PERCUSSION DRILLING AND TRENCHING OF THE RED, RAN, GIT, RAG, WELL, WON, WINE ET AL CLAIMS NTS 115N2

63* 10' NORTH -104* 50' WEST |40

BY

G.S. HARTLEY P. Geol.

AND

G.A. ALMBERG P. Geol.

Ha. -

August 1993

TABLE OF CONTENTS

I. SUMMARY

II. LOCATION AND ACCESS

III. PHYSIOGRAPHY

IV. REGIONAL GEOLOGY

V. LOCAL GEOLOGY

VI. THE DRILL PROGRAM

VII. DRILL TARGETS

VIII. TRENCHING

IX. CONCLUSIONS

X. RECOMMENDATIONS

XII. APPENDIX

XI. STATEMENT OF EXPLORATION EXPENSE

I. SUMMARY

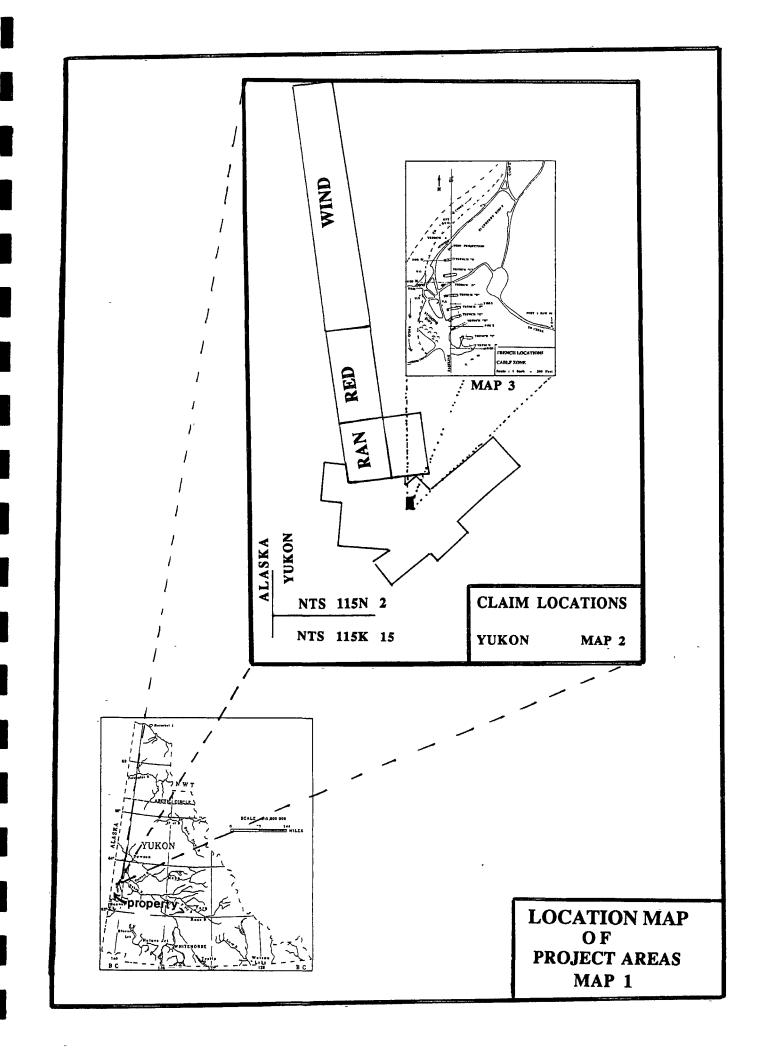
Lode and placer gold was discovered in the Moosehorn Range in 1975. Initial drilling was done by Claymore Resources and Great Bear Mining on narrow veins near Moosehorn summit, both drilling programs returned negative results, indicating the veins were discontinuous along strike and nearly horizontal.

Placer mining of Kenyon Creek began in 1976, the area has produced approximately 50,000 oz of placer gold since that time. Productive creeks now include Kenyon, Swamp, Soya, and Great Bear.

The published geology of the region is not mapped in detail, thus, limits or controls to lode mineralization and placer deposits have never been formally established.

The authors have been active in this area since 1983, the region has been geologically mapped on an" in house" basis and systematic exploration programs have been conducted, in order to evaluate the areas potential for vein type and intrusive hosted lode gold deposits.

The object of the 1993 program was to test various geological and geochemical targets, identified over the past ten years, by a program of percussion drilling and trenching by D8 size equipment.


A total of 1113 ft was drilled in a series of 36 Air Trac holes, testing six major target areas, additionally, ten bulldozer trenches were dug to expose a mineralized structure having a strike length in excess of 1000 feet.

The total cost of the 1993 program exceeds \$90,000.00.

II. LOCATION AND ACCESS

The Project claims are located on the south face of Moosehorn Mountain, NTS 115N2. The property adjoins the Yukon Alaska border near latitude 63 00' north and longitudes 140 00' west.

Access to the area is provided by fixed wing aircraft from Dawson City. An excellent system of local roads traverses the property.

III. PHYSIOGRAPHY

The region is not glaciated. Outcrops are restricted to heights of land where boulders and felsenmeer predominate. Thick residual soils cover the intermediate slopes, swamp covers the low areas. The area is designated as a continuous perma frost zone.

IV. REGIONAL GEOLOGY

The Geology of the area is poorly exposed, consisting of metasedimentary rocks intruded by granodiorite phases of the Klotassin Batholith . (Templeman-Kluit 1974).

The property and most of the south side of the Moosehorn Range is underlain by deeply weathered Klotassin granodiorite, intruded by a younger monzonite stock, consisting of two very distinctive phases, that have been assigned the local names Brandt Intrusive and Amphibole Porphyry by the authors.

<u>,</u>

V. LOCAL GEOLOGY

Excellent bedrock exposures provided by extensive placer mining yield a variety of hitherto unrecognized geological relationships. Observed lithologies remain basically those of the Koltassin Batholith and related dykes.

1. Koltassin Granodiorite

Variously foliated to massive, this unit consists of coarsely crystalline, cream colored, plagioclase and gray quartz with accessory amphiboles and biotite. This unit is extensive, covering all of the south, and most of the southeast portion of Moosehorn Mountain.

2. Brandt Intrusive Complex

This name is suggested for a group of related intrusive rocks outcropping near Brandt Peak near the south end of the Moosehorn Range. The complex is comprised of a central feldspar porphyry stock, and a marginal phase of coarsely crystalline amphibole porphyry.

