# YURON TERRITORIAL GOVERNMENT EXPLORATION INCENTIVES PROGRAM PROJECT EIP-90-050 

PLACER EXPLORATION ON FORTYMILE RIVER:

Sampling
April 1, 1990 - December 22, 1990
DREDGING LEASE:
DL83/4

# TRANSVERSE MERCATOR PROJECTION CO-ORDINATES <br> 141 47' longitude - 64 21' latitude PLACER CLAIM SHEET $116 \mathrm{C}-7$ 

prepared by
W. CLAXTON \& L. CHAPMAN for FORTYMILE PACIFIC JOINT VENTURE

Box 460, Dawson City
Yukon, YOB-1G0

## TABLE OF CONTENTS

1. BACRGROUND ..... 1
1.1 Description of the Fortymile River .....  1
1.2 Gold Production Bistory ..... 1
2. PROJECT DESCRIPTIOR ..... 2
3. EQOIPMENT OSED ..... 4
4. RESULTS ..... 5
5. CONCLOSION ..... 6
6. Tables ..... 7
INFORMATION FOR TEE INTERPRETATION OF TABLES ..... 7
TABLE 1 - RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "A" .....  8
TABLE 2 - RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON ISLAND "B" ..... 12
TABLE 3 - RESULTS OF 100 LB. SAapLES FROM EXCAVATIONS ON ISLAND "B". ..... 14
TABLE 4 - RESULTS OF PRELIMINARY GRAB SAMPLES FROH BARS "C" \& "D" ..... 15
TABLE 5 - RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "C" ..... 16
table 6 - resulis of 6 Lb. SAMPLES from excavations on bar mpn ..... 18
table 7 - VOLUEE OF EXCAVATIONS \& STRIPPING ..... 19
TABLE 8 - GRADES \& DOLDAES ..... 20
7. MAP Ml - LOCATION OF PROPERTY. ..... 21
8. MAP H2 - MORK LOCATIOUS ..... 22
9. SUPPLEMEMTARI IMFORMATION ..... 23

## 1. BACKGROUND

### 1.1 Description of the Fortymile River

The Fortymile is a swift flowing river with an average grade of 7 feet per mile. While most of the drainage is located in Alaska, the last 23 miles of the river flow through the Yukon, emptying into the Yukon River 46 miles downstream from Dawson City. The river channel meanders and has many bends. The area has not been glaciated.

The wetted perimeter of the river averages 700 feet, with a main channel of approximately 200 feet at average flow. The Fortymile drains approximately 17,000 square kilometres, with a flow varying from 0 in the late winter to a two year flood of 800 cubic meters per second. The mean flow during the mining season is 100 c.m.s. The drainage of the Fortymile is considered to be arid with an average annual rainfall of 13 inches, which includes an average of 60 inches of winter snowfall.

Due to the arid climate, the Fortymile has a very low flow during the summer, exposing large gravel bars. These gravel bars make up the mineable reserves of the dredging leases, because the main channel flows on bedrock. The water level fluctuates with summer rainfall from very low water levels to high enough to cover the bars and keep them scoured free of overburden and vegetation. The gravel bars are thawed, making them suitable for dredging.


TYPICAL FORTYMILE RIVER BAR

### 1.2 Gold Production History

Gold was first discovered on the Fortymile River in 1886; this discovery led to the first major Yukon gold rush. In $1887 \$ 200,000$ worth of gold,
more than 14,000 ounces, were mined with pick, shovel, and rocker, by some 200 miners. The town of Fortymile was established at the confluence of the Fortymile and Yukon Rivers. As well as fine bar gold, coarse nuggets were being found. The Fortymile district was the first area in which wood fires were used to thaw shafts in order to gain access to the rich gravel and coarse gold at bedrock depths.

Between 1906 and 1911 , a dredge worked the Fortymile 8 miles upriver from its mouth. This project was abandoned with the advent of the First World War. In the early 1930's, another dredging operation began 11 miles upriver from the mouth, at the confluence of Bruin Creek and the Fortymile River. On the American section of the river, mining has been continuous and extensive, with numerous dredging and cat operations.

The Fortymile Pacific Joint Venture successfully started dredging on a river bar on the property in the 1990 season. This operation was initiated after exploration undertaken last year showed reserves to be viable.

