### **EXPLORATION REPORT**

#### OF THE

# **RUBY PROPERTY, BENNETT LAKE CAULDRON**

# YUKON TERRITORY, CANADA

.

YMIP Designation # 99-038

A Target Evaluation Survey comprising: Geology, Geophysics, Trenching, Diamond Drilling June 21, 1999 – August 18, 1999

Mineral Claims: MET 1 - 42

NTS # 105D/3 (Fenwick Creek)

Prepared for: Tiberon Minerals Ltd. By Brian Meyer P.Geol

.\_^

60°00'45"N / 135°17'00"W UTM<sup>.</sup> 6 652.000N / 484.500E

#### ABSTRACT

The Ruby Property which comprises 880 hectares in southwestern Yukon, adjacent to the British Columbia border was staked by Tiberon Minerals Ltd. of Calgary, Alberta in February 1999 The area is underlain by Eocene felsic ignimbrites of the Bennett Lake cauldron subsidence complex within the Coast Crystalline tectonic belt, and hosts two high-grade epithermal silver veins which had previously not been fully explored.

The company completed surface geological studies consisting of detailed mapping and sampling, trenching, and ground magnetic and VLF-EM surveys, followed by a four-hole diamond drill program. Four additional high-grade silver-gold veins were discovered proximal to the two known structures. On surface the metal content of the six veins generally range between 35 and 150 oz/ton silver and 0 5 to 1.0 gram/tonne gold. The average vein width is one meter, and strike lengths vary from 5 to 160 meters. Of the two structures tested by dnlling, only the Connie vein recorded high concentrations of silver (8 to 20 oz/ton) and gold (0 2 to 2.5 grams/tonne).

While the veins appear to be of sub-economic value, all of them have not been fully explored. Their presence may also be indicative of proximal, more highly developed epithermal precious metal systems within the district Further exploration is recommended, consisting of satellite imagery studies followed by reconnaissance geological investigations, and drilling where warranted.

# TABLE OF CONTENTS

•

٠

.

| 1     | INTRO      | DUCTION page 1                               |
|-------|------------|----------------------------------------------|
|       | 11         | Location and Access 1                        |
|       | 12         | Land 1                                       |
|       |            |                                              |
| 2.    | PROP       | ERTY HISTORY                                 |
|       | 2.1        | Past Activity                                |
|       | 2.2        | Recent Exploration Activity 3                |
|       | 2.3        | Summary of Expenditures                      |
|       |            |                                              |
| 3.    | GEOL       | OGY 4                                        |
|       | 3.1        | Regional Geology 4                           |
|       | 3.2        | Project Geology                              |
|       | 3.3        | Project Structure                            |
|       | 3.4        | Veins                                        |
|       | 35         | Alteration and Mineralization 6              |
|       |            |                                              |
| 4.    | TREN       | CHES                                         |
|       |            |                                              |
| 5.    | ROCK       | GEOCHEMISTRY                                 |
|       |            |                                              |
| 6.    | GEOP       | HYSICS                                       |
|       | 6.1        | VLF Survey                                   |
|       | 6.2        | Ground Magnetic Survey 9                     |
|       |            |                                              |
| 7.    | DIAMO      | OND DRILLING                                 |
|       | 7.1        | RUD 99-01 10                                 |
|       | 7.2        | RUD 99-02 10                                 |
|       | 7.3        | RUD 99-03 11                                 |
|       | 74         | RUD 99-03 11                                 |
| - ·   | <u> </u>   |                                              |
| 8.    | SUMM       | ARY AND DISCUSSION 11                        |
|       | 81         | Recommendations 12                           |
|       | 82         | Proposed Cost Expenditures                   |
|       |            | ,                                            |
| APPEI |            | Dook Compley ( Descriptions                  |
|       | 1          | Nous Samples / Descriptions                  |
|       | 11         |                                              |
|       | 111<br>157 | VLF Data<br>Cround Mognatia Data             |
|       | 17         | Dismond Drill Logo                           |
|       | V          | Diamong Dill Logs                            |
|       | VI         | Drill Core Geochemical Analysis Certificates |

•

# REFERENCES

STATEMENT OF QUALIFICATIONS

# FIGURES

.

| Location Map                                             |
|----------------------------------------------------------|
| Claim Map                                                |
| Regional Geology                                         |
| Project Geology (map pocket) 4.                          |
| Sketch of Alteration / Mineralization Characteristics 5. |
| Rock Geochemistry Overlay (map pocket) 6.                |
| VLF Profiles – South Slope                               |
| Total Field Magnetics – South Slope                      |
| Diamond Drill Hole Locations (map pocket)                |
| Drill Hole Profiles (RUD99-01 to 04)                     |
| Geologic Cross-Sections 13-15.                           |

# TABLES

| Phase I Activities                 | 1.         |
|------------------------------------|------------|
| Phase II Activities                | <b>2</b> . |
| 1999 Exploration Expenditures      | 3.         |
| Table of Formations                | 4.         |
| Mineralized Intervals of RUD 99-01 | 5.         |
| Mineralized Intervals of RUD 99-02 | 6.         |
| Mineralized Intervals of RUD 99-03 | 7.         |

## EXPLORATION REPORT OF THE RUBY PROPERTY

## 1. INTRODUCTION

Tiberon Minerals Ltd. of Calgary, Alberta acquired the Ruby property by claim staking in early 1999. The area is undertain by felsic ignimbrites of Eocene age, within a collapsed caldera complex, and hosts two relatively unexplored high-grade epithermal silver veins. The company conducted detailed surface geologic investigations in the vicinity of the two outcropping veins, and followed up by completing a short diamond drill program

### 1.1 Location and Access

The property is situated in southwestern Yukon Territory adjoining the British Columbia border, approximately 78 km south of the capital city of Whitehorse, and 40 km southwest of the town of Carcross. Access is limited to helicopter or a combination of both air and boat transportation via Bennett Lake, which is 8 km northeast (Figure 1).

The property area lies within the Coast Mountains physiographic unit, and is characterized by an east-west ridge linking two north-trending ridges. The south-facing slope is mainly talus-covered while northern slopes and ridges comprise very steep cliffs, small glaciers and minor talus slopes. A glacier-fed tributary of MacAuley Creek drains the property to the north, of which the headwaters transect thick, well developed morainal debris. At the south boundary, an unnamed creek flows east along the BC-Yukon border to Partridge Lake. Elevation relief is approximately 3000 feet (4000 to 7100 feet above sea level).

Vegetation is limited to alpine grasses in the valley bottoms, except along MacAuley Creek below 4500 feet elevation, which is approximately tree-line level.

Field activity is restricted to the summer months of early June to mid September. Weather generally deteriorates towards the end of this period with an increase in precipitation and low cloud cover.

#### 1.2 Land

Located within the Whitehorse Mining District, the Ruby property consists of the MET 1-42 mineral claims, staked February 19, 1999 and recorded February 22, 1999. Claim tag numbers YC-09290 (MET 1) to YC-09331 (MET 42) have been affixed to the claim posts. During the period of field activity, the MET 43 – 48 mineral claims were staked (June 29, 1999) and recorded (July 09, 1999). The corresponding grant numbers are pending. In total the property comprises approximately 880 hectares (Figure 2). Tiberon Minerals Ltd. is the registered holder of all claims





### 2. PROPERTY HISTORY

#### 2.1 Past Activity

A 1972 prospecting program under the direction of J. R. Woodcock led to the discovery of high-grade silver-gold float and subsequent staking of the Ridge claims. In 1973 the property was optioned by Jorex Limited and Dome Exploration Ltd. from Adastral Mining Corporation Limited, of which Woodcock was a director. Surface investigations by J. R. Woodcock Consultants Ltd. resulted in the discovery of two mineralized vein zones, the "MacAuley Creek East" and the "MacAuley Creek West". Both zones are described as near north-striking, steep-dipping vein systems consisting of arsenopyrite-rich gold-silver bearing silica-altered structures with indicated strike lengths up to 425 m.

In 1981 Kennco Explorations Limited conducted initial geological and geochemical surveys on the Goat claims following analysis of stream sediment samples collected in the early 1960's. Numerous silver-gold-copper-lead-zinc vein showings were located, the most promising situated proximal to Adastral's showings. The source of the Mouse showing, from which high-grade vein material in float containing up to approximately 200 oz/ton or 7 kg/tonne silver, was not located.

In 1987 Adastral completed a geological survey of the maintained Goat-Ridge claims, and defined the four principal showings: the Discovery (the original MacAuley Creek East showing), West Vein System, Jake, and Mouse.

A seven-hole diamond drill program was completed on the Discovery showing in 1988 with the best results from hole 7 grading 74 gm/tonne silver and 1.9 gm/tonne gold over 20 cm.

The source of the Mouse showing was located in 1988, with the surface discovery of two north-striking high-grade silver veins labeled as the Steve and Connie veins. The near-vertical dipping Steve vein was described as having a minimum 300 foot strike length, with sampled vein widths ranging from 4.3 to 8 feet, and grading from 27.9 to 178.2 oz/ton silver and 0.027 to 0.475 oz/ton gold. The Connie vein is described as dipping 60° west, with a minimum 480 foot strike length (partially talus-covered) and ranging in sampled width and grade from 11 5 feet at 32.5 oz/ton silver and 0.001 oz/ton gold, to 5.3 feet at 340.2 oz/ton silver and 0.026 oz/ton gold (Canada Stockwatch Aug. 19 1988).

In 1989 the company completed preliminary flotation tests of Steve vein material, producing a sphalerite-galena-arsenopyrite concentrate with 95% silver and 90% gold recoveries.

No further activity was recorded, and all claims excluding the three Ridge units eventually lapsed.

### 2.2 Recent Exploration Activity

Tiberon Minerals acquired the Ruby property by claim staking in February 1999, with the intent of evaluating the area in which the high-grade Steve and Connie veins were located. The field activities of exploration phases one and two commenced June 22 and were completed on August 18, 1999. Phase I comprised surface geological mapping and sampling, trenching, and geophysical magnetometer and VLF-EM surveys, while Phase II consisted of 4 holes of diamond drilling. The core is stored on the property at the field campsite. Tables 1 and 2 list the completed activities.

Due to the excessively steep terrain, only a small survey grid from which mapping and geophysical surveys were conducted, was established on the southern slope of the area of interest, totaling 680 line meters. It consists of chained and compassed lines oriented at 90° azimuth which are separated by 50 meter slope-corrected intervals (L800N – L1000N). Picketed and flagged stations have been established at 20 meter chained intervals roughly parallel to slope contours.

Survey control points were set up on the north slope at piton stations, where a significant percentage of work was conducted utilizing climbing gear. The stations, along with sample and vein locations, were tied in by compass, clinometer and chain.

#### Table 1 Phase | Activities

| Camp mobilization & construction: June 22 - 26 |                      |
|------------------------------------------------|----------------------|
| Survey grid establishment: June 24 - 27        | 680 line m.          |
| Rock geochemistry (#s 197001 - 099):           | <b>99 samples</b>    |
| Geologic mapping (1:500): June 23 - July 25    | approx. 200 x 300 m. |
| Trenching. June 25 - July 13                   | 47 m.                |
| Geophysics: June 27 - 29                       |                      |
| - Ground magnetic survey:                      | 680 line m.          |
| - VLF-EM survey:                               | 680 line m.          |

#### Table 2Phase II Activities

| 17 days    |
|------------|
|            |
| 415 91 m.  |
| 29 samples |
| ,          |
|            |
|            |
|            |

### 2.3 Summary of Expenditures

Phase I field expenses incurred during the 1999 program total \$134,698 which are listed in Table 3 by category. Phase II expenses had not been tabulated at the time of this writing

| PHASE I               |           |            |  |  |  |
|-----------------------|-----------|------------|--|--|--|
| Category              | Amount \$ | Total \$   |  |  |  |
| Assays                | 2,516.    |            |  |  |  |
| Camp Costs / Supplies | 22,067.   |            |  |  |  |
| Communications        | 2,564.    |            |  |  |  |
| Claim Staking         | 1,733.    |            |  |  |  |
| Equipment Rentals     | 11,167.   |            |  |  |  |
| Salaries / Wages      | 48,988.   |            |  |  |  |
| Transportation        | 2,254.    |            |  |  |  |
| Helicopter            | 43,410.   | \$134,698. |  |  |  |

# Table 31999 Exploration Expenditures

### 3. GEOLOGY

# 3.1 Regional Geology

The Ruby property is underlain by Eocene felsic ignimbrites of the MaCauley Creek Formation (Skukum Group), which is situated within the Coast Crystalline tectonic belt comprising Paleozoic metamorphic rocks of the Yukon Group and Cretaceous-Tertiary granitic rocks of the Coast Plutonic Complex (Figure 3). The pyroclastics form part of the Bennett Lake Cauldron Subsidence Complex, one of two northernmost complexes of the Sloko volcanic province, the other being the Skukum Complex situated 30 km north.

The Bennett Lake complex is circular-shaped, surrounded by shattered and brecciated granitic rocks, and is partially circumscribed by a rhyolite ring dike. These characteristics have been interpreted to represent volcanism and subsidence along ring fractures from one or more calderas.

| Geol. Time        | Group  | Formation              | Lithology                                       |
|-------------------|--------|------------------------|-------------------------------------------------|
| Pleist-Recent     |        |                        | alluvium                                        |
| unconformity      | ·      |                        |                                                 |
| Eocene            | Skukum | MaCauley Creek         | ignimbrite: partial-densely welded              |
| unconformity      |        |                        |                                                 |
| Tertiary-Cret     |        | Coast Plutonic Complex | granite, quartz monzonite, granodiorite         |
| intrusive contact |        |                        |                                                 |
| Pre-Mesozoic      | Yukon  |                        | quartzite, mica-quartz<br>schist/gneiss, marble |

Table 4Table of Formations



## 3.2 Project Geology

The area of investigation is underlain by one principal lithology, that being a dacitic lapilli tuff with varying percentages of fragment grain sizes, and varying degrees of welding. The rock is typically pale green to light grey-green, ranging from partial to densely welded with related poor to well developed eutaxitic foliation. Pumice clasts/fiamme are generally less than 0.5 cm diameter/length, however localized zones containing breccia/agglomerate components are not uncommon, and also include metamorphic mica schist fragments. Nonfoliated volcanic fragmentals often display round or tube vesicle textures.

Near the center of the mapped area an oval-shaped zone of roughly 70 meters diameter appears as white or cream-coloured lapilli tuff, generally with a higher percentage lapilli content and partial welding

Other minor lithologic units include: a) one brownish diabase dike averaging one meter width, near vertical-dipping and striking northeast, with a 100 meter strike length. b) few cream-coloured aplite dikes, steep dipping and north striking, ranging from tens of centimeters to 4 meters width. These have been observed only in drill core. A detailed geology map at 1:500 scale has been produced (Figure 4).

### 3.3 Project Structure

Within the district the volcanic strata undulates with an overall near flat-lying orientation. Bedding generally appears massive. Thickness of the MaCauley Creek Formation is estimated at approximately 700 meters.

Two principal faults have been mapped within the area of interest. The northwest striking Ridge Fault (S130-140°/80S-90°) is exposed over a 75 meter strike length and appears to display minimal sinistral movement The North Fault (S075-080°/55-63°S) is exposed over a strike length of hundreds of meters and appears to truncate the Ridge Fault. Relative movement was not determined however it is assumed to be normal with a principal dip-slip component.

#### 3.4 Veins

Four north-striking, near vertical-dipping mineralized structures are confined between the faults, and terminate at either one or both of the North and Ridge fault planes. These veins, labeled the Brian, Tom, Mike, and Dave veins range in strike length from 5 to 25 meters and average between 0.5 and 1.2 meters width. Economic potential of these structures was considered limited due to the relatively short strike lengths

The Steve vein which crops out on the north side of the North Fault, is north-striking, near vertical-dipping and exposed over a 45 meter strike length within a narrow steep-walled canyon. The vein terminates or is offset at the fault. Exposed northern extent is limited by ice and talus cover. Surface investigation was brief due to the

high incidence of falling rocks. The vein is 20 cm wide at its southern extent but appears to increase up to 1.5 meters near the edge of ice-cover.

Exposures of the Connie vein extend over a 45 meter strike length (S165/70W) on the north slope, with the extent limited by talus cover. The vein thickness is relatively consistent averaging about 1.5 meters. The vein dissipates near the ridge top, and crops out in a number of isolated exposures 100 meters away on the south slope, exhibiting a width of up to nearly 6 meters. Overall strike length is estimated at 160 meters, and although it does not crop out on the ridge, it is assumed to be continuous beneath the ridge, below 6610 feet elevation.

#### 3.5 Alteration and Mineralization

Alteration characteristics indicate an adularia-sericite type epithermal system

Locally, the dacitic lapilli tuff exhibits selective chlorite-calcite alteration, characteristic of propylitic zonation.

Enveloping the mineralized fissures, an erosionally recessive bleached zone is commonly present ranging from 2-10 meters width, and displays weak to moderate selective argillic alteration (montmorillonite-smectite-illite?) of clasts and matrix. There is an absence of mafic minerals.

The veins are characterized by a relatively resistant pale yellow-green to cream coloured rock consisting of moderate to strong pervasive sericitization with weak to moderate silicic patches  $\pm$  hairline quartz veinlets. Petrographic studies are necessary to determine the presence of adularia alteration. Sulfides/sulfosalts are occasionally disseminated within this sericite-altered zone. Vein width varies from a few centimeters to over 4 meters, with the principal structures commonly ranging from 0.3 to 1.5 meters width.



Figure 5 Sketch of Alteration / Mineralization Characteristics

Hosted within the sencite-altered rock are subparallel veinlets of semi-massive sulfides/sulfosalts + quartz, ranging from less than 1 centimeter up to 10 cm width Mineralization consists of pyrite-arsenopyrite ± argentiferous galena, acanthite, silver

sulfosalts (freibergite, proustite, pyrargyrite), chalcopyrite and sphalerite. Secondary minerals limonite, jarosite and hematite  $\pm$  malachite and azurite are not uncommon in surface showings (Figure 5)

#### 4. TRENCHES

Eight trenches totaling 47 meters were excavated by hand and dynamite during the period of surface geologic studies between June 23 and July 13. Personnel involved in the completion of this work included. Tom Morgan, Mike Glynn, David Gatensby, Jock Shepherd and Douglas John

Six trenches were excavated across the Connie vein, ranging from 2 to 7 meters length, and the other two are located adjacent to the North Fault (7 and 13 meters length), all in areas covered by talus or of limited outcrop exposure. All trenches are plotted on the geology map (Figure 4). Excavations were no larger than 2 meters width by 1.5 meters depth, with the total volume of material moved estimated at less than 140 cubic meters, of which most consisted of talus.

All trenches were chip sampled, of which the results will be discussed under Rock Geochemistry.

# 5. ROCK GEOCHEMISTRY

Ninety-nine rock samples numbered 197001-099 were collected, with analysis performed by ACME Analytical Laboratories Ltd. of Vancouver, BC. All samples underwent a 32 element ICP analysis and gold fire assay, with those containing over-limit silver values (>30 ppm) re-analyzed by fire assay-atomic absorption methods. The sample preparation procedure is described on the analysis certificates (Appendix II).

Samples were collected from all veins, altered wallrock, and selected portions of unaltered rock between mineralized structures. Most samples were collected as continuous rock chips, although there are some grab samples. A sample location map prepared as an overlay to the geology map at 1:500 scale is included (Figure 6). Appendix I contains a list of all samples with descriptions, coordinates, sample type, and associated silver and gold contents included.

Results indicate that enriched silver-gold concentrations are limited to vein material (sericite-quartz altered zones), with argillic-altered wallrock and unaltered rock carrying background values. Pervasive limonite-altered samples collected from the trenched zone along the North Fault contain less than 1 oz/ton silver.

Analysis results of samples collected from the six trenches excavated across the Connie vein range from 1 to 155 oz/ton silver, with gold values not greater than 0.3

grams/tonne. The highest values were encountered on the north slope near the ridge top and in the southernmost exposure on the south slope. The northernmost exposure recorded less than 1 oz/ton silver.

