Sign Surveys of Mammals*. Prepared for ESSO Resources Canada Ltd. by LGL Ltd., Calgary.
- Eccles, T.R. and J.A. Duncan. 1988. Surveys of Ungulate Populations in the OSLO Oil Sands Ungulate Study Area. February 1988. Prepared for ESSO Resources Canada Ltd. by The Delta Group Ltd., Calgary.
- Eccles, T.R., J.E. Green, C. Thompson and G.F. Searing. 1986. Slave River Hydro Project Mammal Studies - Volume 1. Final Report. Calgary, AB: Prepared for the Slave River Hydro Project Study Group by LGL Ltd.
- Eccles, T.R., J.E. Green, C. Thompson and G.F. Searing. 1986. Slave River Hydro Project Mammal Studies - Volume 1. Final Report. Calgary, AB: Prepared for the Slave River Hydro Project Study Group by LGL Ltd.
- Festa-Bianchet M, 1988. Seasonal range selection in bighorn sheep: conflicts between forage quality, forage quantity, and predator avoidance. Oecologia. 75:580-586.
- Geist V, Mountain sheep: A study in behaviour and evolution. University of Chicago Press, Chicago, Illinois, 1971.
- Grange, W.B. 1932. Observations on the Snowshoe Hare, *Lepus americanus phaeonotus* Allen. J. Mammal. 13:1-19.
- Hoefs M, McTaggart Cowan I, 1979. Ecological investigation of a population of Dall sheep (Ovis dalli dalli Nelson). Syesis. 12(1):1-81.

- Jingfors, K., R. Bullion and R. Case. 1987. Abundance and Population Composition of Moose Along the Mackenzie River. Northwest Territories Dept. of Renewable Resources. Inuvik, NWT.
- Johnson, M. and R. A. Ruttan. 1993. Traditional Dene Environmental Knowledge: A pilot project. Conducted in Fort Good Hope and Colville Lake, N.W.T.
- Keith, L.B., and D.C. Surrendi. 1971. Effects Of Fire on a Snowshoe Hare Population. J. Wildl. Manage. 35(1):16-26.
- Keith, L.B., J.R. Cary, O.J. Rongstad and M.C. Brittingham. 1984. Demography and Ecology of a Declining Snowshoe Hare Population. *Wildl. Monogr.* 90. 43 pp.
- Kirk, D.A., A.W. Diamond, K.A. Hobson, and A.R. Smith. 1996. Breeding bird communities of the western and northern Canadian boreal forest: relationship to forest type. Canadian Journal of Zoology 74:1749-1770.
- Lee Foote. 2005. University of Alberta; Professor: Wetland studies and beavers. Personal Communications. Edmonton, Alberta
- Machtans, C.S. and P.B. Latour. 2003. Boreal Forest Songbird Communities of the Liard Valley, Northwest Territories, Canada. The Condor. 105:27-44.
- Matchett, M.R. 1985. Habitat selection by moose in the Yaak River drainage, northwestern Montana. Alces 21:161-189.
- Mytton, W.R. and L.B. Keith. 1981. Dynamics of Moose Populations Near Rochester, Alberta, 1975-1978. Can. Field Nat. 95(1): 39-49.
- Nietfeld, M., J. Wild, K. Woolrough and B. Hoskin 1984. Wildlife Habitat Requirement Summaries for Selected Wildlife Species in Alberta. Edmonton, AB: Alberta Energy and Natural Resources, Fish and Wildlife Div., Wildlife Resource Inventory Unit.
- Nowlin, R.A. 1978. Relationships Between Habitats, Forages and Carrying Capacity of Moose Range in Northern Alberta. Part 1: Moose Preferences for Habitat Strata and Forages. Edmonton, AB: prepared for the Alberta Oil Sands Environmental Research Program by Alberta Recreation, Parks and Wildlife, Fish and Wildlife Div. AOSERP Rep. 33. 63 pp.
- O'Farrell, T.P. 1965. Home Range and Ecology of Snowshoe Hares in Interior Alaska. J. Mammal. 46(3):406-418.
- Orr, C.D. and D.G. Dodds. 1982. Snowshoe Hare Habitat preferences in Nova Scotia Spruce-Fir Forests. *Wildl. Soc. Bull* 10:147-150.
- Pease, J.L., R.H. Vowles, and L.B. Keith. 1979. Interactions of Snowshoe Hares and Woody Vegetation. J. Wildl. Manage. 43:43-60.
- Pierce, D.J. and J.M. Peek. 1984. Moose Habitat Use and Selection Patterns in North-central Idaho. J. Wildl. Manage. 48(4): 1335-1343.
- Prescott, W.H., Erickson, L.E. Walton, and D.G. Smith. 1973. Atlas of Caribou Ranges. Part of a Wildlife Habitat Inventory of the Mackenzie Valley and Northern Yukon. Canadian Wildlife Service, Environmental-Social Program, Northern Pipelines, Ottawa.
- Rachlow JL, Bowyer RT, 1998. Habitat selection by Dall's sheep (Ovis dalli): maternal tradeoffs. Journal of Zoology. 245(4):457-465.
- Rick Farnell.2005. Yukon Government; Caribou Biologist: Wildlife Management. Whitehorse, Yukon