2A. Brandt intrusive

The unit consists of coarse white feldspar phenocrysts set in a gray medium to fine grained matrix of feldspar and quartz. The matrix becomes progressively fine grained and dark toward the contact with unit 2B.

2B. Amphibole porphyry

This unit is gradational to the Brandt Intrusive and consists of white plagioclase and hornblende phenocrysts, set in an aphanitic, to fine grained, gray to black ground mass.

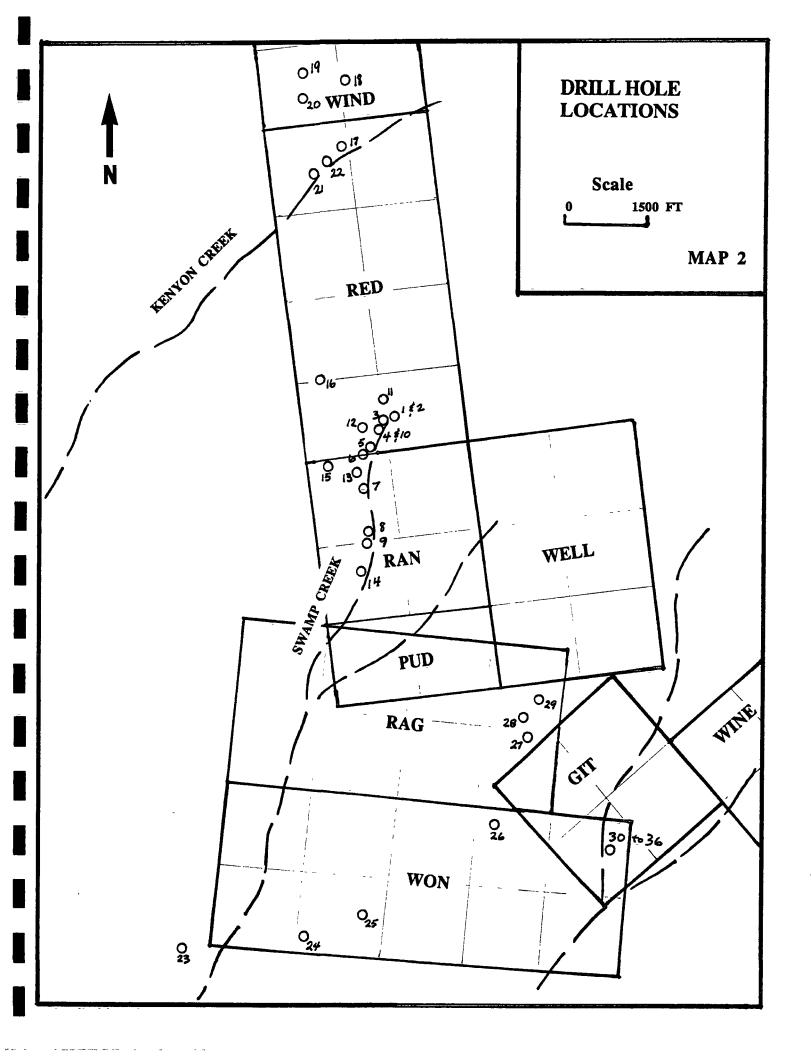
3. Quartz Veins

Milky white quartz veins of variable thickness and textures occur mainly along NNW structural features dips range from 30 to 80 degrees. Arsenopyrite and galena are the dominant sulphides, with subordinate bismuthite, stibuite and sphalerite. Free gold is common along fractures and vein margins, as equidimensional flakes and blebs.

4. Volcanics and cherts

This unit consists of pale brown to gray aphanitic rocks containing occasional, small, euhedral quartz phenocrysts, and could be the equivalent of Templeman-Kluits Donjek Volcanics.

VI. THE DRILL PROGRAM


A total of 36 holes were drilled using a Gardner Denver Air Trac drill, equipped with a PR 123 hammer, powered by an Ingersol Rand compressor capable of producing 750 CFM. Drilling was done dry, using 2.5 " and 2.75" diameter carbide bits. The sample was blown to the surface and trapped at the collar using a circular sample catcher. The drill cuttings were bagged at five foot intervals.

The Air Trac drill and compressor unit was fully mobile and capable of moves between holes under most conditions. A Terex 82-40 crawler tractor was used to construct access roads and drill sites, and to assist during drill moves over rough terrain. Fuel and personnel were transported to the sites using a Ford five ton fuel truck, a Dodge 4x4, and a Honda quad runner.

Two hundred and fourteen samples, commonly ten to fifteen pounds in size, were transported to camp where they were split using a Jones Riffle Splitter. Two splits, each approximately eight(8) oz, were bagged and labeled. One sample was sent to Northern Analytical labs of Whitehorse for assay, the remaining split and reject were stored on the premises.

The samples were pulverized by the puck and ring method, dissolved and analyzed by atomic adsorption for gold, lead, zinc, arsenic, and antinomy. Certificates of analysis and descriptions of the cuttings are included in the appendix.