The 20 cm chip sample collected from the Steve vein returned a value of 100 oz/ton silver and 0.7 grams/tonne gold. A few samples north of the North Fault collected from narrow mineralized structures trending roughly subparallel to the Steve vein contain high-grade silver and elevated gold values (numbers 197082, 084, 099).

Analysis results of samples from the four minor veins are as follows:

- The Brian vein recorded values of 60 to 70 oz/ton silver and <.3 grams/tonne gold across 0.9 meters vein width. This structure has a potential surface strike length of 7 meters.

- Values from the Tom vein are 80 to 159 oz/ton silver and 0.3 grams/tonne gold across an average width of 1.1 meters, with a potential mineralized strike length of 20 meters.

The Mike vein values range from 1 to 35 oz/ton silver and up to 1 1 grams/tonne gold across a 1 meter width and a limited strike length of less than 10 meters.
Dave vein values are 10 to 13 oz/ton silver and 0.5 to 1.6 grams/tonne gold across a width of less than 0.5 meters. Strike length does not exceed 5 meters.

### 6. **GEOPHYSICS**

The ground magnetic and VLF-EM surveys of relatively small aerial extent were only conducted over the talus-covered southern slope of the area of interest, delimited by the extremely rugged terrain which envelopes the talus area and occupies the north side of the ridge. The surveys were conducted on June 27 to 29 across a survey grid totaling 680 line meters and 70 stations. Instrument readings were recorded at 10 meter intervals.

#### 6.1 VLF Survey

The survey was completed using a Geonics EM16 VLF-EM instrument rented from Amerok Geosciences Ltd. of Whitehorse. It measures the in-phase and quadraturephase components of the vertical magnetic field as a percentage of the horizontal primary field. The VLF transmitting station used was NLK Seattle, Washington (operating frequency 24.8 kHz), which is roughly south of and along strike of the observed mineralized structures. All instrument readings along the east-west surveys lines were taken while facing west. The data is listed in Appendix III

A very weak conductivity response was detected across lines 850N and 900N, trending subparallel to the strike of the Connie vein (Figure 7a). No significant structures were observed in the limited outcrop exposure proximal to this conductor The survey did not detect the Connie vein on line 950N, however it may have detected the structure at the east end of line 1000N







Kilogammas

| GEO BM   |           | REPORT    |
|----------|-----------|-----------|
| DRAWN BM | Sept 1999 | FIGURE 7b |

There are many factors which impeded the detectability of VLF conductors in the area, namely a very restricted survey area, steep topographic gradient, and apparent low concentration of sulfides in the target structures. The only conclusions that can be made regarding this survey is that no strong conductors were detected.

### 6.2 Ground Magnetic Survey

The survey was completed using a Geometrics G-816 portable proton magnetometer rented from Amerok, which measures the total magnetic field intensity with an accuracy of  $\pm 1$  gamma. The instrument was tuned to a local field intensity of 56 kilogammas to obtain a signal strength of 8. Signal to noise ratio was determined to be 5:1 during the period of survey. Because no base station was used, two of the lines were surveyed twice to enable an adjustment of the data due to diurnal fluctuation, which was not greater than 30 gammas. Adjusted data is listed in Appendix IV. The data was not filtered in any other way. Instrument readings were collected using an eight foot high staff-mounted sensor. The maximum measured magnetic relief is 762 gammas (57118-57880).

Results of the survey exhibit a northeast trending lineament separating an eastern magnetic high from a western low, roughly in the same location as the weak VLF conductor (Figure 7b). It is subparallel to the Connie vein, and appears to be offset to the west. The single point magnetic high on line 950N overlies the outcropping magnetite-bearing diabase dike, which strikes northeast. The magnetics show no apparent relationship with the surface trace of the Connie vein. A shortfall of this survey is its restricted size of investigation.

### 7. DIAMOND DRILLING

A short drill program was initiated, based on the positive results of surface mapping and rock geochemistry. The objective was to test the Connie and Steve veins at depth for precious metal concentrations and vein width. The other veins were considered low priority targets and were not tested during this limited round of drilling.

A four hole program (RUD 99-01 to 04) totaling 415.91 meters of NQ/HQ core diameter was completed in August by E. Caron Diamond Drilling Ltd. of Whitehorse. Drill pads were prepared by drilling and blasting. Helicopter support for drill moves, crew changes, etc. was supplied by Trans North Air of Whitehorse.

All core was logged by project geologist B. Meyer, with zones of interest split manually using a Longyear core splitter. Samples were analyzed by ACME Analytical Laboratories of Vancouver, utilizing the same method as was incorporated for rock geochemistry. Drill logs and geochemical analysis certificates are included in Appendices V and VI. Drill locations are plotted on Figure 8 at 1:500 scale (overlay to the geology map). Figures 9 to 12 comprise individual drill profiles, and Figures 13 to 15 are cross-sections incorporating all drill holes.

### 7.1 RUD 99-01

The first hole was collared on the ridge and inclined at -55°/090° azimuth, and drilled to a depth of 91.14 meters, with the objective of intersecting the Connie vein. The vein was encountered at an elevation of approximately 1965 meters above sea level within a wide zone of argillic-altered dacitic lapilli tuff, and consists of two closely spaced fissures characterized by strong pervasive sericite alteration and thin quartz veinlets hosting clusters and disseminations of sulfides/sulfosalts plus varying amounts of limonite-jarosite. Intervals with elevated silver-gold values are listed below.

| Drill Interval<br>meters | Width<br>meters | Approx. True<br>Width (m) | Silver<br>oz/ton | Gold<br>g/tonne | Other                                 |
|--------------------------|-----------------|---------------------------|------------------|-----------------|---------------------------------------|
| 68.75-79.25              | 10.50           | 6.5                       | 6.17             | 0.71            |                                       |
| incl. 70.75-75.45        | 4.7             | 3.6                       | 11.60            | 1.35            |                                       |
| incl. 70.75-72.00        | 1.25            | 1.0                       | 22.73            | 2.4             | 1.02% Pb                              |
| incl. 74.30-75.45        | 1.15            | 0.9                       | 20.58            | 2.72            |                                       |
| incl. 74.30-76.00        | 1.70            | 1.4                       | 14.96            | 2.15            | · · · · · · · · · · · · · · · · · · · |

Table 5. Mineralized Intervals of RUD 99-01

## 7.2 RUD 99-02

The second hole was collared on the south slope at -55°/090° azimuth, to the west of an outcrop of the Connie vein which recorded 100 oz/ton silver across 2 meters. The vein was intersected at 31.95-34.15 meters drill depth (approximately 1945 masl), and consists of moderate pervasive sericite-altered lapilli tuff with very thin limonite/quartz/sulfide veinlets, plus sulfide/sulfosalt clusters and microlenses. The hangingwall is composed of a thick weak argillic-altered wallrock, and the footwall is a combination of volcanics and thin aplite dikes hosting traces of mineralization. The structure dips 70° west, the same as measured on surface. Total depth of this hole is 63.86 meters. The mineralized intervals are listed below.

| Drill Interval<br>meters | Width<br>meters | Approx. True<br>Width (m) | Silver<br>oz/t | Gold<br>g/tonne | Other |  |
|--------------------------|-----------------|---------------------------|----------------|-----------------|-------|--|
| 31.95-32.95              | 1.0             | 0.8                       | 8.33           | 0.20            |       |  |
| 32,95-34,15              | 1.20            | 1.0                       | 0.80           | 0.02            |       |  |

Table 6.Mineralized Intervals of RUD 99-02

## 7.3 RUD 99-03

Hole three was collared on the north slope at 1943 masl, and oriented at -55°/250° azimuth, with the objective of intersecting the Steve vein at depth. Two intervals hosting thin limonite or sulfide veinlets were intersected (sample #s 197220, 225), however the target vein was not apparent. Structures intersected proximal to the projected Steve vein intercept include: a series of thin limonite-jarosite-calcite-pyrite veinlets at 71.25-71.58 meters, and mineralized lapilli agglomerate at 96.20-101.7 meters, containing 1-2% pyrite-galena-sphalerite-chalcopyrite clusters and

discontinuous microlenses within the matrix. No argillic-altered zones were observed in this hole, which was drilled to a depth of 121.31 meters. Pertinent results are listed in the table below.

| Drill Interval meters | Width<br>meters | Approx. True<br>Width (m) | Silver<br>(oz/t) | Gold<br>(g/t) | Other    |
|-----------------------|-----------------|---------------------------|------------------|---------------|----------|
| 36 10-36.40           | 0.30            | 0.2                       | 13.58            | 3.01          | 0.47% Pb |
|                       |                 | r i                       |                  |               | 0.40% Zn |
| 49.60-49.90           | 0.30            | 0.2                       | 5.13             | 0.20          | 0.71% Pb |
| 71.25-71.58           | 0.33            | 0.2                       | 5 ppm            |               | 0.24% Zn |
| 96.20-97.60           | 1.40            | 1.1                       | 21.3 ppm         |               | 0.22% Zn |
|                       |                 |                           |                  |               | 0.19% Pb |
| 98.30-99.60           | 1.30            | 1.0                       | 14.5 ppm         |               | 0.11% Pb |
|                       |                 |                           |                  |               | 0.10% Zn |

Table 7.Mineralized Intervals of RUD 99-03

#### 7.4 RUD 99-04

Hole four was collared from the same location and at the same bearing as hole number three, but with a steeper dip of  $-70^{\circ}$ . The purpose was to test for mineralized structures and in particular the Steve vein, at a deeper level within the epithermal system. No structures were encountered except for a series of thin quartz-limonite veinlets within a one meter interval at 89.20-90.25 meters, plus a few zones of calcite veinlets and a thin aplite dike in the lower part of the hole. No geochemical values above background were encountered from analyzed samples except for arsenic and manganese.

## 8. SUMMARY AND DISCUSSION

Results of the Phase I surface exploration and Phase II drill program are as follows:

i) Six high-grade silver-gold veins have been delineated on surface, with values generally ranging between 35 and 150 oz/ton silver and 0.5 to 1 grams/tonne gold. Vein widths vary from 0.2 to nearly 6 meters and average about 1 meter. Only the Steve and Connie veins exhibit strike lengths in excess of 45 meters, and because of a limited drilling budget, were the only two structures investigated by subsurface methods. The lower priority veins (Brian, Tom, Mike and Dave) remain untested at depth.

ii) The Connie vein returned values of 8 and 20 oz/ton silver, plus 0.2 and 2.5 grams/tonne gold from veins averaging one meter width from the two drill holes which were collared eighty meters apart. The northernmost hole intersected two closely spaced veins of similar widths with comparable concentrations. The vein was not tested at depth north of the ridge.

iii) The Steve vein is very poorly developed in drill hole three, containing elevated lead and zinc values and only very weak anomalous silver concentrations The structure was not recognized at deeper levels in hole four.

Exploration results of the Steve and Connie veins indicate a sub-economic potential of the structures, however one must keep in mind that most of the Ruby property veins were not investigated at depth. There are no convincing observations regarding the logical placement of the Ruby structures with respect to vertical zonation of epithermal systems. Elevated base metal values at the base of the Steve vein suggest a bottom, while a barren chalcedony vein within the North fault indicates the opposite.

One characteristic common in all veins is the relatively low percentage of hydrothermal quartz vein material within the sericite-altered zones, and which is intimately associated with semi-massive sulfide/sulfosalt mineralization. This suggests a low incidence of repeated fracturing and precipitation along permeability channels, which results in discontinuous or spotty mineralized zones

Ruby property targets that remain to be explored by subsurface methods obviously include the veins originally classified as low priority, plus the steep-plunging apex at the intercept of the North and Ridge fault planes. The northern half of the Connie vein has not been sufficiently explored. Also warranted is the investigation of the geophysical interpreted structure on the south slope.

The investigated portion of the Ruby property represents a small fraction of the overall claim area. The apparent immaturity of the veins, with respect to precious metal continuity can be indicative of proximal, more highly developed systems within the district.

#### 8.1 **Recommendations**

1. Conduct a reconnaissance mapping and sampling program over the unexplored portion of the property, preceded by satellite imagery studies of the district.

2. Carry out trenching and sampling of the ground magnetic and VLF interpreted structure.

3. If positive results are obtained from the above recommended programs, and drilling is warranted, one drill hole should be planned to intersect the Brian, Tom, Mike and Dave veins as well as the apex of the North and Ridge fault planes.

# 8.2 Proposed Cost Expenditures

The following costs are based on a ten day field program of reconnaissance activities, plus five days preparation and five days data compilation and report writing:

1

| Commercial (hotel, meals, a    | ırfare, taxis): |           | 2,000.        |
|--------------------------------|-----------------|-----------|---------------|
| Camp costs:                    | 20 mandays @    | 35/day    | 700.          |
| Helicopter:                    | 25 hrs @        | 950/hr    | 23,750.       |
| Geologist:                     | 20 days @       | 400./day  | 8,000.        |
| Assistant:                     | 10 days @       | 175/day   | 1,750.        |
| Geochemistry:                  | 100samples @    | 25/sample | 2,500.        |
| Camp equipment/supplies:       |                 | -         | 3,000.        |
| Satellite imagery:             |                 |           | 5,000.        |
| Drafting:                      |                 |           | 500.          |
| Communications:                |                 |           | 1,000.        |
| Shipping:                      |                 |           | <b>500</b> .  |
| Administration:                |                 |           | <u>1,000.</u> |
| Subtotal:                      |                 |           | 49,700.       |
| Contingency (10%) <sup>.</sup> |                 |           | <u>1,000.</u> |
| Total:                         |                 |           | CAN\$ 50,700. |

٠.

,

# AUTHOR'S STATEMENT OF QUALIFICATIONS

I, Brian H. Meyer, of the city of Burnaby in the province of British Columbia do hereby certify that:

- 1) I am a Professional Geologist registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 2) I am a graduate of the University of Alberta (1979) with a B.Sc. degree in geology.
- 3) I have practiced my profession as a geologist since graduation in 1979.
- 4) This report is based on a personal examination of the Ruby Property from June 22, 1999 to August 18, 1999 and from a review of previous reports and published information.
- 5) I have no interest, directly or indirectly, nor do I expect to receive any interest, directly or indirectly in the Ruby Property, or any other property of Tiberon Minerals Ltd. or any affiliate, nor do I beneficially own, directly or indirectly, any securities of Tiberon Minerals Ltd. or any affiliate.

Dated this thirtieth day of September, 1999.

Brian H. Meyer P.Geol

# REFERENCES

- Canada Stockwatch Bulletins: Adastral Resources Ltd. Mar. 29, Jun. 13, Aug. 10, Aug. 19, Nov. 25, 1988, Jun. 8 1989.
- Gabrielse, H & Yorath, C.J.(ed.), 1992: Geology of The Cordilleran Orogen In Canada; Geological Survey of Canada, Geology of Canada No. 4
- Lambert, M.B., 1974: The Bennett Lake Cauldron Subsidence Complex, British Columbia and Yukon Territory; Geological Survey of Canada, Bull. 227
- Pegg, R., 1981: Geological and Geochemical Report on The Goat Groups 1 9; Kennco Explorations, (Western) Limited
- Woodcock, J.R., 1973: Geological Report MaCauley Creek Silver-Gold Prospects, for Jorex Limited and Dome Exploration (Canada) Ltd.

Woodcock, J.R., 1988: Adastral Resources Ltd. Prospectus

# APPENDIX I

# RUBY PROPERTY - ROCK SAMPLES / DESCRIPTIONS

18

.

#### RUBY PROJECT - ROCK SAMPLES/DESCRIPTIONS

| Sample | UTM       | UTM     | Sample                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Silver     | Silver        | Gold     |
|--------|-----------|---------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------|
| Number | Northing  | Easting | Type                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mag        | oz/t          | daa      |
| 197001 | 6 852 139 | 484 407 | 1.0 m.chin                              | Riesched argulic-altered dacite Japilli tuff wallrock east side of Tom Vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 0.10          | -34      |
| 197002 | 6,652,139 | 484,406 | 07 m chip                               | Tom Vein. East half of ven/sericite-silicito alteration-includes quartz + semi-massive arsenopyrite-galenasilver sulfosalts veniets and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 82 49         | 411      |
|        | 0,002,000 |         | - · · · · · · · · · · · · · · · · · · · | disseminated mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |               |          |
| 197003 | 6.652.139 | 484,405 | 0 7 m chip                              | Tom Vein. West half of vein/sericite-silicic alteration. As above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 158 72        | 479      |
| 197004 | 6,652,139 | 484,404 | 10 m chip                               | Bleached argillic-altered wallrock west side of Tom Vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 0 15          | -34      |
| 197005 | 6,652,124 | 484,415 | 07 m chip                               | Bleached argillic-altered wallrock east side of Brian Vein Densely fractured with disseminated arsenopyrite-galena-silver sulfosalts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 3 55          | -34      |
| 197006 | 6 652 124 | 484,414 | 10 m chip                               | Brian Vein. Subparallel veinlets of quartz + semi-massive arsenopyrite-galena-silver sulfosatts within moderate pervasive sericite-silicic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 59 80         | 240      |
| 1      |           |         |                                         | altered and sulfide disseminated pale grey-yellow-green dacite lapilli tuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |               |          |
| 197007 | 6,652,124 | 484,413 | 07mchip                                 | Bleached argillic-altered wallrock west side of Brian Vein Dense fractures, hematitic, with minor quartz + sulfides-sulfosalts stringers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 0 14          | -34      |
| 197008 | 6,652,124 | 484,412 | 07 m chip                               | Bleached argillic-altered wallrock west of and adjacent to sample 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 0 20          | -34      |
| 197009 | 6,652,117 | 484,484 | 20 m chip                               | Dacite lapilli-tuff Light grey-green, densely welded, slight waxy texture, moderate fracture density with limonite surfaces, weak selective clay-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82         |               | 2        |
| L      |           |         |                                         | chlorite alteration (argillic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |               |          |
| 197010 | 6,652,117 | 484,482 | 09m chip                                | Orange colored argilic-altered dacite lapili tuff wallrock east/footwall side of Connie Vein Densely fractured with moderate-strong pervasive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 0       |               | -2       |
| L      |           |         |                                         | limonite + coatings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               |          |
| 197011 | 6,652,116 | 484,481 | 14 m chip                               | Connie Vein. S170/70W Pale yellow-grey-green moderate pervasive sericitic-silicic altered dacite lapilli tuff with thin (0 1-4 0 cm) subparallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          | 154 90        | 338      |
| 1      |           |         |                                         | semi-massive arseonpyrite-galena-silver sulfosalts (pyrargyrite-proustite-freibergite etc?)-pyrite + quartz veiniets subparallel to vein orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1        |               |          |
|        |           |         |                                         | plus disseminated mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |               |          |
| 197012 | 6,652,116 | 484,480 | 20m chip                                | Bleached weak argulic-altered wallrock (hangingwall of Connie Vein) with few thin (10 cm) zones of patchy moderate limonitization containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20         |               | -2       |
|        |           |         |                                         | 1-2% disseminated sulfide-silver sulfosalt mineralization, densely fractured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l          |               |          |
| 197013 | 6,652,123 | 484,482 | 0 55 m chip                             | Bleached/orange argilic-altered wallrock-footwall of Connie Vein Densely fractured with moderate-strong limonitized surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 1 15          | 5        |
| 197014 | 6,652,123 | 484,481 | 2 15 m chip                             | Connie Vein S0/55W Pale yellow-grey-green moderate pervasive sericitic-silicic altered dacite lapilli tuff with thin subparallel semi-massive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1        | 26 45         | 77       |
| L      |           |         |                                         | arseonpyrite-galena-silver sulfosalts (pyrargyrite-proustite-freibergite etc?)-pyrite + quartz veinlets and minor disseminations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |               |          |
| 197015 | 6,652,123 | 484,479 | 04 m chip                               | Bleached/orange argillic-altered wallrock-hangingwall of Connie Vein Densely fractured with moderate-strong limonitized surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.5       |               | -2       |
| 19/016 | 6,652,112 | 484,418 | 09m chip                                | Bleached/yellow-orange weak-moderate argilitic-attered wallrock west side of (upper) Brian Vein Densely fractured with moderate-strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17         |               | 6        |
| 407047 | 0.050.440 | 404.440 | 4.0                                     | jarosine-imonite on sumaces Bounded to the west by the strike slip Ridge Fault \$130/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ┢───┘      | 0.00          |          |
| 197017 | 6,652,113 | 484,119 | 12m chip                                | Brian Vein. 513599 Subparailei veiniets of quarz + semi-massive arsenopyrice-galena-silver suitosans within moderate pervasive sericite-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>i</b> ' | 0 89          | 80       |
| 107010 | 0.050.444 | 404 400 |                                         | silicic altered and disseminated-suinde bearing paie grey-yeijow-green dache lapili tum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67         |               |          |
| 197010 | 0,002,114 | 404,420 |                                         | Deste locality and the provided allocation and the provided and the provid | 07         |               |          |
| 19/019 | 0,002,110 | 404,421 | zum chip                                | chlorite-calcite alteration (propylitic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ''         |               | -2       |
| 197020 | 6.652.122 | 484,418 | 20 m chip                               | Dacite lapilit tuff Light grey-green, densely welded, slight waxy texture, densely fractured with moderate limonitic surfaces, weak selective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07         |               | -2       |
|        |           |         |                                         | chlorite-calcite (propylitic) alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               |          |
| 197021 | 6,652,122 | 484,416 | 20 m chip                               | Bleached, argillic-altered wallrock east side of Brian Vein Densely fractured with moderate limonitic surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17         |               | 6        |
| 197022 | 6,652,122 | 484,415 | 08m chip                                | Brian Vein. S175/85E. Pale grey-green, moderate pervasive sencitic-silicic altered dacite lapili tuff, subparallel veinlets of quartz + semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 71 73         | 264      |
| l      |           |         |                                         | massive arsenopyrite-galena-silver sulfosalts and disseminations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |               |          |
| 197023 | 6,652,121 | 484,414 | 10 m chip                               | Pale-light grey weak argillic-altered walfrock west side of Brian Vein Densely fractured with moderate limonitic surfaces and calcite fillings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59         |               | 3        |
|        |           |         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |          |
| 197024 | 6,652,121 | 484,413 | 20m chip                                | Light grey dacite lapilii tuff, weak-mod selective propylitic alteration (chlorite + calcite veinlets), waxy texture, minor limonite fracture surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69         |               | 5        |
| 107005 | 0 050 404 | 404 414 | 1.1 m abu                               | Strike store same S44000. Blooked availing thered depends fractured with transition of force, much service evidences later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70         |               |          |
| 19/025 | 0,002,121 | 404,411 | i i m cnip                              | Strike-slip shear zone Statuson Bleached, arguite-attered, densely tractured with imminite-jarosite surfaces, minor arsenopyrite-pyrite veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / *        |               | 14       |
| 107000 | 8 650 404 | 494 400 | 2.0 m abin                              | and disseminations' west side of fault is white appling turk with significant increase in tapling content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |               |          |
| 107027 | 6 652 122 | 404,408 |                                         | prime vache lapin un vreak since alletation, abundant x-culting reg-brown namme mactures (innonite or MN 0xide?), densely fractured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13         |               |          |
| 107020 | 6 652 122 | 484 427 | 20 m chip                               | Disaction argumeration of under a pulling the includes 2 mill verifier of surgesting to 100/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20         |               | 위        |
| 107020 | 6 652 122 | 484 425 | 20m chip                                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10         |               | <u> </u> |
| 197030 | 6 652 132 | 484 423 | 20 m chip                               | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8        |               |          |
| 197031 | 6 652 132 | 484 421 | 16 m chin                               | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07         | <b>├───</b> ┨ |          |
| 197032 | 6.652 132 | 484.419 | 10 m chip                               | Bleached arguillic-altered wallrock east side of Brian Vein. Densely fractured with moderate limonitic surface coatings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.9        | I             | 3        |
| 197033 | 6.652.132 | 484.418 | 04 m chip                               | Brian Vein, S015/90 Pale grey, moderate silicic-sericitic altered dacite labilit tuff, traces disseminated sulfosalts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.3       | <b> </b>      | 49       |

