# MINERAL INCENTIVES PROGRAMME

÷ 1.-

5

## REPORT

# FOR

# SANDPETE COMPONENT 1992

# PROSPECTOR'S ASSISTANCE PROGRAMME

NTS Map Sheet 115 F 15

61° 59' N 140° 54' W

R.S. Berdahl General Prospecting August 1992

## TABLE OF CONTENTS

- 2. Area Geology
- 3. Methods of Prospecting
- 4. Assay Results/Data
- 5. Conclusions and Recommendations
- 6. Statement of Costs

## ADDENDUM

- I. General location map
- II. Sample location map
- III. Assay results

#### 1. <u>OBJECTIVES</u>

The objective of the Sandpete component was to attempt to locate porphyry alterations/mineralization as well as to consider the Monday wollastine showing and evaluate incidental mineral finds.

#### 2. <u>AREA GEOLOGY</u>

The Nutzotin prospecting component is located within the Gravina-Nutzotin tectonic element (Wrangellia W-2 terrain).

Stratified rocks in the area prospected are comprised of Stolai Group Permian argillites, silt stones and buff bioclastic limestone as well as a lighter crystalline limestone. The intrusive rocks are cretaceous "Kluane Range Intrusives", mainly granodiorite. These grade into mafic porphyritic magnetic intrusives - these are often associated with strong magnetic anomalies. Pyritic basalts and greenstones (upper triassic Nikolai greenstones) are common throughout the vicinity.

The area hosts several mineral showings including the AZ and ARN Au/Cu skarns; Monday wollastonite; Chair Gold porphyry; as well as several other porphyries (Cu & Mo) and veins (Au & Cu). Coarse Au and nugget Cu are found in creeks draining the Nutzotin topography.

After several years in this terrain I have concluded that sulfide can be found where limestones contact basalts associated with intrusives. The limestones fill vesicles in the basalt. No doubt the "Kluane range intrusives" which seem to be a multi-phase intrusive have some bearing on the mineralization but generally mineralization occurs where basalts and limestone intercede. The one exception to this was a copper (malachite/limonite) showing (Rich - one grab sample 2FI57 @ 38% Cu) contained entirely in quartzite or possibly rhyolite.

#### 3. <u>METHOD OF PROSPECTING</u>

The wollastonite showing was the first objective considered. Approximately 50 lbs. of wollastonite were taken for sampling. Two general varieties exist. The more common variety is a massive calc silicate with a minor limy constituent. The second occurs in dikes and veins through the massive variety. This second variety is in bladed or radiating fibrous forms. The acicular type seems more common in the north end of the deposit. The topographic situation causes the wollastonite to be exposed on three sides, thus crude measurements were made to determine the tonnage of the Monday showing. Two claims (Monday YB361250) were staked to cover the showing.

The second objective was met by reconnaissance prospecting. While no recognizable alteration patterns were delineated two new copper showings were discovered. As well, the potential strike length of the wollastonite mineralization was extended by three kilometres. Wollastonite was also recognized at the snow copper skarn. Alteration zones are common but may relate to veins, skarns or porphyries.

Twenty-one samples were taken for assay. These included 6 sails, 2 stream sediment and 13 rock samples. All samples were analyzed for Au, Ag, Cu, Pb, Zn, As, and Sb by Northern Analytical Labs in Whitehorse.

#### 4. <u>ASSAY RESULTS/DATA</u>: See Addendum III.

Assay highlights include numerous copper anomalies, especially 2F152, 2F153, 2F154 AND 2F157. It is also important to note the anomalous As and Sb anomalies (2F1521, D2F151, D2F1512) as

possible indicators of gold vein mineralization (see minfile # 48 Hump). Au mineralization was also of interest. (D2F156 Au F153, F157). Soil samples near the snow copper excede 400 ppb Au.

#### 5. CONCLUSIONS AND RECOMMENDATIONS

Wollastonite: The admittedly crude survey of the Monday wollastonite showing suggests 1.125 million tons of exposed wollastonite. Independent tests show random grab samples "assay" between 60 - 85% wollastonite. Due to erosion there is no stripping ratio. The current price of wollastonite, depending on its end use, ranges from \$125.00 (U.S.) TO \$260.00 (U.S.) per ton. Using the lower value the exposed wollastonite's gross value, if it meets consumer's specifications, would be over \$140,000,000.00 (U.S.)

I would recommend a serious marketing investigation in conjunction with a target evaluation and extensive testing of the Monday deposit.

Other: The discovery of other copper occurrences only heightens my belief that the Nutzotin Range has major economic mineral potential, especially for Cu/Au deposits - both skarn and porphyry.

