MINING INCENTIVE PROGRAM

TARGET EVALUATION APPLICATION 93-141

CANADIAN CREEK PLACER AUGER DRILLING

TRAVIS CLAIMS 1 - 21

62 49" N ; 138 49" W

WHITEHORSE MINING DISTRICT - MAP 115-J15P

Mining Incentive Program Application 93-141 Target Evaluation Don MacDonald Canadian Creek Travis Claims 1 - 21 62 49" N; 138 49' W (Map 1) Whitehorse Mining District - Map 115J-15P (Nov 09 92) (Map 2)

PROJECT SUMMARY

Eleven lines, were drill on the left limit of Canadian Creek on claims 1 - 7 of the Travis Group. Lines ran at right angles to the run of the Creek valley. Spacing between lines averaged approximately 300 feet. Each line had between four and seven holes drilled along the line at approximately 50 foot intervals. Drilling attempted to reach and drill into bedrock. Drilling was undertaken with a B31 Mobile auger drill powered by a 4 cylinder Lombardini diesel engine. The drill assembly was mounted to the deck of a FN110 Nodwell transport vehicle. Both 6 and 8 inch hexcore auger was utilized. A D6 widepad Cat was utilized to clear an old tote road along the valley edge of 2nd growth vegetation, slide rock and to otherwise provide access to the valley. As well the Cat provided support to the Nodwell where required. Gravel and bedrock samples were collected from the auger into 5 gallon plastic pails. These samples were transported in a small trailer by a Honda 4-wheel ATV to a water source where they were sluiced out in a long tom by a sampler. Long Tom samples were panned out and recovered gold retained. Gold Samples were brought to Whitehorse and weighed by an assaying company or professional engineer. Drill lines are well marked, by slashing and the individual holes were marked by metal tagged wooden posts and were flagged with fluorescent flagging. The work was carried out in August and September 1993.

<u>CLAIMS</u>

Whitehorse Mining District Located on Canadian Creek, tributary to Britannia Creek, tributary to the Yukon River, approximately 50 miles downstream from Fort Selkirk. Travis Claims 1 - 21 Drilling undertaken on claims 1 - 7

ACCESS

Canadian Creek is a tributary to Britannia Creek about 5 miles upstream from where Britannia enters the Yukon River. Britannia is approximately 80 miles downstream from Minto and 120 miles upstream from Dawson City. There is a barge landing at the mouth of Britannia, where it enters the Yukon River. A tote road runs the length of Britannia to the Casino hard rock property. This road has been recently improved with the increase in exploration activity at Casino. There is a functional airstrip on the Casino property. There is also tote road along the Canadian Creek valley which was passable with a 4 wheel ATV and some work was undertaken making it usable for 4 - wheel drive vehicles and equipment to approximately mile 3. Equipment, fuel and supplies were transported to Britannia Creek landing from Minto by Jacob Industries barge. Crew was transported by a 26 ft aluminum jetboat. Trips for supplies and repairs were by boat to Minto, and from there by Pickup to Whitehorse. Also air transport to the Casino strip by Pacific Sentinel (Archer, Cathero) occurred on a very regular basis. They generously assisted us in transporting men and supplies, on occasion, when space was available, to/from either Minto or Whitehorse. 4 - Wheel Honda ATV's were utilized to transport men and supplies from either the river landing or airstrip to camp, and from camp to work sites.

GEOLOGY AND DEPOSIT

Canadian Creek is located in a unglaciated area. The geology of the area is of mixed definition between Mesozoic and Proterozoic/Paleozoic. Hornblende Granodiorite from the former meets Shist Gneiss from the later. (Map 3) Rocks in the area include biotite hornblend, granodiorite, muscovite, biotite-quartzite, quartz feldspar, mica shist, calcite/limestone, biotite granodiorite, magnetite. The gold occurs occur in alluvial gravels of prior stream beds, at or near bedrock. A typical cross section is comprised of: 1) Four feet of overburden which is made up of any combination of soil, silt, and sand. 2) Gravels (4 - 18 ft) which vary from large (up to 3 ft) boulders, to sandy gravels, to clay gravels. Boulders seem to be concentrated in the upper gravel layer and in the lower (10-12 ft) layer. The bottom 1 - 2 ft of gravels prior to breaking through to bedrock is often clay rich. Boulder size is estimated from examination of material around old shaft sites and along the creek bed. 3) Bedrock at 13-18 ft. Bedrock is generally very soft, and decomposed containing small blocky shist material and decomposed granites. Texture varied from clay, to sandy, to granular, to small pea-gravel like pieces. Often blocky shist pieces were contained in the bedrock. Bedrock is most often a very defined rusty red but varies to include gray, green, and blue/gray tones. Bedrock was generally soft to between 5 and 10 ft. Occasionally it was hard close to the contact with the gravel layer. Gold was concentrated in the lower gravel layer, near bedrock contact and in bedrock. Some small amounts of gold were found in upper gravels however by far the most significant amounts of gold were produced from the holes drilled into bedrock.

The valley contains intermittent permafrost which seems to be determined by the depth of soil dominant overburden and the amount of ground water. That is, the less soil the less likelihood of the ground being frozen; and the more ground water the less likelihood of the ground being frozen. It is estimated from the holes drilled that from 1/3 to 1/2 the valley is thawed.

HISTORY

Claims have been intermittently staked on Canadian Creek since 1911 with reports of some activity 1911 - 1916 and during the depression (GSC Memoirs 178, 193, 209, 284). Bostock, memoir 284 p. 443 notes: "Between the spring of 1911 and 1913, some prospecting was done at several points along the lower portion of Canadian creek, and from what can be learned as a result of this, it would appear that much of the ground might be mined at a profit, if the work was done to advantage. The indications are that this portion of the creek below the canyon is guite adaptable to dredging." Most activity was concentrated on (both during these periods and since) the area above the canyon at Patton Gulch, some miles above the subject property, where in addition to placer gold, placer tungsten values (wolframite, ferberite) attracted attention. Table 6, page 7 of the Yukon Mineral Industry 1941 - 1959 indicates there were leases in good standing on Canadian Creek 1936 - 1944. This indicates that there was an interest in Canadian Creek, during this period, equal to or greater than that of many other creeks that have since proven to be producers (Ballarat, Kirkman, Thistle, Rude). This same publication notes work on Canadian Creek in 1948 (p. 59), 1949 (p65), 1950, (p. 71), 1955 (p 111). Yukon Placer Mining Industry 1978 - 1982 p. 97 notes mining done on Canadian 1980 - 1982, and Yukon Placer Mining Industry 1983 - 1984 notes mining in each of those years. As well, the Geological Survey of Canada Map 1513A (Mineral Deposits of the Canadian Cordillera) (Map 4) identifies Canadian Creek as a placer producer. Again, of the creeks in the area which have become proven producers none were noted as being significant while Canadian was. Canadian's recognition as a placer creek has been primarily related to Patton Gulch, at it's headwaters. The concentration of interest on this portion of the creek resulted from it's tungsten values and the need for that metal during both the First and Second World Wars. As the emphasis changed to gold, interest remained at the top end of the Creek as this is where the majority of work had been done. Interest was lost in Canadian because of the reported difficulty of recovering gold at Patton Gulch, on upper Canadian. This difficulty resulted from the fact that the gold was very fine and there and was combined with very large quantities of heavy black sands which made recovery very difficult if not impossible.

