YMIP # 93-091

PROSPECTING AND GEOCHEMICAL REPORT

ET CLAIMS 1 - 8

1

۰.

YB37632 - YB37639

Work Done on ET # 1 APRIL 13 - APRIL 17, 1993

NTS 105 D/9 60 34'10" 134 22'10"

BY PROSPECTOR: GEOFF RUSHANT Box 6, Carcross Yukon Territory, YOB 1B0

CLAIMS OWNED BY GEOFF RUSHANT AND RON BERDAHL

TABLE OF CONTENTS

SUMMARY	3
INTRODUCTION	्उ
HISTORY	3
ACCESS/TERRAIN	3
GEOLOGY AND MINERALIZATION	4
SAMPLE DESCRIPTIONS	4
WORK	5
GEOCHEMISTRY RESULTS	5
DISCUSSION	6
LIST OF FIGURES	
Fig. 1 Location Regional	
Fig. 2 Property Map	
Fig. 3.1 - 3.3 Geology - Regional	
Fig. 4 Sample Location - Rock and Soil	
Fig. 5 Geochemical Values Rock and Soil Au and As	
Fig. 6 Geochemical Values Rock Ag and Pb	
APPENDIX	

/

- 1,2,3 Geochem Lab Reports
- 4 Personnel
- 5 Expenses

.

\$

SUMMARY

The work outlined in this report is part of a program to evaluate potential for mother-lode type Au deposits in the area. Thus far, a relatively small amount of work has turned up Au in a creek, till samples and with quartz related to a shear zone. (This report.)

Associated with the Au there is Ag, As, Sb. Float believed to be of local origin has been found containing quartz carbonate stringers and mariposite in altered volcanic rock and also graphite quartz vein material. There are numerous structures in the area, as seen on air photos. Exploration is hampered by lack of outcrop, permafrost, swamp and varying depths of glacial till. Prospecting, sampling of basal till or residual soils and possibly geophysics may be of use in further exploration work.

INTRODUCTION

This report covers work done on ET # 1 of ET claims 1 - 8, situated NE of Marsh Lake.

The purpose of the project was to follow up on Au/As soil anomalies obtained during grassroots prospecting in the area in 1992. See YMIP 92 - 048 - G. Rushant. A gas powered rock drill was hauled to the site using dogs and toboggan, to drill and blast overburden and weathered rock. Eleven pits and a trench were excavated, fifteen soil samples and seven rock samples were collected and analyzed for Au+30 elements.

HISTORY

Exploration for lode gold has taken place in the area in recent years. Notably, Rossbank approximately ten kilometres West and Bug approximately thirty kilometres South. Cu and Ag, Pb showings have also been documented in the vicinity. Grassroots prospecting turned up some Au, As soil anomalies, minor free gold in a creek and float containing quartz veining in altered volcanic rock. This in conjunction with perceived structures led to the staking of ET 1 - 8.

ACCESS AND TERRAIN

Terrain is comprised of rounded hills to 3500 feet, aspen and pine covered spruce forest and swampy lower ground. Outcrop less than 5%, the area is generally covered with glacial and alluvial overburden. Many gullies generally following NS and lesser EW trends are filled with permafrost. The property is several miles east of the Alaska Highway, access has been on foot.

GEOLOGY AND MINERALIZATION

The property is underlain by Unit A (Whitehorse map sheet, J.O. Wheeler, 1961) volcanic rocks of uncertain age. Most outcrop seen is diorite. It lies along a major NW trending structure with Laberge group sediments to the west and Lewes River group volcanics and sediments to the east.

In the work area, ET # 1, trenching uncovered a sheared phyllitic, graphitic, limonitic shale or argillite. The shear trends N 10 - 30 W, dipping 80 SW across at least 10 metres, probably more. Outcrop east and west is diorite. The shear area contains blebs of silicified, carbonitized volcanic rock with quartz stringers running through at all angles. At least three other shear planes are evident. One at N 70 - 80 W dipping SW 40 contains narrow quartz veins to three centimetres in an envelope of oxidized, rusty material. The best gold values (to 1547 ppb) occur in this oxidized material near the juncture of NW trending shears and east trending veining. Silver, to an estimated 200 ppm (see lab report in Appendix) and lesser gold values occur with the east trending quartz veining and also with the rusty graphitic argillite and silicified blebs within it.