The "rich" showing seems to be associated with a NW trending fault zone. Mineralization occurs as malachite and limonite disseminated within a granodiorite. Large boulders of talus prevented a cursory view of actual bedrock veining. Elsewhere fault saddles on ridges like the "rich" have an associated yellow soil and at 2F1518 a fair amount of quartz carbonate rock is present.

I would recommend anyone reading this report - especially if you can recognize porphyritic alterations - to venture into this area. If Archer Cathios Arn or the AZ drilling programs are fruitful, interest may be generated for further exploration. More grass roots prospecting is needed throughout the entire range.

The Monday skarn has good Cu and modest Au (548 ppb) values at surface. I believe this showing is on strike and associated with the same mineralizing snow skarns which lie 4.5km & 2km respectively on either side of the Monday Cu/Au.

The second "new" copper occurrence is less impressive but supports the theory that mineralization is associated with basalt/limestone contacts. The White River R-20 R-block immediately north of this showing should have good potential as the contacts are present. The showing consists of inch patches of malachite staining scattered over a basalt face over  $50^+$  feet.

#### 6. <u>STATEMENT OF COSTS</u>

| Plane - Tin Cup Air 1118 - Tchawsahmon           | \$ 749.00        |
|--------------------------------------------------|------------------|
| Vehicle @ \$0.26/km - 320 km x 2 (return) x 0.26 | \$ 166.00        |
| Labour - 12 days @ \$100.00/day                  | \$1200.00        |
| Per diem @ \$52.00/day x 24 man days             | \$1248.00        |
| Report                                           | <u>\$_32.10</u>  |
| Subtotal:                                        | \$3395.10        |
| Grubstake (total)                                | <u>\$2568.00</u> |
| TOTAL                                            | \$5963.10        |



### <u>ADDENDUM III</u>

#### SANDPETE SOILS/STREAM SEDIMENTS

- D2F151 soil sample from horizontal layer. Orange to yellow with rusty quartz veins on contact of carbonates/wollastonites and volcanics
- D2FA56 soil sample from 3-5 meter garnet skarn zone. Sample contains garnet, limonite and a very bluegreen soil
- D2F158 soil sample yellow clay below malachite stained basal face, near shale/tuff/basal contact
- S2F1510 stream sediment. Second left limit tributary to Bowen at granitic/andesite/limestone contact
- D2F1511 3 meter "chip sample" from altered granitic limestone contact zone. Sample contains calcite, limonite et al
- D2F1512 3' clay zone, stratigraphically above granite 10' vertically above #11
- D2F1516 1 meter chip sample through altered clay
- S2F1517 Stream sediment at approximately 4800 feet
- D2F1518 Yellow clay associated with 248° faults 2 meters wide 2' adjacent to altered "basalt"
- 2F152 metalliferous garnet skarn containing magnetite, chalcopyrite, pyrite to 5-10%; also contains basalt with associated malachite, azurite and sulfides; float
- 2F153 hydrothermally altered (?) corroded rock with sulfides to 2% with malachite stains, limonite and ferricrete; at contact with rusty andesite (greenstone)
- 2F154 rusty andesite (greenstone) with sulfides and malachite staining
- 2F155 limonitic rock without visible sulfides from gassan
- 2F157 granitic felsic rock (rhyolite/quartzite?) with malachite, limonite disseminated and manganese from a 3 meter wide Cu zone
- 2F159 basalt with yellow and white evaporites and minor sulfides
- 2F1513 basalt float with disseminated sulfides associated with calcite filled vugs
- 2F1514 rusty "andesite skarn" with >5% pyrites
- 2F1515, pyritic basalt float from Monday showing area
- 2F1519 altered porphyritic green basalt with sulfides on fractures



