REPORT ON THE 1992 GEOLOGICAL AND GEOCHEMICAL WORK ON THE WYO PROJECT

Watson Lake Mining District, Yukon August 27 - Sept. 8, 1992

- YMIP #: 92-013
- Location: 1. 140 km NW of Watson Lake, Yukon 2. NTS: 105 G/1 3. Latitude: 61° 12'N
 - Longitude: 130° 15'W
- For: Mr. R. BERDAHL P.O. Box 5664 Whitehorse, Yukon Territory Y1A 5L5
- By: R.Hulstein, B.Sc., P.Geo, FGAC Aurum Geological Consultants Inc. 205-100 Main Street P.O. Box 4367 Whitehorse, Yukon Y1A 3T5

December 31, 1992

AURUM GEOLOGICAL CONSULTANTS INC.

SUMMARY

i

The Wyo Project consists of an area approximately 10 x 15 km located in the Finlayson map area, about 140 km northwest of Watson Lake, Yukon. The claims are accessible by floatplane and helicopter, based out of Finlayson Lake 37 Kilometers to the north.

The Wyo project, located in the Ominica Crystalline Belt, covers a package of allochthonous intrusive, volcanic and sedimentary rocks thrust over sedimentary rocks of the Cassier Platform. All of the above rocks are moderately to intensely strained. These rocks are intruded and overlain by dacite and rhyolite of probable Cretaceous - Tertiary age.

Interest in the ground developed in 1992 when Ron Berdahl reviewed the results of a regional stream sediment survey by the Geological Survey of Canada. He noted that the anomalous values from the Wyo project area were similar to those found in the vicinity of the nearby Fyre Lake volcanogenic massive sulfide deposit.

In 1992 the project area was prospected to evaluate the areas potential to host volcanogenic massive sulfide type lead - zinc deposits. A total of 31 samples (16 rock, 10 stream sediment, 5 soil samples) were collected. Results of the reconnaissance exploration include an occurrence of mineralized float that returned up to 9.33 % lead, 7.91 % zinc, and 0.6 % copper from a gossanous area of quartz carbonate breccia. Prospecting also located a previously unreported 10 m thick massive barite bed exposed over a strike length of 30 meters.

Numerous stream sediment samples collected by the GSC and Ron Berdahl returned anomalous values for lead, zinc, silver, copper, barite, cadmium and gold that remain unexplained.

Based on these results, a program of prospecting, geological mapping and geochemical sampling is recommended.

TABLE OF CONTENTS

Page

SUMMARY	i
TABLE OF CONTENTS	
INTRODUCTION	1
LOCATION AND ACCESS	1
PHYSIOGRAPHY, CLIMATE AND VEGETATION	3
HISTORY	4
GEOLOGY	4
Regional Geology	4
Project Area Geology	4
MINERALIZATION	6
GEOCHEMISTRY	7
1992 Results	7
CONCLUSIONS AND RECOMMENDATIONS	8
REFERENCES	10
STATEMENT OF QUALIFICATIONS	11

LIST OF FIGURES

Figure 1: Location Map; 1:1,000,000:	2
Figure 2: Geology & Geochemistry Map; 1:31,680:	in pocket

LIST OF APPENDICES

Appendix A - Rock Sample Descriptions Appendix B - Analytical Methods and Reports

INTRODUCTION

This report was prepared at the request of Mr. Ron Berdahl to summarize his 1992 exploration activities within the Wyo project area. Its purpose is to assess the project areas economic potential and to satisfy Mineral Incentive Program (Yukon Territorial Government) requirements through a description of exploration work carried out in 1992.

The project area, covering some 150 square kilometers (10 km x 15 Km), is located approximately 140 kilometers northwest of Watson Lake, Yukon (Figure 1) in the Watson Mining District, and is accessible by floatplane and helicopter.

Exploration work carried out in 1992 consisted of prospecting, geological mapping and geochemical sampling for the purpose of locating massive sulfide deposits. All work was carried by Mr. R. Berdahl, a Yukon prospector, between August 27 and September 8, 1992. This report is based on data provided by R. Berdahl, the authors knowledge of the area, referenced reports, and maps.

LOCATION AND ACCESS

The claims are located 140 km NW of Watson Lake, Yukon (Figure 1). The claims are centered at approximately 61° 1²/₂ N latitude and 130° 16' W longitude within NTS map area 105 G/1.

