REPORT ON GEOPHYSICAL SURVEYS AND DIAMOND DRILLING ON GMS GROUP OF CLAIMS WATSON LAKE MINING DISTRICT YUKON TERRITORY, CANADA
 March-April, 1996

for

Minfocus International Inc.

NTS 105/A2, 105/A6, 105/A7
LAT: $61^{\circ} 15^{\prime} \mathrm{N}$ LONG: $129^{\circ} 0^{\prime} \mathrm{W}$

Yukon Mining Incentıves Desıgnation \#96-008
G. Harper, Ph. D., P. Eng.

GAMAH INTERNATIONAL LIMITED
Suite 707, 1243 Islington Avenue
Toronto, Canada, M8X 1 Y9

TABLE OF CONTENTS

1 Summary Page 1
2 Introduction Page 1
3 Property and Location Page 1
4 Previous Work Page 6
5 Summary of Work Completed in 1995/96 Program Page 6
6 Regional Geology Page 8
7 Geophysical Work Page 9
Magnetometer Survey - Methodology Page 9
Magnetometer Survey - Results Page 9
Electromagnetic Survey - Methodology Page 10
Electromagnetic Survey - Results Page 10
8 Diamond Drilling Page 13
Operational Procedure Page 13 Interpretation of Results Page 14
9 Conclusions and Recommendations Page 18
10 Statement of Qualifications Page 19
11 Personnel and Contractors Employed Page 21
12 Statement of Costs Page 22
13 References Page 23
Figures

Fig. 1 General location of GMS and TOM claims in the Watson Page 4 Lake area, Yukon.

Fig. 2 GMS and TOM Claims Plan, extracted from Claim Maps
105-A2, A3, A6 \& A7
Fig. 3 Conductors and Anomalies

Fig. 4 GMS-TOM Claims Detail of 1996 Field Work
Page 11
Fig. 5 Cross-section showing Diamond Drill Hole GMS 96-01
Page 15 along GMS 2760 N Line

Fig. 6 Cross-section showing Diamond Drill Hole GMS 96-02 along Glimmer 24 N Line

Fig. 7 Schematic Composite Cross Section showing Preliminary Page 16 Interpretation

Page 17

Tables
Table 1 Summary of GMS Claims Information
Table 2 Summary of TOM Claims Information Page 3

APPENDIX A

Geographical Profiles along lines: $\quad 27200$ N
27450 N
27650 N
27800 N
28000 N
28000 N (repeat)
28200 N
28350 N
28350 N (repeat)
28600 N
28800 N
29000 N
29200 N
29200 N (repeat)
29600 N
30000 N
30400 N
30800 N
Glimmer 24 N

APPENDIX B

Assay Certificates: CanTech Laboratories Inc.
Chauncey Assay Laboratories Ltd.
X-Ray Assay Laboratories

APPENDIX C

Diamond Drill Logs
GMS 96-01
GMS 96-02

GAMAH INTERNATIONAL LIMITED

1 SUMMARY

Airborne magnetic and electromagnetic surveys and ground gravity surveys in 1980-1983, followed up by a ground Max-Min EM survey in 1990, indicated a conductor recommended for drill testing on the GMS claims. In late 1995 and early 1996 the claim block was surveyed with ground magnetics and VLF-EM and a search made for the earlier established grid to allow location of conductors and suitable drill targets. In 1995-96, 18 lines were cut and flagged for a total of $19,385 \mathrm{~m}$, of which $16,185 \mathrm{~m}$ in 16 lines were surveyed by VLF-EM, then three were resurveyed by VLF-EM using a different frequency station signal. Magnetometer surveying covered $8,275 \mathrm{~m}$ along 10 of the new lines and one line was resurveyed. A total of 398 m of diamond drilling in 3 holes was completed in March - April 1996. After logging, core was sampled and assayed. No economic mineralization was discovered.

2 INTRODUCTION

Winters are long and bitter in Yukon but unlike the Northwest Territories, there is some respite from the weather when a Chinook blows in as was the case in March 1996, when the temperatures warmed up sufficiently around Watson lake, Yukon, where the property is located, for an adequate water supply to be established to allow this drilling to be undertaken. Winter was selected as the preferred time for drilling so that access to the drill sites would be over snow and frozen ground and therefore problems of crossing and damaging wetland areas would not be an issue.

There are power, utilities, and a serviced airport at the town of Watson Lake, 28 km by a good all-season dirt road, the Robert Campbell Highway, to the southeast of the GMS Claims. Watson Lake in turn is connected by the paved Alaska highway to Fort Nelson, B.C. (520 km) and Whitehorse, Y.T. (450 km)

Field operations were headquartered in Watson Lake as it has accommodation, communications and all consumables likely to be needed could be obtained there. Apart from the community, the area is largely uninhabited.

3 PROPERTY AND LOCATION

The property comprises 52 contiguous claims, GMS 1-15 and 17-21 and TOM 1-32. The GMS claims are immediately east of the Robert Campbell Highway from 27 to 32 km north from Watson Lake. They straddle the boundaries of $1: 50,000$ topographic and claim map sheets NTS 105/A2, 16 and A7, with the majority of the property being on A2 and A7. The TOM claims lie immediately west of the GMS claims.

Access is excellent along the Robert Campbell Highway, which is paved for the first 10 kilometres north from Watson Lake and thereafter a well maintained, all weather, gravel topped road. Kilometre marker posts are located at most individual kilometre distances. See Figures 1 and 2.

Details of record numbers and anniversary dates of the claims are given in Table 1 and 2. The GMS claims are all registered in the name of Glimmer Resources Inc. In October 1995, Glimmer Resources Inc. and Minfocus International Inc. entered an agreement whereby Minfocus, by making certain expenditures on the GMS Claims property could eam a joint venture interest in the property. The work
described in this report has been undertaken by Minfocus in partial fulfilment of the agreement conditions.

Table 1. Summary of GMS Claims Information

Claim Name	Grant Number	Registered Owner	$\begin{aligned} & \text { Anniversary } \\ & \text { Date } \\ & \hline \end{aligned}$	NTS (Claim Sheet \#)
GMS 1	YB15898	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 2	YB15899	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 3	YB15900	Glimmer Resources İnc.	96/08/11	105-A-02
GMS 4	YB15901	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 5	YB15902	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 6	YB15903	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 7	YB15904	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 8	YB15905	Glimmer Resources Inc.	96/08/11	105-A-02 \& A-07
GMS 9	YB15906	Glimmer Resources Inc.	96/08/11	105-A-02 \& A-07
GMS 10	YB15907	Glimmer Resources Inc.	96/08/11	105-A-07
GMS 11	YB15908	Glimmer Resources Inc.	96/08/11	105-A-07
GMS 12	YB15909	Glimmer Resources Inc.	96/08/11	105-A-07
GMS 13	YB15910	Glimmer Resources Inc	96/08/11	105-A-07
GMS 14	YB15911	Glimmer Resources Inc.	96/08/11	105-A-07
GMS 15	YB15912	Glimmer Resources Inc.	96/08/11	105-A-07
GMS 17	YB15837	Glimmer Resources Inc.	96/08/11	105-A-02
GMS 18	YB15838	Glimmer Resources Inc.	96/08/11	105-A-02, A-06 \& A-07
GMS 19	YB15839	Glimmer Resources Inc.	96/08/11	105-A-06 \& A-07
GMS 20	YB15840	Glimmer Resources Inc.	96/08/11	105-A-06 \& A-07
GMS 21	YB15841	Glimmer Resources Inc.	96/08/11	105-A-06 \& A-07

After agreement was reached between Glimmer Resources Inc. and Minfocus International Inc., Minfocus arranged for the staking of an additional 32 claims, the TOM \#1-32 claims, contiguous with and to the west of the GMS claims as geophysical evidence suggested a west dip to the conductive target. Details of the TOM claims are given in Table 2. The registration date of the TOM claims is in December 1995 and apart from one day of geophysical work undertaken in October 1995, all other work described in this report was undertaken after January 15th 1996.

Table 2. Summary of TOM Claims Information

Claim Name	$\begin{aligned} & \text { Grant } \\ & \text { Number } \\ & \hline \end{aligned}$	Registered Owner	Anniversary Date	$\begin{aligned} & \text { NTS } \\ & \text { (Claim Sheet \#) } \end{aligned}$
TOM 1	YB71276	Minfocus International Incorporated	96/12/14	105-A-06
TOM 2	YB71277	Minfocus International Incorporated	96/12/14	105-A-06
TOM 3	YB71278	Minfocus International Incorporated	96/12/14	105-A-06
TOM 4	YB71279	Minfocus Internatıonal Incorporated	96/12/14	105-A-06
TOM 5	YB71280	Minfocus International Incorporated	96/12/14	105-A-06
TOM 6	YB71281	Minfocus International Incorporated	96/12/14	105-A-06
TOM 7	YB71282	Minfocus International Incorporated	96/12/14	105-A-06
TOM 8	YB71283	Minfocus International Incorporated	96/12/14	105-A-06
TOM 9	YB71284	Minfocus International Incorporated	96/12/14	105-A-06
TOM 10	YB71285	Minfocus International Incorporated	96/12/14	105-A-03 105-A-06
TOM 11	YB71286	Minfocus International Incorporated	96/12/14	105-A-02 105-A-03
TOM 12	YB71287	Minfocus International Incorporated	96/12/14	105-A-03
TOM 13	YB71288	Minfocus International Incorporated	96/12/14	105-A-02 105-A-03
TOM 14	YB71289	Minfocus International Incorporated	96/12/14	105-A-03
TOM 15	YB71290	Minfocus International Incorporated	96/12/14	105-A-02 105-A-03
TOM 16	YB71291	Minfocus International Incorporated	96/12/14	105-A-03
TOM 17	YB71292	Minfocus International Incorporated	96/12/14	105-A-02 105-A-03
TOM 18	YB71293	Minfocus International Incorporated	96/12/14	105-A-03
TOM 19	YB71294	Minfocus International Incorporated	96/12/14	105-A-02 105-A-03
TOM 20	YB71295	Minfocus International Incorporated	96/12/14	105-A-03
TOM 21	YB71296	Minfocus International Incorporated	96/12/14	105-A-02 105-A-03
TOM 22	YB71297	Minfocus International Incorporated	96/12/14	105-A-03
TOM 23	YB71298	Minfocus International Incorporated	96/12/14	105-A-02
TOM 24	YB71299	Minfocus International Incorporated	96/12/14	105-A-02
TOM 25	YB71300	Minfocus International Incorporated	96/12/14	105-A-02
TOM 26	YB71301	Minfocus International Incorporated	96/12/14	105-A-02
TOM 27	YB71302	Minfocus International Incorporated	96/12/14	105-A-02
TOM 28	YB71303	Minfocus Internatıonal Incorporated	96/12/14	105-A-02
TOM 29	YB71304	Minfocus International Incorporated	96/12/14	105-A-02
TOM 30	YB71305	Minfocus Intermational Incorporated	96/12/14	105-A-02
TOM 31	YB71306	Minfocus International Incorporated	96/12/14	105-A-02
TOM 32	YB71307	Minfocus International Incorporated	96/12/14	105-A-02

Fig. 1. General Location of GMS and TOM claims in the Watson Lake area, Yukon.

Fig. 2. GMS \& TOM Claims Plan, extracted from Claim Maps 105-A2, A3, A6 and A7

GAMAH INTERNATIONAL LIMITED

4 PREVIOUS WORK

Attention was drawn to this area and the property first staked to protect geophysical conductors revealed during an extensive investigation in 1981, when an airborne Questor Mark VI Input survey was flown regionally; 1982, when geochemical and some scattered ground based Shootback EM, VLF-EM, magnetometer, gravity geophysical surveys were completed. In 1990 a Max-Min EM ground survey was done. This latest survey by Kent (1990) indicates a strong electromagnetic anomaly, suggestive to the author of massive to nearly massive sulphides, dipping about 60 degrees to the west, at a depth of 150 feet $(45 \mathrm{~m})$. The map which accompanies the report shows the survey to have been on approximately east-west lines spaced at 400 foot intervals, with the strongest portion of the anomaly to be on line 28 N in the case of the 444 mega Hertz response and on Line 24 N for the 1777 mega Hertz frequency response. It should be noted that there is a gap in line coverage from immediately north of 28 N to 37 N due to the presence of a pond. The survey did not define the full length of the conductor. The grid is keyed in to Kilometre 28 Post on the Highway. (The map is stated as having a scale of 1" = 100" but all other labelling on the map suggests a scale of $1 "=200^{\prime}$, which latter has been assumed to be the case in this report)

Comparison of the plotted position of the 1981 airborne Input EM anomaly with the gravity anomaly and the 1990 Max-Min anomaly does not indicate perfect coincidence of each of the conductors and anomalies. The Max-Min anomaly is apparently slightly to the west of the airborne and gravity features. Figure 3 gives a summary of the position of various conductors and anomalies detected during the surveys and protected by claims of Glimmer Resources Inc. and Minfocus International Inc.

5 SUMMARY OF WORK COMPLETED IN 1995/96 PROGRAM

After a single day visit in fall 1995, when a short ground VLF-EM traverse was made, the existing airborne and ground geophysical maps of the claims were studied, prior to a March-April survey with ground VLF-EM and Magnetometer units, aimed at relocating the previously indicated conductors, and to choose drill targets. Using the Robert Campbell Highway as baseline, traverse lines at 400 m intervals were cut, blazed and flagged every 50 m . These were tied in by GPS ("Global Positioning System" a satellite based navigation system available in small handheld instruments) at endpoints, or as dictated by local geography. Where circumstances demanded, and as time allowed, certain infill lines at 200 m intervals were flagged, again at 50 m intervals. During the course of this grid establishment several of the old lines dating from the 1990 survey were discovered; and in one case (28 N) legible pickets; and tied in to the new grid which is oriented with a 25° angular offset (Old Grid lines are oriented on a true bearing of 085° and the New Grid lines are oriented at 060°). Total length of lines cut, blazed and flagged was 19,385 metres in 18 lines. Of these, 16 lines ($16,185 \mathrm{~m}$) were surveyed with VLF-EM and 3 then resurveyed $(3,200 \mathrm{~m})$ using different stations for the VLF-EM. Ten lines $(8,275 \mathrm{~m})$ were surveyed by magnetometer and 1 line (500 m) resurveyed by magnetometer to attempt to get better results.

Lines in the new grid are numbered according to the distance from Watson Lake of the start point of the line on the Robert Campbell Highway, using the 28 km beacon as base. Hence, line 29200 N starts from the highway at a point $1,200 \mathrm{~m}$ north of the 28 km beacon; i.e. 29.2 km from Watson Lake. Line 27450 N starts from the highway at a point 550 m south of the 28 km beacon; i.e. 27.45 km from Watson Lake.

MINFOCUS INTERNATIONAL INC.
CONDUCTORS AND ANOMALIES

Some discrepancies occur - for example, certain lines cross, and certain lines, put in from east to west, are numbered according to where they were expected to connect to the highway, not according to where they actually connected.

The geophysical work was designed to confirm and relocate the previous geophysical surveys and on the basis thereof, to site diamond drill holes to investigate the nature of the conductors indicated. Three diamond drill holes, totalling 398m were completed in April of 1996.

Dr. Gerald Harper, President of Minfocus International Inc. of Toronto, Ontario, was overall project manager and administrator while field work was undertaken by consulting geologist Dr. Adrian Mann of Ruthrie Enterprises Ltd. of Calgary, Alberta. He was assisted in geophysical surveys by Mr. M. Mann, also of Calgary, Alberta, and personnel of Thronduik Engineering \& Consulting of Watson Lake, Yukon after they had completed line cutting, blazing and flagging.

Drill site access trail construction and diamond drilling were undertaken by D J Drilling Ltd. of Watson lake, Yukon. Trail clean up after completion of drilling was undertaken by George Millen of Watson Lake, Yukon. Analyses of drill core samples were performed by CanTech Laboratories of Alberta, Chauncey Assay Laboratories Ltd. and X-Ray Assay Laboratories, both of Toronto, Ontario. Drill core is presently stored at the D J Drilling Ltd. yard in Watson Lake, Yukon.

6 REGIONAL GEOLOGY

The Geological Survey of Canada mapped the area in 1966 (Gabrielse, 1966), which map is published as a $1: 250,000$ scale black line print, without accompanying memoir. He interpreted the area to be underlain by sedimentary rocks of Mississippian and/or Devonian age, although he did show considerable areas in the vicinity of Watson Lake to be obscured by recent cover. The extent of Pleistocene and recent cover is attested to by Klassen and Morison (1981) who mapped the surficial geology. Subsequent work to the north suggested that the age of the rocks was more likely to be Pennsylvanian to Permian and that the this assemblage formed part of an allocthonous package thrust on top of older rocks from the west. A Geological Compilation Map of the southeastern Yukon, compiled by H. Gabrielse, D.H. TempelmanKluit, S.L. Blusson, and R.B. Campbell (1977) at a scale of $1: 1,000,000$ reflects the most recent interpretation and age relationships. Figure 1 includes a summary outline of the major geologic elements taken from Gabrielse et al (1977) map.

Figure 1 also shows the important mineral deposits known in the district. Further to the northwest are the several lead, zinc, silver deposits of the Faro district which have been described by Jennings and Jilson (1983) and the Ketza River gold deposit which was in production in the late 1980s. Immediately to the south in northern British Columbia is the Midway lead, zinc, silver deposit of Regional Resources, which has been bulk sampled by underground development but not yet committed to production.

7 GEOPHYSICAL WORK

MAGNETOMETER SURVEY - Methodology

This survey used a Scintrex Mark II proton magnetometer. Readings were taken at 2.5 m above snow level ($\pm 4.0 \mathrm{~m}$ total above ground level) in duplicate or triplicate at 10 m or 25 m intervals along the flagged lines. Where rapid rates of change with distance were detected, the interval was cut to 5 m , and traverse direction was reversed temporarily to repeat a portion of the line. When fluctuations of readings occurred in one location, the readings were repeated until a ± 3 gamma reproducibility was achieved. When this was not achieved in 10 repetitions, the magnetometer traverse was abandoned, for repetition on another day. As a matter of course, repeat readings were taken at 1 minute intervals at roughly 500 m intervals, to check for diurnal fluctuations. Where practical, traverses were "jimmy" closed, by merely returning to one or more points near start of the traverse at a later time of day. No second magnetometer, as base station, was used.

Although purists may frown at the methodology, the intent of the survey was not to provide absolute data, but rather to hone in on existing data of high quality, and thereby to choose the best drilling target.

Corrected magnetic values were plotted in profiles for each line in conjunction with the electromagnetic results and are appended as a series of pseudo sections at the rear of this report (Appendix A) for lines:

27200 N	27450 N	27650 N	27800 N
28000 N	28000 N (Repeat)	28200 N	28350 N
28350 N (Repeat)	28600 N 28800 N	29000 N	29200 N
29200N(Repeat)	29600 N 30000 N	30400 N	30800 N
Glimmer Line 24N			

These lines extend over all GMS claims except GMS \#15 and also cover parts of TOM claims \#5,7,9,23,25 and 31.

MAGNETOMETER SURVEY - Results

The Magnetometer survey gave very little useful data, or in other words, generally reflected an environment of very low magnetic relief which provided little information with which to build a case to support electromagnetically indicated conductive drill targets. Line 27200 N shows a sharp rise in values some 50 metres east of the Robert Campbell Highway, which was interpreted in the field as being indicative of sharply rising basement, perhaps against a fault. However, neither the 27450 N nor the 27650 N lines, which are close to, or cross, this line show a like change; and a similar profile is lacking in all other lines surveyed. Line 29200 N shows a gentle increase in total field from 300 m to 750 m east of the highway, then an equally gentle decrease by the 1000 m line interval; no conclusions could be reached about the significance or otherwise of this feature.

ELECTROMAGNETIC SURVEY - Methodology

Using a Ronka EM-16, readings were taken at 10 m or 25 m intervals along the flagged lines. Where rapid rates of change occurred, the interval was cut to 5 m . In the initial stages of the survey, Jim Creek, Seattle (NPG -18600 Hz) was chosen as source, but difficulties in obtaining precision with the In phase signal engendered a switch, first to Cutler, Maine (NAA -17800 Hz) and later to Honolulu, Hawaii (NPM -23400 Hz). This last proved to be the most consistent station, allowing repetition not only on In Phase readings, but also in Quadrature.

On occasion, readings proved impossible, either through atmospherics, or because there was too broad a range for a minimum to be accurately pinpointed.