28-Sep-92 date

Assay Certificate

Ron Berdhal

page 1

-

WO#13772

| Sample # | Ag ppm | Cu ppm | Pb ppm | Zn ррт | As ppm | Sb ppm |
|----------|--------|--------|--------|--------|--------|--------|
| D2F156   | <0.1   | 402    | 15     | 21     | 54     | 17     |
| D2F158   | <0.1   | 307    | 20     | 163    | 219    | 35     |
| D2F1511  | <0.1   | 391    | 37     | 1037   | 363    | 44     |
| D2F1518  | <0.1   | 793    | 12     | 98     | 78     | 26     |
| S2F1510  | <0.1   | 90     | 11     | 47     | 49     | 39     |
| D2F1512  | <0.1   | 64     | 21     | 99     | >2000  | 51     |
| D2F151   | <0.1   | 209    | 14     | 41     | 1280   | 47     |
| 32F1517  | <0.1   | 89     | 8      | 39     | 38     | 16     |
| 2F1516   | <0.1   | 281    | 20     | 84     | 89     | 13     |
| 2F1513   | <0.1   | 546    | 46     | 95     | 59     | 29     |
| 2F1519   | <0.1   | 347    | 21     | 16     | 81     | 18     |
| 2F1521   | <0.1   | 299    | 51     | 154    | >2000  | 115    |
| PF 159   | <0.1   | 1369   | 47     | 121    | 87     | 35     |
| _F1520   | <0.1   | 270    | 19     | 58     | 297    | 50     |
| 2F154    | 5.4    | >10000 | 12     | 86     | 74     | 23     |
| 2F1515   | <0.1   | 195    | 43     | 18     | 87     | 17     |
| 2F152    | <0.1   | 1660   | 113    | 167    | 148    | 31     |
| 2F1514   | <0 1   | 171    | 28     | 17     | 120    | 36     |
| 2F153    | 85     | 8840   | 12     | 52     | 91     | 21     |
| 2F155    | <0 1   | 861    | 14     | 2      | 87     | 26     |
| 2F157    | 113 6  | >10000 | 24     | 813    | 232    | 18     |
| 2G19     | <0.1   | 90     | 50     | 90     | 54     | 21     |
| 2G123    |        | 210-?  | 9 33%  | 7 91%  |        |        |
| 2G124    |        | •      | 3 48%  | 3 46%  |        |        |

Certified by CHuyokki



1

۰.



25-Sep-92 date

Assay Certificate

page 1

WO#13772

Ron Berdhal

| Sample #       | Au ppb    |   |
|----------------|-----------|---|
| 2F1513         | 18        | , |
| 2F1514         | 7         |   |
| 2F1515         | 13        |   |
| 2F1516         | 19        |   |
| 2F1519         | 13        |   |
| 2F 152         | 18        |   |
| 2F1520         | 6         |   |
| 2F1521         | 29        |   |
| 2F153          | 548       |   |
| 2F154          | 53        |   |
| 2F155          | 28        |   |
| 2F157          | 148       |   |
| 2F159          | 11        |   |
| 110            | 21        |   |
| 111يء          | 37        |   |
| 2G112          | 22        |   |
| 2 <b>Ğ</b> 113 | 65        |   |
| 2Ġ114          | 9         |   |
| 2G12           | 17        |   |
| 2 <u>Ğ</u> 120 | 9         |   |
| 2G122          | 24        |   |
| 2 <u>Ğ</u> 122 | 5         |   |
| 2G123          | 129       |   |
| 2Ģ124          | 56        |   |
| 2 <u>G</u> 125 | 27        |   |
| 2G126          | 14        |   |
| 2 <b>G</b> 128 | 8         |   |
| 2Q129          | <5        |   |
| 2G130          | 16        |   |
| 2G131          | 25        |   |
| 2G17           | 54        |   |
| 2G18           | 18        |   |
| 2G19           | 17        |   |
| "ZN101         | 5         |   |
| <u>'N1010</u>  | 27        |   |
| UN1011         | ]4<br>1 d |   |
| 2007072        | 14        |   |
| 21111013       | 15        |   |

Certified by CHURCERS

ţ,





25-Sep-92 date

Assay Certificate

page 2

WO#13772

Ron Berdhal

Sample #

Au ppb

| 2N1014                           | <5   |
|----------------------------------|------|
| 2N1015                           | 12   |
| 2N1016                           | 20   |
| 2N1017                           | 26   |
| 2N1018                           | 24   |
| 2N1019                           | 26   |
| 2N102                            | 14   |
| 2N1020                           | 12   |
| 2N104                            | 19   |
| 2N105                            | 16   |
| 2N106                            | 19   |
| 2N107                            | 25   |
| 2N109                            | 20   |
| 214100                           | 20   |
| 2115                             | 20   |
| 10<br>10<br>10<br>10<br>10<br>10 | 10   |
| 750 815                          | 1719 |
| D2E151                           | 13   |
| 021151                           | 19   |
| D2F1311                          | 70   |
|                                  | 78   |
| D2F1518                          | 21   |
| U2F156                           | 44/  |
| D2F108                           | 17   |
| D2G1207                          | 96   |
| U2G121                           | 21   |
| M2G117                           | 21   |
| KN105                            | 15   |
| S2F1510                          | 15   |
| S2F1517                          | 41   |
| S2G11                            | 22   |
| S2G118                           | 29   |
| S2G119                           | 24   |
| S2G13                            | 124  |
| S2 <u>G</u> 14                   | 13   |
| S2 <u>G</u> 15                   | 12   |
| S2G16                            | 35   |

Certified by Charge Kites



