YUKON TERRITORIAL GOVERNMENT
Ex< lorat」orn Tncent.ives Program PROJECT ETPE37-O15

```
        PLACEER EXPTLORATION ON
            FORTYMTLE RIVER:
            Prospectirug & Trenchinng
```



```
                    PLACER CLALMS
                P11173, P11174, P11189-P11193, P11200-P1120.3
                P14400-P14410, P21204
                    DREDGING LEASES:
                        DL83/4, DL83/5
            TRANSVERSE MERCATOR PROJECTION CO-ORIINATFS
                141*}47' longıtude - 64*21' lat.frud-
            PLACER CLAIM SHEET 116C-7
```

prepared by W. CIAXTON \& L. CHAPMAN, principals FORTYMIL.E PI,ACERS Box 460 Dawson City. Yukon YOB-IGO

## 厂ABLE OF CONTENTS

Overview ..... 1
GEOGRAPHY OF THE FORTYMLLE RIVER ..... 1.
PLACER PROFILE OF THE FORTYMILE RIVER ..... 1.
HISTORY OF MINING ON THE FORTYMILE ..... 2.
PREVIOUS MINING AND PROSPECTING BY FORTYMILE PLACERS ..... 2
Project Descraption ..... 3.
AIMS AND OBJECTIVES ..... 3.
PROJECT APPROACH ..... 3.
PHASE ONE ..... 3.
PHASE TWO ..... 4.
EQUIPMENT USED ..... 5.
SAMPLE TREATMENT PROCEDURE 6.
SAMPLE EVALUATION PROCEDURE ..... 8.
Summaxy ..... 10 .
NOTES ON PROSPECTING ..... 10 .
NOTES ON BENCH TRENCHING; ..... 11.
NOTES ON BAR TRENCHING ..... 11 .
NOTES FOR INTERPRETING THE SUMMARY OF RESULTS ..... 12 .
SUMMARY OF RESULTS FROM BENCH DEPOSITS ..... 13.
SUMMARY OF RESULTS FROM BAR DEPOSITS ..... 15.
TOTAL ESTIMATED RESERVES \& VALUES ON BENCHES \& BARS ..... 18 .
Listoof Tables
TABLIF 1 RESULTS FROM PROSPECTINC P IASE ..... 19 .
TAFTAF 2 RESULTS FROM BAR DEPOSIT "a" ..... 25.
'TABTAE 3 RESULTS FROM BAR DEPOSIT " ${ }^{\prime \prime}$ ..... 28.
TABLF 4 RESULTS FROM BAR DEPOSIT " $\subset$ " ..... 29.
TABLE 5 RESULTS FROM BAR DEPOSTT " ${ }^{\prime \prime}$ ..... 31 .
TAE3LE 6 RESULTS FROM BAR DEPOSIT " $\Leftarrow$ " ..... 32.
TABLAE 7 RESULTS FROM BAR DEPOSTI ..... 34.
TABL.F: 8 RESULTS FROM BAR DEPOSIT " 9 " ..... 35.
TABI.E 9 RESULTS FROM BENCH DEPOSIT "A" ..... 37 .

| TABLE | 1 O | RESULTS FROM | BENCH DEPOSI'T | "E3" | .39 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TABLE | 11 | RESULTS FROM | BENCH DEPOSIT | ${ }^{\prime} C^{\prime \prime}$ | 4.1 |
| TABLE | 1.2 | RESULTS FROM | BENCH DEPOSIT | "D" | 42 |
| TABLE | 13 | RESULTS FROM | BENCH DEPOSIT | "E" | 46 |
| TABLE | 14 | RESULTS FROM | BENCH DEPOSIT | ' ${ }^{\prime \prime}$ | 48 |
| TABLE | 1.5 | RESULTS FROM | BENCH DEPOSIT | "G" | 49 |
| TABLE | 16 | Finding the | WEIGHT OF 1 COL | OUR | 50 |
| TAB5E | 17 | DIMENSIONS \& | VOLUMES - TRE | CHES / BARS | 51 |
| TABLE | 18 | DIMENSIONS | VOLUMES - TR | HES/BENC | 52 |
| TABLE | 19 | AREAS \& VOLU | MES OF STRIPpin | G WORK | 53 |

```
Supplementary Information 54.
```

$\left.\begin{array}{lll}\text { I.st of Maps } & \\ \text { Map } & 1 & \text { TOPOGRAPHIC } \\ \text { Map } & 2 & \text { TOPOGRAPHIC }\end{array}\right) 55$.

OVervォiew

GEOGRAPHY OF THE FORTYMILE RIVER
The Fortymile is a swift flowing river with an average grade of 10 feet per mile while most of the drainage is located in Alaska, the last 23 miles of the river flows through the Yukon, emptying into the Yukon River 46 miles downstream from Dawson City. The wetted perimeter averages 500 feet, with a main channel of approximately 200 feet at average flow. The rims defining the valley are steep and rugged, the valley width varjes, averaging 2000 feet The river channel meanders and has many bends The area has not been glaciated. The water volume of the river fluctuates greatly, responding quickly to rainfall. The enclosed topographic Map 1 and 2 illustrate the character of the Canadian portion of the river, and ats location in the territory

PLACER PROFILF OF THE FORTYMILE, RIVER
The placer reserves of the Canadian section of the Fortymile are divided into two catagories dredging reserves which are found in the wetted perimeter of the river valley, and bench deposits which are found above and adjacent to the river channel The dredging reserves are thawed and, by definition, the bedrock $1 s$ submerged below the water table. Depth to bedrock averages 12 to 15 feet In the bench reserves, bedrock is above the water table. The gravel is usually frozen but some pockets are thawed. The gravel is overlain with muck, usually frozen, with a depth of from 6 inches to 30 feet Cravel depth is from 6 feet to 30 feet with 20 feet being average. While the Fortymile became famous as a coarse gold area, our experience on the Canadian section of the river is that there is extremely fine gold throughout the entire gravel section

HISTORY OF MINING ON THE FORTYMILE RIVER
Gold was first discovered on the Fortymile River in 1886, precipitating the first major Yukon gold rush In 1887 $\$ 200,000$ worth of gold, more than 14,000 ounces, were mined with pick, shovel, and rocker, by some 200 miners the town of Fortymile was established at the confluence of the Fortymile and the Yukon Rivers. As well as fine bar gold, coarse nuggets were being found. The Fortymile district was the first area in which wood fires were used to thaw shaftos in order to gain access to the rich gravel and coarse gold at bedrock depth.

Between 1906 and 1911, a dredge worked the Fortymile 8 mıles upriver from the mouth. This project was abandonded with the advent of the First World War In the early 1930's, another dredging operation was initiated 11 miles upriver from the mouth, at the confluence of Bruin Creek and the Fortymile River. On the American section of the river, mining has been continuous and extensive with numerous dredging and cat operations

PREVIOUS MINING AND PROSPECTING BY FORTYMILE PLACERS
We have been prospecting and mining in the Fortymile area since 1974 when we staked placer ground on Marten Creek, a tributary of the Fortymile, approximately 14 miles upriver from the mouth of the river. In 1979 we acquired the Canadian section of the Fortymile.

We have completed six drill programs over the entire length of the river as well as on Boundary Creek, Marten Creek, Montgomery Creek, and Bruin Creek. We have used a 6 inch churn drill, 6 inch sonic drill, and a $2 \frac{1}{2}$ inch rotary drill on these projects. We have been mining on the river benches since 1980. Our current mining operation is located on a high bench situated on an oxbow of the river known as the "Kınk", 13 miles upriver from the mouth of the Fortymile

Project Doscraptaon

## ATMS AND OB.SECTIVES

The geal of this exploration program was to identify and to evaluate placer gold deposits, $u n$ the benches and river bars, in the middle reach of the fortymile River valley. The object.uve was to gain the following information:
muck depth and graval depth

- bedrock composition
whether the ground was frozen or thawed
- nature and quantity of gold present in the deposits
the volume of gravel available for mining


## PROJECT APPROACH

The exploration project consisted of two phases. The purpose of Phase One was to determine sites on bars and benches which warrented investigation using heavy equipment we wanted to 1 dentify specific targets before using equipment in order to maximize efficiency and to avold unnecessary environmental impact Phase Two consisted of a trenching program using a back-hoe excavator to dig trenches in deposits identified by the first phase. A detailed description of the work performed follows.

## PHASE ONE

Phase One was conducted between April 27 and August 26, 1987. Preliminary samples were taken, with pick and shovel, on surface gravels of bars and in places on benches where gravel was easıly obtaıned from cut banks and sluffs on bench rims. The locations where these samples were taken are plotted on Map 3. Samples were of a volume which fit in a 12 inch by 18 inch sample bag, or an average of 16 pounds.

The following criteria were used to determine deposits which were suitable for further examination by trenching

- presence of gold in the preliminary samples obtained
- accessibility of deposit
- suitability of material for fevaluation by trenching (would it be possible to excavate cost-effectively to obtain samples with the heavy equipment avallable?)

On the benches, the ground is usually thawed for approximately 30 feet back from the rim, making trenching possible. As well, there are pockets of gravel which are thawed to bedrock One of our primary objectives was to delineate and evaluate these thawed deposits, since mining costs are much lower than the costs of mining frozen ground.

Because of the cursory nature of this prospecting phase, representative values of samples were not calculated. The purpose of the prospecting was to establish gold presence, not to evaluate gravel in the deposits.

For detalls on how the samples were processed, refer to the section SAMPLE TREATMENT PROCEDURE. Results from samples taken in Phase One are shown on Table 1.

## PHASE TWO

Trenches were excavated on the bars and benches of the Fortymile between August 13 and November 4, 1987 The locations of these pits and trenches are plotted on the accompanying Maps 4 and 5. The bars and benches of the Fortymile consist of separate deposits as opposed to being a contiguous unit.

Each deposit was sampled as a unit and results have been tabulated this way. Each bench deposit tested has been designated by a capital letter. These bench deposits are labelled A, B, C, D, E, F, and G. Trenches excavated in each deposit have been assigned numbers; for example the third trench in deposit "A" is designated as trench "A3" Pits and trenches excavated on bar deposits have been assigned
lower case Jetters, they are deposits $a, b, c, d, e, f$ and $G$ Each bar trench is prefixed with the letter of the deposit, followed by the number of the trench, for example the fourth trench in bar; deposit "b" is labeled trench "b4" On average, four samples of approximately 7 pounds each, were taken from each trench. Results from this sampling are shown on Tables 2 - 15.

## EQUIPMENT USED

The following equipment was used $1 n$ Phase Two of the exploration program

- a Cat 213 hydraulic excavator, equipped with 36 inch rock bucket and long ( 9 foot 6 inch) stick Maximum digging depth was 20 feet 6 inches
- a Db́C Cat dozer equipped with angle blade and ripper was used to ploneer for the hoe, and to strip pads where excavation was to be performed.
- a 920 Cat wheel loader was used occasionally to ford the river and to pack samples.
- a fuel truck and a welding service truck, were used to support the project.

Equipment used in the sample treatment and evaluation procedures is outlined below:

- Goldhound spiral gold wheel with four leac riffle pattern, 24 inch diameter, with water pump
- electrical power generator to provide power for the gold wheel and pump
- selve screens of 10 mesh, 40 mesh, and 100 mesh
- gold pans of various sizes of both regular steel and stainless steel (which is non-magnetic)
- magnets of varying strengths
- magnifying glass and 30x microscope
- various plates, bowls, and other vessels for drying and holding sample material
- R C B.S powder scale

SAMPLE TREATMENT PROCEDURE
Processing the gravel samples was complex and time consuming for the following reasons

- gold in the fortymile aravel 3 s so fine that much of נ.t is invisible without magnification lests performed by the Department of Energy, Mines and Resources have shown the fortymıle gravels to contain very fine gold In the $E M R$. tests, over half of the gold was -400 mesh, and 93\% was - 100 mesh.
- the resultant concentrate from the gravel contained larqe amounts of black sand. This black sand was heavy and fine grajned making it difficult to separate lhe gold.
- most of the gold was flakey and tended to float on the surface tension of the water

The sample processing procedure is outlined as follows

1. The sample was screened and rough panned through a grizzly pan with $1 / 4$ inch holes, into a clean gold pan
2. The resulting $-\frac{1}{4}$ inch sand, which had been deslimed, was further reduced in size by screening through -10 mesh stainless steel screen, into another pan.
3. The +10 mesh material was hand panned to determine whether +10 mesh gold particles were present
4. The -10 mesh sand was washed in clean water to which a deflocculent was added. We used Sunlight dish soap (the brand does make a difference, and we have found Sunlight to be the best) The purpose of the deflocculant was to reduce the surface tension of the water
5. The -10 mesh sand was fed unto the gold wheel, which was rotating at the low speed setting, and which was inclined at an angle of approximately 30 degrees from the vertical. The rate of feed was approximately 1 tablespoon every

5 seconds, although this was dependent on the amount of black sand present The more black sand, the slower the feed Water to the gold wheel was approximately 1 imperial gallon per minute, at approximately 8-10 ps.l, although this also varied depending on composition and rate of feed. Water to the gold wheel was also mixed with Sunlight dish soap with 1-2 tablespoons of detergent to 5 gallons of water. Best reults were obtanned when feed rate, water volume, and water pressure were kept constant The object of this run was to seperate all of the black sand and save it. As a rule, if all of the black sand $1 s$ saved, all of the gold will also be saved
6. The black sand was dried over a slow heat in a stainless steel gold pan. Too much heat caused the water in the sample to boil and the concentrate to spatter, resulting in loss of material.
7. A maqnet was used to pull the black sand (which is inagnetic) out of the pan. The black sand was saved in a clean vessel.
8. The small amount of non-magnetic black sand and any gold colours present left in the pan were spread on a sheet of clean durk coloured paper and inspected with a magnifying glass. The number of colours were counted and logged
9. The black sand whuch had been collected with the magnet was transferred onto a clean sheet of dark coloured paper. A second magnet of weaker strength was used to pull this black sand off the paper The paper was checked with a magnifying glass to determine if any gold was present.
10. The tailings from the -10 mesh sand, which had been run through the gold wheel, were hand panned to determine If any gold colours were present

SAMPLE EVALUATION PROCEDURE
We have developed a method to determine the value of Fortymale ground based upon the number of gold colours found in a gravel sample of known weight. This allowed us to do in-felld grade estimates of samples simultaineously with the trenching work

The first step was to find the weight and consequent value of an average gold colour This procedure is outlined as follows
1 We calculated the value of 1 troy ounce of fortymile gold by dividing the $U S$. spot price of gold by the value of the Canadian dollar, and then multiplying it by the purity of Fortymile gold. The following values were used for this calculation:

- New York spot price of gold $=\$ 48500$
- the value of the Canadian dollar $=\$ .78 \mathrm{~S}$.
- assayed purity of Fortymıle gold $=845 \%$

Therefore one troy ounce of Fortymile gold is:
SU.S. $485 \div \$ .78 \times 84.5 \%=\$ 525.42$ (Canadian)
2. We welghed a small quantity of colours of typlcal fortymile gold on a scale capable of weighing to $1 / 10$ grain, or $1 / 4800$ of a troy ounce.

