92-011

۲

PROPERTY EXAMINATION REPORT

ON

DOWS 1-118

WHITEHORSE MINING DISTRICT

N.T.S.: 115 I/03

LATITUDE: 62 deg. 02' N

LONGITUDE: 137 deg. 15' W

.

OWNER: Eugene Curley

Report by: Kenneth D. Galambos P. Eng. September, 1992

SUMMARY

Eugene Curley's Dows Property consists of 109 contiguous mineral claims located in the Dawson Range Gold Belt, 52 km west of Carmacks, Yukon. The main showing is located approximately 7 km west-south-west of the main Mt. Nansen workings.

During the 1992 exploration season Autec Resources completed an intensive trenching program over the main area of known mineralization in hopes of gaining a better understanding of the geology of the deposit.

The program was successful in exposing significant mineralization both to the west and north-west (NT-11: 2.29 amt gold over 21.5 m, R92064: 6.72 gmt gold in a grab sample from NT-15), thus dramatically increasing the size potential from previous estimates. Trenching also revealed epithermal characteristics not recognised in previous exploration programs. Gold mineralization is present in hydrothermal breccias, rotted porphyry dykes and as silica replacements in limey schists. Mineralization remains open along strike to the west with gold values which seem to be increasing in that direction.

The new information gathered during the 1992 trenching program indicates a greater potential for finding an economic deposit within the claim group than was previously believed. It is recommended that a mechanised, deep soil survey be completed to initially outline mineralization followed by further trenching and drilling.

i

TABLE OF CONTENTS

		PAGE
SUMMARY		i
TABLE OF CONTENTS	r	ii
LIST OF FIGURES		' iii
LIST OF TABLES	,	iii
LIST OF APPENDICES		iii -
CHAPTER ONE:	INTRODUCTION	
1-1: 1-2: 1-3: 1-4: 1-5: 1-6:	Introductory Statement Location and Access Physiography and Vegetation History of Claims Previous Exploration Work Program	1 1 3 3 7
CHAPTER TWO: 2-1: 2-2:	GEOLOGY Regional Geology Property Geology	9 12
CHAPTER THREE:	GEOCHEMISTRY	
3-1: 3-2:	Soil Geochemistry Rock Geochemistry	15 15
CHAPTER FOUR:	MINERALIZATION	17
CHAPTER FIVE:	CONCLUSIONS & RECOMMENDATIONS	18

LIST OF FIGURES

ŀ

Figure	1:	Location Map	1:6,250,000	2
Figure	2:	Claim Location Map	1:250,000	4
Figure	3:	Claim Location Map	1:30,000	5
Figure	4:	Regional Geology	1:30,000	10
Figure	5:	Trench Location Map	1:500	in pocket
Figure	6:	Geology (Main Zone)	1:500	in pocket
Figure	7:	Sample Location Map	1:500 •	in pocket
Figure	8:	Gold Geochemistry	1:500	in pocket

LIST OF TABLES

Table of Formation

/

,

1.

11

LIST OF APPENDICES

Appendix A:	Analytical Results		22
Appendix B:	Sample Intervals	1	26

CHAPTER ONE

INTRODUCTION

1-1: Introductory Statement

The Dows 1-118 claims are located approximately 52 km due west of Carmacks, Yukon. The claims were staked in 1987 and 1988 to cover mineralized subcrop and possible extensions. The current trenching program was aimed at testing a new interpretation of the existing data in hopes of improving the status of the property.

1-2: Location and Access

The property is situated in the Whitehorse Mining District.at 62 deg. 02' N, 137 deg. 15' W on the 115 I/03 mapsheet. Access is by Government maintained gravel road from Carmacks to within 2.5 km of the claim group (Nansen Road). A cat trail exists from this point through the centre of the property.

1-3: Physiography and Vegetation

The claims lie within the Dawson Range, a region characterized by an unglaciated upland plateau dissected by present drainage. The claim group is located on a gentle west facing slope with a maximum elevation of 1280 m (4200'). Outcrops are generally restricted to ridge tops.

Vegetation consists of sparse to moderately dense spruce forests on the east and south facing slopes while thick moss and low buck-brush predominate elsewhere in this area of discontinuous

permafrost.

1-4: History of Claims

The Dows 1-16 (YB07687-702) were staked by Eugene Curley on August 25, 1987 (registered August 31, 1987). Noranda Exploration subsequently commissioned the staking of Dows 17-72 (YB12755-801) on January 7, 1988 (registered January 8, 1988) and Dows 73-118 (YB13055-100) on March 8, 1988 (registered March 9, 1988).

