AMEROK GEOSCIENCES LTD.

GEOLOGICAL MAPPING AND GEOPHYSICAL SURVEY PROGRAM ON THE DICKSON HILL PROPERTY, WHEATON AREA, SOUTHERN YUKON TERRITORY

Carmen C. Lee, B.Sc.

QUARTZ CLAIMS

DRAFT 12-39 SLED TIGER 1 SLED TIGER 2 YB96264-YB96291 YB57451 YB57452

<u>YMIP No.:</u> 96-065 <u>Work Performed</u>: July 16 - November 11, 1996 <u>Mining District</u>: Whitehorse <u>NTS:</u> 105 D/2, D/3, D/6, D/7 <u>Location</u>: 60°15' N 135°02' W <u>Date:</u> February 28, 1997

SUMMARY

A program of geological mapping, prospecting, geochemical sampling, and geophysical surveys were performed on the Draft Claims in the Wheaton River area between July 16 and November 11, 1996. Two new showings of mineralized quartz were discovered and identified as Carmen's Drift and No Man's Land. Total magnetic field and VLF-EM surveys delineated north-south trending structures at Carmen's Drift. Best assays from this showing are 0.213 OPT Au and 100 PPM Ag. Other favorable assay results from sediment silt stream sampling are from the northwestern most drainage, on the western slopes of Mount Wheaton.

TABLE OF CONTENTS

Introduction		4
Location and Acc	cess	4
Property		4
Physiography		5
Regional and Ec	onomic Geology	5
Property History		7
Property Geolog	у	8
Mineralization		8
Geophysical Sur	veys	9
Geochemical Su	rveys	10
Concl usions		11
Recommendatio	ns	13
References Cite	d	14
APP ENDIX A .	Statement of Qualifications	15
APPE NDIX B .	Project Log	16
APPENDIX C.	Sample descriptions	18
APPENDIX D.	Assay Certificates	20

1.0 Introduction

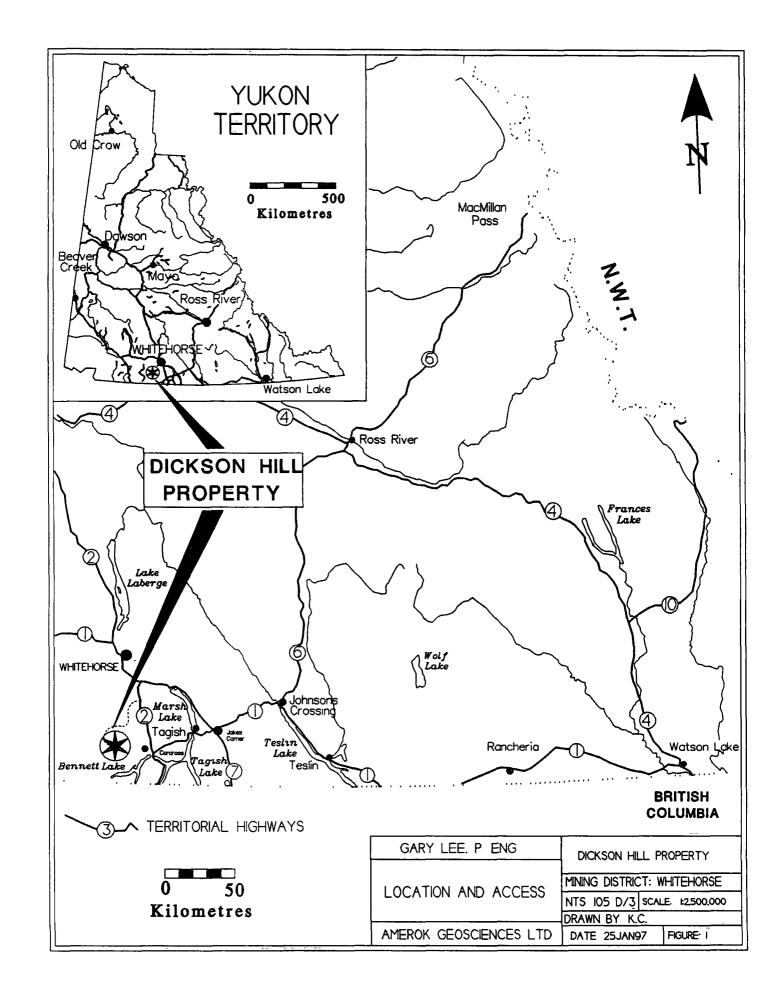
This report describes the results of geological mapping, geophysical surveying, and prospecting performed on the Dickson Hill Property, Wheaton River area, southern Yukon Territory between July 16 and November 11, 1996.

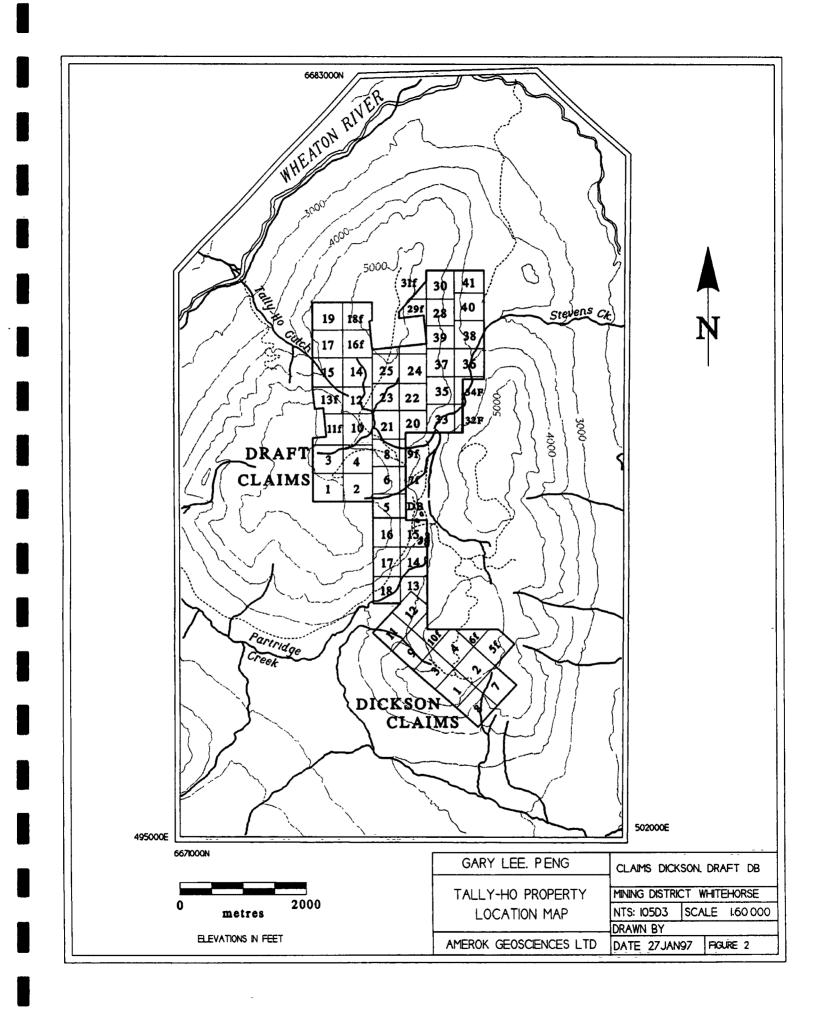
2.0 Location and access

The Dickson Hill Property is located at 60o12'08"N 135o00'38"W south of Whitehorse, YT in the Whitehorse Mining District, Yukon Territory (figure 1). The property is approximately 90km south of Whitehorse by road. The route is as follows:

Section	Distance	<u>Remarks</u>
Alaska Highway to Carcross cutoff	20km	All weather paved
Carcross cutoff to Annie Lake Road	17km	All weather paved
Annie Lake Road to Partridge Creek Road	37km	Gravel road
Partridge Creek Road to Property	16km	4x4 road

3.0 Property


- -


The Dickson Hill Property consists of the following Draft Claims (see figure 2) staked under the Yukon Quartz Mining Act and recorded with the Whitehorse Mining District:

<u>Claims</u>	Grant Number	Expiry Date
DRAFT 12-39 SLED TIGER1 SLED TIGER2	YB96264-YB96291 YB57451 YB57452	September 4, 1997

The Draft Claims are owned by the following parties:

Name/address	Percentage ownership
Mike Power Site 6 Comp.11 Whitehorse, YT Y1A 5V8	50%
Gary Lee Box 5348	50%

Whitehorse, YT Y1A 5L5

4.0 Physiography

Dickson Hill Property covers rolling hills to steeper slopes onto Mount Wheaton, Mount Stevens, and Tally-Ho Mountain. The property is centred on Mount Wheaton and lies within the Boundary Ranges of the rugged Coast Mountain Range. Topography varies from dissected uplands to steeper slopes of the Teslin Plateau as a result of rivers and glaciation, respectively. Mount Wheaton drains into Stevens Creek to the east, the Wheaton River, and via many smaller creeks on the southern part of the property. Elevations range from 4300 feet at Stevens Creek to 5800 feet at the summit of Mount Wheaton. Vegetation is diverse varying from short arctic birch or buck brush, grass, and moss at higher elevations to alder, scrub conifers, and willow lower down.

5.0 Regional geology

The geology of the Wheaton River district is well documented by Doherty and Hart (1989). The region lies near the boundary between the Nisling Terrane and the Whitehorse Trough. The Nisling Terrane is a belt of metamorphic and intrusive rocks that includes the Coast Plutonic Complex and the Yukon Crystalline Terrane (Wheeler and McFeely, 1987). The Whitehorse Trough is a relict fore-arc basin with clastic sediments derived from an uplifted core (LaBerge Group) being deposited over older andesitic volcanic rocks flooring the basin (Lewes River Volcanics). The Tally-Ho Shear Zone, west of the property, forms the boundary between the Whitehorse Trough and the Nisling Terrane. Following the mid-Jurassic amalgamation of the Nisling Terrane with the Whitehorse Trough, an overlap succession of clastic rocks was deposited and the region was affected by a later episode of Eocene volcanism. During this latter event, high level alaskite and bimodal calc-alkaline felsic to intermediate volcanic rocks were emplaced throughout the Wheaton River District.

The property is near the Llewellyn Fault on the east side of the Tally-Ho Shear Zone. Both the Llewellyn Fault and the older Tally-Ho Shear Zone appear to have exerted strong control on the location of precious metal occurrences in northern British Columbia and southern Yukon Territory (Hart and Radloff 1991, Mihalynuk and Mountjoy 1991). This is apparent in the distribution of showings north and south of the property. The Tally-Ho Shear Zone is a deep crustal extending from Lake Bennett 40 kilometres north of the Mount McIntyre area. Early ductile deformation resulted in the development of a penetrative fabric as the entrained rocks were metamorphosed to the greenschist facies. During a later (Late Cretaceous - Early Tertiary) stage of brittle deformation, quartz veins were developed within extensional fractures. Late Eccene deformation resulted in doming and subsequent crustal collapse of the Bennett Lake Caldera.

A number of significant precious mineral occurrences are present within the Wheaton River District and are subdivided into the following four types by Hart and Radloff (1991): a. Magmatic veins (Mount Wheaton); b. Metamorphic veins (Odd Vein); c. Mesothermal veins (Mount Stevens, Tally-Ho, Legal Tender), and d. High level quartz-rich epithermal veins (Silver Queen). The veins at Mount Wheaton are a stockwork of magmatic quartz veins within silicified Wheaton River Volcanics adjacent to the contact with a late Cretaceous intrusion. Approximately equal concentrations of gold and silver are found within thin white quartz veins with minor amounts of galena and chalcopyrite.

Formations underlying the Dickson Hill Property consists of the following units:

Age	Formation	Lithology
Eocene	Mount Skukum Complex	Felsic dykes, laccoliths or plugs, aphanitic & porphyritic rhyolite
Late Cretaceous	Folle Mountain Stock	Quartz-rich granite
	Wheaton River Granodiorite	Locally foliated, medium grained hornblende diorite & quartz diorite
	Perkins Peak Plug	Alaskite, granite
Cretaceous	Wheaton River Volcanics	Andesite to dacite flows
	Intercalated Epiclastic Rocks	Greywacke, sandy tuff, limestone
Mid-Cretaceous	Whitehorse Plutonic Suite	Leucocratic phase of hornblende granodiorite, tonalite, diorite
Jurassic or Cretaceous	Millhaven Conglomerate	Polymictic conglomerate

shale, greywacke

Triassic	Ultramafic Rocks	pyroxenite, dunite
	Tally Ho Leucogabbro	gabbroic hornblende orthogneiss
Late Triassic	Lewes River Group	Augite porphyritic basalt, amphibolite
Paleozoic & older (?)	Nisling Assemblage	Biotite-muscovite-quartz- feldspar schist, quartzite

6.0 Property History

Mining exploration in the Mount Wheaton district began in the 1890's with the arrival of prospectors from the Alaska panhandle. Mining near Juneau attracted many prospectors and small miners and provided them an opportunity to earn a grubstake through winter employment in the mines. A number of these individuals began to move north and found the first hard rock and placer occurrences in the southern Yukon. Frank Corwin and Thomas Rickman were the first recorded prospectors in the region; they reportedly staked ground on Cariboo Hill, Chieftain Hill, and Idaho Mountain before returning to Juneau with high-grade gold samples. The location of the claims were not revealed before their death as a result of uncertainties related to mineral tenure. Another prospector, Thomas Kerwin, reportedly staked near Idaho Hill in 1893 and returned with high grade gold samples; he too refused to disclose his claim location. During the Klondike Gold Rush, several occurrences were staked and recorded in Dawson but the first big rush to the area occurred in 1906 with the discovery of high grade gold at Tally-Ho Mountain and at Mount Anderson. Both of these properties became small producers and numerous other showings were staked and explored. Activity in the area declined to a standstill by the 1950's and the area remained dormant until the discovery of a bonanza epithermal gold-silver deposit at Mount Skukum in the early 1980's. With the decline in gold price, during the late 1980's, exploration activity in the area had declined once again.