- Risenhoover KL, Bailey JA, 1985. Foraging ecology of mountain sheep: implications for habitat management. Journal of Wildlife Management. 49(3):797-804.
- Rolley, R.E. and L.B. Keith. 1980. Moose Population Dynamics and Winter Habitat Use at Rochester, Alberta, 1965-1979
- Ruttan, R.A. 1974. Observations of moose (*Alces alces*) in the northern Yukon Territory and Mackenzie river valley, 1972. Arctic Gas Biological Report Series vol. 9 chapter 2.
- Salter, R.E., J.A. Duncan and J.E. Green. 1986. Surveys of Ungulate Populations in the OSLO Oil Sands Ungulate Study Area. December 1985 and February 1986. Calgary, AB: prepared for ESSO Resources Canada Ltd. by LGL Ltd.
- Sambaa K'e Dene Band. 2004. Mackenzie Gas Project Traditional Knowledge Report. Prepared by the Sambaa K'e Development Corporation under contract to Imperial Oil Resources Ventures Ltd. And in cooperation with Mackenzie Project Environmental Group.
- Scott Herron. 2005. Canadian Wildlife Service; Northern Ecosystem Specialist
- Silver, R.S. 1976. Ecological Features of Moose (Alces alces andersoni) Winter Habitat in the Boreal White and Black Spruce Zone of Northeastern British Columbia. Vancouver, BC: University of British Columbia M.Sc. Thesis 278 pp
- Simpson, K., J.P. Kelsall, and C. Clement. 1988. Caribou and moose habitat inventory and habitat management guidelines in the Columbia River drainage near Revelstoke, B.C. Ministry of Environment, Lands and Parks, Nelson, British Columbia.
- Smith, H.C. 1993. Alberta Mammals. An Atlas and Guide. Edmonton, AB: Provincial Museum of Alberta 239 pp.
- Soper, J.D. 1964. The Mammals of Alberta. Edmonton, AB: The Queen's Printer 402 pp.
- Steventon, J.D., and J.T. Major. 1982. Marten use of habitat in commercially clear-cut forest. J. Wildl. Manage. 46(1):175-182.
- Strickland, M.A. and C.W. Douglas. 1987. Marten. Pages 531-546 in Novak, M., Baker, J.A., Obbard, M.E. and B. Malloch (eds.). Wild Furbearer Management and Conservation in North America. Ontario Trappers Assoc., North Bay, ON.
- Synergy West Ltd. (1973). Liard Highway Study. Prep. For Public Works Canada, Western Region by Synergy West Ltd. 179 pp.
- Telfer, E.S. 1972. Browse Selection by Deer and Hares. J. Wildl. Manage. 36(4):1344-1348.
- Telfer, E.S. 1978. Cervid Distribution, Browse and Snow Cover in Alberta. J. Wildl. Manage. 42.352-361.
- Telfer, E.S. 1984. Circumpolar Distribution and Habitat Requirements Of Moose (Alces alces). In R. Olson, R. Hastings and F. Geddes (eds.). Northern Ecology and Resource Management
- Tilton ME, Willard EE, 1982. Winter habitat selection by mountain sheep. Journal of Wildlife Management. 46(2):359-366.
- Trapp, G.R. 1962. Snowshoe Hares in Alaska. II. Home Range and Ecology During an
- Walski, T.W., and W.W. Mautz. 1977. Nutritional Value of Winter Browse for snowshoe Hares. *J. Wildl. Manage.* 41(1):144-147.S

Walton-Rankin, L. 1977. An inventory of moose habitat of the Mackenzie Valley and northern Yukon. Mackenzie Valley Pipeline Investigations. Canadian Wildlife Service, Ottawa, Ontario, Canada.