Access to the property in 1991 was by floatplane based out of Finlayson Lake, Yukon, 37 kilometers to the north on the Robert Campbell Highway (HWY #9). Alternatively, helicopters are available in Watson Lake or Ross River, Yukon.

1

PHYSIOGRAPHY, CLIMATE AND VEGETATION

The Wyo project covers a range of rounded hills east of Fire Lake in the Pelly Mountains. Elevations on the property range from 3500 feet to slightly over 6500 feet on ridge tops. The ridges and hills are flanked by moderate slopes with local felsenmeer cover.

An interior continental climate with moderate to low precipitation of 30 cm annually, warm summers and cold winters typifies the area. Permafrost is commonly present on the north and east facing slopes. The property is usually snow free from late June to mid September.

Approximately thirty percent of the project area is above treeline (4500' or 1370 m). Areas below treeline have ground cover of white spruce, aspen, dwarf birch (buckbrush). Above treeline ground cover consists of moss, alpine plants, sparse dwarf willow and birch.

Recent Pleistocene glaciation scoured the area. As a result outcrop is good (20%) except on forested valley bottoms. A large portion of the property is covered by felsenmeer and talus fines.

HISTORY

According to Yukon Minfile (1992) most of the area has not been previously staked. The area was presumably prospected for placer gold in the late 1800's and early 1900's. The area was explored for lead - zinc deposits in the 1960's which culminated in the discovery of the Fyre Lake volcanogenic massive sulfide deposit (Yukon Minfile, 1992) located approximately 12 km west of the project area.

The project area was explored by Ron Berdahl after reviewing the regional stream sediment survey results from NTS 105G carried out by the Geological Survey of Canada (Hornbrook and Friske, 1988). Ron Berdahl noted a suite of anomalous elements in stream sediment samples with a similar signature to that noted near the Fyre Lake deposit.

GEOLOGY

Regional Geology

The Wyo project is situated within the Ominica Belt (Wheeler et al., 1991). The geology of the Finlayson map area has been most recently compiled by D.J. Tempelman-Kluit (1977) at a scale of 1:250,000. The oldest rocks exposed in the area are Upper Proterozoic - Triassic cataclastic sediments and volcanics of the of the Nisutlin Allochthon, part of the pericratonic Kootenay Terrane. Younger oceanic marginal basin volcanic and sedimentary rocks of the Devonian - Triassic allochthonous Slide Mountain Terrane are also found in the area thrust over sedimentary rocks of the Cassier Platform.

The Tintina Fault, located 15 - 20 km southwest of the project area, generally follows the Mesozoic suture which separates ancestral North America from the composite accreted terrane, the Yukon - Tanana Terrane. At least 450 km of dextral strike slip movement has taken place along the Tintina fault since latest Cretaceous or Early Tertiary time (Tempelman-Kluit, 1979). This has caused western parts of the Cassiar Platform to be offset.

Project Area Geology

The most common lithology underlying the Wyo project area is muscovite quartz blastomylonite of the Klondike Schist (Tempelman-Kluit, 1977). The muscovite quartz blastomylonite, of unknown age, is slightly rusty weathering, white to pale green, the unit includes minor fine grained amphibolite and chlorite quartz and biotite quartz blastomylonite. Another unit of the Klondike Schist hosts the Fyre Lake deposit.

Younger Carboniferous or Permian limestone of the Cassier Platform is found in the west central area of the project area (Tempelman-Kluit, 1977). The limestone is white weathering, resistant, massive light grey recrystallized and crinoidal. It commonly has well developed flaser texture and grades into a marble blastomylomite.

Allochthonous protomylonite and mylonite rocks of Devonian to Triassic (?) (Tempelman-Kluit, 1977) are thrust over the above rock package. These rocks are massive, resistant, medium - grey weathering, blocky, dark green and derived from hornblende granodiorite to quartz diorite. For the most part these rocks now appear as quartz chlorite feldspar schist.

Young Cretaceous to Tertiary shallow intrusive and volcanic rocks intrude and overlie the Klondike Schist (Tempelman-Kluit, 1977). These rocks are commonly of rhyolite to dacite composition. Locally these rocks are pyritic and form prominent gossans.

