1995 PROSPECTING PROGRAM

Gordon MacKay

February 13, 1996

95-054

TABLE OF CONTENTS

Summary

Table of Contents

1995 Prospecting Program Quartz Creek South Slavin Mt. Adney West Hart Lomond	1 1 2 3 4
Rock Sample Reports Quartz Creek South Slavin / Mt. Adney West Hart Lomond	5 5 6 7
Sample Location Maps South Slavin / Mt. Adney West Hart Lomond	9 10 11
Analytical Results	12
Diary of Activities	20
Final Submission Form	23

1995 Prospecting Program

QUARTZ CREEK

Target

Follow-up of anomalous gold geochem in Quartz Creek (115 O/14, O/15) reported in *Fine Sediment Sampling for Gold - An Orientation Survey in Yukon* (MacKay, 1994)

Access

Quartz Creek drains to the southwest from King Solomon's Dome and can be accessed from the Klondike highway up Hunker Creek or up Bonanza Creek

Program

Three samples were collected, one rock sample and two stream sediment samples. The rock sample was collected from float in the stream, while the two sediment samples were collected from the east and west branches of Quartz. Creek at the headwaters

Results

The rock sample, pervasively altered quartz mica schist, returned no anomalous values. Stream sediment sample F144502 was collected from the east most branch and returned 67ppb gold, which is very similar to the original 1994 sample. Further work on this target will be concentrated further up this branch and should consist of contour soil sampling at two levels. Assessment of the areas very difficult land status should proceed further work.

Samples and Locations

R144501 UTM NAD83 Zone 7 7081190mN 598245mE + or - 10m F144502 UTM NAD83 Zone 7, 7081375mN 598460mE + or - 10m F144503 UTM NAD83 Zone 7, 7081500mN 598380mE + or - 10m.

SOUTH SLAVIN

Target

Follow-up of a sediment sample collected by the National Geochemical Reconnaissance Survey (sample 1111) The sample reported 2750ppm Zn, 180ppm Ni, and 39ppm Mo, suggesting a potential for sediment hosted nickel mineralization

Access

Access is from the Dempster Highway.

Program

The program consisted of prospecting and collection of two sediment samples for fine fraction separation and analysis, and two rock samples

Results

Prospecting noted pyrobitumen veins in the anomalous drainage however no mineralization was identified in the fairly good exposures. The fine fraction sample collected in the anomalous drainage confirmed the anomaly returning 3765ppm Zn, 375ppm Ni, and 1 6ppm Ag. Prospecting also uncovered a sample of pervasively altered volcanic which did not return anomalous values

Samples

R144504, R144507, F144505, F144506 (see sample location map)

MT. ADNEY

Target

Pervasive phyllic and silica alteration of intermediate to mafic volcanic has been previously identified in float along the west side of the Dempster Highway north of Northfork Pass. Although no precious metal values have been associated with this material the intensity of alteration suggests the potential for significant mineralization

Access

Access is along the Dempster Highway between Chapman Lake and Northfork Pass

Program

The program consisted of prospecting along the Dempster Highway upice toward Northfork Pass to identify a source for the altered material

Results

A promising source was located on the south side of Mt Adney, however all samples returned negligible precious metal values

Samples

R144508, R144513, R144514, F144509, F144510, F144511, F144512, F144515, F144516, F144517 (see sample location map)

1

WEST HART

Target

National Geochemical Reconnaissance Sampling identified an area of anomalous gold, copper, mercury, and silver in stream sediments draining an area which could be interpreted as a circular structure between the West Hart River and Char Creek (116 A/12) The goal of this project was to trace the anomalous geochem to its source

Access

While the old Hart River Mine road passes just to the south of the target area the road in this area is impassable and access was by helicopter from Hart Pass (116 B/9) near the eastern end of the drivable portion of the old road. A camp was established near the top of a north flowing creek approximately in the middle of the target area.

Program

The program consisted of prospecting supported by ridge-line soil geochemistry and fine fraction stream sediment sampling

Results

Stream sediment sampling was able to reproduce the weak NGR anomalies, however the highest gold value was only 40ppb Values from 11 rock samples collected were all low

The geology consists of a very dry looking chert and argillite sequence with minor carbonate which appears to be repeated by south dipping low angle faults. Ridge-line geochemistry was concentrated across these grafitic fault structures and returned highly anomalous values 290ppb gold and 3 7ppm silver, with mercury values as high as 1700ppb. While no mineralization was seen most metal values are elevated with copper as high as 766ppm

Samples

Rock samples: R144518 - 521, R144551, 552, 554, 556 - 559.

Soil samples: S144522 - 525, 553, 555

Soil Lines WH Ridge 10150N - 10250N, 10600N, East Ridge 4150E - 4400E

Sediment samples: F144526 - 529

See sample location map

Lomond

Target

Anomalous stream sediment geochemistry outlines an area of potential sedimentary nickel mineralization between Lomond Creek and Char Creek (116 A/12).

Access

Access is by helicopter off the old Hart River Mine road east of the Dempster Highway A fly camp was established near the head waters of a south draining stream about half way between Char Creek and Lomond Creek

Program

The approach for this target involved prospecting and reconnaissance scale mapping to attempt to locate stratigraphy analogous to the Nick basin. The area has very little exposure and what exposure there is is dominated by paleozoic intermediate to mafic volcanics.

Results

A recent flood event associated with some collapsing permafrost scoured out the south draining stream which our camp was located. This scouring exposed a contorted black argillite unit containing limestone concretions up to 15m across. Further down stream on the east side a small stream draining to the west was found to have a showing containing fine bands of disseminated sulfides and pyrite concretions. A sample of the pyrite concretion returned 168ppb palladium. Fine fraction stream sediment sampling confirmed the anomalous geochemistry and returned high values of 9504ppm Zn, 1724ppm Ni, 2.9ppm Ag, and trace values of gold, platinum, and palladium.

Samples

Rock samples. R144562, 564 - 568, 570 - 572.

Soil sample S144569

Fine sediment samples: F144530 - 535, 560, 561, 563.

See sample location map

Rock Sample Reports for Dempster Prospecting Project

Quartz Creek

R144501

Pervasively altered and iron stained quartz-mica schist. Collected from Quartz Creek 115 O/14

South Slavin / Mt. Adney

R144504

Orange weathering altered volcanic hairline black stringers in a grey and white mottled fresh surface. Minor disseminated pyrite. Orange weathering rind has a strong reaction to dilute HCl. Sample was collected from a small drainage south of Slavin Creek.