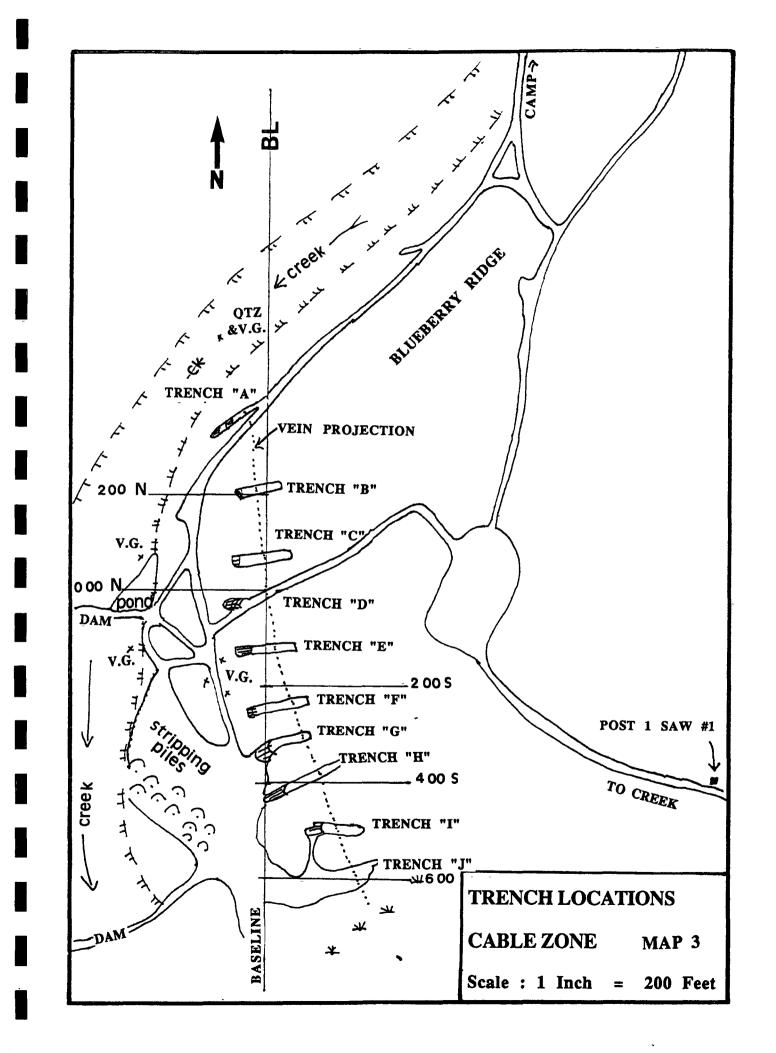
The Air Trac drill proved to be an extremely effective method of exploration drilling under Yukon conditions. The drill successfully penetrated up to fifty feet of bedrock and produced sufficient rock chips and dust for lithological identification and analysis. Where water was encountered during drilling, the hole was abandoned to avoid loss of sample and potentially loss of the drill rod string, this was the only limitation to the Air Trac method.

VII. DRILL TARGETS

Drill targets ranged from previously identified geochemical anomalies and previously trenched vein structures to alteration zones, blind but geologically inferred vein structures, and lithological unit evaluations. Table 1 below, indicates target, claim location, depth and hole number.

TABLE	1.	locations	of	Air	Trac	holes
INDLL		Iveations	U 1	<u></u>	1140	110103

HOLE	CLAIM I	DEPTH (FT) TARGET
AT 93-1	Red 8	5	Qtz vein 28 " lost hole at 10' due to water
AT 93-2	Red 8	20	as above, lost rods at 17'
AT 93-3	Red 8	50	altered zone west of swamp creek
AT 93-4	Red 8	50	inferred projection of swamp creek vein
AT 93-5	Red 8	40	south of #4, west of swamp ck, fork in road
AT - 93-6	Ran 1	28	as above, along road cut south of #5
AT 93-7	Ran 1	30	as above, south of #6 near garbage dump
AT 93-8	Ran 3	15	altered zn, near placer pond swamp ck
AT 93-9	Ran 3	40	as above
AT 93-10	Red 8	50	attempt to twin AT 93-4
AT 93-11	Red 8	30	possible vein near old grader in junk yard
AT 93-12	Red 8	38	possible vein location west of AT -4 and 10
AT 93-13	Ran 1	38	mafic dyke near AT 93-7
AT 93-14	Ran 3	50	geochem high near placer camp
AT 93-15	Ran 1	50	vein sample hill#2 on Kenyon Swamp road
AT 93-16	Red 7	50	vein west of AT-15 on Kenyon swamp road
AT 93-17	Wind 1	15	altered shear zn at crossing on Kenyon ck
AT 93-18	Wind 3	20	geochem target wind #3 rusty mafic dyke
AT 93-19	Wind 3	10	as above
AT 93-20	Wind 3	10	as above
AT 93-21	Red 1	50	lithology test brown dyke wind road junct
AT 93-22	Red 1	50	lith test brown dyke north of #21
AT 93-23	regional	50	altered zone west of swamp ck
AT 93-24	Won 2	50	lithology test, brn dyke in road cut
AT 93-25	Won 2	30	as above
AT 93-26	Won 5	50	"clutch zone" alteration with silic breccia
AT 93-27	Rag 2	50	" camp zone "rusty alteration
AT 93-28	Rag 1	35	as above
AT 93-29	Rag 1	50	as above with brn volcanics
AT 93-30	Git 5	10	Trench " D " vein drilled down dip,az 16'
AT 93-31	Git 5	10	as above, vein, azimuth 12', dip 34'E
AT 93-32	Git 5	10	as above, vein , azimuth 90' , dip 40' E
AT 93-33	Git 5	17	as above foot wall alt, az 100', dip 40'E
AT 93-34	Git 5	10	vertical hole to test vein extension
AT 93-35	Git 5	10	as above
AT 93-36	Git 5	20	as above


VIII. TRENCHING

An extensive program of surface exploration, in the form of line cutting and trenching was conducted on claims GIT #1, 2, 5 and 6 in order to evaluate an area of anomalous geochemistry and quartz boulders containing appreciable visible gold, commonly referred to, as the "cable zone".

Ten bulldozer trenches were dug, using a Terex 82-40 tractor, at approximately one hundred foot spacing in order to expose a mineralized structure over a distance of 1000 feet in strike length.

The mineralized zone consists of vein quartz, altered silicified granodiorite, and amphibole porphyry, with strong wallrock carbonitization, containing free gold, arsenopyrite with lessor galena, sphalerite and rare malachite and azurite. The zone appears extremely variable in thickness and lithology. The width of the vein ranges from approximately 27 inches to about 4 inches. The major components; quartz, sulphide content, wall rock alteration and strike, are inconsistent between trenches suggesting structural complexity or possibly, due to the small size of the trenches, multiple zones of mineralization. The zone remains open along strike in both directions

A base line approximately 4000 feet long was cut, chained and picketed at 50 foot intervals in order to establish survey control over the showing.

TRENCH VE	N WIDTH (IN)	DESCRIPTION
TA	8	APPROX 6 FT DARK AMPHIBOLE PORPHYRY NEAR VEIN,SULPHIDES AND V.G.
TB	2 7	RUSTY ALT ZN, RED QTZ BX,SULPHIDES AND V.G.
тс	8	WIDE ALT ZN, 30% SULPHIDES, POSSIBLY MORE VEINS, TRENCH TOO SHORT
TD	12	RUSTY ALT ZN, MALICHITE,V.G.
ТЕ	19 AND 10	VEINS SEPERATED BY 10 FT, Sulphides and frequent V.G
TF	1 2	RUSTY ALT ZN, SULPHIDES AND V.G.
TG	8	VARIABLE WIDTH, RUSTY ALT ZN, SULPHIDES
ТН	4	SHEARED RUSTY ZN
TJ	6 - 2 4	VERY IRREGULAR VEIN, Malichite and Sulphides, 30 FT Dark Green Dyke in Trench

IX. CONCLUSIONS

The program yielded positive results. Significant gold values in excess of 600 ppb over a five foot thickness were recovered in thirteen of 36 holes. Assays and mineralized widths are summarize below.