Regional structure is dominated by thrust faults and steeply dipping normal faults.

MINERALIZATION

A new showing was discovered by Ron Berdahl in 1992, labeled G #1 (for Gossan #1) on figure 2, in the central part of the project area. Mineralization consists of fine grained light brown sphalerite and fine grained galena in 2'x2'x1'angular boulders found in a quartz carbonate breccia "dirt pile" zone. Dark green volcanics outcrop in the immediate area and apparently overlie a large, rusty, competent, light green schist. The schist weathers a gossanous red-brown.

Grab rock samples of the mineralized float returned up to 9.33% lead, 7.91% zinc, 60.2 gpt silver, 129 ppb gold and 0.6% copper. A soil sample collected 6m topographically above the exposed mineralized float returned 282 ppm lead, 1885 ppm zinc, 4.2 gpt silver, and 0.173% copper.

A gossan (labeled G #2 on Figure 2) located approximately 2 km southwest of Gossan #1 was not investigated in 1992 due to lack of time.

A previously undocumented 10m thick exposure of massive bedded barite (53% Ba) is exposed for a strike length of approximately 30 meters approximately 2 km east of the massive sulfide float occurrence (G #1) described above.

GEOCHEMISTRY

1992 Results

A total of 31 samples (16 rock, 10 stream sediment, 5 soil) were collected on the Wyo project in 1992. All samples were analyzed for their gold and silver content, and for additional elements including Cu, Pb, Zn, As, and Sb. Results for the work carried out are shown on Figure 2. The more significant rock samples are described above under 'mineralization'. Complete rock sample descriptions and analytical results are included in Appendix A and B respectively.

Stream Sediment Samples

In 1990 the Geological Survey of Canada released regional stream sediment and water geochemical data, GSC Open File 1648, for the Finlayson map sheet, NTS 105G (Hornbrook and Friske, 1988). Of the samples collected by the GSC from the project area numerous elements including; lead, zinc, silver, copper, barium, and silver returned values that fall within the 95th percentile in the regional survey.

Stream sediment samples collected by Ron Berdahl in the Wyo project area returned highly anomalous results for; lead (40-60 ppm), zinc (1000+ ppm), silver (1+ ppm), Cadmium (5-10 ppm), and gold (up to 124 ppm). Stream sediment samples were not analyzed for barium by specific technique.

CONCLUSIONS AND RECOMMENDATIONS

The Wyo project, located in the Ominica Crystalline Belt, covers a package of allochthonous intrusive, volcanic and sedimentary rocks thrust over sedimentary rocks of the Cassier Platform. All of the above rocks are moderately to intensely strained. These rocks are intruded and overlain by dacite and rhyolite of probable Cretaceous - Tertiary age.

Work to date has consisted of a grassroots prospecting and sampling program carried out in 1992 in the search for volcanogenic massive sulfides. A total of 31 samples (16 rock, 10 stream sediment, 5 soil samples) have been collected to date. Mineralization found to date include an occurrence of mineralized float that returned up to 9.33 % lead, 7.91 % zinc, and 0.6 % copper from a gossanous area of quartz carbonate breccia. Prospecting also located a previously unreported 10 m thick massive barite bed exposed over a strike length of 30 meters.

Numerous stream sediment samples collected by the Geological Survey of Canada and Ron Berdahl returned anomalous values for lead, zinc, silver, copper, barite, cadmium and gold that remain unexplained. These results are similar to those reported by the GSC from the vicinity of the nearby (~12km west) Fyre Lake volcanogenic massive sulfide deposit.

As the Wyo project area is underlain by favorable lithologies and anomalous stream sediment samples remain unexplained it should be further explored for possible volcanogenic massive sulfide deposits. The following is recommended:

- 1. Compile a 1:10,000 scale map of the Wyo project area incorporating all available geological, geochemical and remote sensing data to better identify potential volcanogenic massive sulfide deposit targets.
- 2. Further exploration consisting of prospecting, geological mapping and rock, soil and, stream sediment geochemistry should be carried out over the entire property.
- 3. Future geochemical analysis should include a specific analytical technique for barium as barite may be associated with massive sulfides. Emphases should also be placed on possible gold mineralization associated with the rhyolite dykes.
- 4. Any further work (geophysics, trenching, etc.) is contingent on results of the above work.

