

Wolverine Project

GENERAL SITE PLAN

VERSION 2006-02

Prepared by: Yukon Zinc Corporation

November 2006

Table of Contents

1	Introduction	1
2	Preliminary Project Schedule	1
3	Site Layout and Mineral Claims	
4	Infrastructure Development Overview	
5	Transportation Infrastructure	
5.1	Airstrip	
5.2	Site Roads	
5.3	Access Road	
	5.3.1 Phase 1 Winter Access Road	
	5.3.2 Phase 2 All Weather Access Road	
	5.3.3 Access Road Design and Specifications	17
	5.3.4 Access Tie-In and Staging Areas	
	5.3.5 Borrow Sources	24
	5.3.6 Geochemical Evaluation	25
	5.3.7 Geochemical Testing Protocol	27
	5.3.8 Geotechnical Testing	28
	5.3.9 Phase 1 Road Closure Plan	29
6	Site Infrastructure Construction	33
6.1	Industrial Complex	33
	6.1.1 Mill Building and Ancillary Facilities	
	6.1.2 150 Person Camp	
	6.1.3 General Site Services	
	6.1.4 Explosive Storage	35
6.2	Mine Development	36
6.3	Tailings Facility Area	40
6.4	Borrow Areas	40
7	Mitigation Measures for Construction Activities	45
7.1	Sediment and Erosion Control Plan	45
7.2	Monitoring Plan	46
7.3	Wildlife Resource and Heritage Protection Plan	
	7.3.1 Wildlife Protection	47
	7.3.2 Heritage Resource Protection	52
8	Waste Management	53
8.1	Solid Waste	
0.1	8.1.1 Putrescible Wastes	
	8.1.2 Non-Putrescible Waste	
	8.1.3 Used Tires	
8.2	Special Waste	53
	8.2.1 Used Oil	
	8.2.2 Waste Oil Filters	
	8.2.3 Used Batteries	55
	8.2.4 Antifreeze	56

	8.2.5 Waste Solvents and Lubricants	56
	8.2.6 Contaminated Sites	56
	8.2.7 Medical Wastes	57
9	Monitoring and Surveillance	59
9.1	Groundwater Monitoring	
	9.1.1 Wolverine Creek Basin	
	9.1.2 Go Creek Basin	63
	9.1.3 Summary of Groundwater Monitoring	63
9.2	Surface Water Monitoring	
	9.2.1 Surface Water Hydrology	
	9.2.2 Surface Water Quality	
10	Spill Contingency Plan	73
10.1	Equipment	
10.2	Spill Response Training	
10.3	Spill Containment, Clean-up and Disposal	
	10.3.1 Containment	
	10.3.2 Recovery	77
	10.3.3 Disposal	
	10.3.4 Other Concerns	
10.4	Reporting	

List of Tables

Table 1	Claims List for Wolverine Project Infrastructure	3
Table 2	Wolverine Project Anticipated Road Usage February to September 2007	
Table 3	Adapted Transportation Association of Canada Single Lane Resource Road	
	Standards	19
Table 4	Controlling Stream Crossings along the Road Alignment	20
Table 5	Phase 1 and Phase 2 Methods of Clearing and Construction	22
Table 6	Phase 2 Designated Borrow Sources along the Road Alignment	24
Table 7	Summary of Geochemical Sampling along the Geotechnical Trail for Phase 1	
	Access Road Construction	26
Table 8	Closure and Reclamation Cost Breakdown for Phase 1 Winter Access Road	31
Table 9	Pre-Production Development Schedule	37
Table 10	Description of Sediment and Erosion Techniques	
Table 11	Mitigation Practices for Issues of Problem Wildlife	49
Table 12	Mitigation Practices for Issues of Wildlife and Vehicles	50
Table 13	Mitigation Practices for Issues of Wildlife Habitat and Harassment	50
Table 14	Mitigation Practices for Issues of Wildlife Health	51
Table 15	Wolverine Creek Basin Groundwater Monitoring Wells	61
Table 16	Groundwater Quality Monitoring Parameters and Detection Limits	62
Table 17	Go Creek Basin Groundwater Monitoring Wells	63
Table 18	Summary of Groundwater Monitoring Program for Wolverine Creek and Go	
	Creek Basins	
Table 19	Surface Water Quality Monitoring Parameters and Detection Limits	69
Table 20	Summary of Surface Water Monitoring Program for Wolverine Project	
Table 21	Roles and Responsibilities for Spill Response	74
Table 22	Spill Containment Option for Land-based Spills	75
Table 23	Action Plan for Fuels, Oils and Antifreeze	

List of Figures

Eigung 1	Dualiminanty Cahadula for Walyanina Dualact	2
Figure 1	Preliminary Schedule for Wolverine Project	
Figure 2	Overall Site Layout with Mineral Claims	
Figure 3	Overall Site Layout for Construction Activities	
Figure 4	Industrial Complex GA with Water Management Structures	
Figure 5	Industrial Complex – Sections	
Figure 6	Industrial Complex-GA Mill, Truckshop, Lab, Admin and Camp Plan	
Figure 7	Wolverine Mine Pre-production Development Plan	
Figure 8	Wolverine Mine Pre-production Longitudinal Projection Looking Northeast	
Figure 9	Tailings Facility General Arrangement	
Figure 10	Tailings Facility Diversion Ditches and Spillways: Plan and Typical Section	42
Figure 11	Tailings Facility Diversion Ditches A and B: Profiles and Sections	43
Figure 12	Groundwater Monitoring Well Locations	60
Figure 13	Locations of Continuous Hydrology Monitoring Stations in the Immediate	
	Vicinity of Wolverine Project Operations and Regional Stations	66
Figure 14	Detail of Station Locations of Continuous Hydrology Monitoring Stations in t	
	Immediate Vicinity of Wolverine Project	
Figure 15	Locations of Surface Water Quality Monitoring Stations for the Wolverine Pro	
8	Operations and Along the Road Route	-
Figure 16	Detail of Surface Water Quality Monitoring Stations in the Immediate Vicinity	
118010 10	Wolverine Project Operations and Along the Road Route	•
Figure 17	Spill Reporting and Response Procedure	
Figure 18	Wolverine Project Emergency Contact Numbers	
Figure 19	Wolverine Project Spill Reporting Form	
riguic 17	Wolverine Project Spin Reporting Point	01
	List of Pictures	
Picture 1	The industrial complex location will encompass the existing working area, and will extend ~200 m to the southwest (left)	
	List of Appendices	
Appendix A	Wolverine Access Road, Figures – km 0 to km 23.9, Yukon Engineering Serv October 2006	ices,
Appendix B	Geotechnical Evaluation, Wolverine Access Road, EBA Engineering Consult Ltd, August 2006	tants
Appendix C	Draft Geotechnical Evaluation, Granular and Borrow Investigation, Wolve Access Road, EBA Engineering Consultants Ltd, October 2006	erine
Appendix D	Borrow Site ABA Testing Results and Project Granular Material Requirement	ıts

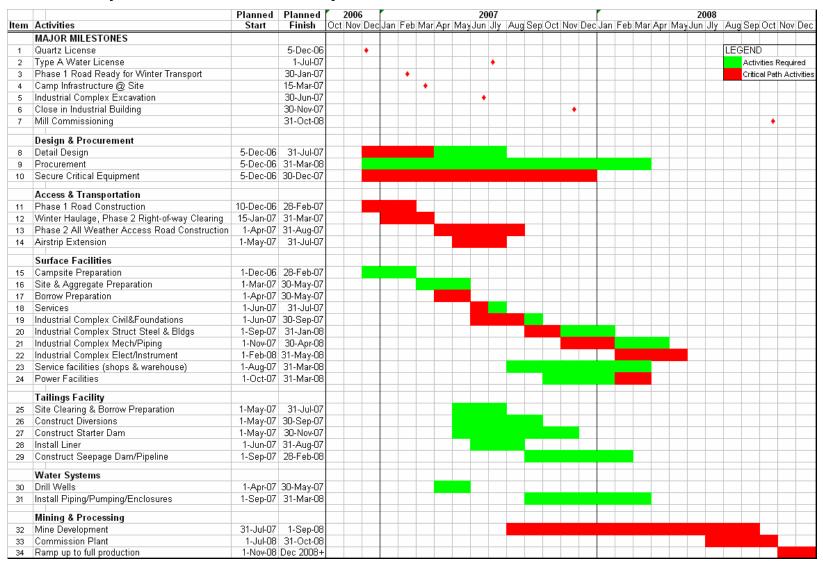
1 Introduction

This report, prepared by Yukon Zinc Corporation (YZC), describes the general site plan to deliver the Wolverine Project over a period extending from December 2006 to December 2008. This report replaces the *General Site Plan* submitted in June 2006 (Version 2006-01) by YZC to Yukon Government Energy, Mines and Resources.

Section 2 of this report provides the preliminary project schedule for construction and operation activities. Section 3 outlines the overall project layout and associated mineral claims for the project area (industrial complex area to the tailings facility) and the access road. Sections 4 through 7 detail the activities to be conducted after the effective date of the Quartz Mining License and prior to the effective date of the Type A Water License (A License).

The main construction targets include the access road, permanent camp, industrial complex infrastructure, pre-production underground development, as well as general site preparation activities in the tailings facility area.

2 Preliminary Project Schedule


The preliminary schedule for construction and operation activities at the Wolverine Project, including required and critical path activities and milestones, is provided in Figure 1. YZC recognizes that minimal earthwork and concrete work will occur between November 15 and April 1, and have scheduled tasks accordingly. The schedule is subject to a production decision, regulatory approvals, and project financing and is based upon anticipated receipt of the Quartz License in December 2006 and the A License in July 2007.

Dates for the nine key milestones, including receipt of the Quartz License and A License, construction of the Phase 1 access road, transportation of camp infrastructure to site, industrial complex excavation and building close in, pre-production development and mill commissioning are provided in the schedule shown in Figure 1.

Where practical, prefabrication off site will be completed to reduce on site labour and construction time. The development of the surface infrastructure and the underground is estimated to take approximately one and one half years, resulting in commissioning of the plant in July 2008.

General Site Plan 2006-02 Wolverine Project

Figure 1 Preliminary Schedule for Wolverine Project

November 2006 Yukon Zinc Corporation

3 Site Layout and Mineral Claims

The activities planned and the infrastructure to be constructed or in use as described herein are located on claims owned by YZC, with the exception of the Money Claims, which are subject to an Option Agreement with YGC Resources Ltd.

Table 1 provides a summary of the claims for the existing site facilities, site roads, the airstrip, the access road, the exploration and new camp locations, organic stockpiles, laydown and borrow locations, the tailings facility and associated infrastructure, and the ore body.

Table 1 Claims List for Wolverine Project Infrastructure

<u> </u>			
Grant No.	Claim Name	Claim No.	Wolverine Project Infrastructure
YB87703	CUP	9	access road, borrow site
YB87704	CUP	10	access road, borrow site
YB87705	CUP	11	access road, borrow site
YB87706	CUP	12	access road, borrow site
YB87707	CUP	13	access road, borrow site
YB87708	CUP	14	access road, borrow site
YB87709	CUP	15	access road, borrow site
YB87710	CUP	16	access road, borrow site
YB87711	CUP	17	access road, borrow site
YB87712	CUP	18	access road, borrow site
YB87713	CUP	19	access road, borrow site
YB45954	FOOT	1	airstrip, tailings pipeline, water supply well, diversion structure, site roads, landfill, incinerator
YB45955	FOOT	2	explosive and cap magazine sites, site roads
YB45956	FOOT	3	tailings pipeline, site roads
YB45957	FOOT	4	explosive and cap magazine sites, site roads
YB45958	FOOT	5	industrial complex, batch plant, tailings pipeline, waste rock pad, camp, site roads, organic stockpile
YB45959	FOOT	6	industrial complex, waste rock pad, camp, site roads
YB45960	FOOT	7	industrial complex, tailings pipeline, camp, site roads
YB45961	FOOT	8	industrial complex, camp, site roads
YB45962	FOOT	9	industrial complex, ore body, site roads
YB45963	FOOT	10	industrial complex, ore body, site roads, organic stockpile
YB51608	FOOT	11	industrial complex, site roads, organic stockpile
YB71274	FOOT	11A	industrial complex, site roads, organic stockpile
YB51609	FOOT	12	industrial complex, ore body, site roads
YB71275	FOOT	12A	industrial complex, ore body, site roads
YB45966	FOOT	13	site roads

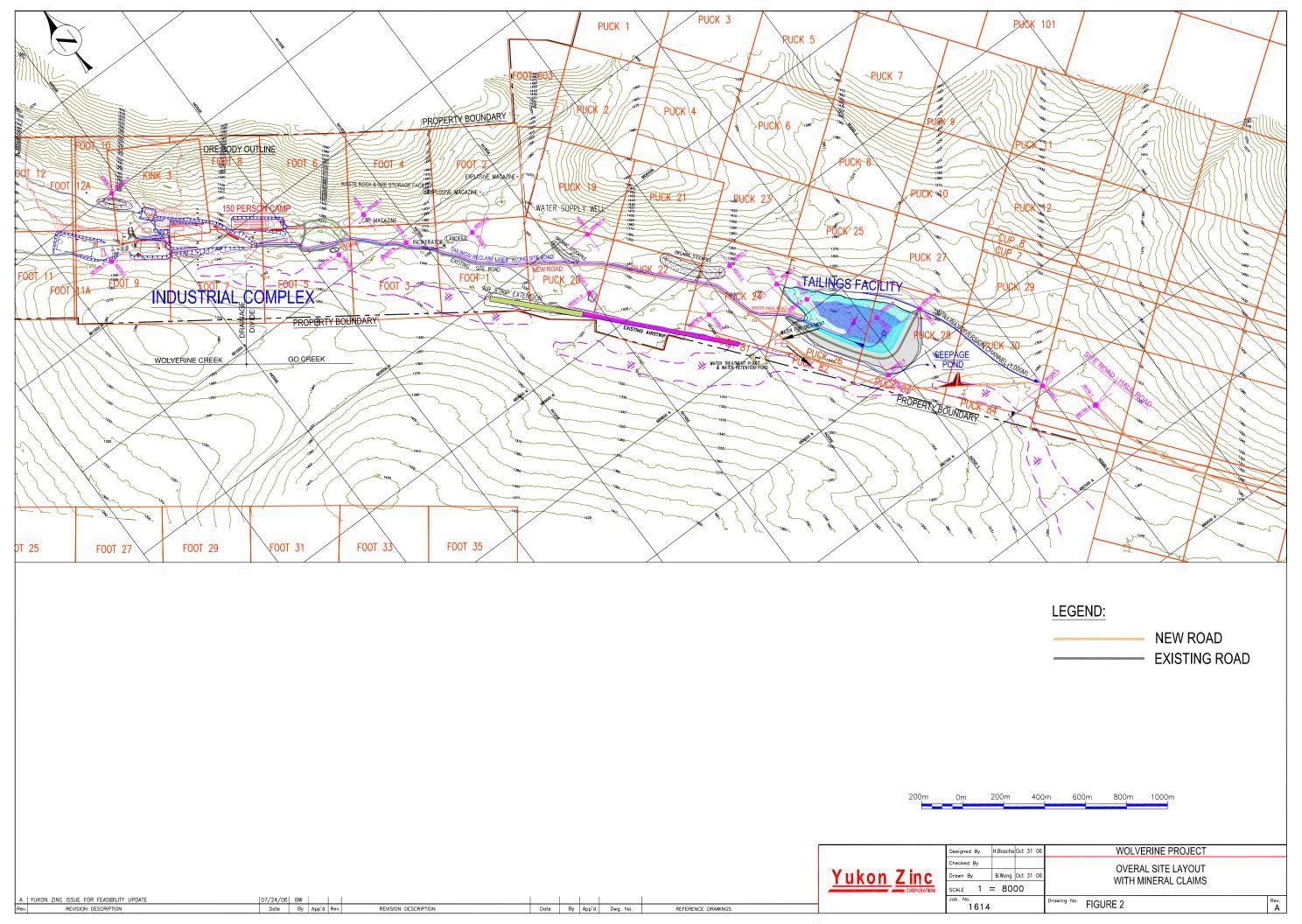
Table 1 Claims List for Wolverine Project Infrastructure (cont'd)

Grant No.	Claim Name	Claim No.	Wolverine Project Infrastructure
YB45967	FOOT	14	site roads
YB45968	FOOT	15	site roads
YB45969	FOOT	16	site roads
YB45971	FOOT	18	site roads
YB45973	FOOT	20	site roads
YB59982	FOOT	180	exploration camp, site roads
YB59983	FOOT	181	exploration camp, site roads
YB59984	FOOT	182	exploration camp, site roads
YC25006	GOALIE	29	access road
YC25007	GOALIE	30	access road, borrow site
YC25008	GOALIE	31	access road, borrow site
YC25009	GOALIE	32	access road, borrow site
YC25010	GOALIE	33	access road, borrow site
YC25011	GOALIE	34	access road
YC25012	GOALIE	35	access road
YC25013	GOALIE	36	access road
YC25014	GOALIE	37	access road
YC25015	GOALIE	38	access road, borrow site
YC25016	GOALIE	39	access road, borrow site
YC25017	GOALIE	40	access road, borrow site
YC25018	GOALIE	41	access road, borrow site
YC25019	GOALIE	42	access road, borrow site
YC25020	GOALIE	43	access road, borrow site
YC25021	GOALIE	44	access road
YC25022	GOALIE	45	access road
YC25023	GOALIE	46	access road
YC25024	GOALIE	47	access road
YC25025	GOALIE	48	access road
YC25026	GOALIE	49	access road
YC25027	GOALIE	50	access road
YC25028	GOALIE	51	access road
YC25029	GOALIE	52	access road, borrow site
YC25030	GOALIE	53	access road
YC25031	GOALIE	54	borrow site
YC25032	GOALIE	55	borrow site
YC25037	GOALIE	60	access road, borrow site
YC25039	GOALIE	62	access road, borrow site
YC25040	GOALIE	63	access road
YC25041	GOALIE	64	borrow site
YC25042	GOALIE	65	access road
YC25058	GOALIE	81	access road
YC25060	GOALIE	83	access road
YC25062	GOALIE	85	access road

Table 1 Claims List for Wolverine Project Infrastructure (cont'd)

Grant No.	Claim Name	Claim No.	Wolverine Project Infrastructure
YC25064	GOALIE	87	access road, borrow site
YC25065	GOALIE	88	access road
YC25066	GOALIE	89	access road
YC25067	GOALIE	90	access road, borrow site
YC25068	GOALIE	91	access road, borrow site
YC25069	GOALIE	92	access road, borrow site
YC25070	GOALIE	93	access road, borrow site
YC25071	GOALIE	94	access road
YC25072	GOALIE	95	access road
YC25073	GOALIE	96	access road
YC25074	GOALIE	97	access road
YC25075	GOALIE	98	access road, borrow site
YC25076	GOALIE	99	access road, borrow site
YC25077	GOALIE	100	access road, borrow site
YC25078	GOALIE	101	access road, borrow site
YC25079	GOALIE	102	access road
YC25080	GOALIE	103	access road
YC25182	GOALIE	205	access road
YC25183	GOALIE	206	access road, borrow site
YC25299	GOALIE	213	access road, borrow site
YC25301	GOALIE	215	access road
YC25303	GOALIE	217	access road
YC25305	GOALIE	219	access road
YC25306	GOALIE	220	access road
YC25308	GOALIE	222	access road, borrow site
YC25310	GOALIE	224	access road, borrow site
YC25312	GOALIE	226	access road, borrow site
YC25316	GOALIE	230	access road
YC25317	GOALIE	231	access road
YC25318	GOALIE	232	access road
YC25319	GOALIE	233	access road
YC25325	GOALIE	239	access road
YC25326	GOALIE	240	access road
YC25327	GOALIE	241	access road
YC25328	GOALIE	242	access road
YC25343	GOALIE	257	access road, borrow site
YC25344	GOALIE	258	access road
YC25345	GOALIE	259	borrow site
YC25346	GOALIE	260	access road, borrow site
YC25347	GOALIE	261	borrow site
YC25348	GOALIE	262	borrow site
YC25349	GOALIE	263	borrow site
YC25350	GOALIE	264	borrow site

Yukon Zinc Corporation November 2006


Table 1 Claims List for Wolverine Project Infrastructure (cont'd)

Grant No.	Claim Name	Claim No.	Wolverine Project Infrastructure	
YC29140	GOALIE	289	access road, borrow site	
YC29141	GOALIE	290	access road, borrow site	
YC29142	GOALIE	291	access road, borrow site	
YC29143	GOALIE	292	access road, borrow site	
YC29439	GOALIE	305	access road	
YC29440	GOALIE	306	access road	
YA69009	KINK	3	industrial complex, ore body, pipelines, organic stockpile	
YB16726	MONEY	1	access road	
YB16727	MONEY	2	access road	
YB16731	MONEY	6	borrow site	
YB16736	MONEY	11	access road	
YB16737	MONEY	12	access road, borrow site	
YB16738	MONEY	13	access road, borrow site	
YB16739	MONEY	14	access road, borrow site	
YB16740	MONEY	15	borrow site	
YB16741	MONEY	16	borrow site	
YB51934	MONEY	29	access road	
YB51935	MONEY	30	access road	
YB55997	PUCK	19	diversion ditch	
YB55998	PUCK	20	airstrip, tailings pipeline, water supply well, diversion structure, site roads	
YB55999	PUCK	21	organic stockpile, diversion ditch	
YB56000	PUCK	22	airstrip, tailings pipeline, site roads, diversion ditch, organic stockpile	
YB56002	PUCK	24	airstrip, tailings pipeline, site roads, organic stockpile	
YB56003	PUCK	25	diversion ditch	
YB56004	PUCK	26	tailings facility, site roads, diversion ditch, water treatment plant	
YB56005	PUCK	27	diversion ditch	
YB56006	PUCK	28	tailings facility, site roads, access road, borrow site, diversion ditch	
YB56008	PUCK	30	tailings facility, site roads, access road, borrow site	
YB56010	PUCK	32	access road, borrow site	
YB56012	PUCK	34	access road	
YB56014	PUCK	36	access road	
YB56019	PUCK	41	access road	
YB56021	PUCK	43	access road	
YB56023	PUCK	45	access road	
YB56025	PUCK	47	access road	
YB56037	PUCK	59	access road	
YB56039	PUCK	61	access road	
YB56040	PUCK	62	access road	
YB56045	PUCK	67	access road	
YB56046	PUCK	68	access road	
YB56047	PUCK	69	access road	
YB56048	PUCK	70	access road	
YB56049	PUCK	71	access road	

Table 1 Claims List for Wolverine Project Infrastructure (cont'd)

Grant No.	Claim Name	Claim No.	Wolverine Project Infrastructure	
YC31888	PUCK	81	airstrip	
			tailings facility, site roads, access road, borrow site, water treatment	
YC31889	PUCK	82	plant	
YC31890	PUCK	83	tailings facility, site roads, access road, borrow site	
YC31891	PUCK	84	tailings facility	

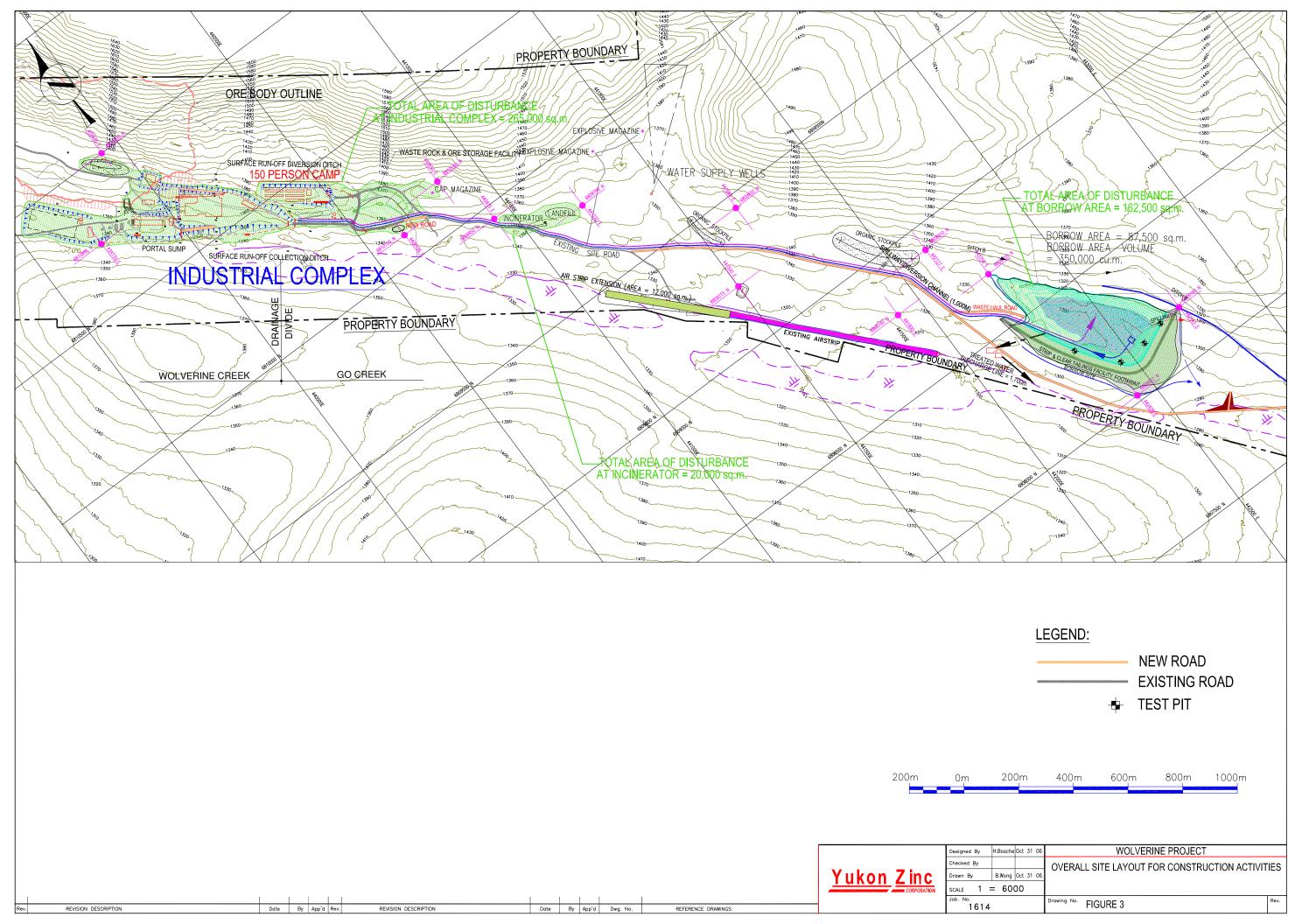
Figure 2 and Appendix A provide the claim boundaries for the general site layout for the main project area and for the mine access road, respectively.

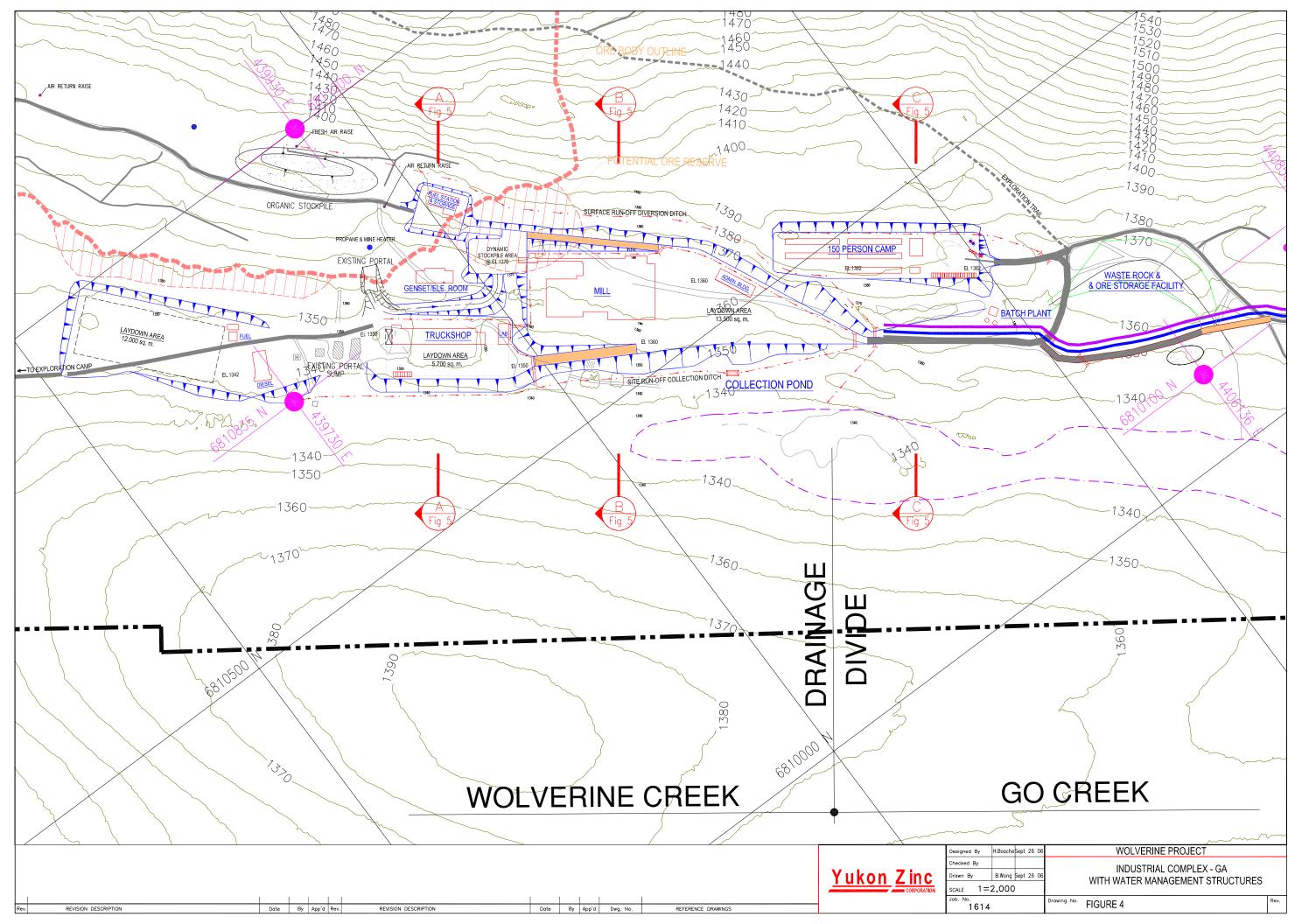
4 Infrastructure Development Overview

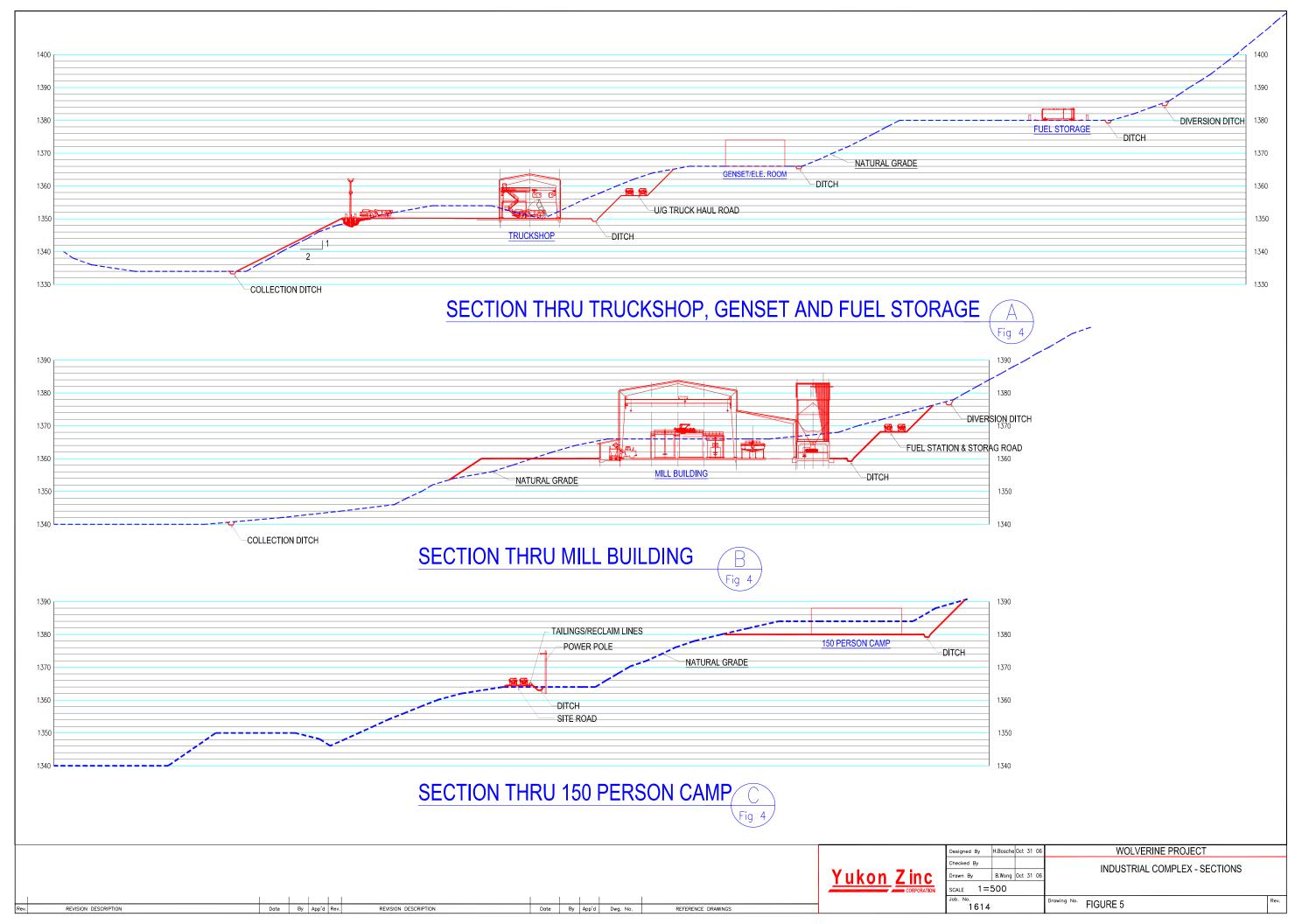
Site development activities focus on construction of the mine access road, transportation of construction equipment and materials over the winter period, pre-production underground development as well as the following construction activities:

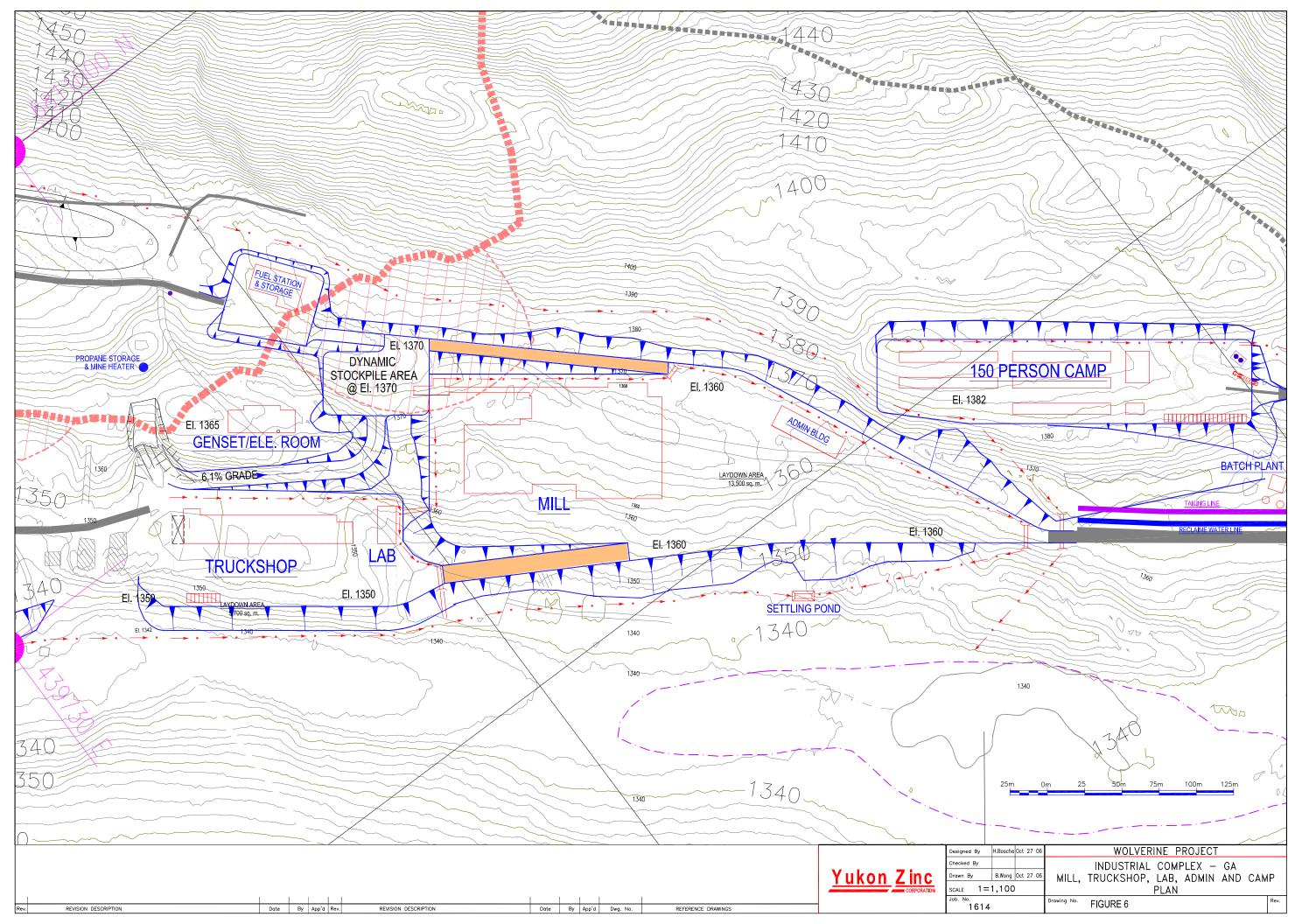
- clear, strip and bulk excavate the industrial complex and tailings facility areas
- establish the permanent camp and potable water source
- establish the concrete batch plant
- pour building foundations at the industrial complex, erect buildings and install/build internal workings

Figure 3 provides the site development areas, including the industrial complex, camp, landfill and incinerator area, airstrip extension, surface runoff diversion and collection ditches, water supply wells, borrow areas and tailings facility area. Figure 4 provides the general arrangement for the industrial complex and the location of laydown areas, buildings, stockpiles, fuel station and fuel and diesel storage, water management structures and the batch plant. Coordinates showing the extent of the development area are also provided.


Figure 5 provides cross sections through three areas of the industrial complex shown on Figure 4, including:


- Section A through laydown area, truck shop, genset and fuel storage areas
- Section B through mill building and fuel station and storage road
- Section C through site road and camp


The general layouts of the mill, truckshop, assay lab, administration and camp buildings are provided in Figure 6.


Construction activities will initially be supported by the existing camp infrastructure on Wolverine Lake, as well as the existing site roads and the airstrip. Beyond routine maintenance activities, no additional works are required for the camp and road infrastructure. Other surface works planned include activities at the portal laydown areas that support the current underground activities, including adit dewatering and subsequent water treatment, mine ramp rehabilitation, and pre-production development.

As outlined in Figure 1, scheduled tasks include design and procurement activities (Items 8 to 10), access road and airstrip extension activities (Items 11 to 14), surface facility site preparation and construction activities (Items 15 to 24), tailings facility site preparation activities (Items 25 and 26), as well as the installation of water wells and pipelines (Items 30 and 31) and mine development (Item 32). Details are provided in the following subsections.

5 Transportation Infrastructure

Infrastructure to support transportation requirements during site development and operation includes existing and new site roads, the access road and the airstrip.

5.1 Airstrip

In spring 2007, the airstrip will be extended 450 m to the northwest as indicated on Figure 3. The purpose of the extension is to accommodate larger aircraft to transport personnel to and from site. Go Creek runs perpendicular to the airstrip at the northern end, then parallels the airstrip on the western side. Go Creek is less than 5 m in width (at ordinary high water mark) at both the road crossing and airstrip crossing locations and YZC will install culverts under the airstrip and upgrade the existing culverts under the airstrip access road to accommodate 1:100 yr flows.

Ditches will be upgraded on the eastern and western sides of the airstrip and the airstrip access road to promote drainage from the running surfaces and minimize surface erosion.

5.2 Site Roads

Between the airstrip and industrial complex and within the industrial complex, existing roads are shown as gray corridors and new roads are shown as orange corridors in Figures 3, 4 and 6. There are no major stream crossings along any of the new road sections. Roadside ditches will be constructed and culverts installed in low-lying areas where necessary to minimize erosion and allow for proper drainage.

5.3 Access Road

YZC will construct access to the site from kilometre post 190.0 of the Robert Campbell Highway to the project site in two phases with construction of a winter access road (Phase 1) following receipt of the Quartz License, and construction of the all weather access road (Phase 2) in spring 2007.

YZC retained Yukon Engineering Services Inc (YES) to complete the route selection, preliminary design, geotechnical assessment, detailed design, tendering, construction management and quality assurance. YES retained the services of EBA Engineering Consultants Ltd. (EBA) to provide professional geotechnical evaluations of the route and sources, undertake a roadway geotechnical testing program, complete laboratory testing of samples taken along the route and from granular sources, and to provide construction recommendations resulting from their investigations and laboratory results. AMEC Earth & Environmental developed the environmental (ARD/ML) testing protocol provided in Section 5.3.7.

Details pertaining to road design, stream crossing details, borrow sources, environmental and geotechnical testing protocols and outcomes, traffic and access control measures, and reclamation plans and cost estimates for closure of the Phase 1 road and borrow sites are provided below.

5.3.1 Phase 1 Winter Access Road

The first phase of the access road development is the construction of an ~24 km long temporary winter access road from kilometre post 190.0 of the Robert Campbell Highway to the mine site for the purpose of hauling in equipment and supplies required to set up the construction camp and for the onset of construction activities scheduled to commence in spring 2007. From the highway, the access road corridor follows the Putt Creek and Chip Creek drainages before transitioning into the Go Creek drainage and the mine.

Winter accesses are often situated in areas not conducive to all weather access road construction. Examples of situations often desirable for winter road construction, but not desirable for all-weather road construction are:

- Swamps, bogs and marshes winter roads constructed in frozen conditions are often built of snow and ice across the gentler terrain found at these features for economic reasons. Constructing all weather roads in these situations creates larger impacts, higher construction and maintenance costs, and larger reclamation programs.
- Path of least resistance winter roads are usually selected along the path of least resistance for bulldozers and "cat-train" deployment. These alignments and grades are often not conducive to the longer terms safe haul of goods and personnel.
- Stream Crossings winter road stream crossings are usually done over ice, or by way of ice bridges where possible. These locations are selected for their approach grades and gentler relief is usually desirable. The winter road crossing locations are usually chosen where the stream is shallower and wider. All weather road stream crossings must be chosen for flow impact, shorter crossing structures and all-weather foundation conditions.

In order to minimize impact, and to better control access in the long term, YZC has chosen to construct its winter access road along the alignment of the cleared geotechnical investigation trail, which itself is within the footprint of the ultimate all weather access road clearing, and in the steeper side-hill areas, will fall within the ultimate roadway prism.

The winter road will be constructed over a four to six week period during December 2006 to February 2007, and approximately 40 loads would be hauled over the road during February and March 2007. Table 2 provides as summary of the equipment and materials to be transported over the Phase 1 and Phase 2 roads to support the early construction phase. In total, approximately 275 loads will be hauled over the February to September period.

Table 2 Wolverine Project Anticipated Road Usage February to September 2007

Equipment and Supplies	Number of Transport Truck Loads		
Description	Phase 1: February - March	Phase 2: April - September	
Road Bridge and Culverts	3		
Camp Infrastructure	8	132	
Structural Steel		12	
Earth Moving Equipment	4	2	
U/G Equipment	6		
Fuel Tankers/Storage	1	4	
Aggregate/Cement	10	50	
Rebar		10	
Piping/Electrical		12	
Genset Units	2	4	
Service Vehicles	4	4	
Catering/Consumables	2	5	

5.3.2 Phase 2 All Weather Access Road

The second phase of road development entails construction of an all-weather access road. The road will be a private, single lane road with passing bays, will have restricted access and will be operated under radio control. The road will be used year round with minimal load restrictions. Design and construction details for this phase will be provided in December 2006.

Prior to construction of the all-weather road, clearing of the right of way will be required. It is preferred to conduct this work during the January to March 2007 period. Winter clearing operations allow for better access on frozen ground, and safe burning-disposal of non-salvageable product (rather than trucking and bury-disposal).

5.3.3 Access Road Design and Specifications

It was necessary for YES to complete the ultimate Phase 2 design, in order to properly plan for the Phase 1 winter access road. The Phase 2 access road design has been revised subsequent to the completion of the geotechnical field investigation (July 2006) and granular investigation (October 2006) programs executed by EBA Engineering Consultants Ltd, and following the Lidar Bare Earth topography provided by Woolpert on behalf of YZC.

The design of the Phase 2 road meets or exceeds Transportation Association of Canada (TAC) RLU 60 Single Lane Resource Road, (with inter-visible two lane sections) employing the standards summarized in Table 3. The Phase 1 winter road will be built within the prism of the ultimate Phase 2 design.

The road design drawings are provided in Appendix A and have been sealed by Paul J. Knysh, Yukon P.Eng. The route is "final", within acceptable uses of the term; the alignment is fixed within a defined corridor of 50m in width, except at controlling stream crossings, where the alignment is considered final at its present location to within +/-10m. The controlling stream crossings for both phases are provided in Table 4.

The road design is not approved for construction purposes, but is complete in terms of impact and construction requirements. All assessments to date have been completed using techniques suiting the level of investigation required using systematic development planning.

Route selection and design were based on hydrology studies, stream data collection, terrain analyses and air photo interpretation of soils conditions, by hand sample truthing of the mapped interpretations, then by a two phase geotechnical investigation. Contributing information to the design included a review of assessments by:

- Surface Geology, Soils and Associated Interpretations. Wolverine Biophysical Surveys (Mougeot Geoanalysis 1996)
- AXYS Environmental Consulting Ltd. (satellite imagery interpretation of Surficial Materials Distribution)
- Jack Dennett, P.Geol., EBA Engineering Consultants Ltd., YES Geotechnical Subconsultant (air photo interpretation)
- Paul J. Knysh, P.Eng., and Rob Harvey of Yukon Engineering Services Inc. (air photo interpretation)
- EBA Engineering Consultants Ltd. (Geotechnical Investigation)
- Lidar Bare Earth topography (Woolpert)

Adapted Transportation Association of Canada Single Lane Table 3 **Resource Road Standards**

Desirable Minimum Curve Radii	• 170 m
Minimum Curve Radii	• 120 m
Minimum Switch-back Radii ¹	• 65 m
Desirable Maximum Gradient ²	• 8%
Minimum "k" Factor Crest	• 15
Minimum "k" Factor Sag	• 10
Single Lane Width	• 6 m crowned @ 3%
Two Lane Width	• 8.5 m crowned @ 3%
Super-elevation	• Emax 8%
Minimum Culvert Diameter	• 600mm or Q ¹⁰⁰ whichever is greater
Culvert Installations	• as per YG 06010-1, -2, -3, -4, -5, -6, -7 ³
Clearing	 Machine and Hand Clearing as per: YG Sections 03010, 03011⁴ to 15 m either side minimum, or 3 m beyond cuts (tree root protection), 6 m beyond fills (access to reclaim
Surfacing Aggregate	stripping), whichever is greater • 300mm as per <i>YG Section 04060</i>
Sideslopes (fill)	 2H:1V ratio (except as geotechnically modified) 1.5H:1V ratio, where safety berms are employed
Backslopes (earth cut)	1.5H:1V ratio (except as geotechnically modified)
Backslopes (rock cut)	1.5H:1V ratio (except as geotechnically modified)
Ditch Depth	• 1 m
Ditch Type	• "V" Ditch, with widenings for side-borrow
Safety Berms	0.75m Ht. where Fills > 10m, or where downhill side hazard requires. Roadbed widened 1.5m to accommodate
Compactive Density	 95% Standard Proctor (Embankment) 98% Standard Proctor Density (Surfacing Aggregate and culvert bedding/backfill)

¹ Utilized in two situations: Bunker Ck. at km 10.4, to avoid a beaver dam, and at 13.1 km, to avoid two stream crossings and for economic considerations. 2 TAC recommends maximum gradients of 12% in mountainous terrain, and 10% in semi-mountainous terrain. 8% was selected

for safety, erosion control and reduced operating costs. 10% grades were required for short sections ³ YG = Yukon Highways and Public Works, Transportation Engineering Branch, March 2003

⁴ YG = Government of Yukon, February 1997

Overflow Stream at 23+200

Creek Crossing	Appendix A Drawing #	Kilometer Location	Latitude	Longitude	Structure Type
Putt	3 km	3.03	61° 28' 46.8"	129° 53' 33.5"	1600 mm Dia. CSP*
Pitch	1.5 km	2.88	61° 28' 50.1"	129° 53' 32.1"	2400 mm Dia. CSP
Bunker	9 km	10.38	61° 25' 21.6"	129° 56' 01.6"	20 m Bridge
Bogie	15 km	15.7	61° 24' 00.3"	129° 59' 25.2"	1000 mm Dia. CSP***
Hawkowl	22.5 km	23.23	61° 24' 00.4"	130° 03' 49.8"	1600 mm CSP at 23+225, plus a 1000 mm in the

Table 4 Controlling Stream Crossings along the Road Alignment

Notes:

*CSP = Corrugated Steel Pipe Helical Culvert. All diameters shown are "minimum anticipated", and are subject to further field confirmation.

Phase 2 design elements have not changed significantly since the initial road design. The following exceptions apply, and are also applicable to the Phase 1 alignment as shown in Appendix A:

- **0 to 0.7 km**—The intersection with the Campbell Highway has been relocated, to 190.0 km of the Campbell Highway. This was done in order to accomplish the following:
 - improve the intersection visibility for public safety
 - avoid permafrost over shallow bedrock 0 to 0.7 km
 - reduce impact by including the first section of roadway within the footprint of the planned Borrow Pit, Staging and Camp Area
- **0.7 to 2.9 km**—Grade-lines were lowered, as ice contents within the discontinuous permafrost in this section were found to be generally less than 10% in granular soils. Should site-specific observations during construction so dictate, road grades will be raised to preserve the permafrost.
- **7.5 to 9.0 km**—Revised grade-lines ensure adequate embankment over ice-rich permafrost in this section. Non-woven geotextile will be applied over undisturbed organic materials prior to backfilling.
- **10.1 to 10.7 km**—Grade-lines have been improved from 10 to 8% as a result of the more accurate surface topography.
- **10.7 to 16.4 km**—Grade-lines have been modified from the consistent 8%, to varying grade-lines of 6% to short "pitches" of 10%, due to the improved topography.
- **16.5 to 17.4 km**—The road alignment was changed in order to avoid wet swampy ground on the glacio fluvial terrace area.
- Throughout:
 - accurate surface topography accommodated a complete grade-line revision throughout the entire alignment

• test pit information provided representative bedrock profile information, as well as reliable stripping, waste-cut and grubbing thickness

Phase 2 borrow pit, granular sources and side-borrow areas have been identified for the entire Phase 2 roadway and are shown in Appendix A.

As discussed previously, Phase 1 operations, plans and specifications are based upon the integrity of the Phase 2 design and standards. Acceptable construction planning for Phase 2, necessitate acceptable construction planning for Phase 1. Table 5 describes the conditions, Phase 2 Construction Method, and resultant Phase 1 plan for each segment along the ~24 km route.

5.3.4 Access Tie-In and Staging Areas

Yukon Engineering Services has completed its assessment of the proposed intersection of the all weather access road with the Campbell Highway. This has been done by way of confirming required sight distances based on the Rural Arterial 80 km/hr posting (TAC RAU 80) and designation of the Campbell Highway at present, and the intended RAU 90 designation of the Campbell Highway upgrades over the coming years.

The intersection with the Campbell Highway has been relocated from 189.4 to kilometer post 190.0, at the proposed staging area as shown in Appendix A. A road construction camp and staging area will be constructed near the Campbell Highway for both Phase 1 and Phase 2. The staging area will be used throughout the construction of the mine and road, and the operation of the mine.

Detailed topographic surveys were completed of the proposed Campbell Highway intersection during the geotechnical investigation program. Detailed site drawings and proposed intersection details will be presented to Yukon Highways and Public Works to ascertain their specific requirements or concerns. A Public Highways Access permit application will then be submitted to YG HPW for approval of the Phase 2 plan.

General Site Plan 2006-02 Wolverine Project

Table 5 Phase 1 and Phase 2 Methods of Clearing and Construction

Range (km)		Clearing Method	Ph. 2 Construction Method	Ph. 2 Comment	Ph 1 Comment	
from	to]				
0.140	0.525	Machine clearing	Optimal cut to fill methods	Staging, camp, borrow	Staging, camp, borrow	
0.525	0.675	Hand clearing	>1.5 m fill (typ) Bog / swamp crossing		>1.5 m fill (typ) 600 mm csp 0.575 km	
0.675	2.840	Machine clearing w/	Normal w/ strategic geotextile, 1.5 m	Sporadic permafrost, ice content <10%	Winter road above/Lt of Ph. 2 road	
		strategic hand clearing	fill (typ)	type, some ice content >10%		
2.840	2.905	Hand clearing	Embankment clean granular	Pitch creek crossing	Ice + snow crossing	
2.905	2.995	Machine clearing	Optimal cut to fill methods	Granular deposit between creeks.	Winter road above/Rt of Ph. 2 road	
2.995	3.055	Hand clearing	Embankment clean granular	Putt creek crossing	Ice + snow crossing	
3.055	3.200	Hand clearing, geotextile, 1.5 m fill (typ)	Geotextile, 1.5 m fill (typ)	Discontinuous ice rich permafrost zone	Winter road above/Rt of Ph. 2 road	
3.200	4.175	Machine clearing w/ strategic hand clearing	Normal w/ strategic geotextile, 1.5 m fill (typ)	Sporadic permafrost, ice content <10% type, some ice content >10%	Winter road above/Rt of Ph. 2 road	
4.175	4.235	Hand clearing	Optimal cut to fill methods	Unnamed stream crossing	Ice + snow crossing	
4.235	5.075	Machine clearing w/	Normal w/ strategic geotextile, 1.5 m	Sporadic permafrost, ice content <10%	Winter road above/Rt of Ph. 2 road	
		strategic hand clearing	fill (typ)	type, some ice content >10%		
5.075	5.135	Hand clearing	Optimal cut to fill methods	Unnamed stream crossing	Ice + snow crossing	
5.135	5.565	Machine clearing w/	Normal w/ strategic geotextile, 1.5 m	Sporadic permafrost, ice content <10%	Winter road above/Rt of Ph. 2 road	
		strategic hand clearing	fill (typ)	type, some ice content >10%		
5.565	5.625	Hand clearing	Optimal cut to fill methods	Unnamed stream crossing	Ice + snow crossing	
5.625	6.740	Machine clearing w/ strategic hand clearing	Normal w/ strategic geotextile, 1.5 m fill (typ)	Sporadic permafrost, ice content <10% type, some ice content >10%	Winter road above/Rt of Ph. 2 road	
6.740	6.800	Hand clearing	Optimal cut to fill methods	Unnamed stream crossing	Ice + snow crossing	
6.800	6.440	Machine clearing w/ strategic hand clearing	Normal w/ strategic geotextile, 1.5 m fill (typ)	Sporadic permafrost, ice content <10% type, some ice content >10%	Winter road above/Rt of Ph. 2 road	
6.440	6.500	Hand clearing	Optimal cut to fill methods	Unnamed stream crossing	Ice + snow crossing	
6.500	7.500	Machine clearing w/ strategic hand clearing	Normal w/ strategic geotextile, 1.5 m fill (typ)	Sporadic permafrost, ice content <10% type, some ice content >10%	Winter road above/Rt of Ph. 2 road	
7.500	9.100	Hand clearing	Geotextile, 1.5 m fill (typ)	Discontinuous ice rich permafrost zone	Ice + snow crossing	
9.100	10.175	Machine clearing w/ strategic hand clearing	Normal w/ strategic geotextile, 1.5 m fill (typ)	Sporadic permafrost, ice content <10% type, some ice content >10%	Winter road above/Rt of Ph. 2 road	
10.175	10.425	Hand clearing	Optimal cut to fill, 3 m embankment over creek	Bunker creek crossing, beaver dam	Ice + snow crossing 5 m downstream of Ph. 2 road	
10.425	15.080	Machine clearing	Optimal cut to fill methods	Sidehill ascent	Winter road above/Rt of Ph. 2 road	
15.080	15.140	Hand clearing	Hand clearing	Unnamed stream crossing	Ice + snow crossing	

November 2006 Yukon Zinc Corporation

Wolverine Project General Site Plan 2006-02

Table 5 Phase 1 and Phase 2 Methods of Clearing and Construction (cont'd)

Range (km)		Clearing Method	Ph. 2 Construction Method	Ph. 2 Comment	Ph 1 Comment	
from	to					
15.140	15.210	Machine clearing	Optimal cut to fill methods	Sidehill ascent	Winter road above/Rt of Ph. 2 road	
15.210	15.270	Hand clearing	Hand clearing	Unnamed stream crossing	Ice + snow crossing	
15.270	15.670	Machine clearing	Optimal cut to fill methods	Sidehill ascent, rock prevalent	Winter road above/Rt of Ph. 2 road	
15.670	15.730	Hand clearing	Hand clearing	Bogie creek crossing	Ice + snow crossing 200 m upstream above h-water	
15.730	16.700	Machine clearing	Optimal cut to fill methods	Sidehill ascent, rock prevalent	Winter road above/Rt of Ph. 2 road	
16.700	18.800	Machine clearing	Small cut to fills	Glacio fluvial plateau	Winter road above/Rt of Ph. 2 road	
18.800	20.295	Machine clearing	Optimal cut to fill methods	Sidehill descent, rock prevalent	Winter road above/Rt of Ph. 2 road	
20.295	20.355	Hand clearing	Hand clearing	Unnamed stream crossing	Ice + snow crossing	
20.355	20.820	Machine clearing	Optimal cut to fill methods	Sidehill descent	Winter road above/Rt of Ph. 2 road	
20.820	20.880	Hand clearing	Hand clearing	Unnamed stream crossing	Unnamed stream crossing	
20.880	21.570	Machine clearing	Optimal cut to fill methods	Sidehill	Winter road above/Rt of Ph. 2 road	
21.570	21.630	Hand clearing	Hand clearing	Unnamed stream crossing	Unnamed stream crossing	
21.630	23.170	Machine clearing	Optimal cut to fill methods	Sidehill	Winter road above/Rt of Ph. 2 road	
23.170	23.255	Hand clearing	Hand clearing	Hawkowl creek crossing	Ice + snow crossing 80 m upstream on ex drill road	
23.255	23.950	Machine clearing	Optimal cut to fill methods	Sidehill	Winter road above/Rt of Ph. 2 road	

Yukon Zinc Corporation November 2006

Construction needs for the staging area will include:

- access road construction camp, engineering office
- temporary storage of materials, camp and equipment awaiting availability of access to the mine site
- storage of culverts and other associated road construction materials
- parking and maintenance of construction equipment
- fuel, parts and lubricant storage and distribution

Operational needs for the staging area include:

- chaining of trucks during the winter months
- fuel for maintenance equipment
- holding area for vehicles awaiting authorization to proceed onto the access road
- access control gate

5.3.5 Borrow Sources

Originally it was planned to utilize side-borrows for all roadway embankments rather than specific borrow sources. Subsequent geotechnical investigations by EBA however, have indicated ice rich permafrost in portions. This has resulted in the need to extract common excavation as well as granular surfacing material from designated sources in some areas.

Information used to develop the Borrow Source Plan was derived from EBA's geotechnical that was investigation completed in July and October (Appendices B and C). Of the nine possible borrow targets, it is planned to develop five during Phase 2, as summarized in Table 6 and shown in Appendix A:

Table 6 Phase 2 Designated Borrow Sources along the Road Alignment

Pit	Sta	o/s	Gross Area (Ha)	Net Area (Ha)	Avg Depth (m)	Common (m³)	Granular Surfacing (m³)	Concrete Aggregate (m³)	Total (m³)
P1	350	0	5.3	2.7	2	3,000	3,000	-	6,000
S3A	2700	70	1.6	0.8	2	9,000	3,000	-	12,000
S3B	2950	70	1.1	0.6	2	-	9,000	-	9,000
P2A	11200	60	1.0	0.5	2	-	8,000	-	8,000
P2B	11100	130	0.6	0.5	2	-	5,000	5,000	5,000
P4A	16700	-100	2.9	1.5	2	22,000	7,000	-	29,000
P4B	17450	110	3.0	1.5	2	23,000	7,000	-	30,000
P3	23600	-150	1.0	0.5	2	-	8,000	-	8,000
Totals			16.5	8.5	2.0	57,000	50,000	5,000	107,000

Only Pit P1 will be partially developed for Phase 1. Reclamation plans described in Section 5.3.9 include closure of the Phase 1 P1 Pit, in the event that Phase 2 is delayed.

