YUKON MINING INCENTIVES PROGRAM
FINAL WORK REPORT FIR 1995
GRANT ND. 95-045
KLONDIKE PLATEAU - YUKロN
LOVETT HILL PRDPERTY
HAWK CLAIMS 1 TD 15
YUKON QUARTZ MINERAL CLAIMS
DAWSON MINING DISTRICT, Y.T.
NTS SHEET 116-B-3
LAT 64 O1N AND LONG 139 21° W
YUKON TERRITORY
BY
WAYNE HAWKES
HAWK MINING COMPANY
BDX 371
DAWSON CITY, YUKON
FEBRUARY 22, 1996

TABLE OF CONTENTS

INTRODUCTION PAGE 1
GENERAL LDCATION \& ACCESS
GENERAL GEOLOGY
ROCK TYPES
GEDLDGY MAP
PROJECT PERSDNNEL
TRENCHING
PAGES 10 \& 11
DAY WORKED TRENCHING PAGE 12
TRENCH LOCATION MAP PAGE 13
PHOTOS PAGE 14
DRILLING
PAGES $15,16,17$
DAYS WORKED DRILLING PAGE 18
DRILL HOLE LOCATION MAP PAGE 19
PHOTOS PAGE 20
DRILL LOGS PAGES 21, 22
ASSAYS PAGES 23,24,25
RECOMMENDATIONS PAGE 26

INTRODUCTION

The subject property is comprised of 15 full mineral claims located in the Dawson Mining District, Yukon Territory. The claims are owned by Mr. Wayne Hawkes. The work program was started in May 1995 and completed in November 1995 for Grant Number 94-045.

general location and access

The Lovett Hill property is situated in the Klondike region in west-central Yukon Territory, Canada; approximately five kilometers southeast of the city of Dawson. It is located on the east side of Bonanza Creek, two kilometers south of its confluence with the Klondike River. It's geographic coordinates are 64 01' North latitude by 139 21, West longitude (N.T.S. $116 \mathrm{~B} / 3$).

The city of Dawson is readily accessible via the all-weather, paved Highway No. 2 from the territorial capital city of Whitehorse in southcentral Yukon Territory. It is approximately 535 kilometers (333 miles) by road from Whitehorse to Dawson. Alternatively, there are regularly scheduled commercial flights by two airline companies from Whitehorse to Dawson, and connecting air services to southern Canada from Whitehorse.

The property is readily accessible by two and four-wheel drive vehicles via Highway No. 2 southeastward from the city of Dawson. Approximately 4 kilometers from Dawson, near the confluence of Bonanza Creek with the Klondike

River, a gravel, all-weather road leads southeastward along the eastern side of Bonanza Creek which services placer gold operations along its tributaries. Highway No. 2 passes north of the northern property boundary, but the Bonanza Creek road crosses through the HAWK 1 and 15 and the westernmost Dawson claims. In addition, there are numerous seasonal gravel roads within the claim holdings, especially along the Bonanza Creek valley, that provide four-wheel vehicle access to most areas of exploration interests.

The country rocks of the k londike district have been grouped chronologically into six major lithologic units which are, in decreasing age, middle and upper Paleozoic Nasina Series, Klondike Series (Klondike Schist) and utramafic intrusives, late Cretaceous to early Tertiary volcanic and volcaniclastic rocks, and late Tertiary intrusives.

All rocks have undergone upper greenschist to middle amphibolite grade metamorphism and at least four separate deformational events. The contact between the basal schist of the Klondike Series and graphitic schist of the Nasina Series is sheared. In addition, discordant bedding and cleavage in the underlying Nasina Series rocks suggests that the contact is a low angle thrust fault.

The property is underlain by foliated, dark grey to black carbonaceous quartz-muscovite (sericite, chlorite) schist and carbonaceous quartzite: correclative with the older carbonaceous rocks of the middle Paleozoic Nasina Series.

The carbonaceous schistose rocks are locally intruded by a small utramafic sill or stock, and by much younger diabase and plagioclase-phyric dykes emplaced along northwesterly, northerly and northeasterly fault structure.