The lines surveyed, with the Very Low Frequency Transmitting Station Signal used are:

27200N - Hawaii	27450N - Cutler Maine	27650N - Cutler Maine
27800N - Hawaii	28000N - Cutler Maine	28000N(Repeat)- Jim Ck
28200N - Hawaii	28350N - Cutler Maine	28350N(Repeat)-Hawaii
28600N - Hawaii	28800N - Hawaii	29000N - Hawaii
29200N - Hawaii	29200N(Repeat) - Hawaii	29600N - Hawaii
30000N - Hawaii	30400N - Hawaii	30800N - Hawaii
Glimmer Line 24N - Hawaii		

On the Glimmer Line 24 N the results of the 1990 Max-Min two frequency surveys are plotted for comparison with the VLF-EM response.

In Figure 4 all conductors and drill hole collar locations are plotted in plan. In Figures 5 and 6, the sections through each of the deeper drill holes, the geophysical pseudo sections have been superimposed.

ELECTROMAGNETIC SURVEY - Results

Line 27200 N shows no crossover, save at the start of the traverse, on the road.
Line 27450 N shows a poor crossover feature, which might represent a weak conductor, at 215 m east of the highway, and another weak feature at 260 m .

Line 27650 N shows weak crossovers at 340 and 390 m east of the highway, and a rather stronger feature from 450 to 475 m (conductor A). This feature appears to strengthen towards the north in other lines, and was chosen as first drill target because of this northward strengthening. The hole was sited on 27650 N line because this falls within a small test clearcut logging area, so minimal disruption of the environment would be caused.

Line 27800 N follows the trail pushed through the black spruce for the drill contractors' water pipeline. It starts at the pumphouse on Robert Campbell Highway, and meanders through the trees to end at DDH

96-1 drill site. A poorly defined crossover at 35 m and another at 165 m east of the road may be related to real conductors, but the presence of muskeg suggests that they are merely surface manifestations.

On Cutler station, line 28000 N shows invert crossovers at 140 and $245 \mathrm{~m}, 460$ to $480,510,750$ and 790 m probably related to shallow conductivity in the muskeg. At 70, and again at 310 m , there are more classical features, indicating strong conductors at depth. Questionable features occur at 825,900,950 and 985 m . In an effort to elucidate which features were the more dominant, the line was resurveyed using Jim Creek, Washington. The result was startlingly different. A clear crossover occurs at 580 m east of the highway, another at 740 m , with a flutter between, giving apparent crossovers at 645 and 720 m . The interpretation is of one body, perhaps 180 m in thickness in a horizontal sense, with conductive zones on the east $(740 \mathrm{~m})$ and west $(580 \mathrm{~m})$ contacts. This seems to correlate with Conductor A, of line 27650 N .

Conductor A is manifest also in Line 28200 N at 670 and 720 m , with invert crossovers at 365 and 415 m .
Line 28350 N was traversed using Cutler Station, then repeated using Hawaii. With the former, crossovers occur at 400 and 525 m . Although the In-Phase curve on Hawaii station follows the same general profile trend, it lacks the cross over. This suggests that if there is a conductor at this position then it has an orientation that is responsive to the Cutler direction but blind to Hawaii. While a conductor at this location would correlate with Conductor A, noted further south, it does not have the strength of the southern expression.

Line 28600 N , traversed using the Hawaii station, shows no features in the east, but has a sequence of poor, possibly muskeg-related inverse crossovers at $270,380,420$ to 470,550 and 580 m east of the road. The $420-470 \mathrm{~m}$ crossover may correlate with Conductor A.

The data on 28800 N from the road to 550 m east is very poor, as it was very difficult to establish a clear definition of minima on the In-Phase readings. No crossovers are interpreted.

Line 29000 N shows a crossover between 120 and 160 east, with a reversion at 245 m , another crossover at 345 m , then no firm features until 1250 m , although hints, perhaps related to muskeg, occur at 1025 , 1050 , and again at 1300,1335 . A positive feature occurs at 1365 m east of the road.

Line 29200 N , run at 10 m intervals tuned to Hawaii on the same day as the problematic survey of Line 28800 N , suffered from the same difficulty in definition up to 350 m east of the road. A clear crossover is indicated at 620 m and from 840 m , a cross over is followed by a deep In-Phase trough which reaches its deepest point at 875 m , with a reversion from 975 m to 1000 m , where the traverse was terminated. Because of the poor data at traverse start, and in view of the positive feature which was incompletely covered at the east end, the traverse was repeated, still using Hawaii, at 25 m intervals, some weeks later. The line was also extended an additional 500 metres eastwards. It should be noted that the "first" crossover is rather more crisply defined at 500 m , the nadir of the trough is at 875 m , the "second" crossover is less precise at 990 to 1060 m , peak In -Phase is at 1180 m , and a third crossover begins to suggest itself at 1400 to 1495 , which is on the eastern claims boundary.

Line 29600 N , again on Hawaii at 25 m intervals, repeats these same features as seen in 29200 N . A crossover near the road may have some significance. The "first" crossover is again visible at $325-430 \mathrm{~m}$,

GAMAH INTERNATIONAL LIMITED

with the same deep In-Phase trough at 600 m , the "second" crossover from 775 to 975 , the zenith at 1100 m , and the "third" at 1250 .

The pattern is less distinct on lines $30000 \mathrm{~N}, 30400 \mathrm{~N}$ and 30800 N , which were all surveyed at 25 m intervals. The "first" crossover appears on line 30000 N at 430 m , reappears at 165 m on line 30800 N , but is not manifest between the two. The "second" appears on 30000 N at 1025 m , and on 30400 N at 750 m , but is not seen in the north. The "third" occurs in the north at 1060 m , on 30400 N at 1175 m , but disappears to the south.

Line 24 N , in the Glimmer grid, while obliquely oriented to the present survey lines can be considered as being in the vicinity of present lines 29200 N to 29600 N . The strong Max-Min EM conductor shown in their 1777 Hz and, to a lesser extent, in their 444 Hz surveys, was not reflected in the VLF-EM traverse run in the current survey. Rather, there is a hint (at 150 m west of the baseline) of the "first" conductor seen on 29200 N and 29600 N , and there is a definite crossover at 510 m east of the baseline, coinciding with the "second" crossover of the same lines. The Max-Min surveys did not extend sufficiently far to the east or west to cross these features.

8 DIAMOND DRILLING - Operational Procedure

Three diamond holes, totalling 398m were drilled on the property during April 1996. Drilling contractor was DJ Drilling of Watson lake, Yukon who provided equipment and crews to drill 24 hours per day. Due to the proximity to the town of Watson lake, no camp was established and each drill shift commuted to and from the drill site. Due to the expected deep overburden that was implied by the terrain it was determined to start each hole using " H " size equipment and then to reduce down to " N " size as appropriate or when forced to do so by drilling conditions. Such an approach provided a fallback in being able to reduce to " B " and even " A " size in the extreme. In the second hole " B " size rods were ultimately resorted to but the other holes were drilled with " H " then " N ". Rock conditions for drilling were generally bad with extremely thick overburden, slow penetration rates, broken ground, shattering siliceous chips and excessive diamond drill bit wear. Various muds were tried but none was found to assist progress materially.

The first hole, GMS 96-1, at UTM N6677524, E0501407, was collared oriented at -80° towards 065° (True), was drilled to intersect the hinted southern extension of "Conductor A" on line 27650 N at 450 E (Fig 3). Overburden, comprising glacial debris, boulders, gravels and clays extended to 34 m (hole depth), beneath which is a clearly volcanic sequence of very young rocks, presumably Tertiary, down to 70 m , overlying scarcely consolidated claystones, siltstones, sandstones and lignites to 97 m . An oligomictic breccia, probably of tectonic origin, with clasts of the overlying sediments to 100 m , and clasts of the underlying andesites to 103 m , marks the transition from this younger sedimentary zone into much older, indurated, and silica impregnated andesitic lavas. These lavas extended for the balance of the hole depth till technical drilling difficulties forced aborting the hole at 148 m .

The second hole, GMS 96-2A, at UTM N6679161, E0500487, was oriented at -75° towards 090° (True) and was drilled to intersect the strong Max-Min anomaly on Glimmer 24 N line at 300 m east of the baseline. The hole was aborted in claystone at 45 m after a cone from the tricone overburden bit broke off in the hole.

The third hole, GMS 96-2, sited 2 m distant from the second, was drilled for the same target as the aborted second hole (Fig 3). It was also oriented at 090° (True)strike and with collar dip of -70°. Overburden of glacial debris, gravels and clays extended to 35 m , beneath which are Tertiary sediments, mostly bentonitic claystones (perhaps after felsic pyroclastics?) to 48 m , and shales, arkosic arenites, siltstones, carbonaceous shales and interbedded lignites to 130 m . A quartz-chert breccia extends from here to the end of hole at 205 m , where drilling was abandoned without reaching any feature which would be a satisfactory explanation of the Max-Min anomaly.

The drillhole logs are reproduced in Appendix C. No log was made of GMS 96-2A, because it did not reach bedrock. No section was drawn either as it effectively parallels Hole GMS 96-2. Assay values for gold are listed in parts per billion.

Holes GMS 96-2A and GMS 96-2 are located on Claim GMS \#8 and hole GMS 96-1 is located on Claim GMS \#1.

DIAMOND DRILLING - Interpretation of Results

Neither hole reached any feature which adequately explains the conductor indicated by the geophysics. Fig 7 is a schematic compilation of the two holes GMS 96-01 and 02, to indicate the interpretation which these two holes require to explain the geology observed. The eastern fault is inferred as an explanation of the conductor. The thick Tertiary sedimentary and volcanic pile is manifest in the holes. The volcanics being more apparent and thicker in the south and east than in the north and west. The inference is that they are localised by the faulting, which also serves as a limiting feature to the graben into which the sediments were deposited.

Although gold values are decidedly subeconomic (see Appendix B for assay results and Appendix C for drill logs showing assayed intervals), the values returned from the Tertiary felsic volcanics and kaolinized arkose, which in itself may be a volcanic, are higher than one would expect for like rock types in an unmineralized environment. Is the fault perhaps a channelway for percolating hydrothermal activity? Is this perhaps a hint of Poulsen's (1996) Carlin type mineralization, which he suggests may be found in the Ketza River-Pelly Mountains-Cassiar Platform-Midway areas of the Yukon and northern B.C.. Certainly the model seems to fit, and bears further investigation.

GMS CLAIM BLOCK
DIAMOND DRILL HOLE GMS 96-01 ALONG GMS 27650 N LINE TOTMRDS 06sT ONSURETEYED -60 UNSURTIEKSD

tertugy polianics

9 CONCLUSIONS and RECOMMENDATIONS

No economic values were found in the drilling program and the original target concept of a massive sulphide, polymetallic, conductive body is now deemed to be very unlikely to exist for two reasons. Firstly because such was not intersected by the drilling. Secondly the combined depth of overburden and flat lying Tertiary strata was found to be so deep that the ability of geophysics to see massive sulphide type conductors in the favourable host rocks beneath is severely limited. The presence of silicified and brecciated fault or thrust related units suggests that there may be some potential for economic gold mineralization of the Carlin-type. A rather more theoretical study must be done before a model can be developed allowing more precise targets for gold mineralisation can be designated.

I, Gerald Harper do hereby certify that:

1. I am a graduate of the University of London with a B.Sc. degree in geology and chemistry in 1965, a B.Sc. Honours degree in Geology in 1966 and a Ph. D. in geology in 1970.
2. I have practiced my profession continuously since 1966.
3. I am a member in good standing of the Association of Professional Engineers of Ontario, the Society of Economic Geologists, the Canadian Institute of Mining, the Society for Exploration, Mining and Metallurgy, the Geological Society of South Africa and a Fellow of the Geological Society.
4. I am the President of Minfocus International Inc., may be deemed to be its promoter and have instigated the staking by Minfocus International Inc. and the joint venture with Glimmer Resources Inc.
5. I directed and supervised the program of work described in this report and endorse the opinions and conclusions presented in this report on the basis of field examinations and review of compiled data by me in April and July 1996.

I, Adrian Gardiner Mann do hereby certify that:

1. I am a graduate of the Universities of London, England and Witwatersrand, South Africa.
2. I hold the degrees of:

> Ph.D.,
M.B.A.
B.Sc. (General Honours) in chemistry and geology
B.Sc. (Special Geology) (Honours)
3. I have practiced my profession continuously since 1965. My experience was gained in central and southern Africa, south and north America.
4. I am a member in good standing of the Society of Economic Geologists, the Canadian Institute of Mining, Metallurgy and Petroleum, Institution Mining and Metallurgy, the Geological Society of South Africa.
5. I am registered in Alberta as a Professional Geologist and in Britain as a Chartered Engineer.
6. This report is a fair and honest reflection of the geology of the claims and their immediate surrounds.
7. The data on which opinions expressed in this report are made is derived from:

1) Examination of the reference material cited
2) Examination of data furnished by the company
3) Field work in October/November 1995 and February-April 1996 when geophysical surveys were run and drilling was supervised and core logged.
8. I have no interest in these properties, nor in Minfocus International Inc., nor do I expect to receive any such interest.

Adrian G. Mann Ph.D., P.Geol., Calgary, Alberta
August 6, 1996

Name	Affiliation	Address	Function	Period
Gerald Harper	Minfocus International Inc	Toronto	Overall Supervision report preparation	Oct. 95-Aug. 96
Adrian Mann	Ruthrie Enterprises Ltd.	Calgary	 Geophysical Surveys, core logging \& report preparation	Oct. 95-Jul. 96
	D J Drilling Company Ltd.	Watson Lake	Drill access roads construction Diamond drilling	Mar.96-Apr. 96
	Thronduik Engineering and Consulting	Watson Lake	Line cutting and geophysical surveys	Feb. 96-Mar. 96
Michel Mann		Calgary	Geophysical surveys	Feb.96- Mar. 96
George Millen		Watson Lake	Drill road and site rehabilitation	Apr.96-May 96
	Can-Tech Laboratories Inc.	Calgary	Drill core analyses	Apr.96-May 96
	Chauncey Assay Laboratories Ltd.	Toronto	Drill core analyses	Apr.96-May 96
	X-Ray Assay Laboratories	Toronto	Drill core check analyses	Apr.96-May 96
D. Collins	Gamah International Limited	Toronto	Report typing and maps preparation	August 1996
K. S. Harper	Gamah International Limited	Toronto	Report typing and maps preparation	August 1996

STATEMENT OF COSTS

Item	Details	Amount
Accommodation	Gateway Motel, Watson Lake re G Harper, A.G. Mann and M. Mann field work	\$ 1,441.01
Analyses		\$ 1,019.45
Communications	Telephone, courier and shipping of samples \& instruments	\$ 930.94
Diamond Drilling	Contractor payments to D J Drilling for footage drilled, mobilisation, access route preparation, core boxes and consumables, G Millen for access route clean up.	\$64,190.54
Meals	Watson Lake and field	\$ 800.41
Personnel-Geology	Time for A.G. Mann, M Mann and G Harper	\$ 15,064.19
Personnel - Admin	Time for K Harper and D Collins	\$ 62.50
Physical Work	Line cutting time, Thronduik Engineering and Consulting and expenses inc misc field supplies	\$ 4,158.01
Rentals	Vehicles, geophysical instruments	\$ 2,149.92
Travel	Air transport to and from Watson Lake	\$ 1,012.86
	Total:	\$90,829.83

The above costs are as accurate as possible and represent the true value of the work carried out as shown above and described in this report. Detailed records for back up to these amounts are available at the office of Minfocus International Inc., at suite 707, 1243 Islington Avenue, Toronto, Ontario, M8X 1 Y9.

13 REFERENCES

Gabrielse H. (1966) Map 19-1966, Geology Watson Lake, Yukon Territory, Scale 1:253,440, NTS 105 A, Geological Survey of Canada.

Gabrielse H., Tempelman-Kluit D.J., Blusson S.L., and Campbell R.B. (1977) MacMillan River, Yukon - District of Mackenzie - Alaska 1:1,000,000 Geological Atlas, Sheet 105, 115, Geological Survey of Canada

Jennings D.S. and Jilson G.A. (1983) Geology and sulphide deposits of Anvil Range, Yukon. CIM Spec Vol. 37, 319-361pp.

Kent G.R. (1990) Geophysical Report on a Max-Min 11 Electromagnetic Survey on part of the 20 Claim GMS Mineral Property of Glimmer Resources Inc. Technical report of work submitted to Indian and Northern Affairs Canada, August 17, 1990

Klassen R.W., and Morison S.R. (1981) Map 21-1981 Surficial Geology Watson Lake, Yukon Territory Scale $1: 250,000$ NTS 105 A, Geological Survey of Canada

Poulsen K.H. (1996) Carlin-type Gold Deposits: Canadian Potential? - notes for presentation for a short course on New Mineral Deposit Models of the Cordillera, Cordilleran Roundup 1996

APPENDIX A

MINFOCUS INTERNATIONAL INC.

GMS CLAIM BLOCK
VLF-EM TRAVERSE ALONG 27200N LINE

***** IN PHASE quadrature

DIRECTION 035 hawail

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

GMS CLAIM BLOCK
VLF-EM TRAVERSE ALONG 27800N LINE

DIRECTION 070 HAWAII

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

GMS CLAIM BLOCK

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

***** IN PHASE -... QUADRATURE MAG - GAMMA

GMS CLAIM BLOCK
VLF-EM TRAVERSE ALONG 29200N LINE

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

***** IN PHASE - MUADRATURE --- MAG - GAMMA

GMS CLAIM BLOCK
VLF-EM TRAVERSE ALONG 29600N LINE

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

GMS CLAIM BLOCK
VLF-EM \& MAX-MIN ALONG GLIMMER 2AN LINE

APPENDIX B

CERTIFIEATE 0 F andicys

RECEIVED FRIM：GAMAH INTERNATIGNAL LIMITED DATES MAY IG，1996
REPORT NO：：FT－SATS－WEPEATS SAMPLES OF：ROCKS
DATE RECEIVED：PAY 6.1996 ATTENTION：MR．EERALD HARPER

	SAMPLE NO：	Au Pre		
94－1	115^{\prime}	25		（FETLSIC VOLCANIC）
	128°	10		（FELSIC VOLCANIC）
	152＊	9		\MAFIC UOLCANIC）
	178＊	7		（MAFIC VOCEANTC）
	2g2＇	39		（KOALINEZED ARKDESE）
	322－532＊	80	－	
	532－537	41		
	411°	16	－	（ANDESITE）
56－2－1	400－450	18		－
$96-2-2$	450－500	37		
94－2－3	500－550	15	－	
$96-2$	550－600	36		
$96-2$	600－650＇	20		
$96-2.4$	650－671	10		
$96-2$	665	9		（FLINTY LHERT ERECCIA）
gempli	93－125	10		
96－4－2	125－155	10		
96－9－3	155－185	15		
\％ 8 －${ }^{\text {a }}$	185－271．	5		
96－4．5	221－267	17		

CERTIFICATE OF ANALYSIS REPORT 6840

TO: GAMA INTERNATIONAL LIMITED

ATTN: GERALD HARPER
1243 ISLINGTON AVENUE
SUITE 707
TORONTO, ONTARIO
M8X 1 Yo

CUSTOMER NO. 4000
DATE SUBMITTED
14-May-96

WORKORDER 8380-
TOTAL PAGES 1

10 PULPS

	METHOD	DETECTION	METHOD
AO-1AT RB		IMIT	CODE
	FAA	5.	FA -30

Bill Cove

Wink Dill Morgan ruch-aril 1996.
*** UNLESS INSTRUCTED OTHERWISE WE WILL DISCARD PULPS IN 90 DAYS *** AND REJECTS IN 30 DAYS FROM THE DATE OF THIS REPORT
SAMPLES AU-IAT PPB FAAA
EA-30
MI-3643 96-1 322-332 33
MI-3643 96-1 332-337 11
MI-3643 96-1 411 7
MII-3643 96-2-1 <5
MI-3643 96-2-2 <5
MI-3643 96-2-3 5
《II-3643 96-2-4 11
MI-3643 CAM 96-3-2 15
<5
MI-3643 CAM 96-3-44 12
D XII-3643 96-1 322-332 21
AD-1AT PPB - ASSAY PERFORMED ON 30 GRAM ALIOUOT D - QUALITY CONTROL DUPLICAIE

APPENDIX C

HJ\%PCOS ITTERMATIOMAL IMC	CORAL PQUJECT GAS LLAIIS - YUKOM TERRITORY	cealosist	Adrian S. Mann, Ph.D., P.Gmol..
	UTM AFCOLLAR: 667753	COntractor	D.J.DRILLIEG
80 DEGRES TIMARDS 065 (True)	E 0501407	hole comience HOLE COMLE	$\begin{gathered} \text { Eil } \\ \text { ii } \end{gathered} \begin{gathered} 96-04-01 \\ 96-04-11 \end{gathered}$

