Appendix 7.8 Fish Resources

Contents

- Appendix 7.8-12005 Fisheries Baseline Conditions
- Appendix 7.8-2 Wolverine Area Historic Fisheries Investigations
- Appendix 7.8-3 Metals Levels in Fish Tissue
- Appendix 7.8-4 2005 Fisheries Baseline Photos

Appendix 7.8-12005 Fisheries Baseline Conditions

PROJECT NO. 1000261

FINAL REPORT TO

Yukon Zinc Foundation 701-475 Howe Street Vancouver, BC V6C 2B3

FOR

Wolverine Project Environmental Assessment

October 21, 2005

Jacques Whitford Limited 4370 Dominion Street 5th Floor Burnaby, British Columbia V5G 4L7

> Phone: 604-436-3014 Fax: 604-436-3752

Table of Contents

1.0	REGIONAL SETTING	1
2.0	METHODS	2
2.1 2.2	Physical Habitat Assessment and Fish Sampling	2 4
3.0	RESULTS	4
3.1 3.2	Physical Habitat Assessment and Fish Sampling	4 17
4.0	SUMMARY	18
5.0	REFERENCES	20

List of Tables

Table 1	Common and scientific names of fish present in the Yukon Zinc
	project area1
Table 2	Selected Habitat Components for Fish Species Present in the Liard
	Watershed2
Table 3	Location of Fish and Fish Habitat Assessment Sites (NAD 27), Yukon Zinc
	August 2005 5
Table 4	Location of sites surveyed by aerial reconnaissance (NAD 27), Yukon Zinc
	August 2005 6
Table 5	In Situ water quality results, August 2005 6
Table 6	Physical habitat data, Yukon Zinc August 20059
Table 7	Selected bank and riparian habitat attributes, Yukon Zinc August 2005 11
Table 8	Fish and fish habitat sampling summary, Yukon Zinc August 2005 19

1.0 **REGIONAL SETTING**

The Yukon Zinc project site is located within the upper Liard River watershed (Watershed Code 210) in the Yukon Territory. Previous investigations in the Regional Study Area have documented the presence of seven fish species (Table 1). Previous studies confirmed the presence of bull trout rather than Dolly Varden in the study area, based on DNA analyses (Gartner Lee Ltd. 2005). Arctic grayling, bull trout and slimy sculpin have been documented in Go Creek, arctic grayling have been documented in Light Creek, bull trout have been documented in the lower reaches of Bunker Creek and Chip Creek, and slimy sculpin, bull trout, arctic grayling, northern pike and burbot have been documented in Money Creek. As well, lake trout, arctic grayling, burbot and slimy sculpin have been confirmed in Wolverine Lake and lake trout, arctic grayling, and longnose sucker have been confirmed in Little Wolverine Lake. Arctic grayling, lake trout, burbot, longnose sucker, northern pike and slimy sculpin have also been documented in some streams tributary to Wolverine Lake (Westmin Resources Ltd. 1996; White Mountain Environmental Consulting 1997; Gartner Lee Ltd. 2005). Fish absence has also been noted in Hawkowl Creek and Go Creek upstream from the Hawkowl Creek confluence as well as in Pup Creek (Gartner Lee Ltd. 2005).

Family	Common Name	Scientific Name
Salmonidae	arctic grayling	Thymallus arcticus
Salmonidae	bull trout	Salvelinus confluentus
Salmonidae	lake trout	Salvelinus namaycush
Gadidae	burbot	Lota lota
Catostomidae	longnose sucker	Catostomus catostomus
Esocidae	northern pike	Esox lucius
Cottidae	slimy sculpin	Cottus cognatus

TABLE 1 Common and Scientific Names of Fish Present in the Yukon Zinc Project Area

Bull trout has been designated as a "sensitive" species in the Yukon by the General Status of Species in Canada (National General Status Working Group 2004). A sensitive designation indicates that a "species is not believed to be at risk of immediate extirpation or extinction but may require special attention or protection to prevent them from becoming at risk". However, bull trout is not listed as a species at risk under the federal *Species at Risk Act* (Environment Canada 2005).

Selected habitat components (including spawning, rearing, overwintering and migration requirements) of four of the Yukon's more common fish species in the Liard Watershed (arctic grayling, lake trout, bull trout, and slimy sculpin) are presented in Table 2.

Species	Spawning	Rearing	Overwintering	Migration
arctic grayling	Small gravel or rock bottom tributaries and larger streams; side channels. Spawn during ice break-up.	Side channels, backwater areas, riffles, broken flows, substrate of boulders. Runs for juveniles and adults. Pools.	Ice-covered lakes and pools in large rivers.	Poor swimmers – obstacles are common (i.e., chutes and culverts).
lake trout	Shallow inshore areas of large lakes and occasionally rivers with large rubble substrate. Spawn in late summer or fall.	Shallow inshore areas of large lakes, moving to offshore areas as juveniles mature.	Large lakes.	Good swimmers – generally spend their entire lifecycle within lakes.
bull trout	Medium to large gravel substrate in tributaries. Gentle stream slopes. Spawn in fall (Sept. to Nov.).	Tributaries with large substrate runs and riffles. Pools and log/debris jams. Cold water/boulder substrate/moderat e gradient or low gradient/undercut banks/debris. Juvenile bull trout are often found at or near the stream bottom.	Migratory bull trout may move into cold lakes, gravelly to muddy rivers.	Good swimmers – need significant obstacle to impede migration.
slimy sculpin	Shallow water with cobble/boulder substrate.	Deep water of lakes and cold streams. Rock/gravel streams.	Deep riffle, glide and pool habitat	Poor swimmers – obstacles are common (i.e., chutes and culverts).

Table 2. Selected Habitat Components for Fish Species Present in the LiardWatershed

2.0 METHODS

2.1 Physical Habitat Assessment and Fish Sampling

Between August 3 and 7, 2005, fish and fish habitat assessments were conducted at all watercourses potentially affected by the project, including stream crossings along the proposed road access route. A total of 27 potential road crossing and mine drainage-related sites were assessed on the ground for fish and fish habitat. An additional ten sites were assessed for fish habitat by aerial reconnaissance. Inventory methods followed those established by the Resource Inventory Committee (RIC) in the Reconnaissance (1:20 000) Fish and Fish Habitat Inventory: Standards and Procedures v. 2.0 (BC Fisheries Information Services 2001) and associated RIC Site Field Card Guide (BC Fisheries Information Services 1999). Ground assessment sites were photographed upstream and downstream (Appendix 7.8-4).

Fish sampling and fish habitat assessments were conducted at all watercourses (27 sites) with sufficient flow, over a minimum distance of ten times mean channel width (Wb). As habitat features of most watercourses are typically repeated

approximately every six channel widths, this distance ensures that all representative habitat types are sampled. Physical habitat data, fish collection data and individual fish data were recorded on appropriate RIC cards.

Fish migration obstructions, fisheries sensitive zones (tributaries, side-channels, flood channels, swamps/sloughs and beaver ponds), potential fish production limiting factors and any special features were identified and recorded. Significant habitat quality components (rearing, spawning, overwintering and cover) were noted for fish species known or suspected to occur in a particular reach or watershed. Habitat data collected at all stream crossings included the following physical attributes: site length, residual pool depth, bankfull depth, stream stage, percentage cover (woody debris, boulder, cutbank, deep pool, overstream vegetation and instream vegetation), crown closure, bank shape, bank texture, turbidity, dominant and sub-dominant bed materials, D95, D50, channel morphology, disturbance indicators, channel pattern, islands, bars, coupling, confinement and riparian vegetation community.

In addition to the 27 sites assessed on the ground, 10 were assessed by aerial reconnaissance. Ground surveys were not necessary at those locations due to dry channel conditions (trickle flow, no visible channel [NVC], etc.) and negligible fish habitat value.

Fish distribution and species composition sampling was conducted in all watercourses with sufficient flow using a Smith-Root Model 15-C electrofisher and baited (cat food) Gee-type minnow traps set for approximately 24 hours. Electrofishing effort varied with habitat type, but was generally used in shallow pool, glide and riffle habitats. Increased effort was expended in areas that typically provide refuge for fish (i.e., undercut banks, submerged logs, boulder cover, overhanging vegetation).

In addition to electrofishing, spawning, rearing, and overwintering habitat potential were assessed visually. In deep pools with negligible flow and/or where channel morphology or substrate material prevented efficient use of other sampling techniques, baited Gee-type minnow traps (in pairs, overnight where possible) were set to determine fish presence/absence. Minnow traps were also deployed where electrofishing did not produce fish but where fish habitat values appeared to be high. Fish captures were enumerated, identified to species and measured (fork-length in mm) at each productive fish sampling site.

The following list details specific equipment used to complete biophysical data collection:

- Smith-Root Model 15-C back-pack electrofisher;
- Gee minnow traps and bait;
- Dip nets;

- Field Key to the Freshwater Fishes of British Columbia (McPhail and Carveth, 1994);
- Fish Collection/Individual Fish Data Forms;
- Fish measuring board (mm);
- Graduated metre sticks;
- SUUNTO Clinometer;
- Field notebook with waterproof site cards;
- Flagging tape (orange);
- Digital camera;
- Yukon Zinc Corporation Fisheries Field Map;
- Oakton pH (accuracy + 0.2 pH) and conductivity (accuracy + 1%) meters; and
- Handheld VHF radio and satellite telephone.

2.2 Fish Tissue Analysis

Samples of slimy sculpin were collected for subsequent tissue analyses from three sites (W11, W12 and W14) during the August field program and one sample of slimy sculpin was collected during the September field program. Latex gloves were used when handling fish samples and care was taken to prevent the samples from contacting any metal. Slimy sculpin samples were weighed ($\pm 0.1g$), measured (fork length) and placed in Ziploc bags. Samples were stored frozen until shipped to the lab for analysis. All other fish captured were released, unharmed at point of capture, immediately following meristic data collection.

3.0 RESULTS

3.1 Physical Habitat Assessment and Fish Sampling

Assessment Sites

Given that many watercourses to be crossed by the proposed road are unnamed, streams have been assigned unique identifiers (Figure 7.8-1, EA report, Volume 2). Table 3 provides location and survey details for each of the 27 watercourse crossings assessed on the ground. The ten sites surveyed by aerial reconnaissance are shown in Table 4 and are deemed to provide negligible fish habitat value.

Site	Zone	Easting	Northing	Date of Survey
Light Ck. 1	9	451616	6820600	6-Aug-05
Light Ck. 2	9	452353	6818299	4-Aug-05
Light Ck. 3	9	452314	6817741	4-Aug-05
Light Ck. 4	9	452383	6817239	7-Aug-05
4	9	451233	6814664	4-Aug-05
Bunker Ck. 1	9	450443	6809915	5-Aug-05
Bunker Ck. 2	9	448436	6811630	5-Aug-05
Bunker Ck. 3	9	447744	6813106	5-Aug-05
Bunker Ck. 4	9	447780	6813394	4-Aug-05
Bunker Ck. 5	9	447682	6814100	4-Aug-05
Bunker Ck. 6	9	447377	6814934	5-Aug-05
5	9	448864	6810851	4-Aug-05
13	9	447266	6806155	4-Aug-05
W14	9	443024	6801893	3-Aug-05
W11	9	443239	6801805	3-Aug-05
W13	9	443209	6801961	3-Aug-05
W12	9	443177	6802001	3-Aug-05
Go Ck. 1	9	443540	6803243	5-Aug-05
Go Ck. 2	9	443464	6804746	5-Aug-05
Go Ck. 3	9	442692	6806148	6-Aug-05
W16	9	442693	6807468	6-Aug-05
W15	9	442710	6807503	6-Aug-05
W22	9	443231	6807633	6-Aug-05
W23	9	443177	6807759	6-Aug-05
W24	9	442133	6808032	6-Aug-05
W9	9	437932	6810924	3-Aug-05
14	9	439474	6810820	7-Aug-05

Table 3. Location of Fish and Fish Habitat Assessment Sites (NAD 27), Yukon Zinc August 2005

Site	Zone	Easting	Northing	Date of Survey
1	9	451874	6817116	4-Aug-05
2	9	451894	6816512	4-Aug-05
3	9	451537	6815366	4-Aug-05
6	9	448528	6810856	4-Aug-05
7	9	448555	6810409	4-Aug-05
8	9	448555	6810459	4-Aug-05
9	9	447890	6809077	4-Aug-05
10	9	447131	6807506	4-Aug-05
11	9	447116	6807396	4-Aug-05
12	9	447047	6806890	4-Aug-05

Table 4.	Location of	sites surveyed	by aerial	reconnaissa	nce (NAD 2	7), Yukon Zinc
August	2005	-	-		-	-

In Situ Water Quality

In situ water quality data are presented in Table 5. Water temperature ranged from 3.5° C (Site 14) to 10°C (Money Creek). Conductivity ranged from 20 µS/cm (Site 13) to 270 µS/cm (Light Ck. 4). The pH values were generally neutral, with the exception of Bunker Ck. 4 and W24, which were slightly basic (pH: 8.0). With the exception of Light Ck. 4, all streams were clear at time of sampling.

Site	Water Temperature (°C)	Conductivity (µs/cm)	рН	Turbidity
Light Ck. 1	6.5	240	7.6	С
Light Ck. 2	8	240	7.8	С
Light Ck. 3	4	80	7.7	С
Light Ck. 4	6.5	270	7.3	L
4	5	200	7.6	С
Bunker Ck. 1	7	120	7.8	С
Bunker Ck. 2	7.5	150	7.6	С
Bunker Ck. 3	8	170	7.7	С
Bunker Ck. 4	6.5	120	8	С
Bunker Ck. 5	8	150	7.6	С
Bunker Ck. 6	7.5	150	7.8	С
5	6	80	7.6	С

Table 5. In Situ Water Quality Results, August 2005

Site	Water Temperature (°C)	Conductivity (µs/cm)	рН	Turbidity
13	8	20	7.7	С
W14	10	90	ND	С
W11	10	90	ND	С
W13	4.5	80	ND	С
W12	5	110	ND	С
Go Ck. 1	8	120	7.8	С
Go Ck. 2	9	120	7.8	С
Go Ck. 3	6	130	7.5	С
W16	6	100	7.8	С
W15	5	80	7.7	С
W22	4	70	7.8	С
W23	5.5	90	7.7	С
W24	7	110	8	С
W9	3.5	170	ND	С
14	5	170	7.4	С

ND = no data

Physical Habitat Assessment and Fish Sampling

Physical habitat data, including channel, substrate and riparian characteristics, are provided in Tables 6 and 7. Mean channel width at the sampling sites ranges from 0.3 m (W9) to 25.0 m (Bunker Ck. 3). Approximately one half (48%) of the watercourses assessed have channel widths of less than 3 m.

Residual pool depths (maximum pool depth minus riffle depth) range from 0.10 m to 0.85 m and are less than 0.50 m at 72% of the sites. Shallow residual pool depths in most of the watercourses indicate a lack of overwintering habitat, which likely limits fish production. Most pools observed during August 2005 likely freeze solid during winter.

Channel gradients are generally low to moderate and range from 0.5% (Light Ck. 2) to 11% (Site W22). Despite low to moderate gradients, rearing bull trout and/or arctic grayling habitat is extremely limited by swift, unimpeded flows, most often with negligible boulders and functioning large woody debris to create low velocity pools.

Potential fish migration barriers were observed at 16 sites. Some barriers are likely seasonal, and dependent on water levels (i.e., during summer and early fall). Barriers include beaver dams, trickle flows, shallow pools, steep gradients,

subsurface water flow, a perched culvert and a weir. The v-notch weir at Site W9 is reportedly out of use and should be removed.

Bottom substrate is dominated by cobbles (dominant substrate in 44% of sites) and fines (33% of sites). An estimated 15% of sites contain suitable spawning gravel for bull trout and/or arctic grayling.

Total fish cover at the crossing locations range from none to over 20% (Table 7). Overhanging vegetation provides the majority of the cover and is the dominant cover type at 44% of sites sampled. Riparian vegetation consists primarily of the shrubs scrub birch (*Betula glandulosa*) and willow (*Salix sp.*) and grasses. Eight watercourses flow through or are adjacent to a mature coniferous forest.

Habitat requirements (Table 2) of four of the region's more common species, arctic grayling, mountain whitefish, bull trout, and slimy sculpin, were used as a basis for determining habitat quality of each of the watercourses assessed. Overall habitat quality rating is based on the spawning, rearing, migration, and overwintering opportunities provided at each site. Swift flows and extremely limited overwintering pool habitat availability are likely the primary limiting factors to fish productivity in the area. A summary of fish habitat potential for each site is listed below.

Site	Mean Channel Width (m)	Mean Wetted Width (m)	Mean Residual	Gradient (%)	Dominant Substrate	Sub- dominant	Additional Comments
		width (III)	Depth (m)			Substrate	
Light Ck. 1	2.00	1.97		0.5	Fines	Gravels	Perched culvert (1.7 m) crossing highway does not allow fish access from the Finlayson River
Light Ck. 2	3.13	3.05	0.60	0.5	Fines	N/A	
Light Ck. 3	1.52	1.25	0.23	4	Fines	N/A	
Light Ck. 4	2.43	2.38	0.28	0.5	Gravel	Fines	
4	0.62	0.58	0.10	1.5	Fines	N/A	
Bunker Ck. 1	8.08	7.25	0.62	2	Gravel	Fines	Large beaver dam 200 m upstream
							from site prevents upstream fish passage
Bunker Ck. 2	3.85	3.73	0.30	2	Cobble	Boulders	
Bunker Ck. 3	25.00	25.00		1	Fines	Cobbles	Beaver pond
Bunker Ck. 4	3.85	3.38	0.30	1.5	Cobble	Gravels	Beaver dams occur d/s from this site
Bunker Ck. 5	2.95	3.00	0.65	1	Fines	Boulders	Site is located u/s from several beaver dams 250-500m apart; fish access from mainstem is doubtful
Bunker Ck. 6	4.80	4.95	0.62	1.5	Fines	Boulders	
5	1.15	1.10	0.20	3	Fines	Gravels	Steep gradient (>25%) d/s from road crossing to mainstem; surface flows likely to freeze during winter
13	2.22	1.88	0.23	5	Cobble	Boulders	
W11	17.17	17.17	0.60	1.5	Cobble	Boulders	
W14	14.00	12.65	0.78	1.5	Cobble	Gravels	
W13	1.84	1.92	0.35	2	Gravel	Cobbles	
W12	4.15	3.95	0.27	3	Cobble	Fines	

Table 6. Physical Habitat Data, Yukon Zinc August 2005

Site	Mean Channel Width (m)	Mean Wetted Width (m)	Mean Residual Pool Depth (m)	Gradient (%)	Dominant Substrate	Sub- dominant Substrate	Additional Comments
Go Ck. 1	3.84	3.86	0.85	3	Cobble	Boulders	Partial barrier (0443527E, 6803941N); 1m falls created by lwd. D/s end of site begins at major beaver dam (2m fish barrier)
Go Ck. 2	5.63	5.13	0.20	3	Cobble	Boulders	
Go Ck. 3	4.18	3.60	0.37	2	Cobble	Fines	
W16	3.35	3.08	0.20	3.5	Cobble	Gravels	
W15	2.90	2.90	0.25	5	Boulders	Cobbles	
W22	1.58	1.55	0.23	11	Cobble	Boulders	Channel is forded by a gravel road
W23	2.25	2.22	0.38	8.5	Boulders	Cobbles	Channel is forded by a gravel road
W24	1.40	1.37	0.25	2	Cobble	Gravels	
W9	0.30	0.30	0.16	2	Gravel	Fines	V-notch weir at W9 is an impasse which should be removed
14	0.63	0.70	0.28	3	Fines	Gravels	Channel runs subsurface periodically and has a steep gradient entering the lake
Definitions:	u/s = upstrea d/s = downst lwd = large w	am ream voody debris					

Site	Crown Closure (%)	Total Cover (%)	Dominant Cover Type	Bank Shape (left, right)	Bank Texture (left, right)	Riparian Vegetation / Stage
Light Ck. 1	1-20	5-20	U	U, V	F, F	G, S / SHR, MF
Light Ck. 2	1-20	5-20	OV	V, U	F, F	G / SHR
Light Ck. 3	1-20	5-20	OV	V, V	F, F	S,C / MF
Light Ck. 4	0	5-20	DP	V, U	F, F	S / SHR
4	1-20	>20	OV	U, V	F, F	S,C / SHR, MF
Bunker Ck. 1	1-20	5-20	LWD	V, S	F, F	S,C / MF
Bunker Ck. 2	1-20	5-20	U	U, V	F, F	S, C / SHR, MF
Bunker Ck. 3	0	0	DP	S, S	F, F	S / SHR
Bunker Ck. 4	1-20	5-20	OV	V, V	F, F	G, S / SHR
Bunker Ck. 5	1-20	5-20	DP	V, V	F, F	S / SHR
Bunker Ck. 6	0	5-20	U	U, V	F, G	G, S / SHR
5	1-20	5-20	OV	U, V	F, F	S / SHR
13	0	5-20	В	V, V	G, G	G, S / SHR
W11	1-20	5-20	В	V, U	F, F	S,C / SHR
W14	1-20	5-20	DP	S, U	G, G	S,C / SHR
W13	1-20	>20	U	U, U	F, G	S,C / SHR, MF
W12	1-20	>20	OV	U, U	F, F	S / SHR
Go Ck. 1	71-90	>20	В	U, V	F, F	S, C / SHR, MF
Go Ck. 2	0	5-20	В	V, V	F, F	S / SHR
Go Ck. 3	0	5-20	OV	V, S	F, F	S / SHR
W16	0	>20	OV	V, V	F, F	S / SHR
W15	0	5-20	OV	V, S	F, G	S / SHR
W22	1-20	>20	OV	U, V	F, F	S,C / MF
W23	1-20	>20	В	V, V	G, F	S, C / SHR

Table 7. Selected Bank and Riparian Habitat Attributes, Yukon Zinc August 2005

Site	Crown Closure (%)	Total Cover (%)	Dominant Cover Type	Bank Shape (left, right)	Bank Texture (left, right)	Riparian Vegetation / Stage
W24	0	>20	OV	U, V	F, F	S / SHR
W9	1-20	>20	OV	U, U	F, F	S / SHR
14	0	5-20	OV	U, U	F, F	S / SHR
Definitions:	 Cover Type: SWD = Small Woody Debris; LWD = Large Woody Debris; B = Boulder; U = undercut Banks; DP = Deep Pool; OV = Overhanging Vegetation; IV = Instream Vegetation Bank Shape: U = Undercut, V = Vertical, S = Sloping, O = Overhanging 					

3. Bank Texture: F = Fines, G = Gravels, C = Cobbles, B = Boulders, R = Rock, A = Anthropogenic

4. Riparian Vegetation: N = none; G = Grass; S = Shrub; C = Coniferous; D = Deciduous; M = Mixed C&D; W = Wetland

5. Riparian Vegetation Stage: INIT = Initial; SHR = Shrub; PS = Pole-Sapling; YF = Young Forest; MF = Mature Forest; NA = Absent (grass or wetland)

Light Creek 1

This reach of Light Creek has a mean channel width of 2.0 m and flows down a gradient of 0.5% (see Photo 4). It is characterized by large channel morphology (LC; no riffle-pool sequence) and provides poor spawning substrates for arctic grayling and bull trout. Rearing and overwintering potential are moderate (see Photos 1 to 3). A perched culvert at the Robert Campbell Highway creates a barrier to fish migration upstream from the Finlayson River.

Light Creek 2

This reach of Light Creek is classified as large channel habitat and has a mean channel width of 3.1 m and shallow gradient of 0.5% (see Photos 5 and 6). This reach provides poor grayling and bull trout spawning habitat due to the lack of appropriate substrate; however, it does provide good rearing and overwintering habitat. No fish were captured from this reach.

Light Creek 3

This reach of Light Creek has an average channel width of 1.5 m, flows down a gradient of 4% and has riffle-pool morphology (see Photos 7 and 8). In generally, this reach provides poor fish habitat, based on lack of spawning habitat. Rearing habitat is moderately abundant but overwintering habitat quality and quantity is poor due to infrequent pools that likely freeze solid during winter. No fish were captured from this reach.

Light Creek 4

This reach of Light Creek has a mean channel width of 2.4 m and flows down a gradient of 0.5% (see Photos 9 and 10). Light Creek 4 has excellent spawning substrates for arctic grayling and bull trout, as well as deep water available for rearing and potential overwintering. Productivity is limited by cover (provided by undercut banks). The main creek flows into a wetland. Arctic graying were captured in this reach.

Site 4 (Unnamed tributary of Light Creek)

Habitat at this site is characterized by a small meandering channel (mean channel width 0.6 m) that flows subsurface and drains a wetland further upstream (see Photos 11 and 12). It has no fish value at this site or upstream towards the proposed road crossing. No fish were observed in this reach.

Bunker Creek 1

This reach of Bunker Creek has a mean channel width of 8.1 m and flows down a gradient of 2%. It provides excellent habitat for all life stages of arctic grayling and bull trout. It is limited only by fast flows throughout most of reach (see Photos 13 to

16). A large, active beaver dam (estimated height: 3 m) located immediately upstream (200 m) from Bunker Creek 1 extends from valley wall to valley wall and likely prevents upstream fish passage to upper watershed reaches at least on a seasonal basis. Cascade-pool (boulder) channel morphology and high velocity water flows occur between Bunker Creek site 1 and site 2 and may also limit fish migration up into the upper watershed.

Bunker Creek 2

This reach of Bunker Creek has a mean channel width of 3.8 m and flows down a gradient of 2% (see Photos 17 and 18). It provides moderate habitat for arctic grayling and bull trout at all life stages but is limited by swift flows throughout most of the reach.

Bunker Creek 3

This reach of Bunker Creek flows through a beaver pond, and has a mean channel width of 25.0 m and a gradient of 1% (see Photos 19 to 21). There is no spawning substrate at this site; however, the pond provides excellent rearing for grayling and bull trout. It is too shallow for overwintering. No fish were captured in this reach.

Bunker Creek 4

This reach of Bunker Creek has a mean channel width of 3.8 m and flows down a gradient of 1.5% (see Photos 22 to 24). An abundance of gravel substrate provides excellent spawning habitat for grayling and bull trout and there are pools for overwintering and excellent cover for rearing. No fish were observed in this reach.

Bunker Creek 5

This reach of Bunker Creek comprises large channel morphology (mean channel width 3.0 m) and low gradient (1%) (see Photos 25 to 27). An absence of gravels limits spawning potential; however, this channel has excellent rearing and overwintering habitat. No fish were observed in this reach.

Bunker Creek 6

This reach of Bunker Creek has a mean channel width of 4.8 m and flows down a gradient of 1.5% (see Photos 28 and 29). It provides limited spawning substrates but excellent rearing habitat for grayling and bull trout. Limited deep pools restrict overwintering capabilities. No fish were observed in this reach.

Site 5 (Unnamed tributary of Bunker Creek)

This reach has a mean channel width of 1.2 m and flows down a gradient of 3%. Downstream of this site, this channel has a very steep gradient of >20% (see Photos 30 and 31). This reach has low habitat quality. It is characterized by swift

flows and negligible rearing and spawning habitat for bull trout and arctic grayling. No fish were captured in this creek.

Site 13 (Chip Creek)

This reach is at the top of its watershed in the alpine zone (see Photos 32 and 33). It has cascade-pool morphology, with a gradient of 5% and mean channel width of 2.2 m. Downstream from this site the channel follows through a very steep gradient (>25%). The stream at this site has no fish value.

W14 (Money Creek downstream from Go Creek)

Money Creek downstream from Go Creek has large riffle-pool morphology, with a mean channel width of 14.0 m (see Photos 34 and 35 for aerial views of Money Creek and Photos 36 and 37 for site pictures). Although habitat fish productivity is likely constrained by limited amounts of spawning habitat and swift flows, several deep pools and boulder substrates provide low velocity areas suitable for rearing and overwintering. Arctic grayling and slimy sculpins were captured in this reach.

W11 (Money Creek upstream from Go Creek)

Money Creek immediately upstream from the Go Creek confluence has large rifflepool morphology (small river; mean channel width: 17.2 m) (see Photos 38 and 39). The reach provides excellent bull trout and grayling habitat for all life stages, limited only by a moderate abundance of spawning gravels. Arctic grayling and slimy sculpins were captured from this reach.

W13 (Pup Creek near Go Creek confluence)

This reach of Pup Creek has a mean channel width of 1.8 m and moderate gradient of 2% (see Photos 40 and 41). It provides limited quantities of adult bull trout and grayling spawning gravels. Although undercut banks provide some good rearing and overwintering opportunities, generally swift flows and lack of habitat complexity (i.e. LWD) preclude even moderate fish production capability. No fish were observed in or captured from this reach.

W12 (Go Creek upstream from Pup Creek)

This reach of Go Creek has a moderate channel gradient (3%) and mean channel width of 4.2 m. (See Photos 42 and 43 for site photographs and Photos 44 and 45 for aerial views of lower Go Creek. Photo 46 displays a beaver dam in the lower reaches of Go Creek. This dam is not a barrier to fish migration). Similar to W13 in Pup Creek, W12 provides potentially useable rearing and spawning habitat for grayling and bull trout; however, fish production capability is constrained by swift flows and low habitat diversity. Slimy sculpin were captured from this reach. Several juvenile arctic grayling escaped electrofishing effort but were positively identified.