The property was staked by the applicant in 1989 as a Placer Lease, with assessment work carried out each year since then. The property was staked to claims in the fall of 1992. Prospecting in the area indicated evidence of prior interest with numerous shaft remnants, shuice sites, quantities

of thaw pipe, and cabin sites being located. Panning was undertaken on the old shaft sites and other locations and a number of shafts were targeted for further testing. Limited bulk sampling was done on these shaft remnants. This entailed sluicing of material around the old shaft openings and included bedrock gravels. The bulk testing occurred at the downstream end of the subject property and at the upstream end of the property below the subject property (Lease 8699, later staked to Kevin Claims). See Attached Map 5. Two shafts, one approximately 1500 feet upstream from the other, were selected for a larger bulk sample. The majority of material was shiced from these two shafts. From approximately 12 yards of material 20.15 grams of gold was recovered. The largest piece was 10.1 grams and the next largest pieces ranged between .75 gms and .25gms. There was also a quantity of finer gold. If the largest piece is included, sampling indicates a yield of approximately \$23.36 Cnd/Yd (\$380US X.85 fine X 1.33Cnd). If the largest nugget is deducted from the total gold the yield becomes \$111.64 Cnd/Yd. This sampling provided an indication of the presence of gold and the possibility of attaining gold in paying quantities. While black sands where present they were nothing compared to that reported on Patton Gulch. Approximately 7 lbs was recovered in a 4 yard sample compared to up to 100 Ibs/vd at Patton Gulch (Yukon Placer Mining Industry 1978 - 1982, p.97). Given the coarseness of the gold recovered and the relative lack of black sands on the subject property gold recovery should not be the problem it was at Patton Gulch. Given the assessment of the property by Bostock, the fact that old timers worked the property, and the samples recovered by prospecting, this property merited further testing to determine if gold exists in paying quantities and if there is sufficient paying quantities to undertake mining. A drilling program was undertaken to achieve this end.

DRILLING PROGRAM

Eleven lines were drilled on the lower seven Travis claims on the left limit of Canadian Creek. The drill lines ran at right angles to the direction of the valley (across the valley) in an attempt to intersect a pay steak in old valley stream channels. The distance between lines varied, with an average distance of about 300 ft. The number of holes per line varied between four and seven. with the distance between holes of approximately 50 ft. The original plan was to drill the lines further apart in an attempt to establish presence of gold over a greater length of valley. Initially seven lines were drilled, one each on claims 1 - 7. It was decided that rather than continue upstream with one line per claim length that the first seven claims be drilled with less spacing between lines. This reasons for doing this were: 1) While some of the results were promising there was not consistency due in part to poor recovery as a result of thawed, and wet holes. With a drilling of additional lines it was hoped that there would be sufficient information to determine a mining grade for this section of creek; 2) Above claim seven the boulders appeared to be becoming both larger and more plentiful, and it appeared that the drilling would become much more difficult. Hence lines 2A - 6A were drilled between the original seven lines. A

summary of the drill holes is attached to this report.

<u>RESULTS</u>

A total of 81 hole were started of which 42 reached and were drilled into bedrock. Of the 42 holes which reached bedrock 41 had some presence of gold. The number of pieces of gold in each drill hole varied from 1 to a high of 47. The weight of recovered gold varied from less than 1 milligram (mg) to a high of 116mg. Generally speaking holes that were terminated in gravels above the bedrock level contained little or no gold. Holes T2A-1A.B.C seem to go against this generalization where 4 mg of gold was recovered from a very small gravel sample. This hole was close to the present creek channel with the sample coming from surface (flood?) gravels. While atypical more testing of upper gravels close to the creek should be undertaken prior to developing any mining plan. The results indicate presence of gold across the valley and seem to indicate a good though possibly narrow channel of relatively high enrichment. This enrichment tends to the right side of the valley (viewed downstream) though shows up to the left on hole T2A-4C. Only 42% of the holes to bedrock had very good material recovery. Some holes that had relatively poor recovery of material still demonstrated gold present in paying quantities. It is should be noted that the best three holes all had recovery ratios of 1. It is felt that grades in holes with poor recovery could be increased by some factor resulting in improved values. While it would be tempting to divide the gold recovered by the recovery ratio, to attempt to establish a theoretical gold sample based on full material recovery, there is no evidence available to support such a leap of faith. It is however safe to assume that grades on poor material recovery holes would be somewhat above that of the gold actually recovered. When comparing the samples recovered from the bulk samples from the historic shaft rims, in previous testing, to the gold recovered from the drilling, the shaft gold tended on average to be chunkier. None of the gold recovered by drilling on the Travis Claims approached the size of much of the gold recovered from the shaft rims. This would also tend to lead one to the conclusion that values might be increased by the fact that courser gold is present in the valley but was not identified by the drilling.

CONCLUSION

While the drilling was not as conclusive as had been hoped it has provided a good indication of gold presence, with a high likelihood that the portion of the property drilled could be profitably mined at current gold price. Testing on claim seven (the upper limit of testing) resulted in fair gold recovery despite poor material recovery. It is felt that the potential for gold presence and expectation of minable grade above claim seven appears good. Drilling was focused on the left limit of the Creek. In some spots the valley floor extends to the right and further testing should be undertaken on that side of the valley. Further assurance may be gained by shafting to bedrock to establish confirmation of drill hole grades and/or test pits dug by backhoe. Given the

location of the property and the expence involved in mobilizing equipement to the area in all practicality a bulk sample would best be carried out as a one year test mining operation. Bulk testing would best determine the econmics of mining the valley where gold presence is indicated vs mining the narrower high value pay channel indicated by the drilling. Depth to bedrock, valley width, gradiant may make this an ideal setup for a dredge/ backhoe operation Thawing of the frozen sections, by stripping away the overburden, would be required prior to mining.