SAMPLE DESCRIPTIONS ET 93 -1

ROCK

- PR4-01 Graphitic, limonitic argillite, shear material across .5 metres
- PR5-02 Graphitic, limonitic argillite, shear material across .3 metres at 1.5 metres depth
- PR6-03 Limonitic argillite shear material 1.5 metres depth
- PR2-04 Rusty bleb in N 10-20 W shear. Greenish to grey brown altered volcanic; limonitic, sericitic, silicified, carbonitized. Quartz stringers, shear oriented and cross cutting. One to two per cent pyrite with stringers and host rock. Lens .5 metre by .5 metre by .2 metre wide approximately.
- TR3-05 Disintegrated shear material, reddish to black. Rusty quartz carbonate with sericitic selvages to one cm wide. Along strike two metres North of PR2-04.
- Tr3-06 WNW striking seam of seared, limonitic quartz, dip 40 SW. Ten to twenty cm wide. Quartz to 30 mm wide.
- TR3-07 Quartz in shears at head of trench. Same shear plane 2.5 metres NE of TR3-06, same width.

SOIL

SP4-L Basal till 0 - 6" over bedrock. Light brown at .5 m depth. SP5-L Same horizon with 1.3 m. Light brown to red brown. SP6-L Same. SP7-L Light brown basal till at 1.4 m amongst pebbles to cobbles. SP7-M Light brown soil at mid depth, .75 m. Till. SP8-L Same. SP8-M Same. SP9-L Basal horizon. Till over disintegrated schist. Red brown soil. SP9-Mu Soil mid level, .75 m. Light brown till. SP10-L Basal till. Light brown at 1 m level. No bedrock. SP10-M Mid horizon sample as P7, P8, P9. SP11-L Light brown basal till at 1.3 m. SP12-L Light brown as SP11-L. ST3-05 Red brown soil and rock chips from shear seam with quartz. ST3-06 Shear material. Red brown soil with guartz.

<u>WORK</u>

Work consisted of drilling and blasting eleven pits and one trench, 4 m by 1 m by .7 m. Pits were excavated to an average 1.5 m deep by .5 m wide through frozen overburden in an attempt to reach bedrock. The five eastern most pits did not reach bedrock. The six western pits were blasted into about .5 m of weathered rock. The trench was excavated across the strike of the shear about .5 m into weathered rock. Total material moved was about 12 m³.

Samples were taken of bedrock material in pits (sample PR). Quartz and shear material in the trench (samples TR and ST). Soil samples were taken from the pits and trench at mid horizon (samples SP and ST) and lower horizon (samples M and L) to see if any geochemical differences existed between horizons.

GEOCHEMISTRY RESULTS

Fifteen soil and seven rock samples were collected and analyzed for Au by fire assay, AAS finish and thirty elements by ICP. Au analysis was done by NAL of Whitehorse. ICP was done by IPL of Vancouver.

Anomalous Au generally correlates with higher As values. These are obtained from blebs of silicified volcanic rock quartz and oxidized material within and crosscutting the NNW trending shear.

Silver values to approximately 200 ppm in the same material have anomalous Sb, Pb, As, Mo.

Also anomalous in Ag were three samples of rusty graphitic argillite, PR4,5 and 6. Better values to the west.

Soils: thirteen samples of till material were collected from

the pits. Four pits were sampled at lower and mid horizon. No apparent difference in values exists.

Two pit samples returned anomalous Au values not correlated with high As. The best of the two 1320 ppb was of silty, sandy till material probably within .3 m of bedrock, close to the base of slope.

DISCUSSION

Au, As and Ag, Au, As, Sb occur in soil and rock associated with NNW trending sheared graphitic argillite, quartz veining and silicified altered volcanics with quartz carbonate stringers. The source of two Au in till anomalies P10 and P12 could be upslope east, local - shear zone, or up ice - SE source.

Further exploration could consist of more excavation along the shear zone strike and upslope to the east.

Soil samples analyzed by AAS in 1992 returned generally higher As values in till from this area. Further basal till sampling and analysis for As may be useful in locating Au sources.