The Draft Claims (12-39) covering Mount Wheaton were staked by Amerok Geosciences Ltd, in 1996. It is not known that if the old adit and the smaller hand trenches found on the Dickson Hill Property have been previously documented. Presently, the property includes the Silver Queen showing. The history of this showing is documented in Minfile105D 180. Exploration to date comprise of geological mapping, prospecting, geochemical sampling, and geophysical surveying.

7.0 Property geology

The Dickson Hill Property for the most part is underlain by locally metamorphosed, Late Cretaceous Wheaton Valley granodiorites. This unit compositionally varies from quartz diorite to hornblende diorite. Cretaceous Wheaton River volcanics and intercalated Epiclastic rocks to the north east, while Triassic ultramafic rocks, Lewes River Group amphibolite and porphyritic basalt occurs to the south.

Numerous mafic and andesite dikes intrude the granodiorites throughout the property The dykes are very fine grained, dark greenish-grey, containing larger quartz and possibly felsic grains, and often has locally intensive epidote mineralization. Also intruding the granodiorite is the Late Cretaceous Perkins Peak plug of alaskite. Eocene rhyolite porphyry ring dykes also intrude the granodiorite and are associated with Mount Skukum volcanism. Locally, isolated outcrops of chlorite schist intrude through the granodiorite.

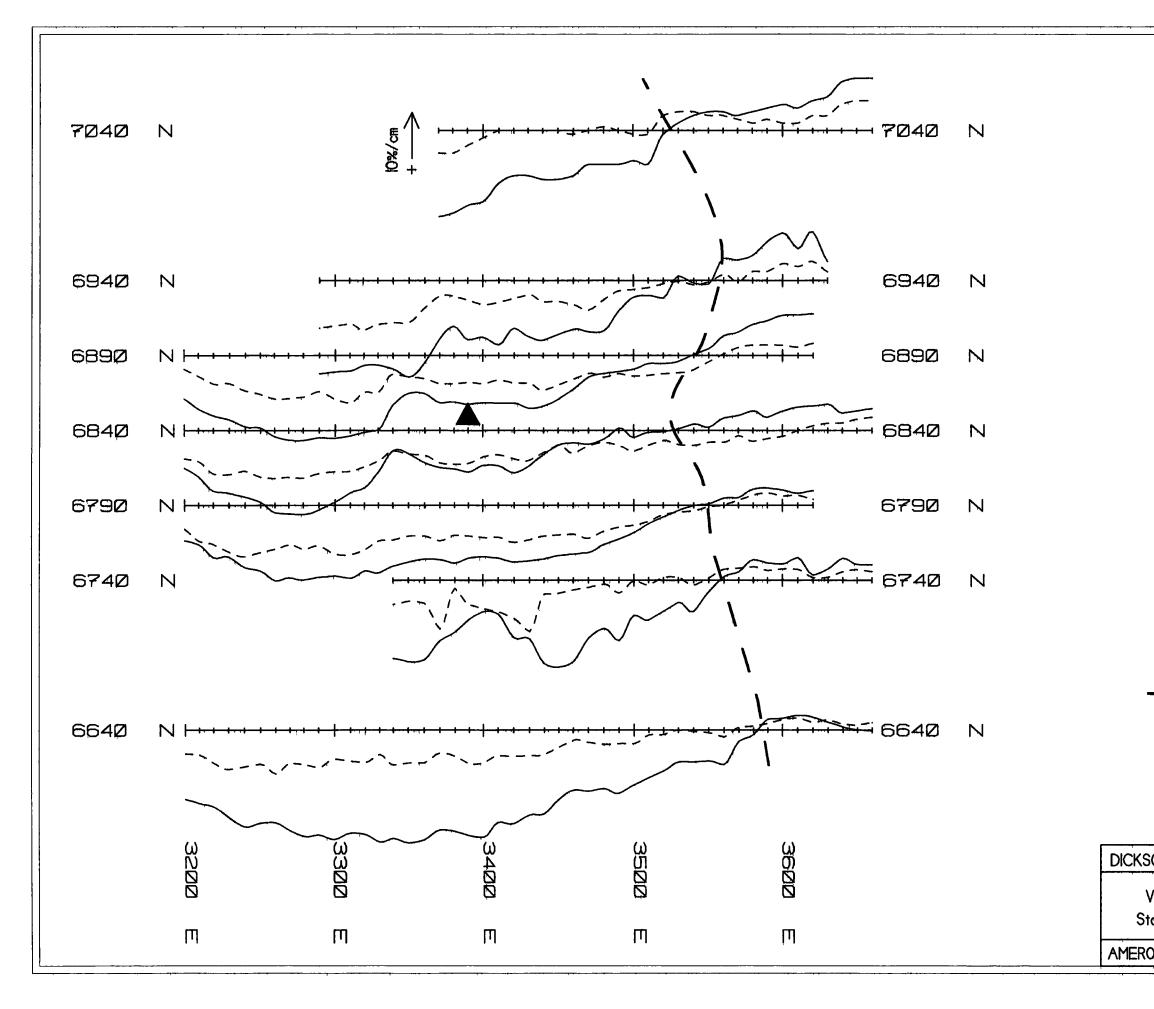
Outcrops on the property range from cliffy sections to talus, and for the most part is covered with grass and moss. Visibility was reduced late September due to the snow cover. Figure 4 illustrating the property geology is based on previous work done in the Open File Report 1990-4 combined with the mapping completed in the summer and fall of 1996.

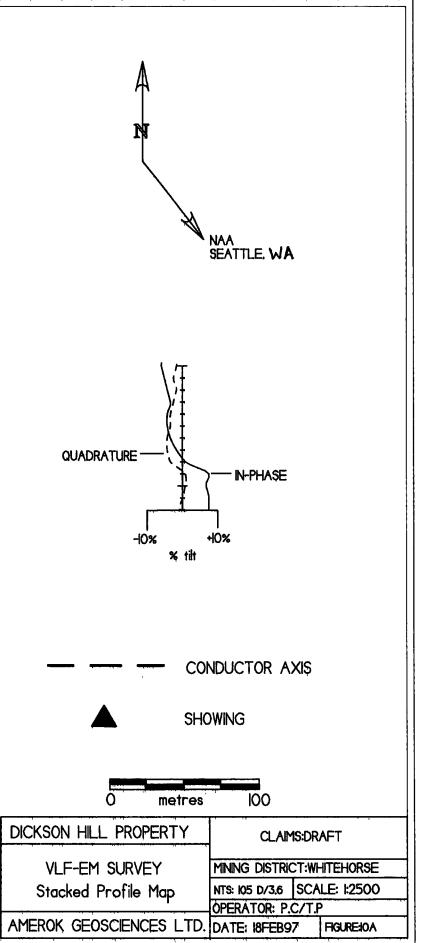
8.0 Mineralization

Float rock samples were collected from the three showings (Carmen's Drift, No Man's Land, and Silver Queen) as well as along the drainages with the silt sediment samples. Rock samples collected were limited to float quartz with visible mineralization. Quartz veins are exposed through previous hand trenches at No man's Land and at the old adit at Carmen's Drift. Thirty element assay and fire assays for gold were performed by Northern Analytical Laboratories of Whitehorse. The results for all of the showings and other locations are listed in the back in Appendix C.

There is abundant quartz in the talus in the vicinity of No Man's Land however locating visible mineralization is tedious. Mineralization found within the quartz contains disseminated pyrite, galena, and chalcopyrite. Visible mineralization is often associated with rusty, vuggy, massive, white quartz. Mineralized quartz is often associated with bright red weathering. Assays from float samples contain 0.057 oz/ton Au, 100ppm Ag, and 14607ppm Pb.

At the old adit (Carmen's Drift) samples were taken from the waste rock pile left from previous trenching. There, abundant mineralization is seen within massive white quartz samples. Mineralization includes massive galena, minor pyrite, chalcopyrite, and bornite. Assays resulted in 0.213 oz/ton Au, 100ppm Ag, and 24000ppm Pb. Other hand trenches to the north and northwest also exposes quartz veins with similar mineralization as mentioned above.


Rhyolitic grab samples containing abundant malachite staining and minor euhedral galena were assayed from the Silver Queen showing. The area around the showing has been heavily trenched therefore samples were taken from the waste rock pile. Mineralization appears to be concentrated within a faulted, brecciated zone. Rocks hosting the mineralization are heavily weathered, oxidized, and buff colored.

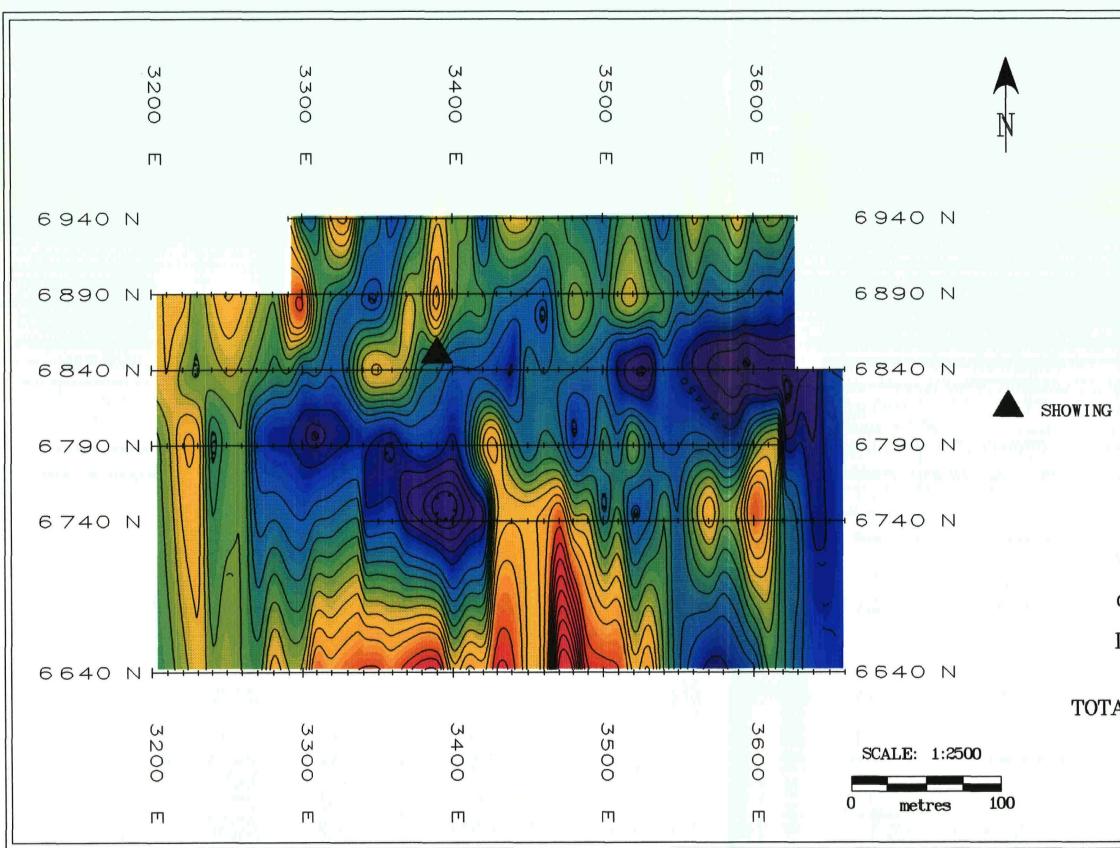

Float samples taken from the drainage up to Tally-Ho Mountain, contained minor amounts of malachite and pyrite. Other float samples taken from the north western most drainage up the west side of Mount Wheaton, contained minor amounts of pyrite and galena.

9.0 Geophysical surveys

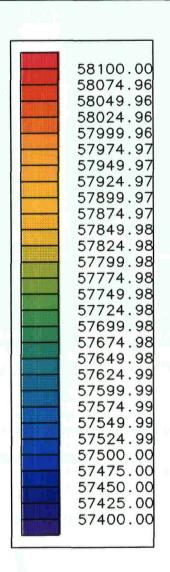
Total magnetic field and VLF-EM surveys were conducted over a drift centred over Carmen's Drift (figure 4). The grid baseline trends N-S and the origin is at 6840N, 3500E. Lines were picketed at 10 metre intervals. All stations were picketed with 18" wooden pickets and scribed with metal tags.

The VLF-EM survey was conducted with a synchronized pair of Omni IV proton precession magnetometers using a base station cycling interval of 15 seconds as well as a Geonics EM-16 VLF receiver over the survey lines. The Seattle, WA. (Station NAA) transmitter was used on the E-W trending survey lines to locate N-S trending principle structures. Readings of the in-phase and quadrature tilt-angle were taken at 10 metre intervals along the survey lines. The data is shown in stacked profile format in figure 10A In-phase profiles are shown with solid lines and quadrature profiles with dashed lines while the location of the conductor axis is indicated by a thick dashed line. The conductor interpreted is most likely a quartz vein since other quartz veins are known to be present in the vicinity of the area. This is further substantiated by a quartz vein outcropping within the old adit at Carmen's Drift as well as a within few other hand trenches to the north and west of the old adit.