Wendy Nixon. 2005. Canadian Wildlife Service; Head, Environment Canada: Wildlife Ecology

- Westworth, D.A., L. Brusnyk, J. Roberts and H. Veldhuzien. 1989. Winter habitat use by moose in the vicinity of an open pit copper mine in north-central British Columbia. Alces 25:156-166.
- Wolff, J.O. 1978. Food Habits of Snowshoe Hares in Interior Alaska. J.Wildl. Manage. 42(1):148-153.
- Wolff, J.O. and J. Cowling. 1981. Moose Browse Utilization in Mount McKinley National Park, Alaska. Can. Field Nat. 95(1): 85-88

Appendix 7.10-2 Wildlife Species List

#	Common Name	Scientific Name	Group
1	Arctic Ground Squirrel	Spermophilus parryii	Mammal
2	Beaver	Castor canadensis	Mammal
3	Black Bear	Ursus americanus	Mammal
4	Boreal Gray Wolf	Canis lupis occidentalis	Mammal
5	Brown Lemming	Lemmus sibiricus	Mammal
6	Bushy-tailed Wood Rat	Neotoma cinerea	Mammal
7	Chestnut-cheeked (Taiga) Vole	Microtus xanthognathus	Mammal
8	Common Porcupine	Erethizon dorsatum	Mammal
9	Coyote	Canis latrans	Mammal
10	Dall's Sheep	Ovis dalli dallii	Mammal
11	Deer Mouse	Peromyscus maniculatus	Mammal
12	Dusky Shrew	Sorex monticolus	Mammal
13	Eastern Heather Vole	Phenacomys intermedius (ungava)	Mammal
14	Ermine (Stoat)	Mustela erminea	Mammal
15	Grizzly Bear	Ursus arctos	Mammal
16	Hoary Marmot	Marmota caligata	Mammal
17	Least Chipmunk	Eutamias (Tamias) minimus	Mammal
18	Least Weasel	Mustela nivalis	Mammal
19	Little Brown Bat	Myotis lucifugus	Mammal
20	Long-tailed vole	Microtus longicaudus	Mammal
21	Lynx	Lynx canadensis	Mammal
22	Marten	Martes americana	Mammal
23	Masked Shrew	Sorex cinereus	Mammal
24	Meadow Jumping Mouse	Zapus hudsonius	Mammal
25	Meadow Vole	Microtus pennsylvanicus	Mammal
26	Mink	Mustela vison	Mammal
27	Moose	Alces alces	Mammal
28	Mountain Goat	Oreamnos americanus	Mammal
29	Muskrat	Ondatra zibethicus	Mammal
30	Northern Bog Lemming	Synaptomys borealis	Mammal
31	Northern Flying Squirrel	Glaucomys sabrinus	Mammal
32	Northern Myotis	Myotis septentrionalis	Mammal
33	Northern Red-backed Vole	Clethrionomys rutilus	Mammal
34	Pigmy Shrew	Sorex hoyi	Mammal
35	Red Fox	Vulpes vulpes	Mammal
36	Red Squirrel	Tamiasciurus hudsonicus	Mammal
37	River Otter	Lutra canadensis	Mammal
38	Singing Vole	Microtus miurus	Mammal
39	Snowshoe Hare	Lepus americanus	Mammal
40	Striped Skunk	Mephitis mephitis	Mammal
41	Wolverine	Gulo gulo	Mammal
42	Woodchuck	Marmota monax	Mammal
43	Woodland Caribou (northern mountain)	Rangifer tarandus caribou	Mammal