Go Creek 1

This reach of Go Creek has a mean channel width of 3.8 m and flows down a gradient of 3% (see Photos 47 and 48). The very swift current limits spawning, rearing and overwintering. The channel also has limited spawning substrates; all rearing habitat occurs in eddies behind boulders and large woody debris. Arctic grayling and bull trout were captured in this reach.

Go Creek 2

This reach of Go Creek has a mean channel width of 5.6 m and flows down a gradient of 3% (see Photo 49). Inadequate gravels limit spawning capability, while swift flows limit both spawning and rearing potential. The low frequency of deep pools limits overwintering capability. No fish were captured in this reach.

Go Creek 3

This reach of Go Creek has a mean channel width of 4.2 m and flows down a 2% gradient (see Photos 50 to 52). Excellent spawning gravels are present, however, swift flow limits bull trout and grayling production at all life stages. Marginal overwintering habitat exists due to a lack of deep pools. No fish were captured in this reach.

W16 (Go Creek upstream from Hawkowl Creek)

Go Creek at this reach has a mean channel width of 3.4 m and follows a gradient of 3.5% (see Photo 53 and 54). There is poor spawning habitat due to limited spawning substrates and poor overwintering habitat due to infrequent deep pools. Swift flows limit habitat capabilities for fish at all life stages.

W15 (Lower Hawkowl Creek)

Lower Hawkowl Creek at this location has a mean channel width of 2.9 m and follows a gradient of 5% (see Photos 55 and 56). This reach is characterized by cascade-pool morphology and provides negligible amounts of spawning substrate. Swift flows limit char and grayling habitat in all life stages.

W22 (Upper Hawkowl Creek)

Upper Hawkowl Creek at this reach has a mean channel width of 1.6 m and flows down a gradient of 11% (see Photos 57 and 58). It is characterized by cascade-pool morphology and provides negligible amounts of spawning substrate. Poor overwintering habitat exists due to few infrequent deep pools. Swift flows limit bull trout and grayling habitat in all life stages.

W23 (Upper Hawkowl Creek)

Upper Hawkowl Creek at this reach has a mean channel width of 2.2 m and flows down a gradient of 8.5% (see Photos 59 and 60). Swift flows limit bull trout and grayling habitat in all life stages; however, large pools are available for overwintering habitat.

W24 (Go Creek)

Reach W24 has a mean channel width of 1.4 m and flows down a gradient of 2% (see Photos 61 and 62). This reach provides poor spawning substrates for arctic grayling and bull trout. Generally, swift flows limit production potential.

W9 (Lower Wolverine Creek)

Wolverine Creek, near its confluence with Little Wolverine Lake, has a moderate slope (2% gradient) and small riffle-pool type channel with a mean channel width 0.3 m (see Photos 63 and 64). This reach has excellent gravels for arctic grayling and bull trout spawning and abundant cover providing for rearing potential but poor overwintering capability due to a lack of deep pools. A v-notch, flow monitoring weir located approximately 40 m upstream from the lake outlet is impassable to fish and should be decommissioned if no longer in use. Adfluvial juvenile lake trout were captured from the lower portion of this creek, below the v-notch weir.

14 (Upper Wolverine Creek)

Upper Wolverine Creek in this reach is a small channel (mean width of 0.6 m) which frequently runs subsurface (see Photos 65 to 67). At this site, the gradient is 3%. Downstream, toward Little Wolverine Lake, gradient increases and becomes steep and impassable to fish. The channel bed contains poor spawning substrates for arctic grayling and char and there are limited pools to provide rearing and overwintering habitat. The channel probably freezes over winter. No fish were captured in this reach.

3.2 Fish Tissue Analysis

Results of the slimy sculpin tissue analyses are provided in Appendix 7.8-3. Some inconsistencies have been noted for data collected in 1996 and 2005, suggesting that further analyses will be useful in establishing baseline conditions. Monitoring of selenium levels in slimy sculpin (whole fish) is currently recommended for assessment of mining effects, given that evidence of bioaccumulation has been noted in North America (Chapman, 2004). Results for bull trout and arctic grayling are also presented in Appendix 7.8-3.

For 2005, levels of some metals appear to vary according to size of fish rather than location, given that the sample from Go Creek consisted of one 5 g fish and

samples from Money Creek upstream and downstream of the Go confluence consisted of composites of three smaller fish, totaling 5 g per sample. The following results are based on the limited sampling conducted in 2005:

- copper levels are higher in the one sample from Go Creek (2.8 mg/kg dry weight) than the two from Money Creek (1.0 to 1.7 mg/kg);
- arsenic levels are higher in the Go Creek (2.2 mg/kg) than the Money Creek samples (<0.2 mg/kg);
- nickel levels are higher in the Go Creek (84.7 mg/kg) than the Money Creek samples (1.5 mg/kg); and
- levels of several metals are similar in fish from all three sites: cadmium (0.07 to 0.12 mg/kg), lead (<0.1 to 0.3 mg/kg), selenium (1.3 to 2.0 mg/kg) and zinc (46.3 to 54.1 mg/kg).

The value of 84.7 mg/kg nickel for Go Creek appears to be an anomaly (perhaps indicative of contamination or analytical problems), given that levels in fish from Money Creek, as well as from 1996, are considerably lower.

Tissue samples collected in 1996 (Westmin, 1996) indicated no substantial differences in metals levels in slimy sculpin from Money and Go Creeks, based on four and one sample, respectively (Appendix 7.8-3). Results for arsenic, copper, lead and selenium are similar in 1996 and 2005, but the following metals differed from those of 2005:

- cadmium levels range from 0.19 to 0.42 mg/kg (higher than in 2005);
- nickel levels range from <0.2 to 0.6 mg/kg; and
- zinc levels range from 102 to 141 mg/kg dry weight (higher than in 2005).

4.0 SUMMARY

Potential of the 27 watercourses in the vicinity of the proposed road or mine site to provide potential fish presence ranges from excellent to negligible (Table 8), as follows:

- excellent potential for 5 stream crossings: W11, W14, Bunker Ck. 1, Bunker Ck. 4 and Light Ck. 4 (fish were captured in all of these except Bunker Creek 1 and 4);
- moderate potential for 9 stream crossings (Sites W9, W12, W13, Light Ck. 2, Bunker Ck. 2, Bunker Ck. 3, Bunker Ck. 5, Bunker Ck. 6 and Go Ck. 1); fish were captured in W9, W12, Light Ck. 2, and Go Ck. 1;
- low potential in 13 stream crossings, likely non fish-bearing (Sites 4, 5, 13, 14, Go Ck. 2, Go Ck. 3, W16, W15, W22, W23, W24, Light Ck. 1 and Light Ck. 3); no fish captured at these sites; and

• negligible potential at an additional ten sites that were assessed visually with aerial reconnaissance.

Site	Sampling Method	Fish Captured /	Habitat Quality
		Known Presence	
Light Ck. 1	EF, MT	NFC	Poor
Light Ck. 2	EF, MT	NFC	Moderate
Light Ck. 3	EF	NFC	Poor
Light Ck. 4	EF	GR	Excellent
1	AR	NA	Poor
2	AR	NA	Poor
3	AR	NA	Poor
4	EF	NFC	Poor
Bunker Ck. 1	EF	NFC	Excellent
Bunker Ck. 2	EF	NFC	Moderate
Bunker Ck. 3	MT	NFC	Moderate
Bunker Ck. 4	EF	NFC	Excellent
Bunker Ck. 5	EF, MT	NFC	Moderate
Bunker Ck. 6	EF	NFC	Moderate
5	EF	NFC	Poor
6	AR	NA	Poor
7	AR	NA	Poor
8	AR	NA	Poor
9	AR	NA	Poor
10	AR	NA	Poor
11	AR	NA	Poor
12	AR	NA	Poor
13	EF	NFC	Poor
W14	EF	GR, CCG	Excellent
W11	EF	GR, CCG	Excellent
W13	EF	NFC	Moderate
W12	EF	GR, CCG	Moderate
Go Ck. 1	EF	GR, BT	Moderate
Go Ck. 2	EF	NFC	Poor
Go Ck. 3	EF, MT	NFC	Poor
W16	EF	NFC	Poor
W15	EF	NFC	Poor
W22	EF	NFC	Poor
W23	EF	NFC	Poor
W24	EF, MT	NFC	Poor

Table 8. Fish and Fish Habitat Sampling Summary, Yukon Zinc August 2005

Site	Sampling Method	Fish Captured / Known Presence	Habitat Quality		
W9	EF	LT	Moderate		
14	EF	NFC	Poor		
Definitions:	 Sampling Methods: EF = Electrofishing; MT = Minnow Trap; AR = Aerial reconnaissance Fish Captured: BT = bull trout; CCG = slimy sculpin; GR = arctic grayling; LT = lake trout; NFC = no fish captured; NA = not applicable (aerial survey) 				

5.0 REFERENCES

- BC Fisheries Information Service. 1997. Reconnaissance (1:20,000) fish and fish habitat inventory: Standards and Procedures Version 2.0. Resources Inventory Committee. 170 pp.
- BC Fisheries Information Service. 1999. Reconnaissance (1:20,000) fish and fish habitat inventory: Site Card Field Guide. Resources Inventory Committee. 42 pp.
- Environment Canada. 2005. Species at Risk. [www.speciesatrisk.gc.ca/ default_e.cfm]. Accessed 6-September-2005.
- Gartner Lee Ltd. 2005. Fisheries Study of Proposed Road Access Alignments, Wolverine Property. 2005. (Prepared for Yukon Zinc Corporation). 12pp + appendices.
- McPhail, J.D., and Carveth, R. 1993. Field key to the freshwater fishes of British Columbia. British Columbia Ministry of Environment, Fisheries Branch, Resource Inventory Committee. Victoria, British Columbia: Queen's Printer. 237 p.
- National General Status Working Group, 2004. The General Status of Species in Canada. [www.wildspecies.ca/CopyRight.cfm?lang=e]. Accessed 6-Sepetember-2005.
- Westmin Resources Ltd. 1996. Fisheries resource investigations, Wolverine Lake Property, Westmin Resources Ltd. (Spring, Summer and Fall Surveys) December 1996.
- White Mountain Environmental Consulting. 1997. Proposed access road creek crossings. Fish habitat evaluation and utilization assessment, 1997.

Appendix 7.8-2 Wolverine Area Historic Fisheries Investigations

Fisheries Resource Investigations

Wolverine Lake Property

Westmin Resources Limited

(Spring, Summer and Fall Surveys)

December, 1996

List of Tables and Figures

- Table ASampling Period, Number of Gillnet Sets, and Surface WaterTemperatures at
Sampling Locations During Gillnetting Surveys, Wolverine Lake, 1996
- Table BMean Fork Lengths and Weights of Lake Trout and Arctic Grayling Captured During
Index Gillnetting, Spring, 1996
- Table C Catch/Effort Statistics (CPUE) Generated from Index Gillnetting Results, Spring, 1996
- Table 1 Index Gillnetting Survey, Catch Record, Wolverine Lake Area, 1996
- Table 2 Electro-Fishing Results, Wolverine Lake Area, 1996
- Table 3 Angling Results, Wolverine Lake Area, 1996
- Table 4
 Seine Netting Results, Wolverine Lake Area, 1996
- Table 5
 Master Sample Record, Wolverine Lake Area, 1996
- Table 6 Number of Visual Observations of Fish in the Wolverine Lake Area, 1996
- Figure 1 Locations of Non-Destructive Gillnet Sets
- Figure 2 Locations and Titles of lake Tributaries, Inlets and Outlets Sampled During the Fisheries Investigation
- Figure 3 Locations and Titles of Creek Sample Sites During the Fisheries Investigation
- Figure 4 Spawning Sites for Lake Trout and Arctic Grayling
 - **Note:** A summary of the results from these investigations is contained within the Baseline Biophysical Surveys Report produced by Westmin Resources.

ADDENDUM #1

Preliminary Fish Habitat and Utilization Assessments Wolverine Lake Area Spring, 1996

White Mountain Environmental Consulting (WMEC) conducted preliminary fisheries investigations in the Wolverine lake area between June 11 and June 16, 1996. During the course of these investigations WMEC undertook the following:

- Conducted small mesh (non-destructive) gillnet surveys on Wolverine Lake, Little Wolverine Lake and Little Jimmy Lake.
- Investigated the inlet and outlet of Wolverine Lake for spawning activity.
- Investigated the lower reaches of Money and Nouga (Wolverine) creeks for spawning activity and conducted general habitat evaluations.
- Initiated a creel census program at the exploration camp on Wolverine lake.
- Collected fish flesh samples for heavy metal analysis.

METHODS

Gillnetting on Wolverine, Little Wolverine and Little Jimmy Lakes was conducted between June 12 and 15, 1996. A total of 35, 1 hour sets using a net gang consisting of 3, 25 meter panels (3.8mm, 6.4mm and 8.9 mm stretch measure) were completed. Surface water temperature, maximum depth of set and catch by mesh size and species was recorded for each net set (refer to Figure 1 for the locations of gillnet sets)

All fish captured were live sampled for fork length, round weight and any external observations were recorded before the fish were released, unharmed back to the waters of origin.

Incidental mortalities that occurred during gillnetting were sampled for round weight, fork length, stomach contents, sex and maturity, and an otilith was taken and stored for age analysis (aging was not completed as a part of this study, although the otoliths have been appropriately stored and age analysis can be conducted as necessary). Six of the lake trout mortalities were also used to provide fish for metal sample analysis. Flesh of these fish suitable for human consumption was given to local residents working at the exploration camp. Refer to Tables 1 to 6 for data on the fish collected or observed during the study.

RESULTS

Gillnetting survey:

Three species of fish were encountered during the index gillnetting, these were; lake trout(*Salvelinus namaycush*, Walbaum), Arctic grayling (*Thymallus arcticus*), and longnose sucker(*Catostomus catostomus*). A total of 85 lake trout, 199 Arctic grayling and 5 longnose sucker were captured (refer to Tables A to C).

The capture of grayling releasing eggs implies that at least one area of Wolverine Lake shore is used by spawning grayling (on the mainland directly north-east of the island).

Long nose sucker exuding eggs were captured near the outlet of Little Jimmy Lake indicating that the site may be a spawning area for suckers.

Inlet and Outlet of Wolverine Lake:

Based on the ground and aerial surveys conducted on June 11, 13 and 15 the inlet and outlet of Wolverine Lake is a popular spawning area for Arctic grayling. Large numbers of grayling were observed congregating in the inlet and outlet areas. Subsequent capture of fish in these vicinities showed them to be in spawning condition with some females exuding eggs and some males exuding milt. Grayling eggs were found during seining of the inlet to Wolverine lake as were lake trout fry (refer to Figure 2 for the locations of Lake Tributaries and Lake sample sites).

Lower reaches of Money and Wolverine Creeks:

Cursory assessments were conducted at the mouth of Money creek, where it empties into Francis Lake, on June 11 and 16. Seine netting, electrofishing and angling caught only a small number of slimy sculpin (*Cottus cognatus*). No Arctic grayling were caught or observed at this site during these investigations, although suitable habitat was prevalent.

Cursory assessments of the lower reaches of Nougha creek were undertaken on June 16. Angling, electro-fishing and visual surveys indicated Arctic grayling congregating in the mouth area . Longnose sucker fry and slimy sculpin were also captured in very small numbers at the creek mouth (refer to Figure 3 for the locations of Creek sample sites).

Creel Census

A voluntary creel census was initiated for anglers at the Wolverine lake exploration camp on June 15. An environmental person stationed at the camp will oversee the implementation of this census. A catch and release policy is in effect for personnel associated with the exploration camp.

Metal samples

A total of 6 lake trout were taken for heavy metal contaminant analysis, these fish were incidental mortalities from the index gillnetting. A set of three samples from each fish was obtained, a back flesh sample, a stomach flesh sample, and the liver. The metal samples will be sent to Quanta trace laboratories for analysis at the completion of the field studies program.

ADDENDUM #2

Preliminary Fish Habitat and Utilization Assessments Wolverine Lake Area Summer 1996

White Mountain Environmental Consulting (WMEC) conducted preliminary summer fisheries investigations in the Wolverine lake area between July 12 and 17, 1996. These summer investigations consisted of the following:

- preliminary fish habitat and utilization assessments of both Money and Nougha creeks.
- habitat assessments and cursory fish utilization assessments of 36 creek sites within the study area.
- investigating the extent of Dolly Varden trout utilization of Money and Nougha creeks.
- monitoring the creel census program in place at Wolverine lake exploration camp.
- collection of fish flesh samples for heavy metal analysis.

METHODS

Habitat and Fish Utilization Assessments.

A total of 36 creek sites were investigated during the summer assessment. The inlet and outlet of Wolverine Lake were sampled as were any tributaries flowing into the lake. All tributaries flowing into Little Wolverine and Little Jimmy lakes were also sampled.

Aerial surveys of Nougha, Money and Go Creeks were conducted by helicopter to map fish habitats and to note any barriers to fish passage.

Sites where a possible access road may cross small tributary creeks were sampled for fish utilization.

RESULTS

Lake Inlet Creeks

Slimy sculpin were found in most watercourses sampled. Burbot, lake trout fry, Arctic grayling, longnose sucker and/or slimy sculpin were found to utilize the mouths of some tributaries flowing into Wolverine and Little Wolverine Lakes. Lake trout fry and Arctic grayling were found to utilize the inlet and outlet areas of Wolverine Lake (refer to Table 4).

Nougha Creek

An aerial survey of Nougha creek was conducted from its mouth at the Finlayson River to Wolverine lake. At this time, fish habitat was mapped and any barriers to fish passage were noted. Nougha creek was sampled at 4 locations to determine fish utilization.

Arctic grayling was the most abundant species found, followed by slimy sculpin, northern pike and burbot. No Dolly varden were found in Nougha Creek.

Money Creek

An aerial survey of Money Creek was conducted from its mouth at Frances Lake to a point several kilometers above its junction with Go Creek. Fish habitat was mapped and any barriers to fish passage noted. It was also sampled at 7 sites during to determine fish utilization as were 2 tributaries to Money Creek.

Dolly varden trout were present in the upper reaches of Money Creek both above and below its junction with Go Creek. Suitable spawning habitat was observed at various locations throughout Money creek, including above the junction of Money and Go Creeks. Arctic grayling, slimy sculpin and northern pike were the only other species encountered in Money Creek.

Go Creek

An aerial survey of Go Creek was conducted from its mouth at Money creek to just above the site of the airstrip. Fish habitat was mapped and four sites were sampled for fish utilization.

Dolly varden were found in the lower reaches of this creek along with slimy sculpin and adult and sub adult Arctic grayling.

Access Road Creeks

Three creeks that drain into Wind Lake and two creeks draining into Nougha Creek were found to be very poor fish habitat and no fish were found in any of these creeks.

Creel Census

The catch and release policy in place at the exploration camp was generally adhered to. The extent of compliance to the creel census was difficult to assess. It appears that angling pressure from personnel at the exploration camp has been minimal at this time. Angling pressure consisted mostly of angling from shore at camp by camp personnel. An average of 40 minutes angling time per day was observed.

Metal samples

A total of 10 slimy sculpin samples (consisting of 3 to 7 individual fish each)and 4 Arctic grayling samples were taken for heavy metal analysis. The slimy sculpin samples were taken from two tributaries to Little Wolverine Lake, three tributaries to Wolverine Lake, the outlet of Wolverine Lake, and three sites on Money Creek. The Arctic grayling samples were taken from the inlet and outlet of Wolverine Lake (two fish from each site). Arctic grayling samples consisted of both flesh and liver samples.

ADDENDUM #3

Preliminary Fish Habitat and Utilization Assessments Wolverine Lake Area FALL 1996

White Mountain Environmental Consulting (WMEC) conducted fall fisheries investigations in the Wolverine lake area between September 22 and 25, 1996. These investigations constituted the third and final field investigation of the 1996 season. The investigations consisted of the following:

- An Aerial survey of Money Creek to detect any congregations of spawning dolly varden or any signs of dolly spawning such as redds. Ground surveys were conducted at the outlet of Go Creek.
- Investigating the lake trout spawning locations on Wolverine, Little Wolverine, Little Jimmy and Francis lakes.
- Monitoring the creel census program in place at Wolverine Lake exploration camp.
- Conducting preliminary fisheries investigations of Wind Lake including using nondestructive small mesh gillnetting.
- Conducting ground investigations of Nougha Creek at the confluence with the Finlayson River, including angling in the Finlayson River downstream of Nougha Creek to detect presence or absence of dolly varden.
- Investigations into fish utilization of Francis Lake near the outlet of Money Creek, including determination of key fish habitats such as lake trout spawning.
- Obtaining fish samples from Wolverine Lake to determine sexual maturity and timing of spawn and for stomach analysis.
- Obtaining fish samples for heavy metal analysis from Little Jimmy Lake.

Refer to Figures 1, 2 and 3 for the locations of sample sites in the study area. Refer to Tables 1 to 6 for information on the fish captured during the study.

RESULTS

Money creek

The aerial survey of Money Creek found no evidence of dolly varden spawning. No aggregations of fish were detected and no obvious signs of redd building were observed.

Ground surveys near the outlet of Go Creek into Money Creek found only slimy sculpin Dolly varden spawning strategies vary throughout the species range. Little information on spawning strategies for this type (small river) of population in the Liard River drainage has been compiled. It was suspected that that dolly varden spawning occurred prior to our investigation. Thus, the investigations do not provide sufficient information on dolly varden spawning strategies in Money Creek.

Lake Trout Spawning Surveys

The locations of lake trout and Arctic grayling spawning sites is shown on Figure 4. Note: The spawning sites locations are confidential and should not become published information.

Surveys for lake trout spawning areas were conducted in two stages. The first stage was aerial surveys of the lakes, with flights conducted during the evening and early morning. Fish observations were plotted on topographic maps. The second stage of the survey was conducted by boat using sonar and angling to locate and capture fish.

During the aerial survey, fish were observed in the outlet areas of Little Jimmy, Wolverine and Little Wolverine lakes. Fish were also detected at four other locations on Wolverine Lake.

Boat /sonar surveys showed fish were not widely dispersed in the lakes with most of the fish located occurring in a few large aggregations. Angling was used to determine species and spawning condition.

Little Jimmy Lake

Examination of lake trout captured in Little Jimmy Lake showed these fish had spawned several days prior to September 24. Stomach analysis revealed that the trout in this area were cannibalizing there own eggs and indicated that the outlet area is likely a spawning location for lake trout on this lake.

Little Wolverine Lake

Few fish were observed in Little Wolverine Lake. Arctic grayling were observed in the channel between Little Wolverine and Wolverine lakes and the occasional lake trout was observed near the outlet of Little Wolverine Lake. Two lake trout were captured from this area and sacrificed for metals analysis. Both of these trout were resting fish, one a male and the other a female. This survey indicates that Little Wolverine Lake is not likely a spawning location for lake trout, and trout utilizing this lake are of the same population as those in Wolverine Lake.

Wolverine Lake

Ground surveys in Wolverine Lake indicated that most of the Arctic grayling had moved into shallow areas near creeks, particularly in the outlet area at Nougha Creek. Large numbers of "stacked" lake trout were encountered at two locations in the south east end of the lake, both adjacent to shore in areas with steep drop-offs and water depths in excess off 40 meters within 30 meters of shore. The first of these locations is approximately 1 km north of the exploration camp on the northwest shore. The second location is directly across the lake on the southeast shore. The site on the southeast shore was considerably larger than the site on the northwest shore and fish were stacked in an area approximately 300m long (following the shoreline) and extending 30 meters from shore. Trout were in water depths of 3 to 35 meters. Trout were easily angled at the site on the southeast shore and several fish were taken for dead samples. Sampling revealed that the fish were close to spawning, skeins in the females had burst, but the eggs had not become loose in the body cavity, indicating that spawning would likely occur during the first few days of October.

Francis Lake

Boat sonar surveys in Francis Lake found significant numbers of fish near the mouth of Money Creek. Based on the number of fish observed, this area appears to be important fish habitat. No fish were captured in the area and the species composition of fish utilizing this area is unknown. Some stacking of fish was found in an area approximately two kilometers north of the mouth of Money Creek. Angling at this site proved unsuccessful and the fish species could not be positively determined, sonar readings did resemble those found at the spawning sites on Wolverine Lake. Because of Francis Lakes lower elevation in comparison to Wolverine Lake it is expected that lake trout spawning would occur at a later date than on Wolverine Lake.

Wind lake

Wind Lake was surveyed on September 23, 1996. A gang of small mesh gillnets consisting of 20 m x 1", 20m x 2" and 25 m x 2.5" was set for 1 hour periods at three different locations on the lake. One large lake trout (5.5kg) was the only trout captured, arctic grayling were numerous as were long nose sucker. The lake has an even bottom with steep drop offs from shore. The maximum depth found was 10 meters (32').

Creel Census

The catch and release policy previously in place at the exploration camp is no longer adhered to, although the high quality waters limit of 1 fish per day has been maintained. The informal creel census was not a camp priority and results were therefore not complete. It appears that angling pressure from personnel at the exploration camp has been minimal and has consisted mostly of angling from shore at the camp.

Metal samples

Samples collected from Muskrat House Lake were used to complete the collection of fish for heavy metal analysis. A composite of livers from 6 trout was taken as was a single flesh sample from one of the trout. Flesh not required for metal analysis was given to local residents working at the exploration camp.

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING

Proposed Access Road Creek Crossings

Fish Habitat Evaluation and Utilization Assessment, 1997

INTRODUCTION

At present two possible access roads to the Wolverine Lake property are being considered to access the property for future development. All creeks crossed by the two proposed routes were investigated by White Mountain Environmental Consulting (WMEC) during the 1997 open water season. Creeks were evaluated at the proposed crossing locations and at their outlets for the presence of both fish and fish habitat. Site investigations were conducted during June, July and September in order to provide an evaluation of spring, summer and fall utilization and account for seasonal movements of fish. The following report documents habitat availability and utilization during all seasons of investigation.

METHODS

A total of fifteen creeks were studied during the proposed access road crossing investigation. The creeks investigated consisted of the following:

- A tributary to East Lake;
- Two tributaries to Wind Lake;
- Seven tributaries of Nougha Creek;
- Nougha Creek;
- Three tributaries to Wolverine Lake, and
- A small headwater feeder creek of Van Bibber Creek.

The titles and descriptions of each of the 1996 and 1997 sample sites are provided on Table 1.
Site	Description
TE	Tributary to East Lake
TW-1	Access Road Crossing Site, a Tributary that Drains into Wind Lake
TW-2	Access Road Crossing Site, a Tributary that Drains into Wind Lake
WO	Outlet of Wolverine Lake
TN-1	Access Road Crossing Site, a Tributary that Drains into Nougha
	Creek 300 m Downstream of Wolverine Lake Outlet
TN-2	Access Road Crossing Site, a Tributary that Drains into Nougha
	Creek 350 m Downstream of Wolverine Lake Outlet
TN-3	Tributary of Nougha Creek, 800 m Downstream of Wolverine Lake
	Outlet
TN3F	Feeder Tributary to TN3
NTN3	Nougha at Mouth of TN3
TN-7	Tributary to Nougha Creek Approximately 8.9 km Downstream of
	Wolverine Lake
TN-8	Tributary to Nougha Creek Approximately 8.6 km Downstream of
	Wolverine Lake
TN-9	Tributary to Nougha Creek Approximately 7.6 km Downstream of
	Wolverine Lake
TN-10	Tributary to Nougha Creek Approximately 6.9 km Downstream of
	Wolverine Lake
TWV-1	Tributary to Wolverine Lake
TWV-2	Tributary to Wolverine Lake
TWV-3	Tributary to Wolverine Lake
TVB	Tributary to Van Bibber Creek
TVB-1	Tributary to TVB

Table 1 Sample Sites

The location of each of sample sites are presented in Figure 1. Figure 2 shows the two potential access routes to the Wolverine Lake property. A general description of the physical fish habitat for each site investigated is provided in Appendix 1. Results from all fish utilization assessments, including catch and sample records are contained in Appendix 2, Tables 1 to 3. Photos were also taken at each site and are provided in Appendix 3.

Habitat characteristics evaluated at each site included; creek depths and widths, water velocities, pool to riffle ratios, substrates, overhanging and adjacent vegetation and potential fish cover. Methods used to determine fish presence were electro-fishing, seining (where possible), angling and visual observations. Polarized glasses were used at all times to enhance visibility.

Insert Figure 1

Insert Figure 2

With the exception of Nougha Creek, all crossing sites occur in areas where the creek flows in a small draw with dense willow cover over and adjacent to the creeks. These creeks flow through dense tangles of willow in incised channels which are typically deeper than they are wide. These creeks rarely exceed a width of greater than 0.3 m, and have velocities averaging >1 m/sec. This type of creek, generally, does not provide good fish habitat. Aufies noted during spring investigations implies the creeks bottom freeze, a factor that severely limits ability to support over-wintering by fish. Rare and occasional ground water feeds may provide habitats suitable for slimy sculpin over wintering, and Arctic grayling may move into the creeks above the point where streamflow flowed through dense willows.

TE: The tributary to East Lake, as marked on the map sheet, does not at this time represent an above ground flow. This creek has been denoted as non-fish bearing and as such requires no further fisheries investigations.

TW-1: Tributary to Wind Lake #1 has two distinct reaches, the first being from the outlet to Wind Lake upstream for 400 m through a large wetland area, the second reach is above the first and extends up its valley, as a willow tangled draw, to the headwater area. The lower reach provides critical spawning, rearing and feeding habitat for Arctic grayling, particularly where it is closer to the lake. Long nose sucker and slimy sculpin also utilize this reach. Arctic grayling fry were the only species utilizing this reach during fall investigations. The upper reach is of little value as fish habitat; the proposed access road crosses the upper reach near the headwater area in an area not considered as fish habitat.