MIFFDCUS IMTERYATIOKAL IHC
DIAMOMA DRTL HOLE 95-01 80 DEEREES TOHARDS O6S (True)

geplogist
COHTRACTOR
HOLE COMESMCED 96-04-01
HOLE COMPLETED 96-04-11

nimfleus international ime	CORRE PKUJECT Ght LLAIDS - YuKOM TERRITORY	geolugist	Adrian S. ${ }_{\text {S }}$
		COMTRACTOR	D.J.DRILIME
	UTH OF CRLAR ${ }^{\text {H }} 6677574$	HOLE COMLEMC	$\text { if } \begin{gathered} 96-04-01 \\ 96-04-11 \end{gathered}$

Fictic	Hiph	1011	ITHMLITM DESCRIPTIOT	1 AXGELE	Thitar-prexin	Thipilla	IENHL	
1 ERIN	feet entres	Har	: Erima	IPED 51	RLI2-:ROD REC	Ino FRaM 10	ces	Ant
Cebinizit	legt mitres	-	,	1-S				ppl
			!	-	3			
Hitic SExLE								
		10/810932	Irubla, glacial dehris, 制dstoaes	1	,	I		
ICASI㯭	0.0			1		+		
1 110ft	$110.0: 35.53$	FESI6	Ane grey, pale grean gray in part, hard,		,			
1	111.0 :	VOLCAIES	Ifelsic volcanoclastic with large wite		\| 22100			!
Inatima	112.0 :		fphenocrysts scattered throughout, 11attened	80	22			
\% 1 MER	113.01		land aligned parallel to bedding plane	,	11103	1		
18CuEATH	114.0 :	,	dand		1 41103			
CASIH	115.0	,			1.	jSPBT SAMPLE		25
-	116.0	,	d	,				
I	117.0	,	1	,	1	!		;
1	118.0 1	,	1	,	,			
:	119.0 ;	I	;	,	!	1		
,	120.0 1	,	,	,	i	,		
;	121.0:		;	1	!	1		
,	122.0 ;	,	!	,	1	!		
!	123.0 :	;	;	;	1 i	I		!
,	123.5 ;	,	;	180	; 3158	1		
I	124.5 :	,	1	1	1	1		
+	125.5:		!	,	,			
1	126.5 ;	!	:	,	;			
,	127.5 ;		1	,	-			
,	128.5 :	;	1	- 20	\| 1653	SPPOT SAMPLE		10
;	129.5 ;	,	1	,	1	'SPJ SmPL		
I	130.5 :	!	!	1	\|	!		I
,	131.51	,	!	,	;	I		
!	132.5 :	,	!		1	;		I
1	133.0 :	,	I	120	: 0192			
I	134.0 :	!	!	t	;	!		;
!	135.01	,	;		(21108			
I	136.0 :	,	1	180	; 21			1
!	137.0 :	;	+	-	;			,
I	138.01	;	-	:	1	1		,
;	139.0 :		;	,	,			
I	139.5 :	!	!	,	139100	1		;
!	140.3 :	;	I	1	!			1
I	141.51	1	;	1	1	1		,
1	142.5 :	:	I	1	1			
!	143.01	I	1	1	10137	1		1
1	144.01	,	1	1	- 13	;		
1	145.0 : 44.20)	ivery coarse, hard, mottled, eadium grey to		1	1		1
!	145.5 :	,	ppale gray, otheruise as above.	180	19100			I
!	146.5	I			i 18			1
!	147.5	,	!	15	: 1103117			,
1	148.5	,	1	150	: 1103117	,		1
1	149.51		1		1			
!	150.5	;	;	1	1	+	-	;
1	151.5:46.18		Ibeconing darter, more melanocratic	1	1			
1	152.01	,	!	1	+	ISPOT SAmPLE		9
!	153.0		!	1	: 2850	19Put Smme		-
!	1540	+	;	1		1		
1	1590		1	1	$!$	1		
1	156.0:	,	1	1	1	1		!
1	157.0	ITMertit	1	180	I			1
1	158.0 78.16	IARJITE	Idark 80 metius grey rediue graindy	1	1048			1
!	15901	!	Isabangular, generally unconsol idated,	1	1	1		!
1	1600	;	iquartzitic to ashosic an part, clay matrix.	1	1	!		1
!	161.01	!		1	1	1		1
1	$1620:$!	1	1	1 ${ }^{\text {a }}$	i		1
1	163.01	1	1	!	1139	1 -		:
1	IE40	!	!	1	1 i	,		1
1	165.0	1	1	;	1	1		1
1	165.0	:	;	1	1 i	,		!
1	167.0 : -	1	- -	1	18108	1		1
1	15641	1	1	1	1 i	1		1
1	168.	1	1	-	1	1		1
1	170.0 :	1	1	180	1	:		$!$

	CORAL PRUJECT GHS LLAIAS - Yuka Yerritory	geplogist	Adrian 8.
		contractar	D.J.听LLIUME
		$\begin{aligned} & \text { HPLE COHMEMC } \\ & \text { HOLE COHPLET } \end{aligned}$	$\text { D } 96-04-01$

Tatir	M12TH	HIT	Lambuty besialphan	PICLE		3R32.1		
	feat metres			182081	1ALI2-	RRD REC	TH0 FREM T0 cos	An
(Catinent	1		!		ATIOA			号
	301.0							
,	302.01		lcoarser yaghout channal ghows yry-up -	90501		311081		
1	303.01		1top is tap	70	1			
,	304.0 ;	,						
1	305.0 :	I	Igraded hedding shous top is top	:	,			
,	306.0 :			,				
,	307.0 ;		: i	,		097		
,	308.0 I	,	(
	309.0 :		!	I	,			
18as cruan	310.01		,	,				
	311.0 !		1					
!	312.0 :		;	60		31105		
;	313.0 ;		!				1	
1	314.0 :		1	,	;			
1	315.0		iflaser bedded sandstones	!	!			
,	316.01			!				
I	317.0 :			,		075		
,	318.0 :96.93	brecina	ipronaty tectonic					
1	319.01	SEDIHEATS	feddiue to dark grey and hlack matrix, with)				
1	320.0 ;		foff-yhite to pale grey clasts, coarsely	i	,			
1	321.0		ifrageented and generally oligonictic, of ;		;	93		80
,	322.0 :		iovarlying arenifes and shales, all clasts	i	,	93	161322.0332 .0305	80
1	323.01		iangular, size ranges from 5an to 50na.	1	!	I		
,	324.01			I				
I	325.01		i	;				
1	326.01		1					
1	327.0	1	1	,	!	113		
1	326.0							
1	328.81700 .26		isoft, clayey, hygroscopic.		!		!	
1	330.0 :			1				
,	331.21100 .35		Iblack carbonacems shale - breccia clast?	1	1			
,	3×2.0 :			140		52100		
1	333.0 :		i	130			462322.0337 .0457	41
1	384.0 :		i	i				
;	335.01		1 il	140				
!	336.01			i				
	337.0		1		!	: 52100		
1602E	397.51702 .72	7ascria	7 breccia contioumg now oljgonickic but clasts;		1	1043		
	389.01	Cambesite	iare indurated and sheared dark green to khaks:		;		:	
IVERY	339.01		igreen andestlic volcantes		1		1	
	340.01	,		;	1			
1RUB7LEY	341.0							
	342.01104 .24	frinesite	Saediun to knaki green, hard, aassive,		inil	37	1342.0343 .030	65
dand	343.3 :		indurated greenstones, aetayolcanzcs, auch			!		
thi	344.0	,	tolder than preceding - very broken.		!	!	i	
18008EM	$345.0:$ $3450:$!	at 104.2n - 18ca YEIH guarTz - bink bapren				i	
!	$346.0:$ 3470	!) at 104.2n-18ca YEIN guartz - pink, bapren		intz	179		
1	347.0	1	looking, no sulphides, no oistinct contacts	i	:	173	:	!
1. ...	348.0 :	1	: seattered quartz continues to 105 , 1 a.	1	1	93	?	1
	$349.0-1$ 350.01	1		1	1	192	-	1
TTIGUT	351.0 :	1		1	1	184		,
140.90	352.01	+	+	!	!	1	,	1
TCATIm	258.01	!	!		!			
?	34400	!	1		;	\mathbf{i}	,	,
1	355.01	!	;	1	1	$:$,	1
1	356.01	!	;	!	1	!	1	1
!	357.0 :	1	!	1	!	1117	I	!
1	3 m 901	1	1	!	!	1 117	1	1
1	359.01	!	1	3	,	,	,	1
;	350.01	:	:	!	$!$!	,	$!$

	CORAL PROJECT gils clalks - yuxal tepritary		Adrian G. Manay Ph. B_{n}, Prgeol.
		comtractor	D.J.DRILLIM
		HRLE COMES	$\begin{aligned} & 96-04-1 k \\ & 96-04-17 \end{aligned}$

	CORAL PROTECT Gis Clalis - YKoM TERRITORY	- 68 EmPaIST	Adrian G. Mabsi, Ph.D., P.Geol..
DiAmmat erill hic 96-02	UTH Of COLARE \# 6679161	comtractar	D.J.DRIL
70 DEEREES TOMAR枵 090 (Trua)	E 0500487	$\begin{aligned} & \text { HOLE COMEME } \\ & \text { BAE COWLETI } \end{aligned}$	$596-04-11$

MINFOCUS INTERNATIONAL INCORPORATED

Gerald Harper, Ph. D., P. Eng.
Gamah International Limited
Sulte 707, 1243 Islington Avenue
TORONTO, ONTARIO
M8X 1 Y9

Adrian G. Mann, Ph. D, P. GEOL. RUTHRIE EN ItRPRISES LIMITED 10443 BRACKENRIDGE ROAD, S.W.

Calgary, Alberta
T2W 1A1.

December 1996

On the basis of an existing airborne magnetic and electromagnetic study, supported by ground Max-Min EM and Gravity profiles, the claim block was surveyed for ground magnetics and VLFEM to locate suitable drill targets. Eleven lines were flagged for a total of $20,500 \mathrm{~m}$, of which 10 , 450 m in 11 lines were surveyed by VLF-EM, and $10,200 \mathrm{~m}$ in 10 lines surveyed by magnetometer. A total of 216 m in 2 diamond drill holes was completed. No economic mineralization was encountered.
1.0 INTRODUCTIONPage 1
2.0 LOCATION AND LOGISTICS Page 1
3.0 PROPERTY OWNERSHIP Page 1
4.0 PREVIOUS WORK Page 6
5.0 Summary of Work Completed in 1996 Program PAGE 6
6.0 SURFACE Rock Geochemistry PAGE 6
7.0 GEOPHYSICAL WORK Page 6
7.1 Magnetometer Survey - Methodology Page 6
7.2 Magnetometer Survey - Results Page 9
7.3 Electromagnetic Survey - Methodology Page 10
7.4 Electromagnetic Survey - Results Page 10
8.0 DIAMOND DRILLING PAGE 11
8.1 Operational Procedure Page 11
8.2 INTERPRETATION OF RESULTS Page 14
9.0 CONCLUSIONS AND RECOMMENDATIONS Page 14
10.0 Statement of Qualifications Page 15
11.0 Personnel, Contractors and Service Agencies Employed Page 17
12.0 Statement of Costs Page 18
13.0 REFERENCES Page 19

FIGURE 1 GENERAL LOCATION MAP, YUKON HIGHWAY MAP, 1982
Page 2
Figure 2 General Location of CAM Claims in the Watson lake area, Yukon
Page 3
FIGURE 3 CAM PLAN EXTRACTED FROM CLAIM MAP 105A-6, 1:50,000 Page 5
Figure 4 CONDUCTORS AND ANOMALIES Page 7
Figure 5 CAM Claims Detarl of 1996 Field Work Page 8
Figure 6 Cross-section Showing DDH CAM 96-03 Along CAM 52000N Line Page 12
Figure 7 Cross-section Showing DDH CAM 96-04 Along CAM 51600N LinePage 13

Appendix A Assay Certificates	Page 20
Appendix B Geophysical Results	Page 22
APPENDIXC DIAMOND Drill Logs	Page 34

A winter exploration program was carried out on the CAM claims comprising linecutting, magnetic and EM surveys in March and April 1996, followed by a two hole drilling program, also carried out during April 1996. This report describes the results of the geophysical surveys and the details of the drilling program.

The CAM claims are located approximately 50 km north of Watson Lake, in the Watson Lake Mining District, Yukon Territory (Figures 1 and 2).

Daily jet service is available from Vancouver to Whitehorse with onward continuation by turbo prop commuter planes to Watson Lake (450 km east of Whitehorse), or three to four times weekly by jet from Vancouver to Terrace then turbo prop to Watson Lake. Regular Greyhound bus service is available along the Alaska Highway.

The town of Watson Lake is connected to Fort Nelson, B.C. (520 km) by the Alaska Highway (Route 1). Running northwest from Watson Lake to Carmacks is the all-weather Robert Campbell Highway (Route 4) which provides direct access to the CAM claims. Both helicopter and float plane bases are established in Watson Lake. The town also boasts four hotels, a trailer park, hospital, health care centre, and ambulance facilities. All food supplies may be obtained from Watson Lake. The town also hosts the Mining Recorders Office for the Watson Lake Mining Division which encompasses the CAM claims, where claim maps and other information is accessible.

Driving conditions from December to March require snow tires, winter weight crankcase oil, gasoline anti-freeze, a circulating block heater, battery blanket, battery booster cables, shovel, and a good tow rope or chain. Road conditions in the summer months are quite good although it is recommended that sturdy tires and spares are used as flats are quite common along the Robert Campbell Highway. April and May are spring break-up months in which mud and slush may cause sloppy conditions on some highway sections.

The snow-free period for these areas is estimated to be from mid-April to mid-October, although this is highly variable. The climate is adequately described in earlier assessment reports - suffice it to say that this is the Yukon, where winters are long and bitter, but it is not the Northwest Territories, so there is some respite from the weather when a Chinook blows in.

The CAM claims straddle the west side of the Robert Campbell Highway from kilometre 50 to 53 (as measured from the town of Watson Lake) on map NTS 105/A6. Access is excellent along this highway, which is well maintained, all weather, and gravel topped.

Field operations were headquartered in Watson Lake and all consumables could be obtained there. Apart from the settlement, the area is largely uninhabited, but skills and equipment are available locally, both among local natives, and in the town itself.
3, © POPERTY OWERSHR
The registered owner of the CAM claims is Minfocus International Incorporated. Table 1 gives details of record numbers and anniversary dates for the claims. The registration dates of the CAM claims are October 1995. All work described in this report was undertaken after January 1996.

Figure 1
General Location Map
Yukon Highway Map, 1982

CAM Claims

The CAM claims consist of 32 contiguous claims numbered 1-32. The group falls entirely on the 1:50,000 topographic and claim map sheets of NTS 105A-6 (Figure 3).The geophysical surveys covered all claims as shown in Figure 3 while the drilling was conducted on CAM 10 and 25.

A winter exploration program was carried out on the CAM claims, comprising linecutting, magnetic and EM surveys conducted in March and April of 1996, followed by a two hole drilling program also during April 1996. This field exploration program was conducted on behalf of Minfocus International Inc. by the consulting group of Gamah International Limited. Geophysical survey work was undertaken by geologist Dr. Adrian Mann, who was assisted by Mick Mann and by the company of Thronduik Engineering and Consulting. The drilling was contracted to DJ Drilling Company Ltd. of Watson Lake, Yukon. For a complete summary of all personnel and contractors employed during this period, refer to section 11.0.

Table 1
Summary of CAM Claims Information

Claim Name	Grant Number	Registered Owner	Anniversary Date	NTS (Claim Sheet \#)
CAM 1	Y1869893	Minfocus International Inc.	10-Oct-96	105A-6
CAM 2	YB69894,	Minfocus Internatonal Inc.	10-Oct-96.sis	105A-6
CAM 3	YB69895	Minfocus International Inc.	10-Oct-96	105A-6
CAM 4	YB69896	Minfocus International Inc.	10-Oct-96.	105A-6
CAM 5	YB69897.	Minfocus International Inc.	Ci 10-Oct-96	105A-6
CAM6	YB69898:	Minfocus International Inc.		105A-6
CAM7	${ }^{7} \mathrm{YB69899}{ }^{\text {c }}$	Minfocus International Inc.	\% " 10-Oct-96. ys	105A-6
CAM 8	: YB69900	Minfocus International Inc.	\% $10-\mathrm{Oct}-96 \mathrm{csin}$	105A-6
CAM9	7869901	Minfocus International Inc.	F', 10-0ct- 96 mix	105A-6
CAM 10	Y YB69902	Minfocus International Inc.		105A-6
CAM 11	YB69903	Minfocus International Inc.	5e- $10-0 \mathrm{ct}-96 \mathrm{mbk}$	105A-6
CAM 12	YB69904	Minfocus International Inc.	\% 10-Oct-96	105A-6
CAM 13	MB69905:	Minfocus International Inc.	- : 10-0ct-96is.	105A-6
CAM 14	YB69906.	Minfocus International Inc.		105A-6
CAM 15	Y869907	Minfocus International Inc.		105A-6
CAM 16	YB69908	Minfocus International Inc.		105A-6
CAM 17	7 XB69909 ${ }^{\text {a }}$	Minfocus International Inc.	Wh: 10-0ct 96.18	105A-6
CAM 18	\% \% 869910	Minfocus International Inc.		105A-6
CAM 19	YYB69911	Minfocus International Inc.	2min 10-0ct 96.8	105A-6
CAM 20	Y 4 P69912	Minfocus International Inc.	C, 10-Oct-96.	105A-6
CAM 21	C7B69913	Minfocus International Inc.		105A-6
CAM 22	YY169914	Minfocus International Inc.	4	105A-6
CAM 23	[8B69915.6	Minfocus International Inc.		105A-6
CAM 24	4. YB69916.	Minfocus International Inc.		105A-6
CAM 25	(x)669917\%	Minfocus International Inc.		105A-6
CAM 26	5x966918	Minfocus International Inc.		105A-6
CAM 27	ervic9919]	Minfocus International Inc.		105A-6
CAM 28	\% $2869920{ }^{2}$	Minfocus International Inc.	15, 10-Oct 96 4,	105A-6
CAM 29	4 1B69921	Minfocus International Inc.	463100ct-95 503	105A-6
CAM 30	Y369922	Minfocus International Inc.	W	105A-6
CAM 31		Minfocus International Inc.	Whymo-0ct96	105A-6
CAM 32	Y4869924*	Minfocus International Inc.	14340.0ck $96{ }^{\text {\% }}$	105A-6

The property was the subject of an extensive investigation in 1981, when an airborne Questor Mark VI Input survey was run regionally; and 1982, when a geochemical survey was done. The geophysics indicated a strong linear magnetic anomaly in the south east corner of the claims, extending beyond the surveyed area into the claims along a direction of 330°. The anomaly coincides with several 5 and 6 channel conductors (Figure 4).

5. PSUMMARYO WORK COMPLTED INI995/96 PROGRAM

After a single day visit in fall 1995, when a 2000 m ground borne VLF-EM traverse was made, the existing airborne geophysical maps of the claims were studied, prior to a March-April survey of VLF-EM and magnetometer, aimed at locating the previously indicated conductors (Figure 4) with more precision, and to choose drill targets. Using the Robert Campbell Highway as a baseline, $1,850 \mathrm{~m}$ long traverse lines at 400 m intervals were blazed and flagged every 50 m (Figure 5). These were tied in by GPS at endpoints, or as dictated by local geography. Total length of lines blazed was 18,500 metres in 10 lines. Of these, all lines were surveyed, but not over their entire flagged distances. The VLF-EM was used over a total of $8,450 \mathrm{~m}$; and the magnetometer over a total of $10,200 \mathrm{~m}$.

Lines were numbered according to the distance from Watson Lake of the start point of the line on the Robert Campbell Highway, using the 50 and 52 km beacons as bases. Hence, line 51600 N starts from the highway at a point $1,600 \mathrm{~m}$ north of the 50 km beacon (i.e. 51.6 km from Watson Lake).

Where rock outcrop was noted, samples were taken and submitted for analysis.
The geophysical work was designed to confirm the pre-existing airborne work, and, on the basis thereof, to site diamond drill holes to investigate the nature of the conductors indicated. Two diamond drill holes, totalling $710 \mathrm{ft}(216 \mathrm{~m})$ were completed in April of 1996.