GEOLOGY FIG 3.2

obtained through the National Air Photographic Library, Topographical Survey, Ottawa, Ontario

GEOLOGY FIG3. 3

LEGEND

ļ

FIG 4 1993 - 1 Soil + ROCK 211 E C SAMPLE LOCATION 22 ---PI-PIZ PITS O TRENCHES N45W SCINI TO POST SHNIPLES D R. Pack S-Soll A-+20 25A SHEAR - STRUKE / PIP 유민민 1992 SHWALE LATERTY Aury 10 AB /W SHEAR - STRIKE. DAS يتم إنهاً 105 PIZ-SL NTS \mathcal{D}_{i} 1 DIORITE **Pil -5**L Pia S --M P85 m Ø 06 6 P7-5 m 0 05 夜 P6 S R 73 Ø SAMPLE LABEL SYSTEM TRENCH P5 & P4 \$ PR 4 -PTT4 RO.CK SP4 LAKE - PITH SOIL SP9-L -Pit9 = LOWER HORIZON - JUST over bedrock 15 20 SP9-M-Pit9=MID 5 10 26 Level - AS 1992 25 M SMARLES - L-BT

ET 1.993-1 F14 6 GEOCHEMISTRY Ag Prm- Pb. Ppm ROCK SAMPLES 0 ECP ANALYSIS SOIL SAMPLES \mathcal{O} 1992 GENERALLY Flat \odot . Ag Pb O 0) AS, 56 200 - 310 MO, 105, 56 100 - 762 8.7 - 33 0 0 0 \$ 5.0 - 30 AS, SA 45 -73 B 6.6 - 28 Â LAKE 13,5 - 93 SCALE - METERS -25 -

CERTIFICATE OF ANALYSIS iPL 93E1705

2036 Columbia Street Vancouver B C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Northern Analytical La Out: May 19, 1993 Project: None G In : May 17, 1993 Shipper:	boratories	22 Ra Pu	Sample aw Storage Jp Storage	S e: e:	0= Rock 	0= Soil 	0= Core 	0=RC Ct 	22= Pulp 12Mon/Dis 12Mon/Dis	0=0ther 	[1PL=39:0519:13:34:582] Mon=Month Dis=Discard Rtn=Return Arc=Archive
PO#: Shipment:	1D=C030901	-Analv	tical	Summ	arv_						
Msg: Msg: ICP(AgR)30		## Code	Met Title	e Lamat	t Limit I	Inits Descript	tion	Ele	ement	##	
-Document Distribution -		<i>""</i> 0000	hod	Low	v Hiah	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
1 Northern Analytical Laboratories	EN RT CC IN FX	01 721P	ICP Ad	0.1	100	ppm Ag ICP		Si	lver	01	
105 Copper Road	1 2 2 2 1	02 711P	ICP C	1	20000	ppm Cu ICP		Cop	pper	02	
Whitehorse	DL 3D 5D BT BL	03 714P	ICP PI) 2	2 20000	ppm Pb ICP		Lea	ad	03	
YT Y1A 2Z7 '	0 0 0 1 0	04 730P	ICP Zr	ı 1	20000	ppm Zn ICP		Zar	nc	04	
		05 703P	ICP As	; 5	5 9999	ppm As ICP	5 ppm	Ars	senic	05	
	Ph: 403/668-4968			-		o		. .			
	Fx:403/668-4890	06 702P	ICP St) 5 7	5 9999	ppm Sb ICP		Ant	timony	06	
		07 732P	ICP Hg	1 3	3 3333	ppm Hg ICP		Mer M-1	rcury	07	
		08 717P		10	9333		0.000	rio i Tha	iydenum	00	
		10 7050		2	000	opm Bi ICP	o ppm	Rie	201100	10	
		10 7058	ICP B	۷		ppm bi ICP		DIS	Silutri	10	
		11 707P	ICP Co	0.1	100	ppm Cd ICP		Cad	สพานต	11	
		12 710P	ICP Co	1	999	ppm Co ICP		Cob	balt	12	
		13 718P	ICP N1	1	999	ppm Ni ICP		Nic	kel	13	
		14 704P	ICP Ba	2	9999	ppm Ba ICP		Bar	num	14	
	1	15 727P	ICP 6	5	999	ppm W ICP		Tun	ngsten	15	
		16 709P	ICP Cr	1	9999	ppm Cr ICP		Chr	murmo	16	
		17 729P	ICP V	2	999	ppm V ICP		Van	nadnum	17	
		18 716P	ICP Mn	1	9999	ppm Mn ICP		Man	iganese	18	
		19 713P	ICP La	2	9999	ppm La ICP		Lan	ithanum	19	
		20 723P	ICP Sr	1	9999	ppm Sr ICP		Str	ontium	20	
		21 7310		1	999	nom 7r ICP		710	contum	21	
		22 736P	ICP Sc	1	99	pom Sc ICP		Sca	ndum	22	
		23 726P	ICP T1	0.01	1.00	% Ti ICP		Tit	ລດາມຫ	23	
		24 701P	ICP A1	0.01	99.99	% A1 ICP		Alu	ຓາດບຸກ	24	
		25 708P	ICP Ca	0.01	99.99	% Ca ICP		Cal	Clum	25	
	•										
		26 712P	ICP Fe	0.01	99.99	% Fe ICP		Iro	n	26	
		27 715P	ICP Mg	0.01	9,99	% Mg ICP		Mag	nesium	27	
	i i i i i i i i i i i i i i i i i i i	28 720P	ICP K	0.01	9.99	%ΓΚ ICP		Pot	assium	28	
		29 722P	ICP Na	0.01	5.00	况 Na ICP		Sod	ium	29	
		30 719P	ICP P	0.01	5.00	% P ICP		Pho	sphorus	30	
	L										
EN=Envelope # <a href="https://www.envelopestimates/commutation-commuta</td> <td>es IN=Invoices sk BT=BBS Type</td> <td>FX=Fax(1= BL=BBS(1=</td> <td>Yes U=No) Yes O=No)</td> <td></td> <td>Totals:</td> <td>2=Copy</td> <td>2=Invoice</td> <td>0=3-1/2 D</td> <td>1sk 0=5-1/</td> <td>4 Disk</td> <td></td>	es IN=Invoices sk BT=BBS Type	FX=Fax(1= BL=BBS(1=	Yes U=No) Yes O=No)		Totals:	2=Copy	2=Invoice	0=3-1/2 D	1sk 0=5-1/	4 Disk	