Closure of the borrow sources will be developed according to acceptable construction practices, and to standards currently employed by the Yukon Government in its execution of highway construction contracts. Specifically:

- Prior to clearing, additional construction test pit information will be used to confirm
 the optimum depth of planned excavation. These depths will be used to confirm the
 extents of each source, with appropriate consideration to setbacks from streams and
 escarpments.
- Haul Roads are shown in Appendix A
- A *Borrow Source Development Plan* drawing will be provided by YES on a case-by-case basis. Once approved, the plan will be provided to the Contractor. This Development Plan will include instructions for the development stage: storage of overburden soils and organic stripping materials, stockpiling of granular screened or crushed product for construction and maintenance, designated area for setting up of plant, limits of clearing, any required drainage remedies, and buffer areas; and for the reclamation stage: sloping of borrow walls (2H:1V maximum steepness recommended), re-contouring of pit area and haul road, contouring of organic overburden over the surface area, and seeding.
- Limits of clearing for the borrow source and the haul road will be flagged in the field by YES.
- Clearing, disposal and salvage will be completed by the Contractor, according to standards provided in Government of Yukon *Sections 03010*, *03011* (February 1997).
- Once cleared, the extents of the planned borrow excavation will be laid out in the field by YES, leaving the required overburden storage and buffer zones.
- Grubbing and stripping operations will be by way bulldozing materials to the perimeter of the cleared area, leaving adequate space to re-access the materials for reclamation.
- Excavation will be limited to the development area as shown on each specific Borrow Source Development Plan, and as laid out in the field by YES.
- Where granular deposits are underlain by colluvium, till or other materials suitable for common embankment, these materials will be used for roadway sub-grade construction purposes.
- "Oversize" boulders rejected by crushing or screening operations will be employed as rip rap where feasible, or stockpiled for future use as rock pile barricades at the entrances to the borrow source haul roads.

Once construction and maintenance requirements are met, the borrow source sites will be reclaimed as identified in each specific Borrow Source Development Plan.

5.3.6 Geochemical Evaluation

The geotechnical trail from the Robert Campbell Highway to the Wolverine mine property was assessed and sampled along significant road cuts, and significant lithology changes for geochemical testing. A thick organic cover over the first 9 km (from the Robert Campbell Highway) of the road route prevented any bedrock or overburden sampling in this area. The last 5.5 kms were also covered with thick organic layers and the bedrock and/or overburden were not sampled. Sampling was conducted as per the

Yukon Zinc Corporation

protocol requirements developed by AMEC Earth & Environmental (Section 5.3.7) and lab results indicate that most of the results are acceptable due to their low sulphide sulphur contents. Additional interpretation will be provided in the forthcoming Phase 2 Road Report. A summary of the onsite inspections and sample locations are provided in Table 7 and shown in Appendix A.

Table 7 Summary of Geochemical Sampling along the Geotechnical Trail for Phase 1 Access Road Construction

Sample	UTM NAD 83 Zone 9		Description	Fizz Rating	Sulfide Content	ARD Potential
Number	east north		Josephon	(1-10*)	(%)	Estimate
			Small cut on west side of road,			
			poorly sorted, well rounded			
WVR06-001	450590	6810680	glacial-fluvial overburden	5	<1	nil
			Small cut on west side of road,			
			poorly sorted, well rounded			
WVR06-002	450080	6810120	glacial-fluvial overburden	0	<1	nil
			Small cut on west side of road,			
			poorly sorted, well rounded			
WVR06-003	450110	6810120	glacial-fluvial overburden	1	<1	nil
			Small cut on west side of road,			
			poorly sorted sub-rounded to			
WVR06-004	447710	6808360	sub-angular glacial overburden	1	<1	nil
			Large outcrop on west side of			
			road greenstone with abundant			
WVR06-005	446850	6807650	greenstone cobbles in creek bed	1	<1	nil
			Large outcrop on east side of			
WVR06-006	447120	6807360	road well foliated greenstone	1	<1	nil
			Large outcrop on west side of			
WVR06-007	447310	6807010	road near creek greenstone	1	<1	nil
			Large outcrop on west side of			
WVR06-008	445870	6804660	road greenstone	1	<1	nil
			Colluvium on west side of road			
			consisting of cobbles and			
WVR06-009	444780	6805240	boulders of greenstone	1	<1	nil
JD10-06-10G	446610	6805630	borrow pit			
JD10-5-1G	449750	6810120	borrow pit			
JD10-4-2-G2	452960	6819010	borrow pit			

^{*} Note: Fizz rating 1= no visible CO₂ production with the addition of 10% HCl; Fizz rating 10= abundant CO₂ production with the addition of 10% HCl.

EBA collected samples from 0 to 3.2 km for geotechnical purposes and upon further examination have submitted two geochemical samples for areas where the organic mat or permafrost did not limit sampling. A sub-sample of these geotechnical samples has been submitted to the lab, and details pertaining to these samples are as follows:

• Primary 1 Borrow Site is located along the west side of the access road between 0 and 1 km near the Robert Campbell Highway. Four test pits completed at the Primary 1 site intersected a blanket of gravelly sand. The proposed borrow area is on a glaciofluvial terrace about 11 ha in area.

• Secondary 3 Borrow Site is located at the confluence of two streams and is bisected by the road alignment between 2.7 and 3.0 km. Six test pits excavated in the area indicate that a blanket of glaciofluvial sand and gravel forms the two small ridges crossed by the road alignment in this area. North of the road alignment the ridges are well-drained and the granular sub-surface material is unfrozen. South of the road alignment, the terrain is flat to gentle and the soils are frozen. This area appears to be a source of good quality granular material, however the extent of the deposit is limited and development may be constrained by close proximity to streams and a perched aquifer near 2.8 km.

5.3.7 Geochemical Testing Protocol

Yukon Zinc Corporation (YZC) retained the services of AMEC Earth & Environmental to develop a protocol for environmental testing of construction materials and cut slopes along the access road from the Robert Campbell Highway to the Wolverine mine property. Construction materials used as borrow material along the road route may consist of unconsolidated sediments (soils, till, gravel, etc.) and bedrock. The protocols outlined below have and will be used for sampling and analysis along the access road to determine acid rock drainage and metal leaching (ARD/ML) potential. At sites of interest, the following actions will be carried out:

1. Visual inspection

An inspection of the borrow source site or road cut will be completed by a qualified geoscientist or engineer. The inspection will be used to assess the areas for potential ARD/ML conditions. The visual inspection will include a geologic assessment of the following parameters:

- rock type(s)
- sulphide content
- carbonate content
- presence or absence of other ARD/ML indicators (iron-staining, etc.)

The inspection will be focused on the potential for the site to produce ARD/ML if disturbed. This assessment will include a visual characterization of the mineralogy of the borrow material. Detailed descriptions of the type and amount of sulphide mineralization will include the size and shape of grains, any visible weathering, and a visual estimate of the proportion of sulphides to host rock. Careful attention will also be paid to features such as quartz and carbonate veins in the host rock, as well as the presence of iron staining and secondary precipitates that may have formed on the host rock during in situ weathering.

2. Sampling

Following the completion of the visual inspection, the site will be sampled to provide sufficient material for environmental testing. Sampling will be conducted to collect a representative sample from each geologically distinct unit within the area. Samples will weigh a minimum of 2 kg. Depending upon their volume, large homogenous borrow sources may require multiple samples. After sampling, each sample will be bagged and carefully labelled with a unique identifier.

3. Analysis

Samples will be submitted to a certified environmental laboratory for testing. This will include the following analyses: paste pH, total sulphur, sulphate sulphur, sulphide sulphur (by difference), neutralization potential and metals by aqua regia-ICP. Analytical methods will follow current industry standards and/or those described in the Draft BC ARD Guidelines (Guidelines) by Price (1997⁵).

4. Assessment Analysis

The resulting field inspection and testing data will be assessed by a qualified geoscientist or engineer. The data will be assessed according to the guidelines and criteria described in the Guidelines. This will include an assessment of the neutralization potential, acid generation potential and metal leaching potential of the borrow sources. Additional testing or assessment may be required as a result of the initial assessment.

Samples will be screened according to the following criteria as per the Draft BC ARD Guidelines:

a. Net Potential Ratios (NPR, or NP/AP), where

NPR <1 Likely acid generating
NPR >1 and NPR<2 Potentially acid generating
NPR >2 and NPR<4 Non-acid generating
NPR >4 Non-acid generating

b. Sulphide sulphur content, where

S_S >0.3% Potentially acid generating S_S <0.3% Non-acid generating

c. Paste pH, where

pH<5.5 Potentially acid generating pH>5.5 Non-acid generating

d. Neutralization Potential, where

NP<10 kg CaCO₃/tonne Potentially acid generating NP>10 kg CaCO₃/tonne Non-acid generating

Materials with NP values below 10 kg CaCO₃/tonne should undergo additional testing consisting of the shake flask extraction test (as per the BC ARD Guidelines) to determine the presence of leachable acidity or metals.

Materials that are likely or potentially acid generating, and/or with leachate chemistries in exceedance of the Guidelines, would be excluded from use as road or construction material. Alternatively, additional study could be conducted on these materials to establish their suitability, or to determine what mitigative steps would need to be taken to ensure the material's safe use.

5.3.8 Geotechnical Testing

Geotechnical Testing Protocols outlined in the June 2006 submission, were employed in two phases by EBA Engineering Consultants Ltd. Test results for both the roadway

5

⁵ Price, W.A. (1997), DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia, British Columbia Ministry of Employment and Investment, Energy and Minerals Division, Smithers, BC, (April), 143p.

investigation (July 2006) and the granular source investigation (October 2006) are provided in Appendices B and C, respectively.

Field work was completed in July 2006 by Jack Dennett, P.Geo. and James Buyck of EBA. The report was completed and sealed by J. Richard Trimble, M.Eng, P.Eng., and Jack Dennett, P.Geo. in August 2006, and submitted to EMR for review. The granular and borrow investigation field work and the Draft Excerpts Report were completed by J. Dennett in October 2006. EBA provided significant findings only at this stage, highlighting suitable borrow sources, suitable granular and possible concrete aggregate sources, as well as soils summaries of the 0 to 3.25 km portion of the roadway alignment. Moisture (ice) content information was provided in critical sections.

The design adjustments and recommended construction methods resulting from these findings and recommendations are provided in Appendix A and in Table 5.

5.3.9 Phase 1 Road Closure Plan

In the event that the project does not proceed to the production phase, reclamation of the Phase 1 winter access road will be required. This will involve the removal of the culvert at 0.575 km and decommissioning of the roadbed and drainage structures. Details pertaining to closure of the Phase 2 access road will be provided in the forthcoming November report.

Culvert and Drainage Structure Removal

It is anticipated that one culvert will be installed and removed as part of Phase 1. This will be done at 0.575 km, and will also form an access barrier upon removal.

All culverts and drainage structures will be removed and disposed of off-site at a suitable location. The following activities are proposed:

- Trenches resulting from the removal of culverts will be swaled or contoured to match the surrounding terrain.
- Where warranted due to fine grain soils, erosion protection will be installed within the remaining swales.
- Ditch blocks will be removed where this is desirable, as there may be instances where cross drainage should be maintained (Appendix A).

Phase 1 Roadbed Decommissioning

The roadbed itself will be contoured and rounded throughout its length, and the following activities are proposed:

- Soils will be shaped to match the surrounding topography.
- All slopes will be flattened or rounded to better suit the surrounding terrain.
- Surfaces of gradients <25% will be scarified (using scarifiers on bulldozers, excavators and graders) to better accept seeding.

Permanent closure of the winter road access will be by way of removal of the culvert and fill material across the bog at 0.575 km, as well as an impassable obstruction at the Robert Campbell Highway.

Phase 1 Closure Costs

YZC proposes to provide security commensurate with outstanding environmental liability associated with the Phase 1 road reclamation and closure costs prior to the onset of activities (anticipated to be November), and subsequently for the Phase 2 all weather access road in spring 2007.

Based on the information provided by YES, YZC has prepared a cost breakdown for the Phase 1 road (Table 8). The cost breakdown is based on the same unit rates provided by a SteveJan Consultants Inc report dated September 20, 2006 (requested by EMR for Version 2006-01 report road closure cost estimate) with revised quantity estimates. The total cost for closure and reclamation of the all-weather access road was provided in report Version 2006-01, and revisions will be provided in the forthcoming November report.

Based on these previous calculations and estimates from YES on volumetric and plan area impact estimates of 5-10% and 20% of the all-weather access road, YZC proposes a cost estimate for the Phase 1 road equivalent to \$165,665 (without contingencies factored in), or 25% of the all weather access road estimated cost (\$562,000).

Table 8 Closure and Reclamation Cost Breakdown for Phase 1 Winter Access Road

Component	Description-Equipment/Labor	Units	Quantity	Unit Cost	Cost
Lowering road grade	Removing excess material to adjacent areas (including borrow sources) to make road stable against erosion-Cat D8 dozer		10	\$185	\$1,850
"	"-Cat 325 excavator	hrs	14	\$190	\$2,660
"	"-Volvo A35 articulating haul truck	hrs	28	\$190	\$5,320
Stabilize side slopes	Flatten minor roadside cut banks/fill slopes with small excavator-Cat 325 (includes return travel time for length of road)	hrs	40	\$190	\$7,600
Culverts – 600 mm dia. size	Work includes uncovering, removal to offsite for re-use, re-sloping banks, armoring wetted portion	Ea	1	\$1,500	\$1,500
Culvert Crossings- restoration work	Minor restoration work, installation of environmental protection measures	L.S.	1	\$4,000	\$4,000
Bunker Creek Bridge removal	Removal of 20 m temporary bridge, resloping of banks, riparian zone reclamation	L.S.	1	\$10,000	\$10,000
Scarifying lowered road surface	To encourage revegetation (25 km x 7.5 m)-Cat D8	ha	18.75	\$2,000	\$37,500
Reclaiming spoil piles	Restoration of spoil piles containing excess organics from road construction-Cat 325	km	25	\$1,000	\$25,000
Borrow sources- stabilize slopes	Stabilize the slopes of the excavations-Cat D8 dozer	hrs	10	\$185	\$1,850
Borrow sources- S&F flat areas	Using ATV mounted applicator for seed & fertilizer	ha	1.5	\$1,500	\$2,250
Borrow sources- hydroseed	Apply hydroseed to steeper slopes (>1V:4H slope)	ha	0.5	\$3,000	\$1,500
Corridor revegetatebroadcast S&F	Using ATV mounted applicator for seed & fertilizer incl staging area (25 km x 7.5 m & 4 ha incorporating natural revegetation of 50% of area)	ha	11.38	\$1,500	\$17,070
Maintenance S&F-after 1 year	Assume coverage of 50% with S&F, and other 50% with fertilizer alone	ha	11.38	\$1,000	\$11,380
Permanent barrier at highway access	Trenching and barricading using natural materials in the area, to dissuade casual access-Cat 315	L.S.	1	\$2,000	\$2,000
			Subtotal 1		\$131,480
Engineering and Surveying (5%)	For major components, especially removal of bridge or stream crossings				\$6,574
			Subtotal 2		\$138,054
Contingency (20%)					\$27,611
			Total		\$165,665

6 Site Infrastructure Construction

6.1 Industrial Complex

The industrial complex area is an expansion of the existing laydown areas at the portal (Picture 1). The priority for construction of this area is to establish the concrete batch plant and pour key heavy foundations so that buildings can be erected as early as possible in 2007. The temporary batch plant location will be located at the southern end of the industrial complex area, down slope of the camp (Figure 4).

Picture 1 The industrial complex location will encompass the existing working area, and will extend ~200 m to the southwest (left)

YZC will pour foundations for the mill, assay lab, administration and truck shop buildings starting in June 2007 (based on the milestones provided in Figure 1). Prior to commencing foundation work, organic material will be stripped and stockpiled northeast of the portal, as shown on Figure 4. Once barren, the ground will be leveled and form work will be constructed as per the footprint indicated in Figure 4.

With the implementation of best practices described in Section 7, YZC will limit erosion and reduce sediment-laden runoff from disturbed areas during construction and operations. A surface runoff diversion ditch on the upslope side of the industrial complex area will be constructed to direct clean runoff around the site to Wolverine Creek. A site runoff collection ditch down slope of the industrial complex area will be constructed to collect runoff from the site, and settle or treat it as necessary in the collection pond, prior to discharging to the Go Creek watershed. There are several other ditches within the complex that will be constructed as required and they will drain to the runoff collection ditch (as shown on Figure 4). Ditches and diversions within the industrial complex area are provided in cross-sections A, B and C in Figure 5 (cross section locations indicated on Figure 4).

Laydown areas for construction supplies are located within the industrial complex in three locations as shown on Figure 4, along the road between the industrial complex and the airstrip, and at the airstrip.

6.1.1 Mill Building and Ancillary Facilities

The mill building site and associated process and ancillary facility locations were selected to take advantage of suitable ground conditions and to minimize the excavation requirements. Ore processing facilities are housed in a 130 m long by 40 m wide preengineered steel structure insulated building covered with metal cladding.

The primary crusher and connecting conveyors are located to the northeast end of the mill building close to the portal to minimize ore haul truck travel. Reagent storing, mixing and distributing will occur at the southeast end of the building. The secondary crusher and associated conveyors are also located the southeast end, and at the northwest side concentrates will be loaded into haul trucks within an enclosure with doors at both ends for dust control.

Additional modular buildings associated with the mill building include for the power plant to the west, fuel station and storage area to the northwest, administration building to the east and truckshop and assay lab to the west as shown in Figure 4. Power plant infrastructure will include diesel generators with total estimated power generation capacity of 10.5 MW with operating power requirements of approximately 7.5 MW.

The diesel storage and dispensing tanks will be erected within a lined containment area sized to contain 110% capacity of the tanks. Diesel consumption for the power plant, surface equipment, and underground equipment is estimated at 48,000 L/d, 1552 L/d, and 3450 L/d, respectively.

Fuel storage consists of the following fuel types and in order to maintain at least a two week supply at site, the storage capacities are:

- diesel storage of 720,000 L for power plant and surface equipment use
- diesel (low sulfer) storage of 85,000 L for underground mobile equipment
- gasoline storage of 5000 L for light duty vehicles

The underground mine requires separate openings to supply fresh air and to exhaust return air. Intake air will be heated in the winter using specialized propane fired equipment located on the surface adjacent to the intakes, as shown in Figure 4. Liquid propane will be stored under pressure in torpedo tanks near the heaters, and vaporized through conventional pressure relief equipment before use.

6.1.2 150 Person Camp

During the early part of the construction phase in 2007, the existing infrastructure at the Wolverine exploration camp will be used to house construction workers. A modular 150-person camp will be mobilized to site in early 2007 via the Phase 1 access road. The camp will be limited to 50 persons at any one time prior to the effective date of the A License.

The camp location is situated at the southern end of the industrial complex area. There are numerous benefits associated with this location such as the combining of service facilities (potable water pipelines, sewage treatment plant, power plant) as well as reducing the need for crew buses for shift changes.

Although some clearing and surface leveling will be required at the camp, permanent foundations will not be required. The camp facility will consist of customized modular units outfitted as bedrooms, bathrooms, laundry, kitchen, recreation facilities, etc.

6.1.3 General Site Services

Potable Water

Potable water will be sourced from Wolverine Lake for the exploration camp as per the current infrastructure and after the new camp is functional, potable water will be initially obtained from the existing surface sump location in the headwaters of Wolverine Creek, and subsequently from groundwater wells in an upper reach of the Go Creek watershed (Figure 2). Water use will be limited to 300 m³ per day for all uses (potable water, drilling, water truck for dust control, etc) prior to the effective date of the A License.

Sewage

When the permanent camp is functional during the 2007 construction phase, sewage will be treated in a pre-packaged treatment plant. The modularized sewage treatment plant (STP) will be a stand-alone fully enclosed treatment plant with no requirement for tanks or ponds. The STP will be sized to treat wastes generated from the mill building, the administration building and the camp. Based on a 150 man camp capacity and effluent volumes of 225 L per day per person, the STP will be designed for treatment of approximately 33 m³/d. All the components of the system will be factory assembled, inspected, tested and delivered to the site in major assemblies for final installation and commissioning on site.

The STP technology will utilize a fixed growth bacteria process whereby bacteria are grown on a media surface that is rotated into and out of the wastewater. The treated wastewater flows through separate zones each with a progressively higher standard of treatment. The media on which bacteria grow is an engineered plastic disks made from grid extruded medium density polyethylene material with UV light inhibitors. The grid pattern promotes oxygen transfer into the wastewater. The system digests sludge efficiently as a result of the process design. The sludge remains in the primary settling tank during normal operation and will be pumped out every six to nine months depending on the influent total suspended solids level. The system is not prone to upsets and can be operated with varying flows.

Grey and black water will be collected at camp in a surge tank and pumped to the STP. Treated water is not considered to be a waste as it is clean water and will be discharged to the Go Creek drainage. Prior to initial discharge, water analyses will be performed and will include a fish bioassay. When the mill and administration building are operational, water will be sent via sanitary sewer systems to a small in-ground concrete surge tank from where it will be pumped to the STP. The treated wastewater will be pumped to a holding pond and either recycled through the process plant or be discharged to the tailings facility via the tailings pipeline. Digested sludge from the facility will be disposed of in the tailings facility, or hauled offsite for disposal at an approved facility.

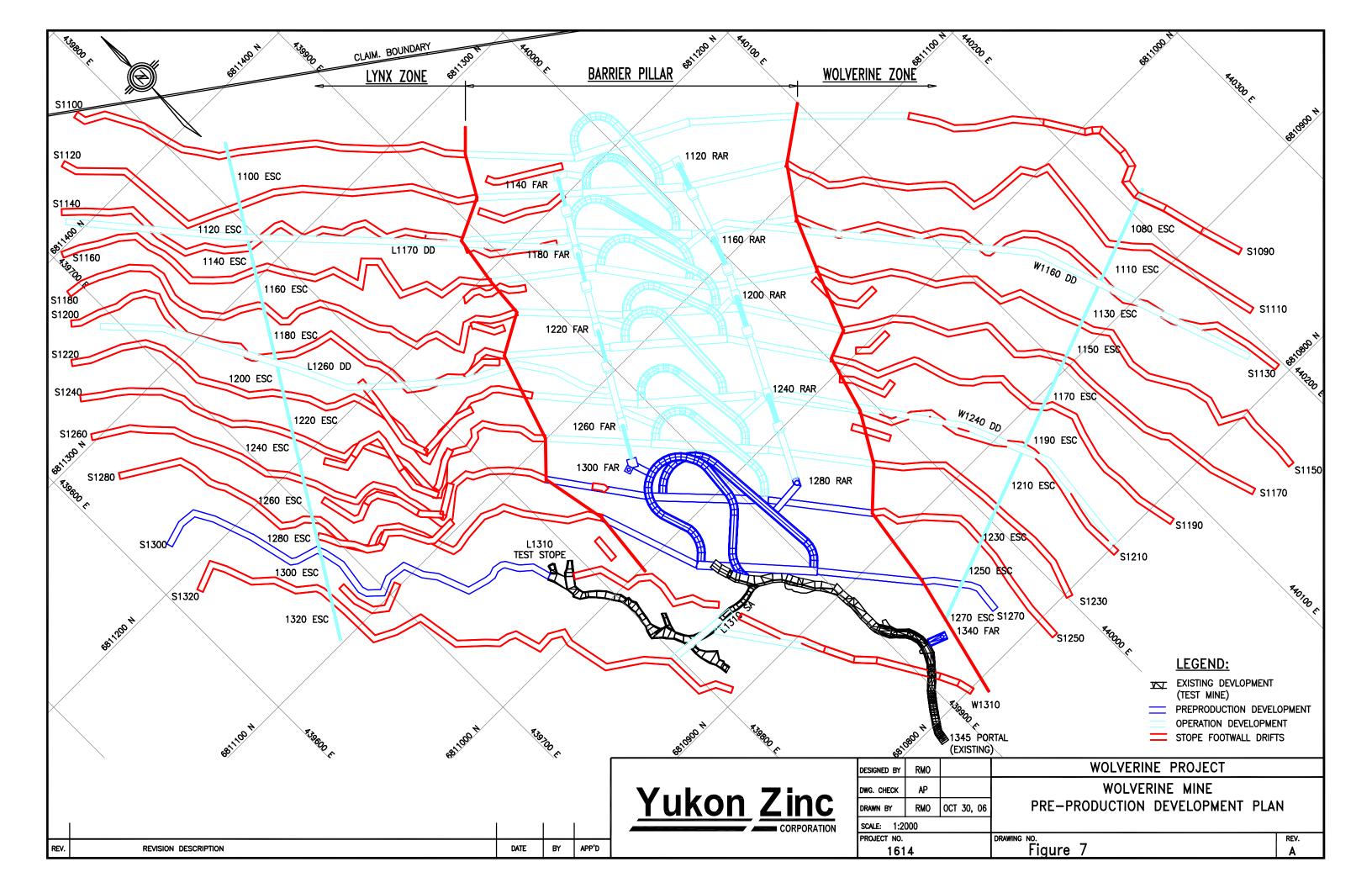
6.1.4 Explosive Storage

The powder and cap magazines will remain in the same locations established for the 2005 Advanced Exploration Program (Figure 3). No additional access points or clearing for buffer areas are required.

6.2 Mine Development

The pre-production period will occur from July 2007 (or earlier depending on project financing) to the end of September 2008 to prepare the mine for full operating status scheduled for the end of November 2008. During the pre-production period, an estimated 2203 m of lateral development plus 459 m of raise development is planned (Table 9). Additional activities include:

- continue mine rehabilitation by replacing the roadbed with segregated aggregate, shot-creting the main ramp walls, and encasing the existing steel sets in concrete
- install a door that seals near the top of the decline for ventilation control purposes
- establish access to seven active ore production faces on five mining horizons
- advance three in-stope footwall drifts and excavate two in-stope escape-ways
- provide additional development for ventilation distribution and emergency egress, including: intake, exhaust, and egress raising from surface
- install and commission several mining facilities and systems including power distribution, communications, ventilation, emergency egress, compressed air, water supply and de-watering
- install a paste-fill line into the mine


Figures 7 and 8 provide plan and longitudinal projection views for mine pre-production development. The test mine and operation ramp developments, fresh air raises (FAR) and return air raise (RAR) as well as stope drifts are also shown.

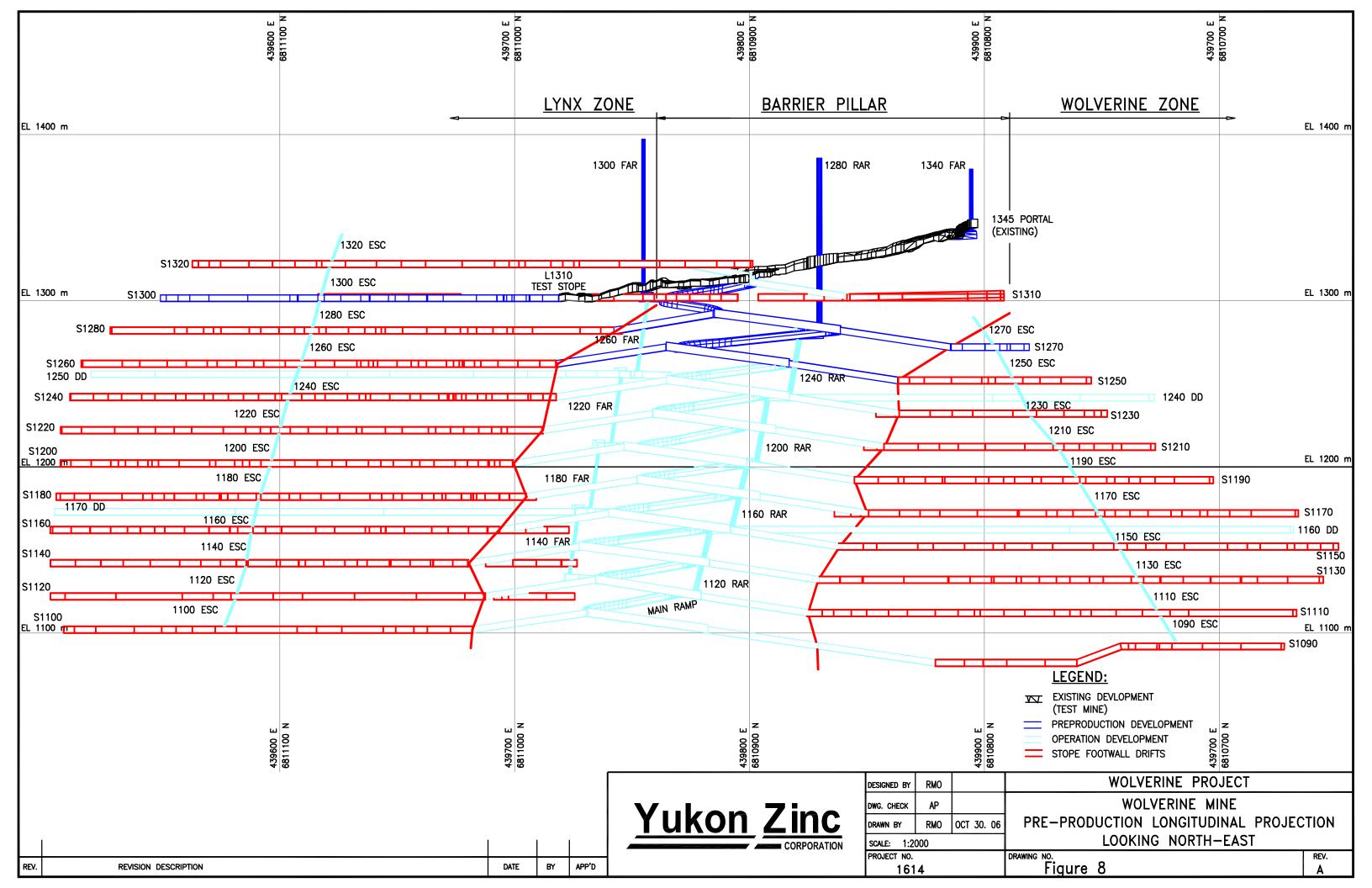
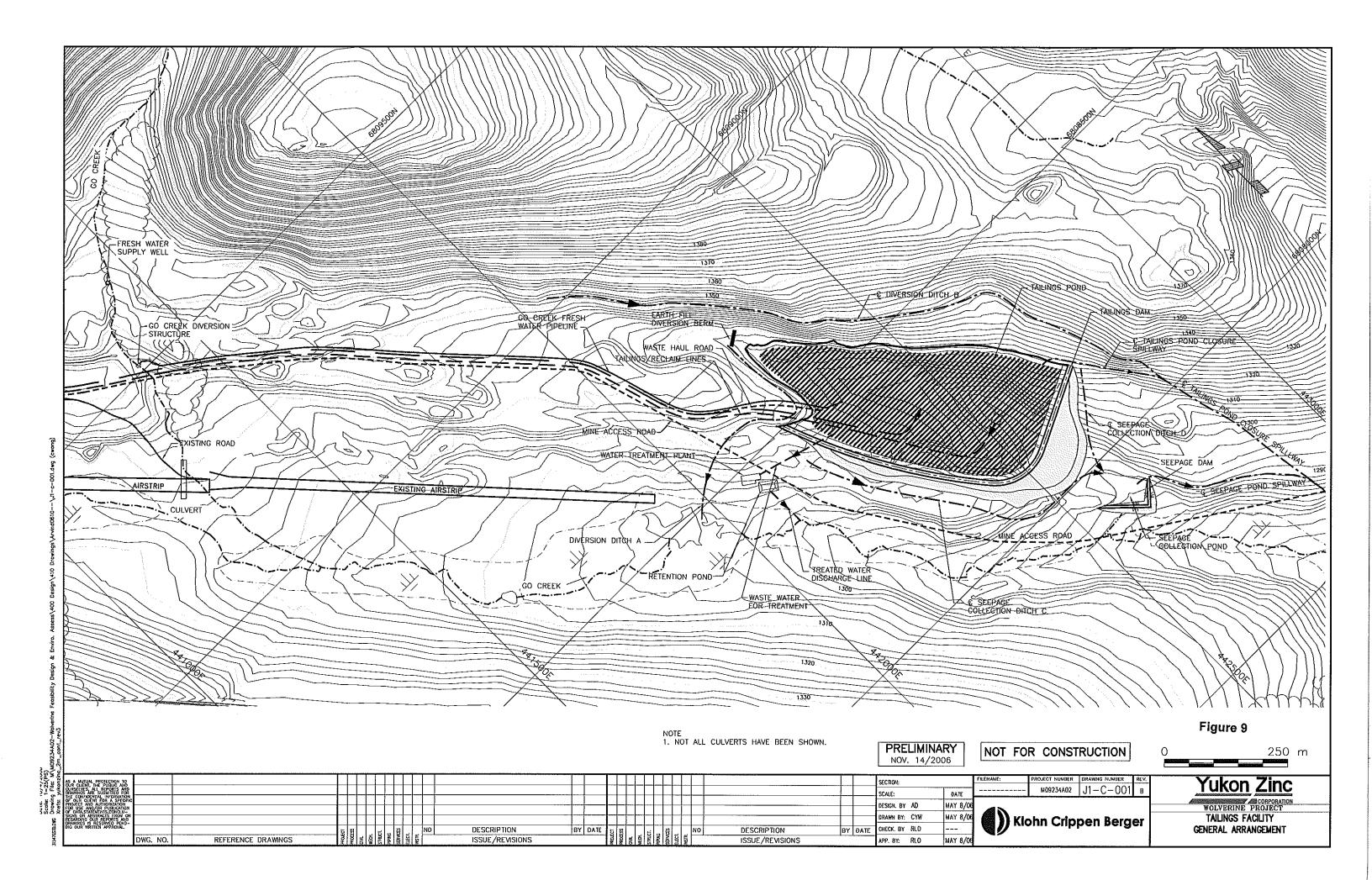

Wolverine Project General Site Plan 2006-02

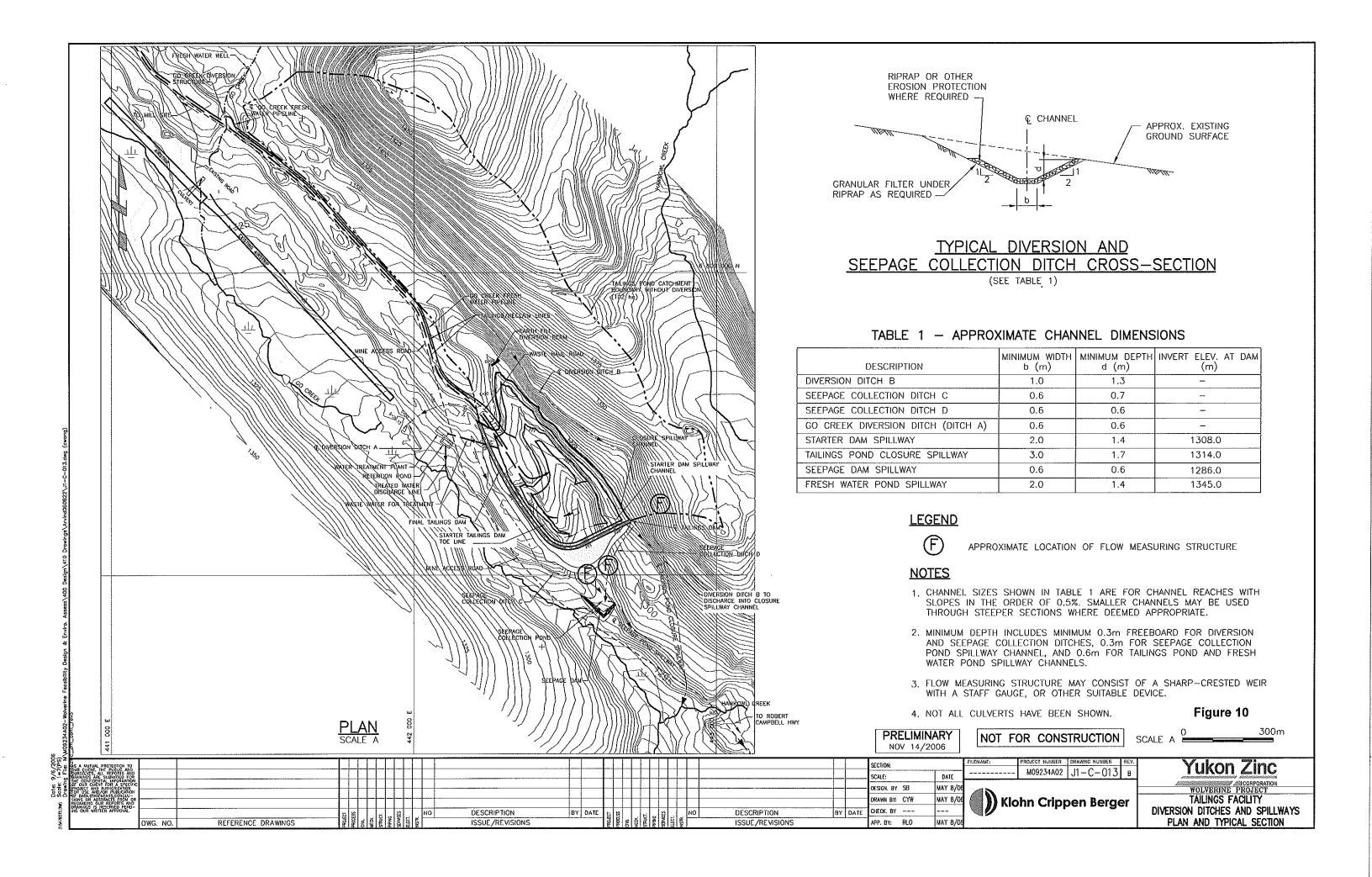
Table 9 Pre-Production Development Schedule

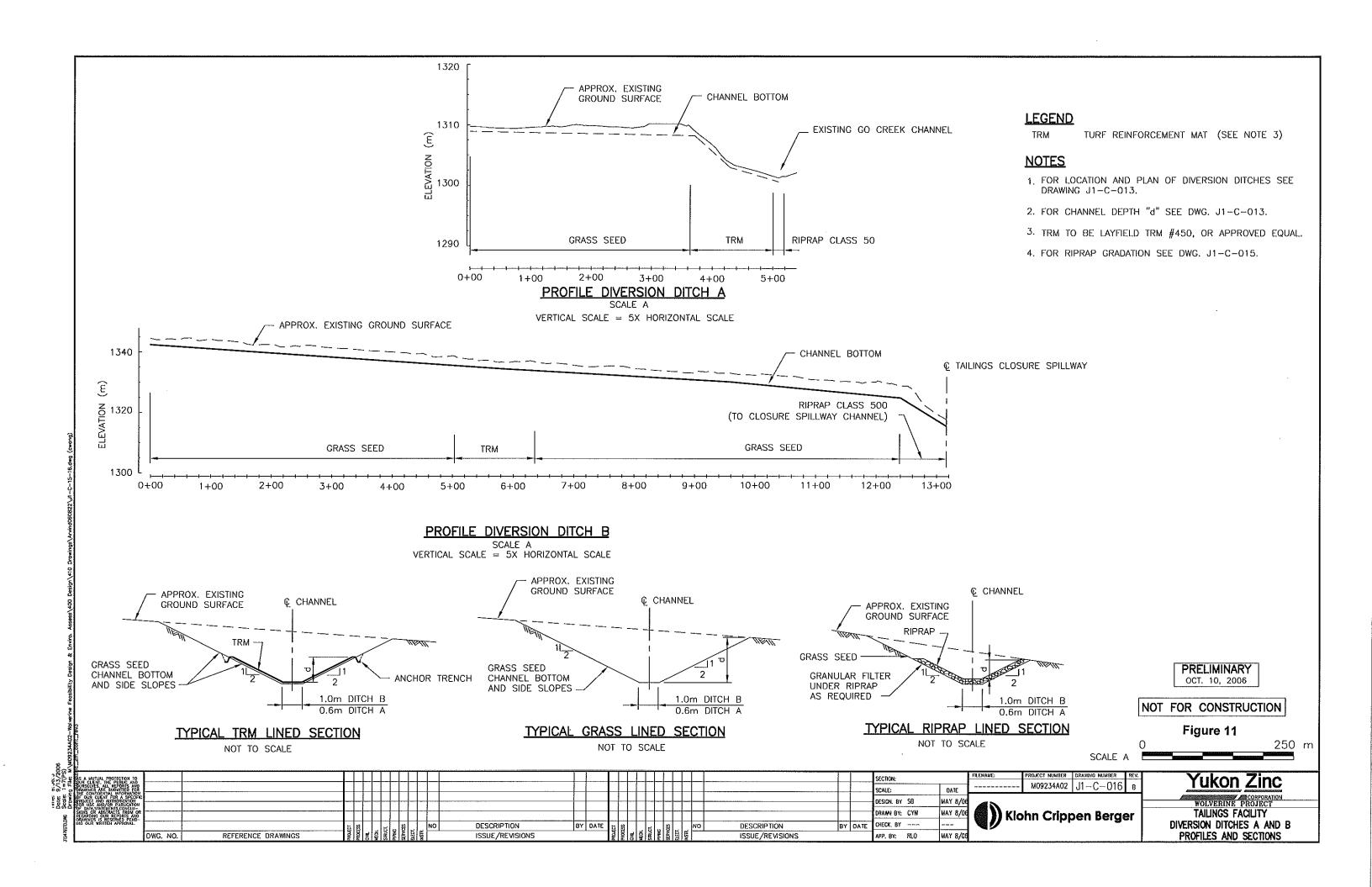
			2007							2008					Totals
Development (meters)	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	
Ramp	57	55	55	38	97	42	52	53	91	58	32	44	84	10	768
Stope Access				10	10	60	0	30	20	58	78	61	15	40	382
Vent Drift			15	28	0	10	58	18			15	40	31	47	262
In Stope Drifting												150	225	362	737
Diamond Drill Drift													14	40	54
Total Development	57	55	70	76	107	112	110	101	111	116	125	295	369	499	2,203
Vent Raises								80	220						300
Main Escape Raises									85						85
In-scope Raises														74	74
Total Raising								80	305					74	459

Yukon Zinc Corporation November 2006

6.3 Tailings Facility Area


The tailings facility consists of the main dam, a seepage dam, a spillway, seepage collection and diversion ditches, reclaim pump barge and pipeline, and a water treatment plant and retention pond. The reclaim and tailings pipeline extend from the tailings facility to the industrial complex and are aligned upslope of the site road between the two areas (Figures 9 and 10). The water treatment plant is located northwest of the tailings pond (Figure 9).


YZC will construct diversion and collection ditches starting in spring 2007, and will strip and clear the footprint of the area and excavate material from within the footprint for borrow (see Section 6.4). Approximate channel dimensions, and typical diversion and seepage collection ditch plan and profile drawings are provided in Figures 9, 10 and 11. Figure 11 shows the typical profile diversion of Diversion Ditches A and B, including the location of erosion control measures such as grass lining, turf reinforcement mat and riprap


6.4 Borrow Areas

Borrow sources for construction materials required for the industrial complex and tailings dam will be excavated from the tailings facility footprint southeast of the airstrip as shown in Figure 3, and sources previously described in Section 5.3.5 along the access road. The total area of disturbance and volume of material at the tailings facility site are approximately 87,500 and 350,000 m², respectively.

Settling ponds will be constructed within the borrow areas to ensure adequate retention time for settling of any collected turbid water. Diversion ditches will be constructed upslope of the borrow areas to direct clean surface runoff to Go Creek, as shown on Figure 3. Appendix D provides the results of acid base accounting test work for four testpit locations within borrow area footprint (Figure 3). Granular material quantities required to manufacture the respective aggregate products are also summarized in Appendix D.

7 Mitigation Measures for Construction Activities

To ensure construction activities have a minimal impact on the environment, best management practices will be followed. Examples of BMP procedures for sediment and erosion control that will be incorporated in project planning activities are summarized in the sub-sections that follow. While it is recognized that there are general environmental techniques and procedures to minimize environmental damage, site-specific conditions will usually require a solution unique for that location. All onsite activities that interact with the environment will be reviewed by the onsite Environmental Coordinator and Yukon government inspectors, as required. The main steps for review and approval of an activity are as follows:

- obtain information pertaining to the job activity
- determine environmental risk, assess risk and determine mitigation measures
- if required, contact government regulatory agencies and prepare regulatory applications

Mitigation measures including general sediment and erosion control techniques and monitoring plan requirements are provided below and specific plans will be developed upon completion of detailed design for the industrial complex, camp, access road, and tailings facility.

7.1 Sediment and Erosion Control Plan

The key to controlling erosion and sedimentation caused by work-related activities is to manage off and onsite runoff. In general, to minimize erosion and sedimentation, work-related activities will be managed to:

- minimize disturbance to vegetation and limit area of clearing
- minimize length of time that unstable erodible soils are exposed
- stabilize erodible soils as soon as practical by seeding or installing erosion control blankets
- ensure effective installation of sediment control measures (silt fences, sediment traps, etc.) before starting work

Effective ways to control erosion and trap sediment are summarized in Table 10. All sediment traps and barriers (i.e., silt fences, straw bales, etc.) will be inspected regularly while they are in place, and cleaned when required to maintain effectiveness. Sediment-laden or turbid runoff will be directed into vegetated areas and temporary fills or stockpiles will be covered with impermeable covers (e.g., plastic) during heavy rainfall.

Table 10 Description of Sediment and Erosion recriniques	Table 10	Description of Sediment and Erosion Techniques
--	----------	--

Technique	Description	Application
Vegetation:	Maintain vegetation, minimize	On slopes, stream banks, floodplains to permit
preservation and	grubbing and maintain root mat,	infiltration and minimize surface disturbance
replanting	reseed/ replant	
Silt fences	Geotextile vertical barrier that causes	On slopes with erodible soils – surface
	sediment deposition	applications only (not to be used instream
		[i.e., flowing water])
Straw bales	Barrier that causes sediment	On slopes with erodible soils and in low
	deposition	surface or low flows only
Sediment traps or	Excavate minor depressions to allow	In areas where high volumes of sediment-
basins	sediment to settle	laden water occurs; may be used with silt
		fencing or bales
Flumes/ spillways	A chute or pipe of non-erodible	In areas with concentrated high velocity
	material to convey runoff down a	surface runoff
	slope	
Check dams	Small dams to reduce the velocity of	In small open channels
	storm water flows in swales/ditches	
Erosion control	Natural fibre matting used to	In areas with surface runoff or channels
blankets	minimize surface erosion	
Plastic covers	Tarp to cover erosive soils	In non-vegetated areas where a temporary
		measure is required to control runoff until the
		site is stabilized

7.2 Monitoring Plan

The purpose of monitoring is to ensure that site activities have minimal adverse environmental effects. Monitoring activities and priorities vary between sites and construction works and will include inspections to ensure that:

- all equipment used for instream work is clean and is in good mechanical order with no fluid leaks
- all fuels and lubricants are stored and refueling and changing of oils/lubricants is conducted well away from any body of water
- spill containment and clean-up equipment are onsite at all times
- all water displaced from concrete forms during concrete pouring is discharged into a sump
- all stockpiles of material are kept above high watermarks
- all mitigation measures are functioning as designed

Environmental monitoring will ensure a high standard of environmental protection and compliance with all regulatory requirements. Details of monitoring programs will be specific to each work activity and specific plans will be developed in conjunction with the various contractors. A fulltime Construction Management and Inspection Team will monitor all construction activities throughout the construction schedule, including clearing operations.

During construction activities in 2007, a qualified Construction Manager or Project Engineer and an Environmental Monitor will be on site to:

- coordinate the activities of contractors and technical specialists
- ensure accurate layout and measurement of the work as well as quality control
- re-design as required to accommodate changes in conditions (i.e., soils conditions or grade-line corrections)
- ensure contractor compliance with all regulatory, permitting and contractual conditions
- prepare daily reports of all construction activities, including equipment employed, areas works, personnel involved, and possible mishaps, outcomes and remedies
- complete photographic journal of all activities and a weekly summary report
- monitor for safety infractions and near misses, and document outcomes and corrective actions

7.3 Wildlife Resource and Heritage Protection Plan

7.3.1 Wildlife Protection

The project area lies at the outer edges of the range of the Finlayson Caribou herd. Moose abound, as do small furbearers, in the project area. Grizzly bears and to a lesser degree Thinhorn sheep are occasionally seen in the project area.

The project results in disturbance of a relatively small area within a region that is rich in wildlife habitat and very little existing disturbance, apart from the Robert Campbell Highway. Using conservative assumptions about the size of the project disturbance footprint, effects on habitat availability for all valued species are expected to be low and barrier effects to wildlife movement are also predicted to be low. The project is on the perimeter of the Finlayson Caribou Herd Range. Concentrate haul south to Watson Lake will avoid potential effects on intensely utilized caribou range to the north. The relatively narrow right-of-way for the access road and low level of traffic will allow wildlife to cross with little impediment. Accordingly effects on wildlife movement patterns are expected to not be significant.

Potential wildlife mortality due to wildlife collisions and hunting on the access road is a concern. Mitigation measures to manage hunting/collision mortality include:

- Access to the mine road will be restricted by a locked gated during the construction, operations, and decommissioning and closure phases of the project.
- Firearms will not be permitted.
- Hunting and fishing will be prohibited at all times on or in the vicinity of the project site. This restriction will apply to all mine employees, managers and contractors and it will be in effect throughout the life of the project from construction through to closure and reclamation. This hunting and fishing prohibition has been in place successfully during the latter part of the exploration phase of the project.
- Fuel haul and concentrate haul volumes are estimated at 13 round trips per day on the mine access road during operations. Incidental traffic will be kept minimal with air

access to the mine predominating for personnel. No private vehicles (including ATVs, snowmobiles, motorized boats or other types of off-road vehicles) will be permitted.

- The maximum speed limit on all access and site roads will be set at 60 km/hr.
- Any observed wildlife corridors will be signed to alert drivers to potential wildlife crossings.

Any mortality on the access road will be recorded and reported and any modifications to the mitigation measures will be considered in consultation with YTG, as required.

Wildlife Attractants

Food wastes are the typical wildlife attractant that is implicated in the development of problem wildlife, especially with respect to problem bears. There are, however, other wildlife attractants that may create problems: chemicals (e.g., road salt), wildlife carcasses (e.g., road kills), and roadside vegetation (e.g., clover). Policy and practice directed at minimizing wildlife concerns related to attractants are presented in Table 11.

Management related to the control of wildlife attractants are intended to minimize and even eliminate the development of problem wildlife. However, in the event a problem wildlife situation arises, the Environmental Coordinator, Mine Manager or designate(s) will initiate the appropriate response actions. Any direct intervention with respect to problem wildlife will be conducted by authorized personnel in consultation with, and as approved and/or directed by Environment Yukon officials.

Bear management practices for this project will have two closely linked components: a Bear Aware program and Bear Safety training. The goal is to reduce human-bear interactions and to reduce and even eliminate black bear and grizzly bear mortalities associated with the project (Table 11). The components will be presented to employees and consultants together unless specialized training in bear safety is required for field survey crews and personnel designated for problem bear responses. In those cases, a professional will provide the appropriate bear safety training course. Note that any direct intervention with respect to problem bears will be conducted in consultation with, and as approved and/or directed by government officials.

Table 11 Mitigation Practices for Issues of Problem Wildlife

Preventing	1. Littering is prohibited on and in the vicinity of the project site and along access roads.
Problem	All garbage (e.g., lunch bags) must be returned to temporary storage containers. Note
Wildlife	that this includes organic wastes (e.g., orange peels, apple cores).
	2. Food wastes will be disposed of as per the Waste Management Plan.
	3. Wastes associated with mechanical maintenance and repairs (e.g., motor oil) will be
	disposed of as per the Waste Management Plan.
	4. All temporary (small) storage containers (e.g., garbage cans) for garbage and recycling
	will be located indoors in bear-proof buildings.
	5. The area around disposal stations will be kept free of garbage and spills will be cleaned
	up appropriately.
	6. Crews working in the field may carry commercially available personal deterrent devices
	(i.e., bear spray, bear 'bangers') but will require an orientation on the use of these
	devices. General restrictions on the use and transport of these devices must be followed.
	7. Employees are not permitted to have firearms on or in the vicinity of the Project site.
	8. Feeding wildlife is prohibited at all times on or in the vicinity of the project site.
	9. Report wildlife incidents related to garbage or human food attractants to Environmental
	Coordinator, Mine Manager or designate(s) as soon as possible.
	10. Report improperly disposed of garbage, particularly food wastes, to Environmental
	Coordinator, Mine Manager or designate(s) as soon as possible.
	11. Be 'Bear Aware'. All Project workers will receive a Bear Aware Program orientation.
	Report all bear observations from in and around the Project site and along access roads.
Dealing with	1. Immediately notify the Environmental Coordinator, Mine Manager or designate(s) of
Problem	any problem wildlife issue. Note that reporting wildlife incidents as they occur will
Wildlife	ensure that the proactive rather than reactive measures can be taken to prevent a serious
wildine	<u> </u>
	outcome (e.g., human injury, destruction of the problem animal).
	2. The Environmental Coordinator, Mine Manager or designate(s) will initiate the
	appropriate actions in response to a problem wildlife issue.
	3. Only authorized personnel are permitted to use non-lethal (e.g., rubber bullets) and lethal
	problem wildlife interventions.
	4. Do not attempt to deal with a problem wildlife issue on your own. Problem wildlife can
	be dangerous.
	5. Conform to recommendations regarding bear safety.

Wildlife and Vehicles

Management procedures and policies are intended to reduce the incidence of wildlife-vehicle collisions and near misses. Table 12 presents management practices for traffic and wildlife/vehicle incidences.

Table 12 Mitigation Practices for Issues of Wildlife and Vehicles

	_
Vehicles and	1. Wildlife has the right-of-way on all roads, except where it is judged to be unsafe to do
Wildlife	SO.
	2. Maximum speed limit on all access roads is 60 km/h.
	3. Incorporate traffic signs for sensitive wildlife areas.
	4. Verbally report ungulate and other large animal carcasses observed on and in the vicinity
	of the Project site, and along access roads to the Environmental Coordinator, Mine
	Manager or designate(s) as soon as possible.
	5. Conform to road snow clearing requirements, such as exit corridors in areas of high
	snow, as per the discretion of the Environmental Coordinator, YG Conservation Officer
	and/or Regional Biologist.
	6. Project-related traffic (including ATVs and snowmobiles) is restricted to designated
	access roads and trails (with certain exceptions).
	7. A vehicle collision that results in the death or injury of an ungulate or other large animal
	must be reported as soon as possible.
	8. A near miss between a vehicle and an ungulate or other large animal must be reported as
	a wildlife 'incident'.

Habitat Management and Wildlife Harassment

Wildlife species are known to be subject to stress in association with human-caused disturbances. Human-caused disturbances that could have potentially adverse effects on wildlife include off-road vehicles, humans on foot, research activities, wildlife viewing, and aircraft overflights.

Management will be directed at minimizing potential project-related effects on wildlife habitat that may either occur directly (habitat loss, nest destruction) or indirectly (habitat avoidance due to sensory disturbance, disruption of daily movements).

The restrictions presented in Table 13 will be essential in the minimizing harassment and effects of wildlife habitat.

Table 13 Mitigation Practices for Issues of Wildlife Habitat and Harassment

10011 1110	
Wildlife	1. Conform to General Restrictions for Wildlife Protection.
Habitat	2. Conform to restrictions and seasonal restrictions on vegetation clearing as per the
	direction of the Environmental Coordinator, Mine Manager or designate(s).
	3. Vegetated buffers will be maintained adjacent to facilities and access roads.
	4. Conform to road snow clearing requirements at the discretion of the Environmental
	Coordinator.
	5. Seeding along road corridors cannot be conducted without approval of the
	Environmental Coordinator, Mine Manager or designate(s), and will follow seed mix
	recommendation outlined in the Reclamation Plan.
	6. Report wildlife observations from the project site and along access roads.
Wildlife	1. Any harassment of wildlife will be prohibited on site and by all mine staff, guests and
Harassment	contractors.
	2. Adopt and follow the Yukon guidelines for dealing with aerial impacts from helicopters
	and fixed-wing flights. Aircraft will, to the extent possible, avoid airspace over and in
	proximity to the Wolverine, Little Wolverine, Little Jimmy and Frances Lakes.
	3. All staff, pilots, guests and contractors will receive orientation and training with respect
	to wildlife harassment policies.

Wildlife Health

Management policy and practices are intended to reduce potential project-related effects on wildlife health. For example, company procedures on the safe and prompt clean up of any chemical spills will be followed, with the recognition that special considerations for wildlife may be necessary in some cases. Table 14 provides mitigation practices for issues pertaining to wildlife health.

Table 14 Mitigation Practices for Issues of Wildlife Health

Wildlife Health

- 1. Feeding wildlife is prohibited at all times on or in the vicinity of the project site, including during travel to and from the site.
- 2. Follow company procedures on the safe and prompt clean up of any spills will be followed.
- 3. Engineering requirements for all ditches and engineered embankments/dams/settling ponds as per the direction of the Environmental Coordinator, Mine Manager or designate(s) will be adhered to.
- 4. Herbicides will not be used in vegetation management activities. Instead, manual clearing will be conducted when and where required, in adherence to the migratory bird vegetation clearing windows.
- 5. Report any observations of wildlife in and around potential sources of contaminants (e.g., settling ponds, fuelling sites).
- 6. Temporary fencing in areas to prevent wildlife access.

Wildlife Reporting

A wildlife records program that includes wildlife observations, location of wildlife features (e.g., active nests or dens), traffic incidents, and wildlife incidents (e.g., aggressive encounters) will be implemented. This information will be regularly reviewed to identify issues of concern (e.g., road segments with a high incidence of roadkills, active dens, etc.). If an issue of concern is identified, a strategy to address the concern will be developed in consultation with the appropriate agencies. The wildlife records program is an important tool in monitoring the effectiveness of the wildlife protection plan recommendations. Two different wildlife records will be recognized:

- Wildlife observations: Observation of sign (e.g., tracks, scat, nests, burrows, etc.) or
 observations of the animals themselves, behaving in a 'normal' way. Wildlife
 observations provide information on wildlife habitat use and behavior patterns in
 relation to the project. Project workers and contractors will be encouraged to record
 wildlife observations (including notes on habitat use).
- Wildlife incidents: Reports of close or aggressive encounters, unusual behavior in and around site facilities, traffic accidents or near misses, and observations of dead or injured animals. Project workers and contractors will be required to verbally notify the Environmental Coordinator, Mine Manager or designate(s) of wildlife incidents as soon as possible.

While the distinction between wildlife observations and wildlife incidents will be communicated to employees and consultants, there is the potential for overlap, especially regarding observations of certain wildlife (i.e., bears) in the immediate vicinity of project facilities. Thus, all wildlife observation reports should be reviewed for evidence of a potential problem (e.g., habituation).

A written log of wildlife observations and incidents for the mine property and access road will be maintained for the life of the mine (until there are no longer employees on site). The log will include time and date, species, location of observation and other relevant information such as mortality of wildlife and birds. A review of the log will occur periodically with the YTG Regional Biologist for the area. Wildlife collisions and mortalities will be reported immediately to the local Environment Yukon conservation office.

Wildlife observations, monitoring programs, and incidents may require additional mitigation as determined in consultation with the Yukon Environment officials, the Ross River Dena Council, and local stakeholders.

7.3.2 Heritage Resource Protection

There are no heritage resources sites at the project site or along the access road; however, given the proximity of the project to Wolverine Lake, there is the potential for off site activities to disturb heritage sites in the area. The following five points outline Yukon Zinc Corporation's general First Nations heritage protection measures:

- 1. A heritage awareness program will be included in environmental awareness training to promote the nature and value of heritage resources, clearly express the importance of these sites to the Aboriginal peoples, and orientate personnel to YZC's policy of site identification, protection and mitigation for the benefit of the public.
- 2. Identified sites in the area will be protected and monitored during project activities.
- 3. Heritage resource awareness training will be provided in the basic orientation for all workers and contractors.
- 4. In the event that a heritage site is encountered during construction, work will cease until the site is assessed by a qualified archaeologist and/or a Ross River Dena Council representative. A protection plan may be required, and once developed it will be approved by the regulatory authority.
- 5. Workers will be required to report the discovery of archaeological sites, or the vandalism of such sites to the Environmental Coordinator, Kaska Environmental Technician, or Mine Manager.

To the extent possible, traditional trails and traplines will not be disturbed or blocked by project activities. Where a disturbance is unavoidable, YZC will reroute the trail, and reclamation of any disturbance will be undertaken as soon as practicable.

8 Waste Management

8.1 Solid Waste

Non-hazardous solid waste will be segregated into the two streams - putrescible and non-putrescible wastes. Regular pick-up times and designated areas will be established for all burnable materials such as kitchen waste, paper, cardboard, and untreated/ unpreserved wood waste. As per the Yukon *Environment Act*, a Commercial Dump Permit under the *Solid Waste Regulations* for the operation of the landfill and an Air Emissions Permit under the *Air Emissions Regulations* for incineration are required.

8.1.1 Putrescible Wastes

Organic food wastes from the kitchen facilities will be segregated, collected in closed bear-proof bins and incinerated daily to minimize wildlife attraction.

8.1.2 Non-Putrescible Waste

Burnable non-organic wastes will be incinerated. Non-burnable materials (such as cans, bottles, etc), used rubber products, scrap metal, and plastic packaging will be collected in designated recycling bins and removed from site periodically.

Non-hazardous solid wastes that cannot be recycled will be buried in a landfill. The landfill will be established early in the construction phase and will remain in use for the life of the mine. Material will be periodically buried under a layer of soil to prevent the loss of garbage through wind action.

The landfill will be designed to accommodate the waste volume generated over the life of the mine and in a manner that will facilitate landfill closure. Surface water runoff will be diverted around the facility.

A sign at the entrance to the site will list conditions for use, emergency contacts and procedures, and items that may not be disposed of within the facility such as: hazardous wastes, acids, corrosives, solvents, oily wastes, explosives, or unsterilized medical waste. YZC will ensure that the site is managed in such a way as to prevent wildlife from being attracted to the facility.

8.1.3 Used Tires

Used tires will be collected and those not used on site during the construction and operation phase to provide vehicle protection barriers will be hauled off site and disposed of in accordance with the Yukon Used Tire Management Program. The Municipality of Watson Lake has a landfill facility that currently accepts used tires at no cost.

To minimize the potential fire hazard created by tire stockpiles, the rules provided by the 2005 National Fire Code of Canada will be followed.