6.0 SURFACEROCKGEOCHEMISTRYM,

Where rock outcrop was noted, samples were taken and submitted for analysis (results found in Appendix A). The only two outcrops seen were in the extreme south of the claims block, on the eastern edge of the Cabin Creek Canyon. On line 50400 N at 930 W of the road, is an outcrop of sheared andesitic pyroclastic. The same rock type was noted at 51200 N at 720 W of the road, here shot with vein quartz and severely brecciated in part. Gold values are encouraging, at 21-35 ppb , which is unusually high. Of particular interest is the lead value in the sample taken at $50400 \mathrm{~N}, 930 \mathrm{~W}$.

ToGEORHSICALWORK \quad G

7.1 Magnetometer Survey - Methodology

The survey used a Mark II proton magnetometer. Readings were taken at 2.5 m above snow level ($\pm 4.0 \mathrm{~m}$ total above ground level) in duplicate or triplicate at 10 m or 25 m intervals along the flagged lines. Where rapid rates of change with distance were detected, the interval was cut to 5 m , and traverse direction was reversed temporarily to repeat a portion of the line. When fluctuations of readings occurred in one location, the readings were repeated until a ± 3 gamma

reproducibility was achieved. As a matter of course, repeat readings were taken at 1 minute intervals at roughly 500 m intervals, to check for diurnal fluctuations. Where practical, traverses were "jimmy" closed, by merely returning to one or more points near start of the traverse at a later time of day. No second magnetometer, as base station, was used.

Although purists may frown at the methodology, the intent of the survey was not to provide absolute data, but rather to hone in on existing data of high quality, and thereby to choose the best drilling target.

7.2 MAGNETOMETER SURVEY - Results

The magnetometer survey gave the most useful data (Appendix B).
Line 50000 N , which was surveyed from 500 m to 1150 m west of the Robert Campbell Highway, shows a sharp peak to 250 nT above regional background of 58270 nT at 860 m . The peak is roughly symmetrical, and the anomaly covers some 110 m from 840 m to 950 m .

Line 50400 N , surveyed from the road to 950 m west, shows the same sharp peak at 770 m , now starkly asymmetric, with a slight dip of 20 nT at 740 m , then a sudden rise to 380 nT above regional background of 58240 nT . to the peak, and a rather more gentle descent on the west side, to return to background by 900 m . Note that brecciated greenschust facies pyroclastics were observed at 930 m on the immediate east bank of the Cabin Creek canyon.

Line 50800 N , surveyed from the 500 m mark to 1600 m west, has a dual peak. There is a slight dip of 20 nT in readings from 645 m to 660 m , a gradual recovery to 700 m , then a very sharp rise of 220 nT to a peak at 740 m , a more gentle drop almost to background at 810, where another sharp rise occurs, peaking somewhat below the previous (140 nT above background) at 830 m , then dropping off sharply to return to the regional background of 58220 nT by 845 m . Note that there is a subtle 20 nT increase in background at 990 m , which may indicate a change in underlying lithology.

Line 51200 N , surveyed from 500 m to 1800 m west of the road, is perhaps the type section of the claims. There is a sharp 70 nT drop from the regional background at 630 m to 650 m , followed by a sharp rise to 380 nT above background, peaking at 670 m . To the west, the drop-off is less rapid; with a second, lesser peak of 280 nT at 710 m , and final return to background by 810 m . There is again a subtle 10 nT rise in background at 1050 to 1100 m . Note that there is again outcrop on the east bank of the canyon at 730 m .

Line 51600 N , surveyed from 500 m to 1400 m west of the road, shows the eastern dip of 20 nT from 640 to 690 , then a fairly sharp rise of 250 nT to a broader peak than hitherto at 750 m . The western drop is again more gentle than to the east, with equilibrium reached by 850 m , but at a plane markedly higher (70 nT) above the level to the east of the peak. The level drops slightly (30 nT) at 1100 m .

Line 52000 N , surveyed from the road to 1400 m west of the road, has a gentle drop of 60 nT below background from 410 m to its deepest point at 710 m . After a gentle rise of 40 nT by 750 m , the readings rise sharply to a 550 nT peak at 750 m , followed by the gentle western drop to background by 850 m . There is a small, 30 nT secondary peak at 1160 m , covering the zone from 1120 m to 1220 m , then a drop over 200 m to end about 50 nT below the level at which the survey started.

Line 52400 N , surveyed from 400 m to 1300 m west of the road, has a very small dip, of 10 nT over 20 m at 900 m , then a sharp rise to a narrow peak of 350 nT at 940 m , and an equally sharp

GAMAH INTERNATIONAL LIMITED

drop to 100 nT above base by 960 m . There is a pronounced shoulder in the profile from 960 to 1010 m . Thereafter, the drop is very gentle to return to background by 1170 m .

Line 52800 N , surveyed from 500 m to 1700 m west of the road, is more symmetrical than the other lines, with a gentle rise of 70 nT from 700 m to 820 m , then a sharper rise of a further 200 nT , peaking at 900 m , before dropping back to a plateau of some 80 nT above the east by 1050 m .

Line 53200 N , surveyed from 500 m to 1400 m west of the road, is subdued. The peak is broad, from 640 m to 900 m , and only reaches 110 nT above eastern background. Values to the west are again elevated by some 40 nT relative to the east.

Line 53600 N , surveyed from 500 m to 1400 m west of the road, is again subdued, and broad, being almost a repeat of the previous line. The rise begins at 650 m , peaks to 100 nT above background, at 725 m to 750 m , then returns to base by 900 m , the western drop-off being slightly less sharp than the eastern rise.

7.3 Electromagnetic Survey - Methodology

Using a Ronka EM-16, readings were taken at 10 m or 25 m intervals along the flagged lines. Where rapid rates of change occurred, the interval was cut to 5 m . In the initial stages of the survey, Cutler, Maine (NNN - 00000 Hz) was chosen as source, but difficulties in obtaining a signal engendered a switch, to Honolulu, Hawaii (NNN - 00000 Hz). This latter proved to be the more consistent station, allowing repetition not only on In Phase readings, but also in Quadrature.

On occasion, readings proved impossible, either through atmospherics, or because there was too broad a range for a minimum to be accurately pinpointed.

7.4 Electromagnetic Survey - Results

Results were not very satisfactory (Appendix B).
Line 50000 N shows a single doubled crossover at 1040 m , returning at 1080 m . This coincides with a slough or pond at the bottom of the Cabin Creek canyon. The line was surveyed from 500 m to 1150 m , using the Cutler Station.

Line 50400 N shows a hint of a crossover at 640 to 650 m , and another at 750 to 770 m , coinciding with the eastern sharp rise of the magnetic feature. The line was surveyed from the road to 950 m, using the Cutler Station.

On line 50800 N , some difficulty was encountered in obtaining a quadrature reading from 600 m to 900 m , the most critical zone, where the magnetic anomaly occurs. A weak conductor is indicated between 1050 m and 1150 m . The line was surveyed from 500 m to 1500 m , using the Cutler Station.

Line 51200 N was surveyed from 500 m to 850 m , using the Cutler Station. There are no crossovers, and the readings appeared to be fairly consistent and acceptable. There is a subtle suggestion of a poor conductor at 660 to 670 m , which coincides with the eastern edge of the magnetic anomaly.

Line 51600 N was surveyed from 500 m to 1400 m . After the difficulties experienced with Cutler, a switch was made to Hawaii, which proved easier to hear, and appeared to give better
resolution. An inverted crossover was noted at 550 m , returning at 600 m , and appearing to coincide with the transition from slough and black spruce to more open pine and white spruce parkland. There is a subtle hint of conductor at 710 m , which coincides with the eastern side of the magnetic feature. Inverse anomalies occur at 810 to 850 m and from 930 to 1070 m . A weak conductor is indicated at 1100 m , coinciding with the slight drop in background magnetic signal. A muskeg induced anomaly occurs at 1350 m .

Line 52000 N was surveyed from 400 m to 1300 m . No strong feature emerged from much of the east of this survey. There is a suggestion of a conductor at 520 m , and again at 570 m . A confused, repetitive, crossover occurs from 920 m to 1030 m , and a very clear conductor, albeit weak, is indicated at 1240 m , coinciding with the drop in background magnetic readings.

Line 52400 N was surveyed from 400 m to 1300 m . The eastern conductor which appeared in the previous line is more strongly developed between 475 m and 520 m . The eastern edge of the magnetic anomaly is again reflected in a subtle hint of crossover at 910 m to 930 m , which becomes more positively manifest by 1020 m , which coincides with the western end of the shoulder on the magnetic anomaly.

Line 52800 N was surveyed from 500 m to 1500 m . In-phase readings were not satisfactory. The eastern edge of the magnetic anomaly is again reflected in a subtle hint of a weak conductor from 830 m to 850 m west. The west, is blurred, and indistinct.

Line 53200 N was surveyed from 500 m to 1450 m . There is no conductor coinciding with the eastern edge of the magnetic anomaly, but a subtle crossover and back occurs at 875 m W . The crossover at 1100 mW , and the reversion at 1340 m W are both very clear.

Line 53400 N was surveyed from 500 m to 1400 m . The west margin of the magnetic anomaly is reinforced as a good conductor. Further to the west, the picture is blurred.

8.1 Operational Procedure

Two diamond holes, totalling 216 m were drilled on the property during April 1996. The first was drilled on CAM \#25 while the second was drilled on CAM \#10 (Figure 5).

The first, CAM 96-3, at UTM N6698398, E0494475, declined -75 ${ }^{\circ}$ towards 074° (True), was drilled to intersect the magnetic anomaly on line 52000 N at 450 W . Overburden, of glacial debris extended to 10.5 m , beneath which is a metasedimentary sequence of shales and phyllites to 30.5 m , with intermittent crush and mylonitic fault zones. The metasediments are interfingered with andesites down to 101.8 m , where a crush zone of unconsolidated black breccia separates the metasedimentary and volcanic sequence from a clearly intrusive and strongly magnetic serpentinite from 106.7 m to end of hole at 126.5 m (Figure 6).

The second hole, CAM 96-4, at UTM N6698663, E0494205, declined -600 towards 074° (True), was drilled to intersect the strong magnetic anomaly on line 51600 N at 735 to 775 W , and the eastern conductor at 710 W . Overburden, of glacial debris, extended to 28 m , beneath which are the same metasediments, with interfingered mylonite, to 44.5 m . The mylonites become dominant thereafter, with a black aphanitic dyke from 49 to 50 m , beneath which is an intensely silicified andesite band to 53 m . The mylonite, with minor intercalations of graphitic phyllite, continues to 81 m , where serpentinite was encountered. The hole was stopped in unmineralized serpentinite (Figure 7).

Figure 6

Figure 7
CAM CLAM BLOCK

MINFOCUS INTERNATIONAL INC.

The drillhole logs are shown in the accompanying schedules (Appendix C). There are no sulphides in the serpentinite. Disseminated discrete sulphide crystals, and some veins of pyrite and pyrrhotite occur throughout both cores, concentrated in the mylonites and peripherally to quartz veins. No appreciable gold or base metal values are associated with these sulphides.

8.2 INTERPRETATION OF RESULTS

Both holes intersected a strongly magnetic serpentinite, which correlates with the strong magnetic anomaly of the airborne and ground geophysical survey. The slightly offset, and discontinuous, conductors are probably manifestations of the contacts of this mafic intrusive, and of the faults observed. The graphitic phyllites are also probable candidates as conductors.

That there is no sulphide mineralization associated with the serpentinite is sad. That there is little gold or base metal value associated with the disseminated sulphides in the mylonites and quartz flooded vein structures is also disappointing.

9.0 CONCLUSIONS AND RECOMMENDATIONS

No economic values were found in the drilling program. However, the interesting lead and gold values in the surface sampling cannot be passed over. The intensity of alteration and mineralization in much of the andesitic rock cored, and most especially in the mylonites, gives encouragement for continuing exploration in the area. It is certain that there has been intense tectonuc activity, and there is no doubt that the area has been permeated by mineralizing fluids, and that a plumbing system for those fluids must have existed close to where these holes were drilled. The conductors noted in the airborne and ground surveys can be ascribed to minor shearing and graphitic phyllites in part, even in whole, perhaps; but that there is mineralization, and anomalous gold and lead values in the only two rock outcrops found has to be more than pure chance. The problem will be how to look, and where to focus the future search. To the northwest, there is likely to be increasing Tertiary and glacial cover. To the southeast is swamp.

Were the boreholes stopped short? The barrenness of the serpentinites suggested that to continue drilling in them, hoping for mineralization within these ultramafics, would have been futile. In retrospect, perhaps a hole pushed through, to eliminate the possibility of mineralization on or near the footwall of the serpentinite might have been a fair gamble.

I, Gerald Harper, President of Gamah International Limited, do hereby certify that:

1. I am a graduate of the University of London with a B. Sc. degree in Geology and Chemistry in 1965, a B. Sc. Honours degree in Geology in 1966 and a Ph. D. in Geology in 1970.
2. I have practised my profession continuously since 1966.
3. I am a member in good standing of the Association of Professional Engineers of Ontario, the Society of Economic Geologists, the Canadian Institute of Mining, the Society for Exploration, Mining and Metallurgy, the Geological Society of South Africa, a Fellow of the Geological Society and a member of the Mineral Economics and Management Society.
4. I am the President of Minfocus International Inc., may be deemed to be its promoter and have instigated the staking by Minfocus International Inc.. I am also the President of Gamah International Limited, an independent mining and geological consulting and contracting firm.
5. I directed and supervised the program of work described in this report and endorse the opinions and conclusions presented in this report on the basis of my field examinations in July and September 1996 and review of data compiled by me during those field examinations.

I, Adrian Gardiner MANN, undersigned, certify that:

1. I am a graduate of the Universities of London, England and Witwatersrand, South Africa;
2. I hold the degrees of:

Ph.D.,
M.B.A.,
B.Sc. (General Honours) in chemistry and geology,
B.Sc. (Special Geology)(Honours);
3. I am a member in good standing of:

Society of Economic Geologists, Geological Society of South Africa, Institution of Mining and Metallurgy, Canadian Institute of Mining, Metallurgy and Petroleum;
4. I am registered:
in Alberta as a Professional Geologist, in Britain as a Chartered Engineer;
5. I have practiced continuously as a geologist since first I graduated in 1965. My experience was gained in central and southern Africa, south and north America;
6. This report is a fair and honest reflection of the geology of the claims and their immediate surrounds;
7. The data on which opinions expressed in this report are made derive from:

Examination of the reference material cited;
Examination of data furnished by the company;
Winter field mapping, with heavy snow cover, traversing all lines cited, some with VLF, some with magnetometer, and core logging.
8. I have no interest in these properties, nor in MINFOCUS INTERNATIONAL INC., nor do I expect to receive any such interest.

NAME	Cxarmiaiionder	Address		Périod
Gerald Harper	IRternatonal me:	Toronto	QverailSupervision teport preparation:	$\begin{gathered} \text { Oct. } 95-\text { Aug } \\ 96 \end{gathered}$
Adrian Mann		Calgary		Oct 95-Jul 96
	\qquad	Watson Lake		$\begin{gathered} \text { Mar 96-Apr } \\ 96 \end{gathered}$
	Thronduik Ergineeringand Consulting	Watson Lake	Sinecutting and geophysticalsurveys	$\begin{gathered} \hline \text { Feb } 96-\mathrm{Mar} \\ 96 \end{gathered}$
Michel Mann	Enterpisises Litad	Calgary	Geophysicalsurveys 	$\begin{gathered} \hline \text { Feb } 96 \text { - Mar } \\ 96 \\ \hline \end{gathered}$
George Millen	fesw	Watson Lake	Duiliroadandsite - 6 rehabilitation	$\begin{gathered} \text { Apr } 96 \text { - May } \\ 96 \end{gathered}$
	Wabontech	Calgary	Drill core analyses	$\begin{gathered} \text { Apr } 96 \text { - May } \\ 96 \\ \hline \end{gathered}$
	XRay Assay Laboratories	Toronto	$\begin{aligned} & \text { Priti core check. } \\ & \text { Manalyses } \end{aligned}$	$\begin{gathered} \text { Apr } 96 \text { - May } \\ 96 \\ \hline \end{gathered}$
Lorraine Godwin	Int Gamah	Toronto	RRepontyping and:	Dec 96

GAMAH INTERNATIONAL LIMITED

ITEM		AMOUNT
Accommodation		1,357.04
Linecutting	blanng flaggingrties	5,488.18
Consulting Fees	ffeld and office suppott	15,880.61
Coples	faxes and copies	38.31
Courier, Postage	Priority Post, Greyhound côurier	58.40
Drulling	mobilisation, labour, etc:	29,769.26
Rentals	equipiment, truck, gas, etc.	2,499.95
Field Equipment	field attire, tools, batteries, etc.	423.51
Maps	Y) x_{x},	50.00
Food	meals and groceries	801.81
Miscellaneous	mileage, clean up	539.34
Telephone	long distance charges, Fonorola	165.41
Travel		1,042.17
	TOTAL	\$58, 113.99

The above costs are as accurate as possible and represent the true value of the work carried out during the 1996 exploration program as shown above and described in this report. Detailed records for back-up to these amounts are available at the office of Minfocus International. Incorporated, Suite 707, 1243 Islington Avenue, Toronto, Ontario, M8X 1Y9.

Jennings D.S. and Jilson G.A.(1983) Geology and sulphide deposits of Anvil Range, Yukon. CIM Spec Vol 37, 319-361 pp.
Poulsen K.H. (1996) Carlin-type Gold Deposits: Canadian Potential? Notes for presentation for a short course on New Mineral Deposit Models of the Cordillera Cordilleran Roundup 1996.

Appendix A

Assay Certificates

PROJECT: CAM

Map Sample\#		Au ppb	Ag ppm	As ppm	Cu ppm	Pb ppm	Sb ppm	Zn ppm
		35	0.8	1.6	11	325	0.3	
50400N 930W	30	0.4	1.2	13	<2	<0.2	28	
51200N 720W BRECCIA		31	0.3	2.6	23	4	0.3	27
51200N 720W QTZ	23	0.2	1.7	16	2	0.2	35	
51200N 700W		23						

APPENDIX B

GEOPHYSICAL RESULTS

MINFOCUS INTERNATIONAL INC.

MINFOCUS INTERNATIONAL INC.

CAM CLAIM BLOCK
VLF-EM TRAVERSE ALONG 50800N LINE

DIRECTION 035 CUTLER MAINE

MINFOCUS INTERNATIONAL INC.

CAM CLAIM BLOCK
VLF-EM TRAVERSE ALONG 51200N LINE

MINFOCUS INTERNATIONAL INC.

CAM CLAIM BLOCK
***** IN PHASE

- QUADRATURE
--- MAG - GAMMA

DIRECTION 035 HAWAII

MINFOCUS INTERNATIONAL INC.

CAM CLAIM BLOCK

VLF-EM TRAVERSE ALONG 52400N LINE

MINFOCUS INTERNATIONAL INC.
CAM CLAIM BLOCK
VLF-EM TRAVERSE ALONG 52800N LINE

DIRECTION 035 HAWAII

MINFOCUS INTERNATIONAL INC.

CAM CLAIM BLOCK
***** IN PHASE

- MUADRATURE
VLF-EM TRAVERSE ALONG 53200N LINE

MINFOCUS INTERNATIONAL INC.

***** IN PHASE
--- MUADRATURE
- GAMMA

MINFOCUS INTERNATIONAL INC.

CAM CLAIM BLOCK

APPENDIX C
 DIAMOND DRILL LOGS

HIMOUCUS IMTERMATIOAAL IME	CORAL PROJECT CAB CLAIHS - Yukin territoin
$\begin{aligned} & \text { DIAMOMD ORTL HOLE } 96-03 \\ & 75 \text { DEERES TuHARDS } 074 \text { (TT } \end{aligned}$	UTM OF COLLAR2 ${ }_{\text {M }}^{\text {M }}$ (6649893975
	Lacated by ges

gendobist	Adrian 6. Man
CONTRACTOR	D.J.0RILIII哭

HOLE COMHENCED 96-04-18
HOLE COHPLETED 96-04-21

MIWFOCUS IUTERMATIOMAL IMC

DIASOIT DRILL HOLE \%-04 60 DEGRESS TOMAROS 074 (True)

CORAL PROJECT
Cair clailis - yuxan jerritory
gellogist
COHTRACTOR
HOLE COPREMEED 96-04-22
HOLE CAHPLETED $95-04-26$

A SUMMARY OF THE EXPLORATION WORK DONE ON
THE JAY Claim Groups
DURING THE PERIOD 10-19 JULY 1996

Watson Lake Area, Yukon Mining District
NTS 105A-6
$60^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{N}, 128^{\circ} 57^{\prime} 00^{\prime \prime} \mathrm{W}$

ON BEHALF OF
MINFOCUS INTERNATIONAL INCORPORATED

Lorraine Godwin
COnsulting Geophysicist
Gamah international Limited
Sutie 707, 1243 Islington Avenue
TORONTO, ONTARIO
M8X 1 Y9
Yukon Mining Incentives Designation \#96-008
DECEMBER 1996

GAMAH INTERNATIONAL LIMITED

SUMMARY, ",
Dr. Adrian Mann conducted research on the JAY claums in 1995 and found that the geochemucal results from the 1982 Assessment Report by David Arscott for Kerr-Addson showed exciting results (Mann, 1996) He recommended a detarled summer mapping exercise, coupled with mult-element ICP geochemical sampling of the sub-moss humus. Thus, in July 1996, eight days were spent with crews flagging and blazing grid lines, conducting geophysical surveys, as well as performing reconnaissance geological mapping and collecting geochemical soll samples at various locations along the grid lines (44 soil and 5 rock samples were collected in total) The work done consisted of $13,299 \mathrm{~m}$ (in 12 lines) of linecutang, reconnaissance geological mapping and geochemical samphng, as well as geophysical surveying

The results of this report are inconclusive due to the sparseness of the grid coverage it is recommended that further detauled exploratory work is performed over the clam group in order to determine the economuc value of this claim group.