Two lines were surveyed with the Geonics EM-16 VLF receiver on the Sled Tiger claims. These claims are located to the northwest of the Draft Claims and due west of Mineral Hill. The Seattle, WA (Station NAA) transmitter was used on the NE-SW trending survey lines. Readings of the in-phase and quadrature tilt angle were taken at 10 metre intervals along the survey lines. The data is shown in stacked profile format in figure 10D. One conductor axis interpreted is located on line 500N, station 140W extending to line 580N, station 120W. This northwest trending structure is most likely associated with the Tally-Ho shear zone and/or the intrusion of Eocene rhyolite and andesite dykes.


The total magnetic field survey was conducted with a synchronized pair of Omni IV proton precession magnetometers using a base station cycling interval of 15 seconds. Measurements were taken at 10 metre intervals along the survey lines. Figure 10B is a colour contour map of the total magnetic field readings and also the location of Carmen's drift. Through previous total magnetic field surveys performed in the area, it is interpreted that magnetic lows may be a result of hydrothermal alteration surrounding quartz veins or the quartz veins themselves. Old trenches exposing quartz veins were are thought to possibly trend N-S similar to the regional structural trends in the area. Quartz veins trending E-W are also thought to possibly exist, however they were not tested in this year's survey. Magnetic lows in the plot occur near the showing and possibly trend N-S. The interpretation from the VLF-EM data indicates that the conductor axis follows magnetic lows to the east of the showing. Another possible N-S trending feature lies 70 metres to the west of the showing. Magnetic lows at the showing do not seem to be associated with the conductor axis. In this case, there may be E-W structures associated with the showing.

A fraser filter VLF in-phase contour plot was also used to delineate possible trends (see Figure 10C). Throughout the surveyed area, there appears to be numerous N-S trending lows. These lows are associated with magnetic lows and is coincident with the conductor axis. The showing itself lies within a low that appears to continue to the north.

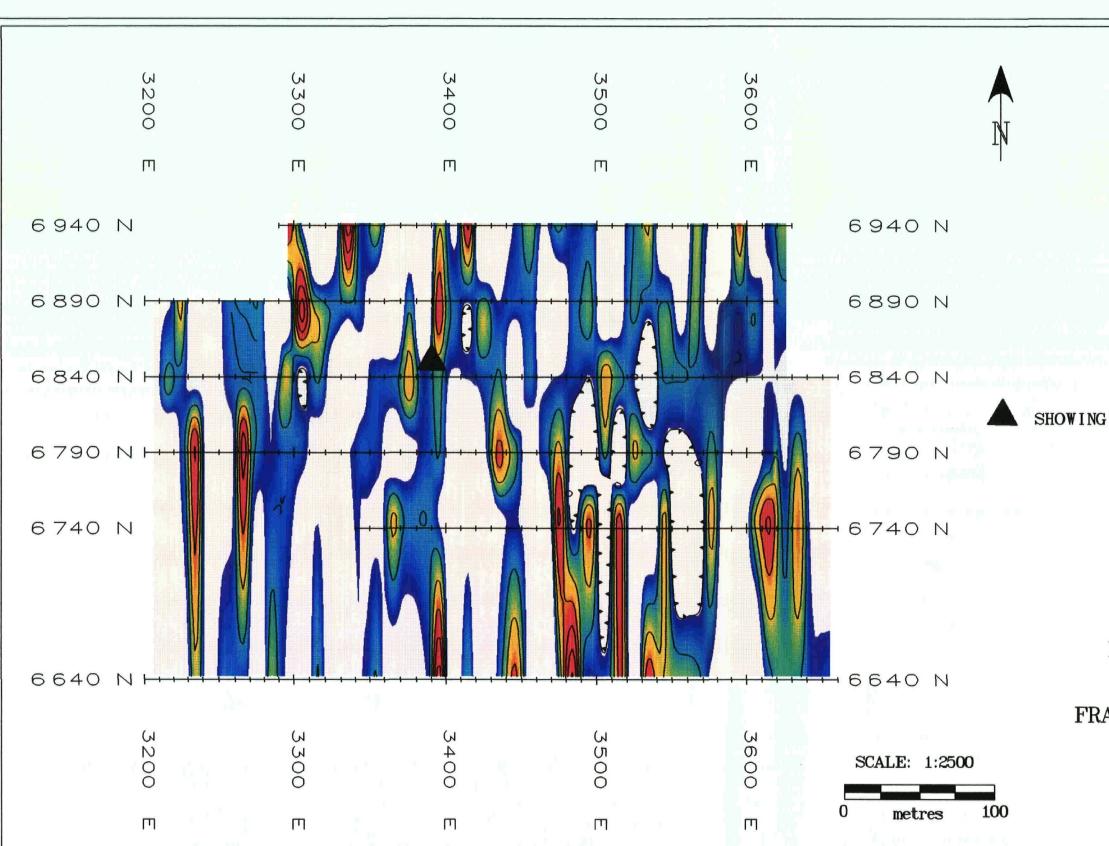

Due to wintry weather conditions, geophysical grids put in at Silver Queen and No Man's Land were not surveyed. The location of the grids as well as the conductor axis is depicted with the property geology in Figure 4.

10.0 Geochemical surveys

Sediment silt stream sampling was performed on the property over the major creeks as well as most of the minor tributaries. Part of the samples were collected from abandoned tributaries, therefore were more soily. In the major drainage, silt samples were difficult to retrieve due to the gravely nature of the creek beds. Sampling intervals were hipchained, flagged, and collected every

The Constant of the

CONTOUR INTERVAL: 5,50,500 nT


DICKSON HILL PROPERTY

NTS: 105 D/2, D/3, D/6, D/7

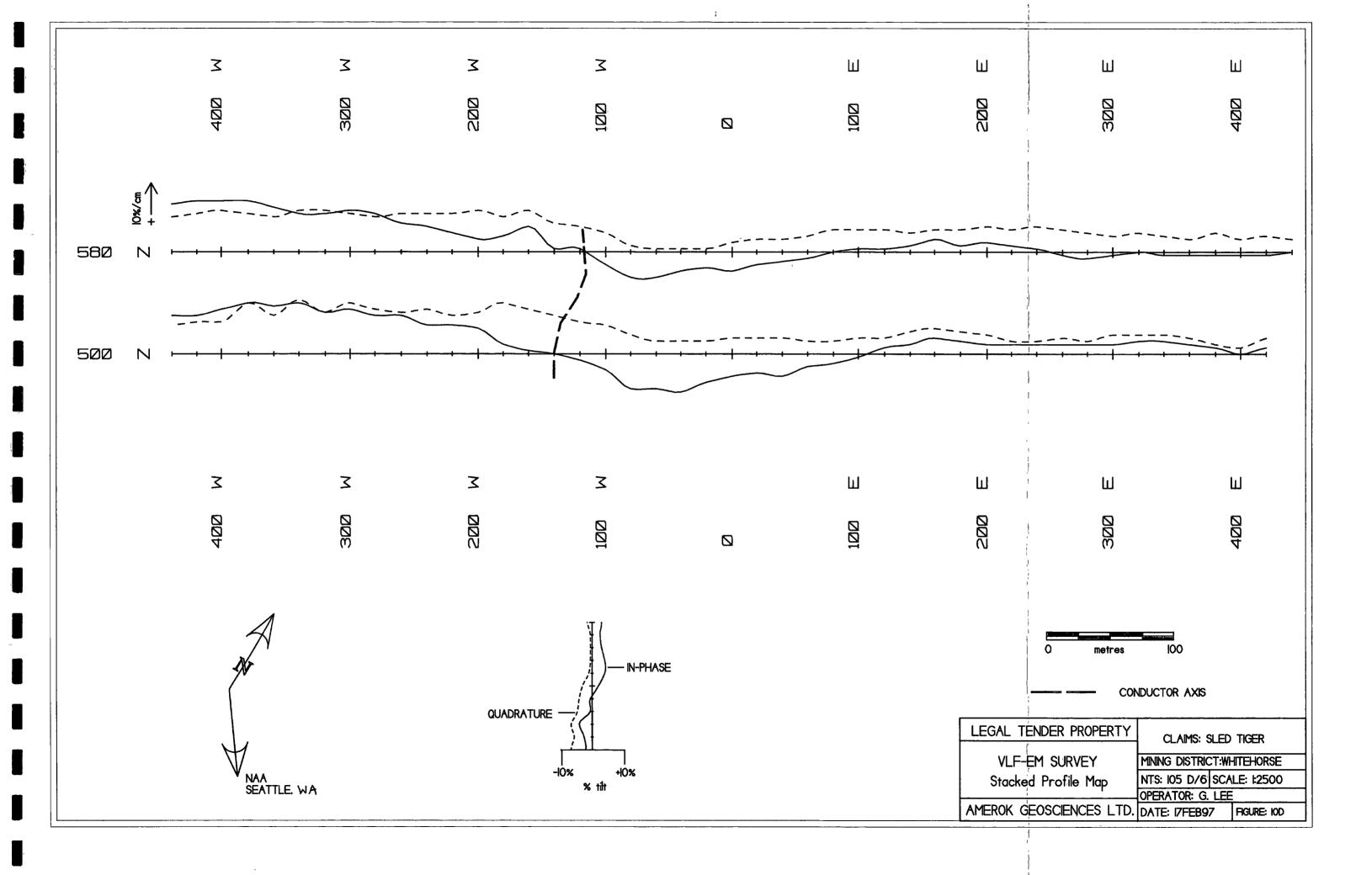
TOTAL MAGNETIC FIELD SURVEY CONTOUR MAP

FIG· 10B

AMEROK GEOSCIENCES LTD.

and the second second

Addressed in the


DICKSON HILL PROPERTY

NTS: 105 D/2, D/3, D/6, D/7

FRASER FILTER VLF IN-PHASE CONTOUR MAP

FIG· 10C

AMEROK GEOSCIENCES LTD.

100 metres located with a GPS. Samples on average were a half a pound and were assayed for gold plus 30 elements by Northern Analytical Laboratories Ltd. (see Appendix D) Figure 5 illustrates the location of the silt and rock samples analyzed.

The assay results are depicted on four maps indicating the amount, with symbols, of silver, arsenic, and lead present in ppm as well as gold in ppb. Figure 6 represents gold values within silt and rock samples (rock samples are denoted with a R). Anomalously high gold values within rock samples occur at all of the showings; Carmen's drift, Silver Queen, and No Man's Land at 0.213 oz/ton Au, 534ppb, and 0.057 oz/ton respectively. Other high values occur within the vicinity of the creek junctions. Anomalous silver values also occur at all three showings as well as up stream on the north western most drainage (see figure 7). High lead values are associated with the anomalous gold and silver values at the showings as well as upstream the northwestern arm. Values are estimated at 2.6% at Silver Queen and 2.4% at Carmen's Drift (see figure 8). Anomalous arsenic values occur downstream from Carmen's Drift and at the Silver Queen showing (see figure 9).

Location of the rock samples are also illustrated with the property geology in Figure 4. High gold, silver, and lead values at near and at Carmen's drift lie within the Late Cretaceous Wheaton granodiorite and are associated with quartz veins that are known to exist in the area. The Silver Queen showing is hosted within Triassic Lewes River Group sedimentary rocks and Cretaceous granodiorite of the Coast Plutonic Complex. The area around the showing has been previously extensively trenched and little outcrop can been seen. The anomalous high values may be associated with local occurrences of a rhyolitic unit. However assay results from grab samples did not yield values as high as the samples collected in the late 1980's.

11.0 Conclusions

The results of the 1996 exploration program accomplished the following:

- a. Locating two new showings of mineralized quartz veins at Carmen's Drift and No Man's Land. Carmen's Drift produced assay results of 0.213 oz/ton Au and 2.4% Pb. No Man's Land yielded 0.057 OPT Au.
- b. Other samples resulting in high Au values were located upstream on the north western most drainage as well as at the main creek junction.
- c. Geophysical grids were put in at three showings and Carmen's Drift was surveyed delineating one conductor axis.

d. Prospecting of the showings and the drainages on the property was successfully completed.

and the results of this work lead to the following conclusion:

- a. Gold mineralization is most likely associated with massive galena.
- b. Total magnetic field and VLF-EM surveys are useful in delineating structures that are possibly associated with quartz veins
- c. Successful location of additional high grade gold occurrences will require careful surface prospecting and/or trenching on existing quartz veins.

12.0 Recommendations

The following recommendations are made for further work on the Dickson Hill Property:

- a. Trenching around the two new showings at Carmen's Drift and No Man's Land should be conducted to locate the orientation and presence of the quartz veins.
- b. The existing geophysical grid at Carmen's Drift should be extended and surveyed to the north to attempt to delineate the vein seen at the showing as well as to locate other possible veins in the area.
- c. Geophysical surveys such as VLF-EM and total magnetic field should be conducted over the existing grids at Silver Queen and No Man's Land.
- d. Further mapping, prospecting, and geochemical sampling should be conducted around the new showings as well as along the north western most drainage and around the creek junctions to attempt to locate the source of the high gold, silver, and lead values.

Respectfully submitted, AMEROK GEOSCIENCES LTD.

Carmen C. Lee, B.Sc.