8.2 Special Waste

Special or hazardous wastes are dangerous goods that are no longer used for their original purpose as defined in the federal *Transportation of Dangerous Goods Act and Regulations*. Special waste is regulated by the *Special Waste Regulations* under the

Yukon Zinc Corporation November 2006

Yukon *Environment Act*, and a Special Waste Permit is required to generate, handle or dispose of a special waste. Special wastes generated, handled and stored during construction activities will likely include used anti-freeze, used batteries, leftover solvents, cleaners, paints, and petroleum products. Details pertaining to the source and management of these substances are provided below.

Hazardous waste will be segregated at the point of generation, placed into appropriate storage containers and then shipped off site to an acceptable disposal or recycling facility in either Whitehorse or Watson Lake. When convenient, YZC will also participate in Environment Yukon's annual commercial special waste collection.

Two facilities in Whitehorse that are permitted to collect and dispose of hazardous wastes such as used oil, waste oil filters, used batteries, antifreeze, waste solvents and lubricants are as follows:

- Sun Set Septic current trucking costs are \$1.60/km and \$105/hr while onsite.
- Corvus Industries current trucking costs are \$125/hr and 205L drums are supplied at \$80 ea.

Watson Lake is revising its Solid Waste Management Plan and is looking to build local businesses and facilities that have the capacity to support future industrial sites for all types of non-hazardous and hazardous wastes.

All wastes will be handled, stored and disposed of according to the appropriate regulations under the Yukon *Environment Act, Contaminated Site Regulation, Special Waste Regulation, Solid Waste Regulation*, and *Storage Tank Regulation*. In addition, unused or damaged explosives will be disposed of in a manner that complies with the *Explosive Act* (Canada).

The following general storage procedures will be followed to prevent special waste from endangering public health and the environment:

- Liquid special wastes will be stored in a tank if the volume is more than 205 L or in containers for smaller amounts. For transportation, flammable and combustible liquids will be stored in containers or tanks that meet the requirements of the federal Transportation of Dangerous Goods Regulations.
- When storing waste in tanks and containers, the National Fire Code guidelines will be followed with regards to distance from buildings and property lines, distance between tanks, dikes and drainage, and emergency access.
- Storage tanks with a capacity of more than 4000 L, or more than twenty-four 45-gallon drums stored in one group will have secondary containment. Tanks will have a clay or plastic liner or a curbed concrete pad surrounding the container, and a spill containment device attached to the intake valve. When containing 45-gallon drums, a drip pan or similar container or two containers (with one placed inside the other) will be used.
- Records of the wastes being stored, including type, volume, origin and storage location will be kept and will be readily accessible to assist response teams if a spill or fire occurs. Copies of waste manifests will be submitted to the Environmental Programs Branch.
- Containers stored outside will be covered to protect them from the weather. Containers will be stored in piles, with 1.5 m between the piles.

- Containers will be closed, except when waste is added or removed.
- The volume of waste will not exceed the limits set out in the National Fire Code for flammable and combustible liquids.
- If wastes with different flash points are stored together, the storage requirements for the liquid with the lowest flash point will be used.
- Containers will be labeled with the waste's identity, PIN no., class, and packing group as per the requirements of the Special Waste Permit, and in accordance with the federal *Transportation of Dangerous Goods Regulations*.
- Wastes will not be mixed or diluted with other wastes or water, as mixed products often cannot be recycled.

In the event of a temporary closure, all unused chemicals or reagents, with the exception of those required for water treatment plant and other incidental uses, that are deemed to have short shelf life will be returned to suppliers/manufacturers. Those chemicals that cannot be returned will be disposed of in a proper manner as per manufacture instructions. Fuel supplies for equipment will remain on site and diesel fuel tanks will remain in service during a temporary closure. YZC will comply with the requirements under the *Yukon Environment Act* pertaining to storage and handling of petroleum products.

8.2.1 Used Oil

The major sources of waste oil will be from mobile equipment and power plant generators. The most common types of used oil are crank case oil, gear oil, transmission fluid, and hydraulic oil. Under the Special Waste Regulations, a special waste permit is required if more than 20 L of used oil is generated per month or stored. For tanks with capacities greater than 4000 L, a permit will be required under the *Storage Tank Regulations*.

Used oil will be collected in designated waste oil tanks located in the mobile equipment maintenance area and near the diesel gensets. The oil will be periodically shipped off site by authorized carriers and taken to permitted facilities for shipping, treatment or recycling.

8.2.2 Waste Oil Filters

Before disposing of waste oil filters, as much oil as possible will be eliminated from them. Steps required to ensure proper disposal include puncturing the top of the filter, setting the filter in a tray and allowing the oil to drain for approximately 24 hours, and crushing the filter to increase waste oil recovery.

Once the oil is drained, the filter will be disposed of by recycling through a company interested in the filter's metal value, or through a disposal operator, or at a landfill site.

8.2.3 Used Batteries

Waste vehicle batteries will be collected for regular shipment to a licensed recycle or disposal facility. A Special Waste Permit is required for handling more than 5 kg of lead-acid batteries per month.

The steps outlined below for storing batteries will be followed to help prevent acid leaks and spills and to avoid contamination of the storage site:

- Batteries will be placed on wooden pallets in secondary containment (i.e., on a liner or berm) to prevent the escape of acid.
- Before putting waste batteries on the pallet, plastic sheeting will be placed on it to
 completely enclose all of the batteries in a continuous sheet of plastic. All sides will
 be wrapped to protect the batteries from the weather and to prevent any acid from
 being discharged into the environment.
- Batteries will not be stacked more than three layers thick and each layer will be separated with a sheet of plywood or other suitable material.

8.2.4 Antifreeze

A permit under the Special Waste Regulations is required if more than 5 L of waste antifreeze is generated within a 30 day period. Used antifreeze will be stored in good quality containers that are leak-free and have tight closures to prevent spills, then shipped to a licensed recycle or disposal facility.

8.2.5 Waste Solvents and Lubricants

Miscellaneous, small quantities of waste solvents and lubricants will be generated through routine maintenance and repair of equipment. Solvents are liquid substances that can dissolve other substances and can be recycled. Paint thinners and strippers, varsols, degreasing fluids, mineral spirits and petroleum distillates are common solvents. Most of these liquids are flammable and toxic. A Special Waste Permit must be obtained from the Environmental Programs Branch if more than 5 L of solvents per month, or more than 5 kg of solvent sludge per month is handled or stored.

Solvents and lubricants will be collected and stored in appropriate drums for regular shipment to a licensed recycle or disposal facility. Containers will be covered to protect them from precipitation and will be kept apart from other waste products. When transporting solvents, the container will be labeled according to the *Transportation of Dangerous Goods Act*.

8.2.6 Contaminated Sites

For wastes contaminated with petroleum hydrocarbons (with <3% hydrocarbon content), such as in the event of a spill, bioremediation will be used. A Land Treatment Facility permitted under the *Contaminated Sites Regulations* (#24-022) is located near the airstrip, and any additional contaminated soil generated and treated during the life of the project will require an amendment to this permit. Remediated soils will be sampled to determine when hydrocarbon contamination has been reduced to acceptable standards, and subsequently stockpiled for use in reclamation projects. Water collected in the land farm will run through an oil-water separator and the water will subsequently be discharged into the tailings facility and the sludge will be disposed of according to *Special Waste Regulations*.

8.2.7 Medical Wastes

A small amount of hazardous waste (such as syringes, bandages etc.) will be generated at the first aid room. This waste will be collected in designated purpose-built containers and disposed of appropriately at an offsite facility.

9 Monitoring and Surveillance

The following sections provide details pertaining to the monitoring and reporting with respect to ground and surface water quality, and water quantity.

9.1 Groundwater Monitoring

Monitoring of groundwater conditions around the Wolverine Mine facilities will focus on groundwater conditions in the upper Wolverine Creek and Go Creek basins. More specifically, monitoring of groundwater will occur in those areas downgradient of the underground and process plant operations, immediately adjacent to Wolverine Creek, as well as downgradient of the tailings facility in the upper reaches of Go Creek. Monitoring will consist of physical (e.g., piezometric water levels) and water quality determinations at all locations.

9.1.1 Wolverine Creek Basin

Groundwater monitoring wells adjacent to Wolverine Creek and downgradient of the proposed underground operations have been established and are currently being monitored as part of the continuing baseline groundwater characterization program. Well locations are depicted in Figure 12. The objectives of the groundwater monitoring program for the underground and process plant areas within the upper Wolverine Creek basin are as follows:

- provide information to delineate the direction of groundwater flow;
- provide information to estimate the velocity and quantitative rate of groundwater flow:
- monitor and delineate potential effects of mine dewatering on Wolverine Creek; and
- provide sampling locations to continue to document baseline groundwater quality prior to operations and to monitor for any impacts to groundwater quality that result from mining or mining related activities during operations and at closure.

A total of sixteen groundwater monitoring wells have been installed at eight nested locations in the Wolverine Creek basin, as illustrated in Figure 12.

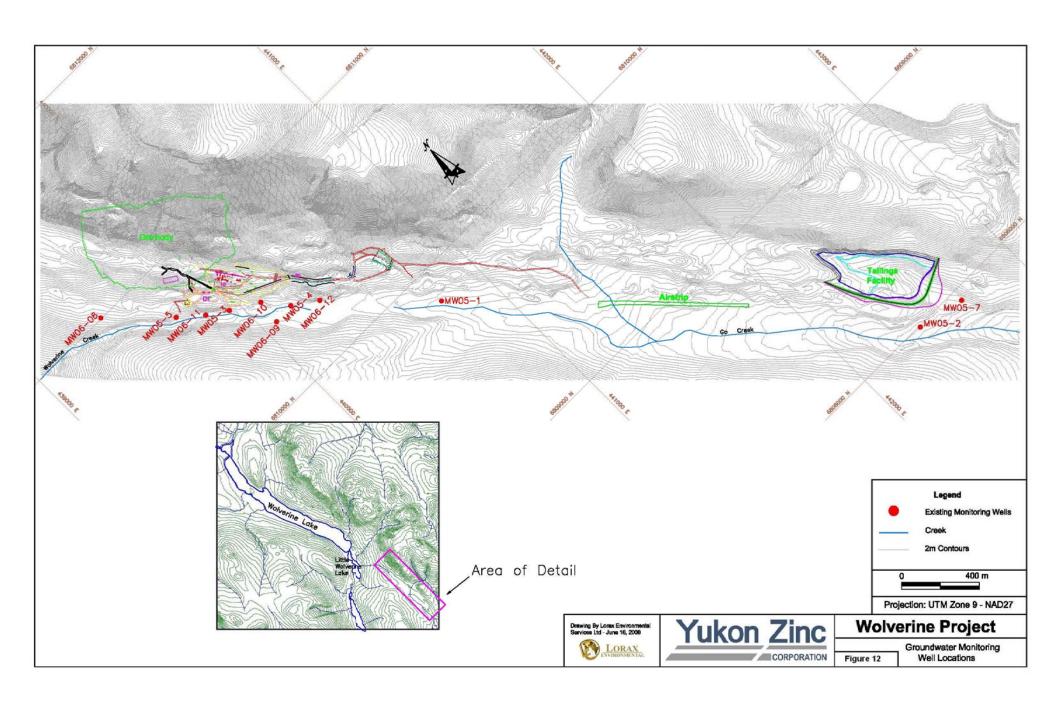


Table 15 summarizes the well identification and depth of completion for each monitoring well in the upper Wolverine Creek basin.

Table 15 Wolverine Creek Basin Groundwater Monitoring Wells

Well	Depth (m)	Stratigraphic Unit
MW05-3A	19.98	Shallow bedrock
MW05-3B	4.52	Alluvial Overburden
MW05-4A	17.56	Shallow bedrock
MW05-4B	3.89	Alluvial Overburden
MW05-5A	26.50	Shallow bedrock
MW05-5B	4.39	Alluvial Overburden
MW06-08S	21.92	Shallow bedrock
MW06-08M	82.81	Bedrock
MW06-08D	184.71	Deep Bedrock
MW06-09S	21.30	Shallow bedrock
MW06-09M	80.38	Bedrock
MW06-10S	21.33	Shallow bedrock
MW06-10M	104.30	Bedrock
MW06-10D	185.00	Deep Bedrock
MW06-11S	21.30	Shallow bedrock
MW06-12S	21.65	Shallow bedrock

As illustrated, the wells have been designed to monitor groundwater quality at various depths and in different geological units including the shallow alluvial/colluvial aquifer and the shallow, medium and deep bedrock units.

Groundwater levels will be monitored monthly, with static levels recorded prior to sampling. Data will be summarized and reported annually. Reports will include elevation versus time graphs, interpreted equipotentials and updated assessments of the groundwater flow.

Groundwater quality samples will also be collected monthly and analyzed for a suite of parameters including physical parameters, major anions, nutrients and dissolved metals; total metals will not be monitored for groundwater wells. Wells will be purged prior to each sampling following static water level measurements to ensure representative samples are collected.

Analytical parameters to be monitored are listed in Table 16. QA/QC measures will include a travel blank, a field blank prepared from distilled water, a filter blank prepared from the distilled water, a blind field duplicate and a laboratory duplicate.

Groundwater quality sampling frequency may be reduced to quarterly sampling following sufficient data collection and a demonstration that the data is of adequate quality to justify a less frequent sampling program without compromising the integrity of the groundwater monitoring program.

Table 16 Groundwater Quality Monitoring Parameters and Detection Limits

Parameter	Symbol	Detection Limit	Units
Physical Parameters			
Conductivity		2	μS/cm
Hardness		0.5	mg/L
Total Dissolved Solids	TDS	10	mg/L
pH	pH	0.1	pH
Turbidity	NTU	0.1	NTU
Major Anions	1,10	0.1	1110
Alkalinity-Total	CaCO ₃	0.5	mg/L
Bromide	Br	0.1	mg/L
Chloride	Cl	0.5	mg/L
Fluoride	F	0.02	mg/L
Sulphate	SO ₄	0.5	mg/L
Nutrient Parameters			8
Ammonia Nitrogen	N	0.005	mg/L
Nitrate Nitrogen	N	0.005	mg/L
Nitrite Nitrogen	N	0.001	mg/L
Dissolved Ortho-Phosphate	P	0.005	mg/L
Dissolved Trace Metals			
Aluminum	Al	0.001	mg/L
Antimony	Sb	0.0001	mg/L
Arsenic	As	0.0001	mg/L
Barium	Ba	0.001	mg/L
Boron	В	0.008	mg/L
Cadmium	Cd	0.000017	mg/L
Calcium	Ca	0.05	mg/L
Chromium	Cr	0.0005	mg/L
Cobalt	Co	0.001	mg/L
Copper	Cu	0.0002	mg/L
Iron	Fe	0.005	mg/L
Lead	Pb	0.00005	mg/L
Magnesium	Mg	0.05	mg/L
Manganese	Mn	0.001	mg/L
Molybdenum	Mo	0.001	mg/L
Nickel	Ni	0.0005	mg/L
Phosphorus	P	0.1	mg/L
Potassium	K	1	mg/L
Selenium	Se	0.0005	mg/L
Silicon	Si	0.05	mg/L
Silver	Ag	0.00001	mg/L
Sodium	Na	0.05	mg/L
Strontium	Sr	0.001	mg/L
Thallium	Tl	0.0001	mg/L
Vanadium	V	0.001	mg/L
Zinc	Zn	0.001	mg/L

9.1.2 Go Creek Basin

Monitoring of groundwater conditions in the upper Go Creek basin focuses on monitoring the performance of the tailings facility, in particular the integrity of the Enviroliner system installed to prevent tailings water seepage. The objectives of the groundwater monitoring of the upper Go Creek basin are therefore to:

- provide information to delineate the direction of groundwater flow
- provide information to estimate the velocity and quantitative rate of groundwater flow
- continue to document baseline groundwater quality prior to operations and to monitor for any impacts to groundwater quality that result from operation of the tailings facility during operations and at closure

Existing groundwater monitoring well nests MW05-7A, MW05-7B and MW05-2A are located immediately downgradient of the proposed tailings facility and seepage collection pond. Unlike the Wolverine Creek groundwater wells, only the shallow alluvial and shallow bedrock conditions will be monitored; deeper bedrock installations are not warranted at these locations. Table 17 summarizes the well identification and depth of completion for each monitoring well in the upper Go Creek basin.

Table 17 Go Creek Basin Groundwater Monitoring Wells

Well	Depth (m)	Stratigraphic Unit
MW05-1A	22.9	Shallow Bedrock
MW05-1B	5.0	Alluvial Overburden
MW05-2A	22.9	Shallow Bedrock
MW05-2B	5.0	Alluvial Overburden
MW05-7A	30.2	Shallow bedrock
MW05-7B	4.6	Alluvial Overburden

Groundwater levels will be monitored on a quarterly basis, with static levels recorded prior to sampling. Because there are no dewatering activities in the area, monthly monitoring of groundwater levels are not warranted as compared to the Wolverine Creek basin. Data will be summarized and reported annually. Reports will include elevation versus time graphs, interpreted equipotentials and updated assessments of the groundwater flow.

Groundwater quality samples will also be collected quarterly. Wells will be purged prior to each sampling following static water level measurements to ensure representative samples are collected. Water quality parameter list will be as indicated in

9.1.3 Summary of Groundwater Monitoring

Table 18 provides a summary of the proposed groundwater monitoring program for the Wolverine Creek and upper Go Creek basins including monitoring throughout the lifecycle of the Wolverine operation.

Table 18 Summary of Groundwater Monitoring Program for Wolverine Creek and Go Creek Basins

Well Sites	Purpose	Pre- Construction	Construction	Operations	Closure	Post Closure
MW05-1A/B	Monitor upper reaches of Go Creek groundwater basin	Quarterly	Quarterly	Quarterly	Quarterly	Annual
MW05-2A/B	To monitor impact of tailings facility	Quarterly	Quarterly	Quarterly	Quarterly	Annual
MW05-3A/B	To monitor impact of underground and industrial complex	Quarterly	Quarterly	Monthly	Quarterly	Annual
MW05-4A/B	To monitor impact of underground and industrial complex	Quarterly	Quarterly	Monthly	Quarterly	Annual
MW05-5A/B	To monitor impact of underground and industrial complex	Quarterly	Quarterly	Monthly	Quarterly	Annual
MW05-7A/B	To monitor impact of tailings facility	Quarterly	Quarterly	Quarterly	Quarterly	Annual
MW06-8 S/M/D	To monitor impact of underground	Quarterly	Quarterly	Monthly	Quarterly	Annual
MW06-9 S/M	To monitor groundwater quality on west side of Wolverine Creek (not affected by operations)	Quarterly	Quarterly	Monthly	Quarterly	Annual
MW06-10 S/M/D	To monitor impact of underground and industrial complex	Quarterly	Quarterly	Monthly	Quarterly	Annual
MW06-11 S	To monitor impact of underground and industrial complex			Monthly		
MW06-12 S	To monitor impact of underground and industrial complex			Monthly		

9.2 Surface Water Monitoring

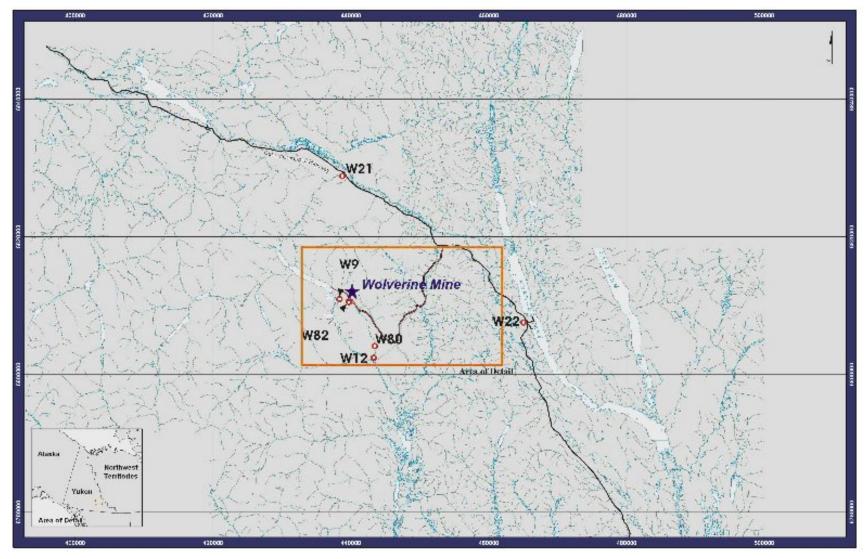
The surface water monitoring program for the Wolverine Project includes the monitoring of hydrologic flows and water quality at strategic locations and has been designed to meet the following objectives:

- continue to provide stream flow data specific to the mine site operations focusing on Go Creek and Wolverine Creek watersheds
- better constrain watershed base flows, particularly in Wolverine Creek
- document water quality in the receiving environment and to verify compliance during discharge periods from the water treatment facility
- provide data to update predictions of water quality impacts, and to support ongoing review of mine water and waste management strategies during operations and at closure

9.2.1 Surface Water Hydrology

A surface water hydrology monitoring network has been established for the Wolverine Project that provides continuous stream flow data for watercourses in the immediate vicinity of mine site operations as well as more regional coverage (Figures 13 and 14).

Stations W9 and W82 have been established on Wolverine Creek at the mouth and in the upper reaches immediately adjacent to the underground operations, respectively. These stations will be utilized to closely monitor the influence of underground dewatering on flow conditions in Wolverine Creek.


Monitoring of flow conditions in Go Creek occurs at stations W80 and W12 (Figure 14). W80 represents the compliance monitoring point for seasonal water treatment plant discharges and flow conditions are closely monitored in conjunction with water quality conditions. Station W12 is also located on Go Creek, just upstream of the confluences of Money Creek and Pup Creek with Go Creek. This station has been historically monitored for flow and monitoring will continue throughout operations to provide data to permit refinements to site water balance conditions.

Regional hydrology is monitored via stations W21 on Nougha Creek and station W22 on Money Creek.

Each hydrology station is equipped with a continuous reading datalogger. Stations will receive at least two annual inspections, once immediately prior to freshet and again in the late summer fall prior to winter low flow conditions. During inspections, equipment will be calibrated. During the initial five years of the operation, stream gauging will occur at each station at least four times per year. Stream gauging data will be used to update each watercourse stage discharge curve. After the first five years, stream gauging will be limited to twice annually.

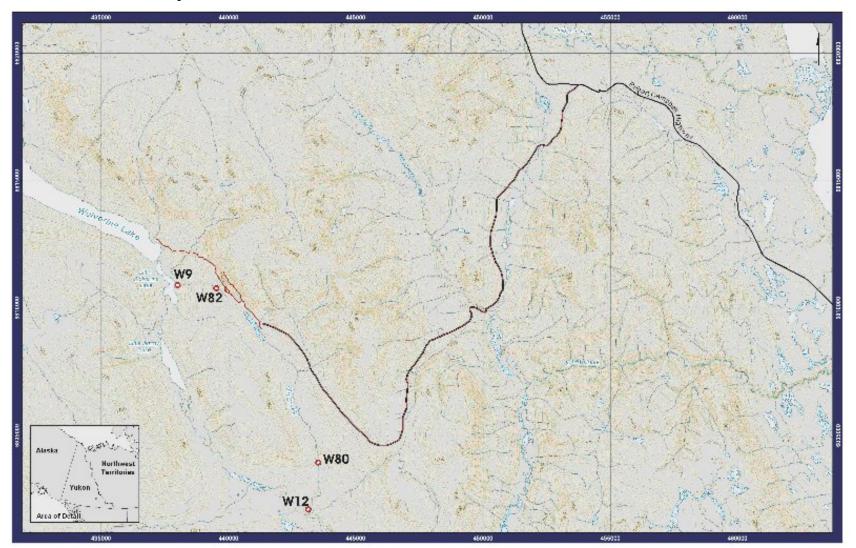

General Site Plan 2006-02 Wolverine Project

Figure 13 Locations of Continuous Hydrology Monitoring Stations in the Immediate Vicinity of Wolverine Project Operations and Regional Stations

November 2006 Page 66 Wolverine Project General Site Plan 2006-02

Figure 14 Detail of Station Locations of Continuous Hydrology Monitoring Stations in the Immediate Vicinity of Wolverine Project

Yukon Zinc Corporation November 2006

9.2.2 Surface Water Quality

The following section presents the proposed monitoring program for receiving waters for the pre-construction, construction, operational and closure phases of the Wolverine Project. Both surface water and water treatment plant discharge monitoring programs are essential to the overall objective of obviating environmental impacts to the receiving environment and maintaining compliance with water quality objectives in Go Creek. In addition, water quality monitoring at key locations along the road route will also be maintained.

The water quality parameters and detection limits to be used in the monitoring program of the receiving surface waters are shown in Table 19 and are similar to those used for previous baseline surveys. Particular attention has been paid to achieving the lowest possible detection limits for key parameters including cadmium and selenium. The list of parameters may be modified at a future date to reflect site-specific conditions of the project.

Surface water quality monitoring stations have been established in all key watersheds of the project area including the Wolverine Creek - Wolverine Lake watershed (stations W1, W21, L1, W8, W82 and W9); Go Creek watershed (stations W31, W16, W15, W81, W80 and W12); Money Creek watershed (stations W14, W22 and W40) and along the road route (stations W71, W72 and W73) (Figures 15 and 16).

Table 20 provides a summary of the surface water monitoring program from preconstruction phase through to closure for all monitoring stations, including the monitoring of key components of the water management system. For all stations in the Wolverine, Go Creek, Money Creek and road route watersheds, surface water quality monitoring during the pre-construction, construction and operational phase of the mine will occur on a monthly basis. For the compliance monitoring point in Go Creek at station W80, water quality monitoring will occur daily during periods of active water treatment plant discharge.

During closure, stations will be sampled monthly, but only on a seasonal basis during the ice free period of May to October. The exceptions to this include stations W21, W8, W71, W72 and W73 where sampling during the closure period will be quarterly during the ice free period (Table 20).

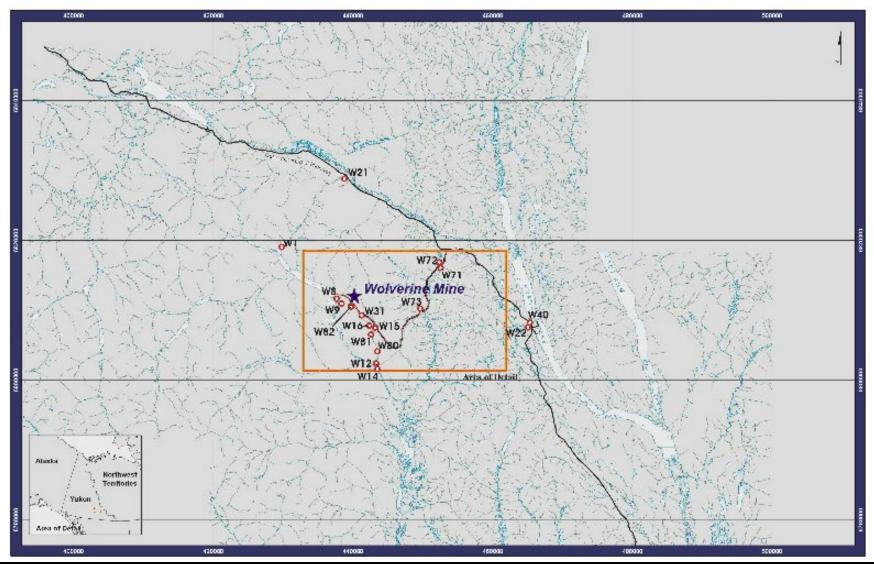

Surface water quality monitoring of the key components of the water management system include monthly monitoring of the tailings impoundment water and daily sampling of the water treatment plant retention pond when the latter is operating during the ice-free period of May to October. Monitoring of the tailings impoundment and water treatment plant retention pond will be at the proposed frequency as long as these systems are operational, which will likely include the early phases of closure of the mine. The retention pond will be decommissioned at final closure and only seasonal (i.e., monthly during ice free periods) monitoring of the tailings impoundment will continue.

Table 19 Surface Water Quality Monitoring Parameters and Detection Limits

Parameter	Symbol	Detection Limit	Units
Physical Parameters	_		
Conductivity		2	μS/cm
Hardness		0.5	mg/L
Total Suspended Solids	TSS	4	mg/L
Total Dissolved Solids	TDS	10	mg/L
рН	рН	0.1	рН
Turbidity	NTU	0.1	NTU
Major Anions			
Alkalinity-Total	CaCO ₃	0.5	mg/L
Bromide	Br	0.1	mg/L
Chloride	Cl	0.5	mg/L
Fluoride	F	0.02	mg/L
Sulphate	SO ₄	0.5	mg/L
Nutrient Parameters			
Ammonia Nitrogen	N	0.005	mg/L
Nitrate Nitrogen	N	0.005	mg/L
Nitrite Nitrogen	N	0.001	mg/L
Dissolved Ortho-Phosphate	P	0.005	mg/L
Total and Dissolved Trace Metals			
Aluminum	Al	0.001	mg/L
Antimony	Sb	0.0001	mg/L
Arsenic	As	0.0001	mg/L
Barium	Ba	0.001	mg/L
Boron	В	0.008	mg/L
Cadmium	Cd	0.000017	mg/L
Calcium	Ca	0.05	mg/L
Chromium	Cr	0.0005	mg/L
Cobalt	Co	0.001	mg/L
Copper	Cu	0.0002	mg/L
Iron	Fe	0.005	mg/L
Lead	Pb	0.00005	mg/L
Magnesium	Mg	0.05	mg/L
Manganese	Mn	0.001	mg/L
Molybdenum	Mo	0.001	mg/L
Nickel	Ni	0.0005	mg/L
Phosphorus	P	0.1	mg/L
Potassium	K	1	mg/L
Selenium	Se	0.0005	mg/L
Silicon	Si	0.05	mg/L
Silver	Ag	0.00001	mg/L
Sodium	Na	0.05	mg/L
Strontium	Sr	0.001	mg/L
Thallium	Tl	0.0001	mg/L
Vanadium	V	0.001	mg/L
Zinc	Zn	0.001	mg/L

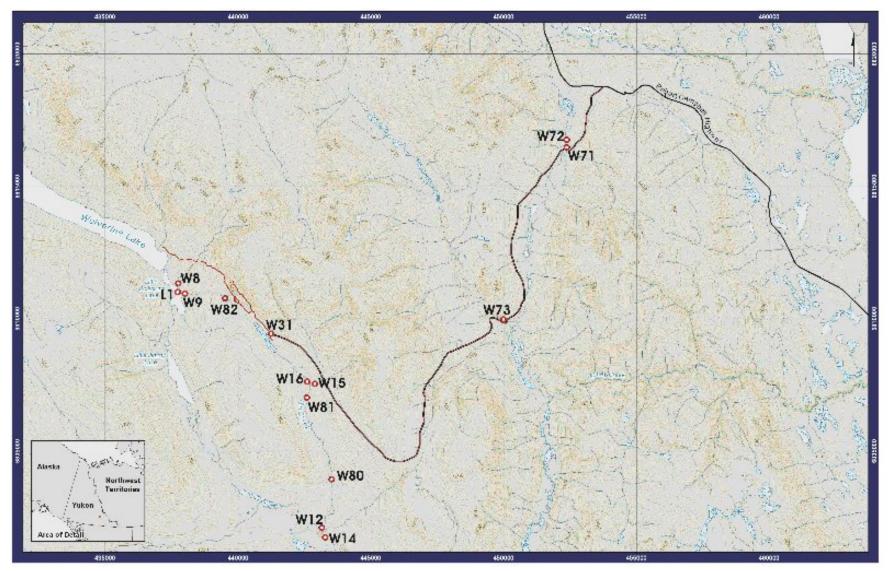

General Site Plan 2006-02 Wolverine Project

Figure 15 Locations of Surface Water Quality Monitoring Stations for the Wolverine Project Operations and Along the Road Route

November 2006 Page 70 Wolverine Project General Site Plan 2006-02

Figure 16 Detail of Surface Water Quality Monitoring Stations in the Immediate Vicinity of Wolverine Project Operations and Along the Road Route

Yukon Zinc Corporation November 2006

Table 20 Summary of Surface Water Monitoring Program for Wolverine Project

			1	T	1
Site	Purpose	Pre- Construction	Construction	Operations	Closure
Wolverine Wa	atershed				
W1	Monitor water quality of Wolverine Lake	Monthly	Monthly	Monthly	Seasonal ¹
L1	Monitor water quality of Little Wolverine Lake	Monthly	Monthly	Monthly	Seasonal
W21	Monitor water quality of Nougha Creek	Monthly	Monthly	Monthly	Quarterly
W8	Monitor water quality of Campbell Creek	Monthly	Monthly	Monthly	Quarterly
Go Creek Wa	tershed				
W31	Monitor upper reaches of Go Creek prior to tailings facility	Monthly	Monthly	Monthly	Seasonal
W16	Monitor upper Go Creek immediately upstream of discharge location	Monthly	Monthly	Monthly	Seasonal
W15	To monitor Hawkowl Creek prior to joining Go Creek	Monthly	Monthly	Monthly	Seasonal
W81	100 m downstream of confluence of Hawkowl Creek with Go Creek. Intermediate station in Go Creek monitoring influence of discharge	Monthly	Monthly	Monthly	Seasonal
W80	Compliance point in Go Creek	Monthly	Monthly	Daily ²	Seasonal
W12	Go Creek prior to Money Creek	Monthly	Monthly	Monthly	Seasonal
Money Creek	Watershed				
W14	Monitor water quality in upper reaches of Money Creek	Monthly	Monthly	Monthly	Seasonal
W22	Monitor water quality in Money Creek upstream of highway	Monthly	Monthly	Monthly	Seasonal
W40	Monitor water quality in Money Creek downstream of highway	Monthly	Monthly	Monthly	Seasonal
Road Route M	Ionitoring				
W71	Monitor water quality at Pitch Creek road crossing	Monthly	Monthly	Monthly	Quarterly
W72	Monitor water quality in Light Creek	Monthly	Monthly	Monthly	Quarterly
W73	Monitor water quality at Bunker Creek road crossing	Monthly	Monthly	Monthly	Quarterly
Water Manag	gement				
Tailings Pond	To monitor water quality in the tailings impoundment			Monthly	Seasonal
Retention Pond	Monitor water quality in the retention pond			Daily ²	

Notes:

^{1:} Seasonal monitoring during closure will include monthly monitoring during the ice free period of May to October

²: Daily monitoring during discharge periods during operations and early closure

10 Spill Contingency Plan

The measures outlined in the following sections intend to minimize the potential impact to the environment following a fuel spill. The immediate priority is to ensure human safety and limit environmental damage, followed by the action plans to effectively implement the procedures/methods for spill containment and clean up and site remediation measures. The priority sequence is as follows:

- ensure safety: protect life and prevent injury
- protect the environment
- protect infrastructure
- minimize business activity disruption

The following subsections provide details pertaining to spill response equipment, action plans, and training, and specific information on spill containment.

10.1 Equipment

Spill kits will be located at the portal, camp and airstrip, as well as in heavy equipment. Kit contents generally contain oil sorbent pads, pillows and socks, granular sorbent, plug patties for instant leak stop, shovels, and protective equipment including gloves, goggles, and protective suits. All heavy equipment will be equipped with sorbent pads, granular sorbent and gloves, at a minimum.

Dry chemical fire extinguishers will be located near the fueling stations. The water truck can also be used in fire suppression activities and pumps are onsite at the upper portal for spill pumping and fire suppression activities.

The general steps required to be taken in the event of a spill are as follows:

- first responder/observer must ensure their safety and the safety of others
- shut off ignition sources (including electrical sources) and ensure no smoking
- identify and assess the spilled material
- report all spills immediately to site supervisor
- if safe, stop the source of the spill, contain the spill, and proceed with clean-up activities
- Environmental Coordinator will notify senior management immediately and contact the Yukon 24-hour Spill Report Hotline and Client Services and Inspections shortly thereafter once details are determined
- Environmental Coordinator will complete the Spill Report Form
- responsibilities for spill response are summarized in Table 21

Table 21 Roles and Responsibilities for Spill Response

Position	Responsibilities
All Employees (First	Assess the initial severity of the spill and safety concerns
Observer)	Identify the source of the spill
	Report all spills to Supervisor and Environmental Coordinator as soon as possible
	Determine the size of the spill and stop or contain it, if possible
	Participate in spill response as member of cleanup crew
Work Supervisors	Contact the Mine Manager
	Gather facts of the spill
	Assist as required in spill response measures
Emergency Response	Conduct cleanup of spills under direction of Mine Manager or Env. Coordinator
Team	Take appropriate response measures- deploy booms, absorbents and other equipment and materials as required
	Continue cleanup as directed by Mine Manager or Env. Coordinator
Mine Manager	Assist in initial and ongoing response efforts
	Supervise Spill Response Team
	Ensure source of the spill has stopped and contain spill
	Record spill information
	Ensure co-ordination of equipment and manpower as needed
	Oversee the cleanup operation until it is satisfactorily completed
	Continue actions until relieved or supplemented by other supervisors
	Decide with Environmental Coordinator if mobilization of additional equipment or a contractor is warranted
Environmental	Ensure expeditious response and clean up of spill site and impacted areas
Coordinator	Report the spill to the Yukon 24-Hour Spill Report Line and Client Services and Inspections
	Together with the Mine Manager, decide if additional equipment is required for
	containment and remedial activities
	Notify senior management
	Oversee completion and distribution of Spill Report
	Ensure investigation identifies measures to prevent similar spills
VP Environment and	Is responsible for all communication with the media. Ensures that all press releases
Community Affairs	are accurate and in accordance with company policy
	Makes financial decisions on major expenses during large spill response
YZC Board of	Establishes corporate environmental policy based on the recommendations of the
Directors	Environmental Management Committee

10.2 Spill Response Training

Training and preparedness will be conducted in accordance with both Occupational Health and Safety Regulations and regional legislation. At a minimum, a first responder awareness level training program will be implemented with all key staff and contractors.

All personnel will receive training that includes instruction in spill recognition and assessment, spill hazards, spill reporting, communication procedures, clean-up measures and general emergency response.

Where contract fuel suppliers will be shipping fuels as outlined under the *Transportation* of *Dangerous Goods Act* and be received by an employee of YZC, these personnel must hold a valid Canadian Certificate of Training in the form of a wallet card. This person

will be responsible for ensuring that the appropriate records are maintained and any incidents involving the shipper and or receiver are reported to the appropriate authorities.

10.3 Spill Containment, Clean-up and Disposal

The potential exists for spills of petroleum products and or various chemicals used at the Wolverine Mine. A spill will typically be in the form of a liquid. Various proven practical methods of containment and recovery are well documented for use in northern climates and are summarized below for each of the following areas: on land, snow, ice or in water. For additional technical information, consult the Environment Canada Report EPS 9/SP/2. December 1986.

10.3.1 Containment

For spills that occur on land, three methods of containment are summarized in Table 22.

Containment on snow is readily achieved and is very effective due to its absorbent quality. Liquid spills (petroleum) will become immobile within the snow pack and easily removed for transport for recovery or disposal. Use the snow to its advantage in construction of snow dykes/dams. Whenever possible, the snow pack should be left in place to avoid contaminating the underlying substrate.

Spills that occur on ice, from either direct spillage or migration to the ice, are greatly affected by the strength of the ice. If the spill does not penetrate the ice, and the ice is safe to work on, then the methods of containment are similar to that on land. Where the spill has penetrated the ice, the situation should be handled similar to that on open water.

A spill occurring on or into open water is very difficult to contain and every effort should be made to prevent the material from entering the water. If in the case of petroleum products, the material floats, then immediate deployment of surface booms should take place to control the spread of material.

Table 22 Spill Containment Option for Land-based Spills

Containment Method	Details Pertaining to Method Application
Snow Dykes	Petroleum products spilling onto frozen snow covered ground may be contained by the construction of snow dykes. For smaller spills the dykes can be built with shovels while larger dykes will typically require the use of heavy equipment In freezing temperatures, water may be sprayed or poured over the dykes to further enhance the barrier. Synthetically lined dykes are more effective than just snow or snow and ice-lined dykes. The impermeability of dykes may be ensured by lining with a polyethylene plastic liner, plastic tarpaulin or similar synthetic material
Sand or Gravel Dykes	During warmer months, containment dykes may be constructed from sand or gravel if these materials are available. For smaller spills, the dykes can be fashioned manually with shovels where as for larger spills, trucks or other heavy equipment (front-end loaders) will normally be required to handle sand and gravel
Trenching or ditching	Used for containing and/or intercepting the flow of liquid spills on land. Ice, snow, loose sand, gravel and surface layers of organic material can usually be scraped or dug away until the underlying frozen substrate is reached. Effective in re-directing flow or simple containment prior to pumping or absorbing the spilled material. Trenching in solid frozen ground or rocky substrate is normally neither practical nor possible.

Actions plans for the clean up of fuels, oils and antifreeze in various environments is provided in Table 23.

Table 23 Action Plan for Fuels, Oils and Antifreeze

		Spill Substance Type	
Location of Spill	Diesel, Hydraulic, Lube and Waste Oil	Gasoline and Jet B Aviation Fuel	Ethylene Glycol (Antifreeze)
On Land	Do not flush into ditches or drainage systems. Prevent entry into waterways and contain with berm or other barrier. Remove small spills with sorbent pads.	Block entry into waterways with berms or other barrier. Do not flush into ditches or drainage systems. Do not contain spill if there is any chance of igniting vapours. On shop floors and in work yards, apply particulate sorbents.	Block entry into waterways with berms or other barrier. Do not flush into ditches or drainage systems. Contain spill by dyking with earth or other barrier. Remove minor spills with universal sorbent. Remove large spills with pumps or vacuum equipment.
On Snow and Ice	Block entry into waterways and contain with berm or other barrier Remove minor spills with sorbent pads or snow Use ice augers and pump when feasible to recover diesel under ice. Burn using Tiger Torches if unrecoverable by other methods, feasible and safe to do so.	Block entry into waterways with snow or other barrier. Do not contain spill if there is any chance of igniting vapours. In work yards, apply particulate sorbents.	Block entry into waterways with berms or other barrier. Do not flush into ditches or drainage systems. Contain spill by dyking with snow or other barrier. Remove minor spills with universal sorbent. Remove contaminated snow with shovels and mechanical equipment.
On Muskeg	Do not deploy personnel and equipment on marsh or vegetation. Remove pooled oil with sorbent pads and/or skimmer. Flush with low-pressure water to herd oil to collection point. Burn only in localized areas, e.g., trenches, piles or windrows. Do not burn if root systems can be damaged (low water table). Minimize damage caused by equipment and excavation.	Do not deploy personnel and equipment on marsh or vegetation. Remove pooled gasoline or Jet B with pumps. Low pressure flushing can be tried to disperse small spills. Burn carefully only in localized areas, e.g., trenches, piles or windrows. Do not burn if root systems can be damaged (low water table). Minimize damage caused by equipment and excavation.	Do not deploy personnel and equipment on marsh or vegetation. Remove pooled gasoline or Jet B with pumps Burning is not feasible. Minimize damage caused by equipment and excavation.
On Water	Contain spill as close to release point as possible. Use spill containment boom to concentrate slicks for recovery. On small spills, use sorbent pads to pick up contained oil. On larger spills, obtain and use skimmer on contained slicks. Do not use sorbent booms/pads in fast currents and turbulent water. Intercept moving slicks in quiet areas using sorbent booms.	Do not attempt to contain or remove spills. Use booms to protect water intakes and sensitive areas.	Ethylene glycol sinks and mixes with water. Isolate/confine spill by damming or diversion.

10.3.2 Recovery

Spilled petroleum products contained within a dyked, trenched or boomed area should be recovered by pumping into a portable storage tank or drum. Pump and suction hoses should be screened to prevent snow, ice or debris from clogging the line or pump. Any remaining material may be absorbed by use of a variety of products, such as 3M brand Conweb and Phase III brand Oil Sponge.

The availability of shovels, rakes and pitchforks are invaluable in any spill clean-up and recovery operation. The use of heavy equipment for larger spill situations such as frontend loaders and haul trucks, make the removal of material easier.

10.3.3 Disposal

Petroleum products such as oil that have been recovered by pumping into a tank or drum, can often be reused. Currently, hydrocarbon contaminated materials are removed to either the burn area for ignition or to the land farm.

The licensed land treatment farm is located adjacent to the airstrip as previously described. Soil is reclaimed through the process of bioremediation through tilling and the breakdown of hydrocarbons by naturally occurring bacteria. The process is most effective when soil temperatures range from 5 to 45°C. Bioremediation in soil will work so long as the ground is not frozen.

10.3.4 Other Concerns

In the event that the accident/incident is in combination with a fire, extinguishing the fire may be required prior to initiating efforts to stop the spillage. In order to control the resulting runoff (in cases where water is used), and the subsequent spread of the spilled material, the spill site should be contained.

Petroleum and chemical fires have the potential to generate toxic fumes under poor combustion conditions. Approaching and dealing with any fire from upwind is recommended as well as caution with regard to breathing the vapours generated from the fire.

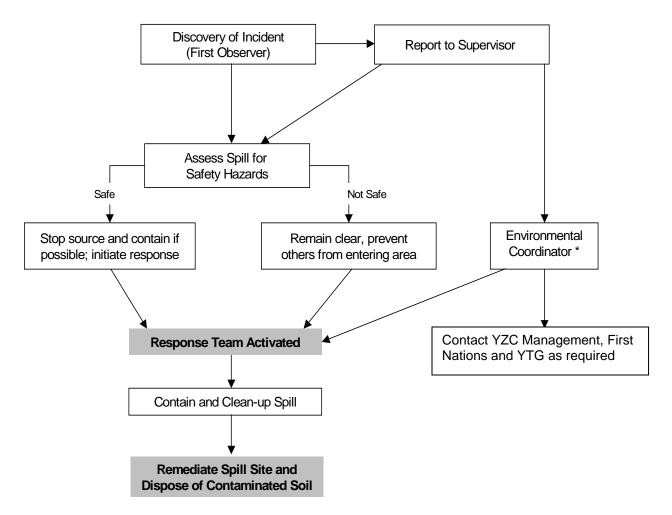
10.4 Reporting

The sequence of reporting that must be strictly followed to ensure that an efficient and effective response occurs, an accurate spill report is completed, and notifications to both YZC management and government agencies is done in a timely fashion is provided in Figure 17.

Most major suppliers in the Yukon are members of the Transportation Emergency Assistance Plan (TEAP). One of the responsibilities of this organization is the sharing of resources, consumables, equipment and personnel in the event of a spill. The transporter of the fuel is responsible for contacting TEAP in the event of a spill.

The person who discovers the spill is considered the First Observer. That person identifies the source of the spill and reports to his or her direct supervisor who gathers the facts of the spill and contacts the Mine Manager. The Mine Manager records the spill information and passes it onto the Environmental Coordinator who will oversee its completion and distribution.

The Environmental Coordinator reports the spill to YZC senior management, the 24-hour Spill Report Line and Client Services and Inspections. Contact numbers are provided in Figure 18.


The following information shall be conveyed to the affected agencies through the 24-hour emergency Yukon Spill Response Line and Client Services and Inspections. This information should be documented on the Spill Reporting Form provided in Figure 19:

- type and volume of spill
- time of the spill
- location and aerial extent of spill or leak (proximity to nearest watercourse)
- safety concerns (fire, injuries)
- response activities initiated and completed and ongoing remedial measures
- known or anticipated adverse environmental impacts

The Canadian Transport Emergency Center (CANUTEC), a branch of Transport Canada, can also be contacted for 24 hr technical advice on Dangerous Goods. Other stakeholders such as the Ross River Dena Council will and Liard First Nation o be notified.

Figure 17 Spill Reporting and Response Procedure

Spill Reporting and Response Procedure

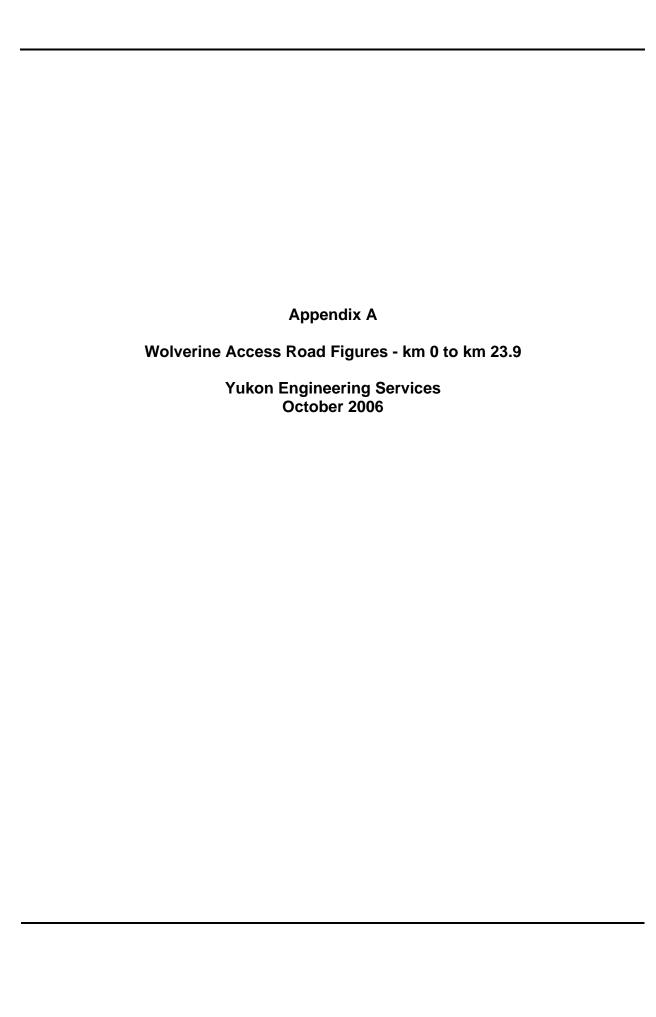

Yukon Zinc Corporation November 2006

Figure 18 Wolverine Project Emergency Contact Numbers

Wolverine Project Emergency Telephone Contacts	
Yukon Zinc Corporation Contacts: President and CEO, Harlan Meade Chief Operating Officer, Ray Mah VP Environment & Community Affairs, Pamela Ladyman	(604) 682-5474 ext 228 (604) 682-5474 ext 313 (604) 682-5474 ext 246
First Nation Contacts: Ross River Dena Council, Testloa Smith Liard First Nation, Laurie Allen	(604) 644-7655 (cell) (867) 969-2097 (867) 536-2912
Spill Reporting Yukon Government Contacts: 24-hour Yukon Spill Line Client Services and Inspections Watson Lake District Conservation Officer Whitehorse District Conservation Officer Environmental Inspections Branch Mine Rescue Station	(867) 667-7244 (867) 456-3882 (867) 536-7363 (867) 667-5221 (867) 667-3436 (867) 667-5450
Federal Government Contacts: Department of Fisheries and Oceans Environment Canada (Whitehorse) Transport Canada (CANUTEC 24-hour Service)	(867) 393-6722 (867) 667-3400 (613) 996-6666
Regional Emergency Numbers: Hospital Watson Lake Whitehorse Watson Lake Health Unit	(867) 536-4444 (867) 393-8700 (867) 536-7834
Ambulance Watson Lake	(867) 536-4444
Fire Department Watson Lake Whitehorse	(867) 536-2222 (867) 668-8699 or 668-2462
Police Watson Lake Whitehorse	(867) 536-5555 (867) 667-5555
Laboratories (Vancouver) ASL Chemex ALS Environmental Maxxam Analytics Inc	(604) 984-0221 (604) 253-4188 (604) 444-4808

Figure 19 Wolverine Project Spill Reporting Form

	Wolverine Project Spill Reporting Form
1)	Date of Incident: Time:
2)	Spill Type: (check) OilGasolineDieselOther (name)
3)	Source and Cause:
4)	Volume:(Liters/gallons)
5)	Spill Location:
6)	GPS Coordinates: (N) (E)
7)	Cause of Incident (e.g.: broken hose):
8)	Weather Conditions: Temperature Wind Direction/Speed Conditions
9)	Hazards to human life or health:
10)	Known or Anticipated Environmental Effects:
11)	Nearest Waterbody and Distance:
12)	Fire Hazard: Yes No
13)	Supervisor Onsite:
14)	Contractor Involved: Yes No Name(s):
15)	Action taken to date: Containment:
	Clean up:
16)	Volume Recovered:(Liters/gallons)
17)	Subsequent Actions Required:
18)	Future Preventative Measures:
19)	Additional Comments
20)	Reported by: Name: Company
21)	Reported to: Name: Organization: Phone:
	Reported to: Name: Organization: Phone:
	Reported to: Name: Organization: Phone:

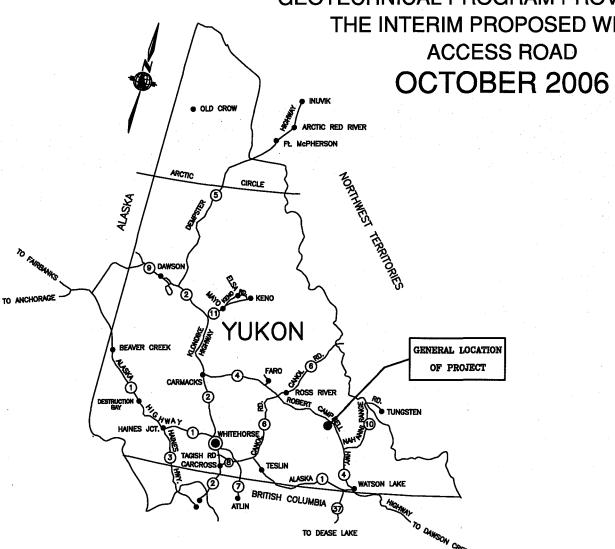
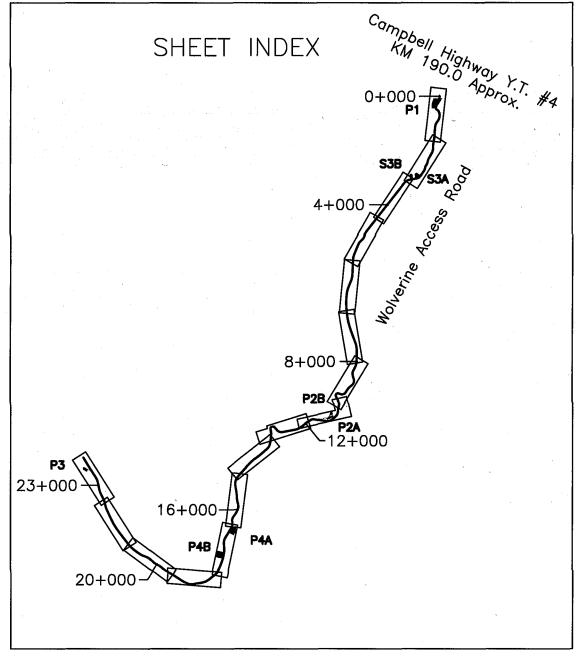
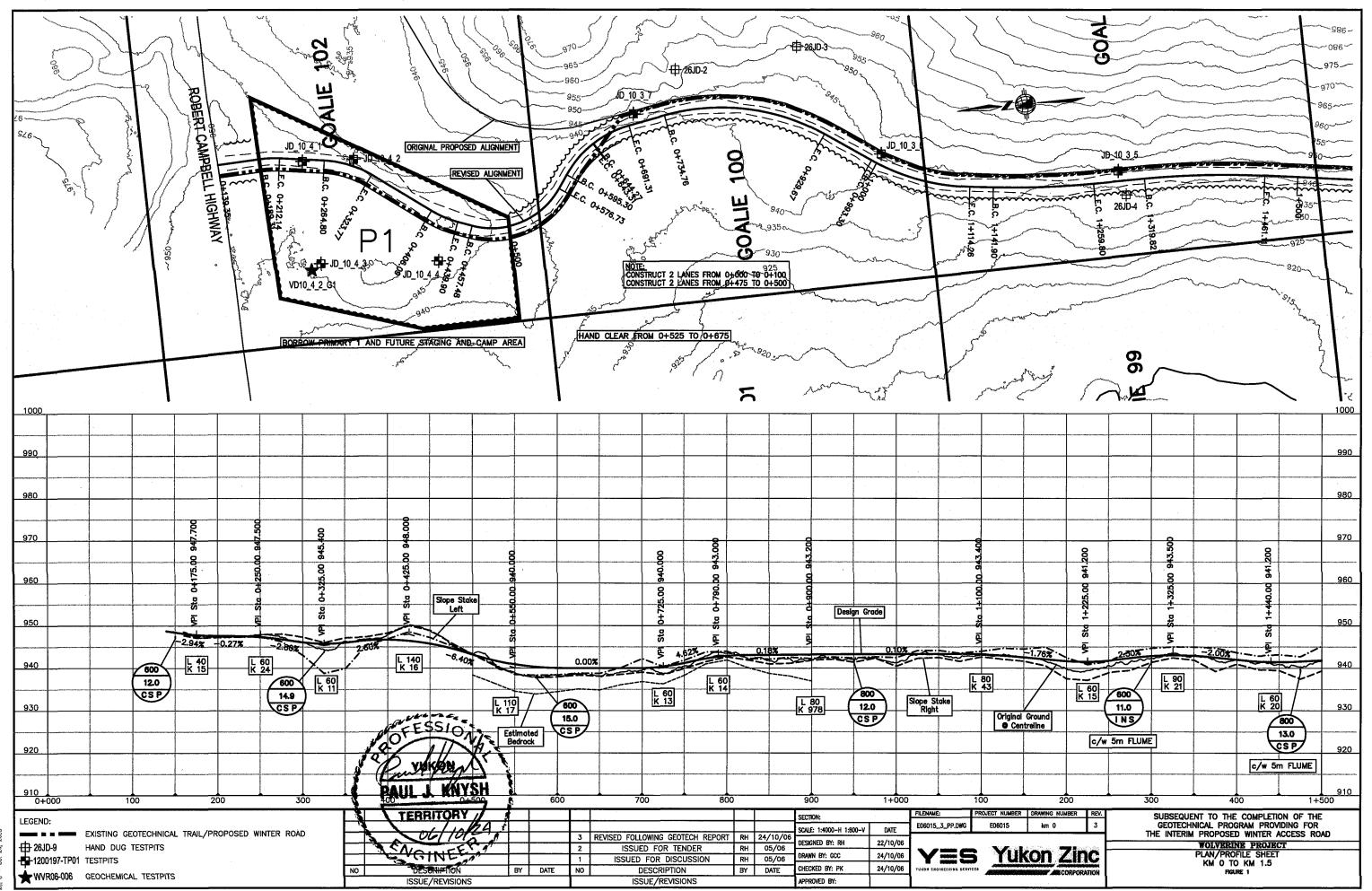


