Summary of the $86-002$ 1980 EXPLORATION PROGRAM DUBLIN GULCH GOLD-QUARTZ VEIN-FISSURE SYSTEM

1980 EXPLORATION PROGRAM
 DUBLIN GULCH
 GOLD-QUARTZ VEIN-FISSURE SYSTEM
 Mayo Mining Division
 N.T.S.: 106 D/4
 $64^{\circ} 02^{\prime}$ Latitude, $135^{\circ} 50^{\prime}$ Longitude
 Located in the Central Yukon approximately 40 air kilometres northeast of Mayo, Y.T.
 Owned by:
 CANADA TUNGSTEN MINING CORPORATION LIMITED
 Executive Office
 Box l2525, Oceanic Plaza
 Ste. 1600-1066 W. Hastings St.
 Vancouver, B.C. V6E 3XI

Work by:

BEMA INDUSTRIES LTD.
19945-56th Avenue
Langley, B.C. V3A $3 Y 2$

Stanley C. Bartlett, B. Sc. Geologist

March, 1981

BEMA
Industries Ltd

PAGE

Unit \#la - Biotite-Quartzite-Schist/Hornfels 16
Unit \#lb - Massive and Gritty Quartzite 17
Unit \#lc - Micaceous Phyllite and Unit lc $\begin{aligned} & \text { - } \\ & \text { Graphitic Phyllite. }\end{aligned}$ 17
Unit \#ld - Muscovite-Sericite-Quartzite-Schist 17
Unit \#le - Calc-Silicate Skarn 18
Unit \#lf - Calc-Silicate Subskarn 18
Unit \#lg - Marble 19
Unit \#3 - Greenstone 19
Unit \#4 - Plutonic Rocks 20
Unit \#4a - Aplite and Leucocratic Granite 20
Unit \#4b - Granodiorite 20
Unit \#4c - Quartz-Feldspar Porphyry 21
Unit \#4d - Quartz Diorite 21
Unit \#5 - Quartz-Arsenopyrite-Scorodite Vein Rock 21
Unit \#6 - Mafic Dykes and Segregations 21
2.2 STRUCTURAL GEOLOGY 22
Foliation 23
PHASE I - Folds 24
PHASE II - Folds 24
Faults 25
2.3 GOLD-QUARTZ VEIN-FISSURE SYSTEM 26
Introduction 26
Summary of the 1980 Fieldwork 27
Results 29
CREEK ZONE WEST FISSURE 32
CREEK ZONE EAST FISSURE 34
EAGLE VEIN 35

TABLE OF CONTENTS CONT.

PAGE
SCARP VEIN 35
HENDERSON VEIN 35
BLUE LEAD SHAFT VEIN 36
BLUE VEIN 36
STEWART VEIN 37
NO. 15 VEIN 37
THE CABIN VEIN 37
KLIPPERT VEIN 38
NO. 45 VEIN 38
NO. 5 STRUCTURE 39
NO. 17 WEST VEIN 39
NO. 24 VEIN 40
NO. 23 VEIN 40
VICTORIA VEIN 41
AURUM NO. 2 VEIN 42
CATTO VEIN 43
GREEN VEIN 44
OLIVE VEIN 45
SHAMROCK VEIN 45
CARSCALLEN VEIN 45
TIN DOME OCCURRENCE 46
CB NO. I VEIN 46
CB NO. 2 VEIN 47
KUZMISKI OCCURRENCE 47
JM OCCURRENCES 47
ROAD OCCURRENCES 48
3.0 CONCLUSIONS 49
4.0 RECOMMENDATIONS 50
4.1 GROUND ACQUISITION BY STAKING/OPTIONING 50

TABLE OF CONTENTS CONT.
PAGE
4.2 EXPERIMENTAL MINING 50
4.3 FEASIBILITY STUDY 51
4.4 TRENCHING 51
4.5 GEOPHYSICAL SURVEY 51
4.6 DIAMOND DRILL PROGRAM 52
LIST OF APPENDICES
Appendix I - Summary of 1980 Trenching Program
Appendix II - Peso Silver Mines Ltd. Holdings West ofHaggart Creek - Peso, Mic, Rex Claim Groups
Appendix III - Metallurgical Investigation of the Dublin Gulch Gold-Quartz Vein-Fissure System
Appendix IV - Rock Chip Sample Data Forms
Appendix V - 1980 Survey Data for Dublin Gulch
Appendix VI - List of Dublin Gulch Claims, Grant Numbers and Expiry Dates
Appendix VII - List of Dublin Gulch Claim Groups for 1980Assessment Purposes
LIST OF TABLES
Table 1 - Dublin Gulch - Gold-Quartz Vein-Fissure System Vein or Occurrence

Figure 13 - Gold Trench and Gold Excavator Scale - 1:200 Trench Detail - Stewart and Catto Area - West Sheet
Figure 14 - Gold Trench and Gold Excavator Area - North Sheet
Figure 15 - Aurum Adit - Victoria and Aurum No. 2 Veins Underground Geology and Assay Plan
Figure 16 - Gold Excavator Trench Geology Scale - 1:200 and Assay Plan and Sections Catto Vein - GET-2

Figure 17 - Gold Excavator Trench Geology Scale - 1:200 and Assay Plan and Sections GET-3

Figure 18 - Gold Excavator Trench Geology Scale - l:200

LIST OF FIGURES CONT.

$\begin{aligned} \text { Figure } 19 \text { - } & \text { Gold Excavator Trench Geology, } \\ & \text { Geochemistry, and Assay Plan } \\ & \text { and Sections. No. } 5 \text { Structure } \\ & \text { No. } 17 \text { West Vein }\end{aligned}$
Figure 20 - Geology and Gold Geochemistry Scale - 1:200 and Assay Plan, GTR-6
Figure 21 - Geology and Gold Geochemistry Scale - 1:200 and Assay Plan, GTR-7
Figure 22 - Gold Excavator Trench Geology, Scale - 1:200 and Assay Plan and Sections Klippert Vein
Figure 23 - Gold Excavator Trench Geology Scale - 1:200 and Gold Geochemistry and Assay Plan and Sections - Klippert Vein
Figure 24 - Geology and Gold Geochemistry Scale - 1:200 Plan, GTR-10
Figure 25 - Geology and Gold Geochemistry Plan, GTR-ll
Figure 26 - Geology and Gold Geochemistry Plan, GTR-12
Figure 27 - Geology and Gold Geochemistry and Assay Plan, GTR-15
Figure 28 - Gold Excavator Trench Geology and Assay Plan and Sections No. 17 West Vein
Figure 29 - Gold Excavator Trench Geology and Assay Plan and Section Cabin Vein

Figure 30 - Geology and Gold Geochemistry Plan, GTR-22

Figure 31 - Gold Excavator Trench Geology and Assay Plan and Sections Aurum No. 2 Vein, No. 23 Vein
Figure 32 - Gold Excavator Trench Geology Scale - 1:200 and Assay Plan and Sections No. 24 Vein
Figure 33 - Geology and Assay Plan and Scale - 1:200

LIST OF FIGURES CONT.
Figure 34 - Gold Trench Geology and Assay Scale - 1:200 Plan, Henderson Vein
Figure 35 - West Potato Hill Area - General Scale - 1:400 Geology and Trench Location Plan
Figure 36 - Potato Gold Trench Geology and Scale - 1:100 Assay Plan - PGT-1
Figure 37 - Creek Zone West Fissure Geology Scale - 1:200 and Assay Plan - West Sheet
Figure 38 - Creek Zone West Fissure Geology Scale - 1:200 and Assay Plan - East Sheet
Figure 39 - Creek Zone East Fissure Geology Scale - 1:200 and Assay Plan

SUMMARY OF THE 1980 FIELD WORK GOLD-QUARTZ FISSURE SYSTEM

The 1980 field program was intended to test a zone parallel to, and within 350 metres of the Dublin Gulch stock in an area north of the stock, east of Suttle Gulch and west of Carscallen Gulch. A series of long parallel trenches were proposed to cut across the entire width of the zone at widely spaced intervals along the trend of the zone. The program was designed to test the known showings in the area and to further explore undeveloped areas within the zone. D-7G Bulldozer trenching was conducted in conjunction with geological mapping and sampling.

Exploration was first conducted in the Creek Zone West Fissure situated in Dublin Gulch at the mouth of Suttle Pup. The Creek zone hosts a number of pyrite-arsenopyrite showings which occur sporadically over 175 metres in the south fork of Dublin Creek. There are two major showings in the Creek Zone. In the easternmost showing sulphide mineralization consists of massive pyrite and arsenopyrite with minor sphalerite and chalcopyrite. Sulphide lodes occur within 15 metres of a gouge zone extending over a length of 45 metres and a width of up to 7 metres. Assays from six grab samples of these lodes range from 0.126 to $0.474 \mathrm{oz} / \mathrm{ton} \mathrm{Au}$ and 1.00 to $5.88 \mathrm{oz} / \operatorname{ton~Ag.~}$

The second significant occurrence lies 125 metres to the west and consists of a narrow gouge zone which contains coarse euhedral pyrite cubes cemented by fine grained arsenopyrite. The zone is 1 metre wide and cuts through sulphide-rich, grey foliated quartzite. Six grab samples collected from this zone gave gold values of 0.094 to 0.156 ounces per ton. A total of 119 samples were collected from Creek Zone West and assayed for gold and silver and some for antimony, lead, tin and copper. Three specimens were submitted for 20 element semi-quantitative spectrographic analysis; no significant quantities of other elements were detected. The Creek Zone West is the largest structure discovered to date east of Haggart Creek. There is high potential for massive sulphide lodes in this Creek Zone West area and further exploration is required.

D7G bulldozer trenching began in mid-June on the ridge between Olive Gulch and Stewart Gulch where numerous quartz-arsenopyrite-scorodite showings were known. Trenches were cut to provide a continuous exposure across the zone from the granodiorite contact to the access road south of Dublin Creek. The first trenches were sampled along their entire lengths to test for the possibility of developing a bulk tonnage, low grade gold deposit. No significant gold values were obtained in the wall rock and the thrust of the exploration program was then oriented toward locating and sampling individual veins.

A number of veins were uncovered in the trenches and upon mapping and sampling the exposures it was realized that widely spaced trenches along the trend of the zone would not properly assess the economic potential of the area. A detailed trenching program to test the effectiveness of widely spaced bulldozer trenches was conducted in the area referred to as the old Stewart and Catto group. This area is well mineralized, hosts three major underground developments and at least two smaller adits. When exploration of the area was complete 2,750 metres of bulldozer trenching in 30 trenches excavated 28,806 cubic yards of bedrock. A total of 194 samples were collected from these trenches. Of these 89 were assayed for gold and silver and some for lead, zinc and antimony. The remaining 105 were analysed geochemically for gold.

In areas of deep bedrock weathering a deep trenching program using a John Deere 690 excavator was conducted. The program was initiated on July 28, and continued until August 12, 1980. During this period 28 trenches were excavated for a total volume of 4,326 cubic yards. Depths of 6 to 7 metres below surface were common and a depth in excess of 10 metres was obtained by staging. A total of 252 samples were collected and assayed for gold and silver and some for lead, zinc and antimony. To complete exploration in this area 62 samples were collected from the de-iced section of the Aurum adit on the Victoria vein. All samples were assayed for gold and silver.

Twelve significant veins were discovered or examined in detail in the Stewart and Catto area. The most detailed work was performed on the Cabin vein which occurs in trenches GTR-4 and GTR-20 as well as in the Beaver Adit. Trenching and sampling indicates 332 tons of vein material averaging 0.479 ounces of gold per ton and 1.71 ounces of silver per ton. These figures represent approximately 160 ounces of gold. Projection of the vein along strike suggests that 200 to 300 ounces of gold could be mined from this vein structure. The Victoria and Aurum No. 2 Veins exposed in trenches GTR-3 and GTR-23 and the Aurum Adit form a strong structure containing 600 to 1500 ounces of gold. Reasonable downdip and strike-length projection of this vein could infer 2000 to 3000 ounces of gold. Calculations based on 27 samples from the catto Vein of GTR-2 indicate approximately 70 tons averaging 0.885 ounces of gold per ton and 0.56 ounces of silver per ton. This structure contains more than 60 ounces and 100 ounces could easily be inferred. The remaining veins in the area are smaller or undeveloped and require further work to assess their potential. Several of these could probably produce

100 or more ounces of gold for a total of between 1000 and 1500 ounces from this area.

A total of 18 bulldozer trenches were cut on the ridge between Stewart Gulch and Eagle Pup. The 1,054 metres of offset trenches expose a continuous section of bedrock down the crest of the ridge from the Old Blue Lead shaft to the access road south of Dublin Creek. The total volume of material excavated was 13,321 cubic yards. From this area 16 samples were collected. All samples were assayed for gold and silver.

Four significant veins were explored. The Blue Lead Shaft Vein occurs in a shaft on the ridge between Stewart and Eagle Pup 80 metres south of the granodiorite-metasediment contact and to the west of the shaft in trench GTR-30. McLean (1914) reported the vein to be 66 centimetres wide in the 7 metre deep shaft and material in the dump beside the shaft suggests a similar width. Grab samples from the dump material collected in 1979 and 1980 assayed 0.472 ounces per ton gold and 2.17 ounces per ton silver and 0.402 ounces of gold per ton and 1.32 ounces of silver per ton respectively. This is a potentially significant structure and could prove to produce 100 ounces of gold or more. The Blue Vein crops out in trench GTR-3 approximately 70 metres northwest of the Blue Lead shaft. A sample across a width of 50 centimetres assayed 0.662 ounces of gold per ton and 0.64 ounces of silver per ton. The vein has been traced for approximately 10 metres and shows fault terminations in both directions. Trenching beyond the faults in both directions would relocate the vein. The Stewart vein is situated on the lower slope of the ridge toward Stewart Pup. The only exposure is float on a dump near a caved adit which apparently was driven on the vein. Further work is required to outline the vein. The Henderson Vein is located low on the crest of the ridge in trenches GTR-48, GTR-49 and GTR-50. It is the largest vein structure discovered during 1980 and ranges from 20 to 75 centimetres wide. Assays of samples collected from the vein range from 0.316 to 1.744 ounces of gold per ton and 0.52 to 5.51 ounces of silver per ton. An average grade of 0.922 ounces of gold per ton and 1.51 ounces of silver per ton over an average width of 37 centimetres was obtained from 10 samples. The Henderson Vein structure is very significant and could conceivably host in excess of 200 to 300 ounces of gold.

On the north side of the West Potato Hill two quartz-arsenopyrite-scorodite veins were located and trenched. Exploration adits driven on the veins in the past are now caved. At least 1,342 cubic yards of material was moved from 3 trenches over a total length of 208 metres. A total of 46 samples were col-
lected and assayed for gold and silver. Gold assay values from the CB No. 1 Vein ranged from 0.078 to 0.748 ounces of gold per ton and 0.12 ounces of silver per ton. An average grade of 0.122 ounces of gold per ton and 1.55 ounces of silver per ton over an average of 58 centimetres has been calculated from 10 samples. Further work is required to outline the production potential of this vein. The CB No. 2 Vein is considerably smaller and relatively untested. A sample assayed 0.294 ounces of gold per ton and 0.61 ounces of silver per ton over 5 centimetres.

The remaining work performed on the gold-quartz system consisted of prospecting and mapping of the few outcrops near the Old Eagle showing and in the vicinity of Suttle and Platinum Gulches. Five samples from near the Old Eagle workings were assayed for gold and silver. Three grab samples from the Eagle Vein assayed between 1.142 and 2.060 ounces of gold per ton and confirmed the presence of a significant vein structure in this area.

CONCLUSIONS AND RECOMMENDATIONS

The 1980 exploration program has outlined one of the few currently known significant precious metal vein systems in the Yukon Territory. The vastness of the system and its current economic implications were also realized. In addition, a successful exploration procedure was developed that would locate and investigate the gold-bearing quartz veins of this unique vein system. To date, deposits containing in the order of 1000 to 1500 ounces of gold have been located and sampled in some detail. The deposits investigated to the present time are generally small but contain high grade material. Individual structures may host up to 500 ounces of gold.

Larger structures in the area, similar to and including the Creek Zone West Fissure, the Peso No. l Vein or the REX Vein which host considerably larger ore shoots, could conceivably exist elsewhere within this system. The area covered by the 1980 survey represents not more than five percent of the total area underlain by gold-bearing quartz veins. The probability of developing additional reserves is excellent.

It is now apparent that the economic potential of the system lies in selective mining of 30 to 50 centimetre wide auriferous vein lodes. An aggressive program of continued exploration leading to production from selectively mined deposits
is recommended. The successful development of the system as a series of selectively mined deposits depends on the development of a feasible mining technique.

The feasibility of mining can only be investigated by conducting a prototype operation where various excavation and recovery techniques can be tested. A selective mining and experimental milling program is recommended for the 1981 season and would require a 10 to 20 ton per day pilot plant at Dublin Gulch.

Studies required to develop a pilot mill design have been initiated in the form of metallurgical testing of a bulk sample. Metallurgical test results of the vein material are very encouraging, demonstrating that 90 percent or more of the gold can be recovered by a combination of simple gravity. flotation and cyanidation processes. The cost of such a mill, including crushing, grinding, jigging, flotation and cyanidation units is estimated to cost less than $\$ 100,000.00$. Rental costs of such equipment would be considerably lower than the purchase price of a mill. See Appendix III.

Surface mining equipment required for selective mining is minimal and includes a bulldozer, an excavator and a method of transporting material to the mill site. A truck, bulldozerdrawn cart or conveyor belt system would be suitable. It is important that the test mining operation be supplemented by an on-going exploration program which will locate and develop additional reserves.

An exploration program similar to the 1980 program should consist of a bulldozer and an excavator conducting detailed trenching. A priority list of development events should begin with delimiting the deposits presently discovered. Deposits which should be developed include the Henderson, Eagle, Blue Lead, Green and Olive veins. Exploration of the area south of Dublin Gulch and east of Haggart Creek should follow. When an adequate amount of mill feed has been developed, trenching should be conducted west of Haggart Creek in Gill Gulch and south of Fifteen Pup. The potential in this area for the discovery of large veinfissures is excellent.

Continued exploration of the Creek Zone West Fissure is recommended for the 1981 exploration program. This strong structure hosts gold-bearing, massive sulphide lodes. A program of geophysics, possibly an electromagnetic survey or an induced polarization survey should be designed in cooperation with a
consulting geophysicist. The survey should be designed to delineate the structure prior to exploration drilling. Diamond drilling is recommended of the zone outlined by the geophysical survey perhaps initially on the zone located in 1979 and 1980. The drill program should consist of 700 metres of NQ core drilling in a series of holes along the trend of the structure. The drilling should define the geometry of fissure structure and indicate the strength of structure. Ideally the holes will define areas of mineralization but the lack of sulphide intersections in exploratory drill core does not disprove the presence of sulphide lodes within the structure.

A minor amount of diamond drilling is recommended in the Stewart and Catto area to test the down dip continuity of the Victoria and Aurum No. 2 Veins and the Cabin and Catto Veins. This program would require approximately 500 metres of $N Q$ diamond core drilling. Such a program will provide valuable information of the behaviour of the veins in the granodiorite stock beneath the metasediment cover. The continuity or discontinuity of vein structures in the granodiorite is not presently known and could significantly alter the ore reserve potential of the system.

GEOLOGICAL REPORT

ON THE
DUBLIN GULCH GOLD-QUARTZ VEIN-FISSURE SYSTEM

1.0 INTRODUCTION

The Dublin Gulch Property consists of 1059 full or fractional quartz claims located in the Dublin Gulch - Haggart Creek Lynx Creek area of central Yukon Territory. The claims, centred some 40 air kilometres northeast of Mayo, cover ground which potentially hosts significant lode deposits of tungsten, gold, silver and tin. Exploration work has continued in the area since 1978 and has resulted in discovery of two lode deposits, one of tungsten and the other gold.

Three principal areas of interest are present on the Dublin Gulch Property. On the flat plateau at the head of Dublin Gulch, west of Ray Gulch tungsten-bearing skarns are located. Gold and silver-bearing quartz-arsenopyrite-scorodite veins occur in a north-easterly trending system extending for 12 kilometres 17.5 miles) from Secret creek in the west to the Potato Hills. The third area of interest is on Tin Dome north of Dublin Gulch where a tin-bearing tourmalinized zone is located.

To date a total of 13,737 metres (45,069 feet) of diamond drilling has been completed in 86 holes on the tungsten skarn. Detailed geological mapping, extensive bulldozer trenching and surface geochemistry surveys have been conducted in the skarn area.

On the gold-quartz vein-fissure system, extensive bulldozer and excavator trenching was done on several significant showings during l980. Geological mapping, sampling and surface geochemistry surveys have been conducted over much of the area underlain by the system during the past 2 seasons.

Recent exploration work on Tin Dome includes bulldozer trenching and extensive geological mapping performed in conjunction with surface geochemistry surveys. Intensive exploration programs have been conducted on Tin Dome in the past but the results were inconclusive. This report deals with the 1980 exploration program on the gold-quartz vein-fissure system.

Dublin Gulch - Looking northeast from the head of Fifteen Pup

1.1 LOCATION AND ACCESS

Dublin Gulch is located in central Yukon approximately 40 kilometres in a direct line gortheast from Mayo. The gulch is centered at approximately 6402 ' N latitude and $135^{\circ} 50^{\prime} \mathrm{W}$ longitude. The property is roughly 90 kilometres by road from Mayo; 50 kilometres by all-weather road to the South McQuesten River Bridge and 40 kilometres by a rough gravel road along Haggart Creek to the camp.

Access to the tungsten skarn and quartz vein system is by a rough gravel road which follows Dublin Creek to Olive Gulch then, by means of switch backs, climbs to the flat plateau southwest of the Potato Hills. Several old roads which branch from the main road lead to various showings of the quartz vein system. A well developed network of bulldozer roads on T in Dome provide easy access to those workings.

1.2 PHYSIOGRAPHY

In the Dublin Gulch area flat plateaus and rolling hills are dissected by a network of deep creek gulches and lesser stream valleys or "pups". The southwest trending Dublin Gulch system is typical of the area having a main gulch with several tributary gulches and "pups". Dublin Gulch forms a major subsystem of the Haggart Creek drainage system which flows southward into the South McQuesten River. Elevations in the area range between 300 metres $(2,625$ feet) at the mouth of Dublin Gulch and 1654 metres (5,427 feet) at the Potato Hills.

Slopes in the area are moderately steep but are locally steeper in Ray Gulch and to the west within the main granitic pluton. Bedrock or boulder talus is found on the steeper slopes. Moderate slopes are covered by felsenmeer or by residual soil and glacial till. Permafrost is found in poorly drained areas on north facing slopes.

Vegetation is typical of central Yukon and locally varies between lichen and moss, buckbrush and spruce. Moss and lichens occur on steep, north facing, felsenmeer covered slopes. Buckbrush is ubiquitous in the Dublin Gulch area while spruce, to 30 centimetres (l2 inches) in diameter, is normally restricted to valley bottoms and areas underlain by glacial till or residual soil.

Diamond Drill Area - Southwest of the Potato Hills
..../3
1.3 CLAIM STATUS (See Figure 3 and Appendices VI and VII.)

The Dublin Gulch property consists of 878 full mineral claims and 181 fraction mineral claims. Of the total 1059 claims, only 453 claims were staked prior to the 1980 field season. For assessment purposes 433 of the claims were organized into 37 groups and 33 claims were ungrouped.

A statement of representation work was submitted for the 466 claims on October 10, 1980. For the 37 groups only physical work, such as drilling and trenching, was applied toward assessment credit. The remaining 33 ungrouped claims are situated such that they cannot be reached by the grouping method and therefore the physical work performed could not be applied toward assessment credit for these claims. The work submitted as representation work for the 33 ungrouped claims was not accepted, therefore, the renewal date for these claims remains October $1,1986$.

A sum of $\$ 9,432.00$ was submitted with the application for a Certificate of Work form as Filing fees. This sum was calculated for 466 claims for 4 years assessment credit. A miscalculation by the Mining Recorder resulted in the charges for some claims being doubled. As a result those funds submitted in excess will be refunded. The amount of the refund will also include those fees paid for the 33 claims for which representation work was not accepted.

During 1980 field season 606 new claims or fractions were staked for Canada Tungsten Mining Corporation. Assessment work and reports are due on these claims in 1981 with the earliest anniversary date falling on September 2.

```
..../4
```

The following is a synopsis of the Dublin Gulch claim status:

CLAIMS
ALEC 1-60
вов 1 - 27, $32,34,36-65,69-73$
BOB $28-31,33,35,66-68$
C.J. l - 200

DAVE 1-24
D.G. 1 - 14, 27, 29-56
D.G. 15-26, 28

JEFF l - 93, 97-103
JEFF 94-96, 104-112
MAR l - 24
MAR 25 - 30
MOLE 1-11, 14, 16
MOLE 17, 18
R.D. 1 - 16

SMOKY l-82
WEASEL 1-20, 25-210
WEASEL 21-24

FRACTIONS

ALEC 61F - 76F
BOB $74 \mathrm{~F}-84 \mathrm{~F}, 86 \mathrm{~F}$
D.G. 57F - 83F, 85F - 105F

DAVE 25F - 30F
DAVE 3lF - 34F
JEFF 113F - 120F
JEFF 121F - 135F, 137F - 154F

RENEWAL DATE
October 1, 1990
October 1, 1990
October 1, 1986
September 2, 1981
October 1, 1990
October 1, 1990
October 1, 1986
October 1, 1990
October 1, 1986
October 1, 1990
October 5, 1989
October 1, 1986
October 1, 1981
October 1, 1990
October 1, 1990
September 15, 1981
November 28, 1981

RENEWAL DATE
October 1, 1981
October 1, 1981
October 1, 1981
September 29, 1981
October 1, 1981
September 29, 1981
October 1, 1981

FRACTIONS

MAR $31 F$
MAR 32F-43F
MOLE 19F - 24F
SMOKY 83F - 114F
total number of claims - 878 total number of fractions - 178
1.4 HISTORY

The Dublin Gulch area has had a long history of mining activity dating back to the Klondike gold rush days of the last century. Placer gold was discovered in Haggart Creek and Dublin Gulch in 1898 and 1899. The creeks were worked sporadically during the early stages and it wasn't until 1904 that scheelite was identified in the placer deposits. In 1908 Cockfield located scheelite and wolframite in quartz veins and pegmatitic veins at the head of Dublin Gulch. These lode discoveries coupled with increasing amounts of gold and tungsten being recovered from placer operations resulted in a flurry of exploration activity for additional lode deposits from 1913 to 1916.