References Cited

- Davidson, G.S. (1986) Rotary Percussion Drilling. Whitehorse Mining Recorder: Assessment Report 091822.
- Doherty, R.A. and C.J.R. Hart (1989) Preliminary geology of Fenwick Creek (105 D/3) and Alligator Lake (105 D/6) map areas. INAC Open File 1988-2, Indian and northern Affairs Canada.
- Hart, C.J. and J.K. Radloff (1991) Geology of Whitehorse, Alligator Lake,
 Fenwick Creek, Carcross and part of Robinson map areas (105 D/2, 3, 6,
 7) INAC Open File 1990-4, Indian and northern Affairs Canada.
- Mihalynuk, M.G. and K. Mountjoy (1990) Geology of the Tagish Lake Area (Edgar Lake 104 M/8 and Warm Creek 104 M/9E) in: Geological Fieldwork 1989, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, p. 293-310.
- Wallis, J.E. (1986) Summary Evaluation Report on the Tally-Ho Mountain Property. Whitehorse Mining Recorder: Assessment Report 062218.
- Wheeler, J.O. and p. McFeely (1987) Tectonic Assemblage Map of the Canadian Cordillera, Geological Survey of Canada, Open File 1565.

APPENDIX A. STATEMENT OF QUALIFICATIONS

- I, Carmen C. Lee of Whitehorse, Yukon Territory, certify that:
- 1. I obtained a Bachelor of Science Degree in Geology from the University of Calgary in 1996.
- 2. I have been employed in mineral exploration and geophysical research since 1996.
- 3. I performed or supervised the geological mapping, geochemical sampling, geophysical surveys described in this report.

Carmen C. Lee, B.Sc.

Whitehorse, Yukon Territory February 28, 1997

APPENDIX B. PROJECT LOG

<u>Date (1996)</u>	Activity
July 16	Mapping/sampling Dickson Hill showing (M. Power/R. Kamnitzer)
Aug 22	Assemble maps, airphotos, CADD digitizing of topography (C.Lee)
Aug 23	Assemble and check camp and field gear; pick up supplies (C.Lee)
Aug 25	Drive to Wheaton, set up camp, locate base lines (C. Lee/R. Kamnitzer/G. Lee)
Aug 26-Sept 2	Putting in control grid, stake new claims (C. Lee/R. Kamnitzer)
Sept 3	Prospecting, gridding, VLF demo, back to town for supplies (C. Lee/R. Kamnitzer/G. Lee)
Sept 4-5	Getting supplies for the next stage of the project
Sept 7	Reconnaissance of other showings around the area (M. Power/C. Lee)
Sept 8	Putting in replacement posts, prospecting (G. Lee/C. Lee)
Sept 9	Getting timber for the Buffalo Hump adit (G. Lee/C. Lee/R. Kamnitzer)
Sept 11-18	Prospecting, mapping, sediment silt sampling (C. Lee/R. Kamnitzer)
Sept 19	In town for supplies (C. Lee/R. Kamnitzer)
Sept 20	Prospecting, mapping, sediment silt sampling (C. Lee/R. Kamnitzer)
Sept 21	Back to town; 4 wheel drive not working on rental truck.

Nov 5	Mobe to Mount Stevens of the gear in, very poor train (G. Lee/ P. Chidgzey/T. F	il conditions
Nov 6	Move rest of gear into ca (G. Lee/ P. Chidgzey/T. F	mp, put trails into two grids Plunkett)
Nov 7	Gridding at Carmen's Dri (G. Lee/ P. Chidgzey/T. F	
Nov 8-9	Grid and survey at Carm (G. Lee/ P. Chidgzey/T. I	
Nov 10	Instrument breakdown; fi Drift (G. Lee/P. Chidgze;	xing gear , working on BH y/T. Plunkett)
Nov 11	Demobe to Whitehorse	
Feb 5-7,10-14, 1997	CADD digitizing and draf	ting (C. Lee)
Feb 17-21,24-27	Report Preparation (C. L	ee)
Personnel		
Mike Power Box 5709 Whitehorse, YT Y1A-5L5	Gary Lee Box 5348 Whitehorse, YT Y1A-5L5	Phil Chidgzey 3004A 22 nd St. Vernon, BC V1T-4H6
Carmen Lee 404 Hoge St.	Ruth Kamnitzer 74 Harrington Cres.	Tom Plunkett, Jr. Mile 213, Klondike Hwy.

	Ruth Rammizer	i uni Fiunkell, Jr.
404 Hoge St.	74 Harrington Cres.	Mile 213, Klondike Hwy.
Whitehorse. YT	Willowdale, ON	Whitehorse, YT
Y1A-1W2	M2M-2Y5	Y1A-4N1

Total Man Days:

M. Power	2 days	C. Lee	45 days
G. Lee	10 days	R. Kamnitzer	23 days
P. Chidgzey	6 days	T. Plunkett, Jr.	6 days

APPENDIX C. SAMPLE DESCRIPTIONS

SAMPLE NO.	DESCRIPTION	AU (OPT)	AG (PPM)
*96-DR-G-3390E-6845N (Carmen's Drift)	rusty, vuggy quartz with massive galena, minor pyrite and bornite,	0.213	100
*96-SQ	chalcopyrite, minor fractures heavily oxidized, vuggy, malachite	534	100
(Silver Queen) **96DR-3500E (No Man's Land)	stained, heavy ?rhyolite rusty, vuggy quartz with minor amounts of galena and chalcopyrite	ppb 0.057	63.3
96SQ-U-7373E-6900N	weakly oxidized quartz with malachite staining	109 ppb	63.1
96SQ-U-7543E-7158N	slightly oxidized quartz with malachite staining	183 ppb	33.0
96SQ-U-7460E-7044N	vuggy quartz with minor amounts of pyrite and malachite, slightly oxidized	8 ppb	2.9
96DR-U-7920E-8474N	heavily oxidized vuggy quartz with galena	0.069	100
96DR-U-7866E-8243N	rusty, vuggy quartz with galena and pyrite	224 ppb	61.6
96DR-U-8028E-7708N	slightly oxidized quartz with minor fractures, some vugs, and galena	712 ppb	31.0
96DR-U-7817E-7851N	slightly to heavily oxidized quartz with large (1mm-0.5cm) cubic and rhombohedral oxidized crystals (probably pyrite); oxidation is bright red	62 ppb	9.3
96DR-U-8075E-7492N	slightly vuggy quartz with oxidized cubic crystals (possibly pyrite)	25 ppb	3.0
96DR-U-8165E-7435N	heavily iron-oxidized quartz with some pyrite and chalcopyrite ?stringers; quartz is medium grey	17 ppb	0.6
96SQ-U-7380E-6853N	quartz minor amounts of oxidized crystals (probably pyrite)	<5 ppb	0.2
96SQ-U-7395E-7002N	overall barren quartz with one fracture infilled with pyrite and malachite; minor fractures and very slightly oxidized; sample heavy	20 ppb	1.7
*96DR-U-8324E-8035N (No Mạn's Land)	heavily iron-oxidized quartz, with minor fractures; slightly vuggy; blebs of galena throughout	848 ppb	100

18

96DR-U-7826E-7916N	heavily oxidized, yellowish-orange to brown quartz; slightly vuggy with	37 ppb	2.4
	oxidized cubic crystals (?pyrite)	ĺ	
96DR-U-8153E-7877N	smokey quartz with reddish-brown oxidation; vuggy with some vugs containing oxidized cubic crystals (?pyrite)	6 ppb	1.6
96DR-U-7792E-8257N	yellowish-brown oxidized quartz; vuggy; with some vugs infilled with pyrite	65 ppb	1.7
96DR-U-7962E-8182N	yellowish-brown oxidized quartz; vuggy, some vugs infilled with oxidized ?pyrite	6 ppb	<
96DR-U-8007E-7757N	yellowish-brown oxidized quartz; some vugs infilled with oxidized crystals 0.4-0.8cm in diameter	0.030	2.6
96SQ-U-7720E-7167N	quartz with abundant malachite staining, oxidized, minor fractures	52 ppb	8.9
96DR-G-3500E-6440N	vuggy, oxidized quartz with minor malachite staining, oxidized minerals within vugs	10 ppb	0.2
96DR-U-8115E-7895N	quartz and granite; reddish-brown oxidation; vuggy, some vugs infilled with cubic oxidized minerals; disseminated pyrite throughout	15 ppb	1.2
96DR-U-7942E-7780N	yellowish-brown oxidized greyish quartz; minor fractures; oxidized cubic minerals within vugs	447 ppb	21.0
96DR-U-8102E-7725N	slightly oxidized yellowish-brown quartz; slightly vuggy, some vugs infilled with oxidized minerals (?pyrite, chalcopyrite)	11 ppb	0.9
96SQ-U-7776E-7272N	coarse grained, light pink rhyolite with mafic minerals; oxidized; malachite stained; few oxidized minerals	38 ppb	5.6

* sample taken from showing
** sample taken from showing but not indicated on maps

APPENDIX D. ASSAY CERTIFICATES

.

- ----

20/12/96

Assay Certificate

Page 1

Amerok Geoscience	es Ltd.	WO#	07185
		Certified by)
	Au	Au ,	
Sample #	ppb	oz/ton	
96DR-3500E	2295	0.057	
96-DH	22		
96DR-3390E-6845N	>7000	0.213	
96-SQ	534 *		
96SQ-U-7373E-6900N	109		
96SQ-U-7543E-7158N	183		
96SQ-U-7460E-7044N	8		
96DR-U-7920E-8474N	2235	0.069	
96DR-U-7866E-8243N	224		
96DR-U-8028E-7708N	712		
96DR-26-FLT	102		
96DR-U-7817E-7851N	62		
96DR-U-8075E-7492N	25		
96DR-U-8165E-7435N	17		
96SQ-U-7380E-6853N	<5		
96SQ-U-7395E-7002N	20		
96DR-U-8324E-8035N	848		
96DR-U-7826E-7916N	37		
96DR-U-8153 E-7877N	6		
96DR-U-7792 E-8257N	65		
96DR-U-7962E-8182N	6		
96DR-U-8007E-7757N	1204	0.030	
96SQ-U-7720E-71 ^{67N}	52		
96DR-G-3500E-6440N	10		
96DR-U-8115E-7895N	15		
96DR-U-7942E-7780N	447		
96DB-U-8102E-7725N	11		
96SQ-U-7776E-7272N	38		

Note: * Due to very high Ag in 96-SQ, gravimetric finish was necessary. Precision is reduced.

20/12/96

Assay Certificate

Page 2

Amerok Geosciences	Ltd.		WO#07185
		Certified by	4R
	Au	Au	
Sample #	ppb	oz/ton	
96DR-U-8385E-8176N	62		
96DR-U-7942E-7780N	5		
96DR-U-8531E-7321N	45		
96DR-U-8453E-7278N	200		
96DR-U-8351E-7294N	32		
96DR-U-8286E-7296N	74		
96DR-U-8173E-7345N	13		
96DR-U-8241E-7286N	37		
96DR-U-8079E-7496N	44		
96DR-U-8010E-7596N	253		
96DR-U-8809E-7218N	18		
96DR-U-8669E-7264N	17		
96DR-U-8749E-7267N	25		
96DR-U-8646E-7214N	70		
96DR-U-8127E-7860N	9		
96DR-U-8035E-7720N	8		
96DR-U-8155E-7858N	13 #		
96DR-U-8153E-7877N	12		
96DR-U-8162E-7821N	20 #		
96DR-U-8098E-7885N	13 #		
96DR- U-81 15E- 7895N	8		
96SQ-U-7358E-7040N	9		
96SQ-U-7380E-6853N	<5		
96SQ-U-7354E-6817N	23		
96SQ-U-7383E-7027N	16		
96SQ-U-7393E-6900N	8		
96SQ-U-7325E-7306N	<5		
96SQ-U-7431E-7144N	8		
96SQ-U-7352E-7722N	21		
96SQ-U-7823E-7258N	21		

20/12/96

Assay Certificate

Page 3

WO#07185

Amerok Geosciences Lte	d .
------------------------	------------

			Certified by	<u>y 12</u>	
	Au		Au		
Sample #	ppb		oz/ton		
96SQ-U-7770E-7201N	12				
96SQ-U-7919E- 7379N	207	#			
96SQ-U-8018E-7465N	183				
96SQ-U-8075E-7492N	<5				
96SQ-U-7720E-7167N	85				
96SQ-U-7663E-71 36N	31				
96SQ-U-7543E-7158N	7				
96SQ-U-7424E-71 09N	13				
96SQ-U-7468E-7116N	6_	-		. -	
96SQ-U-7394E-7002N	1'5				
96DR-U-8480E-8300N	19	#			
96D R-U-85 38 E-8393N	<5				
96DR-U-8175E- 7845N	233				
96D R-U-8 450E- 8292N	12				
96DR-U-8254E-7892N	61				
96DR-U-41	<5				
96DR- U-8 081E- 7716N	12				
96DR-U-7930E-8194N	9				
96DR-U-7901E-7767N	7				
96DR-U-7982E- 7753N	14	#			
96DR-U-7792E-8287N	10	#			
96DR -U-79 09E -8035N	24				
96DR-U-7958E-8411N	6				
96DR-U-7871E-7899N	6				
96DR-U-7817E-8521N	10	#			
96DR-U-7920E-8474N	8				
96DR-U-8035E-7720N	7	#			
96DR-U-7800E-8320N	8	#			
96DR-U-8585E-8510N	<5				
Note: # Insufficient -80 mes	h material in thes	se sampl	es40 mesh fra	ction was use	ed.