Respectfully submitted; CFESSION PROVINCE R. W. HULST BRITISH Roger W. Hulstein, B.Sc., FGAC, P.Geo.

December 31, 1992

AURUM GEOLOGICAL CONSULTANTS INC.

REFERENCES

Hornbrook E.H.W. and Friske P.W.B., 1988. Regional Stream Sediment and Water Geochemical Data, Southeastern Yukon; NTS 105G, Geological Survey of Canada, Open File 1648, 1:250,000 scale.

Tempelman-Kluit D.J., 1977. Geology of Finlayson Map Area, NTS 105G; Open File 486, Geological Survey of Canada, 1:250,000 scale.

- Tempelman-Kluit D.J., 1979. Transported Cataclasite, Ophiolite and Granodiorite in Yukon: Evidence of Arc-Continent Collision; Geological Survey of Canada, Paper 79-14.
- Tempelman-Kluit, 1981. Geology and Mineral Deposits of Southern Yukon: in Yukon Geology and Exploration 1979-80; Geology Section, Department of Indian and Northern Affairs, Whitehorse Yukon.
- Wheeler J.O. and McFeely P., 1991. Tectonic Assemblage Map of the Canadian Cordilleras and Adjacent parts of the United States of America; Geological Survey of Canada, Map 1712A, scale 1:2,000,000.
- Yukon Minfile, 1992. Northern Cordilleran Mineral Inventory; Exploration and Geological Services, Department of Indian and Northern Affairs, Whitehorse Yukon.

STATEMENT OF QUALIFICATIONS

I, ROGER W. HULSTEIN, with business address:

Aurum Geological Consultants Inc. 205 - 100 Main St. P.O. Box 4367 Whitehorse, Yukon Y1A 3T5

do hereby certify that:

- 1. I am a geologist with AURUM GEOLOGICAL CONSULTANTS INC., 205-100 Main Street, Whitehorse, Yukon Territory.
- 2. I am a graduate of Saint Mary's University, Halifax, with a degree in geology (B.Sc., 1981) and have been involved in geology and mineral exploration continuously since 1978.
- 3. I am a member of the Geological Association of Canada (A3572).
- 4. I am a member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia, Registration No. 19127.
- 5. I have no direct or indirect interest in the properties of Mr. Ron Berdahl.
- 6. I am the author of this report on the Wyo Project, which is based on my personal knowledge of the area, the information supplied to me by Ron Berdahl, and on referenced sources.
- 7. I consent to the use of this report, in a company report or statement, provided no portion is used out of context in such a manner as to convey a meaning differing from that set out in the whole.

R. W. HI SCIEN

Roger Hulstein, B.Sc., FGAC, P.Geo.

December 31, 1992

APPENDIX A Rock Sample Descriptions

7

WYO 105G

ROCK DESCRIPTIONS

- 2G12 competent green chlorotic schistose rock with 2 3 % pyrite in veinlets and dissemination. Rusty on cleavage plane
- 2G17 quartz carbonate float with trace disseminated pyrite and manganese, 1/2" limonite rind.
- 2G18 Siliceous breccia with limonite
- 2G19 rusty, heavy grey green volcanic with pods, veins of massive sulphide, > 15% (pyrites)
- 2G113 vuggy, eaten out, rhyolite with sulphides in vugs
- 2G120 rusty chlorotic schist with minor limonite in bedding, possible hydrothermal alteration
- 2G122 grungy meta shale with chlorotic schistose
- 2G123 from 2'x 2'x 1' boulder very fine grained Pb Zn mineralization with white coating in green volcanics, sulphides > 25%?
- 2G124 as above wiht silica
- 2G125 guartz carbonate breccia with white coating
- 2G126 métalliferous (pyrite Pb ? et al) green grey aphanitic, hard rock with manganese stain
- 2G128 manganese stained, siliceous aphanitic grungy rock
- 2G129 massive siliceous yellow barite
- 2G130 light green/white siliceous aphanitic with 1/4" fine grained crystalline sulphide vein.
- 2G131 tan schist