	1		DIUNTIC: TIME-Grained DIOTITE NORDIENDE DIOTITE	Lineation (norizontal, inclined)
			OUNTER MONTONITE, modium grained couldmanulas biotite cuasts	Fault (defined informed)
		۱Mqm	monzonite	Jointing (inclined, vertical)
				Antiform (location approximate)
	IC	Mqmp	PORPHYRITIC QUARTZ MONZONITE: rusty-weathering, medium-grained, porphyritic (K-feldspar) biotite quartz monzonite	Synform (location approximate)
	-S-			Mineral occurrence
	W	Mgdb	NISLING RANGE GRANODIORITE: medium - to coarse-grained equi- granular hornblende biotite granodiorite; mottled green and mauve.	
			Contains diagnostic euhedral biotite	METALS AND MI
-		TRIASSIC(?)	Chalcopyritecp
		Itom	PINK QUARTZ MONZONITE: pink coarse-grained leucocratic quartz	CopperCu
-			porphyritic quartz monzonite (Momp) undifferentiated	Galenagn
				GoldAu
	\$	Tkgdm	equigranular biotite hornblende granodiorite to quartz diorite;	ManganeseMn
	l		commonly shows layering or foliation by alignment of mafics	Geology by D. J. Tempelman-K
	(DEDMIAN /2	AND/OR TRIASSIC(2)	deorogy by b.o. remperingn-k
		PERMIAN	INFSTONE: white weathering light grey massive coarcely	To accompany Paper 73-41 by
		Pc	crystalline marble	
				This preliminary edition may be subj
		Ppt	ARGILLACEOUS CHERT: interbedded brown argillite, cherty slate and quartzite	
	U			Geological cartography by the G
	10Z0	Ppt,	HORNFELS: purplish brown fine-grained hornfels	
	4ESC			Any revisions or additional geolog
	SR 1	PAA	DUNITE: dun-brown weathering, massive, resistant, black and	aser would be welcomed by the G
	/ON	FIVIOD	dark green, partly serpentinized dunite and harzburgite	Base-map at the same scale publishe
	7) A	Die l	GABBRO: dark weathering, medium-grained, equigranular horn-	Branch, Department of Energy, M
	1C(PMD	blende gabbro; may include PMv undifferentiated	Copies of the terrenuclisel edition
	020		MASSIVE GREENSTONE: dark green massive anhanitic enidotized	from the Canada Map Office,
	ALE	PMv_	basalt; includes gabbro (PMb), undifferentiated	Mines and Resourd
	-		DEPIDODITE: dup-how weathering dark green to black partly	Magnatia dealization 1072 marias d
-		PMpr	serpentinized massive harzburgite; may include volcanic rocks	of west edge to 31 09' easterly at
			(PMV) undifferentiated	annual change 3.6
-		Pv	SHEARED GREENSTONE: sheared and foliated greenstone and related	Elevations in feet show
		رتينا	vo canic rocks, minor cherty tuff	
		(NATINA MIADITITE - black-weathering massive dark over to black	
2	4	Pos	graphitic quartzite with lesser grey micaceous quartzite and	
-	14 16		quartz mica schist. Commonly shows alternating light and dark	
			west of Onion Creek	
			BIOTITE SCHIST: brown grey weathering, recessive, chlorite	
		P sbq	muscovite biotite quartz schist and micaceous quartzite; garnet-	
			iferous; minor amphibolice, marble and skarn	
		PPm	AMPHIBOLITE: dark grey to black weathering amphibolite;	
	2		includes minor granitic and metamorphic rocks of surrounding mab-units	
	0Z0			
	PALE	EPgd	FOLIATED BIOTITE GRANODIORITE: foliated to gneissic biotite granodiorite: minor interfoliated phyllite, schist and amphibolite	
	S.			
	/dv	2Psb	SCHIST: biotite schist and gneiss	
	IC A			
	0Z0	2Pps	PHYLLITE: silvery grey muscovite chlorite quartz phyllite	
	TER			
	PRC	PPerm	KLONDIKE SCHIST: black and orange weathering well foliated pale	
		L' squ	green chlorite muscovite quartz schist; includes augen gneiss and amphibolite	
	9	EPsn	SCHIST GNEISS: brownish weathering, grey muscovite biotite- guartzite and guartz feldspar mica schist: includes amphibolite	
		لسنعا	and augen gneiss and minor marble undifferentiated; includes	
			to an and the sense under renerated	
		2 Podn	PELLY GNEISS: strongly foliated to gneissic muscovite chlorite	
			gametiferous amphibolite +	

and the second second

1.

885 Snowbird U, Pb 886 Zen U, Pb, Zn, Ag

SIZE CATEGORIES

(Au)

COMMODITY	LARGE >	MEDIUM >	SMALL
(in metric tonnes of metal or minera	al contained)		
Asbestos	10 000 000	100 000	
Barite (BaSO₄), Fluorite (CaF₂)	5 000 000	50 000	
Copper	1 000 000	50 000	
Gold	500	25	
Gypsum-Anhydrite	100 000 000	5 000 000	
Iron (ore)	100 000 000	5 000 000	
Lead, Zinc	1 000 000	50 000	
Magnesite (MgCO3)	10 000 000	100 000	
Mercury (flasks)	500 000	10 000	
Molybdenum	200 000	5 000	
Nickel	500 000	25 000	
Niobium-Tantalum (R ₂ O ₅)	100 000	1 000	
Silver	10 000	500	
Tungsten	10.000	500	
Uranium	10 000	100	

AGE OF MINERALIZATION

1 PRECAMBRIAN CAMBRIAN-MIDDLE DEVONIAN 2

- 3 LATE DEVONIAN - EARLY TRIASSIC
- 4 MIDDLE TRIASSIC-JURASSIC
- CRETACEOUS (EXCEPT LATE) 5
- 6 LATE CRETACEOUS - EOCENE
- OLIGOCENE-PLIOCENE 7
- 8 POST TERTIARY

EXAMPLE

Trout

467 Gibraltar, Pollyanna (Granite Mountain) Cu, Mo (From deposit list) Cu, Mo porphyry deposit (From deposit symbol legend and symbol colour)

Large > 1 000 000 tonnes of Cu (From "Size Categories" and corresponding table)

Middle Triassic — Jurassic or younger (From "Age of Mineralization")