1-5: Previous Exploration

Exploration in the Mt. Nansen area dates back to the turn of the century with most creeks being staked by placer miners on their way to the Klondike. The first geologist to visit the area was D. D. Cairnes of the Geological Survey of Canada in 1914. He examined the placer gold potential of Nansen and Victoria Creeks and made a reconnaissance survey of the area. H. S. Bostock also of the G. S. C. conducted a reconnaissance survey of the Carmacks district between 1932 and 1934.

In 1943 prospectors discovered lead-silver-gold veins which were later explored by Peso Silver Mines Ltd.. In 1968, Mt. Nansen Mines Ltd. opened a 400 ton/day mill to process ore mined from the Brown-McDade vein but it closed operations in 1969 due to poor recoveries of the precious metals.

More recently, numerous companies have evaluated the region for potential bulk tonnage, heap leachable gold-silver deposits. Important lode deposits which have been discovered in the area are:

	+A	B3 58 1	200		LON	1092540	+A93551	t l	$\langle \Lambda \rangle$	VA 81446	YA8144-1	YA78057	YA 78054	Y#78067	201	1748 0 -07	1706-00	1 228	74281	5 7420
	Γ	125		NIL ET	YA93599	Hig-	1ª	,) j	! "	115			14	$ \langle \zeta \rangle $	↓ ´´`	YA8(20)	T cr	5 5	3
1	\searrow		493559	1893550	1-17		۱ ۱	Λ			YA8 14 39			100000	Ve Ve Cox	A86291	1.V	1.7	Ť	li
		YA93 500	1-27			1093543	- YASS M	7 _		<u>1981 438</u>		118051	YH 18052	17 17	18			Ŧ,	74287	742
		1 28	X	1.05	2 Jungass	10	1-	1		/ '	1	i ' (\$2	80
		1	Jagge La	+1 HA33			July and	ile			100,427	VA 70 - 110	lynna ca	10700 15	14 780 46	Vale 29	IVA 8 292		DOM	E .
	,	VAGSS	Experts	E + 32	~ + +	-+	E trans	<u> </u>	72	7	8	31	7478050	39	40 -	16. 14	5 192	3 836	81846	81844
	, ,	1 3		1812769	SSA VA93	63	1 64 (VN	1 [*] , I					13			081	79
			CEN YOUR	ALL THE	Kris777	YBI2792	YBI2793	YBI2800	YB12801	YA 81434	YA81435	VA81458	VAR1459	VA814 66	YA814 6	7 48 6295	- VA8629	e l		1
	(- YAA	29	30	45	61	62	69	70	5	<u> </u>	29	30	37	38	18 3422	9 29 VA220	1	81845	81843
	(ì.	ר ו		i	[[I	1		1		RAT	} F		K 1747-3	1	1 1	₹6	84
			YBI2767	YBI2768	YBIZT	YBI2790	YB12791	YBI2798	YBI2799	YAR1432	481 437	VARINSA	YA81457	YA 81464	YA81445	VA8629	yA86296	w I.	/ebei	1
;	/		27	28	43 /	59	60	67	68	3	14	27/	28	35	36 1	201	119	7-4		01048
2	1	4175	/ \ -	1	1 21	b .	1 4 -	1/2		1	i/ ··				8			*	<u></u>	/ 83
<u>.</u>			Y612765	YBI2766	YB1217/5	YBI2788	YBI2789	YBI2796	YBI2797	VA81430	YARIHZI	YASING	AB145 5	YA81462	V/98/4/59	Jung 129	VA86298			Y
$\mathcal{L}_{\mathcal{N}}$	۱ 、		25	26	41	157	58	65	66	~~~	2	25	1 . 26	33	34 5	1 27	1 2/	1	YA23835	81847
))		Y	1 (<u></u> {∠ }			I YB12794	YBI2795	-	$\langle \rangle$		\sum	MARINIA			ÍLL	!	17	15
. (YB12763	YBI2764	YBI277/4	Y812766	YBI2787		_	XA51428	YA81429	YAR1452	1981453	\succ	VAS Y U	VAR63P	YA86300	;ab	jn	VA23841
. {		· + 1	23	24	7 39	55	56	. 4	3	2 1		2	N77	12		24/1	N	71	YA23843	-
			4))	! (1		50.7		t d o w	is /	Y607687		· · · کر ا	1	I/P				.16	14