<u>WYO</u>

- (

STREAM SEDIMENTS AND SOILS

S2G11 small	-	stream sediment from 1 m wide creek ~ 6" depth; very drainage area (pass); gravel bottom.
S2G13	-	dry stream sediment on left limit of GSC 3414 creek.
S2G14	-	stream sediment (3414 GSC) 2' wide; gravel bottom.
S2G15	-	stream sediment right limit to above - 1' wide; through willow.
S2G16	-	stream sediment left limit; fault tributary, trickle (fault tributary).
2G111	-	soil from yellow altered soil zone; 100 m wide
2G112	-	soil from 5' wide red soil zone between pyritic volcanics.
2G114	-	stream sediment from several intermittent 'flood' channels from small, < 1', rapidly flowing creek
S2G115	-	stream sediment GSC # 3412; 1' wide w/ eroding banks
S2G116	-	stream sediment from 1 m wide creek - gravel bottom 1' deep - few fines, GSC #3413
M2G117	-	moss mat sample from bank of above (S2G116) creek
S2G118	-	stream sediment at mouth of GSC #3414
S2G119	-	stream sediment from 6" steep gradient drainage adjacent to gossan; bed of cobble size talus
D2G121	-	soil, 8" limonitic soils in green mafic volcanics
2G127	-	soil from orange quartz carbonate

APPENDIX B

Analytical Methods and Reports

25-Sep-92 date

Assay Certificate

Ron Berdhal

7855-5

WC#13772

₽age

Sample #	Au ppb	
2F1513	18	
2F1514	7	
2F1515	13	
2F1516	19	
2F1519	13	
2E152	18	
2E1520	6	
CF 1521	29	
2E153	548	
DE ISU	53	
20165	28	
21 100	1.19	
25157	(4) 4-4	
20 0440	21	
	21	
29111 20140	37 00	
29.02	22	
20113	CC C	
2(5114		N
2G12	17	<i>, , , , , , , , , ,</i>
26120	8	ate
2 <u>Ģ</u> 122	24	Mar and a second s
2Ģ122	5	$> \epsilon^{\kappa}$
2G123	129	
2G124	56	
2G125	27	
2Ğ126	14	
2Q128	8	
2G129	<5	
2/G130	16	
2G131	25	
2G17	54	
2G18	18	
2Ğ19	17)
2N101	The second se	
'N1010		
\$ <u>1</u> 4+)+	11	
2N1012	1.1	
N1013	15	
LITUIU	(J	

Certified by C. Augure C.

25-Sep-92 date

Assav Certificate

page 2

Ron Berdhal

WO#13772

Sample #	Au ppb	
2N1014	<5	
2N1015	12	
2N1016	20	
2N 1017	26	
2N1019	24	
2N 1019	26	
2N102	14	
2N 1020	12	
2N104	19	
2N105	16	
2N106	18	
2N 107	25	
2N108	20	
2N109	23_	
G115	13 ET. HARSON	
'2SG116	19	
75CR15	1718	
D2F151	13	
D2F1511	18	
D2F1512	78	
D2F1518	21	
D2F156	447	
D2F158	17 1450	
D2G1207	384 FINC	
D2G121	21)	
M2G117	21	
RN105	15	•
S2F1510	15	
S2F1517	41	
S2G11	22	
S2G118	29 6 6 11 130	
S2G119	24 (7.0%)	
S2G13	124	
S2G14	13 /	
S2G15	12/	
2616	?5(
	ز	

Certified by $\langle \zeta \rangle = - \langle \zeta \rangle_{\zeta} \langle \zeta \rangle_{\zeta}$