CERTIFICATE OF MALIESS

iPL 96L1304

2036 Columbia Street

Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Vancouver, B C

INTERNATIONAL PLASMA LABORATORY LTD

Client: Northern Ana roject: WO-7185	87 Pul			••	L: 96							199 199		[13	30415	:31:	56:69	Page 912249		0	Cert			1 of Assaye		vid Chi	υ		Z	×
ample Name	Ag ppm	Cu ppm	Рb ррт	Zn	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm j			Co ppm			W ppm		V ppm		La ppm	Sr ppm	Z .r ppm		T1 7	A1 Z	Ca %	Fe %	M		K Z	Na
6DR-U-8385E-8176N	P 1.0	67	22	119	16	<	<	4	<	~ ~	0.2	13	13	188	~	22	89	834	31	41	2	2 1	50.0	2.39	0.77	3.88	0.91	0.1	8 0	ι.α
6DR-U-7942E-7780N	P 1.0 P <	38	23	95		<	<	5	<		1.8		19	252	<			713	22	37	2					2.93				
	P 0.1	64	31	81	13	ç	2	4	~		0.7		28	160		72			19	31						3.62				
6DR-U-8531E-7321N						5									<						1									
5DR-U-8453E-7278N 5DR-U-8351E-7294N	P 0.1 P 0.2	70 80	28 29	81 89	- 8	< <	< <	4	< <		0.3 0.6		28 28	152 195	,	87 78	108	736	19 21	33 40	1			1.38		4.07 3.65				
JUK-U-USSIL-725-W				05	U		•	5	•								21	/ 30			•									
5DR-U-8286E-7296N	P 0.3 P 0.1	80 69	27 25	84 80	< 6	<	<	2 3	<		0.2		28	174	. <	88			20	36	1					4.02				
DR-U-8173E-7345N					-	<	<		<		0.2		25	144	<	72			19	31	1			1.34		3.53				
5DR-U-8241E-7286N	2 0.4	82	28	90	9	<	<	3	<		0.4		26	159	~	76		764	22	36	1					3.70				
DR-U-8079E-7496N	₽́ 0.2	78	25	87	ູ 7	<	<	3				17				70			21	44	1					3.43				
5dr-u-8010e-7596n	Ë 0.2	62	21	83	<	<	<	3	<	<	0.2	16	20	120	<	59	99	732	25	42	1	3 (0.03	1.42	0,63	3.81	0.54	0.0	80	.0
idr-u-8809e-7218N	₽́0.3	68	25	92	6	<	<	3	<	~	0.8	17	24	200	<	61	78	779	20	47	1	4 (0.03	1.49	0.77	3.33	0.67	0.0	9 0	.0
DR-U-8669E-7264N	Ρ̃0.2	70	24	87	9	<	<	2	<	<	0.5	17	26	173	<	74	86	684	19	38	1	4 (0.03	1.41	0.63	3.52	0.69	0.0	7 0	.0
DR-U-8749E-7267N	Ë 0.4	72	23	86	7	<	<	2	<	<	0.3	16	23	175	<	69	85	636	21	43	1	4 (0.03	1.44		3.45				
5DR-U-8646E-7214N	ĝ 0.3	69	28	79	~	<	<	3	<		0.1		29	166	~	94	105	589	19	40	1					4.03	-		-	
DR-U-8127E-7860N	0.4 0.3 0.3 0.3	61	23	122	18	<	<	4			0.2			191	- 	29		734	33	56	1					3.81				
DD 11 00355 7720N	g 0.5	53	20	91	13			7			2 1	22	24	105	-		115	EEE	20	50	3	E (1 02	1 41	ñ	3.57	0 63			
dr-u-8035e~7720n dr-u-8155e~7858n	0.5 2.3 3.4 4.0 3.3	53 72	30 29	115	26	< <	< <	77	< <				24 21	193		34		565 758	29 40	39 52	2				0,64					
	E 2.J	64	23	01	20						1.1				ليدود دود.					1411 A.										
DR-U-8153E-7877N	§ 3.4		23	 	23 22	<	<	5		. S				176		26	70	504	37	- <u>83</u>	2			2.24		2.92				
DR-U-8162E-7821N	P 4.0	73	24	136	19	<	<	5	<					210	****	33		636	52	63 71 83	2			2.47		3.65				
50 R-U-8098E-7885 N	ğ 3.3	70	21	113	13	<	<	4	<	~	0.3	9	13	200	<	21	72	596	45	83	1	3 (0.02	2.47	1,14	3.40	0.80	0.1	30	.u
DR-U-8115E-7895N	9 4.1 9 0.4 9 1.1 9 0.5 9 1.5	76	21	121	15	<	<	6	<		0.5		15	199		29	61	533	51		1		0.02	2.27	0.99	3.11				
5SQ-U-7358E-7040N	8 0.4	76	34		1 5	<	<	4	<	<	0.8		32	86	*	67	84	483	11	39	1	3 ().03	1.84	0,96	3.40	0.88	0.0	70	-0
5SQ-U-7380E-6853N	Ř 1.1	91	130	170	20	6	<	5	<	<	2.5	21	66	121		142	79	859	14	38	1	8 (1.96		3.58	1.10	0.0	9 0.	-0
SQ-U-7354E-6817N	ຊີ້ 0.5	82	19	74	23	<	<	2	<	 	0.1	19	43	144	~	130	85	695	10	44	1	5 ().04	2.51	0.58	3.34	1.43	0.0	9 0.	.0
SQ-U-7383E-7027N	ĝ 1.5	103	41	113 ′	19	<	<	3	<	<	1.0	19	49	114	×	124	85	645	11	36	1	6 (2.28		3.77	1.39	0.0	8 0	.0
SQ-U-7393E-6900N	ĝ 1.3	94	32	101	24	5	<	2	~	Ł	1.0	16	40	109		109	72	608	12	37	1	A (0.03	2.12	n. 99	3.22	1.23	0-0	7 0.	.0
5SQ-U-7325E-7306N	8 1.3 8 0.3	56	65	109	20	< <	~	2					22	82		43	54	654	7		ż			1.61		2.42				
SQ-U-7431E-7144N		71	36	102		<	<	2	<				29	99	1999 in	59		752	8	5	ī			1.61	1.03	3.51				
SQ-U-7352E-7722N	ê 1.2	83	58	171 (5	~	2	~		1.1			99 131		70		1072	11	38	i			1.80		3.82		-		
SQ-U-7823E-7258N	8 0.3 8 1.2 8 0.4	83	43	78	9	<	~	و	ه.		0.5			127		104	90	572	12	26	í	4 ().02	1.42	0.53	3.83				
		07	-	~~	-			•					95							بد هد	-									
SQ-U-7770E-7201N	8 0.5 8 0.3	97	36	<u> </u>	15 9	<	<	2	< ,		0.7 0.4	19	35	115		101		560	11	. 34	1			1.68		3.55				
SQ-U-7919E-7379N	8 0.3	93	46	78		5	<	Z					30	148	يشيب	.98	92	654	13	29 32	1			1.44		3.82				
SSQ-U-8018E-7465N	§ 0.3	96 71	33	78	5	<	<	1	< _	*	~ ~	20	32	158		117		628	15		1			1.49		4.33				
5SQ-U-8075E-7492N	8 0.3	71	29	83	~	<	<	3	~	*	0.5		21	130	~ ~	71	90	799	20	47	1			1.48	أنقد بالطبق الباد	3.68				
SQ-U-7720E-7167N	ĝ 0.5	97	27	93	14	5	<	2	<	~	1.1	20	40	111	<	120	84	699	10	45	1	4 (0.03	1.85	0.84	3.75	1.41	0.0	70.	.0
SQ-U-7663E-7136N	ğ 0.5	127	27	92	20	<	<	3	<			18		96	<	102	74	636	11	44	1	5 (0.03	1.84	0,85	3.31	1.33	0.0	6 O.	.0
SQ-U-7543E-7158N	Ê 0.5	88	22	79	15	<	<	2	< [′]			16		71					7	38	1	3 ().02	1.61	0.91	3.24	1.19	0.0	7 0.	.0
SO-U-7424E-7109N	ế 0.5	82	28	95	16	<	<	2	< [`]			14		73	*	62	74	528	7		<	20).02	1.68	0.89	3.19	1.12	0.0	4 0.	.0
SQ-U-7468E-7116N	90.5 80.4	82	24	83	16	5	<	2	<			21		77	ົ`<	62 132	75	584	7	30	1					3.76				
n Limit	0.1	1	2	1	5	5	3	1	10	2	0.1	1	1	2	5	1	2	1	2	1	1	1 (0_01	0.01	0.01	0.01	0_01	0_0	1 0	_0
x Reported*		20000 2																												
thod	ICP	ICP	ICP	TCP	TCP	ICP	ICP	TCP 1	CP 1	CP .	ICP	ICP 1	ICP	ICP	TCP	ani -	ICP	100	יריי קרוי	401	ICP	TCP	TCP			ICP				
La Ball				R=Roc		· · ·										1.04			100	4345			101	1 CF	A VAL.	TOL	1 (A.	10		~~

			iPL 96L1	304		ancouver, B C Canada V5Y 3E1
INTERNATIONAL PLASMA LABORA	TORY LTD			504	F	'hone (604) 879-7878 ax (604) 879-7898
lient: Northern Ana oject: WO-7185	lytical Laboratories 87 Pulp	iPL: 96L1304	Out: Dec 24, 1996 In: Dec 19, 1996	Page 1 of [130415:31:57:69122496]		2 At
mple Name	P	·		[130413.31.31.03.62.430]		
mpre Name	۲ %					
DR-U-8385E-8176N	P 0.23					,,, <u>,,,,,,,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,
)r-u-7942e-7780N	ĝ 0.16					
DR-U-8531E-7321N	9 0.13					
dr-u-8453e-7278n	ĝ 0.14					
dr-u-8351e-7294n	Ë 0.14					
DR-U-8286E-7296N	ĝ 0.14					
DR-U-8173E-7345N	P 0.13					
5DR-U-8241E-7286N	9 0.15					
5drU-8079e-7496n 5drU-8010e-7596n	₽́0.13 ₽́0.16					
jdr-u-8809e-7218N	e 0.15					
5DR-U-8669E-7264N	Ê 0.14					
5DR-U-8749E-7267N	Ê 0.15					
5DR-U-8646E-7214N	Ê 0.14					
DR-U-8127E-7860N	0.17					
jdr-u-8035e-7720n	Ë 0.14					
50R-U-8155E-7858N	Ē 0.18					
5DR-U-8153E-7877N	Ē 0.19					
5DR-U-8162E-7821N	Ø 0.18					
5DR-U-8098E-7885N	0.22					
50R-U-8115E-7895N	É 0.17					
5SQ-U-7358E-7040N	ê 0.10					
5SQU7380E6853N	§ 0.11					
5SQ-u-7354e-6817N	ê 0.10					
5SQ-U-7383E-7027N	§ 0.11					
5SQ-U-7393E-6900N	£ 0.11					
6SQ-U-7325E-7306N	ê 0.29					
5SQ-U-7431E-7144N	🖉 0.14					
5SQ-U-7352E-7722N	§ 0.14			-		
5SQ-U-7823E-7258N	§ 0.10					
5SQ-U-7770E-7201N	Ø .10					
5SQ-U-7919E-7379N	0.11					
5SQ-U-8018E-7465N	ĝ 0.11					
SQ-U-8075E-7492N	§ 0.13					
SQ-U-7720E-7167N	ĝ 0.10					
550-U-7663E-7136N	10.10					
5SQ-U-7543E-7158N	Ê 0.10					
SQ-U-7424E-7109N	Ê 0.10					
SQ-U-7468E-7116N	§ 0.08					
n Limit x Reported [*]	0.01 5.00					-