- LEGEND -

EARLY TERTIARY TO QUATERNARY
DD dark brown-grey to black diabase and/or plagıoclase-phync dyke
LATE CRETACEOUS TO EARLY TERTIARY

11 INTERMEDIATE INTRUSIVE AND VOLCANIC ROCKS, AND ASSOCIATED SEDIMENTARY ROCKS:

11a massive dark grey weathering intrusive andesite 11a massive chocolate brown weathering extrusive andesite
11a andesitic lapilli tuff
11a siltstone, greywacke, and conglomerate
F1 FELSIC INTRUSIVE AND VOLCANIC ROCKS:
F1a light-coloured quartz-feldspar rhyolite porphyry
F1b tan-coloured latite and biotite-quartz latite porphyry
F1c latitic lapilli tuff

LATE CRETACEOUS

ROCKS OF VARYING METAMORPHIC GRADE AND DEGREE OF DEFORMATION
FELSIC PLUTONIC ROCKS:
FP foliated equigranular biotite granodiorite
INTERMEDIATE PLUTONIC ROCKS:
IP strongly foliated chlorite metadionte
MAFIC PLUTONIC ROCKS:
MP weakly to strongly foliated amphibolite

MIDDLE AND UPPER PALEOZOIC
MV MAFIC METAVOLCANIC ROCKS:
MVa andesitic tuff
MVb massive andesitic greenstone
MVC foliated andesitic greenstone
Unit MV may in part be
correlative with Unit MS

- LEGEND -

MS MAFIC SCHISTOSE ROCKS:
MSa light to medium green and buff weathering quartz-chlorite schist to gneiss
MSb dark green weathering chlorite schist
MSC silvery green weathering actinolite-chlorite schist
MSd grey-brown weathering quartz-amphibole schist

UMa	massive dark green serpentinite foliated serpentinite
UMb	
UMc	foliated weakly altered serpentinite, with or without chrysotile veinlets
UMd	foliated strongly altered serpentinite, including talc schist and listwanite
UMe	coarsely crystalline white marble

KLONDIKE SERIES

QSa blocky weathenng light grey to pinkish grey feldspar-quartz schist
QSb buff to pale green weathering well foliated muscovite-feldsparquartz schist with quartz and feldspar porphyroclasts, and lithic fragments
QSc buff weathering well foliated muscovite-feldspar-quartz-schist with quartz porphyroclasts
QSd buff weathering well foliated muscovite-feldspar-quartz-schist
QSe light green weathering hormblende-muscovite-feldspar-quartz schist
QSf silvery-grey weathering sericite-quartz schist
QSg buff to khaki weathering massive muscovite-feldspar-quartz cataclasite
QSh pink and green banded muscovite-feldspar-quartz gneiss QSi white to dark grey weathering well foliated feldspar-quartz mylonite with quartz porphyroclasts

NASINA SERIES

CARBONACEOUS SCHISTOSE ROCKS:
CSa massive to foliated dark grey to black carbonaceous quartzite and quartz-muscovite schist
csb black carbonaceous marble
Geology by R.L. Debicki, K.J. Grapes and L. Walton, 1983 and Geological Survey of Canada Open File 1927, 1988

PROJECT PERSONNEL

WAYNE HAWKES DAWSON CITY, Y.T. PROSPECTOR CAT OPERATOR DRILLER
LUCAS HAWKES DAWSON CITY Y.T. CAT OPERATOR DRILLERS HELPER
ROSE DEMARCD MEDICINE HAT, AB. PROSPECTOR
DALE LEYTON DAWSON CITY Y.T. DRILLERS HELPER