3 The resulting weight from \#2, was divided by the number of colours weighed to obtain the weight of one colour.

We ran these calculatıons for seven different groups of colours (ranging in number from 60 to 190) and took an average, to obtain the weight and consequent value of a typical colour from the Fortymile gravel These calculations indicate that, on average, one colour of typical Fortymile gold weighs $1 / 163.484$ ounce, or that It takes 163,484 colours to make a troy ounce of gold The data are shown in Table 16

4 The value of one colour could then be obtained by dividing
the value of 1 troy ounce of Fortymıle gold (in Canadian cents) by the number of colours required to make one ounce $\$ 52542 \times 100 \mathrm{c}+163,484=321 \mathrm{c}$
The value of one colour is 321c Canadıan.

The second part of determining the value of a cubic yard of Fortymile gravel outlined is as follows.

1 The gravel sample was weighed.

2 The number of colours were found in the sample using procedures as outlined in SAMPLE TREATMENT PROCEDURE
3. The number of colours found in the sample was multiplied by the value of one colour, . 321c
4. The weight of one cubic yard of excavated gravel, generally accepted as 3,000 pounds, was divided by the welght of the sample, giving the number of samples per yard.
5. The number of samples per yard, found in step 4 was multiplied by the number of colours per sample, determined in step 2. This gave the total number of colours per yard
6. The number of colours per yard, calculated in step 5, was multiplied by the estimated value of one colour, 321c, to obtain the value of one loose yard of gravel. For example, if 3 colours were found in a sample of 7 pounds, the value of gravel represented by thus sample can be found as follows:

3 colours $\mathrm{x} .321 \mathrm{c} \times 3000 \mathrm{lb} .-7 \mathrm{lb} .=\$ 4 . i 3$ Can. $/ \mathrm{yd}$.

We used this method as a rule of thumb for projecting grade figures we have checked the relative accuracy of this method by comparing samples taken from our production cut with cleanup results.

## Summary

The following summary outlines volumes and grades of the bars and benches tested Approximately four miles of river bars and benches were covered In the prospecting phase of the exploration program 182 samples were gathered and processed In Phase Two, the trenching phase, 116 pits and trenches were excavated in fourteen separate deposits Samples from each pıt and trench were evaluated.

Our objective was to obtain average grades of entire deposits for the total gravel section, from top gravels to bedrock. While some high grade sections of deposits were defined, qrade averages were determined for entire deposits only. Grades of samples varied greatly. Larger samples might have helped to reduce this difference; bulk samples would determine precise grade figures

In a production operation a loss factor would have to be allowed for. Because of the fineness of the gold some loss would be inevitable Fine gold recovery technıques and careful mining must be used to manimize loss of values.

## NOTES ON PROSPECTING

The prospecting phase was useful in determining areas which warrented further testing and in selecting sites where testing would be effective. Because samples were taken in locations where sampling was expedient using hand methods, for example the surface of bars and sluff at the rims of benches, these samples were not representative of the entire deposits being tested. Sections of deposits which were of high grade showed up in the prospecting phase, but in general this preliminary testing was not used to estimate grades. Colours found in the samples were counted but representative values per yard were not extrapolated

NOTFS ON BENCH TRENCHINC
We trenched on six benches along the river and one bench in the mouth of Marten Creek We reached bedrock on three of the benches Two of these benches had good pay grade; the third was barren One of the benches with good pay was the one up Marten Creek, this gravel was creek qravel, not river gravel. More work further up the creek is warrented. On the remaining four benches we evaluated the top gravel depths, ranging from 5 to 18 feet Gravel in the two high benches that were tested was too deep for the hoe to dig to bedrock, while on the other two benches, the ground was frozen below 12 to 15 feet with these trenches opened up to summer thawing, the depths can be extended to complete the evaluation We stripped sections of these frozen deposits to get them thawing to facilitate more testing Detailed information on this bench trenching is given in the SUMMARY OF RFSULTS FROM BENCH DEPOSITS.

## NOTES ON BAR TRENCHING

We consider grades on all bars tested so far to be mineable. The cost of mining these bars will be low due to lack of overburden, shallow depth to bedrock, thawed gravel, short distance to move material, and low reclamation costs. We found that the tall ends of bars generally had better values than the middle sections and heads of the bars, contrary to theory. As well, sections of bars on the inside bends of the river did not have as good grades as the sections on straight streches of river. Bedrock depth on the bars was shallower than we had expected, running between 6 to 18 feet, with 10 to 12 feet being average. On the bars, sluffing of gravel into the hole, which filled with water as excavation took place, made digging bedrock difficult. Grade could increase with more effective bedrock excavation. Detailed information on the bar trenching is given in the SUMMARY OF RESULTS FROM BAR DEPOSITS

## NOTES FOR INTERPRETING THE SUMMARY OF RESULTS

- dollar per yard values were taken from the tables included at the end of the report
- the price of gold at the time that this report was written was US\$485 per oz. To adjust values given for fluctuating gold price, the following formula can be used value/yd(\$Can) $=\$ / y d$ given( $\$($ Can $) x$ current gold price(SUS) $\$ 485$ (US)
- gold welghts are given in troy ounces
- raw oz/yd given in the following SUMMARY OF RESULTS were calculated as follows.
raw oz $/$ yd $=\$ / y d(C a n) \div \$ 525.42(C a n)$
- fine oz of gold can be converted from raw oz by using the following formula:
fine oz = raw oz x .845 (purity factor)
- all yardage volumes are given in bucket yards (bank yards multiplied by a swell factor of 125 ).
- width of bars used to calculate volumes ls based on the wadth at mean water level.
- on the benches, grade of gravel has been determined for the gravel section; muck section has not been calculated into grade figures.


## SUMMARY OF RESUL'TS FROM BENCH DEPOSTTS

Bench Deposit "A"
Total Estimated Yardage

- 500yd x $25 y d x$ yyd $x 125$ (swell factor) $=78,125$ bkt $^{\prime} y^{3}$

Grade

- $\$ 266 / \mathrm{yd}^{3}$
- 0051 raw oz/yd ${ }^{3}$

Total Projected Value of Deposit.

- $\$ 266 \times 78,125 \mathrm{yd}^{3}=\$ 207,813$
-. 0051 raw oz/yd ${ }^{3} \times 78,125$ yd $^{3}=398$ raw oz
Comments
This bench is long, narrow and has shallow depth to bedrock The ground is thawed The deposit has limited volume but will require several moves to mine out.


## Bench Deposit "B"

No gold was found in this deposit. Volume has not been estimated since the ground as tested to date is barren. More samples will be taken on and into bedrock out of the trenches to confirm lack of gold.

## Bench Deposit "C"

Total Estimated Yardage.

- 70yd $x$ 50yd $x$ 3yd x 125 (swell factor) $=13,125$ bkt yd ${ }^{3}$

Grade•

- $\$ 8.02 / \mathrm{yd}^{3}$
-. 0153 raw oz/yd ${ }^{3}$
Total Projected Value of Deposit:
- \$8.02 x $13,125 \mathrm{yd}^{3}=\$ 105,262$
-. 0153 raw uz/yd ${ }^{3} \mathrm{x} 13,125 \mathrm{yd}^{3}=201$ raw oz
Comments:
This bench was thawed to bedrock. The top 5 feet should be stripped and wasted. The lower gravels and 3 feet of bedrock should be stockpiled for sluicing Further exploration work will be undertaken up the creek.

Bench Deposit "D "
Volume could not be estimated because bedrock was not reached 1 m most trenches However, the bench is approximately 1500 yards long and width should be considerable we estimate the total volume to be well over half a millon yards Grade was good considering that lower gravel and bedrock were not averaged in Trenches will be deepened to bedrock and the lower gravel will be evaluated The deposit is frozen Muck layers alternate with gravel layers.

Bench Deposit "E"
Volume could not be estimated since bedrock was not reached. This bench is located approxımately 200 feet above rıver level. The ground $1 s$ thawed. Grades are fair considering that this is top gravel Bedrock was uncovered approximately 30 feet below gravel at one rim. The deposit should be trenched to bedrock to determine values of lower gravels and bedrock.

## Bench Deposit "F"

Grade of top gravels was good. Gravel is generally sandy getting coarser with depth. The area should be stripped and a bulk sample taken in layers as gravel thaws. The size of the deposit is large, but not enough data was obtained to estimate volume.

## Bench Deposit " ${ }^{\prime \prime}$ "

Grade of top gravel tested was good, considering that bedrock was not reached. We estimate bedrock to be at least 25 feet deep. The trenches should be completed to gain information on lower gravel and bedrock. Gravel is thawed for approximately 100 feet back from rim of bench The bench has considerable volume, although we have not attempted to define limits.

Bar Deposit "a"
Total Estimated Yardage

- $3500 y d x 50 y d x$ xyd $x 125$ (swell factor) $=875,000$ bkt yd ${ }^{3}$

Grade.
$\$ 217 / \mathrm{yd}^{3}$

- . 0041 raw oz/yd3

Total Projected Value of Deposit.

- $\$ 217 \times 875,000 \mathrm{yd}^{3}=\$ 1,898.750$
-. 0041 raw oz/ yd ${ }^{3} x 875,000 y^{3}=3937.5$ raw oz
Comments
This is the largest contiguous deposit that we tested Grades varied between 35 c and $\$ 668 /$ yd $^{3}$. More samples will be taken from the trenches before 1988 break-up to gain more information Because of the size of the deposit, more trenching should be done to establish grades more accurately Bulk sample runs would also help confirm mineabilty of this deposit.

Bar Deposit "b"
Total Estımated Yardage:

- $1000 y d x 30 y d x 4 y d x 1.25$ (swell factor) $=150,000$ bkt $y^{3}{ }^{3}$

Grade.

- $\$ 209 / \mathrm{yd}^{3}$
- 0043 raw oz/ yd ${ }^{3}$

Total Projected Value of Deposit.

- \$2.09 x $150,000 \mathrm{yd}^{3}-\$ 313,500$ 0043 raw oz/yd $\mathrm{y}^{3} \mathrm{x} 150,000 \mathrm{yd}^{3}=645 \mathrm{raw} \mathrm{oz}$
Comments
Grade figures range from $\$ 0$ to $\$ 522 / y d^{3}$. The upriver $1 / 3$ of the deposit only was sampled. The downriver $2 / 3$ of the bar should be trenched to obtaln a more accurate grade for the entire deposit

Bar Deposit " ${ }^{\prime \prime}$
Total Estimated Yardage

- 1000yd x 70yd x 4yd x 325 (swell factor) $=350,000$ bkt yd ${ }^{3}$

Grade ; $\quad \$ 525 / 02$ vaur
-- \$2 38/yd'
0045 raw oz/ yd ${ }^{3}$
Total Projected Value of the Deposit.
$\$ 238 \times 350,000 \mathrm{yd}^{3}=\$ 833,000$

- 0045 raw oz/yd ${ }^{3} \times 350000 \mathrm{yd}^{3}=1575$ raw oz

Comments.
Values vary tetween $\$ 0$ and $3553 /$ y $^{s}$ The area upriver from Marten Creek showed better grade, arid one small nugget was found This could have been because of the shallow bedrock depth so that cluffing didn't interfere with sampling bedrock Small scale bulk samples (500 $y^{3}$ ) would help to confurm grade This bar is well above the water level so it can be mined at firgher water levels Volume of gravel ls sufficient to sustain mıning for several seasons.

Bar Deposit "d"
Total Estimated Yardage:
$500 y d x 30 y d x 3.3 y d x 1.25$ (swell factor) $=61,875$ bkt yds Grade

- $\$ 100 / y d^{3}$

$$
.0019 \text { raw oz/yd }{ }^{3}
$$

Total Projected Value of the Deposit.

- $\$ 100 \times 61,875 \mathrm{yd}^{3}=\$ 61.875$
-. 0019 raw oz $/ \mathrm{yd}^{3} \mathrm{x} 61,875 \mathrm{yd}^{3}=118$ raw oz


## Comments.

This is a small deposit, and had the lowest grade of the bar deposits tested only the upriver half of the bar was sampled. The downriver and of the bar should be trenched to gain grade figures for this section of the bar Grade of gravel showed improvement further toward the downriver end of the bar

Bar Deposit "ez"
Total Estumated Vardage
$500 y d x 40 y d x 4 y d x 125\left(s w e l l\right.$ factior) $=100,000$ bkt yd ${ }^{3}$
Grade

- $\$ 562 / \mathrm{yd}^{3}$
- 011 raw oz/yd ${ }^{3}$

Total Projected Value of Deposit

- $\$ 562 \times 100,000 \mathrm{yd}^{3}=\$ 562,000$

011 raw $02 . \mathrm{yd}^{3} \times 100,000 \mathrm{yd}^{3}=1,100$ raw oz
Comments
This deposit had the best grade encountered, witn one sample grading at $\$ 44.45 / \mathrm{yd}^{3}$. It has been scheduled for production in the 1988 mining season Reserves are sufficient for one to two years of operations.

## Bar Deposit "f"

Total Estimated Yardage.

- $500 y \mathrm{~d} x 15 y d x$ 5yd $x 1.25$ (swell factor) $=46,875$ bkt yd ${ }^{3}$

Grade•
$\$ 5.29 / \mathrm{yd}^{3}$

- 01 raw oz/yd ${ }^{3}$

Total Projected Value of Deposit.
$\$ 529 \times 46.875 \mathrm{yd}^{3}=\$ 247.969$
.01 raw oz $/ \mathrm{yd}^{3} \mathrm{x} 46,875 \mathrm{yd}^{3}=469$ raw oz
Comments.
This deposit showed consistent grade figures. Grade is good. The deposit is relatively small, consisting of a long narrow bar adjacent to a cut bank. Mining will be undertaken when mining on bar "e" has been completed

Bar Deposit " $g$ "
Total Fstimated Yardaae $1000 y d \times 80 y d x 4 y d x 125$ (swell factor) $=400,000$ bkt yd ${ }^{3}$
Grade

- $\$ 197 / \mathrm{yd}^{3}{ }^{\prime}$

```
.00375 raw oz/yd3
```

Total Projected Value of Deposit.