		-	YB12761	YBI2762	YBI2773	YBI2784	YBI2785	YB07690	YB07689	YB07688	4160±	YA86387.	YA86386	YA86397	VA86396	VAPOP	YA8 30-	2	, 'H I	₩, (
	1-1	 سر	21	22 /	37	53 7	54	8	7	6	5	1/	3	14	13	-thit	1 25		YA23842	VA23840
1 (j = 1) 1	. (_			·	YB12782	YBI2783	Y807694	1 1 Y807693		$\left \right\rangle \langle$		ΟΧ	1.	·)		VAg			
· · · ·)	````	YB12759	YBI2760	YBI2772)			1	L	YB07692	YP07691	YA86389	XP86388	YA86399	¥1863 4	8 148630	1 6304	1	- Da	ueľ
)	_	19	20	35	.51	52	14	13	10	9	6	5	1.10-	1 15	1 28	<i>``</i> [[]]	7	Ba	
;		Ì			LYB/2771	i f	•	ļ		1 YBOT 696	YB07695	• •	· · ·	1	i		J. John		a.	
	•		YBI2757	YBI2758		YBI2780	YBI2781	YB07700	'YB07699	\sum		YA86391	YA86,390	YA86401	YA8640	0 YA8630		ر می		·· · · ·
		\	17	18	33	49	7, 50	16	- 15	12	L L L	8,	17-	18	17	$ \rangle$			1- 1- 11	
· - ', - ',			i . (YBI2756				ι, ^γ			N 107697 J	1	N	1	X			1 3	·	· (
* * * *	-	- <u>_</u>	YBI2755			YBI2778	YBI2779	YB07702	YB0770	YB07698		YA86393	XA86392	YA86403	YA8640.	~ \	- : ()	"\	A.	Cr.
	· 'ı			1		→ 18	117	116	115	. 14	113	10	9	~	¥ - ''	1 2	} \	Ň	centr	
	· , ', '	and the second	ר א		- · · · · · ·	YBI3100			1. ···)			1			Ĩ, Ì	$\backslash \cdot \cdot$		
4 . 	у) Ч		· 5		<u>ب</u> - س		YBI3099 7	YBI3098	YBI3097	YB13096	YB13095	YA86395	¥486394	YA86405	YA8640	<i>*</i> - `	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	it		-
1. • 2. 					· · ·	112	, 10-11 1 - 1	108	106	1 > 104	102 4 6	02± 100	-)-98	1,30	X	1 1	·/	\mathcal{N}		$\sqrt{2}$
				4			Veranea		VORINGE	L vórá dias	YBISORA			YBI3078	VBROZE	X	÷_ /			· · ·
	,	1		*, •		TBISUSA	TBI3032,	1101000	TBI3000	TBISU80		TBISU82	97 97	95	93			\cdot	1 K	$\sim 10^{-10}$
1997 	كرير	~~ ,		·		به کی پر ا	109	107	105	12-103		33		YBI3077			K)/	(
	1:	¢.	۰. مع	ر ب ^ر ب	1:	YBI3093	VARIA	VOIZAGO	YBI3087	YBI3085	VRISORS	YBI3081	YBI3079	κ	YBI3075		1.		1.46	- :)
記録・	(-	•	· · · · ·	92		10/003	86	84	82	80	.78	76		¥	$\sim \sim$		MI	`' [
		-			-		I					5 5]) * •	74				()S)	
	•			-	4.5	Y83074	YB/3072	YB 3070	Y8/3068	YBI3066	YR 3064	YBI3062	YBBOGO	YBI3058	YBI3056		1		())°	i \
							89	87	85		61	· 79	77	75	73		/, -	,		F \
							ļ			1 03		1							i\}	Ň
				-		YBI3D73	YBI3071	YBI3069	YBI3067	YBI3065	YBI3063	Y 1813061	YBI3059	YBI3057	I YBI3055	1	1			\mathbf{y}
		١.		F 1	***			••			<u></u>	 ∧					\wedge		Ý	\ i =
Ň	•		,		*		. (4				(1)		. , 		1	' \		λ	1.
			-	-			,	\		-	×00	7 }	• -	. \			, 		!\	Si
5	2			-				$\overline{\ }$	\sim	Л	۲ ³⁵ .	• }		\sim	ک	`\\]	ر -			3!
		\sim ,	h -)	l	2		[-		×,	\\\\		į	
	ij. Ere .	T	$\sqrt{2}$	\sim				i	•)	· · · · ·)	(\backslash		Ì	、			15 /
		(ς				-	·)) .		1					i		<u> </u>	12
می از این از این از این از این			``	(-			• • • • • • • • • • • • • • • • • • •								~	•		

DEPOSIT	TONNES	GOLD (g/t)	<u>SILVER (g/t)</u>
Laforma	198,000	10.97	?
Brown-McDade	800,000	7.88	34.28
Heustis	85,728	15.43	312.29
Webber	58,524	11.66	661.26
Tinta Hill	516,000	4.11	219.39

In the immediate claim group area there is little evidence of previous exploration except for historical placer evaluations of the various creeks on the property.