R144507

Black shale with stringers of sphalerite?, or pyrobitumen? Collected from drainage anomalous in nickel south of Slavin Creek

R144508

Same as 504 except this sample has an extensive silica stockwork Collected from float in Wildhorse Creek

R144513

Similar to 504/508, finer grained, tuff? Fresh surface is weakly reactive to dilute HCl, orange weathering rind is strongly reactive. Knots of dark silver grey sulfide locally associated with electric green mineral common in altered and mineralized volcanics and high level intrusives. Collected from stream draining southeast flank of Mt. Adney.

R144514

Light and dark orange and grey weathering volcanic conglomerate or breccia. Dark grey to white on fresh surface. Some grey clasts contain upto 10% disseminated pyrite while matrix contains 2-3%. Weathered surface is irregular showing conglomerate or breccia protolith. Collected from stream draining southeast flank of Mt. Adney.

. /

West Hart

R144518

Float sample of a carbonate horizon. Recrystalized and quartz veined Collected from falls above the camp on Camp Creek

R144519

Carbonate rich cemented breccia Dark brown/orange iron carbonate weathering, dark blue matrix with white fragments on fresh surface Minor disseminated sulfides and quartz veining Collected from float in Camp Creek upstream from the falls.

R144520

Bleached and silicified fault breccia, white and grey weathered surface, white/brown/tan/grey fresh surface Carbonate reaction along fracture surfaces Collected from Camp Creek above the falls

R144521

White quartz breccia. Collected from the same location as 520

R144551

Rusty weathering dark green shale, 2-5% disseminated sulfides in a very fine matrix. Shale is exposed in subcrop for 5m along the ridge and is bounded on the north by Mn stained shale. Collected ~100m north of Posts 1 & 2 for claims FIRST 3 & 4.

R144552

Brecciated cherty shale White ppt, rusty, green, and grey cherty fragments Fericrete cemented Collected from site of FIRST 3-4

R144554

Fractured and weakly mineralized chert. Light grey to white weathered surface with some iron staining. Fresh surface is dark grey with iron staining on fracture surfaces ~1% disseminated sulfides with one high reflectance gold coloured grain noted (see lookee loo) Collected from 5m east of 554

R144556

Brecciated and resilicified grey chert. Possible fine disseminated grey sulfides. Collected from claim line ridge.

R144557

Black graphitic argillite with iron staining and minor quartz. Collected from claim line ridge east of the main peak

R144558

Mottled black and grey shale. 10 to 15% pyrite disseminated in clots. Collected from north-south slope west of Camp Creek.

R144559

Light grey chert with black argillite breccia fragments. ~2% disseminated pyrite coarse and fine. Translucent green patches in the chert. Collected on east facing slope to Camp Creek near thrust fault contact.

LOMOND

R144562

1cm sulfide horizon in black graphitic shale Collected from outcrop south of the junction on East Getty Creek

R144564

Bright orange weathering carbonate breccia Grey matrix with white and black angular fragments, minor quartz veins and pyrite. Occurs in association with volcanic units near the peak east of camp

R144565

Fericrete cemented black argillite Collected from the south side of Pyrite ball Creek upstream from the pyrite ball occurrence. Local outcrop is distorted wavy argillite similar to pyrite ball unit.