2036 Columbia Street Vancouver, B C Canada V5Y 3E1

Phone (604) 879-7878 Fax (604) 879-7898

iPL Report: 9200817 T Project: W/O 13772	Northern Analytical Laboratories	In: Sep 25, 1992 Out: Sep 28, 1992	50 Pulp	Page 1 of 2 Section 1 of T Certified 8C Assayer David Chiu
Sample Name Ag ppm	Cu Pb Zn As Sb Hg Mo Tl Bi ppm ppm ppm ppm ppm ppm ppm ppm	Cd Co Ni Ba W ppm ppm ppm ppm ppm	Cr V Mn ppm ppm ppm	La Sr Zr Sc Ti Al Ca Fe Mg K Na P ppm ppm ppm ppm % % % % % % % %
75 CRK P < 2G 12 P 0.3 2G 17 P 0.4 2G 18 P 0.4 2G 19 P 0.8	38 13 158 23 9 <	0.7 12 34 548 <	17 38 299 135 28 252 116 67 1782 47 4 100 33 28 83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2G 110 P 0.3 2G 111 P 0.5 2G 112 P 0.9 2G 113 P 3.3 2G 114 P 1.1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 < 9 7 81 / < 9 7 121 / < 4 6 192 / < 4 0.7 4 20 < < 4 4.3 16 69 420 < 	59 28 245 21 23 196 24 26 141 88 13 111 29 39 641	
2G 120 P 0.3 <th0.3< th=""> <th0.3< th=""> <th0.3< th=""></th0.3<></th0.3<></th0.3<>	38 17 83 <	 < 5 21 567 < 3.5 13 56 372 < 9.6 34 96 88 < 27.7 23 30 126 < 1.5 49 100 276 < 	52 20 115 87 56 279 104 56 5047 67 23 2151 43 16 830	4 82 5 1 0.18 0.43 0.61 4.50 0.09 <
2G 129 b 0.3 2G 130 0 0.9 2G 131 0 0.2 2N 101 0 2N 102 0 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9 1 20 167 < 0.6 12 10 3 < 0.6 20 10 27 < 0.2 5 12 58 < 1.0 8 28 847 <	11 24 31 68 15 359 33 24 874 107 6 444 13 34 494	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2N 103 B 0.3 2N 104 B 0.2 2N 106 D 0.7 2N 107 D 0.5 2N 108 D 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5 10 28 438 < 0.7 7 22 421 < 3.0 13 63 966 < 1.6 7 26 526 < 1.6 7 31 575 <	13 30 338 12 26 500 15 40 492 10 31 324 10 28 508	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2N 109 Ø 0.4 2N 1010 Ø 0.2 2N 1011 Ø 0.2 2N 1012 Ø 0.2 2N 1012 Ø 0.2 2N 1012 Ø 0.2 2N 1013 Ø	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2 8 43 657 <	13 33 360 13 32 349 13 30 389 14 33 515 108 20 354	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.1 3 11 44 5 0.6 9 27 565 6 0.8 13 37 539 6 0.2 1 3 98 6 0.2 10 25 792 6	98 14 214 13 31 335 14 34 548 51 4 209 14 49 375	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2N 1019 B 0.5 2N 1020 P 0.2 2SG 115 P 1.5 2SG 116 P 0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5 23 153 1296 < 0.9 5 23 515 5.7 13 135 1443 9.1 64 206 298 < 9	15 41 2397 12 34 279 35 53 378 31 47 2391	8 89 1 2 0.01 1.07 0.15 2.70 0.28 0.05 0.02 0.08 9 51 2 2 0.01 0.74 0.64 1.46 0.36 0.06 0.02 0.11 13 56 1 1 0.01 0.48 0.39 3.14 0.26 0.03 0.01 0.18 20 21 2 0.02 1.49 0.32 3.81 0.62 0.03 0.01 0.13
Min Limit 0.1 Max Reported* 99.9 3 Method ICP =No Test ins=Insuff	1 2 1 5 5 3 1 10 2 20000 20000 20000 9999 9999 9999 999	0.1 1 1 2 5 99.9 999 999 9999 999 9 ICP ICP ICP ICP ICP ICP Pulp U=Undefined m=Es	1 2 1 9999 999 9999 ICP ICP ICP Estimate/1000	2 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.

