Y.M.I.P.: 93-106 Target Evaluation Bill - P33022 Borealis - P32568 Aurora - P32537 Alvin - P27151 N.T.S. Map Sheet No. 115A-14 (Canyon) Latitude: 60° 45' to 61° 00' Longitude: 137° 00' to 137° 30' Morey Smith Aurora-Rose Mining: Morey Smith

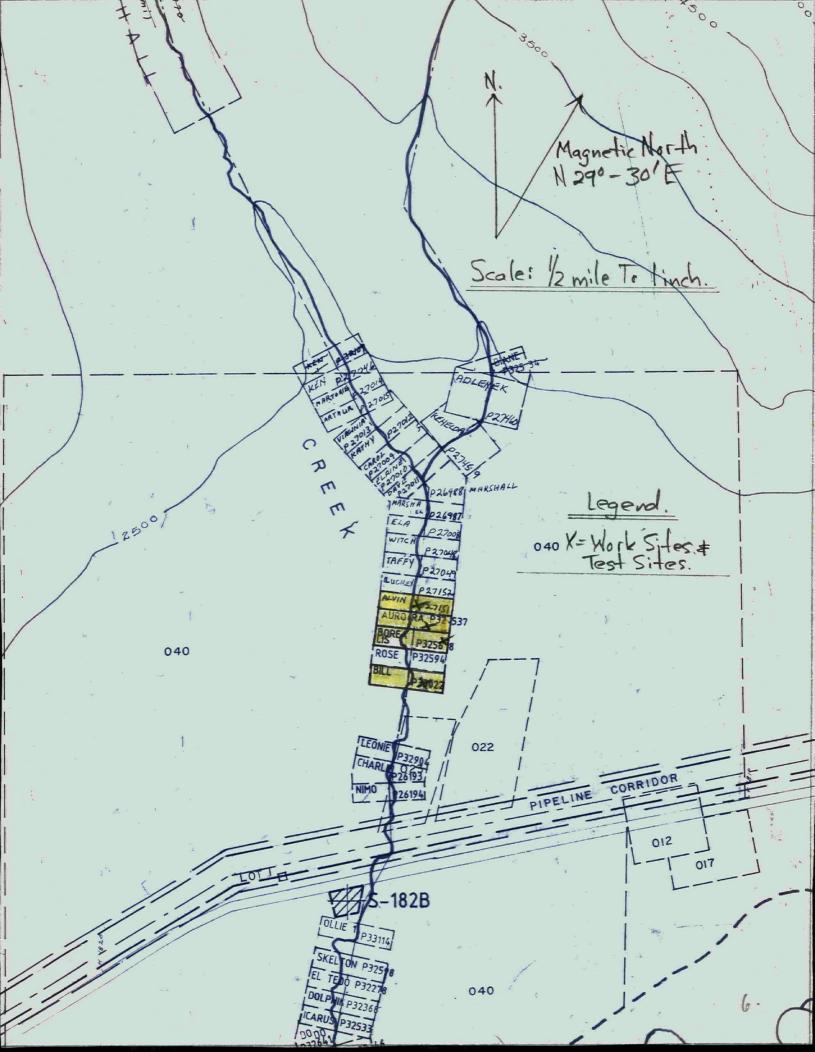

May 1,1993 to August 10, 1993.

Table of Contents

Page 1Page	
Page 2Table of Contents	
Page 3Final Submission Form	
Page 6 Map	
Page 7 Methods of	2
Sampling and Analyzing.	
Page 8 of Work Done	
Page 11	
Recommendations	
Page 12Invoice for Analytical Servic	es
Page 13Analytical Summary	

.

;

Technical Report: Methods of Sampling and Analyzing

My previous relevant investigation consisted of panning the edges of the creek along the claim boundaries and noting colours in the black sands, this encouraged further evaluation. All sampling methods consisted of excavating a quantity of surface material down to various depths by hand (e.g. pick and shovel and various other hand tools), loading grab samples either into a 6 cu. ft. wheelbarrow or 20 litre pails, hauling this material which was usually your basic glacio-fluvial sand, gravel and bouldery stuff, down to the creek. Running this material separately through a 2.5 mm brass Tyler sieve into another 20 litre pail, then panning this classified material in a Square Green Le Trap gold pan and then pouring the black sand into another 20 litre pail.

All black sand from all Test Sites was saved in the same pail, canoed and quartered until a fair sample was achieved then sent to the lab for assay results, which are included with this report.

For the mineral I am after, ocular examination and prudent panning revealed the colour and the Le Trap Gold Snuffer Funnel Bottle and the Gold Wheel, further panning, cleaning, drying and magnet extracted the magnetite revealing minute shreds of that shiny precious metal, Au.