Table of Confents
1.0 INTRODUCTION

Page 1
2.0 LOCATION AND LOGISTICS
Page 1
Page 6
Page 6
Page 9
Page 9
Page 11
Page 11
Page 11
Page 11
Page 12
Page 12
Page 12
Page 12
Page 12
Page 14
Page 16
Page 17
Page 18

FIGURES

Figure 1 General Location Map, Yukon Highway Map, 1982
Figure 2 Watson Lake Topographic Map, 1•250,000
Figure 3 Grid Coverage of JAy Claims
Figure 4 JAy Claims Plan Extracted From Claim Map 105A-6, 1 50,000
Figure 5 Geological Map of Watson Lake Area, $11,000,000$
TABLES
Table 1 Summary of JAy Claims information

Page 2
Page 3
Page 7
Pace 8
Page 10

Page 4

APPENDICES

APPENDIX A GEOCHEMISTRY Page 19
A. 1 NORTH GRID Page 20
A 2 GEOCHEMICAL CONTOURS FOR JAY CLAIM (NORTH END) - As, AU, CU, ZN Page 21
A. 3 SOUTH GRID
A 4 GEOCHEMICAL CONTOURS FOR JAY CLAIM (SOUTH END) - AU, CU, ZN
Page 25
Page 26
A 5 NORTH AND SOUTH GRIDS
Page 29
A 6 GeOchemical Contours for JAy Claim (entire Grid) - As, Au, Cu, ZN Page 30
Page 34
A 7 JAY GEOCHEMICAL RESULTSPage 35
APPENDIX B MAGNETIC CONTOURS OF JAY CLAIMS Page 42
B 1 NORTH GRID Page 43
B 2 Magnetic Contours of JAy Claims (North End) Page 44
B 3 SOUTH GRIDPage 45
B 4 MAGNETIC CONTOURS OF JAY Claims (SOUTH END) Page 46
Appendix C Electromagnetic Profiles of Jay Claims PaGE 47
APPENDIX D GEOPHYSICAL NOTES Page 60

1.0 INTRODUCTION

A brief summer exploration program was carned out on the JAY clam group at the recommendation of Dr. Adrıan Mann, who researched the area in 1995 (Mann, 1996) Dr. Mann's conclusions were to have a field crew conduct a detailed mapping exercise Gamah International Limited undertook the recommended exploration program on behalf of Minfocus International Incorporated. This report describes the results of the exploration surveys carned out during the month of July 1996 and provides recommendations for further work

20 LOCATION AND LOGISTICS

The JAY claıms he approximately 45 km north of Watson Lake, Yukon Territory, off the Robert Campbell Highway

Dally jet service is available from Vancouver to Whitehorse with onward contunuation by turbo prop commuter planes to Watson Lake, or three to four tumes weekly by jet from Vancouver to Terrace then turbo prop to Watson Lake. Regular Greyhound bus service is available along the Alaska Highway

The town of Watson Lake $1 s$ connected to Britsh Columbia by the Alaska Highway (Route 1) Runnung northwest from Watson Lake to Carmacks is the all-weather Robert Campbell Highway (Route 4) which provided direct access to the field camp and JAY claims (Figure 1). Both helicopter and float plane bases are established in Watson Lake The town also boasts four hotels, a traler park, hospital, health care centre, and ambulance facilities Supplies, fresh water and consumables were obtained from Watson Lake. Washing water was obtained from the fastflowing Frances Ruver Watson Lake also hosts the Mining Recorders Office for the Watson Lake Mining Division which encompasses the JAY claims, where claim maps and other information is accessible (Figure 2)

Driving conditions from December to March require snow tares, winter weight crankcase oul, gasoline ant-freeze, a circulating block heater, battery blanket, battery booster cables, shovel, and a good tow rope or chain Road conditions in the summer months are quite good although it is recommended that sturdy tires and spares are used as flats are quite common along the Robert Campbell Highway. April and May are spring break-up months in which mud and slush may cause sloppy conditions on some highway sections

The snow-free period for these areas is estimated to be from mid-April to mid-October, although thus is hughly variable.

A field camp was established on the south side of the Frances River, at approximately kilometre 60 on the Robert Campbell Hıghway (as measured from the town of Watson Lake) Access from thus location to the JAY clams was approximately 15 km south along the Robert Campbell Highway. The northern portion of the claims was accessed via a rough dirt road which is known as the back entrance to the Sa Dena Hes Mine This road is in rough shape in places and a chain saw and an axe are necessities for traveling along it. At approximately 72 km from the intersection of thus road and the Robert Campbell Highway, he posts \#65 and \#66 ($\sim 20 \mathrm{~m}$ south of the road). Access to the southern portion of JAY is via the Sa Dena Hes main road (about 20 km from camp), which is a good-condition gravel road At approximately 15 km from the intersection of this road and the Robert Campbell Highway, he posts \#1 and \#2 ($\sim 1 \mathrm{~km}$ north of the road).

Table 1
Summary of JAY Claums Information

Table 1
Summary of JAY Claims Information

3.0 PROPERTYOWNERSHIP"

The registered owner of the JAY clams is Minfocus International Inc. Table 1 gives detals of record numbers and anniversary dates for the clams. The registration dates of the JAY claums are October 1995 All work described in this report was undertaken after July 9th, 1996

The field exploration program was conducted on the JAY claim groups on behalf of Minfocus International Incorporated by the consulting group of Gamah International Limited. The JAY claim group consists of 106 contgguous claims numbered 1 to 106 (Figure 3) The claim group falls on both the 150,000 topographic and claim map sheets of NTS 105A-6.

4.0 PREVIOUS WORK

In September of 1982, David Arscott, on behalf of Kerr-Addison Mines Limited, produced an assessment report on the Watson and Wolverine Lakes areas He found that "by and large it (the Watson Lake area) can be considered a low-energy, deep sea depositional environment" (Arscott, 1982)

The surveys conducted by David Arscott consisted of detaled sampling of soil and silt along the streams and rivers in the Watson Lake area In the vicinity of the JAY clams, a total of 84 soil and 71 silt samples were collected along the surrounding streams and rivers The samples were assayed for $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Pb}, \mathrm{Zn}$ and Ba and the results were then plotted onto $1.50,000$ scale maps The hughest values for each of the six elements are as follows

	Element	" x^{2} MAssay Result
	Cu (soil)	, 105 ppmi
asers D204ty	Ag (soil)	$\cdots 3.6 \mathrm{ppm}$
,	Au (soll)	, 720 ppb .
- ${ }^{2}$	Pb (soll)	724 41 prm
120 ${ }^{2}$	Zn (soil)	+ 345 ppm
4	Ba (soll)	* 340ppm
310	Cu (silt)	${ }^{4} 9116 \mathrm{ppm}$
0	Ag (silt)	\%at 36 ppn
	Au (silt)	ceimpp
	Pb (salt)	H29 29 ppm
	Zn (silt)	66 ppm
	Ba (silt)	8 ppm

These hugh values occur along the eastern edge (particularly in the northeastern portion) of the JAY claims and thus indicate that there could be a high possibility of muneralization in this location. Based on Arscott's research and from reconnaussance visits to other claums in the area of the JAY group, Dr Mann also speculated that there might be a good possiblity of finding a copper-zınc impregnated thrust fault withun the Watson Lake area (Mann, 1996) On the basis of these conclusions, the summer exploration program of 1996 was carned out.

GAMAH INTERNATIONAL LIMITED

5.0 SUMMARY OF WORK COMPLETED IN 1996 PROGRAM

The field work was carried out on the 10, 11, 12, 13, 16, 17, 18 and 19th of July, 1996 The work consisted of linecutting, reconnaissance geological mapping and soll geochemical surveys, as well as reconnaussance VLF-EM and magnetometer surveys The north-south running flag and compass lines were established at approximately 500 m intervals, whule tie-in east-west lines were established at the ends of the north-south traverses (see Figure 4 for a picture of the grid coverage). Individual stations were fixed at 25 metre intervals. The surveys were carned out sumultaneously on all twelve blazed lines (for a total of $13,299 \mathrm{~m}$)

	Interval	
2500 W	5675 N to 8000 N	
OW W	100 N to 975 N	- 4
(3500 W	0 N to 1000 N	- $\times 1000 \mathrm{~m}$
3500 W	5825 N to 8000 N	x $x^{60 y}$
3957 W	0 N to 950 N	H
, 3400 W	0 N to 910 N	910 m
${ }^{2} 4857$ W	0 N to 875 N	875 m
ON	3525 W to 4850 W	132 m
10	3075 W to 3550 W	, 475 m mom
900 N	4425 W to 4857 W	. 432 m
950 N	3525 W to 3950 W	425 m
990	3050 W to 3475 W	425 m
边 $3 \times 8000 \mathrm{~N}$...	2850 W to 3957 W	

Time constraints did not permit any further exploration work. A total of 44 soil and 5 rock samples were collected over the enture grid (see Appendix A for soll sample locations), all of which were analyzed for copper, gold and zinc (7 of the solls and all of the rock samples were analyzed for arsenuc as well)

Lorraine Godwin, geophysicist for Gamah International Lımited, was overall project manager and head of the geophysical and geological surveys Assisting in both the geophysical and geological surveys were Mr Kurt Breede of Toronto, Ontario, Mr. Jocelain Valade of Sudbury, Ontario, Miss Helen Harper of Toronto, Ontario, and Mr. Greg Hounsell of Kingston, Ontano. Mr Johnothan Stockman and Mr Ruchard Harder, both of Watson Lake, Yukon, assisted in the linecutting, blazing and flagging of the JAY claims. Mr George Millen, also of Watson Lake, Yukon, provided expediting and support services.

Analysis of geochemical soll and rock samples were performed by Bondar-Clegg \& Company Limited of North Vancouver, British Columbia.

Refer to Section 110 for a complete summary of all personnel and contractors employed durng this period

6.0 GEOLOGY

The $11,000,000$ scale Macmillan Ruver (1398A) geological map published in 1980 by the GSC (Gabnelse, Tempelman-Kluut, Blusson, Campbell) shows that the contact between Mississippian broclastic and massive limestones (with interbedded polymict conglomerates, argillite, slate, chert bands, tuffs and other volcarucs, sandy and cherty limestones and greywackes, all of Gabrelse's unit 9b), and the more easterly unit 7 Devonan or Mississippian chert pebble conglomerates, carbonaceous slate, quartzte, greywacke, siltstone and sandstone, is faulted

(Figure 5) Also, noted by Dr Mann, "it appears to be the southeastern extension of the Campbell thrust, west being allochthonous, east being autochthonous" (Mann, 1996)

In the 1982 assessment done by David Arscott on behalf of Kerr-Addison, results showed that whole rock (outcrop and float) geochemical anomalies occurred in the northeastern portion of the JAY claıms. The 1965/6 Gabrelse geological map shows lead, zinc, and silver occurrences recorded approximately 10 km to the northeast of the claims, in Cambrian to Ordovician carbonates and argillites

7.0 SURVEYS

7.1 Geochemical Survey - Methodology

A total of 44 soll and 5 rock samples were collected over the entire 12 grid lines (see Appendix A for sample locatoons). The samples were taken based on high magnetometer readings or crossover points measured by the VLF These samples were then sent to Bondar-Clegg and Company in North Vancouver where they were analyzed for copper, gold and zinc, with a few of the soil and all of the rock samples being analyzed for arsenic as well (see Appendix A for assay certficates)

Applying a kriging method, the assay results were then contoured using the Surfer software package "Surfer16". The results have been broken down into two grids - one for the northern edge of JAY and one for the southern edge of JAY.

7.2 Geochemical Survey - Results

As seen from the contour plots of the northern portion of JAY in Appendix A, the arsenc contour exhubits anomalous areas around $3500 \mathrm{~W}, 7500 \mathrm{~N}$ and $2500 \mathrm{~W}, 6750 \mathrm{~N}$ Copper shows a high in the $2500 \mathrm{~W}, 7500 \mathrm{~N}$ area The gold contour has anomalous areas around $3500 \mathrm{~W}, 5750 \mathrm{~N}$ and 2500 $\mathrm{W}, 7400 \mathrm{~N}$, whule zinc demonstrates a high at around $3200 \mathrm{~W}, 8000 \mathrm{~N}$.

The southern portion of JAY shows anomalous areas for copper around $3500 \mathrm{~W}, 800 \mathrm{~N}$, for gold at $3550 \mathrm{~W}, 0 \mathrm{~N}$, and for zinc at $3950 \mathrm{~W}, 350 \mathrm{~N}$ and $4900 \mathrm{~W}, 900 \mathrm{~N}$

As most of these anomalous areas occur where only one sample was taken, these results are unconvincing and cannot be relied upon as substantial data until further sampling takes place

7.1 Magnetometer Survey - Methodology

This survey employed a Scintrex MP-2 proton precession magnetometer ${ }^{1}$ This instrument utlizes the phenomenon of nuclear magnetic resonance to measure the flux density of the total magnetic field

Readings were taken (in triphcate) along all of the flagged lines, at 25 m intervals No base station was used, however, where possible, repeat readings were taken at previously surveyed stations at a later time to check for diurnal fluctuations The intent of this survey was not to provide absolute data, but rather to give a general idea of the magnetic environment of the JAY clams

Magnetic values were contoured using a Kriging method with the Golden Software "Surfer 16" package.

7.2 Magnetometer Survey - Results

The magnetic contours for the northern and southern grids on JAY do not demonstrate any information of any value and thus are inconclusive at this time.

7.3 ELECTROMAGNETIC SURVEY - METHODOLOGY

A Geonucs EM16 Very Low Frequency ${ }^{2}$ (VLF) receiver was used for this survey
As with the magnetic survey, readings for the electromagnetic survey were taken at every 25 m station along the same lines. For the purposes of thus survey the signal from an antenna in Seattle, Washington (NLK - 248 kHz) was used. This emitted a farrly strong signal which was easy to hear.

The electromagnetic profiles were plotted using the Microsoft Excel software package

7.4 Electromagnetic Survey-Resurts

The electromagnetic profiles can be found in Appendix C
Again, because of the scarcity of the grid, the electromagnetic results cannot convey much information about the make-up of the JAY claims and should only be used as a reference for future geophysical surveys

8.0 CONCLUSIONS AND RECOMMENDATIONS

The results from the exploration program conducted on the JAY claims is inconclusive. Further work needs to be done on said claums in order to determine the existence, location and extent of the anomalies identrified in Arscott's survey.

A detalled grid should be established, with one baseline running north-south, and the grid lines runnung east-west at about 500 m intervals. If time permits, or results warrant, then closer line spacing fill-in should be completed (certainly 200 m intervals and perhaps 100 m intervals, time allowing). It is believed that the portion of the claims which lies to the west of the fault has thuck overburden and therefore EM surveying would provide little information in this area However, east of the fault, it is thought that the overburden is not as thick and EM should be conducted in this area

9.0 FOOTNOTES:

1 Proton Precession Magnetometer:

The MP-2 Sensor consists of a chamber filled with a proton rich fluid such as kerosene enclosed within two wire wound conls. A magnetic field is set up when a current is passed through these colls for a short duration of tame. This field algns the spinning protons and when the polarizing current is abruptly switched off, the protons begin to precess around the earth's magnetic field and eventually realign with it. The precession induces a small, exponentally decaying, AC signal in the sensor coils whose frequency is proportional to the flux of the ambient magnetic field (234874 gammas $/ \mathrm{Hz}$). The frequency is then measured by the signal processing electronics of the MP-2, converted to a gamma value and presented on the digital display.

2 EM16 VLF
This receiver measures the VLF radiation sıgnals, in the range of $15-25 \mathrm{kHz}$, from grounded vertical antennae which are generally employed for marine navigation A worldwide network of high-power VLF stations exist over the Earth's surface so that at least two stations can be detected from anywhere on the Earth.

The VLF receiver measures the in phase component (tilt angle) and quadrature component (component 90° ahead of the in phase component) of the polarization ellipsord produced as an outcome of a primary electromagnetic field being emitted from the transmitting antenna which in turn generates a secondary electromagnetic field in whatever is buried in the ground The resultant sum of these two fields is the polarization ellipse which represents the total field. Within the VLF are two mutually perpendicular coils wound on ferrite cores The coll whose axis is normally vertical is first held in a horizontal position and rotated in azimuth to find a minumum. This finds the direction to the transmitting station The receiver is then brought up 90° vertically and is now in the plane containung the polanzation ellipse The instrument is then tilted untla a minumum is detected. The clinometer of the instrument is used to record the tilt angle Fine tuning with the use of the quadrature knob produces an even more obvious mumum and gives the quadrature readıng
10.0 STATEMENTS OF QUALIFICATIONS *

I, Lorraine Godwin, do hereby certify that:
1 I will graduate from York University with a B Sc. Honours degree in Geophysics (graduation date June 1997)

I have practiced in my profession since 1995
I am a member in good standing of the Prospectors and Developers Association of Canada and the Canadian Institute of Mining, Metallurgy and Petroleum.

4 I have no vested interest in these properties or in Minfocus International Inc, nor do I expect to receive any such interest

5 I supervised the surveys described in this report and endorse the opinions and conclusions contained herein based on field examination and review of analytical results

I, Gerald Harper, President of Gamah International Lumited, do hereby certify that-
1 I am a graduate of the Unversity of London with a B Sc. degree in Geology and Chemistry in 1965, a B. Sc. Honours degree in Geology in 1966 and a Ph. D in Geology in 1970

2 I have practiced my profession continuously since 1966.
3. I am a member in good standing of the Association of Professional Engineers of Ontario, the Society of Economic Geologists, the Canadian Institute of Mining, the Society for Exploration, Minıng and Metallurgy, the Geological Society of South Africa, a Fellow of the Geological Society and a member of the Mineral Economics and Management Society
4. I am the President of Minfocus International Inc., may be deemed to be its promoter and have instigated the staking by Minfocus International Inc. I am also the President of Gamah International Limited, an independent mining and geological consulting and contractung firm.

5 I directed and supervised the program of work described in this report and endorse the opinions and conclusions presented in this report on the basis of my field examinations in July and September 1996 and review of data compiled by me during those field examunations

GAMAH INTERNATIONAL LIMITED

11. P PERSONNEL AND CONTRACTORS EMPLOYED

12.0 STATEMENT OXCOSTS

ITEM	DETAILS	Amount
Accommodation	Gateway Motel fiela camp	\$632.40
Analyses	Bondar-Clegg and Company	\$454.73
Commurucations	phone calls/ faxes, etc;	\$179 13
Courier Postage	shipping of information	\$18182
Food	camp supplies	\$61568
Personnel - Field	linecutting, geophysical, geochemical and geological surveys, camp construction and miscellaneous supplies	\$6,05530
Personnel - Office	time for office support	\$1,19700
Rentals	vehicles, equipment and hotel	\$1,475 35
Travel	air and ground transportation to and from Watson Lake and claims	\$37600
	TOTAL	\$11,167.41

The above costs are as accurate as possible and represent the true value of the work carried out during the 1996 exploration program as shown above and described in this report Detaled records for back-up to these amounts are avallable at the office of Minfocus International Incorporated, Surte 707, 1243 Islington Avenue, Toronto, Ontario, M8X 1 Y9.

GAMAH INTERNATIONAL LIMITED

13.0 REFERENCES

Arscott, D. (1982), Kent Project 1982 Program Assessment Report Private Report for Kerr Addison Mines Ltd.

Danuelson, V (1991), Yukon Welcomes Start of Operations at Lead-Zinc Mine Northern Miner 77 No 20, 1-2 (22 Jul 91).