In 1987, Mr. Curley conducted a reconnaissance dowsing survey in the vicinity of what was to become the main showing area. Mineralized samples were collected from test pits over the strongest anomalies found. Assays were encouraging enough that the prospector staked 16 quartz claims and had two excavator trenches dug to expose the zones. In the fall of that year Mr. Curley approached Noranda Exploration for a site visit and possible option of the property. Noranda's initial sampling generated enough interest within the company that an option deal was finalized early in 1988.

During the initial visit to the property in 1988 a soil grid was established, a small (4.6 km) VLF survey was completed by the author and five additional trenches were pre-stripped on the basis of a field interpretation of these survey results. A total of 673 soil samples were collected, 4.0 km of I.P. and 43 km of magnetometer surveys were completed over the grid.

Soil survey results indicated a mineralized northeastsouthwest trend through the area of the pre-stripped trenches. Four new trenches were dug while the original trenches were cleaned out for resampling. Trenching and geophysical results prompted a five hole (388 m) diamond drill program in the fall of 1988. A follow up drilling program in early 1989 was limited to one hole (198.7 m). The property was returned to Mr. Curley later that year.

1-6: Work Program

In mid July, following consultations with Mr. Curley, the author made a visit to the property to locate trenches which would test new ideas on possible mineralized extensions from the main showing. Accessing the property was made difficult due to very high water conditions on all creeks in the area. Five trenches were flagged during this visit. Four of the trenches were located in the vicinity of the main zone while the fifth trench was to test soil anomalies located on line 8800 E between 10100 N and 10225 N. These trenches were stripped and/or dug using a D-6 Caterpillar under contract from Caribou Exploration and Development Ltd. of Carmacks.

A second visit was made to the property on August 7 to map and sample the new trenches. This visit was cut short due to poor weather conditions. A number of other trenches were located and were to be completed pending budget revisions.

A Hitachi excavator under contract from I Can Dig It

Contracting and Exploration Ltd. of Whitehorse was mobilized to the property on August 17 and completed the trenching program on August 22. The author made a final site visit during the period of August 22-26. All trenches were mapped and samples collected where possible. A number of trenches were not dug to bedrock due to frost or mud conditions. Soil and rock (grab) samples were collected from some of these.

A total of 63 trench channel samples, 2 rock samples and 6 soil samples were collected from 761 m of new trenches dug during the program.

CHAPTER TWO

GEOLOGY

2-1: Regional Geology

The area sits near the boundary between the Yukon Cataclastic Terrane to the north and the Yukon Crystalline Terrane to the south. Paleozoic schists and gneisses of the Crystalline Terrane predominate as the basement in this area. These rocks have been intruded by two main igneous events; an early Jurassic plutonic suite comprised of syenite to monzonite which was later metamorphosed and foliated and a younger Cretaceous suite of plutonic and volcanic units.

Major regional structures generally trend north-west through the area with the most distinctive being the Big Creek Fault. This fault forms the northeast boundary of a graben structure near Mt. Freegold to the north. The south-west edge of this graben is not clearly defined but is thought to occur just south of Mt. Nansen in the area of the claim group.

Most mineralization in the area shows a spacial relationship to felsic porphyry dykes which are believed to be a late Cretaceous event. The porphyry units are often brecciated and fractured, possibly due to the explosive action of confined late stage volatiles or a remobilization of existing structures. Areas of fracturing act as plumbing systems and have contributed to localizing hydrothermal solutions. Advanced argillic and phyllic alteration mineral assemblages are often found in these brecciated core areas surrounded by irregular halos of argillic and propylitic

Approximate magnetic declination in 1987 was N32°23'E and decreasing at an annual change of 3 7'

TABLE OF FORMATIONS

UNIT

1/ Unconsolidated alluvial depos.	17	Unconsolidated	alluvial	deposite
-----------------------------------	----	----------------	----------	----------

MT. NANSEN SUITE

- 9 Porphyry dykes.
 - 9c Quartz-feldspar porphyry dykes; white weathering, commonly pyritic.
 - 9d Porphyritic granodiorite to quartz monzonite stocks.
- 7 Mt. Nansen Volcanics
 - 7a Andesitite to latite massive flows and feeders.
 - 7at Tuff, tuffaceous sediments, in part laharic.
 - 7ax Flow breccia, probably in part intrusive.
 - 7c Felsic dome; commonly flow banded, quartz and feldspar porphyry.