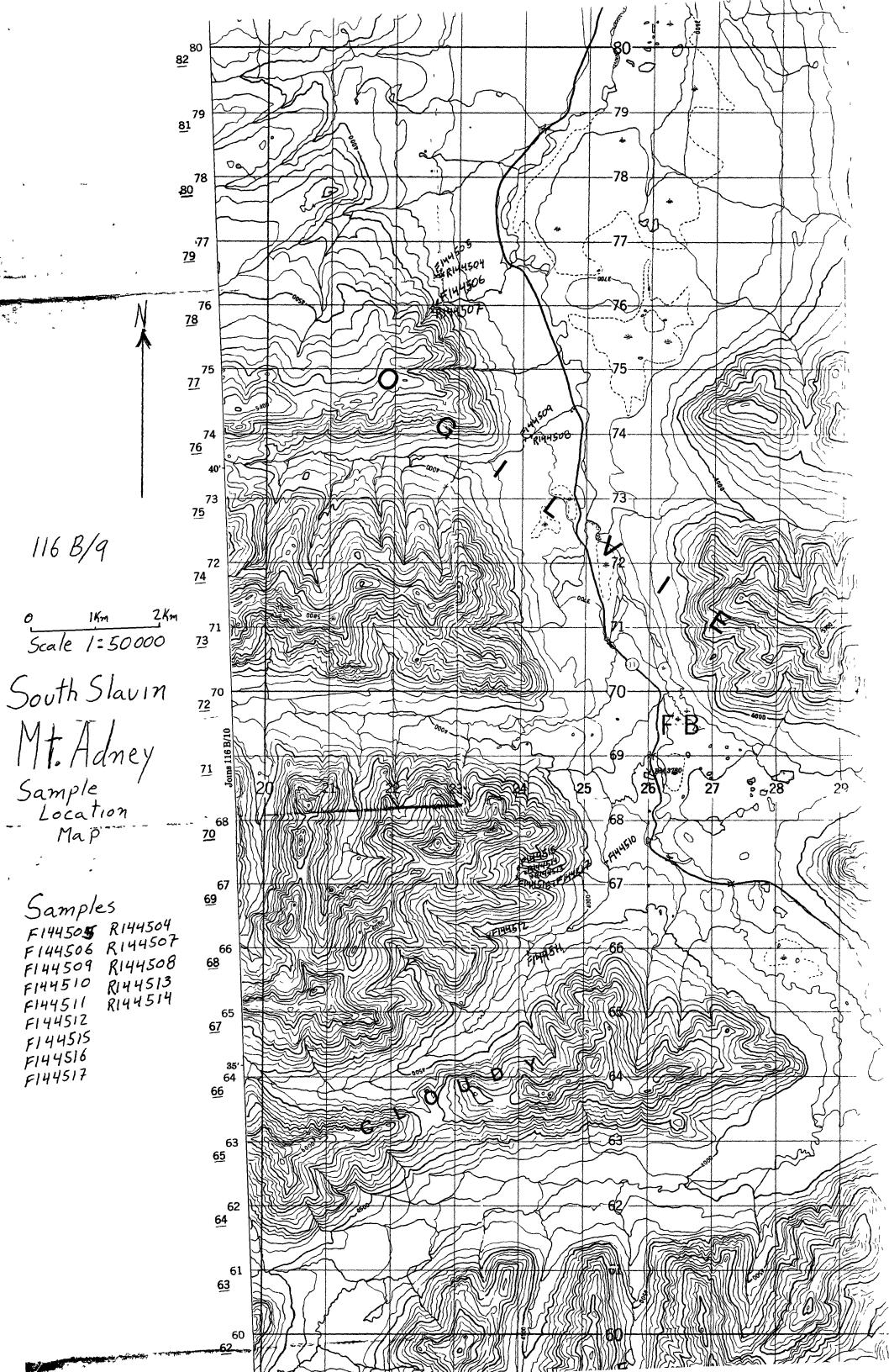
R144566

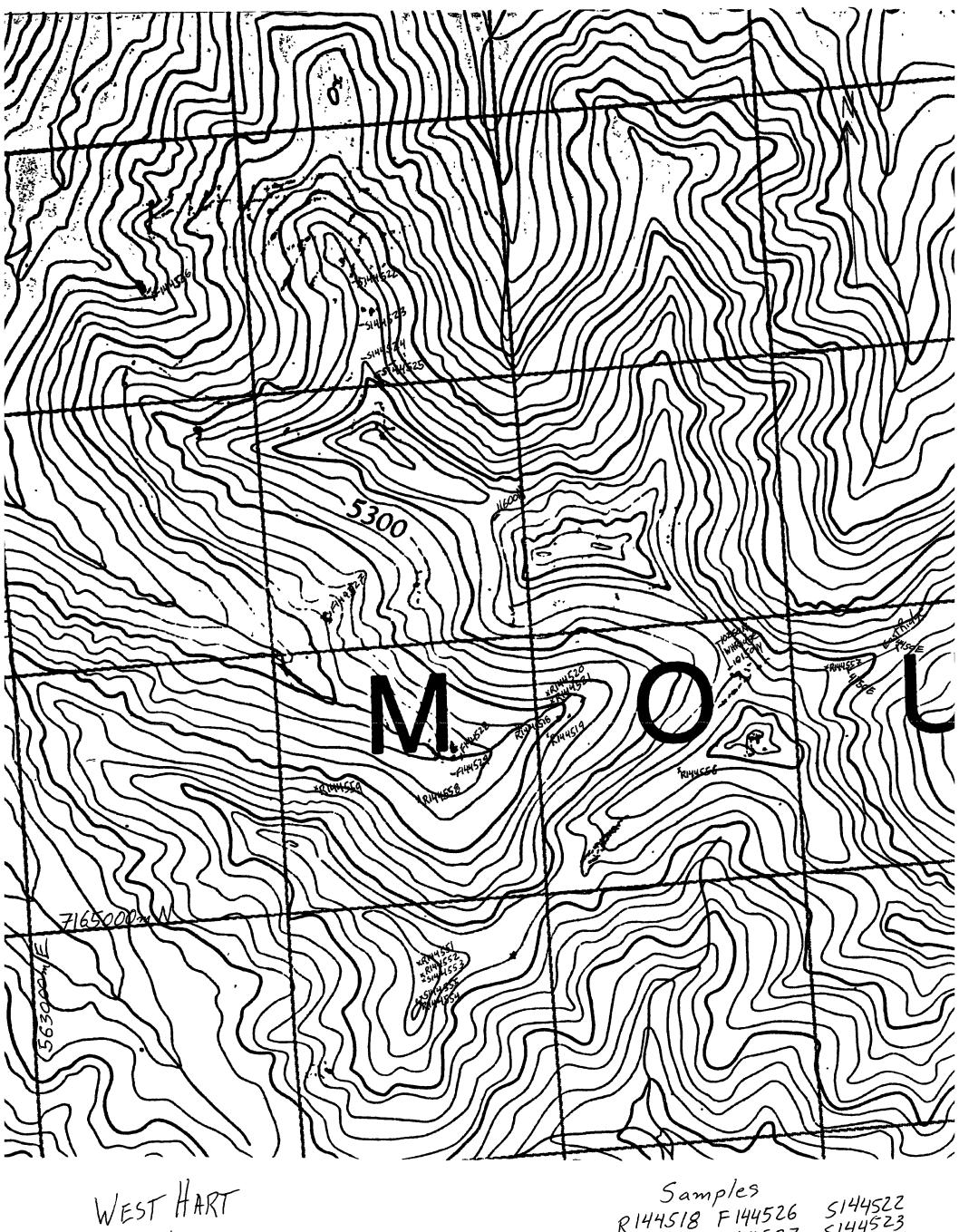
Three centimeter wide pyrite horizon in weakly calcareous wavy distorted shale. Collected 5m up section from pyrite ball occurrence

R144567/R144568

Pyrite concretions in weakly calcareous distorted wavy black shale. R567 are soft and somewhat incompetent sulfide balls, while R568 are hard competent pyrite rich balls. Collected from a 3m exposed section alongside pyrite ball creek. A competent pyrite ball believed to have originated from this stream was found in the main drainage ~500m downstream from this occurrence.

R144570


Rusty weathering fine grained black siliceous silt stone. Fine disseminated sulfides? Collected from upstream end of kill zone in Orange Goo Creek. S144569 sample of orange goo and F533


R144571

Quartz float from Orange Goo Creek by Barite beds. Quartz carbonate vein contains black sulfide with associated green oxide mineral (nickel bloom?).