FIGURE 1


Drawings For

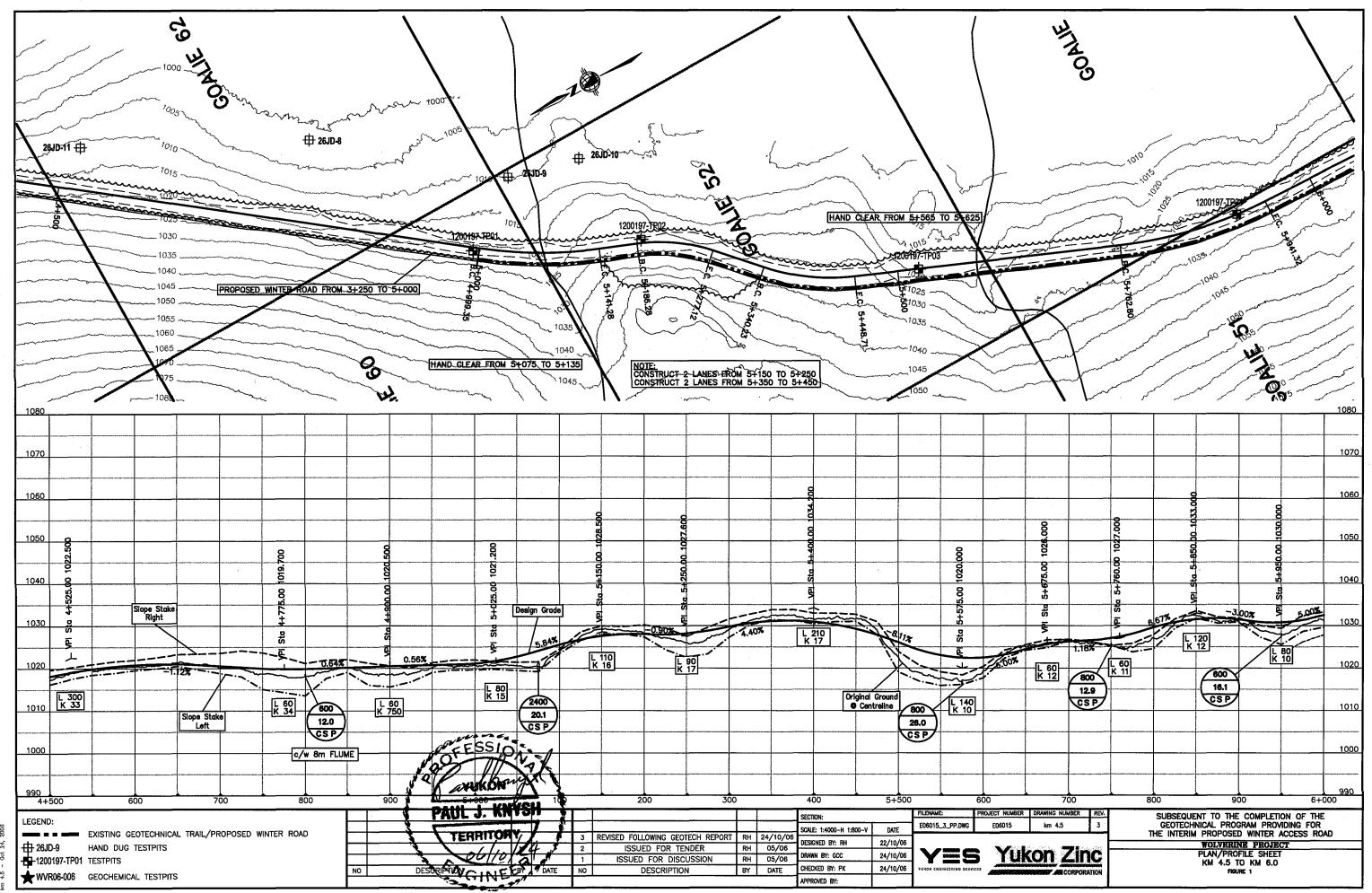
WOLVERINE ACCESS ROAD km 0.0 to km 23.9

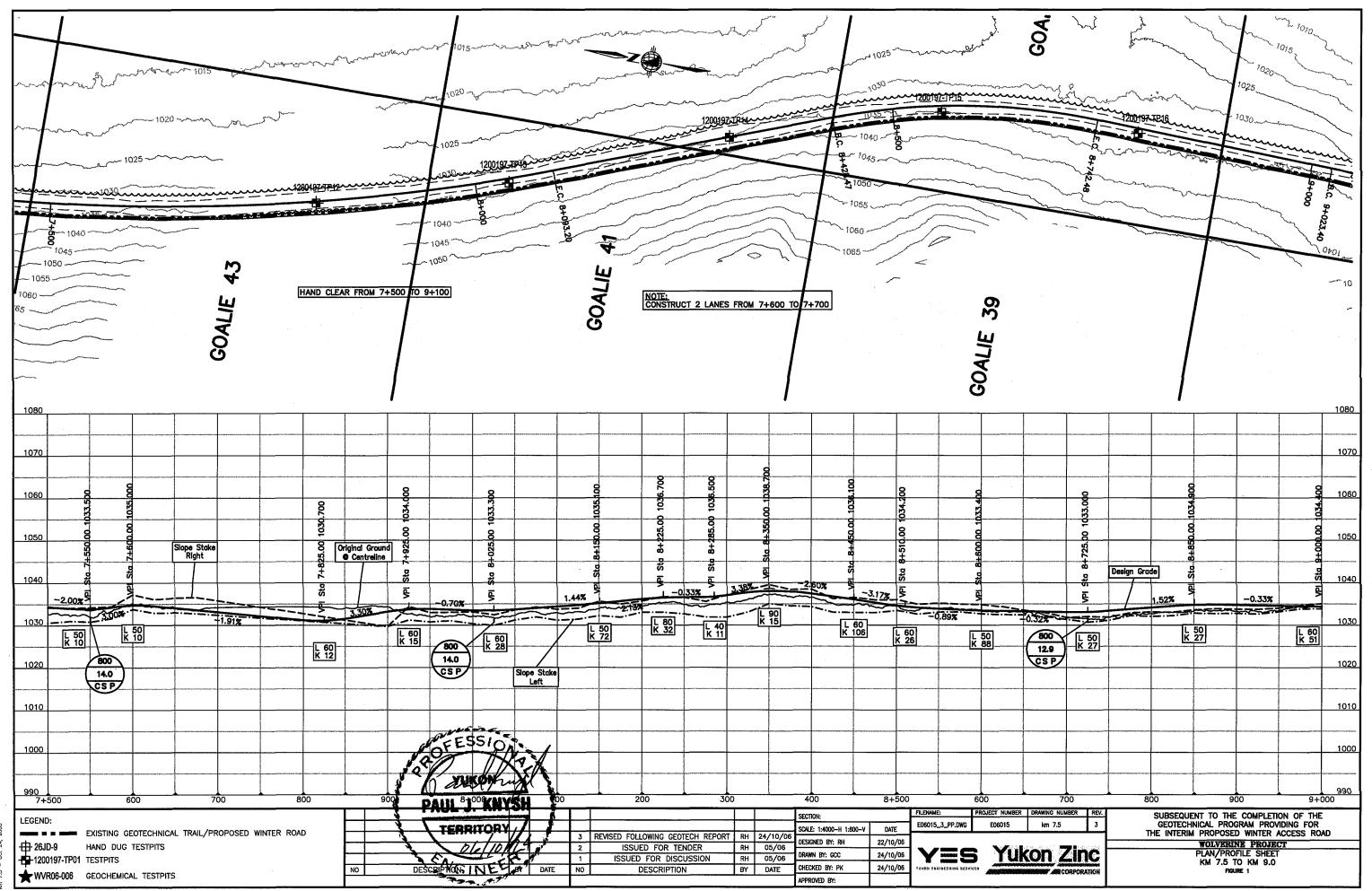
SUBSEQUENT TO THE COMPLETION OF THE GEOTECHNICAL PROGRAM PROVIDING FOR THE INTERIM PROPOSED WINTER



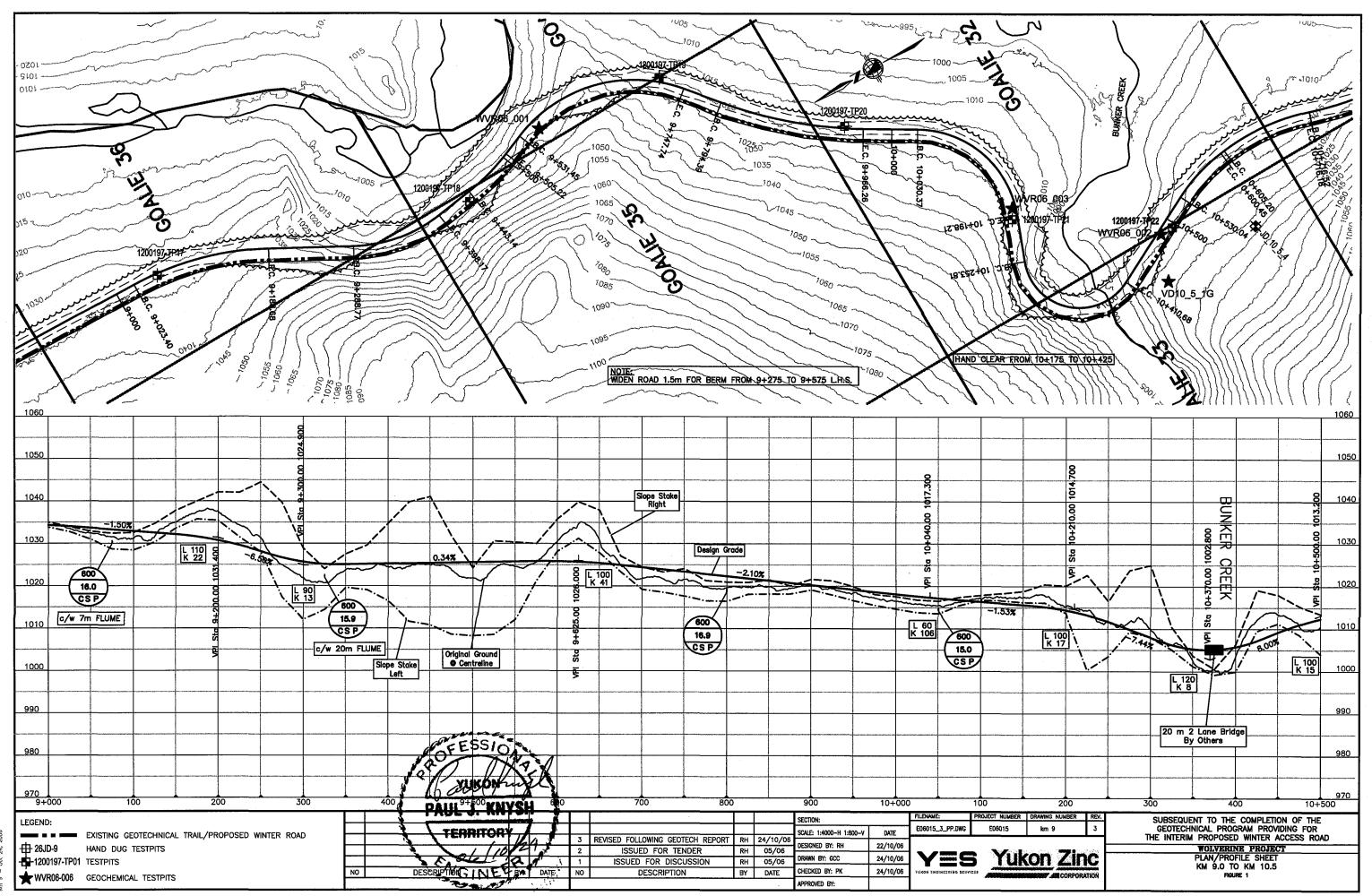
PIT	STA	O/S	GROSS AREA (Ha.)	NET AREA (Ha.)	AVG DEPTH (m)	COMMON (m³)	GRANULAR SURFACING (m³)	CONCRETE AGGREGATE (m³)	TOTAL (m³)
P1	350	0	5.3	2.7	2	3,000	3,000	-	6,000
S3A	2700	70	1.6	0.8	2	9,000	3,000	-	12,000
S3B	2950	70	1.1	0.6	2	-	9,000	-	9,000
P2A	11200	60	1.0	0.5	2	-	8,000	-	8,000
P2B	11100	130	0.6	0.5	2	-	5,000	5,000	5,000
P4A	16700	-100	2.9	1.5	2	22,000	7,000	-	29,000
P4B	17450	110	3.0	1.5	2	23,000	7,000	-	30,000
P3	23600	-150	1.0	0.5	2	-	8,000	-	8,000
TOTAL	.S		16.5	8.5	2.0	57,000	50,000	5,000	107,000

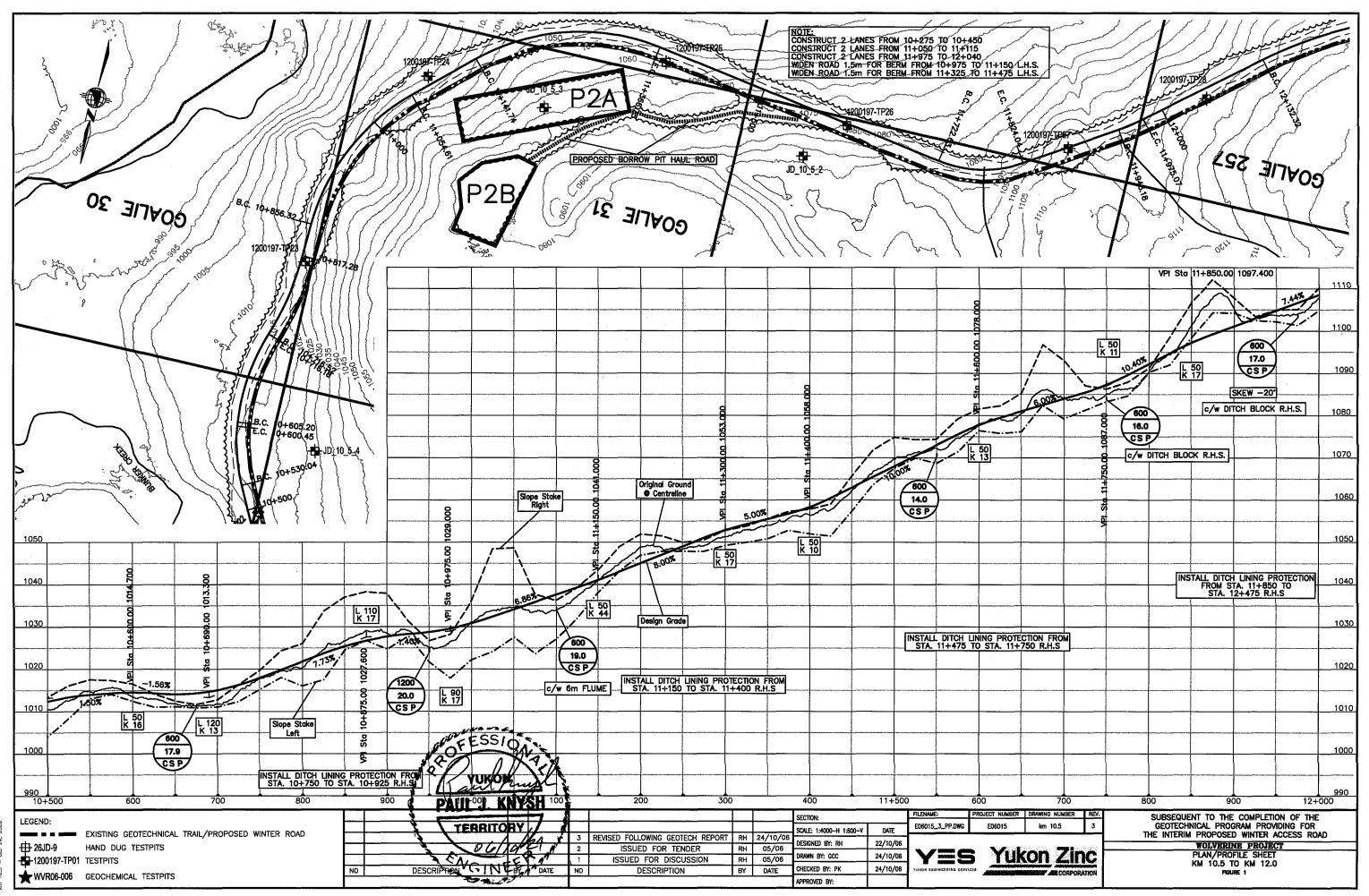


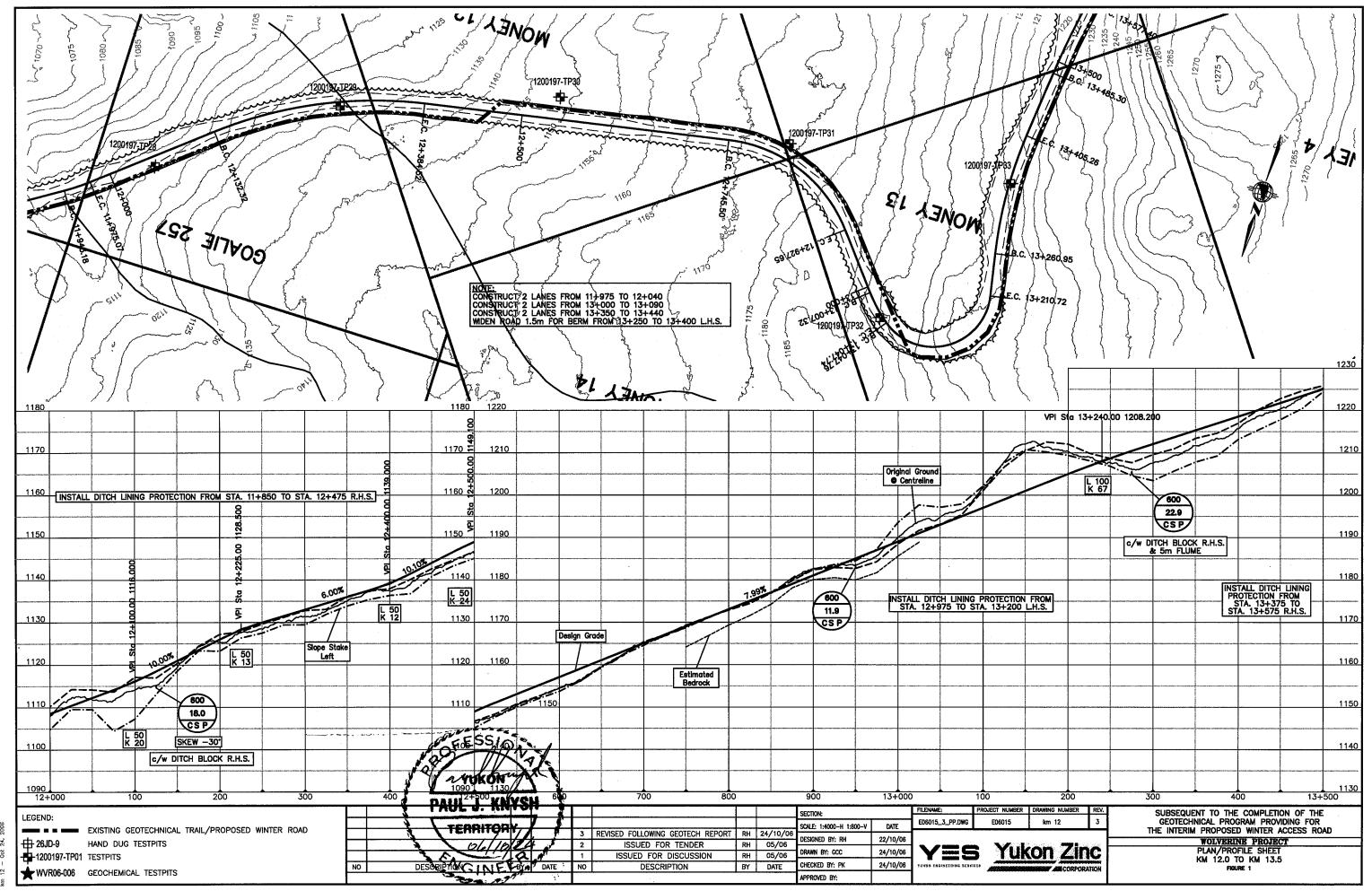


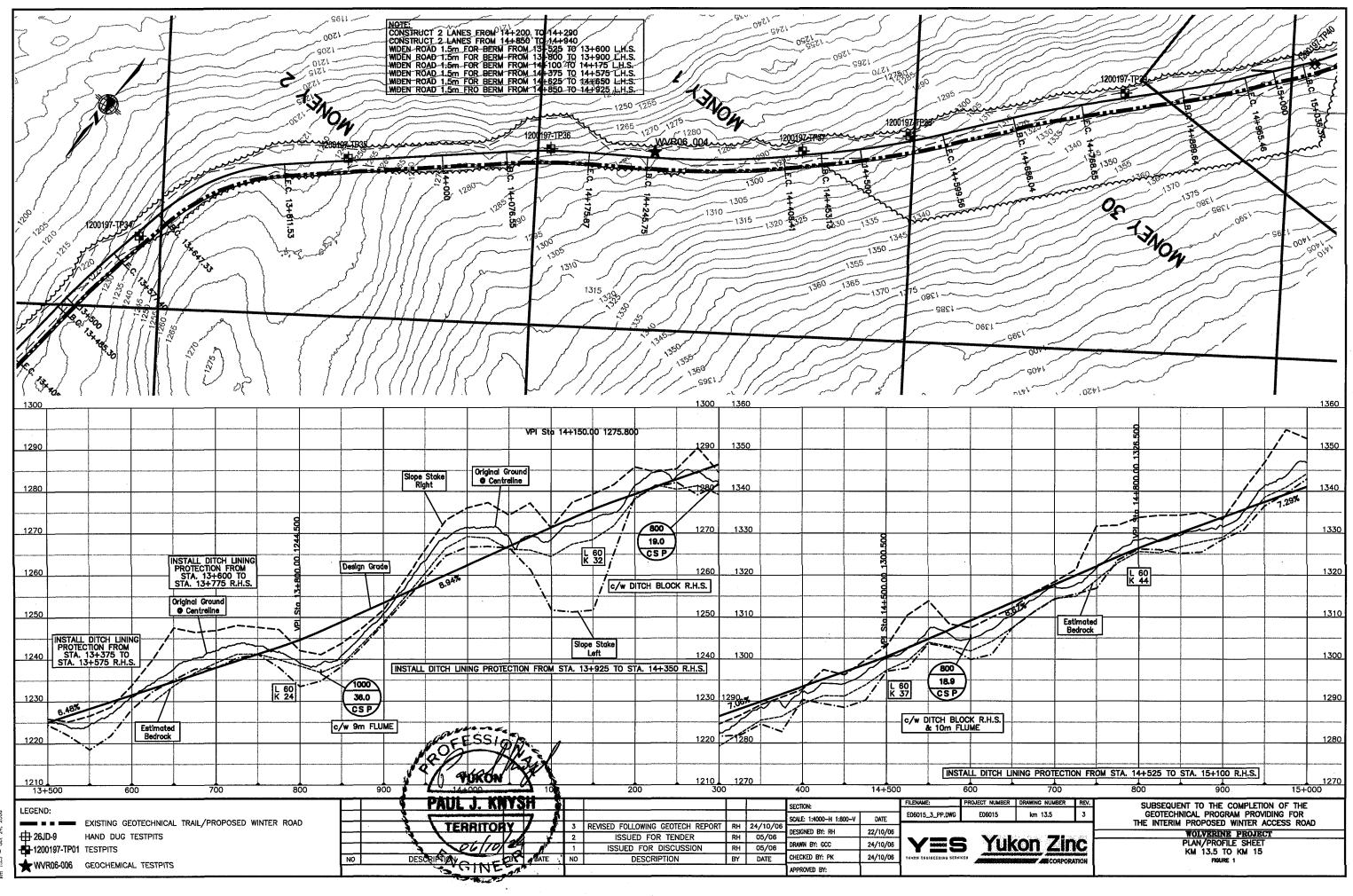


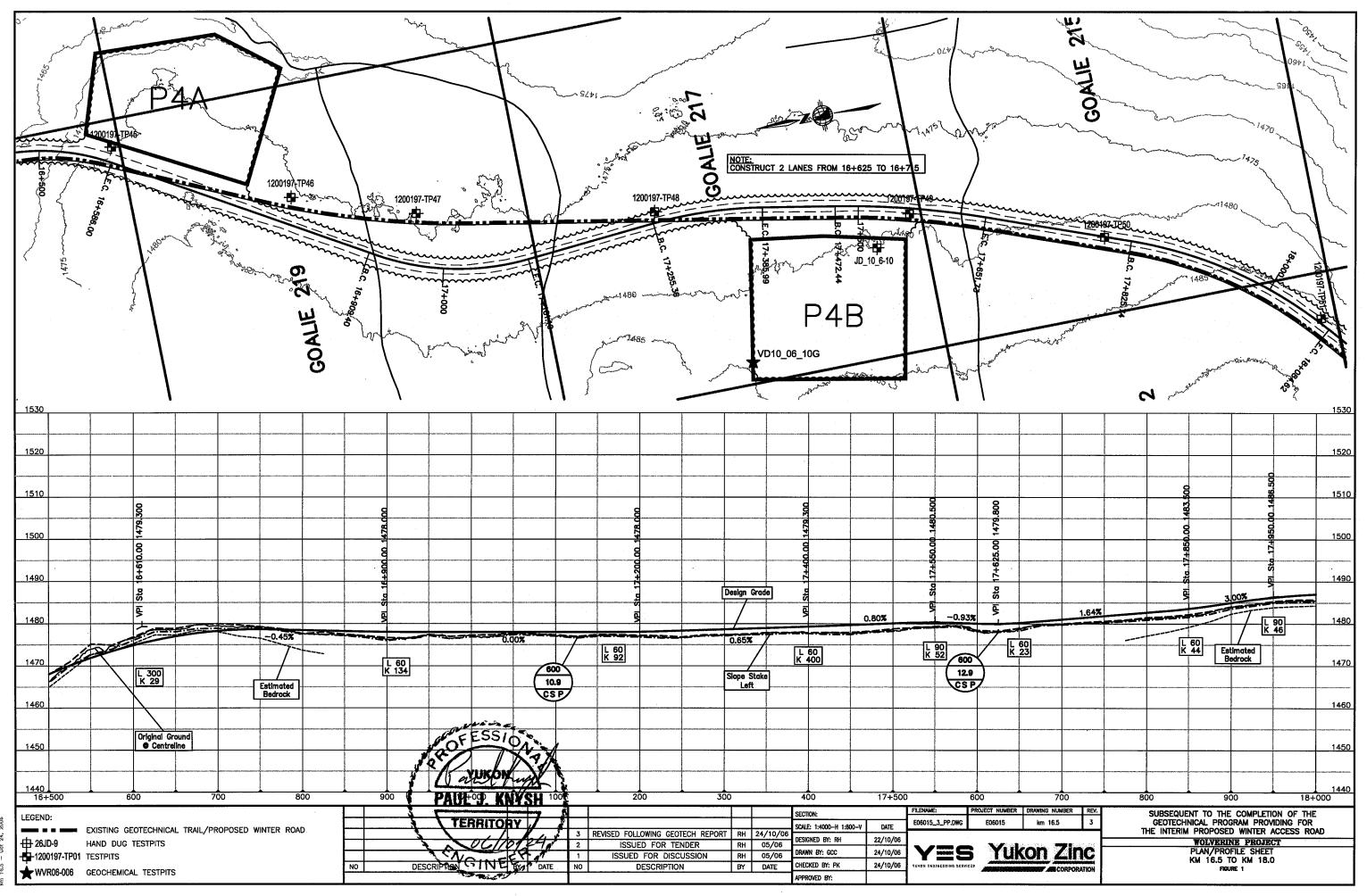
S\\LGBS\£08018_3\E08015_3_PP.d#g



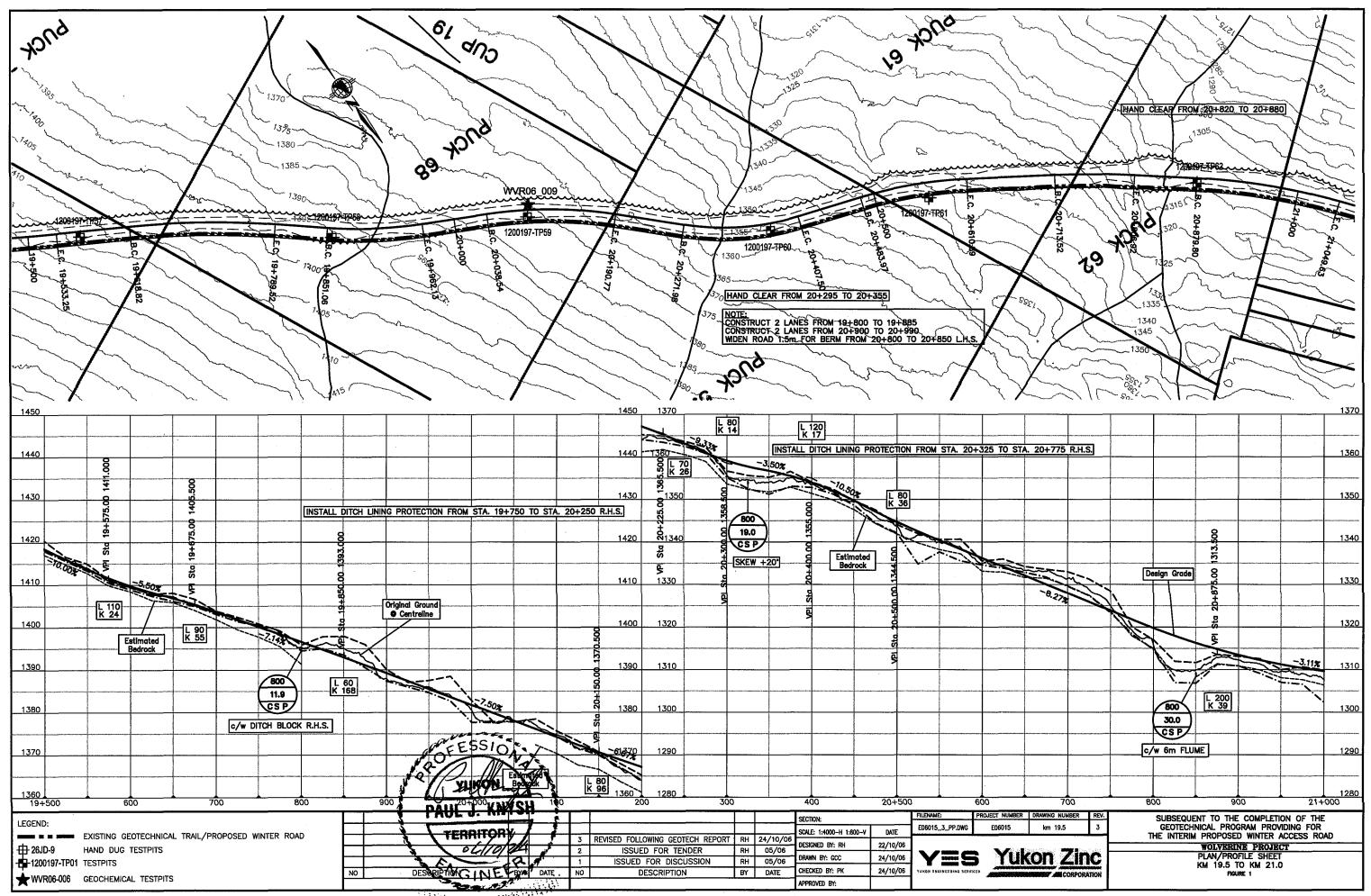

S_C0015_3\E00015_3_PP.44g


S\\JCBS\£08015_3\£08015_3_PP.d#\$

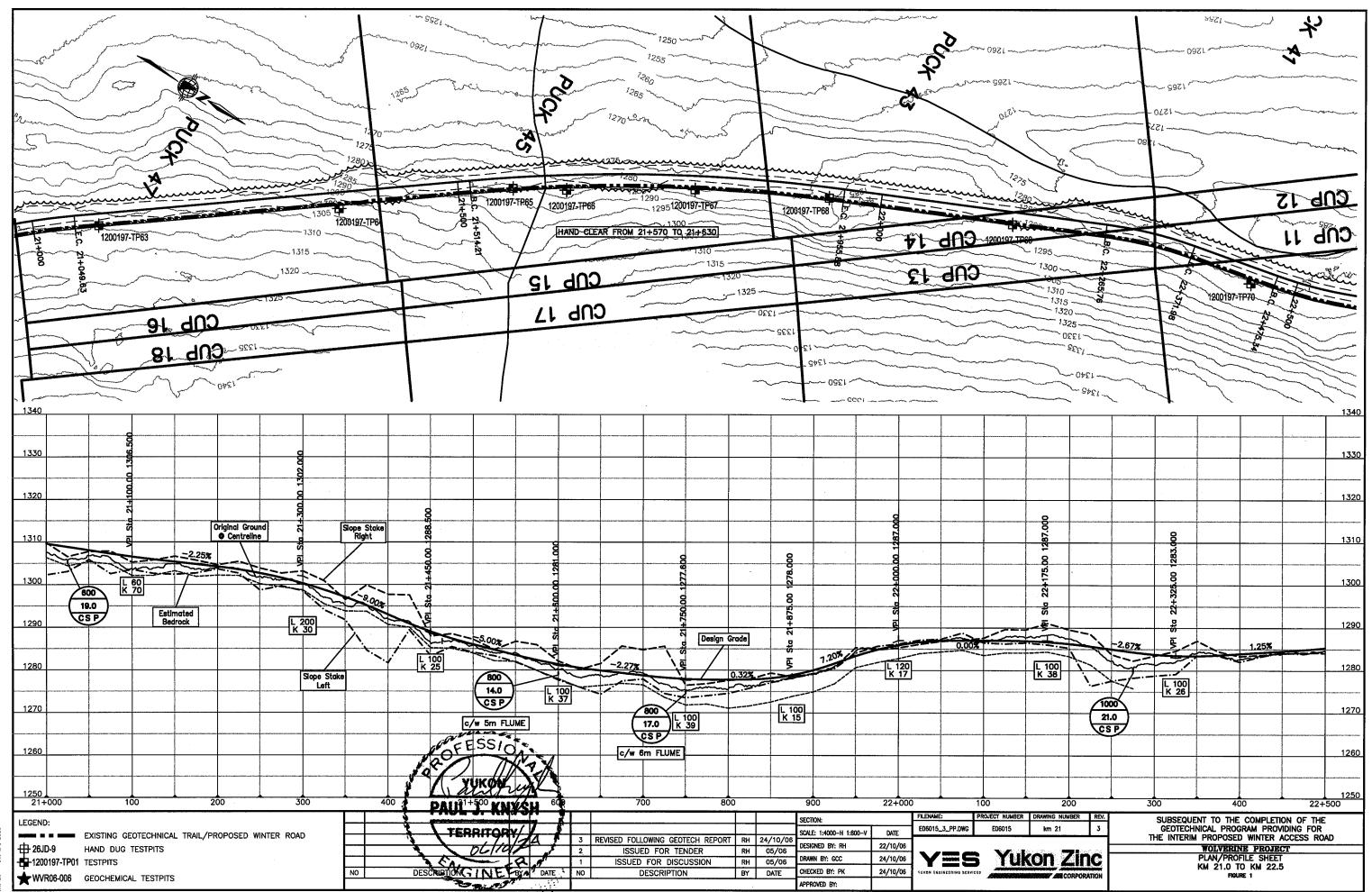

S:_CBS_E0015_3\E0015_3_PP.dwg


Si\J095\£08015_3\£08015_3_P-4%g

S\\LSSS\E00015_3\E0001S_3_PP-dwg



\$\\J095\£00015_3\£00015_3_PP.dwg



S\J035\E04015_3\E04015_3_PP.dwg

S.\. LOBS\. E08015_3\. PP.dwg. km 18 - Crd 24, 2018

S)\UGBS\E08015_3\E08015_3_PP.d#g km 19.5 — Oct 24, 2005

Stydesty.coso15_3\E08015_3_PP.dwg km 21 — Ool 24, 2008

SNJCBSNE08015_3NE08015_3_PP.dwg

Appendix B

Geotechnical Evaluation, Wolverine Access Road

EBA Engineering Consultants Ltd August 2006

YUKON ENGINEERING SERVICES LTD. YUKON ZINC CORP.

GEOTECHNICAL EVALUATION WOLVERINE LAKE MINE ACCESS ROAD km 189.5 ROBERT CAMPBELL HIGHWAY YUKON

EBA File: 1200197

August 2006

EBA File: 1200197 August 2006

TABLE OF CONTENTS

		PAGE
1.0	INTRODUCTION	2
2.0	SCOPE OF WORK	2
3.0	PROJECT BACKGROUND	2
4.0	METHODOLOGY	3
5.0	RESULTS AND DISCUSSION	3
	Subsurface conditions	
	Permafrost	4
6.0	BORROW SOURCES	4
7.0	RECOMMENDATIONS	
	Road Design and Construction	5
	Site Grading, Surface Conditions, Groundwater and Drainage	5
8.0	CLOSURE	7

FIGURES

TEST PIT LOGS

APPENDICES

1.0 INTRODUCTION

EBA Engineering Consultants Ltd. (EBA) was retained to conduct a geotechnical evaluation of the proposed access road to the Yukon Zinc mining property at Wolverine Lake, Yukon. The work was requested by Yukon Engineering Services Ltd. (YES) of Whitehorse on behalf of Yukon Zinc Corp (YZC). The objective of the evaluation is to provide geotechnical recommendations for the construction of the access road.

The scope of work for this project was presented in a proposal and budget prepared by EBA and submitted to Robert Harvey, P.Eng. of YES in June 2006.

2.0 SCOPE OF WORK

The main tasks of the study included a review of background reports, geology, and previous terrain mapping; a hand-excavated testpit program between km 0 to km 5 to field-check terrain and soil conditions, and an excavator supported testpitting program from km 5 to km 24. The scope of work for this project consisted of the following:

- Review area geology, previous terrain mapping and air photo interpretation to examine and reassess previous mapping, slope stability and potential borrow sources
- Conduct a field program to evaluate terrain and shallow soil conditions from km 0 to km 5 using hand testpits. There is presently no access to this section of the proposed route.
- Conduct a field program to evaluate soil conditions and collect samples for laboratory testing from km 5 to km 24 using an excavator provided by YZC to dig testpits.
- Conduct geotechnical laboratory testing on soil samples collected. Tests include moisture determination on all samples and grain size analysis on select samples.
- Prepare base maps to locate all testpit locations
- Prepare interim reports and a final report to present a description of the work completed, including the results of all evaluation work, testpit logs, laboratory analysis results and geotechnical recommendations for road construction.

3.0 PROJECT BACKGROUND

The study area includes 24 km of a proposed access road that starts at km 189.5 on the Robert Campbell Highway (Yukon Highway 4) and is initially aligned south and southwest, following the valley of Light Creek past the divide at km 8 and across Bunker Creek at km 10. The alignment follows Chip Creek to km 19, where it turns northwest to eventually cross the Hawkowl Creek tributary of Money Creek, maintaining a northwest bearing to Wolverine Lake. The access road route is covered on NTS map sheets 105H/5 and 105G/8.

Part of the access road, from about km 24.5 to the Wolverine Lake Mine Site and camp at approximately km 27.5 and km 28.5 respectively, is developed as an access road to the airstrip and was not evaluated as part of this study.

4.0 METHODOLOGY

Geology and previous terrain mapping were reviewed and air photo interpretation was carried out to aid in the design of the field program. Available air photographs were of small scale, which precluded detailed terrain mapping and limited the interpretation of expected soil conditions.

Terrain field checking and hand testpitting was carried out on June 26 and June 27, 2006 using a motorhome provided by YES as a field camp based at km 190 on the Robert Campbell Highway. An excavator-supported testpitting program, based at the Wolverine Mine Site camp, was carried out from July 10 to July 13, 2006. Seventy-six testpits were excavated at about 300 m intervals and soil samples were taken within the testpits at depth intervals of 1 m and/or at changes in stratigraphy.

Moisture and grain size analysis was carried out at EBA's Whitehorse geotechnical laboratory on samples recovered during the excavator-supported test-pitting program. The results of testpit logs and lab analysis are compiled on ESEbase logs and used to provide recommendations for construction.

5.0 RESULTS AND DISCUSSION

Subsurface conditions

Seventy-six excavator testpits (km 5 to km 24) and 19 hand testpits (km 0 to km 5) were located along the road alignment to define its subsurface soil profile. Much of the alignment is underlain by shallow bedrock. A hard metavolcanic unit underlies km 0 to km 2 with a few outcrops forming low relief ridges. A veneer of peat-rich organics and/or gravelly sand colluvium typically overlies the bedrock in this section. Shallow bedrock, a soft fissile phyllite, was intersected throughout the latter half of the proposed alignment from km 14 to km 24. Surficial materials in this section were mostly colluvium with sections of till and pockets of fluvial gravels. Soil textures were variable and are described in the detailed logs of each testpit log (appended).

Near km 0 of the Wolverine Lake Access Road, at the Robert Campbell Highway, terraces of glaciofluvial gravel and sand are common and may provide convenient sources of granular fill. At km 0, however, bedrock is exposed on the shallow cutslope of the highway (Station 26JD24, Figure 1). Shallow bedrock conditions appear to continue to about km 2 of the proposed access road. Except where narrow, east-west trending outcrops occur, a thin veneer of gravelly sand colluvium or a thin, frozen organic veneer at sidehill meadow bog areas typically overlies bedrock in this area.

From about km 2.0 through km 3.2, including the crossings of Pitch Creek (km 2.90) and Light Creek (km 3.03), the terrain appears to be underlain by glaciofluvial sand and gravel. Alluvium (sand, some silt, some gravel) was observed at a low relief terrace on the west side of Light Creek (Station 26JD18, Figure 1).

Soil textures and conditions on the proposed road alignment are summarized on Table 1.

In some sections the reliability of the geotechnical testing is insufficient to provide reliable evaluation of subsurface conditions. Testpit depths were less than 0.5 m at km 0 to km 0.5 and excavator testpits are recommended to provide deeper access from km 2 to km 5. Many excavator testpits were less than 0.5 m deep because the excavator provided was insufficient to penetrate frozen or dense soils.

Permafrost

The project area is within the zone of discontinuous permafrost. The active zone of seasonally thawed soil is estimated to be 0.5 to 2.0 m in undisturbed soils. Excess ice was present in a minority of samples and moisture contents are typically low (< 10%), although some localized high-ice content areas were observed and should be expected, usually near the base of the active layer (and typically on north-facing slopes with thick organic soil cover).

At eight of the 19 hand testpits and 25 of the 76 excavator testpits, frozen soil conditions were encountered. Depth to frozen ground ranged from about 0.3 m to 2.0 m. Frozen soil conditions were associated with thick organic cover, most of which are characterized as open, shallow gradient sideslope bog areas with black spruce/moss/larch vegetation. Testpitting with heavy equipment to depths greater than 0.5 m is required to characterize the ice content of these frozen soils—the excavator supplied for this program was not capable of these excavation requirements.

Permafrost conditions from about km 7 to km 14 may require thick fill (minimum 1500 mm) in localized sections to minimize the potential for permafrost degradation. Recommendations for construction in permafrost sections are provided in Section 7 and summarized in Table 7.1.

6.0 BORROW SOURCES

Nine potential borrow sources were selected for evaluation, including 3 primary sites and 6 secondary sites. Primary 1 at about km 0.5 and Secondary 1 at km 1 presently have no access for equipment and were not tested. However, granular glaciofluvial terraces of sand and gravel were identified at the Robert Campbell Highway near the access road. Further assessment and regulatory permitting would be required prior to acquiring borrow material from these sources.

Secondary 2 and Secondary 3 sites at km 3 also have no access for equipment. However, hand testpits indicated good quality gravelly sand granular material at glaciofluvial terraces at the confluence of Light Creek and Pitch Creek. Air photo interpretation of the terrain indicates that the features hosting this material appear to cover about 15 ha and may be at least 4 m thick. However, only a fraction of the deposit may be exploitable, as the deposit is incised by both Pitch Creek and Light Creek and riparian protection zones will be required.

Testpits on the road alignment at a potential borrow source at km 5 (Secondary 4) indicate soils with favourable textures. Testpits up to 3.5 m deep intersected sandy gravels and gravelly sand with trace to some silt. Testpit TP03 intersected 0.6 m of poorly graded fine sand between 1.2 of sandy gravel and > 1.7 m of gravelly sand (some silt).

Favourable coarse textured soil was intersected from km 14.4 to km 18.4; however, shallow bedrock in this section may limit quantities. The maximum proven soil depth was 2.5 m.

Testpits to evaluate the potential for favourable granular borrow are recommended at Primary 2 (km 11) and Primary 3 (km 24).

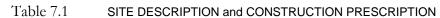
Borrow source target locations are shown on YES Figure 3 following EBA Figures 1-7.

7.0 RECOMMENDATIONS

Road Design and Construction

General recommendations for construction of the road include placement of uniform 300 mm granular fill in areas of shallow bedrock and unfrozen soils. Embankments of fill slopes should be constructed with slopes of 2:1. In primarily granular areas, the imported fill may be eliminated, but adequate ditches for road drainage must be provided.

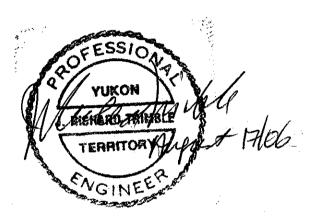
In areas of frozen soil (permafrost), a uniform minimum fill of 1500 mm, including a cap of 300 mm granular fill, is recommended. Ground should be prepared by hand-clearing the vegetation at the site. Non-woven heavy highway-grade geotextile will be overlain on undisturbed ground over cut vegetation on an area equivalent to the footprint of the access road. Overlap of geotextile segments will be 1 m. Assuming a road surface width of 4.5 m, the average width of the access road footprint is approximately 10.5 m.


Twelve sections with unique ground conditions and accompanying recommendations for construction are described in Table 7.1 (following page). The ground conditions characterized are extrapolated from test pit results at typical spacing of about 300 m. During road construction, actual ground conditions may differ from that described. The recommendations in Table 7 are intended as a guide for those sections with the conditions in the accompanying description. If conditions encountered during construction are different from that described, EBA should be consulted to provide suitable recommendations.

After stripping, the subgrade must be compacted to at least 98% Standard Proctor maximum dry density (ASTM D698). All imported fill must be compacted in maximum lift thickness of 300 mm, with each lift compacted to at least 98% Standard Proctor maximum dry density (ASTM D698).

Site Grading, Surface Conditions, Groundwater and Drainage

Permafrost and shallow bedrock presents a barrier to vertical percolation of groundwater. In most sections, much of the run-off is transported downslope as shallow groundwater "sheet" drainage (e.g., km 0 to km 2, km 7 to km 22.5 and km 23.5 to km 24). In these areas, collecting drainage in ditches and concentrating drainage flow to culverts can be problematic where culvert outflows scour sensitive slopes (e.g., fine-textured soil, permafrost). In these sections, care should be taken to place culverts at all existing watercourses, with emphasis on small ephemeral or intermittent watercourses that may not be immediately visible to the untrained eye. Where culverts are required between natural watercourses, they should be placed at the ground surface and outflows should be armoured with rip rap to disperse energy during high flow periods. Construction of sub-grade with a permeable course of large boulders is preferred on wet slopes where natural watercourses have not developed.


KP	TESTPITS	DESCRIPTION	RECOMMENDATIONS for CONSTRUCTION
0 - 2.0	JD1 to JD6	Peat organic veneer and/or colluvium overlying competent bedrock (rock not confirmed at JD6)	strip organic layer and stockpile for future rehabilitation; minimum 300 mm granular fill; good granular borrow material available at glaciofluvial terraces observed at Robert Campbell Highway.
2.0 - 2.5	JD7 and JD23	Peat organic veneer overlying fluvial gravel and sand – permafrost	hand cut trees and leave ground vegetation undisturbed; cover with heavy highway grade geotextile with minimum 1500 mm fill, including 300 mm granular cap; borrow material available at glaciofluvial terraces observed at Robert Campbell Highway.
2.5 - 4	JD22 to JD14	Fluvial gravel and sand; unfrozen at shallow depths;	strip organic layer and stockpile for future rehabilitation; good granular borrow material in this area, but access limited by streams;
4.0 - 4.7	JD13 and JD11	Gravelly sand colluvium overlying till; unfrozen;	strip organic layer and stockpile for future rehabilitation; cap with minimum 300 mm granular fill; build embankments at a slope of 2:1; good borrow material at km 5;
4.7 - 4.9	JD8	Gravelly silty sand colluvium [overlying till?]; permafrost	hand cut trees and leave ground vegetation undisturbed; cover with unwoven heavy highway grade geotextile with minimum 1500 mm granular fill; use 1 m overlap with adjacent geotextile lengths.
4.9 - 7.1	JD9; TP01 to TP09	Mainly sand and gravel, trace to some silt; some sections of sandy silt with some gravel; unfrozen [frozen soil at 0.4m, TP04 assumed to be within seasonally active zone]; km 6.2 and 6.4: depth to bedrock 1.5 m and 1.8 m, but deeper in other sections (> 3.5 m at km 5.2 and 6.9).	strip organic layer and stockpile for future rehabilitation; minimum 300 mm granular fill over bedrock and silty till with embankments at a slope of 2:1; good borrow material at km 5;
7.1 – 9.9	TP10 to TP 20	Variable texture: fine to coarse grained; permafrost.	hand cut trees and leave ground vegetation undisturbed; cover with unwoven heavy highway grade geotextile with minimum 1500 mm granular fill, build embankments at a slope of 2:1;
9.9 – 13.9	TP21 TO TP35	Permafrost is encountered at depth (1.6 to 2.8 m) [frozen soil at 0.3 m in TP31 is assumed to be due to seasonal frozen conditions]; some sections have moderate gradient (27-49%) sideslopes;	fill construction is preferred in this section; however, cut and fill may be acceptable depending upon specific foundation conditions encountered during construction (field decision);
13.9 - 19.7	TP36 to TP57	Variable texture: mostly sandy silty gravel to gravelly sandy silt; some sections of gravelly silty sand; bedrock was intersected at depths of 1.5 m to 2.5 m; unfrozen.	strip organic layer, stockpile for future rehabilitation; minimum 300 mm granular fill with embankments at slope of 2:1
19.7 - 22.5	TP58 to TP70	Variable texture: sandy silty gravel to gravelly silty sand; some sections of gravelly sandy silt; shallow, soft, fissile bedrock; unfrozen.	strip organic layer, stockpile for future rehabilitation; minimum 300 mm granular fill with embankments at slope of 2:1;
22.5 - 23.5	TP71 to TP73	Variable texture; silty sand, sandy gravel, sandy silt; unfrozen; bedrock not intersected; pit depth ranged from 2.5 m to 4.0 m;	strip organic layer, stockpile for future rehabilitation; minimum 300 mm granular fill with embankments at slope of 2:1;
23.5 - 23.9	TP74 to TP76	Variable texture: sandy silty gravel to gravelly silty sand; some sections of gravelly sandy silt; shallow, soft, fissile bedrock [phyllite]; unfrozen.	strip organic layer, stockpile for future rehabilitation; minimum 300 mm granular fill with embankments at slope of 2:1;

8.0 CLOSURE

Conclusions and recommendations presented herein are based on observations of land-surface and shallow soil conditions, current understanding of slope processes and the review of previous geology and terrain mapping. This report has been prepared for use by Yukon Engineering Services and Yukon Zinc Corp., which includes distribution as required for purposes for which this investigation was commissioned. This evaluation has been carried out in accordance with generally accepted engineering and geoscience practice, and engineering/geoscience judgement has been applied in developing the recommendations in this report. The report incorporates and is subject to the General Conditions attached as Appendix A.

Respectfully submitted, EBA Engineering Consultants Ltd.

Jack T. Dennett, P.Geo.(BC) Senior Project Geoscientist direct line: (867) 668-2071, ext. 30 e-mail: jdennett@eba.ca

J. Richard Trimble. P.Eng., Project Director, Yukon Region direct line: (867) 668-2071, ext. 22 e-mail: rtrimble@eba.ca

PERMIT TO PRACTICE

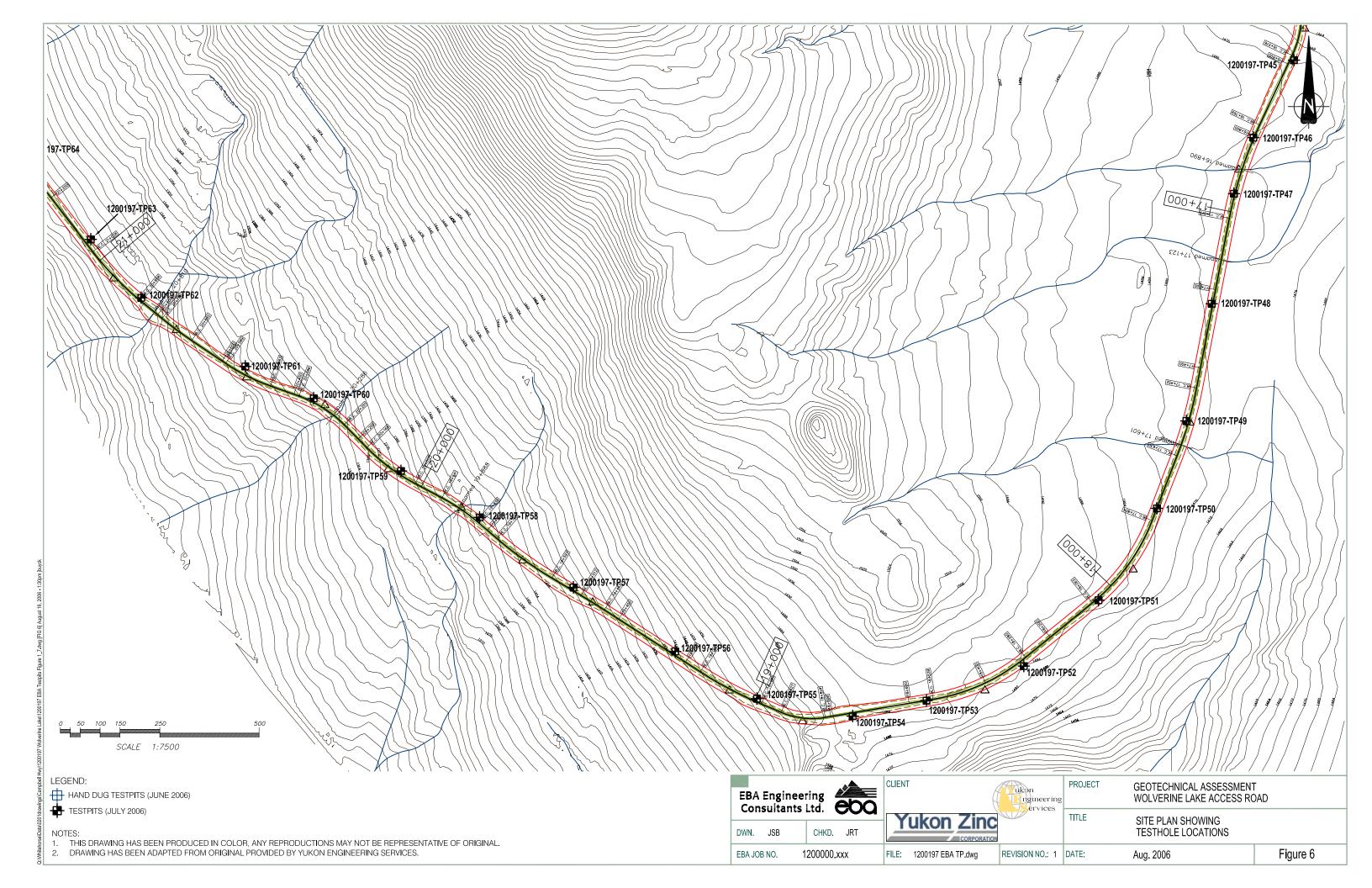
EBA ENGINEERING CONSULTANTS LTD.

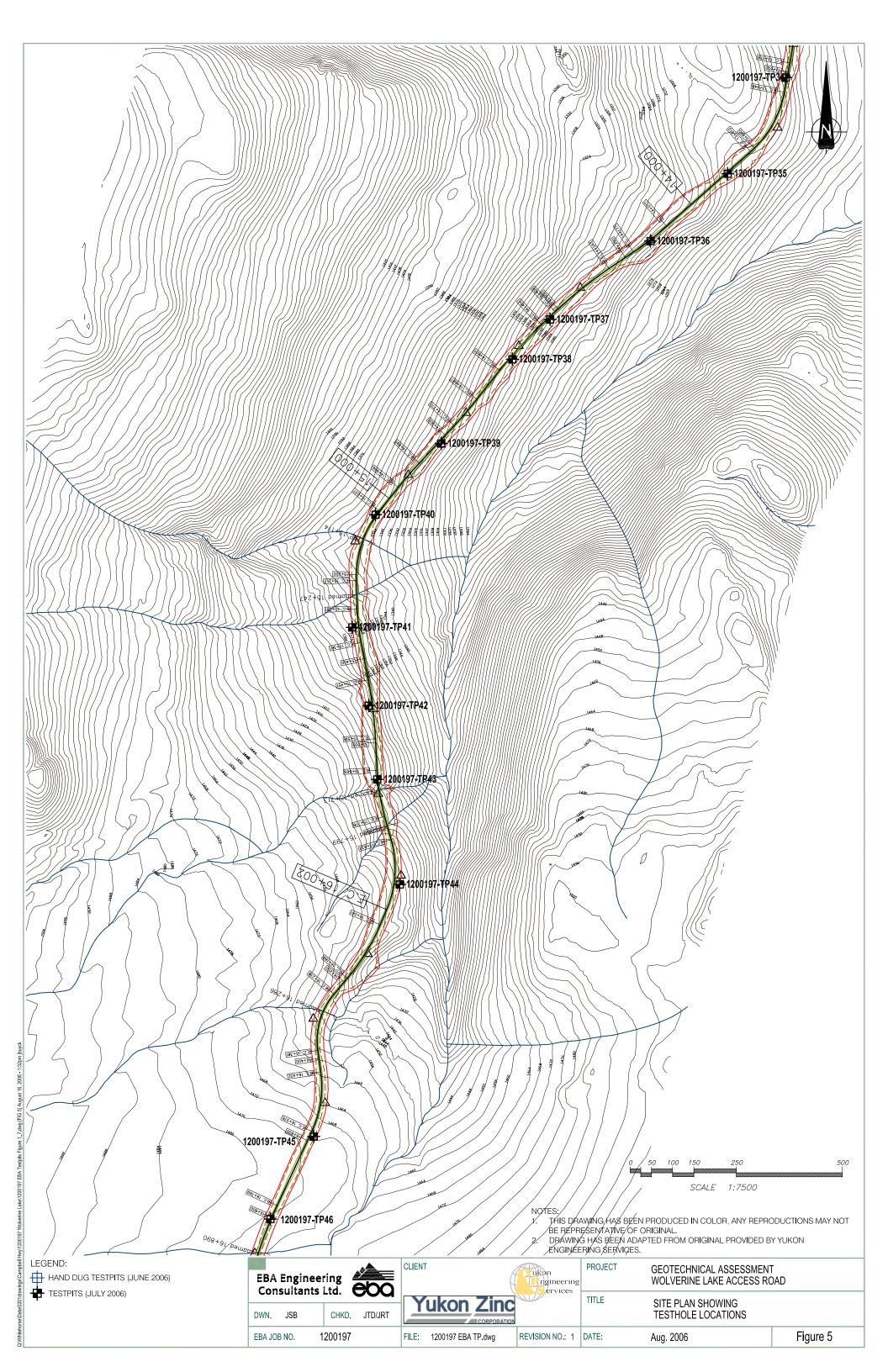
SIGNATURE WILLIAM NO. 100 PRACTICE

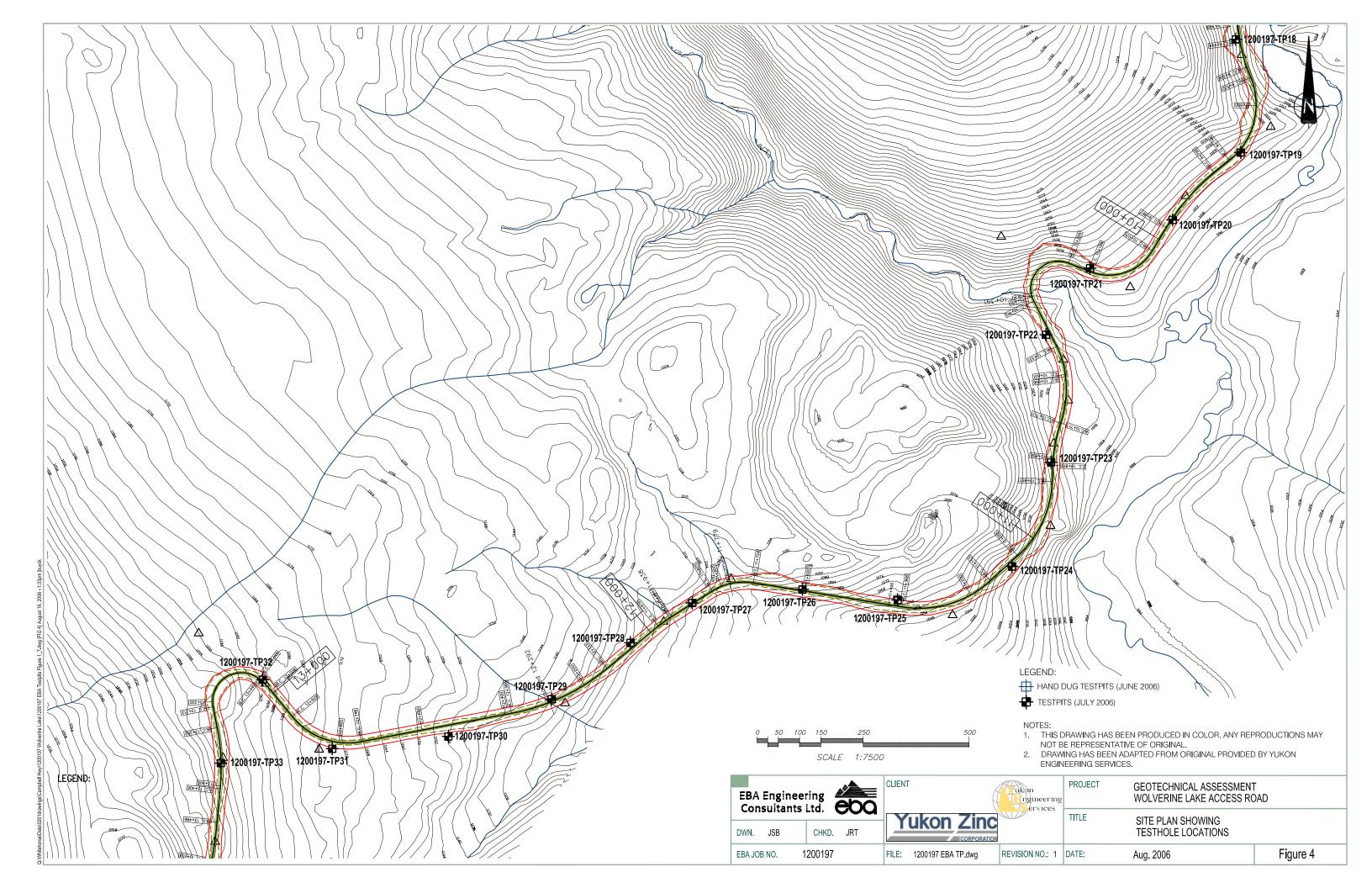
Date Aug 17106

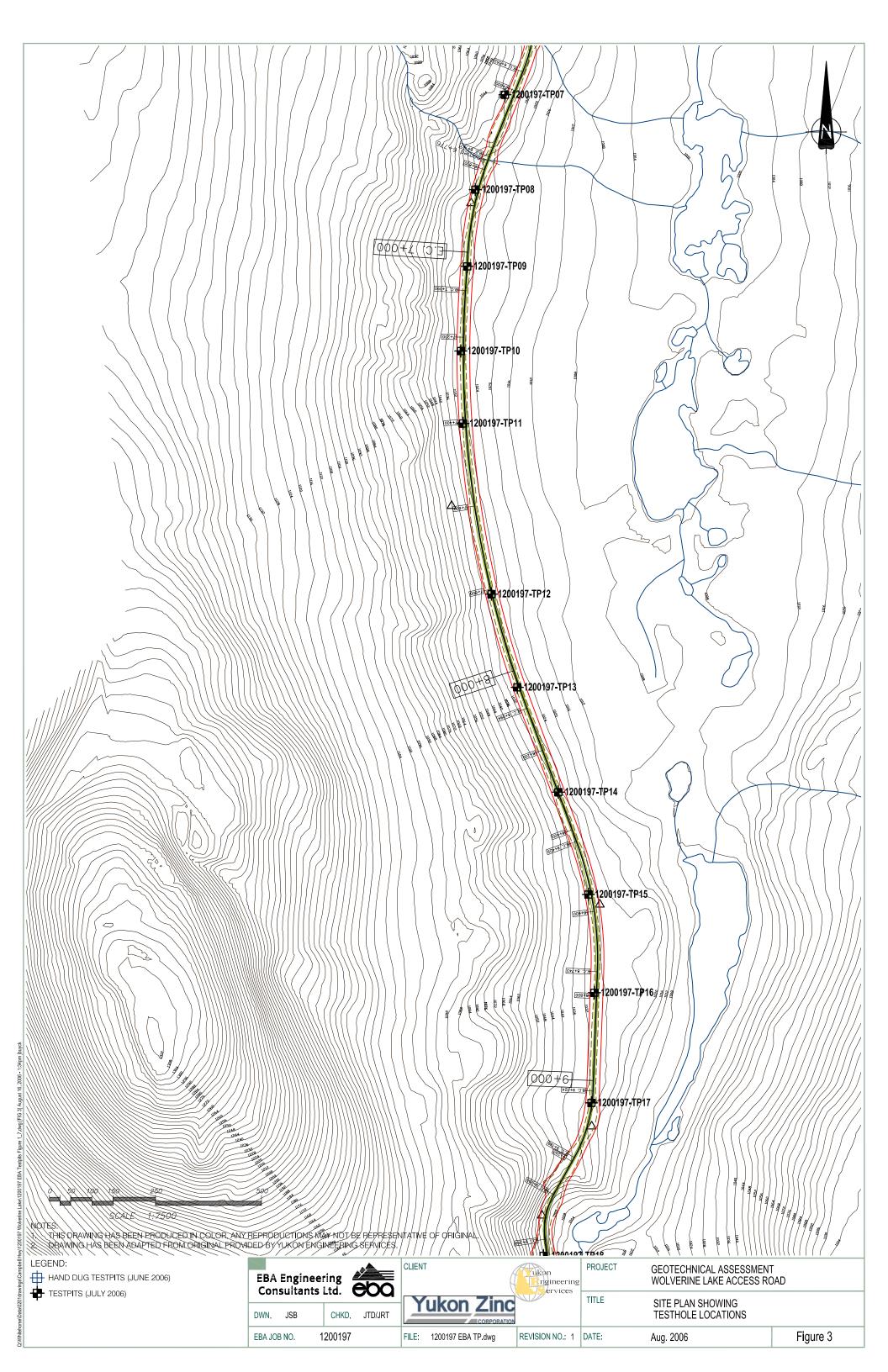
PERMIT NUMBER PP003

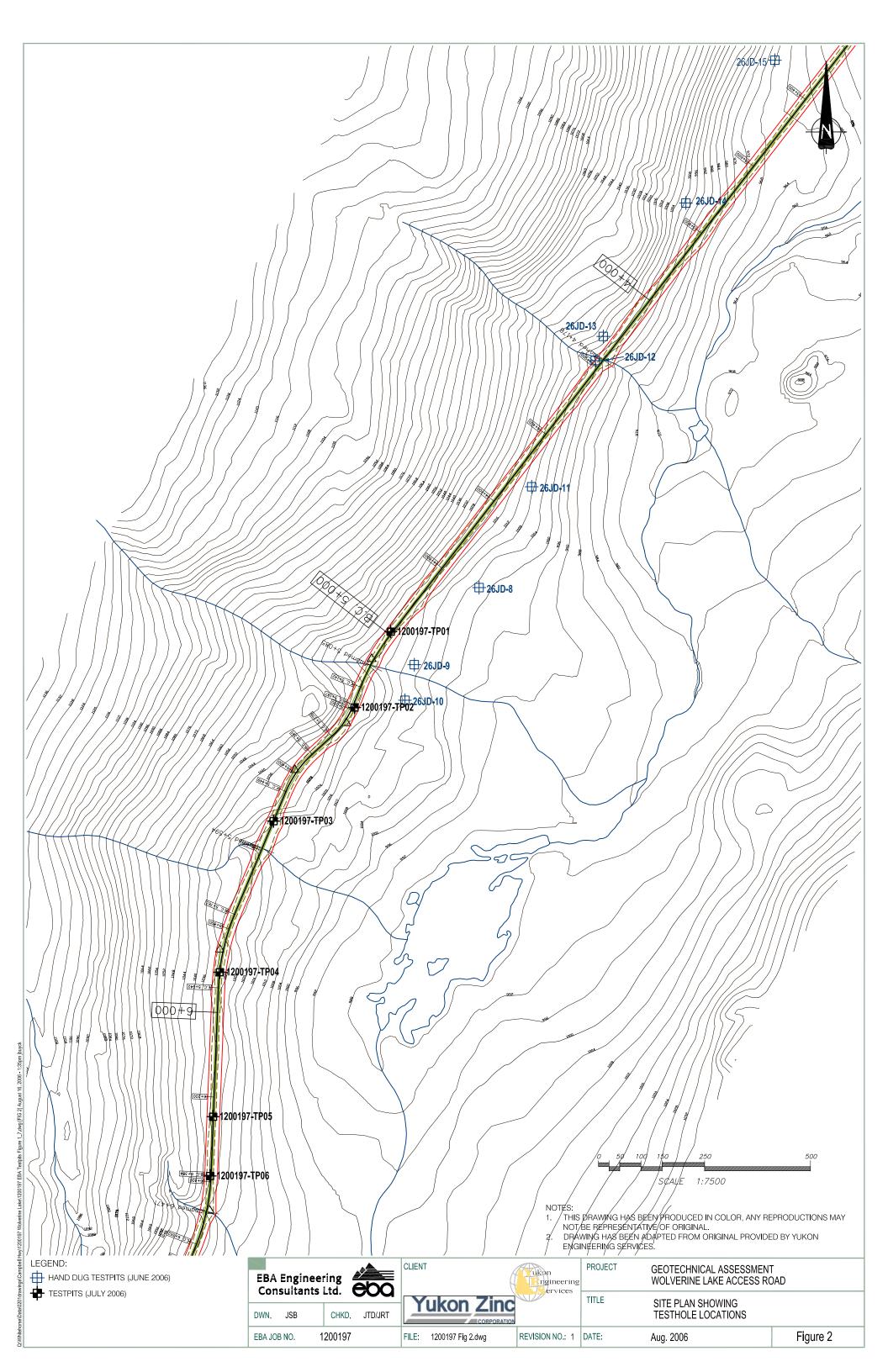
Association of Professional
Engineers of Yukon