Davison, S (1991), Falling Prices Can't Stop Sa Dena Hes Opening Northern Miner 77 No 31, 1-2 (7 Oct 91)

Erdmer, P (1987), Blueschist and Eclogite in Mylonitic Allochthons, Ross River and Watson Lake Areas, Southeastern Yukon
CJES 24, 1439-1449
Gabrelse, H, Tempelman-Kluit, D.J, Blusson, S L and Campbell, R.B (1980), MacMillan River GSC Map 1398A, sheets $105,115,11,000,000$ scale

Godwin, L. (1996), Summary Report on Claims of Minfocus Internatonal Incorporated in the Watson and Wolverme Lake Areas of Yukon Territory Private Report for Minfocus International Inc , 50pp

Harper, G (1996), Report on Geophysical Surveys and Diamond Drillng on GMS Group of Claims, Watson Lake Mining Division, NTS 105/A2, 105/A6 and 105/A7, Yukon Territory Private Report for Minfocus International Inc , 23 pp

Mann, A.G (1995), Prelimmary Geologıcal Report on Watson and Finlayson Lake Exploration Project in Yukon Territory for Minfocus International Inc
Private Report for Minfocus International Inc , 24pp
Mann, A.G (1996), Geological Report on Watson Lake Exploration Project in Yukon Territory Pruvate Report for Minfocus International Inc , 15pp

Wilson, G.C. (1995), Biblography of the Wolverne Complex of the Southern Yukon and Northern B C , The Campbell Range Finlayson Lake and Watson Lake, and the Kudz Ze Kayah and Sa Dene Hes (Mount Hundere) Deposits Private Report for Minfocus International Inc.

APPENDIX A

GEOCHEMISTRY

GAMAH INTERNATIONAL LIMITED
ARSENIC GEOCHEMICAL CONTOURS OF JAY CLAIMS (NORTH END) Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED COPPER GEOCHEMICAL CONTOURS OF JAY CLAIMS (NORTH END)

Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED ZINC GEOCHEMICAL CONTOURS OF JAY CLAIMS (NORTH END)
Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED COPPER GEOCHEMICAL CONTOURS OF JAY CLAIM (SOUTH END) Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED ZINC GEOCHEMICAL CONTOURS OF JAY CLAIM (SOUTH END)

Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED ARSENIC GEOCHEMICAL CONTOURS OF JAY CLAIMS Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED ARSENIC GEOCHEMICAL CONTOURS OF JAY CLAIMS Kriged Values
Watson Lake Area, Yukon Territory
Contours

GAMAH INTERNATIONAL LIMITED GOLD GEOCHEMICAL CONTOURS OF JAY CLAIMS Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED
COPPER GEOCHEMICAL CONTOURS OF JAY CLAIMS Kriged Values
Watson Lake Area, Yukon Territory
Contours

GAMAH INTERNATIONAL LIMITED ZINC GEOCHEMICAL CONTOURS OF JAY CLAIMS Kriged Values
Watson Lake Area, Yukon Territory

Gra Easting	Gnid	\%u (ppp)	Cu (pan)	2h (paph)	ASprouk	Notes
-2500	7350	24	78	46	13	soll
-2500	6950	9	16	27	27	soil
-2500	6725	11	26	49	67	soil
-2500	6625	18	8	36	58	soil
-2500	6500	4	8	31	47	soll
-2500	6200	4	19	47	51	soil
-2500	5750	12	7	40	63	soll
-3050	750	4	5	36		soil
-3125	990	4	8	33		soil
-3150	990	4	11	37		soil
-3200	100	4	6	38		soll
-3225	100	4	14	85		soil
-3250	100	24	9	43		soll
-3275	100	23	12	76		soll
-3375	990	15	15	37		soil
-3400	100	4	8	44		soil
-3425	100	6	8	92		soil
-3500	25	36	26	87		soll
-3500	860	15	71	69		soil
-3500	900	4	18	55		soil
-3500	950	21	9	34		soil
-3500	990	4	6	22		soll
-3500	5925	24	16	14		söl
-3500	6075	6	8	66		soil
-3500	6575	4	7	68		soil
-3500	7000	4	5	41		Soil
-3500	7425	4	9	24		soil
-3550	950	6	8	40		soil
-3600	950	6	21	52		soll
-3650	950	24	58	79		soil
-3725	950	12	49	88		soll
-3725	8000	4	3	18		soil
-3750	950	23	39	48		soil
-3875	950	4	38	68		soll
-3950	950	11	30	67		Soil
-3957	150	7	25	7		soil
-3957	300	4	41	108		soll
-3957	775	4	17	51		soll
-4175	0	4	12	44		soil
-4250	0	29	14	34		soll
-4425	900	4	22	25		soil
-4625	900	28	21	78		soil
-4675	900	4	5	17		soil
-4775	900	4	19	105		soil
-3200	8000	4	58	127	34	rock
-3375	8000	4	17	77	3	rock
-3500	6100	9	19	64	01	rock
-3500	7550	4	27	50	9	rock
-3500	8000	4	18	63	23	röck

Bondar Clegg Inchcape Testing Services

REPORT: V96-01067.0 (COMPLETE)

CLIENT: MINFOCUS INTERNATIONAL INC.
PROJECT: 95051 JAY

REFERENCE:

SUBMITTED BY: UNKNOWN
DATE PRINTED: 30-JUL-96

ORDER		ELEMENT
1	Au30	Gold
2	Cu	Copper
3	Zn	Zinc
4	As	Arsenic

NUMBER OF	LOWER		
ANALYSES	detection limit	EXTRACTION	METHOD
7	5 PPB	Fire Assay of 30g	30g Fire Assay - AA
7	1 PPM	HCL: HNO3 (3:1)	ATOMIC ABSORPTION
7	1 PPM	HCL: HNO3 (3:1)	ATOMIC ABSORPTION
7	1.0 PPM	HCL:HNO3 (3:1)	HYDR. GEN/AA

SAMPLE TYPES	NUMBER
\mathbf{S} SOIL	7

Bondar Clegg Inchcape Testing Services

Bondar Clegg

CLIENT: MINFOCUS INTERNATIONAL INC.
PROJECT: 95051

SUBMITTED BY: UNKNOLN DATE PRINTED: 13-AUG-96

| ORDER | | ELEMENT |
| :---: | :--- | :--- | :--- |
| 1 | Au30 | Gold |
| 2 | Cu | Copper |
| 3 | Zn | Zinc |
| 4 | As | Arsenie |

SAMPLE TYPES	NUMBER
S SOIL	73
R ROCK	5

NUMBER OF LOWER
ANALYSES DETECTION LIMIT EXTRACTION METHOD

78	5 PPB	Fire Assay of $\mathbf{3 0 g}$	30g Fire Assay - AA
78	1 PPM	HCL:HNO3 (3:1)	ATOMIC ABSORPTION
78	1 PPM	HCL.HNOS (3:1)	ATOMIC ABSORPTION
5	1.0 PPM	HCL:HNOS (3:1)	HYDR. GEN/AA

SIZE FRACTIONS NUMBER

1 -80
73
5

SAMPLE PREPARATIONS NUMBER

DRY, SIEVE -80 73
CRUSH/SPLIT \& PULV5

LIENT: MINFOCUS INTERNATIONAL INC. EPRORT: V96-01233.0 (COMPLETE)

PROJECT: 95051
DATE PRINTED: 13-AUG-96 PAGE 1
AMPLE
$s 1600 \mathrm{~W} 5000 \mathrm{~N}$
1625 W 5000 N
1643 W 6075 N
S 1643 W 6150 N
1675 W 6000 N
$s 1850 \mathrm{~W} 5000 \mathrm{~N}$
1900 W 6000 N
11000 W 6000 N
$s 11100 \mathrm{~W} 6000 \mathrm{~N}$
-11100 W 6457 N
-11150 W 7200 N
s1 1150W 7300N
1 1150W 7625N
. 1200 H 5000 N
s1 1200W 6000N

1325 W 6000 N
si 1350W 7000N
S1 1500W 6000N
1 1725W 7457N
1 1800W 7000N
51 1825w 7459N
\$1 2000W 7457N
S1 2050W 7000N
-1 2075W 7000 N
S1 2200W 7000N
512250 W 7000 N
512350 W 7000 N
512475 W 6457 N
s 12475 W 7459 N
S 12550 W 7000 N
S1 2550w 7457N
S1 2600W 6457N
S1 2625w 7000 N
51 2650w 6000 N
si 2775W 7457N
s1 2925w 7457N
s1 3050W 750N
S1 3125W 990N
s1 3150W 990N s1 3200W 100N

IENT: MINFOCUS INTERNATIONAL INC. EEPORT: V96-01233.0 (COMPLETE)

ftandard ELEMENT	AU30	Cu	Zn	As	Standard Element	Au30	Cu	Zn	As
TAME UNITS	PPB	PPM	PPM	PPM	NAME UNITS	PPB	PPM	PPM	PPM
analytical blank	<5	<1	2	<1.0	BCC GEOCHEM STD 5	-	97	81	9.0
NaLytical blank	<5	<1	<1	<1.0	Number of Analyses	-	1	1	1
nnalytical blank	<5	<1	<1	<1.0	Mean Value	-	97.3	80.9	9.00
ANALYTICAL 8LANK	<5	-	-	-	Standard Deviation	-	-	-	-
Iumber of Analyses	4	3	3	3	Accepted Value	-	90	80	8.0
Mean Value	2.5	0.5	1.0	0.50					
Standard Deviation	0.00	0.00	0.87	0.000					
accepted Value	5	1	1	0.4					
Bannet Standard	1522	-	-	-					
Number of Analyses	1	-	-	-					
Tean Value	1522.3	-	-	-					
Ptandard Deviation	-	-	-	-					
Accepted Value	1590	-	-	-					
BCC GEOCHEM STD 4	-	313	252	30.1					
Number of Analyses	-	1	9	1					
Mean Value	-	313.2	251.9	30.10					
Standard Deviation	-	-	-	-					
Accepted Value	-	290	255	30.0					
Gannet Standard	373	-	-	-					
Number of Analyses	1	-	-	-					
Mean Value	372.9	-	-	-					
Stancard Deviation	-	-	-	-					
Accepted Value	410	-	-	-					
Gannet Standard	2552	-	-	-					
Jumber of Analyses	1	-	-	-					
Hean Value	2552.1	-	-	-					
Standard Deviation	-	-	-	-					
Accepted Value	2520	-	-	-					
BCC GEOCHEM STD 3	-	853	518	312.0					
Number of Analyses	-	1	1	1					
Mean Value	-	853.0	518.0	312.00					
Standard Deviation	-	-	-	-					
Accepted Value	-	820	500	310.0					
Gannet Standard	1032	-	-	-					
Number of Analyses	1	-	-	-					
Mean Value	1031.7	-	-	-					
Standard Deviation	-	-	-	-					
Accepted Value	1080	-	-	-					

Appendix B
Magnetic Contours of JAy Claims

元

I
I
GAMAH INTERNATIONAL LIMITED MAGNETIC CONTOURS OF JAY CLAIMS (NORTH END) Kriged Values
Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED MAGNETIC CONTOURS OF JAY CLAIMS (NORTH END)
 Kriged Values
 Watson Lake Area, Yukon Territory

GAMAH INTERNATIONAL LIMITED
MAGNETIC CONTOURS OF JAY CLAIM (SOUTH END)
Kriged Values
Watson Lake Area, Yukon Territory

+ Stations

GAMAH INTERNATIONAL LIMITED
MAGNETIC CONTOURS OF JAY CLAIM (SOUTH END)
Kriged Values
Watson Lake Area, Yukon Territory

Appendix C

Electromagnetic Profile of Line 0 N

Electromagnetic Profile of Line 100 N

Electromagnetic Profile of Line 900 N

Electromagnetic Profile of Line 950 N

Electromagnetic Profile of Line 990 N

Electromagnetic Profile of Line 2500 W

Electromagnetic Profile of Line 3050 W

Electromagnetic Profile of Line 3500 W

Electromagnetic Profile of Line 3957 W

lectromagnetic Profile of Line 4400 W

Electromagnetic Profile of Line 4857 W

Electromagnetic Profile of Line 8000 N

Appendix D

Geophysical Notes

Wariowesting	GridMOrthing								
3450		58272	-5	3	c3, pine				
3475		58241	-7	0	c3, pine, willow wet				
3500		58238	-3	8	"				
3525		58243	-6	5	pine				
3550		58245	-10	4	c3, met orig 3500 line				
4425	900	58208	-14	0	soill JV-3				
4450		58229	-12	2	open pine \& willow				
4475		58232	-8	5	" ${ }^{\text {a }}$				
4500		58213	-8	4	"				
4525		58210	-5	5	${ }^{\prime \prime}$				
4550		58205	-12	5.	"				
4575		58224	-15	4	"				
4600		58209	-19	4	"				
4625		58192	-15	7	", soil JV-4				
4650		58201	-14	7					
4675		58187	-18	8	", soll JV-5				
4700		58204	9	8	"				
4725		58194	-13	3	"				
4750		58198	-10	2	"				
4775		58173	-8	3	", soll JV-6				
4800		58207	-7	0					
4825		58210	-6	0					
4850		58201	-6	-4	"			,	
4857		58213	-6	-4	',GPS +1-54m, 602631	1N 12901 98W			
3957	950				see earlier traverse not	tes			
3950		58244	3	-65	c2,dense conifers,moss	sy, soll MM-1			
3925		58246	10	25	${ }^{\prime \prime}$				
3900		58239	0	-45	"				
3875		58247	-4	-4	", soil MM-2				
3850		58260	. 5	1	"				
3825		58255	- 10	- 3	"				
3800		58281	0	2	"				
3775		58300	-10	-3	"				
3750		58329	-4	25	c3,", soll MM-3				
3725		58282	-2	-35	c2, soil MM-4				
3700		58261	-2	1	"				
3675		58259	0	-7	${ }^{\prime}$				
3650		58243	0	0	", 8011 MM-5				
3625		58257	3	-45	"				
3600		58245	0	-3	", soil MM-6				
3575		58250	-5	25	" ...				
3550		58287	-7	-1	i, soil MM-7				
3525		58294	-3	5	-1"				
3475	990	58245	-11	-25	open conifer				
3450		58261	-17	-8	"-				
3425		58254	-15	-25	",uphill slightly				
3400		58274	-16	-05	ii		.		
3375		58316	-14	3	", soil KB-6				
3350		58269	-12	3	"				
3325		58247	-9	8	"				
3300		58222	-10	10	"				
3275		58235	-14	8	"				
3250		58225	-9	5					
3225		58224	-9	3	"				
3200		58227	-10	-15	"				
3175		58239	-8	-6	i'				

A Summary of the Exploration Work Done on
The BJ Claim Groups
DURING THE PERIOD 10-23 JULY 1996
Watson Lake Area, Yukon Mining District
NTS 105A-6/7
$60^{\circ} 15^{\prime} 00^{\prime \prime} \mathrm{N}, 128^{\circ} 51^{\prime} 00^{\prime \prime} \mathrm{W}$
ON BEHALF OF
MINFOCUS INTERNATIONAL. INCORPORATED

LORRAINE GODWIN CONSULTING GEOPHYSICIST
Gamah International Limited
Sutte 707, 1243 Islington Avenue
Toronto, Ontario M8X 1 Y9

Yukon Mining Incentives Designation \#96-008
DECEMBER 1996

In October of 1995 a short reconnaissance survey was made on the BJ claim blocks in the Watson Lake area of Yukon Territory by Dr. Adrian Mann. This was followed up by ground magnetic and electromagnetic surveys in July 1996. Four days were spent with Gamah International Limited crews flagging and blazing grid lines and conducting the aforementioned surveys, as well as performing reconnaissance geological mapping and collecting geochemical soil samples at various locations along the grid lines (37 samples were collected in total). The work done consisted of $11,778 \mathrm{~m}$ (in 10 lines) of linecutting, reconnaissance geological mapping and geochemical sampling, as well as geophysical surveying.

No economic mineralization was found, however, several anomalous areas were discovered. Due to the sparseness of the grid coverage, it is recommended that further exploratory work is performed over the claim group in order to determine the extent of these anomalies.

1.0 IntroductionPage 1
2.0 LOCATION AND LOGISTICS Page 1
3.0 Property Ownership and Location Page 6
4.0 Previous Work Page 6
5.0 SUMMARY of WORK COMPLETED in 1996 Program Page 6
6.0 Geology Page 9
7.0 Surveys Page 11
7.1 Geochemical Survey - Methodology Page 11
7.2 Geochemical Survey - Results Page 11
7.3 Magnetometer Survey - Methodology Page 11
7.4 Magnetometer Survey - Results Page 11
7.5 Electromagnetic Survey - Methodology Page 12
7.6 Electromagnetic Survey - Results Page 12
8.0 CONCLUSIONS AND RECOMMENDATIONS Page 13
9.0 Footnotes Page 13
10.0 Statements of Qualufications Page 14
11.0 PERSONNEL AND CONTRACTORS EMPLOYED Page 16
12.0 STATEMENT OF COSTS Page 17
13.0 References Page 18
Page 2
Figure 2 Watson Lake Topographic Map, 1:250,000Page 3
Figure 3 Grd Coverage of BJ Claims Page 7
Figure 4 BJ Claims Plan Extracted From Claim Map 105A-6 \& 7, 1:50,000 Page 8
Figure 5 Geological Map of Watson Lake Area, 1:1,000,000Page 10

24
Appendix A Geochemical Contours, Assay Results and Certificates Page 19
Appendix B Magnetic Contours of BJ Claims Page 35
Appendix C Electromagnetic Profiles of BJ Claims Page 38
Appendix D Geophysical Notes Page 49

A brief summer exploration program was carried out on the BJ claim group at the recommendation of Dr. Adrian Mann, who conducted a short reconnaissance visit on October 3rd, 1995 (Mann, 1996) on said claims. Dr. Mann's recommendations were to have a field crew conduct VLF-EM and total field magnetometer surveys to locate, on the ground, geophysical anomalies revealed by much earlier Questor airborne surveys (1981). Detailed geological mapping was not recommended as he found a "paucity of outcrop" (Mann, 1996). Gamah International Limited undertook the recommended exploration program on behalf of Minfocus International Incorporated. This report describes the results of the exploration surveys carried out by Gamah during the month of July 1996 and provides recommendations for further work.

The BJ claims are located approximately 30 km north of the town of Watson Lake which is in the Yukon Territory.

Daily jet service is available from Vancouver to Whitehorse with onward continuation by turbo prop commuter planes to Watson Lake, or three to four times weekly by jet from Vancouver to Terrace then turbo prop to Watson Lake. Regular Greyhound bus service is available along the Alaska Highway.

The town of Watson Lake is connected to British Columbia by the Alaska Highway (Route 1). Running northwest from Watson Lake to Carmacks is the all-weather Robert Campbell Highway (Route 4) which provides direct access to the field camp (Figure 1). Both helicopter and float plane bases are established in Watson Lake. The town also boasts four hotels, a trailer park, hospital, health care centre, and ambulance facilities. Supplies, fresh water and consumables were obtained from Watson Lake. The town also hosts the Mining Recorders Office for the Watson Lake Mining Division which encompasses the BJ claims. Claim maps and other information are accessible here.

Driving conditions from December to March require snow tires, winter weight crankcase oil, gasoline anti-freeze, a circulating block heater, battery blanket, battery booster cables, shovel, and a good tow rope or chain. Road condtions in the summer months are quite good although it is recommended that sturdy tires and spares are used as flats are quite common along the Robert Campbell Highway. April and May are spring break-up months in which mud and slush may cause sloppy conditions on some highway sections.

The snow-free period for these areas is estimated to be from mid-April to mid-October, although this is highly variable.

A field camp was established on the south side of the Frances River, at approximately kilometre 60 on the Robert Campbell Highway (as measured from the town of Watson Lake). Access from this location to the BJ claims was approximately 30 km south along the Robert Campbell Highway, at kilometre 30 . The western edge of the BJ claims falls across the highway, making them easily accessible.