Drill hole	Grade (ppb Au)	Width(ft)
AT-93-4	>6667*	5
AT-93-10	1156	4
AT-93-13	968	15
AT-93-14	884	15
AT-93-15	2190	5
AT-93-19	1544	10
AT-93-30	665	10
AT-93-31	1817	10
AT-93-32	>6667*	10
AT-93-33	1241	12
AT-93-34	2157*	7
AT-93-35	2254*	5
AT-93-36	803	6.5

NOTES:

1. Values greater than 6667 ppb exceeded available lab standards thus could not be measured by this technique.* INDICATES INTERVALS WHERE 6667 VALUE WAS USED IN CALCULATIONS TO OBTAIN WEIGHTED GRADE AVERAGES

2. Holes 30 to 36 are drilled at differing dips and azimuths in order to define vein mineralization and visible gold occurring in trench "D".

X.RECOMMENDATIONS

The object of this program was to evaluate various gold occurrences with emphasis on intrusive hosted lode gold mineralization.

Drill hole AT-93-14 returned 15 feet averaging 884 ppb gold from the intrusive amphibole porphyry unit.

Drill hole AT-93-19 returned 10 feet averaging 1544 ppb gold from an intrusive.

The above grades compare well with existing porphyry gold deposits and an extensive program of follow up air trac drilling is required to delineate these new zones of mineralization.

Vein mineralization is extensive and requires follow up trenching and drilling.

XI. STATEMENT OF EXPLORATION EXPENSE

ITEM COST 4756.50 52.85X2X10 days..... 1057.00 Air charter..... 3574.87 Assay..... 3967.08 Equipment rental(owner operated)..... Terex 82-40 ripper cat \$150/hrX150 hrs.... 22500.00 Rotary Percussion Drilling \$22.50/ftX1113 25042.50 Personnel Drill helper line cutter \$150/dayX40days.... 6000.00 G Hartley P.Geol fees \$400/dayX40 days..... 16000.00 G. Almberg P. Geol Fees \$400/dayX30 days.... 14000.00 1168.00 Report preparation..... 500.00 TOTAL \$96565.95

XII. APPENDIX

AIR TRAC DRILLING PROGRAM 1993 ROCK CHIP DESCRIPTIONS AND ASSAY DATA

MOOSEHORN RANGE NTS 115N2

SAMPLE	FROM (FT)	TO (FT)	Rock Description	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm
AT 93-1-1	0	5	Brown gravel ,did not reach vein lost hole due to water	651	249	75	3794	61
AT 93-2-1	0	5	Brown gravel	238	8	56	35	2
At 93-2-2	5	10	Brown gray chips and gravel	117	8	56	40	4
At 93-2-3	10	15	brown gravel and chips	6	11	48	47	3
At 93-2-4	15	20	brown gravel and chips	12	12	44	33	4
At 93-3-1	0	5	decomposed diorite rusty	10	5	51	119	4
At 93-3-2	5	10	decomposed diorite grey	9	20	91	400	2
At 93-3-3	1.0	15	decomposed diorite	25	7	66	132	2
At 93-3-4	15	20	decomposed diorite	11	5	58	122	2
At 93-3-5	20	25	decomposed diorite	8	6	57	136	2
At 93-3-6	25	30	decomposed diorite rusty brown	6	10	49	204	2
At 93-3-7	30	35	decomposed diorite rusty brown	13	20	44	472	10
At 93-3-8	35	40	decomposed diorite rusty brown	10	1 7	58	173	5
At 93-3-9	40	45	grey with minor rusty zones	12	10	56	92	4
At 93-3-10	45	50	grey diorite	7	9	60	86	4
At 93-4-1	0	5	grey diorite	9	6	62	134	3
At 93-4-2	5	10	grey diorite	5	6	60	101	2
At 93-4-3	10	15	grey diorite	6	3	59	77	2
At 93-4-4	15	20	grey diorite	7	49	89	443	3
At 93-4-5	20	25	qtz and dark grey sulphide chips and grey diorite	5	2850	750	999	25
At 93-4-6	25	30	minor qtz, sulphide chips ,brown diorite	>6667	299	461	319	7
At 93-4-7	30	35	few qtz chips and grey diorite	13	82	160	137	3
At 93-4-8	35	40	grey diorite	50	36	99	62	2
At 93-4-9	40	45	grey diorite	11	43	76	86	2
At 93-4-10	45	50	grey diorite	16	17	59	43	4
At 93-5-1	0	5	grey to brown decomposed diorite	11	5	61	80	4
At 93-5-2	5	10	grey to brown decomposed diorite	117	7	57	86	や
At 93-5-3	10	15	grey to brown decomposed diorite	29	7	58	138	\$
At 93-5-4	15	20	grey to brown decomposed diorite	27	5	47	150	4

ı.