| Sample  | UTM       | UTM     | Sample      | Description                                                                                                                                                                                                        | Silver | Silver | Gold |
|---------|-----------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------|
| Number  | Northing  | Easting | Type        | •                                                                                                                                                                                                                  | ppm .  | oz/t   | dqq  |
| 197034  | 6 652 132 | 484 417 | 10 m chin   | Bleached argillic-attered wallrock west side of Brian Vein. Dense fractures with limonite-jarosite on surfaces                                                                                                     | 11 8   |        | 9    |
| 197035  | 6 652 144 | 484 417 | 20  m chip  | light grey-green dacte apulli tuff weak-moderate selective propylitic alteration shoht waxy texture dense fractures with hematitic-limonitic                                                                       | 14     |        | 2    |
|         | 0,002,771 |         |             |                                                                                                                                                                                                                    |        |        |      |
| 197036  | 6.652.143 | 484,416 | 20 m chip   | Same as above Trace calcite veinlets                                                                                                                                                                               | 71     |        | 6    |
| 197037  | 6,652,142 | 484,414 | 20 m chip   | Bleached pale green-grey weak arguluc-altered dacite lapilli tuff, densely fractured, spotty limonite common                                                                                                       | 20     |        | -2   |
| 197038  | 6,652,141 | 48,412  | 11m chip    | Same as above + spotty hematite One thin (1 cm) limonite veinlet                                                                                                                                                   | 21     |        | -2   |
| 197039  | 6,652,141 | 484,411 | 05 m chip   | VeIn (no name) S025/78E Pale grey silicic-sericitic altered, with olive green patches (scorodite?), few thin (1 cm) veinlets of intense limonite-<br>largeste Vein pinches and swells 10-50 cm                     | 78     |        | 10   |
| 197040  | 6,652,141 | 484,410 | 23m chip    | Pale-light green-grey weak argillic-altered dacite lapilii tuff Slight waxy texture, minor calcite verifiets, Densely fractured with trace limonitic<br>surfaces                                                   | 22     |        | -2   |
| 197041  | 6,652,140 | 484,408 | 25 m chip   | Same as above                                                                                                                                                                                                      | 17     |        | -2   |
| 197042  | 6,652,140 | 484,406 | 0 35 m chip | Bleached, argillic-altered wallrock east side of Tom Vein Densely fractured, strong limonite-jarosite surfaces/spots Same location as # 001                                                                        | 24     |        | -2   |
| 197043  | 6,652,140 | 484,405 | 09m chip    | Tom Vein. S170/90 Pale grey-green moderate sericitic-silicic alteration, quartz + semi-massive arsenopyrite-galena-sulfosalt veinlets<br>subparallel to strike + disseminations. Same location as samples 002 &003 |        | 80 66  | 264  |
| 197044  | 6,652,140 | 484,404 | 07m chip    | Bleached, moderate argillic-altered wallrock west side of Tom Vein Patchy jarosite-hematite-limonite                                                                                                               | 19 7   |        | 8    |
| 197045  | 6,652,139 | 484,398 | 20m chip    | Bleached pale-light grey argillic-altered dacite lapilli tuff, densely fractured with strong orange limonite on surfaces, 7 cm vein S160/70W with minor sulfides near east edge.                                   |        | 1 00   | 22   |
| 197046  | 6,652,139 | 484,396 | 09m chip    | Bleached pale grey argilitic-altered wallrock on east side of Mike Vein Dense fractures with limonite on surfaces Includes 2 thin veinlets (<2 cm) S170/90 & S145/78W                                              |        | 0 84   | 49   |
| 197047  | 6,652,139 | 484,395 | 0 35 m chip | Mike Vein. S155/90 Pale grey, moderate sericitic-silicic altered, minor jarosite patches and trace disseminated sulfides                                                                                           |        | 3 22   | 90   |
| 197.048 | 6,652,142 | 484,395 | 09m chip    | Mike Vein. S000/80W Pale grey, moderate sericitic-silicic altered, thin quartz + semi-massive arsenopyrite-galena-silver sulfosalt veinlets                                                                        |        | 35 41  | 1151 |
| 197049  | 6,652,150 | 484;384 | 0 15 m chip | Dave Vein. S170/75W Pale grey sericitic-silicic altered, abundant very fine grained arsenopyrite-galena-sulfosalt clusters-smears                                                                                  |        | 10 53  | 1662 |
| 197050  | 6,652,156 | 484,379 | 1 45 m chip | North Fault Vein. Consists of 2 15 cm-wide branching chalcedony veins + moderate silicified wallrock. Adjacent to limonitic fault gouge                                                                            |        | 7 06   | 139  |
| 197051  | 6,652,157 | 484,378 | 07m chip    | North Fault Vein. S050/63S(?) Intense orange clay- Irmonite fault gouge Adjacent to above sample                                                                                                                   | 81     |        | 8    |
| 197052  | 6,652,155 | 484,384 | 05 m chip   | Dave Vein. S010/78W Pale grey sericitic-silicic altered, few thin quartz + arsenopyrite-galena-sulfosalt veinlets Terminates against North Fault                                                                   |        | 13 30  | 496  |
| 197053  | 6,652,140 | 484,403 | 20 m chip   | Bleached argillic-weak silicic altered pale-light grey dacite lapilli tuff, minor x-cutting hairline quartz veinlets                                                                                               | 10     |        | 19   |
| 197054  | 6,652,140 | 484,402 | 20m chip    | Bleached pale-light green-grey argillic-altered + weakly chloritic, dense fractures with limonite surfaces, few thin silicified structures with MnO                                                                | 23     |        | 3    |
| 197055  | 6,652,139 | 484,400 | 20 m chip   | Same as above                                                                                                                                                                                                      | 17     |        | 6    |
| 197056  | 6,652,139 | 484,399 | 10m chip    | Same as above Few thin quartz-calcite veinlets (2-5 mm) + subparallel hairline quartz veinlets, occasional quartz lens 20x5 cm with 2-5% sulfide-sulfosalt disseminations                                          | 68     |        | 15   |
| 197057  | 6,652,142 | 484,394 | 03m chip    | Argillic-altered wallrock west side of Mike Vein (#048) Dense fractures with strong limonite-jarosite on surfaces + abundant spotty limonite                                                                       | 34     |        | 5    |
| 197058  | 6,652,142 | 484,393 | 20 m chip   | Light green-grey argilic + weak selective chlorite-altered dacite lapili tuff, dense fractures with moderate limonite on surfaces                                                                                  | 15     |        | 2    |
| 197059  | 6,652,143 | 484,392 | 20m chip    | Same as above, trace calcite veinlets, trace thin quartz stringers with disseminated pyrite-arsenopyrite, weak jarosite-limonite on fracture<br>surfaces                                                           | 15     |        | 2    |
| 197060  | 6,652,144 | 484,390 | 20m chip    | Light grey weak selective propylitic altered dacite lapilli tuff, spotty limonite-jarosite common, dense fractures, scattered sparse disseminated<br>pyrite-chalcopyrite(?)                                        | 06     |        | 2    |
| 197061  | 6,652,145 | 484,388 | 20 m chip   | Same as above                                                                                                                                                                                                      | 07     |        | -2   |
| 197062  | 6,652,146 | 484,387 | 20m chip    | Same as above, trace very fine grained disseminated pyrite-arsenopyrite                                                                                                                                            | 10     |        | -2   |
| 197063  | 6,652,151 | 484,385 | 20m chip    | Pale-light green-grey weak argillic + weak selective chlorite-altered dacite lapilli tuff, trace disseminated pyrite, densely fractured with weak<br>spotty hematite-patchy limonite                               | 15     |        | -2   |
| 197064  | 6,652,151 | 484,383 | 14m chip    | Bleached pale green-grey argillic-altered, plus 2 10-cm wide veins S170/85W consisting of sericitic-silicic alteration + scattered clusters of<br>sulfides-sulfosalts densely fractured, spotty limonite common    | 2 9    |        | 17   |
| 197065  | 6,652,151 | 484,382 | 20m chip    | Pale-light green-grey weak argillic + weak selective chlorite-altered dacite lapilli tuff, trace disseminated pyrite, few hairline limonite veinlets, densely fractured with weak spotty hematite-patchy limonite  | 91     |        | 12   |

| Sample | UTM       | UTM     | Sample      | Description                                                                                                                                          | Silver    | Silver  | Gold |
|--------|-----------|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------|
| Number | Northing  | Easting | Туре        |                                                                                                                                                      | ррт       | oz/t    | ppb  |
| 197066 | 6,652,152 | 484,381 | 20 m chip   | Same as above                                                                                                                                        | 17        |         | 4    |
| 197067 | 6,652,154 | 484,380 | 20 m chip   | Same as above                                                                                                                                        | 17        |         | 2    |
| 197068 | 6,652,158 | 484,378 | 10 m chip   | Footwall of North Fault gouge zone (adjacent to #051), clay-altered, densely fractured with black MnO surface coatings                               | 64        |         | -2   |
| 197069 | 6,652,156 | 484,385 | 12 m chip   | Mike Vein. S160/90 Pale green-grey sericitic-silicic altered, trace thin quartz veinlets with limonite boxworks, spotty-patchy limonite-jarosite,    | 11 2      |         | 48   |
|        |           |         |             | patchy scorodite(?), northern extent terminates at North Fault                                                                                       |           |         |      |
| 197070 | 6,652,156 | 484,387 | 15 m chip   | Pale grey argilic-attered, waxy, abundant spotty limonite-jarosite-hematite, thin 5 cm wide vein of sericitic-silicic alteration 1-2% clusters of    | 34        |         | 32   |
|        |           |         |             | arsenopyrite-galena-sulfosalts                                                                                                                       |           |         |      |
| 197071 | 6,652,156 | 484,388 | 15 m chip   | Same as above One 5 cm vein as above with no visible sulfides                                                                                        | 22        |         | 10   |
| 197072 | 6,652,156 | 484,390 | 20m chip    | Same as above 10 cm wide vein contains sulfide and sulfosalt clusters                                                                                | 40        |         | 40   |
| 197073 | 6,652,159 | 484,402 | 15 m chip   | Bleached argillic-altered dacite lapilli tuff, waxy, abundant spotty limonite,                                                                       | 32        |         | 2    |
| 197074 | 6,652,159 | 484,403 | 10m chip    | Same as above 10 cm wide vein S175/90 with no sulfides observed                                                                                      | 94        | ,<br>,, | 3    |
| 197075 | 6,652,159 | 484,397 | grab        | North Fault gouge zone Strong pervasive clay and moderate limonite alteration                                                                        | 60        |         | -2   |
| 197076 | 6,652,159 | 484,397 | grab        | North Fault gouge zone Pale grey-green chalcedony fragments                                                                                          | 12        |         | 3    |
| 197077 | 6,652,163 | 484,391 | 05 m chip   | Vein. Pale green-grey sericite-silicic attered + intense limonite-clay gouge (north side of North Fault)                                             |           | 27 80   | 190  |
| 197078 | 6,652,163 | 484,392 | grab        | Fault zone 3 cm wide zone of intense limonite-clay gouge on splay off of North Fault                                                                 |           | 0 85    | 23   |
| 197079 | 6,652,170 | 484,399 | grab        | Vein. Semi-massive arsenopyrite-galena(-pyrite) sample of 15 cm wide vein                                                                            |           | 60 21   | 495  |
| 197080 | 6,652,168 | 484,400 | 08m chip    | Vein. Sericite-silicic alteration + veinlets of quartz + semi-massive arsenopyrite-galena-pyrite                                                     |           | 57 39   | 519  |
| 197081 | 6,652,172 | 484,416 | 02m chip    | Steve Vein S160/90 Abundant veinlets of quartz + disseminated and semi-massive arsenopyrite-galena-sulfosalts-pyrite up to 5 cm wide                 |           | 100 12  | 748  |
| 197082 | 6,652,174 | 484,438 | 06 m chip   | North 2 Vein. S160/90 Sericite-silicic alteration + narrow quartz veinlets with clusters of arsenopyrie-galena-sulfosalts                            |           | 9 15    | 511  |
| 197083 | 6,652,148 | 484,469 | 15 m chip   | Connie Vein. S165/70W Sericite-silicic alteration + arsenopyrite-galena-pyrite-sulfosait disseminations                                              |           | 0 89    | 78   |
| 197084 | 6,652,185 | 484,419 | 0 15 m chip | Vein. S185/90 Sericite-silicic alteration + narrow guartz veinlets of sulfides-sulfosalts. Vein is proximal and subparallel to Steve Vein            |           | 142 33  | 5734 |
| 197085 | 6,652,095 | 484,479 | 1 5 m chip  | (trench) Bleached argillic altered dacite lapili tuff, dense fractures with limonite +/- calcite, quartz in hairline fillings, 2 1-cm wide jarosite- | 24 2      |         | 13   |
| 197086 | 6,652,095 | 484,478 | 0 25 m chip | (trench) Jarosite-clay gouge with bleached rock fragments S055/90                                                                                    |           | 1 06    | 13   |
| 197087 | 6 652 096 | 484 477 | 20 m chip   | (trench) Bleached, arculuc attered, densely fractured with hairline limonite +/- calcite, guartz veniets                                             | 53        |         | -2   |
| 197088 | 6 652 097 | 484 475 | 20 m chip   | (trench) Same as above                                                                                                                               | 59        |         | -2   |
| 197085 | 6 652 022 | 484 438 | 10 m chip   | Pale grey bleached wallrock, weak-moderate silicic-altered, spotty-patchy importe-hematite, dense fractures with minor MnO on surfaces               |           | 1.37    | 5    |
| 197090 | 6 652 022 | 484 437 | 20 m chip   | Concle Vein Orientation? Pale grey moderate pervasive silicic alteration moderate-strong patchy sericite hairline quarty veinlets some up            |           | 4 29    | 45   |
|        | 0,002,022 |         |             | to 1 cm +/- taroste common faw bands of weak sticic wallock dense fractures with patchy weak importe-taroste coatings                                |           | . 20    |      |
| 197091 | 6,652,022 | 484,435 | 20 m chip   | Connie Vein. S015/80W-80E Adjacent to above sample Same as above Few guartz veniets up to 5 cm with abundant sulfides-jarosite-                      |           | 100 16  | 186  |
|        |           |         |             | Importe-scorodite mineralization servicite-silicic part contains patches of disseminated sulfides densely fractured                                  |           |         |      |
| 197092 | 6,652,020 | 484,434 | 10 m chip   | Pale grey wallrock lens(2) within Connie Vein (same location as above), dark red hematite-MnO weathered surface, weak pervasive silicic              |           | 2 05    | 7    |
|        | -,,       |         |             | alteration densely fractured with limonite-hematite-MnO on surfaces                                                                                  |           |         | 1 1  |
| 197093 | 6,652,020 | 484,433 | 18 m chip   | Connie Vein. \$025/65W. Same location as above. Overall vein width is 5.8 m. Minor quartz-sulfide veinlets within pale grev-vellow moderate          |           | 19 24   | 136  |
| 1      | -,        |         |             | pervasive silicic sericitic altered rock scattered patches with disseminated sulfides moderately fractured                                           |           |         |      |
| 197094 | 6 652 008 | 484 424 | 20 m chin   | Wallrock east side of Connie Vein pale grey weak pervasive silicic groundmass, moderately welded with sericite-argulic altered fiamme                |           | 0.89    | 100  |
| 197095 | 6 652 009 | 484 422 | 0.7 m chip  | Connie Vein \$025/65W Pale draw moderate nervesive silicio-servicire alteration few quartz validate with sulficies Vein exposures in this area       |           | 1 69    | 100  |
|        | 0,002,000 |         |             | are discontinuous with various orientations and ninch and swells significantly                                                                       |           | 100     |      |
| 197096 | 8 652 011 | 484 419 | 0.7 m chip  | And algorithm way, which which control the draw moderate silver, seriate nervasive alteration few quartz-arsenonyrite galang-pyrite sulfasalt        | 13.9      |         | 45   |
|        | 4,002,011 |         |             | veniets abundant spotty-patchy importe-jarosita                                                                                                      |           |         |      |
| 197097 | 6 651 975 | 484 435 | 14 m chin   | Bleached weak nervasive silicic-sericitic alteration \$030/90 dense fractured with strong bematite-imposite/usrosite) on surfaces                    | 19.0      |         | 73   |
| 197099 | 6 651 953 | 484 403 | 0.5 m orab  | Same as above                                                                                                                                        | 13.7      |         |      |
| 107000 | 6 652 206 | 484,432 | orab        | Vein, S015/75 F 5 cm width semi-massive arsenopyrite-galena adjacent to left lateral strike slin fault (S030/60E rake 50S)                           | · · · · · | 79.05   | 7434 |