DAWSON RANGE PLUTONIC SUITE

5		Dawson	Range	Batholiths
	5a	Casino	granod	liorite.

BASEMENT METAMORPHIC COMPLEX

- 2c Schist-gneiss subunit; includes biotitequartz-feldspar schist, feldspar augen gneiss, amphibolite, minor quartzize and marble (2cm).
- 2d Amphibolite.

1 Metasedimentary unit.

1b Quartz-feldspar-mica schist, quartzofeldspathic gneiss. alteration.

2-2: Property Geology

Typical of the region, outcrop is scarce on the property due to a lack of recent glaciation. A castellated outcropping of basement schist (unit 2c) occurs on the ridges at both the western and eastern edges of the property. Other exposures are confined to small outcroppings of andesitic to basaltic flows (unit 7a) in the southwest corner of Dows 16 and small subcroppings of flow banded rhyolite (unit 7c) located on the eastern boundary of Dows 22. Three separate subcrops of quartz vein material containing disseminated sulphides were discovered at 6525 E, 10025 N; 7930 E, 9500 N and 10840 E, 6730 N none of which returned any values of significance. The only other bedrock exposures observed were those exposed by trenching.

The new trenches completed in 1992 have raised almost as many questions as they have answered. The trenching has shown that the area is structurally complex, with new information often conflicting with that previously gathered. Structures and units previously thought to pinch out to the south-west are now believed to have a more westerly trend and remain open along strike. Geological interpretation is also hampered by severe solifluction as seen in trenches NT-11 and NT-12. Trench NT-18 which was located to test a multi-element soil anomaly failed to reach bedrock and it is believed that this is a transported anomaly originating from the northeast.

Bedrock exposed in the trenches consists of schists, gneisses, quartzite and white marble of the basement metamorphic complex (units 2c and 2cm) intruded by quartz-feldspar porphyry dykes (unit 9c) and a porphyritic quartz monzonite plug (unit 9d) which appears to cut-off or offset mineralization on the east side of the trenched area.

The basement rocks present are characterised by quartzofeldspathic, medium to coarse grained schists and gneisses. These are generally brown to maroon or green in colour and are moderately siliceous with minor vitreous quartz layers. Also included is a white, coarse crystalline, marble unit.

The intrusive rocks exposed by trenching are white to light tan weathering quartz-feldspar porphyry dykes and plugs. They are generally fine grained with quartz and/or feldspar occurring as small phenocrysts less than 2 mm in size. These porphyrys are sometimes foliated and contain up to 10% pyrite in unoxidized samples.

All rocks exposed by trenching have been altered to some degree. Most have undergone at least weak clay alteration with moderate to intense clay alteration over wide areas. Silica alteration consists of quartz flooding in schist units and quartz veining and stockworks in all units. This quartz flooding can be seen very well at the south end of trench NT-8 where the schist unit has undergone progressive silica alteration to the north over a 5 m width between two breccia zones. Fragments of intensely silicified and veined schist can be found supported in a clay

matrix within these hydrothermal breccias. The breccia zones have been exposed over widths of up to 38 m (NT-8) and extend from between 9280 E (NT-5) and line 9300 E to the east and are open along strike to the west.

The schist units contain a variable amount of carbonate material and it is unknown at this time whether this is primary or secondary in nature. Calc-silicate alteration is very minor in the marble unit and occurs as stringers and pods of mainly epidote and diopside (NT-3). The schist unit however at one point exhibits intense calc-silicate alteration as seen in boulders dug from (NT-14).

CHAPTER THREE

GEOCHEMISTRY

3-1: Soil Geochemistry

Six soil samples were collected from a trench which failed to reach bedrock due to permafrost conditions. The samples were collected in the hopes of reproducing a multi-element geochemical anomaly between 10100 N and 10225 N on line 8800 E. The samples were placed in Kraft paper bags and delivered to Northern Analytical for processing and analysis.

Results show anomalous values of gold (up to 296 ppb) near the top end of the trench with lower values throughout the rest of the trench. It is believed that there exists a severe solifluction problem in the area and these samples reflect a transported anomaly which originated from the northeast. Further exploration should be conducted in that direction.

For a complete list of sample results refer to Appendix A.

3.2: Rock Geochemistry

Sixty-three trench channel samples and two grab samples were collected and analyzed during the 1992 trenching program. The trench samples were collected from four of the ten trenches attempted in the immediate showing area. Seven trenches were successful in reaching bedrock but three of these were mapped and not sampled. Three trenches did not reach bedrock primarily due to muddy conditions. Of the four trenches which were sampled, NT-10 was only partially successful as the south end was frozen and bedrock was not exposed. All samples were taken to Northern Analytical for processing and were fire assayed for gold only. Results were very encouraging showing that most samples were anomalous (>100 ppb) to highly anomalous with the best single sample returning a value of 4092 ppb gold over a 3.5 m interval.