- $\$ 197 \times 400,000 \mathrm{yd}^{3}=\$ 788,000$
- $00375 \mathrm{raw} \mathrm{oz} / \mathrm{yd}^{3} \mathrm{x} 400,000 \mathrm{yd}^{3}=1500$ raw oz

Comments.
This deposit $1 s$ large More trenching should be done to provide more information on values. Bulk sampling would also help to confirm mineability

TOTAL ESTIMATED RESERVES \& VALUES ON BENCHES \& BARS
BENCH RESERVES (for benches trenched to bedrock)
Total Estimated Bucket Yardage•
Total Estimated Raw Oz of Gold:
$91, x^{5} 08 \times 3$
59902
$5313,0 \% 5$

BAR RESERVES

Total Estimated Bucket Yardage
$1,983-750 y y^{3}$
Total Estımated Raw Oz of Gold:
Total Value (\$ Canadian). 3, 可55 $0:$

54, 70! O9,

TOTAL AGGREGATE RESERVES \& VALUES (bars \& benches)•
TOTAL ESTIMATEI BUCKET YARDAGE. T'OTAL ESTIMATED RAW OZ OF GOI:D TOTAL VALUE (\$ CANADIAN)


TABLE 1
RESULTS FROM PREIIIMINARY PROSPECTING

| Deposit | SAMPLE | WEIGHT | COMMENT'S | COLOURS |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Bench } \\ & " A " \end{aligned}$ | $\begin{gathered} \hline \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{gathered}$ | 15 1 b <br> 16 lb <br> 16 lb <br> 17 lb <br> 15 lb <br> 15 1 b <br> 18 1 b <br> 16 1 b <br> 17 1 b. <br> 15 lb <br> 15 1 b <br> 16 lb <br> 18 lb. <br> 15 lb. | ```very fine colours off bedrock by roac̀ cut bedrock, 1. flake, 8 colours 3' down,1 flake fine colour pea gravel fractured bedrock mixed with clay grey clay road sluff 5' down road sluff 6' down face fine colour crumbley bedrock``` | $\begin{aligned} & \hline 6 \\ & 3 \\ & 0 \\ & 9 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$ |
| $\begin{aligned} & \text { Bench } \\ & \because B " \end{aligned}$ | 1 <br> 2 <br> 3 <br> 4 <br> 5 <br> 6 <br> 7 | 16 1b. <br> 16 lb . <br> 15 lb. <br> 15 lb . <br> 15 lb . <br> 18 lb . <br> 15 lb . | ```angular gravel slatey bedrock fine colour angular gravel from just below overburden f.nne gravel``` | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \text { Bench } \\ & \text { "C" } \end{aligned}\right.$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | $\begin{array}{ll} 16 \mathrm{lb} . \\ 16 \mathrm{lb} . \\ 17 \mathrm{lb} . \\ 18 & \mathrm{lb} . \\ 15 \mathrm{lb} . \end{array}$ | ```lots of black sand near surfaceNone``` | $0$ |
| Bench $" D "$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{ll} 15 & \mathrm{lb} \\ 16 & \mathrm{lb} \\ 18 & \mathrm{lb} \\ 15 & \mathrm{lb} \end{array}$ | ```sluff gravel sluff gravel, fine colours sluff gravel sluff gravel``` | $\begin{aligned} & 0 \\ & 3 \\ & 3 \\ & 1 \end{aligned}$ |

'TAESI, E: 1. continued
RESULTS FROM PRELIMINARY PROSPECTING

| DEPOSIT | SAMPLE | WEIGHT | COMMENTS | COLOURS |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Bench } \\ & " D{ }^{\prime} \text { " } \\ & \text { cont. } \end{aligned}$ | $\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$ | 15 lb <br> 15 1 b. <br> 17 lb. <br> 15 lb. <br> 16 lb. | ```sluff gravel. garnet sluff gravel, lots black sand suuff gravel sluff gravel sluff gravel``` | $\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$ |
| $\begin{aligned} & \text { Bench } \\ & \because F " \end{aligned}$ | $\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{gathered}$ | $\begin{array}{ll} 15 & l b . \\ 16 & l b . \\ 16 & 1 b . \\ 15 & 1 b . \\ 17 & 1 b \\ 18 & 1 b . \\ 15 & 1 b . \\ 15 & 1 b . \\ 16 & 1 b \\ 15 & 1 b . \\ 17 & l b \end{array}$ | ```from ramp,lots of black sand from ramp from ramp, 2 flakes 7 colours from ramp from ramp, garnets from ramp, coarse sand river bank sluff,sandy gravel river bank sluff, fine colour river bank sluff river bank sluff river bank sluff, ] flake``` | $\begin{aligned} & 4 \\ & 0 \\ & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 2 \\ & 5 \end{aligned}$ |
| $\begin{aligned} & \text { Bench } \\ & \\ & \hline G " \end{aligned}$ | $\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{gathered}$ | $\begin{array}{ll} 15 & \mathrm{lb} . \\ 14 & \mathrm{lb} . \\ 15 & \mathrm{lb} . \\ 15 & \mathrm{lb} . \\ 16^{18} & \mathrm{lb} . \\ 15 & \mathrm{lb} . \\ 16 & \mathrm{lb.} \\ 16 & \mathrm{lb.} \\ 15 & 1 \mathrm{~b} . \\ 15 & \mathrm{lb} . \\ 15 & \mathrm{lb} . \\ 17 & \mathrm{lb} . \\ 15 & \mathrm{lb} . \end{array}$ | ```bedrock river bluff sluff on river bluff sluff on river bluff, garnet off bedrock, river bluff road sluff road sluff, reddish gravel sandy gravel road sluff, fine colours road sluff road sluff, 2 flakes, 1 colour road sluff small gravel road sluff, red sand``` | $\begin{aligned} & 8 \\ & 0 \\ & 1 \\ & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ |

'TABLEE 1. continued RFSULITS FROM PRELIMINARY PROSPECTING

| DEPOSIT | SAMPLE | WEICHT | COMMENTS | colours |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Bar } \\ " a^{\prime} \end{gathered}$ | 1 | 18 lb | end of bar, lots of black sand | 5 |
|  | 2 | 1616 | end of bar | 0 |
|  | 3 | 16 lb | 10' from bank, 2 flakes | 8 |
|  | 4 | 17 lb | $60^{\circ}$ out from bank | 2 |
|  | 5 | $151 b$. | $30^{\prime}$ out from bank | 4 |
|  | 6 | 18 lb . | 100' out from hank | 0 |
|  | 7 | 18 lb | 100' out froom bank | 0 |
|  | 8 | 16 lb . | close in | 1 |
|  | 9 | 15 Lb | 150' out from bank | 5 |
|  | 10 | 15 lb . | 120' out from bank | 0 |
|  | 11 | 18 lb | close in, larae garnet | 2 |
|  | 12 | 19 lb . | close in | 0 |
|  | 13 | 18 lb . | 100' out from bank | 0 |
|  | 14 | 171 b . | 100' out from bank | 1 |
|  | 15 | 16 lb | small gravel | 0 |
|  | 16 | 16 ib. | close in | 0 |
|  | 17 | 16 lb . | close in, little black sand | 0 |
|  | 18 | 18 lb . | 1 flake 5 colours | 6 |
|  | 19 | 15 1b. | 100' out from bank | 9 |
|  | 20 | 16 lb | close in | 5 |
|  | 21 | 16 lb . | close 1 n , lots of black sand | 3 |
|  | 22 | 18 lb | close in | 0 |
|  | 23 | 17 lb . | close in, fine colours | 2 |
|  | 24 | 16 lb . | close נn | 0 |
| $\begin{gathered} \text { Bar } \\ \because b " \end{gathered}$ | 1 | 18 lb | 50' out from bank | 3 |
|  | 2 | 17 lb . | 80' out from bank, 1 flake | 8 |
|  | 3 | 16 lb . | $40^{\prime}$ out from bank, | 0 |
|  | 4 | 20 lb. |  | 1 |
|  | 5 | 16 lb | close in | 0 |
|  | 6 | 16 lb . | litt]e black sand | 0 |

TABC, 1 continued
RESULT'S FROM PRELIMINARY PROSPECTING

| DEPOSTT | SAMPLE | WEIGHT | COMMENTS | COLOURS |
| :---: | :---: | :---: | :---: | :---: |
| Bar"b"cont | 7 | 17 lb | 75' out from bank | 0 |
|  | 8 | 16 lb . |  | 3 |
|  | 9 | 181 b . | '75' out from bank head of bar tail and bar, fine colours | 6 |
|  | 1 | 17 lb . |  | 5 |
|  | 2 | 16 lb . | close in close in, 1 orange flake | 0 |
|  | 3 | 16 lb . |  | 3 |
|  | 7 | 15 lb | behind siough <br> behind slough | 2 |
|  | 5 | 19 1b |  | 0 |
|  | 6 | 20 lb . | behind sjough <br> 150' out from bank, garnet | 0 |
|  | 7 | 16 lb . |  | 1 |
|  | 8 | 16 lb . | $150^{\prime}$ out from bank, green sand 150' nut from bank | 0 |
| $\because{ }^{\prime \prime}$ | 10 | $1616 .$ | behind slough, lots black sand | 2 |
|  |  |  | behind sJough <br> close un | 0 |
|  | 11 | 18 lb |  | 0 |
|  | 12 | 20 lb . | 250' out from bank | 0 |
|  | 13 | 16 lb | 250' out from bank | 0 |
|  | 14 | 15 lb . | 100' out from bank | 1 |
|  | 15 | 17 lb . | close in | 0 |
|  | 16 | 16 lb . | 100' out from bank | 0 |
|  | 17 | 15 lb . |  | 3 |
|  | 18 | 16 lb . | In front of creek mouth | 0 |
|  | 19 | 15 lb . | 1 flake | 1 |
|  | 20 | 17 lb . | 25' out frum bank | 0 |
|  | 21 | 18 lb . | head of bar | 3 |
| $\begin{gathered} \text { Bar } \\ \because A " \end{gathered}$ | 1 | 16 lb . | ```tall of bar close in 50' out from bank mld-bar mid-bar, little black sand 80' out``` | 0 |
|  | 2 | 15 lb . |  | 3 |
|  | 3 | 15 lb . |  | 1 |
|  | 4 | 17 lb . |  | 0 |
|  | 5 | 18 lb . |  | 0 |
|  | 6 | 1516 |  | 0 |

TABIEF: 1 continued
RESULTS FROM PRELIMINARY PROSPFCTIMS

| Deposit | SAMPLE | WEICHT | COMMENTS | COLOURS |
| :---: | :---: | :---: | :---: | :---: |
| "Bar | $\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$ | $\begin{array}{ll} \hline 16 & l b \\ 17 & 1 b \\ 18 & 1 b \end{array}$ | 80' out from bank mid-bar fine colours head of bar, 1 flake | $\begin{aligned} & 0 \\ & 4 \\ & 2 \end{aligned}$ |
|  | $\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \end{gathered}$ | 16 1b <br> 16 lb <br> 17 1b <br> 15 lb <br> 151 b <br> 15 lb <br> 15 lb <br> $171 b$ <br> $161 b$. <br> 15 lb <br> 18 lb. <br> 15 ib <br> 15 ib <br> 16 ib <br> 15 lb <br> 15 lb . <br> $151 b$ <br> 18 lb . <br> 17 lb. <br> 16 lb. <br> 17 lb. <br> 15 lb. <br> 18 lb | tall end of bar tall end of bar <br> tail end of bar, 1 flake <br> tail end of bar, 2 flakes <br> 50' from bank, lots black sand <br> 50' out from brink mid-bar, small garnets mid-bar <br> $1.00^{\prime}$ out from bank <br> 100' out from bank <br> $100^{\prime}$ out from bank <br> close in, very fine colours close $1 n$, lots black sand close $1 \mathrm{n}, 2$ flakes close in <br> 100' out from bank <br> $100^{\prime}$ out from bank <br> $100^{\prime}$ out trom bank <br> 120' from bank, lots black sand head of bar <br> head of bar, : flake head of bar, lots black sand head of bar | $\begin{aligned} & ? \\ & 0 \\ & 8 \\ & 9 \\ & 6 \\ & 3 \\ & 6 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 5 \\ & 0 \\ & 3 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 5 \end{aligned}$ |
| $\begin{aligned} & \text { Bar } \\ & \because f=" \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | $\begin{array}{ll} 15 & \mathrm{lb} . \\ 15 & \mathrm{lb} . \\ 16 & \mathrm{lb} . \\ 17 & \mathrm{lb} . \\ 18 & \mathrm{lb} \end{array}$ | tall of bar <br> tall of bar, large rock tall bar, extreme black sand 40' out from bank 40' out from bank | $\begin{aligned} & 0 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$ |

IAIBI」E 1 contınued
RESULTG FROM PRELIMINARY PROSPECTING

| DFPCOS]T | SAMPLEE | WEISH'S | COMMENT | COLOURS |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Bar } \\ \cdots f^{\prime} " \\ \text { cont } \end{gathered}$ | $\begin{gathered} \hline \hline 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 1.3 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \end{gathered}$ | $\left\lvert\, \begin{array}{ll} 17 & 1 b \\ 15 & 1 b \\ 16 & 1 b \\ 15 & 1 b \\ 15 & 1 b \\ 17 & 1 b . \\ 15 & 1 b \\ 18 & 1 b \\ 17 & 1 b . \\ 16 & 1 b . \\ 15 & 1 b \\ 16 & 1 b . \\ 17 & 1 b . \\ 15 & 1 b . \end{array}\right.$ | close in <br> $50^{\prime}$ out from bank, 5 flakes $50^{\prime}$ out, 1 large flake <br> 50' out from bank <br> $50^{\prime}$ out from bank <br> opposite creek, fine colours opposite creek <br> close in, 3 flakes <br> close in, garnets close $1 n$ <br> $40^{\prime}$ out from bank. fine colour <br> 40' out from bank <br> 40' out from bank <br> close $1 \mathrm{n}, 1$ flake | $\begin{gathered} \hline 4 \\ 11 \\ 0 \\ 0 \\ 0 \\ 3 \\ 3 \\ 19 \\ 4 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 3 \end{gathered}$ |
| $\begin{gathered} \text { Bar } \\ " g{ }^{\prime \prime} \end{gathered}$ | 1 <br> 2 <br> 3 <br> 4 <br> 5 <br> 6 <br> 7 <br> 8 <br> 9 <br> 10 <br> 11 <br> 12 <br> 13 <br> 14 <br> 15 <br> 16 <br> 17 | $\left.\begin{array}{\|cl} 15 & \mathrm{lb} . \\ 15 & \mathrm{l} \cdot \\ 16 & \mathrm{lb} \\ 17 & \mathrm{lb} \\ 16 & \mathrm{ib} . \\ 18 & 1 b \\ 15 & 1 b . \\ 17 & 1 b . \\ 15 & 1 b . \\ 16 & 1 b . \\ 16 & l b . \\ 18 & 1 b . \\ 15 & 1 b . \\ 17 & 1 b . \\ 15 & 1 b \\ 17 & l b \\ 15 & l b \end{array} \right\rvert\,$ | 20' out from bank, fine colours <br> 50' from bank. lots black sand <br> 70' from bank, lots black sand <br> close in <br> close in, 1 small flake <br> $100^{\prime}$ out from bank <br> $100^{\prime}$ out from bank <br> close in <br> 75' out from bank close in <br> outside corner <br> 150' out from bank <br> 200' from bank, fine colours 200' out from bank mid-bar, $]$ flake head of bar head of bar | $\begin{aligned} & 3 \\ & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 6 \end{aligned}$ |

25. 