CERTIFICATE OF ANALYSIS

iPL 96L1304

036 (Compile St

Canada V5Y 3E1 Phone (604) 879-7878

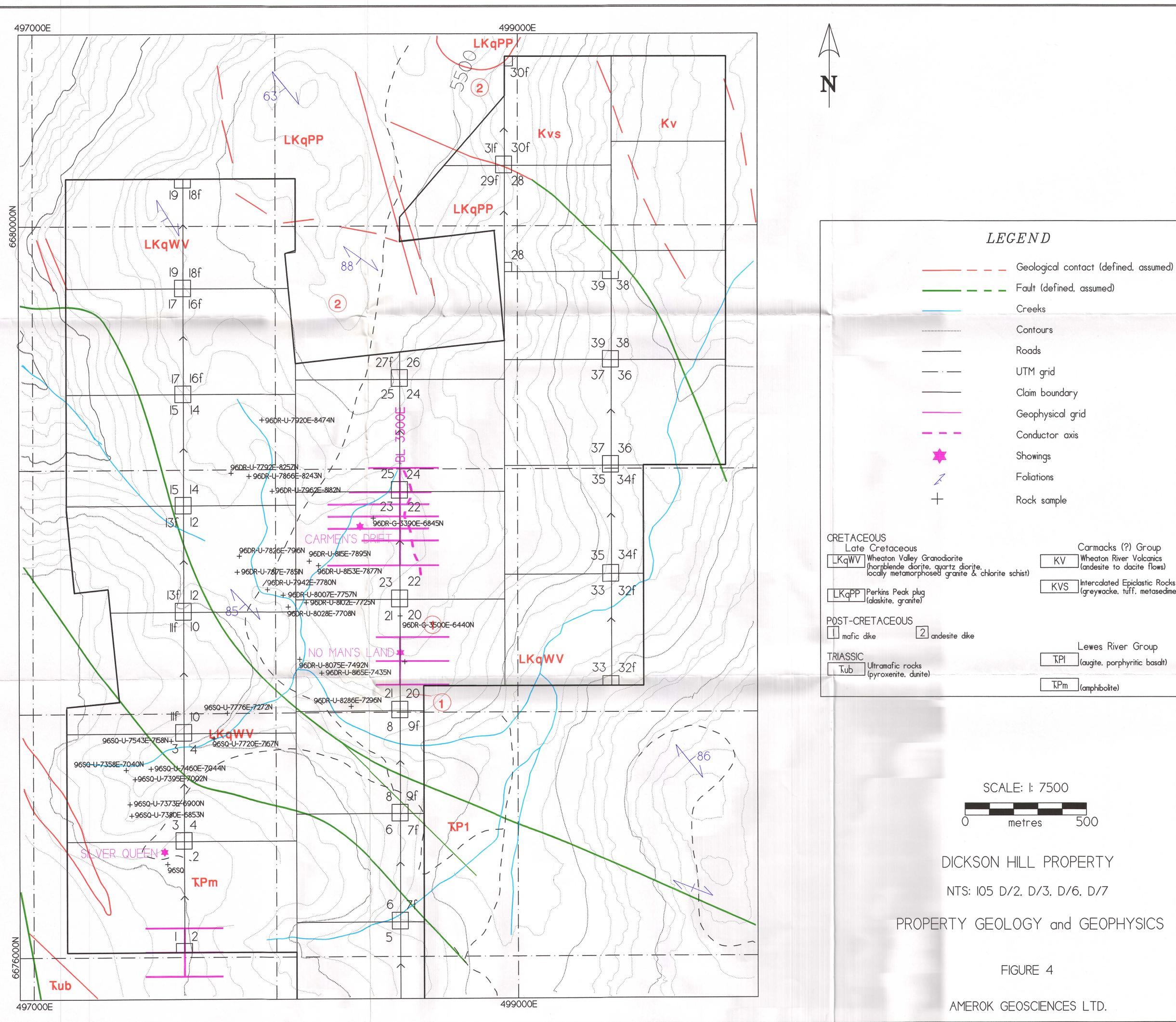
Vancouver, B C

INTERNATIONAL PLASMA LABORAT	TORY LTD																								(604) 8 (604) 8			1
Client: Northern Anal Project: WO-7185	ytical La 87 Pulp		ries	iP	L: 96	L1304					4, 19 9, 19		[13	0415	:31:5		Page 12249			Cert			1 of Assaye	-	vid Ch	iu	X	t.
Sample Name	Ag ppm	Cu ppm	РЬ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm		TI B Span pp		id Co m ppm		Ba ppm	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm		T1 %	רא ג	Ca X	Fe %			
96SQ-U-7394E-7002N 96DR-U-8480E-8300N 96DR-U-8538E-8393N 96DR-U-8175E-7845N 96DR-U-8450E-8292N	P 0.7 P 3.1 P 0.7 P 1.5 P 1.9	94 78 11 63 67	24 49 4 27 29	90 168 21 185 147	24 29 8 30 27	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	2 5 1 4 3	< <	< 0.	1 15 < 3	42 20 3 17 17	96 316 58 259 250	~ ~ ~ ~ ~	29 5 23	15 76	737 771 181 691 682	9 44 12 32 40	29 60 14 67 52	1 1 < 1 1	40. <0. 30.	03 01 03	1.95 3.26 0.61 2.91 2.79	0-68 0-93 0-17 0-99 0-82	4.24 0.74	0.92 0.17 0.78	0.24 0.03 0.17	
96DR-U-8254E-7892N 96DR-U-41 96DR-U-8081E-7716N 96DR-U-7930E-8194N 96DR-U-7901E-7767N	P 1.0 P 0.5 P 0.2 P 0.2 P 0.2 P 0.2	60 67 40 44 40	23 26 20 22 22	124 132 83 87 83	27 15 5 10	< < < < < <	~ ~ ~ ~ ~	5 4 3 3 3	< < < ,	<		16 20 16 15 14	170 203 112 132 125	v v v v v	36 27	109 83 83	606 1014 589 789 698	33 34 21 25 32	36 44 33 39 47	1 1 1 1	30. 20. 30.	04 02 04	2.82 2.58 1.48 1.63 1.49	0-81 0-58 0-69	4.75	1.02 0.89 0.89	0.27 0.07 0.13	0.02 0.02 0.02
96DR-U-7982E-7753N 96DR-U-7792E-8287N 96DR-U-7909E-8035N 96DR-U-7958E-8411N 96DR-U-7871E-7899N	P 0.5 0.3 0.2 0.3 0.3 0.3	46 38 31 31 35	19 21 18 31 16	93 86 78 80 82	12 7 11 ×	< < < < <	< < < < <	2 3 2 2 2	< < < <	< 0. < 0. < 0. < 0. < 0.	4 12 2 13 2 11		153 129 115 109 133			78 92 65	637 686 573 651 612	34 28 28 26 33	59 46 39 42 52	1 1 1 1	3 0.	04 04 03	1.69 1.53 1.44 1.67 1.51	0-73 0-73 0-59	3.21 3.38 3.85 3.03 3.88	0.81 0.80 0.74	0.12 0.10 0.10	0.02 0.02 0.02
96DR-U-7817E-8521N 96DR-U-7920E-8474N 96DR-U-8035E-7720N 96DR-U-7800E-8320N 96DR-U-8585E-8510N	0.2 0.2 0.1 0.2 0.2 0.1	25 29 32 36 28	25 26 39 27 24	79 81 111 83 75	11 10 21 7	< < < < <	< < < < <	2 2 2 3	<	 0. 0. 0. 1. 0. 	9 10 9 12 0 12	10	136 159 125	V. V. V. V. V	17 20 20	60 1 65	747	16 22 19 27 15	33 38 43 43 18	< 1 < 1 1	10. 10. 20.	02 02 03	1.54	0.51 0.42 0.67	2.70 2.67 2.87 2.97 2.91	0.70 0.74 0.79	0.10 0.10 0.11	0.02 0.02 0.02
96DR-3500E 96DH 96DR-3390E-6845N 96SQ 96SQ-U-7373E-6900N	P 0.1m P 0.1m	75 2618 65 2240 1740	4052 95 2.4 % 2.6 % 571	8 17 7 418 123	8 347 58	5 13 36 1.2 7 810	< < 232 <	5 1 20 8 3	< 2 < 2	3 2. < 0. 5 7. < 0. < 18.	B 2 B 1 9m 2	5 9 5 4 5	3 5 ~ 2	* * *	161 141 207 105 210	3 8 2 4 <	29 37 25 26 24	< < < 2 ×	4 13 29	< 1 < 2 <	< < 1 <	v v v	0.05 0.04 0.09	0.05 0.04 0.01 0.03 0.02	0.52 0.55 0.52 0.41 0.26	0.05 0.01 0.01	0.01 0.02 0.08	0.02 0.02
96SQ-U-7543E-7158N 96DR-U-7460E-7044N 96DR-U-7920E-8474N 96DR-U-7866E-8243N 96DR-U-8028E-7708N	<pre># 33.0 # 2.9 # 0.1m # 61.6 # 31.0</pre>	915 171 18 14 9	506 138 19781 4080 7004	6 2 6	A A A W	147 41 50 19 13	< < < < <	2 2 8 5 2	~ ~ ~ ~ ~	2 1. 2 1. 4 1.	21 91 12	9 4 5 3	<	*	261 174 156 195 150	3 3 2 3 <	45 138 68 70 22	~ ~ ~ ~ ~	12 12 4 2 1	~ ~ ~ ~ ~	< < < < <	v v v	0.08 0.03 0.09	0.03 1.57 0.02 0.02 0.01	0.53 0.37 0.45 1.14 0.25	0.09 0.01	< < 0.02	0.02 0.01
960r-26-Fl.t 960r-u-7817e-7851n 960r-u-8075e-7492n 960r-u-8165e-7435n 96SQ-u-7380e-6853n	7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 9.3 7.5 7.5 9.3 7.5 7.5 9.3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	16 8 31 259 9	175 107 51 39 12	2 3 47	16	7 9 8 6 5	< < < < <	4 3 2 5	والوطو الوالع	4 <u> </u>	4 2 1 1 5 5	3 3 4 3 5	118 13 16 61 3	× × ×	141 163	3 3	318 28 31 295 26	7 2 10 <	7 1 38 1	1 < 1 1	1 < 3 0. <	< < 05	0.02 0.94	0.01	2.90 1.08 0.38 1.53 0.33	0.01 0.01 0.50	0.02 0.02 0.07	0.01 0.01
96SQ-U-7395E-7002N 96DR-U-8324E-8035N 96DR-U-7826E-7916N 96DR-U-8153E-7877N	1.7 0.1m 2.4 1.6	549 276 11 10	7 14607 227 197	7 3 3 7		9 8 17 <	< < < <	2 3 1 3			91 31	5 3 4 3	5 < 4 2	<	192 160 165 171	3 2 2 3	53 23 26 53	< < < <	8 3 1 1	< < < < <	~ ~ ~ ~	< <	0.02 0.01 0.01 0.06	0.01 0.01	0.30 0.34	< <	> 0.01	0.02 0.02 0.01 0.02
Min Limit Max Reported* Method =No Test ins=Insuff International Plasma Li	ICP icient San	ICP mple	S=Soil	ICP R=Roc	ICP :k C=(ICP Corre L	ICP .=Si1t	ICP I : P=Pu	99 99 CP IC 1p U≓	999. 9 IC Undef	P ICP ined	999 ICP m=E:	ICP stima	ICP te/10	ICP I 200 7	(CP (=Est	ICP	ICP	ICP	999 ICP I	99 1. CP I	00 CP	0.01 9.99 ICP	9.99	9.99	9.99	9.99	5.00

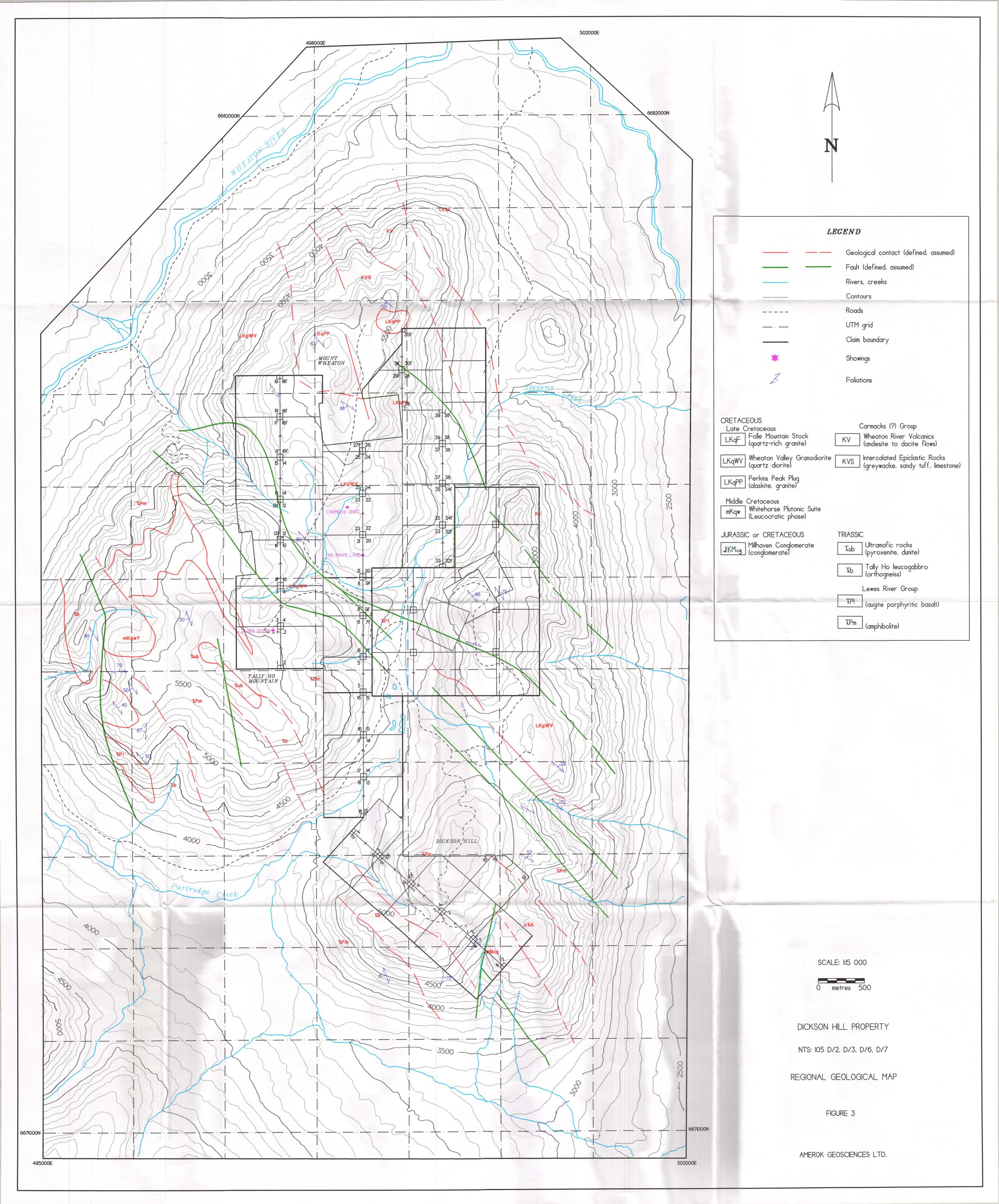
INTERNATIONAL PLASMA LABORA	TORY LTD		iPL 96L1	304		Vancouver, B C Canada V5Y 3E1 > Phone (604) 879-7 Fax (604) 879-7	
lient: Northern Ana oject: WO-7185	lytical Laboratories 87 Pulp	iPL: 96L1304	Out: Dec 24, 1996 In: Dec 19, 1996	Page 2 of [130415:31:58:69122496]	3 Section (Certified BC As		A
mple Name	P						<u>/</u>
	%						
SQU-7394E-7002N	8 0.10						
dr-u-8480e-8300n	ĝ 0.23						
dr-u-8538e-8393N	Ë 0.08						
dr-u-8175e-7845n	ë 0.21						
DR-U-8450E-8292N	P 0.22						
DRU-8254E-7892N	ß 0.23						
DR-U-41	Ê 0.24						
DR-U-8081E-7716N	P 0.16						
DR-U-7930E-8194N	Ë 0.18						
dr-u-7901e-7767n	P 0.17						
)r-:U-7982E-7753N	R 0.16						
DR-U-7792E-8287N	Ê 0.17						
XRU-7909E8035N	Ê 0.20						
DR-U-7958E-8411N	ğ 0.15						
	5 0 10						
x-u-7871e-7899n	ế 0.19						
x-u-7817e-8521N	É 0.14						
x-u-7920e-8474N	ế 0.13						
R-U-8035E-7720N	Ë 0.16						
R-U-7800E-8320N	Ř 0.16						
R-U-8585E-8510N	0.13						
R-3500 E	₩ <						
H	₽ < ₽ 0.01 ₽ <						
	8 0.01						
R3390E-6845N							
Q	8 0.04						
Q-U-7373E-6900N	0.04 0.01						
iQ-u-7543e-7158N	É <						
R-U-7460E-7044N	Ê 0.01						
RU-7920E8474N	1 2 <						
R-U-7866E-8243N							
R-U-8028E7708N	e < 0.01 < < <			-			
R~26FLT	έn na						
R-U-7817E-7851N	a z						
	₩ 0.08 ₩ < ₩ <						
R-U-8075E-7492N							
R-U-8165E-7435N	ếg 0.06						
QU-7380E6853N	8 <						
QU-7395E-7002N	₿́<						
R-U-8324E-8035N							
R-U-7826E-7916N	Ë <						
R-U-8153E-7877N	Ê <						
·····			·	······			
Limit	0.01						