A major vein fissure system containing gold, arsenopyrite and silver was discovered on the north facing slopes of the ridge to the south of Dublin Creek. In 1907 J. S. Stewart and Dr. William Catto located the Victoria claim, the first quartz claim staked in Dublin Gulch. Eventually ten veins were discovered between Stewart and Olive Gulches. Other veins belonging to this vein-fissure system were discovered in Eagle Pup, Suttle Pup, Platinum Pup, Bawn Boy Pup and near the junction of Cascallen Pup and Dublin Creek. One prospect, covered by the Independence claim, was located on the ridge above Gill Gulch, west of Haggart Creek. A number of the veins were reported to extend for more than 61 metres (200 feet) with widths up to 3 metres (l0 feet) (McLean; 1914).

The early history of the area is detailed in the reports of the Federal Department of Mines; particularly in reports by T. A. McLean, 1914, and D. D. Cairnes, 1915. Dr. W. E. Cockfield of the

Vein of Gold-Quartz Vein-Fissure System -
Looking southeast from Tin Dome

Geological Survey of Canada reported many of the above occurrences in 1918.

From 1916 to 1918 Mr . Robert Fisher prospected around the headwaters of Dublin Gulch and located several small lode occurrences of scheelite. Little or no work was conducted on these showings. Cockfield (1928) reported that the scheelite in the placer deposits was emanating from quartz veins and pegmatitic veins found in and adjacent to the main Dublin Gulch Stock, located south of Dublin Gulch. The veins are varied in width from $1 / 8$ of an inch (3 millimetres) to over 5 feet (1.5 metres). Assays range from nil to $10 \% \mathrm{WO}_{3}$.

During the period 1916 to 1918 some scheelite concentrate was saved and shipped from the placer operations. From 1934 into the 1940's, Taylor, Blyler and others worked the placer deposits at Dublin Gulch. In 1916 cassiterite was first recognized in placer concentrates. The placer cassiterite appeared to emanate from Ann Gulch and further prospecting led to the discovery of two tin, tourmaline-quartz veins on Tin Dome in 1943. In 1945 Cominco drove a short adit of 56 feet (l7 metres) but did not intersect the vein. No assessment work has been recorded since 1945. In April of 1977 Gordon Dickson staked 56 mineral claims over the Tin Dome showings. The claims were optioned to Canada Tungsten Mining Corporation Limited in 1978.

Some historical notes pertaining to other areas around Dublin Gulch, particularly Ray Gulch, follow.

Harvey Ray, a prospector, located scheelite-bearing float in Ray Gulch in 1942. The source areas were not located until 1943 when a G.S.C. party member located several skarn zones at the headwaters of Ray Gulch and other gulches cutting the steep southerly facing slope. All the gulches lead into Lynx creek.

Mayo Silver Mines Ltd. located a $2 \frac{1}{2}$ foot (76 centimetre) arsenopyrite-quartz vein on the east side of the headwaters of Ray Gulch. They did not explore for tungsten.

Mr. C. Provencher staked the Ray Gulch and Dublin Gulch area in 1968. The ground was optioned to Great Plains Development Ltd. in 1968, Tam Mining in 1969 and Connaught Mines Ltd. from 1969 to 1971. In 1970 Connaught subleased the property to Canexplacer. In 1970 and 1971 Canex-Placer conducted an extensive
soil geochemistry program that extended from Platinum Pup to the Potato Hills and covered the south side of Dublin Gulch.

Canex drilled 2,000 feet (610 metres) and cut 20 bulldozer trenches in the Dublin Gulch - Bawn Boy Pup area. The work was primarily confined to the granodiorite stock with the intent of developing a large, low-grade, scheelite-bearing quartz vein stockwork system. No work was done in the Ray Gulch area.

In March of 1977 Gordon Gutrath of Queenstake Resources Ltd. staked 24 Mar Claims in the Ray Gulch drainage area. In October of 1977 Mr . Gutrath staked the Mar 25 to 30 claims which lie adjacent and to the east of the Mar 1-24 claims. Queenstake conducted a small program of geological mapping and sampling of the skarn zones in the Ray Gulch areas. Canada Tungsten Mining Corporation Limited optioned the Mar claims from Queenstake during the summer of 1978. Following ground acquisition by staking in 1978 by Canada Tungsten Mining Corporation Limited, a preliminary field program was conducted. Encouraging results in that year led to an extensive 1979 exploration program involving 2,422 metres (7,946 feet) of $B Q$ core drilling in 21 holes. In 1980 Bema Industries Ltd. was retained to manage the project and a large program including ll,3l5 metres (37,123 feet) of $N Q$ and $B Q$ core drilling was conducted.

1.5

PRESENT WORK
Fieldwork during 1980 was conducted on three major metal systems in the Dublin Gulch area. Most of the exploration effort was expended toward developing the scheelite-bearing tungsten skarns southeast of the Dublin Gulch stock. A detailed investigation of the Dublin Gulch gold-quartz vein-fissure system was also conducted. Work was concentrated in the area between Olive Gulch and the Blue Lead ridge and on the Creek Zone fissure in Dublin Creek. Only a minor amount of attention was afforded to Tin Dome; a re-evaluation of the tin system is required.

Geological Mapping
Detailed geological mapping at a scale of 1:1,000 metric was conducted on the south facing slope, north of Lynx Creek and in Ray Gulch. Some additional mapping was performed in the vicinity of the Potato Hills. This mapping served to gain a sense of stratigraphic control in the drill area and was used to project favourable skarn units downdip for diamond drill targets. An improved reference grid and the use of orthophotographs enabled an accurate geological map to be compiled. This data has been transferred to a reduced scale of $1: 5,000$ metric for the purpose of this report. This mapping is shown on the Detailed Geological Compilation.

A limited amount of sampling was conducted in conjunction with mapping. A total of 40 grab and chip samples were collected and submitted for assay. Assay values ranged from a trace to 4.99 percent WO_{3} in a grab sample.

Bulldozer Ripping
To facilitate geological mapping on the overburden covered plateau southwest of the potato Hills, bulldozer ripping was employed. Long lines of bulldozer rips expose bedrock in areas of shallow overburden and felsenmeer blocks in areas of moderate overburden cover. No bedrock was exposed in areas of deep overburden. Rips were cut in roughly parallel rows and where possible perpendicular to the strike of the units. The rips were geologically mapped and where skarn material was observed 3 metre (llo feet) chip samples were collected. Approximately 9 kilometres (9,840 yards) of bulldozer rips were cut from which 68 samples were obtained. Tungsten assays for these samples range from a trace to 0.5 percent WO_{3} over 3 metres (10 feet).

Bulldozer Trenching
Favourable skarn units located by bulldozer ripping or projections to surface from drill data were followed up by bulldozer trenching. Approximately 1,491 metres (1,630 yards) were excavated in 25 new trenches and one 1979 trench was extended. The total volume excavated was in excess of 12,647 cubic metres (16,540 cubic yards).

Caterpillar D-8K Bulldozer. with Ripper

John Deere 690 Excavator at Trench GET-4 on Cabin Vein - Looking southwest

Bedrock Trenching with John Deere 690
Excavator. Looking northwest at Trench GTR-16. Note intense weathering.

Deeply weathered vein structure. View looking east at No. 5 Structure in Trench GET-5. Rock pick is approximately 30 centimetres (12 inches) long.

The trenches were geologically mapped and here skarn zones were sampled. A total of 106 samples, one to four metres (3.3 to 10 feet) in length were collected and submitted for assay. The values returned from a trace to 1.13 percent WO_{3} over 3 metres (10 feet).

Diamond Drilling
To date a total of 13,737 metres $(45,069$ feet) in 86 holes has been diamond drilled on the tungsten-skarn area, of this a total of 11,315 metres (37,123 feet) of $N Q$ and $B Q$ core was obtained from 65 diamond drill holes during 1980. Drilling was concentrated on the flat plateau southwest of the Potato Hills. Two Longyear drills, a Model Super 38 and a Model 38 were operated by Longyear Canada. Drill core was logged, split, crushed and sampled at Dublin Gulch. Drill core and sample splits are stored in the core storage facilities on the property.

GOLD-QUARTZ VEIN-FISSURE SYSTEM

Geological Mapping

Geological mapping on the gold-quartz vein-fissure system was conducted at several scales during the 1980 field season. Most of the detailed mapping was confined to the Stewart and Catto area and in the Creek Zone Fissure. Limited detailed geological mapping was performed north of the West Potato Hill. A minor amount of property scale mapping was performed in the Platinum Pup area.

In the Stewart and catto area outcrop and trench geology was initially mapped at a scale of $1: 1,000$ metric. Later with the aid of survey control,mapping was conducted at a scale of 1:200 and l:100 metric. Geological mapping of the Creek Zone fissure in the south fork of Dublin Creek was conducted at a scale of l:200 metric. West of Stewart Pup the Blue Lead ridge was mapped at a scale of $1: 1,000$ metric. Mapping west of the Potato Hills was performed at a scale of $1: 400$ and $1: 100$ metric.

Trenching

Trenching was conducted in 3 main areas of the gold-quartz vein-fissure system during the 1980 program. Extensive bulldozer and excavator trenching was conducted in the stewart and catto area where 48 bulldozer and 26 excavator trenches were cut. In the Creek Zone fissure bulldozer and scraper excavation, mostly for placer mining, exposed large areas of bedrock. A total of 11 trenches were cut in the East and West Creek Zone fissures. Northwest of the West Potato Hill, 3 trenches were cut.

The total volume of material excavated in these trenches was in excess of 60,098 cubic metres (78,600 cubic yards). A table of trench data is provided in Appendix I of this report.

Sampling
Gold-quartz vein-fissure systems were extensively sampled during the 1980 field season. Most of the 698 samples collected were obtained from trenches discussed in the section above. The remainder came from outcrop, mine dumps or float occurrences throughout the property. The results of this sampling program are discussed in section 2.4 of this report and the details of the individual samples are listed in the Rock Chip Sample Data forms in Appendix IV of this report.

TIN DOME

Only a limited amount of time was expended on the tin prospect at Dublin Gulch. As a result of an examination of the T in Dome showings by the project geologists early in the season, a low priority was established for the diamond drill program proposed for this area. Some time was spent studying the geochemical signature of the Tin Dome showings and the geochemical background of the Dublin Gulch area. From this study it was recognized that the Gill Gulch and Fifteen Pup area showed as pronounced or more pronounced tin geochemical expressions than Tin Dome. Ground acquisition in the head of Fifteen Pup was recommended to cover areas responsible for favourable tin geochemical results from Gill Gulch and Fifteen Pup. The MOLE claims were staked to cover this area.

Examination of the Tin Dome showings, in company of $\mathrm{D} . \mathrm{J}$. Tempelman-Kluit, Ph.D., P.Eng. of D.I.A.N.D., provided some insight into the problems of exploring tin occurrences. It was established
..../11
that a re-evaluation of the Dublin Gulch tin system is required. Emphasis should be placed on developing an exploration format which can be applied throughout the entire system. For details of previous work performed on Tin Dome see Lennan (1980).

1.6 BIBLIOGRAPHY

Barclay, R.J., Bartlett, S.C., Elliott, T.M., Philpot, M.D., Orssick, C.N.;
1979: "Keno Hill Geological Report, 1979, McQuesten Valley and Keno Hill Area, Mayo Mining Division, Elsa, Yukon Territory"; private report for Canada Tungsten Mining Corporation Limited by Bema Industries Ltd.

Bartlett, S.C.;
1980: "Geology of the Dublin Gulch Gold-Quartz VeinFissure System"; private report for Canada Tungsten Mining Corporation Limited by Bema Industries Ltd.

Cairnes, D.D.;
"Summary Report for 1915" Geol. Surv. Canada in Bostock, H.S. (1917) "Selected Geological Reports of the Geological Survey of Canada 1898 to 1933"; Geol. Surv. Canada, Mem. 284, pp 29-34.

1917: "Summary Report for 1916"; Geol. Surv. Canada op. cit. pp. 426 - 433 .

Cathro, R.J.; 1968:
"Potato Tungsten Showing, Dublin Gulch, Mayo District, Yukon Territory"; private report for Archer, Cathro and Associates Ltd.

Cockfield, W.E.;
1919: "Summary Report for 1918"; Geol. Surv. Canada op. cit pp. 468 - 470 and pp. 472 - 476 .

Green, L.H.;
1971: "Geology of Mayo Lake, Scougale Creek and McQuesten Lake Map-Areas, Yukon Territory"; Geol. Surv. Canada, Mem. 357.

1972: "Geology of Nash Creek, Larsen Creek and Dawson Map-Area, Yukon Territory"; Geol. Surv. Canada, Mem. 364.

Green, L.H., and McTaggart, K.C.;
1960: "Structural Studies in the Mayo District, Yukon Territory"; Proc. Geol. Assoc. Canada, Vol. 12, pp. 119 - 134.

Green, L.H., and Roddick, J.A.;
1962: "Dawson, Larsen Creek, and Nash Creek Map-Areas, Yukon Territory"; Geol. Surv. Canada, Paper 62-7.

Lennan, W.B.;
1979: "1978 Project Report-Dublin Gulch Property, Mayo Mining District"; private report for Canada Tungsten Mining Corporation Limited.

1980: "1979 Project Report-Dublin Gulch Area, Mayo Mining District"; private report for Canada Tungsten Mining Corporation Limited.

McLean, T.A.;
1914:
"Lode Mining in Yukon"; Mines Branch, Dept. of Mines, Ottawa, pp. 127 - 159.

McTaggart, K.C.;
1960: "The Geology of Keno and Galena Hills, Yukon Territory"; Geol. Surv. Canada; Bull. 58.

Tempelman-Kluit, D.J.;
1964: "Geology of the Haggart Creek-Dublin Gulch Area, Mayo District, Yukon Territory"; unpublished M. A. Sc. thesis, U.B.C.

1970: "The Stratigraphy and Structure of the Keno Hill Quartzite in Tombstone River - Upper Klondike River Map-Areas, Yukon Territory"; Geol. Surv. Canada; Bull. 180.
2.0 GENERAL GEOLOGY (See Figures 4 to 8.)

The Dublin Gulch - Keno Hill area lies within the geological province known as the Selwyn Basin. The regional geology of the area is complex and the local stratigraphy remains subject to controversy. Stratigraphic order from the lowest to highest structural position in the section consists of the Lower Schist, the Central Quartzite and the Upper Schist formations. The Lower Schist and Central Quartzite formations are believed to be part of a normal autochthonous stratigraphic sequence of Jurassic and Cretaceous age respectively, and represents some of the highest stratigraphy in the Selwyn Basin. The Upper Schist formation is thought to be allochthonous, correlative with the Klondike Schist of the Dawson area which is part of the Yukon Group of Precambrian and/or Paleozoic age (Green, l972).

The stratigraphic sequence is cut by a number of plutonic rocks ranging in age from probably Jurassic to Tertiary. Greenstone sills and dykes are common in the Lower Schist and Central Quartzite formations and are less common in the Upper Schist formation. These intrusions are of gabbroic composition but are now strongly deformed and metamorphosed. They are believed to be of Jurassic age (Green, 1972) but the presence of these units in the Upper Schist formation conflicts with the hypothesis of regional overthrusting.

The second oldest plutonic rocks in the Dublin Gulch - Keno Hillarea are the mid-Cretaceous intrusions of biotite-granodiorite. Radiometric dating by Wanless et al, $(1966,67,71,73$, cited in Barclay et al, 1979) gave potassium-argon ages between 81 My and 109 My for granitic plutons in the district. The Mayo Lake Batholith, Hanson Lake Intrusion, Hit Intrusion and the Dublin Gulch stock are all members of this series. Numerous hypabyssal phases and apophyses of these plutons are present in the district, several of which have been recognized in the Dublin Gulch area.

The youngest plutonic rocks recognized in the Mayo area are the lamprophry dykes and sills of Tertiary age. These mafic intrusions are more common south of Dublin Gulch in the Keno Hill Galena Hill area and are observed to crosscut all other units present.

The Dublin Gulch - Keno Hill area has been subjected to several periods of structural deformation. The oldest phase is
thought to be related to overthrusting of the Upper Schist formation. Several types of deformation including the development of a pervasive shear foliation and recumbent folding observed particularly in the Keno Hill area (Green and McTaggart, 1960, Green, 1972). During a later phase of deformation, broad open folds were developed. These include the Mayo Lake anticline and the subsidiary McQuesten River and Lynx Creek anticlines. Subsequent to the development of these large folds, a crosscutting anticlinal arch developed from Keno Hill to the Lynx Dome area. Central Quartzite formation is exposed in the core of this structure on the ridge north of the McQuesten Valley and at the base of Iynx Dome. Several plutons also occur along the hinge zone of this arch.

Several periods of economic mineralization involving several important elements have occurred in the vicinity of Dublin Gulch. Tungsten is associated with the local Cretaceous granodiorite intrusions. Tungsten occurs as scheelite in quartz stockwork veinlets cutting the Dublin Gulch stock and within the Hit intrusion. Minor amounts of wolframite have also been observed in the quartz stockworks. Scheelite occurs in irregular pyroxene skarn units peripheral to the Dublin Gulch stock. Scheelite-bearing skarns are the target of the present exploration endeavour.

Tin mineralization on Tin Dome, in Gill Gulch and in Fifteen Pup consists of fine grained, sugary-brown cassiterite. On Tin Dome mineralization occurs in a tourmalinized shear zone which trends northeasterly across the hill. West of Haggart Creek, in Gill Gulch and Fifteen Pup, anomalous tin-bearing stream sediments are more closely associated with granitic rocks. Tin appears to be widespread in the Dublin Gulch area and the significance of its numerous occurrences has not been fully realized.

The youngest event of primary economic mineralization appears to be the emplacement of the quartz-arsenopyrite-pyrite and sider-ite-pyrite-jamesonite-arsenopyrite veins of the gold-quartz veinfissure system. The system can be differentiated into the two vein types which may reflect variation of the physical properties of the hydrothermal system from which they were precipitated or local differences in source rock composition from which the metals were derived. The trend of the system parallels that of the Dublin Gulch stock and also that of major regional structures such as the Lynx Creek anticline. The quartz-arsenopyrite-jamesonite veins are also the target of the current exploration project.

Within the system, veins are erratically distributed and vary widely in length, width, and downdip extension. The veins are envisioned to occur as elongate, tabular, en echelon bodies. Their emplacement in structurally high-level extension fractures is indicated by the presence of chalcedony in many of the veins (Morin, 1980, personal communication). It appears that the vein system was developed in a zone dominated by tensional stress by a hydrothermal system operating contemporaneously with the emplacement and cooling of the Cretaceous granitic rocks.
2.1 STRATIGRAPHY (See Figures 4 to 8)

Controversy exists as to the relative ages of the stratigraphic units in the Dublin Gulch - Keno Hill area. TempelmanKluit (1970) suggested, on the basis of stratigraphic mapping, in the Tombstone Range, that the Upper Schist formation of Precambrian and/or Paleozoic age was allochthonous and underlain by Mesozoic stratigraphy. Little or no evidence is apparent locally that could serve to confirm or disprove this hypothesis. Awareness of the possible implications of such tectonic activity may lead to more realistic interpretation of the local geology.

In a discussion of the stratigraphy of the area, it is convenient to discuss the units in order of their structural positions from lowest to highest.

The lowest unit in the Dublin Gulch - Keno Hill area is the Lower Schist formation of Jurassic age (Tempelman-Kluit, 1970). The Lower Schist crops out in the south McQuesten River Valley, on Keno Hill and on the ridge north of the McQuesten Valley near the Hit intrusion. The unit has not been mapped in the Dublin Gulch Project area and therefore, is not included in the Lithological Legend.

Unit \#2 - Central Quartzite Formation

The Central Quartzite formation conformably overlies the Lower Schist formation. This unit consists predominantly of bedded quartzite of varied thickness intercalated with graphitic phyllite, argillite and schist. Between southern base of Lynx Dome and Lynx Creek a thick section of quartzite occurs. From the base of the section near Lynx Creek the sequence is comprised of clean, massive
..../16
quartzite which grades upward into graphitic quartzite and argillite and finally into graphitic phyllite. The contact with the overlying rocks appears to be gradational and conformable as observed by Green (1972). It is possible that this transition from graphitic quartzite to buff phyllites and schist is an intraformational boundary and not the contact between the Central Quartzite and Upper Schist formations. (Tempelman-Kluit, 1980, personal communication.) The Central Quartzite formation appears as Unit \#2 on the Lithological Legend.

Unit \#l - Upper Schist Formation

Structurally overlying the Central Quartzite formation is the Upper Schist formation. Most of the Dublin Gulch area is underlain by this unit. The formation has been correlated with the Klondike Schist of the Dawson area and is thought to be of Precambrian and/or Paleozoic age. The Upper Schist is comprised of a series of foliated quartzite, phyllite, schist, marble and skarn units. The formation has been subdivided into mappable lithologic units for detailed mapping and core logging purposes. These are not stratigraphic members.

Unit \#la - Biotite-Quartzite-Schist/Hornfels
This term is a useful field term which describes a wide range of biotite-and muscovite-schists, hornfels, and foliated often micaceous quartzites. This rock is often composed of discontinuous, compositionally distinct mica-rich and quartz and feldspar-rich lamellae. Samples of this material submitted for thin section analysis contain from zero to 80 percent quartz and from zero to 50 percent biotite and/or muscovite (Vancouver Petrographics Ltd. report in Lennan, 1980).

Biotite-quartzite-schist/hornfels, abbreviated $B Q S$, is widespread in the property area, particularly in the vicinity of the Dublin Gulch stock. This portion of the stratigraphy represents roughly the middle series of the Upper Schist formation in the Dublin Gulch area.

Unit \#lb - Massive and Gritty Quartzite

Massive quartzite in the Upper Schist formation is strongly foliated and often contains various amounts of mica along foliation planes. In thin sections the massive quartzite contains up to 80 percent or more quartz with minor amounts of a variety of other minerals. Gritty quartzite, usually found to the west of Haggart Creek, contains granule size grains of quartz and feldspar. Thick units of quartzite occur north of the potato Hills but generally the thickest sections of quartzite and gritty quartzite occur west of Haggart Creek. Units, west of Haggart Creek, are interpreted to be in the highest structural position.

Unit \#lc - Micaceous Phyllite and Unit lc ${ }_{i}$ - Graphitic Phyllite
Micaceous phyllite describes the orange weathering, buffcoloured phyllite that occurs extensively northeast of potato Hills and southwest of Lynx Dome. The rock has a strongly developed foliation which is sometimes highlighted by weakly developed mica. Stratigraphically phyllite is more common to the east, lower in the section. In other parts of the stratigraphic section, phyllite grades with biotite-quartzite-schist/hornfels and massive quartzite and is rarely distinguished as a mappable unit.

The graphitic phyllite unit comprises the black to silver phyllite members which are found scattered about the property. Sections of graphitic phyllite are present above the inferred contact of Central Quartzite formation. In Dublin Creek, on Tin Dome and on North Ridge graphitic phyllite interbedded with minor amounts of quartzite and limestone form a moderately thick section. Usually graphitic phyllite units occur over restricted stratigraphic intervals and are treated as mappable units.

Unit \#ld - Muscovite-Sericite-Quartzite-Schist
Though similar to Unit la, this rock unit occurs on the western end of North Ridge and on the south side of Dublin Gulch toward Platinum Pup. The presence of muscovite and sericite gives the rock a light buff colour which makes it difficult to distinguish from some of the above units.

Unit \#le - Calc-Silicate Skarn

Calc-silicate skarn includes all massive and laminated dark green skarns that occur in the Dublin Gulch area. The composition and therefore the colour of the skarns are widely varied, depending on the selective replacement by calc-silicates of the regionally metamorphosed sediments. The dark green calc-silicate skarns contain up to 89 percent pyroxene, thought to be diopside and up to 35 percent plagioclase (An 50). Uralite is commonly present and comprises up to 15 percent of the mode. Garnet is notably present in some massive pyroxene skarns but is not exclusive to calc-silicate skarn. Calcite is present in some skarns and represents up to 10 percent of some specimens examined. Scheelite is very closely associated with calc-silicate skarns at Dublin Gulch. In thin sections, scheelite appears to selectively replace quartz and encloses pyroxene and plagioclase, suggesting that scheelite mineralization occurred later than the main skarn mineralizing event (in Lennan, op.cit.).

Unit \#lf - Calc-Silicate Subskarn

The term calc-silicate subskarn refers to a variety of rock types all considered to be more or less poorly developed calcsilicate skarn units. Subskarn is generally composed of light green streaky layers containing light green pyroxene and uralite intercalated with discontinuous biotite and quartz-rich laminae. One sample of laminated subskarn examined in this section, contained 59 percent quartz, 25 percent pale green pyroxene and 15 percent plagioclase. The light colour of this specimen is clearly related to the abundance of light coloured minerals. The colour banding demonstrated in subskarn is a result of varied pyroxenequartz and plagioclase ratios. The specimen also contained one percent scheelite (in Lennan, op.cit.).

Calc-silicate subskarn is widespread in the Dublin Gulch area. It is most abundant on the southeast side of the Dublin Gulch stock, where it is intercalated with calc-silicate skarn and biotite-quartzite-schist/hornfels. Some sections, particularly near diamond drill hole 80-7, contained dark red, massive, anhedral garnet crystals. Other sections of calc-silicate subskarn are located north of the West Potato Hill and near the stock east of the Potato Hills. North of the Dublin Gulch stock subskarn occurs on the North Ridge and in the Stewart and Catto area of the goldquartz vein-fissure system.

Unit \#lg - Marble
Thick sections of white to grey marble are intercalated with biotite-quartzite and biotite-quartzite-schist/hornfels, southeast of the Dublin Gulch stock. On the south facing slope above Lynx Creek and in Ray Gulch, numerous large marble-bearing bluffs are present. Some of the units show pervasive silica alteration and a few show pyroxene skarn development in narrow envelopes along fractures in silica altered marble. East of Ray Gulch and south of Lynx Dome, marble units are present in the stratigraphy. A very thick section is present to the northeast of the property, east of Lynx Dome.

Unit \#3 - Greenstone

The sheared greenstone bodies observed throughout the Dublin Gulch - Keno Hill area are recognized as of the oldest intrusive phase in the district. Greenstones are best exposed in the Keno Hill area where they occur as elongate resistant knobs throughout the stratigraphic section. They are thought to have been basic sills now altered to varied degrees and commonly exhibit intense shearing along their margins. More strongly deformed greenstones occur as boudins, or tectonic "fish". Deformation of the greenstones is probably synchronous with older regional deformation. Green and McTaggart (1960) suggest that the greenstones may have intruded into the dilated hinge zones of overturned folds.

The composition of the greenstones generally ranges from diorite to gabbro although peridotite has been described. In some units the predominant mineralogy consists of chlorite after amphibole and/or pyroxene. In others a roughly equal amount of chlorite after amphibole or pyroxene and altered plagioclase is present.