-

# APPENDIX II

T

# RUBY PROPERTY - ROCK GEOCHEMICAL ANALYSIS CERTIFICATES

| ACME ANAL<br>(ISO    | YTIC<br>9002 | AL<br>AC  | LABC      | RAT       | ORIE<br>d Co | S L<br>.)<br>Tik | Dero<br>95 | <u>on</u><br>0 - 5 | 85.<br>Min | GEO<br>GEO<br>era. | HAS<br>CHE<br>LS<br>ve S. | MIC<br>Ltc | GS<br>AL<br>L. J<br>Calga | ST.<br>AN<br>PRC | VAN<br>IALY<br>JEC | SIS<br>T I | RUB       | ERT<br><u>Y</u> ubmit | IF:<br>Fi | ICA    | TE<br># 9 | 902<br>n F. | PH<br>200<br>Dudk | ONE (6)<br>1<br>a | 04)2         | - 3 - 3 | 1.58    | FA     | K ( 6 U  | 4)2        | 53-       |             | ;=<br>A<br>C     |
|----------------------|--------------|-----------|-----------|-----------|--------------|------------------|------------|--------------------|------------|--------------------|---------------------------|------------|---------------------------|------------------|--------------------|------------|-----------|-----------------------|-----------|--------|-----------|-------------|-------------------|-------------------|--------------|---------|---------|--------|----------|------------|-----------|-------------|------------------|
| SAMPLE#              | Mo<br>ppm    | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | Ag<br>ppm    | N1<br>ppm        | Со<br>ррт  | Mn<br>ppm          | Fe<br>۲    | As<br>ppm          | U<br>ppm                  | Au<br>ppm  | Th<br>ppm                 | Sr<br>ppm        | Cd<br>ppm          | Sb<br>ppm  | B1<br>ppm | V<br>ppm              | Ca<br>¥   | P<br>% | La<br>ppm | Cr<br>ppm   | Mg<br>%           | Ba T<br>ppm       | 1 B<br>% ppm | A1<br>¥ | Na<br>X | K<br>X | W<br>ppm | T-1<br>ppm | Hg<br>ppm | Ag**<br>oz/ | * Au*'<br>t oz/1 |
| D 197001             | 7            | 113       | 31        | 969       | 26           | <1               | 9          | 1202               | 4 06       | 478                | <8                        | <2         | 5                         | 26               | 46                 | 7          | <3        | 7                     | 09        | 085    | 23        | <1          | 04                | 819 < 0           | 1 <3         | 70      | 01      | 20     | 2        | <5         | <1        | 1/          | 0< 00            |
| p 197002             | 7            | 138       | 10098     | 326       | 206 7        | <]               | <1         | 37                 | 4 24       | 12720              | <8                        | <2         | 4                         | 64               | 28                 | 311        | <3        | 3                     | 05        | 072    | 16        | <1          | 02                | 132 < 0           | 1 <3         | 37      | 05      | 59     | 3        | <5         | 1         | 82 49       | 9 01             |
| D 197003             | 8            | 408       | 10530     | 446       | 227 4        | 2                | <]         | 60                 | 6 39       | 46981              | <8                        | <2         | 5                         | 31               | 10 3               | 817        | <3        | 4                     | 05        | 067    | 13        | <1          | 02                | 86 < 0            | 1 <3         | 45      | 04      | 62     | 7        | <5         | 1         | 158 7       | 2 01             |
| p 197004             | 5            | 78        | 50        | 1621      | 72           | <]               | 4          | 1495               | 4 29       | 119                | <8                        | <2         | 5                         | - 33             | 21.3               | 6          | <3        | 9                     | 17        | 087    | 31        | <1          | 06                | 135 < 0           | 1 <3         | 84      | 02      | 21     | 2        | <5         | <1        | 1           | 5< 00            |
| D 197005             | 4            | 37        | 129       | 1245      | 74 6         | <]               | 4          | 1491               | 3 87       | 1686               | <8                        | <2         | 3                         | 29               | 74                 | 9          | <3        | 4                     | 08        | 086    | 25        | <]          | 04                | 654 < 0           | 1 <3         | 76      | 02      | 35     | 2        | <5         | <]        | 3 5         | 5< 00            |
| p 197006             | 8            | 173       | 11266     | 2317      | 214 9        | 2                | <1         | 59                 | 652        | 66011              | <8                        | <2         | 3                         | 24               | 41 0               | 385        | <3        | 3                     | 05        | 048    | 6         | 3           | 02                | 25 < 0            | 1 <3         | 40      | 01      | 48     | 19       | <5         | 2         | 59 8        | 0 00             |
| RE D 197006          | 7            | 167       | 11085     | 2263      | 213 7        | 2                | <1         | 57                 | 6 31       | 65475              | <8                        | <2         | 3                         | - 24             | 40 1               | 381        | <3        | 3                     | 05        | 046    | 6         | 1           | 02                | 40 < 0            | 1 <3         | 38      | 01      | 47     | 20       | <5         | 2         | 58 4        | 9 00             |
| þ 197007             | 3            | 27        | 79        | 1002      | 40           | <]               | · 8        | 2340               | 4 51       | 348                | <8                        | <2         | 3                         | 36               | 66                 | 9          | <3        | 4                     | 17        | 093    | 26        | <1          | 03                | 136 < 0           | 1 <3         | 85      | 01      | 33     | 2        | <5         | 1         | 1           | 4< 00            |
| þ 197008             | 3            | 45        | 98        | 955       | 70           | 2                | 5          | 1949               | 4 04       | 271                | 11                        | <2         | 4                         | 50               | 60                 | 7          | <3        | 5                     | 1 63      | 085    | 27        | <1          | 16                | 197 < 0           | 1 <3         | 66      | 02      | 30     | 4        | <5         | <1        | 20          | 0< 00            |
| TOM VEIN HI GRADE    | 3            | 1786      | 13159     | 742       | 242 7        | <1               | <1         | 39                 | 12 33      | 99999              | <8                        | <2         | 3                         | 9                | 48 5               | 1888       | <3        | 3                     | 03        | 018    | 3         | 13          | 01                | 46 0              | 1 <3         | 14      | 04      | 30     | 2        | <5         | <]        | 436 8       | 7 034            |
| STANDARD C3/R 1/AU-1 | 26           | 65        | 44        | 165       | 59           | 37               | 12         | 781                | 3 44       | 62                 | 16                        | 3          | 21                        | 29               | 23 5               | 22         | 27        | 83                    | 57        | 087    | 19        | 174         | 63                | 159 1             | 0 22         | 1 95    | 05      | 17     | 15       | <5         | 1         | 29          | 8 09             |
| STANDARD G-2         | 1            | <1        | 7         | 41        | 6            | 9                | 4          | 545                | 2 11       | <2                 | 13                        | <2         | 4                         | 73               | < 2                | <3         | 9         | 43                    | 66        | 097    | 9         | 79          | 61                | 216 1             | 4 <3         | 99      | 08      | 48     | 2        | <5         | I         | < 0         | 1< 00            |

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AG\*\* & AU\*\* BY FIRE ASSAY FROM 1 A.T. SAMPLE.

ACME ANALYTICAL LABORATORIES LTD.

ST. VANCOUVER BC GEOCHEMICAL ANALYSIS CERTIFICATE

**V6A** 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Data FA

|                                                                                                                                                                                                                                               | Tiberon Minerals Ltd. PROJECT RUBY File # 9902150 Page 1<br>950 - 550 - 6th Ave S.W., Calgary AB T2P 0S2                                                                                                                                                                                                                                                                                                                                                                                                                      | Ľ |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|--|--|
| SAMPLE# Mo Cu Pb<br>ppm ppm ppm                                                                                                                                                                                                               | Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Tl Hg Au**<br>ppm ppm ppm ppm ppm ppm % ppm ppm ppm pp                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |  |  |  |  |  |  |  |  |
| D19700941429D197010317896D19701123369524D19701231414D19701359193                                                                                                                                                                              | 567       8.2       2       5       1015       4.12       32       <8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |  |  |  |  |  |
| D19701441011975D1970154498350D19701625959D197017514155D19701841576                                                                                                                                                                            | 341       538.6       2       1       239       3.57       15798       <8                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |  |  |  |  |  |  |  |
| D       197019       4       5       32         D       197020       3       4       17         D       197021       4       13       33         D       197022       5       147       9459         D       197023       3       27       91 | 116       1.7       2       6       1505       4.17       29       <8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |  |  |  |  |  |
| D       197024       3       37       122         D       197025       3       83       95         D       197026       2       8       39         D       197027       3       9       35         D       197028       3       7       23    | 581       6.9       1       6       2719       3.93       175       <8                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |  |  |  |  |  |  |  |  |  |
| D 197029       3       4       20         D 197030       4       4       26         D 197031       2       5       26         D 197032       5       12       44         RE D 197032       5       12       48                                | 68       1.0       2       3       678       2.49       8       88       <2                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |  |  |  |  |
| D197033640437D19703441958D1970354421D197036628240D1970375520                                                                                                                                                                                  | 259       20.3       2       4       262       2.82       9727        8       <2                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |  |  |  |  |  |  |  |  |  |  |  |
| D       197038       5       7       50         D       197039       7       29       75         D       197040       9       6       31         D       197041       6       15       20         D       197042       4       71       32    | 167       2.1       2       5       2098       3.93       58       <8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |  |  |  |  |  |
| STANDARD C3/AU-R 26 63 33<br>STANDARD G-2 1 3 4                                                                                                                                                                                               | 165       5.5       37       12       781       3.40       58       23       4       19       28       23.5       16       21       82       .57       .086       19       170       .62       147       .09       19       1.78       .04       .15       20       <5                                                                                                                                                                                                                                                        |   |  |  |  |  |  |  |  |  |  |  |  |
| ICP500 G<br>THIS LEACH I<br>ASSAY RECOMM<br>- SAMPLE TYP<br><u>Samples begi</u><br>DATE RECEIVED: JUL 12 19                                                                                                                                   | ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.<br>THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL.<br>ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB<br>- SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.<br>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.<br>DATE RECETTED: WHI 12 1000 DATE REPORT WATERD. |   |  |  |  |  |  |  |  |  |  |  |  |

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

852 Έ. HASTINGS

т

Tiberon Minerals Ltd. PROJECT RUBY FILE # 9902150

Page 2

| AFME ANALYTEFA. |
|-----------------|

Data FA YIL

| SAMPLE#          | Mo<br>ppm | Cu<br>ppr | Pl<br>ppr | > Z   | רי<br>ח | Ag<br>ppm | Ni<br>ppm | Co<br>ppm | Mn<br>ppm | Fe<br>% | As<br>ppm | U<br>ppm | Au<br>ppm | Th<br>ppm | Sr<br>ppm | Cd<br>ppm | Sb<br>ppm | 8i<br>ppm | V<br>ppm | Ca<br>% | P<br>% | La<br>ppm | Cr<br>ppm | Mg<br>% | Ba<br>ppm | T 1<br>% | 8<br>ppm | Al<br>% | Na<br>% | K<br>% | W<br>ppm | Tl<br>ppm | Hg<br>ppm | Au**<br>ppb |
|------------------|-----------|-----------|-----------|-------|---------|-----------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|----------|----------|---------|---------|--------|----------|-----------|-----------|-------------|
| D 197043         | 7         | 267       | 4982      | 25    | 2 44    | 1.1       | 2         | 1         | 48        | 4.00    | 26678     | <8       | <2        | 2         | 43        | 7.5       | 405       | <3        | 3        | .07     | .071   | 13        | 7         | .02     | 238<      | .01      | <3       | .41     | .03     | .57    | 3        | <5        | 1         | 264         |
| D 197044         | 5         | 63        | 115       | 80    | 3 1     | 9.7       | 3         | 4         | 204       | 3.87    | 568       | <8       | <2        | 3         | 50        | 1.4       | 4         | <3        | 5        | .15     | .082   | 25        | 7         | .05     | 438<      | .01      | <3       | .74     | .01     | .35    | 2        | <5        | <1        | 8           |
| D 197045         | 5         | 67        | 307       | 83    | 6 2     | 27.2      | 3         | 5         | 300       | 4.42    | 216       | <8       | <2        | 2         | 46        | 3.0       | 5         | <3        | 3        | .25     | .094   | 22        | 5         | .03     | 525<      | .01      | <3       | .71     | .02     | .39    | 2        | <5        | <1        | 22          |
| D 197046         | 7         | 27        | 430       | 34    | 6 2     | 28.8      | 2         | 1         | 52        | 2.99    | 4674      | <8       | <2        | 2         | 32        | 2.6       | 6         | <3        | 2        | .17     | .108   | 22        | 5         | .03     | 342<      | .01      | <3       | .42     | .02     | .49    | 5        | <5        | <1        | 49          |
| D 197047         | 6         | 16        | 1391      | 11    | 2 11    | 4.3       | ž         | 1         | 65        | 3.54    | 12472     | <8       | <2        | Ž         | 29        | 1.5       | 12        | <3        | 3        | .13     | .120   | 12        | 9         | .03     | 172<      | .01      | <3       | .40     | .01     | .74    | 5        | <5        | <1        | 90          |
| D 197048         | 5         | 134       | 7676      | 17    | 9 73    | 37.5      | 3         | 1         | 101       | 4.62    | 29953     | <8       | <2        | <2        | 23        | 9.3       | 192       | <3        | 6        | .06     | .054   | 10        | 11        | .03     | 170       | .01      | <3       | .41     | .01     | .77    | 7        | <5        | <1        | 1151        |
| D 197049         | 4         | 83        | 9859      | 26    | 1 32    | 25.3      | 2         | 1         | 95        | 10.01   | 99999     | <8       | 3         | 2         | 124       | 6.4       | 209       | <3        | 3        | .05     | .028   | 9         | 15        | .01     | 53<       | .01      | <3       | .27     | .04     | .34    | 10       | <5        | <1        | 1662        |
| D 197050         | 24        | 92        | 1051      | 12    | 5 23    | 59.7      | 3         | 1         | 64        | 2.35    | 10092     | <8       | <2        | 2         | 96        | 5.0       | 27        | <3        | 1        | .09     | .041   | 11        | 12        | .02     | 307<      | .01      | <3       | .37     | .01     | .40    | 7        | <5        | <1        | 139         |
| RE D 197050      | 23        | 89        | 1047      | ' 12  | 7 22    | 24.1      | 3         | 1         | 64        | 2.35    | 10160     | <8       | <2        | 3         | 97        | 5.3       | 28        | <3        | 1        | .09     | .041   | 11        | 12        | .02     | 311<      | .01      | <3       | .38     | .01     | .41    | 7        | <5        | <1        | 179         |
| D 197051         | 9         | 172       | 206       | 5 130 | 1       | 8.1       | 3         | 2         | 201       | 3.72    | 905       | <8       | <2        | 6         | 38        | 3.9       | <3        | <3        | 3        | .06     | .047   | 22        | 10        | .03     | 429<      | .01      | <3       | .89     | .01     | .29    | 4        | <5        | <1        | 8           |
| D 197052         | 5         | . 69      | 2362      | 20    | 6 44    | 9.4       | 3         | 1         | 67        | 4.25    | 28203     | <8       | <2        | 3         | 80        | 5.0       | 44        | <3        | 3        | .07     | .094   | 17        | 7         | .01     | 174<      | .01      | <3       | .44     | .01     | .66    | 5        | <5        | <1        | 496         |
| STANDARD C3/AU-R | 25        | 61        | 36        | 16    | 5       | 5.4       | 36        | 12        | 751       | 3.20    | 57        | 25       | 3         | 19        | 28        | 23.5      | 16        | 20        | 82       | .56     | .086   | 19        | 170       | .56     | 147       | .08      | 17 1     | 1.77    | .04     | .16    | 18       | <5        | 1         | 451         |
| STANDARD G-2     | 2         | 4         | <         | 6 4   | 4       | <.3       | 8         | 5         | 544       | 1.99    | <2        | <8       | <2        | 4         | 75        | <.2       | <3        | <3        | 43       | .67     | .096   | 8         | 83        | .59     | 240       | . 13     | <3       | .99     | .08     | .51    | 2        | <5        | <1        | <2          |

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

| CME | ANAL | YTICA | L LABORA  | TORIES | LTI |
|-----|------|-------|-----------|--------|-----|
|     | (ISO | 9002  | Accredite | ed Co. | )   |

ASSAY CERTIFICATE

VANCOUVE



Ltd DROITECT PURY File # 9902150P

BC

A 1R6



PHONE (6047253-3158 FAX (004) 255

Tiberon Minerals Ltd. PROJECT RUBY File # 9902150R 950 - 550 - 6th Ave S.W., Calgary AB T2P 0S2

| SAMPLE#      | Ag**<br>oz/t |
|--------------|--------------|
| D 197011     | 154.90       |
| D 197013     | 1.15         |
| D 197014     | 26.45        |
| D 197017     | .89          |
| D 197022     | 71.73        |
| D 197043     | 80.66        |
| D 197045     | 1.00         |
| D 197046     | .84          |
| D 197047     | 3.22         |
| RE D 197047  | 3.17         |
| D 197048     | 35.41        |
| D 197049     | 10.53        |
| D 197050     | 7.06         |
| D 197052     | 13.30        |
| STANDARD R-1 | 2.90         |

ME ANALYTICAL LABORATORIES LTD (ISO 9002 Accredited Co.)