TRENCHING

The D8K cat with ripper was walked up to the property Lovett Gulch, on June 4, 1995. Work was started on the main trench. This area is where a northwesterly trenching epithermal quartz vein intercepts a graphite fault running north and south down Bonanza Creek. My son, Lucas Hawkes, and myself did all the cat work. A large amount of gravel was excavated from this area. The gravel was moved to expose the bedrock in this area as I wanted to drill where the epithermal vein intercepted the graphite fault. Approximately 90 hours cat time was done on this area. The gravel here was 20 feet deep. The area exposed was 200 feet long and 100 feet wide. This main trench located at the inner boundary of claim No. 161 and claim No. 162 at
the southern end of the above claims.
To the left of the main trench, approximately 300 feet, the epithermal vein was exposed across a small gully for approximately 200 feet. Cat time on this area was 20 hours. Another trench was excavated on the hill side across the small gully. This is where the Broggio shaft is situated. It was apparently dug 1480 feet through the bedrock. A trench was dug behind the shaft entrance to

Abstract

see if access into the shaft was possible. Upon excavation it was found that the shaft was filled in with tailings. Time spent on this area was approximately 10 hours. To the right of the main trench, approximately 200 feet, where the graphite fault is exposed, four cross trenches were dug to expose the graphite fault on the hill side. These trenches were tiered up and down the hill side above Lovett Gulch. These trenches ran east and west. Approximately 50 hours cat time was spent. Two more trenches were excavated in late October, 1995. Dne was across Lovett Gulch on claim No. 1GO. Approximately 14 hours cat time was spent on this trench. It was excavated north and south on the hill side. This trench is 100 feet l ong by 15 feet wide by 6 feet deep. The last trench was excavated on claim No. 157 where there was a chromium out-crop which was found while prospecting. This trench was 100 feet 1 ong by 15 feet wide by 6 feet deep. Approximately 14 hours cat time was spent on this trench.

DAYS WORKED WITH CAT

JUNE		1995	10	HOURS	CAT
JUNE		1995	10	HOURS	CAT
JUNE	8,	1995	10	HIURS	CAT
JUNE	9,	1995	10	HOURS	CAT
JUNE	10,	1995	10	HaURS	CAT
JUNE	11,	1995	10	HOURS	CAT
JUNE	14,	1995	10	HOURS	CAT
JUNE	15,	1995	6	HDURS	CAT
JUNE	16,	1995	10	HOURS	CAT
JUNE	17,	1995	4	HOURS	CAT
JUNE	18,	1995	10	HOURS	CAT
JUNE	20,	1995	8	HOURS	CAT
JUNE	22,	1995	10	HOURS	CAT
JUNE	24,	1995	10	HOURS	CAT
OCT	15,	1995	8	HOURS	CAT
OCT	16,	1995	6	HOURS	CAT
OCT	21,	1995	8	HOURS	CAT
OCT	22,	1995	6	HOURS	CAT

BROG610 SHAFT ENTERANCE

Main trench before excaution

DRILLING

Abstract

A rotary air truck mounted drill was used for drilling. This drill makes a 3 1/2 inch diameter hole. While drilling the cuttings are blown up the hole by air pressure into a sample catcher. Samples are then mixed and taken for assay every five feet. All holes were drilled vertical.

Holes No. 1 and No. 2 were drilled about 100 feet to the left of holes No. 3 and No. 4 which were drilled on the claim boundary between claim No. 160 and claim No. 161, approximately 400 feet from southern boundary. Holes No. 1 and No. 2 were drilled 70 feet deep, about 40 feet apart. Holes No. 1 and No. 2 were not assayed, being they were both on the southern side of the epithermal vein. Holes No. 3 and No. 4 were drilled where the epithermal vein intercepts the graphite fault. These holes were drilled about 30 feet apart and drilled to a depth of 40 feet.

Both these holes were assayed.

Holes No. 3 and No. 4 did not give any gold assays except 32 PPB in hole No. 3 from 5 to 10 feet. Hole No. 5 was drilled 100 feet to the left of hole No. 1 and No. 2. This was drilled down the epithermal vein to a depth of 30 feet at which time we drilled through the vein and into a diabase dyke losing air pressure. The epithermal vein is 4 feet wide with a diabase dyke on either side. Hole No. 5 had gold values from top to bottom. Holes No. 6, 7, and 8 were all shallow holes due to the looseness of the rock in this area. The holes would collapse. This area also kicked for gold. Notice the high numbers in B.A. Barium.