In the Dublin Gulch area greenstones are relatively few in number. In the Central Quartzite formation, south of Lynx Dome, a greenstone occurs in two areas near the top of the formation. On the south facing slope, above Lynx Creek, near the proposed portal site "C", a small greenstone is present. Another greenstone on the east side of Stewart Gulch, is in contact with the Dublin Gulch Stock.

Unit \#4 - Plutonic Rocks
Four types of Cretaceous plutonic rocks are mapped in the Dublin Gulch area. The rocks include the main Dublin Gulch stock of granodiorite composition, quartz diorite recognized in diamond drill core only and various apophyses of quartz-feldspar porphyry, aplite and leucocratic granite.

Unit \#4a - Aplite and Leucocratic Granite

These bodies occur peripheral to the main stock and cut the regional foliation both concordantly and discordantly. Aplite and leucocratic granite occurs as thick sills southeast of the main stock and on the East Potato Hill. A few small aplite dykes are observed in the Stewart and Catto area.

Unit \#4b - Granodiorite
The Dublin Gulch Stock is the largest granodiorite body in the Dublin Gulch area and extends for over 5 kilometres from Platinum Pup to the Potato Hills. In addition to this large stock, numerous other granodiorite bodies occur about the property. West of Haggart Creek several sill-like bodies of medium grained granodiorite are present. In Dublin Gulch at the junction of Olive Gulch, a small granodiorite plug formerly mapped as quartz monzonite occurs. Another small plug occurs east of the Potato Hills.

The Dublin Gulch Stock consists of medium to coarse grained, uniformly textured pyroxene-biotite granodiorite. A typical sample contained 40-45 percent plagioclase, 20-25 percent biotite, 2-3 percent pyroxene and lesser amounts of several accessory minerals (Lennan op.cit). Locally coarse Na-feldspar phenocrysts give the rock a porphyritic appearance. This rock type has been referred to as a megaporphyry. The plug at the junction of Olive and Dublin Gulch is a subsidiary of the main stock and differs only in the amount of silica alteration. The small intrusion shows zones of strong silica alteration adjacent to closely spaced quartz veined fractures.

Dyke and sill apophyses of the main Dublin Gulch Stock occur both north and south of the intrusion but are more strongly developed south of the pluton. Several large sill and dyke-like sheets cut the stratigraphic section and may exert some control on the emplacement of scheelite-bearing skarns.

Unit \#4c - Quartz-Feldspar Porphyry

Quartz-feldspar porphyry dykes and sills are common in the vicinity of the main pluton, particularly on the northwest side of the Dublin Gulch stock. These intrusions usually contain altered feldspar phenocrysts ranging in length to 5 millimetres and various quantities of quartz phenocrysts of about the same size. The groundmass is often strongly altered to clay, sericite and iron oxide. Many of the dykes and sills are highly deformed, predating a period of fault deformation.

Unit \#4d - Quartz Diorite
Quartz diorite occurs as sill and dyke-like sheets on the southeast side of the main granodiorite stock. This unit has only been recognized in diamond drill core and is distinguished by its darker colour. The dark colour of this rock is owing to the presence of more mafic minerals and calcium-rich plagioclase.

Unit \#5 - Quartz-Arsenopyrite-Scorodite Vein Rock

This unit describes the gold and silver-bearing quartz-arsenopyrite-pyrite and siderite-pyrite-jamesonite-arsenopyrite veins of the gold-quartz vein-fissure system. Two types of veins are present. The quartz-arsenopyrite-pyrite veins generally are more abundant east of Haggart Creek. The mineralogy of these veins is varied but includes banded quartz, arsenopyrite as selvages and as cores, pyrite in cores, minor siderite and jamesonite in cores and traces of gold, galena and chalcopyrite. Scorodite and limonite are very common weathering products.

Siderite-pyrite-jamesonite-arsenopyrite veins are found west of Haggart Creek and include the Peso No. 1 to 6 and the Rex Vein. The mineralogy of these veins is varied but includes siderite as the main gangue mineral, jamesonite, arsenopyrite, pyrite, galena, chalcopyrite, stibnite and tetrahedrite as the main ore minerals. Scorodite, limonite, covellite, malachite are the main weathering products.

Unit \#6 - Mafic Dykes and Segregations

Young mafic dykes and segregations are not very common in the

Dublin Gulch area, though they are reported by Green (1971) and Tempelman-Kluit (1964). West of Haggart Creek, Tempelman-Kluit mapped two dyke-like units of augitite. The rock is dark green, fine to coarse grained and contains augite, amphibole, biotite and feldspar. The origin of the rock is uncertain and its contacts with the metasediments are not exposed. The bodies are unfoliated and trend across the regional foliation.

2.2 STRUCTURAL GEOLOGY

Early geological surveys in the Dublin Gulch - Keno Hill district mapped a simple stratigraphic sequence which was folded into broad structures related to the Mayo Lake anticline. The discovery of fossils in sediments immediately below the Upper Schist formation (Green and Roddick, 1962) destroyed the concept of a conformable Precambrian and/or Paleozoic section. McTaggart (1960) was the first to suggest the presence of large scale recumbent folds in the Keno Hill area. This was the first suggestion of deformation of the magnitude required to explain the presence of younger rocks below the Upper Schist formation. Stratigraphic mapping in the Tombstone Range by Tempelman-Kluit (1970) supports the concept of overthrusting of the Upper Schist formation. Tempelman-Kluit (1980, personal communication) is currently developing a concept of regional tectonics which explains the overthrusting of the Upper Schist formation and can explain the internal deformational features observed within the unit.

Two major periods of deformation are recognized in the district. The first resulted in large scale overthrusting and both large and small scale complex folding. It was during this earlier deformation that the pervasive foliation observed throughout the district was developed. This was a period of intense shearing and is probably the time during which the greenstone units were deformed and developed their characteristic boudinage. A younger period of deformation is characterized by the development of broad open folds such as the Mayo Lake anticline and the subsidiary McQuesten Valley and Lynx Creek anticlines. It is during this younger period of deformation that the emplacement of the Dublin Gulch stock occurred.

Structural features in the vicinity of Dublin Gulch are described in detail by Tempelman-Kluit (1964). Although large scale structures were not observed, his study of minor structures led to the conclusion that large scale structures are probably present.

Foliation

The most prominent structural feature of the Dublin Gulch area is the strongly developed, pervasive foliation. Virtually every outcrop of pre-granodiorite rock shows this foliation. Foliation planes are usually only millimetres apart and are commonly highlighted by growths of micaceous minerals on foliation surfaces.

The attitude of the foliation in the area varies widely. The general geology map of the property shows that east of Haggart Creek the foliation generally dips to the west and northwest. Northerly dipping foliation south of Lynx Dome and westerly dipping foliation south of the Potato Hills forms a northwesterly plunging antiform which terminates near Lynx Dome.

Foliation in the Upper Schist formation is usually thought to be parallel to bedding and in fact is commonly considered to represent bedding. On close examination, individual units between foliation planes are observed to pinch out over short distances. Rootless minor folds described as 'Gleitbrett' folds in the keno Hill area by McTaggart (1960) are also widely abundant. These features are evidence that an intense pervasive shear stress has acted in the region. It is apparent that these rocks are deformed beyond the recognition of original bedding planes.

In his regional tectonic hypothesis which includes overthrusting of the Upper Schist formation, Tempelman-Kluit (op.cit.) offers a mechanism for overthrusting and an origin for the pervasive foliation. He suggests that the foliation developed as a result of severe internal shear stress. This hypothesis offers an alternative explanation for the discontinuous nature of the Upper Schist stratigraphy. Mapping in these rocks is extremely difficult as it is often impossible to trace units through the map area. Individual units are discontinuous and probably represent compositional "horizons" observed are the product of the translocation of stratigraphic horizons along the shear foliation. Foliation is oblique to bedding and incremental translations along individual shear planes have produced the present effect. Tempel-man-Kluit (op.cit.) prefers to describe the rocks as mylonites rather than schists.

PHASE I - Folds

Two types of Phase I folds are conceivably developed in the tectonic environment proposed by Tempelman-Kluit (1970) and Green (1971). These are similar folds and cylindrical folds. Similar type folds in the Upper Schist unit developed as a result of differential translation along individual shear planes. Overturned and recumbent, cylindrical folds with fold axis perpendicular to the direction of thrusting developed in stratigraphic units below the proposed thrust fault. Of the two types, the first type occurs in the Upper Schist formation of the Dublin Gulch area and is discussed in more detail below. The second type occurs in the Central Quartzite and Lower Schist formations of the Keno Hill area and is discussed by Green and McTaggart (1960).

The hypothesis that the original stratigraphic continuity has been disrupted by translation along shear foliation planes is useful as an alternate mechanism to explain the abrupt terminations of lithologic units both observed on surface and inferred from diamond drill holes. The same deformation mechanism could conceivably develop similar-type fold structures when a section is subjected to inhomogeneous stress.

The strain effect of an inhomogeneous applied stress is the differential translocation of stratigraphic units along shear foliation planes. Folds developed in this manner are termed similar folds. Ideally similar folds show thickening in the hinge areas and thinning in the limbs. This mechanism for Phase I folds adequately explains the complex configuration of calc-silicate skarn units inferred from diamond drill holes. It assumes that the skarn-forming solutions selectively replaced discontinuous units of chemically susceptible rocks after folding. It is apparent that the strain product of inhomogeneous stress is the differential translocation of stratigraphic units into fragmented, compositional units and possibly into tight to isoclinal, overturned or recumbent similar folds.

PHASE II - Folds

A younger period of deformation occured in the Dublin Gulch Keno Hill district following the intense deformation during which pervasive shear foliation and Phase I folds developed. This younger period is characterized by broad open folding and is
largely responsible for the present spatial distribution of units in the area. Folding along northeast trending axis is reflected in the present attitude of the pervasive shear foliation. The Mayo Lake and subsidiary McQuesten River and Lynx Creek anticines are typical of this period. The Dublin Gulch stratigraphy lies on the west flank of the Lynx Creek anticline and dips moderately to the northwest.

Faults

Several generations of faults may be present in the Dublin Gulch area but these are not well recognized and their development is poorly understood. Tempelman-Kluit (1964) conducted the most thorough structural investigation and located several faults and proposed several others. In addition to these, a major zone of structural weakness trends northeasterly across the property. The Dublin Gulch Stoch and the gold-quartz vein-fissure system occur within this zone of weakness. Numerous minor faults possibly related to the emplacement of the granitic rochs are present.

The most prominent faults occur in the creek valleys of the major drainage systems. Both geological and physical evidence exists to support the presence of large faults in Haggart Creek and Dublin Creek. Similar faults could conceivably occur in upper Haggart Creek, Fisher Gulch and in Gill Gulch.

Several other important faults are present. The Tin Dome Fault which crosscuts the southeast slope of Tin Dome has been explored for cassiterite. A fault up Ray Gulch which passes between the Potato Hills and the subsidiary West Ray Gulch fault are apparent. Numerous faults have been observed in diamond drill core, some of these faults may be related to intrusive activity while others might be much later with no relationships to intrusions.

2.3 GOLD=QUARTZ VEIN FISSURE SYSTEM

Introduction
The Gold-Quartz Vein-Fissure System describes a system of sub-parallel, en echelon gold and silver-bearing quartz-arseno-pyrite-pyrite and siderite-pyrite-jamesonite-arsenopyrite veins which occur along a north 60 east trend between Secret Creek in the west and the Potato Hills to the east. Veins occur over more than 12 kilometres (7.5 miles) on trend and are exposed over a width of more than 4 kilometres (2.5 miles) west of Haggart Creek and over a width of 2 kilometres (1.25 miles) east of Haggart Creek. A number of quartz-arsenopyrite-pyrite veins have been observed in diamond drill core from the skarn-zone south of the Dublin Gulch stock and indicates that the zone of economic potential is wider than that indicated by surface exposures. To date more than 50 individual veins have been discovered ranging in width from several millimetres ($\frac{1}{4}$ inch) to in excess of 9 metres (30 feet). The system is divided physically into two distinct areas by Haggart Creek. The area east of Haggart Creek has been prospected extensively for gold both in the past and in the course of the present exploration program. The area west of Haggart Creek has been explored extensively by Peso Silver Mines Ltd. in search of silver but has not been evaluated for gold. This area which is favourable for potential gold and silverbearing veins has not been examined during this program. The information presented pertaining to this area is drawn from the work of D. J. Tempelman-Kluit (1964) and from the limited 1980 assessment program conducted by R. H. Rainbird for Bema Industries Ltd.

The geology and mineralogy of the system east of Haggart Creek has been described in detail by Bartlett, 1980. Detailed trenching of portions of the zone during 1980 has provided valuable new information on the nature of the vein system and in some areas has revealed a more complex mineralogy than described in the 1979 report. From the 1980 fieldwork it is recognized that the veins occur in a zone more than 2 kilometres (1.25 miles) wide. Veins observed in 1979 were in or sub-parallel to the Dublin Gulch stock and occurred within a few hundred metres ($\frac{3}{4}$ mile) of the exposed contact. The 1980 program was initially planned to test the area along the length of the stock but was modified as the potential of areas farther away from the pluton was realized. As a.result of the 1980 program numerous veins have been discovered in Dublin

Creek and an occurence has been noted on the north side of Tin Dome. West of Haggart Creek gold and silver-bearing veins occur in metasediments where no granitic rocks are observed.

Summary of the 1980 Fieldwork (see Figures 9 to 14)
The 1980 fieldwork program was designed to test a zone parallel to, and with 350 metres (1,150 feet) of the Dublin Gulch stock in an area north of the stock, east of Suttle Gulch and west of Carscallen Gulch. To explore this zone a series of long parallel trenches was proposed to cut across the entire width of the zone at widely spaced intervals along the trend of the zone. The program was designed to test both known showings and unexplored areas within the zone. D-7G Bulldozer trenching was conducted in conjunction with geological mapping and sampling.

Early exploration was conducted in the Creek Zone West Fissure which is situated in Dublin Gulch at the mouth of Suttle Pup. Nine bulldozer trenches were cut in the bottom of Dublin Gulch from which approximately 4,320 cubic metres (5,650 cubic yards) of material was moved. In addition to these bulldozer trenches, Canada Tungsten Mining Corporation Ltd.'s placer mining operations moved approximately 19,000 cubic metres (25,000 cubic yards) of gravel and loose rock to produce two bedrock exposures measuring 9,030 square metres (10,800 square yards) and 1,880 square metres $(2,250$ square yards) using two 30 cubic yard caterpillar scrapers and two caterpillar $D-8 K$ bulldozers. Details of these excavations are shown in table forming Appendix I of this report. Most of the exposures in the Creek Zone have been mapped at a metric scale of 1:200. A total of 119 samples were collected and assayed for gold and silver of which 105 were assayed for antimony, 103 assayed for lead, 12 for tin and 1 for copper. To determine that no elements of economic significance were overlooked three specimens were submitted for 20 element semi-quantitative spectrographic analysis.

D-7G bulldozer trenching began in mid-June on the ridge between Olive Gulch and Stewart Gulch where the numerous quartz-arsenopyrite-scorodite showings of the stewart and Catto area occur. Several old bulldozer trenches were re-excavated and several new trenches were cut to form a continuous line of trenches across the zone from the granodiorite contact to the access road south of Dublin creek. A number of veins were uncovered in these trenches and upon mapping and sampling the exposures the discontinuous nature of the veins was apparent and it was realized that widely
spaced trenches along the trends of the zone would not adequately assess the economic potential of the area. The concept of continuous lines of trenches across the zone was maintained but additional trenching between lines was necessary for thorough evaluation of the area.

The ridge between Olive and Stewart Gulches was known to be well mineralized and was chosen for a detailed examination. This area referred to as the old stewart and catto group, hosts three major underground developments and at least two smaller adits. In this area at least 2,515 metres (2,750 yards) of bulldozer trenching was conducted in 30 trenches. A total volume of 28,806 cubic yards was excavated. From those trenches 194 samples were collected of which 89 were assayed for gold and silver, 4 of these assayed for lead and zinc and 3 assayed for antimony and 105 were analysed geochemically for gold.

When areas of deep bedrock weathering were encountered during bulldozer trenching on the Stewart and Catto ground, the question of gold enrichment or depletion in the weathered material arose. It was recognized that to properly assess the gold content of the veins fresh material must be obtained for chemical analysis. A deep trenching program using an excavator was proposed and, shortly after, a John Deere 690 excavator was contracted for a two week trial. The program was initiated on July 28,1980 and continued until August 12, 1980. During this period 28 trenches were excavated for a total volume of 3,308 cubic metres (4,326 cubic yards). These trenches provided three dimensional exposures of the vein system for geological mapping in excavations both across the trend of the veins and along strike. Depths of 6 to 7 metres (20 to 23 feet) below surface were usual and where necessary depths in excess of 10 metres (33 feet) were obtained by staging. These depths were easily obtained where bedrock was either fractured, weathered or both. The excavator proved to be a very useful sampling tool and provided large volumes of vein material for sampling. A total of 252 samples were collected and assayed for gold and silver of which 21 were assayed for lead, 16 assayed for $z i n c$ and 12 for antimony. To complete exploration in this area, part of the Aurum adit on the Victoria Vein was de-iced and 62 samples were collected. The sample array used was to collect a separate hanging wall, good footwall and vein sample at each 3 metre (lo foot) interval along the drift. All samples were assayed for gold and silver.

A total of 18 bulldozer trenches were cut on the ridge between Stewart Gulch and Eagle Pup. The 964 metres (1,054 yards) of offset trenches expose a continuous section of bedrock down the crest of the ridge from the old Blue Lead shaft to the access road on the south side of the Dublin Creek. The volume of material excava ted totalled 10,185 cubic metres (13,321 cubic yards). Sixteen (16) samples were collected and assayed for gold and silver.

On the north side of the West Potato Hill two quartz-arseno-pyrite-scorodite veins were located and trenched. In the past exploration adits were driven on both veins but these are now caved. Three trenches were cut for a total length of 190 metres (208 yards) and a total volume of 1,026 cubic metres (1,342 cubic yards). Samples were collected at 3 metre intervals along the vein in trench PGT-1 and of both the hangingwall and footwall material at each site. A total of 46 samples were collected and assayed for gold and silver.

The remaining work performed on the gold-quartz system consisted of prospecting and mapping near the old Eagle showing and in the vicinity of Suttle and Platinum Gulches. Five samples were collected near the old Eagle workings and assayed for gold and silver. These samples confirmed the presence of significant vein structures in this area.

Results
In the area east of Haggart Creek more than 50 veins or float occurrences have been discovered. Twenty-nine of these showings are considered to be significant, of which 25 are veins and 4 are float occurrences. The following is a list of the significant veins and float occurrences and their locations. The distribution of these showings is illustrated on the detailed Geological Compilation maps, Figures 5-6, Index - Trenches and Vein Structures, Figure 9 - 10 and Gold Trench and Geology maps of the Stewart-Catto Area, Figures 11 - 14 .

TABLE 1

DUBLIN GULCH GOLD-QUARTZ VEIN-FISSURE SYSTEM

Vein or Occurrence

1. Creek Zone West Fissure
2. Creek Zone East Fissure
3. Eagle Vein
4. Scarp Vein
5. Henderson Vein
6. Blue Lead Shaft Vein
7. Blue Vein
8. Stewart Vein
9. No. 15 Vein
10. Cabin Vein
11. Klippert Vein
12. No. 45 Vein
13. No. 5 Structure

Location

Dublin Creek at the mouth of Suttle Gulch.

Dublin Creek 150 metres (492 feet) upstream from Eagle Pup.
Ridge west of Eagle Pup.
Ridge west of Eagle Pup, 100 metres (328 feet) north of the Eagle shafts
Ridge west of Stewart Gulch, 100 metres (328 feet) south of access road (Trenches GTR-48 to GTR-50).
Ridge west of Stewart Gulch, 80 metres (262 feet) south of granodiorite stock-metasediment contact.

Fifty metres south of the Blue Lead shaft.

West side of Stewart Gulch at L36+800E and $11+075 \mathrm{~N}$.

East side of Stewart Gulch in trench GTR-15 at L37+000E and $11+125 N$.

East side of Stewart Gulch in Beaver Adit and in trench GTR-4.

Ridge east of Stewart Gulch in trenches GTR-8 and in GTR-9.
Ridge east of Stewart Gulch in trench GTR-45 at L37+325E and $11+019 \mathrm{~N}$.

Ridge east of Stewart Gulch in trenches GTR-5, GTR-5W, GTR-16 and GTR-17.

Vein or Occurrence
14. No. 17 West Vein
15. No. 24 Vein
16. No. 23 Vein
17. Victoria Vein
18. Aurum No. 2 Vein
19. Catto Vein
20. Green Vein
21. Olive Vein
22. Shamrock Vein
23. Carscallen Vein
24. C.B. No. 1 Vein
25. C.B. NO. 2 Vein
26. Tin Dome Occurrence
27. Kuzmiski Occurrence

Location

Trenches GET-17W, GET-43 and GET-44, 25 metres (82 feet) south of NO. 5 Structure.
Ridge between Olive and Stewart Gulches in trench GTR-24, 50 metres (l60 feet) west of Aurum Adit.
Seventy-five metres (240 feet) south of Aurum Adit in trench GTR-23, ten metres (33 feet) from the south end.
Aurum Adit 27 metres from the portal and in trenches GTR-3, GTR-23 and GTR-25.
Aurum Adit, 5 metres (16 feet) south of Victoria Vein.
GTR-2, 100 metres (328 feet) south of Aurum Adit portal.
Olive Gulch, 20 metres west of the Creek at L37+600E and $10+880 \mathrm{~N}$.
West side of Olive Gulch near L37+900E and $10+975 \mathrm{~N}$.
On the old Carscallen Claim 15 metre (49 feet) north of Dublin Creek near L38+650E and $11+050 \mathrm{~N}$.

On the old Carscallen claim at L38+650E and ll+100N.
North side of West Potato Hill in trench PGT-1.
North side of West Potato Hill in trench PGT-2.
North side of T in Dome near the summit.
Dublin Creek, 100 metres (328 feet) upstream from the Holoway placer workings.

Creek Zone West Fissure - Looking southwest. Main showing is 20 metres (66 feet) to left of photo. $\mathrm{L} 35+367 \mathrm{E}-12+100 \mathrm{~N}$ showing is located in centre of photo. Note iron oxide staining.

Creek Zone West Fissure. Caterpillar $D-8 K$ and 30 cubic yard Caterpillar scrapers. View looking southwest.

Vein or Occurrence
28. JM Occurrence
29. Road Occurrence

Location
On the Potato Hills access road, south of Dublin Creek upstream from the mouth of Olive Gulch.

On the Potato Hills access road, 200 metres (656 feet) south of the Olive Vein showing.

CREEK ZONE WEST FISSURE (See Figure 9 general, 37-38 detail)

The Creek Zone West Fissure hosts a number of pyritearsenopyrite showings which occur sporadically over 175 metres (574 feet) in the south fork of Dublin Creek. The occurrences crop out in the creek bed exposed by recent placer mining and are centred at the confluence of Suttle Pup approximately 500 metres (1,640 feet) downstream from the Bema Industries Itd. camp. There appears to be no record of the occurrences prior to their discovery in August of 1979.

Pyrite and arsenopyrite as well as minor amounts of sphalerite and chalcopyrite occur as masses and disseminations in a north 70° east-trending shear zone which ranges to 60 metres wide. Rocks within this zone consist of interbedded phyllite and quartzite with very minor limestone which strike northeasterly. Phyllite is grey to black in colour and is commonly highly contorted. Minor fold structures believed to be drag folds are common in the exposed bedrock. Quartzite is light grey to black and often contains up to 10% disseminated pyrite and euhedral ఓrsenopyrite. Individual units to 1 metre thick are present and comprise about l5\% of the section. It is usually fine grained and is sometimes bleached showing evidence of hydrothermal activity. One horizon of black micritic limestone is present and occurs near the top of the section in the northwest portion of the area.

Crosscutting the stratigraphy at a low oblique angle is a pervasive shear foliation which forms clay gouge zones. These zones range up to 7 metres in width and consist of soft grey-blue clay with phyllite fragments. Some sections contain irregular pods of massive pyrite with arsenopyrite. Where the gouge is
eroded blocks of massive sulphide are found in the creek bed. Large blocks found indicate that sulphide pods up to 60 centimetres wide occur in this shear zone. These sulphides plus the minor amount of disseminated sulphide present weather to create a widespread orange limonite stain. In addition white crusts of sulphate occur on surface throughout the zone.

There are two major showings in the Creek Zone West, one discovered in 1979 at $35+490 \mathrm{E}$ and $12+056 \mathrm{~N}$ and the other discovered during 1980 at $35+367 \mathrm{E}$ and $12+100 \mathrm{~N}$. The material at $35+490 \mathrm{E}$ and $12+056 \mathrm{~N}$ consists of massive pyrite with arsenopyrite and minor sphalerite and chalcopyrite. The sulphide occurs for 15 metres in a gouge zone which has a strike length of at least 45 metres and is over 7 metres wide. Six grab samples of the material have been collected from an area in which the gouge zone crops out in the south bank of the creek. Assay values for gold range from 0.126 ounces per ton to 0.474 ounces per ton. Silver values from these same samples range from 1.00 ounce per ton to 5.88 ounces per ton.

The second significant occurrence lies 125 metres to the west at $35+367 E$ and $12+100 \mathrm{~N}$ and consists of a narrow gouge zone which contains coarse euhedral pyrite cubes cemented by fine grained arsenopyrite. The zone is 1 metre wide and cuts through sulphide rich, grey, foliated quartzite. Six grab samples collected from this zone gave gold values of 0.094 ounces per ton to 0.156 ounces per ton.

In addition to the 12 analyses mentioned above another 101 grab and channel samples were collected. Most of the samples were 1 metre channel samples but samples across widths of up to 7 metres were also collected. The remaining samples were grab samples of which three were submitted for a 20 element, semi-quantitative, spectrographic analysis. The results of these samples are listed on the Rock Chip Sample Data forms in Appendix IX of this report. Of the samples submitted 13 contained more than 0.100 ounces of gold per ton and all but one of these samples are intimately associated with sulphide material. The Creek Zone West is the largest structure discovered to date east of Haggart Creek. The potential for the zone to host a massive sulphide lode cannot be discounted and further work is definitely warranted.

CREEK ZONE EAST FISSURE (See Figure 9 general, 39 detail)

Massive pyrite, disseminated pyrite and arsenopyrite occur in a shear zone in the south fork of Dublin Creek 150 metres upstream from the confluence of Eagle Pup. This position is at L36+100E and $12+000 \mathrm{~N}$ on the cut-line grid, approximately 150 metres southeast of the Bema Industries Ltd. camp. Recent placer mining operations have exposed a strip of bedrock measuring 80 metres by 45 metres. The bedrock is strongly weathered and an orange limonitic stain covers the entire area.