	1042	Mount Wheaton (Tally-Ho) Au, Ag, Pb Cartson Hill (Becker-Cochran, Goddell) Sb
	4000	
	1222	Bullion Creek (Cub) Cu, Zn, (Ag, FD, NI, Au, FI, Fd)
	1224	Bullion-Sheen Creeks Au
	1225	Dickson Ni, Cu, (Co, Pt)
	1226	Cork Cu, Mo
	1227	Wellgreen (Quill Creek) Ni, Cu
	1228	Tatamagouche Creek (Glen) Ni, Cu
	1229	Burwash Creek Au
	1230	Alaskite Creek (Raft) Mo, Cu
	1231	White Biver Cooper (Canyon City) Cu. Ag
	1233	White Biver Nickel (Canalask) Ni Cu (Co Zn)
	1234	Innieliw Cu Mo (Au Ao W)
	1235	Hooking Giltana Cu (Mo Ag Au W 11)
	1236	Macks Conner Cu. Ag. Au. Fe
	1237	Sekulmun Zn. (Cu. Ag. W. Pb)
	1238	Mount Nansen-Brown McDade Au, Ag, (Zn, Pb, Sb)
	1239	Mount Nansen-Cyprus Cu, Mo
	1240	Cash, Klazan Cu, Mo
	1241	Revenue Cu, Mo
	1242	Seymour Creek Au
	1243	Laforma (Freegold) Au, Ag
	1244	Tinta Hill Zn, Pb, Au, Ag
	1245	Williams Creek Cu (Ac Au)
	1240	Stu (Bay) Cu
	1248	Minto Copper (Def) Cu, (Au, Ag)
	1249	Sonora Gulch (Hayes) Au, Ag, Bi, (Cu, Mo)
	1250	Pattison (Patt) Cu, Mo
	1251	Mount Cockfield, CO Cu, Mo
	1252	Bomber, Helicopter Ag, PD, Zn, Au
_	1253	Canadian Creek Au
	1255	Frying Pan Creek (Hidden Creek) Au
	1256	Trudi Cu, Mo
	1257	Hawk Creek (Albion) Au
	1258	Lucky Joe Creek (Burmeister) Cu, (MO)
	1259	Klandika Gold Camp (Bonanza Creek Hunker Creek
	1200	etc.) Au
	1261	Mooseborn Bance (Dea Lori) Au. (Ag. Pb. Zn)
	1263	Jove (Son) U
	1264	Mosquito Creek, Connaught, Butler Ag, Pb, Au
	1265	Clear Creek Au, (Sn)
	1266	East Ridge, Barney Ridge Sn, W, (Cu, Pb, Zn)
	1268	Loberon Creek (Minto Lake) Au
	1269	Scheelite Dome W. (Sn. Au, Cu)
	1270	Lone Star, Eldorado Dome, Buckland Au, Ag
		116
	1271	Ida Au (As Ha Sh)
	1272	Fish Creek (Philip) Cu. Au. Ag
	1273	Hamilton (Mike) Au, Cu, Ag, Bi
	1274	Blende Ag, Pb, Zn
	1275	Hart River Cu, Zn, Ag, (Au, Pb)
	1276	Index (Antimony Mountain) SD, (U)
	1278	Tombstone Mountain (Ting, Teta) U
	1279	Rein Ba
	1280	Sixty Mile River Au
	1281	Pluto Mo. (W)
	1282	Caley (Cassiar Creek) Asbestos
	1283	Shell Creek Fe
	1285	Coal Creek Dome Area Zn, Pb
	1286	Burgovne (Kept) Zn, (Pb)
	1287	Cathedral Creek Fe
	1288	Lasznicka, PL (Tin) Pb, Zn, (U)
	1289	Dyke (Blackstone River) Cu, Aspestos
	1290	Bilbo Pb Ba
	1292	Coot Pb
	1293	Cung Zn, Cu, Pb
	1294	Llod Zn, Pb
	1295	Yum, Toad, Wart Pb, Zn
	1296	Hisning Branch PD, Zn, (Ag, Cu)
	129/	Rusty Springs (Termuende) Pb. Zn. Ag
	1299	Alto Fe
	1300	Old Crow Range W
	1301	Lord, Salaken Zn, (Pb)
		117
	1302	Lin U
	1303	Eish River (Straddle) Fe P Mn. Gems
	1305	Mount Davies Gilbert (Rapid) Fe, P, Mn, Gems
	1306	Mam U, Mo, W
	1307	Hoidahl (Mount Fitton) W. Au, Mo
	1308	Mount Sedgewick W
	1309	AJ, Obrien AU, Ag, As

GEOLOGICAL SURVEY OF CANADA

COMMI

DEPARTMENT OF ENERGY, MINES AND RESOURCE MINISTÈRE DE L'ÉNERGIE, DES MINES ET DES RESSOU

500	1										
				1							
		N									.]
1340			-	T							
			The	10							
			1	5	1						
			1								
		Addie and a second	/							_ /	
					-1	DEPO	SIT	TYPE			
									8	8-	
		COMMODITIES	Ir-zone	icluding posits	sits	and	eposits mentary types	a or osits	ts forme hemical tion)	is forme chanica ion)	mined
		(MINOR CONSTITUENTS	nd shea	orks, ir iyry del	m depo	gmatic Jar ma eposits	ound d ng sedi	ndstone	deposi ficial cl	deposi cial me central	ot dete
		IN PARENTHESES)	vein ar	stockw	ska	irreg d	stratab includii and v	sar	by sur	acers (oy surfi con	type n
		Cu (Au Ag)	6			X	-0-	-	-	5	•
		Cu Mo (Au Ag)									٠
		Мо		具		X					
		Cu Zn (Pb Au Ag)			-		-				•
480		Cu Ni or Ni Cu				×	-				
		Pb Zn	•				+				•
		Au (Ag)	6		-6-					ò	0
	-	Au Ag or Ag Au	5		<u> </u>						\diamond
		Ag (Pb Zn Cu Au)	-		1.0		-0-				
		Jade				\times					
		Hg ·	•	-0						1.	•
	and /	Šb									
		F			- 5-2		•				•
		Ba			-					1	-
		w NoTaU	-		-					2	-
	12. 18	Be		~	-		-				
		Sn			-			-			
ನೆ		u	•	1	-	×				The	•
13		Fe			-	×					•
		Asbestos	+	*							•
		Cr			0	×					•
460		Na		-							/
		Gypsum-Anhydrite	1		<u></u>					Aler A	•
	-	Magnesite		•		×		•	6	1	-
				~						States and the	1
			1								
					Plu	itonic ro	ocks	4		11	
									1	4/	
						- apiritati					
		1000									
/		130*		-	41				128	5"	

Copies of this map may be obtained from the Geological Survey of Canada: 601 Booth Street, Ottawa, Ontario K1A 0E8 3303-33rd Street, N.W., Calgary, Alberta T2L 2A7 100 West Pender Street, Vancouver, B.C. V6B 1R8

.

Canadä

- Just sont

TARGET EVALUATION APPLICATION 93-141

CANADIAN CREEK AUGER DRILLING PROGRAM

DRILL SUMMARY

*

1) Material Recovered is measured in number of 1/2 full 5 gallon pails

2) Recovery Ratiois number of 1/2 buckets of recovered material divided by the number of feet of gravel and bedrock drilled divided by .55. Where .55 represents the number of 1/2 buckets / ft of material expected from a competant hole with very good material recovery

- 3) Number Of Pieces Of Gold A piece of gold is any single identifiable gold particle regarless of size or weight.
- 4) (MG) is milligrams

5) FRZN indicates ground is frozen THWD = ground thawed VGOOD = very good RCVRY = material recovery B/R = bedrock GRVLS = gravels UNSTABLE = ground unstable - difficult to drill HARD @ 16' = drill either stopped or going down extreamly slow at 16 feet

6) All holes were drilled with 6 inch auger unless otherwise noted (**) which indicates 8 inch auger.