## 2. PROJECT DESCRIPTION

The Fortymile Pacific Joint Venture controls 22 claims from claim P23935 to claim P23937, and the portion of Dredging Lease $83 / 2$ fronting these claims, on the Fortymile River. This exploration project was conducted on this two and a half mile stretch of river, the lower end of which is situated approximately five miles from the confluence of the Fortymile and the Yukon Rivers. The upper section of the property is bounded by the Fortymile River canyon. See map Ml for the location.

The exploration work conducted on the property this year is a continuation of the work begun in 1989. Last year we determined that a production-scale dredging operation on the river bars would be viable and would be able to meet environmental standards. This year we concentrated our exploration work on proving up the quantity and grade of gravels available for dredging on the property.

We wanted to determine if it would be feasible to dredge closer to the river bank than we had attempted in our bulk sampling program last year. The areas immediately adjacent to the river banks are typically covered
with $2-10$ feet of sand. We dug trenches through the sand
$1 \mathrm{a} y \in \mathrm{r}$, extending from the river flood bank to the start of the exposed gravel zone, on the bar which we had sampled last season. We did this to determine the depth of the sand overburden, and the grade of the underlying gravels.

We were particularly interested in evaluating a large island/bar at the


BANK TRENCHING lower end of the property. This island appeared to have large reserves of gravel. We excavated a series of pits to bedrock on the island. These pits were sampled to obtain an indication of grade, and of yardage available.

Sampling of the pits on the island revealed that the character of the gold on the island was different from that which we had recovered from bars along the shoreline. We processed a bulk sample with the dredge plant on the island to determine how the grade as determined through sampling related to the grade recoverable in a production setting. The volume of gravel which we processed was 200 loose cubic yards.

We took a series of 100 lb . samples from the island to give us more information about the character and grade of gravels from the island. We thought that larger samples would provide a better reflection of grade than our standard 6 pound samples.

We also did some exploration work on the next two bars up river from the bar on which our work was focused last year. An access route was cleared and swampy areas were filled in order to get heavy equipment up to these bars. This preliminary access will form the route for construction of a road when we start mining these upper river bars. We dug a series of
 prevent spring runoff damage which causes washouts. Equipment and supplies were brought into the site from Dawson. Demobilization included moving all equipment to high ground to protect it from breakup and high water next spring. All pits and trenches were backfilled after they were sampled, to allay concerns by D.F.O. that fish could become trapped in the excavations.

## 3. EQUIPMENT USED

The following equipment was used:

- 213 Cat hydraulic excavator, equipped with 36 inch rock bucket and long ( 9 foot 6 inch) stick was used for access route construction, excavation of sample pits, and feeding the processing plant during the bulk sample.
- D6C Cat dozer with angle blade and ripper was used for clearing the road of snow in the spring, access route construction, moving equipment on the site, filling in sample pits, reclamation work from bulk sampling and other general duties.
- 920 Cat loader was used for lifting and general duties.
- Cat model 12 grader was used in snow clearing.
- Trommel with 4 foot diameter barrel was used for the bulk sample.
- 35 KW generator with 220 volts, 3 phase was used to power the trommel and pump.
- 4 inch Flygt 13 horsepower electric submersible pump was used for water supply for bulk sample processing.
- service truck with tools and wire-feed welder/generator was used to power the cleanup equipment as well as for maintenance and repairs.
- 1 ton fuel truck was used for hauling fuel from Clinton Creek fuel supply base.
- Gold Bound 4 lead spiral gold wheel was used to process samples.


## 4. RESULTS

Results of samples taken, and of yardage estimates made, are tabulated in the accompanying tables.

Our investigation of the area of Bar "A" adjacent to the river flood bank showed that the sandy layer tends to get deeper closer to the bank. The gravels underlying this sand show indications of very good pay, but the deposits are small relative to the amount of overburden. The colours are fine.