The geology of the area consists of a northeast striking section of phyllite and quartzite which is cut obliquely by a mineralized shear zone up to 5 metres wide. The lowest unit is a silver phyllite which hosts a 5 metre wide, northeast trending feldspar-biotite porphyry dyke. The phyllite unit is overlain by a thin unit of black graphitic phyllite in which the mineralized portion of the shear zone is localized. The graphitic unit is in turn overlain by limonitic, buff to white bleached quartzite.

Mineralization in the shear zone occurs along a northeast trend for over 35 metres. Grey pyritic gouge 30 centimetres wide occurs on the southwest end of the structure and trends northeasterly for approximately 10 metres. On the east end of the zone, pyrite and arsenopyrite occur as fracture fillings and as disseminations in quartzite. Mineralization occurs discontinuously over widths up to 3.5 metres. Bulldozer trenching to the northeast failed to locate a mineralized portion of the zone.

Eleven grab and chip samples were collected from this area and were assayed for silver and gold. Of these, two were assayed for antimony and one for copper. Gold values of 0.220 ounces per ton and 0.232 ounces per ton were obtained from pyritic gouge, All other samples contained little gold and gave values of less than 0.100 ounces of gold per ton. Silver values of 1.12 ounces per ton and 1.13 ounces per ton for the pyritic gouge were received but all other values were 0.30 ounces per ton or less.

The Creek Zone East Fissure is an extension of the large Creek Zone linear and is on trend with the Creek Zone West Fissure. The presence of massive sulphides is encouraging and further exploration is warranted. A proposed program for work in 1981 is outlined in Recommendations section of this report.

Trench GET-9 and GET-9E. Klippert Vein. Vein consists of poorly developed mineralized fracture zone.

EAGLE VEIN (See Figure 9)

The Eagle Vein is located on the flat-topped ridge above and to the west of Eable Pup, 45 metres east of $L 35+800 \mathrm{E}$ and $10+800 \mathrm{~N}$. The vein trends down the west slope of Eagle Gulch and has been traced along strike for approximately 50 metres in a series of trenches, shafts and an adit. The area was mapped in detail in 1979 and was only briefly examined in 1980.

The showings consist of banded quartz-scorodite-arsenopyrite vein float which occurs in shaft and adit dumps and in hand and bulldozer trenches. Material collected near the westernmost shaft in 1979 assayed 1.010 ounces of gold per ton and indicated a vein width of at least 30 centimetres. Three grab samples were collected from the Eagle Vein shaft in 1980 and were assayed for gold and silver. The gold values were $1.142,1.970$ and 2.060 ounces per ton and silver values were $0.40,0.90$ and 0.52 ounces per ton. This mineralized vein is significant and warrants investigative trenching.

SCARP VEIN (See Figure 9)
The Scarp Vein occurs on the ridge on the west side of Eagle Gulch, 100 metres north of the Eagle Vein.

The vein strikes at an azimuth of 060° and dips 80° to the southeast. It consists of banded quartz-scorodite-arsenopyrite and is up to 10 centimetres wide. The area around the vein was mapped and sampled in detail in 1979 and was not resampled during 1980. One sample collected in 1979 assayed 0.196 ounces gold per ton and a trace of silver over 10 centimetres. Follow-up trenching on the vein is warranted and should be conducted in conjunction with work on the Eagle Vein.

HENDERSON VEIN (See Figure 9, 11 general, 34 detail)
The Henderson Vein was discovered by bulldozer trenching in August of 1980 and is the largest vein outside of the Creek Zone discovered by Bema Industries Ltd. Banded quartz-scorodite with arsenopyrite vein material occurs in trenches GTR-48, GTR-49 and GTR-50 low on the crest of the ridge west of Stewart Pup. The vein
is faulted and broken into several sections but generally trends in an east-west direction. Ten chip samples were collected along the vein which varies between 20 centimetres and 75 centimetres in width along strike. Gold assays range from 0.316 ounces per ton to 1.744 ounces per ton. Silver values of 0.52 ounces per ton to 5.51 ounces per ton were obtained. This vein is considered to be very significant and requires further exploration. A program of backhoe trenching to trace the vein and detailed sampling is proposed.

BLUE LEAD SHAFT VEIN (See Figure 9)

As suggested by its name, the Blue Lead Shaft Vein occurs in the shaft on the ridge of the old Blue Lead claim. The shaft is located 80 metres south of the granodiorite-metasediment contact 25 metres east of $L 36+550 E$ at $10+800 \mathrm{~N}$. McLean (1914) reported that the shaft was 25 feet(8.2 metres) deep and that the vein was 2 feet (66 centimetres) wide. A grab sample from the dump beside the shaft collected in 1979 assayed 0.472 ounces of gold per ton and 2.17 ounces of silver per ton. The same dump was grab sampled again in 1980 and the material collected assayed 0.402 ounces of gold per ton and 1.32 ounces of silver per ton. Southwest of the shaft the vein occurs in trench GTR $\overline{0} 30$. Here the vein is 15 centimetres wide and appears to strike 085° and dips 60° to the north. A sample of this vein assayed 0.336 ounces of gold per ton and 0.25 ounces of silver per ton. More trenching is required to delimit this vein structure.

BLUE VEIN (See Figure 9)
The Blue Vein crops out in trench GTR-3l approximately 70 metres northwest of the Blue Lead Shaft. A pale green sgorodite and crushed quartz vein strikes 095° azimuth and dips 80° to the north. The vein is cut off to the west by a fault and terminates against granodiorite. To the east the vein continues for approximately 10 metres before terminating against a fault. The vein is varied in width between 30 and 60 centimetres. In trench GTR-31 a chip sample across 50 centimetres assayed 0.662 ounces of gold per ton and 0.64 ounces of silver per ton. Further trenching is required to trace the vein beyond the faults in both directions.

View of Stewart and Catto Area - Looking northwest from Trench GTR-2

STEWART VEIN (See Figures 9, 1l)

Low on the west side of Stewart Gulch an adit dump 3 metres east of $L 36+300 \mathrm{E}$ at $11+075 \mathrm{~N}$ contains blocks of banded limonitic quartz-scorodite vein rock. The adit is caved which prevents examination but appears to trend at 222° azimuth into the hillside. Float material from the dump indicates that the vein is at least 40 centimetres wide, a sample of this material assayed 0.068 ounces of gold per ton and 0.06 ounces of silver per ton. Permafrost on the slope north of the portal prevented bulldozer access to this vein but excavator trenching may be more easily performed and is recommended.

NO. 15 VEIN (See Figures 9, 11 general, 27 detail)
The No. 15 Vein occurs on the west side of Stewart Gulch in trench GTR-15, 45 metres from the south end. The vein is the largest of sixteen small veins discovered in trench GTR-15 during 1980. The veins occur over a distance of 75 metres and range to 10 centimetres wide. A sample of banded quartz-scorodite with arsenopyrite weathered to hematitic limonite contained 0.064 ounces of gold per ton and 0.04 ounces of silver per ton. Several of the veins in this zone show potential for attaining greater widths along strike. More detailed excavator trenching is required to properly assess the potential of these veins.

THE CABIN VEIN (See Figures 9, 11 general, 14, 18, 29 detail)
The Cabin Vein occurs on the east side of Stewart Gulch at L37+325E and $11+200 \mathrm{~N}$. The vein is exposed in trenches GTR-4, GTR-20 and in the Beaver Adit. On surface, the vein has been traced over 80 metres. Widths of the banded quartz-scorodite-arsenopyrite vein range between 20 and 50 centimetres. Extensive excavator trenching has been conducted on the vein in 5 separate holes and a total volume of 1,622 cubic yards was removed. In the excavator trenches the vein ranges in width between 4 and 50 centimetres. In trench GET-4 the vein has been traced continuously for 41 metres and the hanging wall has been removed to expose the vein to a depth greater than 6 metres below surface. A total of 98 samples were collected from this trench and values range from 0.005 ounces of gold per ton with
1.89 ounces of silver per ton over 30 centimetres to 2.902 ounces of gold per ton and 5.72 ounces of silver per ton over 40 centimetres. A rudimentary reserve calculation for the vein over 54 metres gave 332 tons of material having an average grade of 0.479 ounces of gold per ton and 1.71 ounces of silver per ton.

The Cabin Vein has been explored by underground drifting in the Beaver adit. The vein workings are described in detail in the 1979 report. No further underground work was performed during 1980.

KLIPPERT VEIN (See Figures 9, 11 general, 13, 22, 23 detail)
The Klippert Vein was discovered by bulldozer trenching in trenches GTR-8 and GTR-9 and was later traced in excavator trenches GET-8N, GET-9E2, GET-9E, GET-9 and GET-9W. The vein occurs over a strike length of 32 metres and is up to 40 centimetres wide. It occurs in a limonitic gouge zone and consists of quartz-scoroditearsenopyrite with a minor amount of siderite and galena. Twentythree samples were collected and assayed for gold and silver and of these, 9 were assayed for lead and 4 for $z i n c$. Gold values range from 0.010 ounces per ton to 0.182 ounces per ton and respective silver values from 0.03 ounces per to to 0.76 ounces per ton. Representative samples gave lead and zinc values which ranged to 0.78% and 1.49% respectively. One sample of siderite and galena was assayed and contained 14.50 ounces of silver per ton, 0.020 ounces of gold per ton and 32.9% lead. The vein is unexplored to the west and further excavator trenching is recommended.

No. 45 VEIN (See Figures 9, 11 general, 13, 33 detail)
The No. 45 Vein occurs in trench GTR-45 at L37+325E and $11+019 \mathrm{~N}$. The vein is 10 centimetres wide and consists of limonitic quartz and scorodite with minor arsenopyrite. A sample of this material assayed 1.318 ounces of gold per ton 3.70 ounces of silver per ton. Further exploration trenching is warranted to test for strike length extensions of this vein.

Sampling No. 5 Structure to a depth of greater than 10 metres (33 feet). Rock is intensely weathered.

Trench GET-5W. No. 5 Structure.
Massive arsenopyrite and hematitic limonite. View looking southwest.

NO. 5 STRUCTURE
(See Figures 9, 11 general, 13, 19, 21 detail)
The No. 5 Structure is a structurally complex zone measuring up to 12 metres wide in which at least 3 veins ogcur. It is exposed discontinuously over 60 metres along a 075° azimuth trend and occurs in bulldozer and excavator trenches GTR-7W, E, 5W, 5, 16W, 16 and GTR-17 and GET-5W, 5, 16 and GET-17. The zone is dissected into several offset sections by north and northeast trending faults. In trench GTR-16, veins indicate fault offsets with right lateral and vertical displacement where rock east of the fault is downdropped.

The largest vein structure in the zone occurs in trench GET-5. A deeply weathered quartz-scorodite vein with minor siderite jamesonite and arsenopyrite; more than a metre wide is exposed. The vein has been trenched to more than 10 metres below surface but only strongly weathered sample material was recovered. Although strongly weathered gold values from this material were encouraging and ranged 0.302 ounces per ton to 0.524 ounces per ton. Silver values in this material were abnormally high for this structure and ranged from 2.03 ounces per ton to 10.18 ounces per ton.

A total of 38 sampls were collected from the No. 5 Structure for assay. Gold assay values ranged from 0.054 ounces per ton to 0.970 ounces per ton and averaged 0.264 ounces per ton. Except for the occurrences of jamesonite in a few veins, and the material in GET-5, the silver content of the veins is generally low and averages less than half an ounce per ton. The average width of the samples collected is 27 centimetres.

The No. 5 Structure occurs in one of the few areas of deepweathering encountered on the property. Although the structure appears to be complexly developed at surface it is possible that it will be less deformed in competent host rocks. Further trenching is required to define the structure to outline reserves.

No. 17 WEST VEIN (See Figures 9, 11 general, 13, 19, 28 detail)
The No. 17 West Vein was discovered while exploring for a right lateral offset extension of the No. 5 Structure and may well be an extension of the No. 5 Structure. The No. 17 West Vein occurs in excavator trenches GET-17W, 43 and 44 and may extend into
trenches GTR-17E and 24. Quartz and scorodite with arsenopyrite occurs in irregular fractures in a zone up to a metre wide which generally trends 085° azimuth. Gold assays range from 0.086 ounces per ton to 0.252 ounces per ton and average 0.166 ounces of gold per ton over 9 centimetres. Silver values range from 0.05 ounces per ton to 0.63 ounces per ton and average 0.28 ounces per ton over 9 centimetres. The structure is unexplored to the west and appears to trend beneath the Aurum Adit access road. Continued trenching to the west is required to fully assess this structure.

No. 24 VEIN (See Figures 9, 11 general, 12, 32 detail)
The No. 24 Vein occurs in trench GTR-24 approximately 50 metres west of the Aurum Portals The structure consists of two parallel veins which strike 071^{0} azimuth and are exposed in the trench for over 28 metres. The northerly vein is the most prominent and ranges from 8 to 30 centimetres in width. The second vein is parallel to the first, one metre to the south, and is a 1 to 5 centimetre wide vein. Both veins consist of banded quartzscorodite and arsenopyrite and some sections contain massive arsenopyrite. Gold assay values from the northerly vein range from 0.076 to 1.042 ounces per ton and average 0.207 ounces per ton over an average width of 15 centimetres. Silver values are low and range from 0.02 to 0.30 ounces per ton. One sample from the southerly vein assayed 1.006 ounces of gold per ton and 0.05 ounces of silver per ton. The vein may be related to the No. 17 West Vein but is small and is unlikely to produce a significant tonnage of vein material.

No. 23 VEIN (See Figures 9, 11 general, 12, 31 detail)
The No. 23 Vein is located 10 metres north of the south end of trench GTR-23. The vein strikes approximately parallel to the Catto Vein and lies 20 metres to the north. The mineralization consists of banded quartz-scorodite-arsenopyrite and is 12 centimetres wide. A sample across this width assayed 0.406 ounces of gold per ton and 0.03 ounces of silver per ton. Trenching to the west in trench GTR-25 did not locate the vein but it has not been tested for an eastern extension. It is unlikely that the vein will contain significant gold.

VICTORIA VEIN (See Figures 9, ll general, 12, 15, 17 detail)
The Victoria and Aurum No. 2 veins comprise the most significant structure east of Haggart Creek explored to date. The veins occur in the Aurum Adit and can be projected to surface trenches GET-3, GET-23E, GET-23 and GTR-23. The Victoria Vein which is the most extensively developed vein has been drifted on in the Aurum Adit for 74 metres. On surface the vein can be traced for 42 metres from trench GTR-23 to GET-3. Where exposed the vein consists of banded green quartz-scorodite-arsenopyrite and ranges in width from 9 centimetres to 60 centimetres.

On surface 14 samples have been collected from the vein in the various trenches. The vein ranges in width from 5 to 45 centimetres and averages 19 centimetres. Gold assays from the surface range from 0.209 ounces per ton to 3.560 ounces per ton and silver values ranged from 0.06 ounces per ton to 1.18 ounces per ton. The average grade of the material sampled was 0.981 ounces per ton of gold and 0.42 ounces per ton of silver.

A total of 86 samples were collected from the Victoria Vein in the Aurum Adit. Of the 35 vein samples collected, gold values range from 0.012 ounces per ton to 3.794 ounces per ton. Only samples collected during 1980 were assayed for silver and of these vein samples values range from 0.06 ounces per ton to 1.00 ounces per ton. In 1979 a 25 metre section of the vein from the end of the right drift was calculated to grade 0.335 ounces per ton gold over a width of one metre using 9 vein samples. For the same section a grade of 0.156 ounces per ton of gold, over one metre, was calculated using 13 composite samples. De-icing of the left drift and subsequent sampling in 1980 has led to a computed grade value of 0.743 ounces per ton gold (25.47 grams per ton) for an average width of 28 centimetres along 74 metres of drift. This calculation is based on 35 samples. A similar calculation was conducted for the 24 silver assays collected over 49 metres of de-iced drift. A grade value of 0.39 ounces per ton of silver (13.37 grams per ton) was obtained.

Tonnage calculations were performed for samples from the Victoria Vein drift. The calculations were based on projecting the vein sample information halfway between sample sites which was usually two metres and by projecting the vein vertically one metre above the back of the drift. The value obtained gives tonnage and grade per vertical metre. A value of 59.35 tons per vertical metre grading 0.743 ounces per ton of gold was obtained for the 74 metre
length. Because silver values are only available for the 1980 samples the tonnage value represents only 49 metres of drift. A value of 41.62 tons per vertical metre grading 0.39 ounces per ton of silver was calculated.

Survey data indicates that the back of the drift is 13.7 metres below the surface of trench GTR-3. Projection of the vein conditions in the adit to surface infers 813 tons grading 0.743 ounces per ton of gold. These figures indicate a reserve of 604 ounces of gold. Reasonable projection downdip and along strike could easily infer 1,200 ounces of gold. These estimated do not take into account the possible gold reserves on the nearby Aurum No. 2 vein. Further study is required to consider the economics of mining this vein in conjunction with the Aurum No. 2 and Green Veins. A diamond drill program to test the downdip extension of the veins is imperative.

AURUM NO. 2 VEIN (See Figures 9, 11 general, 12, 15,31 detail)
The Aurum No. 2 Vein is the second major structure encountered in the Aurum crosscut and occurs for 8 metres in the Dog Leg Drift. It is also exposed in trenches GET-25, 23, 23E and 3. In the drift the structure consists of two veins each 10 centimetres wide. From the crosscut where they are separated by 1.1 metres, the veins converge to within 20 centimetres on the face. On surface the structure is much stronger and ranges to 60 centimetres in width in trench GET-3. In trench GET-3 a 60 centimetre wide portion of the vein consists of 20 centimetres of quartz-scorodite-arsenopyrite material adjacent to both the footwall and hanging wall and a 20 centimetre core of limonite-sideritejamesonite vein material.

Twenty-two vein and composite samples were collected from the Dog Leg Drift in 1979 and assayed for gold. Vein samples ranged from 0.035 ounces of gold per ton to 3.540 ounces of gold per ton and an average grade of 0.291 ounces per ton was calculated. No new samples were collected in 1980 but the grade and tonnage of the 1979 sampling was recalculated.

Twenty-three samples were collected from surface exposures of the vein. Gold assay values range from 0.044 to 2.844 ounces per ton and averaged 0.421 ounces per ton over an average width

Trench GET-2. View of Catto Vein (left side) Looking east. Hanging wall removed. Trench is 36 metres (40 yards) long.

```
..../43
```

of 27 centimetres. Silver values were generally low except where concentrations of jamesonite were encountered. Values ranged from 0.17 to 20.78 ounces of silver per ton.

Transit survey data of trenches and the Aurum Adit reveals the relationship between the Victoria vein and the Aurum No. 2 vein. The Aurum No. 2 Vein is an untested parallel structure which, on the ground surface, is stronger than the Victoria Vein. The left drift of the Aurum Adit is on the Victoria vein and not on the Aurum No. 2 vein which when projected to the level of the Aurum Adit should lie approximately 10 metres to the north.

The Aurum No. 2 Vein also projects toward the Green Vein Adit portal and it may in fact be the same vein. The Green Vein Adit portal is 56.8 metres lower than the Aurum Adit portal and continuity of the vein over such a vertical distance greatly enhances the tonnage potential and gold reserves of this structure. Testing by diamond drilling is required to prove this theory.

CATTO VEIN (See Figures 9, 11 general, 12, 16, 20 detail)
The Catto vein is exposed in trench GTR-2 (GET-2) which is on the ridge between Olive and Stewart Gulches above the Aurum Adit. Mineralization has been traced in this trench for over 35 metres along a strike of 090° azimuth. The northern vein section is 40 centimetres wide, and consists of crushed quartz, scorodite and arsenopyrite, crosscut by a network of pale green chalcedony veinlets. The southern vein structure occurs as an offshoot of the northern structure and is up to 12 centimetres wide. It consists of quartz, siderite, jamesonite and limonite in a vein up to 12 centimetres wide. The zone containing these two structures occur primarily in schistose metasediments but cuts granodiorite in the easternmost 6 metres of the trench. To the west in trench GTR-6 the vein splays into a few scattered quartz-scorodite fracture fillings up to a centimetre wide. To the east the vein splays into 5 or more fracture fillings and trends into the granodiorite for an unknown distance.

Fourteen one metre channel samples were collected across the vein in 1979 and analysed geochemically for gold. Six samples contained more than 5,000 parts per billion gold and were, therefore, assayed for gold. The assay values obtained varied from
0.106 to 0.746 ounces of gold per ton across one metre. Follow up excavator trenching and sampling was conducted during 1980 along trench GTR-2. A total of 35 samples were collected and assayed for gold and silver. One of these samples was assayed for lead, antimony and zinc. Gold values from the vein samples ranged from 0.040 to 5.568 ounces per ton. An average grade of 0.885 ounces of gold per ton and 0.56 ounces of silver per ton was obtained from 27 samples from the main vein structure over an average width of 13 centimetres. A sample of siderite-jamesonite assayed 4.22 ounces of silver per ton, 0.080 ounces of gold per ton, 13.50% lead, 7.17% antimony and 1.08% zinc over 12 centimetres.

The exposed portion of the Catto Vein is inferred to contain 60 ounces of gold and could conceivably be inferred to host 100 ounces. The section of the vein which was sampled is wellexposed and is readily accessible to exploitation. Additional reserves may be developed by trenching the veins along strike to the east.

GREEN VEIN (See Figure 9)
The Green Vein occurs in an adit on the west side of Olive Gulch about 550 metres upstream from the point at which the Olive Creek crosses the main access road to the Tungsten-Skarn Zone area. A grab sample for the mine dump material consisted of massive arsenopyrite and pyrite with minor jamesonite in a quartz boxwork and assayed 0.178 ounces of gold per ton and 1.02 ounces of silver per ton. The vein has not been examined during this program but was explored extensively by underground drifting prior to 1914. McLean (1914) states that a 10 foot (3 metre) adit was driven to the vein and then a 180 foot (54.9 metre) drift was driven along it. At the end of the drift a 27 foot (8.2 metres) raise was driven. Two small crosscuts of 20 feet (6.1 metres) and 30 feet (9.1 metres) have been driven off the vein adit. The vein is of varied thickness and ranges from 3 irches (8 centimetres) to 3 feet (91 centimetres). The proximity of this structure to the Victoria and Aurum structures enhances the importance of this vein. It may prove to be a very significant source of gold. The possibility of developing the Green Vein in conjunction with the Victoria and Aurum No. 2 Vein requires consideration. Excavator trenching to open the portal for mapping and sampling access is required.

OLIVE VEIN (See Figure 9)

The Olive Vein occurs on the east side of Olive Gulch about 600 metres upstream from the junction of Olive Creek and the main access road. Quartz-scorodite-arsenopyrite vein material which occurs in a dump near the top of the gulch is presumed to be from the Olive Vein. A grab sample of this material assayed 1.650 ounces of gold per ton and 2.45 ounces of silver per ton. An adit located about halfway down the side of the gulch is reported by McLean (1914) to include 8 feet (2.4 metres) of adit and 60 feet (18.3 metres) of drift. The vein at the end of the drift is reported to be 20 inches (51 centimetres) wide. This structure could host important gold reserves and requires further trenching to define its potential.

SHAMROCK VEIN (See Figure 9)

Quartz-scorodite with massive arsenopyrite and pyrite occurs in a dump 15 metres north of Dublin Creek upstream from the confluence of Carscallen Pup. The dump is adjacent to the portal of a caved adit driven on the Shamrock Vein. A grab sample of the mine dump material indicated that the vein is at least 10 centimetres wide and assayed 0.926 ounces of gold per ton and 2.58 ounces of silver per ton. The vein occurs within a shear zone in granodiorite and is associated with a limonitic bleached alteration envelope. A program of detailed excavator trenching is re-. quired to assess the significance of this vein.

CARSCALLEN VEIN (See Figure 9)

The Carscallen Vein occurs approximately 50 metres northwest of the Shamrock Adit along cutline L38+650E. The adit is now caved but dump material beside the portal indicates a strong vein structure. A grab sample of the material assayed 0.768 ounces of gold per ton and 1.24 ounces of silver per ton. Granodiorite is the host rock and the vein occurs in a strongly altered shear zone. A program of excavator trenching is required to outline gold reserves.

TIN DOME OCCURRENCE (See Figure 9)

Vein float material consisting of quartz-scorodite with minor arsenopyrite occurs on the north side of Tin Dome, north of Dublin Gulch. A grab sample assayed 0.228 ounces of gold per ton, 2.40 ounces of silver per ton and contained less than 0.01% tin. The presence of this vein material demonstrates that gold-bearing quartz veins occur in a zone at least two kilometres wide north of the Dublin Gulch stock. This area is untested and exploration trenching on the north and south slopes of T in Dome is required.

CB NO. 1 VEIN (See Figure 10 general, 35, 36 detail)
In trench PGT-1 on the north side of the West Potato Hill a quartz-scorodite-arsenopyrite vein is exposed for 33 metres. The structure known as the CB No. l Vein was first discovered early this century and was explored by a series of hand trenches and by an adit:

The adit and portal is now caved but the dump lying to the east of trench PGT-1 was examined. In trench PGT-1 quartz-scoroditef arsenopyrite vein material occurs in irregular zones of various lengths and widths. Individual pods of mineralization ranging to one metre wide occur in a 2.5 metre wide vein structure.

A total of 37 samples were collected from the CB No. l structure including vein, footwall and hanging wall samples. Ten samples of vein material indicate an average width of 58 centimetres Gold assays ranged from 0.078 to 0.748 ounces per ton and averaged 0.122 ounces per ton. Silver values ranged from 0.12 to 6.05 ounces per ton and average 1.55 ounces per ton. The remaining 27 samples carry various amounts of gold and silver and indicate that less than 0.100 ounces of gold per ton is present in the altered wall rocks beside the vein. The structure is one of the largest trenched to date and could prove to host significant metal reserves. The vein is open and untested in both strike directions and detailed excavator trenching is required. Early overburden stripping is recommended to permit the permafrost to thaw.

CB NO. 2 VEIN (See Figure 10 general, 35 detail)
The CB No. 2 Vein occurs in trench PGT-2 approximately 325 metres west of the CB No. 1 Vein on the north side of the West Potato Hill. The showing consists of a 5 centimetre quartzscorodite vein which crosscuts a section of biotite-quartzite schist and subskarn. An adit northeast of the occurrence may have been driven on the vein or on a related structure. A grab sample of vein material assayed 0.294 ounces of gold per ton and 0.61 ounces of silver per ton. Trenching in the area is required to evaluate this showing. Permafrost is present in the area and overburden stripping should be conducted as early as possible in the season to allow the permafrost to thaw.