7.

Description of Work Done

Geological, geophysical, geochemical surveys and drilling were non-applicable to this project. Target Evaluation was carried out by means of conventional prospecting, all hand work with hand tools.

May 1/93 to May 30/93 two feet of sandy-clay material was excavated and hauled up from the Project Shaft, Aurora (P32537), this totalling approximately 2 cu. yds. of material. Due to the constant flow of water over-nite, the clay walls were being undermined and continually filling up what I had dug out the day before. I requested permission to change tactics, which was granted and also requested correspondence from other program hand miners for assistance in dealing with this problem, no response.

June 2/93 to July 8/93 work commenced on Bill (P33022) and Borealis (P32568). An area 60 meters by 15 meters was stripped of vegetation on Bill and piled aside to be burned this winter. Trail to creek and exit trail were cleared by hand and chainsaw. An access foot path from top road down to Bill for tools and equipment was also cleared. An excavation 9 ft. by 9 ft. by 2.5 ft. deep totalling 7.5 cu. yds. was dug through boulder and gravel. Grab Samples totalling 2 cu. yds. was hauled to creek and washed by method described earlier. Black sand accumulated and was stockpiled.

Tools were hauled out of Bill and up onto Borealis (P32568). Access route was already established. An excavation 5 ft. by 6 ft. by 2 ft. deep was dug totalling 2.2 cu. yds. One cu. yd. of this gravel was loaded into the back of my pick-up truck and hauled down to creek and washed by method described. Black sand was saved.

July 10/93 to Aug. 10/93 I worked on Alvin (P27151) and Aurora (P32537). Trails were cut to Alvin and down to creek. An excavation measuring 8 ft. by 6 ft. by 5.5 ft. deep was dug through gravel totalling 9.8 cu. yds. All this material was panned by method already described. Black sand was saved.

Back on Aurora (P32537), after establishing timber work was firm, I took a pry bar and undermined the top 9 ft. of material from behind its' timber work and this flowed down and backfilled behind the bottom 6 ft. of timber work on all four sides. This done, then hauled gravel in my truck from another site on Alvin to shaft on Aurora, backed up to shaft, unloaded this gravel into 20 litre pails, hauled this material into shaft and poured it behind the top 9 ft. of timber work, filling up all four walls. This back fill material totalled 8 cu. yds. Tests were taken out of Aurora as I am digging through sandy-clay, but no colours were noticed.

The test site on Bill is located 200 ft. upstream along baseline from Post #1 and 75 ft. to the right. The site on Borealis is 1000 ft. to the right of Post #2 looking upstream. Aurora shaft is 400 ft. to the right of Post #1 looking upstream. Alvin site is 100 ft. downstream from Post #1 along baseline. All material isglacio-fluvial and sandy-clay.

Total yds. excavated was 21.5 yards Total yds. processed was 12.8 yards Total yds. backfilled was 8.0 yards Total yds. moved was 29.5 yards.

Metals determined, concentration units and analytical methods are

9.

listed in assay report.

Time spent on report: 2 nights and 2 days. Report prepared by: Morey Smith.

Summary: Conclusions and Recommendations

With colours coming out of Borealis at 2-3 per pan at its' location and colours 2-3 per pan on Alvin showing at 6 feet, work will continue on Aurora shaft.

I'll be recommending the acquisition of more equipment in order to further enhance my Target Evaluation program and in establishing a small pilot test program.

Work will continue.