Holes No. 6, 7, and 8 were drilled across the graphite fault where the hill side was trenched in tiers. These holes were drilled about 30 feet apart on claim No. 162 southeastern end of claim approximately 300 feet from inner claim boundary.

Hole No. 6 was 15 feet deep. Hole No. 7 was 15 feet deep and Hole No. 8 was 10 feet deep.

Holes No. 6, 7 and 8, all kicked for gold.
Holes No. 9, 10 and 11 were drilled 200 feet north, about mid claim No. 162 about 40 feet apart in a 1 ine towards the north. These holes were not assayed. These holes were drilled to a depth of 70 feet.

Hole Na. 9 was in a diabase dyke, dark brown.
Hole No. 12 was drilled on the same tier as Hole No. 6,
7, and 8. This hole was drilled 60 feet to the right of
Hole No. 6. This hole was not assayed.
Hole No. 13 and 14 were drilled across the gully to the left of Hole No. 5, about 100 feet. The holes were 40 feet deep of which 35 feet were black muck and 5 feet green schist, whereby water was encountered, not assayed. These holes were drilled approximately 30 feet apart in the gully.

DAYS WORKED DRILLING

MAY 28, 1995
MAY 29, 1995
JUNE 1, 1995
JUNE 2, 1995
JUNE 3, 1995
AUG 11, 1995
AUG 12, 1995
AUG 13, 1995
AUG 14, 1995
OCT 28, 1995
OCT 29, 1995

$\frac{\text { Drikhing nol and no 4. EPITHERMAL VEIN intersects }}{\text { Graphite faunt. Main trench after excauation. }}$

Date: OCT $15 / 45$ Time: \qquad Driller: IU/AYNE HAWKES Helper: DÂLE LAyTON Type of Drill: ROTACY AIR \qquad Inside Diameter of Drill: $3 \frac{1}{2} \quad$ wi CH. Location: LOU,TT GuLcH BONANZALease or Grant Numbers: HAWK 13 -14 (Y A88155-VA851.56) TOTAL 655 FEET.

PLACER DRILL LOG

activation LABORATORIES LTD

WAYNE HAWKES

819 BALMORAL ST., S.E. MEDICINE HAT, ALBERTA T1A OW6

Invoice No.:
9283
Work Order:
9387
Invoice Date: 06-DEC-95
Date Submitted: 14-NOV-95
Your Reference: LOVETT
Account Number: W004

CERTIFICATE OF ANALYSIS

INAA package; elements and detection limits:

AU	5.	PPB	AG	5.	PPM	AS	2.	PPM	BA	100.	PPM
BR	1.	PPM	CA	1.	\%	CO	5.	PPM	CR	10.	PPM
CS	2.	PPM	FE	0.02	$\%$	HF	1.	PPM	HG	1.	PPM
IR	5.	PPB	MO	5.	PPM	NA	500.	PPM	NI	50.	PPM
RB	30.	PPM	SB	0.2	PPM	SC	0.1	PPM	SE	5.	PPM
SN	0.01	\%	SR	0.05	\%	TA	1.	PPM	TH	0.5	PPM
U	0.5	PPM	W	4.	PPM	ZN	50.	PPM	IH	1.	PPM
CE	3.	PPM	ND	5.	PPM	SM	0.1	PPM	EU	0.2	PPM
TB	0.5	PPM	YB	0.05	PPM	LU	0.05	PPM			