KUZMISKI OCCURRENCE (See Figure 9)

The Kuzmiski occurrence consists of a series of large mineralized float boulders which occur in Dublin Creek 100 metres upstream from the Holoway placer workings. Boulders greater than one metre across host quartz-scorodite-arsenopyrite veins up to 50 centimetres wide. The material appears to be locally derived and indicates the presence of a large, significant vein in the area. Exploratory excavator trenching is required to locate the vein followed by detailed trenching and sampling to develop the structure No assays are available at this time.

JM OCCURRENCES (See Figure 9)

Three quartz-scorodite-arsenopyrite showings are located on the main Potato Hills' access road south of Dublin Creek, 100 metres upstream from the confluence of Olive and Dublin Creeks. Bulldozer work on the road uncovered the veins late in the 1980 field season and no follow up work was conducted. The veins are of varied width and range up to 10 centimetres wide. Detailed excavator trenching is required to evaluate the significance of the veins.
..../48

ROAD OCCURRENCES (See Figure 9)

Several quartz-scorodite-arsenopyrite occurrences are located on the Potato Hills' access road, two hundred metres south of the Olive Vein showing. The veins were discovered during routine bulldozer road maintenance and no follow up trenching has been conducted. Excavator trenching in the area is required to locate and trace these veins and others that may be present in the area.

DIAMOND DRILLING REPORT

ON THE

MAR GOLD PROJECT DUBLIN GULCH, YUKON

NTS: 106D/4, 6402', $135^{\circ} 50^{\prime}$

FOR

(owner)
QUEENSTAKE RESOURCES LTD.
9th Floor, 850 West Hastings Street Vancouver, B.C. V6C 1E1

BY
J.T. SHEARER, M.Sc., FGAC.

TRM ENGINEERING ITD.
701 - 744 West Hastings Street Vancouver, B.C. V6C 1A5

September 18, 1986 Vancouver, B.C.

CONTENTS

PAGE
LIST OF ILLUSTRATIONS AND TABLES i
SUMMARY ii
INTRODUCTION 1
LOCATION AND ACCESS 2
CLAIM STATUS 2
FIELD PROCEDURES 4
HISTORY 6
GEOLOGY - (A) REGIONAL 8

- (B) LOCAL 10
MINERALIZATION AND DRILL RESULTS 12
METALLURGY 31
GEOCHEMISTRY 33
CONCLUSIONS 33
RECOMMENDATIONS 35
REFERENCES 37

APPENDIX	I	STATEMENT OF QUALIFICATIONS
APPENDIX	II	STATEMENT OF COSTS - 1986
APPENDIX	III	LIST OF PERSONNEL
APPENDIX	IV	DIAMOND DRILL CONTRACT
APPENDIX	V	ANALYTICAL PROCEDURES AND
		CERTIFICATES OF ANALYSIS
APPENDIX	VI	LIST OF USEFUL NAMES AND ADDRESSES
APPENDIX	VII	DIAMOND DRILI RECORDS (DRILI LOGS)
		AND PHOTOGRAPHS OF CORE

LIST OF ILLUSTRATIONS AND TABLES

			$\begin{aligned} & \text { FOLLOWING } \\ & \text { PAGE } \end{aligned}$
FIGURE 1	LOCATION MAP	1:5,000,000	- 1
FIGURE 2	DETAIL LOCATION MAP	1:250,000	2
FIGURE 3	CLAIM MAP	1:50,000	3
FIGURE 4	REGIONAL GEOLOGY MAP	1:1,400,000	8
FIGURE 5	LOCAL GEOLOGY AND DRILL HOLE LOCATION	1:2,500	pocket)
FIGURE 6	VERTICAL CROSS-SECTION ALONG 461,445 E DIAMOND DRILL HOLES QRMG-86-001 AND 002	1:250	n pocket)
FIGURE 7	VERTICAL CROSS-SECTION ALONG 461,415 E DIAMOND DRILL HOLES QRMG-86-003 AND 004	1:250	n pocket)
FIGURE 8	TRENCH ON DG53 CLAIM 1986 PLACER MINE	1:250	- 30

TABLES

TABLE 1 SUMMARY LIST OF CLAIMS 3
$\begin{array}{ll}\text { TABLE } 2 & \text { SIGNIFICANT KNOWN } \\ \text { QUARTZ VEIN OCCURRENCES } &\end{array} 14$
TABLE 3 METALLURGICAL RESULTS 31

SUMMARY

(1) The Mar Gold Project at Dublin Gulch is located in central Yukon approximately 40 km northeast of Mayo, centered at 64ㅇ' and 13550', NTS 106D/4.
(2) Access is by gravel road 88.5 km from Mayo. An all weather road (Highway 11) leads to the South McQuesten River turn-off, 39.2 km northeast of Mayo and 9 km southwest of Elsa. The Dublin Gulch camp is 49.35 km from Highway 11 over good gravel and dirt road.
(3) Coarse, placer gold was discovered in Dublin Gulch in 1898. Placer mining has taken place in most years since discovery.
(4) The claims are underlain by highly deformed and metamorphosed Grit Unit of probable Late Proterozoic age which has been intruded by Cretaceous granodiorite.
(5) Numerous, narrow gold-arsenopyrite-pyrite-sphaleritejamesonite vein and shear zones have been found near the intrusive contact within an area 12 km long and 3 km wide.
(6) The veins are mineralogically zoned around the pluton and are probably genetically related to the intrusive event.
(7) Previous work included extensive deep trenching, early underground drifting, detail geological mapping and preliminary metallurgical testing.
(8) The 1986 diamond drill program consisted of 4 holes totalling 2,314 feet (705.32 m) below the Victoria Vein System in the Stewart-Catto Area (Bob \#1 claim).
(9) A short trenching program was conducted on the DG \#53 claim to investigate a new massive pyrite zone found in August 1986. This zone is over 1.5 m wide (true thickness) and averages $0.078 \mathrm{oz} / \mathrm{ton}$ gold.
(10.) In general, the 1986 diamond drilling indicates very low gold values down dip in the Victoria vein system.
(11) Assay results in the Catto and "New Vein" systems are in the 0.2 to $0.3 \mathrm{oz} / \mathrm{ton}$ range for holes 86-1, 2 and 3. However, in Hole No. 86-4 the Catto Vein grades $1.300 \mathrm{oz} / \mathrm{ton}$ gold.
(12) High grade gold values were found in the vicinity of the No. 23 structure in Hole 86-4. This vein assayed $2.177 \mathrm{oz} / \mathrm{t}$ on gold over 0.5 m .
(13) A short diamond drill program is recommended to investigate the variation of gold values in relationship to the north contact of the main granodiorite pluton.
(14) Associated studies should be conducted to define the mode of gold-sulphide composition with emphasis on the degree of surface enrichment. The soil anomaly south of the Eagle Vein should be trenched.

INTRODUCTION

The first drilling program on the narrow but extensive gold-arsenopyrite-quartz veins at Dublin Gulch, Yukon, was completed in August 1986 by Queenstake Resources Ltd. This report discussed the results of this drilling program.

Numerous veins were discovered prior to 1904 as a result of follow-up to rich placer mining in Dublin Gulch and Haggart Creek. Over 450 meters of underground work had been completed on the four principal vein systems before 1930. Although an extensive surface trenching and geological mapping program was carried out in 1980, no drilling was attempted. Considerable diamond drilling was done on the Ray Gulch scheelite skarn deposit in 1979 to 1982.

Previous work indicated that the veins are narrow and range from a few centimeters to a maximum of about one meter. Gold content in the near surface portion of the veins appeared to be fairly irregular but relatively high grade and ranged between $0.5 \mathrm{oz} / \mathrm{ton} \mathrm{Au}$ to several ounces per ton gold.

Objectives of the 1986 diamond drilling were:
(1) test the down-dip continuity of the Catto and Victoria vein systems (Stewart-Catto Area);
(2) test the strike continuity at depth of the Catto and Victoria vein systems (Stewart-Catto Area);
(3) check for possible sampling errors in the surface trenching program (especially surface enrichment of gold values);
(4) generally assess the exploration potential of the numerous other vein systems.

Infrastructure for a small-scale hardrock mining operation is surprisingly well developed at Dublin Gulch. For example, there is a good road access, United Keno Hill Mines Ltd. has a currently unused cyanide circuit at the nearby Elsa concentrator and large scale, public hydroelectric power is available at Mayo Lake.

LOCATION AND ACCESS

The Mar Gold Project is located in central Yukon approximately 40 km northeast of Mayo centered at $64^{\circ} 02$ ' and 135 ${ }^{\circ} 50^{\prime}$, NTS 106D/4, Figure 1. Access is by gravel road 90 km from Mayo. An all-weather road (Highway 11) leads to the South McQuesten River turn-off, 39.2 km northeast of Mayo and 9 km southwest of Elsa. An excellent secondary gravel road of 42.9 km connects Highway 11 to Haggart Creek. The improved dirt road along Haggart Creek to Dublin Gulch is 6.5 km long.

The area is characterized by a plateau at about the 1,400 meter level which is incised by broad, steep walled valleys. Overburden is relatively thin, generally less than 2 meters near the drillsites. Lower elevations are covered with dense spruce forests which thin to buckbrush sub-alpine vegetation at the 1,200 meter level.

CLAIM STATUS

A large number of claims were located in 1980 to cover the periphery of the older claims groups, Figure 3. Most of these peripheral claims are no longer part of the claim group under consideration. A series of complicated, overlapping option agreements have resulted in a transfer of claims between owners. In 1986, Canada Tungsten Mining Corp. assigned its ownership and option agreements to Queenstake Resources Ltd. A one-mile radius clause in the agreement with G. Dickson covers the main Stewart-Catto Area where the 1986 diamond drilling was completed.

A summary of hardrock claims in the Dublin Gulch Area held under option by Queenstake Resources Ltd. is contained in Table 1.

Summary List of Claims

GRANT NUMBERS
YA30048-YA30055 inclusive
YA30088-YA30119 inclusive
YA17996-YA18000 inclusive
YA30001-YA30015 inclusive
YA42987-YA43002 inclusive
YA17781-YA17893 inclusive
YA17794-YA17801 inclusive
YA43005-YA43010 inclusive
YA17802, YA17804
YA17806-YA17813 inclusive
YA17818-YA17825 inclusive
YA42971, YA42974, YA42975
YA43015-YA43018 inclusive
YA63884
YA63886-YA63889 inclusive
YA17826-YA17881 inclusive
YA30120-YA30127 inclusive
YA17882-YA17929 inclusive
YA1393-YA1400

EXPIRY DATE

October 1, 1992
October 1, 1992
October 1, 1992
October 1, 1992
October 1, 1990

October 1, 1992
October 1, 1990
October 1, 1990

October 1, 1992
October 1, 1992
October 1, 1992
September 29, 1990
October 1, 1990
October 1, 1987
October 1, 1987

October 1, 1992
October 1, 1992
October 1, 1990
October 1, 1992
October 1, 1990
October 1, 1990
September 29, 1990
(except Jeff 117Fr, 1986)
September 29, 1990

October 1, 1992
October 5, 1992
September 29, 1990
October 1, 1990
October 1, 1987
October 1, 1986
October 1, 1990
October 1, 1996
October 1, 1986

October 1, 1992
October 1, 1992
October 1, 1992

Table 1 (cont'd)

Summary List of Claims

CLAIM
Smoky 18, 20, 22
Smoky 24, 26, 28
Smoky 30-31
Smoky 32
Smoky 33
Smoky 34
Smoky 35
Smoky 36, 37
Smoky 38-40
Smoky 41-43
Smoky 44, 46, 48, 50
Smoky 58-61
Smoky 61
Smoky 70-72
Smoky 73
Smoky 80-82
Smoky 105Fr-112Fr

GRANT NUMBERS
YA17947, YA17949, YA17951
YA17953, YA17955, YA17957
YA17959-YA17960 inclusive
YA17961
YA17962
YA17963
YA17964
YA17965, YA17966
YA17967-YA17969 inclusive
YA17970-YA17972 inclusive
YA30072, YA30074,
YA17973, YA17975
YA17979-YA17981 inclusive
YA17982
YA17987-YA17989 inclusive YA17990
YA17993-YA17995 inclusive
YA43142-YA43149 inclusive

EXPIRY DATE

October 1, 1992
October 1, 1990
October 1, 1992
October 1, 1990
October 1, 1992
October 1, 1990

$$
\text { TOTAL - } 414
$$

FIELD PROCEDURES

The drillsites were selected on the basis of information gathered initially by Stewart and Catto around 1910 from limited underground drifting and from the extensive trenching program conducted in 1980. No diamond drilling has been done on these gold-quartz veins in the past.

A metric property grid was established in 1978 to facilitate an evaluation program which outlined a large tungsten deposit on the nearby Mar claims at Potato Hills (Ray Gulch). Transit survey points in the Stewart-Catto Area established in 1980 were used to orient the present drillsites. More precise points on iron rods placed later by Underhill \& Underhill Ltd. were noted near the first drillsite. The 1986 diamond drill collars were surveyed by Underhill and Underhill as well. Because the majority of the previous work had been done in metric units, a decision to
continue with metric work for the 1986 diamond drilling was appropriate. The magnetic declination used was $33^{\circ} 24, \mathrm{~W}$. Drillsites were placed in relationship to transit points and distinctive trenches using a Brunton compass and chain. Preparation of drillsites was done with a D8K Caterpillar tractor bulldozer. Exceptionally wet weather during the start of the drill program necessitated the used of a Polaris all-terrain vehicle to transport drill personnel and core along the steep hillside.

All mineralized drill core was split in a shed on the property and one-half sent to Bondar Clegg \& Company Ltd. in Whitehorse for gold and silver determination by fire assay. Analytical procedures are outlined in Appendix V. The splitting shed was locked at all times when splitting was not taking place. Sample intervals were marked in red lumber crayon with the appropriate assay ticket placed at the end of the interval. This assay ticket was left in the core box as an additional record of the exact interval and checked carefully against the prepared bag into which the sample was placed. These procedures assist in eliminating errors in sample preparation.

Drill logs are contained in Appendix VII. Each hole was logged in a comprehensive fashion before splitting, and percentage of core recovery was calculated against the drilling interval, marked on wooden blocks. Final logging was carried out after the core was split. Drilling was done in feet and converted to meters for logging and sampling using the conversion 1 foot $=0.3048$ meters. Core recovery was consistently high except for the initial 3 to 4 meters of most holes and some mineralized zones.

The distinctive elements of the drill logs (Appendix VII) include a visual pattern log with symbols for rock type and other columns for: (1) alteration such as silica, sericite, chlorite and calcite; (2) fracturing; (3) sulfide content; (4) box number; (5) drilling interval; and (6) associated core recovery for each interval. A normal written log accompanies the appropriate part of the visual log. Gold values are shown in the far right column. Colour photographs were taken of all core to supplement the fracture record (on back of drill records) in the event rock mechanic calculations are required.

Each wooden core box was labelled with a metal Dymo strip showing hole number, box number and contained interval. All core from the present program is stored in steel racks at the Upper Placer camp core handling facility, under a metal reinforced roof. The grid coordinates of the core storage building are 459,650 $\mathrm{E}+7,101,090 \mathrm{~N}$.

HISTORY

The following historical summary is taken mainly from Bartlett (1981) and notes from Atled Exploration Management Ltd. (May 1978).

The Dublin Gulch area has a long history of mining activity dating back to the Klondike gold rush days of the last century. Placer gold was discovered in Haggart Creek and Dublin Gulch in 1898 and 1899. The creeks were worked sporadically during the early stages and it wasn't until 1904 that scheelite was identified in the placer deposits. In 1908 Cockfield located scheelite and wolframite in quartz veins and pegmatitic veins at the head of Dublin Gulch. These lode discoveries, coupled with increasing amounts of gold and tungsten being recovered from placer operations, resulted in a flurry of exploration activity for additional lode deposits from 1913 to 1916.

A major vein fissure system containing gold, arsenopyrite and silver was discovered on the north facing slopes of the ridge to the south of Dublin Creek. In $1907 \mathrm{~J} . S$. Stewart and Dr. William Catto located the Victoria claim, the first quartz claim staked in Dublin Gulch. Eventually ten veins were discovered between Stewart and Olive Gulches. Other veins belonging to this vein-fissure system were discovered in Eagle Pup, Suttle Pup, Platinum Pup, Bawn Boy Pup and near the junction of Cascallen Pup and Dublin Creek. One prospect, covered by the Independence claim, was located on the ridge above Gill Gulch, west of Haggart Creek. A number of the veins were reported to extend for more than 61 meters (200 feet) with widths up to 3 meters (10 feet) (McLean, 1914).

The early history of the area is detailed in the reports of the Federal Department of Mines; particularly in reports by T.A. McLean, 1914, and D.D. Cairnes, 1915. Dr. W.E. Cockfield of the Geological Survey of Canada reported many of the above occurrences in 1918.

From 1916 to 1918 Mr . Robert Fisher prospected around the headwaters of Dublin Gulch and located several small lode occurrences of scheelite. Little or no work was conducted on these showings. Cockfield (1928) reported that the
scheelite in the placer deposits was emanating from quartz veins and pegmatitic veins found in and adjacent to the main Dublin Gulch Stock. The veins varied in width from $1 / 8$ of an inch (3 millimeters) to over 5 feet (1.5 meters). Assays range from nil to $10 \% \mathrm{WO}_{3}$.

In 1916 cassiterite was first recognized in placer concentrates. The placer cassiterite appeared to emanate from Ann Gulch and further prospecting led to the discovery of two tin, tourmaline-quartz veins on Tin Dome in 1943. In 1945 Cominco drove a short adit of 56 feet (17 meters) but did not intersect the vein. Gordon Dickson staked 56 mineral claims over the Tin Dome showings. The claims were optioned to Canada Tungsten Mining Corporation Limited in 1978. From 1934 into the 1940's, Taylor, Blyler and others worked the placer deposits at Dublin Gulch.

Harvey Ray, a prospector, located scheelite-bearing float in Ray Gulch in 1942. The source areas were not located until 1943 when a G.S.C. party member located several skarn zones at the headwaters of Ray Gulch and other gulches cutting the steep southerly facing slope. All the gulches lead into Lynx Creek.

Mayo Silver Mines Ltd. located a 2-1/2 foot (76 centimeter) arsenopyrite-quartz vein on the east side of the headwaters of Ray Gulch. Mr. C. Provencher staked the Ray Gulch and Dublin Gulch area in 1968. The ground was optioned to Great Plains Development Ltd. in 1968, Tam Mining in 1969 and Connaught Mines Ltd. from 1969 to 1971. In 1970 Connaught subleased the property to Canex-Placer. In 1970 and 1971 Canex- Placer conducted an extensive soil geochemistry program that extended from Platinum Pup to the Potato Hills and covered the south side of Dublin Gulch.

Canex drilled 2,000 feet (610 meters) and cut 20 bulldozer trenches in the Dublin Gulch-Bawn Boy Pup area. The work was primarily confined to the granodiorite stock with the intent of developing a large, low-grade, scheelite-bearing quartz vein stockwork system. No work was done in the Ray Gulch area.

In March of 1977 Gordon Gutrath of Queenstake Resources Ltd. staked 24 Mar claims in the Ray Gulch drainage area. In October of 1977 Mr. Gutrath staked the Mar 25 to 30 claims which lie adjacent and to the east of the Mar 1-24 claims. Queenstake conducted a small program of geological mapping and sampling of the skarn zones in the Ray Gulch areas. Canada Tungsten Mining Corporation Limited optioned the Mar claims from Queenstake during the summer of 1978. Following ground acquisition by staking in 1978 by Canada Tungsten Mining Corporation Limited, a preliminary field program was conducted. Encouraging results in that year led to an extensive 1979 exploration program involving 2,422 meters (7,946 feet) of $B Q$ core drilling in 21 holes. In 1980 Bema Industries Ltd. was retained to manage the project and a large program including 11,315 meters (37,123 feet) of $N Q$ and $B Q$ core drilling was conducted.

GEOLOGY - (A) REGIONAL

Due to the extensive placer mining activity in the Haggart Creek-Dublin Gulch area and nearby Keno Hill Silver District, the regional geological environment is relatively well known (Figure 4). Short geological investigations were initiated by Keele in 1904 and detail mapping completed by H.S. Bostock around Potato Hills in 1942 and 1943 at a scale of 1 inch $=2,000$ feet. Regional geological compilations were published by Bostock (Map 890A - Mayo, 1946) and Green and Roddick (Map 1282A - Nash Creek, work in 1961 published in 1972). D.J. Tempelman-Kluit completed a M.A.Sc. thesis in 1964 entitled Geology of the Haggart Creek-Dublin Gulch area.

In spite of this large volume of work, the structural and lithological details are obscure due to complex conditions and lack of marker or datable fossil horizons. Large-scale isoclinal folding and possibly overthrusting of Proterozoic units structurally above apparently Lower Paleozoic quartzite has resulted in the juxtaposition of lithologically similar rocks of widely differing age.

The following discussion is largely taken from the above work and Orssich, 1981.

LEGEND

CRTIACROUS
10 cranociuthe quate monrowro in oute
LOwlit chtiaclous it)
9 arabole ond equavarent praont emButh, ciosiseminater entione and pide 'remomil ounnizit' masurey yo

Juliseic
 Imacistic

pritian
4 analamitionthation
-
3 ROAU HiLI Hi OAMA IION
PRECAMIBHIAM
2 GFI UMI' gitly miceserow quertut
Lityithe sctimat
AOE UNKNOWh
1 UPRELSCMSI sthest plymine

| 0 | $12 \quad 24 \quad 36 \quad 48$ | $k m$ |
| :--- | :--- | :--- | :--- | :--- |

QUEENSTAKE RESOURCES LTD.
DUBLIN GULCH AREA MAYO M.D. , YUKON REGIONAL GEOLOGY

Redrawn from D.J Tempolmon-Kluif

The Lower Schist division is the lowest unit in the stratigraphic column in the area and is overlain successively by the Keno Hill Quartzite, Upper Schist division and Grit Unit. The Lower Schist division consists of graphitic phyllite and schist, quartz-sericite phyllite and schist and thinly bedded fine-grained phyllitic quartzite. The Keno Hill Quartzite consists predominantly of a thick-bedded, massive, light grey quartzite with small interbeds of graphitic phyllite and schist. The Upper Schist strongly resembles the Lower Schist but has interbeds of limestone and some thick bedded quartzite resembling that of the Keno Hill Quartzite as well. The Grit Unit is composed of light buff to grey-green, recrystallized gritty quartzite, phyllitic quartzite, green, grey, black and maroon argillite and phyllite and thin bands of limestone.

Green and Roddick found fossiliferous limestone immediately below the Lower Schist. The fossils, examined by E.W. Barber of the Geological Survey of Canada, date the limestone as Permian in age (Green, 1972). Tempelman-Kluit (1970) mapped two formations the length of the Keno HillTombstone River belt, which may be equivalent to the Lower Schist and Keno Hill Quartzite in the Keno Hill area. Stratigraphic evidence in the Tombstone area indicates a Jurassic age for the Lower Schist and a Lower Cretaceous age for the Keno. Hill Quartzite. This Cretaceous age is somewhat controversial. Recent conodont studies for the Keno Hill Quartzite give a preliminary Ordovician date (G. Lynch, pers. comm. 1986).

Granitic intrusions postdate the deformation of the metasediment and Tempelman-Kluit (1970) postulated an early Late-Cretaceous time of emplacement based on K-Ar dating of plutons in the Selwyn Fold Belt. The intrusions are generally granite, quartz monzonite, granodiorite or quartz diorite in composition.

Most of the intrusions occur in the Grit Unit with a few in the Upper Schist and Road River formation and even fewer in the Keno Hill Quartzite and Lower Schist. The stock at Dublin Gulch occurs near the contact between Upper Schist and the Grit Unit and different authors have placed the contact in different places so that on some maps the rocks at Dublin Gulch occur in Upper Schist and on others in the Grit Unit. Based on lithologic descriptions of the two rock units by Green (1971), the rocks at Dublin Gulch are considered to belong to part of the Grit Unit. All the more recent publications place Dublin Gulch in the Grit Unit.

The dominant structures of the northern Ogilvie Mountains are a series of open, east-west trending folds with several minor south-dipping thrust faults. An older period of deformation affected only Precambrian strata. The structure of the southern Ogilvie Mountains, the Keno Hill-Tombstone River belt, is characterized by two major south-dipping thrust faults or fold limbs that repeat Precambrian and younger rocks bringing them up above late Paleozoic and Mesozoic strata (Tempelman-Kluit, 1970; Green and Roddick, 1962). In the Mayo district the thrust faults and the strata between them have been folded and faulted by younger deformation. The "McQueston Anticline", an east-west trending structure, was accompanied by the development of foliation and isoclinal folding. Isoclinal folding is best seen in the Keno Hill Quartzite in which folds from a meter to a few hundred meters between the limbs occur. The axial planes of the folds are usually parallel to the regional strike and dip of the units. A younger period of deformation then folded the already complexly folded and faulted rocks of the Mayo Lake area along a southeast plunging axis to form the Mayo Lake Anticline (Green, 1971; McTaggart, 1960).

Green (1972) suggested the possibility that the McQueston and Mayo Lake Anticlines may have formed in the same phase of deformation in which the thrust faulting occurred by buckling of the thrust sheet.

The rocks in the Keno Hill-Tombstone River belt are relatively unmetamorphosed, with a zone of greenschist metamorphism centered on Keno Hill. The geometry of the McQueston Lake and Mayo Lake anticline with respect to the zone of greenschist metamorphism suggests that the rocks now exposed in the Mayo district originated at greater depth and that they have been brought up to the surface by folding (Tempelman-Kluit, 1970).

GEOLOGY - (B) LOCAL

Detail geological mapping has been completed in the Dublin Gulch area by Bostock (1943), Tempelman-Kluit (1964) and Bartlett (1980), Figure 5.

Common rock types are quartzites, schists and andalusite hornfels and gneisses. Quartzites are generally micaceous and contain interbedded phyllite. The quartz-biotite schist consists of interlaminated biotite and quartz-rich laminations. The biotite laminations are generally about 3 mm thick and the individual grains about 0.05 to 0.1 mm in size. 'The biotite grains show a weak preferred orientation parallel to the laminations. The quartz laminations vary from 0.5 to 3.0 cm in thickness and individual granoblastic quartz grains are about 0.1 to 0.5 mm in size.

The Dublin Gulch Stock is the largest granodiorite body in the area and extends for over 5 kilometers from Platinum Pup to the Potato Hills. In addition to this large stock, numerous other granodiorite bodies occur about the property. West of Haggart Creek several sill-like bodies of medium grained granodiorite are present. In Dublin Gulch, at the junction of Olive Gulch, a small granodiorite intrusion formerly mapped as quartz monzonite occurs. Another small intrusion occurs east of the Potato Hills.