44	Alder Flycatcher	Empidonar alnowing	Bird
	Ander Flycatcher American Coot	Empidonax alnorum Fulica americana	Bird
45	American Crow	Corvus brachyrhynchos	Bird
46	American Kestrel		Bird
47 48		Falco sparverius Anthus rubescens	Bird
	American Pipit American Redstart		Bird
49	American Robin	Setophaga ruticilla	Bird
50	American Tree Sparrow	Turdus migratorius	
51	*	Spizella arborea Anas americana	Bird
52	American Wigeon		Bird
53	Arctic Tern	Sterna paradisaea	Bird
54	Bald Eagle	Haliaeetus leucocephalus	Bird
55	Bank Swallow	Riparia riparia	Bird
56	Barn Swallow	Hirundo rustica	Bird
57	Barred Owl	Strix varia	Bird
58	Barrow's Goldeneye	Bucephala islandica	Bird
59	Bay-breasted Warbler	Dendroica castanea	Bird
60	Belted Kingfisher	Ceryle alcyon	Bird
61	Black-and-white Warbler	Mniotilta varia	Bird
62	Black-backed Woodpecker	Picoides arcticus	Bird
63	Black-capped Chickadee	Poecile atricapillus	Bird
64	Blackpoll Warbler	Dendroica striata	Bird
65	Blue Grouse	Dendragapus obscurus	Bird
66	Blue-headed Vireo	Vireo solitarius	Bird
67	Blue-winged Teal	Anas discors	Bird
68	Bohemian Waxwing	Bombycilla garrulus	Bird
69	Bonaparte's Gull	Larus philadelphia	Bird
70	Boreal Chickadee	Poecile hudsonicus	Bird
71	Boreal Owl	Aegolius funereus	Bird
72	Brewer's Blackbird	Euphagus cyanocephalus	Bird
73	Brown-headed Cowbird	Molothrus ater	Bird
74	Bufflehead	Bucephala albeola	Bird
75	Canada Goose	Branta canadensis	Bird
76	Canada Warbler	Wilsonia canadensis	Bird
77	Canvasback	Aythya valisineria	Bird
78	Cape May Warbler	Dendroica tigrina	Bird
79	Cedar Waxwing	Bombycilla cedrorum	Bird
80	Chipping Sparrow	Spizella passerina	Bird
81	Clay-colored Sparrow	Spizella pallida	Bird
82	Cliff Swallow	Petrochelidon pyrrhonota	Bird
83	Common Goldeneye	Bucephala clangula	Bird
84	Common Grackle	Quiscalus quiscula	Bird
85	Common Loon	Gavia immer	Bird
86	Common Merganser	Mergus merganser	Bird
87	Common Nighthawk	Chordeiles minor	Bird
88	Common Raven	Corvus corax	Bird
89	Common Redpoll	Carduelis flammea	Bird
90	Common Snipe	Gallinago gallinago	Bird
91	Common Yellowthroat	Geothlypis trichas	Bird
92	Dark-eyed Junco	Junco hyemalis	Bird

93	Downy Woodpecker	Picoides pubescens	Bird
94	Eastern Kingbird	Tyrannus tyrannus	Bird
95	Eastern Phoebe	Sayornis phoebe	Bird
96	European Starling	Sturnus vulgaris	Bird
97	Evening Grosbeak	Coccothraustes vespertinus	Bird
98	Fox Sparrow	Passerella iliaca	Bird
99	Golden Eagle	Aquila chrysaetos	Bird
100	Golden-crowned Kinglet	Regulus satrapa	Bird
101	Golden-crowned Sparrow	Zonotrichia atricapilla	Bird
102	Gray Jay	Perisoreus canadensis	Bird
103	Gray-cheeked Thrush	Catharus minimus	Bird
104	Great Gray Owl	Strix nebulosa	Bird
105	Great Horned Owl	Bubo virginianus	Bird
106	Greater Scaup	Aythya marila	Bird
107	Greater White-fronted Goose	Anser albifrons	Bird
108	Green-winged Teal	Anas crecca	Bird
109	Gyrfalcon	Falco rusticolus	Bird
110	Hairy Woodpecker	Picoides villosus	Bird
111	Hammond's Flycatcher	Empidonax hammondii	Bird
112	Hermit Thrush	Catharus guttatus	Bird
113	Herring Gull	Larus argentatus	Bird
114	Hoary Redpoll	Carduelis hornemanni	Bird
115	Horned Grebe	Podiceps auritus	Bird
116	Killdeer	Charadrius vociferus	Bird
117	Le Conte's Sparrow	Ammodramus leconteii	Bird
118	Least Flycatcher	Empidonax minimus	Bird
119	Least Sandpiper	Calidris minutilla	Bird
120	Lesser Scaup	Aythya affinis	Bird
121	Lesser Yellowlegs	Tringa flavipes	Bird
122	Lincoln's Sparrow	Melospiza lincolnii	Bird
123	Magnolia Warbler	Dendroica magnolia	Bird
124	Mallard	Anas platyrhynchos	Bird
125	Merlin	Falco columbarius	Bird
126	Mew Gull	Larus canus	Bird
127	Mountain Bluebird	Sialia currucoides	Bird
128	Mourning Warbler	Oporornis philadelphia	Bird
129	Nelson's Sharp-tailed Sparrow	Ammodramus nelsoni	Bird
130	Northern Flicker	Colaptes auratus	Bird
131	Northern Goshawk	Accipiter gentilis	Bird
132	Northern Harrier	Circus cyaneus	Bird
133	Northern Hawk Owl	Surnia ulula	Bird
134	Northern Pintail	Anas acuta	Bird
135	Northern Shoveler	Anas clypeata	Bird
136	Northern Shrike	Lanius excubitor	Bird
137	Northern Waterthrush	Seiurus noveboracensis	Bird
138	Olive-sided Flycatcher	Contopus cooperi	Bird
139	Orange-crowned Warbler	Vermivora celata	Bird
140	Osprey	Pandion haliaetus	Bird
141	Ovenbird	Seiurus aurocapillus	Bird