TW-2: Tributary to Wind Lake #2 consists of a small creek flowing through a willow draw. This creek does not provide fish habitat in its upper reaches. The only reach of this creek to provide fish habitat is the lowest 35 m, which forms a small bay of the lake. This area has significant influence from the lakes warmer water. The location of the proposed crossing site is approximately 2 km upstream of the lake in non-fish habitats.

WO and N: Nougha Creek near the outlet from Wolverine Lake represents important fish habitat. Utilization of the reach adjacent to the lake was documented as supporting Arctic grayling spawning and rearing, lake trout rearing and adult feeding and long nose sucker, slimy

sculpin, and burbot were also present. Large numbers of adult Arctic grayling observed during fall surveys may indicate this is an over-wintering site for grayling. Fish habitats vary seasonally with water levels and velocities.

TN-1: Tributary to Nougha Creek #1 is a small creek (0.35 m wide x 0.05 m depth). The lowest 10 m of the creek consists of a gravel boulder bottomed riffle with velocities >1m/sec. Above this reach, the creek flows through tangled willows alternating between being a narrow incised channel with velocities >1m/sec to areas with little or no defined channel with flows flooding out through the adjacent willows and sedges. Limited fish habitats exist in the creek in the form of eddies and pools below boulders. Two trails cross this creek 35 and 50 m upstream of Nougha Creek. Small pools with gravel substrates have been created by the trails crossing the creek. No fish were found in this creek.

TN-2: Tributary to Nougha Creek #2 does not have a defined channel outlet into Nougha Creek, rather it spills over the bank along a 10 m reach. Above this the creek flows through a tangle of willow and the channel is not well defined in most places. The most defined channel area occurs where the creek has been crossed by two winter trails, 30 and 40 m upstream of Nougha Creek. This creek does not represent fish habitat.

TN-3: Tributary to Nougha Creek #3 has flow and size sufficient to support fish. The outlet into Nougha Creek creates two important eddy pools in Nougha, one upstream and one downstream of the outlet. The first 10 m of the creek upstream of Nougha consist of a shallow glide at the mouth then a fast riffle before narrowing and entering into heavy willow tangles. Substrates in the creek are consistently heavily silted with clay and sand in the lower reach, gravel and cobbles occur occasionally at distances greater than 20 m upstream of Nougha Creek.

This creek is crossed by two winter trails 40 and 50 m upstream of Nougha Creek. Significant ice buildups were observed at the crossing sites during our spring investigations. The creek flows in a gully at the site of crossing with banks rising as much as 2.5 m above the actual flow. Arctic grayling juveniles were recorded in the first 20 m of the creek upstream of Nougha Creek during fall investigations and in the zone of influence during both summer and fall investigations.

TN-7: Tributary to Nougha Creek #7 does not have a discernible flow above ground at the outlet to Nougha Creek. The creek does have a large ponded area adjacent to Nougha Creek but flows from the creek enter this pond as seepage from the surrounding area. The distinct above ground channel that flows into a small alluvial area 50 m up from Nougha quickly dissipates into the wetland area leaving no above ground flow. Flows within the ponded area occur as seepage. The creek proper drains a willow tangled and spruce filled draw. Vegetation adjacent to the channel is alpine shrub.

The creek does not provide fish habitat, nor access to Nougha Creek, however the outlet bay formed by the creeks historic flows does offer a zero velocity area adjacent to Nougha Creek and as such provides some fish habitat.

TN-8: Tributary to Nougha Creek #8 is a small creek (depth was 0.2 m and width was 0.8 m), narrowing to < 0.25 m) which flows as stepped 0.3 m waterfalls interspersed by riffle/rapids (velocity > 2 m/sec) through a dense tangle of willow. The tributary flows directly into Nougha Creek in a narrow, confined and incised channel. There is very little in terms of a zone of influence where the tributary enters Nougha Creek, since it enters on a deep side into velocities >2m/sec. The tributary provides very limited fish habitat, primarily due to steep gradient and high velocities. This creek does not merit further fisheries investigations.

TN-9: Tributary to Nougha Creek #9 enters Nougha Creek as a waterfall approximately 3 m high. A second waterfall occurs within 20 m. The waterfalls cascade over bedrock with boulders. Above the waterfall area the creek channel is narrow and confined with velocities >2 m/sec over predominantly boulder/cobble substrates. The creek is heavily covered with willow and spruce.

The potential for fish utilization of this tributary is extremely limited due to high water velocities. The first 20 m of the creek forms a permanent barrier to fish passage. The creek enters Nougha directly with very little zone of influence. Nougha Creeks flows are fast (>2 m/sec) in this reach with a narrow and confined channel that provides very little low velocity habitats. This tributary creek does not provide fish habitat.

TN-10: Tributary to Nougha Creek #10. The upper reach starts 15 m u/s of Nougha Creek and is narrow and confined in an incised channel. The upper reach is 0.3 m wide and 0.5 m deep, on average, with surface velocities >1 m/sec.

The lower 15 m reach consists of mostly boulder substrates with a wetted width of 2 m, or greater. The lower reach of the creek has potential to support fish. The boulder substrates are clear of any silts or fines, a situation that may indicate ground welling.

This creek enters Nougha Creek were the flows are mostly <1 m/sec and some channel braiding occurs. The zone of influence to Nougha consists of an upstream pool of 2 m by 3 m and a downstream mix trail of approximately 2 m by 8 m, both of these areas have depths >0.5 m. Fish were captured in Nougha Creek adjacent to the tributary, however no fish were captured in the tributary itself. Sculpins and Arctic grayling juveniles were recorded in the zone of influence during summer and fall investigations.

TWV-1 Tributary to Wolverine Lake #1, also known as Jasper Creek, provides very little fish habitat and shows very low utilization. The creek is small with a depth of 0.3 m and a width of 0.6 m and has a high flow (<2 m/sec) through a heavy tangle of willow. The creek does provide an important mix zone as it enters Wolverine Lake. Several slimy sculpin and a single Arctic grayling juvenile were recorded in the creek. Large numbers of lake trout fry and grayling fry were recorded in the mix area of Wolverine Lake. Seines pulled in adjacent areas of Wolverine Lake had very low catches relative to those pulled in area influenced by TWV-1.

TWV-2 Tributary to Wolverine Lake #2 is a very small creek with depths of <0.01 m and width that does not exceed 0.3 m. The Creek does not provide any fish habitat.

TWV-3 Tributary to Wolverine Lake #3 drains a wetland area adjacent to Wolverine Lake. The creek is has a low gradient in its lower reaches and in several locations throughout its length. Numerous species of fish, in limited numbers, were recorded in the creek near the outlet during all seasonal investigations. Available fish habitat occurs predominantly within 150 m of the lake, however small pockets of good habitat occur 500 m upstream of the lake near the confluence of two feeder creeks.

TVB & TVB-1 Tributary to van Bibber Creek, and tributary to this tributary. The site of investigation consisted of the headwater reaches at the confluence of two feeder creeks. The northern most of the feeder creek intersects the proposed access route just upstream of its confluence with the second feeder creek. The creeks both consist of wide, flat, stepped riffles with available structural habitats with very low conductivity (i.e. very pure water) and cold water temperatures. The reaches investigated are above a long reach consisting of high velocity water and a narrow channel with limited fish migration potential. Fish were not recorded in any of the channels of this creek.

Investigations into the outlet areas of these creeks revealed several to have significant fish values. The tributary to Wind Lake, TW-1, has an extended outlet area flowing through small bluffs of willow mixed with dwarf birch. The area is extensively worked by beavers and extends over 300 m from the lake. This area provides spawning and rearing habitat for Arctic grayling. Juvenile long nose sucker and juvenile Arctic grayling utilize the ponds associated with the creek near the lakeshore.

Tributary TWV3, at its outlet to Wolverine Lake, provides rearing habitats for juvenile Arctic grayling, juvenile lake trout, juvenile long nose sucker and juvenile burbot, resident slimy sculpin also utilize this creek. Suitable habitats are located upstream of the lake for a distance of 150 m, aerial assessments showed potential for fish habitat in scattered pockets up to the point of the confluence of two feeder creeks 500 m from the lake.

Most of the tributaries entering Nougha Creek are colder than Nougha throughout the year. Tributaries TN1 and TN3 provide limited fish habitats near the outlets, however utilization was restricted to within 20 m of Nougha Creek. Several of the tributaries create eddying in Nougha Creek at their point of entry creating important habitats in an otherwise fast flowing Nougha Creek.

Although most of the creeks investigated did not provide fish habitat, the outlet areas often enhanced fish habitats by introducing oxygen and nutrient rich waters to the lake and receiver creek. This was especially evident in the lakes where utilization of the waters at the creek outlet was significantly higher than in similar adjacent areas.

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING

Habitat Evaluation of Money Creek

Summary

Aerial assessments of Money Creek were conducted on July 14,1997 in order to provide an evaluation of the creek and it's potential to support fish. The July survey was a continuation of the 1996 investigation which focussed on species utilization along specific sections of Money Creek.

Money Creek flows as a high velocity creek with predominantly cobble substrates interspersed with boulders and sorted gravel. Fish habitats are limited and typically small. Concentrated pockets of key habitats exist along the creek, the most notable being the potential over wintering sites near Reach #7. The creek flows clear and shallow with high velocities that provide poor cover and few resting areas for fish.

The descriptions start at the creeks outlet at Francis Lake and continue upstream in ascending order to a point above Go Creek in the alpine headwaters of Money Creek. Money and Go Creek are shown on Figure 1 of the "Proposed Access Road Creek Crossings – Habitat Evaluation and Utilization Assessment, 1997" report.

Reach #1

Outlet area to Frances Lake 61°24.80 N/ 129°38.30 W.

Some silting of gravel and sand substrates, open area with many exposed gravel bars. Mostly shallow flat glide. Reach extends 150 m from Francis Lake.

Reach #2

Starts 150 m from lake, extends 350 m upstream of the Robert Campbell Highway bridge. Gravel/cobble substrate with some braiding the creek is primarily riffle runs and glides with few pools. This reach is 1.4 km long.

Reach #3

Increasing boulders and riffles begin above the Robert Campbell highway. Rapids begin at the point where the creek becomes confined by a canyon. Rapids interspersed by occasional pools and gravel bars. This reach is 3 km long.

Reach #4

Start at 61°24.00 N/ 129°40.75 W.

Canyon becomes deeper and more abrupt, many cliff areas, rapids at bends of the creek, typically against cliffs. Mostly high velocity riffles over boulder cobble substrates. This reach includes sample site M3. This reach is 1 km long.

Reach #5

Starts at 61°23.85 N/ 129°41.00 W.

Longer glides with fewer pools and riffles, cobble/boulder substrates with very few side pools. The creek velocity has slowed with rare rapid "shoots" occurring in confined areas. Reach is 4 km long.

Reach #6

Starts at 61°23.85 N/ 129°44.00 W.

The creek develops more rapids and deep pools with large boulders becoming more common in boulder cobble substrates. Creek remains confined by canyon Riffle / pool sequences common. The reach is 2.3 km long and flows out across the edge of the Pelly Mountains.

Reach #7

Starts at 61°24.20 N/ 129°46.20 W.

A short reach that consists of a series of deep pools below stepped rapid / small pool sequences. This reach represents the most likely over wintering habitats (deepest and most frequent pools) observed on Money Creek. Reach is 0.8 km long.

Reach #8

Approximately three foot high falls at 61°24.17 N/ 129°46.45 W.

May be an impediment to fish passage at certain flows (high or low). Does not likely form a constant barrier to fish passage but is the most restrictive area in terms of fish passage on Money Creek. Substrates are predominantly bedrock with boulders and areas of sorted gravels. This reach is approximately 150 m long.

Reach #9

Starts at waterfall in Reach #8.

Long flat glide/riffle with high velocities, substrates predominantly boulder with some cobble/ gravel areas. This reach is 2.5 km long.

Reach #10

Starts at 61°24.33 N/ 129°48.50 W.

Large boulders occur commonly in fast flowing riffles, with some corner pools and glide areas. Substrates consist of an even mix of boulder, cobble, gravel substrate. A narrow flood plain exists within the continuing steep sided canyon. Occasional islands occur in braided areas were substrates are composed mainly of gravel and cobble mix (this includes site 10a). This reach is 3.5 km long.

Reach 10a

At 61°24.20 N/ 129°50.00 W.

Island with shallow, low volume channel on north side.

Reach #11

Starts at 61°24.33 N/ 129°52.00 W.

Wide shallow glides, creek channel up to 20 m wide, confined by steep sided valley. Gravel / cobble substrate.

Reach #11a

At 61°24.10 N/ 129°53.20 W.

Boulder strewn riffle area of higher velocity at tight meander scroll, steep sided cliff on north bank.

Reach #12

Starts at Outlet of tributary creek TM4 at sample site M4, located at 61°23.85 N/ 129°53.60 W Wide flat glides with few smaller boulders dispersed throughout. Several gravel point bars and side channels, occasional small cliff banks with small pools associated at outside corners. Valley broadens to 800m wide flood plain, creek channel confined by banks averaging 2 m in

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING Habitat Evaluation of Money Creek

height above water line. Creek becomes more meandering with abandoned channels visible. This reach is 4 km long.

Reach #12a

Large point bar with sorted gravels. Two old channels apparent on downstream side.

Reach #12b

At 61°24.33 N/ 129°48.50 W

Marks the downstream edge of recent burn. This burn extends up the Money Creek valley into the headwater area. Channel is braided in the wide flood plain, with substrates predominantly gravel. Large island (5m x 200m) formed by braided channel, excellent combination of habitat with pools and back eddies.

Reach #13

Starts at 61°22.10 N/ 129°53.70 W.

Finer gravel substrates with few boulders. Mainly glides with few riffles. Moderate velocities. Reach is 1.5 km long.

Reach #14

Starts at 61°21.50 N/ 129°53.90 W.

Creek increases in velocity and becomes more sinuous with increasing numbers of boulders. Few log sweepers with stick and log jams along corner banks, several boulder riffle runs interspersed by gravel bottom glides. The reach is 5.8 km long.

Reach #14a

At 61°21.00 N/ 129°54.80 W.

A potential obstruction created by a log jam backs water levels up to between 0.75 and 1.2 m high along the log jam area. Beaver activity has added to the obstruction. The channel has split as a result of the log jam. The original channel no longer flows through and exists as a pond, the new channel, also obstructed has backed up water so that the creek flows through adjacent vegetated areas to pass the obstruction.

Reach #15

Starts at 61°19.25 N/ 129°57.00 W.

Channel is wide and flat (up to 20 m wide) and boulder filled. Wide flood plain ends and vegetation becomes more dispersed typical of higher altitudes. Creek has predominantly cobble substrates with boulders consistently dispersed throughout; glide areas are short and rare. The reach is 3 km long.

Reach #15a

Ends at 61°18.65 N/ 129°59.00 W.

Large braided channel has shifted main flow into what map shows as side channel, which now has main flow. Old channel has maintained some flow now has limited flow linked by gentle shallow riffles. New channel is 650 m long. The downstream end (junction) of both channels is sample site M5.

Reach #16

Starts at 61°18.45 N/ 129°59.50 W.

Creek becomes noticeably smaller, substrates are boulder strewn cobbles and gravel, with occasional patches (up to 200 m in length) of sorted fine gravel. Creek consists mostly of long riffle areas, few glides or pools, open flood plain, glides with point bars, occasional strip of fine gravel (up to 200 m in length). This reach is 9.4 km long.

Reach #17

Starts at 61°24.33 N/ 129°48.50 W.

Channel narrows with the average width in this reach is 7 m and is as narrow as 3 m. Creek consists of mainly boulder riffles interspersed with gravel bottom glides with some wetland areas nearby. Wide flood plain with willow vegetation (no spruce near channel). Evidence of channel shifting throughout the reach with many abandoned channels visible. This reach includes sample sites M6 and M7 (outlet of Go Creek area) and is approximately 9 km long.

Reach #18

Starts at 61°21.15 N/ 130°04.50 W.

Area above Go Creek confluence. Flood plain narrows, adjacent vegetation remains similar with little streamside vegetation as elevation increases and vegetation becomes alpine with few

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING Habitat Evaluation of Money Creek

shrubs and no trees. Approximately 10 km up this reach the creek flows shallow and braided over a glacial feature with angular and fractured cobbles for almost 1 km. This same type of creek structure occurs in several other areas further up the creek. The braided area 10 km up this reach marks the furthest point studied during our investigation.

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING

Habitat Evaluation of Nougha Creek

Summary

The lower reaches may provide habitats for bull trout, although none were recorded during 1996 or 1997 surveys. Nougha Creek provides many good fish habitat areas but fish passage is blocked to upstream movements by waterfalls in Reach # 4. The creek provides many habitats for Arctic grayling.

Aerial assessments of Nougha Creek were conducted on July 16,1997 in order to provide general comments about the creek and it's potential to support fish.

The reaches of Nougha Creek are described below in ascending order, starting at the outlet to Finlayson River and moving upstream to the mouth of the creek at Wolverine Lake. Nougha Creek is shown on Figure 1 of the "Proposed Access Road Creek Crossings – Habitat Evaluation and Utilization Assessment, 1997" report.

Reach #1

Outlet to Finlayson River at 61°36.05 N/ 130°08.04W.

Flat slow glides with deep silts near the outlet and fine gravels becoming more prevalent nearer the Robert Campbell highway. This reach is 1.2 km long.

Reach #2

Starts at bridged crossing of the Robert Campbell highway at 61°35.65 N/ 130°08.04W. Above the Robert Campbell highway cobble/gravel bottom glides with occasional boulders and deep pools occurring near undercut banks at creek bends. This reach is 2.8 km long.

Reach #2a

At 61°35.10 N/ 130°11.80 W.

A new channel has been cut due to beaver activity, beavers continue to dam in this location on the new channel. This beaver dam (>1 meter height) represents a partial obstruction to fish passage.

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING Habitat Evaluation of Nougha Creek

Reach #3

This reach starts at 61°35.30 N/ 130°10.75 W.

Boulders become more common, velocity increases causing more riffles with fewer pools, creek flows through a steep sided valley with the channel constricted by bedrock rock in places. This reach is 2.5 km long.

Reach #3a

At 61°35.10 N/ 130°11.80 W.

A small waterfall followed by 100 meter section of deep rapids with pools and many boulders. May limit fish passage during high or low flow periods.

Reach #4

Starts at 61°34.80 N/ 130°11.75 W.

Valley constricts, channel narrows and water velocity increases. Many large boulders with intermittent deep pools. First downstream rapid may present a barrier to fish during low water periods. This reach is 1 km long.

Reach #4a

At 61°34.50 N/ 130°12.85 W.

Area marked "rapids" on 1:50,000 topographic maps. Channel confined by a narrow gorge, mainly boulder rapids interspersed with deep pools. These rapids likely present a barrier to fish passage.

Reach #5

Starts at 61°33.44 N/ 130°13.75 W.

Valley broadens and channel flattens with gravel/cobble/boulder substrates. Long riffles/runs with some pools at stream bends. Riffles have high velocities. Good fish habitats are dispersed throughout the reach. This reach includes the outlets of tributaries TN7 and TN8. This reach is 2 km long.

Reach #6

Starts at 61°33.40 N/ 130°13.75 W.

Stepped rapids 100 meters in length likely present a barrier to fish passage. This reach flows at the point were Nougha Creek exits the Campbell Range of the Pelly Mountains. This reach is 0.8 km long.

Reach #7

Starts at 61°33.20 N/ 130°14.45 W.

Gradient decreases and stepped rapids become more dispersed with good pools between, several long glides exist and side channels are common, large pools have formed at creek bends. Substrates mostly cobble, some gravel patches and a few areas of fine gravel. This reach includes the outlets of tributary creeks TN9 and TN10 and is 2.3 km long.

Reach #8

Starts at 61°32.35 N/ 130°14.45 W.

Channel widens and velocity is significantly reduced. Gentle riffles followed by slow pools. Glide pools and back eddies are common. Aquatic vegetation and siltation occurs in mid channel areas. Above #8A substrates are composed of fine gravels in an area with sharp meander curves and varying velocities, flows still occur as glides with the occasional short riffle. Heavy willow vegetation encloses the creek and several ponds associated with the creek occur near the top of this reach. This reach is 3 km long.

Reach #8a

At 61°31.75'N/ 130°16.15W.

Wide meanders with sluggish flow and silted bottom. Old ox bow lakes connected and likely recharged during high water events. An extensive patch of fine well sorted pea gravels occurs at this site just above the ox bow lakes. Recent beaver activity is in evidence.

Reach #9

Starts at 61°31.08 N/ 130°17.25 W.

Extensive beaver dam area, a series of beaver dams creates wetland over 100 meters wide and presents an obstruction to fish passage. A wide willow flood plain occurs in this area and shows signs of recent and old beaver activities. Substrates are cobble and gravel in flow areas, silt in areas behind beaver dams and other low flow areas. This reach is 1 km long and includes the outlet area of a significant tributary from the South and South East (this tributary was not part of WMEC's investigation).

Reach #10

Starts at 61°30.80 N/ 130°17.90 W.

The creek channel is flat with a mix of substrates, gravel/cobble/boulder riffles occur with few pools interspersed. Good shoreline habitats in the form of side pools and cut banks exist. This reach extends to the mouth of Nougha Creek at the outlet of Wolverine Lake and is 1.6 km long.

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING

Money Creek – Bull Trout Utilization Assessment, 1997

Assessments of Money Creek and two of its tributaries, Go Creek and an unnamed tributary that enters Money Creek from the north approximately 19 km upstream of Francis Lake, were investigated to determine potential spawning and over-wintering areas for bull trout. The assessments were conducted between September 15 and 18, 1997 and consisted of:

- aerial assessments conducted by helicopter to observe any aggregations of fish and map deep pools suitable for over-wintering;
- ground surveys using minnow traps, electro-fisher, seine net, angling and visual observations; and
- Float surveys conducted with dry suits, mask and snorkel to investigate micro-habitats and determine presence of adult fish.

Table 1 provides a description of the sample sites on Money and Go Creek, including tributaries to Go Creek, during 1996 and 1997 investigations.

Site	Description
M1	Mouth of Money Creek at Francis Lake
M2	Money Creek - Mouth at Robert Campbell Highway
M3	Money Creek Approximately 3.5 km Upstream of the Outlet to Francis Lake
M4	Money Creek - Mouth Area of Major Tributary to Money Creek Approximately
	18 km upstream of the Outlet to Francis Lake
M5	Money Creek Approximately 36 km Upstream of the Outlet to Francis Lake
M6	Money Creek 1 km Downstream of its Junction with Go Creek
M7G	Money Creek at its Junction with Go Creek
M8	Money Creek Downstream of Little Jimmy Valley Tributary
M9	Money Creek at Downstream End of Wide Gravel Area
G1	Go Creek at Junction Area with Money Creek
G2	Go Creek Approximately 2.5 km Upstream of the Mouth of Go Creek
G3	Go Creek Approximately 5.6 km Upstream of the Mouth of Go Creek
G4	Go Creek Approximately 5.9 km Upstream of the Mouth of Go Creek
G5	Go Creek Approximately 7.5 km Upstream of the Mouth of Go Creek
P1	Pup Creek, a Tributary of Go Creek
HO	Hawk Owl Creek, a Tributary of Go Creek

Table 1 Station Descriptions and Locations

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING Money Creek – Bull Trout Utilization Assessment, 1997

The species of fish in the study belongs to the dolly varden/ bull trout (*Salvelinus malma-confluentus*) complex. To determine the exact species involved, specific genetic tests were undertaken. Three specimens were taken during the field assessment, frozen and later delivered to Yukon Territorial Government Fisheries Department representatives. Genetic testing was done at the University of British Columbia by Eric Taylor, Assistant Professor, Department of Zoology. Growth hormone diagnostic testing was conducted and resulted in a positive identification of the specimens as bull trout *Salvelinus confluentus*. Further testing confirmed the initial result.

Bull trout are a sub-species of the genus *Salvelinus*, which includes Arctic char, lake trout and dolly varden. The species is wide spread throughout western North America and eastern Asia. Within the dolly varden / bull trout complex numerous forms exist, including northern and southern, anadromous and non-anadromous, stream resident and lake resident populations (Armstrong and Morrow, 1980). The different forms have developed varying life history strategies that make it difficult to confidently describe the Money Creek population based on existing models from other areas.

Although a great deal of information has been compiled on the species understanding, references in this specific type of habitat are limited. The similarities between land locked and anadromous individuals are subtle but distinct enough that the species complex has often been subjected to sub-species classifications, (e.g. bull trout/ dolly varden). The life history and habits of the various forms varies greatly depend on the surrounding environment. The fish in Money Creek correspond most closely with the stream resident form of dolly varden/ bulltrout, typically confined to clear water tributaries of major rivers. However, there are similarities with a form described as a stream-lake resident (Morrow and Armstrong, 1980). Genetic analysis, conducted by the Yukon Territorial Government Fisheries Department, in conjunction with the University of British Columbia, on specimens taken from the Liard River drainage in the Yukon has shown all specimens analyzed to be bull trout.

Timing of field investigations was coordinated after assessing several reference sources. The closest (proximity) bull trout population to have existing information is at Shiltsky Lake, Yukon, where spawning occurred between September 16 and 21, consistently over a five year period. Water temperatures at spawning vary with the reference; the 1995 spawn at Shiltsky Lake was

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING Money Creek – Bull Trout Utilization Assessment, 1997

recorded at 12°C, in contradiction to other recorded references which suggests spawning occurs between 5 and 7°C (Blackett, 1968) or near 8°C (Scott and Crossman, 1974).

Water temperatures in Money Creek were monitored with a data logger located 500 m downstream of the outlet of Go Creek (site W-14). Temperature data was recorded 20 times per day from August 20 to September 12. During this time period daily temperatures rose to highs of between 9 and 12°C, while night time lows fell as low as 5.7°C. Daily temperatures typically fluctuated between 3 to 5°C.

Thermographic records taken at site W-14 on Money Creek indicate that temperatures were approaching a high of 5 to 7°C on September 12 when the recorder was removed. Temperatures remained at that level until our investigations were conducted. Blackett (1960) reported that anadromous dolly varden in Alaska spawned at temperatures between 5 and 6°C but spawning ceased abruptly after a further 2°C drop in temperature. Temperatures at the time of our field investigations were near 6°C. In light of this, the lack of spawning individuals observed during the surveys may indicate that spawning occurred prior to the investigations.

Spawning did not appear to occur in large aggregations, as few suitable locations were recorded and those investigated showed no signs of a recent spawn. One potential area that large numbers may have spawned in is the gravel shoals located immediately upstream of the outlet of Money Creek to Francis Lake. Alternatively, small pockets of sorted, clean washed gravels were observed under undercut banks during the float surveys. These potential microspawning sites were small, usually oblong in shape and less than 0.5 x 0.3 m. Fish of this species complex have been recorded utilizing similar habitats (Armstrong and Morrow,1980, and Blackett 1968).

Money Creek may be used as a spawning and rearing creek for bull trout, with adults utilizing Francis Lake and only entering the creek for spawning. Unpublished data from YTG (Thompson Per. Com, 1997) shows that eleven adult dolly varden / bull trout were captured during index gillnetting surveys of Francis Lake conducted in 1990. Of the eleven fish captured, one was taken in the East arm, one was taken in the small lake at the north end of the West arm, and nine were captured just to the south of the Money Creek outlet. This data suggested that the creek is used for spawning and rearing while the lake is used by adults. This model

WHITE MOUNTAIN ENVIRONMENTAL CONSULTING Money Creek – Bull Trout Utilization Assessment, 1997

would explain why extensive effort to capture bull trout produced only randomly scattered immature specimens. Considering this model it seems likely that the spawning locations would be located in the lower reaches of the creek. The steep canyon areas and rapids would present a barrier to adult fish migration during spawning in September when water levels are low. These same rapids become more passable to the fry during high water in the spring, allowing the upstream movement of fry that would rear in the creek for as much as several years, or until they reach sexual maturity.

Given the extended effort into locating bull trout in Money Creek and the low numbers of fish captured or observed, it seems likely that the population density and extent of utilization is quite low. Results of fish sampling from this investigation are provided in Appendix 2 of the Proposed Access Road Creek Crossings – Fish Habitat Evaluation and Utilization Assessment, 1997 report. The locations of the sample sites are shown on Figure 1 within the above noted report.

Potential over wintering sites exist in an area only accessible by helicopter. A very tight canyon starting approximately 8 km upstream of Francis Lake extends for a distance of approximately 2.5 km. The canyon has abrupt valley walls, is 100% confined and flows in a narrow channel interspersed with deep pools below abrupt rapids and steep riffles. This canyon area represents a unique habitat on Money Creek. Pools of the same depth occur rarely elsewhere on the creek and definitely do not occur in such a concentrated cluster. The series of pools starts at a small waterfall at coordinates 61°09'17"N / 129°46'45"W. Float surveys were conducted in the uppermost pool of the reach and Arctic grayling, in an aggregation of 24 adults and sub adults, were observed. One juvenile bull trout was observed below the pool.