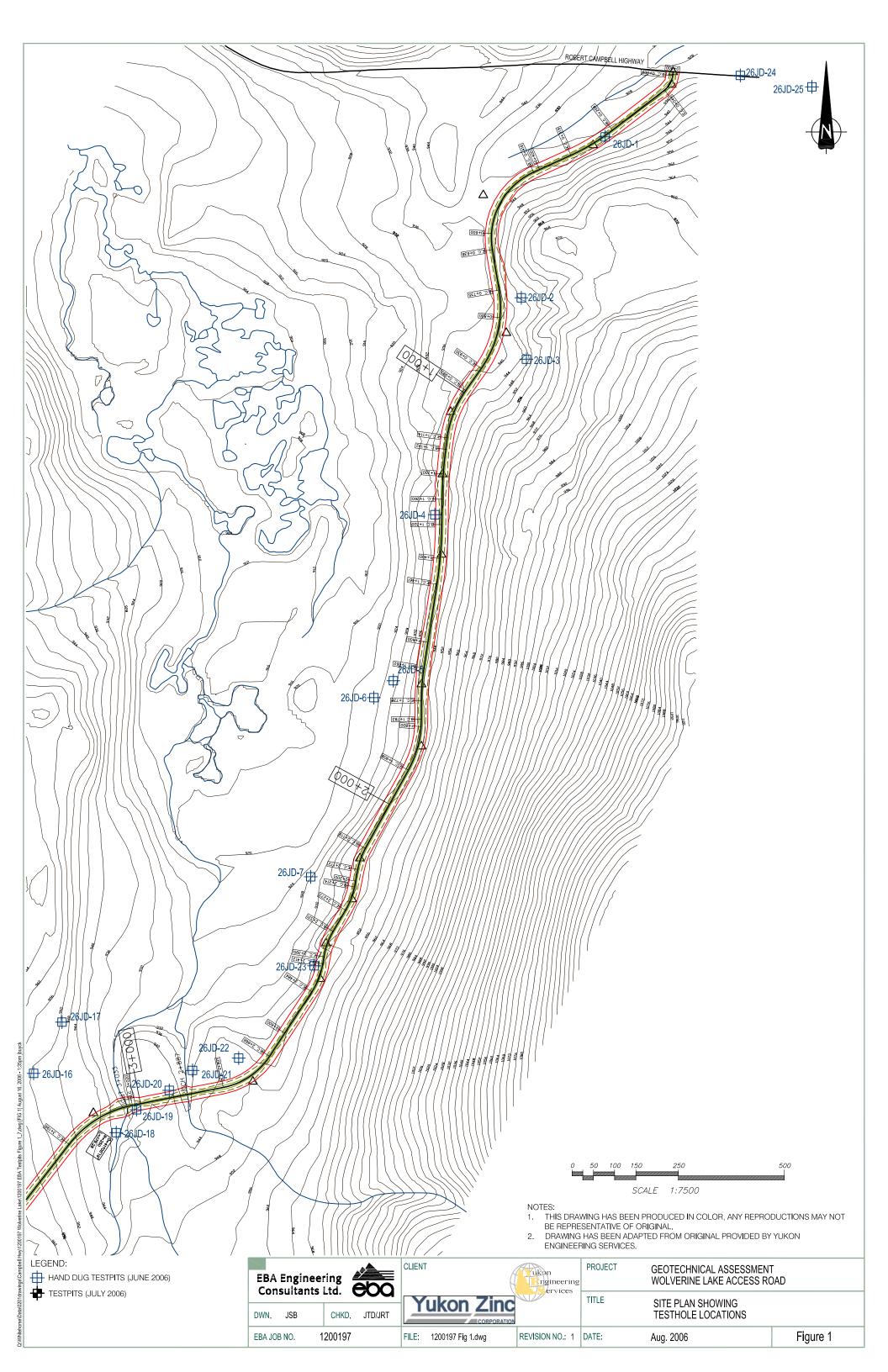

R01_1200197_Geotech_final.docR01_1200197_Geotech_final.doc

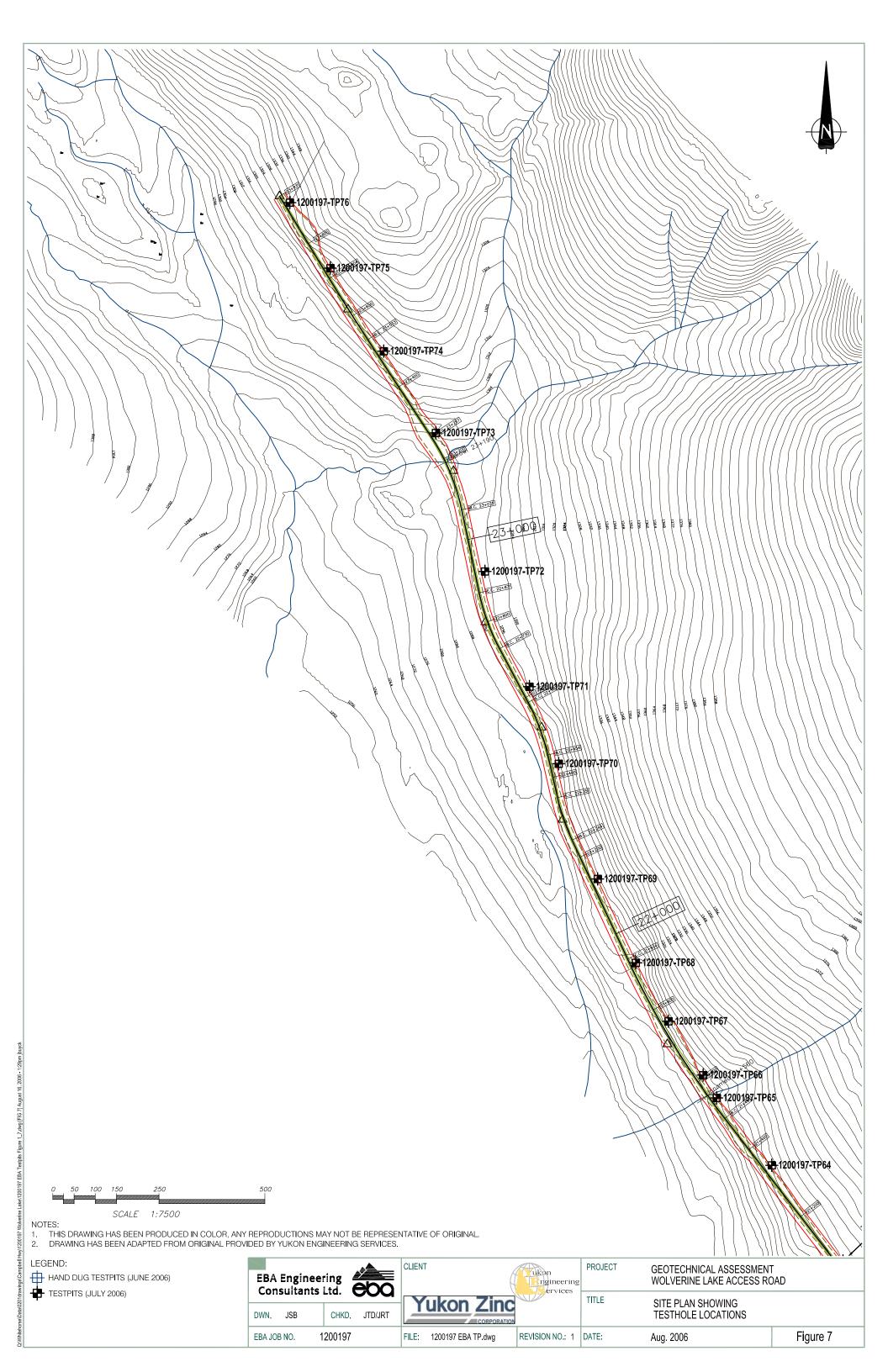


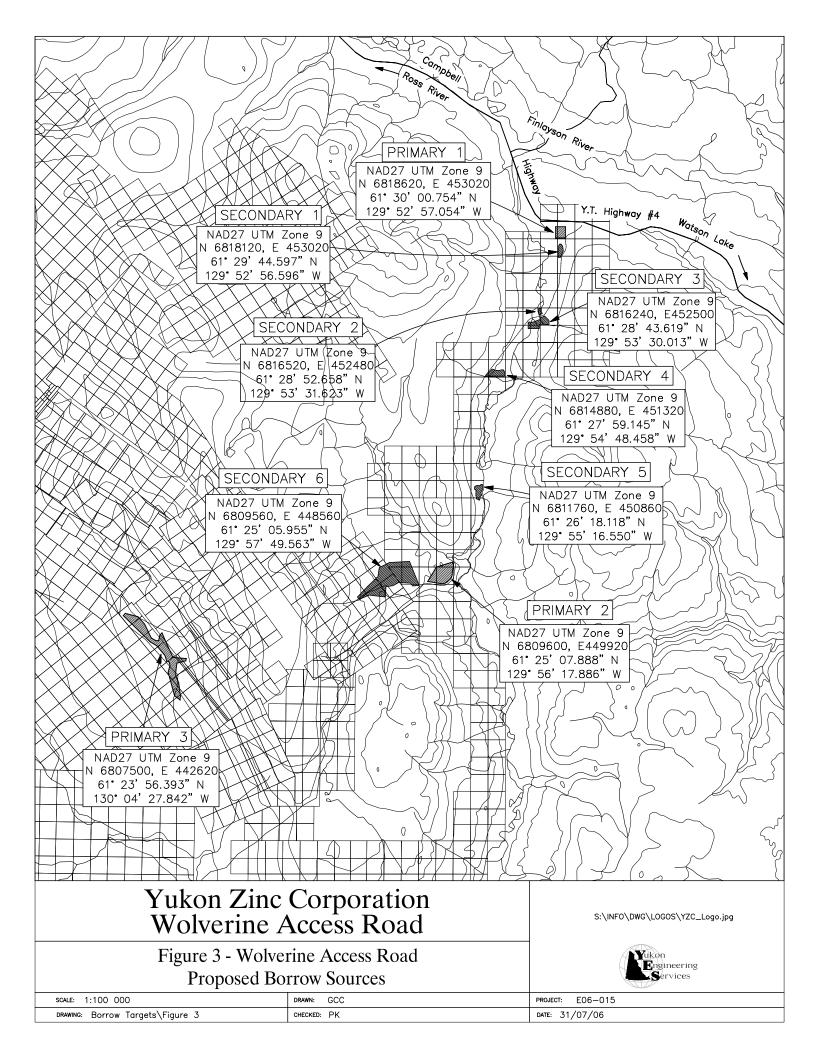

EBA File: 1200197 August 2006

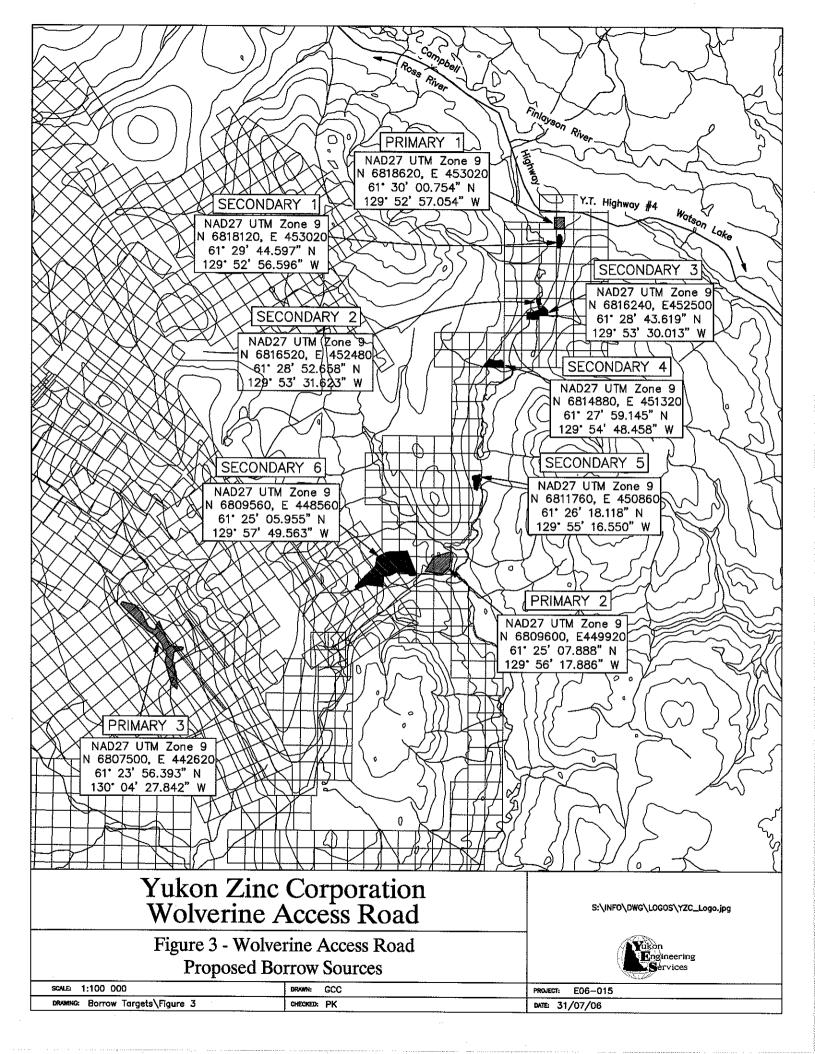

FIGURES



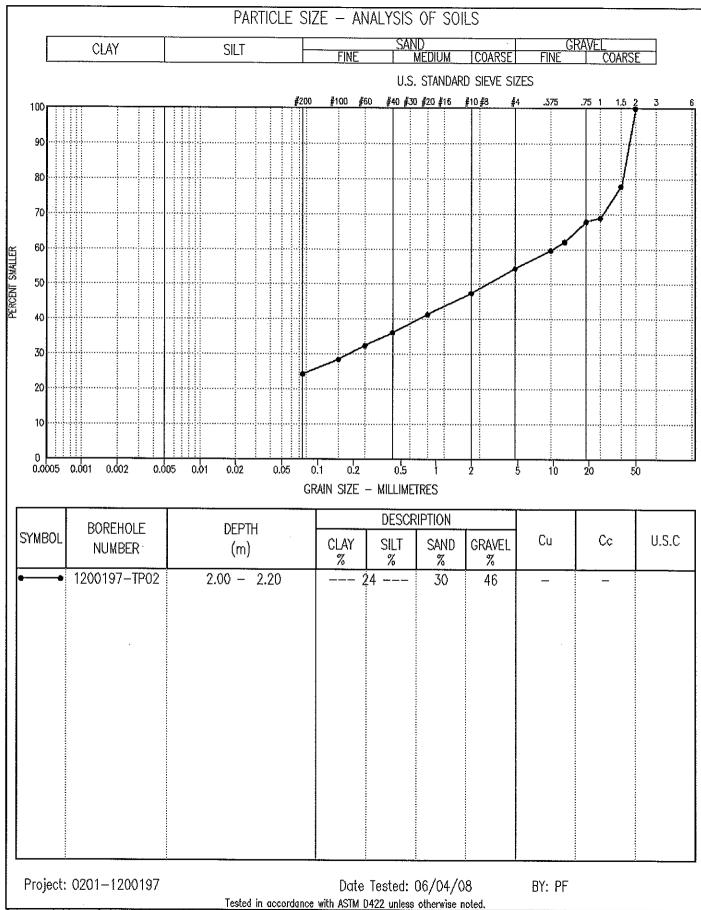








EBA File: 1200197 August 2006


TESTPIT LOGS

				igation		· · · · · · · · · · · · · · · · · · ·	CLIENT: Yukon Engineering		TEST PIT NO: 1200197-	-TP01
Propo	sed	Acc	ess R	ood			EXCAVATOR: 320 C TRACKE	D EXCAVATOR	PROJECT NO: 1200197	
Wolver	ine	Lake	e, YT				UTM ZONE: 8 N6814855 E	451073	ELEVATION:	
SAMP	LE	TYPE	:	GRAI	3 SAM	PLE NO RECOVERY	·	****	EL BARREL	
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	SOIL SYMBOL	Ç	SOIL RIPTION	GROUND ICE DESCRIPTION	A PERCENT SILT OR FINES A 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 PLASTIC M.C. LICK	Depth(ft)
0.0						OPCANIC DOOT MAT		LINEDOZEN	10 20 30 40	- 0.0
· · · · · · · · · · · · · · · · · · ·						ORGANIC ROOT MAT SILT — some sand, b SAND (TILL) — gravell		UNFROZEN		
- - - - 1.0						graded sand, fine angular gravel, co grey	to medium grained ompact, damp, medium and some cobbles	 FROZEN Nf, Vc, 5-10%		2.0
• • • •								UNFROZEN		4.0
- 2.0 - - -									•	6.0
 - - - - 3.0						END OF TESTPIT 2.4 r - very hard exca				
 										10.0
- - 4.0						·				12.0
		.					l Ti Tinon	ED BY: JSB	COMPLETION DEPTH: 2.4 r	14.0
	ĽĹ	ЗA	Ľn	gine	eer	ing Consulta		WED BY: JRT	COMPLETE: 06/07/11	
					<u>Vh</u> it	<u>ehorse, Yukon</u>				e 1 of 1
6/08/16 1	1:504	A (YUKU	NP04}							

Geote							CLIENT: Yukon Enginee		F33-0-1	TEST PIT NO): 1200	197-T	P02
Propo				bad			EXCAVATOR: 320 C TR	ACKED	EXCAVATOR	PROJECT NO	D: 1200197		
Wolver							UTM ZONE: 8 N68148	372 E4	50975	ELEVATION:	*		
SAMP	LE	TYPE		GRA	3 SAM	IPLE NO RECOVERY	STANDARD PEN.	= 7	75 mm SPOON CRREL	BARREL			
Depth(m)	SAMPLE TYPE	RUN NO	(N)	ပ	SYMBOL		SOIL		GROUND ICE	20	ENT SILT OR F 40 60 PERCENT SAND 40 60	80	(ft)
apth	PLE	N.	SPT(N)	SS	S	DECC	ואסודכוו						Depth(ft)
ݣ	SAM	<u>ر</u> حد	0,		SOIL	NEOC	RIPTION		DESCRIPTION	PLASTIC	M.C.	LIQVID I	
0.0	_									10	20 30	40	
- 0.0						ORGANIC ROOT MAT			UNFROZEN				0.0
-						GRAVEL (TILL) — sand	ly some silt compac	+					
- -						moist, brownish g	rey	,,					
_													
-								İ					2.0
-													E
_													
— 1.0													
_			*										
-						SAND (EOLIAN) — fine uniform, damp, d				•			4.0
~						- coarse gravel (1.8 m	and cobbles below						
- -													
-						 becomes silty ! 	below 1.8 m						6.0
— 2.0 -						– becomes grave	l, sandy below 2.0 m			0 A1	ı		
-		•											
_													8.0
-						— very compact l	pelow 2.5 m						-
-									•				
- -													
3.0							1						
-													10.0
-													
-										•			
						END OF TESTPIT 3.5 r	<u> </u>						
_						– very hard exca			•				12.0
-													
-								ļ					
— 4. 0 -	$ \ $												
-								ŀ					
-													14.0
-													
	ויון	 ?∧	En	gin.	יםם	ring Consulta	ante Ita	LOGGE	D BY: JSB		ION DEPTH:		
	ارت	ンび	ЦЦ				uito litt.	REVIEW	'ED BY: JRT		E: 06/07/1	1	
6/98/16 1	1:504	м сулко	NPD4)	ł	ınıt	<u>ehorse, Yukon</u>		l				Page 1	of 1

EBA Engineering

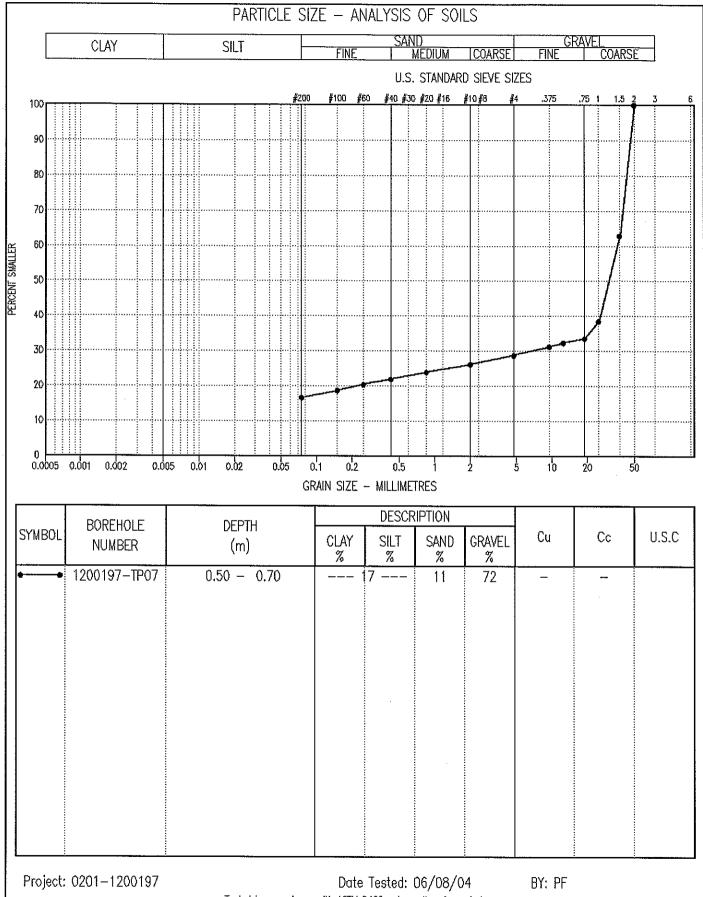
Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Geote					1		CLIENT: Yukon Engineer	ring S	ervices	TES	ST I	PIT 1	10:	1	200	197–1	TP03
Propos				aad			EXCAVATOR: 320 C TRA	CKED	EXCAVATOR	PR	OJE	CT I	VO:	1200	1197		***************************************
Wolver							UTM ZONE: 8 N68144	51 E4	50810	ELI	-VA	TION	;				
SAMPI	LE	TYPE		GRA	B SAM	IPLE NO RECOVER	∕ ⊠standard pen.		75 mm SPOON ∭CRRE	L BAI	RRE	L					
<u>_</u>	YPE		_		30 30 10 10 10 10 10 10 10 10 10 10 10 10 10	C	COII					20	4	T SILT O ICENT	60	NES ▲ 80)
Depth(m)	SAMPLE TYPE	ž K	SPT(N)	OSO	SYMBOL		SOIL		GROUND ICE			20	4	0	60	80	Depth(ft)
De	SAM	<u>~</u>	S		SOIL	DESC	RIPTION		DESCRIPTION		PL	ASTIC I——		M.C.		LIQVID ——I	Deg
0.0 -						ORGANIC ROOT MAT	NA.		UNFROZEN			10	2	0	30	40	E 0.0
						SAND (TILL) — gravell	ly, silty, very										1
<u>-</u>						compact, moist,	grey and cobbles below					•					
 						0.5 m	aria coppies pelow										2.0
-																	
-																	
— 1.0 -																	<u>i</u>
-																	4.0
•												•					
																	<u> </u>
-																	6.0
- 2.0																	F 8.0
-																	
-																	
- _												,					8.0
_												•					
- 3.0						CUD OF TEATRIT 7.0			•				ļ				
- L						END OF TESTPIT 3.0 r - very hard exca											10.0
-																	E
- -													ļ				<u> </u>
- L								:									12.0
-																	
- 4.0																	
- 																	
-																	14.0
-						THE CONTRACT OF THE CONTRACT O	1.		D. 03 (10E								<u>F</u>
	ΕI	3A	En	gin	eer	ing Consulta			D BY: JSB /ED BY: JRT					N DE 06/0			
						ehorse, Yukon		Y IL-17			W	IVIT L	L1 Li	VU/	11/1		1 of 1
06/08/16 1	I:EXIA	M LYUKÛ	NPU4)														

Propo	sed	Acc	ess R	oad			CLIENT: Yukon Enginee	ring S	ervices	TES	st pit no	: 120	0197-TI	204 ∣
Wolver	ine	Lake	e, YT				EXCAVATOR: 320 C TRA			PR	OJECT NO	: 120019	7	
						P4-1	UTM ZONE: 8 N68140	147 E4	50657	ELE	EVATION:			
SAMP	LE .	TYPE		GRAI	B SAM	PLE NO RECOVER	Y ⊠standard pen.		75 mm SPOON CRREE	. BAI				
	'PE				70		NATT				20	NT SILT OR 40 60	80	_
Depth(m)	LE TYPI	RUN NO	SPT(N)	usc	SYMBOL		SOIL		GROUND ICE		■ Pl 20	ERCENT SAN 40 60	D ≡ 80	Depth(ft)
Dep	SAMPLE	P.	SF)	SOIL	DESC	RIPTION		DESCRIPTION		PLASTIC I———	M.C.	LIQVID	Dep
0.0						ORGANIC ROOT MAT -	- siltv. black. frozen		UNFROZEN		10	20 30	40	0.0
						GRAVEL (TILL) - san				_				_
						medium grained,	damp, light greyish	į	FROZEN Vc, 15-20%		•			-
-						brown END OF TESTPIT 0.4	m (REFUSAL)		70, 10 207					
														2.0
- 1.0														
														4.0
_														
														_
														6.0
- 2.0														
-														8.0
- 3.0														10.0
-														
•														12.0
- 4.0														
,														14.0
	EI	BA	En	gin	eer	ing Consult			D BY: JSB			ION DEPTH	ł: 0.4 m	
						ehorse, Yukon		IZC VIE	WED BY: JRT		COMPLET	<u> </u>	Page 1	of 1
5/08/16 1	1:504	м (үшкс	NP04)											


Propo				oad			CLIENT: Yukon Enginee			TEST	PIT 1	10:	12	0019	97-T	P05
Wolver	ine	Lake	e, YT				EXCAVATOR: 320 C TR			PROJE	ECT I	NO:	12001	97		
			_				UTM ZONE: 8 N68137	706 E4	50641	ELEVA	TION	,				·
SAMP	LE	TYPE		GRA	B SAM	IPLE NO RECOVERY	′ Standard pen.		75 mm SPOON CRREI							
	بيرا]_						▲ PEF 20	RCENT 40	Silto O 60	R FINE	S. ▲ 30	
\mathbb{E}	Ξ	오	(N	()	SYMBOL		SOIL		GROUND ICE		20	PER0	CENT S	AND 🔳	30	1 €
Depth(m)	SAMPLE	RUN NO	SPT(N)	OSN	λS											Depth(ft)
ݣ	SAM	8	(1)		SOIL	DESC	RIPTION		DESCRIPTION	11	ASTIC ——		M.C.		LIQUID	å
0.0	Ü										10	20	0 30	0 4	10	
- 0.0						ORGANIC ROOT MAT -	silty		UNFROZEN							0.0
-						SILT (TILL) — sandy,	trace of aravel									
-						oier (nee) suray,	adec of graver									
						BEDROCK – highly we	eathered, highly									
_						fractured, fine to	coarse angular									2.0
-						particles, saturato	ed, dark brown									E 2.3
-																E
-																
— 1.0 -						 becomes comp 	etent with depth									Ē
_ <u>*</u>																4.0₹
-																F 7.05
-																F
_						END OF TESTPIT 1.5 r	n (REFUSAL)			****						·[-
-							,									
•								İ								Ē ,,
-																6.0
2.0															ļļ	Ė
•																E
_																Ē.
-																Ē.,
_															ļ <u>į</u>	8.0
-																
-																
_																<u> </u>
— 3.0											ļ <u>.</u>				<u>i</u>	Ė
-																10.0
-																<u> </u>
_																
_																E
-																Ē
-																12.0
-																E
- 40																Ē
— 4.0 -																Ē
-																E
-																14.0
-																Ē.
	<u>'''</u> ای	ي R	Fn	ain	ىت دەم	ring Consulta	anta Itd		D BY: JSB				N DEP	<u>:</u> TH: 1	.5 m	<u> </u>
	لت	UĽ1	üШ				anto Ltu.	REVIEW	VED BY: JRT)MPL					
6/08/16 1	1:51A	m (YUKO	NP84}	,	<u>mnit</u>	ehorse, Yukon									Page	1 of 1

Geotechnical 1		*		740.4	CLIENT: Yukon Enginee	ering Sc	ervices	TEST I	PIT NO);	1200	<u>197-</u> T	P06
Proposed Acc		oad			EXCAVATOR: 320 C TR	ACKED	EXCAVATOR	PROJE	CT N	D: 120	10197		
Wolverine Lake					UTM ZONE: 8 N68135	566 E4	50634	ELEVA	TION:				
SAMPLE TYPE		GRAE	SAM	IPLE NO RECOVER	y Standard Fen.		75 mm SPOON CRRE	L BARRE					
Depth(m) SAMPLE TYPE RUN NO	SPT(N)	nsc	IL SYMBOL		SOIL RIPTION		GROUND ICE		20	ENT SIL 40 PERCENT 40 M.(60 F SAND 60	80	Depth(ft)
SA S			SOIL	рпос	IVII IIOIV		DESCRIPTION					——	
0.0				ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0
				SILT (TILL) — sandy, graded sand, find subangular grave light brownish gra	to medium grained I, compact, damp,		UNFROZEN		•				7.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
-1.0				BEDROCK (PHYLLITE)	— hìahly weathered								4.0
- 2.0			,	coarse angular p	articles, grey								6.0
-													8.0
- 3.0													10.0
- 4.0													12.0
						110005	D. D.V. JOD						14,0 14,0
EBA	En_{i}	gine	eer	ing Consulta	ants Ltd.		D BY: JSB /ED BY: JRT					1.8 m	
	•			ehorse, Yukon		IVE A IEA	רח חוי מולן	100	IVIT'L.L.	ΓΕ: 06,	/ / / / 1		1 of 1
/08/16 11:51AM (YUKO	NPO4}		1 111 [CITOLOG, LUNUII		<u> </u>						rage	1 of 1

ö

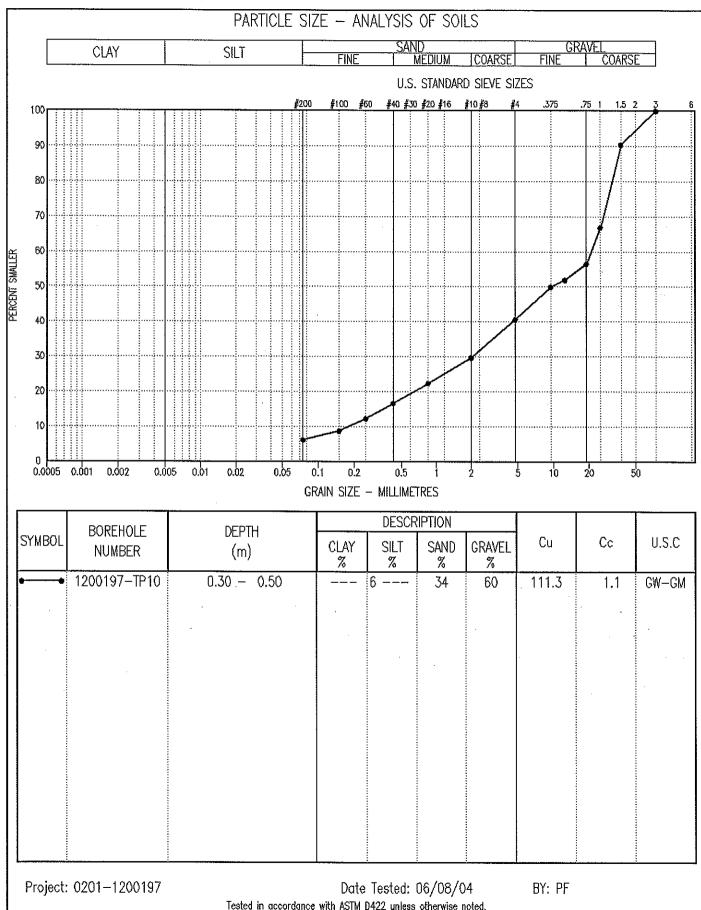
	CLIENT: Yukon Engineering Services		T NO: 1200197-TF	207
· · · · · · · · · · · · · · · · · · ·	EXCAVATOR: 320 C TRACKED EXCAV	ATOR PROJECT	T NO: 1200197	
	UTM ZONE: 8 N6813351 E450560	ELEVATIO	ON:	
SAMPLE TYPE GRAB SAMPLE NO RECOVERY	′ ⊠standard pen. ⊟75 mm			
를 베고[통] 호[S]	DIDMION	2001000 100	PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 STIC M.C. LIQUID	Depth(ft)
			10 20 30 40	
GRAVEL (TILL) — sitty,	sandy, coarse sl, compact, damp, grey	DZEN		0.0
-1.0 - some gravel be	elow 1.0 m			2.0
				6.0
- 2.0 - difficult to exca	avate below 2.0 m			8.0
END OF TESTPIT 2.7 r – becomes very	n (REFUSAL) compact at 2.7 m			10.0
-4.0				12.0
				14.0
EBA Engineering Consulta	ants Ltd. LOGGED BY:		PLETION DEPTH: 2.7 m	
Whitehorse, Yukon	REVIEWED BY:	UMF COMP	PLETE: 06/07/11 Page 1	of 1

EBA Engineering

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.



/08/16 11:51AV	(NRU)	(PD4)	1	Whit	<u>ehorse, Yukon</u>								Page	1 of 1
EF	ЗA	Ľn	gin	eer	ing Consulta	ants Ltd.		U BY: JSB /ED BY: JRT		COMPLE				
<u> </u>	2 V	Fn	ain		ing Conquit	anta Itd	LOGGE	D BY: JSB		COMPLE	TION [EPTH:	3.5 m	<u> </u>
														14.0
- 4.0														
					-									
					END OF TESTPIT 3.5 i - slough below 3									12.0
_					CHO OF TESTS			÷						<u> </u>
- 3.0														10.0
7.0														
-											ļļ			
														8.9
					— trace to no sil	t below 1.8 m								
- 2.0					1.8 m — major sloughin	g below 2.5 m								
					- colour changes	s to light grey around								6.0
-														
														4.0
										•				E , ,
- 1.0	-										ļļ			
					÷.									
				***************************************										2.0
-					brown	I are a milk a garding					ļļ			
.					silt, well graded s	subrounded gravel, npact, dry, reddish								
7.0					ORGANIC ROOT MAT GRAVEL (FLUVIAL) - :	sandy, trace to some		UNFROZEN						0.0
0.0				S						10	20	30	40	
Depth(m)	RUN NO	SPT(N)	osn	SOIL SY	DESC	RIPTION		DESCRIPTION		PLASTIC		.C.	LIQUID	Depth(ft)
(m)	일	Ξ	ي	SYMBOL	(SOIL		GROUND ICE		20 = 20	40 PERCEN 40	60 IT SAND 60	_80 ≡ 80	£
1			GIVA		ILE NO RECOVER	STANDARD PEN.		75 mm SPOON ∭CRI	KEL BA	▲ PER		LT OR F		
Wolverine SAMPLE 1			CDA	B SAM	IPLE NO RECOVER	UTM ZONE: 8 N68131 Y ⊠standard pen.				EVATION:				
Proposed			oad			EXCAVATOR: 320 C TR	ACKED	EXCAVATOR	PR	ROJECT N	10: 12			
Geotechni	cal II	nvesti	igatior	1		CLIENT: Yukon Enginee	ring S	ervices	TE	ST PIT N	0 :	1200	197-T	P08

Geote							CLIENT: Yukon Enginee	ering S	ervices	TEST	PIT	NO:	12	0019	7–T	P09
Propo				oad			EXCAVATOR: 320 C TR	ACKED	EXCAVATOR	PROJ	ECT	NO:	12001	97		
Wolver							UTM ZONE: 8 N68129	946 E4	50471	ELEVA	10IT,	N:				
SAMP	LE .	TYPE		GRA	B SAM	IPLE NO RECOVERY	Y ⊠standard pen.		75 mm SPOON CRRE	L BARRE	.L					*******
	ليا				اٰرا				7-7-		▲ PE 20		NT SIET 0 40 6			
Œ	E	0N	9		SYMBOL	S	SOIL		GROUND ICE			■ PE	RCENT S	AND II		1
Depth(m)	닖	RUN NO	SPT(N)	nsc					GIOUND ICE		20		40 6			Depth(ft)
පී	SAMPLE TYP	₽	S		SOIL	DESC	RIPTION		DESCRIPTION	Pi	ASTIO	C	M.C.	L	CUID	0
	0,				.,						10)	20 3) 40	¬ı)	
0.0						ORGANIC ROOT MAT			FROZEN							- 0.0
-				:		CAND office fine and	Sand blacks									
-						SAND — silty, fine gro	angular gravel below									E
-						0.4 m	angular graver bolow			-						Ē
_									UNFROZEN							Ė
-										•						2.0 E
-																E
-																Ė I
0.1 —																Ė
• -																Ē
																F 4.0
-																Ē.
_																E
-																E
	П															<u> </u>
																6.0
- 2.0																
-																
-																Ē
-																
_							7041									E 8.0
						GRAVEL - sandy and	silty, well graded									E
						grey	el, compact, damp,									E
						91 67										F
. 7.0											•)				
— 3.0						END OF TESTPIT 3.0 r									···	10.0
					İ	 very difficult ex 2.5 m 	xcavating below									
						2.5 m										
-																
_												<u>ļ</u>				1
																12.0
		ŀ														Ė I
																<u> </u>
4.0																Ė
•																E
												i				14.0
																E
								LOSSE	D. DV. JCD) (II)	CTI /	VI 0-0	FIL C 5		E
	ΕĪ	3A	En	gin	eer	ing Consulta	ants Ltd.		D BY: JSB /ED BY: JRT				ON DEP : 06/0		m	
						ehorse, Yukon					L		_ 55/ 5/		ige '	l of 1
6/08/16 1	III A	ицт∪ЖО	NI/U4)													

Geotechnical Investigation	CLIENT: Yukon Engineering S		TEST PIT NO: 1200197-1	P10
Proposed Access Road	EXCAVATOR: 320 C TRACKED		PROJECT NO: 1200197	
Wolverine Lake, YT	UTM ZONE: 8 N6812746 E4	150456	ELEVATION:	
SAMPLE TYPE GRAB SAMPLE NO RECOVER	y Standard Pen.	75 mm SPOON CRREL		
후 메지() 호(S)	SOIL CRIPTION	GROUND ICE DESCRIPTION	A PERCENT SILT OR FINES A 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 PLASTIC M.C. LIQUID	Depth(ft)
			10 20 30 40	
0.0 ORGANIC ROOT MAT SILT — sandy, fine g	rained, blackish grey	UNFROZEN		0.0
silt, well graded	(COLLUVIAL) — trace of subrounded gravel, moist, dark		- A 8 B	ستستست
brownish grey END OF TESTPIT 0.5	ſ			2.0
-1.0				المسالسية
				- 4.0
-2.0				6.0
		·		
				8.0
- 3.0				الىزىدىلىدىيى 10.0
				10.0
				12.0
-4.0				14.0
	1			E
EBA Engineering Consult		D BY: JSB VED BY: JRT	COMPLETION DEPTH: 0.5 m	
Whitehorse, Yukon	KEVIEV	זרח פוי אוצו	COMPLETE: 06/07/11	1 of 1
5/08/16 11:514W (YUKONPD4)			rage	ı VI I

EBA Engineering

Data presented hereon is for the sale use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with ar without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted.

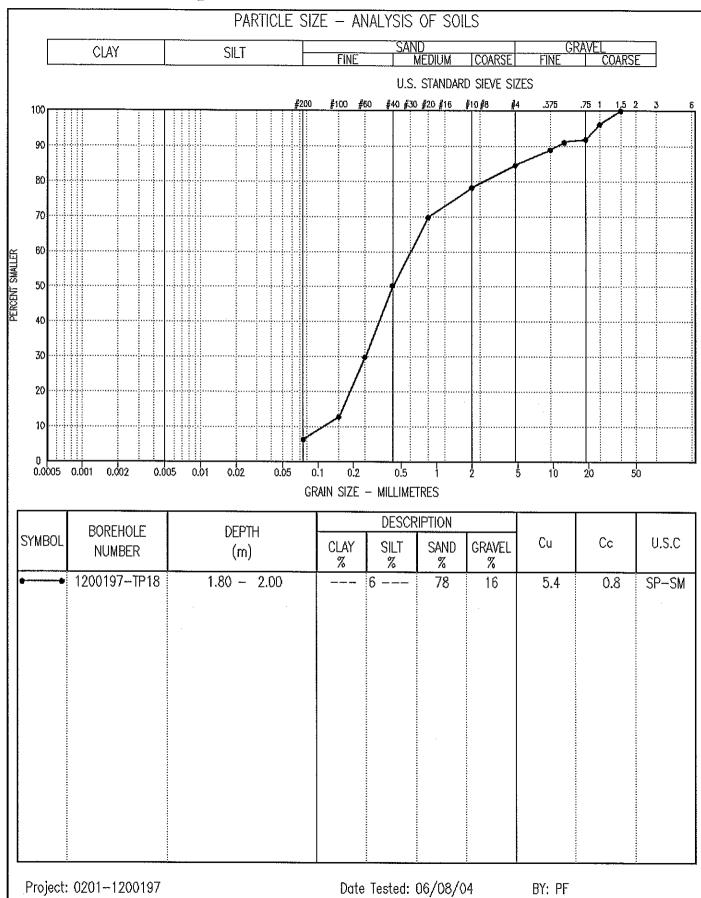
The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Geotechnical Investigation							CLIENT: Yukon Enginee			TES	ST PIT NO): 1:	<u> 20</u> 01	97-TI	P <u>11</u>
Ргоро				oad			EXCAVATOR: 320 C TRA	CKED	EXCAVATOR	PR	OJECT N	D: 1200	197		
Wolver							UTM ZONE: 8 N68125	75 E4	50461	ELE	EVATION:				
SAMP	LE	TYPE		GRA	B SAM	PLE NO RECOVER	y Standard Pen.		75 mm SPOON CRREL	BA	RREL				
	LЦ						*****				▲ PERC 20	ENT SILT 40		ES ▲ 80	
Œ	Ł	9	$\overline{}$		SYMBOL	(SOIL		בפטנואות נכפ			PERCENT	SAND =		≆
Depth(m)	길	RUN NO	SPT(N)	nsc	\$				GROUND ICE		20			80	Depth(ft)
De l	SAMPLE	찡	S		SOIL	DESC	RIPTION		DESCRIPTION		PLASTIC	M.C.		LIQUID	
	S				S						10	20	30	40	
0.0						ORGANIC ROOT MAT			UNFROZEN						0.0
-						SILT — sandy, fine gr	rained, blackish grey								
-						GRAVEL (TILL) - sand	dy, some silt, well led gravel, coarse	ſ	FROZEN			'	•		
-						sand, mottled br	own		Vx, 20-30%						
_						END OF TESTPIT 0.3	m (REFUSAL)								
_															E 2.0
-															
-															
— 1.0															
_															
-															4.0
-															
													<u>.</u>		E
•															Ė I
-															
_															6.0
- 2.0													ļį		
-															
-															Εl
-															F
•															E 8.0
_													T		
_															
-															
•															
3.0													++		10.0
•															
-															El
															Ė I
															Ė
-				·											<u> </u>
-															12.0
-															È
- 4.0															Ę I
-															
-															[14.0 E
_															Ė
	ΓŢ	₹Δ.	Fn	gin	ρργ	ring Consult			D BY: JSB	'	COMPLE				
	النا	JA	цЦ				unto ntu.	REVIEV	VED BY: JRT		COMPLE	TE: 06/	07/11		
6/08/16 1	1:51A	м (үшке	NPB4}		III (ehorse, Yukon					<u> </u>			Page	1 01 1

Geote	~~~~				1							TEST PIT NO: 1200197-TP12						
Propo				bad			EXCAVATOR: 320 C TRA			PROJECT NO: 1200197								
Wolver					: :		UTM ZONE: 8 N68122			ELE								
SAMP	LE.	1425	.	GRA	B SAM	IPLE NO RECOVER	Y ⊠STANDARD PEN.		75 mm SPOON CRREL	BAR								
Depth(m)	MPLE TYPE	RUN NO	SPT(N)	nsc	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION	-		20	PERCI 40	60 Ent san	FINES A 80 D = 80 LIQUID	Depth(ft)		
	Š				S	22.00	1711 11011		DESCIMI HOR		ŀ	10	20	70	40	_		
0.0						ORGANIC ROOT MAT			UNFROZEN	\dashv		10	20	30	40	E 0.0		
						SILT — sandy, fine gr	ained, blackish grey											
<u>.</u>						GRAVEL (TILL) — sand subrounded grave mottled brown	dy, silty, well graded el, coarse sand,	{	 FROZEN Vc, 10–15%	_			•					
_						END OF TESTPIT 0.3	m (REFUSAL)						 -			E		
							,									2.0		
-																F		
-																E I		
1.0													 -			E		
																Ē.,		
-																F- 4.0		
-																F		
_										-	i		ļļ			-		
_																		
-																Ē ,		
-																6.0		
2.0													ļļ					
-			,													E		
-																8.0		
<u> </u>										ŀ			ļļ.			E		
Ĺ																E		
-																E		
F																E		
— 3.0										,			ļļ.			E 10.0		
																E		
-																Εl		
-																Εl		
_																E		
																12.0		
<u> </u>									·							E		
-																È		
 4 .0										-	<u> </u>					F		
[
-																14.0		
-																E		
	יק יק	LL DA	Γ_{\sim}	ain	~~~	ing Conquit	onto Ita	LOGGE	D BY: JSB		COM	i IPLE	: : Tion	DEPTH	: 0.3 m	F		
EDA Engineering Consultants Ltd. REVIEWED BY: JRT COMPLETE: 06/07/11																		
06/08/16 1	1:51A	M (YUKO	NP04)	1	ıınıt	<u>ehorse, Yukon</u>									Page	1 of 1		

Geotechnical Investigation							CLIENT: Yukon Engineering Services TEST PIT NO: 120019							0197-	ГР13					
Proposed Access Road							EXCAVATOR: 320 C TRA	EXCAVATOR: 320 C TRACKED EXCAVATOR						PROJECT NO: 1200197						
Wolver							UTM ZONE: 8 N68119	52 E4	50589	ELE'	VATI	ON:			*					
SAMP	LE	TYPE		GRAI	3 SAM	PLE NO RECOVERY	∕ ∑standard pen.		75 mm SPOON CRREL	BAR	REL				·,					
Depth(m)	LE TYPE	RUN NO	SPT(N)	usc	SYMBOL		SOIL	GROUND ICE			20	40	60 Ent san		Depth(ft)					
Dep	SAMPLE	RU	S	1)	SOIL	DESC	CRIPTION		DESCRIPTION		PLAS		l	(Dep.					
0.0						ORGANIC ROOT MAT			UNFROZEN		10 20 30			40	- 0.0					
-					ł	SILT — sandy, fine gr	gined, blackish grev		OMINOZEN							<u> </u>				
-					Ī	GRAVEL — sandy, trac				-						ĒΙ				
-						subrounded well q	graded gravel, coarse		FROZEN Vc, 30–40%											
-						END OF TESTPIT 0.3 (m (REFUSAL)									2.0				
- -																				
— 1.0 -																				
																4.0				
<u>-</u>																<u> </u>				
-			•																	
-																6.0				
— 2.0 -																				
-																				
- -																8.0				
-																				
3.0 -																10.0				
-																-				
_																.E				
-																12.0				
-																				
- 4.0																				
- -																				
-																14.0				
	El	ВА	En	gin		ring Consulta			D BY: JSB						1: 0.3 m					
			+-			ehorse, Yukon	MARKO LIVE.	KEVIEV	/ED BY: JRT	-	COM	14FE	IE; C	6/07		1 of 1				
6/08/16 1	1:52A	м (үшкс	NP04}			CALUIDO, IUIUII									i uye	IVII				

Geote							CLIENT: Yukon Engineering Services					TEST PIT NO: 1200197-TP14							
							EXCAVATOR: 320 C TRAC	XCAVATOR: 320 C TRACKED EXCAVATOR						PROJECT NO: 1200197					
							UTM ZONE: 8 N681171	10 E45	50674	EL	EVA	TION	:						
SAMPI	LE	TYPE		GRA	3 SAM	PLE NO RECOVER	y Standard Pen.	7	5 mm SPOON 🔲 C	RREL BA	ARRE	L				•			
											▲ PERCENT SILT OR FINES ▲								
Œ.	ΙYΡ	9	<u>(</u>		SYMBOL	S	SOIL		בים אוואום זכ	יקו	■ PERCENT SAND						Ŧ		
Depth(m)	띥	RUN NO	SPT(N)	nsc	S				GROUND ICE			20 40 60					Depth(ft)		
ద్ది	SAMPLE	꼰	S	-	SOIL	DESC	RIPTION		DESCRIPTIO	N	PLASTIC M.C				LIQU	JID	Del		
	,											10	20	30	40				
0.0 -						ORGANIC ROOT MAT			UNFROZEN							Ē	0.0		
-						GRAVEL (TILL) — sand well graded grave	dy, silty, subrounded		 Frozen				•			E			
-					L. Carrie	moist, grey	or course suriu,		/c, 15-20%							E			
<u> </u>						END OF TESTPIT 0.3	m (REFUSAL)									E			
_					ŀ											T.E	- 2.0		
_																Ē	2.17		
-																E			
- 1.0																F			
— 1.0 -																E			
-																Ē	- 4.0		
-																E			
-																E			
_													Ì			E	•		
-																F			
-																E	- 6.0		
- 2.0																E			
2.0																E			
-																E	•		
-																E			
-																E	- 8.0		
- -																E			
-																Ē			
-																E	•		
-																F	,		
— 3.0 -																·····E	- 10.0		
-																E			
-																Ē			
-																E			
_ -																E	-		
-																E	- 12.0		
-																E	-		
-																E			
 4.0 -																E			
-																E	•		
-																Ė	- 14.0		
-																Ė			
	וק וק	3Λ	En	nin.	מםם	ing Consult			BY: JSB					DEPTI	l: 0.3 r	<u> </u>			
	لاند	אני	шH				anto titu.	REVIEW	ED BY: JRT		CC)MPL	ETE:						
06/08/16 1	1:524	и (уико	NPO4)	Y	1111 <u>(</u>	<u>ehorse, Yukon</u>	<u> </u>								Pag	e 1	of 1		


Geotechnical Investigation							CLIENT: Yukon Engineering Services					TEST PIT NO: 1200197-TP15								
Proposed Access Road							EXCAVATOR: 320 C TR	VATOR: 320 C TRACKED EXCAVATOR						PROJECT NO: 1200197						
Wolverine Lake, YT							UTM ZONE: 8 N6811	463 E4	50757	E	LEVA	TION:								
SAMPI	LE	TYPE		GRA	3 SAM	PLE NO RECOVER	standard pen.	目	75 mm SP00N	CRREL B	ARRE	L								
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	USC	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION			20 20 ASTIC	40 PERCEN 40 M	60 NT SAND 60 .C.	80 LIQVII ~——	Depth(ft)				
0.0						ORGANIC ROOT MAT			UNFROZEN		+-	10	20	30	40	- 0.0				
,						SILT — sandy, fine gr	gined medium grev		DIVI NOZEN							£ "				
•							relly below 0.2 m						۱ ا							
	П					END OF TESTPIT 0.3 i	m (REFUSAL)		FROZEN Vx, Vr, 10-15	9										
_									FA, 91, 10-10	//a						<u> </u>				
																2.0				
																E 2.4				
																F				
																<u> </u>				
1.0													ļļ	ļļ						
,																Εl				
																4.0				
																<u> </u>				
-													ļļ	ļļ		E				
																E				
																E 6.0				
																Ēl				
- 2.0									•							<u>-</u>				
																 -				
_						•							ļļ	ļ		E 8.0				
																FI				
																Εl				
7.0																F 1				
- 3.0																10.0				
																F				
-													ļļ	ļļ		<u>.</u> [.				
																E 43.0				
																12.0				
- 4.0		-										Ì				E I				
170		ŀ														F				
																F				
																14.0				
																Ę I				
	<u>ال</u> ترح		<u> </u>		1	.t	1 717	LOGGE	D BY: JSB		100	MPI F	IMN F)FPTU-	0.3 m	<u> </u>				
	Ll	ЗΆ	ĽП			ing Consulta	ants Ltd.		ED BY: JRT					3/07/						
5/08/16 1	1.594	и (и ко	NPR43	Ţ	\\hit	<u>ehorse, Yukon</u>										1 of 1				

Geote						***	CLIENT: Yukon Enginee	TEST PIT NO: 1200197-TP16							
Proposed Access Road							EXCAVATOR: 320 C TRA	ACKED	EXCAVATOR	PROJECT NO: 1200197					
Wolver							UTM ZONE: 8 N68112	31 E45	E450771 ELEVATION:						
SAMP	LE T	TYPE		GRA	3 SAM	PLE NO RECOVERY	/ Standard Pen.	7	5 mm SPOON CRREL	BARF	REL				
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	USC	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION		20 20 PLASTIC	4K ■ PERC 4C	ENT SAM 60 M.C.	80 LIQUID	Depth(ft)
0.0	Н					ORGANIC ROOT MAT	···		UNFROZEN		10	20	30	40	- 0.0
·						SILT — sandy, fine gr moist to wet, dar — gravelly below END OF TESTPIT 0.3 r	k brown 0.2 m		FROZEN FROZEN Vx, Vr, 20-25%						2.0
- - 1.0 - - - - -						·									4.0
- 2.0 - - -															6.0
 3.0 															10.0
															14.0
	ויק זיק	 ₹∧	Fη	ain.	יםם	ring Consulta	anta Ita) BY: JSB					1: 0.3 m	<u> </u>
	لند	JH	للظ				ants btu.		ED BY: JRT				06/07,	/11	
06/08/16 1	1:524	M (YUKO	NP04)		<u>y nit</u>	<u>ehorse, Yukon</u>								Page	1 of 1

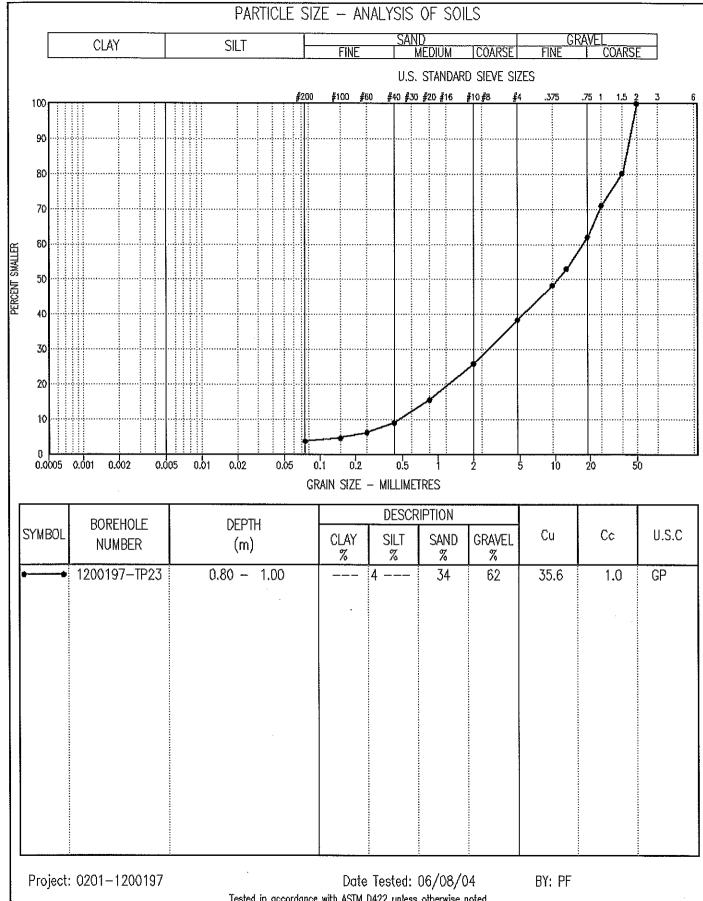
Geote					l		CLIENT: Yukon Engineering	1000	TEST PIT N	10: 12	00197-T	P17
Propo	sed	Acc	ess R	oad			EXCAVATOR: 320 C TRACKE	D EXCAVATOR	PROJECT N	√O: 12001	97	
Wolver	ine	Lak€	e, YT				UTM ZONE: 8 N6810971 E	450764	ELEVATION:			
SAMP	LE	TYPE		GRA	B SAM	IPLE NO RECOVERY		1174.11	L BARREL			
	Γ									CENT SILT O	R FINES ▲	
~	TYPE	\sim			SYMBOL	C	יוחיי		20	40 60 PERCENT SA	08 (_
<u>_</u>	<u></u>	ž	(N)	OSO	🗏	i,	SOIL	GROUND ICE	20	40 60		벌
Depth(m)	F	RUN NO	SPT(N)	ŝ'n	S	חדיפר	DIDTION		PLASTIC	M.C.	LIQUID	Depth(ft)
	SAMPL	т.			SOIL	טפאַע	RIPTION	DESCRIPTION	1 1 1 1 1 1	- IW. O.		ă
									10	20 30	3 40	
0.0						ORGANIC ROOT MAT		UNFROZEN				0.0
=						SILT (TILL) — sandy,	some gravel, some					Εl
•						clay, well graded	sand, fine to medium					<u> </u>
-						damp, medium g	ed gravel, compact,					ĒΙ
-						- hecomes aray	velly below 0.3 m		_	ļ		
-						END OF TESTPIT 0.6		FROZEN				E 2.0
						LIND OF ILDIFIE 0.0 (III (NEI OOME)	Vx, Vr, 10-15%				
•												Εl
												Ė l
- 1.0												Ē l
			•									<u> </u>
												F 4.0
												Ė l
_												
-												Εl
												E l
												ŧ " l
												E- 6.0
- 2.0										ļļļ		E
												E l
												ĖΙ
												E 8.0
_												E "
												E l
•												Ė l
												E
- 3.0												F
_ 3.0												E 10.0
												Ë l
												Εl
		- 1										F
-												E
												<u> </u>
		İ										F 12.0
												E
- 4.0		İ								<u> </u>		
												F
												<u> </u>
												E- 14.0
`												E
	ΓŢ	2Δ	En	gin	מסמ	ing Consulta		ED BY: JSB		TION DEPI		
	لم	אנו	пП				REVI	WED BY: JRT	COMPL	TE: 06/07		
3/08/16 1	1:524	A (YUKO	NP04}	¥	<u>Ynit</u>	<u>ehorse, Yukon</u>				<u> </u>	Page	1 of 1