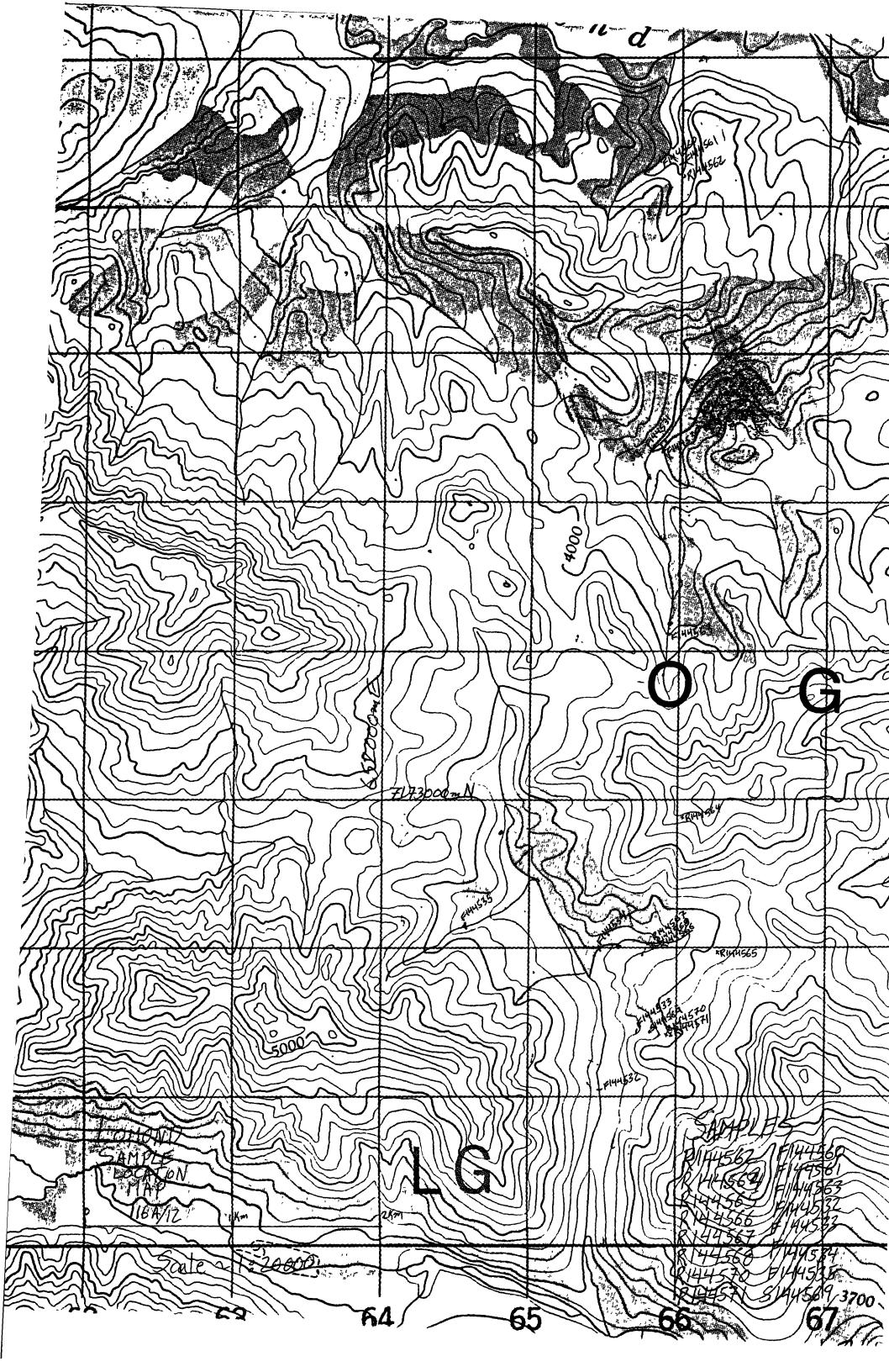
R144572

Similar to R570 collected from kill zone 5m up from barite beds.

WEST HART

Sample

Location


Map

116 A/12

Scale 21:12500

Samples
R144518 F144526 S144522
R144519 F144527 S144523
R144519 F144529 S144524
R144521 F144529 S144525
R144551 S144555

2Km R144552
R144554 Soil Lines
R144557
R144558 HHRidge
R144559 R144559
R144559

GEOCHEMICAL ANALYSIS CERTIFICATE

MacKay Falkiner & Associates File # 95-2380

13 Buttercup Place, Whitehorse YT Y1A 5V1

Page 1

																							-											
	SAMPLE#	Mo	Cu		Zn		Ni		Mn ppm			U ppm		Th com		Cd ppm			V	Ca %	P %	La ppm		•	8a ppm		B	Al %		K %	₩ /	Au*	Hg ppb	
		FF			FF		F-F	FF	FF		FF	FF	F F	FF	FF-111	FF			F-F				FF		P-F-		FF				F F		FF	
1	R144501	4	32	22	70	.8	29	9	1086	4.24	<2	<5	<2	4	24	.4	<2	<2	42	.22	.070	23	19	1.31	152	.02	<3	1.40	.03	.09	<2	3	20	
	R144504	11	39	<3	112	1.3	114	31	1964	9.97	<2	5	<2	3	926	1.4	<2	<2	113	6.83	.240	33	35	5.41	80<	.01	<3	1.02	.04	.02	<2	2	40	
	R144508	2	45	<3	48	.9	177	32	1217	6.62	7	< 5	< <u>2</u>	-	481	.4	<2		85	8.64	.137	14	110	5.56	42<	.01	3			.06	<2	1	20	
ļ	R144513	<1	16	33	61	.5	93	19	1656	7.04	153	<5	<2	<2	360	.5	<2	<2	17	12.29	.091	9	45	7.05	55<	.01	<3	.23	.01	. 15	<2	1	40	
	R144514	7	25	6	92	.8	7	9	2570	5.12	246	<5	<2	<2	849	.8	<2	2	38	15.41	.253	17	2	12.16	64<	-01	<3	.07	.03<	.01	<2	4	65	
Į	24/4540				70		25	-	2501	.	_				F70	_	_		_						704		_					_	45	
Ì	R144518	1	8	<3	30	<.3		_		3.78	•	<5	<2	_	539	.2	2	<2	_	9.70	.016	1		7.42			3		.02		_	1	15	
ì	R144519	<1	11	4	. 7	.5				5.37	. 6	<5	<2		603	.6	<2	<2	5	16.00	.004	1	2	12.00			<3		.01<.		<2	1	95	
	R144520	3	15	25	108		41			1.99	49	<5	<2		124	.6	<2	3	5	.71	.093	3	7	.15			5		<-01 .		<2	1	20	
ŀ	R144521	3	22	<3	11	<.3	12	2	1235	.89	4	<5	<2	<2	33	<.2	<2	<2	4	.94	.022	1	12	. 13	38<	.01	3	. 13	.01 .	02	2	3	10	
	R144551	1	214	31	74	.6	43	51	835·	5.44	27	<5	<2	5	19	.2	<2	3	48	.25	.025	19	38	1.00	64	.02	11	1.69	.01	35	<2	6	75	
	2444550		400		201	_	• • •	-,	/	- 74	24			-				_			***				401		_		••			_	400	
ļ	R144552	1	102	15			160	20		5.71	21	_	_	_		1.1	<2		69	4.20	.009	10	45				3		.01 .		<2	3	100	
	R144554	3	46	4		<.3		1		1.12	<2	<5	<2	<2		<.2	2	2	17	.10	-061	4	21		159<		5		:.01 .		2	15	90	
	R144556	6	9	10	-	<.3	11	2	487		18	<5	<2		178	<.2	<2	<2	7	1.05	.440	9	14		205<		8		.01 .		2	3	30	
	RE R144556	7	10	7		<.3	13	3	544	.99	19	<5	<2	<2	181	<.2	2	<2	7	1.05	.445	9	16		211<		9		.01 .		2	1	35	
	RRE R144556	6	9	10	8	<.3	11	3	509	.96	16	<5	<2	<2	186	<.2	2	2	7	1.08	.458	9	14	.10	217<	.01	8	.18	.01 .	80	2	1	35	
_																																		
	R144557	10	57	10	57	.6	16	1	77	3.07	6	7	<2	3	108	.2	<2	<2	53	.03	.053	11	29	.31	70<	.01	9	.78	.05 .	37	<2	11	400	
	R144558	13	109	11	35	.7	34	10	110	8.97	42	18	<2	3	520	.4	<2	<2	72	11.02	4.942	29	34	.96	23	.01	15	1.58	.02 .	74	<2	<1	180	
	R144559	3	17	6	11	<.3	20	13	569	1.02	14	<5	<2	<2	89	<.2	<2	2	10	.81	.311	7	16	.16	196<	.01	7	.26	.01 .	07	3	1	35	
	STANDARD C/AU-R	20	61	38	126	7.3	72	30	1132	3.91	45	19	7_	37	50	19.0	17	21	57	.49	.095	39	59		184		32		.06 .		10 4	90	2135	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1 TO P2 ROCK P3 TO P4 SOIL P5 TO P8 PULP AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