Hssay in progress

GEOCHEMICAL ANALYSIS CERTIFICATE

1 R 6

PHONE (6047253-3150 FAX (004) 255-17

Data

**AA** 

| <b>Tiberon Minerals</b> | Ltd.      | PROJECT       | RUBY    | File       | # | 9902279 |
|-------------------------|-----------|---------------|---------|------------|---|---------|
| 950                     | - 550 - 6 | 6th Ave S.W., | Calgary | AB T2P OS2 |   |         |

| SAMPLE#                                                              | Mo Cu<br>ppm ppm                           | Pb<br>ppm                              | Zn<br>ppm                            | Ag<br>ppm                                | Ni<br>ppm p             | Co Mn<br>pm ppm                                | ۶e<br>%                                | As<br>ppm                                | U<br>U                     | Au<br>Spm p                            | Th<br>opm p            | Sr<br>ppm                  | Cd<br>ppm                              | Sb<br>ppm                      | 8i<br>ppm                        | V<br>ppm                      | Ca<br>%                             | P<br>%                               | La<br>ppm                  | Cr<br>ppm               | Mg<br>%                         | Ba Tı<br>ppm %                                       | 8<br>ppm                         | Al<br>%                          | Na<br>%                         | К<br>% р                         | W<br>pmqc                              | TI<br>opmip                | Hgi A<br>pom                     | u**<br>ppb                     |
|----------------------------------------------------------------------|--------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------|-------------------------|------------------------------------------------|----------------------------------------|------------------------------------------|----------------------------|----------------------------------------|------------------------|----------------------------|----------------------------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------------|--------------------------------------|----------------------------|-------------------------|---------------------------------|------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------------|----------------------------|----------------------------------|--------------------------------|
| D 197053<br>D 197054<br>D 197055<br>D 197056<br>D 197057             | 4 6<br>4 11<br>4 14<br>4 23<br>6 50        | 17<br>42<br>55<br>101<br>120           | 440<br>225<br>402<br>234<br>1136     | 1.0<br>2.3<br>1.7<br>6.8<br>3.4          | 2<br>2<br>2<br>1<br>2   | 6 1481<br>6 1863<br>6 2339<br>6 1617<br>5 285  | 4.12<br>4.03<br>4.49<br>3.77<br>4.76   | 10<br>84<br>241<br>738<br>1614           | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2<br><2 | 4<br>3<br>4<br>3<br>3  | 48<br>44<br>23<br>38<br>65 | 5.6<br>3.6<br>3.7<br>3.9<br>4.2        | <3<br><3<br><3<br>3<br><3      | <3<br><3<br><3<br><3<br><3<br><3 | 11 1<br>7 1<br>7<br>5 1<br>6  | 1.54<br>1.11<br>.28<br>1.15<br>.08  | .093<br>.086<br>.100<br>.093<br>.066 | 28<br>23<br>29<br>24<br>23 | 8<br>6<br>4<br>8<br>6   | .17<br>.11<br>.07<br>.11<br>.05 | 160<.01<br>212<.01<br>244<.01<br>1121<.01<br>171<.01 | <3<br><3<br><3<br><3<br><3<br><3 | .57<br>.62<br>.71<br>.59<br>.60  | .04<br>.02<br>.01<br>.01<br>.01 | . 16<br>.24<br>.26<br>.31<br>.35 | <2<br><2<br><2<br><2<br><2<br><2<br><2 | <5<br><5<br><5<br><5<br><5 | <1<br><1<br><1<br><1<br><1<br><1 | 19<br>3<br>6<br>15<br>5        |
| D 197058<br>D 197059<br>D 197060<br>D 197061<br>D 197062             | 3 9<br>3 7<br>3 2<br>3 4<br>4 5            | 27<br>36<br>17<br>17<br>28             | 336<br>169<br>105<br>95<br>107       | 1.5<br>1.5<br>.6<br>.7<br>1.0            | 2<br>2<br>2<br>2<br>1   | 5 1281<br>6 1358<br>5 1288<br>5 1139<br>6 1502 | 4.08<br>4.30<br>4.13<br>4.08<br>4.11   | 49<br>14<br>7<br>4<br>12                 | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2       | 4<br>4<br>3<br>4<br>3  | 29<br>40<br>58<br>53<br>55 | 3.3<br>1.4<br>.4<br><.2<br>.6          | <3<br><3<br><3<br><3<br><3     | <3<br><3<br><3<br><3<br><3       | 4<br>5 1<br>7 1<br>9 1<br>7 1 | .71<br>1.22<br>1.88<br>1.76<br>1.91 | .093<br>.095<br>.089<br>.092<br>.092 | 26<br>27<br>27<br>29<br>28 | 4<br>7<br>6<br>8<br>8   | .20<br>.17<br>.19<br>.12<br>.17 | 115<.01<br>132<.01<br>122<.01<br>93<.01<br>127<.01   | 4<br><3<br><3<br>3<br><3         | .71<br>.58<br>.55<br>.64<br>.71  | .01<br>.03<br>.04<br>.04<br>.03 | .31<br>.28<br>.24<br>.19<br>.24  | <2<br><2<br><2<br><2<br><2<br><2       | <5<br><5<br><5<br><5<br><5 | <1<br><1<br><1<br><1<br><1       | 2<br>2<br>2<br><2<br><2        |
| D 197063<br>D 197064<br>D 197065<br>D 197066<br>D 197066<br>D 197067 | 3 7<br>3 21<br>4 9<br>2 4<br>4 13          | 26<br>97<br>73<br>26<br>40             | 184<br>343<br>262<br>106<br>383      | 1.5<br>2.9<br>9.1<br>1.7<br>1.7          | 2<br>2<br>1<br>2        | 5 1576<br>6 695<br>6 1867<br>6 1407<br>7 1743  | 3.82<br>3.54<br>4.18<br>4.16<br>4.11   | 102<br>7839<br>1459<br>65<br>94          | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2<br><2 | 3<br>2<br>4<br>4<br>4  | 59<br>75<br>48<br>67<br>71 | 1.0<br>5.8<br>3.1<br>.8<br>6.9         | <3<br>5<br><3<br><3<br><3      | ব্য<br>ব্য<br>ব্য<br>ব্য<br>ব্য  | 5 2<br>2<br>5 1<br>5 2<br>4 1 | 2.04<br>.16<br>1.46<br>2.00<br>1.44 | .084<br>.085<br>.098<br>.091<br>.092 | 26<br>18<br>28<br>28<br>31 | 5<br>6<br>5<br>5<br>6   | .15<br>.04<br>.08<br>.10<br>.11 | 135<.01<br>72<.01<br>142<.01<br>309<.01<br>376<.01   | <3<br><3<br><3<br><3<br><3<br>3  | .52<br>.57<br>.63<br>.60<br>.70  | .02<br>.01<br>.01<br>.03<br>.03 | .27<br>.38<br>.33<br>.28<br>.31  | 2<br><2<br><2<br>2<br><2<br><2         | <5<br><5<br><5<br><5       | <1<br><1<br><1<br><1<br><1       | <2<br>17<br>12<br>4<br>2       |
| D 197068<br>D 197069<br>D 197070<br>RE D 197070<br>D 197071          | 2 112<br>5 18<br>4 43<br>5 42<br>4 33      | 104<br>300<br>99<br>95<br>84           | 1744<br>39<br>466<br>471<br>277      | 6.4<br>11.2<br>3.4<br>4.6<br>2.2         | 4<br>2<br>3<br>2<br>3   | 6 5288<br>1 117<br>6 286<br>6 288<br>6 258     | 3.46<br>2.77<br>4.68<br>4.70<br>4.27   | 186<br>14567<br>7213<br>7275<br>3588     | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2       | 63<br>44<br>4          | 43<br>22<br>73<br>73<br>66 | 68.3<br>.9<br>3.6<br>3.6<br>5.2        | <3<br>5<br>6<br><3             | 3<br>3<br>3<br>3<br>3<br>3       | 5 1<br>2<br>4<br>2            | .05<br>.07<br>.07<br>.08            | .050<br>.087<br>.093<br>.094<br>.094 | 32<br>11<br>22<br>22<br>21 | 8<br>9<br>8<br>7<br>8   | .05<br>.02<br>.03<br>.03<br>.03 | 155<.01<br>298<.01<br>455<.01<br>449<.01<br>1089<.01 | ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও  | .59<br>.39<br>.66<br>.66         | .03<br>.01<br>.01<br>.01<br>.01 | .21<br>.55<br>.37<br>.37<br>.38  | <2<br>5<br><2<br>2<br>3                | 9<br><5<br><5<br><5<br><5  | <1<br>1<br><1<br><1<br>1         | <2<br>48<br>32<br>33<br>10     |
| D 197072<br>D 197073<br>D 197074<br>D 197075<br>D 197076             | 4 34<br>4 10<br>5 43<br>10 57<br>5 7       | 132<br>26<br>69<br>147<br>15           | 252<br>127<br>119<br>287<br>13       | 4.0<br>3.2<br>9.4<br>6.0<br>1.2          | 2<br>2<br>3<br>2        | 5 388<br>7 2212<br>4 769<br>6 2454<br><1 166   | 3.36<br>4.49<br>4.91<br>4.31<br>.35    | 7173<br>56<br>673<br>534<br>65           | <8<br><8<br><8<br><8<br><8 | <2<br><2<br><2<br><2<br><2<br><2       | 3<br>7<br>5<br>5<br><2 | 55<br>37<br>86<br>22<br>4  | 2.7<br>1.7<br>.6<br>2.3<br><.2         | 7<br><3<br>4<br><3<br><3       | ব<br>ব<br>ব<br>ব<br>ব<br>ব       | 3<br>11 1<br>5<br>11<br>1     | .09<br>.01<br>.14<br>.26<br>.06     | .093<br>.103<br>.091<br>.085<br>.013 | 19<br>31<br>19<br>32<br>11 | 9<br>7<br>7<br>10<br>16 | .03<br>.09<br>.06<br>.09<br>.09 | 953<.01<br>219<.01<br>391<.01<br>106<.01<br>27<.01   | 3<br>3<br>3<br>3<br>3            | .57<br>.81<br>.58<br>.67<br>.27< | .01<br>.02<br>.01<br>.01<br>.01 | .38<br>.21<br>.48<br>.10<br>17   | 2<br><2<br>3<br>2<br>7                 | <5<br><5<br><5<br><5       | 1<br><1<br><1<br><1<br><1        | 40<br>2<br>3<br><2<br>3        |
| D 197077<br>D 197078<br>D 197079<br>D 197080<br>D 197081             | 20 76<br>31 172<br>6 912<br>3 779<br>6 665 | 4300<br>723<br>10126<br>14766<br>28660 | 345<br>1216<br>4317<br>4715<br>10268 | 479.8<br>31.4<br>362.8<br>406.2<br>385.2 | 2<br>3<br><1<br>3<br><1 | 1 90<br>8 899<br>5 175<br>3 710<br><1 70       | 3.27<br>5.34<br>21.67<br>7.90<br>10.06 | 18524<br>4609<br>99999<br>47291<br>99999 | <8<br><8<br>14<br><8<br><8 | <2<br><2<br>9<br>2<br>9                | 5<br>4<br>5<br>5<br>4  | 92<br>64<br>28<br>40<br>11 | 6.8<br>26.6<br>115.3<br>101.3<br>228.6 | 68<br>15<br>625<br>434<br>1212 | <3<br><3<br>10<br><3<br>3        | 1<br>3<br>3<br>1              | .08<br>.24<br>.30<br>.16<br>.04     | .029<br>.021<br>.013<br>.039<br>.026 | 15<br>19<br>5<br>15<br>10  | 9<br>5<br>15<br>9<br>10 | .03<br>.10<br>.01<br>.03<br>.01 | 211<.01<br>2253<.01<br>19<.01<br>38<.01<br>29<.01    | 3<br><3<br>18<br><3<br>7         | .37<br>.67<br>.34<br>.50<br>.40  | .02<br>.01<br>.01<br>.02<br>.01 | .35<br>.27<br>21<br>38<br>.35    | 5<br><2<br>6<br><2<br><2               | <5<br><5<br><5<br><5       | <1<br>1<br>6<br><1<br>2          | 190<br>23<br>495<br>519<br>748 |
| D 197082<br>D 197083<br>Standard C3/AU-R<br>Standard G-2             | 8 99<br>3 85<br>26 67<br>1 3               | 2432<br>265<br>39<br>4                 | 172<br>140<br>165<br>41              | 294.0<br>35.4<br>5.7<br><.3              | 2<br>3<br>37<br>8       | 1 60<br>1 161<br>13 781<br>5 556               | 3.37<br>4.21<br>3.36<br>2.06           | 38348<br>43042<br>59<br><2               | 34<br><8<br>25<br><8       | <2<br><2<br>3<br><2                    | 2<br>2<br>19<br>4      | 33<br>11<br>29<br>70       | 3.5<br>2.5<br>23.5<br><.2              | 68<br>43<br>17<br><3           | <3<br><3<br>21<br><3             | 2<br>4<br>82<br>40            | .04<br>.08<br>.57<br>.65            | .024<br>.061<br>.088<br>.093         | 9<br>7<br>19<br>8          | 10<br>11<br>170<br>80   | .02<br>.02<br>.62<br>.62        | 97<.01<br>139<.01<br>150 .10<br>224 .14              | 4<br>6<br>21<br><3               | .54<br>.41<br>1.83<br>.95        | .01<br>.01<br>.04<br>.08        | .46<br>.40<br>.16<br>.45         | 5<br>7<br>20<br>2                      | <5<br><5<br><5<br><5       | <1<br>1<br>1<br><1               | 511<br>78<br>466<br>2          |

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

its 7 3000m

tor

|                           | Tiberen Minerala Itd DROIECT                             |                                          | a a a a a a a a a a a a a a a a a a a |
|---------------------------|----------------------------------------------------------|------------------------------------------|---------------------------------------|
|                           | 950 - 550 - 6th Ave S.W.,                                | Calgary AB T2P OS2                       |                                       |
|                           | SAMPLE#                                                  | Âg**<br>oz/t                             |                                       |
|                           | D 197077<br>D 197078<br>D 197079<br>D 197080<br>D 197081 | 27.80<br>.85<br>60.21<br>57.39<br>100.12 |                                       |
|                           | RE D 197081<br>D 197082<br>D 197083<br>STANDARD R-1      | 99.31<br>9.15<br>.89<br>2.97             |                                       |
|                           | AG** BY FIRE ASSAY FROM 1<br>- SAMPLE TYPE: ROCK PULP    | A.T. SAMPLE.                             |                                       |
|                           |                                                          |                                          |                                       |
| ATE RECEIVED: JUL 27 1999 | DATE REPORT MAILED: July 29/99 SI                        | GNED BY D. TOYE, C.LEONG, J. WANG; (     | CERTIFIED B.C. ASSAYERS               |
|                           |                                                          | 1                                        |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          | 1                                        |                                       |
|                           |                                                          | 1                                        |                                       |
|                           |                                                          | 1                                        |                                       |
|                           |                                                          | 1                                        |                                       |
|                           |                                                          | 1                                        |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |
|                           |                                                          |                                          |                                       |

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

# VANCOUVER GEOCHEMICAL ANALYSIS CERTIFICATE

BC

V6A 1R6



**Tiberon Minerals Ltd.** PROJECT RUBY File # 9902611



950 - 550 - 6th Ave S.W., Calgary AB T2P OS2

852 E.

HASTINGS

| SAMPLE# MoCuPbZnAgN1CoMnFeAsUAuThSrCdSbB1VCaPLaCrMgBaT1BAlNa                                                           | K W TI Hg Au**    |
|------------------------------------------------------------------------------------------------------------------------|-------------------|
| א א היסם א היסם את היסם היסם איסם היסם היסם היסם היסם היסם היסם היסם ה                                                 | daa maa maa maa % |
|                                                                                                                        |                   |
| D 197084 4 661 10428 510 322.1 1 1 66 6.62 50496 <8 7 5 39 12.9 555 <3 1 .05 .032 14 10 .02 43<.01 <3 .40 .06 .        | .65 2 <5 <1 5734  |
| D 197085 3 259 795 997 24.2 3 6 2789 3.85 968 <8 <2 5 44 37.0 6 3 3 1.97 .089 20 7 .04 1144<.01 <3 .64 .01 .           | .32 <2 <5 <1 13   |
| D 197086 3 248 1351 1326 35.0 2 7 4470 4.04 1002 <8 <2 5 25 53.1 10 <3 4 .46 .108 23 8 .04 1814<.01 <3 .63<.01         | .34 <2 5 <1 13    |
| D 197087 3 28 126 249 5 3 3 6 2064 4 53 151 <8 <2 4 42 3 8 <3 <3 4 1 37 .095 29 8 06 374 < 01 <3 72 01                 | 32 <2 <5 <1 <2    |
|                                                                                                                        | 42 2 c5 c1 c2     |
|                                                                                                                        |                   |
|                                                                                                                        | .31 <2 <5 <1 5    |
|                                                                                                                        | 55 2 <5 <1 45     |
|                                                                                                                        | 57 22 25 21 186   |
|                                                                                                                        |                   |
|                                                                                                                        |                   |
| D 197093 4 87 2205 270 267.4 5 1 92 5.84 15116 <8 <2 6 74 8.1 28 <5 5 .08 .068 16 7 .01 345<.01 <5 .44 .01 .           | .56 2 <5 1 134    |
|                                                                                                                        | 63 3 45 41 100    |
|                                                                                                                        | 47 2 45 41 107    |
|                                                                                                                        |                   |
| D 197095 4 39 631 58 59.5 4 1 76 2.74 22771 <8 <2 3 19 2.0 29 <3 2 .04 .047 12 13 .01 438<.01 <3 .44<.01 .             | ,44 4 <5 <1 110   |
| D 197096 3 30 377 91 13.9 2 1 93 1.92 9757 <8 <2 3 47 5.3 15 <3 1 .09 .053 14 10 .02 811<.01 <3 .43 .01                | ,37 5 <5 1 45     |
| D 197097 3 49 127 102 19.9 4 1 60 1.06 4440 <8 <2 4 28 5.0 6 <3 1 .04 .023 19 12 .01 409<.01 <3 41<.01 .               | .36 4 <5 <1 13    |
|                                                                                                                        |                   |
| D 197098 3 65 208 637 13.7 2 2 1179 2.59 293 <8 <2 7 10 16.8 <3 <3 4 .33 .046 33 9 .02 212<.01 <3 52 .03 .             | .28 <2 <5 <1 5    |
| D 197099 6 248 28170 3499 295.8 <1 14 132 27.16 43598 19 19 8 47 83.6 1002 16 3 .02 .010 11 23<.01 7<.01 25 24<.01 .   | .14 10 <5 8 7434  |
| STANDARD C3/AU-R 27 69 37 173 6.2 39 14 841 3.71 59 18 4 23 32 26.9 19 25 85 .63 .096 20 183 .63 157 .09 22 2 01 .04 . | .18 15 <5 1 474   |
| STANDARD G-2 2 4 <3 41 <.3 7 5 562 2.16 <2 <8 <2 5 75 <.2 <3 <3 40 .68 .099 8 78 .59 221 .13 <3 .97 .08 .              | .49 2 <5 <1 <2    |

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU\*\* ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 30 1999 DATE REPORT MAILED: ANY 10/99 SIGNED BY. .... D. TOYE, C.LEONG, J. WANG; CERTIFIED B C ASSAYERS