-

CERTIFICATE OF ANALYSIS iPL 93E1705

2036 Columbia Street Vancouver, B C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

1

Client: Northe Project: None G	rn Anal iven	ytical 2	Labor 2 Pulp	atorie	es	iPL	: 9 3E	1705			Out Ir	t: Ma n: Ma	ay 19 ay 17), 199 7, 199	3 3				F	age	1 0	f 1	Cert	Sect:	on 1 BC Ass	of 1 ayer:	Davi	d Chi	 ح د	A	12.
Sample Name	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na Z	р Х	•
13907 SP 4 Li 13907 SP 5 Li 13907 SP 6 Li 13907 SP 7 Li 13907 SP 7 Li 13907 SP 8 Li	2 0.1 5 0.1 5 < 5 < 5 <	60 28 34 43 40	6 5 4 5 6	72 62 34 40 36	8 8 • • • • • • • 5	< < < < < <	< < < < < <	4 2 1 1	< < < < < <	< < : < < < < < < < < < < < < < < < < <	0.1 0.1 0.1 <	17 14 13 15 13	90 58 70 68 63	139 108 170 208 182	× × × × ×	92 68 77 81 63	60 60 62 67 56	495 282 388 469 440	14 7 10 14 12	25 24 29 51 47	6 2 2 3 2	8 (4 (7 (9 (6 (0.09 0.08 0.09 0.09 0.09	1.13 1.36 1.33 1.51 1.24	0,48 0,37 0,48 0,72 0,64	3.04 2.66 2.65 2.90 2.45	1.02 0.76 1.10 1.27 1.04	0.09 0.06 0.04 0.05 0.03	0.03 0.02 0.03 0.04 0.04	0.03 0.02 0.03 0.09 0.08	
13907 SP 9 LF 13907 SP 10 LF 13907 SP 11 LF 13907 SP 12 LF 13907 SP 7 MF	~ ~ ~ ~	88 36 37 90 24	4 5 6 7 6	121 49 42 123 38	5 8 6 19 11	< < < < <	~ ~ ~ ~ ~	5 2 2 10 1	< < < < <		0.1 < < <	48 17 13 27 13	95 89 62 94 59	83 190 155 205 161	,	239 99 70 104 63	336 69 59 118 65	1116 553 430 1391 322	6 10 14 19 7	32 34 33 35 33	1 2 1 2	36 (6 (7 (10 (4 ().01).10).08).04).06	2.38 1.51 1.37 1.85 1.64	0.28 0.63 0.49 0.44 0.40	8.94 3.00 2.64 5.04 2.80	2.23 1.58 1.04 1.43 0.89	0.02 0.06 0.06 0.05 0.07	0.02 0.03 0.02 0.02 0.02	0.04 0.06 0.05 0.06 0.06	
13907 SP 8 MF 13907 SP 9 MF 13907 SP 10 MF 13907 ST 3-05 F 13907 ST 3-06 F	< < 3.0 <	30 107 30 108 155	6 7 8 17 16	36 110 46 95 162	6 6 2155 279	< < < < <	< < < < < <	2 5 1 5 12	~ ~ ~ ~ ~	~ ~ ~ ~ ~	 1.2 < 1.5 0.5	12 45 16 58 43	63 90 80 107 115	153 60 178 76 86	<u> </u>	66 218 99 26 42	60 314 73 39 68	344 990 442 1038 1135	10 10 9 3 6	41 27 33 391 60	2 2 1 1 2	5 (36 (6 (14 22). 08). 01). 10 < <	1.51 2.34 1.67 0.84 1.38	0,52 0,25 0,60 9,47 0,49	2.62 9.07 3.02 6.95 8.66	1.02 1.86 1.43 0.93 0.65	0.05 0.04 0.07 0.05 0.07	0.02 0.02 0.02 0.03 0.03	0.05 0.03 0.05 0.09 0.06	
13907 PR 401 P 13907 PR 502 P 13907 PR 603 P 13907 PR 204 P 13907 TR 305 P	13.5 6.6 5.0 45.0 8.7	75 83 53 71 22	93 28 30 73 33	99 85 75 68 . 30	8 13 7 164 841	< < 10 <	< < < < <	15 13 9 22 5	~ ~ ~ ~ ~	A A.A A	0.7 < 0.5 0.5	14 22 21 19 10	40 84 62 17 22	140 141 147 61 43	A A.A.A	96 122 133 67 76	39 47 147 44 44	786 1070 860 976 1115	8 10 12 10 3	113 20 34 498 688	3 2 3 3 ×	5 6 10 0 15 11	< .03 < <	0.60 1.76 2.11 0.80 0.37	2,38 0.20 0.44 4,30 5.37	2.72 4.01 5.01 4.34 4.03	0.95 1.30 1.53 1.75 2.29	0.15 0.24 0.09 0.06 0.06	0.02 0.01 0.03 0.05 0.03	0.04 0.05 0.08 0.17 0.07	
13907 TR 306 P 13907 TR 307 P	0.1m 0.2m	71 74	762 310	169 80	81 120	109 60	< <	76 11	< <	< <	4.1 1.3	9 12	28 41	42 150	< <	177 164	20 23	1597 1510	< 4	54 53	1 2	5 5	< <	0.28 0.30	0.22 0.25	2.43 (2.93 ().07).09	0.05 0.12	0.02 0.01	0.09 0.09	