TABI.FR 2
RESULATS FROM BAR DEPOSIT " $\underset{\text { G }}{ }$

|  | SAMPLE NUMBER | WEIGHT | COLORS | $\begin{aligned} & \text { VALUE } \\ & \text { PER YD } \end{aligned}$ | COMMENT'S | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{\sigma}$ | 1 | 7 lb | 1 | \$1 38 | top | \$2 76 |
|  | 2 | 6 lb | 3 | \$4 82 | maddle, 2 flakes |  |
|  | 3 | 61/2 1b | 0 | 0 | $m \perp d d l e$ |  |
|  | 4 | 6 lb | 3 | \$4 82 | bottom, 12', 2 flakes |  |
| $\frac{n}{\pi}$ | 1 | 61 b | 1 | \$1 61 | top. flake | \$ 75 |
|  | 2 | 7 lb | 0 | 0 | top |  |
|  | 3 | 7 1b | 1 | \$1.38 | mıddle |  |
|  | 4 | $5 \frac{1}{2} 1 \mathrm{~b}$ | 0 | 0 | bottom, 10' |  |
| $\begin{gathered} 0 \\ 0 \end{gathered}$ | 1 | 61 b | 0 | 0 | top | \$ 80 |
|  | 2 | 7 lb | 0 | 0 | top |  |
|  | 3 | 6 lb | , | \$3 21 | middle |  |
|  | 4 | 7 lb | 0 | 0 | bottom, $10^{\prime}$ |  |
| $\left\lvert\, \begin{aligned} & \pm \\ & \pi \end{aligned}\right.$ | 1 | 7 lb . | 0 | 0 | top | \$ 40 |
|  | 2 | 6 lb | 1 | \$1.61 | middle |  |
|  | 3 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 0 | 0 | middle |  |
|  | 4 | 7 lb | 0 | 0 | bettom. $12^{\prime}$ |  |
| $\begin{aligned} & i n \\ & \pi \end{aligned}$ | 1 | 7 lb | 1 | \$1.38 | top, flake | \$4 70 |
|  | 2 | 6 lb. | 3 | \$4 87 | mıddle |  |
|  | 3 | 6 lb | 6 | \$9.63 | middle, 2 colours 4 big flakes |  |
|  | 4 | $6 \frac{1}{2} 1 \mathrm{l}$ | 2 | \$2 96 | bottom, 12' |  |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 1 | 6 lb | 7 | S11 24 | top, 2 flakes | \$6 68 |
|  | 2 | $6 \frac{1}{2} \mathrm{lb}$ | 3 | \$4 45 | top |  |
|  | 3 | $5 \frac{1}{2} 16$ | 0 | 0 | bottom |  |
|  | 4 | 7 lb | 8 | $\$ 1101$ | bottom, 12', 4 flakes 4 colours |  |

TABLE 2 continued
RESULTS FROM BAR DEPOSIT "a"

| $\frac{1}{2}$ | SAMPLE NUMBER | WEIGHT | COLORS | VALUE PER YD | COMMENTS | \|AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\pi}{\sigma}$ | 1 | 6 lb | 0 | 0 | top | \$ 37 |
|  | 2 | 6 lb | 0 | 0 | top |  |
|  | 3 | $6 \frac{1}{2} \mathrm{lb}$ | 1 | \$1 48 | bottom, big flake |  |
|  | 4 | 7 lb . | 0 | 0 | bottom, $10^{\circ}$ |  |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 1 | 6 Jb . | 0 | 0 | top | \$155 |
|  | 2 | $6 \frac{1}{2} \quad 1 \mathrm{~b}$ | 2 | \$2 96 | top, big flakes |  |
|  | 3 | 6 lb | 2 | \$3 21 | middle |  |
|  | 4 | 7 lb . | 0 | 0 | bottom, 12' |  |
| $\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$ | 1 | 6 lb | 2 | \$3 21 | top | \$ 80 |
|  | 2 | 616. | 0 | 0 | mıddle |  |
|  | 3 | $71 / 21 b$ | 0 | 0 | mıddle |  |
|  | 4 | 6 lb | 0 | 0 | bottom, $10^{\prime}$ |  |
| $\frac{0}{\pi}$ | 1 | 6 lb. | 1 | \$1.61 | top, flake | \$1.14 |
|  | 2 | $6 \frac{1}{2} \mathrm{lb}$ | 0 | 0 | top |  |
|  | 3 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 2 | \$2 96 | maddle, big flakes |  |
|  | 4 | $6 \frac{1}{2} \mathrm{lb}$ | 0 | 0 | bottom, $10^{\prime}$ |  |
| $\overline{0}$ | 1 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 0 | 0 | top | \$ 35 |
|  | 2 | 6 lb . | 0 | 0 | top |  |
|  | 3 | 6 lb . | 0 | 0 | middle |  |
|  | 4 | 7 lb . | 1 | \$1 38 | bottom, 12' |  |
| $\left.\frac{\stackrel{n}{\sigma}}{\sigma} \right\rvert\,$ | 1 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 1. | \$1.48 | top, big flake | \$2 32 |
|  | 2 | 7 lb | 0 | 0 | mıddle |  |
|  | 3 | 6 lb | 3 | \$4 82 | middle, 1 big flake |  |
|  | 4 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 2 | \$2 96 | bottom, 10' |  |

TABLE: 2. continued
RESULTS FROM BAR DEPOSIT "a"

| $\frac{1}{0}$ | $\begin{aligned} & \text { SAMPLE } \\ & \text { NUMBER } \end{aligned}$ | WEIGHT | COLORS | $\begin{aligned} & \text { VALUE } \\ & \text { PER YD } \end{aligned}$ | COMMENTS | AVERAGE: VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\pi}{6}$ | 1 | 61/2 1b | 2 | \$2 96 | top | \$4.53 |
|  | 2 | 7 lb | 3 | \$4 13 | middle |  |
|  | 3 | 7 lb . | 1 | \$1 38 | bottom |  |
|  | 4 | 6 lb | 7 | \$9.63 | bottom, 8', 3 flakes 4 colours |  |
| $\frac{ \pm}{6}$ | 1 | 6 lb | 2 | \$3 21 | top | \$3 29 |
|  | 2 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 3 | \$4 45 | middle |  |
|  | 3 | 7 lb | 4 | \$5.50 | bottom, 2 flakes 2 colours |  |
|  | 4 | $6 \frac{1}{2} \mathrm{lb}$ | 0 | 0 | bottom, 8' |  |
| TOTAL OF AVERAGES |  |  |  |  |  | \$30 44 |

Average value/yd. for BAR DEPOSIT "a" = $\$ 30.44=14=52-17$
'TAE3LES 3
RESULTS FROM BAR DEPOSIT "ł"

| $\frac{1}{2}$ | SAMPLE NUMBER | WEIGHT | COLORS | VALUE PER YD | COMMENTS | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 61 b . | 2 | \$3 21 | top, 1 flake 1 colour | \$3 62 |
|  | 2 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 3 | \$4 45 | middle, 3 flakes |  |
|  | 3 | 6 lb | 1 | \$1 61 | bottom, 12', flake |  |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 1 | $6 \frac{1}{2} \mathrm{lb}$ | 0 | 0 | top | S0 |
|  | 2 | $6 \frac{1}{2} 10$ | 0 | 0 | middle |  |
|  | 3 | $6 \frac{1 / 2}{} 10$ | 0 | 0 | mıddle |  |
|  | 4 | 61 b . | 0 | 0 | bottom, 12' |  |
| $\begin{aligned} & 17 \\ & 0 \end{aligned}$ | 1 | 8 | 0 | 0 | top | \$0 |
|  | 2 | 61/2 lb | 0 | 0 | middle |  |
|  | 3 | 6 lb . | 0 | 0 | middle |  |
|  | 4 | 616. | 0 | 0 | bottom of hole $12^{\prime}$ |  |
| $\begin{aligned} & 7 \\ & 0 \end{aligned}$ | 1 | 61/2 lb | 0 | 0 | top | \$1 61 |
|  | 2 | 6 lb . | 1 | \$1.61 | middle, 1 colour |  |
|  | 3 | 6 lb. | 1 | \$1.61 | middle, bag flake |  |
|  | 4 | 6 lb | 2 | \$3.21 | bottom, $17^{\prime}$ |  |
| $10$ | 1 | 616. | 4 | \$6.42 | t.p | \$5 22 |
|  | 2 | 6 lb. | 5 | \$8.03 | middle |  |
|  | 3 | 6 lb . | 3 | \$4 82 | bottom, 12 ${ }^{\prime}$ |  |
|  | 4 | 6 lb. | 1 | \$1.61 | bottom |  |
| TOTAL OF AVERAGES |  |  |  |  |  | \$10 45 |

Average value/yd. for BAR DEPOSIT " $b "=\$ 1045: 5=52.09$
29.

「フABLIE 4
RESULTS FROM BAR DEPOSIT " $\subset$ "

| $\frac{\llcorner }{\bar{n}}$ | SAMPLE NUMBER | WEIGH'T | COLORS | $\begin{aligned} & \text { VALUE } \\ & \text { PER YD } \end{aligned}$ | COMMENTS | $\begin{aligned} & \text { AVERAGE } \\ & \text { VALUE/YD } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{U}$ | 1. | 7 lb | 2 | \$2 75 | top of hole | \$3.67 |
|  | 2 | 715 | 1 | \$1.37 | middle of hole |  |
|  | 3 | 7 lb | 1 | \$1.37 | 8' depth, gold flakey |  |
|  | 4 | 7 1b | 6 | \$8.25 | bedrock 10', silver/black clay. 5 flakes 1 chunk |  |
|  | 5 | 7 lb | 3 | \$4.13 | bedrock, large flakes |  |
|  | 6 | 7 Jb | 3 | \$4 13 | bedrock, small colours |  |
| $\left\lvert\, \begin{gathered} n \\ u \end{gathered}\right.$ | 1 | 7 lb | 2 | \$2.74 | top of hole | \$2 11 |
|  | 2 | 8 lb | 1 | \$2.40 | middle of hole |  |
|  | 3 | 8 lb | 1 | \$1 20 | bottom of hole $10^{\prime}$ |  |
| $\begin{aligned} & n \\ & 0 \end{aligned}$ | 1 | 71 b | 0 | 0 | top of hole | \$ 50 |
|  | 2 | $6 \frac{1}{2} \mathrm{lb}$ | 1 | \$1.48 | middle of hole |  |
|  | 3 | 7 lb | 0 | 0 | bottom of hole $12^{\prime}$ |  |
| $\pm$ | 1 | 8 lb | 0 | 0 | top of hole | \$3 40 |
|  | 2 | 7 lb | 3 | \$4.11 | middle of hole |  |
|  | 3 | 7 lb | 3 | \$3.59 | , middle of hole |  |
|  | 4 | 5 lb. | 4 | \$5.93 | bottom of hole 12' |  |
| $10$ | 1 | 7 lb | 2 | \$2 75 | middle of hole | \$ 2.39 |
|  | 2 | 8 lb | 0 | 0 | middle of hole |  |
|  | 3 | 61/2 1b | 3 | \$4 44 | bottom of hole $12^{\prime}$ |  |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 1 | 7 lb | 3 | \$4 11 | top of hole, colours fine reddish | \$1.77 |
|  | 2 | 7 lb | 0 | 0 | middle of hole |  |
|  | 3 | 8 lb | 1 | \$1 20 | bottom of hole $12^{\prime}$ |  |

TABTAF 4 continued
RESULTS FROM BAR DEPOSIT " C "

| $\frac{1}{2}$ | SAMPLE NUMBER | WEICHT | COLORS | VALUE PER YD | COMMENTS | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{N}{\top}$ | 1 | 8 lb . | 0 | 0 | top of hole | \$ 40 |
|  | 2 | 8 lb | 0 | 0 | middle of hole |  |
|  | 3 | 8 lb | 1 | \$1 20 | middle of hole, lots of black sand |  |
|  | 4 | 8 1b | 1 | \$1.20 | bottom of hole $12^{\prime}$ |  |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 1 | 8 lb | 0 | 0 | top of hole | \$ 69 |
|  | 2 | 7 lb. | 1 | \$1 37 | maddle of hole |  |
| $\bar{j}$ | 1 | 7 lb | 3 | \$4.11 | hole not complete | \$4 11 |
| $\frac{0}{U}$ | 1 | 7 lb | 0 | 0 | top of hole | SO |
|  | 2 | 7 lb . | 0 | 0 | bottom of hole 12', lots of garnet |  |
| $\frac{8}{0}$ | 1 | 8 lb . | 5 | \$6 02 | top of hole | \$4.12 |
|  | 2 | 8 lb . | 3 | \$3.60 | middle of hole, reddish |  |
|  | 3 | 7 lb. | 4 | \$5 50 | bottom of hole $12^{\prime}$ 4 flakes, garnets |  |
|  | 4 | 7 lb. | 1 | \$1 37 | bottom of hole 12', flake |  |
| $\frac{0}{0}$ | 1 | 8 lb | 1 | \$1 20 | top of hole | \$2.01 |
|  | 2 | 71 b . | 3 | \$4 11 | middle of hole |  |
|  | 3 | 7 1b. | 1 | \$1 37 | middle of hole |  |
|  | 4 | 7 lb . | 1 | \$1.37 | bottom of hole $12^{\prime}$ |  |
| $\frac{10}{0}$ | 1 | 81 b | 0 | 0 | top of hole | \$5 53 |
|  | 2 | 8 lb | 1 | \$1 20 | middle of hole |  |
|  | 3 | 7 1b | 3 | \$4 111 | middle of hole |  |
|  | 4 | 8 lb | 14 | \$16 80 | bottom of hole $12^{\prime}$ |  |
|  |  |  |  |  | TOTAL OF AVERAGES | \$30 90 |