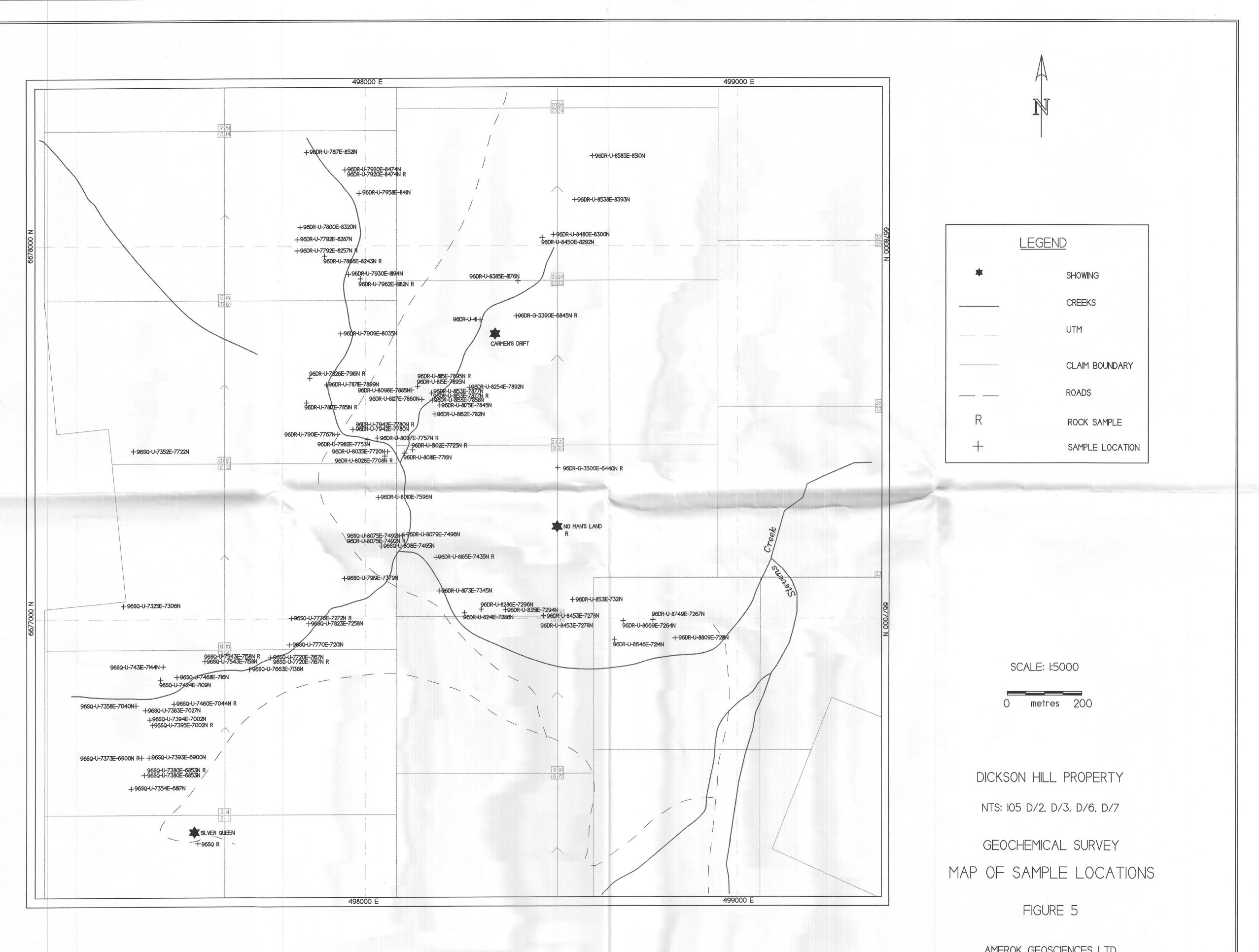
----No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph.604/879-7878 Fax:604/879-7898

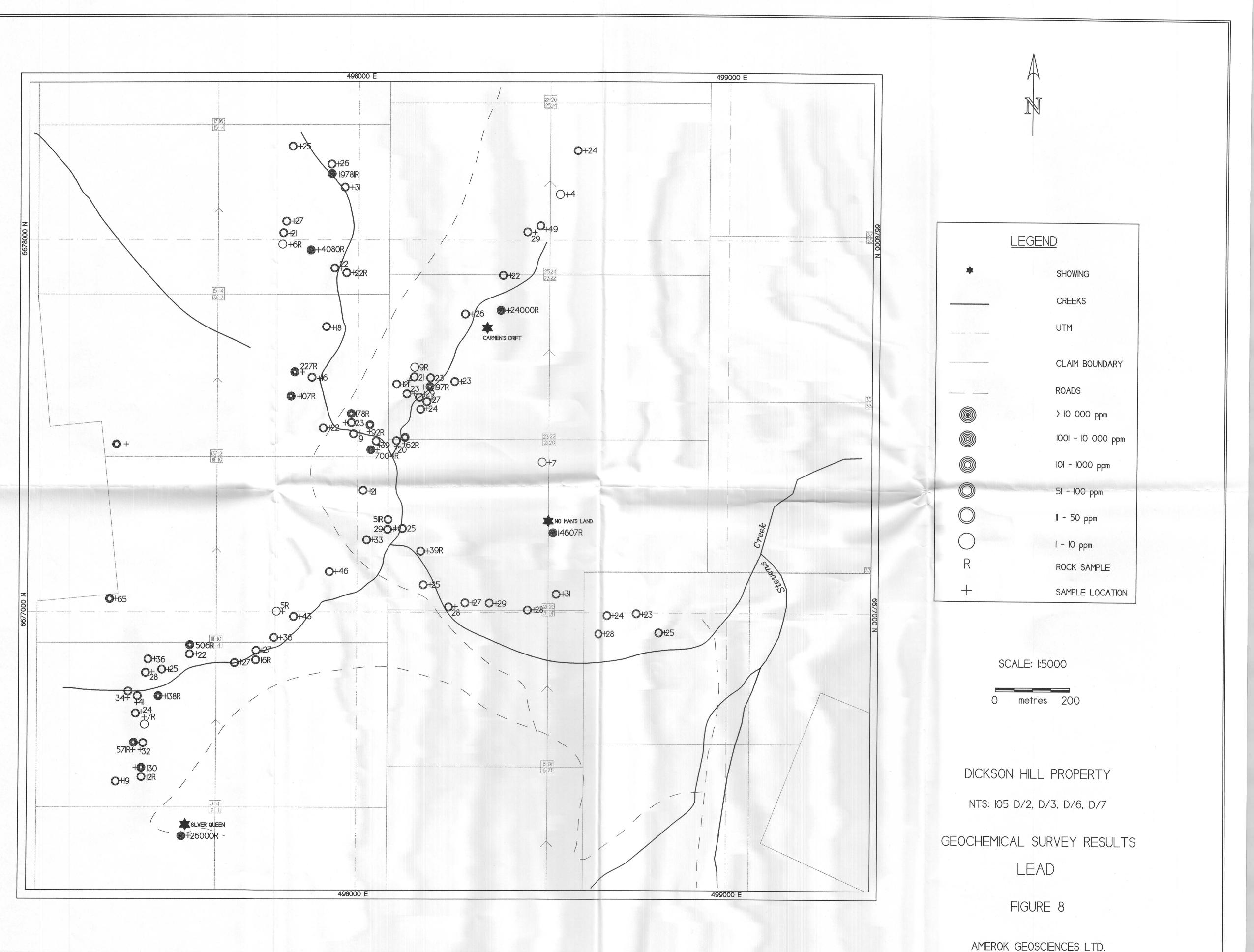
. . · • • •

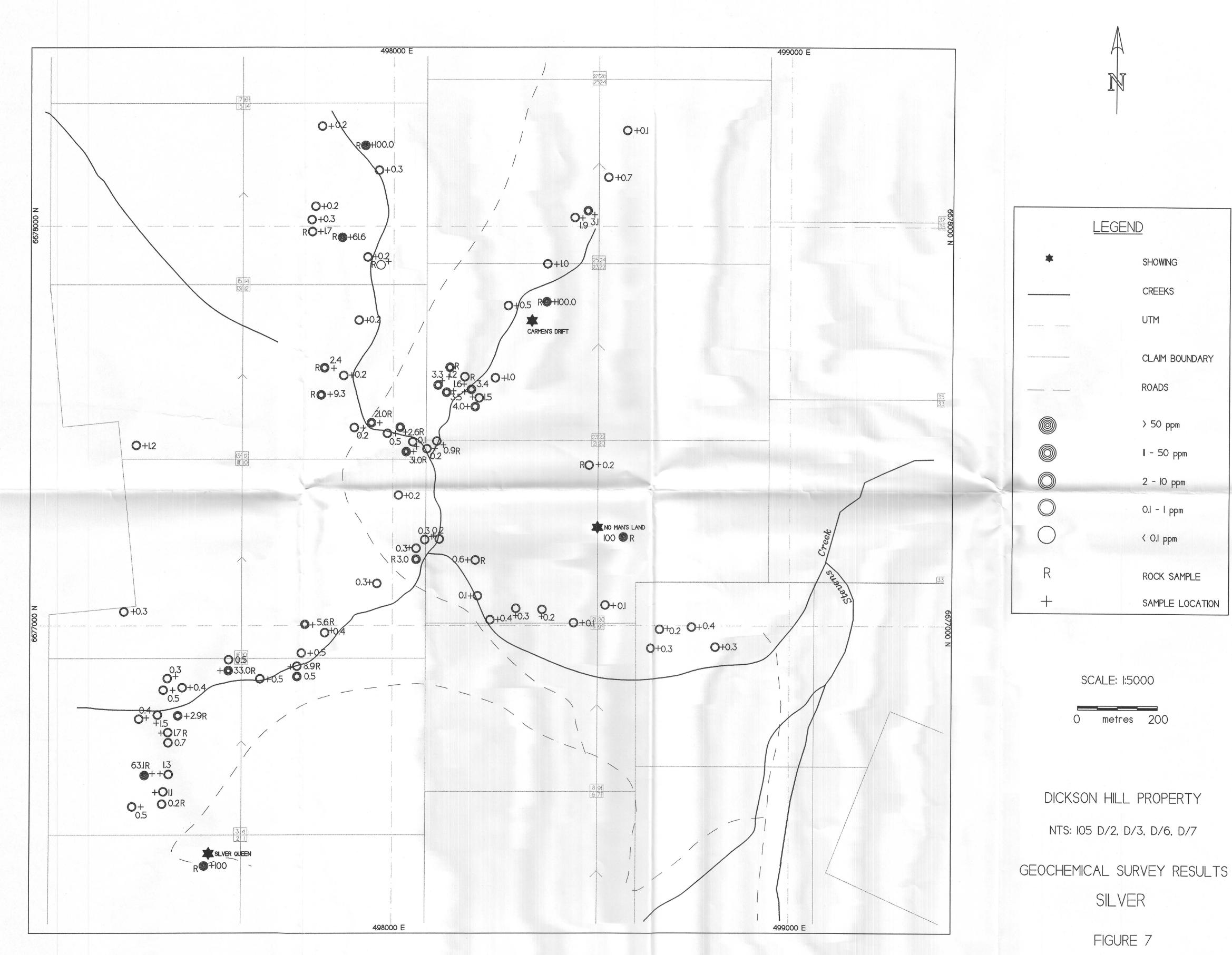

	TORY LTD						C		IF	iPI	ATE 2 2	961	F .13	à 304		'A'										ouv da V e (6(5Y 3E 04) 87	1 7 9-78	78) (
Client: Northern Ana Project: WO-7185			ries	iP	L: 9 6	6L1304						1996 1996		[13	0415	5:31:		Page 912249		5 3	Cert			1 of Assay	2				Å	12
Sample Name	Ag ppm		Pb ppm	Zn ppm	As ppmn	Sb ppm	Hg ppm		T1 ppmp			Co ppm p		Ba ppm		Cr ppm		Mn ppm	La ppm	S r ppm	Zr ppm		Ti %	۲A ۲	Ca 7		Fe Z	Mg	к Х	
96DR-U-7792E-8257N 96DR-U-7962E-8182N 96DR-U-8007E-7757N 96SQ-U-7720E-7167N 96DR-G-3500E-6440N		8 6 5 5372 09	6 22 92 15 7	4 10 9 22 4		5 < 55 55	< < < < <	1 3 14 າ	< , < < , < ,	< 1	0.2 0.2 0.4	2 2 9 1	4 4 4 7 4	9 10 9 2 0	~ ~ ~ ~ /		2 3 2 2	59 119 38 36 .35	× 2 × < 、	T New T		< <	< <	0.04 0.13 0.03 0.01 0.01	0-03	3 0 < 1 < 0	.56	80.08 < <	0.02	0.02 0.02 0.02 0.02
960R-U-8115E-7895N 060R-U-7942E-7780N //25N 965Q-U-7//6E-7272N	Р́ 1.2 ⁹⁷ 21 0 Р́ 0.9 Р́ 5.6	22 8 9 3213	9 178 62 5	15 3 4 21	× × × ×	5 7 6	< < < <	5 2 3 2	< < < ,	< (ù	7 2 5 3	4 5 5 9	40 9 ليد 124	X X X X		11 3 3 15	267 27 10 190	3 < 2 10	11 1 3 1 9		1 < 1	<	0.25 0.02 0.08 0.36	0.01 0.0	1 0 J	.36 	< 	0 01	0.02 0.02 0.03
																			-											