Sample description	$\begin{array}{r} \text { AU } \\ \mathbf{P P B} \end{array}$	$\begin{array}{r} \mathbf{A G} \\ \mathbf{P P M} \end{array}$	$\begin{gathered} \text { AS } \\ \text { PPH } \end{gathered}$	$\begin{array}{r} \mathbf{B A} \\ \mathbf{P P M} \end{array}$	$\begin{gathered} \text { BR } \\ \text { PPM } \end{gathered}$	CA	$\begin{array}{r} \text { CO } \\ \mathbf{P P M} \end{array}$	$\begin{array}{r} \mathbf{C R} \\ \mathbf{P P M} \end{array}$	$\underset{\text { PPM }}{\text { CS }}$	${ }^{\mathbf{F E}}$	$\begin{gathered} \mathbf{H F} \\ \mathbf{P P N} \end{gathered}$	$\begin{array}{r} \text { HG } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { IR } \\ \text { PPB } \end{array}$	$\begin{array}{r} \text { Mo } \\ \mathbf{P P M} \end{array}$	${ }^{\text {NA }}$	$\begin{gathered} \text { NI } \\ \text { PPR } \end{gathered}$	$\begin{array}{r} \text { RB } \\ \mathbf{P P M} \end{array}$	$\begin{array}{r} \mathbf{S B} \\ \mathbf{P P M} \end{array}$	$\begin{array}{r} \mathbf{s C} \\ \mathbf{P P M} \end{array}$	$\begin{array}{r} \mathbf{8 E} \\ \mathbf{P P H} \end{array}$	${ }_{8}^{\text {EN }}$	sR	$\begin{array}{r} \text { TA } \\ \text { PPH } \end{array}$	$\begin{array}{r} \mathbf{T H} \\ \mathbf{p P M} \end{array}$
958 0-5	7	<5	14	4600	<1	<1	<5	75	5	0.80	2	<1	<5	<5	0.16	<50	65	3.5	8.5	<5	<0.01	<0.05	<1	4.6
958 5-10	7	<5	10	4100	<1	<1	<5	61	5	0.73	2	<1	<5	<5	0.05	<50	62	2.0	7.1	<5	<0.01	<0.05	<1	4.5
958 10-15	<5	<5	14	5500	<1	<1	<5	77	7	1.79	3	<1	<5	<5	0.07	<50	97	1.8	9.0	<5	<0.01	<0.05	<1	7.8
957 0-5	<5	13	10	1500	<1	<1	10	32	3	2.45	2	<1	<5	<5	0.82	<50	44	3.2	10	<5	<0.01	<0.05	<1	5.2
957 5-10	9	9	23	4300	<1	<1	<	73	6	1.50	3	<1	<5	<5	0.37	<50	85	4.1	9.6	<5	<0.01	<0.05	<1	6.4
957 10-15	5	<	34	6400	<1	<1	<5	99	7	1.54	3	<1	<5	<5	0.21	< 50	110	5.4	11	<5	<0.01	<0.05	<1	6.1
956 0-5	5	<5	28	2200	<1	<1	15	95	4	4.88	5	<1	<5	<5	0.99	<50	60	4.3	18	<5	<0.01	0.05	<1	6.0
956 5-10	<5	<	55	4000	<1	<1	7	61	7	3.43	3	<1	<5	22	0.12	<50	65	25	23	<5	<0.01	<0.05	<1	7.2
$9550-5$	57	<5	58	960	<1	<1	<5	<10	7	1.44	4	<1	<5	<	0.04	<50	110	5.6	8.6	<5	<0.01	<0.05	<1	8.4