References

- Blackett, Roger F.. Spawning Behavior, Fecundity, and Early Life History of Anadromous Dolly Varden, *Salvelinus Malma* in Southeastern Alaska. Research Report No.6, Alaska Department of Fish and Game, Juneau Alaska. May 1968.
- Armstrong, Robert H., and James E. Morrow. The Dolly Varden char, Salvelinus malma. Edited by Eugene K. Balon. 1980, Dr. W. Junk Bv Publishers Netherlands. Extract of Chars: Salmonid Fishes of the Genus Salvelinus. Volume 1.
- Thompson, Susan. Yukon Territorial Government, Fisheries Department. Personal Communications, November 5,1997.
- Scott, W.B. and Crossman, E.J., 1973. Fresh Water Fishes of Canada. Fisheries Research Board of Canada, Ottawa 1973. Bulletin 184.

								<u>CATCH</u>		
Set #	Date (M/D/YR)	Time set	Time lifted	H2O Temp.(C)	Mesh size (cm)	Max. Depth (ft)	LT	AG	LNS	Comments
WLV1	12/06/96	8:05	9:05	4.5	3.8	74	0	0	0	
					6.4		1	0	0	
					8.9		1	0	0	
WLV2	12/06/96	8:45	9:45	4.4	3.8	96	0	0	0	
					6.4		0	0	0	
					8.9		0	0	0	
WLV3	12/06/96	9:30	10:30	4.5	3.8	101	0	0	0	
					6.4		1	2	0	
					8.9		1	0	0	
WLV4	12/06/96	10:05	11:15	4.4	3.8	130	2	0	0	
					6,4		0	0	0	
					8.9		0	0	0	
WLV5	12/06/96	11:00	12:00	4.8	3.8	75	0	0	0	
					6.4		0	0	0	
					8.9		1	1	0	
WLV7	12/06/96	12:50	13:50	4.3	3.8	34	1	0	0	
					6.4		4	0	0	
					8.9		0	0	0	
WLV8	12/06/96	14:25	15:30	5.1	3.8	34	0	0	0	
					6.4		2	4	0	spawning area ?
					8.9		0	0	0	
WLV9	12/06/96	14:50	15:59	5.1	3.8	40	0	0	0	
					6.4		2	0	0	
					8.9		1	2	0	
WLV10	12/06/96	15:55	16:55	5.3	3.8	30	0	2	0	
					6.4		2	9	0	
					8.9		3	0	0	
WLV11	12/06/96	16:25	17:25	6.8	3,8	7	0	0	0	
					6.4		2	0	0	
					8.9		3	2	0	
WLV12	13/06/96	8:55	9:55	6.8	3.8	6	0	0	0	
					6.4	-	0	5	0	
					8.9		1	2	0	
WLV13	13/06/96	9:35	10:35	6.4	3.8	6	0	0	0	
					6.4	-	3	2	Ū	
					8.9		3	6	0	
WLV14	13/06/96	10:15	11:15	5.8	3.8	8	0	1	0	
				0.0	6.4	č	2	2	0 0	
					8.9		3	12	0 0	
					0.0		0		<u> </u>	

Table 1 Index Gillnetting Survey, Catch Record, Wolverine Lake area - 1996

WLV15 13/06/96 12:00 13:00 5.1 3,8 76 0 0 0 WLV16 13/06/96 12:45 13:45 4.9 3,8 38 0 0 0 WLV17 13/06/96 13:35 14:35 4.5 3,8 43 0 0 0 WLV17 13/06/96 13:35 14:35 4.5 3,8 43 0 2 0 WLV18 13/06/96 14:15 14:50 4.1 2,8 36 0 0 0 WLV19 13/06/96 16:27 17.27 4.5 3,8 29 0 0 0 0 WLV19 13/06/96 17:43 18:00 4.2 3,8 48 0 0 0 0 WLV21 13/06/96 17:43 18:43 3.6 3.8 57 0	Set #	Date (M/D/YR)	Time set	Time lifted	H2O Temp.(C	<u>) Mesh size (cm)</u>	Max. Depth (ft)	LT	AG	LNS	Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WLV15	13/06/96	12:00	13:00	5.1	3,8	76	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						6,4		0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		1	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WLV16	13/06/96	12:45	13:45	4.9	3.8	38	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6,4		0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		0	7	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WLV17	13/06/96	13:35	14:35	4.5	3.8	43	0	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						6.4		0	2	0	
$\begin{tabular}{ c c c c c c c } & $14:16$ & $14:16$ & $14:16$ & 4.1 & 3.8 & 36 & 0 & $						8.9		0	0	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WLV18	13/06/96	14:15	14:50	4.1	3.8	36	0	0	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		1	1	0	net pulled early - zodiac problems
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WLV19	13/06/96	16:27	17:27	4.5	3.8	29	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		0	1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						8.9		0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WLV20	13/06/96	17:00	18:00	4.2	3.8	48	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		2	1	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WLV21	13/06/96	17:43	18:43	3.6	3.8	57	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		1	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		0	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WLV22	13/06/96	7:20	8:20	3.1	3.8	51	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		1	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		0	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WLV23	23/09/96	14:10	15:10	4.8	3.8	96	1	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		2	0	0	
WLV24 15/06/96 14:40 15:45 4.4 3.8 125 1 0 0 WLV25 15/06/96 15:27 16:27 4.8 8.9 26 3 0 0 WLV25 15/06/96 15:27 16:27 4.8 8.9 26 3 0 0 WLV25 15/06/96 15:27 16:27 4.8 8.9 26 3 0 0 LWV 1 15/06/96 8:00 9:00 8.9 3.8 4 5 4 0 LWV 1 15/06/96 8:35 9:50 7.5 3.8 36 0 0 0 LWV 2 15/06/96 8:35 9:50 7.5 3.8 36 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0						8.9		0	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WLV24	15/06/96	14:40	15:45	4.4	3.8	125	1	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.4		0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						8.9		0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WLV25	15/06/96	15:27	16:27	4.8	8.9	26	3	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3.8		1	0	0	
LWV 1 15/06/96 8:00 9:00 8.9 3.8 4 5 4 0 6.4 2 6 0 0 0 0 0 0 LWV 2 15/06/96 8:35 9:50 7.5 3.8 36 0 0 0 LWV 2 15/06/96 8:35 9:50 7.5 3.8 36 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 0 0 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 9 0 1 1 1 8.9 2 12 0 1 0 1 1 1 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>6.4</td><td></td><td>2</td><td>1</td><td>0</td><td></td></td<>						6.4		2	1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LWV 1	15/06/96	8:00	9:00	8.9	3.8	4	5	4	0	
B.9 6 8 4 LWV 2 15/06/96 8:35 9:50 7.5 3.8 36 0 0 0 6.4 5 5 0 0 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 3 9 0 3 9 0						6.4		2	6	0	
LWV 2 15/06/96 8:35 9:50 7.5 3.8 36 0 0 0 6.4 5 5 0 0 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 3 9 0 0 0						8.9		6	8	4	
6.4 5 5 0 8.9 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 8.9 2 12 0	LWV 2	15/06/96	8:35	9:50	7.5	3.8	36	0	0	0	
B.9 0 0 0 LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 8.9 2 12 0 1						6.4		5	5	0	
LWV 3 15/06/96 9:46 10:46 7.5 3.8 22 0 1 0 6.4 3 9 0 8.9 2 12 0						8.9		0	0	0	
6.4 3 9 0 8.9 2 12 0	LWV 3	15/06/96	9:46	10:46	7.5	3.8	22	0	1	0	
8.9 2 12 0						6.4		3	9	0	
						8.9		2	12	0	

Set #	Date (M/D/YR)	Time set	Time lifted	H2O Temp.(C)	Mesh size (cm)	Max. Depth (ft)	LT	AG	LNS	Comments
LWV 4	15/06/96	10:28	11:28	7.8	3.8	39	0	0	0	
					6.4		2	12	0	
					8.9		0	0	0	
LJ1	14/06/96	10:05	11:05	5.9	3.8	21	0	1	0	
					6.4		0	12	1	
					8.9		0	0	0	
LJ2	14/06/96	10:38	11:45	5.4	3.8	32	0	1	0	
					6.4		0	7	0	
					8.9		0	4	0	
LJ3	14/06/96	11:40	12:40	5.6	3.8	21	0	0	0	
					6.4		0	5	0	
					8.9		0	0	0	
, LJ4	14/06/96	12:15	13:16	6	3.8	26	0	0	0	
					6.4		0	0	0	
					8.9		1	9	0	
LJ5	14/06/96	13:04	14:05	6.2	3.8	31	0	4	0	
					6.4		1	20	0	
					8.9		0	0	0	
LF6	14/06/96	13:35	14:35	5.9	3.8	103	0	1	0	
					6.4		0	1	0	
					8.9		1	15	0	
WND1	23/09/96	12:45	13:45		6.4	24	1	4	3	
					5.1		0	9	0	
					2.5		1	1	0	
WND2	23/09/96	14:15	15:15		6.4	17	0	4	3	
					5.1		0	2	0	
					2.5		0	2	0	
WND3	23/09/96	15:30	16:40		6.4	28	0	0	1	
					5.1		0	4	0	
					2.5		0	0	0	

DATE	SITE	EFFORT (sec)	TEMP (c)				CATCH			comments
				AG	LT	SS	BB	LNS	DV	
11/06/96	M1	156		0	0	0	0	0	0	
11/06/96	M1	460		0	0	9	0	0	0	
14/06/96	WC	184	6.9	0	0	2	0	0	0	
14/06/96	WC	57	6.9	1	0	0	0	0	0	
14/06/96	WT1	64		0	0	0	0	0	0	
16/06/96	N1	258	7.7	1	0	12	0	16	0	
12/07/96	TLW1	445	0.9	0	0	13	1	0	0	5 ss taken for metal samples
12/07/96	TLW2	101	4.6	0	0	5	0	0	0	
12/07/96	TLW2	81	4.6	0	0	0	0	0	0	
12/07/96	TLW3	177	1.9	0	0	0	0	0	0	
12/07/96	TLW4	197	2.4	40	1	11	1	0	0	
12/07/96	TLW4	205	2.4	30	5	21	0	0	0	
12/07/96	TLW4	205	2.4	50	0	5	0	0	0	
13/07/96	TWV3	335	2.1	1	0	5	4	0	0	2 ss taken for metal samples
13/07/96	TWV3	279	2.1	0	0	3	0	0	0	3 ss taken for metal samples
13/07/96	TWV4	160	11.8	31	0	0	0	85	0	20 u.i. fry (LNS?)
13/07/96	TWV5	173	10.7	0	8	0	2	0	0	
13/07/96	TWV5	356	10.7	0	1	6	1	0	0	3 ss taken for metal samples
13/07/96	TWV5	340	10.7	0	1	16	0	0	0	5 ss taken for metal samples
13/07/96	TWV6	179	9.2	0	2	33	4	0	0	
13/07/96	TWV6	109	9.2	0	4	21	2	0	0	3 ss taken for metal samples
13/07/96	TWV6	181	5	0	8	10	0	0	0	2 ss taken for metal samples
13/07/96	TWV6	136	4.7	0	0	5	0	0	0	2 ss taken for metal samples
13/07/96	TWV6	46	4.7	0	0	0	0	0	0	
13/07/96	WO	338	12.5	2	19	32	3	0	0	7 ss taken for metal samples
13/07/96	WO	89	12.5	0	2	2	1	0	0	1
13/07/96	WO	148	12.5	12	11	25	0	0	0	
13/07/96	WO	158	12.5	30	3	6	1	0	0	
14/07/96	M3	964	7.8	40	0	17	1	0	0	3 ss taken for metal samples
14/07/96	M4	249	7.6	0	0	9	0	0	5	
14/07/96	M4	195	7.6	1	0	20	0	0	5	
14/07/96	M4 (trib)	129	4.6	0	0	7	0	0	0	upper fork

Table 2. Electro-fishing Results, Wolverine Lake area - 1996

DATE	SITE	EFFORT (sec)	TEMP (c)				CATCH			comments
		. ,	.,_	AG	LT	SS	BB	LNS	DV	
14/07/96	M4 (trib)	122		0	0	0	0	0	2	
14/07/96	M4 (trib)	128	7.6	0	0	0	0	0	1	lower fork
14/07/96	M5	632		4	0	135	0	0	2	4 ss taken for metal samples
14/07/96	M5	117		143	0	26	0	0	0	
14/07/96	TLJ1	102	2.6	0	0	3	1	0	0	
14/07/96	TLJ1	177	2.6	0	1	3	0	0	0	
15/07/96	AR1	147	2.2	0	0	0	0	0	0	
15/07/96	AR1	80	2.2	0	0	0	0	0	0	
15/07/96	G1	80	4.9	0	0	1	0	0	1	
15/07/96	G1	152	4.9	0	0	4	0	0	1	1 ss taken for metal samples
15/07/96	G1	512	4.9	1	0	6	0	0	2	1 ss taken for metal samples
15/07/96	G1	175	4.9	0	0	10	0	0	1	1 ss taken for metal samples
15/07/96	M6	573	6.5	11	0	118	0	0	5	
15/07/96	M6	120	6.5	0	0	18	0	0	1	
15/07/96	M6	149	6.5	0	0	12	0	0	0	
15/07/96	M6	55	6.5	0	0	5	0	0	0	
15/07/96	M6	74	6.5	0	0	3	0	0	0	
15/07/96	M7G	88	5.1	0	0	4	0	0	0	
15/07/96	M7G	154	5.1	0	0	14	0	0	1	
15/07/96	M7G	443	7.2	6	0	59	0	0	2	4 ss taken for metal samples
15/07/96	M8	148		1	0	12	0	0	0	
15/07/96	M8	139		0	0	18	0	0	0	
15/07/96	M9	302	9.3	19	0	21	0	0	0	
15/07/96	M9	164	9.3	0	0	8	0	0	0	
15/07/96	P1	175	2.8	0	0	6	0	0	0	
16/07/96	AR3	83	3.3	0	0	0	0	0	0	
16/07/96	N4	159	8.5	0	0	11	0	0	0	1 u.i. salmonid
16/07/96	N4	214	8.5	10	0	6	0	0	0	
16/07/96	N4	432	8.5	75	0	32	0	0	0	
16/07/96	N5	52	11.9	100	0	0	1	0	0	
16/07/96	N5	213	11.9	88	0	0	1	0	0	
16/07/96	N5	122	11.9	225	0	0	1	0	0	

Table 2. Electro-fishing Results, Wolverine Lake area - 1996

Table 2.	Electro-fishing Results, Wolverine Lake area - 1996

DATE	SITE	EFFORT (sec)	TEMP (c)				САТСН			comments
		()	() =	AG	LT	SS	BB	LNS	DV	
16/07/96	N5	196	11.9	150	0	0	1	0	0	
16/07/96	N5	297	11.9	83	0	0	2	0	0	
16/07/96	N5	120	11.9	0	0	7	1	0	0	
16/07/96	N5	20	11.9	60	0	0	0	0	0	
16/07/96	N5	112	11.9	6	0	14	3	0	0	
16/07/96	TN1	148	2	0	0	0	0	0	0	
16/07/96	TWV	109	3.4	0	0	0	0	0	0	
16/07/96	WND	163	16.1	91	0	19	0	0	0	
16/07/96	WND	75	16.1	2000	0	0	0	0	0	
17/07/96	G2	447	5.3	3	0	0	0	0	0	
17/07/96	G3	232	4.1	0	0	0	0	0	0	
17/07/96	G4	90	4.7	0	0	0	0	0	0	
17/07/96	G5	209	2.7	0	0	0	0	0	0	
7/07/96	HO1	244	3.6	0	0	0	0	0	0	
25/09/96	G1	89	1.2	0	0	0	0	0	0	
25/09/96	M7G	159	1.1	0	0	25	0	0	0	
25/09/96	M7G	183	1.1	0	0	5	0	0	1	
25/09/96	N2	165	2.5	15	0	0	0	0	0	
25/09/96	N2	371	2.5	19	0	17	0	0	0	
25/09/96	N2	154	2.5	4	0	2	0	0	0	

Table 3.	Angling Results, Wolv	erine Lake area, 1996.

Date (d/m/yr)	Site	Temp (C)	Effort (min)	Ca	ch	Comments		
				Arctic grayliing	Lake trout			
13/07/96	WO	12.5	7	2	2	grayling in riffles, trout above riffles		
13/07/96	TWV5	10.7	15	4	0			
13/07/96	TWV6	9.2	40	2	4			
13/07/96	TWV3		15	0	3	lake at outlet area		
14/07/96	M3	7.8	20	3	0			
14/07/96	LJ		15	1	1			
16/07/96	N4	8.5	15	7	0			
16/07/96	WO		22	3		taken for metal samples		
16/07/96	WND	16.1	5	0	0			
16/07/96	WI		60	3	8	2 grayling taken for metal samples		
17/07/96	M6		25	4	0			
23/09/96	WO	5	7	2	2			
24/09/96	WO	5	15	10	0			
24/09/96	WI		20	0	0			
24/09/96	LJ	6.4	40	0	16			
24/09/96	LWV		25	0	2			
14/06/96	WC	8.9	52	0	10			
16/06/96	M1	14	50	0	0			
14/06/96	LJ	5.9	3	0	1			
14/06/96	LJ	5.9	1	0	1			
16/06/96	N1	7.7	2	5	0			
23/09/96	WLV		20	0	0	near island		
24/09/96	WLV		20	0	0	near island		
24/09/96	WLV		20	0	0	spawning site east		
24/09/96	WLV		40	0	7	spawning site west		
25/09/96	N2		5	2	0	below culverts		
25/09/96	Frances La	ake	70	0	0			

DATE	SITE	TEMP (c)	EFFORT (m2)	DEPTH (avg.)			САТСН		
(d/m/yr)					AG	LT	SS	BB	DV
11/06/96	M1	6.6	25		0	0	1	0	0
11/06/96	M1	6.4	40		0	0	1	0	0
11/06/96	M1		35		0	0	1	0	0
11/06/96	M1		35		0	0	0	0	0
11/06/96	M1		25		0	0	0	0	0
15/06/96	WO	10.2	20		0	1	1	0	0
15/06/96	WO	10.2	25		0	4	2	0	0
15/06/96	WO	10.2	12		2	0	2	0	0
12/07/96	WI	13.6	50	0.4	114	3	4	0	0
12/07/96	TLW1	3.7	25	0.1	0	0	0	0	0
13/07/96	TWV6	5	42	0.4	0	0	0	0	0
13/07/96	TWV6	5	27	0.4	0	2	1	0	0
13/07/96	TWV6	9.2	84	0.7	4	1	3	0	0
14/07/96	M4 (trib)	7.6	15	0.35	0	0	0	0	0
14/07/96	M4	7.6	30	0.2	0	0	0	0	0
14/07/96	M5		36	0.9	2	0	1	0	0
15/07/96	WI	10.2	20		0	1	0	0	0
15/07/96	WI	10.2	25		0	4	0	0	0
15/07/96	WI	10.2	10		2	0	2	0	0

Table 4. SEINE NETTING RESULTS, WOLVERINE LAKE AREA, 1996.

DATE	SITE	TEMP (c)	EFFORT (m2)	DEPTH (avg.)	САТСН				
(d/m/yr)					AG	LT	SS	BB	DV
16/06/96	N1	8.9	20		0	0	2	0	0
16/06/96	N1	8.9	15		0	0	11	0	0
16/06/96	N2	9.8	32		0	0	0	0	0
16/06/96	N2	9.8	18		0	0	0	0	0
16/06/96	N2	9.8	40		0	0	6	0	0

Table 5. Master Sample Records, Wolverine Lake Area, 1996.