Assay Silver in progress



# APPENDIX III

# RUBY PROPERTY VLF DATA

I

| meters         meters         %         %         feet           1000 00         1040.00         0 00         -2 00         6655 00           1000 00         1020 00         -1 00         -2 00         6665 00           1000 00         1020 00         -1 00         -2 00         6662 00           1000 00         1010 00         -3.00         -4 00         66661 00           1000 00         190.00         -2 00         -4 00         6663 00           1000 00         980.00         -4 00         -10 00         6643 00           1000 00         980.00         -5 00         -10 00         6644 00           1000 00         950.00         -6 00         -16 00         6644 00           1000 00         950.00         -5 00         -13 00         6633 00           1000 00         920 00         -2 00         -13 00         6633 00           1000 00         920 00         -2 00         -13 00         6633 00           1000 00         920 00         -2 00         -13 00         6644 00           950.00         1070.00         -2 00         -13 00         6544 00           950.00         1080.00         -4 00         600 </th <th>Northing</th> <th>Easting</th> <th>In-Phase</th> <th>Quadrature</th> <th>Elevation</th> | Northing | Easting | In-Phase | Quadrature        | Elevation |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|-------------------|-----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | meters   | meters  | %        | %                 | feet      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000 00  | 1040.00 | 0 00     | 4 00              | 6650 00   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000 00  | 1030.00 | 0 00     | -2 00             | 6656 00   |
| 1000 00         1010 00         -3.00         -4.00         6661 00           1000 00         1000.00         -2.00         -4.00         6665.00           1000 00         990.00         -2.00         -8.00         6653.00           1000 00         980.00         -4.00         -9.00         6646.00           1000 00         970.00         -4.00         -10.00         6644.00           1000 00         950.00         -6.00         -13.00         6642.00           1000 00         950.00         -6.00         -16.00         6633.00           1000 00         930.00         -5.00         -16.00         6637.00           1000 00         920.00         -2.00         -13.00         6637.00           1000 00         920.00         -2.00         4.00         6614.00           950.00         1060.00         -4.00         4.00         6614.00           950.00         1070.00         -2.00         4.00         6639.00           950.00         1070.00         -2.00         4.00         6579.00           950.00         1030.00         -5.00         4.00         6571.00           950.00         1020.00         -5.00         4.                                                                                                 | 1000 00  | 1020 00 | -1 00    | -2.00             | 6662 00   |
| 1000 00         1000 00         200         4 00         6660 00           1000 00         990.00         -2.00         -8 00         6653 00           1000 00         980 00         -4 00         -9 00         6646 00           1000 00         960.00         -5 00         -10 00         6644 00           1000 00         960.00         -5 00         -16 00         6642 00           1000 00         950 00         -6 00         -13 00         6642 00           1000 00         940.00         -6 00         -16 00         6637 00           1000 00         920 00         -2 00         -13 00         6630 00           950.00         1070.00         -2.00         4.00         6629 00           950.00         1060.00         -4.00         4 00         6654 00           950.00         1050.00         -4.00         4 00         6554 00           950.00         1030.00         -5.00         4.00         6558 00           950.00         10100         -5.00         4.00         6534 00           950.00         1000.00         -6.00         -2.00         6544.00           950.00         990.00         -13 00         -12 00 </td <td>1000 00</td> <td>1010 00</td> <td>-3.00</td> <td>-4 00</td> <td>6661 00</td>             | 1000 00  | 1010 00 | -3.00    | -4 00             | 6661 00   |
| 1000 00         990.00 $-2.00$ $-8.00$ 6653.00           1000 00         980 00 $-4.00$ $-9.00$ 6664.00           1000 00         970 00 $-4.00$ $-10.00$ 6643.00           1000 00         960.00 $-5.00$ $-10.00$ 6644.00           1000 00         950.00 $-6.00$ $-13.00$ 6642.00           1000 00         940.00 $-6.00$ $-16.00$ 6644.00           1000 00         920.00 $-2.00$ $-13.00$ 6630.00           950.00         1080.00 $-4.00$ $6.00$ 6644.00           950.00         1070.00 $-2.00$ $4.00$ 6629.00           950.00         1060.00 $-4.00$ $7.00$ 6599.00           950.00         1020.00 $-5.00$ $4.00$ 6571.00           950.00         1020.00 $-5.00$ $4.00$ 6534.00           950.00         1010.00 $-5.00$ $2.00$ 6534.00           950.00         990.00 $-11.00$ $-6.534.00$ 950.00           950.00                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000 00  | 1000 00 | -2.00    | -4 00             | 6660.00   |
| 1000 00 $980 00$ $-4 00$ $-9 00$ $6646 00$ $1000 00$ $970 00$ $4 00$ $-10 00$ $6643 00$ $1000 00$ $950 00$ $-5 00$ $-13 00$ $6642 00$ $1000 00$ $950 00$ $-6 00$ $-13 00$ $6642 00$ $1000 00$ $930 00$ $-6 00$ $-16 00$ $6633 00$ $1000 00$ $920 00$ $-2 00$ $-13 00$ $6630 00$ $950 00$ $1080 00$ $-4 00$ $6.00$ $6644 00$ $950 00$ $1080 00$ $-4 00$ $4.00$ $6639 00$ $950 00$ $1070 00$ $-2.00$ $4.00$ $6629 00$ $950 00$ $1060 00$ $-4 00$ $4 00$ $6599 00$ $950 00$ $1060 00$ $-4 00$ $4 00$ $6599 00$ $950 00$ $1020 00$ $-5.00$ $4 00$ $6571 00$ $950 00$ $1020 00$ $-5.00$ $4.00$ $6538 00$ $950 00$ $1000 00$ $-5.00$ $2.00$ $6544 00$ $950 00$ $1000 00$ $-5.00$ $2.00$ $6544 00$ $950 00$ $990 00$ $-13 00$ $-12 00$ $6534 00$ $950 00$ $980 00$ $-13 00$ $-12 00$ $6532 00$ $950 00$ $940 00$ $-15 00$ $-11 00$ $6432 00$ $950 00$ $930 00$ $-13 00$ $-16 00$ $6492 00$ $950 00$ $930 00$ $-13 00$ $-10 00$ $6532 00$ $950 00$ $930 00$ $-13 00$ $-10 00$ $6532 00$ $950 00$ $880 00$ $-13 00$ $-1$                                                                                                                                                                                                                                                         | 1000 00  | 990.00  | -2.00    | -8 00             | 6653.00   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000 00  | 980 00  | -4 00    | - <del>9</del> 00 | 6646 00   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000.00  | 970 00  | -4 00    | -10 00            | 6643 00   |
| $1000\ 00$ $950\ 00$ $-6\ 00$ $-13\ 00$ $6642\ 00$ $1000\ 00$ $940\ 00$ $-6\ 00$ $-16\ 00$ $6644\ 00$ $1000\ 00$ $920\ 00$ $-2\ 00$ $-13\ 00$ $6637\ 00$ $1000\ 00$ $920\ 00$ $-2\ 00$ $-13\ 00$ $6630\ 00$ $950\ 00$ $1080\ 00$ $-4\ 00$ $6.00$ $6644\ 00$ $950\ 00$ $1070\ 00$ $-2.00$ $4\ 00$ $6629\ 00$ $950\ 00$ $1060\ 00$ $-4\ 00$ $4\ 00$ $6614\ .00$ $950\ 00$ $1060\ 00$ $-4\ 00$ $4\ 00$ $6599\ .00$ $950\ 00$ $1040\ 00$ $-4\ 00$ $4\ 00$ $6558\ 00$ $950\ 00$ $1020\ 00$ $-5.00$ $4\ 00$ $6551\ 00$ $950\ 00$ $1000\ 00$ $-5.00$ $2.00$ $6551\ 00$ $950\ 00$ $1000\ 00$ $-6.00$ $-2.00$ $6534\ 00$ $950\ 00$ $990\ 00$ $-13\ 00$ $-8.00$ $6534\ 00$ $950\ 00$ $960\ 00$ $-13\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $930\ 00$ $-13\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6492\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ <                                                                                                                                                                                                   | 1000 00  | 960.00  | -5 00    | -10 00            | 6640 00   |
| $1000\ 00$ $940\ 00$ $-6\ 00$ $-16\ 00$ $6644\ 00$ $1000\ 00$ $930\ 00$ $-2\ 00$ $-13\ 00$ $6630\ 00$ $950\ 00$ $1080\ 00$ $-4\ 00$ $6\ 00$ $6644\ 00$ $950\ 00$ $1070\ 00$ $-2\ 00$ $4\ 00$ $6629\ 00$ $950\ 00$ $1070\ 00$ $-2\ 00$ $4\ 00$ $6629\ 00$ $950\ 00$ $1060\ 00$ $-4\ 00$ $4\ 00$ $6599\ 00$ $950\ 00$ $1050\ 00$ $-4\ 00$ $4\ 00$ $6599\ 00$ $950\ 00$ $1040\ 00$ $-5\ 00$ $4\ 00$ $6558\ 00$ $950\ 00$ $1020\ 00$ $-5\ 00$ $4\ 00$ $6558\ 00$ $950\ 00$ $1020\ 00$ $-5\ 00$ $2\ 00$ $6554\ 00$ $950\ 00$ $1000\ 00$ $-6\ 00$ $-2\ 00$ $6544\ 00$ $950\ 00$ $1000\ 00$ $-6\ 00$ $-2\ 00$ $6534\ 00$ $950\ 00$ $990\ 00$ $-13\ 00$ $-8\ 00$ $6534\ 00$ $950\ 00$ $970\ 00$ $-13\ 00$ $-12\ 00$ $6533\ 00$ $950\ 00$ $940\ 00$ $-13\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6532\ 00$ $950\ 00$ $800\ 00$ $-13\ 00$ <td>1000 00</td> <td>950 00</td> <td>-6 00</td> <td>-13 00</td> <td>6642 00</td>                                                                                                                 | 1000 00  | 950 00  | -6 00    | -13 00            | 6642 00   |
| 1000.00 $930.00$ $-500$ $-16.00$ $6637 00$ $1000 00$ $920 00$ $-2 00$ $-13 00$ $6630 00$ $950.00$ $1080 00$ $-4 00$ $6.00$ $6644 00$ $950.00$ $1070.00$ $-2.00$ $4.00$ $6629 00$ $950.00$ $1060.00$ $-4.00$ $4 00$ $6614.00$ $950.00$ $1050.00$ $-4.00$ $7 00$ $6599.00$ $950.00$ $1040 00$ $-4 00$ $4 00$ $6558 00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6551 00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6558 00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6534 00$ $950.00$ $990.00$ $-13 00$ $-8.00$ $6534 00$ $950.00$ $970 00$ $-13 00$ $-12 00$ $6534 00$ $950.00$ $960.00$ $-13 00$ $-12 00$ $6532.00$ $950.00$ $950 00$ $-14 00$ $-12 00$ $6532.00$ $950.00$ $920.00$ $-15 00$ $-12 00$ $6532.00$ $950.00$ $900.00$ $-13 00$ $-16 00$ $6422 00$ $950.00$ $900.00$ $-13 00$ $-16 00$ $6422 00$ $950.00$ $900.00$ $-13 00$ $-16 00$ $6426 00$ $950.00$ $900.00$ $-13 00$ $-16 00$ $6426 00$ $900.00$ $880 00$ $-17 00$ $-22 00$ $6492.00$ $900.00$ $870 00$ $-23 00$                                                                                                                                                                                                                                                            | 1000 00  | 940.00  | -6 00    | -16 00            | 6644 00   |
| $1000\ 00$ $920\ 00$ $-2\ 00$ $-13\ 00$ $6630\ 00$ $950.00$ $1080\ 00$ $-4\ 00$ $6.00$ $6644\ 00$ $950.00$ $1070.00$ $-2.00$ $4.00$ $6629\ 00$ $950.00$ $1060.00$ $-4.00$ $4.00$ $6629\ 00$ $950.00$ $1050.00$ $-4.00$ $4.00$ $6599.00$ $950.00$ $1040\ 00$ $-4\ 00$ $4.00$ $6584.00$ $950.00$ $1040\ 00$ $-5.00$ $4.00$ $6558\ 00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6551\ 00$ $950.00$ $1000.00$ $-5.00$ $2.00$ $6544.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10\ 00$ $-4.00$ $6539\ 00$ $950.00$ $990.00$ $-13\ 00$ $-12\ 00$ $6534\ 00$ $950.00$ $970\ 00$ $-13\ 00$ $-12\ 00$ $6532.00$ $950.00$ $950\ 00$ $-13\ 00$ $-12\ 00$ $6532.00$ $950.00$ $920.00$ $-15\ 00$ $-11\ 00$ $6532.00$ $950.00$ $920.00$ $-15\ 00$ $-11\ 00$ $6532\ 00$ $950.00$ $900.00$ $-13\ 00$ $-16\ 00$ $6479\ 00$ $950.00$ $900.00$ $-13\ 00$ $-16\ 00$ $6472\ 00$ $950.00$ $900.00$ $-13\ 00$ $-16\ 00$ $6472\ 00$ $950.00$ $900.00$ $-13\ 00$ $-16\ 00$ $6422\ 00$ $950.00$ $890\ 00$ $-23\ 00$ $-10\ 00$ $6422\ 00$ $950.$                                                                                                                                                                                                                               | 1000.00  | 930.00  | -5 00    | -16.00            | 6637 00   |
| 950.00 $1080.00$ $-4.00$ $6.00$ $6644.00$ $950.00$ $1070.00$ $-2.00$ $4.00$ $6629.00$ $950.00$ $1060.00$ $-4.00$ $7.00$ $6599.00$ $950.00$ $1040.00$ $-4.00$ $7.00$ $6599.00$ $950.00$ $1040.00$ $-4.00$ $4.00$ $6571.00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6558.00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6551.00$ $950.00$ $100.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10.00$ $-4.00$ $6539.00$ $950.00$ $990.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-12.00$ $6532.00$ $950.00$ $960.00$ $-13.00$ $-12.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-12.00$ $6432.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-13.00$ $-12.00$ $6432.00$ $950.00$ $920.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $930.00$ $-13.00$                                                                                                                                                                                                                                                            | 1000 00  | 920 00  | -2 00    | -13 00            | 6630 00   |
| 950.00 $1070.00$ $-2.00$ $4.00$ $4.00$ $6629.00$ $950.00$ $1060.00$ $-4.00$ $7.00$ $6639.00$ $950.00$ $1050.00$ $-4.00$ $7.00$ $6599.00$ $950.00$ $1040.00$ $-4.00$ $4.00$ $6584.00$ $950.00$ $1030.00$ $-5.00$ $4.00$ $6571.00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6558.00$ $950.00$ $100.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10.00$ $-4.00$ $6539.00$ $950.00$ $990.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6533.00$ $950.00$ $950.00$ $-13.00$ $-14.00$ $6532.00$ $950.00$ $950.00$ $-13.00$ $-11.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $800.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $800.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $800.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $800.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $800.00$ $-13.00$ $-16.00$ $6446.00$ $900.00$ $800.00$                                                                                                                                                                                                                                                            | 950.00   | 1080 00 | -4 00    | 6.00              | 6644 00   |
| 950.00 $1060.00$ $4.00$ $400$ $6614.00$ $950.00$ $1050.00$ $4.00$ $700$ $6599.00$ $950.00$ $1040.00$ $4.00$ $4.00$ $6584.00$ $950.00$ $1030.00$ $-5.00$ $4.00$ $6571.00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6558.00$ $950.00$ $100.00$ $-5.00$ $2.00$ $6554.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6534.00$ $950.00$ $990.00$ $-10.00$ $-4.00$ $6534.00$ $950.00$ $980.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6532.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6492.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6492.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $890.00$ $-23.00$ $-10$                                                                                                                                                                                                                                                         | 950.00   | 1070.00 | -2.00    | 4.00              | 6629 00   |
| 950.00 $1050.00$ $-4.00$ $7.00$ $6599.00$ $950.00$ $1040.00$ $-4.00$ $4.00$ $6584.00$ $950.00$ $1030.00$ $-5.00$ $4.00$ $6571.00$ $950.00$ $1020.00$ $-5.00$ $4.00$ $6558.00$ $950.00$ $1010.00$ $-5.00$ $2.00$ $6544.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10.00$ $-4.00$ $6539.00$ $950.00$ $990.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6532.00$ $950.00$ $960.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6532.00$ $950.00$ $940.00$ $-13.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6422.00$ $900.00$ $880.00$ $-13.00$ $-18.00$ $6422.00$ $900.00$ $880.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $880.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$                                                                                                                                                                                                                                                       | 950.00   | 1060.00 | -4.00    | 4 00              | 6614.00   |
| $950\ 00$ $1040\ 00$ $-4\ 00$ $4.00$ $6584.00$ $950.00$ $1030.00$ $-5.00$ $4.00$ $6571.00$ $950.00$ $1020.00$ $-5.00$ $2.00$ $6558\ 00$ $950.00$ $1010\ 00$ $-5.00$ $2.00$ $6544.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10\ 00$ $-4.00$ $6539\ 00$ $950.00$ $990.00$ $-13\ 00$ $-8.00$ $6534\ 00$ $950.00$ $970\ 00$ $-13\ 00$ $-12\ 00$ $6534\ 00$ $950.00$ $960.00$ $-13\ 00$ $-12\ 00$ $6533.00$ $950.00$ $950\ 00$ $-13\ 00$ $-12\ 00$ $6532.00$ $950\ 00$ $950\ 00$ $-13\ 00$ $-12\ 00$ $6532.00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12.00$ $6532\ 00$ $950\ 00$ $920.00$ $-15\ 00$ $-12.00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-15\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-13\ 00$ $-16\ 00$ $6422\ 00$ $950\ 00$ $800\ 00$ $-17\ 00$ $-22\ 00$ $6492\ 00$ $900\ 00$ $800\ 00$ $-17\ 00$ $-22\ 00$ $6492\ 00$ $900\ 00$ $800\ 00$ $-23\ 00$ $-10\ 00$ $6446\ 00$ $900\ 00$ $800\ 00$ $-23\ 00$ $-10\ 00$ $6446\ 00$ $900\ 00$ $800\ 00$ $-22\ 00$ $-10\ 00$ $6442\ 00$ $900\ 00$ $800\ 00$ $-22\ 00$ $-10\ 00$ $644$                                                                                                                                                                                                              | 950.00   | 1050.00 | -4.00    | 7 00              | 6599.00   |
| 950.00 $1030.00$ $-5.00$ $4.00$ $6571.00$ $950.00$ $1010.00$ $-5.00$ $4.00$ $6558.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10.00$ $-4.00$ $6539.00$ $950.00$ $990.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $980.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6532.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6532.00$ $950.00$ $950.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $80.00$ $-13.00$ $-16.00$ $6479.00$ $950.00$ $880.00$ $-13.00$ $-18.00$ $6479.00$ $900.00$ $860.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $80.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-12.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-12.00$ $6442.00$ $900.00$ $900.00$ $-23.00$ <                                                                                                                                                                                                                                                 | 950 00   | 1040 00 | -4 00    | 4.00              | 6584.00   |
| $950.00$ $1020.00$ $-5.00$ $4.00$ $6558\ 00$ $950.00$ $1010\ 00$ $-5.00$ $2.00$ $6551\ 00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10\ 00$ $-4.00$ $6539\ 00$ $950.00$ $980\ 00$ $-13\ 00$ $-8.00$ $6534\ 00$ $950.00$ $970\ 00$ $-13\ 00$ $-12\ 00$ $6534\ 00$ $950.00$ $960.00$ $-13\ 00$ $-14\ 00$ $6534\ 00$ $950.00$ $960.00$ $-13\ 00$ $-14\ 00$ $6532\ 00$ $950\ 00$ $950\ 00$ $-14\ 00$ $-12\ 00$ $6532.00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12\ 00$ $6532\ 00$ $950\ 00$ $920.00$ $-15\ 00$ $-15\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-14\ 00$ $-15\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-14\ 00$ $-15\ 00$ $6532\ 00$ $950\ 00$ $900\ 00$ $-14\ 00$ $-16\ 00$ $6492\ 00$ $950\ 00$ $880\ 00$ $-13\ 00$ $-16\ 00$ $64492\ 00$ $900\ 00$ $860\ 00$ $-23\ 00$ $-10\ 00$ $6446\ 00$ $900\ 00$ $880\ 00$ $-23\ 00$ $-10\ 00$ $6446\ 00$ $900\ 00$ $890\ 00$ $-23\ 00$ $-10\ 00$ $6446\ 00$ $900\ 00$ $890\ 00$ $-23\ 00$ $-10\ 00$ $6446\ 00$ $900\ 00$ $900\ 00$ $-23\ 00$ $-10\$                                                                                                                                                                                                      | 950.00   | 1030.00 | -5.00    | 4 00              | 6571.00   |
| 950.00 $1010.00$ $-5.00$ $2.00$ $6551.00$ $950.00$ $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10.00$ $4.00$ $6539.00$ $950.00$ $980.00$ $-13.00$ $8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6533.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $940.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $890.00$ $-13.00$ $-18.00$ $6492.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $900.00$ $-23.00$                                                                                                                                                                                                                                                 | 950.00   | 1020.00 | -5.00    | 4.00              | 6558 00   |
| 950.00 $1000.00$ $-6.00$ $-2.00$ $6544.00$ $950.00$ $990.00$ $-10.00$ $4.00$ $6539.00$ $950.00$ $980.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6532.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6532.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $940.00$ $-13.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-18.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $860.00$ $-20.00$ $-16.00$ $6456.00$ $900.00$ $870.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23$                                                                                                                                                                                                                                                 | 950.00   | 1010 00 | -5.00    | 2.00              | 6551 00   |
| 950.00 $990.00$ $-10.00$ $-4.00$ $6539.00$ $950.00$ $980.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6534.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6533.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-12.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-16.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $880.00$ $-13.00$ $-18.00$ $6479.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6446.00$ $900.00$ $850.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $880.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-$                                                                                                                                                                                                                                                 | 950.00   | 1000.00 | -6.00    | -2.00             | 6544.00   |
| 950.00 $980.00$ $-13.00$ $-8.00$ $6534.00$ $950.00$ $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6534.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6533.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6552.00$ $950.00$ $880.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $870.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $920.00$ $-17.00$ $-2.00$ $6410.00$ $900.00$ $920.00$ $-17.00$ $-2.00$ $6410.00$ $900.00$ $920.00$ $-17.$                                                                                                                                                                                                                                                 | 950.00   | 990.00  | -10 00   | -4.00             | 6539 00   |
| 950.00 $970.00$ $-13.00$ $-12.00$ $6534.00$ $950.00$ $960.00$ $-13.00$ $-14.00$ $6534.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6533.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-12.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $910.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6422.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-20.00$ $-16.00$ $6466.00$ $900.00$ $850.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-22.00$ $-400$ $6409.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $930.00$ $-16.00$ $-4.00$ $6409.00$ $900.00$ $940.00$ $-17.00$ $-2.00$ $6408.00$ $900.00$ $960.00$ $-16.00$ $-3.00$ $6408.00$ $900.00$ $960.00$ $-15.0$                                                                                                                                                                                                                                                 | 950.00   | 980 00  | -13 00   | -8.00             | 6534 00   |
| 950.00 $960.00$ $-13.00$ $-14.00$ $6534.00$ $950.00$ $950.00$ $-14.00$ $-12.00$ $6533.00$ $950.00$ $940.00$ $-13.00$ $-10.00$ $6532.00$ $950.00$ $930.00$ $-15.00$ $-12.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $900.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6552.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-18.00$ $-18.00$ $6479.00$ $900.00$ $860.00$ $-20.00$ $-16.00$ $6466.00$ $900.00$ $870.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-22.00$ $6410.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6408.00$ $900.00$ $930.00$ $-18.00$ $-10.00$ $6446.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6408.00$ $900.00$ $920.00$ $-17.00$ $-3$                                                                                                                                                                                                                                                 | 950.00   | 970 00  | -13 00   | -12 00            | 6534 00   |
| $950\ 00$ $950\ 00$ $-14\ 00$ $-12\ 00$ $6533.00$ $950\ 00$ $940.00$ $-13\ 00$ $-10\ 00$ $6532.00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12.00$ $6532.00$ $950.00$ $920.00$ $-15\ 00$ $-11.00$ $6532\ 00$ $950.00$ $920.00$ $-15\ 00$ $-15\ 00$ $6532\ 00$ $950.00$ $900.00$ $-14.00$ $-15\ 00$ $6532\ 00$ $950.00$ $900.00$ $-14.00$ $-15\ 00$ $6532\ 00$ $950.00$ $890.00$ $-13\ 00$ $-16.00$ $6542\ 00$ $950.00$ $890.00$ $-13\ 00$ $-18\ 00$ $6552\ 00$ $900.00$ $840\ 00$ $-17\ 00$ $-22\ 00$ $6492.00$ $900.00$ $850\ 00$ $-18\ 00$ $6479\ 00$ $900.00$ $860\ 00$ $-20\ 00$ $-16\ 00$ $6466\ 00$ $900.00$ $870\ 00$ $-23\ 00$ $-10.00$ $6446\ 00$ $900\ 00$ $890\ 00$ $-23\ 00$ $-10.00$ $6446\ 00$ $900\ 00$ $900\ 00$ $-23\ 00$ $-10.00$ $6446\ 00$ $900\ 00$ $920\ 00$ $-24\ 00$ $-2\ 00$ $6410\ 00$ $900\ 00$ $930.00$ $-18\ 00$ $-20\ 00$ $6408\ 00$ $900\ 00$ $920\ 00$ $-23\ 00$ $-10.00$ $6446\ 00$ $900\ 00$ $920\ 00$ $-23\ 00$ $-10.00$ $6446\ 00$ $900\ 00$ $920\ 00$ $-24\ 00$ $-2\ 00$ $6410\ 00$ $900\ 00$ $920\ 00$ $-16\ 00$ $-10\ 00$ $6408\ 00$                                                                                                                                                                                                      | 950.00   | 960.00  | -13.00   | -14 00            | 6534 00   |
| $950\ 00$ $940.00$ $-13\ 00$ $-10\ 00$ $6532.00$ $950\ 00$ $930\ 00$ $-15\ 00$ $-12.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532\ 00$ $950.00$ $910.00$ $-13\ 00$ $-15\ 00$ $6532\ 00$ $950.00$ $900.00$ $-14.00$ $-15\ 00$ $6532\ 00$ $950.00$ $900.00$ $-14.00$ $-15\ 00$ $6532\ 00$ $950.00$ $890.00$ $-13\ 00$ $-16.00$ $6542\ 00$ $950.00$ $890.00$ $-13.00$ $-18\ 00$ $6552\ 00$ $900.00$ $840\ 00$ $-17\ 00$ $-22\ 00$ $6492.00$ $900.00$ $850\ 00$ $-18.00$ $-18\ 00$ $6479\ 00$ $900.00$ $860\ 00$ $-20\ 00$ $-16\ 00$ $6466\ 00$ $900.00$ $870\ 00$ $-23\ 00$ $-10.00$ $64456\ 00$ $900\ 00$ $890\ 00$ $-23\ 00$ $-10.00$ $64424\ 00$ $900\ 00$ $900.00$ $-25\ 00$ $-10.00$ $6417\ 00$ $900\ 00$ $920\ 00$ $-24\ 00$ $-2\ 00$ $6410.00$ $900\ 00$ $930.00$ $-16\ 00$ $-4.00$ $6408.00$ $900\ 00$ $950.00$ $-16\ 00$ $-10\ 00$ $6408.00$ $900\ 00$ $960\ 00$ $-15\ 00$ $-3\ 00$ $6408.00$ $900\ 00$ $960\ 00$ $-15\ 00$ $-3\ 00$ $6410\ 00$                                                                                                                                                                                                                                                                                                         | 950 00   | 950 00  | -14 00   | -12 00            | 6533.00   |
| $950\ 00$ $930\ 00$ $-15\ 00$ $-12.00$ $6532.00$ $950.00$ $920.00$ $-15.00$ $-11.00$ $6532\ 00$ $950.00$ $910.00$ $-13\ 00$ $-15\ 00$ $6532\ 00$ $950.00$ $900.00$ $-14.00$ $-15\ 00$ $6532\ 00$ $950.00$ $890.00$ $-13\ 00$ $-16.00$ $6542\ 00$ $950.00$ $890.00$ $-13\ 00$ $-16.00$ $6552\ 00$ $950.00$ $880\ 00$ $-13.00$ $-18\ 00$ $6552\ 00$ $900.00$ $840\ 00$ $-17\ 00$ $-22\ 00$ $6492.00$ $900.00$ $850\ 00$ $-18.00$ $-18\ 00$ $6479\ 00$ $900.00$ $850\ 00$ $-20\ 00$ $-16\ 00$ $6466\ 00$ $900.00$ $860\ 00$ $-20\ 00$ $-16\ 00$ $6456\ 00$ $900.00$ $870\ 00$ $-23\ 00$ $-10.00$ $6446.00$ $900\ 00$ $890\ 00$ $-23\ 00$ $-10.00$ $64424\ 00$ $900\ 00$ $900.00$ $-25\ 00$ $-10.00$ $6417\ 00$ $900\ 00$ $920\ 00$ $-24\ 00$ $-2\ 00$ $6410.00$ $900\ 00$ $930.00$ $-17\ 00$ $-2.00$ $6408.00$ $900\ 00$ $950.00$ $-16\ 00$ $-1\ 00$ $6408.00$ $900\ 00$ $950.00$ $-16\ 00$ $-1\ 00$ $6408.00$ $900\ 00$ $960\ 00$ $-15\ 00$ $-3\ 00$ $6408.00$ $900\ 00$ $960\ 00$ $-13\ 00$ $-3\ 00$ $6408.00$                                                                                                                                                                                                                                                           | 950 00   | 940.00  | -13 00   | -10 00            | 6532.00   |
| 950.00 $920.00$ $-15.00$ $-11.00$ $6532.00$ $950.00$ $910.00$ $-13.00$ $-15.00$ $6532.00$ $950.00$ $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $880.00$ $-13.00$ $-18.00$ $6552.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-18.00$ $-18.00$ $6479.00$ $900.00$ $860.00$ $-20.00$ $-16.00$ $6466.00$ $900.00$ $860.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $880.00$ $-23.00$ $-10.00$ $6444.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6442.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-22.00$ $6410.00$ $900.00$ $910.00$ $-25.00$ $-10.00$ $6417.00$ $900.00$ $930.00$ $-18.00$ $-4.00$ $6409.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $930.00$ $-16.00$ $-1.00$ $6408.00$ $900.00$ $950.00$ $-16.00$ $-1.00$ $6408.00$ $900.00$ $960.00$ $-15.00$ $-3.00$ $6408.00$ $900.00$ $960.00$ $-13.00$ $-3.00$ $6410.00$                                                                                                                                                                                                                                                                                                                                  | 950 00   | 930 00  | -15 00   | -12.00            | 6532.00   |
| 950.00 $910.00$ $-1300$ $-1500$ $653200$ $950.00$ $900.00$ $-14.00$ $-1500$ $653200$ $950.00$ $890.00$ $-1300$ $-16.00$ $654200$ $950.00$ $88000$ $-13.00$ $-1800$ $655200$ $900.00$ $84000$ $-1700$ $-2200$ $6492.00$ $900.00$ $85000$ $-18.00$ $-1800$ $647900$ $900.00$ $86000$ $-2000$ $-1600$ $646600$ $900.00$ $86000$ $-2300$ $-12.00$ $6446.00$ $900.00$ $880.00$ $-2300$ $-10.00$ $6446.00$ $900.00$ $89000$ $-2300$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-2300$ $-10.00$ $6446.00$ $900.00$ $900.00$ $-2300$ $-10.00$ $642400$ $900.00$ $900.00$ $-2500$ $-10.00$ $642400$ $900.00$ $91000$ $-2500$ $-10.00$ $641700$ $900.00$ $92000$ $-2400$ $-200$ $6410.00$ $900.00$ $930.00$ $-1700$ $-2.00$ $6408.00$ $900.00$ $950.00$ $-1600$ $-100$ $6408.00$ $900.00$ $950.00$ $-1500$ $-300$ $6408.00$ $900.00$ $970.00$ $-1300$ $-300$ $6410.00$                                                                                                                                                                                                                                                                                                                                                                                                                 | 950.00   | 920.00  | -15.00   | -11.00            | 6532 00   |
| 950.00 $900.00$ $-14.00$ $-15.00$ $6532.00$ $950.00$ $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $880.00$ $-13.00$ $-18.00$ $6552.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-18.00$ $-18.00$ $6479.00$ $900.00$ $850.00$ $-20.00$ $-16.00$ $6466.00$ $900.00$ $860.00$ $-20.00$ $-16.00$ $6456.00$ $900.00$ $870.00$ $-23.00$ $-10.00$ $6445.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6435.00$ $900.00$ $990.00$ $-23.00$ $-10.00$ $6444.00$ $900.00$ $900.00$ $-25.00$ $-10.00$ $6417.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $930.00$ $-18.00$ $-4.00$ $6409.00$ $900.00$ $940.00$ $-17.00$ $-2.00$ $6408.00$ $900.00$ $950.00$ $-16.00$ $-1.00$ $6408.00$ $900.00$ $960.00$ $-15.00$ $-3.00$ $6408.00$ $900.00$ $960.00$ $-15.00$ $-3.00$ $6410.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 950.00   | 910.00  | -13 00   | -15 00            | 6532 00   |
| 950.00 $890.00$ $-13.00$ $-16.00$ $6542.00$ $950.00$ $880.00$ $-13.00$ $-18.00$ $6552.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-18.00$ $-18.00$ $6479.00$ $900.00$ $860.00$ $-20.00$ $-16.00$ $6466.00$ $900.00$ $860.00$ $-23.00$ $-16.00$ $6456.00$ $900.00$ $870.00$ $-23.00$ $-10.00$ $6445.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6435.00$ $900.00$ $900.00$ $-25.00$ $-10.00$ $6417.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $930.00$ $-18.00$ $-4.00$ $6409.00$ $900.00$ $940.00$ $-17.00$ $-2.00$ $6408.00$ $900.00$ $950.00$ $-16.00$ $-1.00$ $6408.00$ $900.00$ $950.00$ $-16.00$ $-1.00$ $6408.00$ $900.00$ $970.00$ $-13.00$ $-3.00$ $6408.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 950.00   | 900.00  | -14.00   | -15 00            | 6532 00   |
| 950.00 $880.00$ $-13.00$ $-18.00$ $6552.00$ $900.00$ $840.00$ $-17.00$ $-22.00$ $6492.00$ $900.00$ $850.00$ $-18.00$ $-18.00$ $6479.00$ $900.00$ $860.00$ $-20.00$ $-16.00$ $6466.00$ $900.00$ $870.00$ $-23.00$ $-12.00$ $6456.00$ $900.00$ $880.00$ $-23.00$ $-10.00$ $6446.00$ $900.00$ $890.00$ $-23.00$ $-10.00$ $6445.00$ $900.00$ $900.00$ $-23.00$ $-10.00$ $6444.00$ $900.00$ $900.00$ $-25.00$ $-10.00$ $6417.00$ $900.00$ $920.00$ $-24.00$ $-2.00$ $6410.00$ $900.00$ $930.00$ $-18.00$ $-4.00$ $6409.00$ $900.00$ $940.00$ $-17.00$ $-2.00$ $6408.00$ $900.00$ $950.00$ $-16.00$ $-1.00$ $6408.00$ $900.00$ $950.00$ $-15.00$ $-3.00$ $6408.00$ $900.00$ $970.00$ $-13.00$ $-3.00$ $6410.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 950.00   | 890.00  | -13 00   | -16.00            | 6542 00   |
| $900\ 00$ $840\ 00$ $-17\ 00$ $-22\ 00$ $6492.00$ $900.00$ $850\ 00$ $-18.00$ $-18\ 00$ $6479\ 00$ $900.00$ $860\ 00$ $-20\ 00$ $-16\ 00$ $6466\ 00$ $900.00$ $870\ 00$ $-23.00$ $-12.00$ $6456\ 00$ $900\ 00$ $880.00$ $-23\ 00$ $-10.00$ $6446.00$ $900\ 00$ $890\ 00$ $-23\ 00$ $-10\ 00$ $6445.00$ $900\ 00$ $900.00$ $-23\ 00$ $-10\ 00$ $6424\ 00$ $900\ 00$ $900.00$ $-25\ 00$ $-10.00$ $6417\ 00$ $900\ 00$ $920\ 00$ $-24\ 00$ $-2\ 00$ $6410.00$ $900\ 00$ $930.00$ $-18.00$ $-4.00$ $6409\ 00$ $900\ 00$ $940\ 00$ $-17\ 00$ $-2.00$ $6408.00$ $900\ 00$ $950.00$ $-16\ 00$ $-1\ 00$ $6408.00$ $900\ 00$ $960\ 00$ $-15\ 00$ $-3\ 00$ $6410\ 00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 950.00   | 880.00  | -13.00   | -18 00            | 6552 00   |
| 900.00       850.00       -18.00       -18.00       6479.00         900.00       860.00       -20.00       -16.00       6466.00         900.00       870.00       -23.00       -12.00       6456.00         900.00       880.00       -23.00       -10.00       6446.00         900.00       890.00       -23.00       -10.00       6445.00         900.00       900.00       -23.00       -10.00       6424.00         900.00       900.00       -25.00       -10.00       6417.00         900.00       920.00       -24.00       -2.00       6410.00         900.00       930.00       -18.00       -4.00       6409.00         900.00       930.00       -16.00       -1.00       6408.00         900.00       940.00       -17.00       -2.00       6408.00         900.00       950.00       -16.00       -1.00       6408.00         900.00       960.00       -15.00       -3.00       6408.00                                                                                                                                                                                                                                                                                                                                                                   | 900.00   | 840 00  | -17 00   | -22 00            | 6492.00   |
| 900.00         800.00         -20.00         -18.00         6486.00           900.00         870.00         -23.00         -12.00         6456.00           900.00         880.00         -23.00         -10.00         6446.00           900.00         890.00         -23.00         -10.00         6446.00           900.00         890.00         -23.00         -10.00         64424.00           900.00         900.00         -23.00         -10.00         6424.00           900.00         910.00         -25.00         -10.00         6417.00           900.00         920.00         -24.00         -2.00         6410.00           900.00         930.00         -18.00         -4.00         6409.00           900.00         940.00         -17.00         -2.00         6408.00           900.00         950.00         -16.00         -1.00         6408.00           900.00         950.00         -15.00         -3.00         6408.00           900.00         970.00         -13.00         -3.00         6410.00                                                                                                                                                                                                                                  | 900.00   | 850.00  | -16.00   | -18 00            | 6479 00   |
| 900.00         870.00         -23.00         -12.00         6436.00           900.00         880.00         -23.00         -10.00         6446.00           900.00         890.00         -23.00         -10.00         6446.00           900.00         890.00         -23.00         -10.00         6435.00           900.00         900.00         -23.00         -10.00         6424.00           900.00         910.00         -25.00         -10.00         6417.00           900.00         920.00         -24.00         -2.00         6410.00           900.00         930.00         -18.00         -4.00         6409.00           900.00         940.00         -17.00         -2.00         6408.00           900.00         950.00         -16.00         -1.00         6408.00           900.00         960.00         -15.00         -3.00         6408.00           900.00         970.00         -13.00         -3.00         6410.00                                                                                                                                                                                                                                                                                                                 | 900.00   | 870.00  | -20 00   | -10 00            | 6466 00   |
| 900 00         800.00         -23 00         -10.00         6440.00           900 00         890 00         -23 00         -10 00         6435.00           900 00         900.00         -23 00         -12.00         6424 00           900 00         910 00         -25 00         -10.00         6417 00           900 00         920 00         -24 00         -2 00         6410.00           900 00         930.00         -18.00         -4.00         6409 00           900 00         940 00         -17 00         -2.00         6408.00           900 00         950.00         -16 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 900.00   | 880.00  | -23.00   | -12.00            | 6446 00   |
| 900 00         900 00         -23 00         -10 00         6433.00           900 00         900.00         -23 00         -12.00         6424 00           900 00         910 00         -25 00         -10.00         6417 00           900 00         920 00         -24 00         -2 00         6410.00           900 00         930.00         -18.00         -4.00         6409 00           900 00         940 00         -17 00         -2.00         6408.00           900 00         950.00         -16 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900 00   | 800.00  | -23.00   | -10.00            | 6425.00   |
| 500 00         900.00         -23 00         -12.00         6424 00           900.00         910 00         -25 00         -10.00         6417 00           900 00         920 00         -24 00         -2 00         6410.00           900.00         930.00         -18.00         -4.00         6409 00           900 00         940 00         -17 00         -2.00         6408.00           900 00         950.00         -16 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900 00   | 000 00  | -23 00   | 12 00             | 6433.00   |
| \$00.00         \$10.00         \$25.00         \$10.00         \$6417.00           900.00         920.00         \$24.00         \$2.00         \$6410.00           900.00         930.00         \$18.00         \$4.00         \$6409.00           900.00         940.00         \$17.00         \$2.00         \$6409.00           900.00         940.00         \$17.00         \$2.00         \$6408.00           900.00         950.00         \$16.00         \$-1.00         \$6408.00           900.00         960.00         \$-15.00         \$-3.00         \$6408.00           900.00         970.00         \$-13.00         \$-3.00         \$6410.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900 00   | 900.00  | -25 00   | -12.00            | 6417.00   |
| 300 00         320 00         -24 00         -2 00         04 10.00           900.00         930.00         -18.00         -4.00         6409 00           900 00         940 00         -17 00         -2.00         6408.00           900 00         950.00         -16 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00           900 00         970 00         -13 00         -3 00         6410.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 900.00   | 970.00  | -23 00   | -10.00            | 6417 00   |
| 900 00         940 00         -17 00         -2.00         6408 00           900 00         950.00         -16 00         -1 00         6408.00           900 00         950.00         -16 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00           900 00         970 00         -13 00         -3 00         6410 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 900.00   | 920 00  | -2-7 00  | -2 00             | 6409 00   |
| 900 00         950.00         -16 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00           900 00         970 00         -13 00         -3 00         6410 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900.00   | 940 00  | -17.00   | -2.00             | 6408 00   |
| 900 00         960 00         -15 00         -1 00         6408.00           900 00         960 00         -15 00         -3 00         6408.00           900 00         970 00         -13 00         -3 00         6410 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900 00   | 950 00  | -16 00   | -1 00             | 6408.00   |
| 900 00 970 00 -13 00 -3 00 6410 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900 00   | 960.00  | -15 00   | -3.00             | 6408.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900 00   | 970 00  | -13 00   | -3 00             | 6410.00   |