SAMPLE	FROM(FT)	TO(FT)	Rock description	Au ppb P	b ppm	Zn ppm	As ppm	Sb ppm
At 93-5-5	20	25	grey to brown decomposed diorite	33	3	50	70	2
At 93-5-6	25	30	grey to brown decomposed diorite	64	3	49	59	く
At 93-5-7	30	35	grey to brown decomposed diorite	140	2	49	33	2
At 93-5-8	35	40	grey to brown decomposed diorite	58	14	32	58	4
At 93-6-1	0	5	brown decomposed diorite	23	9	34	42	2
At 93-6-2	5	10	brown decomposed diorite	46	6	54	177	2
At 93-6-3	10	15	brown decomposed diorite	10	7	54	46	2
At 93-6-4	15	20	brown decomposed diorite	15	6	40	30	<2
At 93-6-5	20	25	redish brown limonitic diorite	29	5	32	40	2
At 93-6-6	25	28	redish brown limonitic diorite	82	4	26	27	2
At 93-7-1	0	5	brown weathered diorite	7	11	60	66	4
At 93-7-2	5	10	brown weathered diorite	ব	7	53	42	2
At 93-7-3	10	15	brown weathered diorite	8	7	53	46	4
At 93-7-4	15	20	brown weathered diorite	6	5	53	28	4
At 93-7-5	20	25	brown weathered diorite	6	6	53	30	2
At 93-7-6	25	30	brown weathered diorite	9	6	50	22	2
At 93-8-1	0	5	Brown decomposed diorite	15	6	54	36	>2
At 93-8-2	5	10	Brown decomposed diorite	13	10	56	48	2
At 93-8-3	10	15	Brown decomposed diorite	20	9	114	96	2
At 93-9-1	0	5	brown decomposed diorite	9	11	56	38	2
At 93-9-2	5	10	brown decomposed diorite	48	10	60	84	4
At 93-9-3	10	15	brown decomposed diorite	9	10	47	16	4
At 93-9-4	15	20	brown decomposed diorite	ব	16	46	<10	2
At 93-9-5	20	25	grey diorite	42	14	54	122	4
At 93-9-6	25	30	grey diorite	13	6	60	13	4
At 93-9-7	30	35	grey diorite	く	8	63	13	4
At 93-9-8	35	40	grey diorite	5	7	58	11	2
At 93-10-1	0	10	decomposed diorite	10	8	68	121	4
At 93-10-2	1,0	15	decomposed diorite	36	15	61	134	4
At 93-10-3	15	20	decomposed diorite	7	8	54	120	4
At 93-10-4	20	25	decomposed diorite	12	11	55	109	4
At 93-10-5	25	30	decomposed diorite	22	64	64	165	4

.

.

SAMPLE	FRÓM(FT)	TO(FT)	Rock Description	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm
At 93-10-6	30	33.5	rusty zone some qtz chips	734	431	457	1786	12
At 93-10-7	33.5	34	qtz and sulphide chips	>6667	1245	711	3259	11
At 93-10-8	34	40	grey diorite	87	75	152	228	4
At 93-10-9	40	45	grey diorite	104	51	108	234	2
At 93-10-10	45	50	grey diorite	45	25	83	151	4
At 93-11-1	5	10	decomposed diorite	48	4	54	37	2
At 93-11-2	10	15	decomposed diorite	13	5	65	60	く
At 93-11-3	15	20	decomposed diorite	11	4	55	62	2
At 93-11-4	20	25	decomposed diorite	23	6	58	149	2
At 93-11-5	25	30	decomposed diorite	90	36	84	217	2
At 93-12-1	0	5	soil	17	8	67	253	2
At 93-12-2	5	10	decomposed diorite	9	6	58	172	4
At 93-12-3	10	15	decomposed diorite yellow brown	6	8	59	263	2
At 93-12-4	15	20	decomposed diorite	8	6	56	202	4
At 93-12-5	20	25	decomposed diorite grey brown	7	6	58	154	4
At 93-12-6	25	30	decomposed diorite	7	10	57	252	4
At 93-12-7	30	35	decomposed diorite	ム	9	57	197	2
At 93-12-8	35	38	decomposed diorite	6	18	50	300	2
At 93-13-1	5	10	soil	38	13	33	61	2
At 93-13-2	10	15	decomposed diorite grey to brown	5	11	33	43	2
At 93-13-3	15	20	decomposed diorite grey to brown	24	11	30	48	2
At 93-13-4	20	25	decomposed diorite grey to brown some qtz chips	716	10	36	35	2
At 93-13-5	25	30	decomposed diorite grey to brown some qtz chips	318	11	36	23	2
At 93-13-6	30	35	decomposed diorite grey to brown some qtz chips	1871	11	36	20	2
At 93-13-7	35	38	decomposed diorite grey to brown some qtz chips	12	10	33	12	4
At 93-14-1	0	5	grey amphibole porphyry chips	831	7	45	<10	4
At 93-14-2	5	10	grey amphibole porphyry chips	516	6	51	23	2
At 93-14-3	10	15	grey amphibole porphyry chips	1307	5	49	<10	4
At 93-14-4	15	20	grey amphibole porphyry chips minor limonite	ム	5	56	<10	く
At 93-14-5	20	25	grey amphibole porphyry chips minor limonite	く	9	54	29	2
At 93-14-6	25	30	rusty brown volcanic	く	8	52	22	2
At 93-14-7	30	35	rusty brown volcanic	5	11	54	24	4
At 93-14-8	35	40	rusty brown volcanic	ব	7	61	20	4

×.

SAMPLE	FROM(FT)	TO(FT)	Rock Description	Au ppb Pb	ppm	Zn ppm	As ppm	Sb ppm
At 93-14-9	40	45	grey volcanic	ব	11	21	<10	2
At 93-14-10	45	50	dark grey porphyry	9	12	18	<10	4
At 93-15-1	20	25	rusty brown clay and diorite	2190	8	95	80	2
At 93-15-2	25	30	rusty brown clay and diorite	16	15	80	98	2
At 93-15-3	30	35	grey decomposed diorite	16	9	56	30	2
At 93-15-4	35	40	grey decomposed diorite	17	17	75	51	2
At 93-15-5	40	45	grey decomposed diorite	61	10	58	394	2
At 93-15-6	45	50	grey decomposed diorite	ব	8	61	52	4
At 93-16-1	10	15	brown to red decomposed diorite some soil	12	12	104	112	2
At 93-16-2	15	20	brown to red decomposed diorite	40	56	247	431	11
At 93-16-3	20	25	brown to red decomposed diorite	5	13	156	200	5
At 93-16-4	25	30	brown to red decomposed diorite	21	19	83	275	3
At 93-16-5	30	35	brown to red decomposed diorite	18	18	58	244	4
At 93-16-6	35	40	brown to red decomposed diorite	ব	11	58	68	2
At 93-16-7	40	45	grey decomposed diorite	く	7	64	68	2
At 93-16-8	45	50	grey decomposed diorite	6	7	67	76	4
At 93-17-1	5	10	dark grey diorite	12	7	55	15	2
At 93-17-2	10	15	dark grey diorite	16	6	58	25	4
At 93-18-1	0	5	overburden	24	7	54	39	2
At 93-18-2	5	10	dark grey foliated diorite	13	9	52	41	2
At 93-18-3	10	15	dark grey foliated diorite	ব	13	56	39	2
At 93-18-4	15	20	dark grey foliated diorite	ব	7	59	<10	4
At 93-19-1	0	10	rusty brown dyke	1544	14	94	<10	4
At 93-20-1	0	10	rusty brown dyke	7	6	82	11	4
At 93-21-1	0	5	grey unweathered mafic dyke	43	5	55	<10	2
At 93-21-2	5	10	grey unweathered mafic dyke	ব	6	60	<10	4
At 93-21-3	10	15	grey unweathered mafic dyke	る	5	59	<10	2
At 93-21-4	15	20	grey unweathered mafic dyke	ব	5	56	<10	2
At 93-21-5	20	25	grey unweathered mafic dyke	ব	5	56	<10	や
At 93-21-6	25	30	grey unweathered mafic dyke	8	7	52	<10	2

.