WOUVERNE LANE Arcis graying Arcis	Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g)	Comments	sex/mat	stomach
(includes in let and outlet)AG10/000AGVI-023/0modure maleante-fiAG10/000VI-040/070VI-070VI-070AG10/0708AGVI-038892modure maleVI-070AG10/0708AGVI-038892modure maleVI-070AG10/0708AGVI-038892VI-0VI-0VI-0AG10/0708AGVI-038892VI-0VI-0VI-0AG10/0708AGVI-038892VI-0VI-0VI-0AG10/0708EI-1VI-0389VI-0VI-0VI-0VI-0AG10/0708EI-1VI-039VI-0VI-0VI-0VI-0VI-0AG10/0708EI-1VI-039VI-0VI-0VI-0VI-0VI-0VI-0AG10/0708EI-1VI-039VI-0VI	WOLVERINE LAKE	Arctic grayling	AG	16/07/96	ANG	WI	344	300		mature male	
AG130066ANGWO38460AG130056ANGWO38450AG180776ANGWO38450AG180776ANGWO38450AG180776ANGWO38450AG180776ANGWO70AG180776ANGWO70AG180776ANGWO70AG130776ELS	(includes inlet and outlet)		AG	16/07/96	ANG	WI	321	250		mature male	ants=6
AG 130508 AM WO 417 810 AG 130508 AM WO 388 630 mature make AG 160778 AM WO 380 525 mature make AG 160788 AM WO 380			AG	13/06/96	ANG	WO	394	650			
AC130688AACWO400750AC1607/78AVGWO420225muture makeAC1607/78AVGWO350AC210408AVGWO350AC210408AVGWO350AC210408AVGWO350AC210408AVGWO350AC3107786ELSWO351AC3107786ELSWO35AC3107786ELSWO35AC3107786ELSWO35AC3107786ELSWO35AC3107786ELSWO35AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC3107786ELSWO350AC310786ELWL/10350AC			AG	13/06/96	ANG	WO	417	800			
AG6100708AMGWO384600mature maleAG1200788AMGWO300mature maleAG230588AMGWO300mature maleAG1200888ELSWO300mature maleAG140688ELSWO300mature maleAG140798ELSWO300mature maleAG130796ELSWO30mature maleAG130796ELSWO32mature maleAG130796ELSWO32mature maleAG130796ELSWO32mature maleAG130796ELSWO32mature maleAG130796ELSWO32mature maleAG130796ELWU320mature maleAG130796ELWU320mature maleAG130796ELWU320mature maleAG120686GLWU320mature maleAG120686GLWU320mature maleAG120686GLWU320mature maleAG120686GLWU320mature maleAG120686GLWU320mature maleAG120686GLWU320mature maleAG120686GLWU320mature maleAG120686GLWU320			AG	13/06/96	ANG	WO	408	750			
AG1607/0ANSWO288C25mature maleAG1607/0ANGWO200AG2007/0ELSWO20AG1307/05ELSWO20AG1307/05ELSWO20AG1307/05ELSWO20AG1307/05ELSWO20AG1307/05ELSWO31AG1307/05ELSWO30AG1307/05ELSWO30AG1307/05ELSWO30AG1307/05ELSWO30AG1307/05ELSWO30AG1307/05ELSWO30AG120686GLWLV1030AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1037AG120686GLWLV1038AG120686GLWLV1230AG120686 <td< th=""><td></td><td></td><td>AG</td><td>16/07/96</td><td>ANG</td><td>WO</td><td>384</td><td>500</td><td></td><td>mature male</td><td></td></td<>			AG	16/07/96	ANG	WO	384	500		mature male	
AG 15078 AKG W0 70 AG 140688 ELS WC 82 AG 130796 ELS WO 70 AG 130796 ELS WO 70 AG 130796 ELS WO 70 AG 130796 ELS WO 31 AG 130796 ELS WO 31 AG 130796 ELS WO 31 AG 130796 ELS WO 30 AG 130796 ELS WO 30 AG 120686 GL WL/10 206 AG 120686 GL WL/10 37 AG 120686 GL WL/12			AG	16/07/96	ANG	WO	388	525		mature male	
AGZidesKHCWOSizAG1406086ELSWO23AG130708ELSWO31AG130708ELSWO30AG130708ELSWO30AG130708ELSWO30AG130708ELSWO30AG130708ELSWO30AG130708ELSWO30AG130708ELSWO30AG120686GLWLV0389750AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10377200AG120686GLWLV10378200AG120686GLWLV10377200AG120686GLWLV10378200AG120686GLWLV10378200AG120686GLWLV10378200AG120686GLWLV12306200			AG	16/07/96	ANG	WO	470				
AG 200898 ANG W10 989 AG 1307089 ELS W00 43 AG 1307089 ELS W00 43 AG 1307089 ELS W00 35 AG 1307089 ELS W00 31 AG 1307089 ELS W00 35 AG 1307089 ELS W00 35 AG 1307089 ELS W00 36 AG 1307089 ELS W00 370 AG 1206908 GL WLV10 370 470 AG 1206908 GL WLV10 372 200 AG 1206908 GL WLV10 372 207 AG 1206908 GL WLV10 373 207 AG			AG	23/09/96	ANG	WO	350				
A.G. 1100798 ELS WO 62 A.G. 130796 ELS WO 35 A.G. 130796 ELS WO 31 A.G. 130796 ELS WO 31 A.G. 130796 ELS WO 31 A.G. 130796 ELS WO 36 A.G. 130796 ELS WO 36 A.G. 130796 ELS WO 36 A.G. 120686 GL WLV10 380 60 A.G. 120686 GL WLV10 387 75 A.G. 120686 GL WLV10 377 75 A.G. 120686 GL WLV10 378 75 A.G. 120686 GL WLV10 378 75 A.G. 120686 GL WLV10 378 75 A.G. 120686 GL WLV11 376 75 A.G. 120686 GL WLV12 301 75			AG	23/09/96	ANG	WO	395				
AC 130706 ELS W0 43 AC 130706 ELS W0 34 AC 130706 ELS W0 31 AC 130706 ELS W0 30 AC 120066 GL WLV10 286 20 AC 120066 GL WLV10 397 475 AC 1200666 GL WLV10 327 475 AC 1200666 GL WLV10 328 475 AC 1200666 GL WLV10 328 476 AC 1200666 GL WLV12 388 476 <t< th=""><td></td><td></td><td>AG</td><td>14/06/96</td><td>ELS</td><td>WC</td><td>82</td><td></td><td></td><td></td><td></td></t<>			AG	14/06/96	ELS	WC	82				
AG 130768 ELS WO 35 AG 130766 ELS WO 31 AG 130768 ELS WO 31 AG 130768 ELS WO 30 AG 130768 ELS WO 30 AG 130768 ELS WO 30 AG 120666 GL WU 206 50 AG 120666 GL WU 30 75 AG 120666 GL WU 377 32 AG 120666 GL WU 377 32 AG 120666 GL WU 377 32 AG 120666 GL WU 37 37 AG <td< th=""><td></td><td></td><td>AG</td><td>13/07/96</td><td>ELS</td><td>WO</td><td>23</td><td></td><td></td><td></td><td></td></td<>			AG	13/07/96	ELS	WO	23				
AG1307/68ELSWO34AG1307/68ELSWO30AG1307/68ELSWO30AG1307/68ELSWO30AG1307/68ELSWO30AG1207/68ELSWO30AG1206/69GLWU/1030990AG1206/69GLWU/10317325AG1206/69GLWU/10272200AG1206/69GLWU/10273325AG1206/69GLWU/10279276AG1206/69GLWU/10279375AG1206/69GLWU/10279360AG1206/69GLWU/10376360AG1206/69GLWU/10378360AG1206/69GLWU/10378360AG1206/69GLWU/12380677AG1306/69GLWU/12370360AG1306/69GLWU/12370360AG1306/69GLWU/12370370AG1306/69GLWU/12370370AG1306/69GLWU/13382675AG1306/69GLWU/12271370AG1306/69GLWU/13382675AG1306/69GLWU/13382675 <trr< th=""><td></td><td></td><td>AG</td><td>13/07/96</td><td>ELS</td><td>WO</td><td>41</td><td></td><td></td><td></td><td></td></trr<>			AG	13/07/96	ELS	WO	41				
AQ 1307796 ELS WO 31 AG 1307796 ELS WO 125 AG 1307796 ELS WO 280 AG 120696 GL WLV10 286 301 AG 120696 GL WLV10 357 475 AG 120696 GL WLV10 357 450 AG 120696 GL WLV10 357 450 AG 120696 GL WLV11 356 57 AG 130696 <			AG	13/07/96	FLS	WO	34				
AG 1307/96 ELS WO 30 AG 1307/96 ELS WO 126 AG 1207/96 GL WLV10 280 AG 1207/96 GL WLV10 360 650 AG 1206/96 GL WLV10 370 650 AG 1206/96 GL WLV10 377 253 AG 1206/96 GL WLV10 377 253 AG 1206/96 GL WLV10 377 253 AG 1206/96 GL WLV10 377 275 AG 1206/96 GL WLV10 378 675 AG 1206/96 GL WLV10 378 675 AG 1206/96 GL WLV12 380 675 AG 1206/96 GL WLV12 380 675 AG 1306/96 GL WLV12 380 650 AG 1306/96 GL WLV12 380 650 AG 1306			AG	13/07/96	FLS	WO	31				
AG 1307/96 ELS WO 125 AG 12069/96 GL WLV10 296 300 AG 12069/96 GL WLV10 296 300 AG 12069/96 GL WLV10 307 475 AG 12069/96 GL WLV10 377 475 AG 12069/96 GL WLV10 376 600 AG 12069/96 GL WLV11 386 675 AG 13069/96 GL WLV12 300 675 </th <td></td> <td></td> <td>AG</td> <td>13/07/96</td> <td>ELS</td> <td>wo</td> <td>30</td> <td></td> <td></td> <td></td> <td></td>			AG	13/07/96	ELS	wo	30				
AG1307/96ELSWU280AG1206/96GLWU/10360650AG1206/96GLWU/10377475AG1206/96GLWU/1037750AG1206/96GLWU/1037750AG1206/96GLWU/1037750AG1206/96GLWU/1037750AG1206/96GLWU/1037750AG1206/96GLWU/10376675AG1206/96GLWU/1047360AG1206/96GLWU/1047360AG1206/96GLWU/1047360AG1206/96GLWU/12380675AG1306/96GLWU/12310250AG1306/96GLWU/12310250AG1306/96GLWU/12200305AG1306/96GLWU/12201315AG1306/96GLWU/12201315AG1306/96GLWU/13324500AG1306/96GLWU/13326501AG1306/96GLWU/13326501AG1306/96GLWU/13326501AG1306/96GLWU/13326501AG1306/96GLWU/13326501AG1			AG	13/07/96	ELS	WO	125				
AG 120686 GL WLV10 380 60 AG 120686 GL WLV10 380 750 AG 120686 GL WLV10 317 750 AG 120686 GL WLV10 317 325 AG 120686 GL WLV10 327 750 AG 120686 GL WLV10 326 750 AG 120686 GL WLV11 376 600 AG 120686 GL WLV12 380 67 AG 130686 GL WLV12 380 75 AG 130686 GL WLV12 380 75 AG 130686 GL WLV12 380 75 AG 130686 GL WLV12 390 75			AG	13/07/96	ELS	WO	280				
AG 120686 GL WLV10 360 650 AG 120686 GL WLV10 377 475 AG 120686 GL WLV10 377 475 AG 120686 GL WLV10 272 200 AG 120686 GL WLV10 272 201 AG 120686 GL WLV10 378 610 AG 120686 GL WLV11 386 67 AG 130686 GL WLV12 300 70 AG 130686 GL WLV12 300 250 AG 130686 GL WLV12 300 75 AG 130686 GL WLV12 300 75 AG 130686 GL WLV13 326 50			AG	12/06/96	GL	WLV10	296	300			
AG 120696 GL WLV10 397 750 AG 120696 GL WLV10 357 475 AG 120696 GL WLV10 327 200 AG 120696 GL WLV10 327 675 AG 120696 GL WLV10 327 275 AG 120696 GL WLV10 323 275 AG 120696 GL WLV10 326 675 AG 120696 GL WLV12 386 675 AG 120696 GL WLV12 390 250 AG 130696 GL WLV12 390 250 AG 130696 GL WLV12 390 375 AG 130696 GL WLV12 390 375 AG 130696 GL WLV12 390 375 AG 130696 GL WLV13 380 650 AG 130696 GL WLV13 380 650			AG	12/06/96	GL	WLV10	360	650			
AG 120696 GL WLV10 317 325 AG 120696 GL WLV10 272 200 AG 120696 GL WLV10 237 675 AG 120696 GL WLV10 243 275 AG 120696 GL WLV10 243 275 AG 120696 GL WLV10 279 650 AG 120696 GL WLV11 378 600 AG 120696 GL WLV11 378 600 AG 120696 GL WLV12 380 675 AG 130696 GL WLV12 390 75 AG 130696 GL WLV12 390 75 AG 130696 GL WLV12 290 300 AG 130696 GL WLV12 290 375 AG 130696 GL WLV12 290 375 AG 130696 GL WLV13 380 650 </th <td></td> <td></td> <td>AG</td> <td>12/06/96</td> <td>GL</td> <td>WLV10</td> <td>399</td> <td>750</td> <td></td> <td></td> <td></td>			AG	12/06/96	GL	WLV10	399	750			
AG 1206896 GL WLV10 377 325 AG 1206989 GL WLV10 377 675 AG 1206896 GL WLV10 329 275 AG 1206896 GL WLV10 329 255 AG 1206896 GL WLV10 329 650 AG 1206986 GL WLV11 378 650 AG 1206986 GL WLV11 378 650 AG 1206986 GL WLV12 300 75 AG 1306986 GL WLV12 300 250 AG 1306986 GL WLV13 380 <td< th=""><td></td><td></td><td>AG</td><td>12/06/96</td><td>GL</td><td>WLV10</td><td>357</td><td>475</td><td></td><td></td><td></td></td<>			AG	12/06/96	GL	WLV10	357	475			
AG 1206896 GL WLV10 237 675 AG 1206896 GL WLV10 232 500 AG 1206896 GL WLV10 232 500 AG 1206896 GL WLV10 242 500 AG 1206896 GL WLV10 473 650 AG 1206896 GL WLV11 380 675 AG 1206896 GL WLV12 490 675 AG 1306896 GL WLV12 490 675 AG 1306896 GL WLV12 490 70 AG 1306986 GL WLV12 290 300 AG 1306986 GL WLV12 200 300 AG 1306986 GL WLV12 201 375 AG 1306986 GL WLV13 380 600 AG 1306986 GL WLV13 384 500 AG 1306986 GL WLV13 380 <td< th=""><td></td><td></td><td>AG</td><td>12/06/96</td><td>GL</td><td>WLV10</td><td>317</td><td>325</td><td></td><td></td><td></td></td<>			AG	12/06/96	GL	WLV10	317	325			
AG 12/06/36 GL WL/V10 279 275 AG 12/06/36 GL WL/V10 243 500 AG 12/06/36 GL WL/V10 243 500 AG 12/06/36 GL WL/V10 243 500 AG 12/06/36 GL WL/V11 376 600 AG 12/06/36 GL WL/V12 380 675 AG 13/06/36 GL WL/V12 317 350 AG 13/06/36 GL WL/V12 290 200 AG 13/06/36 GL WL/V12 290 300 AG 13/06/36 GL WL/V12 290 300 AG 13/06/36 GL WL/V12 290 300 AG 13/06/36 GL WL/V13 292 260 AG 13/06/36 GL WL/V13 380 650 AG 13/06/36 GL WL/V13 380 600 AG 13/06/36 GL WL/V14 <td></td> <td></td> <td>AG</td> <td>12/06/96</td> <td>GL</td> <td>WLV10</td> <td>272</td> <td>200</td> <td></td> <td></td> <td></td>			AG	12/06/96	GL	WLV10	272	200			
AG 120696 GL WL V10 342 500 AG 120696 GL WL V10 342 500 AG 120696 GL WL V10 479 650 AG 120696 GL WL V11 479 650 AG 120696 GL WL V12 380 675 AG 120696 GL WL V12 390 500 AG 1206966 GL WL V12 390 500 AG 1206966 GL WL V12 390 300 AG 1206966 GL WL V12 290 300 AG 1206966 GL WL V12 291 300 AG 1206966 GL WL V12 290 300 AG 1206966 GL WL V13 324 500 AG 1306966 GL WL V13 334 500 AG 1306966 GL WL V13 334 500 AG 1306966 GL WL V13 380			AG	12/06/96	GL		387	075			
AG 120698 GL WLV10 263 275 AG 120698 GL WLV11 378 600 AG 120696 GL WLV11 378 600 AG 120696 GL WLV11 378 600 AG 130696 GL WLV12 380 675 AG 130696 GL WLV12 317 350 AG 130696 GL WLV12 300 250 AG 130696 GL WLV12 200 300 AG 130696 GL WLV12 217 200 AG 130696 GL WLV13 326 575 AG 130696 GL WLV13 320 200 AG 130696 GL WLV13 326 575 AG 130696 GL WLV13 326 560 AG 130696 GL WLV13 328 560 AG 130696 GL WLV13 328 560			AG	12/06/96	GL	WLV10	2/9	500			
AG 1206986 GL WLV11 379 650 AG 1206986 GL WLV11 386 675 AG 1306966 GL WLV12 405 700 AG 1306966 GL WLV12 300 675 AG 1306966 GL WLV12 300 250 AG 1306966 GL WLV12 300 250 AG 1306966 GL WLV12 300 35 AG 1306966 GL WLV12 300 36 AG 1306966 GL WLV12 300 36 AG 1306966 GL WLV12 300 36 AG 1306966 GL WLV13 360 50 AG 1306966 GL WLV13 380 50 <td></td> <td></td> <td>AG</td> <td>12/06/96</td> <td>GL</td> <td>WLV10</td> <td>263</td> <td>275</td> <td></td> <td></td> <td></td>			AG	12/06/96	GL	WLV10	263	275			
AG 1206/96 GL WLV11 378 600 AG 1206/96 GL WLV12 380 675 AG 1306/96 GL WLV12 380 675 AG 1306/96 GL WLV12 380 675 AG 1306/96 GL WLV12 300 250 AG 1306/96 GL WLV12 290 300 AG 1306/96 GL WLV12 200 300 AG 1306/96 GL WLV13 366 575 AG 1306/96 GL WLV13 384 50 AG 1306/96 GL WLV13 380 600 AG 1306/96 GL WLV13 380 600 AG 1306/96 GL WLV13 380 <td< th=""><td></td><td></td><td>AG</td><td>12/06/96</td><td>GL</td><td>WLV10</td><td>479</td><td>650</td><td></td><td></td><td></td></td<>			AG	12/06/96	GL	WLV10	479	650			
AG 120696 GL WLV12 386 675 AG 130696 GL WLV12 405 700 AG 130696 GL WLV12 300 250 AG 130696 GL WLV12 300 250 AG 130696 GL WLV12 300 375 AG 130696 GL WLV13 390 500 AG 130696 GL WLV13 340 500 AG 130696 GL WLV13 380 600 AG 130696 GL WLV13 380 600 AG 130696 GL WLV13 380 600 AG 130696 GL WLV14 410 775 AG 130696 GL WLV14 410 776			AG	12/06/96	GL	WLV11	378	600			
AG 1306/96 GL WLV12 380 675 AG 1306/96 GL WLV12 317 350 AG 1306/96 GL WLV12 200 300 AG 1306/96 GL WLV12 290 300 AG 1306/96 GL WLV12 290 375 AG 1306/96 GL WLV13 366 575 AG 1306/96 GL WLV13 380 650 AG 1306/96 GL WLV13 380 650 AG 1306/96 GL WLV13 382 650 AG 1306/96 GL WLV13 370 600 AG 1306/96 GL WLV14 410 775 AG 1306/96 GL WLV14 380 <t< th=""><td></td><td></td><td>AG</td><td>12/06/96</td><td>GL</td><td>WLV11</td><td>386</td><td>675</td><td></td><td></td><td></td></t<>			AG	12/06/96	GL	WLV11	386	675			
AG 1306/96 GL WLV12 317 350 AG 1306/96 GL WLV12 300 250 AG 1306/96 GL WLV12 300 300 AG 1306/96 GL WLV12 309 375 AG 1306/96 GL WLV12 210 376 AG 1306/96 GL WLV13 386 575 AG 1306/96 GL WLV13 389 650 AG 1306/96 GL WLV13 384 500 AG 1306/96 GL WLV13 384 500 AG 1306/96 GL WLV13 382 625 AG 1306/96 GL WLV13 370 600 AG 1306/96 GL WLV14 410 775 AG 1306/96 GL WLV14 410 775 AG 1306/96 GL WLV14 410 775 AG 1306/96 GL WLV14 410 <t< th=""><td></td><td></td><td>AG</td><td>13/06/96</td><td>GL</td><td>WLV12</td><td>380</td><td>675</td><td></td><td></td><td></td></t<>			AG	13/06/96	GL	WLV12	380	675			
AG 13/06/96 GL WLV12 317 350 AG 13/06/96 GL WLV12 300 300 AG 13/06/96 GL WLV12 309 375 AG 13/06/96 GL WLV12 201 200 AG 13/06/96 GL WLV12 271 200 AG 13/06/96 GL WLV13 366 575 AG 13/06/96 GL WLV13 389 650 AG 13/06/96 GL WLV13 384 500 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV14 410 705 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 38			AG	13/06/96	GL	WLV12	405	700			
AG 13/06/96 GL WLV12 300 250 AG 13/06/96 GL WLV12 309 375 AG 13/06/96 GL WLV12 290 375 AG 13/06/96 GL WLV13 366 575 AG 13/06/96 GL WLV13 380 650 AG 13/06/96 GL WLV13 384 500 AG 13/06/96 GL WLV13 380 660 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 42			AG	13/06/96	GL	WLV12	317	350			
AG 13/06/96 GL WLV12 290 300 AG 13/06/96 GL WLV12 290 375 AG 13/06/96 GL WLV12 271 200 AG 13/06/96 GL WLV13 292 250 AG 13/06/96 GL WLV13 389 650 AG 13/06/96 GL WLV13 384 500 AG 13/06/96 GL WLV13 384 500 AG 13/06/96 GL WLV13 382 650 AG 13/06/96 GL WLV13 382 650 AG 13/06/96 GL WLV13 382 650 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 42			AG	13/06/96	GL	WLV12	300	250			
AG 13/06/96 GL WLV12 30/9 375 AG 13/06/96 GL WLV12 271 200 AG 13/06/96 GL WLV13 386 575 AG 13/06/96 GL WLV13 389 650 AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 380 650 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 480 775 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 480 775 AG 13/06/96 GL WLV14 480 700 AG 13/06/96 GL WLV14 4			AG	13/06/96	GL	WLV12	290	300			
AG 13/06/96 GL WLV12 2/1 200 AG 13/06/96 GL WLV13 366 575 AG 13/06/96 GL WLV13 389 650 AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 346 800 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 <td></td> <td></td> <td>AG</td> <td>13/06/96</td> <td>GL</td> <td>WLV12</td> <td>309</td> <td>375</td> <td></td> <td></td> <td></td>			AG	13/06/96	GL	WLV12	309	375			
AG 13/06/96 GL WLV13 292 250 AG 13/06/96 GL WLV13 389 650 AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 346 800 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 42			AG	13/06/96	GL	WLV12	271	200			
AG 13/06/96 GL WLV13 389 650 AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 600 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 90 AG			AG	13/06/96	GL	WI V13	292	250			
AG 13/06/96 GL WLV13 334 500 AG 13/06/96 GL WLV13 416 800 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 91 AG 13/06/96 GL WLV14 400 750 91 AG 13/06/96 GL WLV14 387 700 91			AG	13/06/96	GL	WLV13	389	650			
AG 13/06/96 GL WLV13 416 800 AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 480 700 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 400 750 AG 13/06/96 GL WLV14 38			AG	13/06/96	GL	WLV13	334	500			
AG 13/06/96 GL WLV13 380 600 AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 391 675 AG 13/06/96 GL WLV14 391 675 AG 13/06/96 GL WLV14 400 750 AG 13/06/96 GL WLV14 40			AG	13/06/96	GL	WLV13	416	800			
AG 13/06/96 GL WLV13 382 625 AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 380 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 90 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 387 700 700 AG 13/06/96 GL WLV14 400 755 700 AG 13/06/96 GL WLV14			AG	13/06/96	GL	WLV13	380	600			
AG 13/06/96 GL WLV13 370 600 AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 900 AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 387 700 900 900 AG 13/06/96 GL WLV14 400 750 900 900 900 900 900 900 900 900 900 900 900 900 <td></td> <td></td> <td>AG</td> <td>13/06/96</td> <td>GL</td> <td>WLV13</td> <td>382</td> <td>625</td> <td></td> <td></td> <td></td>			AG	13/06/96	GL	WLV13	382	625			
AG 13/06/96 GL WLV14 410 700 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 900 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 397 700 700 700 AG 13/06/96 GL WLV14 401 725 700 700 AG 13/06/96 GL WLV14 407 700 700 700			AG	13/06/96	GL	WLV13	370	600			
AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 900 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 400 750 750 750 AG 13/06/96 GL WLV14 401 725 725 700 AG 13/06/96 GL WLV14 401 725 700 700			AG	13/06/96	GL	WLV14	410	700			
AG 13/06/96 GL WLV14 410 775 AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 800 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 400 750 750 AG 13/06/96 GL WLV14 401 725 AG 13/06/96 GL WLV14 401 725 700 AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WLV14	410	775			
AG 13/06/96 GL WLV14 380 700 AG 13/06/96 GL WLV14 389 650 AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 900 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 387 700 700 AG 13/06/96 GL WLV14 401 725 700 AG 13/06/96 GL WLV14 407 700 700			AG	13/06/96	GL	VVLV14	410	//5			
AG 13/06/96 GL WLV14 422 850 growth on side of body taken as sample AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 387 700 700 AG 13/06/96 GL WLV14 401 725 700 AG 13/06/96 GL WLV14 407 700 700			AG	13/06/96	GL	VVLV14 WI\/14	380 380	700 650			
AG 13/06/96 GL WLV14 423 800 AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 400 750 AG 13/06/96 GL WLV14 400 750 AG 13/06/96 GL WLV14 401 725 AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WI V14	422	850	arowth on side of h	odv taken as sample	
AG 13/06/96 GL WLV14 391 675 voluntering milt male AG 13/06/96 GL WLV14 400 750 AG 13/06/96 GL WLV14 387 700 AG 13/06/96 GL WLV14 401 725 AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WLV14	423	800	growin on side of L	and a sample	
AG 13/06/96 GL WLV14 400 750 AG 13/06/96 GL WLV14 387 700 AG 13/06/96 GL WLV14 401 725 AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WLV14	391	675	voluntering milt	male	
AG 13/06/96 GL WLV14 387 700 AG 13/06/96 GL WLV14 401 725 AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WLV14	400	750			
AG 13/06/96 GL WLV14 401 725 AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WLV14	387	700			
AG 13/06/96 GL WLV14 407 700			AG	13/06/96	GL	WLV14	401	725			
			AG	13/06/96	GL	WLV14	407	700			
Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g)	Comments	sex/mat	stomach	
----------	---------	--------------	---------------	--------	--------	------------------	------------------	------------------	---------	---------	
		AG	13/06/96	GL	WLV14	398	750				
		AG	13/06/96	GL	WLV14	402	750				
		AG	13/06/96	GL	WLV14	372	600				
		AG	13/06/96	GI	WI V16	394	700				
		AG	13/06/96	GL	WLV16	/15	850				
		AC	12/06/06	CL	WLV16	415	600				
		AG	13/00/90	GL	VVLV10	300	000				
		AG	13/06/96	GL	WLV16	412	800				
		AG	13/06/96	GL	VVLV16	384	700				
		AG	13/06/96	GL	WLV16	368	575				
		AG	13/06/96	GL	WLV16	399	565				
		AG	13/06/96	GL	WLV17	387	750				
		AG	13/06/96	GL	WLV17	366	600				
		AG	13/06/96	GL	WLV18	392	700				
		AG	13/06/96	GL	WLV19	403	825				
		AG	13/06/96	GL	WLV20	380	600				
		AG	15/06/96	GL	WLV25	360	525				
		AG	12/06/96	GL	WLV3	404	700				
		AG	12/06/96	GI	WLV3	389	675				
		AG	12/06/96	GL	WLV5	375	600				
		AG	12/06/96	GL	WI V8	3/8	575				
		AG	12/06/06	GL	WL VO	369	525	voluntoring ogge	fomalo		
		AG	12/00/90	GL		200	525	voluntening eggs	lemale		
		AG	12/00/90	GL	VVLVO	307	075				
		AG	12/06/96	GL	WLV8	380	650				
		AG	12/06/96	GL	WLV9	412	825				
		AG	12/06/96	GL	WLV9	351	575	voluntering eggs	female		
		AG	15/06/96	SN	WI	407	700				
		AG	12/07/96	SN	WI	148					
		AG	12/07/96	SN	WI	114					
		AG	12/07/96	SN	WI	93					
		AG	12/07/96	SN	WI	131					
		AG	12/07/96	SN	WI	142					
		AG	12/07/96	SN	WI	114					
		AG	12/07/96	SN	WI	118					
		AG	12/07/96	SN	WI	109					
		AG	12/07/96	SN	WI	141					
		AG	12/07/96	SN	WI	135					
		AG	12/07/96	SN	WI	98					
		AG	12/07/06	SN	W/I	129					
		AG	12/07/96	SN	W/I	124					
		AG	12/07/06	SN	10/1	111					
		AG	12/07/06	SN	10/1	119					
		AG	12/07/90	SIN	VV I	110					
		AG	12/07/90	SIN		108					
		AG	12/07/96	SIN	VV I	115					
		AG	12/07/96	SN	VVI	125					
		AG	12/07/96	SN	VVI	140					
		AG	12/07/96	SN	VVI	118					
		AG	12/07/96	SN	WI	121					
		AG	12/07/96	SN	WI	116					
		AG	12/07/96	SN	WI	109					
		AG	12/07/96	SN	WI	94					
		AG	12/07/96	SN	WI	78					
		AG	12/07/96	SN	WI	107					
		AG	12/07/96	SN	WI	118					
		AG	12/07/96	SN	WI	127					
		AG	12/07/96	SN	WI	124					
		AG	12/07/96	SN	WI	114					
		AG	12/07/96	SN	WI	114					
		AG	12/07/96	SN	wi	111					
		AG	12/07/96	SN	wi	109					
		AG	12/07/06	SN	WI	11/					
		AG	12/07/06	SN	10/1	07					
		AG	12/07/90	SIN	V V I	JI					

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g)	Comments	sex/mat	stomach
		AG	12/07/96	SN	WI	107				
		AG	12/07/96	SN	WI	38				
		AG	12/07/96	SN	WI	132				
		AG	12/07/96	SN	WI	29				
		AG	12/07/96	SN	WI	<u>71</u>				
		AG	12/07/06	SN	10/1	26				
		AG	12/07/90	SN	10/1	20				
		AG	12/07/90	SN	10/1	22				
		AG	12/07/90	SN	201	27				
		AG	12/07/96	SIN	VVI	23				
		AG	12/07/96	SN	VVI	24				
		AG	12/07/96	SN	WI	41				
		AG	12/07/96	SN	WI	23				
		AG	12/07/96	SN	WI	24				
		AG	12/07/96	SN	WI	41				
		AG	12/07/96	SN	WI	23				
		AG	12/07/96	SN	WI	25				
		AG	12/07/96	SN	WI	24				
		AG	12/07/96	SN	WI	22				
		AG	12/07/96	SN	WI	27				
		AG	12/07/96	SN	WI	26				
		AG	12/07/96	SN	WI	26				
		AG	12/07/96	SN	WI	29				
		AG	12/07/96	SN	WI	30				
		AG	12/07/96	SN	WI	31				
		AG	12/07/96	SN	WI	18				
		AG	12/07/96	SN	WI	29				
		AG	12/07/96	SN	WI	39				
WOI VERINE LAKE	Burbot	BB	13/07/96	ANG	WO	138				
	24.001	BB	13/07/96	ANG	WO	142				
		BB	13/07/96	FIS	WO	245				
		BB	13/07/06	ELS	WO	02				
	Laka traut	1.1	14/06/06			33	700			
WOLVERINE LARE	Lake trout		14/06/96	ANG	wc	374 405	1000			
			14/00/90	ANG	WC	403	650			
			14/00/90	ANG	WC	307	000			
			14/06/96	ANG	WC	400	725			
			23/09/96	ANG	WO	400	005	,	50	
			24/09/96	ANG	WO	428	625	on spawning site	F2	
		LI	24/09/96	ANG	WLV	400	750	on spawning site	M10	shrimp=5
		LI	24/09/96	ANG	WLV	410	925	on spawning site	M9	empty
		LI	24/09/96	ANG	WLV	415	925	on spawning site	⊢4	shrimp=8,snails=2
		LT	13/07/96	ELS	WO	27				
		LT	13/07/96	ELS	WO	32				
		LT	13/07/96	ELS	WO	34				
		LT	13/07/96	ELS	WO	32				
		LT	13/07/96	ELS	WO	36				
		LT	13/07/96	ELS	WO	39				
		LT	13/07/96	ELS	WO	42				
		LT	13/07/96	ELS	WO	34				
		LT	12/06/96	GL	WLV1	760	5500			
		LT	12/06/96	GL	WLV1	364	675			
		LT	12/06/96	GL	WLV10	770	6450			
		LT	12/06/96	GL	WLV10	846	7500			
		LT	12/06/96	GL	WLV10	802	6400			
		LT	12/06/96	GL	WLV10	424	900			
		LT	12/06/96	GL	WLV10	391	675			
		<u>г</u> . I Т	12/06/96	GI	WLV11	423	800	metal sample #3		
		IT	12/06/96	GL	WI V11	406	825			
		IT	12/06/96	GL	WI V11	407	990			
		11	12/06/96	GI	WI V/11	382	625	metal sample #4		
		11	12/06/06	GL	WI \/11	450	950	metal sample #5		
		11	13/06/06	GL	WI \/12	471	1200	motal bample #J		
		L 1	10,00,00		** - * ! -		1200			

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g)	Comments	sex/mat	stomach	
		LI	13/06/96	GL	WLV13	405	//5				
		LI	13/06/96	GL	WLV13	445	975				
		LI	13/06/96	GL	WLV13	405	800				
		LT	13/06/96	GL	WLV13	440	800				
		LT	13/06/96	GL	WLV13	420	975				
		LT	13/06/96	GL	WLV13	415	800				
		LT	13/06/96	GL	WLV14	389	700				
		LT	13/06/96	GL	WLV14	404	800				
		LT	13/06/96	GL	WLV14	394	800				
		LT	13/06/96	GL	WLV14	436	980				
		LT	13/06/96	GL	WLV14	394	750				
		LT	13/06/96	GL	WLV15	680	4200				
		IT	13/06/96	GL	WI V18	425	950				
		I T	13/06/96	GL	WI V20	388	700				
		1.1	13/06/96	GL	WLV20	439	875	Sample #6			
		1.1	13/06/96	GL	WL V21	400	775	Sample #7			
		17	14/06/06	GL	WLV22	424	000	Cample #1			
			14/00/90	GL		424	300				
			15/06/96	GL	VVLV23	07	650				
			15/06/96	GL	WLV23	409	650				
			15/06/96	GL	WLV23	431	1000				
		LI	15/06/96	GL	WLV24	437	/50				
		LT	15/06/96	GL	WLV25	421	820				
		LT	15/06/96	GL	WLV25	440	1100				
		LT	15/06/96	GL	WLV25	403	750				
		LT	15/06/96	GL	WLV25	406	750				
		LT	15/06/96	GL	WLV25	417	950				
		LT	15/06/96	GL	WLV25	422	925				
		LT	12/06/96	GL	WLV3	578	2600				
		LT	12/06/96	GL	WLV3	393	800				
		LT	12/06/96	GL	WLV4	273	225	Leeches on tail			
		LT	12/06/96	GL	WLV4	172	50				
		IT	12/06/96	GL	WLV5	396	850				
		I T	12/06/96	GL	WI V7	293	250				
		1.1	12/06/96	GL	WLV7	444	1050				
		1.1	12/06/96	GL	WLV7	404	800				
		1.1	12/06/96	GL	WLV7	404	750				
			12/00/90	GL		270	675				
			12/00/90	GL		376	075				
			12/06/96	GL	VVLV8	395	0/5	metal sample #1			
			12/06/96	GL	VVLV8	458	1100				
			12/06/96	GL	VVLV9	345	480	metal sample #2			
		LI	12/06/96	GL	WLV9	401	725				
		LI	12/06/96	GL	WLV9	408	900				
		LT	15/06/96	SN	WI	30					
		LT	15/06/96	SN	WI	30					
		LT	15/06/96	SN	WI	30					
		LT	15/06/96	SN	WI	30					
		LT	15/06/96	SN	WI	30					
		LT	12/07/96	SN	WI	132					
		LT	12/07/96	SN	WI	41					
		LT	12/07/96	SN	WI	41					_
WOLVERINE LAKE	Slimy sculpin	SS	13/07/96	ELS	WO	71					
		SS	13/07/96	ELS	WO	68					
		SS	13/07/96	ELS	WO	59					
		SS	13/07/96	ELS	WO	89					
		SS	13/07/96	ELS	WO	55					
		SS	13/07/96	ELS	WO	78					
		SS	13/07/96	ELS	WO	99					
		SS	15/06/96	SN	WI	31					
		SS	12/07/96	SN	WI	32					
		SS	12/07/96	SN	WI	37					
		SS	12/07/96	SN	WI	36					