The Dublin Gulch Stock consists of medium to coarse grained, uniformly textured biotite granodiorite. A typical sample contained $40-45 \%$ plagioclase, 20-25\% biotite, 2-3\% hornblende and lesser amounts of several accessory minerals. Locally coarse Na-feldspar phenocrysts give the rock a porphyritic appearance. This rock type has been referred to as a megaporphyry. The intrusion at the junction of Olive and Dublin Gulch is a subsidiary of the main stock and differs only in the amount of alteration. The small intrusion shows zones of strong silica alteration adjacent to closely spaced quartz veined fractures.

Dyke and sill apophyses of the main Dublic Gulch Stock occur both north and south of the intrusion. They are more strongly developed south of the pluton where several large sill and dyke-like sheets cut the stratigraphic section and may control the emplacement of scheelite-bearing skarns.

Two major periods of deformation are recognized in the district. The first resulted in large scale overthrusting and both large and small scale complex folding. It was during this earlier deformation that the pervasive foliation observed throughout the district was developed. This was a period of intense shearing and is probably the time during which the greenstone units were deformed and
developed their characteristic boudinage. A younger period of deformation is characterized by the development of broad open folds such as the Mayo Lake anticline and the subsidiary McQuesten Valley and Lynx Creek anticlines. It is during this period of deformation that the emplacement of the Dublin Gulch Stock occurred.

Several generations of faults may be present in the Dublin Gulch area but these are not well recognized and their development is poorly understood. Tempelman-Kluit (1964) conducted the most thorough structural investigation and located several faults and proposed several others. In addition to these, a major zone of structural weakness trends northeasterly across the property. The Dublin Gulch Stock and the gold-quartz vein-fissure system occur within this zone of weakness. Numerous minor faults possibly related to the emplacement of the granitic rocks are present.

The most prominent faults occur in the creek valleys of the major drainage systems, such as Haggart Creek and Dublin Creek. Similar faults could occur in upper Haggart Creek, Fisher Gulch and in Gill Gulch. Several other important faults are present. The Tin Dome Fault which crosscuts the southeast slope of Tin Dome has been explored for cassiterite. A fault up Ray Gulch which passes between the Potato Hills and the subsidiary West Ray Gulch fault are apparent.

MINERALIZATION AND DRILL RESULTS

The gold-sulfide-quartz vein systems have been studied in the past by surface trenching, detailed geological mapping, shallow underground drifting, preliminary metallurgical testing and mineralography.

The veins are sub-parallel, en echelon gold and silverbearing quartz-arsenopyrite-sphalerite-pyrite and siderite-pyrite-jamesonite-arsenopyrite fissure systems which occur along an overall north 60° east trend between

Secret Creek in the west and the Potato Hills to the east. Veins occur over more than 12 kilometers (7.5 miles) along trend and are exposed over a width of more than 3 kilometers (2.0 miles) west of Haggart Creek and over a width of 2 kilometers (1.25 miles) east of Haggart Creek. A number of quartz-arsenopyrite-pyrite veins have been observed in diamond drill core from the skarn-zone south of the Dublin Gulch Stock. By 1981, more than 50 individual "occurrences" had been discovered ranging in width from several millimeters ($1 / 4$ inch) to in excess of 9 meters (30 feet). The system is divided physically into two distinct areas by Haggart Creek. The area east of Haggart Creek has been prospected for gold in the course of the 1980 trenching and 1986 drilling programs. The area west of Haggart Creek has been explored by Peso Silver Mines Ltd. in search of silver but has not been evaluated for gold. The information presented pertaining to this west area is drawn from the work of D.J. Tempelman-Kluit (1964) and from the limited 1980 assessment program conducted by Bema Industries Ltd.

The geology and mineralogy of the system east of Haggart Creek has been described in detail by Bartlett (1980). Detailed trenching of portions of the zone during 1980 provided valuable information on the nature of the vein system and in some areas has revealed a more complex mineralogy than indicated by the 1979 work. From the 1980 fieldwork it is recognized that the veins occur in a zone more than 2 kilometers (1.25 miles) wide. Veins observed in 1979 were in or sub-parallel to the Dublin Gulch stock and occurred within a few hundred meters of the exposed contact. The 1980 program was initially planned to test the area along the length of the stock but was modified as the potential of areas farther away from the pluton was realized.

All surface and available shallow underground samples are highly oxidized. Payne (1982) describes a typical vein material as follows:

arsenopyrite	$7-10 \%$
scorodite	$45-50$
quartz (early)	$10-12$
pyrite	0.3
limonite-hematite	$3-5$
Mineral X	$2-3$
quartz (late)	$15-20$
cavities	$5-7$
Ti-oxide	trace

The original quartz vein consisted of patches of fine to medium grained arsenopyrite intergrown with medium to coarse grained quartz. The veins have been highly fractured by repeated movement along the vein fissure zone subsequent to deposition of the quartz. Payne (1982) noted one vein-like hairline up to 1 mm wide that has a very fine grained texture suggestive of recrystallization under shearing stress. On oxidation, Payne suggests that:
"Some patches of the rock contain angular fragments of quartz from 0.1-0.2 mm in size surrounded by extremely fine to very fine grained scorodite; the texture resembles a breccia with moderate replacement of quartz by the matrix. Elsewhere, quartz commonly is cut by veinlets of scorodite. These textures suggest a moderate replacement of quartz during weathering, with secondary enrichment of scorodite at the expense of quartz.

Both early and late quartz are cut by scorodite veinlets. The scorodite cutting later quartz veins commonly is coarser grained than normal (average $0.01-0.02 \mathrm{~mm}$) and more granular in texture than earlier scorodite. This data suggests that remobilization and recrystallization of scorodite occurred after emplacement of the later quartz veins.

The rock contains abundant cavities where arsenopyrite has been weathered.

No chalcedonic quartz was seen."

The most significant vein occurrences have been listed by Bartlett (1980) as follows:

Table 2

Significant Gold-Quartz Vein Occurrences

Vein or Occurrence

1. Creek Zone
 West Fissure

2. Creek Zone East Fissure

Location

Dublin Creek at the mouth of Suttle Gulch.

Dublin Creek 150 meters (492
feet) upstream from Eagle Pup.

Table 2 (cont'd)

Significant Gold-Quartz Vein Occurrences

Vein or Occurrence
3. Eagle Vein
4. Scarp Vein
5. Henderson Vein
6. Blue Lead Shaft Vein
7. Blue Vein
8. Stewart Vein
9. No. 15 Vein
10. Cabin Vein
11. Klippert Vein
12. No. 45 Vein
13. No. 5 Structure
14. No. 17 West Vein

Location

Ridge west of Eagle Pup.
Ridge west of Eagle Pup, 100 meters (328 feet) north of the Eagle shafts.

Ridge west of Stewart Gulch, 100 meters (328 feet) south of access road (trenches GTR-48 to GTR-ラ0).

Ridge west of Stewart Gulch, 80 meters (262 feet) south of granodiorite stockmetasediment contact.

Fifty meters south of the Blue Lead shaft.

West side of Stewart Gulch at L36+800E and $11+075 N$.

East side of Stewart Gulch in trench GTR-15 at L37+000E and $11+125 \mathrm{~N}$.

East side of Stewart Gulch in Beaver Adit and in trench GTR-4 .

Ridge east of Stewart Gulch in trenches GTR-8 and GTR-9.

Ridge east of Stewart Gulch in trench GTR-45 at $L 37+325 E$ and $11+019 N$.

Ridge east of Stewart Gulch in trenches GTR-5, GTR-5W, GTR-16 and GTR-17.

Trenches GET-17W, GET-43 and GET-44, 25 meters (82 feet) south of No. 5 Structure.

Table 2 (cont'd)

Significant Gold-Quartz Vein Occurrences

Vein or Occurrence	Location
15. No. 24 Vein	Ridge between Olive and Stewart Gulches in trench GTR-24, 50 meters (160 feet) west of Aurum Adit.
16. No. 23 Vein	75 meters (240 feet) south of Aurum Adit in trench GTR-23, ten meters (33 feet) from the south end.
17. Victoria Vein	Aurum Adit 27 meters from the portal and in trenches GTR-3, GTR-23 and GTR-25.
18. Aurum No. 2 Vein	Aurum Adit, 5 meters (16.feet) south of Victoria Vein.
19. Catto Vein	GTR-2, 100 meters (328 feet) south of Aurum Adit portal.
20. Green Vein	Olive Gulch, 20 meters west of the Creek at $437+600 E$ and $10+880 \mathrm{~N}$.
21. Olive Vein	West side of Olive Gulch near $\mathrm{L} 37+900 \mathrm{E}$ and $10+975 \mathrm{~N}$.
22. Shamrock Vein	On the old Carscallen Claim 15 meters (49 feet) north of Dublin Creek near L38+650E and $11+100 \mathrm{~N}$.
23. Carscallen Vein	On the old Carscallen claim at $\mathrm{L} 38+650 \mathrm{E}$ and $11+100 \mathrm{~N}$.
24. C.B. No. 1 Vein	```North side of West Potato Hill in trench PGT-1.```
25. C.B. No. 2 Vein	North side of West Potato Hill in trench PGT-2.
26. Tin Dom Occurrence	North side of Tin Dome near the summit.

Table 2 (cont'd)
 Significant Gold-Quartz Vein Occurrences

Vein or Occurrence
27. Kuzmiski Occurrence
28. JM Occurrence
29. Road Occurrence

Location

Dublin Creek, 100 meters (328 feet) upstream from the Holoway placer workings.

On the Potato Hills access road, south of Dublin Creek upstream from the mouth of Olive Gulch.

On the Potato Hills access road, 200 meters (656 feet) south of the Olive Vein showing.

Descriptions of the main vein showings are included below (from Bartlett, 1980) for completeness.

Creek Zone West Fissure

The Creek Zone West Fissure hosts a number of pyritearsenopyrite showings which occur sporadically over 175 meters (574 feet) in the south fork of Dublin Creek. The occurrences crop out in the creek bed exposed by 1979 placer mining and are centered at the confluence of Suttle Pup approximately 500 meters (1,640 feet) downstream from the old Upper Placer camp. There appears to be no record of the occurrences prior to their discovery in August of 1979.

Pyrite and arsenopyrite as well as minor amounts of sphalerite and chalcopyrite occur as masses and disseminations in a north 70° east-trending shear zone which ranges to 60 meters wide. Rocks within this zone consist of interbedded phyllite and quartzite with very minor limestone which strike northeasterly. Phyllite is grey to black in colour and is commonly highly contorted. Minor fold structures believed to be drag folds are common in the exposed bedrock. Quartzite is light grey to black and often contains up to 10% disseminated pyrite and euhedral arsenopyrite. Individual units to 1 meter thick are present and comprise about 15% of the section. It is usually fine grained and is sometimes bleached. One
horizon of black micritic limestone is present and occurs near the top of the section in the northwest portion of the area.

Crosscutting the stratigraphy at a low oblique angle is a pervasive shear foliation which forms clay gouge zones. These zones range up to 7 meters in width and consist of soft grey-blue clay with phyllite fragments. Some sections contain irregular pods of massive pyrite with arsenopyrite. Where the gouge is eroded blocks of massive sulphide are found in the creek bed. Large blocks found indicate that sulphide pods up to 60 centimeters wide occur in this shear zone. These sulphides plus the minor amount of disseminated sulphide present weather to create a widespread orange limonite stain. In addition, white crusts of sulphate occur on surface throughout the zone.

There are two major showings in the Creek Zone west, one discovered in 1979 at $35+490 \mathrm{E}$ and $12+056 \mathrm{~N}$ and the other discovered during 1980 at $35+367 \mathrm{E}$ and $12+100 \mathrm{~N}$. The material at $35+490 E$ and $12+056 \mathrm{~N}$ consists of massive pyrite with arsenopyrite and minor sphalerite and chalcopyrite. The sulphide occurs for 15 meters in a gouge zone which has a strike length of at least 45 meters and is over 7 meters wide. Six grab samples of the material have been collected from an area in which the gouge zone crops out in the south bank of the creek. Assay values for gold range from 0.126 ounces per ton to 0.474 ounces per ton. Silver values from these same samples range from 1.00 ounce per ton to 5.88 ounces per ton.

The second significant occurrence lies 125 meters to the west at $35+367 \mathrm{E}$ and $12+100 \mathrm{~N}$ and consists of a narrow gouge zone which contains coarse euhedral pyrite cubes cemented by fine grained arsenopyrite. The zone is 1 meter wide and cuts through sulphide rich, grey, foliated quartzite. Six grab samples collected from this zone gave gold values of 0.094 ounces per ton to 0.156 ounces per ton.

In addition to the 12 analyses mentioned above, another 101 grab and channel samples were collected. Most of the samples were 1 meter channel samples but samples across widths of up to 7 meters were also collected. The remaining samples were grab samples, of which three were submitted for a 20 element, semi-quantitative, spectrographic analysis. Of the samples submitted, 13 contained more than 0.100 ounces of gold per ton and all but one of these samples are intimately associated with sulphide material. The Creek Zone West is the largest structure discovered to date east of Haggart Creek.

Creek Zone East Fissure

Massive pyrite, disseminated pyrite and arsenopyrite occur in a shear zone in the south fork of Dublin Creek 150 meters upstream from the confluence of Eagle Pup. This position is at L36+100E and $12+000 \mathrm{~N}$ on the cut-line grid, approximately 150 meters southeast of the old Upper Placer camp. Placer mining operations in 1980 exposed a strip of bedrock measuring 80 meters by 45 meters. The bedrock is strongly weathered and an orange limonitic stain covers the entire area.

The geology of the area consists of a northeast striking section of phyllite and quartzite which is cut obliquely by a mineralized shear zone up to 5 meters wide. The lowest unit is a silver phyllite which hosts a 5 meter wide, northeast trending feldspar-biotite porphyry dyke. The phyllite unit is overlain by a thin unit of black graphitic phyllite in which the mineralized portion of the shear zone is localized. The graphitic unit is in turn overlain by limonitic, buff to white bleached quartzite.

Mineralization in the shear zone occurs along a northeast trend for over 35 meters. Grey pyritic gouge 30 centimeters wide occurs on the southwest end of the structure and trends northeasterly for approximately 10 meters. On the east end of the zone pyrite and arsenopyrite occur as fracture fillings and as disseminations in quartzite. Mineralization occurs discontinuously over widths up to 3.5 meters. Bulldozer trenching to the northeast failed to locate a mineralized portion of the zone.

Eleven grab and chip samples were collected from this area and were assayed for silver and gold. Of these, two were assayed for antimony and one for copper. Gold values of 0.220 ounces per ton and 0.232 ounces per ton were obtained from pyritic gouge. All other samples contained little gold and gave values of less than 0.100 ounces of gold per ton. Silver values of 1.12 ounces per ton and 1.13 ounces per ton for the pyritic gouge were received but all other values were 0.30 ounces per ton or less.

The Creek Zone East Fissure is an extension of the large Creek Zone linear and is on trend with the Creek Zone West Fissure. The presence of massive sulphides is encouraging and further exploration is warranted.

Eagle Vein

The Eagle Vein is located on the flat-topped ridge above and to the west of Eagle Pup, 45 meters east of $435+800 E$ and $10+800 \mathrm{~N}$. The vein trends down the west slope of Eagle Gulch and has been traced along strike for approximately 50 meters in a series of trenches, shafts and an adit. The area was mapped in detail in 1979 and was only briefly examined in 1980.

The showings consist of banded quartz-scoroditearsenopyrite vein float which occurs in shaft and adit dumps and in hand and bulldozer trenches. Material collected near the westernmost shaft in 1979 assayed 1.010 ounces of gold per ton and indicated a vein width of at least 30 centimeters. Three grab samples were collected from the Eagle Vein shaft in 1980 and were assayed for gold and silver. The gold values were 1.142, 1.970 and 2.060 ounces per ton and silver values were $0.40,0.90$ and 0.52 ounces per ton.

Scarp Vein

The Scarp Vein occurs on the ridge of the west side of Eagle Gulch, 100 meters north of the Eagle Vein.

The vein strikes at an azimuth of 060° and dips 80° to the southeast. It consists of banded quartz-scoroditearsenopyrite and is up to 10 centimeters wide. The area around the vein was mapped and sampled in detail in 1979 and was not resampled during 1980. One sample collected in 1979 assayed 0.196 ounces gold per ton and a trace of silver over 10 centimeters.

Henderson Vein

The Henderson Vein was discovered by bulldozer trenching in August of 1980. Banded quartz-scorodite with arsenopyrite vein material occurs in trenches GTR-48, GTR-49 and GTR-50 low on the crest of the ridge west of Stewart Pup. The vein is faulted and broken into several sections but generally trends in an east-west direction. Ten chip samples were collected along the vein which varies between 20 centimeters and 75 centimeters in width along strike. Gold assays range from 0.316 ounces per ton to 1.744 ounces per ton. Silver values of 0.52 ounces per ton to 5.51 ounces per ton were obtained.

Blue Lead Shaft Vein

The Blue Lead Shaft Vein occurs in the shaft on the ridge of the old Blue Lead claim. The shaft is located 80 meters south of the granodiorite-metasediment contact 25 meters east of $L 36+550 E$ at $10+800 N$. McLean (1914) reported that the shaft was 25 feet (8.2 meters) deep and that the vein was 2 feet (66 centimeters) wide. A grab sample from the dump beside the shaft collected in 1979 assayed 0.472 ounces of gold per ton and 2.17 ounces of silver per ton. The same dump was grab sampled again in 1980 and the material collected assayed 0.402 ounces of gold per ton and 1.32 ounces of silver per ton. Southwest of the shaft the vein occurs in trench GTR-30. Here the vein is 15 centimeters wide and appears to strike 085° and dips 60° to the north. A sample of this vein assayed 0.336 ounces of gold per ton and 0.25 ounces of silver per ton.

Blue Vein

The Blue Vein crops out in trench GTR-31 approximately 70 meters northwest of the Blue Lead Shaft. A pale green scorodite and crushed quartz vein strikes 095° azimuth and dips 80° to the north. The vein is cut off to the west by a fault and appears to terminate against granodiorite. To the east the vein continues for approximately fault. The 10 meters before terminating against a vein is varied in width between 30 and 60 centimeters.
centimeters trench
cessayed 0.662 ounces of gold per ton and 0.64 ounces of silver per ton.

Stewart Vein

Low on the west side of Stewart Gulch an adit dump 3 meters east of $136+800 \mathrm{E}$ at $11+075 \mathrm{~N}$ contains blocks of banded limonitic quartz-scorodite vein rock. The adit is caved but appears to trend at a 222° azimuth into the hillside. Float material from the dump indicates that the vein is at least 40 centimeters wide, a sample of this material assayed 0.068 ounces of gold per ton and 0.06 ounces of silver per ton. Permafrost on the slope north of the portal prevented bulldozer access to this vein.

No. 15 Vein

The No. 15 Vein occurs on the west side of stewart Gulch in trench GTR-15, 45 meters from the south end. The vein is the largest of sixteen small veins discovered in trench GTR-15 during 1980. The veins occur over a distance of 75 meters and range to 10 centimeters wide. A sample of banded quartz-scorodite with arsenopyrite weathered to hematitic limonite contained 0.064 ounces of gold per ton and 0.04 ounces of silver per ton. Several of the veins in this zone show potential for attaining greater widths along strike.

The Cabin Vein

The Cabin Vein occurs on the east side of Stewart Gulch at $L 37+325 \mathrm{E}$ and $11+200 \mathrm{~N}$. The vein is exposed in trenches GTR-4, GTR-20 and in the Beaver Adit. On surface, the vein has been traced over 80 meters. Widths of the banded quartz-scorodite-arsenopyrite vein range between 20 and 50 centimeters. Extensive excavator trenching has been conducted on the vein in 5 separate holes and a total volume of 1,622 cubic yards was removed. In the excavator trenches the vein ranges in width between 4 and 50 centimeters. In trench GET-4 the vein has been traced continuously for 41 meters and the hangingwall has been removed to expose the vein to a depth greater than 6 meters below surface. A total of 98 samples were collected from this trench and values range from 0.005 ounces of gold per ton with 1.89 ounces of silver per ton over 30 centimeters to 2.902 ounces of gold per ton and 5.72 ounces of silver per ton over 40 centimeters.

The Cabin Vein has been explored by underground drifting in the Beaver adit. The vein workings are described in detail in the 1979 report. No further underground work was performed during 1980.

Klippert Vein

The Klippert Vein was discovered by bulldozer trenching in trenches GTR-8 and GTR-9 and was later traced in excavator trenches GET-8N, GET-9E2, GET-9E, GET-9 and GET-9W. The vein occurs over a strike length of 32 meters and is up to 40 centimeters wide. It occurs in a limonitic gouge zone and consists of quartz-scorodite-arsenopyrite with a minor amount of siderite and galena. Twenty-three samples were collected and assayed for gold and silver and of these, 9 were assayed for lead and 4 for zinc. Gold values range from 0.010 ounces per ton to 0.182 ounces per ton and respective silver values from 0.03 ounces per ton to 0.76 ounces per ton. Representative samples gave lead and zinc values which ranged up to $0.78 \% \mathrm{~Pb}$ and $1.49 \% \mathrm{Zn}$. One sample of siderite and galena was assayed and contained 14.50 ounces of silver per ton, 0.020 ounces of gold per ton and 32.9\% lead.

No. 45 Vein

The No. 45 Vein occurs in trench GTR-45 at L37+325E and $11+019 \mathrm{~N}$. The vein is 10 centimeters wide and consists of limonitic quartz and scorodite with minor arsenopyrite. A sample of this material assayed 1.318 ounces of gold per ton and 3.70 ounces of silver per ton.

No. 5 Structure

The No. 5 Structure is a structurally complex zone measuring up to 12 meters wide in which at least 3 veins occur. It is exposed discontinuously over 60 meters along a 075° azimuth trend and occurs in bulldozer and excavator trenches GTR-7W, E, 5W, 5, 16W, 16 and GTR-17 and GET-5W, 5, 16 and GET-17. The zone is dissected into several offset sections by north and northeast trending faults. In trench GTR-16, veins indicate fault offsets with right lateral and vertical displacement where the east side is down-dropped.

The largest vein structure in the zone occurs in trench GET-5. A deeply weathered quartz-scorodite vein with minor siderite, jamesonite and arsenopyrite; more than a meter wide is exposed. The vein has been trenched to more than 10 meters below surface but only strongly weathered sample material was recovered. Although strongly weathered gold values from this material were encouraging and ranged 0.302 ounces per ton to 0.524 ounces per ton. Silver values in this material were abnormally high for this structure and ranged from 2.03 ounces per ton to 10.18 ounces per ton.

A total of 38 samples were collected from the No. 5 Structure for assay. Gold assay values ranged from 0.054 ounces per ton to 0.970 ounces per ton and averaged 0.264 ounces per ton. Except for the occurrences of jamesonite in a few veins, and the material in GET-5, the silver content of the veins is generally low and averages less than half an ounce per ton. The average width of the samples collected is 27 centimeters.

The No. 5 Structure occurs in one of the areas of deepweathering encountered on the property. Although the structure appears to be complexly developed at surface it is possible that it will be less deformed in competent host rocks.

No. 17 West Vein

The No. 17 West Vein was discovered while exploring for a right lateral offset extension of the No. 5 Structure and may well be an extension of the No. 5 Structure. The No. 17 West Vein occurs in excavator trenches GET-17W, 43 and 44 and may extend into trenches GTR-17E and 24. Quartz and scorodite with arsenopyrite occurs in irregular fractures in a zone up to a meter wide which generally trends 085° azimuth. Gold assays range from 0.086 ounces per ton to 0.252 ounces per ton and average 0.166 ounces of gold per ton over 9 centimeters. Silver values range from 0.05 ounces per ton to 0.63 ounces per ton and average 0.28 ounces per ton over 9 centimeters. The structure is unexplored to the west and appears to trend beneath the Aurum Adit access road.

No. 24 Vein

The No. 24 Vein occurs in trench GTR-24 approximately 50 meters west of the Aurum Portal. The structure consists of two parallel veins which strike 071° azimuth and are
exposed in the trench for over 28 meters. The northerly vein is the most prominent and ranges from 8 to 30 centimeters in width. The second vein is parallel to the first, one meter to the south, and is a 1 to 5 centimeter wide vein. Both veins consist of banded quartz-scorodite and arsenopyrite and some sections contain massive arsenopyrite. Gold assay values from the northly vein range from 0.076 to 1.042 ounces per ton and average 0.207 ounces per ton over an average width of 15 centimeters. Silver values are low and range from 0.02 to 0.30 ounces per ton. One sample from the southerly vein assayed 1.006 ounces of gold per ton and 0.05 ounces of silver per ton. The vein may be related to the No. 17 West Vein.

No. 23 Vein

The No. 23 Vein is located 10 meters north of the south end of trench GTR-23. The vein strikes approximately parallel to the Catto Vein and lies 20 meters to the north. The mineralization consists of banded quartz-scoroditearsenopyrite and is 12 centimeters wide. A sample across this width assayed 0.406 ounces of gold per ton and 0.03 ounces of silver per ton. Trenching to the west in trench GTR-25 did not locate the vein but it has not been tested for an eastern extension.

Victoria Vein

The Victoria and Aurum No. 2 veins comprise the most significant structure east of Haggart Creek explored to date. The veins occur in the Aurum Adit and can be projected to surface trenches GET-3, GET-23E, GET-23 and GTR-23. The Victoria Vein, which is the most extensively developed vein, has been drifted on on the Aurum Adit for 74 meters. On surface the vein can be traced for 42 meters from trench GTR-23 to GET-3. Where exposed, the vein consists of banded green quartz-scorodite-arsenopyrite and ranges in width from 9 centimeters to 60 centimeters.

On surface, 14 samples have been collected from the vein in the various trenches. The vein ranges in width from 5 to 45 centimeters and averages 19 centimeters. Gold assays from the surface range from 0.209 ounces per ton to 3.560 ounces per ton and silver values ranged from 0.06 ounces per ton to 1.18 ounces per ton. The average grade of the material sampled was 0.981 ounces per ton of gold and 0.42 ounces per ton of silver.

A total of 86 samples were collected from the Victoria Vein in the Aurum Adit. Of the 35 vein samples collected, gold values range from 0.012 ounces per ton to 3.794 ounces per ton. Only samples collected during 1980 were assayed for silver and of these vein samples values range from 0.06 ounces per ton to 1.00 ounces per ton. In 1979 a 25 meter section of the vein from the end of the right drift was calculated to grade 0.335 ounces per ton gold over a width of one meter using 9 vein samples. For the same section a grade of 0.156 ounces per ton of gold, over one meter, was calculated using 13 composite samples. De-icing of the left drift and subsequent sampling in 1980 has led to a computed grade value of 0.743 ounces per ton gold (25.47 grams per ton) for an average width of 28 centimeters along 74 meters of drift. This calculation is based on 35 samples. A similar calculation was conducted for the 24 silver assays collected over 49 meters of de-iced drift. A grade value of 0.39 ounces per ton of silver (13.37 grams per ton) was obtained.