1

1

.

SAMPLE	FROM(FT)	TO(FT)	Rock Description	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm
At 93-21-7	30	35	grey unweathered mafic dyke	ふ	7	50	<10	4
At 93-21-8	35	40	rusty brown and grey dyke	ব	9	105	<10	4
At 93-21-9	40	45	grey unweathered dyke	ব	6	58	<10	4
At 93-21-10	45	50	grey unweathered dyke	ব	6	63	<10	4
At 93-22-1	0	5	rusty brown altered dyke	ব	5	86	17	4
At 93-22-2	5	10	rusty brown altered dyke	ব	5	99	15	2
At 93-22-3	10	15	rusty brown altered dyke	く	5	85	17	4
At 93-22-4	15	20	rusty brown and grey altered dyke	ব	5	96	12	4
At 93-22-5	20	25	grey fresh dyke	ব	5	95	13	4
At 93-22-6	25	30	grey fresh dyke some brown	5	5	88	17	4
At 93-22-7	30	35	grey fresh dyke	ふ	6	87	21	4
At 93-22-8	35	40	grey fresh dyke	ব	4	97	20	4
At 93-22-9	40	45	grey fresh dyke	ব	6	95	13	4
At 93-22-10	45	50	grey fresh dyke	17	7	69	<10	4
At 93-23-1	0	1.0	limonitic yellow browm clay altered zone	28	13	37	<10	4
At 93-23-2	10	15	limonitic yellow browm clay altered zone	54	10	34	<10	2
At 93-23-3	15	20	limonitic yellow browm clay altered zone	24	11	37	10	2
At 93-23-4	20	25	limonitic yellow browm clay altered zone pos cave ?	ব	13	39	<10	4
At 93-23-5	25	30	limonitic yellow browm clay altered zone pos cave ?	1:4	15	48	<10	4
At 93-23-6	30	35	limonitic yellow browm clay altered zone pos cave ?	14	12	34	<10	থ
At 93-23-7	35	40	limonitic yellow browm clay altered zone pos cave ?	14	16	29	<10	4
At 93-23-8	40	45	limonitic yellow browm clay altered zone pos cave ?	く	12	31	<10	4
At 93-23-9	45	50	limonitic yellow browm clay altered zone pos cave ?	11	14	35	<10	4
At 93-24-1	0	10	grey dyke minor brown weathered material	7	17	72	<10	4
At 93-24-2	10	1 5	grey dyke minor brown weathered material	ব	7	63	10	4
At 93-24-3	15	20	grey dyke minor brown weathered material	ব	8	77	<10	4
At 93-24-4	20	25	fresh grey dyke	く	13	73	<10	2
At 93-24-5	25	30	fresh grey dyke	く	8	74	<10	4
At 93-24-6	30	35	fresh grey dyke	11	62	96	15	2
At 93-24-7	35	40	fresh grey dyke	5	26	80	<10	2
At 93-24-8	40	45	fresh grey dyke	ব	11	78	<10	2
At 93-24-9	45	50	fresh grey dyke	26	14	75	<10	` 4
At 93-25-1	0	5	overburden road fill	ব	8	84	10	থ

x

,

SAMPLE	FROM(FT)	TO(FT)	Rock Description	Au ppb	Pb ppm	Zn ppm As	ppm	Sb ppm
At 93-25-2	5	10	rusty brown weathered dyke	42	7	90	<10	2
At 93-25-3	10	15	rusty brown weathered dyke	ব	5	81	12	2
At 93-25-4	15	20	rusty brown weathered dyke	ム	6	86	<10	<2
At 93-25-5	20	25	rusty brown weathered dyke with some grey chips	く	8	89	13	2
At 93-25-6	25	30	rusty brown weathered dyke with some grey chips	ふ	8	85	<10	4
At 93-26-1	0	10	rusty brown dyke with opaline qtz chips	ර	15	34	32	2
At 93-26-2	10	15	white grey diorite with opaline qtz chips	থ	10	50	<10	4
At 93-26-3	15	20	white grey diorite with opaline qtz chips	く	8	54	<10	4
At 93-26-4	20	25	white grey diorite with opaline qtz chips	ব	7	61	<10	4
At 93-26-5	25	30	white grey diorite with opaline qtz chips	く	18	50	<10	2
At 93-26-6	30	35	white grey diorite	ব	11	63	<10	4
At 93-26-7	35	40	white grey diorite with pink feldspars	く	7	59	<10	4
At 93-26-8	40	45	white grey diorite with pink feldspars	く	7	66	<10	4
At 93-26-9	45	50	white grey diorite with biotite and amphiboles	ব	8	55	<10	4
At 93-27-1	0	10	grey amphibole porphyry chips	12	1.0	49	264	4
At 93-27-2	10	15	grey amphibole porphyry chips	く	9	44	45	2
At 93-27-3	15	20	grey amphibole porphyry chips	36	1'0	48	708	4
At 93-27-4	20	25	grey amphibole porphyry chips	11	9	51	121	4
At 93-27-5	25	30	grey amphibole porphyry chips	20	21	50	460	2
At 93-27-6	30	35	grey amphibole porphyry chips	14	10	51	131	4
At 93-27-7	35	40	grey amphibole porphyry chips	く	7	56	34	2
At 93-27-8	40	45	grey amphibole porphyry chips	40	40	50	394	2
At 93-27-9	45	50	grey amphibole porphyry chips	ব	10	53	60	4
At 93-28-1	0	10	yellowish brown decomposed diorite	ব	7	50	<10	4
At 93-28-2	10	15	yellowish brown decomposed diorite	ব	11	57	<10	4
At 93-28-3	15	20	yellowish brown decomposed diorite	ム	10	49	<10	4
At 93-28-4	20	25	yellowish brown decomposed diorite	7	13	47	<10	2
At 93-28-5	25	30	yellowish brown decomposed diorite	7	14	44	<10	4
At 93-28-6	30	35	yellowish brown decomposed diorite	24	11	51	<10	4
At 93-29-1	0	10	rusty, brown volcanics	7	12	47	<10	2
At 93-29-2	10	15	rusty, brown volcanics	6	16	44	<10	4
At 93-29-3	15	20	rusty, brown volcanics	6	16	39	<10	4
At 93-29-4	20	25	rusty, brown volcanics	40	17	28	22	4