Geote	chni	ical I	nvest	igation			CLIENT: Yukon Engine	ering S	ervices	TE	ST P	IT NC):	120	0197	-TP18
Propo	sed	Acc	ess R	oaq			EXCAVATOR: 320 C TF	CACKED	EXCAVATOR	PF	ROJEC	T NO): 12	0019		
Wolver	іле	Lake	, YT				UTM ZONE: 8 N6810	610 E4	50651	EL	EVAT	ION:	•			
SAMP	LE	TYPE		GRA	B SAM	IPLE NO RECOVERY	' Standard Pen.		75 mm SP00N	CRREL BA	4RREL					
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	osn	SOIL SYMBOL		SOIL RIPTION		GROUNI DESCRIF		PLA:	20 ■ F 20	40 ERCEN 40	LT OR 60 NT SAN 60 I.C.	FINES A 80 B 80 LIQU	ath (ft)
0.0						ORGANIC ROOT MAT			UNFROZEN			10	-20	70	40	E 0.0
0.0						ORGANIC ROOT MAT SAND — some gravel, graded, subangule sand, wet, composed becomes graved. — becomes graved.	ar gravel, coarse ict, medium grey		UNFROZEN FROZEN Nf, Vs, 5-10%			•				10.0 0.0 1
4.0 -																14.0
	 T:T) A C	ը~	~i~	^ ^ -	ing Con11	mia Tij	LOGGE	D BY: JSB		COM	(PLFT	ion r)EPTH	: 2 m	<u>:</u>
	L'I	ÞΑ	ĽΩ			ing Consulta	ants Ltd.		ED BY: JRT					3/07/		
				<u></u> Ţ	<u>Vhit</u>	ehorse, Yukon					1			/		e 1 of 1
6/08/16 1	1:52A	A (YÜKÖ	NP04)													

:

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Geote							CLIENT: Yukon Enginee			TES	T P	IT N	0:	12	<u>001</u> 9	7-T	P19_
Propo				ood		1000	EXCAVATOR: 320 C TRA			-				2001	97		
Wolver							UTM ZONE: 8 N68103	343 E4	50663	ELE	VAT	ION:					
SAMP	LE	TYPE	.	GRA	SAN	IPLE NO RECOVER	y Standard Pen.		5 mm SPOON ∭CRRE	L BAF							
	ш				ابرا						*	PER(20	CENT 40		R FINE	S.▲ ()	
(m)	洼	2	Ń	(3)	SYMBOL	() N	SOIL		GROUND ICE					ENT S	4ND ■	0	Ξ
Depth(m)	ᇤ	RUN NO	SPT(N)	OSC	\ S.					-	DIA						Depth(ft)
ڪ	SAMPLE TYP	∞	נט		SOIL	DESC	RIPTION		DESCRIPTION		PLA:	SII6		M.C.	I	LIQUID LI	o O
0.0	_					ADDALIS DOOT LIT			141670			10	20	3) 4	0	
- 0.0						ORGANIC ROOT MAT			UNFROZEN								0.0
_	;					SAND — silty, gravelly fine to medium of	y, wen graded sand, grained gravel, moist,										Ē
_						compact, mediun	n grey										<u>-</u>
_																	E
_						- becomes coar	ser grained, gravel										2.0
_						increasing in con	tent around 0.5 m										E 2.3
-					.												Ē
- 1.0																	-
- 1.0													Ī				Ė
												•					E 4.0
_						END OF TESTPIT 1.3	m (REFLISAL)			-							E "
-						LINE OF TEOTIAL INC	III (NEI VORE)		FROZEN								E
									Nbn, Vs, 10-15%								<u>E</u>
-										:							Ē
_																	6.0
-																	E 5.0
— 2.0																	Ē
																	Ė
_																	Ė
-																	8.0
_													 -				E 0.0
-																	Ė
				:													F
_																	<u> </u>
— 3.0													-				10.0
_																	F 10.0
_																	Ē
_																	F
_													ļļ.			ļļ	E
-																	E 122
-																	12.0
_																	F
_ 4.0											<u>i</u>	<u></u>					E
-																	Ē
L																	Ē
_																	- 14.0 E
_																	
	ΕĪ	ΒĀ	En	øin.	eer	ring Consult	ants Ltd		D BY: JSB						TH: 1.	.3 m	
	د ب	1		_		ehorse, Yukon	allow Hou.	KEVIEW	'ED BY: JRT		CO	APLE	.IE:	06/0		Onge :	1 of 1
06/08/16 1	1:52A	м (усжо	NPO4)	'	11116	CITOLOC, LUNUII		l			<u> </u>				ľ	uye	ı VI I


Geotechnical Investigation	CLIENT: Yukon Engineerii		TEST PIT NO: 1200197-TF	20
Proposed Access Road	EXCAVATOR: 320 C TRAC		PROJECT NO: 1200197	
Nolverine Lake, YT	UTM ZONE: 8 N681018		ELEVATION:	
SAMPLE TYPE GR AB SAMPLE NO RECOVER	Y ⊠standard pen.	75 mm SPOON CRREL		
SAMPLE TYPE RUN NO SPT(N) USC USC SOIL SYMBOL	SOIL	GROUND ICE	▲ PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80	Depth(ft)
DESC	RIPTION	DESCRIPTION	PEASTIC M.C. LIQUID	Dep.
0.0 ORGANIC ROOT MAT	***************************************	UNFROZEN	10 20 30 40	- 0,0
SILT (TILL) — sandy, graded sand, fine subangular grave	trace of gravel, well to medium grained I, compact, moist,	FROZEN	_	
medium grey — gravel below 0subroundedEND_OF_TESTPIT_0.3	.2 m, well graded, m (REFUSAL)	Vc, trace		2.0
- 1.0				4.0
-2.0				6.0
				8.0
- 3.0				10.0
				12.0
-4.0				
				14.0
EBA Engineering Consult		OGGED BY: JSB	COMPLETION DEPTH: 0.3 m	
Whitehorse, Yukon	R	EVIEWED BY: JRT	COMPLETE: 06/07/11	ا عر
/08/16 11:52/M (YUKONPO4)			Page 1	UI I

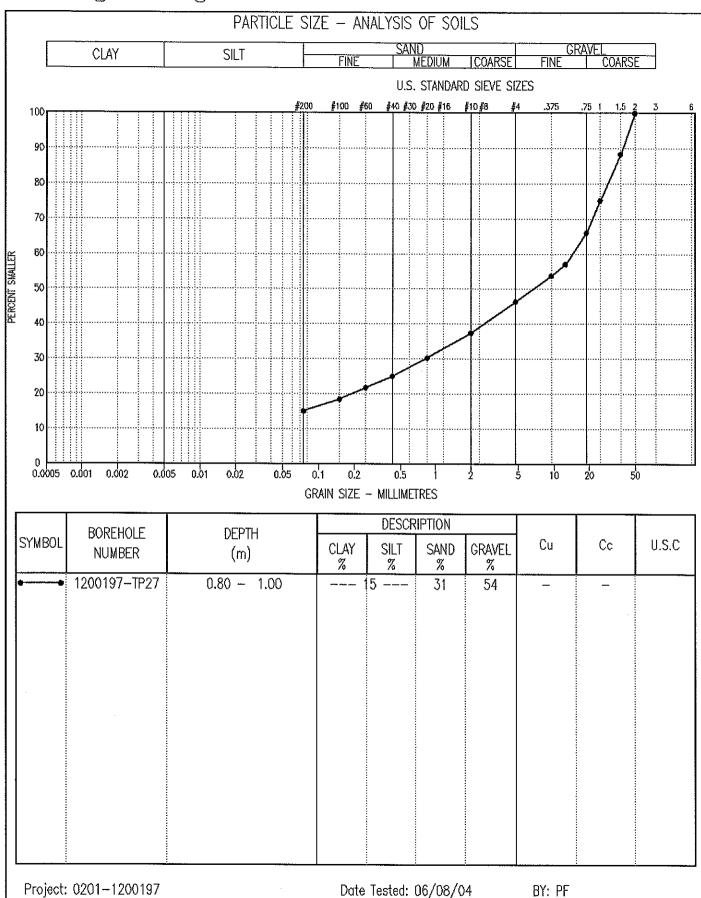
Ø

Geotec	hni	ical I	nvesti	igation	l		CLIENT: Yukon Engineer	ing Se	ervices	TE	ST PI	NO:	1	200	197-TI	P21
Propos	sed	Acce	ess R	oad			EXCAVATOR: 320 C TRA	CKED	EXCAVATOR	PF	ROJEC	T NO:	1200	3197		
Wolver	ine	Lake	, YT				UTM ZONE: 8 N68100	70 E4:	50307	EL	EVATIO	DN:				
SAMPL	E	TYPE		GRA	B SAM	PLE NO RECOVER	y Standard Pen.	= 7	5 mm SP00N	CRREL BA	RREL					
Depth(m)	SAMPLE TYPE	RUN NO	(N)	. 0	SYMBOL	(SOIL		GROUNI) ICE	2	20 ■ PE	nt silt 40 RCENT 40	60	80	Depth(ft)
epth	(PLE	Ñ	SPT(N)	nsc	[S]	ከፑርር	RIPTION				PLAS		M.C.		LIQVID	apth
	SA₿	ъ.			SOIL	טטשע	AUI HON	-	DESCRIF	TION	⊢	•10	- 8		—	۵
0.0						ORGANIC ROOT MAT			UNFROZEN		1	10	20	30	40	- 0.0
						SILT (TILL) - gravelly	y sandy fine to		UNTRUZEN							
						medium grained,	subrounded gravel.	ĺ								
.						well graded sand	-									
_												ļļ				-
-																2.0
- 1.0												<u> </u>				
.																
.						— gravel conten	t increases and									4.0
.						becomes coarser	around 1.2 m									
_						– some silt belo	w 1.2 m						<u>.ii</u> .			
. !																-
											•					6.0
- 2.0												<u> </u>				
						END OF TESTPIT 2.0										
						– some slough t	Delow 1.2 m									
_																E 8.0
.																
- - 3.0																
. "																10.0
.																
.																
																12.0
4.0										ē				İ		
																F
																14.0
.																
	ויק ויק	3 V — 1	Fn	ain	ســـــــــــــــــــــــــــــــــــــ	ing Consult) BY: JSB		COM	PLETI	ON DE	PTH:	2 m	<u>-</u>
•	لنا	JH	للت						'ED BY: JRT				: 06/		1	
5/08/16 1°	1:52A	и (үикэ	NP(14)		Y Olt	<u>ehorse, Yukon</u>									Page	of 1

Geotechnical Investigation	CLIENT: Yukon Engineering S		TEST PIT NO		97-TP	22
Proposed Access Road	EXCAVATOR: 320 C TRACKED		PROJECT NO	: 1200197		
Wolverine Lake, YT	UTM ZONE: 8 N6809913 E4		ELEVATION:			
SAMPLE TYPE M GRAB SAMPLE NO RECOVER	y Standard Pen.	75 mm SPOON CRREL				
	N O TT		20		80	
oth(m) ILE TYPE IN NO OT(N) SYMBOL	SOIL	GROUND ICE	■ P 20	ERCENT SAND = 40 60	80	E
SAMPLE TYPE RUN NO SPT(N) USC SOIL SYMBOL	ואסוייםוסי		PLASTIC	M.C.	LIQUID	Depth(ft)
BESC DESC	RIPTION	DESCRIPTION				ا ت
0.0 ORGANIC ROOT MAT	7.77	LIMEDOZENI	10	20 30	40	0.0
ORGANIC ROOT MAT SAND (TILL) — silty,		UNFROZEN				. 0.0
sand, fine to me	dium arained					
	l, compact, damp,					-
grey	4 0 4					-
- some silt arou - becomes coar	na 0.4 m ser gravel around 1.0 m					- 2.0
-	sor graver around 1.0 m					
						-
_1.0 🔲						-
— becomes silty,	some gravel around		•			-
1.0 m						- 4.0
.						<u> </u>
			•			-
END OF TESTPIT 1.7	m (DEELICAL)					-
END OF TESTELL 1.7	III (REFUSAL)					6.0
						-
-2.0						
.						-
.						-
.						0.8
-						-
.						
.						-
- 3.0						10.0
.						-
-						-
-						-
-						12.0
						-
-						
-4.0						-
-						-
						14.0
-						- - -
	I I I II II II II II II II II II II II	l D BY: JSB	COMPLET	TON DEPTH;	1.7 m	
EBA Engineering Consult		WED BY: JRT		E: 06/07/1		
Whitehorse, Yukon					Page 1	of 1

GRAKEL AND SAND — trace of silt, fine to medium to coarse sand, composet, damp, greysh brown — coarser gravels and cobbles from 0.1 to 1.0 m — becomes cleaner with depth — coarser gravels below 2.0 m — colour changes to light grey around 2.0 m — trace to some silt belaw 2.0 m — trace to some silt					igatior	1	7.65	CLIENT: Yukon Enginee		~~~	TEST P			20019	9 7-T	P23
SMPLE TYPE SOUR SAMPLE SOUR SCRIPTION SOUR GROWN CROP MAT GROWN DESCRIPTION DESCRIPTION ORGANIC MOT MAT GROWL MND SAND — trace of silt, fine to medium grained subtrounded gravel, rendum to coarse sand, compact, damp, greysh brown — coarser gravels below 2.0 m — becomes cleaner with depth					ood		1000): 1200	197		
SOIL DESCRIPTION SOIL DESCRIPTION GROUND ICE DESCRIPTION ORGANIC ROOT MAT GRAVEL AND SAND — trace of silt, fine to medium grained subrounded grovel, medium to coarse sand, compact, damp, greight brown — coarser grovels and cobbles from 0.1 to 1.0 m — becomes cleaner with depth -1.0 -1.0 END OF IESIPIT 2.5 m (REFUSAL) END OF IESIPIT 2.5 m (RE								<u></u>								
SOIL DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION PUSITE NA.C. LUCIUD PUSITE NA.C. LUCIUD PUSITE NA.C. LUCIUD PUSITE NA.C. LUCIUD TO 20 30 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10	SAMP	LE	TYPE		GRA	B SAN	IPLE NO RECOVER	Y ⊠STANDARD PEN.		75 mm SPOON CRRE						
ORGANIC ROOT MAT GRAVEL AND SAMD — trees of silt, fine to medium grinds abrounded grovel, medium remains to coarse sond, compact, damp, greysh brown — coarser grovels and cobbles from 0.1 to 1.0 m — becomes cleaner with depth — coarser grovels below 2.0 m — colour changes to light grey around 2.0 m — trace to some silt below 2.0 m — trace to some silt below 2.0 m END OF TESTPIT 2.5 m (REFUSAL) — ROZEN — Nbn, Vs trace EBA Engineering Consultants Ltd. Whitehorse Yukan Coseed BY: JSB Completion DEPTH: 2.5 m REVENCE BY: JSB COMPLETION DEPTH: 2.5 m REVENCE BY: JST COMPLETE 06/07/11 Complete 06/07/11	Depth(m)	MPLE TYPE	RUN NO	SPT(N)	nsc							20 ■ P 20	40 PERCENT 40	60 8 SAND ≡ 60 8	30 30	Jepth(ft)
DROMEN ROOT MAT GRAVEL AND SAND — trace of silt, fine to medium grained subrounded gravel, medium to coarse sand, compact, damp, greyish brown — coarser gravels and cobbles from 0.1 to 1.0 m — becomes cleaner with depth — coarser gravels below 2.0 m — colour changes to light grey cround 2.0 m — trace to some silt below 2.0 m — trace to some silt below 2.0 m — Trace to some silt below 2.0 m — ROZEN Nbn, Vs trace EBA Engineering Consultants Ltd. Whitehorse Yukan EBA Engineering Consultants Ltd. Whitehorse Yukan EBA Engineering Consultants Ltd. Whitehorse Yukan EBA Engineering Consultants Ltd. Whitehorse Yukan EBA Engineering Consultants Ltd. Whitehorse Yukan EBA Engineering Consultants Ltd. EBA Enginering Consultants Ltd. EBA Engineering Consultants Ltd. EBA Engi		S				S		1411 11011		DEDOMI HON	ŀ			70 /	<u> </u>	
- coarser grovels below 2.0 m - colour changes to light grey around 2.0 m - trace to some sit below 2.0 m - trace to some sit below 2.0 m END OF TESTPIT 2.5 m (REFUSAL) - TESTPIT 2.5 m (REFUSAL) EBA Engineering Consultants Ltd. COMPLETION DEPTH: 2.5 m (COMPLETE OS/OZ/11)	- 0.0 - - -						GRAVEL AND SAND — medium grained medium to coars	subrounded gravel,	mp,	UNFROZEN		10		JU 4		0.0
- coarser gravels below 2.0 m - colour changes to light grey around 2.0 m - trace to some silt below 2.0 m END OF TESTPIT 2.5 m (REFUSAL) FROZEN Nbn, Vs trace EBA Engineering Consultants Ltd. Whitehorse Yukon LOGED BY: JSB COMPLETION DEPTH: 25 m COMPLETIC 06/07/11	-						 coarser gravel to 1.0 m 		.1							2.0
EBA Engineering Consultants Ltd. Coordington of the consultants Ltd. Coordington of the consultants Ltd. Coordington of the consultants Ltd. Coordinate BY: JSB Complete: 06/07/11 Comple	1.0 -															4.0
EBA Engineering Consultants Ltd. Coorser gravels below 2.0 m																6.0
END OF TESTPIT 2.5 m (REFUSAL) Nbn, Vs trace 10.4 EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1 Page 1 of 1	- 2.0 -						 colour changes 2.0 m 	s to light grey around			-					8.0
EBA Engineering Consultants Ltd. Completion Depth: 2.5 m Reviewed By: JRT Complete: 06/07/11 Page 1 of 1	- - - -			-			END OF TESTPIT 2.5	m (REFUSAL)								;
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. Page 1 of 1	- 3.0 - - -															10.0
EBA Engineering Consultants Ltd. Whitehorse Yukon EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1	- - - - 4.0															12.0
Whitehorse Yukon	- - - -						-		licos	D. DV. IOD		40:				14.0
Whitehorse Yukon Page 1 of 1		El	BA	En	gin	eei	ring Consulta	ants Ltd.	REVIEW	D BX: J2R.					.5 m	
							_		135 1157		00%	<u>" LL1</u>	_ 00/1		⊃age '	1 of 1

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

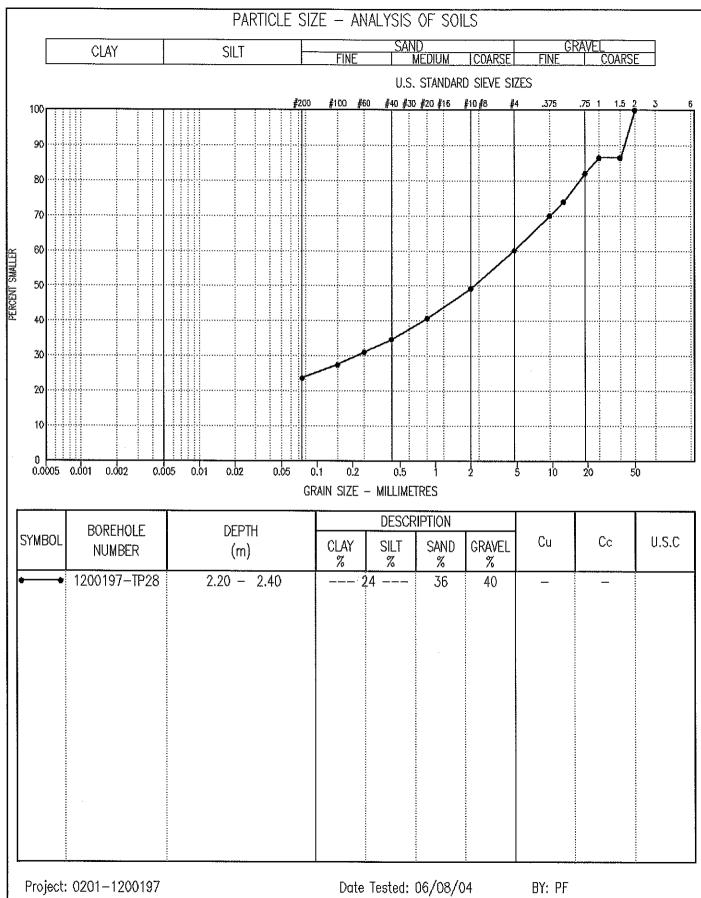


- 4.0	Geotechnical Ir	 _	<u> </u>		CLIENT: Yukon Engineer			TEST	PIT N	0: ′	1200	197-T	P24
SAMPLE TYPE SAMPLE TYPE SOIL DESCRIPTION SOIL DESCRIPTION DESCRIPTION DESCRIPTION ORGANIC ROOT MAY - coarse gravel below 1.2 m SAND (TLL) - silb, growelly, trace of clay, well graded subangular gravel, compact, damp, light greyish brown - coarse gravel below 1.2 m SAND (TLL) - silb, growelly, trace of clay, well graded subangular gravel, compact, damp, gray END OF TESTPIT 3.0 m (REFUSAL) FROZEN F								PROJE	ECT N	0: 120	0197		
SOIL GROUND ICE BESCRIPTION DESCRIPTION PARTICULAR SAMD (COLLUMUM) – grovelly, some silt, subangular grovel, compact, damp, light greyish brown - coarser gravel below 1.2 m SAND (TLL) – silty, gravelly, trace of clay, well graded subangular gravel, compact, damp, grey SAND (TLL) – silty, gravelly, trace of clay, well graded send, fine to medium graded sund, graded send, fine to medium graded sund, gravel, compact, damp, grey END OF TESTPIT 3.0 m (REFUSAL) FROZEN Whitehorse, Yukan Whitehorse, Yukan Whitehorse, Yukan DESCRIPTION DESCRIPTION DESCRIPTION DIFFROZEN Whitehorse, Yukan DESCRIPTION D						66 E45	50123	ELEVA	TION:				
SOIL DESCRIPTION DESCRIPTION	SAMPLE TYPE	GRA	B SAMP	LE NO RECOVERY	STANDARD PEN.	1 7	5 mm SPOON ∭CRREL	BARRE	L				
ORCANIC ROOT MINING SAND (COLLL/WUNN) — grovelly, some slit, medium to coarse sand, well graded subangular gravel, compact, damp, light greyish brown - coarser gravel below 1.2 m SAND (TILL) — sity, gravelly, trace of cloy, well graded sand, fire to medium grained subangular gravel, compact, damp, grey -2.0 END OF TESTPIT 3.0 m (REFUSAL) FROZEN Vr, Vx, 5-10% FROZEN Vr, Vx, 5-10% END OF TESTPIT 3.0 m (REFUSAL)		SPT(N) USC	SOIL SYMBOL						20 20 ASTIC	40 PERCENT 40 M.C	SAND 60	80 ■ 80 LIQUID	Depth(ft)
SAND (COLLIVUM) - grovelly, some sit, medium to coarse send, well graded submydular gravel, compact, damp, light greyish brown - coarser gravel below 1.2 m SAND (TILL) - sity, grovelly, trace of clay, well graded sand, fine to medium grained submydular gravel, compact, damp, grey -2.0 END OF TESTPIT 3.0 m (REFUSAL) FROZEN Vr, Vx, 5-10% FROZEN Vr, Vx, 5-10% END OF TESTPIT 3.0 m (REFUSAL) LOGGED BY: JSB COMPLETION DEPTH 3 m Reviewed By: JST COMPLETE 08/07/11	0.0		$H_{\overline{c}}$	ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0
Cloy, well graded sand, fine to medium grained subongular gravel, compact, damp, grey FROZEN Vr, Vx, 5-10% FROZEN Vr, Vx, 5-10% FROZEN Vr, Vx, 5-10% END OF TESTPIT 3.0 m (REFUSAL) END OF TESTPIT 3.0 m (REFUSAL) END OF TESTPIT 3.0 m (REFUSAL) END OF TESTPIT 3.0 m (REFUSAL) FROZEN Vr, Vx, 5-10% COMPLETION DEPTH: 3 m COMPLETE: OB/OV/11 Whitehorse, Yukon	- 1.0			SAND (COLLUYIUM) — medium to coarse subangular gravel light greyish brow	e sand, well graded , compact, damp, n	7.7	OTTROZEN		•				2.0
END OF TESTPIT 3.0 m (REFUSAL) FROZEN Vr, Vx, 5-10% FROZEN 10.0 END OF TESTPIT 3.0 m (REFUSAL) FROZEN Vr, Vx, 5-10% FROZEN FROZEN Vr, Vx, 5-10% FROZEN FROZEN Vr, Vx, 5-10% FROZEN F	- 2.0		3	clay, well graded grained subanguld	sand, fine to medium								6.0
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. Page 1 of 1	- 3.0		E	END OF TESTPIT 3,0 m	n (REFUSAL)			-					8.0
Whitehorse Yukon REVIEWED BY: JRT COMPLETE: 06/07/11	- 4.0												12.0
Whitehorse Yukon REVIEWED BY: JRT COMPLETE: 06/07/11	 ₽D#	Fneir	^ ^ ~	ing Consults	nta Ita	OGGED) BY; JSB		MPLE	TION DI	PTH:	3 m	<u> </u>
Whitehorse, Yukon Page 1 of 1	ГРА	~		_									
	E/08/16 11-5300 (MB/O)	IPñ4)	<u>White</u>	horse, Yukon							·		l of 1

Geotec		~~~~~			l	27	CLIENT: Yukon Engineer			TEST	PIT NO): 12	<u> 100197–T</u>	P25
Propos				oad			EXCAVATOR: 320 C TRA			PRO.	JECT NO): 1200	197	
Wolver	~						UTM ZONE: 8 N680928	87 E44	49853	ELEV	ATION:			
SAMPL	E	TYPE		GRA	B SAM	IPLE NO RECOVER	r ⊠standard pen.		5 mm SPOON CRREI	BARF				
(m)	TYPE	9		<i>c</i> >	SYMBOL	5	SOIL		GROUND ICE	-	20 ■ F	40 E PERCENT S		(±)
Depth(m)	SAMPLE	RUN NO	SPT(N)	osn	SOIL SYI		RIPTION		DESCRIPTION	1	20 Plastic	40 6 M.C.	60 80 LIQUID	Depth(ft)
	Ϋ́				8	DES C	1411 11011		DESCRIPTION		10	20 3	iO 40	
0.0						ORGANIC ROOT MAT			UNFROZEN		10	ZV .	- 40	- 0,0
						SAND — gravelly, trac graded sand and compact, moist,	angular gravel,							
,						– some gravel b	elow ().8 m							2.0
1.0 							s to medium grey arou	und						4.0
-						SAND (TILL) - silty, q	iravelly, trace of							
- 2.0	clay, well gr					clay, well graded grained subangul	sand, fine to medium ar gravel, compact,							6.0
						END OF TESTPIT 2.2	m (REFUSAL)							8.0
- 3.0 - - -														10.0
-														12.0
— 4.0 - - -	4.0													14.0
	F,1	ΒĀ	En	gin	eei	ring Consult			D BY: JSB				TH; 2.2 m	
	נייי	J L L	-11	_		_	VIIOD FIOM.	KEVIEW	'ED BY: JRT		COMPLE	TE: 06/0		
6/08/16 1	1:534	м сулкс	NPD4)		IIII V	<u>tehorse, Yukon</u>							Page	1 of 1

Geotec					1		CLIENT: Yukon Enginee	ring S	ervices	TE:	ST PIT	NO:	1	200	197–T	P26]
Propos	sed	Acce	ess R	boa			EXCAVATOR: 320 C TRA	ACKED	EXCAVATOR	PR	OJECT	NO:	1200	0197		
Wolver							UTM ZONE: 8 N68093	12 E4	49628	EL	EVATIC	N:				
SAMPL	_E ⁻	TYPE		GRA	B SAM	IPLE NO RECOVER	standard pen.		75 mm SPOON CRF	EL BA	RREL					
	ы								, , , , ,				NT SILT			
全	丛	Q	_		율	(SOIL		anainin ian		- 4	30 ■ PE	40 RCENT	60 SAND	B 0	₍₂ -
<u>\$</u>	H	RUN NO	SPT(N)	nsc	SYMBOL				GROUND ICE		7	20	40	60	80	
Depth(m)	SAMPLE TY	\mathbb{S}	S	_	SOIL	DESC	RIPTION		DESCRIPTION		PLAS	(IC	M.C.		LIQUID	Depth(ft)
	Š				S	22.30	1111		DESCRIPTION		F	····	~~~~ ~	70	<u> </u>	
0.0						ORGANIC ROOT MAT	***************************************		UNFROZEN			0	20	30	40	0.0
						SILT — sandy, fine gr	ained, compact,									E
						moist, dark brow	n .									E
						SAND — gravelly, trac										
-							to medium grained					ļļ				Ë
						graver, compact,	moist, reddish brown				•					2.0
																E
																E
- 1.0																È l
- 1.0																Εl
																F
																F 4.0
																F 1
-	1					– aravel content	increases becoming				<u>-</u>	ļ <u>†</u>				Ė
						coarser below 1.										ŧ l
																FI
																E 6.0
- 2.0												<u></u>				Ė l
																Εl
																E I
									FROZEN Nbn, Vs trace		•					8.0
-						END OF TESTPIT 2.5	m (REFUSAL)		INDII, VS GUCE							
							, ,									E
																Ė l
- 3.0												ļļ				ا مما
																10.0
																E I
																Ė I
_																Ē I
																E
																12.0
																Ė I
									<u>.</u> :							
- 4.0												-				F
																14.0
																E
								Locor	D DV ICD		locu.		<u> </u>	-D	0.5	E
	EI	BA	En	gin	eei	ring Consult			D BY: JSB WED BY: JRT				ON DE E: 06/		2.5 m	
						tehorse, Yukon		1 1 L Y IL Y	TED DI. UNI		CONI	LLIE	- 40/	U// I	Page	1 of 1
5/08/16 1	1:534	N (YUKC	NP04)	_												

Geotechnica					CLIENT: Yukon Enginee	ering Se	ervices	TES	st pit no	1200)197–T	P27
Proposed A		oad			EXCAVATOR: 320 C TR			PR	OJECT NO	: 1200197	7	
Wolverine La					UTM ZONE: 8 N68092	280 E4	49368	ELI	EVATION:		777-74	
SAMPLE TY	PE	GRA	3 SAM	IPLE NO RECOVER	✓ STANDARD PEN.	= 7	5 mm SPOON C	RREL BA	RREL			
Depth(m) SAMPLE TYPE	2 2	ر د	SYMBOL	<u> </u>	SOIL		GROUND IC	F.	20	NT SILT OR 1 40 60 ERCENT SAND 40 60	80	(ff.)
epth IPLE	SPT(N)	OSC	\ <u>s</u>	הביכר	RIPTION				PLASTIC	M.C.	LIQUID	Depth(ft)
SAN			SOIL	DESC	MITTION		DESCRIPTIO	N	10	20 30	——	ă
0.0				ORGANIC ROOT MAT			UNFROZEN		10	20 30	40	- 0.0
				SILT — sandy, trace (of fine gravel		•					
						F			4			2.0
- 1.0												-
												4.0
- 2.0				- trace to come	silt below 2.0 m							6.0
							 FROZEN Vc, Vr, trace		•			ساسساس
-		Į.		END OF TESTPIT 2.4	m (REFUSAL)							8.0
- 3.0												10.0
- - 4.0												12.0
1,0							·					14.0
ER.	ΔEn	gin	<u>-</u> -	ring Consult	ants Itd		D BY: JSB			ION DEPTH		
וענינ	لللشاد				uiito iitu.	REVIEW	'ED BY: JRT		COMPLET	E: 06/07/		
6/08/16 11:53AM ()	rukonpo4}		<u> 11 n 11 </u>	tehorse, Yukon		L			1		Page	1 of 1

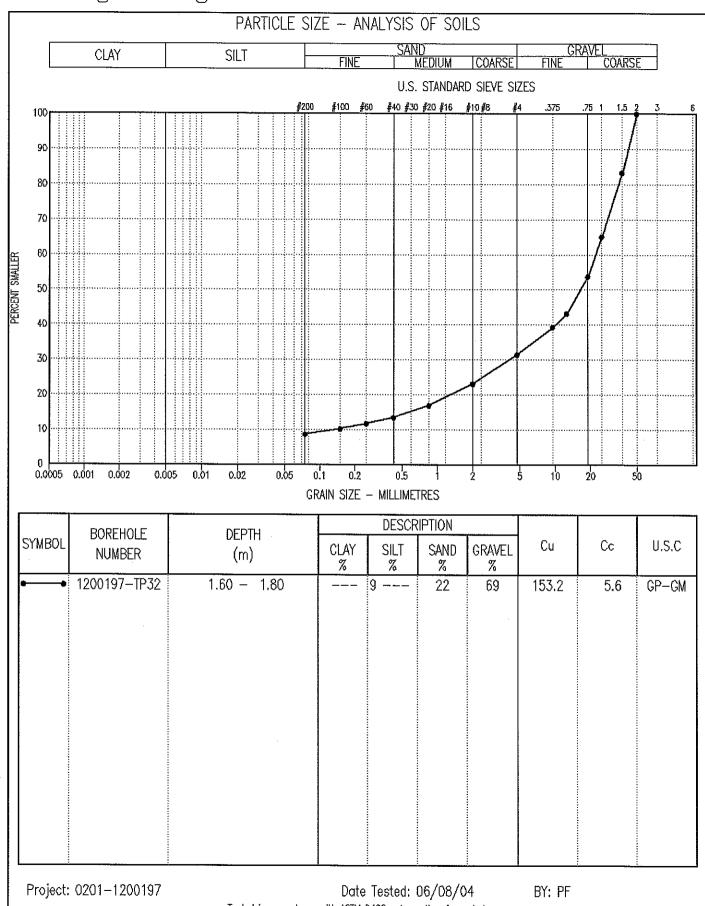


Project: 0201-1200197

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Geotechnical Investigation	CLIENT: Yukon Engineering S		TEST PIT NO: 1200197-TI	P28
Proposed Access Road	EXCAVATOR: 320 C TRACKED		PROJECT NO: 1200197	
Wolverine Lake, YT	UTM ZONE: 8 N6809186 E4		ELEVATION:	
SAMPLE TYPE GRAB SAMPLE NO RECOVE	ry 🛛 standard pen. 📋	75 mm SPOONCRREL		
[후 [비즈[토] 값 [♡]	SOIL CRIPTION	GROUND ICE DESCRIPTION	▲ PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 PLASTIC M.C. LIQUID	Depth(ft)
			10 20 30 40	
0.0 ORGANIC ROOT MAT		UNFROZEN	10 20 50 40	0.0
GRAVEL AND SAND (of clay, well gra medium grained compact, damp,	ded sand, fine to subangular gravels, light greyish brown t increases with depth	DNI KOZEN		2.0 4.0
END OF TESTPIT 2.4				10.0 12.0
EBA Engineering Consult Whitehorse, Yukon		ID BY: JSB WED BY: JRT	COMPLETION DEPTH: 2.4 m COMPLETE: 06/07/11 Page	1 of 1

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

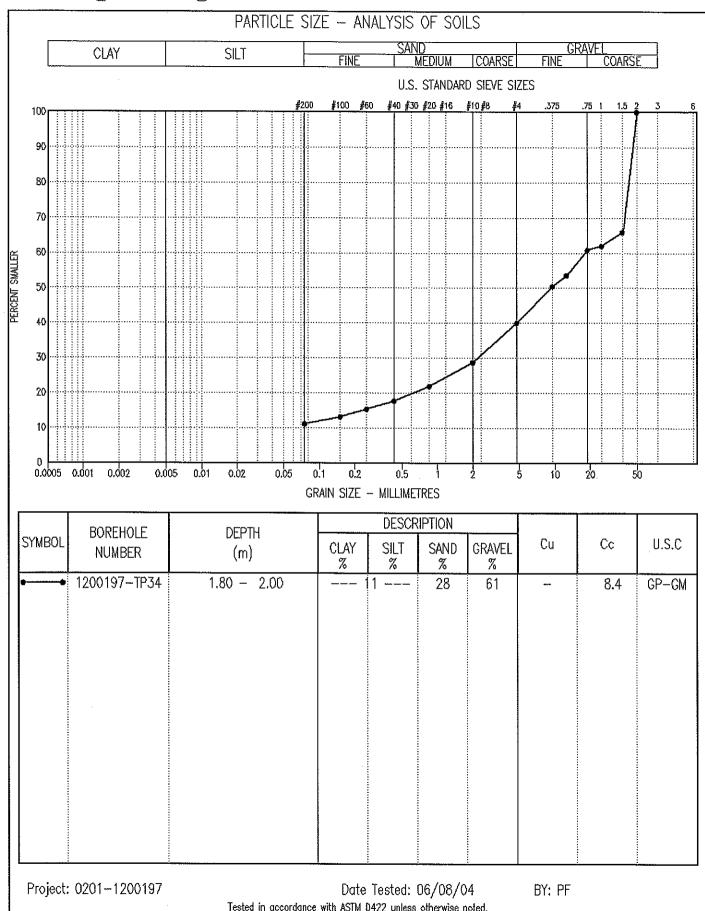


Geote							CLIENT: Yukon Enginee		·	TEST					0197-	TP29
Propos				oad			EXCAVATOR: 320 C TR			PROJ): 12	20019	17	
Wolver							UTM ZONE: 8 N6809	05 <mark>3</mark> E4	49036	ELEV	AT10	N:				
SAMP	LE	TYPE		GRA	B SAM	IPLE NO RECOVERY	/ STANDARD PEN.		75 mm SPOON CRRE	L BARR	£L					
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	osn	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION	F	A P 2d 2d 2d PLAST	0 ■ P 0	40 ERCE 40	ILT OR 60 NT SAN 60 A.C.	FINES A 80 ID = 80	Depth(ft)
	Š				S						⊢ 1	0	20	30	40	
0,0 - - - -						moist, light grey — coarser gravel:	ly, silty, well graded I gravel, compact, s and cobbles below		UNFROZEN		•					0.0
- - - - 1.0						0.5 m										2.0
-														7		4.0
- 2.0 - - -						END OF TESTPIT 2.0	m (REFUSAL)		FROZEN Vc, Vr trace		•					6.0
- - -				:												######################################
3.0 - - -																10.0
- - - - 4.0																12.0
- -			77	•				LOCCE	D BY: JSB		Arrie 	D) E	FION!	DEDTI	H: 2 m	14.0
	Ľ.	ВA	Ľn	gin	eei	ring Consulta	ants Ltd.	REVIEW	VED BY: JRT					6/07		
						<u>ehorse, Yukon</u>								-, -,		e 1 of 1
06/08/16	11:534	M CYUKO	NPO4)													

PROJECT NO. 1200197 PROJECT NO. 1200197	Geote					1	-11F	CLIENT: Yukon Enginee			TEST)0197-	-TP30
SAMPLE TYPE SOUL DESCRIPTION ORGANIC ROOT MAT - coarser grovel, some cobbles below 1.2 m - colour changes to greyish brown around 1.2 m EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon SOUL DESCRIPTION DESCRI	<u> </u>				bad.									2001	97	
SOIL GROUND ICE BESCRIPTION ORSANIC ROOT MAT ORSANIC ROOT MAT SAND (TILL) — silty, troce of clay, growelly, compact, dark grey - colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL) EBA Engineering Consultants Ltd. Whitehorse, Yukon SOIL GROUND ICE DESCRIPTION GROUND ICE DESCRIPTION ONFROZEN LAGROUND ICE DESCRIPTION ONFROZEN LAGROUND ICE DESCRIPTION ONFROZEN LAGROUND ICE DESCRIPTION ONFROZEN LAGROUND ICE DESCRIPTION PASTIC M.C. LIQUID LOUIS DESCRIPTION FROZEN FROZEN FROZEN FROZEN FROZEN COMPLETION ESPIN 2 m FROZEN FROZEN FROZEN FROZEN COMPLETION ESPIN 2 m FROZEN FROZE													∤ :		_	
SOIL DESCRIPTION Companies and and grovel, dark grey DESCRIPTION	SAMP	LE	1111	. 	GRA	B SAN	APLE ∠NO RECOVER	Y <u></u> STANDARD PEN.		75 mm SPOON CRRE	_ BARF		DACIC	OUT OF	Y EINEO	
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION PASTIC M.C. LUQUO & 10 20 30 40 TO ADD (TILL) - sity, trace of clay, growelly, compact, damp, coarse angular sand and grovel, dark grey - coarser gravel, some cabbles below 1.2 m - colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL) EBA Engineering Consultants Ltd. LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11		닖				占		NOIT				20	40	60	80	:
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION PASTIC M.C. LUQUO & 10 20 30 40 TO ADD (TILL) - sity, trace of clay, growelly, compact, damp, coarse angular sand and grovel, dark grey - coarser gravel, some cabbles below 1.2 m - colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL) EBA Engineering Consultants Ltd. LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11 LOGGED BY: 45B COMPLETE 08/07/11	[E]		2	Ξ	ပ္က	\MB	,	SUIL		GROUND ICE					ND ≡	[£]
ORGANIC ROOT MAT ORGANIC ROOT MAT SAND (TILL) – sity, trace of clay, grovely, compact, domp, coarse orgular sand and grovel, dark grey - coarser gravet, some cobbles below 1.2 m - colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL)	eb t	띹	≅	SPT	S	S.	DESC	ואווייםזקי		-		PLASTI	;	M.C.	[10]	
ORGANIC (ROOT MAT SAND (TILL) — sity, trace of clay, grovely, compact, dorng, coarse angular sand and gravel, dark grey - coarser gravel, some cobbles below 1.2 m - colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL) FROZEN Vc, Vr trace FROZEN FROZEN FROZEN A.0 LOGSED BY, 45B COMPLETIC 60/07/11 Whitehorse, Yukon Whitehorse, Yukon FROZEN COMPLETIC 60/07/11 LOGSED BY, 45B COMPLETIC 60/07/11 COMPLETIC 60/07/11		S	_			SO		IVII TION		DESCRIPTION		-		-		
SAND (TILL) — silty, trace of clay, gravelly, compact, doring, coarse angular sand and gravel, dark grey - coarser gravel, some cobbles below 1.2 m — colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL) - 4.0 END OF TESTPIT 2.0 m (REFUSAL) END OF TESTPIT 2.0 m (REFUSAL) Coarse gravel, some cobbles below and gravel, dark grey FROZEN FR	0.0	┢	-				ORCANIC ROOT MAT			HNEDOZEM		10	20	30	40	- 0.0
gravely, compact, domp, coarse angular sand and gravel, dark grey - too coarser gravel, some cobbles below 1.2 m - colour changes to greyish brown around 1.2 m FROZEN Vc, Vr trace END OF TESTPIT 2.0 m (REFUSAL) END OF TESTPIT 2.0 m (REFUSAL) EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon REVENUED BY: JSB COMPLETE: 06,007/19	ŀ						ONGAING NOOT WAT			ON NOZEN						E
gravely, compact, domp, coarse angular sand and gravel, dark grey - too coarser gravel, some cobbles below 1.2 m - colour changes to greyish brown around 1.2 m FROZEN Vc, Vr trace END OF TESTPIT 2.0 m (REFUSAL) END OF TESTPIT 2.0 m (REFUSAL) EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon REVENUED BY: JSB COMPLETE: 06,007/19	Ė						SAND (TILL) - silty,	trace of clay,								Ē
- coorser gravel, some cobbles below 1.2 m - colour changes to greyish brown around 1.2 m END OF TESTPIT 2.0 m (REFUSAL) FROZEN Vc, Vr trace FROZEN Vc, Vr trace END OF TESTPIT 2.0 m (REFUSAL) EBA Engineering Consultants Ltd. Whitehorse, Yukon Whitehorse, Yukon	[gravelly, compac	t, damp, coarse								E
EBA Engineering Consultants Ltd. Completion Depth: 2 m Completion Depth:	F						angular sand and	d gravel, dark grey				•				<u>-</u>
EBA Engineering Consultants Ltd. Coorser gravel, some cobbles below 1.2 m	}															2.0
EBA Engineering Consultants Ltd. Coorser gravel, some cobbles below 1.2 m	ŀ															Ē
EBA Engineering Consultants Ltd. Coorser gravel, some cobbles below 1.2 m																E
EBA Engineering Consultants Ltd. Coorser gravel, some cobbles below 1.2 m	1.0															E
EBA Engineering Consultants Ltd. Completion depth: 2 m Completion depth:	ŀ															Ė
EBA Engineering Consultants Ltd. Losed BY: JSB Completion Depth: 2 m Whitehorse, Yukon ROJEN JSB COMPLETION DEPTH: 2 m COMPLETE 06/07/11 ROJEN JSB COMPLETION DEPTH: 2 m COMPLETE 06/07/11 COMPLETE: 06/07/11	ŀ						- coarser aravel	. some cobbles helow								4.0
EBA Engineering Consultants Ltd. Completion Depth: 2 m Completic Off/07/11 Complete Of	Ĺ						1.2 m		:							Ē.
EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd.	[_		l				- colour change	s to greyish brown								<u> </u>
EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. Whitehorse, Yukon EPA COMPLETE 06/07/11 Whitehorse, Yukon EPA COMPLETE 06/07/11 Whitehorse, Yukon EPA COMPLETE 06/07/11	-						around 1.2 m									E
EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd. Whitehorse, Yukon EPA COMPLETE 06/07/11 Whitehorse, Yukon EPA COMPLETE 06/07/11 Whitehorse, Yukon EPA COMPLETE 06/07/11	-															E
END OF TESTPIT 2.0 m (REFUSAL) -3.0 -4.0 EBA Engineering Consultants Ltd. Whitehorse, Yukon Consultants Ltd. Consultants Consultant	-		_				·				-					6.0
END OF TESTPIT 2.0 m (REFUSAL) -3.0 -3.0 -4.0 EBA Engineering Consultants Ltd. Whitehorse, Yukon END OF TESTPIT 2.0 m (REFUSAL) -4.0 -4.	L 20											ě.	' 			Ē
EBA Engineering Consultants Ltd. Complete Com	- 2.0						END OF TESTPIT 2.0	m (REFUSAL)								Ē
EBA Engineering Consultants Ltd. Complete Com	-															E
EBA Engineering Consultants Ltd. Complete Com	-															E
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	-															8.0
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	_															E
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	Ļ															Ė
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	-															E
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	-															<u> </u>
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	3.0															10.0
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m																E
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	-															
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	-															
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	H															<u></u> E
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2 m	Ĺ															12.0
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOCGED BY: JSB COMPLETION DEPTH: 2 m	[E
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. LOCGED BY: JSB COMPLETION DEPTH: 2 m	ŀ															E
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. Whitehorse, Yukon ECOMPLETION DEPTH: 2 m REVIEWED BY: JRT COMPLETE: 06/07/11	4.0															<u> </u>
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. Whitehorse, Yukon ECOMPLETION DEPTH: 2 m REVIEWED BY: JRT COMPLETE: 06/07/11	ŀ															E E
EBA Engineering Consultants Ltd. Whitehorse, Yukon EBA Engineering Consultants Ltd. Whitehorse, Yukon ECOMPLETION DEPTH: 2 m REVIEWED BY: JRT COMPLETE: 06/07/11	Ĺ		-													E 14.0
EDA Engineering Consultants Ltd. REVIEWED BY: JRT COMPLETE: 06/07/11 Whitehorse, Yukon Page 1 of 1	Ĺ															
EDA Engineering Consultants Ltd. REVIEWED BY: JRT COMPLETE: 06/07/11 Whitehorse, Yukon Page 1 of 1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>			ומאאר	TO DV. ICD	12	X1140	FTIA	LDED	III. 0	<u> </u>
Whitehorse, Yukon Page 1 of 1		E	BA	En	ıgin	ee:	ring Consult	ants Ltd.								
									756					,		je 1 of 1

Geotechnical In			CUENT: Yukon Engineering		TEST PIT NO: 1200197-TP31
Proposed Acces			EXCAVATOR: 320 C TRACKE	D EXCAVATOR	PROJECT NO: 1200197
Wolverine Lake,	ΥT		UTM ZONE: 8 N6808936 E	448518	ELEVATION:
SAMPLE TYPE	GRAB S	SAMPLE NO RECOVER	y 🔲 standard pen. 🗏	75 mm SPOON CRRE	L BARREL
Depth(m) SAMPLE TYPE RUN NO	SPT(N) USC	رة ا المارية	SOIL	GROUND ICE	▲ PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 PLASTIC M.C. LIQUID
SAIN	Ĭ [룷 DESC	CRIPTION	DESCRIPTION	FESSILE M.C. LIQUID &
0.0		ORGANIC ROOT MAT	* Arabi	UÑFROZEN	10 20 30 40
		ONGAINIG NOOT MAT		UNTROZEN	
-		SAND (TILL) — silty, of clay, well graded gravel, compact, END OF TESTPIT 0.3	sand and angular damp, medium grey	FROZEN Vx, 10-15%	
					F-2.0
- 1.0 - -					4.0
- -					
- 2.0					E 6.0
					E 8.0
-					10.0
-					12.0
4.0					14.0
ERA 1	Engine	ering Consult		ED BY: JSB	COMPLETION DEPTH: 0.3 m
י עתה			REVIE	WED BY: JRT	COMPLETE: 06/07/11
06/98/16 11:54AM (YUKONF	YY <u>r</u> 204)	<u>hitehorse, Yukon</u>			Page 1 of 1

Geote							CLIENT: Yukon Engineer	ing S	ervices	TEST	PIT	NO:	1200)197–T	P32
Propos				oad			EXCAVATOR: 320 C TRA	CKED	EXCAVATOR	PRO.	JECT	NO: 1	20019	7	
Wolver							UTM ZONE: 8 N680909	99 E4	48354	ELEV	/OITA	l:	~		
SAMPI	LE T	TYPE		GRA	B SAM	IPLE NO RECOVERY	' Standard Pen.		75 mm SPOON CRREL	BARR	(EL			,	
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	osn	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION	1	20 20 PLASTIC	40 ■ PER0 40	ENT SAND 60 M.C.	80) = 80 LIQUID	Depth(ft)
0.0						ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0
- - - - - - -						GRAVEL (TILL) — sand silt, coarse angul moist, compact,	ar sand and gravel,				•				2.0
• • •															4.0
- - - 2.0 - -			END OF TESTPIT				n (REFUSAL)		FROZEN Vx, Vr trace		A N				6.0
															8.0
— 3.0 - - - -															10.0
- - 4.0 - -															12.0
-															<u> </u>
	ΕĒ	3A	En	gin	eer	ing Consulta			D BY: JSB					: 1.8 m	
		4.3				ehorse, Yukon		KEVIEW	/ED BY: JRT	C	:UMPL	EIE:	06/07/		1 06 1
6/08/16 1	1:54/	и (уико	NPO4)	!	ıııı	CHOLDE, THRUIT								Page	1 10 1



Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

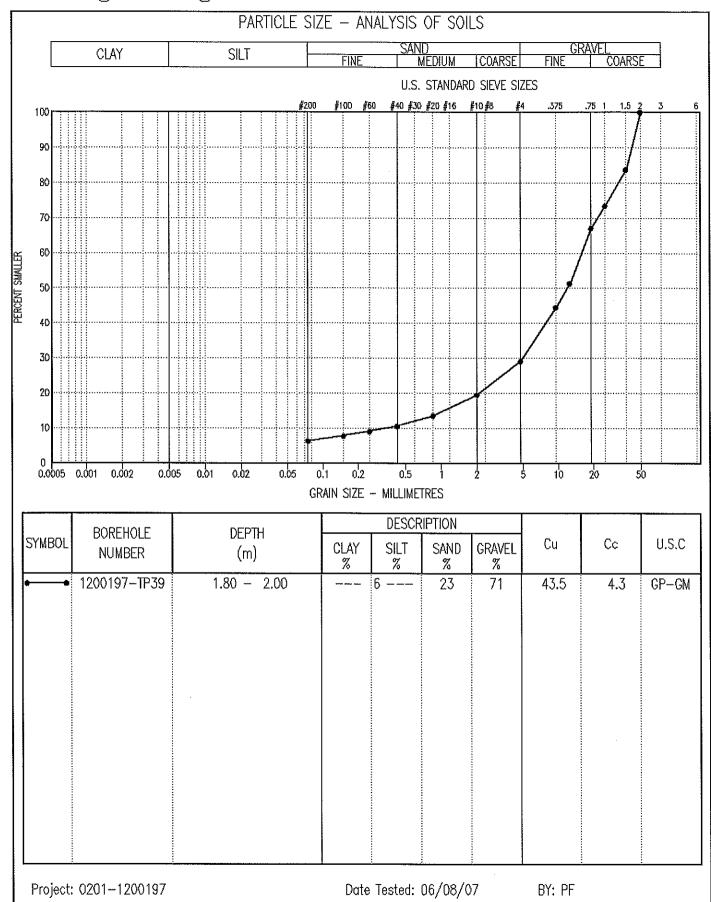
				igation	l	781	CLIENT: Yukon Enginee			test pit n	0: 120)0197–1	P33
Prapo				oad			EXCAVATOR: 320 C TRA			PROJECT N		97	
Wolver							UTM ZONE: 8 N68089	02 E4	48255	ELEVATION:			
SAMP	LE	TYPE		GRA	B SAM	IPLE NO RECOVERY	r ⊠standard pen.		75 mm SPOON CRREL	BARREL		•••	
	Ш					· · · · · · · · · · · · · · · · · · ·				▲ PER0 20	CENT SILT OR		ľ
Œ	SAMPLE TYPE	♀	(1		SYMBOL	C	SOIL		CIDATAID IOD		40 60 Percent sai		🖘
Depth(m)	Ē	RUN NO	SPT(N)	nsc	8				GROUND ICE	20	40 60	80	Depth(ft)
Dep	MP	₽	SF		SOIL	DESC	RIPTION		DESCRIPTION	PLASTIC	M.C.	LIQUID	Dep
	Ś				S				22201112 11011	10	20 30	40	
0.0						ORGANIC ROOT MAT			UNFROZEN	10	20 30	40	- 0.0
_						SILT — sandy, fine gr	ained, moist,	***					
_						compact, reddish							-
_						SAND (TILL) – silty, o				•			Ē
_						clay, coarse sand					ļļ .		<u>-</u>
-						subangular, comp	auct, moist, grey						2.0
-													-
-													E
- 1.0													E
— 1.u -													Ė
_						_							Ē 44
-						 coarser angula below 1.2 m 	ır gravels and cobbles						E 4.0
-						Delow 1.2 m							1
_						- less sand and	silt below 1.5 m						
-						TOOLD GOING GING	DIE DOION 1.0 III						-
-													E
-						BEDROCK (black met			FROZEN	_			6.0
— 2.0						fractured, good o			Vx, Vr trace				<u>.</u> E
-						END OF TESTPIT 2.0 I	m (REFUSAL)						E I
-													
•													E
-													8.0
_													<u>E</u>
-													
-				, .									-
-													E
— 3.0											ļļļļ		.E
-													10.0
-													
-													
_													Ē
-						*							"E
_													12.0
-													Ē
-													Ē
— 4. 0											 		- E
-													E
-													14.0
_													E
				:									Ē
	\mathbf{E}	BA	En	gin	eei	ring Consulta			D BY: JSB		TION DEPT		
				_		cehorse, Yukon		KEVIEN	VED BY: JRT	COMPLE	TE: 06/07		1 of 1
6/08/16	11:544	M (YUKO	NP04}		тиц	CHULAC, LUKUII						rage	1 of 1

	echnical Investigation osed Access Road erine Lake, YT						CLIENT: Yukon Enginee				T PII				<u>)197–T</u>	P34
				oad			EXCAVATOR: 320 C TRA		70.7	_			D: 12	00197	7	
							UTM ZONE: 8 N68086		· · · · · · · · · · · · · · · · · · ·		VATIO)N:				
SAMP	LE	TYPE		GRA	B SAM	PLE NO RECOVER	y Standard Pen.		75 mm SPOON CRREI	BAF						
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	osn	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION		PLAS	20 ■ F 20 TIC	40 ERCE 40 h	60 NT SAND 60 4.C.	BQ LIQUID	Depth(ft)
0.0						ORGANIC ROOT MAT			UNFROZEN			10	20	30	40	- 0.0
- 						GRAVEL - sandy, coo	arse, some silt, coarse nd sand, compact,	.			•					2.0
- - 1,0 - - - -						 coarser gravel 0.8 m less sand with some silt below 	s and cobbles below depth w 1.0 m									4.0
- - 2.0 -						END OF TESTPIT 2.0	m		FROZEN Vx, Vr trace	•	•					6.0
- - - -																8.0
- - 3.0 - - -							· .									10.0
- 4.0				·												12.0
- - -								10000	D. D.V., ICD		los	[D] C	TIA:			14.0
	\mathbf{E}	BA	En	gin	eer	ring Consulta	ants Ltd.		D BY: JSB /ED BY: JRT		COM	PLE	TEV	DEPTH	l: 2 m	
						ehorse, Yukon		NEVIEW	ואף נום חדו		UUUM	rlt	ic: C	6/07/		1 of 1
06/08/16 0	3:53P	M (YUKO	NP04)		1441	Principo, 1 HWAII		<u> </u>							ruge	ı VI L

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Geotechn						CLIENT: Yukon Enginee			TEST F				197–T	P35
Proposed			bad			EXCAVATOR: 320 C TRA			PROJE		: 120	0197		
Wolverine						UTM ZONE: 8 N68084		······	ELEVA					
SAMPLE	TYPE		GRAI	B SAM	IPLE NO RECOVER	Y ⊠standard pen.	<u> </u>	5 mm SPOON ∭CRREL						
Depth(m) SAMPLE TYPE	RUN NO	SPT(N)	nsc	L SYMBOL		SOIL RIPTION	:	GROUND ICE		PERCE 20 PI 20 ASTIC	:NI SILI 40 ERCENT 40 M.C	SAND 60	80	Depth(ft)
□ S				SOIL	DESC	MILION		DESCRIPTION	'"					
0.0					ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0
			٠		SILT — sandy, fine gr medium brown			ON NOZLIY						
-						ly, silty, trace of , angular sand and moist, medium brown								-
														- 2.0
- 1.0														
_					BEDROCK — sand and weathered and fr	d silt infilled, highly actured, fair quality			•					4.0
- 2.0		END OF TESTPIT				m (REFUSAL)		FROZEN Vc, Vr trace	-					6.0
														العاليين البين
														- 8.0
- 3.0														10.0
_														إسساسيا
														12.0
- 4.0														14.0
<u>יק</u>	R۸	Fn	ain	יםם	ring Consult			D BY: JSB					1.8 m	
انا	υA	للت						/ED BY: JRT		MPLET			1	
5/08/16 11:54/	M CYLIKO	NP(14)		Whit	<u>ehorse, Yukon</u>								Page	1 of 1