955 5-10	96	<5	65	850	≤ 1	<1	<5	<10	7	1.48	4	<1	<5	<5	0.03	<50	100	4.1	8.9	<5	<0.01	<0.05	<1	8.8
955 10-15	62	<5	72	650	<1	<1	<5	<10	6	1.45	4	<1	<5	<5	0.03	<50	100	2.5	7.1	<5	<0.01	<0.05	<1	8.3
955 15-20	19	<	34	710	<1	<1	<	<10	5	1.45	3	<1	<5	<5	0.03	<50	100	1.6	6.9	<5	<0.01	<0.05	<1	11
955 20-25	59	<5	61	820	<1	<1	<5	<10	6	1.47	5	<1	<5	<5	0.03	<50	100	1.7	7.7	<5	<0.01	<0.05	<1	10
955 25-30	40	<5	54	770	<1	<1	<	<10	6	1.65	5	<1	<5	<5	0.03	<50	110	1.6	8.2	<5	<0.01	<0.05	2	8.6
954 0-5	<5	<5	69	1000	<1	<1	<5	<10	7	2.49	5	<1	<5	< 5	0.07	<50	91	1.9	9.9	<5	<0.01	<0.05	<1	12
954 5-10	<5	<5	31	890	<1	<1	<5	<10	7	1.60	5	<1	<5	<5	0.08	<50	85	1.2	9.1	<5	<0.01	<0.05	2	9.6
954 10-15	<5	<5	41	790	<1	<1	<	<10	6	1.95	5	<1	<5	<5	0.07	<50	96	1.1	9.5	<5	<0.01	<0.05	<1	11
954 15-20	<5	<5	100	690	<1	<1	<5	<10	5	1.31	3	<1	<5	<5	0.04	<50	75	2.4	8.6	<5	<0.01	<0.05	<1	8.0
954 20-25	<5	<5	31	940	<1	<1	<5	<10	6	1.55	5	<1	<5	<5	0.06	<50	74	1.2	9.4	<5	<0.01	<0.05	1	10
954 25-30	<5	<5	29	950	<1	<1	<5	<10	6	2.65	5	<1	<5	<5	0.12	<50	90	1.1	12	<5	<0.01	<0.05	<1	11
954 30-35	<5	<5	35	1500	<1	<1	<	<10	4	2.18	5	<1	<5	<5	1.43	<50	76	0.9	9.7	<5	<0.01	<0.05	<1	11
954 35-40	<5	<5	25	1700	<1	<1	<5	<10	4	1.79	6	<1	<5	<5	1.69	<50	110	0.8	11	<5	<0.01	<0.05	<1	10
953 0-5	<5	<5	56	960	<1	<1	<5	<10	6	1.39	5	<1	<5	<5	0.08	<50	95	1.7	9.0	<5	<0.01	<0.05	1	8.1
953 5-10	32	<5	100	810	<1	<1	<5	<10	5	1.29	5	<1	<5	<	0.07	<50	76	3.6	8.5	<5	<0.01	<0.05	<1	8.5
953 10-15	<5	<5	100	990	<1	<1	<5	<10	6	1.59	6	<1	<5	<5	0.06	<50	110	2.7	11	<5	<0.01	<0.05	<1	12
953 15-20	<5	<5	30	1100	<1	<1	<5	<10	5	1.40	5	<1	<5	<	0.67	<50	110	1.0	8.8	<5	<0.01	<0.05	<1	9.1
953 20-25	<5	<5	33	1100	<1	<1	<5	<10	6	1.77	6	<1	<5	<	0.27	<50	120	1.2	11	<5	<0.01	<0.05	<1	10
953 25-30	<5	<5	20	1000	<1	<1	<5	<10	6	1.51	6	<1	<5	<5	0.04	<50	130	1.0	11	<5	<0.01	<0.05	<1	11
953 30-35	<5	<5	49	980	<1	<1	<	<10	7	1.59	6	<1	<5	<5	0.05	<50	98	1.3	11	<5	<0.01	<0.05	1	11
953 35-40	<5	<5	27	1400	<1	<1	<5	<10	6	2.15	5	<1	<5	<5	0.06	<50	78	1.4	10	<5	<0.01	<0.05	<1	11