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g)	Comments	sex/mat	stomach	
	Arctic gravling	AG	15/06/96	GI	LWV 1	372	500				
	Aretic graying	AG	15/06/96	GL		313	350				
		AG	15/06/96	GL	I WV 1	368	475				
		AG	15/06/96	GL	LWV 1	271	175				
		AG	15/06/96	GL	I WV 1	318	350				
		AG	15/06/96	GL	LWV 1	290	200				
		AG	15/06/96	GL	LWV 1	265	190				
		AG	15/06/96	GL	LWV 1	354	500				
		AG	15/06/96	GL	LWV 1	380	550				
		AG	15/06/96	GL	LWV 1	294	300				
		AG	15/06/96	GL	LWV 1	351	500				
		AG	15/06/96	GL	LWV 1	305	350				
		AG	15/06/96	GL	LWV 1	398	675				
		AG	15/06/96	GL	LWV 1	360	500				
		AG	15/06/96	GL	LWV 1	380	600				
		AG	15/06/96	GL	LWV 1	348	500				
		AG	15/06/96	GL	LWV 1	310	300				
		AG	15/06/96	GL	LWV 1	300	275				
		AG	15/06/96	GL	LWV 2	344	525				
		AG	15/06/96	GL	LWV 2	352	450				
		AG	15/06/96	GL	LWV 2	300	250				
		AG	15/06/96	GL	LWV 2	372	550				
		AG	15/06/96	GL	LWV 2	370	550				
		AG	15/06/96	GL	LWV 3	336	400	voluntering milt	male		
		AG	15/06/96	GL	LWV 3	368	500				
		AG	15/06/96	GL	LWV 3	308	300				
		AG	15/06/96	GL	LWV 3	318	325				
		AG	15/06/96	GL	LWV 3	354	400				
		AG	15/06/96	GL	LWV 3	262	200				
		AG	15/06/96	GL	LWV 3	340	400				
		AG	15/06/96	GL	LWV 3	322	300				
		AG	15/06/96	GL	LWV 3	314	300				
		AG	15/06/96	GL	LWV 3	335	375				
		AG	15/06/96	GL	LWV 3	348	400				
		AG	15/06/96	GL	LWV 3	372	650				
		AG	15/06/96	GL	LWV 3	308	350				
		AG	15/06/96	GL		310	300				
		AG	15/06/96	GL		322	320				
		AG	15/06/96	GL		344	400				
		AG	15/06/96	GL		330	400				
		AG	15/06/96	GL		324	323				
		AG	15/06/96	GL		<i>১</i> 4∠ 358	450				
		AG	15/06/96	GL	LWV 3	342	425				
		AG	15/06/96	GL	1 WV 3	330	400				
		AG	15/06/96	GL		364	450				
		AG	15/06/96	GL		333	400				
		AG	15/06/96	GL		343	475				
		AG	15/06/96	GL	LWV 4	297	300				
		AG	15/06/96	GL	LWV 4	337	400				
		AG	15/06/96	GL	LWV 4	343	400				
		AG	15/06/96	GL	LWV 4	357	475				
		AG	15/06/96	GL	LWV 4	322	350				
		AG	15/06/96	GL	LWV 4	314	300				
		AG	15/06/96	GL	LWV 4	339	375	volunterina eaas	female		
		AG	15/06/96	GL	LWV 4	326	425				
		AG	15/06/96	GL	LWV 4	295	250				
LITTLE WOLVERINE LAKE	Longnose sucke	er LNS	15/06/96	GL	LWV 1	430	1000				
	-	LNS	15/06/96	GL	LWV 1	460	1350				

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (a) Comments	sex/mat	stomach
		LNS	15/06/96	GL	LWV 1	480	1400			
		LNS	15/06/96	GL	LWV 1	400	875	voluntering eggs	female	
LITTLE WOLVERINE LAKE	Lake trout	LT	24/09/96	ANG	LWV	650				
		LT	24/09/96	ANG	LWV	623	2650	on spawning site	M7	hairbal?=5
		LT	24/09/96	ANG	LWV	418	750	on spawning site	F2	shrimp=10.clams=0
		IT	24/09/96	ANG	IWV	2700				
		1.1	15/06/96	GI	I WV 1	437	975			
		IT.	15/06/96	GL	LWV 1	395	750			
		1.1	15/06/96	GL		128	1000			
		1.1	15/06/06	GL		420	025			
			15/00/90	GL		400	925			
			15/00/90	GL		410	1250			
			15/00/90	GL		4/0	1250			
			15/06/96	GL		408	1200			
			15/06/96	GL		429	1100			
			15/06/96	GL		308	550			
			15/06/96	GL	LVVV 1	425	900	0 1 " 0		
		LI	15/06/96	GL	LWV 1	402	750	Sample # 9		
		LI	15/06/96	GL	LWV 1	462	1300			
		LT	15/06/96	GL	LWV 1	444	1100			
		LT	15/06/96	GL	LWV 2	440	800			
		LT	15/06/96	GL	LWV 2	786	6050	Sample # 8		
		LT	15/06/96	GL	LWV 2	392	775			
		LT	15/06/96	GL	LWV 2	338	425	Sample # 10		
		LT	15/06/96	GL	LWV 2	364	500			
		LT	15/06/96	GL	LWV 3	770	6500			
		LT	15/06/96	GL	LWV 3	466	900			
		LT	15/06/96	GL	LWV 3	500	1400			
		LT	15/06/96	GL	LWV 3	382	650	Sample #11		
		LT	15/06/96	GL	LWV 3	415	650			
		LT	15/06/96	GL	LWV 4	528	1450			
		LT	15/06/96	GL	LWV 4	400	800			
LITTLE JIMMY LAKE	Arctic gravling	AG	14/06/96	GL	MHL 1	249	175			
		AG	14/06/96	GL	MHL 1	334	400			
		AG	14/06/96	GL	MHL 1	322	425			
		AG	14/06/96	GL	MHL 1	299	300			
		AG	14/06/96	GL	MHI 1	285	275			
		AG	14/06/96	GL	MHL 1	274	200			
		AG	14/06/96	GL	MHI 1	262	200			
		AG	14/06/96	GL	MHI 1	289	300			
		AG	14/06/96	GL	MHI 1	341	500			
		AG	14/06/96	GL	MHI 1	306	375			
		AG	14/06/96	GL	MHI 1	362	525			
		AG	14/06/96	GL	MHI 1	272	200			
		AG	14/06/06	GL		230	200			
		AG	14/06/06	GL		550 n/o	350			
		AG	14/06/96	GL		11/d 274	300			
		AG	14/06/96	GL		2/4	200			
		AG	14/06/96	GL		305	450			
		AG	14/06/96	GL		310	450			
		AG	14/00/90	CL		04∠ 007	400			
		AG	14/00/90	GL		321	400			
		AG	14/00/96	GL		348	525			
		AG	14/06/96	GL	WHL 2	285	300			
		AG	14/06/96	GL	MHL 2	318	350			
		AG	14/06/96	GL	MHL 2	358	450			
		AG	14/06/96	GL	MHL 2	343	450			
		AG	14/06/96	GL	MHL 3	330	500			
		AG	14/06/96	GL	MHL 3	318	450			
		AG	14/06/96	GL	MHL 3	342	525			
		AG	14/06/96	GL	MHL 3	289	250			

Leastion	Curacian	Cuesias asda	Data (m/d/u)	Mathad	Cite				a avview at	stewash
Location	opecies	AC	14/06/06	CI	MHI 2	246	500	Jiiiiieille	Sex/mat	Stoffacti
		AG	14/06/96	GL		340	325			
		AG	14/06/96	GL		342	400			
		AG	14/06/96	GL		342	400			
		AG	14/06/96	GL		340	375			
		AG	14/00/90	GL		322	400			
		AG	14/06/96	CL		350	400			
		AG	14/06/96	GL		300	450			
		AG	14/06/96	CL		327	475			
		AG	14/06/96	CL		322	450			
		AG	14/00/90	GL		300	450			
		AG	14/06/96	GL		324	300			
		AG	14/06/96	GL		332	425			
		AG	14/06/96	GL		223	100			
		AG	14/06/96	CL		274	200			
		AG	14/06/96	CL		320	300			
		AG	14/06/96	CL		200	200			
		AG	14/06/96	CL		324	400			
		AG	14/06/96	CL		320	323			
		AG	14/06/96	GL		344	375			
		AG	14/06/96	GL		373	375			
		AG	14/06/96	GL		359	450			
		AG	14/06/96	GL		210	400			
		AG	14/06/96	GL		219	325			
		AG	14/06/96	GL		211	250			
		AG	14/06/96	GL		302	450			
		AG	14/06/96	GL		342	450			
		AG	14/06/96	GL		321	320			
		AG	14/06/96	GL		334	520			
		AG	14/06/96	GL		300	350			
		AG	14/06/96	GL		330	400			
		AG	14/06/96	GL		339	400			
		AG	14/06/96	GL		362	350			
		AG	14/06/96	GL		347	450			
		AG	14/06/96	GL		347	400			
		AG	14/06/96	GL		317	300			
		AG	14/06/96	GL		312	450			
		AG	14/06/96	GL		350	400			
		AG	14/06/96	GL		345	400 500			
		AG	14/06/96	GL		340	450			
		AG	14/06/96	GL		369	430			
		AG	14/06/96	GL		340	425			
		AG	14/06/96	GL		340	425			
		AG	14/06/96	GL		352	400			
		AG	14/06/96	GL	MHL 6	320	400			
		AG	14/06/96	GL	MHL 6	340	400			
		AG	14/06/96	GL	MHL 6	330	420			
		AG	14/06/96	GL	MHL 6	340	400			
		AG	14/06/96	GL	MHL 6	338	425			
		AG	14/06/96	GL	MHL 6	355	475			
		AG	14/06/96	GL	MHL 6	344	400			
I ITTI E JIMMY I AKE	Lake trout	11	24/09/96	ANG	1.1	418	850 00	spawning site	M10	empty
	_and trout	IT	24/09/96	ANG	1.1	395	650 00	spawning site	F5	clam=0 eggs=0 sculpin=15
		IT	24/09/96	ANG	1.1	395	700 00	snawning site	F5	bettle=0.eqgs=5.sbrimp=15
		1 T	24/00/06	ANG		<u>4</u> 00	750 00	snawning site	M10	ears=0 rocks=0
		1 T	24/00/06	ANG		385	600 00	snawning site	M10	eggs=5,100/03=0
		LT LT	24/09/96	ANG	1.1	410	700 00	snawning site	F2	eggs=0 eggs=4 rocks=1
		IT	24/09/96	ANG	1.1	435	900 00	spawning site	F5	plecoptra=2 rocks=4 eggs=4 spail=0
		IT	14/06/96	GI	1.14	472	650	. spanning one		p.000p.04_2,10010-4,0990-4,01011-0
		IT	14/06/96	GL	1.1.5	652	3550			
		LT	14/06/96	GL	LJ 6	705	4800			

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g)	Comments	sex/mat	stomach	
	Arotio grouling	10	14/07/06	ANC	Mo	265					
MONETCREEK	Arctic graying	AG	14/07/96	ANG	Ma	240					
		AG	14/07/96	ANG	M3	290					
		AG	17/07/96	ANG	M6	430					
		AG	17/07/96	ANG	M6	405					
		AG	17/07/96	ANG	M6	370					
		AG	17/07/96	ANG	M6	365					
		AG	14/07/96	ELS	M3	26					
		AG	14/07/96	ELS	M3	26					
		AG	14/07/96	ELS	M3	24					
		AG	14/07/96	ELS	M3	18					
		AG	14/07/96	ELS	M3	27					
		AG	14/07/96	ELS	M3	26					
		AG	14/07/96	ELS	M3	30					
		AG	14/07/96	ELS	M4	98					
		AG	14/07/96	ELS	M5	23					
		AG	14/07/96	ELS	M5	19					
		AG	14/07/96	ELS	CIVI	10					
		AG	14/07/96	ELS	M5	19					
		AG	14/07/96	FLS	M5	22					
		AG	14/07/96	FLS	M5	21					
		AG	14/07/96	FLS	M5	24					
		AG	15/07/96	ELS	M6	18					
		AG	15/07/96	ELS	M6	102					
		AG	15/07/96	ELS	M7G	102					
		AG	15/07/96	ELS	M7G	84					
		AG	15/07/96	ELS	M7G	21					
		AG	15/07/96	ELS	M8	80					
		AG	15/07/96	ELS	M9	18					
		AG	14/07/96	SN	M5	19					
		AG	14/07/96	SN	M5	21					
	<u></u>	AG	14/07/96	SN	M5	22					
MONEY CREEK	Dolly varden	DV	14/07/96	ELS	M4	84					
			14/07/96	ELS	IVI4	102					
			14/07/96	ELS ELS	M/	36					
			14/07/96	FLS	M4	38					
		DV	14/07/96	FLS	M4	34					
		DV	14/07/96	ELS	M4	95					
		DV	14/07/96	ELS	M4	39					
		DV	14/07/96	ELS	M4	142					
		DV	14/07/96	ELS	M5	216					
		DV	15/07/96	ELS	M6	135					
		DV	15/07/96	ELS	M6	90					
		DV	15/07/96	ELS	M6	78					
		DV	15/07/96	ELS	M7G	75					
		DV	15/07/96	ELS	M7G	84					
		DV	15/07/96	ELS	M/G	90					
MONEY CREEK		V	24/09/96	ELS	M/G	90					
WONETCREEK	Sinny scuipin	33 88	14/07/96	FIS	M4	20					
		33 QQ	14/07/06	FIS	MA	20					
		22	14/07/96	FLS	M4	20					
		SS	14/07/96	ELS	M4	40					
		SS	14/07/96	ELS	M4	80					
		SS	14/07/96	ELS	M4	80					
		SS	15/07/96	ELS	M7G	88					
		SS	15/07/96	ELS	M7G	76					

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g) Comments	sex/mat	stomach	
		SS	15/07/96	ELS	M7G	91				
		SS	15/07/96	ELS	M7G	71				
		SS	11/06/96	SN	M1	45				
		SS	11/06/96	SN	M1	55				
		SS	11/06/96	SN	M1	45				
		SS	11/06/96	SN	M1	47				
		SS	14/07/96	SN	M5	59				
		SS	14/07/96	SN	M5	101				
		SS	14/07/96	SN	M5	62				
		SS	14/07/96	SN	M5	80				
		SS	14/07/96	SN	M5	89				
GO CREEK	Dolly varden	DV	15/07/96	ELS	G1	64				
		DV	15/07/96	ELS	G1	168				
GO CREEK	Slimy sculpin	SS	15/07/96	ELS	G1	76				
		SS	15/07/96	ELS	G1	78				
NOUGHA CREEK	Arctic grayling	AG	16/07/96	ANG	N4	280				
	5 7 5	AG	16/07/96	ANG	N4	290				
		AG	16/07/96	ANG	N4	170				
		AG	16/07/96	ANG	N4	200				
		AG	16/07/96	ANG	N4	380				
		AG	16/07/96	ANG	N4	260				
		AG	16/07/96	ANG	N4	270				
		AG	25/09/96	FLS	N2	64				
		AG	25/09/96	FLS	N2	60				
		AG	25/09/96	FLS	N2	66				
		AG	25/09/96	FLS	N2	66				
		AG	25/00/06	FLS	N2	70				
		40	25/00/06	ELS	N2	70				
		AG	25/09/96	FLS	N2	80				
		AG	25/09/96	FLS	N2	58				
		AG	25/09/96	FLS	N2	56				
		40	25/00/06	ELS	N2	50				
		AG	25/09/90	ELS	N2	50				
		AG	25/09/90	ELS	N2	55				
		AG	25/09/90	ELS	N2	69				
		AG	25/09/96	FLS	N2	69				
		AG	25/09/96	FLS	N2	66				
		AG	25/09/90	ELS	N2	62				
		AG	25/09/90	ELS	NO NO	02				
		AG	25/09/90	ELS	N2	70				
		AG	25/09/90	ELS	N2	70				
		AG	25/09/90	ELS	NZ NZ	24				
		AG	16/07/90	ELS	N4	34				
		AG	16/07/96	ELS	N4	29				
		AG	16/07/96	ELS	N4	21				
		AG	16/07/96	ELS	N4	30				
		AG	16/07/06	ELO ELO	N4	∠ö 20				
		AG	16/07/96	ELS	N4	29				
		AG	10/07/90	ELO	IN4	31 10				
		AG	10/07/96	ELO	CVI NE	18				
		AG	10/07/96	ELO	CVI NE	22				
		AG	16/07/96	ELS		30				
		AG	16/07/96	ELS	N5	33				
		AG	16/07/96	ELS	N5	21				
		AG	16/07/96	ELS	N5	20				
		AG	16/07/96	ELS	N5	41				
		AG	16/07/96	ELS	N5	42				
		AG	16/07/96	ELS	N5	45				

ation	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g) Comments	sex/mat	stomach	
		AG	16/07/96	ELS	N5	41				
		AG	16/07/96	ELS	N5	38				
		AG	16/07/96	ELS	N5	43				
		AG	16/07/96	ELS	N5	44				
		AG	16/07/96	ELS	N5	21				
		AG	16/07/96	ELS	N5	27				
		AG	16/07/96	ELS	N5	18				
		AG	16/07/96	ELS	N5	47				
		AG	16/07/96	ELS	N5	48				
		AG	16/07/96	ELS	N5	49				
		AG	16/07/96	ELS	N5	49				
		AG	16/07/96	ELS	N5	44				
		AG	16/07/96	FLS	N5	41				
		AG	16/07/96	ELS	N5	42				
		AG	16/07/96	ELS	N5	45				
		AG	16/07/96	FLS	N5	47				
		AG	16/07/96	FLS	N5	.38				
		AG	16/07/96	FLS	N5	43				
		AG	16/07/96	FLS	N5	40				
		AG	16/07/96	FLS	N5	39				
		AG	16/07/96	FLS	N5	25				
		AG	16/07/96	FLS	N5	32				
		AG	16/07/96	ELS	NE	32				
		AG	16/07/06	ELS	NE	20				
		AG	16/07/96	ELS	NE	109				
		AG	16/07/96	FLS	N5	132				
		AG	25/09/96	VIS	N2	120				
		AG	25/09/96	VIS	N2	190				
	Burbot	BB	16/07/96	FIS	N5	115				
NOODIA ONLEN	Buibot	BB	16/07/96	FLS	N5	132				
		BB	16/07/96	FLS	N5	108				
	Longnose sucker	· INS	16/06/96	FLS	N1	35				
NOUGHA CREEK	Slimy sculnin	SS	16/06/96	SN	N1	43				
	enny eeupin	SS	16/06/96	SN	N1	22				
		SS	16/06/96	SN	N1	26				
		SS	16/06/96	SN	N1	25				
		55	16/06/96	SN	N1	28				
		55	16/06/96	SN	N1	23				
		SS	16/06/96	SN	N1	25				
		SS	16/06/96	SN	N1	25				
		SS	16/06/96	SN	N1	25				
		SS	16/06/96	SN	N1	22				
		SS	16/06/96	SN	N1	26				
		SS	16/06/96	SN	N1	21				
		SS	16/06/96	SN	N1	26				
		SS	16/06/96	SN	N2	50				
		SS	16/06/96	SN	N2	43				
		SS	16/06/96	SN	N2	24				
		SS	16/06/96	SN	N2	26				
		SS	16/06/96	SN	N2	26				
		SS	16/06/96	SN	N2	22				
		00	,	0.1		<u></u>				
WIND CREEK	Arctic grayling	AG	16/07/96	ELS	WND	121				
	5 .,	AG	16/07/96	ELS	WND	26				
		AG	16/07/96	ELS	WND	28				
		AG	16/07/96	ELS	WND	32				
		AG	16/07/96	ELS	WND	32				
		AG	16/07/96	ELS	WND	43				
		AG	16/07/96	ELS	WND	45				
			10/01/00	220		-10				

_ocation	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g) Comments	sex/mat	stomach	
WIND LAKE	Arctic grayling	AG	23/09/96	GL	WNDL1	300				
		AG	23/09/96	GL	WNDL1	310				
		AG	23/09/96	GL	WNDL1	290				
		AG	23/09/96	GL	WNDL1	305				
		AG	23/09/96	GL	WNDL2	260				
		AG	23/09/96	GL	WNDL2	265				
		AG	23/09/96	GL	WNDL2	275				
		AG	23/09/96	GL	WNDL2	240				
		AG	23/09/96	GL	WNDL2	300				
		AG	23/09/96	GL	WNDL2	300				
		AG	23/09/96	GL	WNDL2	345				
		AG	23/09/96	GL	WNDL3	250				
		AG	23/09/96	GL	WNDL3	210				
		AG	23/09/96	GL	WNDL3	290				
		AG	23/09/96	GL	WNDL3	210				
WIND LAKE	Longnose sucker	LNS	23/09/96	GL	WNDL1	310	400			
		LNS	23/09/96	GL	WNDL2	380	600			
		LNS	23/09/96	GL	WNDL3	320				
WIND LAKE	Lake trout	LT	23/09/96	GL	WNDL1	700	5600			
			20/00/00	01			0000			
TRIBUTARIES TO	Arctic gravling	AG	13/07/96	ANG	TWV6	410				
WOLVERINE LAKE	Arono graying	AG	13/07/96	ANG	TWV6	432				
		AG	13/07/96	FLS	TWV3	85				
		AG	13/07/96	FLS	TWV4	32				
		AG	13/07/96	FLS	TWV5	408				
		AG	13/07/96	FIS	TW/V5	385				
		AG	13/07/96	FIS	TW/V5	308				
		AG	13/07/96	FLS	TWV5	425				
		AG	13/07/96	SN	TW/V6	25				
		AG	13/07/96	SN	TW/V6	23				
		AG	12/07/06	SN	TWVC	20				
		AG	13/07/90	SIN	TWVC	29				
	Durket	AG	13/07/90		TW/V0	20				
	Burbot	DD	13/07/90	ELS	TW/V3	92				
WOLVERINE LAKE			13/07/90	ELS	TW/V3	100				
		DD	13/07/90	ELS	10003	100				
		DD	13/07/90	ELS	10005	100				
		DD	13/07/90	ELS	10005	00				
		DD	13/07/90	ELS	10005	92				
		DD	13/07/96	ELS	1 1 1 1 1 1	90				
		DD	13/07/96	ELO		CI I 00				
		DD	13/07/00	ELO		00				
		DD	13/07/00	ELO		04				
	Longnood quicker		13/07/00	ELO		72				
	Longnose sucker	LING	13/07/00	ELO	T VV V 4	13				
		LING	13/07/00	ELO	TWV4	03				
			13/07/96	ELO	1 VV V 4	00 71				
		LING	13/07/96	ELS	1 1 1 1 1 1	/ I CE				
		LINS	13/07/96	ELS	1 1 1 1 1 4	60 70				
		LINS	13/07/96	ELS	1 1 1 1 1 4	12				
		LINS	13/07/96	ELS	1 1 1 1 1 4	(4 70				
		LINS	13/07/96	ELS	1 1 1 1 4	79				
		LNS	13/07/96	ELS	1 VV V 4	81				
	Laber to set	LNS	13/07/96	ELS	10004	/5				
I KIBUTARIES TO	Lake trout		13/07/96	ANG	10006	400				
WOLVERINE LAKE			13/07/96	ANG	TWV6	440				
		LT	13/07/96	ANG	TWV6	515				
		LT	13/07/96	ANG	TWV6	410				
		LT	13/07/96	ELS	TWV5	42				
		LT	13/07/96	ELS	TWV5	41				

Location	Species	Species code	Date (m/d/yr)	Method	Site	Fork Length (mm)	Round Weight (g) Comments	sex/mat	stomach	
		LT	13/07/96	ELS	TWV5	41				
		LT	13/07/96	ELS	TWV5	42				
		LT	13/07/96	ELS	TWV5	45				
		LT	13/07/96	ELS	TWV6	39				
		IΤ	13/07/96	FLS	TWV6	36				
		LT.	13/07/96	FLS	TWV6	34				
		1.1	12/07/06	ELG	T\///6	33				
		1.7	13/07/06	ELO	TW//6	64				
		17	13/07/06	ELS	TW//6	40				
			12/07/06	ELS	TW/V6	40				
			13/07/90	ELS		37				
			13/07/96	ELS	TWV6	35				
			13/07/96	SN	10006	32				
		LI	13/07/96	SN	TWV6	34				
		LI	13/07/96	SN	TWV6	41				
TRIBUTARIES TO	Slimy sculpin	SS	13/07/96	ELS	TWV3	51				
WOLVERINE LAKE		SS	13/07/96	ELS	TWV3	60				
		SS	13/07/96	ELS	TWV3	83				
		SS	13/07/96	ELS	TWV3	62				
		SS	13/07/96	ELS	TWV5	66				
		SS	13/07/96	ELS	TWV5	64				
		SS	13/07/96	ELS	TWV5	56				
		SS	13/07/96	ELS	TWV5	71				
		SS	13/07/96	ELS	TWV5	63				
		SS	13/07/96	ELS	TWV5	71				
		SS	13/07/96	ELS	TWV5	61				
		SS	13/07/96	ELS	TWV5	68				
		SS	13/07/96	ELS	TWV6	51				
		SS	13/07/96	ELS	TWV6	58				
		SS	13/07/96	FLS	TWV6	60				
		20	13/07/96	FLS	TW/V6	58				
		20	13/07/06	ELS	TW//6	75				
		55	12/07/06	ELS	TW/V6	62				
		00	13/07/90	ELS	TW/V6	60				
		33	13/07/90	ELS		00				
		33	13/07/96	ELS		01				
		55	13/07/96	ELS	TWV6	61				
		55	13/07/96	SN	10006	57				
		SS	13/07/96	SN	10006	37				
		SS	13/07/96	SN	TWV6	41				
		SS	13/07/96	SN	TWV6	42				
	Durket	DD	40/07/00	FLO	TL \A/4	105				
	Burbot	DD	12/07/96	ELS		105				
WOLVERINE LAKE		BB	12/07/96	ELS	TLVV4	88				
	Lake trout		12/07/96	ELS	TLW4	42				
	Olivery a surfaciar	LI	12/07/96	ELS	TLVV4	30				
	Simy scuipin	33	12/07/96	ELS		80				
WOLVERINE LAKE		33	12/07/96	ELS		84				
		55	12/07/96	ELS	TLWT	91				
		SS	12/07/96	ELS	ILW1	63				
		SS	12/07/96	ELS	TLW1	56				
		SS	12/07/96	ELS	TLW2	73				
		SS	12/07/96	ELS	TLW2	81				
		SS	12/07/96	ELS	TLW2	75				
		55	4.4/07/00	51.0	TI 14	<u></u>				
	Burbot	88	14/07/96	ELS	1 LJ1	82				
	Lake trout	LI	14/07/96	ELS	I LJ I	91				

Date	Site			Species		
(d/m/yr)		lake trout	Arctic grayling	longnose sucker	dolly varden	Unidentified
13/06/96	WC		20			
13/06/96	WO	1	37			
14/06/96	WC					100
15/06/96	WI		200+			
13/07/96	TWV4		30	95		
13/07/96	TWV5		5			
16/07/96	WND		2000+	2000		
17/07/96	M6				1	
24/09/96	WI		1			
25/09/96	N2		2			

Table 6 . Number of Visual Observations of Fish in the Wolverine Lake Area, 1996.

Table A Sampling period, number of gillnet sets, and surface water temperatures at sampling locations during gillnetting surveys wolverine lake, 1996.

<u>Lake</u>	Sampling Period	Number of net sets	Surface Temperature © at Sample Locations		
			Average	Maximum	Minimum
Wolverine	June 12 - 15, 1996	24.5	4.8	6.8	3.1
Little Wolverine	15-Jun-96	4	7.9	8.9	7.5
Little Jimmy	14-Jun-96	6	5.8	6.2	5.4

Table B Mean fork lengths and weights of lake trout and Arctic grayling captured during index gillnetting, spring 1996.

Lake Sample size			<u>Mean Fork</u>	<u>Mean Fork Length (mm)</u>		<u>Mean Weight (gm)</u>	
	Lake Trout	Arctic Grayling	Lake Trout	Arctic Grayling	Lake Trout	Arctic Grayling	
Wolverine	57	63	431.6	370.8	1263.1	603.4	
Little Wolverine	25	57	453	333.2	1344	395.9	
Little Jimmy	3	79	609.7	325.4	3000	381.2	

Table C Catch/Effort statistics (CPUE) generated from index gillnetting results , spring 1996.

<u>Lake</u>	Number captured per Gillnet Hour		Kilograms Captured per Gillnet Hour		
	Lake Trout	Arctic Grayling	Lake Trout	Arctic Grayling	
Wolverine	2.3	2.57	2.94	1.55	
Little Wolverine	6.25	14.25	8.4	5.6	
Little Jimmy	0.5	13.2	1.5	5	

APPENDIX 1

Complete General Descriptions of Creeks Crossed by the Two Possible Access Roads to the Wolverine Property

(Based on data collected on June 23- 26, July 29-31, and September 14-17,1997)

Site:	TeastL (TE)
Location:	S.E. end East Lake
Aspect:	South
Date Sampled:	25/06/97
Cover:	100% Willow filled draw
Photos:	Plate 1
Comments:	Creek has no apparent above ground flow. Possible ground flow enters
	TWND1 before entering the wetland area associated with East Lake.
Fish:	Zero fish habitat.
Site:	TW1
Lat/Long:	61°30.52 N / 130°25.48 W
Location:	outlet of Creek to Wind Lake
Aspect:	South East
Date Sampled:	23/06/97
Average Depth:	0.5 m
Average Width	3 m
Average Velocity:	>0 m/s
Temperature:	10.2 °C
Substrate:	sand and sorted gravels in main flow, silt in adjacent slow water
Banks:	abrupt up to 3 m high, mud banks
Cover:	60% willow
Vegetation:	Willow, Dwarf birch and sedges
Channel:	glides with slow pools
Photos:	Plates 2, 3, 4, 5
Comments:	Outlet has several ponds associated along the lake shore. beaver
present	
Fish:	Numerous adult Arctic grayling in creek and occasional slimy sculpin and
	long hose sucker.
Site:	TW1
Location:	30m u/s of Wind Lake to 300 m u/s of Wind Lake
Date Sampled:	30/07/97
Average Depth:	0.4 m
Average Width:	1.2 m
Average Velocity:	>0.25 m/s
Temperature:	7.9 °C
Substrate:	mostly silt, some gravel
Channel:	even, slow glide
Comments:	three old beaver dams have created a series of ponds, sporadic patches
	of pea gravel may provide spawning sites for grayling
Fish:	many (65+) grayling juvenile/ sub adults and fry.