Two grab samples were collected from the muck piles of trenches which did not expose significant bedrock. One of these samples returned values in the 0.2 oz/ton range.

For a complete list of sample results refer to appendix A.

< ^ ^

CHAPTER FOUR

MINERALIZATION

The 1992 trenching program was successful in tracing mineralization over a 150 m strike length. Mapping of the trenches shows the deposit to be epithermal in nature with mineralization being present in hydrothermal breccia zones (not previously recognized), rotted porphyry dykes and in silica replacements of limey schists. It is believed that the mineralization is present in an undulating zone which trends west-south-west but seems to swing to the north-west in the vicinity of NT-11 (9160 E, 10450 N). This is supported by a grab sample of silicified and veined schist collected from the muck pile of NT-15 (at 9097 E, 10515 N) which was unsuccessful in reaching bedrock. This sample (R92064) returned a value of 6719 ppb gold.

Most trench samples returned anomalous to highly anomalous values over significant widths. For example: NT-8 returned 1.13 gmt gold over 48 m which includes 1.51 gmt over 12 m, 2.26 gmt over 6 m and 1.82 gmt over 6 m; NT-9 returned 1.02 gmt gold over 30.5 m which includes 1.59 gmt over 16.5 m and 2.48 gmt over 4 m; and NT-11 which returned 2.29 gmt gold over 21.5 m which includes 3.12 gmt over 8 m, 4.09 gmt over 3.5 m and 2.54 gmt over 3 m. These values seem to indicate that gold values are increasing to the west where mineralization is open along strike.

CHAPTER FIVE

CONCLUSIONS & RECOMMENDATIONS

The 1992 trenching program was successful in revealing clues as to the genesis of the deposit as well as exposing significant mineralization in three of the four trenches sampled. (For example: NT-8 returned 1.13 gmt gold over 48 m which includes 1.51 gmt over 12 m, 2.26 gmt over 6 m and 1.82 gmt over 6 m; NT-9 returned 1.02 gmt gold over 30.5 m which includes 1.59 gmt over 16.5 m and 2.48 gmt over 4 m; and NT-11 which returned 2.29 gmt gold over 21.5 m which includes 3.12 gmt over 8 m, 4.09 gmt over 3.5 m and 2.54 gmt over 3 m). This mineralization is epithermal in nature and is contained within hydrothermal breccia zones, rotted porphyry dykes and silica replacements of limey schists.

Geological interpretation of the new information appears to discount previous views that the mineralization was faulted off to the east and pinched out to the south-west. This new information suggests that the mineralization undulates through the trenched area and swings to the north-west near the western limit of completed trenches. Gold concentrations also seem to be increasing to the west.

It is recommended that a mechanised, deep soil survey be completed to initially outline areas of mineralization. This should be followed by further trenching and drilling of the better mineralized zones.

Respectfully submitted by;

Kenneth bos Eng. K.D. GALLON ERRIG

REFERENCES

- Diment R., 1989; Diamond Drilling Report 1989 on the Dows 1-118 Claims
- Galambos K., 1988; Geological, Geochemical & Geophysical Report on the Dows 1-118 Claims
- Galambos K., 1989; Diamond Drilling Report 1988 on the Dows 1-16, 49-60 & 65-68 Claims

STATEMENT OF COSTS

Labour:	4 person days @ \$150./day	\$ 600.00
Supplies & Logging	45 person days @ \$60./day	2700.00
Contractor Costs	Hitachi Excavator and support equipment	8934.50
	D6 Caterpillar and support equipment	12873.50
	Analytical Costs	1087.39
Geological Consult:	ing and Report Writing	3922.20

\$30117.59

٠

 \sim

STATEMENT

Outec Resources Itd . Box 47 7 200 · Yukon

DATE act 8 1992

DEBIT CREDIT . BALANCE Asupplied sutte Resources with the fallow Camp & Supplies 780= 45 Person days. 260 Jabour 4 Person days @ Å 600 00 Eugene (FEDFORM Campation of the and the second s In the second of the second

/ -

:

٠

08-Oct-92 date	Invoice for Analytical Services	
Ken Galambos	WO#138	25
Reassays Au 1AT grav. 4	x \$ 11.00 = \$ 44.00	
Subtotal	= \$ 44.00	
GST @ 7% (#R 121285662)	= \$ 3.08	
Total due on receipt of invoice 2% interest charge on accounts over	= \$ 47.08 30 days	

.