T3A-6	0-4	• 4123	12-25	9	0.78	7	10	FRZN:// GOOD RCVRY /WATER IN HOLE
T3A-5	0-4	4-13	13-21	7	0.75	5	<1	FRZN / GOOD RECVRY
T3A-4A	0-4	4-7			-			HARD @ 7'/BLDR
T3A-4B	0-3	3-12	12-20	11	1	8	<1	FRZN / VGOOD RCVRY
T3A-3	0-4	4-14	14-23	9	0.86	3	3	FRZN / GOOD RCVRY / GRVLS WET @ 6' / B/R HARD @ 23'
T3A-2	0-5	5-14	14-25	10	0.91	3	<1	FRZN / VGOOD RCVRY / WET @ 7' / b/R SOFT TO 25'
T3A-1	0-1	1-14	14-25	11	0.83	18	8	THWD / GOOD RCVRY
T4-4	0-4	4-8		0.5	0.23		-	FRZN / VWET /UNSABLE / HARD @ 8' BLDR
T4-3	0-4	4-14	14-20	8	0.91	8	<1	FRZN / VGOOD RCVRY
T4-2**	0-5	5-13		9	1	11	8	FRZN / VGOOD RCRY / HARD @ 13' /***8" AUGER
T4-1A**	0-4	4-9				6 4		FRZN / HARD @ 9' BLDR / **8" AUGER
T4-18**	0-4	4-15	15-20	13	1	47	95	FRZN / HARD @ 20' / VGOOD RCVRY / **8" AUGER
T5A-5	0-1	1-20	20-29	15	0.97	5	<1	FRZN / B/R LEVEL HARD TO DEFINE - 20-23' / VGOOD RCVRY
T5A-4	0-5	5-18	18-30	10	0.73	3	<1	FRZN / FAIR RCVRY
T5A-3	0-8	8-17	17-25	9	0.96	11	3	FRZN / VGOOD RCVRY
T5A-2A	0-4	4-6			فد	**		FRZN / HARD @ 6' - BLDR
T5A-2B	0-4	4			-	**		FRZN / HARD @ 4' - BLDR
T5A-2C	0-4	4-5	-		_			HARD @ 5' - BLDR
T5A-2D	0-4	4-18	18-29	14	1	15	21	FRZN / B/R LEVEL HARD TO DEFINE 15-20' / VGOOD RCVRY
T5A-1	-	0-18	18-25	11	0.8	27	21	THWD / GOOD RCVRY
T5-6A**	0-4	4			-			FRZN / OFF PLUMB - BLDR / **8" AUGER
T5-6B**	0-4	5-12	-	8	1+		-	FRZN / HARD @ 12' - BLDR / **8" AUGER
T5-5A**	0-3	3-5	-					FRZN / AUGER OFF PLUMB - BLDR / **8" AUGER
T5-5B**	0-3	3-15	15-16	10	1+	10	<1	FRZN / VGOOD RCVRY / HARD @ 16' - b/R? / **8" AUGER
T5-4A**	0-1	1-5	-		-	4		THWD / UNSTABLE / **8" AUGER
T5-48**	0-1	1-5	-					THWD / UNSTABLE / **8" AUGER
T5-3**	0-3	3-16	18-20	2	0.12	4	18	THWD / UNSTABLE /WET/ VPOOR RCVRY / **8*** AUGER
T5-2**	0-2	2-15	15-20	12	0.66	10	15	THWD / FAIR RCVRY / HARD @ 20' / **8" AUGER
T5-1**	0-3	3-10	8 101	1	0.14	-	-	THWD / UNSTABLE / VPOOR RCVRY / **8" AUGER
T6-5**	0-10		10-11			u.e.		FRZN / HARD @ 10' / DEFINED AS B/R? / **8" AUGER
T8-4**		0-5				**		THWD / MTRL VLOOSE & UNSTABLE / **8" AUGER
T8-3**		0-5		**		~		THWD / WET & UNSTABLE / **8" AUGER
T6-2A**	0-4	4-9	-	6	0.83			fRZN / VGOOD RCVRY / **8" AUGER
T6-2B**	0-5	5-17	17-20	14	0.93	29	8	FRZN / VGOOD RCVRY / **8" AUGER
T6-1A**	0-4	4-8	**	3	0.75	*-		FRZN / HARD @ 8' / **8" AUGER
			بہ جع عمیر		······································	· (r <u> </u>	· · · · · · · · · · · · · · · · · · ·

HOLE #	OVER	GRÄVELS	BEDROCI	MATERIA	RECOVRY	GOLD #	GOLD	COMMENTS
	BURDEN			RECOVRE	RATIO	OF PCS	(mg)	
				# 1/2BUKT	•			
T1-1			0-5	1	1	6	<1	ONB/R RIM NO GVLS
T1-2		0-12	12-15	2	0.24	6	<1	THWD/WATER IN HOLE VPOOR REVRY
T1-3		0-10	10-17	3	0.32	1	<1	THWD/VERY WET/VPOOR RCVRY
T1-4		0-5		1	1	5	<1	HARD @ 5' / BOULDER
T1-5A		0-2						BOULDER @ 2'
T1-5B	0-4	4-18	16-29	12	0.75	20	9	FRZN / REDISH BRN B/R / SOFT TO 29'
T1-6	0-2	2-12	12-15	6	0.84	14	11	THWD/ON GRVL RIDGE / LOOSE MTRL
T2A-5	0-4	4-13	13-20	2	0.23	1	<1	THWD / WET / VPOOR RCVRY
T2A-4A	0-3	3-4	**		**			HARD AT 4' / BLDR
T2A-4B	0-3	3-8	~		50			HADR @ 8' / THWD /WET
T2A-4C	0-3	3-13	13-25	14	1	45	93	THWD / WET IN TOP FEW FT
T2A-3A	0-2	2-4	**		44p		44	HARD @ 4' / BLDR
T2A-3B	0-2	2-13	13-17	4	0.48	4	3	THWD / B/R HARD @ 17' / POOR RECVRY
T2A-2	0-6	6-16	18-25	10	0.96	7	<1	VGOOD RCVRY
T2A-1A	0-4	4		**			82	UNSTABLE
T2A-18	0-4	4-5		-		d		THWD / UNSTABLE / OFF PLUMB
T2A-1C	0-4	4-5		NOMINAL	N/A	22	4	GOLD FROM HOLES A, B, C DISREGARD
T2-1		0-13	-	1	0.14			THWD/LOOSE /WET /VPOOR RECVRY
T2-2A	0-4	4-6	~	-				BLDR @ 6' / OFF PLUMB
T2-2B	0-4	4-12	12-16	4	0.62	3	<1	THWD/LOOSE MTRL/WET
T2-3A	-	47	*		-		4 40	OFF PLUMB AT SURFACE
T2-3B	0-3	3-10	***	1	0.26			WATER IN HOLE / VPOOR RCVRY
T2-4	0-4	4-10	1 00	2	0.61	6	<1	FRZN / WATER IN HOLE / VPOOR RCVRY / HARD @ 10'
T2-5	0-5	5-13	13-16	7	0.98	9	3	FRZN/VGOOD RCVRY
T2-8	0-6	6-14	14-23	11	1+	15	19	THWD / VGOOD RCVRY
T2-7	0-4	4-13	13-17	3	0.42	4	6	THWD / UNSTABLE / BROKE AUGER / POOR SAMPLE
T3-5	0-3	3-10		2	0.52	12.0	**	FRZN / HARD @ 10' / BOULDER?
T3-4	0-10	10-16	16-21	8	1	4	<1	FRZN /VGOOD RCVRY / BROWNISH B/R @ 16'
T3-3	0-5	5-13	13-18	8	1	22	6	FRZN /VGOOD RCVRY
T3-2A	0-5	5		-				DHARD @ 5' / BLDR
T3-2B	0-5	5			-			HARD @ 5' / BLDR
T3-2C	0-6	6-17	17-25	12	1	17	118	FRZN / VGOOD RCVRY / B/R LEVEL ESTIMATED