Site:	TW1
Location:	30m u/s of Wind Lake to 300 m u/s of Wind Lake.
Date:	14/09/97
Substrates:	a new layer of organic silts covers all substrates, including in flow areas.
Fish:	abundant Arctic grayling fry
Site:	TW2
Lat/Long:	61°30.51 N / 130°24.06 W
Location:	Outlet to Wind Lake
Aspect:	South
Date:	25/06/97
Average Depth:	0.5 m
Average Width:	0.3 m
Average Velocity:	< 0.3 m/s
Temperature:	0.8°C
Substrate:	silted sand and gravel
Banks:	incised silt and sand 0.2 m high
Cover:	100% willow choked within 30 m of Wind Lake
Channel:	above 35 m from lake narrow and incised, below 1-3 m wide flooded
	pools
Photos:	Plates 6, 7, 8, 9
Comments:	Zero fish habitat above 30 m from lake
Fish:	Sub adult Arctic grayling adjacent to lake
Fish:	Sub adult Arctic grayling adjacent to lake
Fish: Site:	Sub adult Arctic grayling adjacent to lake TW2
Fish: Site: Location:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 20/07/07
Fish: Site: Location: Date:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97
Fish: Site: Location: Date: Average Depth:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m
Fish: Site: Location: Date: Average Depth: Average Width:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/n
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2%
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 150(willow/sedge
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Cover:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined abarnal (valuative a 1 m/ana abava 25 m)
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) crock parrows 25 m from lake to 0.2 m wide into codes / willow draw
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Sine: Comments: Figh:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Comments: Fish:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw very limited fish habitat u/s of 35 m
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Comments: Fish: Site:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw very limited fish habitat u/s of 35 m
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Site: Location:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw very limited fish habitat u/s of 35 m WO Mouth of Nougha Creek at Wolverine Lake
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Comments: Fish: Site: Location: Date:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw very limited fish habitat u/s of 35 m WO Mouth of Nougha Creek at Wolverine Lake 25/06/97
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Comments: Fish: Site: Location: Date: Average Depth:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw very limited fish habitat u/s of 35 m WO Mouth of Nougha Creek at Wolverine Lake 25/06/97 0.5 m
Fish: Site: Location: Date: Average Depth: Average Width: Average Velocity: Temperature: Vegetation: Cover: Channel: Comments: Fish: Site: Location: Date: Average Depth: Average Width:	Sub adult Arctic grayling adjacent to lake TW2 outlet area at Wind Lake 30/07/97 0.4 m 0.75 m >0 m/s 1.2°C willow/sedge 15% willow/sedge to 100% willow by 35 m u/s first 35 m is glide in lake influence area, then to riffle in narrow confined channel (velocity is >1 m/sec above 35 m) creek narrows 35 m from lake to 0.3 m wide into sedge / willow draw very limited fish habitat u/s of 35 m WO Mouth of Nougha Creek at Wolverine Lake 25/06/97 0.5 m 12 m

Temperature:	11.2°C
Substrate:	cobble / gravel with occasional boulders
Banks:	abrupt rising 0.6 m above water level
Cover:	15% willow alder along shorelines only
Channel:	Mostly Glide / reach ends with first riffles
Comments:	see previous surveys
Fish:	numerous gravling adult/ sub-adult lake trout fry and juvenile slimy
	sculpin, burbot
Site:	WO
Date:	29/07/97
Fish:	Arctic grayling adults, juvenile and post fry, lake trout adults, juveniles and fry, longnose sucker juveniles, slimy sculpin.
Site:	WO
Date:	17/09/97
Fish:	Arctic grayling adults (numerous), juvenile and fry, lake trout adults, burbot juveniles, long nose sucker juveniles and slimy sculpin
Site:	TN1
Lat/Long:	61°30.11 N / 130°19.01 W
Location:	Outlet to Nougha Creek
Aspect:	South East
Date:	25/06/97
Average Depth:	0.15 m
Average Width:	0.5 m
Average Velocity:	1 m/s
Temperature:	5.6 °C
Substrate:	90 % gravel / 10 % boulders
Banks:	tight and confined in places, undefined in others with flow through grass and trees
Cover:	willow
Channel:	mostly fast riffles with the occasional boulder pool
Photos:	Plates 10, 11
Comments:	2 trails cross the creek 30 and 40 m from Nougha Creek, some gravel
	has become exposed on the trails and has developed into shallow riffles.
Fish:	Zero observed / poor and limited fish habitats
Site:	TN1-1
Location:	outlet at Nougha Creek u/s for 20 m
Date:	29/07/97
Average Depth:	0.05 m
Average Width:	0.35 m
Average velocity:	>1 m/s

Temperature:	4.5 °C
Substrate:	gravel/boulder, occasional cobble
Fish:	none captured or observed

Site:	TN1-2
Location:	trail crossing 30to 40 meters u/s from Nougha
Date:	29/07/97
Average Depth:	0.05 m
Average Width:	0.35 m
Average Velocity	>1 m/s
Temperature:	4.5 °C
Substrate:	40 % cobble/ 60% gravel
Banks:	open roadway with shallow sandy edges
Vegetation:	sedge, with willows adjacent to roadway
Fish:	none captured or observed

Site:

Site:	TN1
Location:	outlet to Nougha Creek u/s for 20 m
Date:	17/09/97
Temperature:	0.9°C
Fish:	none recorded

C:+

Site:	TN2
Location:	Outlet to Nougha Creek
Aspect:	South
Date:	25/06/97
Substrate:	organics
Banks:	undefined
Cover:	100%willow/alder
Channel:	overland seepage
Photos:	Plates 12, 13, 14, 15
Comments:	Channel not defined, flow apparent only were it parallels Nougha Creek
	for 20 m, spills over banks over 5 m reach with no distinct outlet.
Fish:	Zero fish habitat

Site:	TN2
Location:	uppermost winter road crossing
Date:	17/09/97
Comments:	Creek channel crossing roadway is fed by ground welling approximately 1
	m upstream of the roadway.

Site: TN3	
Lat/Long: 61°30.42 N / 13°18.78 W	
Location: Outlet to Nougha Creek	
Aspect: East	
Date: 25/06/97	
Average Depth: 0.3 m	
Average Width: 0.75 m	
Average Velocity 1 m/s	
Temperature: 3.0 °C	
Substrate: heavily silted with clayey sands	
Banks: mossy 0.5 m high, well defined	
Cover: 100% willow above 10 m outlet are	
Channel: outlet is smooth glide/ above creek flows as fast riffle	
Photos: Plates 16, 17	
Comments: crossed by 2 roadways40m from Nougha, large ice builds	at upper
roadway, entry to Nougha creates good eddy pools up and d/s	of outlet
Fish: None observed, has potential especially near outlet	
Site: TN3	
Location: outlet area at Nougha Creek	
Date: 29/07/97	
Average Depth: 0.35 m	
Average Width: 0.8 m	
Average Velocity: <1 m/s	
Temperature: 3.8 °C	
Fish: 2 Arctic grayling post fry in d/s influence area	
Site: TN3	
Date: 17/09/97	
Temperature: 1.1 °C	
Fish:Arctic grayling juveniles/ post fry within 20 m of Nougha Creek	
Site: TN7	
Lat/Long 61°33.55 N / 130°14.15 W	
Location: Outlet to Nougha Creek	
Aspect: North	
Date: 24/06/97	
Average Depth: 0.35 m	
Average Width: 4 m	
Average Velocity: 0 m/s	
Temperature: 12.7 °C	
Substrate: Silt organic debris and occasional boulder	
Banks: flooded	
Cover: 30% willow	

Channel:	Back filled with water from Nougha Creek., small discernible above
Dhotoo	Plotos 18, 10, 20
Commonto:	Above ground flow encours as according from adjacent group
Comments.	Above ground now appears as seepage from adjacent areas
FISN:	Does not provide fish habitat other than flood bay adjacent to Nougha
	Creek, 1 graying juvenile.
Site:	TN8
Lat/Long:	61°33.44 N / 130°14.24 W
Location:	Outlet to Nougha Creek
Aspect:	North
Date:	24/06/97
Average Depth:	0.2 m
Average Width:	0.8 m
Average Velocity:	> 2 m/s
Temperature:	2.2 °C
Substrate:	cobble boulder with occasional log
Banks:	pinched and confined, incised
Cover:	100% willow
Channel:	Riffle/rapid
Photos:	Plates 21, 22, 23
Comments:	Channel remains narrow until entering Nougha Creek, Zone of influence
	greatly reduced by swift current in Nougha Creek.
Fish:	Zero fish observed, very limited habitat, limited access due to velocities
Site:	TN9-1
Lat/Long:	61°32.57 N / 130°14.96 W
Location:	Outlet to Nougha Creek
Aspect:	North
Date:	24/06/97
Average Depth:	0.4 m
Average Width:	1 m
Average Velocity:	0.1 m/s
Temperature:	3.2 °C
Substrate:	bedrock and boulders
Banks:	moss covered
Cover:	20% willow
Channel:	Waterfall within 1 m of Nougha, slope greater than 30 % for 20 m
Photos:	Plates 24, 25, 26, 27
Comments:	Waterfall poses major and permanent barrier to fish passage, no outlet
	area habitat
Fish:	None observed, extremely limited habitat

Site:	TN9-2			
Location:	80m u/s of outlet to Nougha Creek			
Aspect:	north			
Date:	30/07/97			
Average Depth:	0.1 m			
Average Width:	0.5 m			
Average Velocity:	>2 m/s			
Temperature:	4.1 °C			
Substrate:	95% cobble/ 5% boulder			
Banks:	steep, mossy, incised banks			
Vegetation:	willow/moss			
Cover:	100% willow			
Channel:	high velocity riffle			
Comments:	minimal fish habitat			
Fish:	no fish captured or observed			
Site:	TN10-1			
Lat/Long:	61°32.56 N / 130°15.15 W			
Location:	Outlet to Nougha Creek u/s for 15m			
Aspect:	North			
Date:	24/06/97			
Average Depth:	0.5 m			
Average Width:	0.5 m			
Average Velocity:	1 m/s			
Temperature:	2.0 °C			
Substrate:	Boulders			
Banks:	constricting and confining above 15 m from Nougha			
Cover:	100% willow above 15 m from Nougha			
Channel:	Fast flowing riffle			
Photos:	Plate 28			
Comments:	potential fish habitat in first 15 m from Nougha. constriction.	Very	limited	above
Fish:	Zero observed			
Site:	TN10-2			
Lat/Long:	61°32.54 N / 130°15.03 W			
Location:	15 to 40 m u/s of Nougha			
Aspect:	north			
Date:	30/07/97			
Average Depth:	0.5 m			
Average Width:	0.3 m			
Average Velocity:	>1 m/s			
Temperature:	2.4 °C			
Substrate:	silt with occasional boulders			

Banks:	incised
Vegetation:	willow
Cover:	100% willow
Channel:	fast, narrow and deep, some undercut banks, riffle : rapid ratio = 10:1
Photos:	Plate 29
Fish:	Zero observed
Site:	TN10
Location:	Nougha Creek at outlet of TN10
Aspect:	north
Date:	30/07/97
Average Depth:	0.35 m
Average Width:	14 m
Average Velocity:	1 m/s
Temperature:	14.1 °C
Substrate:	40% cobble/ 40% boulder/ 20% gravel
Banks:	stable, 50% slope with rise of 0.5m
Vegetation:	sedge/willow
Cover:	5% willow
Channel:	mainly riffle, two islands present
Fish:	juvenile grayling
Site:	TN10-1
Date:	14/09/97
Temperature:	3.0 °C
Fish:	Arctic grayling juveniles in TN10 zone of influence of Nougha Creek.
Site:	VB1
Lat/Long:	61°30.31 N / 130°09.80 W
Location:	500 m reach below 2 headwater tributaries that form Van Bibber Creek
Aspect:	East
Date:	25/06/97
Average Depth:	0.2 m
Average Width:	5 m
Average Velocity:	0.75 m/s
Temperature:	2.7 °C
Substrate:	80 % boulder / 20 % cobble / trace gravel
Banks:	shallow but well defined, moss covered
Cover:	None
Channel:	riffle with occasional pool forming behind boulders
Photos:	Plates 30, 31, 32, 33
Comments:	Very low conductivity ELS at 600 v, large aufies build up at confluence area

Sito	TVP1
	61°20 29 NI / 120°00 95 W/
Lai/Lung.	immediately above confluence with other feeder to Ven Bibber Creek
	North Fast
Aspect:	North East
Date:	25/06/97
Average Depth:	0.3 m
Average Width:	0.8 m
Average Velocity:	> 1 m/s
Temperature:	2.4 °C
Substrate:	60 % boulder/ 35 % cobble / 5 % gravel
Banks:	incised well defined
Cover:	100% willow
Channel:	mostly stepped riffles
Fish:	No fish observed
Site:	TVB1
Site: Location:	TVB1 500 m reach below confluence
Site: Location: Date:	TVB1 500 m reach below confluence 31/07/97
Site: Location: Date: Average Depth:	TVB1 500 m reach below confluence 31/07/97 0.15 m
Site: Location: Date: Average Depth: Average Velocity:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s
Site: Location: Date: Average Depth: Average Velocity: Temperature:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate: Vegetation:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder willow/moss
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate: Vegetation: Channel:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder willow/moss stepped riffle
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate: Vegetation: Channel: Fish:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder willow/moss stepped riffle none observed or captured
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate: Vegetation: Channel: Fish: Sites:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder willow/moss stepped riffle none observed or captured VB, TVB1,and TVB2
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate: Vegetation: Channel: Fish: Sites: Date:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder willow/moss stepped riffle none observed or captured VB, TVB1,and TVB2 14/09/97
Site: Location: Date: Average Depth: Average Velocity: Temperature: Substrate: Vegetation: Channel: Fish: Sites: Date: Temperature:	TVB1 500 m reach below confluence 31/07/97 0.15 m 1 m/s 4.4 °C cobble/boulder willow/moss stepped riffle none observed or captured VB, TVB1,and TVB2 14/09/97 2.2 °C

Site:

Site:	TWV1
Lat/Long:	61°26.69 N / 130°10.88 W
Location:	Outlet to Wolverine Lake
Aspect:	South West
Date:	26/06/97
Average Depth:	0.2 m
Average Width:	1.2 m
Average Velocity:	< 1 m/s
Temperature:	3.1 °C
Substrate:	80 % gravel / 10 % cobble / 10 % sand
Banks:	well defined
Cover:	70- 100 % willow
Channel:	90 % riffle 10% pooling

Photos:	Plates 34, 35
Comments:	10 m from lake channel narrows to 0.5 m width
Fish:	Slimy sculpin near outlet
Site:	TWV1
Location:	outlet to Wolverine Lake u/s for 30 m
Date:	30/07/97
Average Depth:	0.15 m
Average Width:	0.6 m
Average Velocity:	<2 m/s
Temperature:	4.7 °C
Substrate:	40% cobble / 50% gravel / 10% boulder
Vegetation:	willow/moss
Cover:	50% willow for first 10 m then to 100% willow
Fish:	Many grayling and lake trout fry in zone of influence of lake
Site: Location: Date: Temperature: Fish:	 TWV1 outlet to Wolverine Lake u/s for 30 m 16/09/97 1.2 °C Slimy sculpin and one post fry Arctic grayling in creek, numerous Arctic grayling and occasional lake trout fry in creek influence zone of lake.
Site:	TWV2
Lat/Long:	61°27.54 N / 130° 13.90 W
Location:	Outlet to Wolverine Lake
Aspect:	South West
Date:	26/06/97
Average Depth:	0.2 m
Average Width:	0.4 m
Average Velocity:	1 m/s
Temperature:	1.0 °C
Substrate:	50 % sand / 50 % gravel
Banks:	mossy 50% slope rise 1 m
Cover:	100 % willow
Channel:	incised and very small
Photos:	Plate 36
Comments:	Limited habitat with poor cover
Fish:	None observed
Site:	TWV3
Lat/Long:	61° 28.34 N / 130° 16.70 W
Location:	Outlet into Wolverine Lake
Aspect:	South West

Date:	26/06/97
Average Depth:	0.35 m
Average Width:	1 m
Average Velocity:	< 0.5 m/s
Temperature:	1.1 °C
Substrate:	silted sand/ gravel with much submerged willow
Banks:	abrupt and defined rise 0.5 to 1 m
Cover:	0 for first 20 m from lake
Channel:	4:1 pool : riffle
Photos:	Plates 37, 38
Comments:	shelf ice along creek edge, good cover and habitats in lowest 20 m before lake
Fish:	Lake trout fry, slimy sculpin, and burbot
Site:	TWV3
Location:	outlet to Wolverine Lake u/s for 40m
Date:	29/07/97
Average Depth:	0.4 m
Average Width:	1 m
Average Velocity:	< 0.25 m/s
Temperature:	4.7 °C
Substrate:	silt/sand
Channel:	100% glide below 40 m, pool / riffle 1:1 above 40m
Fish:	lake trout fry and slimy sculpin captured
Site:	TWV3
Location:	outlet to Wolverine Lake u/s for 40 m
Date:	17/09/97
Temperature:	1.0 °C, Wolverine Lake temp. 8.5 °C
Fish	14 Arctic gravling juveniles, 1 burbot juvenile, and 6 slimy sculpin

DATE	SITE	TEMP (°C)	EFFORT (m ²)	CATCH	САТСН		COMMENTS /			
(d/m/yr)		. ,		AG	LT	SS	BB	DV	LNS	COORDINATES
23/06/97	TW1	10.2	42	6	0	0	0	0	0	
23/06/97	TW1	10.2	56	23	0	1	0	0	0	
25/06/97	WO	13.2	100	300+	1	0	0	0	0	
26/06/97	TWV3	1.1	49	0	3	4	1	0	0	
30/07/97	TW1		21	3	0	5	0	0	0	
30/07/97	TW1		6	0	0	1	0	0	1	
30/07/97	TN10 (@ Nougha)		28	0	0	0	0	0	0	
30/07/97	TN10 (@ Nougha)		28	1	0	0	0	0	0	
30/07/97	TWV1 (in lake)		84	4	0	0	0	0	0	
30/07/97	TWV1 (in lake)		70	68	16	0	0	0	0	
29/07/97	ŴO		77	144	0	0	0	0	0	
29/07/97	WO		40	13	0	0	0	0	0	
29/07/97	TWV3		49	3	0	0	0	0	0	
30/07/97	TWV1 (in lake)		70	3	2	0	0	0	0	
14/09/97	N-TN10		45	11	0	0	0	0	0	
14/09/97	WLVLK		105	19	0	2	0	0	0	
14/09/97	WLVLK		84	9	1	0	0	0	0	
16/09/97	М		90	0	0	6	0	0	0	
16/09/97	М		84	0	0	0	0	0	0	
16/09/97	М		42	0	0	0	0	0	0	
16/09/97	М		56	0	0	0	0	0	0	
16/09/97	М		60	0	0	2	0	0	0	
16/09/97	М		40	0	0	1	0	0	0	
16/09/97	M5		224	0	0	1	0	0	0	
16/09/97	М		70	0	0	0	0	0	0	61.18.42; 130.01.18
16/09/97	М		105	0	0	0	0	0	0	61.18.42; 130.01.18
16/09/97	М		63	0	0	0	0	0	0	61.18.42; 130.01.18
16/09/97	М		98	0	0	0	0	0	0	61.18.42; 130.01.18
16/09/97	М		60	0	0	0	0	0	0	61.23.13; 129.54.31
16/09/97	М		40	0	0	0	0	0	0	61.23.13; 129.54.31
16/09/97	М		50	0	0	0	0	0	0	61.23.13; 129.54.31
16/09/97	M6		21	0	0	0	0	0	0	
16/09/97	M5		30	0	0	0	0	0	0	
16/09/97	M5		66	0	0	0	0	0	0	
16/09/97	М		98	0	0	0	0	0	0	
16/09/97	М		60	0	0	0	0	0	0	
16/09/97	М		40	0	0	0	0	0	0	

Table 1 Seine Netting Results from the Wolverine Lake Area, 1997

* Species code: AG= Arctic grayling, LT= lake trout, SS= slimy sculpin, BB= burbot, DV= dolly varden/bull trout LNS= longnose sucker.

DATE SET (d/m/yr)	SITE	TIME SET TIME PULLED EFFORT (hrs)		CAT	CH *	
					DV	SS
14/09/97	TWLV1	16:25	18:30	50	0	0
15/09/97	G-1	10:16	9:20	23	0	0
15/09/97	G-2	10:20	9:20	23	0	0
15/09/97	G-3	10:25	9:25	23	0	0
15/09/97	G-4	10:30	9:25	23	0	0
15/09/97	G-5	10:37	9:25	23.2	0	0
15/09/97	M1	10:45	9:10	22.5	0	0
15/09/97	M2	10:45	9:10	22.5	0	0
15/09/97	M3	11:15	9:35	22.3	0	0
15/09/97	M4	11:20	9:35	22.25	0	0
15/09/97	M5	11:30	9:40	22.2	0	0
15/09/97	M6	11:45	10:00	22.25	0	0
15/09/97	M7	11:55	10:05	22.2	1	0
15/09/97	М	12:00	10:15	22.25	0	0
15/09/97	М	12:15	10:20	22	0	0
15/09/97	М	12:20	10:20	22	0	0
15/09/97	М	12:25	10:20	22	1	0
15/09/97	М	12:30	10:30	22	0	0
15/09/97	М	12:35	10:35	22	0	0
15/09/97	М	12:40	10:15	21.5	0	0
16/09/97	CkM4	15:40	9:40	42	0	0
16/09/97	CkM4	15:50	9:45	42	0	0
16/09/97	CkM4	15:50	9:45	42	0	0
16/09/97	CkM4	15:55	9:50	42	0	0
16/09/97	M4	16:00	9:50	41.8	0	0
16/09/97	M4	16:05	9:55	41.8	0	0
16/09/97	M4	16:10	9:55	41.75	0	0
16/09/97	M4	16:15	10:00	41.75	0	1
16/09/97	M4	16:20	10:00	41.6	0	0
16/09/97	M4	16:25	10:00	41.6	0	0
16/09/97	M4	16:25	10:05	41.6	0	0
16/09/97	M4	16:30	10:05	41.6	0	0
16/09/97	M4	16:35	10:10	41.5	0	0
16/09/97	M4	16:40	10:10	41.5	0	0
16/09/97	M4	16:45	9:35	40.8	0	0
16/09/97	M4	16:45	9:35	40.8	0	0

Table 2 Summary of Results from Minnow Trapping in the Wolverine Lake Area, 1997

* Species code: SS= slimy sculpin, DV= dolly varden/bull trout

DATE	SITE	FFFORT (sec)			CAT	CH *			COMMENTS
5/112	0.1.2		AG	LT	SS	BB	LNS	DV	
25/06/97	VB1	868	0	0	0	0	0	0	
25/06/97	TVB1	81	0	0	0	0	0	0	
25/06/97	TW2	174	5	0	0	0	0	0	AG = subadult
25/06/97	TN1	63	0	0	0	0	0	0	
25/06/97	TW2	87	5	0	0	0	0	0	
25/06/97	TN3	99	0	0	0	0	0	0	
25/06/97	TN3	59	1	0	1	0	0	0	downstream of trib
25/06/97	TN3	85	100+	0	0	1	0	0	upstream of trib
25/06/97	TN2	148	100+	0	0	0	1	0	upstream of trib
25/06/97	TN2	319	0	0	1	0	2	0	upstream of trib
26/06/97	TWV3	458	0	0	11	0	1	0	
26/06/97	TWV1	99	0	0	2	0	0	0	
23/06/97	TW1	260	7	0	0	0	0	0	
23/06/97	TW1	250	125+	0	0	0	0	0	
24/06/97	TN7	285	1	0	0	0	0	0	
24/06/97	TN8	106	0	0	0	0	0	0	
24/06/97	TN9	35	0	0	0	0	0	0	waterfall @ mouth = barrier
24/06/97	TN10	202	0	0	0	0	0	0	
30/07/97	TWV1	50	0	0	1	0	0	0	
30/07/97	TLW1	20	3	0	0	0	0	0	below beaver dam
30/07/97	TLW1	60	0	0	0	0	0	0	above beaver dam
30/07/97	TLW2	170	0	1	5	1	0	0	Campbell creek
30/07/97	ILW3 (IN LAKE)	/4	0	0	3	0	0	0	at margin of creek apron into lake
30/07/97	I W 1	481	/5	0	0	0	0	0	
30/07/97		111	18	0	0	0	0	0	
30/07/97	TN9 (mouth Nougha)	106	4	0	1	0	0	0	Nougha creek at mouth of TN9
30/07/97	IN10	102	0	0	0	0	0	0	mouth u/s 15m
30/07/97	TN10 (mouth Nougha)	108	1	0	1	0	0	0	Nougha creek at mouth of TN10
29/07/97	10003	283	0	2	7	0	0	0	1 unidentified field
29/07/97	TN3	60 59	0	0	0	0	0	0	T unidentined lish
29/07/97	TN3 (in Noura)		(75.00)	0	0	0	0	0	
29/07/97	TN3 (III Nouga)	21	(75-90)	0	0	0	0	0	
29/07/97	TN1	18	0	0	0	0	0	0	
31/07/07	TW/2	275	5	0	3	0	0	0	
31/07/97	TW2	215	0	0	0	0	0	0	
31/07/97	TVB1	511	0	0	0	0	0	0	
31/07/97	TVB1	122	0	0	0	0	0	0	
14/09/97	TVB	515	0	0	0	0	0	0	
14/09/97	TVB1	109	0	0	0	0	0	0	
14/09/97	TN10	135	0	0	0	0	0	0	
15/09/97	M	1044	0	0	69	0	0	4	
15/09/97	M4	170	0	0	0	0	0	0	
15/09/97	M4	127	0	0	2	0	0	2	
15/09/97	MONEY	171	0	0	1	0	0	0	upstream of site M4
17/09/97	WO	256	32	0	9	4	0	0	
17/09/97	WO	64	30	0	1	0	0	0	
17/09/97	TN1	30	0	0	0	0	0	0	
17/09/97	WO	358	10	0	0	0	0	0	
17/09/97	TWL3	148	14	0	6	1	0	0	
17/09/97	TN3	75	0	0	0	0	0	0	
17/09/97	TN3	73	2	0	1	0	0	0	
17/09/97	TN3	119	8	0	0	0	0	0	
17/09/97	WO	64	10	0	1	0	0	0	
17/09/97	WO	135	5	0	7	5	0	0	

Table 3. Summary of Electro-fishing Results, Wolverine Lake Area - 1997

* Species Code: AG= Arctic grayling, LT= lake trout, SS= slimy sculpin, BB= burbot, LNS= longnose sucker, DV= dolly varden/bull trout

Fisheries Study of Proposed Road Access Alignments, Wolverine Property

prepared for: Yukon Zinc Corp.

prepared by: Gartner Lee Limited

reference: GLL 40772 date: February 2005

distribution:

- 3 Yukon Zinc Corp.
- 1 Gartner Lee Limited

February 2, 2005

Mr. Jason Dunning Yukon Zinc Corp. 701 – 475 Howe Street Vancouver, BC V6C 2B3

Dear Sir:

Re: 40772 – Fisheries Study of Proposed access Road Alignments, Wolverine Property

Please find enclosed three (3) copies and a CD with both a Word version and a PDF version of our final report for this study.

We have provided Mr. Himmelright with a copy of a memo by Laberge Environmental Services summarizing the work involved in the installation of the HOBO Weather Station and the water level recorders.

Please feel free to contact us if we can be of any further assistance on this project or if you have any questions regarding this report.

Yours truly, GARTNER LEE LIMITED

Sum A for

Bruce S. Ford, MRM, R.P. Bio Senior Environmental Biologist

BSF:gc

(40772 Fish Report Final 2-Feb-2005.doc)

Sperling Plaza, 6400 Roberts Street, Suite 490, Burnaby, BC, V5G 4C9 tel 604.299.4144 fax 604.299.1455 Toronto | Vancouver | Calgary | Montreal | St. Catharines | Whitehorse | Yellowknife | Bracebridge www.gartnerlee.com

Table of Contents

Letter of Transmittal

1.	Intro	duction	.1
2.	Meth	nodology	.1
	2.1	Aquatic Assessment	. 1
		2.1.1 Habitat	.1
		2.1.2 Fish	.4
3.	Resu	lts	.5
	3.1.	Habitat Assessment	. 5
		3.1.1 Proposed Ridge Route	. 5
		3.1.2 Proposed Money Creek Route	.6
		3.1.3 Aerial Survey	.7
	3.2	Fish Sampling	10
4.	Discu	ission1	11
5.	Ref	erences1	12

List of Figures

Figure 1.	Location Map, Wolverine Property	2
Figure 2.	Fisheries Study of Proposed Road Access Alignments, Wolverine Property	3

List of Tables

Table 1.	Habitat Details for Potential Creek Crossings, Wolverine Project, 2004	. 8
Table 2.	2004 Fish Collection Summary, Wolverine Property	10
Table 3.	2004 Fall Fish Sampling Results, Wolverine Property	11

1. Introduction

Expatriate Resources Ltd. is currently conducting a Feasibility Study for the development of the Wolverine Project. The project is located in the southeastern Yukon Territory, midway between the communities of Ross River and Watson Lake immediately west of the Robert Campbell Highway (Figure 1). The current project under consideration includes an underground mine (production capacity 1,250 tpd), mill, tailings storage, ancillary buildings, and an access road connecting to the Robert Campbell Highway.

Expatriate is considering two options for developing the access road from the Robert Campbell Highway into the mine site. These alignments are referred to as the Ridge Route and the Money Creek Route. The routes share the same alignment for the first 8 km, heading south from the Robert Campbell Highway at which point the route enters into the Money Creek watershed. The Ridge Route branches to the west climbing the slope into the alpine and the Money Creek Route generally follows a bench above the west side of the Money Creek valley (Figure 2). The overall distance for the Ridge Route is 25 km and the Money Creek Route is 35 km long.