-

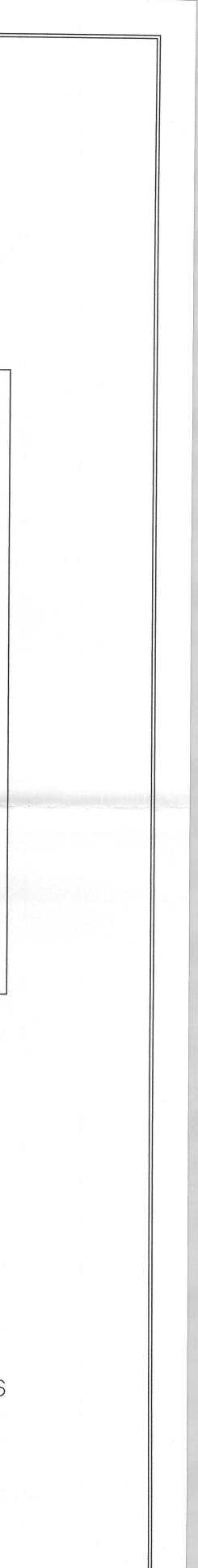

~

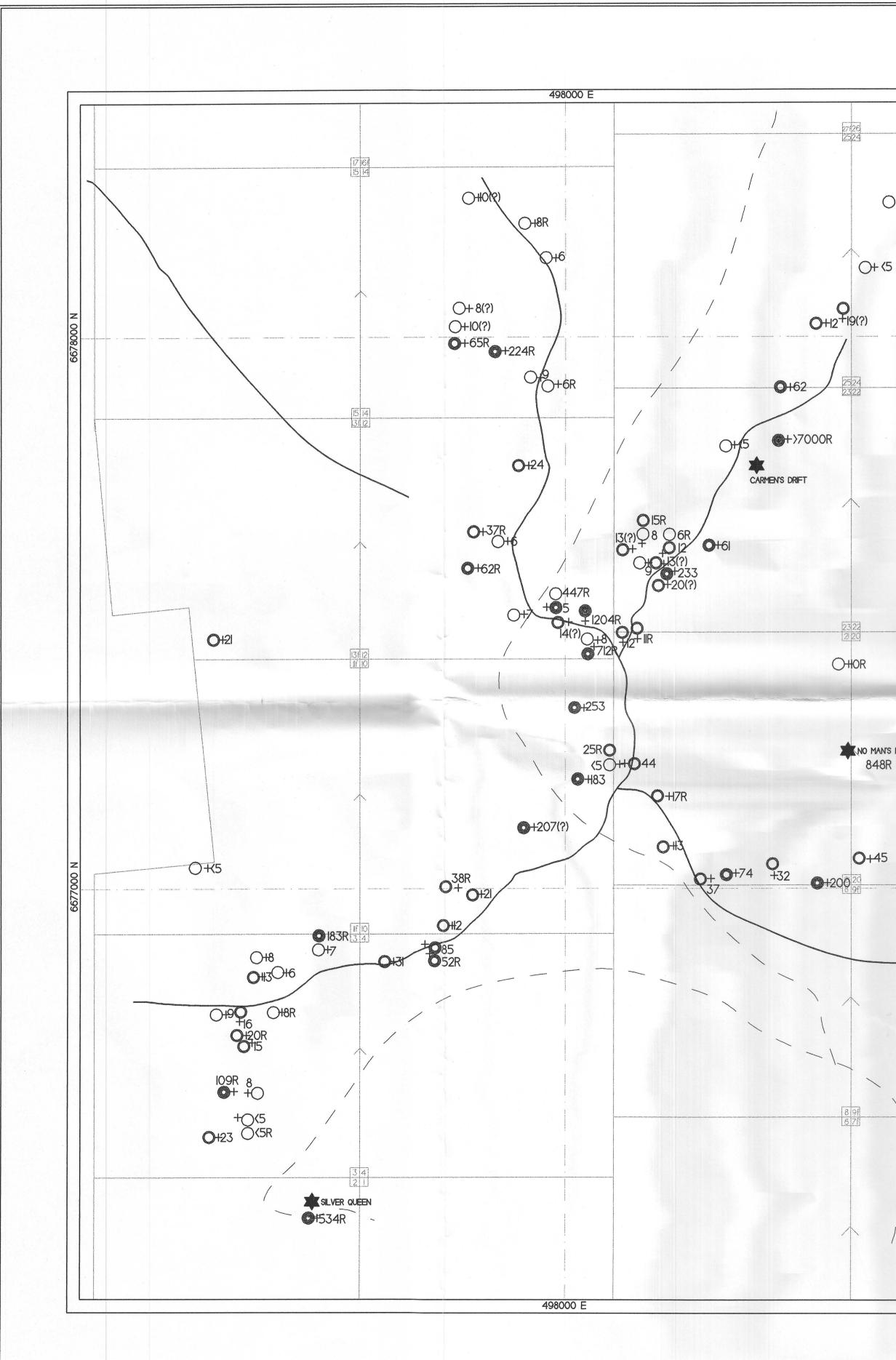

INTERNATIONAL PLASMA LABORA	TORY LTD		iPL 96L1	304	vancouver, 5 C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898
Client: Northern Ana roject: WO-7185	lytical Laboratories 87 Pulp	iPL: 96L1304	Out: Dec 24, 1996 In: Dec 19, 1996	Page 3 of 3 [130415:31:58:69122496]	Section 2 of 2 Certified BC Assayer: David Chiu
ample Name	Р Х				
50R-U-7792E-8257N 50R-U-7962E-8182N 50R-U-7962E-8182N 50R-0-7720E-7167N 50R-G-3500E-6440N	р р р р р р р р р р р с				
idr-u-8115e-7895N idr-u-7942e-7780N idr-u-8102e-7725N isq-u-7776e-7272N	면 0.01 편 < 편 < 편 < 편 0.01				
				,	
			,		


method

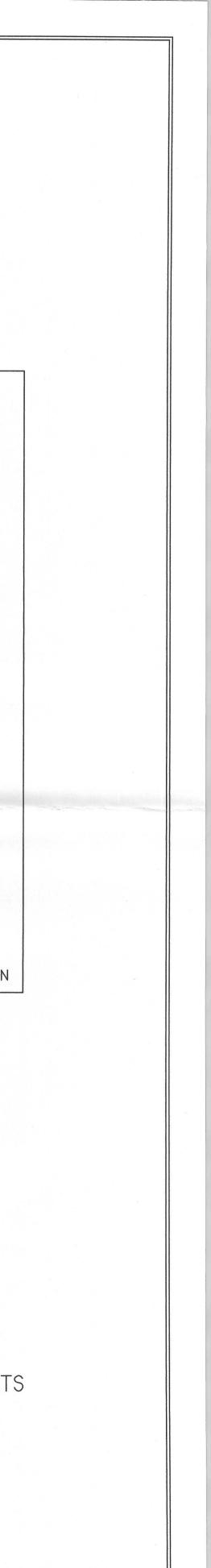


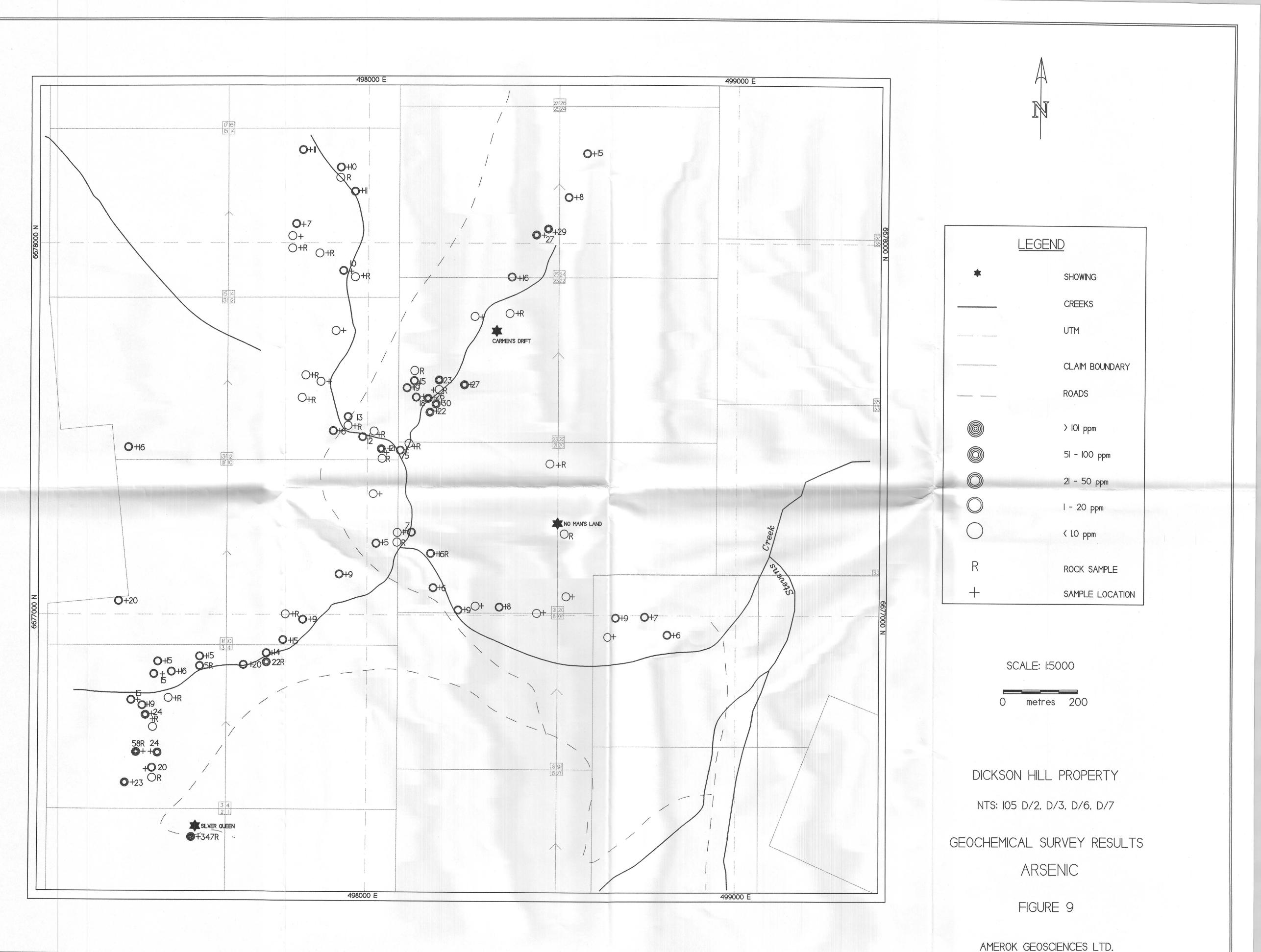
KVS Intercalated Epiclastic Rocks (greywacke. tuff. metasediments-limestone)





AMEROK GEOSCIENCES LTD.




AMEROK GEOSCIENCES LTD.

M

()+⟨5 0+ (5 <u>LEGEND</u> S C * SHOWING CREEKS UTM CLAIM BOUNDARY ROADS > 5000 ppb 1001 - 5000 ppb 0 101 - 1000 ppb \bigcirc 51 - 100 ppb II - 50 ppb NO MAN'S LAND 848R 0 - 10 ppb \bigcirc R ROCK SAMPLE +SAMPLE LOCATION 5) 6677000 O+17 O+25 **O**+18 **0**+70 SCALE: 1:5000 0 metres 200 DICKSON HILL PROPERTY NTS: 105 D/2, D/3, D/6, D/7 GEOCHEMICAL SURVEY RESULTS GOLD 499000 E FIGURE 6

499000 E