142	Pacific Loon	Gavia pacifica	Bird
142	Palm Warbler	Dendroica palmarum	Bird
143	Philadelphia Vireo	Vireo philadelphicus	Bird
144	Pied-billed Grebe	Podilymbus podiceps	Bird
145	Pileated Woodpecker	Dryocopus pileatus	Bird
	Pine Grosbeak	Pinicola enucleator	Bird
147	Pine Grosbeak Pine Siskin		Bird
148		Carduelis pinus	
149	Purple Finch	Carpodacus purpureus	Bird
150	Red Crossbill	Loxia curvirostra	Bird
151	Red-breasted Merganser	Mergus serrator	Bird
152	Red-breasted Nuthatch	Sitta canadensis	Bird
153	Red-eyed Vireo	Vireo olivaceus	Bird
154	Red-necked Grebe	Podiceps grisegena	Bird
155	Red-necked Phalarope	Phalaropus lobatus	Bird
156	Red-tailed Hawk	Buteo jamaicensis	Bird
157	Red-throated Loon	Gavia stellata	Bird
158	Red-winged Blackbird	Agelaius phoeniceus	Bird
159	Ring-necked Duck	Aythya collaris	Bird
160	Rose-breasted Grosbeak	Pheucticus ludovicianus	Bird
161	Ruby-crowned Kinglet	Regulus calendula	Bird
162	Ruffed Grouse	Bonasa umbellus	Bird
163	Rusty Blackbird	Euphagus carolinus	Bird
164	Sanderling	Calidris alba	Bird
165	Sandhill Crane	Grus canadensis	Bird
166	Savannah Sparrow	Passerculus sandwichensis	Bird
167	Semipalmated Plover	Charadrius semipalmatus	Bird
168	Sharp-shinned Hawk	Accipiter striatus	Bird
169	Sharp-tailed Grouse	Tympanuchus phasianellus	Bird
170	Short-eared Owl	Asio flammeus	Bird
171	Solitary Sandpiper	Tringa solitaria	Bird
172	Sora	Porzana carolina	Bird
173	Spotted Sandpiper	Actitis macularia	Bird
174	Spruce Grouse	Falcipennis canadensis	Bird
175	Surf Scoter	Melanitta perspicillata	Bird
176	Swainson's Thrush	Catharus ustulatus	Bird
177	Swamp Sparrow	Melospiza georgiana	Bird
178	Tennessee Warbler	Vermivora peregrina	Bird
179	Three-toed Woodpecker	Picoides tridactylus	Bird
180	Townsend's Solitaire	Myadestes townsendi	Bird
181	Tree Swallow	Tachycineta bicolor	Bird
182	Trumpeter Swan	Cygnus buccinator	Bird
183	Varied Thrush	Ixoreus naevius	Bird
184	Vesper Sparrow	Pooecetes gramineus	Bird
185	Violet-green Swallow	Tachycineta thalassina	Bird
186	Warbling Vireo	Vireo gilvus	Bird
187	Western Tanager	Piranga ludoviciana	Bird
188	Western Wood-Pewee	Contopus sordidulus	Bird
189	White-crowned Sparrow	Zonotrichia leucophrys	Bird
190	White-throated Sparrow	Zonotrichia albicollis	Bird

191	White-winged Crossbill	Loxia leucoptera	Bird
192	White-winged Scoter	Melanitta fusca	Bird
193	Willow Ptarmigan	Lagopus lagopus	Bird
194	Wilson's Warbler	Wilsonia pusilla	Bird
195	Winter Wren	Troglodytes troglodytes	Bird
196	Yellow Warbler	Dendroica petechia	Bird
197	Yellow-bellied Flycatcher	Empidonax flaviventris	Bird
198	Yellow-bellied Sapsucker	Sphyrapicus varius	Bird
199	Yellow-rumped Warbler	Dendroica coronata	Bird