Gartner Lee was contracted by Expatriate Resources to collect fish and fish habitat information along the proposed route alignments. This survey work focused on those sections of creek in the vicinity of significant proposed crossings to collect initial information on fish habitat and to determine fall and overwintering usage of those areas by fish.

2. Methodology

2.1 Aquatic Assessment

2.1.1 Habitat

The field program was based on a field map prepared from information provided in Expatriate's request for proposals circulated September 2, 2004 (Figure 2). Eleven sites along the proposed alignments were identified for detailed physical characterization using standard techniques for inventory of stream habitat (Fisheries and Oceans Canada 1997). Over an average distance of 200 m within the vicinity of the proposed crossings, habitat was qualitatively and quantitatively assessed. A habitat card was completed at each site to ensure consistency of the data collected. Stream gradient was measured with a Suunto

Figure 2: Fisheries Study of Proposed Road Access Alignments

Oversize map available upon request

Fisheries Study of Proposed Road Access Alignments, Wolverine Property

clinometer, depth and width were measured with a meter stick, and velocity was established by measuring the time taken for a float to travel a fixed distance. *In situ* values for water quality, including pH, conductivity and temperature were taken with handheld meters, and all sites were photographed. Stream discharge was calculated by multiplying the average stream velocity (obtained using the Floating Object Method) by the wetted width, mean depth and a correction factor, 0.75.

2.1.2 Fish

Historical fish distribution information was compiled prior to going into the field in order to delineate expected fish distribution and to establish sampling areas most likely to produce fish and/or clarify fish distribution within the study area. The previous studies, in particular those completed before 1998, reported the char in the study area to be Dolly Varden (*Salvelinus malma*). Subsequent DNA analysis of fish from this portion of Liard River drainage have determined these fish to be bull trout (*Salvelinus confluentes*) (pers. comm. Arron Foos, Fisheries Biologist, Yukon Government, Department of Environment). Therefore, in this report we will refer to any *Salvelinus* sp. as bull trout even if identified as Dolly Varden in the original report.

Limited information was available for the creeks affected by the proposed routes. Previous studies have been carried out on Go, Hawkowl and Money Creeks. Both Go and Hawkowl Creeks are directly influenced by the proposed road alignments, while Money Creek is not. However, Money Creek is the receiving body for several creeks influenced by the proposed road and as such, fish present in Money Creek may move into these tributary creeks.

This study included sampling at eleven sites from October 1-5, 2004. Sites are identified in Figure 2 as R1, R9, R10, R18, R19, M1 U/S, M1 D/S, M3, M16, M17 and M18. All sites were electrofished with a Smith-Root LR24 electrofisher for an average of 500 seconds at 200-400 volts. Baited minnow traps were set overnight in a variety of habitats throughout each reach at all sites except R1 and M16. All fish caught were identified and sampled for length and weight before returning them to the creek of origin. Other proposed crossings as identified on base mapping provided by Expatriate were surveyed from the air to confirm channel location and determine if flowing water is present in the fall.

3. Results

3.1. Habitat Assessment

The following is a description of the fish habitat at each of the sample sites. Table 1 provides a summary of habitat conditions at each stream crossing and the standardized field data collection cards are provided in Appendix A.

3.1.1 Proposed Ridge Route

R1

This site is located at the first crossing south of the junction with the Robert Campbell Highway. Here the channel is 1.5 m wide, is 0.42 m deep, has a 2% gradient and an estimated discharge of 0.1 m^3 /s at the time of the survey. There is substantial cover provided by overstream vegetation and the banks are occasionally unstable. Habitat is good for rearing juvenile fish (see Photo 1, Section 5 of this report).

R9

This site is located 1 km west of the northern junction of the proposed routes. The channel is 2.4 m wide, 0.21 m deep, has a gradient of 4% and had a discharge of 0.4 m^3/s . Cover is high and is composed of overstream vegetation with few cutbanks and boulders. Stream banks are steep and relatively stable. In the vicinity of the proposed crossing habitat is marginal for fish due to high flows and lack of refuge (see Photo 2, Section 5).

R10

R10 is located upstream of R9 on a small tributary. The channel is 1.5 m wide, 0.18 m deep, has a 25% gradient and had a discharge of approximately 0.2 m^3/s . Cover is moderate, composed mostly of overstream vegetation with little cutbank, boulder, deep pool and trace LOD (large organic debris). The channel is relatively stable and habitat is negligible do the shallow and steep nature of the creek (see Photo 3, Section 5).

R18

This site is located on Hawkowl Creek, 2 km southeast of the airstrip. Here the channel is 1.6 m wide, with a wetted width of 1 m, an average depth of 0.4 m, a gradient of 6%, and the approximate discharge was 0.1 m^3 /s. Cover is significant and is composed mostly of overstream vegetation with some LOD, deep pool, boulder and cutbank. Stream banks are moderately unstable and riparian vegetation is well
established and dense. Habitat is marginal for rearing fish, and instream refuge is lacking, as illustrated in Photo 4, Section 5 of this report. Previous studies found no fish in Hawkowl Creek.

R19

R19 is located on a tributary to Hawkowl Creek, 1.5 km southeast of the airstrip. This creek has a channel width of 2.3 m, a wetted width of 2.2 m, an average depth of 0.17 m, an 8% gradient and the discharge was approximately 0.2 m³/s. There is significant cover provided primarily by overstream vegetation with some deep pools, boulders and cutbanks. Stream banks are moderately unstable and riparian vegetation is well established and dense. Habitat is similar to that found in R18; marginal for rearing fish, and instream refuge is lacking (see Photo 5, Section 5). Previous studies found no fish in Hawkowl Creek.

3.1.2 Proposed Money Creek Route

M1

Site M1 is the most northerly crossing along the Money Creek route and crosses a tributary to Money Creek. Recent and extensive beaver activity in the area has altered the hydrology in this area and the presence of several large beaver dams necessitates dividing the area into two sections: M1 upstream (U/S) and M1 downstream (D/S) (Figure 2).

Upstream

At the upper extent of this reach is a 3.5 m high beaver dam, as identified on Figure 2 (Photos 6 and 7, Section 5). In the reach below the dam, the channel is 4.9 m wide with a wetted width of 3.6 m, an average depth of 0.33 m, a gradient of 3% and an approximate discharge of 0.9 m^3 /s. Cover is high, 45%, and composed mostly of LOD and deep pools with some overstream vegetation, cutbanks and few boulders. Riparian vegetation is well established and fish habitat is varied and suitable for various life stages.

Downstream

This site is on a meandering channel located downstream of a 2 m high beaver dam. It is 3.4 m wide, has a wetted width of 3.3 m, is 0.42 m deep, has a gradient of 3% and the discharge was estimated to be 0.9 m^3 /s. Stream banks are fairly unstable and as such, cutbanks, along with deep pools, some LOD and overstream vegetation and trace boulders provide good fish habitat (see Photo 8, Section 5).

М3

M3 is located 1 km south of M1. The channel is 3.2 m wide with a wetted width of 2.7 m, a gradient of 5% and had an approximate discharge of 0.2 m^3/s . Stream banks are relatively stable and cover is

moderate, provided mostly by cutbanks. Habitat is varied and sufficient for rearing and resident fish (see Photo 10, Section 5).

M16

This crossing is located approximately midway along the proposed Money Creek route, where the road turns northwest towards the existing airstrip. Here the channel is 2.5 m wide, with a wetted width of 2.2 m, a depth of 0.21 m, a gradient of 8% and had discharge of approximately $0.3 \text{ m}^3/\text{s}$. Stream banks are relatively stable and habitat is moderate wherein cover is provided primarily by overstream vegetation (see Photo 11, Section 5).

M17

M17 is located on Pup Creek, south of the airstrip. Here, the channel is 1.12 m wide, 0.18 m deep, has a gradient of 3% and had a discharge of 0.1 m^3 /s. Habitat is moderate and cover is provided mostly by overstream vegetation. Habitat quality diminishes in the upper extent of the creek as the channel narrows and is overgrown with dense willow. Accordingly, instream refuge for fish is lacking as water levels decrease (see Photo 12, Section 5).

M18

This site is located on lower Hawkowl Creek and is the last crossing encountered along the Money Creek route before arriving at the airstrip. The channel is 2.6 m wide, 0.2 m deep, has a gradient of 4% and had a discharge of approximately 1.0 m^3 /s. Stream banks are moderately stable and riparian vegetation is well established. There is significant cover providing varied, good fish habitat (see Photo 13, Section 5).

3.1.3 Aerial Survey

Creeks not surveyed on the ground were investigated from the air to determine if flowing water was present in the approximate locations of the proposed crossings. An established channel and flowing water was observed at: R2, R11, R14, R15, R16, R17, M4, M6, M7, M12 and M14. Channels were observed but appeared dry at R12 and R13, while the crossing at M5 appeared to be in the vicinity of a boggy area with an intermittent channel. No channels were observed at the following locations: R3, R4, R5, R6, R7, R8, M8, M9, M10, M11, M13 and M15. In addition, M2 was observed both on the ground and from the air to have flowing water, but was not surveyed due to time constraints (Photo 9, Section 5).

Site	Channel	Wetted	Average	Discharge	Gradient	Substrate	Morphology	Temperature	Conductivity	pН	Riparian Vegetation
	Width	Width	Depth	(m ³ /s)	(%)	(% Composition /	(% Composition	(°C)	(µS/cm)		
	(m)	(m)	(m)			Substrate) ¹	/ Substrate) ²				
R1	1.5	1.5	0.42	0.1	2	50S15C15Si10B10G	70 R 15 Ri 15 P	2	370	8.4	Willow, spruce grass, moss
R2	Aerial surve	Aerial survey: flowing channel									
R3	Aerial surve	Aerial survey: no visible channel									
R4	Aerial surve	Aerial survey: no visible channel									
R5	Aerial surve	Aerial survey: no visible channel									
R6	Aerial surve	ey: no visible	channel								
R7	Aerial surve	ey: no visible	channel								
R8	Aerial surve	ey: no visible	channel								
R9	2.4	2.4	0.21	0.4	4	45B30C15G10S	60 R 40 Ri	1.9	210	8.5	Willow, spruce, grass, moss,
											birch, fireweed, Labrador tea,
											kinnikinnick
R10	1.5	1.50	0.18	0.2	25	80 B 20 C	40 Ra 30 Ri 30 R	1	170	8.3	Spruce, willow huckleberry,
											grass and moss
R11	Aerial survey: flowing channel										
R12	Aerial surve	ey: dry chann	el								
R13	Aerial surve	ey: dry chann	el								
R14	Aerial surve	ey: flowing c	hannel								
R15	Aerial surve	ey: flowing c	hannel								
R16	Aerial surve	ey: flowing c	hannel								
R17	Aerial surve	ey: flowing c	hannel								
R18	1.6	1.0	0.4	0.1	6	45 B 40 C 15 G	50 Ri 30 R 20 P	1.5	128	8.4	Willow, juvenile fir, grass
R19	2.3	2.2	0.17	0.2	8	60 B 30 C 10 G	60 Ri 25 R 15 P	1.8	120	8.4	Willow, juvenile fir, cinqfoil
M1 U/S	4.9	3.6	0.33	0.9	3	50C25G15S10B	60 R 25 Ri 25 P	2	180	8.3	Willow, spruce and grass
M1 D/S	3.4	3.3	0.42	0.9	3	45C25G20B10S	40 R 35 Ri 25 P	1.1	210	8.3	Spruce, willow, fir, Labrador
											tea, huckleberry, crowberry
											and grass

 ¹ B: Boulder G: Gravel C: Cobble S: Sand Si: Silt I.E. 80B20C = 80% boulder and 20% cobble.
² Ri: Riffle R: Run Ra: Rapids P: Pool S: Step.

Site	Channel	Wetted	Average	Discharge	Gradient	Substrate	Morphology	Temperature	Conductivity	pН	Riparian Vegetation
	Width	Width	Depth	(m ³ /s)	(%)	(% Composition /	(% Composition	(°C)	(µS/cm)		
	(m)	(m)	(m)			Substrate) ¹	/ Substrate) ²				
M2	M2 Aerial survey: flowing channel										
M3	3.2	2.65	0.19	0.2	5	45C30B20G5S	60 Ri 30 R 10 P	0.9	110	8.5	Willow, birch, fir, spruce, fireweed
M4	Aerial surve	ey: flowing c	hannel								
M5	Aerial surve	ey: intermitte	nt channel								
M6	Aerial surve	ey: flowing c	hannel								
M7	Aerial survey: flowing channel										
M8	Aerial survey: no visible channel										
M9	Aerial surve	ey: no visible	channel								
M10	Aerial surve	ey: no visible	channel								
M11	Aerial surve	ey: no visible	channel								
M12	Aerial surve	ey: flowing c	hannel								
M13	Aerial surve	ey: no visible	channel								
M14	Aerial surve	ey: flowing c	hannel								
M15	Aerial surve	ey: no visible	channel								
M16	2.5	2.2	0.21	0.3	8	70B20C5G5S	30 S 30 P 25 Ri 15 R	2	90	8.3	Willow, spruce, fireweed,
											cinqfoil, cranberry,
											kinnikinnick, birch and grass
M17	1.1	1.12	0.18	0.1	3	60C30B10G	65 Ri 30 R 5 P	2	120	8.4	Willow, fir, huckleberry,
											equisetum, cinqfoil, birch
M18	2.6	2.6	0.21	1.0	4	40C35B25G	60 Ri 25 R 15 P	2	110	8.4	Willow, grass, moss

¹ **B**: Boulder **G**: Gravel **C**: Cobble **S**: Sand **Si**: Silt I.E. 80B20C = 80% boulder and 20% cobble.

² **Ri**: Riffle **R**: Run **Ra**: Rapids **P**: Pool **S**: Step.

3.2 Fish Sampling

Previous studies found that Go Creek supports bull trout (*Salvelinus confluentes*), Arctic grayling (*Thymallus arcticus*) and slimy sculpin (*Cottus cognatus*) (Westmin Resources Ltd., 1996). Previous studies also found no fish in Hawkowl Creek or in the reaches of Go Creek upstream of the confluence with Hawkowl Creek (Gartner Lee Ltd. 2001). Money Creek has been found to support bull trout, slimy sculpin, bull trout, Arctic grayling and northern pike (*Esox lucius*) (Westmin Resources Ltd. 1996; White Mountain Environmental Consulting 1997).

Sampling during the fall 2004 field program found fish to be present in three locations: R1, M1 and M3, where M1 and M3 are located along the Money Creek Route and R1 is located on the section common to both routes, near the Robert Campbell Highway. The most numerous fish caught was Arctic grayling young of the year from site R1 (see Photo 13, Section 5). No fish were captured from sites sampled along the Ridge Route. Fishing effort and results are summarized in Table 2, while fish sampling results are summarized in Table 3.

Location	Species	Date	Sample Method	Effort (soak time)
M1 U/S	1 BT^3	Oct 4, 2004	EF	972 sec.
M1 U/S	-	Oct 4, 2004	MT	4 traps - overnight
M1 D/S	-	Oct 3, 2004	EF	1,267 sec.
M1 D/S	-	Oct 3, 2004	MT	6 traps - overnight
M3	1 BT	Oct 2, 2004	EF	820 sec.
M3	-	Oct 2, 2004	MT	4 traps - overnight
M16	-	Oct 5, 2004	EF	540 sec.
M17	-	Oct 1, 2004	EF	487 sec.
M17	-	Oct 1, 2004	MT	4 traps - overnight
M18	-	Oct 1, 2004	EF	1,365 sec
M18	-	Oct 1, 2004	MT	4 traps - overnight
R1	$6 \mathrm{AG}^4$	Oct 5, 2004	EF	658 sec.
R9	-	Oct 3, 2004	EF	619 sec.
R9	-	Oct 3, 2004	MT	4 traps - overnight
R10	-	Oct 3, 2004	EF	239 sec.
R10	-	Oct 3, 2004	MT	4 traps - overnight
R18	-	Oct 1, 2004	EF	533 sec.
R18	-	Oct 1, 2004	MT	4 traps - overnight
R19	-	Oct 1, 2004	EF	788 sec.
R19	-	Oct 1, 2004	MT	4 traps - overnight

Table 2.2004 Fish Collection Summary, Wolverine Property

³ Bull trout (*Salvelinus confluentes*).

⁴ Arctic grayling (*Thymallus arcticus*)

In addition to the records provided in Table 2, one unidentified salmonid was observed at M1 Upstream.

Location	Species	Date	Fork Length (mm)	Weight (g)
Location	species	Date	FOR Length (initi)	Weight (g)
M1 U/S	BT	Oct 4, 2004	165	36
M3	BT	Oct 2, 2004	160	34.9
R1	AG	Oct 5, 2004	45	0.5
R1	AG	Oct 5, 2004	46	0.7
R1	AG	Oct 5, 2004	57	1.3
R1	AG	Oct 5, 2004	56	1.4
R1	AG	Oct 5, 2004	51	1.2
R1	AG	Oct 5, 2004	64	2.1

Table 3.2004 Fall Fish Sampling Results, Wolverine Property

4. Discussion

Fish habitat conditions at the proposed Money Creek Route road crossings are generally good, with varied instream features providing suitable habitat for most life stages of fish species expected to inhabit the area. Money Creek is known to support fish and during the October 2004 sampling effort bull trout were collected within the Money Creek watershed (see Photo 14, Section 5). No significant barriers have been noted on Money Creek so fish from that system can potentially be present in all the tributaries to Money Creek. However, many of the first order tributaries flow over a steep section between the proposed alignment and Money Creek, which could impede fish movement within the Money Creek system. Previous studies have reported fish from sites further upstream suggesting fish can be found throughout the watershed in the larger tributary systems such as Go Creek.

The 2004 field program identified significant and recent beaver activity around the area of the M1 crossing. The beaver activity has altered the hydrology of the area and the available base mapping is no longer representative of field conditions. The preliminary road alignment developed on the basis of the base mapping would cross the stream in several locations. If this route is selected, existing field conditions will need to be considered and road alignment adjusted accordingly to minimize stream crossings.

Based on field observations at four locations along the proposed Ridge Route, these higher elevation streams provide marginal fish habitat. Cover is provided primarily by overstream vegetation and instream refuge for fish is limited. Further, fish presence in streams investigated from the air is unlikely due to the presence of high gradient sections (16–23%) that may impede fish migration. However, further ground-based field studies will be required to confirm fish presence in these streams. No fish were collected or

observed at any of the stream crossings along this route during fall sampling. However, the third order stream crossing at R9 could support fish, based on its size and proximity to fish-bearing waters downstream and should be sampled further.

As the study area is located within the Liard River basin that drains south into northern BC, fish windows for the study area are based on those established for the Liard drainage (BC Zone 8) in the *Land Development Guidelines for the Protection of Aquatic Habitat* (Fisheries and Oceans Canada 1993). Accordingly, the instream construction window for waters supporting bull trout is June 1 to August 31, for Arctic grayling, June 15 to March 31, and for northern pike it is July 1 to April 30. As such, in order to ensure that impacts to all species potentially encountered are minimized, the most suitable working window is July 1 to August 31.

The information collected for this report represents fish and fish habitat conditions in the fall of the year. Water temperatures were low, between 0.9 and 2° C, suggesting fish would be less active and harder to catch, and in the case of Arctic grayling, the fish may have moved to different areas to overwinter. Based on observed water levels in the creeks the discharge was moderate to high, up to 1 m^3 /sec. A second field program is recommended to collect fish information during warmer conditions when fish may be utilizing different habitats. The information used from this study can be used to focus the sampling on sensitive sites and those where fish information is uncertain (i.e., no fish caught in October 2004, but could be present under different conditions).

5. References

- Department of Fisheries and Oceans. 1993. Land Development Guidelines for the Protection of Aquatic Habitat.
- Department of Fisheries and Oceans. 1997. Stream Survey Field Guide. Fish Habitat Inventory and Information Program. Vancouver, BC.

Photos

Photo 1. R1, section of proposed route common to both routes

Photo 2. R9, proposed Ridge Route

Photo 3. R10, proposed Ridge Route

Photo 4. R18, proposed Ridge Route

Photo 5. R19, proposed Ridge Route

Photo 6. Beaver dam at M1 Upstream, proposed Money Creek Route

Photo 7. Beaver dam at M1 Upstream, proposed Money Creek Route

Photo 8. Beaver dam at M1 Downstream, proposed Money Creek Route

Photo 9. M2, proposed Money Creek Route

Photo 10. M3, proposed Money Creek Route

Photo 11. M16, proposed Money Creek Route

Photo 12. M17, proposed Money Creek Route

Photo 13. M18, proposed Money Creek Route

Photo 14. Arctic grayling caught at R1

Photo 15. Bull trout caught at M3

Appendix 7.8-3 Metals Levels in Fish Tissue

Maxxam Job #: A531875 Client Project #: YUKON ZINC-1000261									
Maxxam ID		891243	891244	891107		892182	892190	892192	
Sampling Date		8/6/2005	8/3/2005	8/6/2005		8/3/2005	8/3/2005	8/3/2005	
COC Number		22989	22989	22989		22989	22989	22989	
		MONEY	MONEY CR	LOWER					
		CR D/S OF	U/S OF GO	GO @		LOWER	MONEY CR	MONEY CR	
	Units	GO CR	CR	MONEY CR	DL	GO-DRY	D/S-DRY	U/S-DRY	DL
Total Metals by ICPMS									
Total Aluminum (Al)	mg/kg	<10	<10	63	10	246	<100	<100	100
Total Antimony (Sb)	mg/kg	<0.01	<0.01	<0.01	0.01	<0.1	<0.1	<0.1	0.1
Total Arsenic (As)	mg/kg	< 0.02	<0.02	0.56	0.02	2.2	<0.2	<0.2	0.2
Total Barium (Ba)	mg/kg	2.21	3.17	4.15	0.01	16.2	9.9	12.4	0.1
Total Beryllium (Be)	mg/kg	<0.01	<0.01	0.02	0.01	<0.1	<0.1	<0.1	0.1
Total Bismuth (Bi)	mg/kg	<0.01	<0.01	<0.01	0.01	<0.1	<0.1	<0.1	0.1
Total Cadmium (Cd)	mg/kg	0.027	0.018	0.029	0.005	0.11	0.12	0.07	0.05
Total Calcium (Ca)	mg/kg	7420	7440	6000	10	23500	33300	29000	100
Total Chromium (Cr)	mg/kg	0.3	0.3	5.7	0.1	22.5	2	1	1
Total Cobalt (Co)	mg/kg	0.03	0.04	0.93	0.03	3.6	<0.3	<0.3	0.3
Total Copper (Cu)	mg/kg	0.38	0.26	0.72	0.05	2.8	1.7	1	0.5
Total Iron (Fe)	mg/kg	13	20	1270	10	4960	<100	<100	100
Total Lead (Pb)	mg/kg	<0.01	<0.01	0.09	0.01	0.3	<0.1	<0.1	0.1
Total Magnesium (Mg)	mg/kg	249	212	2280	10	8890	1110	827	100
Total Manganese (Mn)	mg/kg	5.67	6.06	17.2	0.02	67.3	25.4	23.7	0.2
Total Mercury (Hg)	mg/kg	0.019	0.022	0.02	0.005	0.08	0.08	0.09	0.05
Total Molybdenum (Mo)	mg/kg	0.01	<0.01	0.04	0.01	0.2	<0.1	<0.1	0.1
Total Nickel (Ni)	mg/kg	0.34	0.39	21.7	0.08	84.7	1.5	1.5	0.8
Total Phosphorus (P)	mg/kg	5390	5130	4130	1	16100	24100	20000	10
Total Potassium (K)	mg/kg	1290	1130	1020	10	3980	5790	4390	100
Total Selenium (Se)	mg/kg	0.7	0.34	0.51	0.05	2	3.1	1.3	0.5
Total Silver (Ag)	mg/kg	<0.005	<0.005	< 0.005	0.005	<0.05	<0.05	<0.05	0.05
Total Sodium (Na)	mg/kg	685	634	573	10	2240	3070	2470	100
Total Strontium (Sr)	mg/kg	4.33	5.52	3.94	0.01	15.4	19.4	21.5	0.1
Total Thallium (TI)	mg/kg	< 0.005	<0.005	<0.005	0.005	<0.05	<0.05	<0.05	0.05
Total Tin (Sn)	mg/kg	<0.01	<0.01	<0.01	0.01	<0.1	<0.1	<0.1	0.1
Total Titanium (Ti)	mg/kg	0.2	0.3	0.3	0.1	1	1	1	1
Total Vanadium (V)	mg/kg	<0.2	<0.2	0.4	0.2	<2	<2	<2	2
Total Zinc (Zn)	mg/kg	12.1	11.9	12.2	0.1	47.8	54.1	46.3	1
Total Zirconium (Zr)	mg/kg	< 0.05	< 0.05	< 0.05	0.05	<0.5	<0.5	<0.5	0.5

JACQUES WHITFORD LTD.

Appendix 7.8-4 2005 Fisheries Baseline Photos

Appendix 7.8-4 2005 Fisheries Baseline Photos

Photo 1: Light Creek 1 looking upstream on August 6, 2005.

Photo 2: Light Creek 1 looking upstream on August 6, 2005.

Photo 3: Light Creek 1 looking upstream on August 6, 2005.

Photo 4: Perched culvert at the Robert Campbell Highway on Light Creek 1, August 6, 2005.

Photo 5: Light Creek 2 looking upstream on August 4, 2005.

Photo 6: Light Creek 2 looking downstream on August 4, 2005.

Photo 7: Light Creek 3 looking upstream on August 4, 2005.

Photo 8: Light Creek 3 looking downstream on August 4, 2005.

Photo 9: Light Creek 4 looking upstream on August 7, 2005.

Photo 10: Light Creek 4 looking downstream on August 7, 2005.

Photo 11: Site 4 looking upstream on August 4, 2005.

Photo 12: Site 4 looking downstream on August 4, 2005.

Photo 13: Bunker Creek 1 looking upstream on August 5, 2005.

Photo14: Bunker Creek 1 looking upstream on August 5, 2005.

Photo 17: Bunker Creek 2 looking upstream on August 5, 2005.

Photo18: Bunker Creek 2 looking downstream on August 5, 2005.

Photo 19: Bunker Creek 3 looking upstream on August 5, 2005.

Photo20: Bunker Creek 3 looking downstream on August 5, 2005.

Photo 21: Aerial view of a beaver dam at Bunker Creek 3.

Photo 22: Bunker Creek 4 looking upstream on August 4, 2005.

Photo 23: Bunker Creek 4 looking downstream on August 4, 2005.

Photo 24: Aerial view of a beaver dam at Bunker Creek 4.

Photo 25: Bunker Creek 5 looking upstream on August 4, 2005.

Photo 26: Bunker Creek 5 looking downstream on August 4, 2005.

Photo 27: Aerial view of a beaver dam at Bunker Creek 5.

Photo28: Bunker Creek 6 looking upstream on August 5, 2005.

Photo 29: Bunker Creek 6 looking downstream on August 5, 2005.

Photo 30: Site 5 looking upstream on August 4, 2005.

Photo 31: Site 5 looking downstream on August 4, 2005.

Photo 32: Site 13 looking upstream on August 4, 2005.

Photo 33: Site 13 looking downstream on August 4, 2005.

Photo 34: Aerial view of Money Creek on August 3, 2005.

Photo 35: Aerial view of Money Creek on August 3, 2005.

Photo 36: W14 looking upstream on August 3, 2005.

Photo 37: W14 looking downstream on August 3, 2005.

Photo 38: W11 looking upstream on August 3, 2005.

Photo 39: W11 looking downstream on August 3, 2005.

Photo 40: W13 looking upstream on August 3, 2005.

Photo 41: W13 looking downstream on August 3, 2005.

Photo 42: W12 looking upstream on August 3, 2005.

Photo 43: W12 looking downstream on August 3, 2005.

Photo 44: Aerial view of lower Go Creek on August 3, 2005.

Photo 45: Aerial view of an impasse at Go Creek on August 3, 2005.

Photo 46: Beaver dam at lower Go Creek (not an impasse) on August 3, 2005.

Photo 47: Barrier at Go Creek 1 on August 3, 2005.

Photo 48: Bull trout at Go Creek 1 on August 3, 2005.

Photo 49: Go Creek 2 looking downstream on August 5, 2005.

Photo 50: Go Creek 3 looking upstream on August 6, 2005.

Photo 51: Go Creek 3 looking downstream on August 6, 2005.

Photo 52: Go Creek 3 cross section on August 6, 2005.

Photo 53: W16 looking upstream on August 6, 2005.

Photo 54: W16 looking downstream on August 6, 2005.

Photo 55: W15 looking upstream on August 6, 2005.

Photo 56: W15 looking downstream on August 6, 2005.

Photo 57: W22 looking upstream on August 6, 2005.

Photo 58: W22 looking downstream on August 6, 2005.

Photo 59: W23 looking upstream on August 6, 2005.

Photo 60: W23 looking downstream on August 6, 2005.

Photo 61: W24 looking upstream on August 6, 2005.

Photo 62: W24 looking downstream on August 6, 2005.

Photo 63: W9 looking upstream on August 3, 2005.

Photo 64: W9 looking downstream on August 3, 2005.

Photo 65: Site 14 looking upstream on August 7, 2005.

Photo 66: Site 14 looking downstream on August 7, 2005.

Photo 67: Wetland cross section at Site 14 on August 7, 2005.