T6A-4B	0-6	6-11	-	4100	-			HARD @ 11'/ MATRL NOT PROCESSED
TBA-3A		0-8		2	0.45	1		THWD / WET / HARD @ 8" BLDR
T6A-3B		0-13	13-18	6	0.61	10	25	THWD / WET / HARD B/R @ 18' / FAIR RCVRY
T6A-2	0-1	1-14	14-23	8	0.66	30	13	THWD / WET / FAIR RCVRY
T61-1	0-1	1-15	15-25	2	15	4	<1	THWD / VERY WET / VPOOR RCVRY
T7-5	0-2	2-18	18-20	4	0.22			THWD / LOOSE MTRL /HARD @ 20'
17-4		0-18	-	4	0.22	1944		THWD / LOOSE MTRL / UNSTABLE / NOT @ B/R
17-3	0-4	4-18	18-25	4	0.19	1	10	THWD / LOOSE / VPOOR RCVRY
T7-2	0-4	4-18	18-25	6	0.52	3	18	THWD / LOOSE DAMP / POOR RCVRY
T7-1	0-5	5-16	16-25	2	0.45	3	4	THWD / WET POOR RCVRY

,

	· ·	۱Midim	DIORITE: fine-grained biotite hornblende diorite	Lineation (horizontal, inclined) Trend of dykes (from air photographs)
×	3	ιŴqm	QUARTZ MONZONITE: medium-grained, equigranular biotite quartz monzonite	Fault (defined, inferred) Jointing (inclined, vertical)
	ZOIC	Miqmp	PORPHYRITIC QUARTZ MONZONITE: rusty-weathering, medium-grained, porphyritic (K-feldspar) biotite quartz monzonite	Antiform (location approximate) Synform (location approximate) Mineral occurrence
	MESO	Mgdb	NISLING RANGE GRANODIORITE: medium - to coarse-grained equi- granular hornblende biotite granodiorite; mottled green and mauve. Contains diagnostic euhedral biotite	METALS AND MI
		TRIASSIC	2)	Chalcopyritecp
		Tkqm	PINK QUARTZ MONZONITE: pink coarse-grained leucocratic quartz monzonite and porphyritic pink quartz monzonite; may include porphyritic quartz monzonite (Mqmp) undifferentiated	CopperCu Galenagn
		Rgdm	HORNBLENDE GRANODIORITE: dark grey weathering, coarse-grained equigranular biotite hornblende granodiorite to quartz diorite;	GoldAu ManganeseMn
	l		commonly shows layering or lonation by alignment of martes	Geology by D.J. Tempelman-k
		PERMIAN (?) AND/OR TRIASSIC(?)	To commonly Dancy 72 41 by
		Pc	LIMESTONE: white weathering, light grey, massive coarsely crystalline marble	To accompany Paper 73-41 by
			ADCILLACEONS CUEDT, interhedded brown angillite, chorty slate	This preliminary edition may be subj
		Ppt	and quartzite	Geological cartography by the G
	ZOIC	Ppt,	HORNFELS: purplish brown fine-grained hornfels	
	MESO		*	Any revisions or additional geolog user would be welcomed by the G
	J/OR	PMub	DUNITE: dun-brown weathering, massive, resistant, black and dark green, partly serpentinized dunite and harzburgite	
	AND)		Base-map at the same scale publish Branch, Department of Energy, M
	(¿)):	PMb	GABBRU: dark weathering, medium-grained, equigranular norn- blende gabbro; may include PMv undifferentiated	
	PALE0Z01	₽Mv	MASSIVE GREENSTONE: dark green, massive aphanitic epidotized basalt; includes gabbro (PMb), undifferentiated	from the Canada Map Office, Mines and Resour
		PMpr	PERIDODITE: dun-brown weathering, dark green to black, partly serpentinized massive harzburgite; may include volcanic rocks (PMv) undifferentiated	Magnetic declination 1973 varies f of west edge to 31 [°] 09' easterly a annual change 3.
		Pv	SHEARED GREENSTONE: sheared and foliated greenstone and related volcanic rocks, minor cherty tuff	Elevations in feet abo
		EPqc	NASINA QUARTZITE: black-weathering, massive, dark grey to black graphitic quartzite with lesser grey micaceous quartzite and quartz mica schist. Commonly shows alternating light and dark colour lamination. May include undifferentiated granitic rocks west of Onion Creek	
		PP sbq	BIOTITE SCHIST: brown grey weathering, recessive, chlorite muscovite biotite quartz schist and micaceous quartzite; garnet- iferous; minor amphibolite, marble and skarn	
	010	EPm	AMPHIBOLITE: dark grey to black weathering amphibolite; includes minor granitic and metamorphic rocks of surrounding map-units	
	PALE020	2 Pgd	FOLIATED BIOTITE GRANODIORITE: foliated to gneissic biotite granodiorite; minor interfoliated phyllite, schist and amphibolite	
	C AND/OR	2Psb	SCHIST: biotite schist and gneiss	
	TER0Z010	PPps	PHYLLITE: silvery grey muscovite chlorite quartz phyllite	
	PRO	PP sqm	KLONDIKE SCHIST: black and orange weathering well foliated pale green chlorite muscovite quartz schist; includes augen gneiss and amphibolite	
		PPsn	SCHIST GNEISS: brownish weathering, grey muscovite biotite- quartzite and quartz feldspar mica schist; includes amphibolite and augen gneiss and minor marble undifferentiated; includes rocks of Pelly Gneiss and Klondike Schist undifferentiated	
		E P gdn	PELLY GNEISS: strongly foliated to gneissic muscovite chlorite biotite granodiorite; minor augen gneiss; grades locally to garnetiferous amphibolite	
			HORNBLENDE GRANDOIDRITE + SCHIST GNEISS.	