Geotec	_				l		CLIENT: Yukon Engineer	···		+	ST F					97-T	236
Propos				Bad			EXCAVATOR: 320C TRAC			PR	QLE	CT I	NO: 1	12001	97]
Wolver							UTM ZONE: 8 N680825	51 E4	47904	EL	EVAT	ION	:				
SAMPL	E.	TYPE		GRA	B SAM	IPLE NO RECOVERY	∕ ⊠standard pen.		75 mm SPOON CRF	el ba							
	ليا				ایا						4	PEF 20	RCENT 4(SILT C		IES ▲ 80	
(E)	述	오	9		SYMBOL		SOIL ·		GROUND ICE				∎ PERC	CENT S	and 🛢	1	Œ
Depth(m)	빌	RUN NO	SPT(N)	nsc	∑							20	4(<u> </u>	80	Depth(ft)
පී	SAMPLE TYPE	쮼	S		SOIL	DESU	RIPTION		DESCRIPTION		Pυ	STIC		M.C.		LIQUID	De
	٠,				07	***	*****					10	20	3	٥	40	
0.0						ORGANIC ROOT MAT			UNFROZEN								0.0
-						SILT — sandy, fine gr moist, dark brow											-
						BEDROCK (PHYLLITE)											<u> </u>
-						infilled, angular, i											
<u>.</u>						highly fractured											
						— major sloughin	g throughout testpit										2.0
											•						
-																	
1.0						- large cobbles	with some boulder										
-						sized angular roc											
-																	- 4 .0
-						END OF TESTPIT 1.5 i	m										<u> </u>
•						- sloughing	11										[
-						:											
-																	6.0
2.0																	
-																	
•																	
•								i									E
_																	E 8.0
_																	
-																	
-																	E
-																	
— 3.0																	10.0
-																	Ĕ I
-																	
-																	F
-																	<u> </u>
-																	12.0
_																	[
-																	Εl
 4.0															ļļ.		F
-																	<u> </u>
-																	E 1/7
-																	- 14.0 E
-																	<u> </u>
	\mathbf{E}	BA	En	gin	eei	ring Consulta			D BY: JSB							1.5 m	
						tehorse, Yukon		NEVIEV	WED BY: JRT		100	IVIPL	EIL:	06/0	7/1	1 Page	1 of 1
6/08/16 1	1:54/	M CYUKO	NPO4)			DIVINO, IUMVII					1					, age	<u> </u>


Geotechnical				a	CLIENT: Yukon Engineeri			TE	ST PIT N	10:	1200	197–	ГР37
Proposed Ac		oad			EXCAVATOR: 320C TRACK	KED E	XCAVATOR	PR	ROJECT N	NO: 12	200197	7	
Wolverine La					UTM ZONE: 8 N680806	6 E4	47667	EL	EVATION:	;			
SAMPLE TYP	E !	GRA	3 SAM	IPLE NO RECOVER	y ⊠standard pen.		5 mm SP00N 📗	CRREL BA	RREL				
Depth(m) SAMPLE TYPE RUN NO	SPT(N)	nsc	SOIL SYMBOL		SOIL RIPTION		GROUND IO		20 20 PLASTIC	PERCE 40	MLT OR F 60 NT SAND 60 A.C.	80 80 LIQUID	Depth(ft)
0.0	 			ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	E 0.0
				SAND (TILL) — gravel angular sand and moist, grey — angular cobble 0.4 m	ly, coarse grained I gravel, compact, es and boulders below increases below 0.8 m		on Nozek						2.0
- 1.0													#4.Q
- 2.0				END OF TESTPIT 1.8	m								6.0
													8.0
- 3.0													البيارة. 10.0 مالية المسالسية المسالسية المسالسية المسالسية المسالسية المسالسية المسالسية المسالسية المسالسية المسالسية
- 4.0													12.0
					· · · · · · · · · · · · · · · · · · ·	0000							14.0
EBA	En	gin	eei	ring Consult) BY: JSB		COMPL				
	_	~		ehorse, Yukon	— -	ı⊏ 4 I⊏\¥	ED BY: JRT		COMPL	LIE C	0/0//		1 of 1
6/08/16 11:54/M (YU	KONPO4)		1111	remonae, rukuli								rage	1 of 1

Geoteo				•	1		CIJENT: Yukon Engineering	Services	TES	ST PIT 1	NO:	1200	197-T	P38
Propos				oad			EXCAVATOR: 320C TRACKED	EXCAVATOR	PR	OJECT I	NO: 12	200197	'	
Wolver							UTM ZONE: 8 N6807972 E	447578	ELI	EVATION	;			
SAMP	Ε.	TYPE		GRA	B SAM	IPLE NO RECOVER	y 🛛 standard pen. 🗏	75 mm SPOON CRREI	_ BA					
	닏				بـ	•				▲ PEF 20	RCENT S 40	ILT OR F 60	TNES.▲ 80	
(m)	Ξ	일	$\widehat{\mathbb{Z}}$	()	SYMBOL	()	SOIL	GROUND ICE				NT SAND 60	80	E
Depth(m)	SAMPLE	RUN NO	SPT(N)	NSC	}ऽ	DEGG	וטוטשוטאו							Depth(ft)
۵	SAM	∝	(,)		SOIL	NESC	RIPTION	DESCRIPTION		PLASTIC I——		d.C. ◆	LIQVID ———I	
0.0						ODOLUNO DOOT HAS	. 70			10	20	30	40	
						ORGANIC ROOT MAT	du aille anaca	UNFROZEN						0.0
						GRAVEL (TILL) — sand grained angular (ay, siily, course Travel and sand							F
•							light greyish brown							<u> </u>
						·								
-						– some silt belo	w 0.5 m		;					2.0
														E - 1
-														
1.0														
- 1.0							ser grained with cobbles							Ė I
•						throughout								E 4.0
-														E "
														Ė I
_				:										<u> </u>
-														E 6.0
. !														E 0.0
- 2.0						- becomes silty	below 2.0 m			••••				
						– less gravel bel								F 1
														E l
-														E 。,
-						END OF TESTPIT 2.5	m	-						8.0
•						- some sloughin								
						· ·	•							
														Ē.
- 3.0											<u>.</u>			Ē ,, ,
-														[- 10.0
•														F
_														
														Ē ,, ,
-														- 12.0
														<u>-</u>
- 4.0														
-														E I
-														14.0
														ŧ l
	F;F	- <u>-</u>	En	gin	eer	ring Consult		ED BY: JSB					2.5 m	
	1	1		~		ehorse, Yukon	REVIE	WED BY: JRT		COMPL	ETE: 0	6/07/		1 of 1
6/08/16 1	1:544	M CYLIKO	NP04}	'	1111L	CHAIDE' LAWNII				Ь			Page	ı VI I

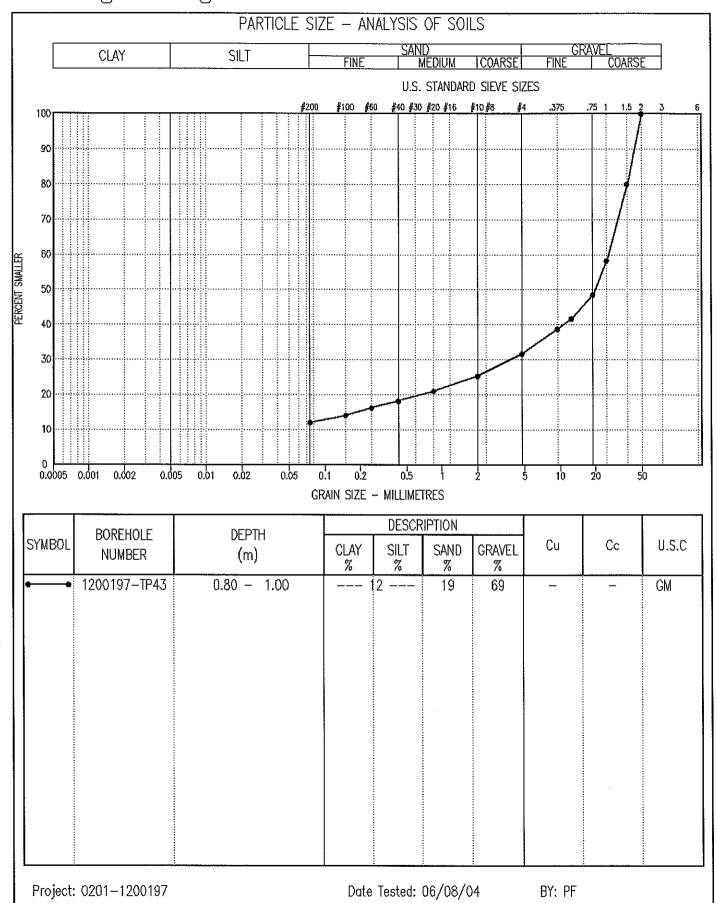
Geote		~~~~					CLIENT: Yukon Engineer			TES	T PIT NO):	1200	197-T	P39
Propo				bad		764	EXCAVATOR: 320C TRAC			PRO	DJECT N	D: 12	00197		
Wolver							UTM ZONE: 8 N68077	73 E4	47410	ELE	VATION:				
SAMP	Ε.	TYPE		GRAI	B SAM	PLE NO RECOVERY	y Standard Pen.		75 mm SPOON CRREI	_ BAF				_	
Ē	YPE	0			SYMBOL		SOIL			-	▲ PERC 20	40	LT OR F 60 IT SAND	80	£
Depth(m)	SAMPLE	RUN NO	SPT(N)	OSC	IL SYN		RIPTION		GROUND ICE		20 Plastic	40 M	.C.	80 Liquid	Depth(ft)
	SA				SOIL		IVII IION		DESCRIPTION		10	20	30	I 40	
0.0 -						ORGANIC ROOT MAT			UNFROZEN						0.0
- - - - -						GRAVEL (FLUVIAL) — : graded subrounde and sand, compo reddish grey — some cobbles					•				2.0
— 1.0 - - - -						- trace of silt be	elow 1.0 m								4,0
- - - - 2,0 -										***************************************	A 8 IQ				6.0
- - - -						END OF TESTPIT 2.5 - some sloughin		* 37 W.U.							8.0
- 3.0 - - -															10.0
 - - - - 4.0															12.0
— 1 ,U															14.0
	\mathbf{E}	ΒA	En	gin	eei	ring Consult			D BY: JSB		COMPLE				
		1	11				CILIUD LIVOI.	KEVIE	WED BY: JRT	••••	COMPLE	IE: O	2/0//		1 05 4
06/08/16	1:55/	УМ (YUK (NPO4}		11111	ehorse, Yukon					<u> </u>			Page	1 01 1

.

:

Tested in accordance with ASTM D422 unless otherwise noted.

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA



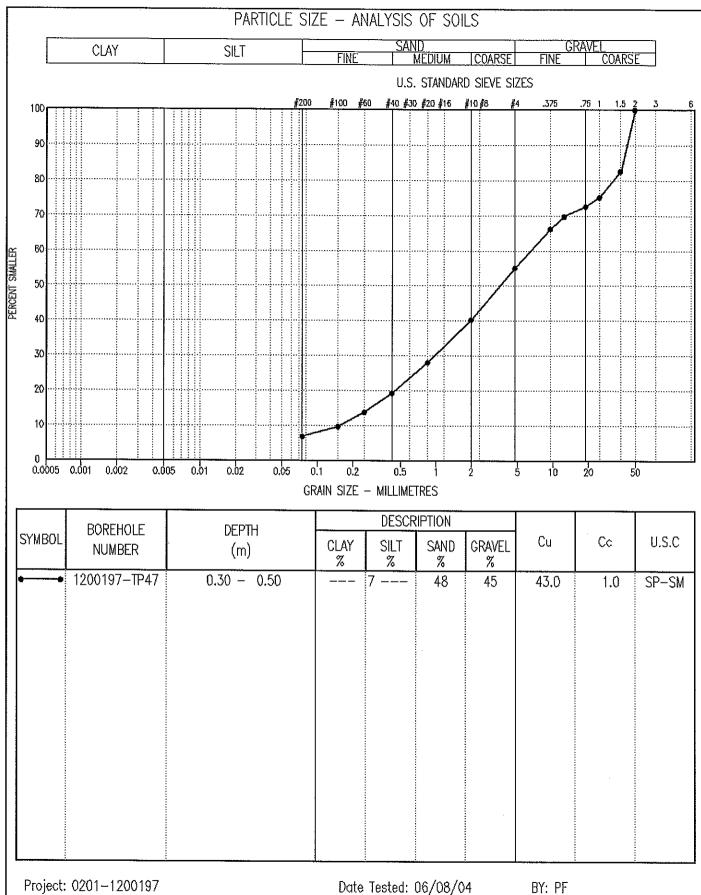
Geotechnical	Investi	gation			CLIENT: Yukon Enginee	ring S	ervices	TE	ST PIT	NO:	1200)197-T	P40
Proposed Acc		boc			EXCAVATOR: 320C TRAC	CKED !	EXCAVATOR	PR	ROJECT	NO:	120019	7	
Wolverine Lak				131	UTM ZONE: 8 N68076	05 E4			EVATIOI	N:			
SAMPLE TYPE		GRAE	B SAM	IPLE 🛮 NO RECOVER	y Standard Pen.		75 mm SP00N [CRREL BA					
Depth(m) SAMPLE TYPE RUN NO	SPT(N)	nsc	SYMBOL	Ç	SOIL		GROUND	,	▲ PI 20) 40 ■ PER	CENT SANI	80	h(ft)
Dept SAMPL RUN	SPI	ä	SOIL S	DESC	RIPTION		DESCRIP	TION	PLASTI	С	M.C.	LIQVID	Depth(ft)
0.0				ADALUG DOOT WAT			LINEDATER		1() 2	0 30	40	0.0
				ORGANIC ROOT MAT SILT — sandy, trace of medium grey GRAVEL — sandy, son	ne silt, well graded		UNFROZEN						0,0
				angular gravel ar moist, grey — cobbles throug	id sand, compact,								2.0
-1.0													4.0
-													
- 2.0				END OF TESTPIT 2.0	m				٠				6.0
				— sloughing thro									8.0
- 3.0													10.0
-													12.0
-4.0													14.0
TDA	F'n	din.	ســـــــــــــــــــــــــــــــــــــ	sing Congalts			D BY: JSB		COMP	LETIO	N DEPTH	: 2 m	<u>-</u>
ĽDA	ĿII			ring Consulta			/ED BY: JRT				06/07/	12	
5/08/16 11:554M (YUK	ONPITA'S		Vhit	<u>ehorse, Yukon</u>								Page	1 of 1
ayaay ku iiaaseen (100	orn and												

**************************************								LIENT: Yukon Engineering Services TEST PIT NO: 1200197—TP						P41				
							· · · · · · · · · · · · · · · · · · ·						PROJECT NO: 1200197					
Wolverine Lake, YT UTM ZONE: 8											EVATION	۷:						
SAMPL	AMPLE TYPE GRAB SAMPLE NO RECOVERY STANDARD PEN. 75 mm SPOON CRREL BARREL																	
						,	~ ^ rr				20	40	60	80]			
(E)	≽∣	2	(X)	nsc	SYMBOL	SOIL			GROUND ICE		■ PERCENT SAND ■ 20 40 60 80							
Depth(m)	SAMPLE	RUN NO	SPT(N)	S	S J	DESCRIPTION					PLASTI	C N	f.C.	LIQUID	Depth(ft)			
اد	3				SOIL	DESCRIPTION			DESCRIPT	IUN	ļ		•					
0.0	\dashv					ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0			
						GRAVEL — sandy, tra	ce of silt, coarse		31171102211						E I			
						grained, angular	grained, angular gravel and sand,											
						compact, dry, gr	еy				•							
-						– cobbles throug	nhout.						ļļ					
							jiiout								2.0			
															-			
- 1.0													İ					
															F- 4.0			
1																		
-						- becomes grave	ellv belaw 1.5 m								<u> </u>			
						2	,					•						
						DEDDOOK 1211 (E ,			
						quality, medium	actured, angular, fair								6.0			
- 2.0						quality, modium	groy						†		E l			
															Ė l			
						 becomes comp 	petent with depth								E 1			
											•				E 8.0			
-						END OF TESTPIT 2.5	m (REFUSAL)								E "			
							···· (··· · /								Ē l			
															F			
- 3.0															E 10.0			
-																		
															12.0			
															E			
- 4.0															F			
															F			
															14.0			
															E			
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 2.8 m								2.8 m	Ē									
	Li	DΗ	ĿII	_		_	ants Ltd.		VED BY: JRT			LETE: 0		12				
708716 11	Whitehorse, Yukon Page 1 of 1																	

							CLIENT: Yukon Engineer)197–T	P42				
-							EXCAVATOR: 320C TRAC											
Wolverine Lake, YT UTM ZONE: 8								···		ELEVAT				· · · · · · · · · · · · · · · · · · ·				
SAMPI	SAMPLE TYPE GRAB SAMPLE NO RECOVERY STANDARD PEN. 75 mm SPOON CREEL BARREL																	
	닖				05	_	NO. T.T.				▲ PERCENT SILT OR FINES ▲ 20 40 60 80							
(m)	Σ	2	Ξ	ပ္ပ	SYMBOL	,	SOIL		GROUND ICE			■ PERCENT SAND ■ 20 40 60 80			<u>£</u>			
Depth(m)	F	RUN NO	SPT(N)	nsc	L S	DESCRIPTION				PI #	ASTIC	h	vi.C.	LIQUID	Depth(ft)			
	SAMPL				SOIL	AUTA	IVII TION		DESCRIPTION	1			•		^			
0.0						ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0			
-						GRAVEL — some sand	t. some silt. coarse		ON NOZEN									
- -						grained angular o	grained angular gravel and sand,								Ē			
-						compact, moist,	brownish grey								F			
-						- cobblee and b	oulders throughout	i				ļ <u>i</u>	.ļ	ļļ	E			
-						- trace of silt be									E- 2.0			
_						— no samples ob	tained due to											
-						coarseness of m	aterial								Εl			
— 1.0												ļļ		ļļļ	E l			
-															<u> </u>			
_															F 4.0			
-															F			
_						END OF TESTPIT 1.5	m (REFLISAL)					ļ <u>.</u>						
-						LIND OF TEOTH 1.0	m (NEI OSNE)											
-															E l			
-															E 6.0			
— 2.0												ļļ						
-																		
-																		
_															<u> </u>			
_												ļļ			E- 8.0			
-																		
-																		
_																		
— 3.0												ļļ			امما			
-										i					10.0			
-																		
-																		
_												ļļ		<u> </u>	.E.			
-															12.0			
-											i				E 12.0			
- -															E			
4.0												ļļ.		ļļļ	E			
-															E			
_															14.0			
-															E '50			
							1	1000	D DV ICD	100	UEV S	TIALL	DEDT		<u>F</u>			
	\mathbf{E}	BA	En	gin	eei	ring Consult			D BY: JSB VED BY: JRT				UEP1F 06/07/	l: 1.5 m ′12				
													1	Page	1 of 1			

											TEST PIT NO: 1200197-TP43					
Proposed Access Road							EXCAVATOR: 320C TRA			PRO	ROJECT NO: 1200197					
Wolverine Lake, YT UTM ZONE: 8 N6806980)80 E4	*		VATION:					
SAMPL	E.	TYPE		GRA	B SAM	IPLE NO RECOVER	y Standard Pen.		75 mm SPOON ∭CRRE	L BAR						
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	L SYMBOL		SOIL RIPTION		GROUND ICE		20	CENT SIL 40 PERCEN 40 M.	60 T SAND 60	80	Depth(ft)	
	SAIV				SOIL	טמת	MIFION	İ	DESCRIPTION				·		ă	
0.0						ORGANIC ROOT MAT			UNFROZEN	-	10	20	30	40	- 0.0	
							d, trace of silt, coarse		STATE OF THE STATE						<u> </u>	
						grained angular (compact, damp,										
						— cobbles throug	ghout gravel								2.0	
- - - 1.0							grained below 0.8 m s to grey below 0.8 m	l			e. II				لمسلمية	
- -															4.0	
- 															المستباديسة	
- - 2.0															6.0	
- - -						END OF TESTPIT 2.2	m (REFUSAL)				•					
- - -															8.0	
- - 3.0															سياسيناس	
- -													***		10.0	
															12.0	
															14.0	
								LOCOL	D DV. ICD		001015	TIAN	VEDT:	1.5	<u> </u>	
	$\mathbf{E}\mathbf{I}$	BA	En	gin	eei	ring Consult	ants Ltd.		D BY: JSB /ED BY: JRT		COMPLETION DEPTH: 1.5 m COMPLETE: 06/07/12					
						ehorse, Yukon		I VE TIEN	LD D12 01(1		OCHII EL	VU	7 311	Page	1 of 1	
06/08/16 1	1:55A	M (YUKO	NP84}											- 3 -		

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA


Geotechnical Investigation		ST PIT NO: 1	NO: 1200197-TP44							
Proposed Access Road	EXCAVATOR: 320C TRACKED EXCAVATOR PRO	PROJECT NO: 1200197								
Wolverine Lake, YT										
SAMPLE TYPE GRAB SAMPLE NO RECOVERY STANDARD PEN. 75 mm SPOON CREEL BARREL										
oth(m) VLE TYPE JN NO PT(N) USC SYMBOL	SOIL GROUND ICE	▲ PERCENT SIL 20 40 ■ PERCENT	60 80 SAND ■	(≆						
Depth(m) SAMPLE TYPE RUN NO SPT(N) USC SOIL SYMBOL	DESCRIPTION GROUND ICE DESCRIPTION	20 40 Plastic M.C	60 80 C. LIQVID	Depth(ft)						
- SA SA	Bibonii IIoi	10 20	30 40							
0.0 ORGAN	NIC ROOT MAT UNFROZEN		JU 70	- 0.0						
.	EL (FLUVAL) — sandy, trace silt, carse grained angular gravel and and, compact, moist, greyish brown cobbles and some boulders present elow 0.5 m			2.0						
	DF TESTPIT 1.1 m pit previously excavated by operator uring original clearing			4.0						
- 2.0				6.0						
				8.0						
				10.0						
				12.0						
	LOCATE DV. 160	COMPLETION	IDIII. 4.4	14.0						
	Consultants Ltd. LOGGED BY: JSB REVIEWED BY: JRT	COMPLETION D COMPLETE: 06								
Whitehor	rse, Yukon		Page 1	of 1						
10/no/ 10 11:2244 (1UNUN/114)	6/08/16 11:55AM (YUKONF04)									

Geote					l		CLIENT: Yukon Enginee			TEST					197–	TP4	ł5
Propos				oad		W7-0	EXCAVATOR: 320C TRA			PROJ			120	0197			
Wolver						TOTAL CONTRACTOR OF THE PARTY O	UTM ZONE: 8 N68061	37 E4		ELEV/		٧:					
SAMPI	LE .	TYPE		GRA	B SAM	IPLE NO RECOVER	Y ⊠standard pen.		75 mm SPOON ∭CRRE	BARRI							
	Ľ				_						▲ PE 20		NT SILT 40	OR F	INES.▲ .80		
(m)	上	9	Î		SYMBOL		SOIL		GROUND ICE			■ PE	RCENT	SAND	I	1	Œ
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	λS				GIWOIND ICE		20			60	80		Depth(ft)
20	SAMI	≃	S		SOIL	DESU	RIPTION		DESCRIPTION	۱۲	Lasti	ť	M.C		LIQVII ———		De
	Ľ		:		0,	· · · · · · · · · · · · · · · · · · ·	*******				10)	20	30	40		
0.0						ORGANIC ROOT MAT			UNFROZEN							Ē	0.0
-						SAND — silty, fine to BEDROCK — sand and										Ē	
L						fractured, weather	ered, fair auglity									Ė	
						•	, , ,									Ė	
						 becomes more 	competent with dept	h		1						TE.	- 2.0
_																F	2.0
_																E	
_																E	
— 1.0 _						END OF TESTPIT 1.0 i										F	
-						,	tained due to materio	ıl l								E	- 4.0
-						coarseness										Ē	4.0
-																E	
_											}		11			₩.	
																E	
-																E	ėα
-																Ē	- 6.0
— 2.0																···F	
-																F	
																E	
-																Ē	
_											ļ					E	- 8.0
_																F	
•																Ė	
— 3.0											<u> </u>	ļ				<u>E</u>	
-																E	- 10.0
-																F	
-																Ē	
																<u>E</u>	
-																F	
<u> </u>																F	- 12.0
L																F	
40																Ē	
— 4.0 -																FE	
_																F	
-																F	- 14.0
-																F	
	Li Li	шшші ⊋∧	Fn	ain	ســـــــــــــــــــــــــــــــــــــ	ring Consulta	anta Itd		D BY: JSB				ON DE			<u> </u>	
	انا	υĦ	ĽH				ants btu.		WED BY: JRT				: 06/		2		
06/08/16 1	1:55A	M CATIKO	NPD4)	1	v <u>n</u> 1t	<u>ehorse, Yukon</u>		<u> </u>							Page	1 (of 1

				igation			CLIENT: Yukon Enginee			TEST					<u>0197</u>	—TF	P46
Propo				oad			EXCAVATOR: 320C TRA			PROJ): 12	0019	7		
Wolve				······			UTM ZONE: 8 N68059			ELEV/		N:					~~~
SAMP	LE	TYPE		GRAI	SAM	IPLE NO RECOVERN	′ ⊠standard pen.		75 mm SPOON CRRE	. BARRI							
	إ				_						▲ P 29		ents 40	LT OR 60	FINES 4 80	١ ١	
\mathbf{E}	눋	오	$\overline{\mathbf{z}}$		SYMBOL		SOIL		GROUND ICE	<u> </u>		m P	ERCE	MAC TV	D■		£
Depth(m)	SAMPLE TYI	RUN NO	SPT(N)	nsc	S				GROOM TOE		29		40	60	80		Depth(ft)
ථ	AM	쮼	S		SOIL	DESC	RIPTION		DESCRIPTION	P	LAST	1Ç	M	i.C.	LIQ	VID	De
	5										11	O	20	30	40		
- 0.0						ORGANIC ROOT MAT			UNFROZEN								0.0
-						ADM/EL L		-									_
-						GRAVEL — sandy, trac	ce of siit, coarse , moist, dark brown										_
-						gramou, compact	, moist, dan Mown										
_						- angular cobble	s with some boulder							<u>.</u>		į	=
_						below 0.5 m											2.0
_						 colour changes 	s to medium grey 0.5	m									_
-																	<u>-</u>
— 1. 0											ļ			 - -		ļ	=
-																	<u></u>
_						BEDROCK - compete											 4.0
_						END OF TESTPIT 1.2	m (REFUSAL)										
											ļ			ļļ	ļļ	<u>.</u>	=
•																	-
_																	_
-																	6.0
								İ									=
— 2.0 -																	
_																	
_																	<u> </u>
-																	8.0
_											i			ļļ.			- 0.0
_																	-
-																	<u> </u>
-																:	
3.0											ļļ			ļļ	<u>.ļļ.</u> .		
-																	10.0
-																	- - -
_																	
- _																	Ē
-																	Ē
-																	12.0
-																	
-																	Ę
4.0												<u> </u>				·	Ē
_																	<u></u>
- -																	14.0
_																	Ė
·w	_							IROOF	D BY: JSB	10	OLUT) [TION.	DEDT	<u> </u>	<u>:</u>	<u>=</u>
	E]	ВA	Ľn	gin	eei	ring Consulta	ants Ltd.	REVIFY	U BT: USB VED BY: JRT					0EP11 6/07	1: 1.2 /12	m	
						<u>ehorse, Yukon</u>										ge 1	of 1
06/08/16	17:55/	ии (YUK!	INPU4)														

Geotechnical Inve				CLIENT: Yukon Engineeri			TEST PIT	NO:	1200	197-T	P47
Proposed Access				EXCAVATOR: 320C TRACE			PROJECT		00197		
Wolverine Lake, Y				UTM ZONE: 8 N680580			ELEVATION	٧:			
SAMPLE TYPE	GRAE	SAMPL	E NO RECOVER	y Standard Pen.	75 mm SP00N	CRREL					
Depth(m) SAMPLE TYPE RUN NO SPT(N)	nsc	SOIL SYMBOL		SOIL RIPTION	GROUN DESCRI		20	■ PERCEI > 40	60	80	(3)
0.0			RGANIC ROOT MAT		UNEDOZEN		10	20	30	40	
			AND AND GRAVEL - angular gravel, w	trace silt, coarse rell graded moist, dark brown	UNFROZEN		A •				ساسياسيالساساس
- 1.0		S	AND — some silt, fi loose to compac	ne to medium grained, t, very wet, grey				¢			المسلسيا
¥		1	upper gravels	.2 m ered, possibly from				•			عينسيسيساس
- 2.0		E	ND OF TESTPIT 1.5 - sloughing thro								سيأسيع ليساس
_											حبيبين يستهادين
- 3.0											البيساسيطسط
-											فأعساسيشاس
-4.0											وليتوباليسوليي
											frangenny
											turi.
EiD V 12	nain	2025	na Consult	LII ata	OGCED BY: JSB	,	COMP	LETION	DEPTH:	1,5 m	1
EBA E			ng Consulta horse, Yukon		OGGED BY: JSB			PLETION PLETE: 0		1.5 m	<u> </u>

EBA Engineering

Tested in accordance with ASTM D422 unless otherwise noted.

Doto presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

				igation	1	P	CLIENT: Yukon Enginee			TEST	PIT	NO:	120	0197-T	P48
Propos				oad		13.70	EXCAVATOR: 320C TRA	CKED	EXCAVATOR	PROJ	IECT	NO: 1	120019	7	
Wolver							UTM ZONE: 8 N68055			ELEV.		۷:			
SAMP	LE	TYPE		GRA	B SAM	PLE NO RECOVER	y Standard Pen.		75 mm SPOONCRREL	BARR					
	ΙΥΡΈ				님	,	2011				20	44	60	FINES ▲ 80	
h(m)		9	(N)	nsc	SYMBOL	,	SOIL		GROUND ICE		20		CENT SAN 60	(D ■ . 80	<u>£</u>
Depth(m)	SAMPLE	RUN NO	SPT(N)	ij	S <u> </u>	DESC	RIPTION		DESCRIPTION	F	PLASTIC	3	M.C.	LIQUID	Depth(ft)
	SA				SOIL	DIA	1011		DESCRIPTION		10	20	30	40	
0.0						ORGANIC ROOT MAT	TARING.		UNFROZEN		110		7 302	40	0.0
							some sand, trace of								
						silt, coarse angul damp, dark brow	lar gravel, compact,								
						ddinp, ddik blow	11								
-						— cobbles throug	ghout					1			2.0
	_														- 2.0
- - 1.0															
•															E 4.0
															<u> </u>
-						•									
															E 1
															ŧ , l
						SAND (TILL) - silty, a sand, fine to me	gravelly, well graded dium argined				•				E 6.0
- 2.0						subangular grave	l, compact, damp,	-							-
						medium grey END OF TESTPIT 2.0									
						FUD OF 1521511 S'O	m								
•															8.0
•															
- 3.0															Ē
															10.0
_															<u> </u>
•															12.0
															Εl
- 4. 0										-		!!			F
·															
															14.0
-															
	F.1	RA	En	gin	 Д Д Ъ	ring Consult	ants Itd		D BY: JSB				V DEPTI		F
	اند	\\ \(\) 13	TIT			ehorse, Yukon	umus muu.	REVIEN	WED BY: JRT		OMPL	LETE:	06/07		1 of 1
6/08/16 1	1:564	м енкг	NP(14)		11 LLL	<u>.c.101ac, 1UKUII</u>								ruge	I VI I

-

Geote							CLIENT: Yukon Enginee			TEST					197–	TP49
Propos				oad			EXCAVATOR: 320C TRA						1200	197		
Wolver							UTM ZONE: 8 N68052			ELEV		N:				
SAMPI	Ε	TYPE		GRA	B SAM	iple 🔲 no recovery	∕ ⊠standard pen.		75 mm SPOON CRRE	BARF						
Depth(m)	SAMPLE TYPE	ON	(N)	nsc	SYMBOL	Ç	SOIL		GROUND ICE		20) ■PE	RCENT S	60	80	_ (£)
Deptl	SAMPLE	RUN NO	SPT(N)	î	SOIL S	DESC	RIPTION		DESCRIPTION	Ī	PLASTI	С	M.C.		LIQVII	Depth(ft)
					.,		····				1{) _ :	20 3	30	40	
0.0 -						ORGANIC ROOT MAT			UNFROZEN							0.0
- -						compact, moist, : - cobbles from (ravel, coarse sand, grey									2.0
- — 1.0																F
1.0 - - -																4.0
- - - 2.0											•					6.0
-						END OF TESTPIT 2.2	m									F
-																8.0
 - - - - 3,0	-															
- - -																10.0
_																<u>F</u>
- -																12.0
- 4.0													ļļ	<u> </u>		<u>E</u>
• •																14.0
<u></u>	لب ابح	□□□□□□ □ Λ		~i~		sing Congult	onta Ita	LOGGE	D BY: JSB		OMP	LETIO	ON DEF	TH:	2.2 m	_ <u></u>
	ĿJ	ĎΆ	ĽN			ring Consulta	ants Ltd.	REVIE	VED BY: JRT				: 06/0			
6/08/16 1	1:564	M CYUKI	INPO4)		Whit	<u>ehorse, Yukon</u>	·								Page	1 of 1

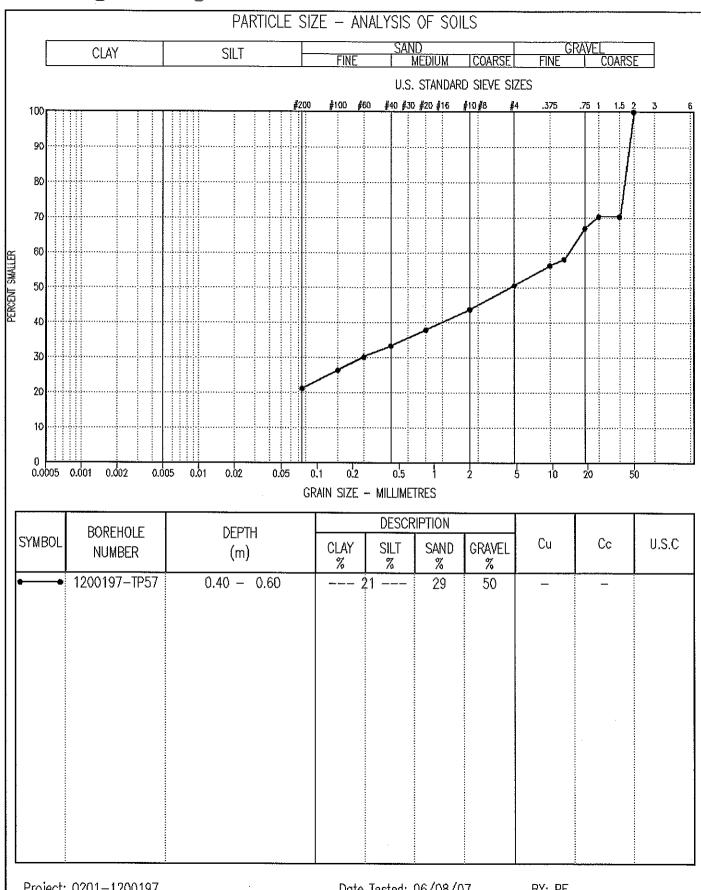
Geotechnical Investigation	CLIENT: Yukon Engineering S		TEST PIT NO: 1200197-	-TP50
Proposed Access Road	EXCAVATOR: 320C TRACKED		PROJECT NO: 1200197	
Wolverine Lake, YT	UTM ZONE: 8 N6805009 E4		ELEVATION:	
SAMPLE TYPE 🔃 GRAB SAMPLE 🔃 NO RECOV	/ery 🔲 standard pen. 📙	75 mm SPOON CRREL	BARREL	
Depth(m) SAMPLE TYPE RUN NO SPT(N) USC SOIL SYMBOL	SOIL	GROUND ICE	▲ PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80	J. T. J.
SOIL SAMP DES	CRIPTION	DESCRIPTION	PLASTIC M.C. LIQU	"" ă
0.0 ORGANIC ROOT MA	r	LINEDOZEN	10 20 30 40	- 0.0
0.0 ORGANIC ROOT MA		UNFROZEN		E 0.0
fine grained, o grey — becomes gr graded around	r, trace of fine gravel, ompact, moist, light avelly, subrounded, well 0.4 m bles and some boulders			
below 0.4 m				E
-1.0				E
- 1.0				E
				E 4.0
BEDROCK — comp	etent /	·		Ē "
END OF TESTPIT 1.	3 m (REFUSAL)			E I
-	, ,			**** <u>F</u>
				Ę.
				6.0
				E 27
- 2.0				E
				E
				Ē.
				E
-				E 8.0
				E
				Ē
				F I
7.0				E
- 3.0				10.0
				E
				Ė
				Ē
-				<u>-</u>
				12.0
				E
				Ē
-4.0				<u></u>
				<u>E</u>
				E
				14.0
EBA Engineering Consu		D BY: JSB	COMPLETION DEPTH: 1.3 r	n
		WED BY: JRT	COMPLETE: 06/07/12	. 1 . 5 . 5
Whitehorse, Yukor			Pag	e 1 of 1

ō

				igation	1		CLIENT: Yukon Enginee		<u> </u>	TEST PIT N			197-T	P51
Propo				oad			EXCAVATOR: 320C TRA			PROJECT N		0197		
Wolver							UTM ZONE: 8 N68047			ELEVATION:				
SAMP	ĻE .	TYPE		GRA	B SAM	IPLE NO RECOVER	y Standard Pen.		75 mm SPOON CRRE					
	Ę.				ـــ					▲ PER 20	CENT SIL 40	T OR F 60	NES.▲ 80	
Depth(m)	SAMPLE TYPE	9	2		SYMBOL		SOIL		GROUND ICE		PERCENT	F SAND 60	■ 80	金
bth	닖	RUN NO	SPT(N)	nsc	S	-					40			Depth(ft)
2	SAM	~	S		SOIL	DESC	RIPTION		DESCRIPTION	PLASTIC	M.C	<i>.</i>	LIQVID ———I	l e
B. 6	Ľ				Ŭ,					10	20	30	40	
0.0						ORGANIC ROOT MAT			UNFROZEN					- 0.0
,						BEDROCK (PHYLLITE)	biably fractured							
						weathered, sand	and silt infilled.							
•						brown	,							E.
 														2.0
						— water encount								F 2.0-
-						- becomes com END OF TESTPIT 0.8	petent with depth	•						F
•						CND OF TESTER O.D	III (NELOSAL)							F
- 1.0														
														4.0
														[- 4.0
•														
_														E
•														ŧ l
														F 6.0
- 2.0											<u> </u>			<u> </u>
•														
•														<u> </u>
•				•										
_														E 8.0
														
•														E I
														-
- 3.0														10.0
														E 1
-														
					:									
_														<u> </u>
-														12.0
														<u> </u>
														E
- 4. 0											 			
•														Ę I
-														14.0
•														E 177
•								li a i						<u>E</u>
	EI	BA	En	gin	eei	ring Consult	ants Ltd.		D BY: JSB	COMPLI				
						tehorse, Yukon		KEVIE	WED BY: JRT	COMPL	.1C: Ub	////	12 Page	1 of 1
6/08/16	11:564	м суцко	NP84)										, age	. ~

Geotec							CLIENT: Yukon Enginee	ring S	ervices	TES	T PI	TNO):	1200	197-T	P52
Propos				oad			EXCAVATOR: 320C TRAC	CKED	Excavator	PRC	IJΕC	T NO	0: 12	00197	1	
Wolveri	пе	Lake	, YT				UTM ZONE: 8 N68046	12 E4	46429	ELE	VATI	ON:				
SAMPL	E]	TYPE		GRAI	3 SAM	iple 🛮 no recover	✓ STANDARD PEN.		75 mm SPOONCRRE	BAR						
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION	-	PLAS	20 == 8 20 TIC	40 PERCEI 40 M	LT OR F 60 NT SAND 60 I.C.	80 80 LIQUID	Depth(ft)
0.0	\dashv					ORGANIC ROOT MAT			UNFROZEN		-	10	20	30	40	- 0.0
-						GRAVEL (TILL) — sand clay, coarse angu compact, damp, SILT (TILL) — sandy,	lar gravel and sand, reddish brown some gravel, well to medium grained,				•					2.0
1.0 - - - - -						END OF TESTPIT 1.0	m (REFUSAL)									4.0
- - - 2.0 -																6.0
- - - - -										•						8.0
- 3.0 - - - - -																10.0
- - - - 4.0 - -																12.0
-																<u> </u>
	E.F	 3A	En	gin	eei	ring Consult			D BY: JSB					DEPTH:		
-						ehorse, Yukon	ALEVO LIVE	KEVIEV	VED BY: JRT		COM	PLE	IE: 0	6/07/	12 Page	1 of 1
06/08/16 11	:564	и (уско	NPB4}	,	1 LLL	CHOLDE, LUMUII									ruge	I VI I

:


Geotechnio			•			CLIENT: Yukon Enginee					NO:		0197-	TP53
Proposed			oad			EXCAVATOR: 320C TRA			PRO	JECT	NO:	120019	17	:
Wolverine						UTM ZONE: 8 N68045			1	VATIC	N:			
SAMPLE T	MPE		GRA	B SAM	IPLE NO RECOVER	y Standard Pen.		75 mm SPOON CRREI	BAR					
닖				닏							0 40	60	FINES A 80	
E E	위	2	c	SYMBOL	(SOIL		GROUND ICE		7	■ PER(CENT SAM	ND ≡ 80] 寉
Depth(m) SAMPLE TYPE	RUN NO	SPT(N)	OSC	55					r	PLAST		<u>, оп</u> м.с.	LIQUI	Depth(ft)
SAM	~	,		SOIL	DESC	RIPTION		DESCRIPTION		FLAST	IV.	₩.U. **		ן בֿ ן
0.0					ADALLIA BAAR III			LINIERO ZEN		1	0 2	30	40	- 0.0
	ĺ				ORGANIC ROOT MAT			UNFROZEN						E
					BEDROCK — sand an	d silt infilled highly								F I
.					fractured, slightly	/ weathered								F I
_					 large boulder 	sized pieces								⊱
					\ encountered END OF TESTPIT 0.5	m (DEETICAL)								E 2.0
.	-				LIND OF TESTER 1.5	III (NEI OSAE)								
·														
- - 1.0														E 1
_ 1.0									ľ				Ĭ	```E
.														4.0
.														["]
.														Εl
-									-					···-È
	İ													E l
.														6.0
.														E 0.0
- 2.0									-					F
.														E I
														E
.														Ē ,
-											ļļ			
.									i					F
-					<u>.</u>									Ė I
_														Εl
_ 3.0										ļ	ļļ			<u>E</u>
-									ļ					[10.0
.														F
-														
_														<u>E</u>
.														Ē
.														12.0
-														<u> </u>
														E
4.0 -									ľ	····				<u> </u>
-														E
-														14.0
-														Ę.
<u></u> זרָד		F	<u>α:-</u> -		ning Consult	anta Ita	LOGGE	L ED BY: JSB		СОМ	PLETIO	n dept	H: 0.5 r	<u></u> н
Ll	DΑ	L:[]			ring Consult	ants Ltd.		WED BY: JRT				06/07	'/12	
06/08/16 11:56A	M (YUKÜ	NP04}		₩hi	<u>tehorse, Yukon</u>								Pag	e 1 of 1

				igation			CLIENT: Yukon Engine			TES	ST PIT N	0:	1200	197-T	P54
Propo				oad			EXCAVATOR: 320C TRA	CKED I	EXCAVATOR	PR	OJECT N	10: 1:	200197		
Wolver							UTM ZONE: 8 N6804	486 E4	45998	ELE	VATION:				
SAMPI	LE :	TYPE		GRA	B SAM	IPLE NO RECOVER	r Standard Pen.		75 mm SPOON CRRE	L BAF	RREL			···	
	, , ,										▲ PER	CENT S	SLT OR F	INES A	
$\overline{}$	SAMPLE TYPE	C	_		SYMBOL		SOIL				20	40 PERCE	60 Nt sand	80	
누	L. L.	Ž		nsc	₹	,	SOIL		GROUND ICE		20	40	60	80	탈
Depth(m)	Æ	RUN NO	SPT(N)	ű	S	חדכר	RIPTION		DECODIDATOR		PLASTIC	i	A.C.	LIQUID	Depth(ft)
	SAI	_			SOIL	DESC	IVII TIVIN		DESCRIPTION		<u> </u>		•		
0.0						ODOLUIO DOOT HAT	******				10	20	30	40	
. 0.0						ORGANIC ROOT MAT	· · ·		UNFROZEN						0.0
						SILT — sandy, fine gr	ained, compact,	,							ĒΙ
						moist, dark brown	<u>1 . tu t. etu. u</u>								
						BEDROCK - sand and	a siit intillea, .rod	,							E
						\fractured, weather END OF TESTPIT 0.4 i	m (REFIISAL)					ļļ			<u> </u>
•						END OF TESTITION	ii (KEI OSKE)								E 2.0
															E
-															FI
•															
- 1.0															
															E I
															4.0
_												1			-
															Ē
•															F
•															F 6.0
- 2.0															E l
- 2.0															
_															Εl
															Εl
															<u> </u>
_															E 8.0
															
															E I
															Ė I
- 3.0												ļļ.			El
															F 10.0
															Εl
-															ĒΙ
															Εl
-												.ļļ			E l
-															<u> </u>
-															12.0
-															E
-															<u> </u>
- 4. 0															E I
-															F
-															ا ا
															14.0
															
!	והן זהן	 D A		~:~~		sing Consult	Sala IIJ	LOGGE	D BY: JSB		COMPL	TION	DEPTH:	0.4 m	<u> </u>
	Ŀl	ĎΑ	ĽN			ring Consulta	ants Ltd.		VED BY: JRT				6/07/		
- 100 J	4		100-1	Ţ	<u>Whit</u>	<u>ehorse, Yukon</u>								Page	1 of 1
6/08/16 1	1:06A	ы қтикс	NPU4)												

	CLIENT: Yukon Engineering Services	TEST PIT NO: 1200197-TP55
	EXCAVATOR: 320C TRACKED EXCAVATOR	PROJECT NO: 1200197
	UTM ZONE: 8 N6804530 E445757	ELEVATION:
SAMPLE TYPE GRAB SAMPLE NO RECOVERY	STANDARD PEN. = 75 mm SPOON CRRE	L BARREL
후 [비즈] [[집 [집]	OIL GROUND ICE RIPTION DESCRIPTION	A PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 PLASTIC M.C. LIQUID ed
	DEBORE HOL	
0.0 ORGANIC ROOT MAT	UNFROZEN	10 20 30 40
SAND — gravelly, silty, compact, moist, r GRAVEL (TILL) — sand	coarse grained, eddish brown y, silty, trace of lar gravel and sand, prey	4.0 1
-		10.0
- 4.0 		12.0
EBA Engineering Consulta	ents I.t.d LOGGED BY: JSB	COMPLETION DEPTH: 0.8 m
	REVIEWED BY: JRT	COMPLETE: 06/07/12
Whitehorse, Yukon		Page 1 of 1

Geotechnic	cal Ir	vesti	gation		71	CLIENT: Yukon Engineer			TES	T PIT N):	1200	197-T	P56
Proposed A	Acce	ss Ro	oad			EXCAVATOR: 320C TRAC	KED	Excavator	PRC	DECT N	0: 12	00197	'	
Wolverine 1	Lake	YT				UTM ZONE: 8 N68046	19 E4	45551	ELE	VATION:				
SAMPLE T	YPE		GRAE	3 SAM	PLE NO RECOVER	y Standard Pen.		75 mm SPOON CRREL	BAR	REL				
Depth(m) 4MPLE TYPE	RUN NO	SPT(N)	nsc	SYMBOL		SOIL		GROUND ICE	-	20 = 1 20	40 PERCEN 40	LT OR F 60 IT SAND 60	80 8 0	Depth(ft)
Depth(SAMPLE	~	S		SOIL	DESC	RIPTION		DESCRIPTION		PLASTIC		.C. b	LIQUID ————————————————————————————————————	lag
0.0					ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	0.0
					GRAVEL (PHYLLITE) - coarse angular g compact, moist,	some sand, some silt ravel and sand, grey	,		A A A A A A A A A A A A A A A A A A A	•				2.0
- 1.0					SAND (TILL) — gravel clay, coarse ang <u>medium gravel, c</u> END OF TESTPIT 1.2	ular sand and fine to		-		•				4.0
- 2.0			-											6.0
														8.0
-3.0														10.0
-														12.0
.					Matter.									14.0
EE	3A	Εn	gin	eer	ing Consult			D BY: JSB		COMPLE				
	- -		_		ehorse, Yukon		KEVILV	VED BY: JRT		COMPLE	.it: 0	2/0//		1 of 1
6/08/16 11:57AM	i (YUKON	P04)	}	1 1111	CHOLDE, TUKUII				1				rage	1 of 1

Geote							CLIENT: Yukon Engineer			TI	EST F	PIT N	0:	120	0197-	-TP57
Ргоро				bad			EXCAVATOR: 320C TRAC			Р	ROJE	CT N	0: 1:	20019	7	
Wolver				_			UTM ZONE: 8 N68048	10 E4	45295	E	LEVAT	TION:				
SAMP	LE	TYPE		GRA	3 SAM	PLE NO RECOVERY	✓ STANDARD PEN.		75 mm SPOON	CRREL B						
Depth(m)	LE TYPE	RUN NO	SPT(N)	nsc	SYMBOL		SOIL		GROUN	D ICE		20	40	SILT OR 60 ENT SAN 60	FINES A 80 D = 80	Depth(ft)
Per	SAMPLE	≥	72	_	SOIL	DESC	RIPTION		DESCRI	PTION	PU	ASTIC	ŀ	VI.C.	LIQU	Dep la
	S		.		S							10	20	30	40	
0.0						ORGANIC ROOT MAT			UNFROZEN							- 0.0
- - - - -						compact, moist,	ular gravel and sand,	ut				&				2.0
- 1.0																
- - -		-				BEDROCK - compete END OF TESTPIT 1.2	nt m (REFUSAL)									4.0
- - - 2.0																6.0
- - - -																8.0
3.0 																10.0
 - - - -																12.0
- -							- one	LODO	D. DV. 10D	· · · · · · · · · · · · · · · · · · ·		100				14.0
	\mathbf{E}	BA	En	gin	eei	ring Consult			D BY: JSB WED BY: JRT					DEPT 06/07	H: 1.2	m
						ehorse, Yukon		* * * * L	ווען יון טוין		106	rivit" L	LIL	vu/ V/		ge 1 of 1
06/08/16	13:53 F	WUY) W	ONPO4)					-							. 4	7 · VI I

Project: 0201-1200197

Date Tested: 06/08/07

BY: PF

Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Whiteharse Yukon With convex Whiteharse Yukon	Geotechnical Investigation	CLIENT: Yukon Engineering S	*****	TEST	PIT	NO	: 1	2001	197–T	P58
SAMPLE TYPE SOIL SOIL DESCRIPTION SOUND ICE DESCRIPTION DESCRIPT	Proposed Access Road	·		PRO	JEC1	TNC): 1200	197		
SOIL DESCRIPTION D						ON:				
SOIL DESCRIPTION DESCRIPTION	SAMPLE TYPE GRAB SAMPLE NO RECOVER	y 💹 standard pen. 🖃	75 mm SPOON CRREL	BARF						
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION POSITE MC. Usual 25 10 20 30 40 DESCRIPTION ORGANIC ROOT MAT DIFFROZEN DIFF										
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION POSITE MC. Usual 25 10 20 30 40 DESCRIPTION ORGANIC ROOT MAT DIFFROZEN DIFF		SOIL	CROUND ICE		-	■ P	ERCENT	SAND I		\pm
ORGANIC ROOT MAT ORFROZEN INTERPRISE Sandy, fine grained, compact, moist, grey BERROCK (PHTUIT) — sand and silt, infilled, weathered, highly fractured, flot, angular, elongated, grey — cobble and boulder sized pieces throughout — copmetent at 0.5 m END OF TESTPIT 0.5 m (REFUSAL) EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m Whitehorse Yinkon Whitehorse Yinkon ONFROZEN 10 20 30 40 10 00 10 10 10 10 10 10 10 10 10 10 10 10 10 1										듐
ORGANIC ROOT MAT ORFROZEN INTERPRISE Sandy, fine grained, compact, moist, grey BERROCK (PHTUIT) — sand and silt, infilled, weathered, highly fractured, flot, angular, elongated, grey — cobble and boulder sized pieces throughout — copmetent at 0.5 m END OF TESTPIT 0.5 m (REFUSAL) EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m Whitehorse Yinkon Whitehorse Yinkon ONFROZEN 10 20 30 40 10 00 10 10 10 10 10 10 10 10 10 10 10 10 10 1		KIPHON	DESCRIPTION		PUASI —L	IR.	M.C.		LIQUID ———I	De
EBA Engineering Consultants Ltd. SILT - sandy, five grained, compact, moist, grey SEPROCK (PHYLITE) - sand and silt, milled, weathered, highly fractured, list, onquiar, elongated, grey - cobble and boulder sized pieces throughout - competent at 0.5 m END OF TESTPIT 0.5 m (REFUSAL) E-4.0					1	10	20	30	40	
most, GPYULITE) – sond and silt, infilled, weothered, highly froctured, flot, cngulor, elongoted, grey – cobble and boulder sized pieces throughout – competent of 0.5 m (REFUSAL) = 2.0 END OF TESTPIT 0.5 m (REFUSAL) EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon Whitehorse Yukon	ORGANIC ROOT MAT		UNFROZEN							E 0.0
most, GPYULITE) – sond and silt, infilled, weothered, highly froctured, flot, cngulor, elongoted, grey – cobble and boulder sized pieces throughout – competent of 0.5 m (REFUSAL) = 2.0 END OF TESTPIT 0.5 m (REFUSAL) EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon Whitehorse Yukon	SIIT - sandy fine at	rained compact	-							Ė
BEDROCK (PHYLLIE) – sand and sik, infilled, weathered, highly froctured, flat, angular, elongated, grey – active and boulder sized pieces throughout – competent at 0.5 m END OF TESTPIT 0.5 m (REFUSAL) - 2.0 - 2.0 - 2.0 - 2.0 - 3.0 - 3.0 - 3.0 - 3.0 - 4.0 - 4.0 - 4.0 - 4.0 - 5.0 - 6.0 - 6.0 - 6.0 - 7		dined, compact,								
EBA Engineering Consultants Ltd. Conference of the complete	BEDROCK (PHYLLITE)	- sand and silt,	-	4	,					
- complete and boulder sized piecos throughout - competent at 0.5 m END OF TESTPIT 0.5 m (REFUSAL) -20 -30 -40 EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon	infilled, weathere	d, highly fractured,								£ ,,
EBA Engineering Consultants Ltd. Complete to 0.5 m END OF TESTPIT 0.5 m (REFUSAL) END OF TES	flat, angular, elo	ngated, grey								F"
EBA Engineering Consultants Ltd. Consultants Ltd. Cosced BY: JSB COMPLETION DEPTH: 0.5 m Reviewed BY: JRT COMPLETION DEPTH: 0.5 m Reviewed BY:		uidei sized pieces								Ē
EBA Engineering Consultants Ltd. EBA Engineering Consultants Ltd.		0.5 m								
EBA Engineering Consultants Ltd. Concert BY: JSB Concert IN DEPTH: 0.5 m Completion Depth: 0.5 m Completion Depth: 0.5 m Completion Depth: 0.5 m Completion Depth: 0.5 m Completic Obj. 7/12	END OF TESTPIT 0.5	m (REFUSAL)								Ē
EBA Engineering Consultants Ltd. Concert BY: JSB Concert IN DEPTH: 0.5 m Completion Depth: 0.5 m Completion Depth: 0.5 m Completion Depth: 0.5 m Completion Depth: 0.5 m Completic Obj. 7/12										Ē ,
EBA Engineering Consultants Ltd. Completion Depth: 0.5 m Completi	-									F 4.0
EBA Engineering Consultants Ltd. Completion Depth: 0.5 m Completi	-									
EBA Engineering Consultants Ltd. Completion Depth: 0.5 m Completi	-				 !	ļļ.		++		
EBA Engineering Consultants Ltd. Completion Depth: 0.5 m Completi										
EBA Engineering Consultants Ltd. Completion Depth: 0.5 m Completi										Ė
EBA Engineering Consultants Ltd. Completion Depth: 0.5 m Completic 06/07/12 Page 1 of 1.5	-									E 6.0
EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon EBA Engineering Consultants Ltd. Complete 06/07/12	- 2.0					-				Ė
EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon EBA Engineering Consultants Ltd. Complete 06/07/12										
EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon EBA Engineering Consultants Ltd. Complete 06/07/12	F									F
EBA Engineering Consultants Ltd. Whitehorse Yukon Whitehorse Yukon EBA Engineering Consultants Ltd. Complete 06/07/12										F
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-					ļļ.				8.0
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-									-
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-									
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-									E
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	- - 3.0									
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m										E- 10.0
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-									E
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-									E
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m	-									Ē
EBA Engineering Consultants Ltd. LOGGED BY: JSB COMPLETION DEPTH: 0.5 m					.	ļ <u>i</u> .		+++		-
EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1	_									12.0
EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1	-									
EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1	-									Ė
EBA Engineering Consultants Ltd. Whitehorse Yukon EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1	4.0				<u></u>					<u> </u>
EBA Engineering Consultants Ltd. Whitehorse Yukon EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1	F									<u> </u>
EBA Engineering Consultants Ltd. Whitehorse Yukon EBA Engineering Consultants Ltd. Whitehorse Yukon Page 1 of 1										E 14.0
Whitehorse Yukon REVIEWED BY: JRT COMPLETE: 06/07/12										E
Whitehorse Yukon REVIEWED BY: JRT COMPLETE: 06/07/12		licoor	TD DV. ICD	10	100.45	1	ION SE	Dit	0.5	<u>E</u>
Whitehorse Yukon Page 1 of 1	EBA Engineering Consult									
										1 of 1

				gation			CLIENT: Yukon Engineeri			TEST P				<u>197–T</u>	P59
Propo				boc			EXCAVATOR: 320C TRAC			PROJE): 12	00197	1	
Wolver						<u></u>	UTM ZONE: 8 N680510)3 E4		ELEVAT					
SAMP	LE.	TYPE		GRA	B SAM	IPLE NO RECOVER	∕ ⊠standard pen.		75 mm SPOON CRREL						
(m)	TYPE	9	(Z)	ن د	SYMBOL	(N	SOIL		GROUND ICE		20	40	LT OR F 60 VT SAND 60	80	(±)
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	SOIL SY	DESC	RIPTION		DESCRIPTION	PLA I	STIC		.C.	Liquid	Depth(ft)
0.0	Ľ				-	CD ON HO DOOT HAT	,- va		LINERATEN		10	20	30	40	0.0
						ORGANIC ROOT MAT SILT — sandy, fine gr	المائم المائم		UNFROZEN						0.0
						dark brown	amea siit, moist,	-							
						GRAVEL — sandy, sor	ne silt, coarse grained,			•					
						angular, compact	t, moist, grey d, poor quality rock								2.0
						pieces	a, poor quality rook								
1.0															
															4.0
•															
-															
															6.0
- 2.0						CND OF TECTOR OF					,				
					:	END OF TESTPIT 2.0	m								
-															8.0
-															
-															
— 3.0					:										E 10.0
-															
<u>-</u>															
_															<u> </u>
-															12.0
- -															
— 4.0 -															
-															14.0
-															
	E	L R∆	Fn	gin		ring Consult	ants Itd	LOGGE	D BY: JSB				DEPTH		
	ـ تـــــــــــــــــــــــــــــــــــ	υŊ	шIJ				ишь вы.	REVIE	WED BY: JRT	CO	MPLET	TE: O	6/07/		1 .5 4
6/08/16	11:57/	M MIKI	NPN4)		44 TTTJ	<u>tehorse, Yukon</u>								rage	1 of 1

Geotechnical Investigation	CLIENT: Yukon Engineering	Services	TEST PIT NO: 1200197-	TP60
Proposed Access Road	EXCAVATOR: 320C TRACKED		PROJECT NO: 1200197	
Wolverine Lake, YT	UTM ZONE: 8 N6805286 E		ELEVATION:	
SAMPLE TYPE 📕 GRAB SAMPLE 🗌 NO RECOVE	ry 🛛 standard pen. 🗏	75 mm SPOON CRREL		
후 베지턴 회 있	SOIL CRIPTION	GROUND ICE DESCRIPTION	▲ PERCENT SILT OR FINES ▲ 20 40 60 80 ■ PERCENT SAND ■ 20 40 60 80 PLASTIC M.C. LIQUID	Depth(ft)
		DEBOINI 12011	10 20 30 40	
0.0 ORGANIC ROOT MAT		UNFROZEN	10 20 30 40	0.0
SILT (TILL) — sandy, trace of clay, w to medium grain compact, moist,	ell graded sand, fine ned angular gravel, dark grey			2.0
BEDROCK (PHYLLITE highly fractured				4.0
- 2.0	m (KEFUSAL)			6.0
-				8.0
- 3.0				10.0
				12.0
- 4.0				14.0
EBA Engineering Consult		ED BY: JSB	COMPLETION DEPTH: 1.5 m	
Whitehorse, Yukon	KEAIE	WED BY: JRT	COMPLETE: 06/07/12	1 26 1
5/08/16 11:57AM (YUKONPD4)			<u>Page</u>	1 of 1

Geotechnical Investigation	CLIENT: Yukon Engineering Services	TEST PIT NO: 1200197-TP61
Proposed Access Road	EXCAVATOR: 320C TRACKED EXCAVATOR	PROJECT NO: 1200197
Wolverine Lake, YT	UTM ZONE: 8 N6805366 E444469	ELEVATION:
SAMPLE TYPE GRAB SAMPLE NO REC	overy Standard Pen. 🗏 75 mm spoo	N
Depth(m) SAMPLE TYPE RUN NO SPT(N) USC SOIL SYMBOL	CONTONION	A PERCENT SILT OR FINES A 20 40 60 80
0.0 ORCANIC ROOT M	T HINEDOZEN	10 20 30 40
clay, well grained, subacompact, made by the subacompact, made by the subacompact, made by the subacompact, made by the subacompact of the subacom	ty, gravelly, trace of ded sand, fine to medium ngular gravel, ist, grey TE) — poor quality, highly ift, flat, elongated le sized more competent 1.0 m	4.0
- 3.0 4.0 	It anta Ital LOGGED BY: JSB	COMPLETION DEPTH: 1.8 m
EBA Engineering Consu	Itants Ltd. LOGGED BY: JSB REVIEWED BY: JRT	COMPLETION DEPTH: 1.8 m
Whitehorse, Yuko		Page 1 of 1
3/08/16 11:57AM (YUKONPB4)		