The most promising area identified in this work is the south portion of Island "B". Grades here were relatively high, and the size of the colours is larger, on average, than those recovered from sampling on the mainland. Graphitic schist was encountered on bedrock in some of the pits on the island. Past experience has shown that this is a good indicator of high gold values, and this was proved out with sampling. Gravels on the north side of the island closer to the main channel of the river graded somewhat lower, though still within the minable range. We have not processed the concentrate from the bulk sample we took on the island because the gravel froze into the sluice runs. We will process this concentrate in the spring when it thaws.

Bars "C" and "D" showed that they could be dredged with the method we have developed. Generally, work on Bars "C" and "D" indicated that grades tend to diminish further upriver. We did, however, encounter graphitic schist in one pit on Bar " $D$ ", with the expected higher values as compared with the other pits on that bar. It is reasonable to expect that this graphitic schist underlies more of the bar, and thus grade
recovered when mining this bar will probably be higher than the grade calculated from samples from the pits.
5. CONCLUSION

This exploration project successfully identified enough gravel with grades sufficient to support a long term dredging operation. We operated a dredge on part of the property in the 1990 season, mining reserves proved up by exploration work performed in the 1989 season. We found that grades projected by sampling pits on the bars were in the same range as the grades recovered in mining. In areas where the depth of the gravel was shallower, more bedrock was excavated and processed. These shallower areas produced more gold than sampling had predicted; this was probably due to the increased depth of bedrock processed. We think that a larger excavator with longer reach would be more effective in digging bedrock where the gravel is deeper and thus increase the total yield of gold.

Identification of these reserves has assured us gravel volume to last for several seasons. We will be mining the reserves proved up by this exploration program using the same dredging method we successfully employed on the reserves which we mined this past season.

## 6. TABLES

INFORMATION FOR THE INTERPRETATION OF TABLES

Work done with Fortymile gold previously has shown that, on average, it takes 163,484 colours to make one troy ounce of Fortymile gold.

The weight of one bank cubic yard of gravel was assumed to be $3,200 \mathrm{lb}$.

Small samples were assumed to have a weight of 61 b . because experience has shown that to be the average ueight of a $9^{\prime \prime}$ by $12^{\prime \prime}$ sample bag full of river gravel. Larger samples were taken in 5 gallon pails. This size of sample has been previously determined to have an average weight of 100 lbs .

Grade figures have been calculated in terms of the number of bank yards required to produce one troy ounce of unrefined gold. These calculations were made from the samples as follows:

1. number of samples per yard $=$

3,200 1b. per yard / X Ib. per sample
2. number of colours per yard $=$
number of colours per sample $x$ samples per yard
3. number of yards per ounce $=$

163,484 colours per ounce / number of colours per yard

For example, if a six lb. sample of gravel contains four colours, then the number of bank yards required to produce one ounce of gold is calculated as follows:

1. $3,200 \mathrm{lb}$. $/ 6 \mathrm{lb} .=533$ samples/yd.
2. 4 colours $x 533$ samples $=2,132$ colours/yd.
3. 163,484 colours per 02. $/ 2,132$ colours per yard $=77$ yd. per o2.

TABLE 1

## RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "A"

| EXCAV \# <br> \& DEPT日 | SAMP | \# comanems | * C |  | $\begin{aligned} & \text { GRADE } \\ & \text { YDSIOZ } \end{aligned}$ | $\begin{aligned} & \text { AV GRADE } \\ & \text { YDS/OZ } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.1 | coarse cobbles | 1 | 306 |  |  |
|  | 1.2 | sandy | 0 | -- |  |  |
|  | 1.3 | 1 flake | 8 | 38 |  |  |
| TRENCE | 1.4 | tightly packed gravel | 18 | 17 |  |  |
| \#1 | 1.5 |  | 1 | 306 |  | 76 |
|  | 1.6 |  | 0 | - |  |  |
| 12 ft . | 1.7 | little black sand | 0 | -- |  |  |
| deep | 1.8 |  | 0 | - |  |  |
|  | 1.9 | 1 flake | 9 | 34 |  |  |
|  | 1.10 |  | 2 | 153 |  |  |
|  | 1.11 |  | 4 | 77 |  |  |
|  | 1.12 | 1 flake | 6 | 51 |  |  |
|  | 2.1 |  | 9 | 34 |  |  |
|  | 2.2 | from trench floor | 39 | 8 |  |  |
|  | 2.3 | fine colours | 3 | 102 |  |  |
| TRENCE | 2.4 |  | 50+ | 6 |  |  |
| \# | 2.5 |  | 80+ | 4 |  | 11 |
|  | 2.6 |  | 7 | 43 |  |  |
|  | 2.7 | 1 flake | 22 | 14 |  |  |
| deep | 2.8 | fine colours | 30 | 10 |  |  |
|  | 2.9 |  | 50+ | 6 |  |  |
|  | 2.10 | tailings | 4 | 77 |  |  |
|  | 2.11 | tailings | 3 | 102 |  |  |