iPL F	INTERNU Repor	THOMAL t: 9 t: h	PLASMA 2008 2008	A LABORAT	DRY LTD North	hern A	nalyti	cal L	abora	torie	S			In Out	a: Se :: Se	p 25 p 28	, 199	2		50 P	(11) u1p	•••	age	2 of	2 Cer	Sectitified	ion 1 BC As	20 Va Ca Ph Fa of 1 sayer	36 Co ncou nada one (×	lumbia ver, B V5Y 3 604) 87 604) 87	Stree C E1 '9-7878 '9-7898	t Dav	d Chru
Samp	ole Na	me		Ag	Cu	РЪ	Zn	As	Sb	Hg	Мо	TI	Bi	i Cd Co Ni Ba W						v	Mn	La Sr Zr Sc Ti				Al	Ca	Fe	Mg	ĸ	Na	Р	
02G 02G 42G RN 52G	121 1207 117 105 10		מיימיים מיימי	ppm 1.4 4.2 0.9 0.4 1.8	ррт 1072 1730 221 32 165	ррт 27 282 38 9 16	ррт 824 1885 1157 106 736	99m 48 37 40 11 269	9 33 13 9 < 33	> > > > > > > > > > > > > >	46 15 10 2 15	>ppm < < < < <	5 25 < < <	ppm 1.7 9.8 8.7 0.8 5.8	61 83 51 7 20	282 356 245 23 166	90 1251 421 348 816	6 < < <	227 185 43 10 41	ppm 138 174 57 29 69	247 2381 1880 197 366	22 35 27 10 20	99m 35 53 27 48 61	9 7 2 1 2	7 0.10 7 0.10 15 0.01 3 0.02 1 0.01 3 0.03	1.84 0.97 1.95 0.64 0.55	2 0.04 0.26 0.47 0.74 0.46	28.43 13.90 4.24 1.70 3.80	2.08 0.08 0.12 0.74 0.34 0.51	2 0.02 0.03 0.04 0.06 0.06	7 0.05 0.01 0.01 0.02 0.02	7 0.70 0.20 0.15 0.13 0.25	
52G 52G 52G 52G 52G	11 13 14 15 118			1.0 2.1 1.6 1.6 1.2	47 194 154 85 79	26 67 55 42 34	534 915 1287 876 997	107 589 116 100 84	8 48 24 11 16	~ ~ ~ ~ ~	9 11 14 9 9	~ ~ ~ ~ ~	× × × × × ×	6.7 7.5 13.3 11.1 8.6	17 44 19 13 14	90 210 166 129 108	1265 612 735 891 581	ALA'A A'A'A'	33 69 34 23 32	37 70 65 44 42	3375 852 544 430 320	18 20 20 15 12	76 55 35 42 31	1 2 2 1 3	1 0.02 5 0.05 3 0.01 1 0.01 2 0.03	1.01 0.72 0.68 0.67 0.51	0.76 0.58 0.32 0.39 0.37	5.36 5.25 3.80 2.90 3.37	0.54 0.73 0.54 0.35 0.44	0.06 0.07 0.03 0.03 0.03	0.02 0.01 0.01 0.01 0.01	0.24 0.23 0.19 0.17 0.17	
526	119		P,	0.4	104	49	250	20	~	<	4	~	~	4.7		63	253	~	23	22	293		18	~	1 0.03	0.53	0.30	2.57	0.37	0.07	0.02	0.09	

Min Limit 0.1 1 2 Max Reported* Method ----No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate THE CONTROL OF DATE AND LAD LAD LAD LAD COLUMNAN ST VACCOUVER BY VEV 201 DATE 04/070 7878 Fax: 60//070 7809

NTEPNATIONAL PLASMA LABORATORY LTD

2036 Columbia Street Vancouver, B C Canada V5Y 3E1 Phone (604) 879 7879 Fax (604) 879 7898

REPORT SUMMARY Report: [9200870 R]

ANALYTICAL REPORT

Origin

Inception Date:[Oct 13, 1992]

Client:[309	Northern Analytical Laboratories]	
Contact:[Norm Smith]	
Project:[0	W/O 13772]	
Amount/Type:[3	Pulp	1	
ſ		1	1	

Analytical Requisition

Geochemical:[ICP(AqR)30	+ Ba]			
Assay:[None]	ICP:[30]
Comments:[None]

Delivery Information Reporting Date: [Oct 15, 1992] Principal Destination (Hardcopy, Fascimile, Invoice) Company: [Northern Analytical Laboratories] Address: [105 Copper Road City/Province: [Whitehorse, YT] 1 Country/Postal: [Y1A 2Z7 Attention: [Norm Smith] 1 Fascimile: [403/668-4890 1 Secondary Destination (Hardcopy) Company:[Address:[City/Province:[Country/Postal:[Attention:[Fascimile:[1 data pages in this report. Approved by: B.C. Certified Assayers iPL CODE: 921015-15:35:05