HG ANALYSIS BY FLAMELESS AA. Samples beginning 'RE' are Reruns and 'RRE' are Reject Repums.

DATE RECEIVED: JUL 18 2005 DATE REPORT MAILED:

SIGNED BYD. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

•

Page 2

Г	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	8 i	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	K	W	Au**	Pt**	Pd**	
		ppm	bbu	ppm	ppn	ppm	ppm	ppm	ppm	%	ppm	bbu	ppm	ppm	ppm	bb m	ppm	ppm	ppm	%	<u> </u>	ppm	bbu	%	ppm	_%	bbu	*	*	_ %_	bbw	ppb	bbp	ppb	
	R144507	49	38	E	202	_8	74	2	51	4 17	22	<5	<2	2	95	2 6	0	-2	1314	4.4	.067	7	E4	00	E47.	Δ4	47	,,	- 01	4/	•		-7	<3	
ļ				_				-4		1.13		_	_	2	85	2.5	•				•	(56		563<	-	13		.01		-2	8	<3	• • • • • • • • • • • • • • • • • • • •	
1	*** * ***	214	434	79		1.5		<1		19.69	212	9	<2	2	47	5.0		<2			.012	1	21	49			13		.01		<2	9	10	7	
j	R144564	<1	14	3	18	<.3		6	963	6.94	6	6	<2	<2	676	1.5	<2	<2	15		.033	7	9	7.76			<3	. 13	.01	.05	<2	2	<3	<3	
l	R144565	389	230	12	204	1.2	167	<1	30	28.03	98	<5	<2	7	74	3.0	11	<2	1074	.64	.239	11	24	.16	143<.	.01	5	.31	.01	.12	<2	3	<3	3	
	R144566	56	301	44	113	3	111	2	90	17.59	55	19	<2	4	115	2.5	19	<2	80	2.86	.068	3	16	1.38	4<.	.01	5	.34	.01	.13	<2	7	<3	<3	
		ĺ																																	
,	R144567	18	75	56	40	2.1	15	<1	14	18.34	47	<5	<2	<2	12	1.0	101	<2	107	.03	.002	1	10	.05	2<.	.01	12	.13<	.01	.08	<2	3	<3	168	
Į.	R144568	6	276	41	218	1.3	35	<1	52	18.10	75	<5	<2	<2	28	4.3	112	<2	48	.58	.007	<1	7	.09	2<.	.01	37	.08<	.01	.02	<2	2	<3	<3	
ļ	R144570	2	7	12	18	<.3	12	2	132	1.34	4	<5	<2	2	28	.3	2	<2	15	.22	.010	4	12	.12	63<.	.01	3	.34<	.01	.06	<2	8	<3	<3	
i	RE R144570	2	7	11	16	<.3	13	2	128	1.34	5	<5	<2	2	28	.3	<2	<2	15	.22	.011	4	12	.13	63<.	.01	3	.35<	.01	.07	2	8	<3	<3	
l	RRE R144570	2	7	10	18	<.3	12	2	131	1.31	5	<5	<2	2	27	.2	<2	<2	14	.21	-010	4	11	.12	62<.	.01	3	.34<	.01	.06	<2	8	<3	<3	
								_			-	_	_	_				_									_					-		_	
ŀ	R144571	20	5277	<3	5915	2.2	126	2	156	.49	81	<5	<2	<2	980	122.2	53	<2	1387	7.46	.013	5	30	.14	142<.	.01	3	.17	.01	.02	<2	20	<3	3	
l	R144572	2	30	22	53	<.3	13	2	155	1.60	5	<5	<2	2	7	.8	2	<2	13	.13	.007	4	13	-18	22<.	01	3	.44<	.01	-01	2	6	<3	<3	
İ	STANDARD C/FA-100S	20	61	40		6.9	76	32		3.91	43	16	7	34	47	19.0	18	17	61		.092	41	60			07	29	1.76			11	51	44	44	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AU** PT** & PD** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Page 3