1

SAMPLE	FROM(FT)	TO(FT)	Rock Description	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm
At 93-29-5	25	30	rusty, brown volcanics	56	30	41	228	2
At 93-29-6	30	35	rusty, brown volcanics	25	20	41	22	4
At 93-29-7	35	40	rusty, brown volcanics	8	17	14	21	2
At 93-29-8	40	45	rusty, brown volcanics	12	20	44	43	4
At 93-29-9	4 5	50	rusty, brown volcanics	11	16	53	32	2
At 93-30-1	0	5	hanging wall alteration rusty pink	562	59	262	4481	14
At 93-30-2	5	10	beige hanging wall alteration and qtz chips	206	26	88	1632	5
At 93-31-1	0	5	Qtz and rusty altered material	1369	2110	1330	9430	61
At 93-31-2	5	10	pink qtz and rusty alteration	897	367	171	4498	12
At 93-32-1	0	5	carbonate willmonite some quartz	>6667	1237	336	>10000	1180
At 93-32-2	5	10	quartz	>6667	598	482	>10000	203
At 93-33-1	0	5	Qtz zone pinkish	99	28	101	413	2
At 93-33-2	5	13	beige footwall diorite and quartz	836	47	247	3050	39
At 93-33-3	13	17	red to brown footwall diorite	2053	177	378	>10000	63
At 93-34-1	3	5	diorite some quartz	>6667	976	596	>10000	179
At 93-34-2	5	1.0	diorite some quartz	354	49	75	2130	7
At 93-35-1	2	5	Overburden	56	15	55	62	4
At 93-35-2	5	6.5	rusty alteration	466	250	323	2754	21
At 93-35-3	6.5	8	quartz vein	>6667	1008	3290	3412	69
At 93-35-4	8	10	rusty footwall zone	287	51	281	1648	14
At 93-36-1	5	10	diorite trace rust	710	12	74	209	4
At 93-36-2	10	11.5	rusty diorite	1247	58	280	4200	45
At 93-36-3	11.5	15	grey brown and red diorite chips	69	6	67	279	2
At 93-36-4	15	20	unaltered diorite	64	7	59	361	<2

.

,

4

,

-

۰,

Assay Certificate

Page1

WO 13960

Glen Almberg

Sample	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm	
AT93-1-1	651	249	75	3794	61	
2-1	238	8	56	35	<2	
2-2	117	8	56	40	<2	
2-3	6	11	48	47	<2	
2-4	12	11	44	33	<2	
3-1	10	5	51	119	<2	
3-2	9	20	91	400	<2	
3-3	25	7	66	132	<2	
3-4	11	5	58	122	<2	
3-5	8	6	57	136	<2	
3-6	6	10	49	204	<2	
3-7	13	20	44	472	10	
3-8	10	17	58	173	5	
3-9	12	10	56	92	<2	
3-10	7	9	60	86	<2	
4-1	9	6	62	134	3	
4-2	5 6	- 6	60	101	<2	
4-3		3	59	77	<2	
4-4	7	49	89	443	3	
4-5	5	2850	750	999	25	
4-6	>6667	299	461	319	7	
4-7	13	82	160	137	3	
4-8	5 0	36	99	62	<2	
- 4-9	11	43	76	86	<2	
_ 4-10	16	17	59	43	<2	
5-1	11	5	61	80	<2	
5-2	117	7	57	86	<2	
5-3	29	7	58	138	<2	
5-4	27	5	47	150	<2	
5-5	33	3	50	70	<2	
- 5-6	64	3	49	59	<2	
5-7	140	2	49	33	<2	
5-8	58	14	32	58	<2	
6-1	23	9	34	42	<2	
6-2	46	6	54	177	<2	
6-3	10	7	54	46	<2	
6-4	15	6	40	30	<2	
6-5	29	5	32	40	<2	
6-6	82	4	26	27	<2	
7-1	7	11	60	66	<2	
7-2	<5	7	53	42	<2	
7-3	8	7	53	46	<2	

Certified by

Assay Certificate

Page2

WO 13960

Glen Almberg

Sample	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm	
AT93-7-4	6	5	53	28	<2	
7-5	6	5 6 6	53	30	<2	
7-6	9	6	50	22	<2	
- 8-1	15	6	54	36	<2	
8-2	13	10	56	48	2 <2	
8-3	20	9	114	96	<2	
9-1	9	11	56	38	<2	
9-2	48	10	60	84	<2	
9-3	9	10	47	16	<2	
9-4	<5	16	46	<10	<2	
9-5	42	14	54	122	<2	
9-6	13	6	60	13	<2	
9-7	<5	8	63	13	<2	
9-8	5	7	59	11	<2	
<u> </u>	10	8	69	121	<2	
10-2	36	15	61	134	<2	
10-3	7	8	54	120	<2	
10-4	12	11	55	109	<2	
10-5	22	64	64	165	<2	
10-6	734	431	457	1786	12	
10-7	>6667	1245	711	3259	11	
10-8	87	75	152	228	<2	
10-9	104	51	108	234	<2	
10-10	45	25	83	151	<2	
11-1	48	4	54	37	<2	
11-2	13	5	65	60	<2	
11-3	11	4	55	62	<2	
11-4	23	6	58	149	<2	
11-5	90	36	84	217	<2	
12-1	17	8	67	253	<2	
12-2	9	6	58	172	<2	
12-3	6	8	59	263	<2	
12-4	8	6	56	202	<2	
12-5	8 7	6 6	58	154	<2	
12-6	7	10	57	252	<2	
12-7	<5	9	57	197	<2	
12-8	6	18	50	300	<2	
13-1	38	13	33	61	<2	
13-2	5	11	33	43	<2	
13-3	24	11	30	48	<2	
13-4	716	10	36	35	<2	
13-5	318	11	36	23	<2	