Average value/yd for BAR DEPOSIT "G" $\$ 3090 \div 13=52-38$

ТАВт, $\quad$ 宁
RESUSTS FROM BAR DFPOSTT "Cl"

|  | SAMPLEE NUMBER | WEIGHT | COL,ORS | VAILUF. PER YD | COMMENTS | AVLRACE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 7 Lb | 0 | 0 | top | \$0 |
|  | 2 | 7 lb | 0 | 0 | mıddle |  |
|  | 3 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 0 | 0 | bottom |  |
|  | 4 | 7 lb | 0 | 0 | bottom, 10' |  |
| $0$ | 1 | 7 Jb | 0 | 0 | top | \$0 |
|  | 2 | $6 \frac{1}{2} 15$ | 0 | 0 | middle |  |
|  | 3 | $6 \frac{1 / 2}{} 1 \mathrm{lb}$ | 0 | 0 | bottom, $10^{\prime}$ |  |
| $0$ | 1 | 61/3 1b | 0 | 0 | top | \$ 94 |
|  | 2 | 7 lb | 0 | 0 | middle |  |
|  | 3 | 7 lb | 2 | \$2 75 | bottom |  |
|  | 4 | 7 1b | 1 | \$1.38 | bottom, 12' |  |
| $\begin{aligned} & 7 \\ & 0 \end{aligned}$ | 1 | $6.1 / 21 b$ | 0 | 0 | top | \$. 96 |
|  | 2 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 0 | 0 | middle |  |
|  | 3 | 7 lb . | 0 | 0 | middle |  |
|  | 4 | $71 / 2 \mathrm{lb}$ | 3 | \$3.85 | bottom, $10^{\prime}$ |  |
| $10$ | 1 | $6 \frac{1}{2} 16$ | 2 | \$2 96 | top | \$3 31 |
|  | 2 | 61/2 lb | 3 | \$4 45 | middle |  |
|  | 3 | 7 lb . | 1 | \$1.38 | middle |  |
|  | 4 | $61 / 2 \mathrm{lb}$ | 3 | \$4.45 | bottom, $10^{\prime}, 2$ big flakes 1 colour |  |
| TOTAL OF AVFRAGFS |  |  |  |  |  | \$5. 21 |

Average value/yd for BAR inePOSIT "d" = \$5.21-5 = S1_OO

TABLEE 6
RESUITG PROM BAR DEPOSIT " $\sigma$ "

| $\left[\left.\frac{t}{a} \right\rvert\,\right.$ | SAMPf.E NUMBER | WEICHT | COI,ORS | VALUE PER YD | COMMENTS | AVERAGE VAIJUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | 1 | 71 b | 3 | \$4 13 | top of hole | \$3 81 |
|  | 2 | $7 \mathrm{1b}$ | 1 | \$1 38 | middle of hole |  |
|  | 3 | 61/2 1.b | 4 | \$5 93 | bottom of hole 12' 1 flake 3 colours, |  |
| $\stackrel{\rightharpoonup}{1}$ | 1 | 7 lb | 0 | 0 | top of hole | \$1 83 |
|  | 7 | 7 lb | 3 | \$4 13 | middle of hole |  |
|  | 3 | 71 b . | 1 | \$1 38 | bottom of hole 12' |  |
| $\begin{aligned} & m \\ & (1) \end{aligned}$ | 1 | 7 lb | 5 | \$6 88 | top of hole | \$5.52 |
|  | 2 | $61 / 2 \mathrm{lb}$ | 1 | \$1 48 | maddle of hole |  |
|  | 3 | 7 lb | 3 | \$4 13 | middle of hole |  |
|  | 4 | 71 b | 6 | \$8 25 | bottom of hole, 3 flakes 3 colours |  |
|  | 5 | 7 lb . | 5 | \$6 88 | bottom of hole 12' |  |
| $\begin{aligned} & \pm \\ & 0 \end{aligned}$ | 1 | 7 lb | 18 | \$24 76 | top of hole | \$29.55 |
|  | 2 | 716. | 29 | \$39.90 | middle of hole, 1 flake |  |
|  | 3 | $6 \frac{1}{2} \mathrm{lb}$ | 23 | \$34 08 | middle of hole |  |
|  | 4 | $61 / 2 \mathrm{lb}$ | 30 | \$44 45 | bottom of hole, 5 flakes 25 colours |  |
|  | 5 | 7 1b | 20 | \$25 51 | bottom of hole, 1 flake 19 colours |  |
|  | 6 | 71 b | 17 | \$27 29 | top of hole |  |
|  | 7 | 7 lb | 11 | \$15 13 | maddle of hole |  |
|  | 8 | 7 lb | 21 | \$25 28 | bottom of hole $12^{\prime}$ |  |
| $\begin{gathered} 10 \\ 0 \end{gathered}$ | 1 | 7 lb | 1 | \$1.38 | top of hole, flake | \$175 |
|  | 2 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 1 | \$1 48 | middle of hole |  |
|  | 3 | 71 b | 2 | \$2 75 | middle of hole, flakes |  |
|  | 4 | 716 | 1 | \$1 38 | bottom of hole 12'. flake |  |

TABIAE 6 continued
RESULTS FROM BAR DEPOSIT " $e$ "

| $\frac{1}{0}$ | $\begin{aligned} & \text { SAMPLE } \\ & \text { NUMBER } \end{aligned}$ | WEIGHT | COLORS | VALJUE PER YD | COMMENTS | AVFRAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | 1 | 7 lb | 1 | \$1.38 | top of hole | \$4 79 |
|  | 2 | $6 \frac{1}{2} \mathrm{lb}$ | 12 | \$17 78 | maddle of hole |  |
|  | 3 | 8 lb | 0 | 0 | middle of hole |  |
|  | 4 | $6 \frac{1}{2} \mathrm{lb}$ | 4 | \$5 93 | bottom of hole 12' <br> 1 flake 3 colours |  |
| $\hat{0}$ | 1 | 7 lb | 1 | $\$ 138$ | top of hole, flake | \$ 79 |
|  | 2 | 7 1b. | 0 | 0 | middle of hole |  |
|  | 3 | 7 lb | 0 | 0 | middle of hole |  |
|  | 4 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 1 | \$1 48 | bottom of hole 12' tlake |  |
| $\begin{aligned} & \infty \\ & 0 \end{aligned}$ | 1 | 7 lb | 0 | 0 | top of hole | $\$ 185$ |
|  | 2 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 0 | 0 | middle of hole |  |
|  | 3 | $6 \frac{1}{2} \mathrm{lb}$ | 4 | \$5 93 | bottom of hole, 1 flake 3 colours |  |
|  | 4 | 61/2 1 lb | 1 | \$148 | bottom of hole 12', flake |  |
| $0$ | 1 | 7 lb. | 0 | 0 | top of hole | \$ 72 |
|  | 2 | 7 lb. | 1 | \$1.38 | middle of hole |  |
|  | 3 | 7 lb . | 0 | 0 | bottom of hole |  |
|  | 4 | $61 / 2 \mathrm{lb}$ | 1 | \$1.48 | bottom of hole 12', flake |  |
|  |  |  |  |  | TOTAL OF AVERAGES | \$50 61 |

Average value/yd. for BAR DEPOSIT "e" $=\$ 50.61 \div 9=55-62$

TABIEE'7
RESULTS FROM BAR DEPOSIT " $\mathrm{f}^{\prime \prime}$

| $\frac{1}{\Omega}$ | SAMPLE NUMBER | WETGH? | COLORS | VALUE <br> PER/VD | COMMENTS | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{4}$ | 1 | 7 lb | 5 | \$688 | top, big flakes | \$6.80 |
|  | 2 | $6 \frac{1}{2} 16$ | 5 | \$741 | maddje, blg flakes |  |
|  | 3 | 7 lb . | 4 | \$5 50 | middle, flakes |  |
|  | 4 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 5 | \$7 41 | bottom $\mathbf{1 5}^{\prime}$ big flakes |  |
| $\frac{\Omega}{4}$ | 1 | 716 | 3 | \$4.13 | top, flakes | \$4 13 |
|  | 2 | 7 lb | 5 | \$6 88 | maddle, flakes |  |
|  | 3 | $6 \frac{1}{2} 1 \mathrm{lb}$ | 0 | 0 | middle |  |
|  | 4 | 7 lb . | 4 | \$5 50 | bottom 15', flakes |  |
| $\begin{aligned} & \pi \\ & 4 \end{aligned}$ | 1 | 7 lb | 4 | \$5 50 | top, big flakes | \$5 24 |
|  | 2 | 6\%12 1 b | 3 | \$4 44 | middle, big flakes |  |
|  | 3 | 716. | 3 | \$4 13 | bottom, flakes |  |
|  | 4 | 716. | 5 | \$6.88 | bottom 15', flakes |  |
| $\begin{aligned} & 4 \\ & 4 \end{aligned}$ | 1 | $6 \frac{1}{2} 16$ | 5 | \$741 | top, flakes | \$4 97 |
|  | 2 | 71 b . | 4 | \$5 50 | middle, flakes |  |
|  | 3 | 61/2 1b | 1 | \$148 | middle, flakes |  |
|  | 4 | 716. | 4 | \$5.50 | bottom 15', flakes |  |
|  |  |  |  |  | TOTAL OF AVERAGES | \$21. 14 |

Average value/yd for BAR DEPOSIT "f" $=\$ 21.14-4=55-29$

TABIE $B$
RESULTS FROM BAR DEPOSIT " $\boldsymbol{g}^{\prime \prime}$

|  | SAMPLE | WEIGHT | COLORS | VALUE, PER YD | COMMENTS | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0. | 1 | 7 1b | 2 | \$2 75 | top, 1 flake 1 colour | \$1 38 |
|  | 2 | 7 lb | 0 | 0 | middle |  |
|  | 3 | 71 b | 1 | \$1.38 | middle |  |
|  | 4 | 7 1b | 1 | \$1.38 | bottom, 12', big flake |  |
| or | 1 | 7 lb | 0 | 0 | top | \$1 95 |
|  | 2 | 7 1b | 0 | 0 | top |  |
|  | 3 | 6 lb. | 3 | \$4 82 | mıddle |  |
|  | 4 | 61/2 1b | 2 | \$2 96 | bottom, 12' |  |
|  | 1 | 71 b . | 1 | \$1.38 | top | \$2.40 |
|  | 2 | 7 lb . | 0 | 0 | middle |  |
|  | 3 | $6 \frac{1}{2} \mathrm{lb}$ | 3 | \$4.45 | middle |  |
|  | 4 | 6 lb. | 2 | \$3.21 | bottom, big flakes |  |
|  | 5 | $6 \frac{1 / 2}{} \mathrm{lb}$ | 2 | \$2 96. | bottom, 12' |  |
| $\pm$ | 1 | 7 lb . | 1 | \$1.38 | top | \$2 41 |
|  | 2 | $61 / 2 \mathrm{lb}$ | 0 | 0 | middle |  |
|  | 3 | 7 lb . | 3 | \$4 13 | middle |  |
|  | 4 | 7 1b. | 3 | \$4 13 | bottom, 12' |  |
| $\begin{aligned} & 10 \\ & 0 \end{aligned}$ | 1 | 7 Jb . | 0 | 0 | top | \$1 21 |
|  | 2 | $6 \frac{1}{2} 1 \mathrm{~b}$ | 0 | 0 | middle |  |
|  | 3 | 6 lb . | 0 | 0 | middle |  |
|  | 4 | 61 b | 3 | \$4.82 | bottom $12^{\prime}$ <br> lots of black sand |  |

TABIEE 8 continued
RESULTS FROM BAR DEPOSIT " 9 "

|  | SAMPI NUMBER | WETGH'T | COLORS | VALUE PER YD | COMMENTS | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 1 | 7 lb | 0 | 0 | top | \$0 |
|  | 2 | $6 \frac{1}{2} \mathrm{lb}$ | 0 | 0 | mıddle |  |
|  | 3 | 7 1b. | 0 | 0 | mıddle |  |
|  | 4 | 7 lb . | 0 | 0 | bottom, 12' |  |
| $\hat{O}$ | 1 | 7 lb | 0 | 0 | tor | \$4 45 |
|  | 2 | $61 / 2 \mathrm{lb}$ | 0 | 0 | tor |  |
|  | 3 | 61/2 1b | 3 | \$4 45 | middle |  |
|  | 4 | $61 / 216$ | 6 | \$8 89 | middle |  |
|  | 5 | $61 / 216$ | 6 | \$8.89 | bottom, $10^{\prime}$ |  |
|  |  |  |  |  | TOTAL OF AVERACES | \$13.80 |

Average value/yd. for BAR DEPOSIT " $\mathbf{g}^{\prime \prime}=\$ 13.80 \leq 7=\$ 1 \cdot 9^{\circ} 7$

TABTB?
RESULTS FROM BENCH DEDOSTC " $た$."

|  | GAMPLE | DEPTH <br> TAREN | [JE] SIT: | COLORS | VALidT PER YD | DESCRIPTYON OF TRENCi | AVERAGE VALUF,'yD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 1 2 3 4 | $\begin{aligned} & \hline{ }_{2}^{\prime} \\ & 4^{\prime} \\ & 5^{\prime} \\ & 8^{\prime} \end{aligned}$ | $\begin{array}{cc} 6 \frac{1}{2} & 1 b \\ 6 \frac{3}{2} & 1 b \\ 6 & 1 b \\ 6 \frac{1}{2} & 1 b \end{array}$ | $\begin{aligned} & 3 \\ & 0 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{gathered} 84.45 \\ 0 \\ \$ 3.21 \\ \$ 445 \end{gathered}$ | $\begin{aligned} & \text { MYOK 1' } \\ & \text { GRAVEL: } 7 \end{aligned}$ | \$3 03 |
| $4$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 5^{\prime} \\ & 7^{\prime} \\ & 10^{\prime} \end{aligned}$ | 7 | $\begin{aligned} & 1 \\ & 0 \\ & 3 \end{aligned}$ | $\begin{gathered} \$ 1.28 \\ 0 \\ \$ 445 \end{gathered}$ | MUCK: 5' GRAVEI: $\Gamma^{\prime}$ | 31.94 |
| $\begin{gathered} 5 \\ 4 \end{gathered}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 2^{\prime} \\ & 3^{\prime} \\ & 5^{\prime} \\ & 5^{\prime} \end{aligned}$ | 7 1b <br> $6 \frac{1}{2}$ lb. <br> 7 lb <br> $6 \frac{1}{2}$ lb. | $\begin{aligned} & 1 \\ & 2 \\ & 0 \\ & 2 \end{aligned}$ | $\$ 1.38$ <br> $\$ 2.96$ <br> 0 <br> $\$ 296$ | MUCK. $6 "$ GRAVEL: 5' | \$1.83 |
| $\stackrel{\downarrow}{4}$ | 1. <br> 2 <br> 3 <br> 4 | $4^{\prime}$ <br> $5^{\prime}$ <br> $7^{\prime}$ <br> $7^{\prime}$ | 713. <br> 7 ib. <br> 7 1b. <br> 61/2 1b. | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 4 \end{aligned}$ | $\$ 138$ <br> 0 <br> $\$ 5.93$ | MUCK ${ }^{-3}$ GRAVEL: 7' | \$1 33 |
| $40$ |  | $2^{\prime}$ <br> $4^{\prime}$ <br> $7^{\prime}$ <br> $9^{\prime}$ | $\begin{array}{rr} 7 & \mathrm{lb} . \\ 6 \frac{1}{2} & 1 \mathrm{~b} . \\ 6 & \mathrm{lb} . \\ 6 & \mathrm{lb} . \end{array}$ | $\begin{aligned} & 0 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$ | $\begin{gathered} 0 \\ \$ 2.96 \\ \$ 4.82 \\ \$ 8.03 \end{gathered}$ | $\mathrm{MLCt} . \mathrm{J}^{\prime}$ CRA'JEL: $3^{\prime}$ | \$3.95 |
| $0$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $4^{\prime}$ <br> $5^{\prime}$ <br> $7^{\prime}$ <br> $7{ }^{\prime}$ | $\begin{array}{ll} 7 & \mathrm{lb} . \\ 7 & \mathrm{lb} . \\ 7 & \mathrm{lb} \\ 7 & \mathrm{lb} \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \end{aligned}$ |  | MUCK: 4' GRAVEr_: $3^{\prime}$ | \$1 03 |