Figure 1
General Location Map Yukon Highway Map, 1986

BJ Claims

Table 1
Summary of BJ Claums Information

Grant Number:	Claim Name	Registered Owner	Amiversary Date	Location max	NTS (Claim Shectial
YB69993	BJ 69	Minfocus international linc.	96/10/10	Tom Creek Aíea	105A-6
YB69994	BJ 70	Minfocus international inc.	96/10/10	Tom Creek Area	105A-6
YB69995	BJ 71	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB69996	BJ 72	Minfocus international Inc	96/10/10	Tom Creek Area	105A-6
YB69997	BJ 73	Minfocus international Inc.	96/10/10	Tom Creak Area	105A-6
YB69998	BJ 74	Minfocus international Inc	96/10/10	Tom Creek Area	105A-6
Y869999	BJ 75	Minfocus internatonal inc	96/10/10	Tom Creek Area	105A-6
YB70000	BJ 76	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70001	BJ 77	Minfocus Internatonal Inc.	96/10/10	Tom Creek Area	105A-7
YB70002	BJ 78	Minfocus International Inc	96/10/10	Tom Creek Area	105A-7
YB70003	BJ 79	Minfocus International Inc	96/10/10	Tom Creek Area	105A-7
YB70004	BJ 80	Minfocus International Inc	96/10/10	Tom Creek Area	105A-7
YB70005	BJ 81	Minfocus international tinc	96/10/10	Tom Creek Area	105A-7
YB70006	BJ 82	Minfocus international inc	96/10/10	Tom Creek Area	105A-7
YB70007	BJ 83	Minfocus international Inc	96/10/10	Tom Creak Area	105A-7
YB70008	BJ 84	Minfocus International Inc	96/10/10	Tom Creak Area	105A-7
YB70009	BJ 85	Minfocus International Inc.	96/10/10	Tom Creak Area	105A-6
YB70010	BJ 86	Minfocus international Inc	96/10/10	Tom Creek Area	105A-6
YB70011	BJ 87	Minfocus International inc.	96/10/10	Tom Creek Area	105A-6
YB70012	BJ 88	Minfocus International inc.	96/10/10	Tom Creak Area	105A-6
YB70013	BJ 89	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
Y870014	BJ 90	Minfocus International Inc	96/10/10	Tom Creek Area	105A-6
YB70015	BJ 91	Minfocus International Inc.	96/10/10	Tom Creek Araa	105A-6
YB70016	BJ 92	Minfocus International inc.	96/10/10	Tom Creek Area	105A-6
YB70017	BJ 93	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70018	BJ 94	Minfocus International Inc.	96/10/10	Tom Creok Area	105A-6
YB70019	BJ 95	Minfocus International Inc.	96/10/10	Tom Creak Area	105A-6
YB70020	BJ 96	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70021	BJ 97	Minfocus International Inc	96/10/10	Tom Creek Area	105A-7
YB70022	BJ 98	Minfocus International Inc	96/10/10	Tom Creak Area	105A-7
Y870023	BJ 99	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70024	BJ 100	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70025	BJ 101	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70026	BJ 102	Minfocus International Inc.	96/10/10	Tom Creak Area	105A-7
YB70027	BJ 103	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70028	BJ 104	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70029	BJ 105	Minfocus International inc.	96/10/10	Tom Creek Area	105A-6
YB70030	BJ 106	Minfocus International Inc	96/10/10	Tom Creek Area	105A-6
YB70031	BJ 107	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70032	BJ 108	Minfocus International inc.	96/10/10	Tom Creek Area	105A-6
Y870033	BJ 109	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70034	BJ 110	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70035	BJ 1111	Minfocus International Inc.	96/10/10	Tom Craek Area	105A-6
YB70036	BJ 112	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-6
YB70037	BJ 113	Minfocus International Inc	96/10/10	Tom Creek Area	105A-7
YB70038	BJ 114	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70039	B. T 115	Minfocus International Inc.	96/40/10	Tom Creek Area	105A-7
YB70040	BJ 116	Minfocus International Inc.	96/10/10	Tom Creok Area	105A-7
YB70041	B. 117	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70042	BJ 118	Minfocus Internatonal Inc.	96/10/10	Tom Creek Area	105A-7
YB70043	BJ 119	Minfocus Internatonal Inc.	96/10/10	Tom Creek Area	105A-7
YB70044	BJ 120	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70045	BJ 121	Minfocus International inc.	96/10/10	Tom Creek Area	105A-6
YB70046	BJ 122	Minfocus International lic.	96/10/10	Tom Creak Area	105A-6
YB70047	BJ 123	Minfocus Internatonal Inc.	96/10/10	Tom Creek Area	105A-6
YB70048	BJ 124	Minfocus International Inc.	96/10/10	Tom Creak Area	105A-6
YB70049	BJ 125	Minfocus Internatonal Inc.	96/10/10	Tom Creek Area	105A-7
Y870050	BJ 126	Minfocus international Inc.	96/10/10	Tom Creek Area	105A-7
YB70051	BJ 127	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7
YB70052	BJ 128	Minfocus International Inc.	96/10/10	Tom Creek Area	105A-7

3.0. PROPSRIY OWNGRSRIP AND LOCAMION

The registered owner of the BJ claims is Minfocus International Inc.. Table 1 gives details of record numbers and anniversary dates for the claims. The registration dates of the BJ claims are October 1995. With the exception of the reconnaissance visit paid by Dr. Mann to these claims, all work described in this report was undertaken after July 9th, 1996.

The field exploration program was conducted on the BJ claim groups on behalf of Minfocus International Incorporated by the consulting group of Gamah International Limited. The BJ claim group consists of 128 contiguous claims numbered 1 to 128 (Figure 4). The claim group falls on both the $1: 50,000$ topographic and claim map sheets of NTS 105A-6 and 105A-7.

4.0 PREVIOUS WORK

During 1980-1983 a Questor airborne magnetic and electromagnetic survey was performed in the Watson Lake area. Based on these results, Minfocus International Inc. then staked the BJ claims over anomalous areas. Geologist Adrian Mann visited the BJ claims on October 3rd, 1995. Three grab samples were collected, including one of unmineralized country rock. The results of these three are as follows (Mann, 1996):

Dr. Mann found little outcrop on the block and recommended against detailed geological mapping, however, he did recommend geophysical traversing, using ground based magnetic and VLF-EM surveying techniques, coupled with geochemical sampling. These conclusions led to the exploration program of 1996.

5. SLMMARF OF WORK COMPLEMEDIN 1996 PROGRAM

The field work was carried out on the days of July 10, 21, 22 and 23, 1996. The work consisted of linecutting, reconnaissance geological mapping and soil geochemical surveys, as well as reconnaissance VLF-EM and total field magnetic surveys. The east-west running flag and compass lines were established at approximately 500 m intervals, while tie-in north-south lines were established at the ends of the eastwest traverses (see Figures 3 and 4 for a picture of the grid coverage). Individual stations were fixed at 25 metre intervals. The surveys were carried out simultaneously on all ten blazed lines (for a total of 11,778 metres).

The following table is a summary of all lines which were cut, blazed and flagged.

BJ Claims Plan Extracted Fram
Claim Maps 105A-6 \& 7
1:50,000 Fígure 3 3
GAMAH INTERNATIONAL LIMITED

BJ Claims Plan Extracted From Claim Maps 105A-6 \& 7

A total of 37 soil samples were collected over the entire grid (see Appendix A for soil sample locations), all of which were analyzed for copper, gold and zinc. The program of work was intended to be an initial reconnaissance to verify the existence of the geophysical anomalies and to determine if there is supporting geochemical or geological anomalous conditions to justify more extensive grid coverage.

Lorraine Godwin, geophysicist for Gamah International Limited, was overall project manager and head of the geophysical and geochemical surveys. Assisting in both the geophysical and geochemical surveys, as well as mapping whatever outcrop occurred, were Mr. Kurt Breede of Toronto, Ontario, Mr. Jocelain Valade of Sudbury, Ontario, Miss Helen Harper of Toronto, Ontario, and Mr. Greg Hounsell of Kingston, Ontario. Mr. Johnothan Stockman and Mr. Richard Harder, both of Watson Lake, Yukon, assisted in the linecutting, blazing and flagging of the BJ claims. Mr. George Millen, also of Watson Lake, Yukon, provided expediting and support services.

Geochemical analyses of soil and rock samples were performed by Bondar-Clegg \& Company Limited of North Vancouver, British Columbia.

Refer to Section 11.0 for a complete summary of all personnel and contractors employed during this period.

The $1: 1,000,000$ scale Macmillan River (1398A) geological map published in 1980 by the GSC (Gabrielse, Tempelman-Kluit, Blusson, Campbell) shows that the Campbell Thrust is sited along Wolverine Lake. It was thought by Dr. Mann that "if this thrust is the locus of the mineralization, then it is logical to seek like mineralization elsewhere in like terrain. If this is true, then the logical places to stake are along the periphery of the Anvil Allochtons, following the plane of the Campbell Thrust" (Mann, 1996). The east limb of this thrust follows east of the Robert Campbell Highway to Watson Lake and encompasses the BJ claim group (Figure 5).

The outcrop discovered by Dr. Mann during his reconnaissance visit was "confined to Gabrielse's unit 9b Mississippian bioclastic and massive limestones with interbedded polymict conglomerates, argillite, slate, chert bands, tuffs and other volcanics, sandy and cherty limestones and greywackes. Arscott describes cherts, greywackes and phyllites, with minor siltstone and argillite occurring in this and other blocks in the area" (Mann, 1996).

Dr. Mann speculated that there might be a good possibility of finding a copper-zinc impregnated thrust fault within the Watson Lake area.

Waxd

7.1 Geochemical Survey - Methodology

A total of 37 soil samples were collected over the entire 10 grid lines (see Appendix A for sample locations). The samples were taken based on high magnetometer readings or crossover points measured by the VLF. These samples were then sent to Bondar-Clegg and Company in North Vancouver where they were analysed for copper, gold and zinc (see Appendix A for assay certıficates).

Applying a kriging method, the assay results were then contoured using the Surfer software package "Surferl6".

7.2 Geochemical Survey - Results

As seen from the contour plots in Appendix A, the copper contour exhibits anomalous areas around 550 $\mathrm{W}, 6200 \mathrm{~N}$ and $2100 \mathrm{~W}, 7000 \mathrm{~N}$. The gold contour illustrates anomalies in roughly the same areas: 550 $\mathrm{W}, 6000 \mathrm{~N}$ and $2600 \mathrm{~W}, 7000$, while the zinc contour shows a high everywhere except around 550 W , 5300 N and $2100 \mathrm{~W}, 7457 \mathrm{~N}$.

7.3 Magnetometer Survey - Methodology

This survey employed a Scintrex MP-2 proton precession magnetometer ${ }^{1}$. This instrument utulizes the phenomenon of nuclear magnetic resonance to measure the flux density of the total magnetic field.

Readings were taken (in triplicate) along all of the flagged lines, at 25 m intervals. No base station was used, however, where possible, repeat readings were taken at previously surveyed stations at a later time to check for diurnal fluctuations. The intent of this survey was not to provide absolute data, but rather to give a general idea of the magnetic environment of the BJ claims.

Magnetic values were contoured using a knging method with the Golden Software "Surfer 16" package.

7.4 Magnetometer Survey - Results

The contour plot (found in Appendix B) demonstrates a magnetic low at the end of line 5457 N , which is more likely due to one anomalous reading near the end of this line and thus cannot be taken too seriously as an anomaly without further surveying. Magnetic highs occur around the 3000 W points of lines 6000 N and 6457 N . Again, because they occur near the ends of the survey lines, it is difficult to ascertain the validity of these anomalies without additional measurements. Also, the magnetic results do not correspond with the geochemical anomalies for copper, gold and zinc, as can be seen by comparison of the magnetic contour with the geochemical contours. No substantial conclusions can be drawn as to the magnetic makeup of the BJ claims without a further, more extensive survey, although it would appear that the northern portions of BJ are much less magnetically interesting than the more southerly portions. It is therefore recommended that future survey crews focus more on the southern claims of the BJ group.

7.5 Electromagnetic Survey - Methodology

A Geonics EM16 Very Low Frequency ${ }^{2}$ (VLF) receiver was used for this survey.

As with the magnetic survey, readings for the electromagnetic survey were taken at every 25 m station along the same lines. For the purposes of this survey the signal from an antenna in Seattle, Washington (NLK -24.8 kHz) was used. This emitted a fairly strong signal which was easy to hear.

The electromagnetuc profiles were plotted using the Microsoft Excel software package.

7.6 Electromagnetic Survey - Results

The electromagnetic profiles can be found in Appendix C
Line 5000 N shows crossovers at -650 W and $\sim 1250 \mathrm{~W}$ These are indicative of possible conductors and further work should be done both areas. Only the magnetic contour has any evidence to support this, with a magnetuc low at $\sim 1600 \mathrm{~W}, \sim 5475 \mathrm{~N}$.

Line 5457 N has a small crossover at $\sim 975 \mathrm{~W}$ and $\sim 1100 \mathrm{~W}$, with a larger crossover point at $\sim 1350 \mathrm{~W}$, also indicatung a possible conductor and supporting further work in this area. However, nether the magnetic contour nor the geochemical contours show positive evidence for this.

Line 6000 N has seven crossover points, the strongest of which occurs between $\sim 1600 \mathrm{~W}$ and $\sim 2275 \mathrm{~W}$. This looks as though there might be a large conductor in this area. Again, however, there is no encouraging results from the contour plots.

Line 6457 N has 12 crossovers, the strongest of which falls between $\sim 1700 \mathrm{~W}$ and $\sim 2150 \mathrm{~W}$.
Line 7000 N has eight crossovers, with notable peaks between $\sim 2100 \mathrm{~W}$ and $\sim 2300 \mathrm{~W}$. The geochemical contours for copper and gold have anomalous areas at $\sim 7000 \mathrm{~N}, \sim 2000 \mathrm{~W}$ and $\sim 7000 \mathrm{~N}, \sim 2550 \mathrm{~W}$, respectively

Line 7457 N has only small crossovers at $\sim 2350 \mathrm{~W}, \sim 2450 \mathrm{~W}, \sim 2700 \mathrm{~W}$ and $\sim 2725 \mathrm{~W}$. The zinc contour demonstrates a low around $7457 \mathrm{~N}, 2100 \mathrm{~W}$, while the gold contour shows a high at approximately 7457 $\mathrm{N}, 2600 \mathrm{~W}$.

On Line 550 W we see a strong crossover at $\sim 5260 \mathrm{~N}$, indicating a strong conductor in this area. The magnetic contour corresponds to this with a possible magnetic high at $500 \mathrm{~W}, \sim 5475 \mathrm{~N}$. The geochemical contour for zinc shows a low in this area.

Line 643 W demonstrates smaller crossovers at $6100 \mathrm{~N}, 6150 \mathrm{~N}, \sim 6280 \mathrm{~N}$ and $\sim 6360 \mathrm{~N}$, pointing to weaker conductors in this area. The magnetic contour plot does not have any corresponding anomalies in this area, however, the geochemical plots for both copper and gold show higher values in this region.

Line 1150 W has no crossover points. Both the magnetic contour and the geochemical contours also show no anomalies although the copper contour has a noticeable high in the vicinity of this line.

Line 2873 W has only two small crossovers at -6010 N and $\sim 6035 \mathrm{~N}$. The magnetic contour also has high and low anomalies in this area. The geochemical contours do not show any corroborating anomalies in this area, however, this does not conclude anything as only one soil sample was taken in this vicinity. Further work is recommended around this area, including both geophysical and geochemical surveying.

The results of the geophysical and geochemical surveys make it evident that there is potential for the BJ claim group. However, due to the time constraints of this exploration program and thus the sparseness of the grid coverage, it is suggested that a more detailed grid is established over the entire property to give a greater understanding of both the geology and geophysics of the BJ claims, but with more of an emphasis on the southern end of the claim group as there are several specific areas in which to focus further work in this region.

More extensive soil sampling, and rock sampling where possible, is recommended in the areas of the magnetic highs and lows, as well as the highs of the geochemical contours, namely: along 500 W between 5000 N and $6000 \mathrm{~N}, 550 \mathrm{~W}$ between 6000 N and $6500 \mathrm{~N}, 6000 \mathrm{~N}$ between 500 W and 2000 W , and along 7000 N between 2200 W and 3000 W .

1 Proton Precession Magnetometer:

The MP-2 Sensor consists of a chamber filled with a proton rich fluid such as kerosene enclosed within two wire wound coils. A magnetic field is set up when a current is passed through these coils for a short duration of time. Thus field aligns the spinning protons and when the polarizing current is abruptly switched off, the protons begin to precess around the earth's magnetic field and eventually realign with it. The precession induces a small, exponentially decaying, AC signal in the sensor coils whose frequency is proportional to the flux of the ambient magnetic field (23.4874 gammas $/ \mathrm{Hz}$). The frequency is then measured by the signal processing electronics of the MP-2, converted to a gamma value and presented on the digital display.

2 EM16 VLF

This receiver measures the VLF radiation signals, in the range of $15-25 \mathrm{kHz}$, from grounded vertical antennae which are generally employed for manne navigation. A worldwide network of high-power VLF stations exast over the Earth's surface so that at least two stations can be detected from anywhere on the Earth.

The VLF receiver measures the in phase component (tult angle) and quadrature component (component 90° ahead of the in phase component) of the polarization ellipsoid produced as an outcome of a primary electromagnetic field being emitted from the transmitting antenna which in turn generates a secondary electromagnetic field in whatever is buried in the ground. The resultant sum of these two fields is the polarization ellipse which represents the total field. Within the VLF are two mutually perpendicular coils wound on ferrte cores. The conl whose axas is normally vertical is first held in a horizontal position and rotated in azimuth to find a minimum. This finds the direction to the transmitting station. The receiver is then brought up 90° vertically and is now in the plane containing the polarization ellipse. The instrument is then tilted until a minimum is detected. The clinometer of the instrument is used to record the tilt angle. Fine tuning with the use of the quadrature knob produces an even more obvious minimum and gives the quadrature reading.

I, Lorraine Godwin, do hereby certify that:

1. I will graduate from York University with a B. Sc. Honours degree in Geophysics (graduation date: June 1997).
2. I have practiced in my profession since 1995
3. I am a member in good standing of the Prospectors and Developers Association of Canada and the Canadian Institute of Mining, Metallurgy and Petroleum.
4. I have no vested interest in these properties or in Minfocus International Inc., nor do I expect to receive any such interest.
5. I supervised the surveys described in this report and endorse the opinions and conclusions contained herein based on field examination and review of analytical results.

I, Gerald Harper, President of Gamah International Limited, do hereby certify that:

1. I am a graduate of the University of London with a B. Sc. degree in Geology and Chemistry in 1965, a B. Sc. Honours degree in Geology in 1966 and a Ph. D. in Geology in 1970.
2. I have practiced my profession continuously since 1966.
3. I am a member in good standing of the Association of Professional Engineers of Ontario, the Society of Economic Geologists, the Canadian Institute of Mining, the Society for Exploration, Mining and Metallurgy, the Geological Society of South Africa, a Fellow of the Geological Society and a member of the Mineral Economics and Management Society.
4. I am the President of Minfocus International Inc . may be deemed to be its promoter and have instigated the staking by Minfocus International Inc.. I am also the President of Gamah International Limited, an independent mining and geological consulting and contracting firm.
5. I directed and supervised the program of work described in this report and endorse the opinions and conclusions presented in this report on the basis of my field examunations in July and September 1996 and review of data compiled by me durng those field examinations.

The above costs are as accurate as possible and represent the true value of the work carried out during the 1996 exploration program as shown above and described in this report. Detailed records for back-up to these amounts are available at the office of Minfocus International Incorporated, Suite 707, 1243 Islington Avenue, Toronto, Ontario, M8X 1 Y9.

Arscott, D. (1982), Kent Project 1982 Program Assessment Report.
Private Report for Kerr Addison Mines Ltd.
Gabrielse, H., Tempelman-Kluit, D.J., Blusson, S.L. and Campbell, R.B. (1980), MacMillan River. GSC Map 1398A, sheets $105,115,1: 1,000,000$ scale.

Godwin, L. (1996), Summary Report on Claims of Minfocus International Incorporated in the Watson and Wolverine Lake Areas of Yukon Territory. Private Report for Minfocus International Inc., 50pp.

Harper, G. (1996), Report on Geophysical Surveys and Diamond Drilling on GMS Group of Claims, Watson Lake Mining Division, NTS 105/A2, 105/A6 and 105/A7, Yukon Territory. Private Report for Minfocus International Inc., 23 pp.

Mann, A.G. (1995), Preliminary Geological Report on Watson and Finlayson Lake Exploration Project in Yukon Territory for Minfocus International Inc Private Report for Minfocus International Inc., 24pp.

Mann, A.G. (1996), Geological Report on Watson Lake Exploraton Project in Yukon Territory. Private Report for Minfocus International Inc., 15pp.