.

..

1990 g	is a demonstructure of the Adea of the	547 2	Bonus-Joy
761	Guarte Silver (Formal) (Formal)	208	Joyce Martin
.762	Mayo Greek Area (Astraction) (Astraction)	(Owl Mo
763	Cedar Creek (Hope, Silver), A.J. Co. Pb. Zo.	۲. J	Gnat Lake Area Co
764	Big Joe the	851	Wheaton Creek 🚈
765	Fiddler, Patmore And Add Pt 1, 19 Mar	852	Eaglehead (Eagle) Ca. Ma
766	Carpenter Creek (Lynda, Dug)	853	Kutcho Creek (Letain) Astendors
767	Seven Sisters-Caledonia, Astano, Zo, Ca	854	Wolf, Kid W
768	Star Fe	655	Herb Pb. Zn. Ag
769	Jitney, Ettal Co. 20, Aur Ag	856	Pyrrhotite (Turn) Cullia
770	Surf Point (Edye Pass) And And Co.	857	Pat, OH Cu, Au, Ag
771	Skeena River Area, Au, Au, Hulling Str.	858	Kaketsa Mountain-Copper Creek, Cu
772	Mount Priestley Mu	859	Pet (Mineral Hill) Cu
773	Lucky Co. Mo	860	Tanzilla River (HU) Cu. Mo. W
774	Snatu Mo	861	Mack Cu. W
775	Valley Bidge M	862	Dease Lake Area Aul (Pt)
776	Kay 🖙	863	Slough Mountain (Jim, Deak, Shield) 👘
777	Anyox Area Co. 4 : Au. 15	864	Samotua River Area (Bing, Fae, Norm)
778	Saddle, Elk Horn Aug Au	865	LC-1 Peter, Karen, Mo. Ag
779	Maple Bay, Outsider (2014) - A	866	Mount Ogden (Nan) Mo
780	Golkeish -	867	Sutlahine River Area (Thorn, Kay) Co. M
781	Granby Point And A	868	King Salmon Lake Co. Ag
782	Molly May May	869	Erickson-Ashby Ag. Pp. Zn
783	Tidewater Mo	870	Tulsequah Chief, Polaris-Taku, Zn. Cu. A.
784	Illiance River Area, Ad. Phy Zhi, Tu, Au, Sp.	871	Laverdiere Cu. Fe
785	Bell Moly (Alice Arm) 346 12	872	Willison Bay (Molly) Mo. Cu
786	Roundy Creek (Alice Arm) 110	873	Happy Sullivan Au. Ag
787	BC Moly (Alice Arm) MG	874	Engineer Au
788	Basin, Verona, Silver Bow, Ac. Pb. Zo	875	Sweepstake Au. Ag
789	Penny Creek Mo	876	Rupert, White Moose Au. Ag
790	Kit Mo	877	Ben-My-Chree Au. Ag
791	Illiance Mountain Area (Bellvue, Grey Goose, Silver	878	Gold Cup, Big Horn Au. (Ag)
	Star) Ag. Pb. Zn	879	Gridiron-Silver Queen Area Cu. Au. Ag
792	Ajax Mo	880	McKee Creek Au
793	Kitsault River Area (Esperanza etc.) Ag. Pb. Zn. Au	881	Slate Creek A-
794	North Star, Pb. Zn. Ag. Cu	882	Dixie Creek A.
795	Alice Arm Silver (Dolly Varden) Ag. Pb	883	Ni-Fire Cu. Mc
796	Bear River-Barney Creek (Porter-Idaho) Ag. Zn. Pb.	884	Mir U
	(Au)	885	Snowbird U Pc
797	BC Verde Au. Ag	886	Zen U. Pb. Zhi Ag

___

SIZE CATEGORIES

LARGE	MEDIUM	SMALL	UNKNOWN. GENERALLY VEBY SMALL
\bigcirc	\bigcirc	0	C
			-
\diamond	\diamond	\diamond	\diamond
\diamond	\diamond	\diamond	-
\diamond	\diamond	\diamond	<>

COMMODITY	LARGE	>	MEDIUM	>	SMALL
(in metric tonnes of metal or minera	I contained)				
Asbestos	1(000 00	0 1	00 000	
Barite (BaSO ₄), Fluorite (CaF ₂)	ŧ	5 000 00	0	50 000	
Copper		000 00	0	50 000	
Gold		50	0	25	
Gypsum-Anhydrite	100	000 00	0 50	0 0 000	
Iron (ore)	100	000 00	0 50	00 000	
Lead. Zinc		000 00	0	50 000	
Magnesite (MgCOs)	1(000 00	0 1	00 000	
Mercury (flasks)	,	500 00	0	10 000	
Molybdenum	• •	200 00	0	5 000	
104 - A1		ടന്ന റ്റ	n	55 J OO	

and the second		
1008 Rev Fr Ch. Ac Ac	1098	Pat (
1009 /* stier 11	1099	Nar -
1010 Jie Creek (Cadillac) Pb. Zn. Ast	1100	Howa
1011 Nahanni Buttel Cu	1101	Granc
1012 Ram-Hy (Liard River) Cu	1102	Lenec
1013 Sorokowsky-McBean Ptr Zo Ac	1103	Nanc
1014 Snobird (Butrenchuk) Zn. Pp	1104	Dirck
1015 Mawer Zn	1105	Anniv
1016 Coates Lake (Redstone) Cui Ag	1106	Oro (f
1017 Kvale (Extension) Cu. Ag	1107	Cleat
1018 Hidden Valley (Mac. Dean) Cu. Ag	1108	Arrow
1019 Jasper Valley (WK) Cu. Ag	1100	Sand
1020 Per Co	1110	Vulca
1021 Hayhook Lake Cu. Ag	1111	Golde
1022 Jay Cu		GOOL
1023 June Creek (Shell) Cu. Ac	1112	Pike '
1024 Fry Group Zn. Pb. Ag	4113	PDR
1025 Cap Mountain Cu	1114	Trider
1026 MacKenzie Basin Na. (Sait)	1115	Fuller
105	1116	Sunse
105	1117	Swim
1027 Nazo BaliPolZn, Agi	1118	Vange
1028 Mount Hundere (Ritco) Pb. Zo. Ag. Co	1119	Faro (
1029 Bailey (Pat) W. Cu	1120	Dana
1030 Fiddler, W. Cu. So, Pb. Zn. Ag	1121	Owl F
1031 Atom, Bar, Bom Zn, Pb, Ag	1122	Lad (
1032 STQ. Partridge Sn	1123	Lady
1033 Logtung (Logjam Creek) W. Mo. (Zn. F. Bel Cu)	1124	Little
1034 JC (Viola) Sn. (Zn. Cu. As)	1125	Tumn
1035 DU. MC Sn	1126	Detou
1036 Nite W. Mo. Zn	1127	Clear
1037 Team (Gravel Creek) W. Zn	1128	Ace I
1038 Bar (Smeg) P5. Zn. Ag. Ba	1129	Kalza
1039 Red Mountain (Bug) Mo. (Ag. W. Cu)	1130	Pima
1040 Lime Mo	1131	Two E
1041 Venus Au, Ag, PD, Zh, Cd	1132	Gord
1042 Big Ining-Montana AU, Ag	1133	MOUF
1043 MOUNT WIREATON (TARY-HO) AU. AG. 20	1134	wayr
1044 Cartson Hill (Becker-Cochran, Goddell) 55	1135	Galer