Min Limit 0.1 1 2 5 53 1 10 2 0.1 1 1 2 5 1 2 1 1 Max Reported* Method --=No Test .nsufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefin m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-/878 Fax:604/879-7898

19-May-93date

.

Assay Certificate

Geoff Rushant

.

Sample #

		Au .	۶
SP8-L		7	
SP9-L		11	
ST3-06		151	
SP-10-M		243	
SP9-MV		11	`
SP7-L		21	
SP10-L		12	
∕SP8-M		21	
SP5-L		9	
SP7-M		30	
SP12-L		1320	
ST3-05		1547	
SP6-L		29	
SP11-L		39	
SP4-L		47	
'R5-02	30g	17	
PR4-01		19	
PR2-04		87	
PR6-03		17	
TR3-07		167	
TR3-06		70	
TR3-05		353	

Certified by parline thatton,

Page1

13907

A - 4

f

ì

1

•

3

Ś

ţ,

2

ş

٠,

PERSONNEL

ET CLAIMS APRIL 13-17, 1993

GEOFF RUSHANT, PROSPECTOR BOX 6 CARCROSS, YUKON, YOB 1BO 821-4401

RON BERDAHL, PROSPECTOR P.O. BOX 5664, WHITEHORSE, YUKON, YIA 5L5

EXPENSES

٩

G. Rushant trenching and sampling including one travel day 5 days @ \$175. day	\$875.00
R. Berdahl trenching 3 days @ \$175. day	\$525.00
Live out expenses 7 @ \$52.	\$364.00
Transportation 2 trucks x 200 k 400 k @ .365	\$146.00 •
2 dogs x 5 days 5 @ \$5.	\$ 25.00 ·
Supplies Bags	\$ 36.05
Plugger Operating Expense	\$ 15.00
Explosives	\$139.34
Geochemical Analysis	\$430.14
Report	\$200.00
TOTAL	\$2,755.53

.