TABLE s conitinued
RESULTS FROM BENCH LEPOSIT "A"

| $$ | SAMPIE | $\left\|\begin{array}{l} \text { DEPTH } \\ \text { TAKEN } \end{array}\right\|$ | WEIGHT | COI,ORS | VALUE PER YD. | DESCRTPTION OF TRENCH | $\begin{aligned} & \text { AVERAGE } \\ & \text { VALUF/YD } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { N }}{ }$ |  |  |  |  |  | MUCK: no gravel bedrock slatey |  |
| $4$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{gathered} 3^{\prime} \\ 6^{\prime} \\ 9^{\prime} \\ 12^{\prime} \end{gathered}$ | $\begin{array}{ll} 7 & \mathrm{lb} \\ 7 & \mathrm{lb} \\ 7 & \mathrm{lb} \\ 7 & \mathrm{lb} \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | muCK: 8' GRAVEL $12^{\prime}$ | \$0 |
| $\begin{aligned} & 0 \\ & 4 \end{aligned}$ |  | 2' <br> $4^{\prime}$ <br> $6^{\prime}$ <br> $8^{\prime}$ <br> $10^{\prime}$ <br> $12^{\prime}$ | $\begin{array}{cc} 61 / 2 & 1 b . \\ 7 & 1 b \\ 7 & 1 b . \\ 6 \frac{1}{2} & 1 b . \\ 6 \frac{1}{2} & 1 b . \\ 6 \frac{1}{2} & 1 b . \end{array}$ |  | \$1 48 <br> \$1 38 <br> $\$ 4.45$ <br> 0 <br> $\$ 5.93$ | MUCK: $1^{\prime}$ GRAVEL: $11^{\prime}$ | \$2.21 |
| $\frac{0}{4}$ | 1 <br> 2 <br> 3 <br> 4 <br> 5 | $\begin{aligned} & 5^{\prime} \\ & 8^{\prime} \\ & 10^{\prime} \\ & 12^{\prime} \\ & 14^{\prime} \end{aligned}$ | $\left\{\begin{array}{rl} 6 \frac{1}{2} & 1 b \\ 7 & 1 b . \\ 7 & 1 b . \\ 6 \frac{1}{2} & 16 . \\ 7 & 10 \end{array}\right.$ | 0 <br> 0 <br> 0 <br> 12 <br> 11 | $\begin{gathered} 0 \\ 0 \\ 0 \\ \$ 17.78 \\ \$ 15.13 \end{gathered}$ | MUCK: 4' <br> GRAVEL: $10^{\circ}$ <br> bedrock samples <br> taken in black <br> crumbly slate bedrock | \$8 23 |
| $\overline{4}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$ | $5^{\prime}$ <br> $7^{\prime}$ <br> $12^{\prime}$ <br> $15^{\prime}$ | $\begin{array}{rl} 6 & 1 b \\ 7 & 1 b \\ 5 \frac{1}{2} & 1 b \\ 6 \frac{1}{2} & 1 b \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{cc} 0 \\ 0 \\ \$ 4 & 45 \\ \$ 5 & 93 \end{array}$ | MUCK. $4^{\prime}$ GRAVEL: $11^{\prime}$ | \$2.60 |
|  |  |  |  |  |  | TOTAL OF AVERAGES | \$26.65 |

Average value per yard for bench deposit "A"

$$
\$ 2665: 10=52-56
$$

「ABTABAG
RESULTS FRCM EENCH DEPGETT "F3"

| 产 | SPMPELE, | $\begin{aligned} & \text { DEPTH } \\ & \text { TAKEN } \end{aligned}$ | WEIGHT | COLCRS | EALUT PER YD | DESCRIETION OR TREACM | $\begin{aligned} & \text { AVEFACE } \\ & \text { VACUE/YD. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) |  |  |  |  |  | MIJCK black iauck only no gravel, no samples |  |
| $\begin{aligned} & d \\ & 0 \\ & 0 \end{aligned}$ | 2 <br> 3 <br> 4 | $\begin{aligned} & 6^{\prime} \\ & 4^{\prime} \\ & 8^{\prime} \\ & 12^{\prime} \end{aligned}$ | $\left[\begin{array}{cc} 6 \frac{1}{2} & 1 b \\ 7 & 1 b \\ 7 & 1 b \\ 7 & 1 b \end{array}\right.$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | MUCK $3^{\prime}$ <br> GRAVEL: 12' <br> thawed gro ind soft bearook | 0 |
| $\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 10^{\prime} \\ & 6^{\prime} \\ & 14^{\prime} \\ & 14^{\prime} \end{aligned}$ | $\begin{gathered} 7 \mathrm{lb} . \\ 6 \frac{1}{2} \mathrm{lb} . \\ 6 \mathrm{lb} . \\ 6 \mathrm{l} . \mathrm{b} . \end{gathered}$ | 0 <br> 0 <br> 0 <br> 0 | 0 <br> 0 <br> 0 <br> 0 | MUCK: 2' <br> GRAVEL: $15^{\prime}$ <br> thawed <br> creek gravel ir <br> top layers | 0 |
| $\begin{aligned} & 8 \\ & 0 \end{aligned}$ | 1 <br> 2 <br> 3 <br> 4 | $\begin{gathered} 10^{\prime} \\ 6^{\prime} \\ 14^{\prime} \\ 15^{\prime} \end{gathered}$ | $\begin{gathered} 7 \mathrm{lb} . \\ 7 \mathrm{lb} . \\ 6 \frac{1}{2} \mathrm{lb} . \\ 6 \mathrm{lb} . \end{gathered}$ | 0 <br> 0 <br> 0 <br> 0 | 0 <br> 0 <br> 0 <br> 0 | MUCK: ${ }^{\prime}$ <br> GRAVEL: 12' <br> thawted <br> creek gravel in top layers | 0 |
| 10 0 | 1 <br> 2 <br> 3 <br> 4 | $\begin{gathered} 6^{\prime} \\ 10^{\prime} \\ 14^{\prime} \\ 10^{\prime} \end{gathered}$ | $\begin{gathered} 7 \mathrm{lb} . \\ 7 \mathrm{jb} . \\ 7 \mathrm{k}_{2} \mathrm{lb} . \\ 6 \mathrm{ib} . \end{gathered}$ | 0 <br> 0 <br> 0 <br> 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | MUCK. 4' GRAVEL 12' thawed | 0 |
| 0 0 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{gathered} 6^{\prime} \\ 8^{\prime} \\ 1:^{\prime} \\ 17^{\prime} \end{gathered}$ | $\begin{array}{r} 6 \mathrm{lb} . \\ 6 \frac{1}{2} \mathrm{lb} . \\ 6 \frac{1}{2} \\ \mathrm{lb} . \\ 6 \frac{1}{2} \mathrm{lb} . \end{array}$ | $0$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | MUCK: $5^{\prime}$ GRAVEL: 12. thawed | 0 |

'TAPSTE 10 contirucd
RESULTS FROM BFNCH DEFOSIT "F3"


Average value per yard for BENCH DEPOSIT " $\mathrm{BB}^{\prime \prime}$
$s 0$

TAE3T, ETA
RESULTS FROM BRNCF DEPGSIT "®"


Average vaiue per yard for BENCH DEPOSTT " C "

$$
\$ 15.03 \div 2=58-02
$$

42

TAFSHETY 12
RPSULTE FROM BENCH DEPOSII "D "


PESULS FRCM BENCH DEPCOTT "D"

| 袁 | Sampre | $\begin{aligned} & \text { Depth } \\ & \text { TAKEBN } \end{aligned}$ | WEIGPT | COLIORS | $\begin{aligned} & \text { VAIDE } \\ & \text { PFR YD } \end{aligned}$ | DEGCRIPTJCA OF TRENCH | AVERAGE VALUR: VD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{aligned} & 0 \\ & 0 \end{aligned} \right\rvert\,$ | 2 <br> 3 <br> 4 | $\begin{aligned} & \hline 4^{\prime} \\ & 6^{\prime} \\ & 5: 5 \\ & 8^{\prime} \end{aligned}$ | $\begin{array}{rl} 6 & 1 b \\ 6 & 1 b \\ 71 / 2 & \vdots \\ 6 & 1 b \end{array}$ | $?$ <br> 0 <br> 0 <br> 0 | $\begin{gathered} 3321 \\ 0 \\ 0 \\ 0 \end{gathered}$ | MUCK. 3' <br> GRAVEL: $5^{\circ}$ <br> at bench rim on avel <br> is at su:fitue <br> no bedrock | \$ 30 |
| $\frac{0}{0}$ | 1 <br> ? <br> 3 <br> 4 | $\begin{aligned} & 2^{\prime} \\ & 4^{\prime} \\ & 5^{\prime} \\ & 3^{\prime} \end{aligned}$ | $6 \frac{1}{2} \quad \mathrm{lb}$ <br> 7 lb <br> 7 1b. <br> 7 j 5 | $\begin{aligned} & 3 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$ | $\$ 4.45$ <br> 0 <br> 31.38 <br> \$241 | MUCK: :' <br> GRavel $8^{\prime}$ <br> 2' lajer of sead <br> betweern $3^{\prime}$ and $B^{\prime}$ <br> fine colcues <br> no bedrock | \$2 06 |
| $\bar{\square}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 6^{\prime} \\ & 2^{\prime} \\ & 5^{\prime} \\ & 6^{\prime} \end{aligned}$ | $\begin{array}{rr} 7 \frac{1}{2} & 1 b . \\ 7 & 1 \mathrm{~b} \\ 7 & 1 \mathrm{~b} \\ 6 \frac{1}{2} & i b . \end{array}$ | $\begin{aligned} & j \\ & 2 \\ & 5 \\ & 3 \end{aligned}$ | $\begin{aligned} & \$ 1.28 \\ & \$ 2.75 \\ & \$ 6.88 \\ & \$ 4.45 \end{aligned}$ | MUCK 2' <br> GRAVEI. $8^{\circ}$ <br> no bedrock <br> exceptichal inount <br> black send in samples <br> $\# ?$ and $\# 4$ | \$3. 84 |
| $\frac{\Omega}{a}$ | $\begin{aligned} & 1 \\ & ? \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3^{\prime} \\ & 6^{\prime} \\ & 7^{\prime} \\ & 7^{\prime} \end{aligned}$ | $\left\lvert\, \begin{array}{rl} 7 & 1 b . \\ 7 & 1 b \\ 61 / 2 & 1 b \\ 61 / 2 & 1 b . \end{array}\right.$ | $\begin{aligned} & 2 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$ | $\begin{aligned} & \$ 2.75 \\ & \$ 5.50 \\ & \$ 4.45 \\ & \$ 4.15 \end{aligned}$ | MUCK: $2^{\prime}$ <br> GRAVEIL: $7^{\prime}$ <br> no bedrock <br> lots of black sand <br> in sample \#3 | \$4.29 |
| $\frac{m}{\square}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3^{\prime} \\ & 6^{\prime} \\ & 8^{\prime} \\ & 8^{\prime} \end{aligned}$ | $\begin{array}{\|cc\|} \hline 7 & 1 b \\ 7 & 1 b \\ 6 \frac{1}{2} & 1 b \\ 5 \frac{1}{2} & 1 b . \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ \$ 3.48 \\ \$ 2.96 \end{gathered}$ | MUCK: $2^{\prime}$ <br> GRAVEI, $\Omega^{\prime}$ <br> $3^{\prime}$ pea gravel <br> then larger gravel <br> no bedrock <br> fine celour | \$1 11 |
| $\frac{ \pm}{\square}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 2^{\prime} \\ & 3^{\prime} \\ & 5^{\prime} \\ & 7^{\prime} \end{aligned}$ | $\left\lvert\, \begin{array}{cc} 7 & 1 b \\ 7 & 10 \\ 56 & 1 b \\ 5 \frac{1}{2} & 1 b \end{array}\right.$ | $\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$ | $\begin{gathered} 0 \\ \$ 1.38 \\ \$ 145 \\ \$ 1 \\ \hline 18 \end{gathered}$ | MUCF 2' <br> GPAVEE: 5' <br> coarse grável no bedroch | \$3 99 |