.

ļ

1222	Telluride Creek (Cub), Cu. Zn. (Ad. Pt. Nr. Au, Pt. Ph)		
1223	Bullion Creek Gyosum		
1224	Bullion-Sheen Creeks Au	3000	Duke
1225	Dickson Ni Ca (Co Pt)	3001	Nelsa
1226	Cork Cu Mo	3002	Boka
1227	Welloreen (Quill Creek) N: Cu	3003	McLe
1228	Tatamageucha Crook (Glop) Nr. Cu	3004	Forre
1220	Rusuah Crast. (3005	Coro
1229	Alaphita Caratu (Data) Ma Cu	3006	Nible
1230	Alaskie Creek (Hari) Mo. Cu	3007	Chol
+231	Sharpe, Mineral Hidge Mo. Cu	3008	Khav
.232	white Hiver Copper (Canyon City) Cu. Ag	3009	Lime
1233	White River Nickel (Canalask) Nr. Cu. (Co. Zn)	3010	Jumt
1234	Janisiw Cu. Mo. (Au. Ag. W)	3011	Bake
1235	Hopkins, Giltana Cu. (Mo. Ag. Au. W. U)	3012	Nove
1236	Macks Copper Cu, Ag, Au, Fe	3013	Valo
1237	Sekulmun Zn. (Cu. Aq. W. Pb)	3014	Hatc
1238	Mount Nansen-Brown McDade Au Ar. (Zo Ph Sh)	3015	Big F
1230	Mount Nanser-Drown McDade Horng, (2011 0.00)	3016	Hollin
1240	Cach Klasse Cu Mo	3017	Bust
1241	Boundary Cu. Ma	3018	Salt
1241	Revenue Cu. Mo	3019	Kasa
1242	Seymour Creek Au		
1243	Tioto Mill Zo, Do A . Ag	3020	Linio
1244	Storite March C. Mar	3021	Cym
1246	Millione Out C (As As)	3022	Coor
1240	Minams Creek, Cu. (Ag. Au)	3022	Mah
1247	Siu (Bay) Cu	3024	Koto
1240	Sonoro Cutebrille, and Au Ao FullCu May	3025	Mott
1250	Potting (Date California	3026	121 /
1251	House Contract CO. Co. Mo.	3027	Quar
1252	Romber Haterater 1a Pp. 7a Au	3028	Hum
1252	Control President Ad Poliziti Ad	3020	Hola
E 1264	Casino (Patton Hill) Cu. No. (W 45)	3025	Walk
1255	Ening Res Creek Au	3030	**air
1256	Trudi Cru Ma		
1257	Hout Country and the	3031	Biver
1258	Hawk Creek (Albion) Au	3032	Texa
1250	Toomite A	3033	Hvde
1260	Kingdike Celd Ceme (Research Cent), Musice Cent	3034	Norti
.200	Nondike Gold Camp (Bonanza Creek, Hunker Creek,	3035	Con
1261	Claymore Creek-Discovery Creek Au	3036	Shai
1262	Moosehorn Range (Dea, Lori) Au. (Ag. Pb. Zn)	3037	Salm
1263	Jove (Son) U	3038	Berg
1264	Mosquito Creek, Connaught, Butler, Ad. Physical	3039	Grou
1265	Clear Creek Adus Sm	3040	Main
1266	East Ridge, Barney Ridge, Sn. W. (Cu. Pb. Zn.	3041	Cast
1267	EPD Sh W An	3042	Tavir
1268	Johnson Creek (Minto Lake) Au	3043	Snin
1269	Scheelite Dome 📣 Shi, Ala Cua	3044	Red
1270	Lone Star, Electra to Dome, Buckland, A. 15	2045	Chir
	•		• • •

	C	Magnesite	Gypsum-Anhydrite	Na	Cr	Asbestos	Fe	L	Sn	Be	Nb Ta U	×	Ba	П	g	Hg	Jade	Ag (Pb Zn Cu Au)	Au Ag or Ag Au	Au (Ag)	Pb Zn Ag (Cu Au)	Zn	Pb Zn	Cu Ni or Ni Cu	Cu Zn (Pb Au Ag)	Mo	Cu Mo (Au Ag)	Cu (Au Ag)	COMMODITIES (MINOR CONSTITUENTS IN PARENTHESES)	
	-0-					\$ -		•�-	-0-	\diamond		-0-	\$		-(:)-			-[]-		-0-	\diamond	-::)-:	\diamond				•	-0-	vein and shear-zone fillings	
	Ő		\gg			0			þ		Ø	Q									\gg			\Diamond		þ	\diamond	Q	stockworks, including porphyry deposits	
								¢	ф	¢		-\$								¢.	¢				\diamond	¢		þ	skarn deposits	
	X				X		×	X									Х							X	•	Ï		¤	magmatic and irregular massive deposits	DEPO
	¢	¢	¢	¢.			•				¢		\$					ф			¢	¢	¢	¢	¢			þ	stratabound deposits, including sedimentary and volcanic types	SIT
	9										·																	Ŷ	sandstone or redbed deposits	TYPE
	٩																				7								laterite (deposits formed by surficial chemical + concentration)	
	•										Ø									<u>с</u>									placers (deposits formed by surficial mechanical concentration)	
1100-1	0	\diamond	\diamond		٠	٥		\diamond	c	\diamond		0	٩	٩	۵	0			♢	0	ר \		\diamond		\diamond		\diamond	0	type not determined	

LANCOL

0⁴⁴

87.2

2500 -