Appendix A

Geochemical Contours, Assay Results and Certificates

GAMAH INTERNATIONAL LIMITED
COPPER GEOCHEMICAL CONTOURS OF BJ CLAIMS Kriged Vaules
Watson Lake Area, Yukon Territory

+ Soil Sample Locations

GAMAH INTERNATIONAL LIMITED COPPER GEOCHEMICAL CONTOURS OF BJ CLAIMS Kriged Vaules
Watson Lake Area, Yukon Territory

Grid Westing	Grid Northing	Au (ppb)	Cu(ppm)	2n(ppm)
550	5275	6	13	31
600	5000	4	17	80
625	5000	4	11	57
643	6075	6	27	93
643	6150	4	30	98
675	6000	16	9	49
850	5000	4	8	50
900	6000	4	4	33
1000	6000	4	6	41
1100	6000	4	10	77
1100	6457	4	8	56
1150	7200	4	16	73
1150	7300	4	21	69
1150	7625	4	10	48
1200	5000	6	10	45
1200	6000	4	8	60
1325	6000	4	10	71
1350	7000	6	6	33
1500	6000	11	19	78
1725	7457	6	21	49
1800	7000	9	42	95
1825	7459	4	6	42
2000	7457	12	18	28
2050	7000	4	60	73
2075	7000	12	21	84
2200	7000	4	11	53
2250	7000	12	5	30
2350	7000	9	4	28
2475	6457	4	9	49
2475	7459	6	8	55
2550	7000	40	15	73
2550	7457	27	9	71
2600	6457	4	9	49
2625	7000	11	6	36
2650	6000	4	8	44
2775	7457	6	16	54
2925	7457	8	21	72

minfocus international inc. MR. G. HARPER \#707-1243 ISLINGTON AVE.
TORONTO, ONTARIO
M8X 1 Y9

REPORT: V96-01233.0 (COMPLETE)
CLIENT: MINFOCUS INTERNATIONAL INC.
PROJECT: 95051

REFERENCE: 95051 BJ/JAY

SUBMITTED BY: UNKNOUN DATE PRINTED: 13-AUG-96

1	Au30	Gold
2	Cu	Copper
3		
Zn	Zinc	
4	As	Arsenic

SAMPLE TYPES	NUMBER	
	SOIL	73
R	ROCK	5

NLMBER OF LOWER

 analyses detection limit extraction method| 78 | 5 PPB | Fire Assay of $\mathbf{3 0 g}$ | 30g Fire Assay - AA |
| ---: | ---: | :--- | :--- |
| 78 | 1 PPM | HCL: HNO3 (3:1) | ATOMIC ABSORPTION |
| 78 | 1 PPM | HCL:HNO3 (3:1) | ATOMIC ABSORPTION |
| 5 | 1.0 PPM | HCL:HNO3 (3:1) | HYDR. GEN/AA |

SIZE FRACTIONS NUMBER

73
5

SAMPLE PREPARATIONS NUMBER
DRY, SIEVE -80 73 CRUSH/SPLIT \& PULV. 5

Bondar Clegg Inchcape Testing Services

CLIENT: MINFOCUS INTERNATIONAL INC.
REPORT: V96-01233.0 (COMPLETE)

SAMPLE	ELEMENT	A ${ }^{\text {30 }}$	Cu	2n	As	SAMPLE	ELEMENT	A 430	Cu	2 n	As
IUMEER	UNITS	PPB	PPM	PPM	PPM	NUMBER	UNITS	PPB	PPM	PPM	PPM
S1 600W 5000N		<5	17	80		S1 3225w 100 N		<5	14	85	
S1 625w 5000N		<5	11	57		513250 W 100 N		24	9	43	
51 643W 6075N		6	27	93		S1 3275W 100N		23	12	76	
S1 643W 6150N		<5	30	98		s1 3375w 990N		15	15	37	
S1 675W 6000N		16	9	49		S1 3400W 100N		<5	8	44	
S1850W 5000N		<5	8	50		S1 3425W 100N		6	8	92	
S1 900W 6000		<5	4	33		s1 3500w 25 N		36	26	87	
511000 W 6000 N		<5	6	41		S1 3500W 860N		15	71	69	
S1 1100W 6000N		<5	10	77		s1 3500w 900N		<5	18	55	
S1 1100w 6457N		<	8	56		s1 3500w 950N		21	9	34	
S1 1150W 7200N		<5	16	73		S1 3500w 990N		<5	6	22	
s1 1150W 7300N		<5	21	69		513500 W 5925 N		24	16	14	
S1 1950w 7625N		<	10	48		S1 3500以 6075N		6	8	66	
51 1200W 5000N		6	10	45		S1 3500W 6575N		<5	7	68	
41 1200W 6000N		<	8	60		s1 3500w 7000N		<5	5	41	
S1 1325w 6000 N		<5	10	71		si 3500W 7425N		<5	9	24	
S1 1350W 7000N		6	6	33		s1 3550W 950N		6	8	40	
s1 1500H 6000N		11	19	78		s1 3600W 950N		6	21	52	
-s1 1725u 7457N		6	21	49		S1 3650W 950N		24	58	79	
S1 1800w 7000 N		9	42	95		S1 3725W 950N		12	49	88	
s1 1825w 7459N		<5	6	42		S1 3725w 8000N		<5	3	18	
s1 2000w 7457N		12	18	28		s1 3750 W 950 N		23	39	48	
s1 2050w 7000 N		<5	60	73		s1 3875W 950N		<5	38	68	
51 2075w 7000N		12	21	84		si 3950W 950N		11	30	67	
\$1 2200w 7000		<5	11	53		s1 3957w 150N		7	25	7	
- 51 2250W 7000N		12	5	30		S1 3957W 300N		<5	41	108	
S1 2350w 7000N		9	4	28		s1 3957N 775N		<5	17	51	
s1 2475w 6457N		<5	9	49		S1 4175W ON		<5	12	44	
. 51 2475W 7459N		6	8	55		S1 4250w ON		29	14	34	
S1 2550w 7000 N		40	15	73		S1 4425w 900N		<5	22	25	
S1 2550W 7457N		27	9	71		S1 4625w 900N		28	21	78	
si 2600w 6457 N		<	9	49		S1 4675W 900N		<5	5	17	
S1 2625W 7000N		11	6	36		S1 4775W 900N		<	19	105	
s1 2650 W 6000 N		<5	8	44		R2 3200w 8000N		<	58	127	3.4
S1 2775H 7457N		6	16	54		R2 3375W 8000N		<5	17	77	3.0
S1 2925W 7457N		8	21	72		R2 3500W 6100N		9	19	64	<9.0
s1 3050w 750N		<5	5	36		R2 3500W 7550N		<5	27	50	9.0
s1 3125W 990N		<5	8	33		R2 3500 8000 N		<5	18	63	2.3
's1 31504 990N		<5	11	37							
S1 3200w 100N		<5	6	38				-			

Bondar Clegg

minfocus intermational inc.
MR. G. HARPER \#707-1243 ISLINGTON AVE.
TORONTO, ONTARIO
M8X 1 Y9

Bondar Clegg

REPORT: V96-01420.0 (COMPLETE)

CLIENT: MINFOCUS INTERNATIONAL INC.
RROJECT: 95051

ORDER		ELEMENT
1	Au3O	Gold
2	Ag	Silver
3	Cu	Copper
4	Zn	Zinc

NUMBER OF
LOWER analyses detection limit extraction

1	5 PPE
1	0.1 PPM

11 PPM HCL:HNO3 (3:1)
11 PPM HCL:HNO3 (3:1)

METHOD

30g Fire Assay - AA ATOMIC ABSORPTION

ATOMIC ABSORPTION ATOMIC ABSORPTION

s SOIL
number

1

SIZE FRACTIONS

1 -80

NUMBER

1

SAMPLE PREPARATIONS NUMBER
DRY, SIEVE -80 1

Bondar Clegg Inchcape Testing Services

STANDARD ELEMENT	Au30	Ag	Cu	2 n	\cdots
LAME UNITS	PPB	PPM	PPM	PPM	
ANALYtical blank	<5	<0.1	1	1	
Number of Analyses	1	1	1	1	
lean Value	2.5	0.05	1.0	1.0	
-Standard Deviation	-	-	-	-	
Accepted Value	5	0.1	1	1	
	-	0.9	313	252	
Number of Analyses	-	1	1	1	
Mean Value	-	0.90	313.0	252.0	
Standard Deviation	-	-	-	-	
Accepted Value	-	0.8	290	255	

CLIENT: MINFOCUS INTERN REPORT: V96-01420.0	$\begin{aligned} & \text { ONAL I } \\ & \text { LETE } \end{aligned}$				DATE PRINTED: 17-SEP-96	PAGE 3	
SAMPLE ELEMENT	Au30	Ag	Cu	Zn			
NUMBER UNITS	PPB	PPM	PPM	PPM			
8J JV9 5275 550W	6	<0.1	13	31			
buplicate	12	<0.1	11	29			

Appendix B

Magnetic Contours of BJ Claims

GAMAH INTERNATIONAL LIMITED MAGNETIC CONTOURS OF BJ CLAIMS Kriged Vaules Watson Lake Area, Yukon Territory

APPENDIX C

Electromagnetic Profiles of BJ Claims

Electromagnetic Profile of Line 5000 N

Electromagnetic Profile of Line 5457 N

Electromagnetic Profile of Line $\mathbf{6 0 0 0} \mathbf{N}$

Electromagnetic Profile of Line 6457 N

Electromagnetic Profile of Line 7000 N

Electromagnetic Profile of Line 7457 N

Electromagnetic Profile of Line 550 W

Electromagnetic Profile of Line 643 W

Electromagnetic Profile of Line 1150 W

Electromagnetic Profile of Line 2873 W

APPENDIX D

Geophysical Notes

	2425	58268	0	0			"								
	2450	58269	1	1			"								
	2475	58271	5.	2			${ }^{\circ}$	-							
	2500	58272	8	4			${ }^{\circ}$								
	2525	58273	11	7			"								
	2550	58274	6	10			Pine \& will								
	2575	58271	7	6			(S-MiM-B	1-98)							
	2600	58267	5	1			\square								
	2825	58275	3	6			${ }^{\prime}$								
	2650	58280	0	9			Sount side	of swamp	near lake						
	2675	58263	-5	7			"								
	2700	58276	5	-3			Over ald ro	oad							
	2725	58291	5	-9			(S-MM-B	(-19)							,
	2750	58276	12	-12			-								
	2775	58279	10	-8			"								
	2800	58272	10	-13			"								
Claim"	BJ														
Date	22-Jut-96														
Mag?	Greg														
VLF:	Mick (Statio	Facng													
Notes:	Helen														
Triverse:	Working Ea	Tom 200	50 W alo	6000N											
Locatión North	$\begin{gathered} \text { Locition } \\ \text { West } \end{gathered}$	wiag	$\begin{aligned} & \text { VLF } \\ & \tan q . \end{aligned}$	Quad?		Notes									
6000	2875	58253	1	05		conifer fon	est note 28	73-2900, the	us south line	Is 2900					
	2850	58261	1	-05		confer fore									
	2825	58260	3	1		"									
	2800	58258	2	1		"									
	2775	58254	1	1		"									
	2750	58258	4	2		"									
	2725	58262	6	3		"									
	2700	58256	4	2		"									
	2675	58258	5	3		${ }^{\prime \prime}$									
	2650	58265	7	05		", S-BJ]									
	2625	58261	5	3		", note no	sample JV								
	2600	58255	3	1		"									
	2575	58256	2	0		${ }^{\circ}$									
	2550	58259	4	2		$1{ }^{19}$									
	2525	58257	5	0		${ }^{\prime \prime}$									
	2500	58252	3	-2		${ }^{\prime \prime}$									
	2475	58248	0	1.		"									
	2450	58250	2	3		post 60de	g18.29N, 1	29deg09 43	WW, EPE 32m						
	2425	58252	5	3		connter for									
	2400	58245	6	3	R2	"									
	2375	58249	5	2		n									
	2350	58247	8	0		"									
	2325	58255	11	-2		n									
	2300	58261	1	-4		"									
	2275	58260	1	3		"									
	2250	58254	-1	-2		"									
	2225	58225	-2	-2		${ }^{\circ}$									
	2200	58254	-2	0		"									
	2175	58250	-4	2		${ }^{\prime \prime}$									
	2150	58250	-5	1		"									
	2125	58255	-2	2		"									
	2100	58259	-3	0		${ }^{\prime \prime}$									
	2075	58254	-4	1		"									
	2050	56256	-4	1		${ }^{\circ}$									
	2025	58253	-1	0		post 80de	91867N, 1	29 deg 0178	WW, EPE 50m						
	2000	58244	-3	2		GPS: + -7	$6 \mathrm{~m}, 60190$	01N, 12001	OSW (UTM	09499055E	6688688N)	, Post is - 10	10 m form ro	Ioad in forest	
	1975	58244	-4	2		Open area	by road	-							
	1560	58246	3	1		On road									
	1925	58250	-8	-1		Open area	by road								
	1900	58255	-9	0		Edge of fo	rest								
	1875	58251	-8	0		Evergreen	forest								
	1850	58246	-10	1		${ }^{\prime}$									
	1825	58244	-9	2		Willow und	dergrowth								
	1800	58253	-9	3		Evergreen	forest								
	1775	58254	-8	3		-									
	1750	58248	-7	3		strght dec	cine								
.	1725	58247	-7	3		${ }^{\prime}$	"								
	1700	58238	- 8	4		-	- "								
	1675	58246	-8	4		"	"								
	1650	58247	-8	3		${ }^{\prime \prime}$	${ }^{\prime}$								
	1625	58240	-4	5		${ }^{\prime \prime}$	"								
	1800	58229	-3	5		${ }^{\circ}$	\square								
	1575	58231	. 5	2		Swampy									

	1100	58228	14	-4		, (S-BJHH-									
	1125	58231	12	-4		Willow, pine									
	1150	58233	8	-3		"									
	1475	58233	8	-3		"									
	1200	58237	9	0											
	1225	58235	8	3		Pine forest									
	1250	58236	3	0		"									
	1275	58242	0	-2		"									
	1300	58248	7	3		"									
	\$325	58244	12	6		"									
	1350	58244	15	6		"									
	1375	58246	14	4		"									
	1400	58244	10	3		"									
	1425	58241	11	0		${ }^{\prime}$									
	1450	58242	5	-1		"									
	1475	58245	-1	0		"									
	1500	58248	1	1		"									
	1525	58248	3	4		"									
	1550	58239	0	5		"									
	1575	58248	-2	7		"									
	1600	58243	-3	8		"									
	1825	58246	0	6		"									
	1650	58251	2	1		"									
	1675	58235	3	-2		"									
	1700	58259	1	-2		"									
	4725	58248	-2	1		${ }^{\circ}$									
	1750	58239	0	0		${ }^{\prime \prime}$									
	1775	58251	-1	-1		"									
	1800	58246	-5	-		"									
	1825	58249	-7	-2		${ }^{\prime \prime}$									
	1850	58242	-10	-1		${ }^{\prime}$									
	1875	58241	-6	0		"									
	1900	58246	-4	0		"									
	1925	58253	-4	-1		"									
	1950	58252	-3	-1		"									
	1975	58241	-2	-2		"									
	2000	58244	-4	-2		"									
	2025	58251	-3	3		"									
	2050	58247	-7	-4		${ }^{\prime \prime}$									
	2075	58250	-5	-2		"									
	2100	58251	0	-2		"									
	2125	58251	3	-2		"									
	2150	58247	4	-2		${ }^{\prime \prime}$									
	2175	58248	4	-2		"									
	2200	58249	5	0		"									
	2225	58250	-1	-2		"									
	2250	58248	-8	-6		"									
	2275	58240	-5	-4		"									
	2350	58256	2	1	R3	evergreen forest, no undergrowth, fallen logs									
	2375	58253	9	-2		"									
	2400	58248	6	2		"									
	2425	58256	6	-4		willow and road bearng 225 degrees west									
	2450	58257	1	1		willow									
	2475	58250	4	0		back to evergreen forest S-BJ- ${ }^{\text {d }}$-1									
	2500	58261	-8	-2		conifer forest, moss floor									
	2525	58250	-7	0		"									
	2550	58252	-5	4		${ }^{\prime}$									
	2575	58250	-9	1		"									
	2600	58272	-3	15		\% 5 S- 8 JJV-2									
	2525	58275	-5	2		${ }^{\circ}$									
	2650	58246	-2	4		${ }^{\prime \prime}$									
	2675	58259	-1	4		${ }^{\circ}$									
	2700	58243	-2	2		"									
	2725	58244	1	2		connfer forest									
	2750	58250	2	3		"									
	2775	58260	2	4		hit road again									
	2800	58254	5	2		conifer forest									
	2825	58253	4	3		"									
	2850	58253	7	0		"									
	2873	58250	5	25		${ }^{\circ}$									
	2873	58280	6	2		change drection from west to south beaning									
Chim:	B														
	$23-\sqrt{14}-96$														
Mag:	Mick	(east)													
VLF:	Helen	(east, stat													
Notes:	Jocelain														
Traverge:	west on line 5000N														

Location Ntorth	Location Wist.	Mrag	in phase	VEF	Rating	ates										
- 5000	550	58273	-10	0		\|S-BJVV-8										
	575	58260	-9	0		S-BJ-JV-7										
	600	58278	-7	0		evergreen fo	forest with \&	some underg	growth							
	625	58284	2	2		"										
	650	58277	1	1		"										
	675	58271	3	-1		"										
	700	58273	3	-1		${ }^{\prime \prime}$										
	725	58268	4	0		"										
	750	58286	10	3		", Posts 433	3, 34, 35 \&	36,60deg17	66N, 129de	deg00 62W,	EFE 49m					
	775	58260	13	2		${ }^{-}$										
	800	58250	8	2		${ }^{\prime \prime}$										
	825	58274	8	1		"										
	850	58279	9	-1		"										
	875	58270	8	-2.5		"										
	500	58263	9	-3		[", undergrow	owth									
	925	58267	10	-2		old read bea	earing 339 d	deg north								
	950	58249	10	-05		evergreen for	forest with a	a bit of under	rarowh							
	975	58250	8	1		"										
	1000	58251	6	0		a bit more u	undergrowth	th and fallen tr	5							
	1025	58257	7	2		less underg	growth									
	1050	58250	9	2.5		evergreen w	with no und	dergrowth								
	1075	58267	8	3		${ }^{\prime \prime}$										
	1100	58255	6	4		"										
	1125	58266	6	3		Boggy area	a water and	rushing strea	am							
	1150	58260	4	4		"										
	1175	58250	2	8		${ }^{\prime \prime}$										
	1200	58256	2	4		Posts © 60	Odeg 18.50 N	and 1200deg	0051W EP	PE 39						
	1225	58260	1	1		"										
	1250	58250	-4	-2		"										
	1275	58261	-4	0		Coniferous	forest									
	1300	58252	-8	-1		1"										
	1325	58251	-9	-2		"										
	1350	58259	-14	-2		"										
	1375	58260	-14	0		"										
	1400	58245	-18	0		"										
	1425	58129	-15	0		${ }^{\circ}$										
Traverse ${ }^{\text {a }}$:	west on line	5457 N														
5457	550	58280	7	7		overgreen for	forest w und	dergrowth and								
	575	58266	7	8		and failen tr	trees									
	600	58267	8	9		"										
	625	58271	9	4		"										
	650	58258	9	4		"										
	675	58260	7	3		${ }^{1 \times}$										
	700	58284	5	-4		"										
	725	58270	5	-5		"										
	750	58268	4	6		"										
	775	58258	4	-5	2	"										
	800	58260	2	-11	2.5	"										
	825	58263	2	-5		"'										
	850	58260	2	- 5		+										
	875	58263	3	-7		"										
	900	58258	7	-2		"										
	925	58257	= 12	2		${ }^{\prime \prime}$										
	950	58253	6	3		${ }^{\prime \prime}$										
	975	58256	4	0		"										
	1000	58262	-3	-1		"										
	1025	58255	-5	-5		'"										
	1050	58257	-5	-7		"										
	1075	58255	0	-2		"										
	1100	58258	1	-4		"										
	1125	58265	9	-8		${ }^{\prime \prime}$										
	1950	58257	11	-2		"										
	1175	58254	2	3		${ }^{\text {+ }}$										
	1200	58264	2	-3		"										
	1225	58270	7	-1		${ }^{*}$										
	1250	58264	9	2		"										
	1275	58258	10	2		"										
	1300	58253	11	3		${ }^{\circ}$									-	
	1325	58254	6	2		"										
	1350	58260	4	2		'										
	1375	58245	3	4		"										
	1400	58253	7	3		"										
	1425	58254	0	1		willow and	thick under	rarowth								
	1450	58260	-2	0		Stream and	d thack unde	dergrowth								
	1475	58250	-3	1		" ${ }^{\text {a }}$										
	1500	58260	-5	1		comferous	forest sprue	cee and pins								
	1525	58264	-6	2												