SAMPLE#	Mo	Cu ppm			Ag ppm			Mn		As ppm	ppm U				Cd ppm		Bi ppm	ppm V	Ca %	P %	La ppm			Ba ppm	Ti % (B ppm	Al %	Na %	K %		Au* ppb	Hg ppb	
\$144522 \$144523 \$144524 \$144525	12 8 62	766 255 155	29 69 52	343 66 47		108 21 23	1 11 10 6	788	4.76 6.13 10.06 8.04		9 <5 <5 7	<2 <2 <2 <2		40	1.5 1.1 .5	<2 <2 6	<2 3 2	102 123	1.41 .03 .02	.063 .762 .064 .092	25 17	121 55 50	1.68 .84 .50	35 736< 478 20	.01 .05 .02	<3 2 6 1	.59 .22 .30	.01 .01 .08	.36 .34 .70	<2 <2	140 7 18	1230 205 225 810	
S144553 S144555 WH RIDGE 10150N WH RIDGE 10175N WH RIDGE 10200N WH RIDGE 10225N	9 10 10 4	205 234 156	26 31 32 33	124 160 113 147		36 68 42 45	7 2 18 7 5 25	56 918 545 198	3.41 4.74 5.36 4.84 6.64 8.23	54 22 29 28	5 5 7 5 5	<2 <2 <2 <2 <2	6	29 18 126 51 25 19	.5 .3 .9 .7 .6	2 3 2 3 6 9	<2 2 4	132 59 80	.01 .08 .01	.022 .036 .080 .052 .028	29 22 27 24	67 38 -	.30 .71 .45	391 282 135< 454 276 300	.01 .01 .01	7 1 9 1 10 1 9 2	.30 .75 .48	.03	.33 .43 .35	\$ \$\$\$\$\$	25 27	780 975 415 510 1190	
WH RIDGE 10250N WH RIDGE 11600N EAST RIDGE 4150E RE EAST RIDGE 4150E EAST RIDGE 4200E	3 12 14 14	277 97 129	40 14 31 31		1.4 .3 .9 1.0		17 : 8 2 2	2108 124 84 87	7.71 4.59 4.08 4.11		<5 5 10 11	<2	5 6	28	.7	<2 2 <2	3	95 86	.02 .41 .03	.076 .087 .063 .062			.77 .18 .32	276 75<, 48 50<,	.01 .01 .01	8 2	.12 .89 .19	.01 .03 .04	.23 .58 .59	_	71 9	100 720 1500 1160	
EAST RIDGE 4250E EAST RIDGE 4300E EAST RIDGE 4350E EAST RIDGE 4400E STANDARD C/AU-S	34	221	54 23 47	209 199 166 201 130	1.2 .8 2.4	73 73 30 41 73	59 4 9	488	5.23 6.54 7.17	28	<5 <5 8 <5	<2 <2	3 5 6	46 98 138 19 53 1	.8 .7 .5 .7	4	<2 <2	95 76 118 127 63	.08	.052 .115 .077 .044 .098	26 32 13 28 40	50 40	.72 .61 .62	405 459 29<. 206 188	.01 .01 .01	7 1	.99 .60 .94	.02 .09 .01	.33 .37 .17	<2		165 965 335	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

S144569

MacKay Falkiner & Associates FILE # 95-2380

Page 4

Mo Cu Pb Zn Ag Nî Co Mn Fe As U Au Th Sr Cd Sb Bî V Ca P La Cr Mg Ba Tî B Al Na K W Au** Pt** Pd** SAMPLE#

34 244 <3 947 <.3 130 <1 7 21.69 5 16 <2 <2 10 6.5 <2 <2 10 .10 .015 <1 20 .04 26<.01 <3 9.22<.01 .01 <2 6 <3 <3

Sample type: SOIL. AU** PT** & PD** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Page 5

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	ppm	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	ppm	Na	K	ppm	Au*	Hg
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	U	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	B A	%	%	W	ppb	ppb
CBREW-1 CBREW-2 CBREW-3 RE CBREW-3	4 3 2 2	26 22 21 20	11 14 9 10	276 190 154 148	.5 .3 <.3 .3	45 29 32 30	8 6 8 8		1.92 1.91 2.17 2.11	46 32 30 30	<5 <5 <5 <5	\$\$ \$\$ \$\$	3 5 6 6	69 60 62 61	2.2 1.3 .8 .7	19 16 8 8	<2 <2 <2 <2	45 45 52 50	.54 .71	.063 .069 .083 .081	23 24 29 29	37 29 36 36	.37 .35 .49 .47	686 701 593 578	.04 .06 .08	8 1.0 7 .9 4 1.2 6 1.1		.14 .14 .13	<2 <2 <2 2	23 12 15 13	215 205 90 90

Sample type: PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 6

						_																												_
SAMPLE#	Mo ppm p				_																		_								Au** I			
C144533	64 3	37	22 01	72	1 1	1805	425	6860	8 N1	20	10	<2	- 5	01	R1 1			5 /. 1	.60	nos	1/	54	41	412	01		Z 05	02	26	-2	4	7	7	
C144534																			11.37													3	3	
																			.49													<3	3	
C144563	31	46	<3 51	51	.6	490	50	2990	3.14	14	<5	<2	<2	442	71.8	2	<2 7	254	22.26	.056	1	59	.41	220	.01	10	.45	.01	.10	<2	5	<3	<3	.

Sample type: PULP.
AU** PT** & PD** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Page 7