Aurum No. 2 Vein

The Aurum No. 2 Vein is the second major structure encountered in the Aurum crosscut and occurs for 8 meters in the Dog Leg Drift. It is also exposed in trenches GET-25, 23, 23E and 3. In the drift the structure consists of two veins each 10 centimeters wide. From the crosscut where they are separated by 1.1 meters, the veins converge to within 20 centimeters on the face. On surface the structure is much stronger and ranges to 60 centimeters in width in trench GET-3. In trench GET-3 a 60 centimeter wide portion of the vein consists of 20 centimeters of quartz-scorodite-arsenopyrite material adjacent to both the footwall and hangingwall and a 20 centimeter core of Iimonite-siderite-jamesonite vein material.

Twenty-two vein and composite samples were collected from the Dog Leg Drift in 1979 and assayed for gold. Vein samples ranged from 0.035 ounces of gold per ton to 3.540 ounces of gold per ton and an average grade of 0.291 ounces per ton was calculated.

Twenty-three samples were collected from surface exposures of the vein. Gold assay values range from 0.044 to 2.844 ounces per ton and averaged 0.421 ounces per ton over an average width of 27 centimeters. Silver values were generally low except where concentrations of jamesonite were encountered. Values ranged from 0.17 to 20.78 ounces of silver per ton.

The Aurum No. 2 Vein also projects toward the Green Vein Adit portal and it may in fact be the same vein. The Green Vein Adit portal is 56.8 meters lower than the Aurum Adit portal.

Catto Vein

The Catto Vein is exposed in trench GTR-2 (GET-2) which is on the ridge between Olive and Stewart Gulches above the Aurum Adit. Mineralization has been traced in this trench for over 35 meters along a strike of 090° azimuth. The northern vein section is 40 centimeters wide and consists of crushed quartz, scorodite and arsenopyrite, crosscut by a network of pale green chalcedony veinlets. The southern vein structure occurs as an offshoot of the northern structure and is up to 12 centimeters wide. It consists of quartz, siderite, jamesonite and limonite in a vein up to 12 centimeters wide. The zone containing these two structures occur primarily in schistose metasediments but cuts granodiorite in the easternmost 6 meters of the trench. To the west in trench GTR-6 the vein splays into a few scattered quartz-scorodite fracture fillings up to a centimeter wide. To the east the vein splays into 5 or more fracture fillings and trends into the granodiorite for an unknown distance.

Fourteen one meter channel samples were collected across the vein in 1979. The assay values obtained varied from 0.106 to 0.746 ounces of gold per ton across one meter. Follow up excavator trenching and sampling was conducted during 1980 along trench GTR-2. A total of 35 samples were collected and assayed for gold and silver. One of these samples was assayed for lead, antimony and zinc. Gold values from the vein samples ranged from 0.040 to 5.568 ounces per ton. An average grade of 0.885 ounces of gold per ton and 0.56 ounces of silver per ton was obtained from 27 samples from the main vein structure over an average width of 13 centimeters. A sample of siderite-jamesonite assayed 4.22 ounces of silver per ton, 0.080 ounces of gold per ton, 13.50% lead, 7.17% antimony and 1.08% zinc over 12 centimeters.

Green Vein

The Green Vein occurs in an adit on the west side of olive Gulch about 550 meters upstream from the point at which the Olive Creek crosses the main access road to the TungstenSkarn Zone area. A grab sample for the mine dump material consisted of massive arsenopyrite and pyrite with minor
jamesonite in a quartz boxwork and assayed 0.178 ounces of gold per ton and 1.02 ounces of silver per ton. The vein has not been examined during this program but was explored extensively by underground drifting prior to 1914. McLean (1914) states that a 10 foot (3 meter) adit was driven to the vein and then a 180 foot (54.9 meter) drift was driven along it. At the end of the drift a 27 foot (8.2 meter) raise was driven. Two small crosscuts of 20 feet (6.1 meters) and 30 feet (9.1 meters) have been driven off the vein adit. The vein is of varied thickness and ranges from 3 inches (8 centimeters) to 3 feet (91 centimeters).

Olive Vein

The Olive Vein occurs on the east side of Olive Gulch about 600 meters upstream from the junction of Olive Creek and the main access road. Quartz-scorodite-arsenopyrite vein material which occurs in a dump near the top of the gulch is presumed to be from the Olive Vein. A grab sample of this material assayed 1.650 ounces of gold per ton and 2.45 ounces of silver per ton. An adit located about halfway down the side of the gulch is reported by McLean (1914) to include 8 feet (2.4 meters) of adit and 60 feet (18.3 meters) of drift. The vein at the end of the drift is reported to be 20 inches (51 centimeters) wide.

Shamrock Vein

Quartz-scorodite with massive arsenopyrite and pyrite occurs in a dump 15 meters north of Dublin Creek upstream from the confluence of Carscallen Pup. The dump is adjacent to the portal of a caved adit driven on the Shamrock Vein. A grab sample of the mine dump material indicated that the vein is at least 10 centimeters wide and assayed 0.926 ounces of gold per ton and 2.58 ounces of silver per ton. The vein occurs within a shear zone in granodiorite and is associated with a limonitic bleached alteration envelope.

Carscallen Vein

The Carscallen Vein occurs approximately 50 meters northwest of the Shamrock Adit along cutline L38+650E. The adit is now caved but dump material beside the portal indicates a strong vein structure. A grab sample of the material assayed 0.768 ounces of gold per ton and 1.24 ounces of silver per ton. Granodiorite is the host rock and the vein occurs in a strongly altered shear zone.

Tin Dome Occurrence

Vein float material consisting of quartz-scorodite with minor arsenopyrite occurs on the north side of Tin Dome, north of Dublin Gulch. A grab sample assayed 0.228 ounces of gold per ton, 2.40 ounces of silver per ton and contained less than 0.01% tin. The presence of this vein material demonstrates that gold-bearing quartz veins occur in a zone at least two kilometers wide north of the Dublin Gulch stock.

CB No. 1 Vein

In trench PGT-1 on the north side of the West Potato Hill a quartz-scorodite-arsenopyrite vein is exposed for 33 meters. The structure known as the CB No. 1 Vein was first discovered early this century and was explored by a series of hand trenches and by an adit.

The portal is now caved but the dump lying to the east of trench PGT-1 was examined. In trench PGT-1 quartz-scorodite-arsenopyrite vein material occurs in irregular zones of various lengths and widths. Individual pods of mineralization ranging to one meter wide occur in a 2.5 meter wide vein structure.

A total of 37 samples were collected from the CB No. 1 structure including vein, footwall and hangingwall samples. Ten samples of vein material indicate an average width of 58 centimeters. Gold assays ranged from 0.078 to 0.748 ounces per ton and averaged 0.122 ounces per ton. Silver values ranged from 0.12 to 6.05 ounces per ton and average 1.55 ounces per ton. The remaining 27 samples carry various amounts of gold and silver and indicate that less than 0.100 ounces of gold per ton is present in the altered wall rocks beside the vein.

CB No. 2 Vein

The CB No. 2 Vein occurs in trench PGT-2 approximately 325 meters west of the CB No. 1 Vein on the north side of the West Potato Hill. The showing consists of a 5 centimeter quartz-scorodite vein which crosscuts a section of biotitequartzite schist and subskarn. An adit northeast of the occurrence may have been driven on the vein or on a related structure. A grab sample of vein material assayed 0.294 ounces of gold per ton and 0.61 ounces of silver per ton.

Kuzmiski Occurrence

The Kuzmiski Occurrence consists of a series of large mineralized float boulders which occur in Dublin Creek 100 meters upstream from the Holoway placer workings. Boulders greater than one meter across host quartz-scoroditearsenopyrite veins up to 50 centimeters wide. The material appears to be locally derived and indicates the presence of a large, significant vein in the area.

JM Occurrences

Three quartz-scorodite-arsenopyrite showings are located on the main Potato Hills, access road south of Dublin Creek, 100 meters upstream from the confluence of Olive and Dublin Creeks. Bulldozer work on the road uncovered the veins late in the 1980 field season and no follow-up work was conducted. The veins are of varied width and range up to 10 centimeters wide.

Road Occurrences

Several quartz-scorodite-arsenopyrite occurrences are located on the Potato Hills' access road, 200 meters south of the Olive Vein showing. The veins were discovered during routine bulldozer road maintenance and no follow-up trenching has been conducted.

1986 Placer Mining Pit

Placer mining in 1986 removed approximately 80,000 cubic yards of overburden and auriferous gravels at the mouth of Suttle Creek on DG53 claim over a vertical distance of about 70 meters. Bedrock stripping revealed a significant massive pyrite zone (Figure 8), occupying a major shear zone. Channel samples through the zone averaged 0.078 oz/ton gold.

1986 Diamond Drilling

The results of the 1986 diamond drill program are shown on Figures 6 and 7 (in pocket). Drill logs are contained in Appendix VII.

Major gauge zone cuts off
massive sulfide zone at 27 m .
True thickness of sulfide zone 1.38 m on N.E. Wall 2.15 m on west wall

Changing wall poorly defined due to schist-phyllite interbedding.
SAMPLE 1 Pyritic Altered grono diorite
SAMPLE 2 chip-channel of Massive Pyrite shear zone $23.7 m-24.7 m$
SAMPLE 3 channel of Massive Pyrite $24.7 m$ - 26.3 m
SAMPLE 4 Pyrite breccia developed in foot wall quartzite
Total trench length 33.8 m
Average depth
width
$\begin{array}{ll}\text { Average depth } \\ \text { width } & 1.6 \mathrm{~m}\end{array}$

Sample 1 \# 13684

 $\angle 0.002$ oz/ton Al_{4}

Magnetic declination
sample $20.072 \mathrm{Au} / 0.81 \mathrm{Ag}$ sample 4 0.024 Au/ 0.16 Ag

Gold values in the Victoria Vein system are uniformly low in all drill holes. This suggests surface enrichment of gold for the Victoria Vein. A new vein, perhaps correlative with the surface No. 24 vein, was found to contain abundant sulphides over relatively large widths and has gold values of $0.2 \mathrm{oz} / \mathrm{t}$ on Au or less of < 1 meter.

The down dip extension of the Catto Vein "offshoot" in hole 86-4 assayed $1.300 \mathrm{oz} / \mathrm{ton}$ gold, although 12 meters up dip in hole $86-3$ the vein assayed $0.081 \mathrm{oz} / \mathrm{ton}$ Au. Similarly, the probable down dip extension of the No. 23 vein assayed $2.177 \mathrm{oz} / \mathrm{ton}$ gold in hole $86-4$ over 0.5 meters but 22 meters up dip it assayed $0.301 \mathrm{oz} /$ ton gold over 0.5 meters.

METALLURGY

Only the most preliminary metallurgical tests have been completed to date. A 200 pound representative sample consisting of material from several veins was submitted to Bacon, Donaldson and Associates Ltd. in 1980. Three tests were conducted to measure gold recovery by simple gravity separation (jig concentration), sulphide flotation and standard cyanidation (Vrengde 1981 in Bartlett 1981).

The head sample taken of the composite used for testing gave the following assays:

0.654	$o z / t o n ~$
$2 u$	
2.92	$0 z / t o n ~$
0.024	
2.71	$\% \mathrm{Cu}$
0.039	$\% \mathrm{~Pb}$
1.12	$\% \mathrm{Zn}$
8.83	$\% \mathrm{Sb}$

Calculated head assays from individual test results indicate a somewhat higher gold content (1.31 and 1.55 oz/ton Au). The results are shown in Table 3 .

Table 3

Metallurgical Results Dublin Gulch Gold-Quartz Veins

		Concentrate Grade oz/ton Au			
Test \#	Type	22.96	61.62	Remarks	

Only the most preliminary conclusions can be drawn from these tests as would be expected from an ore with several diverse sulfide phases. Cyanidation will require preconditioning (add lime to lower pH) to reduce cyanide consumption and enhance dissolution kinetics. The bulk flotation test used a very coarse grind and probably the liberated coarse gold was passed directly into the rougher tailings.

Recommendations by Reid (1985) are:
A) size of sample required $60-80 \mathrm{~kg}$;
B) grinding test - to determine mesh of grind for liberation of Au;
C) gravity jig work - recovery of coarse gold; use flotation to scavenge tailing from jig;
D) flotation testwork;
E) cyanidation of flotation concentrates;
F) cyanidation of ground ore - base recovery information;
G) preliminary test for feasibility of arseno-process;
H) mineralogical investigation of metallurgical products to assist in improving recoveries.

These tests should only be undertaken if a future work program indicates substantial tonnage and higher grade gold values than the 1986 drill results.

GEOCHEMISTRY

Soil sampling was conducted over the entire area from Haggart Creek to Potato Hills in 1978 and 1979. Samples were taken at 25 and 50 meter spacings on lines 150 meters apart and analyzed for gold and silver. The known veins give strongly anomalous response, especially Stewart-Catto Area and east to the Shamrock vein.

Apparently little follow-up was undertaken on these soil results during the 1980 trenching. Several anomalous areas should be checked. These are:

1. northwest side of Tin Dome, samples up to 320 ppb Au;
2. very large complex anomaly south (uphill) of Eagle vein (this area apparently is largley unexplored);
3. northwest of Eagle vein near Suttle Pup;
4. central 1979 Ray Gulch grid extension.

The area south of Eagle vein should be trenched in detail.

CONCLUSIONS

Numerous arsenopyrite-quartz veins have been found in the Dublin Gulch Area within a fissure system 12 km long and 3 km wide. They are the source of rich placer deposits in Dublin Gulch and Haggart Creek. The veins occur mainly near the northern, steeply dipping contact of a Cretaceous granodiorite stock. Host rocks commonly are highly deformed micaceous quartzites with minor biotite schist. The quartz veins, in some cases, continue into the granodiorite without apparent change or have developed solely within the intrusive. Over fifty veins and fissure
systems have been found by extensive surface trenching and shallow underground workings. Individual veins vary from a few centimeters to 1.5 meters but sulfide-rich veins greater than 0.6 meters are rare.

At surface, the veins are composed of arsenopyrite, massive scorodite, quartz and minor pyrite and jamesonite. Deep weathering has occurred throughout the area. Scorodite alteration was noted 25 meters below surface in drilhole QRMG-83-003. Assays of surface vein material and specimens collected from the underground workings gave highly variable results but generally range around 0.8-1.0 oz/ton gold for the higher-grade veins. Unfortunately, not enough attention was given to the problem of surface enrichment and general erratic gold values inherent in gold-sulfide systems. This problem is discussed by Bartlett but the only specific action taken was to collect trench samples from greater depth in so-called "fresh rock". Additional polished section work should have been completed on a systematic basis at that time. Results from the 1986 drilling program indicates that the primary gold grades at depth (below the zone of weathering) are in the range of 0.2 to $0.3 \mathrm{oz} / \mathrm{ton}$ gold or less except in the Catto and No. 23 veins near the granodiorite contact. The Catto Vein in Hole 86-4 assayed $1.300 \mathrm{oz} / \mathrm{ton}$ Au over 0.44 m and the No. 23 vein assayed $0.2177 \mathrm{oz} / \mathrm{t}$ on gold over 0.5 m .

The drilling has also shown that the continuity of structure and mineralization is very strong both along strike and down-dip. The distribution of gold is very irregular. There is wider vein development within the "Mylonitic units" than in the micaceous quartzite or biotite-quartz schist.

Vein mineralogy is variable with depth. Arsenopyritedominate assemblages with minor jamesonite grade into pyrite-dominate zones with associated sphalerite and jamesonite.

RECOMMENDATIONS

The degree of surface enrichment of gold values in the Stewart-Catto area suggests that many of the surface samplings on other vein systems along the belt may also be enriched. The role of increased gold content in the veins nearer the granodiorite pluton should be tested. Careful attention should be given to collecting large samples to minimze the effect of erratic gold distributions. The narrow width of the veins requires a relatively high gold content. The surface assays were in the required range of gold values to anticipate commercial production in the event of sufficient tonnage being outlined. The 1986 drill program suggests that the potential for defining considerable tonnage of mineralized material is good. However, the gold content is generally too low to consider mining at the presently known vein widths in the Victoria Vein. The degree of surface enrichment should be investigated in detail in the Cabin vein and other vein systems. This can be done by carefully collecting specimens from each vein system and systematically assess the amount of weathering and scorodite content in polished section. The samples from the 1980 trenching program have been saved, both in Vancouver and at Dublin Gulch. A polished section prepared from the reject portion of the assay sample would suffice for this study.

The large soil anomaly above (south) of Eagle vein should be investigated in detail by trenching.

A preliminary 1987 exploration program is outlined on the next page

Proposed 1987 Exploration Budget Mar Gold Project

Program: Investigate South Vein, Trench Eagle Area, Petrography
1,200 feet $N Q$ diamond drilling at $\$ 45$ per foot (all inclusive) $\$ 54,000$
Trenching: South of Eagle Vein
Bulldozer with 100 hours @ $\$ 150$ per hour 15,000
Ripper
Road building, 30 hours @ $\$ 150$ per hour 4,500
Geological Mapping 5,000
Petrography
Sample acquisition from reject portion of1980 trenching program (either Vancouverwarehouse or Bema Camp trailer)500
Polish section preparation, 75 samples @ \$15 1,125
Section Examination and Report 3,000
Contingencies - 15\% 12,469
TOTAL \$ 95,594===== = =
(Mining surface veins on a small scale - extra)Respectfully submitted,保

nearer

J.T. Shearer, M. Sc., FGAC.

REFERENCES

```
Bartlett, S.C. }198
Geology of the Dublin Gulch Gold-Quartz VeinFissure System, Private Report for Canada Tungsten Mining Corp. by Bema Industries Ltd.
```

Bartlett, S.C. 1981 the 1980 Exploration Program, Dublin
Summary of Gulch Gold-Quartz Vein-Fissure System, Private
Report for Canada Tungsten Mining Corp. by Bema
Industries Ltd.

Bostock, H.S. 1933
The Mining Industry of Yukon, 1932; in Yukon Territory (compiled by Bostock, 1957); Geol. Surv. Can., Mem. 284, p. 632.

```
Bostock, H.S. 1943
    The Mining Industry of Yukon, 1933; in Yukon
    Territory (compiled by Bostock, 1957); Geol. Surv.
    Can., Mem. 284, p. 644.
```

Bostock,	H.S. Yukon Territory, Selected Field Reports of the Geol. Surv. Can., 1898 to $1933 ; ~ G e o l . ~ S u r v . ~ C a n . ~$
Mem. 284.	

Boyle, R.W. 1965
Keno Hill_Galena Hill Lead-Zinc-Silver Deposits,
Yukon Territory; Geol. Surv. Can., Bull. III.
Butler, $\begin{gathered}1981 \\ \text { Mineralographic Study of the Sulphide Minerals of }\end{gathered}$
the Gold Veins, Dublin Gulch, U.B.C. Geology 428
report, December 21, 1981.
Cairnes, D.D. 1916
Mayo Area, Geol. Surv. Can., Sum. Report, 1915; in
Yukon Territory (compiled by Bostock, 1957); Geol.
Surv. Can., Mem. 284.
Cairnes, D.D. 1917
Investigations and Mapping in Yukon Territory, 1916; Geol. Surv. Can., Sum. Report, 1916; in Yukon Territory (compiled by Bostock, 1957); Geol. Surv. Can., Mem. 284.
Cockfield, W.E. 1919
Mayo Area; Geol. Surv. Can., Sum. Report, 1918; in Yukon Territory (compiled by Bostock, 1957); Geol. Surv. Can., Mem. 284.
Findlay, D.C. 1967
The Mineral Industry of Yukon Territory and Southwestern District of Mackenzie, 1966; Geol. Surv. Can., Paper 67-40.
Findlay, D.C. 1967
The Mineral Industry of Yukon Territory and Southwestern District of Mackenzie, 1968; Geol. Surv. Can., Paper 69-55.
Green, L.H. 1971
Geology of Mayo Lake, Scougale Creek and McQueston Lake Map Areas, Yukon Territory; Geol. Surv. Can., Mem. 357.
Green, L.H. 1972
Geology of Nash Creek, Larsen Creek and Dawson Map Areas, Yukon Territory - Operation Ogilvie; Geol. Surv. Can., Mem. 364.
Green, L.H. and Godwin, C.I. 1963Mineral Industry of Yukon Territory andSouthwestern District of Mackenzie, 1962; Geol.Surv. Can., Paper 63-38.
Green, L.H. and Roddick, J.A. 1962
Dawson, Larsen Creek and Nash Creek Map Areas, Yukon Territory; Geol. Surv. Can., Paper 62-7.
Keele, J. 1905The Duncan Creek Mining District; Geol. Surv.Can., Sum. Report, 1904; in Yukon Territory(compiled by Bostock, 1957); Geol. Surv. Can.,Mem. 284.
Keele, J. 1906
The Upper Stewart River Region, Yukon; Geol. Surv. Can., Ann. Report, Vol. XVI, 1904; in Yukon Territory (compiled by Bostock, 1957); Geol. Surv. Can., Mem. 284.
McConnell, R.G. 1905
Report on the Klondike Gold Fields; Geol. Surv. Can., Ann. Report, Vol. XIV, 1901; Geol. Surv. Can., Mem. 284.
McTaggart, K.C. 1960
The Geology of Keno and Galena Hills, Yukon Territory; Geol. Surv. Can., Bull. 58.
Orssich, C.N. 1981Geology of the Dublin Gulch Tungsten SkarnDeposits, Yukon Territory, Unpublished B.Sc.Thesis.
Payne, J. 1982
Vancouver Petrographics 2 page report on one sample for Bema Industries Ltd., May 1982.
Reid, J.B. 1985
Recommended Metallurgical Testwork for Dublin
Gulch Ore, Amax of Canada Ltd. Inter-Office
Memorandum, May 8, 1985 .
Steffler, J.M. 1980Geology, $\mathrm{K}-\mathrm{Ar}$ and $\mathrm{Rb}-\mathrm{Sr}$ Geochronology andChemistry of the Scheelite Dome Tungsten-BearingSkarn Property, Unpublished M.Sc. Thesis.
Tempelman-Kluit, D.J. 1964
Geology of the Haggart Creek-Dublin Gulch Area,Mayo District, Yukon Territory, UnpublishedBMA.Sc. Thesis, University of British Columbia,March 1964.
Tempelman-Kluit, D.J. 1970
Stratigraphy and Structure of the "Keno Hill Quartzite" in Tombstone River-Upper Klondike River Map Areas, Yukon Territory; Geol. Surv. Can.,
Bull. 180.
Wheeler, J.O. 1954A Geological Reconnaissance of the Northern SelwynMountains Region, Yukon and Northwest Territories;Geol. Surv. Can., Paper 53-7.

APPENDIX I
 STATEMENT OF QUALIFICATIONS
 J.T. Shearer, M.Sc., FGAC Mar Gold Project, 1986

STATEMENT OF QUALIFICATIONS

I, John T. Shearer, of the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

1. I graduated in Honours Geology (B .Sc. 1973) from the University of British Columbia and the University of London, Imperial College (M .Sc. 1977).
2. I have practiced my profession as an Exploration Geologist continuously since graduation and have been employed by such mining companies as McIntyre Mines Ltd., J.C. Stephen Explorations Ltd. and Carolin Mines Ltd. I am presently employed by TRM Engineering Ltd.
3. I am a fellow of the Geological Association of Canada. I am also a member of the Canadian Institute of Mining and Metallurgy, the Geological Society of London and the Mineralogical Association of Canada.
4. I do not have any interest in the Queenstake controlled claims in the Dublin Gulch area or in the securities of Queenstake Resources Ltd. nor do I expect to receive any such interest in the future.
5. I have personally conducted detail geological mapping and logged all diamond core on the Mar Gold Project at Dublin Gulch, Yukon, between August 9 and August 29, 1986. This report is an interpretation of the data obtained.

Vancouver, B.C.
September 18, 1986

APPENDIX II

STATEMENT OF FIELD COSTS MAR GOLD PROJECT, 1986

Fieldwork completed between August 9 and August 29, 1986

QUEENSTAKE RESOURCES LTD.
INTERIM DIAMOND DRILUING COSTS
DUBLIN GULCH MAR GOID PROJECT Cumulative Totals up to August 1986

* To be charged later by Canada Tungsten Corp.

1. Consulting (TRM) Wages (Daily Fee)

August $8-13$	JS \& LS	$\$$	$1,860.00$
August $14-29$	JS \& IS		$4,960.00$
Sept., 3 days report preparation © $\$ 230$	690.00		

2. Truck, 4×4 with canopy

August 8-29-22 days @ \$40
3.* Bulldozer

Initial 19 hrs (0) $\$ 150$ per hr
First hole 7 hrs @ $\$ 150$ per hr Demob \& moves 13 hrs @ $\$ 150$ per hr NOU Can Tung, 5.5 hrs @ $\$ 120$ per hr
4. Drill Mobilization, August 14 field cost

34 man-hours © $\$ 29$
5. Contract Diamond Drilling,

2,270 ft. © \$19.20
43,584.00
6.* Food and Camp, August 9-25,

14 days $\times 4=48,21 \times 2=42$
97 man-days (2) $\$ 50$
4,850.00
7. Assays - 436 x $\$ 15.25$ approx. 6,649.00
bags for samples - 500 © \$0.06 130.00
8. Standby - None anticipated
9. Field Costs, moves > 10 man-hours,
reaming broken ground, etc.
10. Casing @ \$22 per foot, 4 holes, 34 feet
551.00
11. Acid Tests, 1 free \& 1 paid per hole
© field cost (1 hour each)
680.00
232.00
12.* Gasoline, 293.7 litres © $\$ 0.532 / 1 i t r e$
156.41
13.* Diesel (for drill), 2864 litres @ \$0.5020/I

1,437.73
14. Drill Demobilization, 30 man-hours © $\$ 29$
15.* Core Boxes, 130 x $\$ 8.50$
16. Daily travelling time, no charge anticipated
870.00
17. Materials Consumed,

4 casing shoes, casing 400	$2,532.88$
GS 5508.5 pails @ $\$ 120$	$1,020.00$
Propane	276.00
reight, 1.65 per kg Trans North	$1,000.00$
Travel (in lieu of mob/demob)	450.00
eproduction, 6 copies of report	120.00

18. Freight, 1.65 per $k g$ Trans North

1,130.50

4 casing shoes, casing $400 \quad 2,532.88$
GS 5508.5 pails @ $\$ 120$
1,020.00
276.00
18. JS Travel (in lieu of mob/demob)
450.00
20. Reproduction, 6 copies of report 120.00
21. Gasoline, Whitehorse-Dublin return (with receipts)
22. Miscellaneous, Telephone, etc. (approx.)
23. All-Terrain vehicle, $325+65$ day
24. Can Tung hours, 55 hrs © \$25/hour
150.00
25. Underhill surveying, 2 hrs @ $\$ 100 /$ hour

Interim Sub-Total
$\$ 78,242.44$
26. Trenching (on bedrock in Placer Pit) - Extra approximately $\$ 400$ plus bedrock stripping.