Geote							CLIENT: Yukon Engineerin			TEST	PIT I	10:	120	<u> 20197–</u>	TP62
Propo				bad			EXCAVATOR: 320C TRACK			PROJE	CT	NO: 1	2001	97	
Wolver							UTM ZONE: 8 N6805539	9 E4	44207	ELEVA	TION	:			
SAMP	LE	TYPE		GRAI	3 SAM	PLE NO RECOVER	′ ⊠standard pen.	<u> </u>	5 mm SPOON CRREL						
	بيرا				ᆛ						20	40	60	R FINES.▲) 80	
Œ	TYPE	9	Ξ	ပ	SYMBOL	,	SOIL		GROUND ICE		20	PERC 40	ENT SA	ND ■] €
Depth(m)	SAMPLE	RUN NO	SPT(N)	nsc	S	DEGC	RIPTION			Pi	ASTIC		M.C.	LIQUE	Depth(ft)
	SA				SOIL	DEOU	IVII IION	-	DESCRIPTION		 				
0.0	Н					ORGANIC ROOT MAT	· · · · · · · · · · · · · · · · · · ·		UNFROZEN		10	20	30	3 40	0.0
-						SILT - sandy, some	gravel								<u> </u>
-					}	BEDROCK (PHYLLITE)	- poor quality, soft,								
-						highly fractured,	greyish black								2.0
-															E
-															
1.0					i	_ 00m0 00mmor	and cobble sized pieces								E
-						below 1.0 m	una coobie sizea pieces								
•						 more compete 	nt with depth			•					4.0
•								Ì							F
_															~F
-						END OF TESTPIT 1.6	m (REFUSAL)								F
-															E- 6.0
- 2.0															Ė
-															E
-															E
-															
_															E 8.0
-															
-															
-															<u> </u>
— 3.0															···[= 10.0
-															Ē
-															Ē
-															Ė į
-															E
-															12.0
-															<u> </u>
— 4.0															<u>.</u> [- ·
-															-
-															14.0
-															
	<u>با</u> الرا		II	~: <u>-</u> -		-i O 11	LIT along	<u> </u> OGGF	D BY: JSB		<u>: :</u> Ompi	ETIO	V DEP	TH: 1.6 m	<u> </u> ;
	ĿJ	ĎΑ	ĽN			ring Consult			/ED BY: JRT				06/0	7/12	
06/08/16	11-574	AN LAURU	NPR4)	1	whit	<u>ehorse, Yukon</u>								Page	1 of 1

Geotechni			·			CLIENT: Yukon Engine			TES	T PIT	NO:	<u> </u>	2001	197-T	P63
Proposed			oad			EXCAVATOR: 320C TRA	CKED	EXCAVATOR	PRO	JECT	NO:	: 1200	197		
Wolverine						UTM ZONE: 8 N6805				OITAV	N:				
SAMPLE 7	TYPE		GRAI	B SAM	IPLE NO RECOVER	y Standard Pen.		75 mm SPOON CRRE	L BARI						
Depth(m)	RUN NO	SPT(N)	nsc	SYMBOL		SOIL		GROUND ICE		20	O ■PE O	RCENT S 40	60 Sand I 60	80 80	Depth(ft)
SAM	~	0,		SOIL	DESC	RIPTION		DESCRIPTION		FLASII	<u></u>	M.C.		LIQVID ———	ا ت
0.0					ODANUA DOOT WAT			LINEDO ZEN		1(0	20	30	40	- 0.0
. "					ORGANIC ROOT MAT			UNFROZEN							E
.					SILT AND SAND — gro	velly		-							E 1
					3										F I
					BEDROCK (PHYLLITE)	— silt and sand			.						FI
					infilled, good qua	lity, highly				•					E 2.0
					fractured, moist	grey									E ""
					- cabble, same l	boulders below 0.8 m	1								F
1.0					,										
											Ì				
.		ŀ) sompatant at	{ 0 m	i								E 4.0
.			-		− competent at END OF TESTPIT 1.2	m (REFUSAL)									E
						,,									Εl
.									-					***************************************	E I
															F
.															E 6.0
															Ē
2.0]"						F
.															
.						,									8.0
-									-						
															Εl
- 3.0											ļļ				10.0
															E 10.0
.															E I
-											ļļ		.		<u> </u>
.															E 124
.															12.0
_ 4.0								!			<u> </u>				Ë
															E
.															E ,, ,
·															14.0
,															<u> </u>
EF	3A	En.	gin	eer	ring Consult	ants Ltd		ED BY: JSB				ON DE			
					ehorse, Yukon		KEVE	WED BY: JRT		-UMP	'LL I I	E: 06/0	0//1	2 Page	1 of 1
6/08/16 11:57A	M MIKN	VPN4)			MAIOTHE, IUMUII		J							ruge	1 VI 1

Geote					<u> </u>		CLIENT: Yukon Engineer				PIT I			<u> 0197–T</u>	P64
Propo				oad		***************************************	EXCAVATOR: 320C TRAC						120019	7	
Wolver						***************************************	UTM ZONE: 8 N68059		TV-T	L	/ATION	l:			
SAMP	LE	TYPE		GRA	B SAM	IPLE NO RECOVER		75	mm SPOONCRREL	. Bari					
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	SYMBOL		SOIL		GROUND ICE	-	20	4 ■ PER	r Silt or 0 60 Cent San 0 60	80 ID ≡	Depth(ft)
Dep	SAMP	₽	SF	1	SOIL	DESC	RIPTION		DESCRIPTION		PLASTIC		M.C.	LIQVID ————————————————————————————————————	Dep
0.0						ORGANIC ROOT MAT	* MA	Ú	NFROZEN		10	2	0 30	40	0.0
- - - - - -						SAND (TILL) — silty, of clay, well graded medium grained compact, moist,	sand, fine to angular gravel,				•				2.0
— 1.0 - - -						BEDROCK (PHYLLITE) fractured, silt infi									4.0
- - -						\ <u> </u>	1.2 m m (REFUSAL)								
- - 2.0 -															6.0
- - -						·									8.0
- - -															
3.0 - - - -					-										10.0
- - - - 4.0															12.0
-															14.0
	El	BA	En	gin	eei	ring Consulta			BY: JSB					H: 1.4 m	
	الالمحد	£ 3	### ## T				ATTOD LICE.	KEVIEWE	D BY: JRT	{	COMPL	ĿΤΕ:	06/07		4 .5 4
6/08/16 1	1:58A	и гижс	NPD4)		† <u>111</u> [ehorse, Yukon		L				~~~~		Page	1011

•

Geote				-	 	7.4	CLIENT: Yukon Enginee				T PIT NO)197–1	P65
Propos				bad		V sada	EXCAVATOR: 320C TRA				JIECT N	0: 12	00197	7	
Wolver							UTM ZONE: 8 N6806				VATION:				
SAMPI	LE	TYPE		GRAI	B SAM	IPLE NO RECOVER	y Standard Pen.		75 mm SPOON CRREI	BAR					
	핏										▲ PER0 20	Ents 40	ILT OR F 60	TINES ▲ 80	
$\overline{\mathbb{E}}$	≊	9	Î	O	SYMBOL	Ç	SOIL		GROUND ICE				NT SANE 60		1 €
Depth(m)	닖	RUN NO	SPT(N)	nsc	\ <u>\</u>					-					Depth(ft)
ے	SAMPLE TYPE	≃	0,		SOIL	DESC	RIPTION		DESCRIPTION		PLASTIC	N.	I.C.	LIQVID ———I	
0.0											10	20	30	40	
						ORGANIC ROOT MAT			UNFROZEN						0.0
-						SAND (TILL) - silty, o	aravelly trace of								Ē
•						clay, well graded	sand, fine to								
_						medium grained	angular gravel,				•				<u> </u>
-						compact, moist,				ľ					2.0
-						 cobbles below 	0.6 m								- 2.0
-										Ì					Ē
-															
— 1.0 -										ľ					:- <u>-</u> -
-						In To Do Oli									4.0
-						BEDROCK - compete END OF TESTPIT 1.2									- 4.V
-						END OF TESTETT 1.2	III								E
-										-			ļ		<u>.</u>
-															E
-	-														Ē ,
•															6.0
— 2.0										-			ļļ		. <u>F</u>
-										ļ					Ė
-															Ė !
-												-			Ę .
_													ļļ		E 8.0
-									·						E
•															
-															E
— 3.0													<u></u>		.F
															F 10.0
-															F
-															E
_															_F
-															E
-															12.0
-															Ę.
															E
 4 ,0 -														i i i i	"E
-															Ē
-															14.0
-															Ė
	لب ابل	 > A C		~i~	~~	sing Consult	onta Ita	LOGGE	D BY: JSB	\dashv	COMPLE	TION	DEPTH	1,2 m	- -
	Ľ1	AC	LIL			ring Consult	ants Ltd.		WED BY: JRT		COMPLE			12	
6/08/16 1	1:584	M (YUK!	NP(14)		Vhit	<u>ehorse, Yukon</u>		<u> </u>						Page	1 of 1

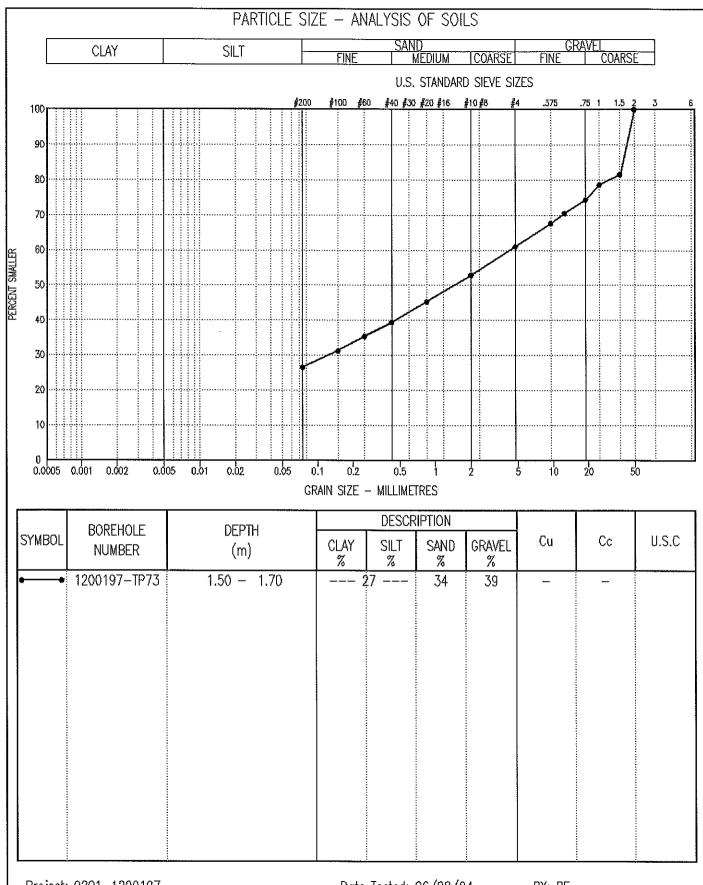
		************	~~	gation			CLIENT: Yukon Enginee			TEST PIT			0197-1	P66
Propo				boc			EXCAVATOR: 320C TRAC			PROJEC [*]	T NO:	120019	7	
Wolver							UTM ZONE: 8 N68061	25 E4	43750	ELEVATION	ON:			
SAMP	LE .	TYPE		GRAE	3 SAM	IPLE 🔃 NO RECOVERN	∕ ⊠standard pen.		75 mm SPOONCRREL					
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	SYMBOL	Ç	SOIL		GROUND ICE		20) 4 <u>≡</u> PEF	T SILT OR 10 60 ICENT SAN 10 60	80	Depth(ft)
Dept	SAMPL	RUN	SP	Ď	SOIL S	DESC	RIPTION		DESCRIPTION	PLAS	TIC	M.C.	LIQVID	Dept
0.0	H					ORGANIC ROOT MAT		-	UNFROZEN		0 2	0 30	40	- 0.0
						URGANIC ROUT MAT			UNTRUZEN					E "."
- -						SAND (TILL) — silty, ç clay, well graded angular gravel	gravelly, trace of sand, coarse							2.0
- 1.0 - 1.0														4.0
- - - - - - 2.0						– very competen 1.8 m END OF TESTPIT 2.0 i	t, hard digging below m (REFUSAL)			•				6.0
· · · · · · · · · · · · · · · · ·							, ,							8.0
- 3.0 - 3.0 -														10.0
- . 4.0														12.0
·							·	1000	20.004.105					14.0
	E	BA	En	gin	eer	ring Consulta			ID BY: JSB WED BY: JRT			N DEPTI		
						ehorse, Yukon		KEVIL	ואני פו: אנו	LUNIA		06/07		1 of 1
6/08/16	11:5RA	M CATIKE	NPO4)		TIIL	CHULDE, TUNUII							ruye	1 VI I

!

Geote	hni	cal I	nvesti	gation			CLIENT: Yukon Engineeri	ing S	ervices	TES	T PIT I	NO:	1200	0197-T	P67
Propos	ed	Acce	ess R	bad			EXCAVATOR: 320C TRAC	KED (EXCAVATOR .	PR	JECT	NO: 1	20019	7	
Wolver	ine	Lake	, YT				UTM ZONE: 8 N680625	2 E4	43668	ELE	VATION	 ;			
SAMPL	Ε.	TYPE		GRAE	3 SAM	PLE NO RECOVERY	∕ Standard pen.		75 mm SPOON CRREI	. BAF	RREL				
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	USC	SOIL SYMBOL		SOIL RIPTION		GROUND ICE DESCRIPTION		20	4C ■ PERC 4C	CENT SANI) 60 M.C.	80 B0 B0 LIQVID	Depth(ft)
0.0						ORGANIC ROOT MAT			UNFROZEN		10	20	30	40	- 0.0
- - - - - - - -					***************************************	GRAVEL — sandy, silty compact, moist, — cobbles, some 0.6 m — finer grained g			ON ROZEN						2.0
- - - -															4.0
- - 2.0 - - - -						BEDROCK (PHYLLITE) highly fractured, - becomes comp END OF TESTPIT 2.5 is	flat, angular petent at 2.5 m m								8.0
- - 3.0 - - - -															10.0
- - - - 4.0 - -															12.0
	F.I	₹Δ	F.n	gin		ring Consulta			D BY: JSB					l. 2.5 m	•
	لاند	בתע	шШ	_		_	TITED TICH.	REVIEV	VED BY: JRT		COMPL	ETE:	06/07/		
16/08/16 1	1:58A	M (YUKO	NPO4)		y nit	ehorse, Yukon					<u> </u>			Page	1 of 1

				igetion		****	CLIENT: Yukon Engineeri	·	TEST)197–T	P68
Propo			~~~	oad			EXCAVATOR: 320C TRACI	KED EXCAVATOR	PROJE	CT N	10: 1:	20019	7	
Wolver							UTM ZONE: 8 N680639	0 E443591	ELEVA	TION:		,		
SAMP	LE T	TYPE		GRA	B SAM	IPLE NO RECOVER	/ Standard Pen.	75 mm SP00N	CRREL BARRE	L				
	SAMPLE TYPE			O	SYMBOL	Ç	SOIL	GROUND		▲ PER 20	40	SILT OR 60 INT SANS 60	80	(£)
Depth(m)	MPLE	RUN NO	SPT(N)	OSO	SOIL SY	DESC	RIPTION	DESCRIPT		ASTIC		vi.C.	LIQUID	Depth(ft)
_	ΥŞ)S	PH80	1011 11014	Dubolul 1	1011	10	20	30	40	
0.0						ORGANIC ROOT MAT	, , , , , , , , , , , , , , , , , , , ,	UNFROZEN		10	ZV	302	40	0,0
							silty, trace of gravel, ompact, reddish brown h brown, grey			•				2.0
- 1.0 - 1.0 - - -						— less gravel, be with depth below	comes fine grained 1.0 m			•				4.0
- - - - 2.0 -														6.0
- - - -						END OF TESTPIT 2.5 — sloughing	m			•				8.0
- 3,0 - - -														10.0
 - - - 4.0														12.0
-														14.0
	El	BA	En	gin	eei	ring Consult		OGGED BY: JSB REVIEWED BY: JRT				DEPTI- 06/07/	l: 2.5 m	
						tehorse, Yukon	<u> -</u>	עראורארה פוי מוצו	<u>U</u>	/WIL T	L1Li \	10/ U//		1 of 1
6/08/16	11:584	M CYUKO	INPB4}		11 1111	LUIVIAU, IUNUII			<u> </u>				ruye	1 01 1

Geotechnical Investigation							CLIENT: Yukon Engineerin	TEST PIT NO: 1200197-TP69								
Propos				oad		VIII Think to the	EXCAVATOR: 320C TRACK			PROJ	<u>:CT</u>	NO:	12001	97		
Wolveri							UTM ZONE: 8 N6806588	3 E4	43501	ELEVA	10IT.	ł:				
SAMPL	ΕT	YPE		GRAI	3 SAM	PLE NO RECOVERY	∕ ⊠standard pen.		75 mm SPOON CRREI	BARRE	.L					
É.	LE TYPE	RUN NO	SPT(N)	nsc	SYMBOL		SOIL		GROUND ICE		20	40 PER0	CENT S	O AND ■	80	Depth(ft)
Dep	SAMPLE	₽	Ϋ́		SOIL	DESC	RIPTION		DESCRIPTION	Pl	astic I		M.C.		LIQVID ——	Dep
0.0						ORGANIC ROOT MAT	· · · · · · · · · · · · · · · · · · ·		UNFROZEN		10	20	3	0	40	0.0
- - - - - - - - -																2.0
- 1.0 - -						BEDROCK (PHYLLITE) angular, hìghly fr grey	— poor quality, actured, soft, dark				•					4.0
- - - - 2.0						– becomes comp	petent with depth									60
-						END OF TESTPIT 2.5 r – some sloughing										8.0
- - 3.0 - - -																10.0
- - - - - 4.0																12.0
-																14.0
-	EF	3A	En	gin	eer	ing Consulta			D BY; JSB				V DEP			
-				_		-		.vit.V	VED BY: JRT	ICX	JML	LIL:	06/0	1/13		1 05 4
6/08/16 11	1:5RAM	MIKO	NP(14)		TITE	<u>ehorse, Yukon</u>									Page	1 10 1


Geotechnical	Investiga	tion		CLIENT: Yukon Engineering Services TEST PIT NO: 120019							197-TI	P70
Proposed Acc	~~~~	d		EXCAVATOR: 320C TRA			PROJ	ECT N	0: 12	00197		
Wolverine Lak				UTM ZONE: 8 N68068			ELEVA					
SAMPLE TYPE	-	GRAB SA	MPLE NO RECOVE	ry Standard Pen.		75 mm SPOON CRREI	. Barri		DELET AT	T AP =	INITO :	
Depth(m) SAMPLE TYPE RUN NO	SPT(N)	SOIL SYMBOL	DESC	SOIL CRIPTION		GROUND ICE DESCRIPTION	P				80 80 LiQUID	Depth(ft)
0.0			ORGANIC ROOT MAT	~~			-	10	20	30	40	- 0.0
			GRAVEL — sandy, si angular gravel o moist, blackish SILT — sandy, grave	ind sand, compact, brown Ily, fine to medium sand and gravel, grey		FROZEN Nbn, Vs, 15–20%		•	•			2.0
- 1.0			Life of Teath II d.u	(NEI OUNE)								4,0
- 2.0												6.0
*												8.0
- 3.0												10.0
-4.0												12.0
												14.0 14.0 14.0
EBA	Eng	inee	ring Consult			D BY; JSB					0.8 m	
	6		itehorse, Yukon		REVIEV	WED BY: JRT	C	UMPLE	IE O	3/07/		1 ^f 1
/08/16 11:584M (YUK)	ONP(14)	11 111	ICCHOLOC, TUKUII		L				,		Page	ı VI İ

Ö

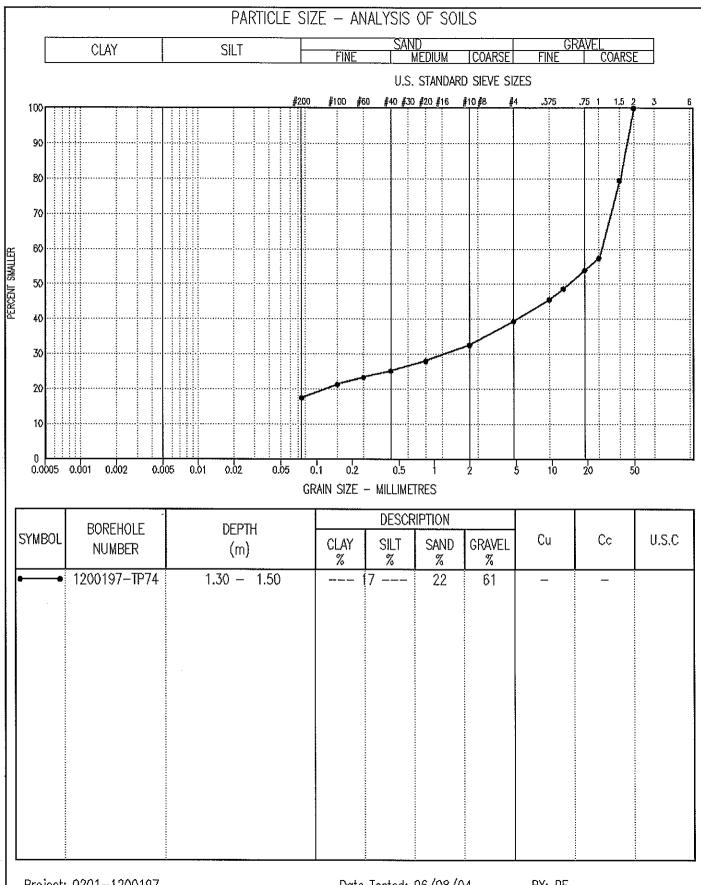
Geote			~	~ ~~~~) 		CLIENT: Yukon Engineering Services TEST PIT NO:							1200197-TP71				
Ргоро				oad			EXCAVATOR: 320C TRA			PROJE		D: 120	0197					
Wolver							UTM ZONE: 8 N68070			ELEVA?								
SAMPI	Ε,	IYPE		GRA	B SAM	IPLE NO RECOVER	y Standard Pen.		75 mm SPOON CRRE									
_	띮				ا ا	_	N 0 TT				20	ent sil 40	60	80				
Œ,		오	$\widehat{\mathbb{Z}}$	C	SYMBOL	,	SOIL		GROUND ICE		■ F	ERCENT 40	SAND 60	8 0] €			
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	osn	\Q_{-1}	DECC	וארושוחום			DI A	ASTIC	М.С		LIQUID	Depth(ft)			
ā	SAN	-	•		SOIL	עספות	RIPTION		DESCRIPTION		,J110	****	<i>.</i>	——————————————————————————————————————	~			
0,0						ODCANIC DOOT MAT			UNFROZEN		10	20	30	40	- 0.0			
						ORGANIC ROOT MAT			UNFRUZEN						[0.0]			
						SAND (RESIDUUM) -	silty, some gravel,								F			
						coarse grained a	ngular sand and				_				F			
_						gravel, compact,					•				.F			
						– interbedded lag	yer of silt throughout								E 2.0			
															E			
1.0															Ė l			
170							s to reddish brown								Ė			
						below 1.0 m									E 4.0			
															ŧ "			
															E			
_															Ė			
•		-						:				9						
															E , 1			
						 sand and grav gravel below 1.8 	el becomes softer fina	er							F 6.0			
- 2.0							creases with depth								Ė l			
						- colour change:	s to mottled grey,	:							E			
						brown and red									E			
															Ē.			
_															E 8.0			
•															E 1			
•															ŧ l			
															E 1			
- 3.0															.Ē.			
·															E 10.0			
															Ė l			
,																		
_						···												
						GRAVEL (TILL) — sand					4				F			
						angular gravel ar saturated, dark b	nd sand, compact,								12.0			
						aduloted, dalk b	77 (1991)											
-4.Œ END OF TESTPIT							m											
.															E			
															14.0			
															E			
	رنا ا			~:		ain a C11	nata IIJ	LOGGE	D BY: JSB	co	MPLE	TION D	EPTH:	4 m	£			
	Ŀİ	AC	LII			ring Consult			VED BY: JRT			fE: 06		3				
3/08/16 1	1:584	и Сушко	NPD4)	,	Whit	ehorse, Yukon								Page	1 of 1			

Geotechnical Investigation		CLIENT: Yukon Engineering Services TEST PIT NO: 1200197-T						
Proposed Access Road	EXCAVATOR: 320C TRACKED		PROJECT NO: 1200197					
Wolverine Lake, YT	UTM ZONE: 8 N6807314 E4		ELEVATION:					
SAMPLE TYPE GRAB SAMPLE NO RE	:COVERY 🛮 STANDARD PEN. 🗏	75 mm SPOONCRREL						
			▲ PERCENT SILT OR FINES ▲ 20 40 60 80					
oth(m) VIE TYPE VIN NO VISC SYMBOL	SOIL	GROUND ICE	■ PERCENT SAND ■ 20 40 60 80	1 2				
Depth(m) SAMPLE TYPE RUN NO SPT(N) USC SOIL SYMBOL				Depth(ft)				
Dep Dep	ESCRIPTION	DESCRIPTION	PLASTIC M.C. LIQUID					
			10 20 30 40					
0.0 ORGANIC ROOT	MAT	UNFROZEN		- 0.0				
-	*11	- -		<u> </u>				
SANU (IILL)	silty, gravelly, fine oist, compact, dark grey							
- grained, in	oist, compact, adik grey							
				1				
			•	2.0				
				F				
-				<u>E</u>				
- 1.0				ĖΙ				
-				F				
- - aravel co	ontent increases and becomes			E 4.0				
coarser bel				E				
-			•	F				
- 📕				E 6.0				
-				E "				
- trace of	gravel below 2.0 m			Έl				
- very con	pact, difficult to excavte							
beyond 2.0	m			E				
				<u> </u>				
-				.8.0				
				E				
			•					
END OF TESTPO	Γ 2.8 m (REFUSAL)	-		Ė				
	· 2/3 ···· (N.E. O SYLE)			F				
-3.0				E 10.0				
				E				
_				Ė				
-				F				
-				Ę I				
-				12.0				
-				12.0				
				Ē				
				Ė				
<u> </u>				Ē.				
				Ē				
-				14.0				
F				E				
DDA Description	LOGG	L ED BY; JSB	COMPLETION DEPTH: 2.8 m					
EBA Engineering Cons	surrants bid. REVIE	WED BY: JRT	COMPLETE: 06/07/13					
Whitehorse, Yuk	on		Page	1 of 1				

				igation			CLIENT: Yukon Engineering Services TEST PIT NO:						IT NO: 1200197-TP73			
Propos				bad			EXCAVATOR: 320C TRACKE	D E	EXCAVATOR	PROJ	ECT 1	NO: 12	00197	7		
Wolver							UTM ZONE: 8 N6807641	E44	43119	ELEV	MOITA	:				
SAMPL	E,	TYPE		GRA	B SAM	IPLE NO RECOVER	y 🔲 standarð þen. 🛭 🗏	<u>=</u> 7	5 mm SPOON CRREL	BARR						
(m)	: TYPE	ON ON	(N)	nsc	SYMBOL	(SOIL		GROUND ICE		20	RCENT SI 40 PERCEI 40	60	80	ı(ft)	
Depth(m)	SAMPLE TYP	RUN NO	SPT(N)	Si	SOIL S	DESC	RIPTION		DESCRIPTION	F	LASTIC	M	.C.	LIQVID	Depth(ft)	
0.0						ODCANIIO DOOT MAT	TR - 1970ab	_	HNEDOZEN		10	20	30	40	- 0.0	
0.0						ORGANIC ROOT MAT GRAVEL (FLUVIAL) -	sandy trace of silt		UNFROZEN							
-						well graded subro sand, loose, dam — becomes silty	ounded gravel and ip, reddish brown								2.0	
- 1.0															4.0	
-											•	A B			6.0	
- 2.0						becomes tracecoarse sand b	e of silt below 2.0 m elow 2.0 m									
-						END OF TESTPIT 2.5	m (REFUSAL)				•				8.0	
- 3.0															10.0	
-															12.0	
															14.0	
	ΕI	BA	En	gin	eei	ring Consult			D BY: JSB					: 2.5 m		
	1	1		_		ehorse, Yukon	REV	≀IEW	/ED BY: JRT	C	UMPL	ETE: 0	b/07/		1 of 1	
5/08/16 1	1:594	M TYTIKI	INPO4)		12 TTT 5	CHOLDE, THEOH	·							rage	1 of 1	

Project: 0201-1200197

Date Tested: 06/08/04


BY: PF

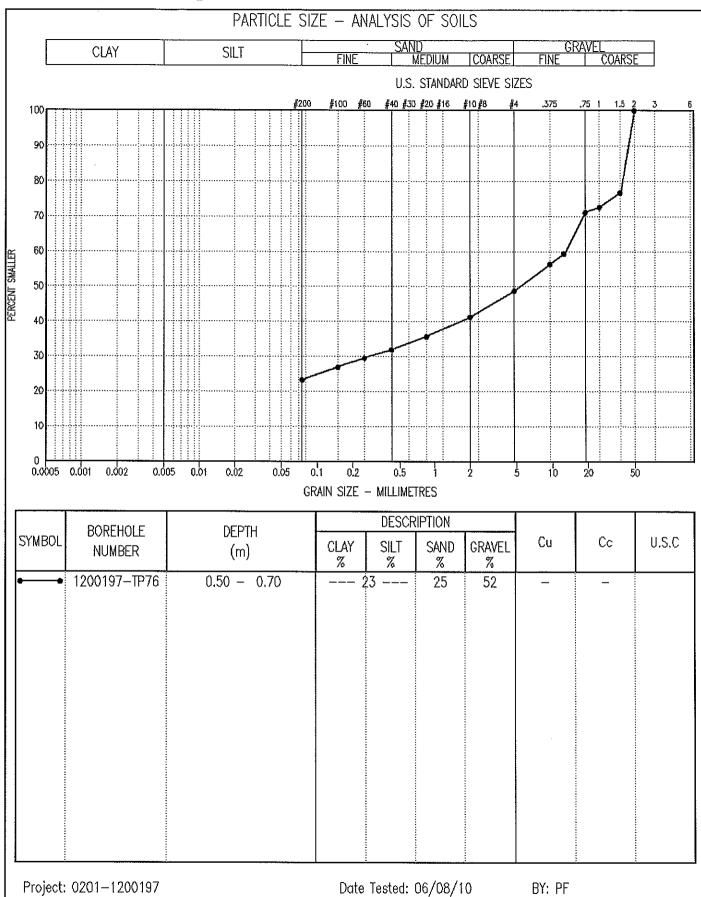
Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Geotechnical Investigation							CLIENT: Yukon Engineering		1200197-TP74							
Propo				bac			EXCAVATOR: 320C TRACKE		PROJEC	PROJECT NO: 1200197						
Wolver							UTM ZONE: 8 N6807834	E442996	ELEVATI	ON:						
SAMP	LE	TYPE		GRAI	B SAM	iple 🛮 No recover)	y 🔲 standard pen. 🛭	■75 mm SPOON □□□CRRE	EL BARREL							
Depth(m)	SAMPLE TYPE	RUN NO	SPT(N)	nsc	SYMBOL		SOIL	GROUND ICE		20 ■ PE 20	40 6 RCENT 9 40 6	08 0		Depth(ft)		
ے	SAM	~	(,)		SOIL	DESC	RIPTION	DESCRIPTION	PLAS		M.C.	LIV	UID 1	اۃ		
0.0						ODOLLIIO DOOT LIIT		III I E DA 7 E II		10	20 3	50 40		- 0.0		
• v. o						ORGANIC ROOT MAT		UNFROZEN						= 0,0		
- - - -						GRAVEL (FLUMAL) — : graded angular g compact, moist b — cobbles and so	ravel and sand,)				2.0		
— 1.0 - - -						— becomes trace	e of silt around 1.0 m			A				4.0		
- 2.0 						\BEDROCK — compete END OF TESTPIT 1.8 i	ent m							6.0		
-														8.0		
- 3,0 - - - -														10.0		
- - - - 4.0														12.0		
- - -								GGED BY: JSB	looi	UDI CT	ION DE	DTU, 4 C		14.0		
	\mathbf{E}	BA	En	gin	ee)	ring Consulta		VIEWED BY: JRT			DIN DEI E: 06/0	PTH; 1.8	П			
						tehorse, Yukon	INC.	אובמבט פו. טולו	1001	nt LEII	L VU/\		100	1 of 1		
06/08/16	1-59/	W FYI KC	NP(14)		17.1.1.1	CHICHUL, IUDUIL						r.	.ye	ı VI I		

Project: 0201-1200197

Date Tested: 06/08/04


Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Geotechnical Investigation	CUENT: Yukon Engineering Services TEST PIT NO: 1200197—TI						
Proposed Access Road	EXCAVATOR: 320C TRACKED		PROJECT NO: 12	200197			
Wolverine Lake, YT	UTM ZONE: 8 N6807834 E4		ELEVATION:				
SAMPLE TYPE GRAB SAMPLE NO RECOVER	y 🔲 standard pen. 📋	75 mm SPOON CRREL		ILT OR FINES ▲			
	NO IT		20 40	60 80			
SAMPLE TYPE RUN NO SPT(N) USC SOIL SYMBOL	SOIL	GROUND ICE	■ PERCE 20 40	NT SAND ■ 60 80	Depth(ft)		
	RIPTION	DESCRIPTION	PLASTIC N	A.C. LIQUID	ept		
Ta AND DESC	/1V11 11O1V	DESCRIPTION	ļ	•			
0.0 ORGANIC ROOT MAT		UNFROZEN	10 20	30 40	0.0		
GRAVEL — sandy, silt	y, coarse grained						
angular gravel, w compact, moist,	rell graded sand,						
- cobbles and b	oulders throughout						
	J				2.0		
_							
-1.0							
					Ē		
_					- 4 .0		
END OF TESTPIT 1.4	m (REFLICAL)						
	III (NEI OSRE)						
-					6.0		
-					E"I		
- 2.0							
_					<u> </u>		
-					8.0		
-					E "		
-					F 1		
- 3.0					E 10.0		
					E '''		
_					Εl		
-					<u>-</u>		
-							
					12.0		
_							
-					ŧ l		
-4.0					F		
					ΕÌ		
_					14.0		
-					E.		
EDA Engineanies Consult	and Tid LOGGE	.l ED BY: JSB	COMPLETION	DEPTH: 1,4 m	<u> </u>		
EBA Engineering Consult		WED BY: JRT	COMPLETE: (06/07/13			
Whitehorse, Yukon				Page 1	1 of 1		

Geote				-			CLIENT: Yukon Engineering Services TEST PIT NO: 1200197-								-TP76		
Propo		~~~~		pad			EXCAVATOR: 320C TRA	CKED E	EXCAVATOR	Pf	PROJECT NO: 1200197						
Wolver							UTM ZONE: 8 N68081	86 E4	42777	El	EVAT	ION:					
SAMP	E	TYPE		GRAI	B SAM	PLE NO RECOVERY	/ Standard Pen.		75 mm SP00N	∭crrel B							
	ليا				ایـ						*	PERO 20	CENT : 40		FINES ▲ 80		
Ξ	물	9	\Rightarrow		SYMBOL	Ç	SOIL		GROUND	TOE		1	PERC	ent san	ID 🔳	7 🖭	
Depth(m)	닖	RUN NO	SPT(N)	nsc	2.				GILOUND	ICE	\vdash	20	40		80	Depth(ft)	
ద్ద	SAMPLE TYPE	8	S		SOIL	DESU	RIPTION		DESCRIP'	TION .	PLA	STIC		M.C.	LTĞN	미리	
	<i>(</i> 2)		:		0,						ſ	10	20	30	40		
0.0						ORGANIC ROOT MAT			ÜNFROZEN							€ 0.0	
-						GRAVEL — sondy, silty										F	
-						grey	r, compact, moist,									E I	
•							oulders throughout									E.	
_							·						}			···E	
_																2.0	
-																	
-																	
— 1 <i>.</i> 0													ļļ.				
-																Ė	
						END OF TESTPIT 1.2 I	m (REFUSAL)									E 4.0	
																E	
_													!			<u>-</u>	
-																Ē	
-																E	
_																6.0	
- 2.0													ļļ.			[-	
-																E	
-																E	
• -																Ē	
_													ļļ.				
-																	
-																	
-																Ė	
- — 3.0																E	
- 3.0 -																10.0	
-																<u>.</u>	
-																Ē	
-								1								Ē	
_																····E	
-																12.0	
-																E	
-				:												Ē	
- 4 .0											-		<u> </u>			<u>F</u>	
-																177	
-																14.0	
_																<u>F</u>	
	<u></u>			•		· ~ .	r was	l nece	D BY: JSB			JPI D	TION	ПЕРТ	-l: 1,2 r	<u> </u>	
	ĽIJ	ВA	Ľn			ring Consulta	ants Ltd.		ED BY: JRT					06/07			
05/08/16	11:504	W MIKO	INPR43	Ţ	Nhit	<u>ehorse, Yukon</u>					<u> </u>					e 1 of 1	

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

STATION	EASTING	NORTHING	ASPECT		DOWNSLOP E GRADIENT	STATE	1CE	PRINCIPAL COMPONENT	COMP	CIPAL ONENT FIERS	USC SYMBOL	MATERIAL ORIGIN	TERRAIN SYMBOL	PIT DEPTH (m)	PARTICULARS
26JD-1	453428	6818645	NNW	26	22	unfrozen	<u>-</u>	SAND	gravelly	trace silt	GM-GP	<u>colluvium</u> bedrock	Cv/Ra		about 0.5m weathered rock and minor till overlying bedrock; bedrock outcrops common;uniform slope; dry; platy jointing meta-volcanics(?).
26JD-2	453230	6818265	SW	25	22	unfrozen	-	SAND	gravelly	trace silt	GM-GP	<u>colluvium</u> bedrock	Cx/R		about 0.5m weathered rock and minor till overlying bedrock; irregular slope: bedrock outcrops of narrow 3m relief ridges trending downslope; dry; platy jointing meta-volcanics(?); hardness 5-6; jointing is steeply dipping 55° South
26JD-3	453242	6818120	w	15	10	frozen below 0.33m	Nbn	GRAVEL	sandy		GP	colluvium bedrock	pOv/Rj		shallow, sidehill bog with 0.45 peat/organics overlying colluvium and bedrock; in area of 60m wide swale; uniform slope; permafrost
26JD-4	453026	6817753	W	18	0	frozen below 0.30m	Vs-20	SAND	some silt	trace gravel	SM	<u>colluvium</u> bedrock	pOv/gzsCv R		sidehill bog; uniform slope; benchy hillslope; ~20% visible ice, weakly stratified; ice crystals up to 12mm; permafrost
26JD-5	452928	6817361	W	10	10	Stream Cros	sing						pOv/C?/R?		channel width: 0.35m; depth: 0.07m; meandering; flowing within sidehill bog;
26JD-6	452882	6817321	W	12	10	frozen below 0.28m	Nbn	SAND	some silt		SM	colluvium bedrock	pOv/Cv/R		shallow, sidehill bog with 0.28 peat/organics overlying colluvium and (bedrock?); sidehill bog area; uniform slope; permafrost
26JD-7	452733	6816898	W	18	20	frozen below 0.28m	Nf	SAND	gravelly		GW	glaciofluvial	pOv/FGt		shallow sidehill boggy area with moss cover
27JD-8	451269	6814955	110° SE	20	14	frozen below 0.28m	Nbn	SAND	silty	some gravel	GM	till or colluvium	gzsCb		talus slope?
27JD-9	451094	6814689	103° E	10	. 8	unfrozen	-	SAND	gravelly	silty	GM	till or colluvium	[Mx]Cv		some sub-rounded clasts (till) mixed with colluvium (angular and sub-angular clasts); moist slope; talus slope?
27JD-10	451116	6814773		10	10	Stream Cros	sing								variable width and depth; average channel width: 0.8m; depth: 0.15m;
27JD-11	451393	6815193	105° E	13	12	unfrozen	7	SAND	gravelly	trace silt	GM-GP	till or colluvium	gsCb		trace rounded gravel (till)
27JD-12	451543	6815491	E	20	14	Stream Cros	sing								channel width: 0.8m; depth: 0.11m; uniform slope; within shallow, wide swale
27JD-13	451562	6815548	130° SE	20	24	unfrozen	_	SAND	gravelly	some silt	GM	till or colluvium	gsCb//Mx		some sub-rounded clasts (till) with sub-angular clasts (colluvium)
27JD-14	451757	6815863	130° SE	30	35	unfrozen	-	SAND	gravelly		GW	till or colluvium	gsCb		dry slope; talus? Slope
	451757	6815843				Stream Cros	sing								located 20m south of 27JD14; similar in size to 27JD12
27JD-15	451967	6816200	115° SE	20	12	frozen below 0.30m	Nbn	SAND	silty	organics	_	till or colluvium + organics	pOx/C		shallow sidehill bog area with moss cover; C and O mixed within seasonally active layer.
27JD-16	452079	6816434	Е	12	0	Stream Crossing									channel width: 0.60m; depth: 0.10m; flowing within sidehill bog; flows into flat wetland at this location.
27JD-17	452146	6816555	E	6	15	frozen below 0.32m	Nbn	-	-	-	_	<u>organic</u>	pOv/[C]	0.59	"refusal" in frozen organics at 0.59m; mostly non-visible ice, but a shallow peat layer included a discontinuous 20mm thick strata of 50% visible stratified ice.
27JD-18	452274	6816294	0	5	0	unfrozen	<u>-</u>	SAND	some silt	some gravel	GM	<u>alluvium</u>	zgsAp	0.40	
27JD-19	452322	6816348				Stream Cro Light Cre	•								estimated present channel width: 1.4m; depth: 0.25m; estimated full bank width: 5.0m; estimated full bank depth: 0.5m.
27JD-20	452399	6816394	0		·	unfrozen	-	SAND	gravelly		GW	glaciofluvial	gsFGt	0.64	on flat-topped, low relief ridge between Light Creek and Pitch Creek; eroded FG terrace; sloughing on gully sideslopes noted 30m NE of this site
27JD-21	452454	6816441				Stream Cro Pitch Cre	-								estimated present channel width: 1.1m; depth: 0.1m; estimated full bank width: 4.5m; estimated full bank depth: 1.6m.
27JD-22	452563	6816470	0			unfrozen	-	SAND and	GRAVEL				gsFGr	0.60	eroded glaciofluvial terrace
27JD-23	452741	6816688	270° W	20	15	frozen below 0.32m	Nbn	-	-	-	-	organic	pOv/[C?]	0.45	sidehill bog; uniform slope; "refusal" within frozen organics at 0.45m; same terrain polygon back to 50m N of 27JD22.
27JD-24	453747	6818790	0			unfrozen	-	GRAVEL	some sand			<u>bedrock</u>	sgCx/R	0.70	south side cutslope at Robert Campbell Highway; on crest of broad, rounded low-relief ridge oriented SW-NE;
27JD-25	453916	6818763	0			unfrozen	-	GRAVEL	and SAND			glaciofluvial	sgFGt	4	gravel borrow pit on Robert Campbell Highway 200m east of access road; glaciofluvial terrace; ~10% oversize (>75mm)

EBA File: 1200197 August 2006

APPENDIX

APPENDIX A *General Conditions

GEOTECHNICAL REPORT – GENERAL CONDITIONS

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

3.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

4.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

5.0 SURFACE WATER AND GROUNDWATER CONDITIONS

Surface and groundwater conditions mentioned in this report are those observed at the times recorded in the report. These conditions vary with geological detail between observation sites; annual, seasonal and special meteorologic conditions; and with development activity. Interpretation of water conditions from observations and records is judgmental and constitutes an evaluation of circumstances as influenced by geology, meteorology and development activity. Deviations from these observations may occur during the course of development activities.

6.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

7.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

8.0 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

9.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

10.0 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

11.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

12.0 SAMPLES

EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the client's expense upon written request, otherwise samples will be discarded.

13.0 STANDARD OF CARE

Services performed by EBA for this report have been conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practising under similar conditions in the jurisdiction in which the services are provided. Engineering judgement has been applied in developing the conclusions and/or recommendations provided in this report. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of this report.

14.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

15.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), the Client agrees that only the signed and sealed hard copy versions shall be considered final and legally binding. The hard copy versions submitted by EBA shall be the original documents for record and working purposes, and, in the event of a dispute or discrepancies, the hard copy versions shall govern over the electronic versions. Furthermore, the Client agrees and waives all future right of dispute that the original hard copy signed version archived by EBA shall be deemed to be the overall original for the Project.

The Client agrees that both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

The Client recognizes and agrees that electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

Appendix C

Draft Geotechnical Evaluation, Granular and Borrow Investigation Wolverine Access Road

EBA Engineering Consultants Ltd October 2006

YUKON ENGINEERING SERVICES LTD. YUKON ZINC CORP.

DRAFT GEOTECHNICAL EVALUATION
GRANULAR AND BORROW INVESTIGATION
WOLVERINE LAKE MINE ACCESS ROAD
km 190 ROBERT CAMPBELL HIGHWAY
YUKON

EBA File: 1200197

October 2006

DRAFT

EBA File: 1200197 October 2006

TABLE OF CONTENTS

		PAGE
1.0	INTRODUCTION	2
2.0	PROJECT BACKGROUND	2
3.0	RESULTS AND DISCUSSION	2
4.0	BORROW SOURCES	
	Primary 1	
	Primary 2	
	Primary 3	4
	Primary 4	4
	Secondary 3	5
	Secondary 7	6

Forthcoming with Final Report:

FIGURES

TEST PIT LOGS

APPENDICES

DRAFT

EBA File: 1200197 October 2006

1.0 INTRODUCTION

EBA Engineering Consultants Ltd. (EBA) was retained to conduct a geotechnical evaluation of the proposed access road to the Yukon Zinc mining property at Wolverine Lake, Yukon. The work was requested by Yukon Engineering Services Ltd. (YES) of Whitehorse on behalf of Yukon Zinc Corp (YZC). The objective of the evaluation is to provide geotechnical recommendations for the construction of the access road.

The scope of work for this project was presented in a proposal and budget prepared by EBA and submitted to Robert Harvey, P.Eng. of YES in June 2006. During the first phase of the work in July 2006, 76 test pits were completed on the access road alignment between kilometre post (KP) 5 and KP 24 (Geotechnical Evaluation, Wolverine Lake Mine Access Road, EBA, August 2006). This report presents the results of the second phase, which assessed six borrow targets between KP 0 and KP 24, and completed testpits from KP 0 to KP 3.3 on the road alignment.

2.0 PROJECT BACKGROUND

The study area includes 24 km of a proposed access road that starts at km 190 on the Robert Campbell Highway (Yukon Highway 4) and is initially aligned south and southwest, following the valley of Light Creek past the divide at km 8 and across Bunker Creek at km 10. The alignment follows Chip Creek to km 19, where it turns northwest to eventually cross the Hawkowl Creek tributary of Money Creek, maintaining a northwest bearing to Wolverine Lake. The access road route is covered on NTS map sheets 105H/5 and 105G/8.

Part of the access road, from about km 24.5 to the Wolverine Lake Mine Site and camp at approximately km 27.5 and km 28.5 respectively, is developed as an access road to the airstrip and was not evaluated as part of this study.

3.0 RESULTS AND DISCUSSION

A trail was pioneered from km 190 on the Robert Campbell Highway to KP 3.2 on the Wolverine Lake Mine Access Road using a Hitachi EX150 excavator provided by Twilite Services Ltd. of Watson Lake. R. Harvey, P.Eng. of YES, Whitehorse supervised the trail construction. A Caterpillar 320C excavator provided by Yukon Zinc was used to excavate testpits to evaluate potential borrow sources between KP 10 and KP 24. J. Dennett, P.Geo.(BC) of EBA supervised testpit excavation for geotechnical evaluation from KP 0 to KP 3.2 and at and at the following borrow targets:

- Primary 1, KP 0.5
- Secondary 3, KP 3
- Primary 2, KP 10.5

- Secondary 7, KP 15.6
- Primary 4, KP 17.5
- Primary 3, KP 24

Figures with borrow locations are provided in Figure 1 of the YES submission.

Seventy-eight samples were collected in 29 testpits from October 3 to 7, 2006 to evaluate the access road and borrow sites. Moisture and grain size analysis was carried out at EBA's Whitehorse geotechnical laboratory on samples recovered during the excavator-supported test-pitting program. Testpit logs with the results of lab analysis used to provide recommendations for construction are appended.

4.0 BORROW SOURCES

Nine potential borrow sources were selected for possible evaluation, including three primary sites and six secondary sites. Secondary sites were identified for evaluation if the primary targets proved inadequate in terms of quantity or quality. For the program described herein, testing and evaluation of borrow sources was completed at six sites. Four of the tested sites, Primary 1, Primary 2, Primary 3 and Secondary 3, were identified as potential borrow source targets by YES in previous reports. Two additional sites tested, Primary 4 (centred about KP 17.5) and Secondary 7 (at KP 15.6), were identified during the field program as favourable borrow sources.

Primary 1

Primary 1 Borrow Site is located along the west side of the access road between KP 0 and KP 1 near the Robert Campbell Highway. Four test pits completed at the Primary 1 site intersected a blanket of gravelly sand. The proposed borrow area is on a glaciofluvial terrace about 11 ha in area. A short slope separates the tested terrace from a western extension of the terrace with an additional 13 ha. The texture and thickness of granular material is consistent. With an average depth of 3.0 m, the 11 ha terrace could yield a prospective volume of over 0.4 million m³ of granular fill. Testpit results are summarized in Table 6.1.

Table 6.1 Primary 1 Borrow Source - Summary of Test Results

TESTPIT	TEXTURE (field estimate)	MOISTURE (%)PIT	DEPTH (m)	DESCRIPTION
JD-10-4-1	SAND, gravelly, trace silt (7%)	3 – 9.8	3.4	massive, well-graded [till]
JD-10-4-2	SAND, gravelly, trace silt	9 – 13.3	3.0	massive, well-graded [till]
JD-10-4-3	SAND, gravelly, trace silt	4.6 - 8	3.1	[till] refusal at bedrock
JD-10-4-4	SAND, gravelly, trace silt	5.8 – 9.4	3.3	[till] refusal at bedrock

Primary 2

Primary 2 Borrow Site is located along the west side of the access road between about KP10.2 and KP11.7. Sand with variable gravel was observed in the six test pits excavated in the area. Relic channels, stepped terraces and ridges of a large glaciofluvial deposit shape the topography. The area covers over 40 ha and no lower limit to the thickness of granular material was intersected. Grain size analysis completed at the EBA materials testing laboratory in Whitehorse indicates that the material in Testpit JD-10-5-3 is suitable for use as concrete aggregate. Similar granular textures were intersected in other testpits in this area. Testpit results are summarized in Table 6.2.

Table 6.2 Primary 2 Borrow Source - Summary of Test Results

TESTPIT	TEXTURE (field estimate)	MOISTURE (%)I	PIT DEPTH (m)	DESCRIPTION	
JD-10-4-5	SAND, gravelly, trace silt to silty	7.2 - 9.6	3.9	massive, well-graded [till]	
JD-10-4-6	SAND, trace gravel	2.2 – 8.1	5.4	bedded, poorly-graded [FG]	
ID 40 5 4	SAND and GRAVEL (0 - 0.8m)	5.9	5.0	haddad naarly graded [FC]	
JD-10-5-1	SAND, some gravel (0.8m-end)	some gravel (0.8m-end) 2.1 – 3.6 5.3	5.3	bedded, poorly-graded [FG]	
JD-10-5-2	SAND and GRAVEL	5.3	4.8	haddad paarly graded [EG]	
JD-10-5-2	SAND, trace gravel	3.7 – 10.6	4.0	bedded, poorly-graded [FG]	
JD-10-5-3	GRAVEL and SAND, trace boulders	1.8 – 8.7	5.1	bedded, well-graded [FG]	
JD-10-5-4	SAND, gravelly, trace boulders	3.5 – 9.5	4.5	bedded, well-graded [FG]	

FG = glaciofluvial

Primary 3

Primary 3 Borrow Site is located along the west side of the access road between about KP24 and the Wolverine Lake airstrip. Two test pits excavated in the area intersected a blanket of gravelly sand till that should provide good quality fill for road construction. The testpits were located next to the access road on a low relief ridge. There is considerable potential for a large quantity of this material in the area, but further exploration and testing is required to prove volumes. Testpit results are summarized in Table 6.3.

Relic glaciofluvial meltwater channels were observed in this area and to the southeast along the access road. If a granular source is required in this area, the prospect of glaciofluvial granular deposits is good and further exploration is warranted.

Table 6.3 Primary 3 Borrow Source - Summary of Test Results

TESTPIT	TEXTURE (field estimate)	MOISTURE (%)P	PIT DEPTH (m)	DESCRIPTION
JD-10-7-1	SAND and GRAVEL, trace silt	2.6 - 8.6	4.3	massive, well-graded [till]
JD-10-7-2	SAND, gravelly, trace silt	5.3 – 7.7	2.2	massive, well-graded [till]

Primary 4

Primary 4 Borrow Site is located along the west side of the access road between about KP16.6 and KP18. Eight test pits excavated in the area indicate that a veneer to blanket of glaciofluvial sand and gravel covers an irregular surface of underlying bedrock. The area tested is on a broad terrace about 80 ha in area. Thickness of granular material is variable. Test pits intersected from 1.2 m to greater than 3.6 m of mainly gravel and sand. With an average depth of 2.0 m, the overall terrace area could yield a prospective volume of over 1.0 million m³ of granular fill. Testpit results are summarized in Table 6.4.

Table 6.4 Primary 4 Borrow Source - Summary of Test Results

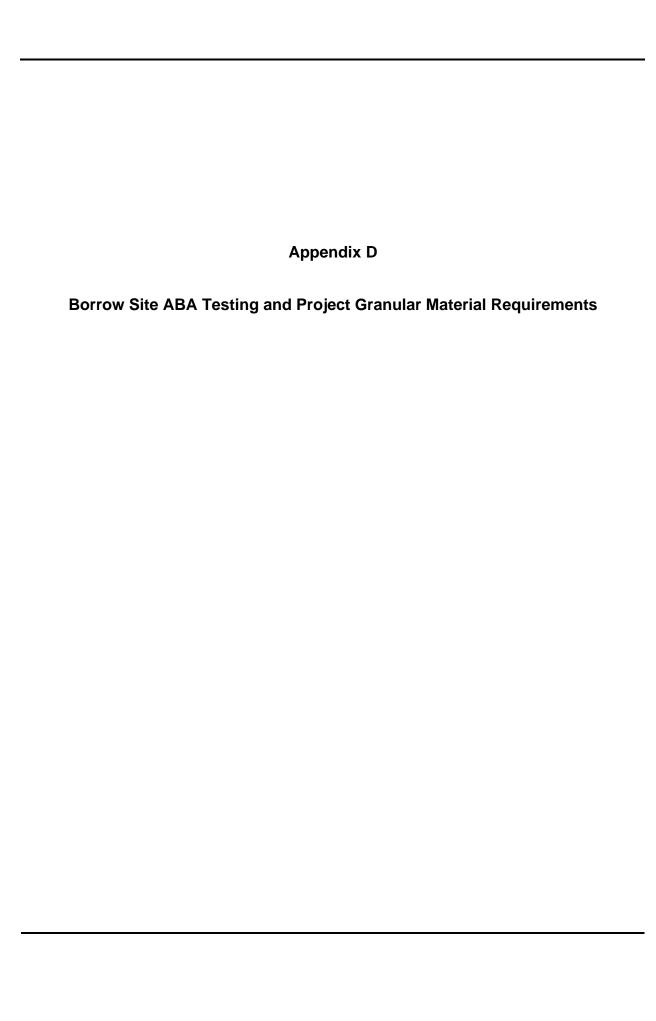
TESTPIT	TEXTURE (field estimate)	MOISTURE (%)F	PIT DEPTH (m)	DESCRIPTION	
TP 43	GRAVEL, some sand, trace silt	4.5	2.2	FG blanket (>2.2 m thick);	
(KP15.650)			— · —		
TP 44	GRAVEL and SAND, trace silt	4.5	1.1	FG veneer (>1.1 m thick);	
(KP15.925)					
TP 46	GRAVEL and SAND, trace silt	8	1.2	FG veneer over bedrock	
(KP16.775)					
TP 47	SAND and GRAVEL, trace silt	8	1.5	FG blanket (>1.5 m thick)	
(KP16.950)	SAND, some silt (0.8m to end)	19	1.5		
TP 48	GRAVEL, some sand, trace silt	4.5	2.0	FG blanket (>2.0 m thick)	
(KP17.250)	SAND, silty, gravelly	7.5	_		
TP 49	GRAVEL, sandy, trace silt	4.5	2.2	FG blanket (>2.2 m thick)	
(KP17.525)	0.0 tv 22, banay, trabe ent			To plantet (22.2 in thick)	
	GRAVEL, some sand	3.3 – 4.9			
JD-10-6-10	GRAVEL, some silt, some sand	10.2	2.0	well-bedded moderately graded [FG]	
(50m NW of KP17.5	GRAVEL, sandy, some silt	10.8	3.6		
KP17.5	sub-crop (greenstone bedrock)	-			
TP 50	SAND, silty, trace gravel		1.3	rofugal in hadrock	
(KP17.750)	0.4m SAND, gravelly, silty	6.5	1.3	refusal in bedrock	
	- -				

Secondary 3

Secondary 3 Borrow Site is located at the confluence of two streams and is bisected by the road alignment between KP2.7 and KP3.0. Six test pits excavated in the area indicate that a blanket of glaciofluvial sand and gravel forms the two small ridges crossed by the road alignment in this area. North of the road alignment the ridges are well-drained and the granular sub-surface material is unfrozen. South of the road alignment the terrain is flat to gentle and the soils are frozen. This area appears to be a source of good quality granular material, however the extent of the deposit is limited and development may be constrained by close proximity to streams and a perched aquifer near KP 2.8. Assuming a 35 m riparian protection zone, borrow pits may be developed next to the road within two areas of about 1.3 ha and 1.9 ha respectively. At an average thickness of 2 m, this area represents over 50,000 m³ of granular borrow material. The developable area may need to be reduced to avoid drainage issues from the perched aquifer identified near KP 2.8. Test pit results are summarized in Table 6.5.

Table 6.5 Secondary 3 Borrow Source - Summary of Test Results

TESTPIT	TEXTURE (field estimate)	MOISTURE (%)	PIT DEPTH (m)	DESCRIPTION	
JD-10-6-1	SAND, gravelly, trace silt	5.0 - 6.6		massive, moderately-graded [FG]	
	SAND, gravelly	6.0	3.3	massive, moderately-graded [i G]	
JD-10-6-2	SILT, trace gravel, trace sand	29	1.2	frozen cryoturbidic organic soil; possibly overlying frozen granular.	
JD-10-6-4	SAND and GRAVEL	4.9 - 6.2	2.3	massive, well-graded [FG]; perched water table at 0.7m	
JD-10-6-5	SAND, some gravel, trace silt	4.6 – 6.7	2.7	bedded, well-graded [FG]	
JD-10-6-6	SILT, trace gravel, trace sand;	_	1.0	frozen cryoturbidic organic soil;	
JD-10-6-7	silty organic soil	_	0.6	frozen	


Secondary 7

Secondary 7 Borrow Source is located adjacent to the road alignment in the area of about KP 14 to KP 15.6. Five test pits completed along the Secondary 7 area indicate a thick blanket of sandy gravel colluvium. In this area the road alignment traverses a moderate gradient slope. It may be practical to develop borrow pits to exploit this material within the road right-of-way. Testpit results are summarized in Table 6.6.

Table 6.6 Secondary 7 Borrow Source - Summary of Test Results

TESTPIT	TEXTURE (field estimate)	MOISTURE (%)PIT DEPT	H (m) DESCRIPTION
TP38	GRAVEL, sandy, silty	2.5	(KP14.600)
TP39	GRAVEL, sandy, some silt	2.5	(KP14.825)
TP40	GRAVEL, sandy, some silt	2.0	(KP15.075)
TP41	GRAVEL, sandy, silty	2.5	bedrock at 1.8m; (KP15.325)
JD-10-6-9	SAND, gravelly, some silt	3.9	massive, well-graded [till]
(50m west of	GRAVEL and SAND, some silt	6.5 - 7.3 3.3	massive, well-graded [colluvium]
KP15.600)	bedrock	'-	
TP43 (KP15.650)	GRAVEL, some sand, trace silt	2.2	probably ends in bedrock

Acid Base Accounting Results for Borrow Sites Materials Located near the Airstrip

Parameter	Unit	TP05-72	TP05-75	TP05-78	TP05-81
Paste pH	-	8.45	8.80	7.89	7.62
Rinse pH	-	5.88	7.54	6.12	5.7
Total Sulphur	%S	0.06	0.08	0.09	0.02
Sulphate Sulphur	%S	0.005	0.005	0.005	0.005
Sulphide Sulphur	%S	0.005	0.005	0.005	0.005
Insoluble Sulphur	%S	0.06	0.08	0.09	0.02
AP	kg CaCO3/t	0.15	0.15	0.15	0.15
Modified Sobek NP	kg CaCO3/t	3.1	5.1	2.6	0.2
Total Carbon	% C	0.14	0.21	0.43	0.25
Total Inorganic Carbon	% C	0.005	0.005	0.005	0.005
Carb NP	kg CaCO3/t	0.4	0.4	0.4	0.4
Net Sobek NP	kg CaCO3/t	3.1	5.1	2.6	0.2
Sobek NPR	-	20.67	34.00	17.33	1.33
Carb NPR	-	2.67	2.67	2.67	2.67

<u>Note:</u> Values in *italics* were reported by the laboratory as less than their detection limit and are shown here at one-half the detection limit.

Quantities of Granular Material Required for Construction and Maintenance Activities

Description	Manufactured Product	Raw Material
Granular Surfacing for Road Construction	50,000 m ³	60,000 m ³
Granular Surfacing for Road Maintenance	20,000 m ³	25,000 m ³
Culvert Bedding and Backfill	8,000 m ³	10,000 m ³
Common Borrow for Construction	50,000 m ³	50,000 m ³
Concrete Aggregate (Industrial Complex)	2,000 m ³	5,000 m ³
Totals	130,000 m ³	150,000 m ³