TABLE 1, continued
RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "A"
EXCAV \# SAMPLE \# COMMENTS
$\&$ DEPTH COLOURS GRADE AD GRADE

|  | 3.1 | spill pile, north end | 2 | 153 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.2 | trench floor, mid trench | 10 | 30 |  |
|  | 3.3 | tailings, 2 ft . deep | 0 | -- |  |
|  | 3.4 | trench floor, south end | 29 | 11 |  |
| TRENCB | 3.5 | fine tajlings | 1 | 306 |  |
| 晰 | 3.6 | spill pile, north end | 2 | 153 | 31 |
|  | 3.7 | at water table, 8 ft. deep | 26 | 12 |  |
| 15 ft . | 3.8 | sandy, 9 ft . deep | 12 | 26 |  |
| deep | 3.9 | trench floor | 23 | 13 |  |
|  | 3.10 | tailings | 0 | - |  |
|  | 3.11 | sandy, spill pile | 21 | 15 |  |
|  | 3.12 | tailings | 0 | -- |  |
|  | 3.13 | north end, 1 flake | 2 | 153 |  |


|  | 4.1 | sandy, south end | 33 | 9 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TBENCE <br> 4 | 4.2 | north end spill pile | 9 | 34 |  |
|  | 4.3 | sandy, south end | 45 | 7 | 18 |
|  | 4.4 | pure sand from rim | 0 | -- |  |
| 8 ft . | 4.5 | north end spill pile | 6 | 51 |  |
| deep | 4.6 | north end | 0 | -- |  |
|  | 5.1 | large colours \& flakes | 50+ | 6 |  |
| TRENCE 4 | 5.2 | shale | 0 | - |  |
|  | 5.3 | floor of trench, south end | 20 | 15.3 | 13 |
| 12 ft . deep | 5.4 | south end, spill pile | 17 | 18 |  |
|  | 5.5 | sandy gravel | 30 | 10 |  |
| $\begin{array}{r} \text { PIT } \\ 66 \end{array}$ | 6.1 | bottom, large colours | 5 | 61 |  |
|  | 6.2 | bottom, large colours | 6 | 51 |  |
|  | 6.3 |  | 11 | 28 | 45 |
|  | 6.4 | top | 5 | 61 |  |
|  | 6.5 | bottom | 7 | 44 |  |

TABLE 1, continued
RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "A"


TABLE 1, continued
RESULTS OF 6 LB. SAKPLES FROM EXCAVATIONS ON BAR "A"


AVERAGE GRADE BAR "A"................ 31 YD/OZ *
*This average is exclusive of pits $\# 12$ and $\# 14$, as these pits were dug in tailings from our dredging operation in 1989.

TABLE 2
RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON ISLAND "B"