¥

05-Oct-92 date	Invoice for Analytical Services	
Eugene Curly	WO	#13700
Sample preparation	14 x \$ 4.25 = \$ 59.50	
Au fire assay AAS	14 x \$ 8.50 = \$ 119.00	
Subtotal	= \$ 178.50	
GST @ 7% (#R 121285662)	= \$ 12.50	
Total due on receipt of invoice 2% interest charge on accounts ove	= \$ 191.00 er 30 days	

Invoice for Analytical Services

Ken Galambos

ł

Sample preparation	51 x \$ 4.25 = \$ 216.75
Drying charges	51 x \$ 2 50 = \$ 127.50
Sample preparation (soils)	6 x \$ 1.50 = \$ 9.00
Au fire assay AAS	57 x \$ 8.50 = \$ 484.50
Subtotal	= \$ 837.75
GST @ 7% (#R 121285662)	= \$ 58.64
Total due on receipt of invoice 2% interest charge on accounts over	= \$ 896.39 er 30 days

Kenneth D. Galambos P.O. Box 5625 Whitehorse, Yukon Y1A 5H4 Telephone: 633-6729

Date: October 7, 1992

. _

Invoice Number: 0002

Autec Resources Faro, Yukon

To invoice you for the work completed in conjuncton with the 1992 trenching program on the Dows Claims.

\$3922.20

1-CAN- DEG-IT CUNTRACTING TEXPLORATION LTU. RR=1, Site 20, C-79 OUR NUMBER 51796 DATE CUSTOMER S ORDER SOLD TO Eugline Cur SALESMAN TERMS Preperty Juns SHIP TO FOB ADDRESS ... VIA DESCRIPTION PRICE AMOUNT QUANTITY INVOICE 0Ō 00 56 hRS HOE WORK 110 00 TRUCK ING OV G.S.T 50 BALANCE 193 50 DUE BILUELINE DC 31 ; CARIBOU EXPLORATION & DEU LTD. 40569 OUR NUMBER BOX 130 WWWWWWWWW DATE SENTIST FOB CARMACISS YUKON AN THO COL CUSTOMER S ORDER SOLD TO AUTEC RESOURCES SALESMAN BOX 47 TERMS FARO YUKON SHIP TO_ TAX REG NO ADDRESS TRENCHING ON DOWS VIAPROPERTY QUANTITY DESCRIPTION . - PRICE AMOUNT INVOICE e O 00 6 DAYS BOMBADIER 416 đ 2496 5 O 50 13 ATU RENTAL 53 DAYS Ø 00 00 80 93 HRS D-6 CAT INCLUDING 7440 STAND BY & WALKING TIME $\overline{\sigma}$ 0~2 Ø 1417 FI HRS OPERATOR 17 50 MOBILIZATION 1175 CARMACKS TO NAMSKN 50 12873 PAID BY CHEQUE

BLUEUNE- D 31

STATEMENT OF QUALIFICATIONS

- I, Kenneth D. Galambos, do hereby certify that:
- 1) I am a Geological Engineer residing at mile 6.5 of the North Klondike Highway, Yukon Territory.
- 2) I am a graduate of the University of Saskatchewan with a BSc. degree in Geological Engineering.
- 3) I have practiced my profession for the past 12 years primarily in the Northern Cordillera.
- 4) I planned and participated in the field work done on the claims in 1992.
- 5) I am a member of the Association of Professional Engineers of the Yukon Territory and have been since 1988.
- 6) I have no vested interest in the property in question.

APPENDIX A

ANALYTICAL RESULTS

Assay Certificate

page 1

Eugene Curly		WO#13700
Sample #	Au ppb	
TR92001	12	
TR92002	34	
TR92003	382	
TR92004	261	
TR92005	310	
TR92006	362	
TR92007	1619	
TR92008	2074	
TR92009	528	
TR92010	1328	
TR92011	2628	
TR92012	2091	
TR92013	1056	
TR92014	788	

¥

Certified by CHysoKki

Assay Certificate

page 1

উঠ

Ken Galambos

Ę۹

Sample #	Au ppb	
TR92015	100	
TR92016	145	
TR92017	1697	
TR92018	308	
TR92019	141	
TR92020	216	
TR92021	1224	
TR92022	2601	
TR92023	263	
TR92024	616	
TR92025	756	
TR92026	1823	0.052 oz/ton
TR92027	97	
TR92028	1265	
TR92029	3452	
TR92030	167	
TR92031	3516	
TR92032	2012	
TR92033	3981	
TR92034	81	
TR92035	34	
TR92036	331	
TR92037	1729	
TR92038	963	
TR92039	474	
TR92040	267	
TR92041	62	
TR92042	257	
TR92043	2479	
TR92044	33	
TR92045	32	
TR92046	62	
TR92047	406	
TR92048	73	
TR92049	235	
TR92050	127	
TR92051	255	
TR92052	3119	0 114 oz/ton