	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Au*	Hg	
[ppm	%	ppm	ppm	ppm	ppm :	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	ppb								
		_																													_			
i	F144502	3	57		299				1218			_	<2	5	50	2.2	5	<2	56		.079			1.83		- : -		2.37		. 14	<2	65	180	
	RE F144502	4	58		298		59	20	1231			<5	<2	5	50	2.3	5	3	57		.080			1.84	307	.03		2.39		.14	<2	67	125	
J	F144503	3	72		462			21		4.53		<5	<2	5	63	3.8	3	<2	52	1.14	.084	25	93	2.28	341	.02		3.08		.17	<2	27	150	
	F14450 9	3	75	•	275		156	26		4.70	_	<5	<2	3	89	1.4	3	4		1.46				2.33			12	2.29	.03	-16	<2	13	145	
	F144510	2	55	37	264	.5	131	26	761	5.22	13	<5	<2	4	111	.5	3	<2	70	1.12	. 131	25	141	2.10	251	. 19	10	2.19	.03	.25	<2	6	95	
	F144511	2	62	34	251	.4	153	28	812	5.65	12	<5	<2	5	116	.8	3	2	72	1.13	. 136	25	164	2.37	257	.28	10	2.39	.03	.32	<2	4	65	
	F144512	2	55	53	288	.6	144	30	986	5.66	11	<5	<2	4	131	1.1	4	2	83	1.51	.168	33	169	2.32	263	.17	7	2.21	.04	.24	<2	8	115	
	F144515	3	87	206	320	1.6	183	43	1260	7.36	26	<5	<2	4	128	1.6	5	2	107	1.40	.201	43	181	2.29	274	.24	11	2.26	.03	.29	<2	14	175	
	F144516	4	61	59	231	.7	122	25	917	5.39	18	<5	<2	4	97	1.4	4	2	80	1.11	.131	33	146	1.58	249	.22	9	1.93	.03	.21	<2	4	90	
1	F144517	4	59	98	195	.8	110	25	926	5.32	22	<5	<2	4	109	1.2	4	2		1.15		33	124	1.49	223	.20	8	1.70	.03	.20	<2	4	125	
	F144526	11	147	25	215	.6	83	21	4680	4.29	27	<5	<2	<2 '	108	.7	2	<2	74	.47	. 192	26	108	.62	266	.02	8	1.68	.03	.38	<2	22	210	
	F144527	10	92	15	262	.7	64	10	657	2.98	16	<5	<2	<2	91	1.1	3	<2	68	.49	.148	23	89	.47	413	.02	9	1.53	.03	.35	<2	35	175	
	F144528	8	158	26	371	.9	146	23	4224	4.23	24	<5	<2	<2	78	2.7	3	<2	65	.41	_182	23	124	.60	494	.02	8	2.00	.03	.34	<2	19	240	
	F144529	11	151	25	282	1.0	81	16	1740	4.44	26	5	<2	<2 '	117	.9	5	<2	91	_43	.226	27		.58	283	.02	10	1,95	-04	.40	<2	22	265	
	FBREW-1		41		452			12	491			< 5			91	4.0	33	<2	54		.075		112		810	.02		1.35			<2		345	
			•				, ,				٠.	-	-	-	•	7.0	-	-		•••				. 45							-		045	
	FBREW-2	6	41	21	289	.7	88	11	351	2.77	71	<5	<2	5	88	2.2	27	<2	62	.66	-081	25	129	.43	952	-04	7	1.31	.02	- 18	<2	72	405	
-	FBREW-3	4	38	19	252	.5	73	14	688	3.23	79	< 5	<2		87	1.3	19	< <u>2</u>	71		.089	27			757			1.77			_		225	
	STANDARD C/AU-R	19	64		131		70	32	1019		44	18	7	_		18.0	17	21	60		.094	43			187			1.82			_	520		

Sample type: PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 8

ACRE ANALYTICAL																																	MUNE	AMALTI ICAL
SAMPLE#	Mo	Çu	Pb	, Z	n A	g	Ni	Co	Mn		As		Au		Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	B	AL	Na	K	W	Au**	Pt**	Pd**
	bbm	ppm	bbu) pp	w bb	m j	ppm	ppm	ppm	7%	ppm	ppm	ppm	bbw I	ppm	ppm	bbu	ppm	ppm	%	%	ppm	bbu	%	ppm	_ %	ppm	X	X	%	bb m	ppb	ppb	ppb
F144505 F144506 F144530 RE F144530	31 32 30	56 108 73 70	93 13 12	376 213 203	5 1.6 2 1.6 4 1.3	6 3	128 375 327 311	17 18 16 16	537 511 400 384	3.41 3.33 2.57 2.45	27 24 23	<5 <5	\$ \$ \$ \$ \$ \$	3 2 2 2 2 2	64 110 248 238	8.6 23.2 16.3 15.3	5 8 5 6		491 577 552	.94 5.12 4.94	.138 .131	34 23 20	131 98 93	1.15 1.09 1.15 1.09	408 367 349	.02 .02 .02	14 22 21	1.11 1.05	.02 .01 .01	.30 .23 .22	<2 <2 <2	35 10 7 7	उ उ उ	<3 6 4 3
F144531	21	88	9	341	0 1.	7 3	399	20	505	2.68	21	<5	<2	2 '	199	27.3	7	<2	489	4.69	.150	19	109	1.36	462	.02	18	1.14	.02	.24	<2	16	<3	3
F144532 F144533 F144534 F144535 F144560	46 48	87 308 64 188	22 11 20	441 950 279 367 344	4 1.4 4 1.5 7 2.8	4 17 5 4 8 4	434 421	18 16	722 5287 348 315 3320	3.12 8.35 1.79 2.97	24 25 29	<5 15 <5 22 110	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 2 <2		34.3 88.2 19.1 18.9 25.0	9 3 11 7 21	<2 3 <2 <2 3	677 188 594 554 410	4.56 .76 9.36 1.17	.089 .089 .190	13 15 26	83	1.36 .36 2.11 .67	318 384 93	.01 .01 .02	7 19 15	.79 1.42	.02 .01 .02		\$\$ \$\$ \$\$	12 13 7 19	4 <3 3 5 <3	4 3 4 12 <3
F 144360	244	231	,	344	9 1.1		404	171 .	3320	10.00	21	110	\2	•	DO	25.0	٤,	3	410	. 54	.361	y	כטו	.20	27	.01	2	0.43	.01	.07	\ Z	,	٠,	' '
F144561 F144563 Standard C/FA-100s	59	141 61 64	18 3 34	556 664 13		1 8	524 820 70		205 5312 1019	1.68 6.57 3.91	70 34 44	<5 <5 18	<2 <2 7	<2 3		34.1 100.6 18.0	20 6 17	<2 <2 21	1760 515 60	11.24		7	137 92 59		345	.02	11	1.22 .71 1.82	.01	.11	<2 <2 10	16 18 44	4 4 42	8 4 40

Sample type: PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AU** PT** & PD** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

1995 Yukon Mining Incentive Program - Grassroots

Diary of Activities

June 21

- Prepare maps and final targeting plans.
- Acquire copies of target area air photos

June 24

Purchase groceries and support supplies

June 26

- Drive to Dawson City
- Investigate Quartz Creek access 115 0/14, /15

June 27

- Prospect and sample along Quartz Creek 115 O/14, /15.
- Rock sample R144501 see attached rock sample descriptions.
- UTM NAD83 Zone 7
 7081190mN 598245mE + or 10m.
- Fine fraction stream sediment samples F144502, F144503
- UTM NAD83 Zone 7, 7081375mN 598460mE, 7081500mN 598380mE + or - 10m

June 28

- Prospect and sample south of Slavin Creek on the west side of the Dempster Highway (116 B/9).
- Rock samples R144504, R144507 see attached rock sample descriptions
- Fine Sediment samples F144505, F144506
- See attached map for sample locations

June 29

- Prospect along the east side of the Blackstone River for source of altered and silicified volcanics (116 B/9)
- Rock samples R144508, R144513, R144514 see attached rock sample descriptions
- Fine sediment samples F144509, F144510, F144511, F144512, F144515, F144516, F144517
- See attached map for sample locations

June 30

- Prospect between Char Creek and the West Hart River (116 A/12)
- Rock samples R144518, R144519 see attached rock sample descriptions.
- See attached map for sample locations

July 7

- Prospect and sample area between Lomond Creek and Char Creek 116
 A/12
- Rock samples R144564 R144568 see attached rock sample descriptions
- Fine Sediment Samples F144532 35
- See attached map for sample locations

July 8

- Prospect and sample area between Lomond Creek and Char Creek 116 A/12.
- Rock samples R144570 R144571 see attached rock sample descriptions.
- Soil Sample S144569
- See attached map for sample locations.