| EXCAD \# <br> \& DEPTA | SAMPLE | \# comments | \# COLOURS |  | $\begin{aligned} & \text { GRADE } \\ & \text { YDSIOZ } \end{aligned}$ | $\begin{aligned} & \text { AV GRADE } \\ & \text { YDS } / O Z \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 17.1 |  | 1 | 306 |  |  |
| PIT | 17.2 |  | 1 | 306 |  |  |
| \# 17 | 17.3 | small flake | 1 | 306 |  | 382 |
|  | 17.4 |  | 1 | 306 |  |  |
|  | 17.5 |  | 0 | -- |  |  |
|  | 18.1 |  | 1 | 306 |  |  |
| PIT | 18.2 | lots of black sand | 1 | 306 |  |  |
| \#18 | 18.3 |  | 0 | -- |  | 382 |
|  | 18.4 |  | 0 | -- |  |  |
|  | 18.5 |  | 2 | 153 |  |  |
|  | 19.1 | large colours | 7 | 44 |  |  |
| PIT | 19.2 | 3/4 of gravel is -1/4" | 12 | 26 |  |  |
| \#19 | 19.3 | large flake, $1 / 2$ gravel -1/4" | 12 | 26 |  | -41 |
|  | 19.4 | from surface | 0 | - |  |  |
|  | 19.5 | from bottom of hole | 6 | 51 |  |  |
|  | 20.1 | from bottom of hole | 1 | 306 |  |  |
| PIT | 20.2 | from near surface | 1 | 306 |  |  |
| *20 | 20.3 | bottom | 0 | - |  | 306 |
|  | 20.4 | near surface | 2 | 153 |  |  |
|  | 20.5 | big flake | 1 | 306 |  |  |
|  | 21.1 | large flake, bottom of hole | 3 | 102 |  |  |
| PIT | 21.2 | from bottom of hole | 3 | 102 |  |  |
| \%21 | 21.3 |  | 0 | - |  | 76 |
|  | 21.4 |  | 11 | 28 |  |  |
|  | 21.5 |  | 3 | 102 |  |  |

TABLE 2, continued
RESULTS OF 6 LB . SAMPLES FROM EXCAVATIONS ON ISLAND "B",

| EXCAV \# <br> \& DEPTH | SAMPLE | \# COMMENTS | \# COLOURS |  | GRADE <br> YDS 102 | AV GRADE YDS IOZ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 22.1 | graphit schist, large colours | 4 | 77 |  |  |
| PIT | 22.2 | from bottom of hole | 7 | 43 |  |  |
| \% 22 | 22.3 | near surface | 3 | 102 |  | 48 |
|  | 22.4 | 3/4 of gravel is -1/4" | 7 | 43 |  |  |
|  | 22.5 |  | 11 | 28 |  |  |
|  | 23.1 | graphitic schist, 1 flake | 5 | 61 |  |  |
| PIT | 23.2 | top | 2 | 153 |  |  |
| \#23 | 23.3 | large colours | 9 | 34 |  | 69 |
|  | 23.4 |  | 0 | -- |  |  |
|  | 23.5 | top gravels | 6 | 51 |  |  |
|  | 24.1 |  | 3 | 102 |  |  |
| PIT | 24.2 | bottom of hole | 2 | 153 |  |  |
| \#24 | 24.3 | little black sand | 0 | - |  | 191 |
|  | 24.4 | flake | 2 | 306 |  |  |
|  | 24.5 |  | 1 | 306 |  |  |
|  | 25.1 |  | 3 | 102 |  |  |
| PIT | 25.2 |  | 1 | 316 |  |  |
| \%25 | 25.3 |  | 2 | 153 |  | 127 |
|  | 25.4 |  | 0 | -- |  |  |
|  | 25.5 |  | 6 | 51 |  |  |

TABLE 3
RESULTS OF 100 LB. SAMPLES FROM EXCAVATIONS ON ISLAND "B",

| EXCAD \# <br> \& DEPTH | SAMPLE | * Comarnts | * COLOURS |  | GRADE TDS 102 | $\begin{gathered} \text { AD GRADE } \\ \text { YDS/OZ } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIT | 17.6 | fine colours, 2 small flakes | 20 | 255 |  |  |
| 17 | 17.7 | small garnets | 42 | 122 |  | 189 |
| PIT | 18.6 | course cobbles | 31 | 170 |  |  |
| \#18 | 18.7 | lots of black sand | 25 | 204 |  | 187 |
| PIT | 19.6 | 10 large flakes | 60 | 85 |  |  |
| \#19 | 19.7 | 1 small nugget | 104 | 49 |  | 67 |
| PIT | 20.6 |  | 18 | 284 |  |  |
| *20 | 20.7 | fine colours | 35 | 146 |  | 215 |
| PIT | 21.6 | 25 large flakes | 63 | 81 |  |  |
| W21 | 21.7 | lots of small garnets | 86 | 59 |  | 70 |
| PIT | 22.6 | graphitic schist | 135 | 38 |  |  |
| \#22 | 22.7 | 18 large flakes | 141 | 36 |  | 37 |
| PIT | 23.6 | graphitic schist | 125 | 41 |  |  |
| *23 | 23.7 | large colours | 92 | 56 |  | 49 |
| PIT | 24.6 |  | 37 | 138 |  |  |
| *24 | 24.7 | 4 flakes | 28 | 182 |  | 160 |
| PIT | 25.6 | lots of black sand | 63 | 81 |  |  |
| *25 | 25.7 |  | 24 | 213 |  | 147 |