,

| 900 00 | 980 00  | -10 00 | 3 00  | 6412 00 |
|--------|---------|--------|-------|---------|
| 900 00 | 990 00  | -6 00  | 6 00  | 6420.00 |
| 900 00 | 1000 00 | -3 00  | 8 00  | 6428.00 |
| 900 00 | 1010 00 | -2 00  | 7 00  | 6441 00 |
| 900 00 | 1020 00 | -2 00  | 10 00 | 6454 00 |
| 900 00 | 1030 00 | -2 00  | 8.00  | 6467 00 |
| 900 00 | 1040 00 | -2 00  | 5 00  | 6480 00 |
| 850.00 | 1000 00 | -1 00  | 9 00  | 6324 00 |
| 850 00 | 990 00  | -2.00  | 13 00 | 6314 00 |
| 850 00 | 980 00  | 0 00   | 12.00 | 6304 00 |
| 850.00 | 970 00  | -2.00  | 10.00 | 6299.00 |
| 850 00 | 960 00  | -5.00  | 8.00  | 6294 00 |
| 850 00 | 950 00  | -12.00 | 4 00  | 6292 00 |
| 850 00 | 940 00  | -16.00 | 0.00  | 6292 00 |
| 850 00 | 930 00  | -17 00 | 0 00  | 6296 00 |
| 850 00 | 920 00  | -18.00 | 1 00  | 6302 00 |
| 850 00 | 910.00  | -19.00 | 0 00  | 6315 00 |
| 850 00 | 900 00  | -18.00 | 2.00  | 6328 00 |
| 850 00 | 890 00  | -23.00 | -6.00 | 6339 00 |
| 850 00 | 880 00  | -22.00 | -4.00 | 6350 00 |
| 850 00 | 870 00  | -22 00 | -6.00 | 6363.00 |
| 850 00 | 860 00  | -22.00 | -7 00 | 6376.00 |

,

-

,

ł.