CERTIFICATE OF ANALYSIS iPL 93H2404

Ì

2036 Columbia Street Vancouver, B C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

#: Shipment:	ID=C030901	3		י ה ו									
g: ICP(AqR)30 Au,Pt,Pd,Rh(FA/AAS)20)g	Analy											
g:		## Code		itle			Units	Desc	ription		Element	##	
ocument Distribution -			hod			High				~ .	• • •	~	
Northern Analytical Laboratories	EN RT CC IN FX	01 312P	FAAA	Au		9999			ire Assay/AAS ·	tinish		01	
105 Copper Road	1 2 2 2 1	02 721P	ICP	Ag		100		AgI			Silver	02	
Whitehorse	DL 3D 5D BT BL	03 711P	ICP	Cu		20000		Cu I			Copper	03	
YT Y1A 2Z7	0 0 0 1 0	04 714P	ICP	Pb		20000		PbI			Lead	04	
n	DL 400/000 4000	05 730P	ICP	Zn	1	20000	ppm	Zn I	.Р -		Zinc	05	
	Ph: 403/668-4968	00 7000	100						00 F		•	00	
	Fx:403/668-4890	06 703P	ICP	As		9999			CP 5 ppm		Arsenic	06	
		07 702P	ICP	Sb	5		•••	Sb I			Antimony	07	
		08 732P	ICP	Hg	3			Hg I			Mercury	08	
		09 717P	ICP	Mo	1			Mol			Molydenum	09	
		10 747P	ICP	τ1	10	999	ppm	1111	CP 10 ppm		Thallium	10	
		11 7055	-	-	~			o -	20		-		
		11 705P	ICP	Bı	2			BI			Bismuth	11	
		12 707P	ICP	Cd	0.1			Cd I			Cadmium	12	
		13 710P	ICP	Co	1			Co I			Cobalt	13	
		14 718P	ICP	۲M	1			Na I			Nickel	14	
		15 704P	ICP	Ba	2	9999	ppm	Ba I	CP		Barium	15	
		16 727P	100	1.1	F	999		. 1.1 . 7/	סי		Turreter	16	
		17 709P	ICP ICP	W Cr	5 1	9999		W I(CrI(Tungsten Chromium	17	
		18 729P		V									
			ICP	-	2						Vanadium	18	
		19 716P	ICP	Mn	1	9999		Mn I			Manganese	19	
		20 713P	ICP	La	2	9999	ppm	La I	<u>۲</u>		Lanthanum	20	
		21 723P	ICP	Sr	1	9999	000	Sr I	פי		Strontium	21	
		22 731P	ICP	Zr	i	999		Zr I			Zirconium	22	
		23 736P	ICP	Sc	1	99		Sc I			Scandium	23	
		24 726P	ICP	Τi		1.00		$T_1 I$			Titanıum	24	
		25 701P	ICP	ÂÌ		99.99		AT I			Aluminum	25	
		20 7011	101	~ `	0.01	55.55	~					20	
		26 708P	ICP	Ca	0.01	99.99	8	Ca I	CP		Calcium	26	
		27 712P	ICP		0.01			Fe I			Iron	27	
		28 715P	ICP	Mg		9.99		Mg I			Magnesium	28	
		29 720P	ICP	ĸ	0.01			KI			Potassium	29	
		30 722P	ICP		0.01			Na I			Sodium	30	
		31 719P	ICP	Р	0.01	5.00	%	P I	CP		Phosphorus	31	
		32 381 PF		Pd-	See Da	ata Pg	oz/st	PdF	re Assay/AAS	1/2 As	Palladium	32	
		33 346PF	A/AAS	Rh	25	9999	ppb	Rh F	ire Assay/AAS	finish	Rhodium	33	
		34 371PF	AGrav	Pt :	See Da	ata Pg	oz/st	Pt F	re Assay/AAS	1/2 As	Platinum	34	
с.													
لب		l											

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type BL=BBS(1=Yes 0=No)

للمي

CERTIFICATE OF ANALYSIS iPL 93H2404

,

2036 Columbia Street

Vancouver, B C

Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Nort Project: 0026	hern 2	Ana 1	ytica 1 Pu	i Laboı İp	ratorio	25	iPL	: 93H	2404		_	Out In	:: Aug 1: Aug	g 27, g 24,	, 199 , 199	3 3				P	age	1 of	1	Cert	Sect	tion BCA	1 of 2 ssayer:	<u>2</u> : Davi	d Ch	iu		
Sample Name		Au ppb	Ag ppm	Cu / ppm	Pb ppm			Sb ppm																	Ti %			Fe %	М	g Z Z	Na X	Р Х
aurora Rose #	112	10	۲	23	22	27	<	۲	<	29	*	3	<	67	92	40	<	328	0.1%	713	6	15	4	3	0.32	0.44	0.37	22.12	0.3	6 0.01	0.02	0.05
										•																						
													-	-					-				T									
14.																		~														

 Min Limit
 5
 0.1
 1
 2
 1
 2
 1
 1
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01

مر •

5

CERTIFICATE OF ANALYSIS iPL 93H2404

2036 Columbia Street Vancouver, B C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

2

Client: Northern A roject: 00262	nalytica 1 Pu	il Labora ilp	itories	1PL: 93H2404	Out: Aug 27, 1993 In: Aug 24, 1993	Page 1 o	f 1 Ce	Section 2 of 2 ertified BC Assayer: David Chiu _	H
ample Name	Pd ppb	Rh ppb	Pt ppb						0
JRORA ROSE # 118	15	<	30						
									-
					`				
<i>ا</i> ر									
•									
					· .				
ž					·				
•									

Method FA/AAS FA/AAS FA/AAS

----No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898