average grade island mbn from 100 Lb. samples 125 YD/OZ

TABLE 4
results of preliminary grab samples from bars "C" \& "d"

| SAMPLE | COMLENTS | * COLOORS |
| :---: | :---: | :---: |
| 1 | black sand | 1 |
| 2 |  | 0 |
| 3 | 1 flake | 1 |
| 4 |  | 0 |
| 5 | lots of garnets | 3 |
| 6 |  | 0 |
| 7 |  | 3 |
| 8 |  | 2 |
| 9 |  | 1 |
| 10 | 1 small flake | 4 |
| 11 |  | 1 |
| 12 |  | 0 |
| 13 | >1/2 gravel is -1/4" | 2 |
| 14 | - | 0 |
| 15 |  | 0 |
| 16. |  | 1 |
| 17 | lots of black sand | 1 |
| 18 |  | 0 |
| 19 |  | 1 |
| 20 | fine colours | 5 |
| 21 | fine colours | 3 |
| 22 |  | 0 |
| 23 | 1 small flake | 2 |
| 24 |  | 1 |
| 25 |  | 1 |

table 5
RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "C"

| EXCAD \# <br> \& DEPTE | SAMPLE | \# Comments |  | COLOURS |  | GRADE YDS 102 | $\begin{aligned} & \text { AV GRADE } \\ & \text { YDSIOZ } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 26.1 | top, fine colours | 3 |  | 102 |  |  |
| PIT | 26.2 | 1/2 of gravel is -1/4" | 4 |  | 77 |  |  |
| \#26 | 26.3 | fine colours | 4 |  | 77 |  | 118 |
|  | 26.4 | <1/2 of gravel is -1/4" | 1 |  | 306 |  |  |
|  | 26.5 |  | 1 |  | 306 |  |  |
|  | 27.1 | top gravel, fine colours | 2 |  | 153 |  |  |
| PIT | 27.2 | fine colour | 1 |  | 306 |  |  |
| *27 | 27.3 | >1/2 of gravel is -1/4' | 9 |  | 34 |  | 85 |
|  | 27.4 | >1/2 of gravel is -1/4' | 1 |  | 306 |  |  |
|  | 27.5 | larger colours | 5 |  | 61 |  |  |
|  | 28.1 | fine colours | 5 |  | 61 |  |  |
| PIT | 28.2 |  | 0 |  | -- |  |  |
| \#28 | 28.3 | very fine colours | 4 |  | 77 |  | 153 |
|  | 28.4 |  | 1 |  | 306 |  |  |
|  | 28.5 |  | 0 |  | - |  |  |
|  | 29.1 |  | 2 |  | 153 |  |  |
| PIT | 29.2 | very fine colour | 1 |  | 306 |  |  |
| \%29 | 29.3 | >1/2 of gravel is $-1 / 4^{\prime \prime}$ | 1 |  | 306 |  | 305 |
|  | 29.4 |  | 0 |  | -- |  |  |
|  | 29.5 | very fine colour | 1 |  | 306 |  |  |
|  | 30.1 |  | 0 |  | - |  |  |
| PIT | 30.2 | large colour | 1 |  | 306 |  |  |
| * 30 | 30.3 | fine colour | 1 |  | 306 |  | 382 |
|  | 30.4 |  | 0 |  | - |  |  |
|  | 30.5 |  | 2 |  | 153 |  |  |

TABLE 5, continued

## RESULTS OE 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "C"

EXCAV \# SAMPLE \# COMMENTS
\& DEPTH

|  | 31.1 | small flake | 1 | 306 |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| PIT | 31.2 |  | 2 | 153 |  |
| \#31 | 31.3 | fine colours | 2 | 153 | 255 |
|  | 31.4 |  | 0 | - |  |
|  | 31.5 |  | 1 | 306 |  |