Certified by Chyokk's

Assay Certificate

page 2

Ken Galambos

Sample #	Au ppb	
TR92053	237	
TR92054	4092	0.129 oz ton
TR92055	789	
TR92056	145	
TR92057	2391	
TR92058	2681	
TR92059	167	
TR92060	196	
TR92061	729	
TR92062	658	,
TR92063	168	ì
R92064	>6667	0.196 oz/ton
R92065	274	
8800E		
10150N	59	
10175N	21	
10125N	15	
10225N	296	
10210N	138	
10100N	22	

(Å

Certified by Myokki

Assay Certificate

page 1

Ken Galambos

250

٠

Sample #	Au ppb	
TR92015	100	
TR92016	145	
TR92017	1697	
TR92018	308	
TR92019	141	
TR92020	216	
TR92021	1224	
TR92022	2601	
TR92023	263	
TR92024	616	
TR92025	756	
TR92026	1823	0.052 oz/ton
TR92027	97	
TR92028	1265	
TR92029	3452	
TR92030	167	
TR92031	3516	
TR92032	2012	
TR92033	3981	
TR92034	81	
TR92035	34	
TR92036	331	
TR92037	1729	
TR92038	963	
TR92039	474	
TR92040	267	
TR92041	62	
TR92042	257	
TR92043	2479	
TR92044	33	
TR92045	32	
TR92046	62	
TR92047	406	
TR92048	73	
TR92049	235	
TR92050	127	
TR92051	255	
TR92052	3119	0.114 oz/ton

Certified by Chyokki

1

`

,

٩

and the New York

Assay Certificate

page 2

/

Ken Galambos

ŝ

Sample #	Aú ppb	
TR92053	237	
TR92054	4092	0.129 oz ton
TR92055	789	
TR92056	145	•
TR92057	2391	
TR92058	2681	
TR92059	167	
TR92060	196	
TR92061	729	
TR92062	658	
TR92063	168	
R92064	0.196 oz/ton	
R92065	274	
8800E		
10150N	59	
10175N	21	
10125N	15	
10225N	296	
10210N	138	
10100N	22	

Certified by CHapolic

APPENDIX B

SAMPLE INTERVALS

SAMPLE INTERVALS

Trench NT-8

SAMPLE NUMBER	Interval
TR92001	3.0 - 4.5
02	4.5 - 6.0
03	6.0 - 7.5
04	7.5 - 9.0
05	9.0 - 10.5
06	10.5 - 12.0
07	12.0 - 13.5
08	13.5 - 15.0
09	15.0 - 16.5
10	16.5 - 18.0
11	18.0 - 19.5
12	19.5 - 21.0
13	21.0 - 22.5
14	22.5 - 24.0
15	24.0 - 26.6
16	26.6 - 29.6
17	29.6 - 31.5
18	31.5 - 33.0
19	33.0 - 34.5
20	34.5 - 36.0
21	36.0 - 37.5
22	37.5 - 42.0
23	42.0 - 46.0
24	46.0 - 50.5
25	50.5 - 54.0
TR92026	54.0 - 60.0

TRENCH NT-9

SAMPLE NUMBER	Interval
TR92027	8.0 - 9.5
28	9.5 - 11.0
29	11.0 - 12.5
30	12.5 - 14.0
31	14.0 - 15.5
32	15.5 - 17.0
33	17.0 - 18.5
34	18.5 - 20.0
35	20.0 - 21.5
36	21.5 - 23.0
37	23.0 - 24.5
38	24.5 - 26.0
39	26.0 - 27.5
40	27.5 - 29.0

29.0 - 32.0
32.0 - 36.0
36.0 - 40.0
40.0 - 46.0
46.0 - 52.0

1

TRENCH NT-10

SAMPLE NUMBER	Interval
TR92046	18.0 - 22.0
47	22.0 - 28.0
48	28.0 - 34.0
49	34.0 - 39.0
TR92050	39.0 - 44.0

TRENCH NT-11

.

Interval
22.0 - 24.0
24.0 - 32.0
32.0 - 36.0
36.0 - 39.5
39.5 - 41.0
41.0 - 42.5
42.5 - 44.0
44.0 - 45.5
45.5 - 47.0
47.0 - 48.5
60.0 - 61.0
61.0 - 64.0
64.0 - 67.0