RESUGTS FRON BENCH DEROSTT " $D$ "

| $\frac{\frac{7}{4}}{\frac{5}{2}}$ | FAMPIE | $\begin{array}{\|l\|} \hline \text { DEPTH } \\ \text { TAKEN } \end{array}$ | WETGHT | COLOPS | $\left\lvert\, \begin{aligned} & \text { VALUE } \\ & \text { PER YD }\end{aligned}\right.$ | DEISCRTPTION OF TRENCH | Averand VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{10}{0}$ | $\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{\|c} 2^{\prime} \\ 5^{\prime} \\ 7^{\prime} \\ 9^{\prime} \end{array}$ |  | $\begin{aligned} & \hline 0 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$ | $\$ 1.38$ <br> $\$ 445$ <br> \$4:3 | MIJCK $2^{\circ}$ GRAVEL: $7^{\prime}$ fine colour no becirock fine colour | \$2.49 |
| $\frac{0}{\square}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $A^{\prime}$ $5^{\prime}$ $6^{\prime}$ $7^{\prime}$ | $\begin{array}{rl} 6 & 1 b \\ 6 \frac{1}{2} & 1 b . \\ 6 & l b . \\ 7 & 1 b . \end{array}$ | $\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ 32 \end{gathered}$ | ```MUCK - 3' GRAVEl,: 5' layers of clay/sand no bedrock``` | \$.74 |
| $\frac{N}{\mathrm{O}}$ | 1 <br> 2 <br> 3 <br> 4 | $\begin{aligned} & 3^{\prime} \\ & 6^{\prime} \\ & 7^{\prime} \\ & 8^{\prime} \end{aligned}$ | $\begin{array}{rl} 6 \frac{1}{2} & 1 b . \\ 7 & 1 b . \\ 7 & 1 b . \\ 6 \frac{1}{2} & 1 b . \end{array}$ | 0 <br> 2 <br> 2 <br> 3 | $\begin{gathered} 0 \\ \$ 275 \\ \$ 2.75 \\ \$ 445 \end{gathered}$ | MUCK: $3^{\circ}$ GRAVEL: 5' no bedrock | \$2 49 |
| $\left.\frac{0}{\square} \right\rvert\,$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 2^{\prime} \\ & 4^{\prime} \\ & 6^{\prime} \\ & 9^{\prime} \end{aligned}$ | $\begin{gathered} 6 \mathrm{lb} . \\ 7 \mathrm{lb} . \\ 6 \mathrm{lb} . \\ 5 \frac{1}{2} \mathrm{lb} . \end{gathered}$ | 0 <br> 0 <br> 0 <br> 0 | 0 <br> 0 <br> 0 <br> 0 | MUCK: 2' <br> GRAVEL.: 8' <br> sandy clay above <br> gravel, layers of sand <br> no bedrock | \$0 |
| $\frac{0}{0}$ | 1 <br> 2 <br> 3 <br> 4 | 2' <br> 4' <br> 7 7 <br> $9^{\prime}$ | $\begin{array}{r} 6 \frac{1}{2} \\ 6 \frac{1 b}{2} \\ 6 \mathrm{lb} . \\ 6 \frac{1}{2} \\ 6 \end{array}$ | 0 <br> 0 <br> 1 <br> 3 | $\begin{gathered} 0 \\ 0 \\ \$ 1 \\ \hline \$ 48 \\ \$ 4.82 \end{gathered}$ | MUCK: 2' GRAVEL. $9^{\prime}$ no bedrock | \$1.58 |

TABLEF $1 \geq$ contanued
RESULTS FRCí BENCH DEPOSIT "D"

| $\begin{aligned} & \overline{5} \\ & \vec{y} \\ & M \end{aligned}$ | SAMPLE | DEPTH <br> TAKEN | WEICHT | COLORS | VAIUE PER YD. | DESCRIPTION OF TRENCH | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O | 1 | $3 '$ | 51/2 1 b | 0 | 0 | MUCK: 31 | \$.69 |
|  |  |  |  |  |  | GRAVEL: $9^{\prime}$ |  |
|  | 2 | $5 '$ | 7 lb | 2 | \$2.75 | muck deepens toward centre of bench |  |
|  | 3 | $7^{\prime}$ | 71 b . | 0 | 0 | no bedrock |  |
|  | 4 | $10^{\prime}$ | 7 1b. | 0 | 0 |  |  |
|  |  |  |  |  |  | TOTAL OF AVERAGES | \$30 6, 6 |

Average value/yd for top gravels in BFNCH DEPOSIT "D"

$$
\$ 30.66-16=51-92
$$

46. 

TABIEF J. 3
RESULTS FROM BENCH DEPOSIT " E' "

| $\frac{3}{7}$ | SAMPLE | $\begin{aligned} & \text { DEPTH } \\ & \text { TAKEN } \end{aligned}$ | WEIGHT | COLORS | VALUE PER YD | DESCRIPTION OF TRENCH | $\left\lvert\, \begin{aligned} & \text { AVERAGE } \\ & \text { VALUE/YD }\end{aligned}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 2^{\prime} \\ & 3^{\prime} \\ & 5^{\prime} \\ & 7^{\prime} \end{aligned}$ | $\begin{array}{rl} 7 & 1 b \\ 7 & 1 b \\ 7 & 1 b \\ 61 / 2 & 1 b . \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$ | 0  <br> 0  <br> $\$ 1$ 38 <br> $\$ 2$ 96 | MUCK $1^{\prime}$ GRAVEL. 5' fine gravel frost encountered no bedrock | \$1.10 |
| $\left\|\begin{array}{l} a \\ 1 \end{array}\right\|$ | $\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 2^{\prime} \\ & 4^{\prime} \\ & 5^{\prime} \\ & 8^{\prime} \end{aligned}$ | $\begin{array}{\|cc\|} \hline 6 & 1 b \\ 6 \frac{1}{2} & 1 b . \\ 6 & 1 b . \\ 6 \frac{1}{2} & 1 b . \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\$ 1.61$ <br> 0 <br> 0 <br> 0 | MUCK ${ }^{\prime}$ <br> GRAVEL 7' <br> fine gravel <br> frost encountered <br> no bedrock | \$ 40 |
| $\left.\begin{aligned} & m \\ & 4 \end{aligned} \right\rvert\,$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3^{\prime} \\ & 6^{\prime} \\ & 8^{\prime} \\ & 9^{\prime} \end{aligned}$ | $\begin{array}{rc} 7 & \mathrm{lb} \\ 7 \frac{1}{2} & \mathrm{lb} \\ 7 & \mathrm{lb} \\ 7 & \mathrm{lb} \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$ | $\begin{gathered} \hline 0 \\ 0 \\ \$ 1.38 \\ \$ 2.75 \end{gathered}$ | MUCK: 2' GRAVEL• $7^{\prime}$ frost encountered sandy gravel no bedrock | \$1.03 |
| $\underset{w}{+}$ | 1 <br> 2 <br> 3 <br> 4 | $\begin{gathered} 2^{\prime} \\ 4^{\prime} \\ 7^{\prime} \\ 12^{\prime} \end{gathered}$ | $\begin{array}{cc} 7 & 1 b \\ 6 & 1 b \\ 6 & 1 b \\ 61 / 2 & 1 b . \end{array}$ | 0 <br> 2 <br> 1 <br> 1 | $\begin{gathered} 0 \\ \$ 3.21 \\ \$ 1.61 \\ 11 \end{gathered}$ | MUCK 1' GRAVEL. 12' no bedrock fine colours | \$1 58 |
| $\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{gathered} 2^{\prime} \\ 5^{\prime} \\ 8^{\prime} \\ 13^{\prime} \end{gathered}$ | $\left[\begin{array}{cc} 6 \frac{1}{2} & 1 b . \\ 6 \frac{1}{2} & 1 b . \\ 7 & 1 b . \\ 7 & 1 b . \end{array}\right.$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | 0 0 $\$ 1.38$ $\$ 138$ | MUCK. 2' <br> GRAVEL: 11' <br> no bedrock <br> c 'avel size increases <br> with depth | \$ 69 |
| 0 14 | 1 2 3 4 | $5^{\prime}$ <br> $7{ }^{\prime}$ <br> $9^{\prime}$ <br> $11^{\prime}$ | $\begin{array}{rl} 8 & 1 b \\ 7 & 1 b \\ 6 \frac{1}{2} & 1 b \\ 7 & 1 b \end{array}$ | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 2 \end{aligned}$ | $\begin{gathered} 0 \\ \$ 1 \\ \hline 18 \\ 0 \\ \$ 2 \end{gathered}$ | MUCK $3^{\prime}$ GRAVEL $9^{\prime}$ frost to east no bedrock lots black sand in sample \#2 | \$1 03 |

47. 

TABI」E 13 continued
RESULTS FROM BENCH DEPOSIT "E"

| $\underset{y}{c}$ | SAMPLE | $\left\lvert\, \begin{aligned} & \text { DEPTH } \\ & \text { TAKEN } \end{aligned}\right.$ | WEIGHT | COLORS | VALUE <br> PER YD | \|DESCRIPTION OF TRENCH | AVERAGE VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{aligned} & N \\ & W \end{aligned}\right.$ | 1 <br> 2 <br> 3 <br> 4 | $2^{\prime}$ <br> $5^{\prime}$ <br> $7^{\prime}$ <br> $10^{\prime}$ | $\begin{array}{\|cc\|} \hline 7 & 1 b \\ 7 & 1 b \\ 7 \frac{1}{2} & 1 b \\ 5 \frac{1}{2} & 1 b . \end{array}$ | $\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{gathered} \$ 1.30 \\ 0 \\ 0 \\ \$ 1.48 \end{gathered}$ | Muck 0 <br> GRAVEL $11^{\circ}$ <br> $1^{\prime}$ deep layer of sand <br> startis at 6', <br> sample 43 had jittle <br> black sand | \$ . 72 |
| $\begin{gathered} 0 \\ b \end{gathered}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3^{\prime} \\ & 4^{\prime} \\ & 5^{\prime} \\ & 6^{\prime} \end{aligned}$ | $\left.\begin{array}{cc} 6 & 1 b \\ 6 \frac{1}{2} & 2 b . \\ 6 & 1 b . \\ 6 \frac{1}{2} & 1 b . \end{array} \right\rvert\,$ | $\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} \$ 3.21 \\ \$ 3.48 \\ 0 \\ 0 \\ \hline \end{gathered}$ | MIJCK: $3^{\circ}$ GRAVEL $6^{\prime}$ | \$1 17 |
| $\left[\begin{array}{l} 0 \\ 1 \end{array}\right.$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{gathered} 3^{\prime} \\ 5^{\prime} \\ 7^{\prime} \\ 10^{\prime} \end{gathered}$ | $\left\|\begin{array}{cc} 7 & 1 b . \\ 6 & 1 b . \\ 7 & 1 b . \\ 6 \frac{1}{2} & 1 b . \end{array}\right\|$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ |  | MUCK : $2^{\prime}$ <br> GRAVEL. $10^{\prime}$ <br> top muck mised with gravel, $2^{\prime}$ sand layer 6'-8' down no bedrock | \$ . 74 |
| $\frac{0}{41}$ |  |  |  |  |  | MUCK: 4' <br> GRAVEL: - <br> shallow pat, no gravei encountered |  |
|  |  |  |  |  |  | TOTAL OF AVERAGES | \$8.46 |

Average value/yd. for top gravels in BENCH DEPOSIT "E"

ГABSL.E: 14
RESULTS FROM BENCH DEPOSIT "F"


Average value/yd for top gravels in BENCH DEPOSIT "F"

```
$8 31:3=$2-77
```

49. 

TABLE 15
RESULTS FROM BENCH " $G$ "

| $\left\|\begin{array}{l} \frac{7}{2,2} \\ \frac{2}{2} \end{array}\right\|$ | SAMPIE | DEPTH <br> TAKEN | WEICHT | COLORS | $\begin{aligned} & \text { VALUE } \\ & \text { PER YD } \end{aligned}$ | DESCRIPTION OF TRENCH | AVERAGH VALUE/YD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & \hline 4^{\prime} \\ & 6^{\prime} \\ & 9^{\prime} \\ & 14^{\prime} \end{aligned}$ | $\begin{array}{cc} 6 \frac{1}{2} & 1 b \\ 7 & 1 b \\ 7 & 1 b \\ 7 & 1 b \end{array}$ | 1 <br> 1 <br> 2 | $\$ 148$ <br> $\$ 138$ <br> $\$ 138$ <br> $\$ 2.75$ | MUCK $2^{\prime}$ GRAVEL 12' <br> some gravel mixed in muck, larger gravel starts at about $8^{\prime}$ didn'l reach bedrock | \$175 |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $4^{\prime}$ <br> $6^{\circ}$ <br> $9^{\prime}$ <br> $11^{\prime}$ | 6 lb <br> $7 \frac{1}{2} \mathrm{lb}$ <br> 7 lb <br> $6 \frac{1}{2}$ lb | $\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ | $\$ 16 i$ 0 0 $\$ 148$ | MUCK 2' <br> GRAVELE $11^{\prime}$ <br> didn't reach bedrock | \$ 77 |
| $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $4^{\prime}$ <br> $2^{\prime}$ <br> $9^{\prime}$ <br> $14^{\prime}$ | $\begin{array}{rll} 7 & 1 b . \\ 7 & 1 b . \\ 6 \frac{1}{2} & 1 b . \\ 6 & 1 b . \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 3 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ \$ 1 \\ \hline \end{gathered} \frac{48}{} 8482$ | MUCK: 2' <br> GPAVEL. $12^{\prime}$ <br> sandy layers <br> didn't reach bedrock | \$1 58 |
| $\begin{aligned} & \forall \\ & i \end{aligned}$ | 1 7 3 4 | $\begin{gathered} 15^{\prime} \\ 10^{\prime} \\ 5^{\prime} \\ 2^{\prime} \end{gathered}$ | 8 lb. <br> 8 lb <br> 6 lb. <br> $6 \frac{1}{2}$ lb. | 1 <br> 3 <br> 1 <br> 2 | $\$ 1.20$ <br> $\$ 3.61$ <br> $\$ 1.61$ <br> $\$ 2.96$ | MUCK: $1^{\prime}$ <br> GRAVEL• $17^{\prime}$ <br> gravel becomes coarser <br> at $10^{\prime}$ <br> didn't reach bedrock | \$2.34 |
|  |  |  |  |  |  | TOTAL OF AVERAGES | \$6. 44 |

Average value/yd for top gravels in BENCH DEPOSIT " $G$ "

$$
\$ 644 \div 4=31=61
$$

TABLAE 16
FINDING THE WEICHT OF 1 COLOUR OF FORTYMILE GOLD

| BATCH NUMBER | NUMBER OF COLOURS | WEIGHT IN GRAINS | WEIGHT IN TR OZ | $\left\lvert\, \begin{array}{ccc} \text { WT } & 1 & \text { COLIOR } \\ \text { IN } & \text { OR } & \text { OZ } \end{array}\right.$ | COLOURS/ <br> 1 TR OZ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 70 | . 2 | 1/2400 | 1/168,000 | 168,000 |
| 2 | 120 | 33 | 1/1455 | 1/174,600 | 174,600 |
| 3 | 60 | 15 | 1/3200 | 1/192,000 | 192,000 |
| 4. | 60 | 2 | 1/2400 | 1/144,000 | 144,000 |
| 5. | 100 | . 3 | 1/1600 | 1/160,000 | 160,000 |
| 6 | 190 | . 5 | 1/960 | 1/182,400 | 182,400 |
| 7 | 90 | . 35 | 1/1371 | 1/123,390 | 123,390 |
|  |  |  |  | TOTAL | 1,144,390 |

Therefore the average number of colours in 1 troy ounce is.