Sample description	$\underset{\mathrm{PPM}}{\mathbf{U}}$	$\stackrel{\mathbf{N}}{\mathbf{p P M}}$	$\begin{array}{r} \mathbf{2 N} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { LA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { CE } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { ND } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { SM } \\ \mathbf{P P M} \end{array}$	$\begin{array}{r} \text { EU } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { TB } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathbf{Y B} \\ \mathbf{P P M} \end{array}$	$\underset{\text { PPM }}{\mathbf{L U}}$	Mass g
958 0-5	1.5	6	<50	19	31	14	2.2	0.5	<0.5	2.0	0.37	44.43
958 5-10	<0.5	<4	<50	16	27	10	1.9	0.4	<0.5	1.4	0.30	42.90
958 10-15	<0.5	6	<50	28	45	18	3.2	0.7	<0.5	2.0	0.35	39.63
957 0-5	3.4	11	52	22	40	18	3.5	0.8	<0.5	2.5	0.42	34.14
957 5-10	2.0	9	53	24	42	11	3.0	0.7	<0.5	2.2	0.41	41.46
957 10-15	2.0	13	<50	25	40	15	2.9	0.7	<0.5	2.4	0.41	42.03
956 0-5	6.0	<4	121	30	58	32	5.5	1.5	0.9	3.7	0.72	31.54
956 5-10	10	10	<50	25	45	19	2.9	0.6	<0.5	1.9	0.38	32.26
$9550-5$	1.6	9	52	30	52	21	3.6	0.7	<0.5	1.7	0.31	38.56
955 5-10	2.4	6	57	29	49	16	3.3	0.6	<0.5	2.0	0.37	43.65
955 10-15	2.9	10	79	28	50	21	3.7	0.8	<0.5	2.3	0.41	42.58
955 15-20	2.4	15	63	37	66	23	4.6	1.0	<0.5	3.2	0.59	42.63
955 20-25	1.9	11	54	36	65	24	4.3	0.9	<0.5	3.2	0.56	40.35
955 25-30	2.1	7	66	31	54	18	3.6	0.7	<0.5	2.8	0.51	41.79
954 0-5	2.8	12	65	31	55	23	3.5	0.7	<0.5	2.1	0.38	39.22
954 5-10	1.8	8	<50	33	54	24	3.6	0.8	<0.5	2.1	0.37	43.84
954 10-15	2.1	8	<50	35	60	22	3.8	0.8	<0.5	2.3	0.36	45.11
954 15-20	0.8	12	52	32	51	22	4.0	0.8	0.6	1.9	0.39	44.60
954 20-25	1.5	7	57	36	61	23	3.9	0.7	<0.5	2.2	0.40	41.35
954 25-30	2.5	5	91	38	71	29	5.1	1.2	<0.5	2.6	0.51	37.90
954 30-35	2.5	7	<50	34	55	24	4.2	0.9	<0.5	2.2	0.38	44.26
954 35-40	2.3	8	<50	31	51	20	4.1	0.9	<0.5	2.0	0.35	40.52
953 0-5	1.6	7	<50	38	64	24	3.8	0.7	<0.5	2.0	0.35	42.52
953 5-10	<0.5	8	<50	32	57	23	3.8	0.8	<0.5	1.9	0.35	42.85
953 10-15	2.3	10	50	41	74	26	4.7	0.9	<0.5	2.2	0.40	42.66
953 15-20	2.1	5	<50	32	56	28	4.2	1.0	<0.5	1.7	0.35	47.38
953 20-25	2.6	6	<50	35	60	27	4.8	1.1	0.8	2.1	0.44	43.78
953 25-30	2.1	9	64	39	67	26	5.2	1.0	<0.5	2.7	0.47	49.07
953 30-35	3.3	8	<50	39	68	30	4.8	1.1	0.7	2.6	0.44	47.83
953 35-40	3.4	7	130	37	66	23	4.9	1.1	0.8	3.2	0.53	47.53

RECOMMENDATIONS

With the cross trenching of the graphite fault a mafic porphyry was uncovered. This intrusion had a 4 foot graphite cap over top of it. Upon trenching this was exposed. It is apparent that from the drilling results gold is found in this area where Holes No. 6, 7, and 8 were drilled.

There is also gold in the epithermal vein. From these findings it is recommended that more trenching, drilling and assaying be done in this area.

It is also found that the trench excavated across Lovett Gulch on'claim No. 16O, the same mafic porphyry was found. This area also warrants more trenching, drilling and assaying. It is also recommended that more drilling and assaying be done on claim No. 157 where the chromium outcrop was trenched.