July 9

• Prospect area between Lomond Creek and Char Creek 116 A/12.

July 10

Drive to Whitehorse

July 11

• Process Fine sediment samples

July 12

Process Fine sediment samples

July 13

Process Fine sediment samples

July 17

Package and ship samples

YUKON MINING INCENTIVES PROGRAM

FINAL SUBMISSION FORM

INSTRUCTIONS: Please read the guidebook before completing form. Please type or print.

Submit completed form and summary or Technical Report by December 31 for the Grassroots prospecting and Grassroots Grubstake programs and by February 28 for the Target Evaluation programs to:

> Yukon Mining Incentives program **Economic Development** Government of the Yukon Box 2703, Whitehorse, Yukon, Y1A 2C6

TO BE COMPLETED OR TECHNICAL REP	AFTER PROJECT COMPLETION ORT	AND ACC	OMPANIED BY THE SUMMARY
Applicant <u>Gordo</u>	n MacKay	File Number	95-054
Proposed project area Attach list if space is in	(s) (NTS map no. and project name) sufficient.	completed?	
	1. 1150/14.0/15		No
2. <u>5.5/avin/1</u>	11 Adney 116B/9		No
3. West Hart	- 116 A/12	<i>Y</i>	No
4. Lomond	116 A/12		No
Changes to proposed Ouartz Cree	project(s) (if any). K was added.	- A	
	ersonnel that worked on the project Field Assistant.		
1. Project #1 area/nar			No of days worked by Applicant
Traditional prospecting	No of Samples		
Geological surveys	Scale		
Geophysical surveys	Type	7.0	<u> </u>
Geochemical surveys	Type Fine Fraction No of Samp	oles <u>Juli</u>	
Drilling	Type Ft./m.		
Trenching	Method		
Other	Туре		
	тот	ΓAL _	# 2 -

2. Project #2 area/na	ame South Slavin / Mt. Adney	No. of days worked by Applicant
Traditional prospecting	No of Samples 5 rock Sample	3
Geological surveys	Scale	
Geophysical surveys	Type	
Geochemical surveys	Type Fine Free hon No. of Samples 9	
Drilling	Type Ft./m	
Trenching	Method	
Other	Туре	
	TOTAL _	2
	nme West Hart. No of Samples 11 rock Sumples.	No. of days worked by Applicant
Geological surveys	Scale	
Geophysical surveys	Type	
Geochemical surveys		
Drilling	Type Ft./m	
Trenching	Method	
Other	Туре	
	TOTAL _	5
4 Project #4 area/na	ime Lomond.	No. of days worked by Applicant
	No. of Samples 8 rock.	
Geological surveys	Scale	(
Geophysical surveys	Type Soil No. of Samples 9	*
Geochemical surveys	Type <u>FF 3.//F</u> No. of Samples <u>9</u>	
Drilling	- Ft./iii	
Trenching	Method	
Other	Type	<u> </u>
	TOTAL _	
Sa .In	mple Processing the Field	3 days,

Project Area	New Showings and/or Anomalies	Commodity	Best Analyses
SouthSlavin West Hart Lomond	Fine Fraction Grachen Soil Geochem Fine Fraction Geoche	Au	148ppb Au over50m 9501ppm In, 1724ppm/li, 2.9ppm/l
III. CLAIMS STAKI	ED DURING/AFTER ACTIVIT		
Project Area	Claim Number	S	Number of Claim Units
			,
			,
IV. OPTION AGRE	EEMENTS RESULTING FRO	M YMIP PROJECT	(please complete)
Optionee	Property/Claim		Dollar Value of Work Component
Pre Init	ERAL EXPLORATION UNDE eliminary work on claims ital exploration vanced exploration velopment	RTAKEN (please	check one)
VI. VALUE OF GO	ODS AND SERVICES PURC	HASED (estimate	, please complete)
Within the Y	'ukon \$		
Outside the	Yukon \$		
VII. RESULTS OF	MINERAL EXPLORATION (F	please complete)	
The The	discovery of a new prospect. identification of a prospect wa identification of an economic identification of a deposit which	mineral deposit.	•

VIII. SUMMARY OF EXPENDITURES 1. Daily Living Expense Claimed Only by Individuals No. of days x YG rate/person, per day \$ _____ \$ ____ 2. Travel (state method: road, air, etc.) Truck - total km x YG rate/km \$ ______ Air \$ ___ 3. Analyses/Assay Costs \$ ______ \$ _____ 4. Equipment Rentals/Supplies (specify) 5. Contractors (state name and type of work) _____ 7. Geochemical Survey (specify sample type) 8. Geophysical Survey (specify type of survey) 9. Trenching (specify equipment used) _____ 10. Drilling (specify diamond, percussion or auger) No. of meters x Price per meter. 12. Other Expenses (specify, i.e. helpers)

,

TOTAL EXPENDITURES

Attach list if space is insufficient.

The Department of Economic Development may verify all statements related to and make herin this application.

- 1. I am the person, or the representative of the company or partnership, named in the Application for Contribution under the Yukon Mining Incentives Program.
- 2. I am a person who is nineteen years of age or older, or represent a person, who is ordinarily a resident of Canada.
- 3. I have complied with all the requirements of the said program.

4.	I hereby apply for the final payment of a contribution under the Yukon Mining Incentives Program
	(YMIP) and declare the information given above to be true and accurate.
	(YMIP) and declare the information given above to be true and accurate.

signature of Applicant Date March 1/96	
lame (print) Gadan Machael.	_
Position or Title (if applicable)	_