$$
1,144,390 \text { colours } \doteqdot 7 \text { batches }=163.484
$$

TABLE 1.7


| TRENCH | L巨MGTH | wner | Jobert | volume |
| :---: | :---: | :---: | :---: | :---: |
| a1 | $12^{\prime}$ | $12^{\prime}$ | $12^{1}$ | $649 \mathrm{c}^{3}$ |
| a2 | $50^{\prime}$ | $10^{\prime}$ | $10^{\prime}$ | 185yd ${ }^{\text {a }}$ |
| a3 | $70^{\prime}$ | $12^{\prime}$ | $10^{\prime}$ | 311yds |
| a. 4 | $50^{\prime}$ | $12^{\prime}$ | $12{ }^{\prime}$ | $267 y^{3}$ |
| 35 | $50^{\prime}$ | 12' | 12' | $267 \mathrm{yd}^{3}$ |
| ab | $50^{\prime}$ | 12' | 12. | $267 \mathrm{yd}^{3}$ |
| a7 | $60^{\circ}$ | $12^{\prime}$ | $10^{\prime}$ | 267vd ${ }^{2}$ |
| a 8 | $50^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $267 \mathrm{yd}^{3}$ |
| a9 | 12' | $12^{\prime}$ | $10^{\prime}$ | $53 \mathrm{rd}{ }^{3}$ |
| 210 | $40^{\prime}$ | $10^{\prime}$ | 10' | $148 \mathrm{yd}^{3}$ |
| all | $50^{\prime}$ | 12' | 12' | $267 y^{3}$ |
| al2 | $70^{\prime}$ | $12^{\prime}$ | $10^{\prime}$ | $311 \mathrm{yd}^{3}$ |
| a13 | $70^{\prime}$ | $10^{\prime}$ | $8{ }^{\prime}$ | $207 \mathrm{yd}^{3}$ |
| al4 | 12' | $10^{\prime}$ | $8^{\prime}$ | $36 \mathrm{yd}^{3}$ |
| b1 | $14^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $75 \mathrm{yo}^{3}$ |
| b2. | $14^{\prime}$ | $12^{\prime}$ | 12' | $75 \mathrm{yd}^{3}$ |
| b3 | $12^{\prime}$ | 12.' | 12' | $64 \mathrm{yd}^{3}$ |
| b4 | 12' | $12^{\prime}$ | 12' | $64 \mathrm{yd}{ }^{3}$ |
| b5 | $12^{\prime}$ | 12' | 12' | $64 \mathrm{yd}^{3}$ |
| cl | $14^{\prime}$ | $12^{\prime}$ | $10^{\prime}$ | $62 \mathrm{yd}^{3}$ |
| c2 | $12^{\prime}$ | $10^{\prime}$ | $10^{\prime}$ | $44 \mathrm{yd}^{3}$ |
| c 3 | 12' | $12^{\prime}$ | $12^{\prime}$ | $64 \mathrm{y}^{\text {d }}{ }^{3}$ |
| c4 | $14^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $75 \mathrm{yd}^{3}$ |
| c5 | $14^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $75 \mathrm{yd}^{3}$ |
| c6 | $14^{\prime}$ | 12' | 12' | $75 \mathrm{yd}^{3}$ |
| c7 | 12' | 12' | 12' | $64 \mathrm{yd}^{3}$ |
| c8 | $12^{\prime}$ | $12^{\prime}$ | $10^{\prime}$ | $53 \mathrm{yd}^{3}$ |
| c9 | $6^{\prime}$ | $6^{\prime}$ | 5' | $7 y^{\text {d }}$ |
| c10 | 12' | $12^{\prime}$ | 12' | $64 \mathrm{yd}^{3}$ |


| Tiacter | Leng'th | WIDTH | DEPTH | VOLUME |
| :---: | :---: | :---: | :---: | :---: |
| c11 | $14^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $75 y \mathrm{~d}^{7}$ |
| c32 | $12^{\prime}$ | 12. | 12' | $64 \mathrm{yd}^{3}$ |
| c13 | $14^{\prime}$ | 12' | $12^{\prime}$ | $75 \mathrm{yd}^{3}$ |
| d 1 | $12^{\prime}$ | $10^{\prime}$ | $10^{\prime}$ | $44 \mathrm{yd}^{3}$ |
| d2 | 12' | $12^{\prime}$ | $10^{\prime}$ | $53 \mathrm{yd}{ }^{3}$ |
| d3 | $14^{\prime}$ | $32^{\prime}$ | $12^{\prime}$ | $75 y \mathrm{~d}^{3}$ |
| d 4. | $14^{\prime}$ | $10^{\prime}$ | $10^{\prime}$ | $52 \mathrm{yd}^{3}$ |
| d5 | 12' | $12^{\prime}$ | $10^{\prime}$ | $53 \mathrm{yd}^{3}$ |
| e? | $14^{\prime}$ | $12^{\prime}$ | 12' | $75 \mathrm{yd}^{3}$ |
| e2 | $14^{\prime}$ | 12. | $12^{\prime}$ | $75 y d^{3}$ |
| e 3 | $12^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $64 r^{-d^{3}}$ |
| e4 | $12^{\prime}$ | $32^{\prime}$ | 12' | $64 \mathrm{yd}^{3}$ |
| e. 5 | $14^{\prime}$ | 12' | 12' | $75 y \mathrm{~d}^{3}$ |
| e 6 | $12^{\prime}$ | 12' | 12' | $64 \mathrm{yd}^{3}$ |
| e7 | 17.1 | $12^{\prime}$ | $12^{\prime}$ | $64 y^{3}$ |
| e8 | $37^{\prime}$ | 12' | $12^{\prime}$ | $75 \mathrm{yd}^{3}$ |
| e9 | $14^{\prime}$ | 12' | 12' | $75 y^{\text {d }}$ |
| $f 1$ | $15^{\prime}$ | $15^{\prime}$ | $15^{\prime}$ | $125 \mathrm{yd}^{3}$ |
| f2 | $20^{\prime}$ | $15^{\prime}$ | $15^{\prime}$ | $167 \mathrm{yd}^{3}$ |
| f3 | $20^{\prime}$ | $15^{\prime}$ | $15^{\prime}$ | $167 \mathrm{yd}^{3}$ |
| f4 | $20^{\prime}$ | 15' | $15^{\prime}$ | $167 \mathrm{yo}^{3}$ |
| g1 | $14^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $75 \mathrm{yd}^{3}$ |
| 92 | $12^{\prime}$ | $12^{\prime}$ | $12^{\prime}$ | $64 \mathrm{y}^{\text {d }}$ |
| g3 | $14^{\prime}$ | $12^{\prime}$ | 12' | $75 \mathrm{yd}^{3}$ |
| g4 | 12' | $12^{\prime}$ | $12^{\prime}$ | $64 y^{3}$ |
| g5 | $12^{\prime}$ | $1 ?^{\prime}$ | $12^{\prime}$ | $6.4 \mathrm{yd}^{3}$ |
| g6 | $14^{\prime}$ | $12^{\prime}$ | 12' | $75 \mathrm{yd}^{3}$ |
| g7 | $14^{\prime}$ | 12' | $10^{\prime}$ | $75 \mathrm{yd}^{3}$ |

Total volume excavated on bars

6,O] 3 bank yards

6018 bank yards x 1.25 (swell factor) $-7,523$ bucket, yerds


## SचJeK Yueq $T$ Tr＇OI

| ¢ ${ }^{\text {c }} 6$ | ． 81 | ． 01 | ． 09 | 40 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢ p ¢ 8 L | ，千I | ． 8 | －可 | ¢0 | ${ }_{\varepsilon} \mathrm{ESO} 8$ | 1.6 | ． 8 － | ． 08 | Lú |
| ${ }_{\varepsilon} \square^{\prime} \times \varepsilon L L$ | ，EI | ． 8 | 19＊ | 20 | ¢pKGL | ． 6 | ． 6 | －SC | 90 |
| ${ }_{\varepsilon} \mathrm{p} K<\varepsilon \varepsilon$ | ，キT | ． 01 | ． 59 | ［0 | $\varepsilon \mathrm{P} \times 2 \mathrm{Z}$ | ． 9 | ． 8 | ，SI | SI |
| \＆ p 6IT | ． 01 | ． 8 | ． 02 | Ea | \＆2099 | ，II | ． 8 | .02 | もく |
| عpK．g9I | ． 8 | ． 8 | ． 02 | CH | ${ }_{\varepsilon} \mathrm{p}$ 人£8 | 1.01 | ． 6 | －ら | EU |
| ${ }_{\varepsilon} \mathrm{p} \times 6 \mathrm{l}$ I | ． 8 | .01 | 10t | IH | ${ }_{\varepsilon} \mathrm{p} / 8 \mathrm{8t}$ | 15 | ． 8 | ，てI | 20 |
| \＆ p 人乙乙 | ， 6 | ． 05 | －GI | OL＇S | عрK9¢ | ． 9 | ، 8 | ． 02 | Id |
| \＆ P K＜99 | ，てt | ． 02 | －Si | $6 \cdot 9$ | ${ }_{\varepsilon} \mathrm{PK}_{L} \mathrm{OL}$ | ． 8 | ． 6 | ． 06 | Co |
|  | ． 6 | ． 8 | ． 007 | 83 | \＆PK0sI | ． 6 | ． 6 | ． 05 | TN |
| $\varepsilon$ ¢ ${ }_{\text {PGOE }}$ | ．IT | ，G［ | ． 05 | LH | ¢PKLII | ． 01 | ． 6 | － $5 \varepsilon$ | 68 |
| єрK\＆69 | ，てI | ，てl | ． 081 | 95 | ${ }_{\varepsilon} \mathrm{p}$ K68С | ，$\varepsilon[$ | ，CI | －OG | 89 |
| ${ }_{\varepsilon} \mathrm{PA} 80 \mathrm{~L}$ | ，$\varepsilon I$ | ，GI | ，SI | GJ | ${ }_{\varepsilon} \mathrm{PK}$ ¢8I | ，DI | ． 01 | －SE | Ld |
| \＆ pA 96 | －CI | .02 | .02 | も＇${ }^{\text {d }}$ | \＆ PK COz | ，LI | ． 8 | ， 08 | 94 |
| ${ }_{\varepsilon} \mathrm{p}$ SQZE | ． 6 | ，5L | ． 59 | ¢ ${ }^{5}$ | ${ }_{\varepsilon}{ }^{\text {p }}$ S06I | ， 91 | ． 8 | ，08 | S\＆ |
| ${ }_{\varepsilon} \mathrm{P}$ KLOI | ． 8 | .9 | ． 09 | 23 | ¢ PKOST | ，GI | ． 6 | ． 08 | VG |
| ${ }_{\varepsilon} \mathrm{p}$ ¢ $\varepsilon$ g | ． 9 | ． 21 | ． 02 | ［込 |  | －Lif | ． 6 | ． 02 | $\varepsilon \boxminus$ |
| \＆PAL9Z | ，2I | ． 05 | ． 09 | 020 |  | ，SI | ，SI | ． 0 c | こฏ |
| $\varepsilon \underbrace{\text { P }}$ | ．I I | ． 01 | ．OGI | 620 | ${ }_{¢}{ }^{\text {PKOLT }}$ | ． 02 | ． 8 | .02 | โย |
|  | ． 01 | ． 01 | ． 021 | 810 | عpA802 | ． 51 | ，GI | － 50 | じも |
|  | ． 8 | ． 01 | ． 08 | $\angle 10$ | ¢Pハ9SI | ，もI | ，乙I | 192 | OTH |
| ¢рR08i | ． 6 | .6 | ． 03 | 970 | ${ }_{\varepsilon} \mathrm{p}$ ¢ $\mathrm{c}_{\text {c }} \mathrm{I}$ | ，CI | ，GT | ． 02 | 6H |
| \＆pAOZ $i$ | ． 6 | ． 6 | ． 08 | SIG | \＆${ }^{\text {PA8L }}$ | ． 02 | ，SI | ，SC | 8 V |
| \＆ P 人乙9 | ． 2 | ． 21 | ． 02 | DIG | ${ }_{\varepsilon} \mathrm{pK}_{5} \mathrm{~S}_{0} 0 \mathrm{~L}$ | ． 9 | ，ST | $10 \%$ | 4 |
| ${ }_{\varepsilon} \mathrm{PA}_{2} \mathrm{f} I$ | ． 01 | .6 | － $\mathcal{S C}$ | E［0］ | ${ }_{\varepsilon} \mathrm{p} \mathrm{S}_{601}$ | ， 2 | －乙I | －SE | 9 H |
| $\varepsilon p \ll g$ | ． 6 | .8 | ． 92 | てla | ${ }_{¢}$ próot | ． 6 | ，Sit | ． 02 | GV |
| $\varepsilon p \times L[I$ | ． 07 | .6 | ． 98 | OIC | ${ }_{\varepsilon} \mathrm{p}_{5} 568$ | ． 05 | ，Сً | ． 01 | DV |
| \＆ p ¢06 | ． 6 | ． 6 | ． 08 | 010 | ${ }_{\varepsilon} \mathrm{p} A_{L} \angle \varepsilon$ | ． $2 / 5$ | にし1 | ，GI | cid |
| ¢ ¢ ¢ ¢ | ， 6 | ． 8 | 100 | 60 | \＆ p ¢ع 8 | ．OT | ．51 | ，SI | 2 L |
| ${ }_{\varepsilon} p X_{\text {VL }}$ | ． 01 | ． 8 | ．S 2 | 80 | Ersill | 18 | ，こT | ． 02 | ［V |
| 3WilTOn | HJasa | H．LQim | HLONGT | Hii）N：GUL |  | HLC＇J | HLUIM | H1ONAT | HNNG颔 |




```
TriET．E 19
AREAS \(\mathrm{r}_{2}\) VOLIJMES OF STRTDFTNS WORK
```

```
BENCH "』"
    100' x 50' = 5000 fiz
    100' < 50' x 1k' (depth) = 231 yd`
BBNCH "回"
    150' x 1500' = 225.000 ft'2
    150' x 1500' x 1/1/2 (depth) = 12,500 y % 3
EFYCH "#"
    150' x 200' = 30,000 ft2
    150' x 200' x 1k (depth) = 1667 yd3
BENCH "E"
    150' x 200' = 30.000 ft'2
    150' x 200' x 1 㐐' (depth) = 1667 yd
```

Total square feet stripped
$290, O O O E t^{2}$

Total volume strıped
$16,065, \operatorname{cod}^{3}$

```
Supplementary Informatuon
PFOPLE WHO WORKED ON THE PROJECT
    Bill Claxton Marten Creek, Fortymile River, Yukon
    Leslie Chapman Marten Creek, Fortymıle River, Yukon
    Larry Remple Dawson Cuty, Yukon
    Bob Keddie Dawson City, Yukon
```

PREPERATION OF REPORT
The report was prepared by $L$ Chapman and $W$ Claxton, 250
man-hours were spent compiling data and writing the report.

```
CLAIMS AND LEASES INVESTJGATED
    PLACER CLAIMS:
    P11173, P11174, P11189-P11193, P11200-P11203,
    P14400-P14410, P21204
        Held by Marten Creek Placers Ltd.
            Principals` W. Claxton, L. Chapman
    DREDGING LEASES:
    DL83/4 (upper 1/2 mile)
        Held by W. Claxton
    DL83/5 (lower 2 miles)
        Held by L Chapman
```