Certified by

B

Assay Certificate

-Jul-93date

WO 13960

len Almberg

1	Au ppb	Pb	ppm	Zn	ppm	As	ppm	Sb	ppm
antpie	1871		11		36		20 12		<2 <2
AT 3-13-6	12		10		33 45		<10		<2
13-7	831		7		40 51		23		<2
- <u>14-1</u>	516		6		49		<10		<2
14-2	1307		5		49 56		<10		<2
14-3	<5		5		50 54		29		<2 <2 <2
4-4	<5		9		52		22		<2
14-5	<5		8		54		24		<2
14-6 14-7	5		11		61		20		<2
14-7	<5		7		21		<10		<2
14-9	<5		11		18		<10		<2
14-10	9		12		95		80		<2
15-1	2190		8		90		99		<2
15-2	16		15		56		30		<2
15-3	16		9 17		75		51		<2
15-4	17		10		58		394		<2
15-5	61		8		61		52		<2
15-6	<5		12		104		112		<2
16-1	12		56		247		431		11
16-2	40		13		156		200		2
16-3	5		19		83		275		5 3 4
16-4	21		18		58	3	24		<2
16-5	18	5 5	11		58	3	6		<2
16-6		:5	1	7	64		6		<2
16-7		6	-	7	6			6 5	2
16-8		2		7	5			25	<2
17-1		6	1	6	5	8		39	<2 2 2 2 <2
17-2		4		7	5	4		41	2
18-1		3		9	5	52		39	2
18-2		<5	1	3		56 59		<10	<2
18-3		<5		7		94		<10	<2
18-4	15	44	•	14	•	82		11	<2 <2
19-1		7		6		55		<10	<2
20-1 21-1		43		5		60		<10	<2
21-2		<5		6 5 5 5		59		<10	<2 <2
21-2		<5		D E		56		<10	<2
21-0		<5		5		56		<10	<2
21-5		<5		5 7		52		<10	
21-5		8		7		50		<10	
21-7		<5		9		105		<10	52
21-8		<5)	9					

Certified by

(105 Copper Road, Whitehorse, YT, Y1A 2Z7 Ph: (403) 668-4968 Fax: (403) 668-4890

Page3

Assay Certificate

Page4

WO 13960

Glen Almberg

Sample	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm	
AT93-21-9	<5	6	58	<10	<2	
21-10	<5	6	63	<10	<2	
22-1	<5	5	86	17	<2	
22-2	<5	5	99	15	<2	
22-3	<5	5	85	17	<2	
22-4	<5	5	96	12	<2	
22-5	<5	5	95	13	<2	
22-6	- 5	5	88	17	<2	
22-7	<5	6	87	21	<2	
22-8	<5	4	97	20	<2	
22-9	<5	6	95	13	<2	
22-10	17	7	69	<10	<2	
23-1	28	13	37	< 1 0	<2	
23-2	54	10	34	<10	<2	
23-3	24	11	37	10	<2	
23-4	<5	13	39	<10	<2	
23-5	14	15	48	<10	<2	
23-6	14	12	34	<10	<2	
23-7	14	16	29	<10	<2	
23-8	<5	12	31	<10	<2	
23-9	11	14	35	<10	· <2	
24-1	7	17	72	<10	<2	
24-2	<5	7	63	10	<2	
24-3	<5	8	77	<10	<2	
24-4	<5	13	73	<10	<2	
24-5	<5	8	74	<10	<2	
24-6	11	62	96	15	<2	
24-7	5	26	80	<10	<2	
24-8	<5	11	78	<10	<2	
24-9	26	14	75	<10	<2	
25-1	<5	8	84	10	<2	
25-2	42	7	90	<10	<2	
25-3	<5	5	81	12	<2	
25-4	<5	6	86	<10	<2	
25-5	<5	8	89	13	<2	
25-6	<5	8	85	<10	<2	
26-1	5	15	34	32	<2	
26-2	<5	10	50	<10	<2	
26-3	<5	8	54	<10	<2	
26-4	<5	7	61	<10	<2	
26-5	<5	18	50	<10	<2	
26-6	<5	1 1	63	<10	<2	

Certified by

Assay Certificate

Page5

WO 13960

Glen Almberg

Sample	Au ppb -	Pb ppm	Zn ppm	As ppm	Sb ppm
AT93-26-7	<5	7	59	<10	<2
26-8	<5	7	66	<10	<2
26-9	<5	8	55	<10	<2
27-1	12	10	49	264	<2
27-2	<5	9	44	45	<2
27-3	36	10	48	708	<2
27-4	11	9	51	121	<2
27-5	20	21	50	460	<2
27-6	14	10	51	131	<2
27-7	<5	7	56	34	<2
27-8	40	40	50	394	<2
27-9	<5	10	53	60	<2
28-1	<5	7	50	<10	<2
28-2	<5	11	57	<10	<2
28-3	<5	10	49	<10	<2
28-4	7	13	47	<10	<2
28-5	7	14	44	<10	<2
28-6	24	11	51	<10	<2
29-1	7	12	47	<10	<2
29-2	6	16	44	<10	<2
29-3	6	16	39	<10	<2
29-4	40	17	28	22	<2
29-5	56	30	41	228	<2
29-6	25	20	41	22	<2
29-7	8	17	14	21	<2
29-8	12	20	44	43	<2
29-9	11	16	5 3	32	<2
30-1	562	59	262	4481	14
30-2	206	26	88	1632	5
31-1	1369	2110	1330	9430	61
31-2	897	367	171	4498	12
32-1	>6667	1237	336	>10000	1180
32-2	>6667	598	482	>10000	203
33-1	99	28	101	413	<2
33-2	836	47	247	3050	39
33-3	2053	177	378	>10000	63
34-1	>6667	976	596	>10000	179
34-2	354	49	75	2130	7
35-1	56	15	55	62	4
35-2	466	250	323	2754	21
35-3	>6667	1008	3290	3412	69
35-4	287	51	281	1648	14

Certified by

B

.

Assay Certificate

Page6

Glen Almberg

WO 13960

Sample	Au ppb	Pb ppm	Zn ppm	As ppm	Sb ppm	
AT93-36-1	710	12	74	209	4	
36-2	1247	58	280	4200	45	
36-3	69	6	67	279	<2	
36-4	64	7	59	361	<2	

Certified by

-