APPENDIX III

LIST OF PERSONNEL

MAR GOLD PROJECT, 1986 Dublin Gulch, Mayo Area, Yukon

Fieldwork completed between August 9 and August 29, 1986

APPENDIX III

LIST OF PERSONNEL, MAR GOLD PROJECT

Name	Occupation	Address	Dates Worked on Project
TRM ENGINEERING	LTD.		
J.T. Shearer	Geologist	3832 St. Thomas St. Port Coquitlam, B.C. V3B $2 Z 1$	$\begin{aligned} & \text { August 8-29, } 1986 \\ & \text { Sept. } 5,12,15,1986 \end{aligned}$
L. Shearer	Core Splitter/ Assistant	3832 St. Thomas St. Port Coquitlam, B.C. V3B $2 Z 1$	August 8-29, 1986
CANADA TUNGSTEN	MINING CORP.	P.O. Box 130 Mayo, Yukon YOB 1 MO	
John Clarke	Loader / Cat Operator		August 21, 28, 1986
Bruce Goulx	Loader Operator		August 13
Ted Takacs	Bulldozer		August 10, 11, 14, 1986
Cindy Bunbury	Cook		August 9-29, 1986
E CARON DIAMOND	DRILLING LTD.	7 Roundel Road Whitehorse, Yukon Y13 3H3	
Mitch	Driller/		
McLelland	foreman		August 13-28, 1986
Kelly Mac	Driller		August 13-28, 1986
Brian Scheffield	Helper		August 13-28, 1986
Vic Johnson	Helper		August 13-28, 1986

APPENDIX IV

DIAMOND DRILL CONTRACT
MAR GOLD PROJECT, 1986
with E. Caron Diamond Drilling Ltd.
7 Roundel Road
Whitehorse, Yukon
Y1A 3H3

```
MEMORANDUM OF AGREEMENT MADE THIS 2LST DAY OF Tuny, 1986
BETWEEN: QUEENSTAKE RESOURCES LTD.
    900-850 WEST HASTINGS ST.
    VANCOUVER, B.C.
    V6C 1E1
    Hereinafter called "Company"
AND: E. CARON DIAMOND DRILLING LIMITED,
    7 Roundel Road,
    Whitehorse, Y.T.
    YlA 3H3
    Hereinafter called "Contractor"
```


WITNESSETH: THAT;

WHEREAS, Company is the owner of or is otherwise well entitled to enter upon and explore claims located in the DUBLIN GULCH area of YUKON and,

WHEREAS, Contractor is able to provide the necessary drilling equipment and personnel required by the company.

NOW, THEREFORE, the parties hereto, each in consideration of the promises and agreements of the other, mutually agree as follows:
(1) WORK TO BE DONE: Contractor will diamond drill or cause to be diamond drilled not less than TWO THOUSAND $(2,000)$ feet upon the claims at drill sites to be selected by the company, all subject to the companys right to terminate for non-compliance by the Contractor of the terms and conditions of this agreement.
(2) EQUIPMENT: Contractor agrees to drill all holes with a diesel-driven, skid-mounted drill complete with hydraulic mast, wireline hoist, diesel-driven pumps and all the necessary supplies and spare parts for the wireline drilling operation. The drill will be completely unitized to minimize moving time.
(3) LABOUR: The work under this agreement shall be continued by the Contractor on a twenty-four hour per day, seven days per week basis until completed.
(4) HOLE DIRECTION AND DEPTH: Contractor does not guarantee the direction of the hole beyond the collar nor guarantee to drill any hole to any specified depth. The Contractor will, however, expend every reasonable effort to complete all holes to
the satisfaction of the Company.
(5) HOLE DEPTH AND ANGLE: No drill hole shall be greater than a length of eight hundred (800) feet and dip of all holes shall be fifty (fit degrees or steeper unless otherwise agreed by both parties. Measurements of all holes shall be made from top of the casing. forty-five (45)
(6) SCHEDULE OF RATES: The Company agrees to pay the Contractor for footage drilled and other services performed as follows:
(i) CASING RATES: the price per foot for casing in overburden and/or bedrock shall be $\$ 22.00 / \mathrm{H} . \mathrm{W}$ and $\$ 20.00 / \mathrm{N} . \mathrm{W}$. from to 50 feet in depth. If the cost to the contractor of penetrating overburden andor bedrock below such depth is greater than the above prices, then the company shall pay the contractor at Field Cost for casing in overburden and/or bedrock below such depth.
(ii) FOOTAGE RATES:

From bedrock to 800 feet $\$ 19.20$ per ft. NQ From bedrock to 800 feet $\$ 17.70$ per $f t$. $B Q$
(7) FIELD COST: Any reference to Field Cost in this agreement shall be interpreted as follows: Labour
$\$ 29.00$ per man hour

$$
\neq 55
$$

Drill Rental
$\$ 20.00$ per machine hour
Material Consumed
Cost plus 15\%
(8) SPECIFIC OPERATIONS: Company agrees to pay for the following operations on a Field Cost basis:
(i) Cementing and wedging.
(ii) Drilling of permafrost, cave, broken ground and /or drilling and washing of sand.
(iii) Mud and/or calcium chloride if abnormal ground conditions require treatment with product. Products will be charged at cost plus 15%.
(iv) Removal of casing and associated materials upon completion of drilling on said set-uporitett hole at companys request
(v) Reducing to smaller size hole if ground conditions necessitate such action.
(9) CAVITIES: In the event that permafrost, cavities, loose or caving materials or excessive water flows are encountered of a nature so as to prevent the successful completion of any hole, the Contractor does not, under such conditions, guarantee to drill any hole to any predetermined depth and, in the event that it becomes necessary to abandon any hole, the Company agrees to pay the Contractor for such uncompleted holes at the rates herein specified for all footage completed. However, should the Company request that further work be carried out in the hole beyond this point, then the Contractor shall continue the work in the hole
but such continuing work shall be at Field cost rates.
(10) MOBILIZATION AND PEMOBILIZATION: Mobilization and demobilization of Contractor's drill, and equipment between Whitehorse and property will be at the Contractor's expense. Mobilization and demobilization of Contractor's crew between Whitehorse and the property will be at the Contractor's expense.
(11) MOVING IN AND OUT: Once at access road to property, the Company will be charged $29.0 \overline{0}$ per man hour for all standby, loading, unloading, and moving in to the property and setting up on the first hole. Once the job is completed, the Company will be charged $\$ 29.00$ per man hour for all standby, loading, unloading, tearing down/and moving out to the same point at the completion of the job. Truck usage during loading and unloading will be charged to the company at forty-five (45) dollars per hour.
(12) MOVES: Moving time between drill holes in excess of ten (10) man hours will be charged to the Company at Field Cost. Drill rental will not be charged during moves.
(13) HELICOPTER AND/OR FIXED WING: If required, the Company will supply helicopter and/or fixed wing support for movement of drill and supplies, equipment and drill crew at no cost to the Contractor. Any delays waiting for helicopter and/or fixed wing will be charged to the Company at $\$ 29.00$ per man hour.
(14) TRACTOR: The Company will supply a tractor for trenching, site preparation and for movement of drill and supplies at no cost to the Contractor.
(15) CAMP: The Company will provide room and board for the Contractor's crew at no cost to the Contractor.
(16) WATER SUPPLY: When water supply exceeds 2,000 feet in length and/or $30 \emptyset$ feet in elevation, the company agrees to pay for 11 installation of pumping equipment at $\$ 29.00$ per man hour. The Contractor agrees to supply additional pipe, hose and pumps at no cost to the Company, with the exception of freight as outlined in Clause 21 of this agreement. Delays caused by lack of waterand/or freezing conditions will be charged to the Company at Field Cost. Freezing water delays, if caused by the negligence of drill crew, will be at the contractor's expense.
(17) TESTING: The Company will pay for all angle acid testing of holes at'Field Cost after one free acid test per hole.
(18) CORE BOXES: Core boxes will be supplied by the Company at no cost to the Contractor.
(19) FUEL: The Company will provide diesel fuel and propane for drill, pumps, camp and tractor at no cost to the Contractor.

(20) TRAVELLING TIME: When travelling time between drill and camp site exceeds off half hour per man per day, all time will be chargeable to the Company at $\$ 29.00$ per man hour.
(21) FREIGHT AND TRANSPORTATION: Once drilling has commenced, any extra equipment such as rods, casing, fuel, mud, propane, cement and calcium chloride etc. will be at cost to the company from Whitehorse to the property. Any additional trips needed for drill and pump repair will be at the Contractor's expense.
(22) STANDBY: Standby time caused by the Company will be chargeable at $\$ 29.0 \emptyset$ per man hour. Standby time caused by machine breakdown or lack of drill supplies and equipment will be at Contractor's expense.
(23) MOBILE RADIO: If required, the Contractor will provide radio communication from the property at no cost to the company.
(24) PERMITS: If a Land Use Permit, Timber Permit andor Water Permit is required, then the Company shall be responsible for this.
(25) REPORTS: It is agreed that the foreman's daily reports will be signed by the Contractor's foreman and the Company'srepresentative. It is further agreed that the cost items on the signed foreman's reports will be invoiced to and paid for by the Company.
(26) ACTS AND REGULATIONS: The Contractor agrees, at its own expense, to comply with all requirements of the Workman's Compensation Act, Unemployment Insurance Act, Hours of Work and Vacations With Pay Act and generally all federal and provincial/territorial acts and regulations applicable to the Contractor's operations.
(27) RIGHT TO VACATE: Upon completion of the work herein contracted to be performed, the Contractor shall have the right to remove, within a reasonable length of time, all temporary buildings and other fixtures including trade fixtures, machinery, equipment and appliances placed by the Contractor upon such lands.
(28) SECRECY: The Contractor will not give out any information regarding drill results nor permit any access to drill core to any individual other than the Company's representative, except upon specific permission of responsible officials of the Company.
(29) DISCIPLINE: The Contractor shall at all times enforce discipline and maintain good order among its employees, and shall not retain on the job any person not skilled in the work assigned him. Any employee of the Contractor who is objectionable or unsatisfactory to the company shall be -removed from the job and ..
replaced by an employee satisfactory to the Company.
(30) ECOLOGY AND SANITATION: During the course of the work the Contractor shall keep the site of any drilling and camp site area free from accumulation of waste materials, rubbish, or garbage. Upon completion of the work the Contractor shall remove all tools, scaffolding, surplus materials, rubbish and garbage and leave the area in a clean condition. The Contractor shall observe and comply with all federal and provincial/territorial laws, regulations and orders relating to sanitation in the bush and the prevention of forest fires.
(31) MUTUAL AGREEMENT: In complying with the obligations of this agreement the Contractor agrees to carry insurance of the types and in the minimum amounts as follows:
(i) Workman's Compensation insurance in accordance with the Workman's Compensation Ordinance of British Columbia/Yukon.
(ii) Comprehensive general liability insurance with limit of liability of $\$ 1, \varnothing \varnothing \varnothing, \sigma \varnothing \varnothing$ inclusive any one bodily injury occurrenceor property damage accident, and in aggreate where applicable.
(iii) Automotive liability insurance including owned, nonowned and hired automotive equipment, with limit of liability of $\$ 1,000,000$ (owned automotive equipment) and $\$ 500,000$ (nonowned and hired automotive equipment) inclusive any one bodily injury occurrence or property damage accident.

All such insurance shall be carried in a company or companies acceptable to the Company and shall be maintained in full force and effect during the term of this agreement, and shall not be cancelled, altered or amended without ten days prior notice in writing having first been furnished the company. Contractor agrees to have its insurance carrier furnish the Company a certificate or certificates evidencing insurance coverage in accordance with the above requirements, and when requested to do so, furnish the Company certified copies of all said insurance policies.

The Contractor will indemnify and hold the Company harmless from and against all damages and claims for damages by reason of death or injury of persons or damage to property caused by the negligence of the Contractor, its employees or agents, or by non-compliance by the Contractor with any rules and regulations, orders or charges issued by a federal authority having jurisdiction in the performance of this agreement.
(33) PAYMENT: The Company will pay the Contractor for all work contemplated by this agreement as the work progresses as follows:

For all work done on and before the last day of the calender month, payment not later than the 30 th day of the calendar month next following. Interest will be charged on
overdue accounts at 2% per month.

The Contractor will, along with its final invoice, forward to the Company certification from the Workman's Compensation Board that the Contractor is in good standing with the Board.
(34) SPECIAL AGREEMENT: It is agreed that the prices quoted are subject to change due to increased cost of diamond products and/or drilling equipment, provided however, that the Company be given proof of the requirement for and prior notice in writing of any such price change.
(35) TIME: The commencement day of drilling shall be approximately (August T5; 1986 or as soon thereafter as weather conditions permit or as agreed by both parties.

IN WITNESS WHEREOF the parties hereto have caused these presents to be executed by their respective officers in that behalf.

SIGNED BY:
IN THE PRESENCE OF:
QUEENSTAKE RESOURCES LTD.

E. CAROM DIAMOND DRILLING LIMITED

UNDERHILL ENGINEERING LTD. UNDERHILL \& UNDERHILL
Date $\sim 5,5+56$
Sheot ${ }^{\ominus}$ of \rightleftharpoons
лов No. 4, 35-7S
Cllent
$\because \angle A N A O A, 7 C / A \leqslant=3 T E A$

- Elentrons are . Vietres to Geadetic Datum.
- UTM grid coorit riatici un mictres as shown.
- Bearings are grint.

UNDERHILL \& UNDERHILL
FIE 43548

- Le $\longrightarrow \longrightarrow H$ cocenilation FOE CANADA TUNGGFEM

Fiold Book \qquad page - 5,46

Calc. by \qquad TiComolly Chkd. by \qquad

APPENDIX V

Analytical Procedures and Certificates of Analysis

Bondar Clegg

701-74 West Hastings St.
Vancouver. B.C.

RE: Assay Procedures for Reports 426-3730 / 3814 / 4040 / 4044

Dear Mr. Shearer:

This letter describes the assay procedures used on the above reports in full, from receipt of the samples to reporting the results.

Sample Preparation:

(a) When the samples are received they are given a report number.
(b) The method of shipping is noted.
(c) The samples are then sorted numerically or according to client shipment form if provided.
(d) The whole sample is then put through a 6" jaw crusher.
(e) The whole sample is then put through a 10 " cone crusher, which crushes down to 10 mesh.
(f) Sample $1 s$ then split down to approximately 250 grams and the excess material is placed back into original bag and the "250" gram split is placed into a paper bag.
(g) The 250 gram split is pulverized to $90 \%-150$ mesh.

The above procedures were carried out at Bondar Clegg in Whitehorse Y.T. The 250 gram splits were then shipped to Vancouver. Upon arrival at Bondar-Clegg Vancouver, the pulverized samples were screened as follows:

Metallics Screening Procedure

1. The whole 250 g sample was passed through a 150 mesh screen.
2. The whole of the +150 mesh material was fire assayed and a IAT of the -150 mesh material was fire assayed. The Au in the +150 portion is always finished gravimetrically.
3. The total Au in the sample was then calculated.

The fire assay procedure was as follows:
(a) The sample is weighed into a crucible with prepared flux. The flux was comprised of appropriate quantities of litharge, soda, silica, borax glass, and flour. A solution containing silver was added to all of the samples analyzed for gold. In that case, a separate fusion was required for silver.
(b) Three samples out of every 24 are run again on another fusion at the end of a report. All samples over 0.20 OPT are run again as a checks and weighed on the gold balance, as well as any sample whose results look suspect. (ie a high one amongst a series of low ones and vice-versa)
(c) The samples are fused at 1950 degrees F for about 40 minutes.
(d) The slag is removed from the resulting lead button, which contains the precious metals and weighs between 30 and 40 grams.
(e) The lead button is then cupelled to get rid of the lead and the resulting bead is digested in a test tube and run on the A.A.

I hope the description of the procedures is adequate for your needs.

Bonder-Clegze a Company Led.
130 Pemberton Ave
North Vancouver, B C
North Vancouver, B
Canada V7P 2RS
Canada V7P 2RS
Phone (604) $985-068$
Telex 04-352667

Certificate of Analysis

remarks: all satples were screenei for metalitc and very litile mas gound.

REPORT COPIES TO: MR. G. GUIHSATH
INUOICE TC: MR. G. GUTHRAEH
MiM. J. I. SHEARER

Certificate of Analysis

APPENDIX VI

List of Useful Names and Addresses MAR GOLD PROJECT, 1986 Dublin Gulch, Yukon

APPENDIX VI

MAR GOLD PROJECT, 1986
Queenstake Resources Ltd. 9th Floor, 850 W. Hastings Street Vancouver, B.C. V6C 1E1
Gordon Gutrath, Don Sharpe, Mike Philpott 684-1218
Queenstake Resources Itd.
115 Juniper Road
Whitehorse, Yukon Y1A 4W8 667-4620
Wayne Leonard, Manager (home) 633-3616
Glen Rodgers
Caron Diamond Drilling Ltd. (office) 668-24247 Roundel RoadWhitehorse, YukonY1A 3H3
Drill foreman, Mitch McClellan
Kenworth Truck (radio) YJ2-5853 Mack Truck (radio) VL 25993
Dublin Gulch Placer Mine (Canada Tungsten Mining Corp.) (radio) 2M 5004 John Clarke, Project Superintendent Elsa channel, or Brian Lennan, Geologist (truck) 2M 8342
P.O. Box 130
Mayo, Yukon YOB 1 MO
John Clarke (home) 596-9583
George Manson, Placer Operator Dublin Gulch-Haggart Creek
Canada Tungsten Mining Corp. (Vancouver) 689-0046
Bondar Clegg (Vancouver), Keith Rodgers 985-0681 John Reeves, Whitehorse 403-667-6523 136 Industrial Road
Blumenschein Enterprises Ltd. 403-633-2627
34 MacDonald Road
Whitehorse, Yukon
Suppliers of Polaris all-terrain vehicle
APPENDIX VII
DIAMOND DRIIL RECORDSMAR GOLD PROJECT, 1986Hogged by J.T. Shearer, M.Sc., FGAC
AND CORE PHOTOGRAPHS
USEFUL PHONE NUMBERS, MAR GOLD PROJECT - 1986
Mining Recorder in Mayo, Roland Ronnagan 403-996-2256
Director of Mineral Resources 200 Range Road Whitehorse, Yukon 403-667-3136Chief Geologist - J. MorinContract Geologist, Ph.D. Thesis,Mayo Area - Greg Lynch
Northstar Motel
Mayo, Yukon 996-2231
Mayo Caselot and Expediting Services 996-2328
Box 155
Mayo, Yukon YOB 1 MO

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
.act

TRM ENGINEERING LTD.
PAGE 2 of 5

ROCK MECHANICS MEASUREMENTS

SCALE $=1: 10$

TRM ENGINEERING LTD.

PAGE 3 of 5

TRM ENGINEERING LTD.
PAGE 4 of 5

TRM ENGINEERING LTD.

DIAMOND DRILL RECORD
PROJECT:
MAR GOLD (DUELINGUCH)
HOLE NUMBER:
QRMG-86-

 \begin{tabular}{|c|c|c|c|c|c|c|}
\hline 85355 \& 156150 \& 15750 \& 070 \& 100002 \& $\angle 002$ \& M

\hline 8 \& 10002 \& $\angle 002$ \&

\hline

\hline 85356 \& 15750 \& 15850 \& 1.00 \& <0.002 \& <0.02

\hline
\end{tabular}

TRM ENGINEERING Lid.

ROCK MECHANICS MEASUREMENTS
scale = 1: 10

TRM ENGINEERING LTD.

LOCATION:(LEVEL): VICTORIA VEIN
DIP: -60° AT COLLAR , DIRECTION: 35 .

DIAMOND DRILL RECORD

TRM ENGINEERING LTD.
ROCK MECHANICS MEASUREMENTS
SCALE $=1 / 10$

TRM ENGINEERING LTD.

PAGE 2 of 6

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS

SCALE $=1: 10$

TRM ENGINEERING LTD.
PAGE 4 of 6

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
scale $=1: 10$

TRM ENGINEERING LTD.

PAGE 5 of 6

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
scale $=1: 10$

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.
 ROCK MECHANICS MEASUREMENTS

SCALE = 1: 10

TRM ENGINEERING LTD.

TRM ENGINEERING LT'D.
 ROCK MECHANICS MEASUREMENTS

SCALE $=1: 10$

TRM ENGINEERING LTD.
PAGE 2 of 5
DIAMOND DRILL RECORD MAR $\underset{\substack{\text { PROJECT } \\ G O L D}}{\text { min }}$ HOLE NUMBER:OO3
QRMG-86-

ThM ENGINEERING LiD.

ROCK MECHANICS MEASUREMENTS

END OF BOX:

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
SCALE $=1: 10$

TRM ENGINEERING LTD.

PAGE 4 of 5
DIAMOND DRILL RECORD

PROJECT: MAR GOLD

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
scale a l: 10

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.
 ROCK MECHANICS MEASUREMENTS

scale = i: Io

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
SCALE $=1: 10$

TRM ENGINEERING LTD.
PAGE 2 of 5

TRM ENGINEERING LTD.
 ROCK MECHANICS MEASUREMENTS

sCaLE = 1:10

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS

SCALE $=1: 10$

TRM ENGINEERING LTD.

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS
scale: $1: 10$

TRM ENGINEERING LTD.
PAGE 5 of 5

TRM ENGINEERING LTD.

ROCK MECHANICS MEASUREMENTS

SCALE = 1: 10

MAR GOLD PRDVECT
D.AMO,NO DKLLL HOLE ORMG-85-001 -47

$$
\text { Hugust } 151986
$$

TCATTO VEIN

MAR GOLO PROVECT

DIAHAND DRILC HBLE
DATE : Augart I6 /1886

QRME-86-0A1
BOXES 5,6,7,+8 22.02 an to 42.98

MAR GOLD PROVECT
DIAMOND DRILL HOLE QRMG-86-001
DATE. Axgust $161986 \quad$ Boxes 1 to 4

MAR GOLD PROAELT
HOLE QRMG.86-001
Boxes $9,10,11,12$

REFER TO ORIGINAL PHOTOGRAPHS FOR DETAILS AND COLOUR.

MAR GOLD PROJECT
HOLE QRMG-86-OEI
Boxes $13,14,15,16$

MAR GOLD PROVECT HOLE-QRMG-86-001

Boxes $17,18,19,20$

MPR GOLD PROVECT
HOLE QRMG-86-001
Boxes $21,22,23,24$

MAR GOLD PROVECT

$$
H O L E \quad Q R M_{G}-86-001
$$

Boxes $25,26,27,28$

REFER TO ORIGINAL PHOTOGRAPHS FOR DETAILS
AND COLOUR

MARGOLD PROJECT
HOLE QRMG-EG-OOI
BOXES 29,30,31 EOH.

MAR GOLO PROVE二GT
HOLE QRMG-B6-001
VICTORIA VEIN

MAR GOLD PRDVECT
HOLE QRMG-86-001
"NEW UER"

MARGOLD PROJECT
HELE QRMG-86-002
Box=3 1-4

MARGOLD PROVECT
HOLE QRMG-86-002
Boxes 5,6,7,8

MAR GOLD RPVVET
How ARMG-86-002
poxes 9-12.

MARGOLD PROVEGT HOLE QRMG-86-002

$$
\text { Boxes } 13,14,15,16
$$

REFER TO ORIGINAL PHOTOGRAPHS FOR DETAILS

MAR GOLD PROJECT
HOLE QRMG-86-002

$$
\text { Eoxes } 17,18,19,20
$$

MAR GOLD PROJECT
HOLE QRMG-86-002

$$
\text { Boxes } 21,22,23,24
$$

MAR GOLD PROVECT HOLE QRKG-86-002

$$
\text { Boxer } 25,26,27,28
$$

MAR GOLD PROVECT
HOLE QRMG-86-002

$$
\text { Boxes } 29,30,31,32
$$

MAR GOLD PROVECT
HOLE QRNG-86-002
Eoxes $3334,35,36$
END DF HOLE

MAR GOLD PROVECT
HOLE QRMG-86-003
Boxes 1,2,3+4

MAR GOLD PRCVECT
HOLE \# QRMG-86-003
Boxes $5,6,7+8$

MAR GOLD PROJECT
HOLE \pm QRMG-86-003
EOXES $9,10,11+12$

MAR GOLD PROVECT
HOLE QRMG-86-003

$$
\text { Boxes } 13,141516
$$

MARGOLD FROVECT
HニLE QRMG-86-003

$$
\text { Boxes } 17,18,19+20
$$

MAR GOLD PRONECT
HOLS स QRMG-86-003
Boxes $21,2323,24,25$

MAR GOLD PROVECT HELE \# QRMG-86-003

Boxes $26_{6} 27_{6} 27_{1} 29,30$

MAR GOLD PRNECT
HSLE NO QRMG-86-00\%
Bexes 1-5

MAR GOLD PROJECT
HOLE $=$ RRMG-86-004
BoxEs 15-20

REFER TO ORIGINAL PHOTOGRAPHS FDR DETTILS AND COLONR

MAR GOLD PRAVECT
HOLE QRMG-86-004
Boxes $21-25$

MARGOLO PROVECT HOLE QRMG-86-00.4

$$
\text { Boxes } 26-30
$$

MAR GOLD PROVECT
HOLE QRMG-86-004

> GoxES 31-36

END OF HOLE

REFER TO ORIGINAL PHOTOGRAPHS FOR DETHILS
AND COLOUR.

LEGEND

QUEENSTAKE RESOURCES LTD
DUELIN GULCH AREA
MAYY MD.CYKKNA
1986 DIAMOND DRILLING PROGRAM VERTICLAL CROSLS SECTION
ALONG $461,445 \mathrm{E}$

Lookng due East MAR GOLD | TRM ENGINEERING LT |
| :--- |
| Figure 6 |

LEGEND
\square MiCaceous ouartzTE
\square Sxannffeco ounartate
\square
Araluaceas auatz Ite
ASSAY RESULTS

$\xrightarrow{\text { Foant }}$ Tonan surver Pant

QUEENSTAKE RESOURCES LTD