## TABLE 6

RESULTS OF 6 LB. SAMPLES FROM EXCAVATIONS ON BAR "D"

| EXCAD \# <br> \& DEPTH | SAMPLE | \# COMMENTS |  |  | GRADE YDSIOZ | $\begin{gathered} \text { AV GRADE } \\ \text { YDS } / O Z \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 32.1 | sandy, little black sand | 0 | - |  |  |
| PIT | 32.2 |  | 3 | 102 |  |  |
| * 32 | 32.3 |  | 1 | 306 |  | 382 |
|  | 32.4 |  | 0 | - |  |  |
|  | 32.5 |  | 2 | 153 |  |  |
|  | 33.1 |  | 2 | 153 |  |  |
| PIT | 33.2 | graphitic schist, fine colour | 1 | 306 |  |  |
| \#33 | 33.3 | graphitic schist | 4 | 77 |  | 109 |
|  | 33.4 | fine colour | 1 | 306 |  |  |
|  | 33.5 | graphitic schist, 1 flake | 6 | 51 |  |  |
|  | 34.1 |  | 0 | - |  |  |
| PIT | 34.2 |  | 0 | - |  |  |
| \#34 | 34.3 | coarse cobbles | 2 | 153 |  | 382 |
|  | 34.4 | very fine colours | 2 | 153 |  |  |
|  | 34.5 |  | 0 | - |  |  |

## TABLE 7

VOLOME OF EXCAVTIONS \& STRIPPING
VOLUAE OF TRENCHES (includes 1.25 swell factor)
TRENCE DIMENSIONS (FT) DOLOME (CO. YD.)
$50 \times 6 \times 12$ ..... 167
$80 \times 10 \times 12$ ..... 444
$60 \times 10 \times 15$ ..... 417
$55 \times 6 \times 8$ ..... 82
$70 \times 6 \times 12$ ..... 233
$55 \times 6 \times 11$ ..... 168
$55 \times 6 \times 8$ ..... 122
$70 \times 6 \times 10$ ..... 194
$50 \times 6 \times 10$ ..... 139
$40 \times 6 \times 20$ ..... 222
14
$40 \times 6 \times 12$ ..... 133
16
2,321 CO. YD. total voldore of trenceies ..... 2,321 CO. YD.
DOLOME OF PITS
The average pit size is 24 ft . in diameter and 15 ft . deep.
Therefore each pit is 314 loose cubic yards,
including a 1.25 swell factor.
24 pits @ 314 cubic yards each is 7,536 cubic yards.
TOTAL VOLOME OF PITS 7,536 cu. YD.
STRIPPING FOR ACCESS
$1500 \mathrm{ft} \times 1 \mathrm{ft}$ deep $\times 20 \mathrm{ft}$ wide $\times 1.25$ swell factor $=$ ..... 1,388 CO. YD.
SIDEBILL CUTTING
$800 \mathrm{ft} \times 6 \mathrm{ft}$ deep (av.) $\times 15 \mathrm{ft}$ wide $\times 1.25$ swell factor $=3,333 \mathrm{co}$. YD.

## TABLE 8 <br> GRADES \& VOLOTES

| BAR | GRADE - YD/OZ | VOLOLE - BANR CO YD | ESTIMATED RAN OZ |
| :--- | :---: | :---: | :---: |
| A | 31 | 29,333 | 946 |
| B | 180 | 362,500 | 2,014 |
| C | 216 | 50,000 | 213 |
| D | 249 | 200,000 | 803 |




MAP M-2 WORK LOCATIONS SOALE: I'=1000'APPROX.

## 8. SUPPLEMENTARY INFORMATION

## PEOPLE WHO WORKED ON THE PROJECT

| Bill Claxton | Marten Creek, Fortymile River, Yukon |
| :--- | :--- |
| Leslie Chapman | Marten Creek, Fortymile River, Yukon |
| Keith Svendsen | Dawson City, Yukon |
| Ron MeCready | Dawson City, Yukon |

PREPARATION OF THE REPORT
The report was prepared by Leslie Chapman and Bill Claxton.

PROPERTY INVESTIGATED
Dredging Lease DL83/4, held by Bill Claxton.