PL Report: 9 Project: W	200870 /0 137	177 172	lorthei	m Ana	lytica	Labo	rator	ies			I Ou	n: 0 it: 0	et 13 et 15	5, 19 5, 19	92 92		3	Pulp	<u> </u>	Page	10	F 1	Cer	Se tifi	ied BC	l l of Assay	2 er	Ø	2	D.	avid C
ample Name		Ba X	Ag ppm	Cu ppm	РЬ ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm (W Spm	Cr ppm p	V ppm	Mri ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A] %	Ca X	Fe %	Mg %	к %	Na %
G123 G124 G129		 53.09	51.3 27.2 	675 105	18893 2.2 %	7.72	12 < 	< < 	68 14 	< 3 	× × ×	28 34	0.5m 0.2m	n159 n 49 	46 15 	K (1010) 1111	< < 	28 97 	9 7	2148 1346 	× 21	5 3 	3 2	< < 	0.02 0.02 	0.20 0.15	1.50 0.80	4.21 0.97 	0.06 0.11 	0.02 0.02 	0,01 0,01
																											-				

--=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

INTERNATIONAL PLASMA LABORA					2036 Columb Vancouver, E Canada V5Y 3 Phone (604) 8 Fax (604) 8	ia Street 3 C 3E1 379-7878 379-7898
^A L Report: 9200870 1 Project: W/O 13772	Northern Analytical Laboratories	In: Oct 13, 1992 Out: Oct 15, 1992	3 Pulp	Page 1 of 1 Section Certified	on 2 of 2 BC Assayer	David Chi
ample Name P Z						
1123 († 0.05 1124 († 0.03 1129 (†						
in Limit 0.01 ax Reported* 5.00						<u>.</u>

28-Sep-92 date

Assay Certificate

Ron Berdhal

WO#13772

page 1

Sample #	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm
D2F156	<0.1	402	15	21	54	17
D2F158	· <0.1	307	20	163	219	35
D2F1511	<0.1	391	37	1037	363	44
D2F1518	<0.1	793	12	98	78	26
S2F1510	<0.1	90	11	47	49	39
D2F1512	<0.1	64	21	99	>2000	51
D2F151	<0.1	209	14	41	1280	47
S2F1517	<0.1	89	8	39	38	16
2F1516	<0.1	281	20	84	89	13
2F1513	<0.1	546	46	95	59	29
2F1519	<0.1	347	21	16	81	18
2F1521	<0.1	299	51	154	>2000	115
2F159	<0.1	1369	47	121	87	35
2F1520	<0.1	270	19	58	297	50
2F154	5.4	>10000	12	86	74	23
2F1515	<0.1	195	43	18	87	17
2F152	<0.1	1660	113	167	148	31
2F1514	<0.1	171	28	17	120	36
2F153	8.5	8840	12	52	91	21
2F155	<0.1	861	14	2	87	26
2F157	113.6	>10000	24	813	232	18
2G19	<0.1	90	50	90	54	21
2G123		210-?	9.33%	7.91%		
2G124 - Show	ina	,	3.48%	3.46%		

Cartified by CHuyokle

\$

ļ

.~

N2+C-st-42 date			Assay Certificate	
RonBerdhal				WO#13772
Sample #	Aq ppm	Cu %		
2G123	60.2	0.6		
2G124	29.5	01		
2F154		18 01		
2F157		35 09		

Certified by Chyolaci

: AGH 1

LEGEND

Cretaceous to Tertiary

KTgfp rhyolite, dacite

Carboniferous or Permian

Pc white weathering limestone

Devonian (?) to Triassic (?)

PModm mylonitized hornblende granodiorite

Precambrian (?) to Paleozoic (?)

PPK1 Klondike Schist: muscovite quartz blastomylonite, chlorite schist, mafic volcanics

- rock sample
- O stream sediment sample
- △ soil sample

 moss mat sample sample number/Pb ppm, Zn ppm, Ag ppm, Cd ppm, Au ppb

~~ fault

- approximate lithological contact
- G#1 gossan and number
- x mineral occurrence
- outcrop or zone perimeter

elevation contour 500 feet

	R. BERDAHI	-	
	WYO PROJEC Watson Lake Mining Dist	rict	
GEO	LOGY AND GEO	CHEMISTR	Y
GEO Aurum Geologica	LOGY AND GEO	CHEMISTR	Y 2., 1992

Note: adapted from D.I.A.N.D. map sheet