# **APPENDIX IV**

# RUBY PROERTY - GROUND MAGNETIC DATA

| Northing        | Easting | Kilogammas | Northing | Easting | Kilogammas |
|-----------------|---------|------------|----------|---------|------------|
| meters          | meters  | 67400      | meters   | meters  | 67600      |
| 1000            | 1040    | 5/420      | 900      | 1040    | 5/538      |
| 1000            | 1030    | 5/431      | 900      | 1030    | 57762      |
| 1000            | 1020    | 5/524      | 900      | 1020    | 5/880      |
| 1000            | 1010    | 5/591      | 900      | 1010    | 57744      |
| 1000            | 1000    | 57582      | 900      | 1000    | 57720      |
| 1000            | 990     | 57489      | 900      | 990     | 57659      |
| 1000            | 980     | 57458      | 900      | 980     | 57592      |
| 1000            | 970     | 57452      | 900      | 970     | 57535      |
| 1000            | 960     | 57454      | 900      | 960     | 57484      |
| 1000            | 950     | 57458      | 900      | 950     | 57458      |
| 1000            | 940     | 57542      | 900      | 940     | 57422      |
| 1000            | 930     | 57500      | 900      | 930     | 57427      |
| 1000            | 920     | 57485      | 900      | 920     | 57171      |
| 950             | 880     | 57295      | 900      | 910     | 57473      |
| 950             | 890     | 57610      | 900      | 900     | 57407      |
| 950             | 900     | 57118      | 900      | 890     | 57412      |
| 950             | 910     | 57137      | 900      | 880     | 57430      |
| 950             | 920     | 57293      | 900      | 870     | 57446      |
| <del>9</del> 50 | 930     | 57351      | 900      | 860     | 57437      |
| 950             | 940     | 57367      | 900      | 850     | 57384      |
| 950             | 950     | 57392      | 900      | 840     | 57404      |
| 950             | 960     | 57418      | 850      | 1000    | 57477      |
| 950             | 970     | 57447      | 850      | 990     | 57487      |
| 950             | 980     | 57471      | 850      | 980     | 57444      |
| 950             | 990     | 57493      | 850      | 970     | 57465      |
| 950             | 1000    | 57476      | 850      | 960     | 57472      |
| 950             | 1010    | 57314      | 850      | 950     | 57501      |
| <del>9</del> 50 | 1020    | 57332      | 850      | 940     | 57527      |
| 950             | 1030    | 57401      | 850      | 930     | 57576      |
| 950             | 1040    | 57449      | 850      | 920     | 57661      |
| 950             | 1050    | 57416      | 850      | 910     | 57533      |
| 950             | 1060    | 57378      | 850      | 900     | 57308      |
| 950             | 1070    | 57203      | 850      | 890     | 57361      |
| <del>9</del> 50 | 1080    | 57358      | 850      | 880     | 57342      |
|                 |         |            | 850      | 870     | 57388      |
|                 |         |            | 850      | 860     | 57420      |

I

# **APPENDIX V**

# RUBY PROPERTY - DIAMOND DRILL LOGS

| Diamor   | nd Drill H           | ole Record     | (in meters)          |                                        |                           | Ruby Prop  | perty - Yu  | kon        | •         |            |          |          | Co        | ompany | Tiber | on Miner | als Ltd. |
|----------|----------------------|----------------|----------------------|----------------------------------------|---------------------------|------------|-------------|------------|-----------|------------|----------|----------|-----------|--------|-------|----------|----------|
| Hole No  | ). RUD               | 99-01          | Bearing.             | 90° az                                 | Collar Coordinates        | (UTM):     | 6,652,1     | XON Cas    | ing 183   | l m        | Water    |          |           | Start  | 1     | 999-07-3 | 81       |
| Drill De | pth 911              | 4              | Inclination          | -55°                                   |                           |            | 484,4       | 15E Cor    | e Diamete | ər - HQ    | 1 83 – 3 | 36 58 m  | 1         | Finish | 1     | 999-08-0 | )2       |
| Sample   | s <sup>.</sup> 19720 | )1-215 (15)    | Survey (acid)        | · -60° at 91 m                         | Collar Elevation (ma      | asi). 202  | 5           |            | _         | NQ         | 36 58 -  | 91 14 (  | m         | Logge  | dby B | Meyer    |          |
| Objectiv | e: Conn              | ie Vein (ridg  | e)                   |                                        |                           |            |             |            |           |            |          |          |           |        |       |          |          |
| Observ   | ations In            | tersected Co   | onnie Vein at 70     | 75-72 00 & 74                          | 30-79 25 consisting of    | sericite-a | Itered volc | anics with | sparse-m  | inor qtz - | + py-asp | -gn-sul  | fosalt ve | niets  |       |          |          |
| Mineral  | zation /             | Although zon   | e is relatively w    | vide (approx 18                        | 3 m true width) mine      | ralization | appears v   | ery weak   |           |            |          |          |           |        |       |          |          |
| Dept     | h (m)                |                | Descriptio           | n (Lith / Alt/ Min                     | (Cor)                     | Rec (who   | en < 100%)  |            | Sam       | ple        |          | Rec      | Ag        | Ag     | Au    | As       | Pb       |
| From     | To                   |                |                      |                                        |                           | Rur        | 1 %         | No.        | From      | To         | Lgth     | %        | oz/t      | ppm    | ррб   | ppm      | ppm      |
| 1 83     | 9 60                 | Pale green     | Lapilli Tuff partia  | i welded, clasts u                     | p to 6 cm, few            |            |             |            |           |            |          | 1        |           |        |       |          |          |
|          |                      | scattered br   | reccia-sized class   | s, round vesicular                     | texture, weak             |            |             |            | 1         |            |          | 1        | 1         |        |       |          |          |
|          |                      | selective ch   |                      | cite) alt, no miner                    | alization, tracture       |            |             |            |           |            |          |          |           | 1      |       | ļ        |          |
|          | -                    | surfaces hi    | ocky core 1 83-5     | 0 m sharn confo                        | mable contact with        |            |             | 1          |           |            |          | [        |           | 1      |       | ]        | 1        |
|          |                      | underiving L   | unit at 50° to c a   | e in, enarge eener                     |                           |            |             | 1          |           |            |          |          |           |        |       | ł        | }        |
| 9 60     | 14 10                | Lt grey-gree   | en Lapilli Tuff de   | nsely welded, fiam                     | ime <2 cm length,         | 1          |             |            |           |            | 1        |          | 1         | 1      |       | 1        |          |
|          |                      | eutaxitic foli | ation 50° to c.a,    | weak selective ch                      | orite-calcite alt, bottom | 1          |             |            |           |            |          |          |           |        |       | 1        |          |
|          |                      | 30 cm blead    | ched, frac dens 5    | -10/m (40-70° to c                     | : a ) with lim-hem        |            | ł           |            |           |            |          |          |           | 1      | [     |          |          |
|          |                      | surface & h    | airline calcite veil | nlets, no min, com                     | petent core with few      |            |             | 1          |           |            |          |          | 1         |        |       |          |          |
|          |                      | thin blocky i  | ntervals             |                                        |                           | Į          |             |            |           |            |          | <b>_</b> | ļ         | +      | ļ     |          | ļ        |
| 14 10    | 16 50                | Pale green-    | bleached Lapilli     | i um partial welde                     | 1, clasts <2 5 cm, poor   |            | 1           |            |           |            |          |          |           |        |       |          | ł        |
|          |                      | developed e    |                      | o a, weak selecti                      | ve chionte-calcite, par   |            |             |            |           |            |          |          |           |        |       |          |          |
|          | [                    | /<15 cm) or    | inn nnisininis ur    | Lasis grang spon                       | ston free deas 5-10/m     |            |             |            |           |            |          |          |           |        | ]     |          |          |
|          |                      | (30-80° to c   | a) with lim surfa    | ice. trace diss ov.                    | competent core.           |            |             |            |           |            | 1        |          |           | 1      |       | ľ        |          |
|          | •                    | oradational    | with above unit      |                                        |                           |            |             |            | 1         |            |          |          |           | ]      | 1     | 1        |          |
| 16 50    | 20 30                | Aplite Dike    | cream, aphanitic     | , few intervals of c                   | meam lapilli tuff, weak   |            |             | 1          |           | 1          | -        | 1        |           |        |       |          |          |
|          | 1                    | pervasive s    | ericite alt, patche  | s with very fine lin                   | n spots, no sulfides,     |            |             |            |           |            |          |          |           |        |       |          | }        |
|          |                      | frac dens >    | 15/m (40-60° to c    | a ) mainly subpai                      | railel & x-cutting        | 1          |             |            | 1         |            |          | 1        |           |        | ļ     |          |          |
|          | l                    | hairline lim   | vnits, core is mai   | nly blocky                             |                           | ļ          |             |            | +         |            |          |          |           | +      |       |          |          |
| 20 30    | 25 60                | Cream Lapi     | It Tuff partial we   | ided, minor aplite                     | inclusions, poor          |            | 1           | 197201     | 20 30     | 22 30      | 2 00     | 100      |           | 36     | <2    | 88       | 44       |
|          |                      | eutaxitic fol  |                      | sei chior-ser ait, in                  | ac dens >15/m (x-         |            |             | 197202     | 22 30     | 23 50      | 1 20     | 100      |           | 43     | <2    | 63       | 40       |
|          |                      | zones of bio   | vrku rome            | C2 LIGHTIN IC HILL VIII                | is, no sumues, rew umi    | 1          |             | 197203     | 23 30     | 25 60      | 0.70     | 100      |           | 10.5   | 65    | 1430     | 104      |
| ł        | ļ                    | 23 50-24 20    | ) Intrusive Apilte   | Breccia angular a                      | aokte / laoilli tuff      |            |             | 10/204     | 27 50     | 2000       |          | 1.00     |           | 103    | 05    | 1453     |          |
| [        |                      | fragments 1    | -4 cm in aplitic m   | natrix.                                |                           |            | Ì           | 1          |           |            |          | 1        | 1         | 1      | ]     | [        |          |
|          | 1                    | 24 9-25 5 F    | ault Breccia pale    | yellow, strong pe                      | rv clay-altered gouge     |            |             |            |           |            |          |          | 1         |        | ł.    | ł        | ł        |
|          |                      | with milled i  | apilii tuff fragmen  | its up to 3 cm, cor                    | itact 60° to c a          | 1          |             | 1          |           |            |          |          |           |        | L     |          |          |
| 25 60    | 28 65                | Altered/Frac   | ctured Lapilli Tuff  | pale grey-green,                       | partial welded (clasts    |            |             | 197205     | 25 60     | 26 90      | 1 30     | 100      |           | 43     | 14    | 2063     | 43       |
|          | [                    | generally <0   | ) 5 cm, some up      | to 2 cm), eutaxitic                    | foliation moderately      |            |             | 197206     | 26 90     | 28 65      | 1 75     | 100      |           | 55     | 95    | 5525     | 149      |
|          |                      | developed      | U" to c a, mod-si    | trong perv ser-chk                     | or alt with strong clay-  |            |             |            |           |            |          | 1        |           | 1      | 1     |          |          |
| 1        |                      | blocky soft    | nangs very comn      | non, trac dens >1:                     | vm (u-/u-), generally     |            | Í           |            | 1         | 1          | 1        | 1        | 1         | 1      |       |          | 1        |
|          |                      | 26 90-27 40    | Trace scorodite      | (?) + diss ovote in                    | fractures 0-20° to c a    |            |             |            |           |            |          |          |           |        |       |          |          |
|          |                      | 20 00 27 40    |                      | ······································ |                           |            |             | 1          |           | ľ          |          |          |           |        |       |          |          |
| ł        |                      |                |                      |                                        |                           |            |             |            |           |            |          |          |           |        |       |          |          |

,

i.

-

.

,

•

•

| Dept  | th (m) | Description (Lith / Alt/ Min / Cor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rec (when < | 100%) | 1                                              | Sam                                       | ple                                       |                                      | Rec                             | Ag                                    | Ag  | Au                              | As                                   | Pb                                   |
|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|-----|---------------------------------|--------------------------------------|--------------------------------------|
| From  | To     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Run         | 1%    | No.                                            | From                                      | То                                        | Lgth                                 | <b>%</b>                        | oz/t                                  | ppm | ppb                             | ppm                                  | ppm                                  |
| 28 65 | 33 00  | Pale green-grey/light brown Lapilli Tuff panal welded, clasts<br>generally <0.5 cm, some up to 5 cm, eutaxitic foliation mod<br>developed at 65°, clasts commonly have 1 mm grey qtz rims, mod sel<br>chlor-cal alt, brown color is due to mod-strong lim in dense web-like<br>pattern in matnx, frac dens 5-10/m (0-70° to c a ) as hairline calcite,<br>lim, qtz vnits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |                                                |                                           |                                           |                                      |                                 |                                       |     |                                 |                                      |                                      |
| 33 00 | 57 90  | Light grey-green Lapilli Tuff partial welded, clasts generally <0 5 cm,<br>some up to 5 cm, poor-mod developed eutaxitic foliation (60-70°),<br>mod sel chlor-cal alt, few narrow bleached intervals, web-like mod lim<br>in matnx, frac dens 5-10/m (20-70°), tr diss py, competent core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |       |                                                |                                           |                                           |                                      |                                 |                                       |     |                                 |                                      |                                      |
| 57 90 | 70 75  | Bleached Lapilli Tuff: cream, parts pale green-grey, partial welded as<br>above, few thin brecciated frac zones with volcanic and aplite frags<br>near base, weak sel clay alt + bleaching, sparse cal vnits, abit v fine<br>grained lim spots in mix corn, frac dens >15/m, mainly 40° to c a x-<br>cutting planar-irreg hairline lim, cal, qtz vnits, competent core with few<br>narrow very blocky intervals<br>61 95 Quartz Veinlet 0 5 cm width, clusters py-gn-asp-sulfosalt<br>mineralization 40° to c a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |       | 197207                                         | 68 75                                     | 70 75                                     | 2 00                                 | 100                             | 1 86                                  |     | 53                              | 481                                  | 629                                  |
| 70 75 | 72 00  | *Connie Vein* pale grey-yellow, strong perv ser + wk clay alt, minor<br>thin (<2 cm) qtz vnits with clusters/diss py-asp-gn-sulfosalts, frac<br>dens >15/m (mainly 30-50* to c.a.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       | 197208                                         | 70 75                                     | 72 00                                     | 1 25                                 | 100                             | 22 73                                 |     | 2395                            | 4699                                 | 10215                                |
| 72 00 | 74 30  | Bleached Lapili Tuff' cream-pale grey, wk sel clay alt + bleaching,<br>dense lim spots in mtx, frac dens 10-15/m, (mainly lim), competent<br>core except 10 cm interval of crumbly clay near base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |       | 197209<br>197210                               | 72 00<br>73 30                            | 73 30<br>74 30                            | 1 30<br>1 00                         | 100<br>100                      | 1.03<br>1 10                          |     | 87<br>82                        | 360<br>459                           | 264<br>589                           |
| 74 30 | 79 25  | *Connie Vein* pale yellow-grey to white, mod-strong perv ser alt +<br>patches wk perv sil alt, thin qtz vnits ranging from sparse-common<br>thruout, few thin intervals perv clay-ser alt, contact with above unit<br>40° to c a<br>74 30-74 50 intense semi-massive lim + py with few thin qtz vnits,<br>competent core<br>74 50-75 45 1-2% diss py + vuggy sections and few thin qtz vnits with<br>jar/lim + traces py, competent core<br>75 45-76 00 Strong ser, wk perv sil alt, + adulana(?) crystals, vuggy<br>with 5-10% black sooty sulfides/sulfosalts, trace unoxidized py-asp,<br>core very blocky-crumbly<br>76 00-76 80 1-2% diss py + jar-lim-clay fracs with traces py, parts v<br>soft and blocky to crumbly clay zones<br>76 80-78 60 Mod patchy-perv yellow jar alt, 40 cm section brecciated<br>with hem (aplitic?) matnx, thin qtz vnits common thruout, partly vuggy<br>with trace py + black sulfosalts, competent core<br>78 60-79 25 Weak perv ser + strong sel clay alt, dens frac, blky core. |             |       | 197211<br>197212<br>197213<br>197214<br>197215 | 74 30<br>75 45<br>76 00<br>76 80<br>78 60 | 75 45<br>76 00<br>76 80<br>78 60<br>79 25 | 1 15<br>0 55<br>0 80<br>1 80<br>0 65 | 100<br>100<br>100<br>100<br>100 | 20 58<br>3.21<br>1 84<br>1 21<br>1 73 |     | 2720<br>954<br>260<br>73<br>238 | 10782<br>15375<br>3048<br>261<br>338 | 9554<br>4190<br>1841<br>1473<br>2030 |
| 79 25 | 82 90  | Light brown-grey Lapilli Tuff partial welded, poor dev eutaxitic fol 60-<br>80° to c a, wk sel chlor-cal alt, gradational with above unit (78.60-<br>79 25), spotty brown lim com, frac dens 5-10/m (40-60°) mainly with<br>lim surfaces, competent core with few narrow blocky intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |       |                                                |                                           |                                           |                                      |                                 |                                       |     |                                 |                                      |                                      |

•

• •

-

| Dept     | th (m)   | Description (Lith / Alt/ Min / Cor)                                                                                                                        | Rec (when < 10                                | (%)                |          | Sam      | ole      |          | Rec | Ag                                    | Ag  | Au  | As  | Pb       |
|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|----------|----------|----------|----------|-----|---------------------------------------|-----|-----|-----|----------|
| From     | To       |                                                                                                                                                            | Run                                           | %                  | No.      | From     | То       | Lgth     | %   | oz/t                                  | ppm | ррб | ppm | ppm      |
| 82 90    | 87 50    | Pale green-grey Lapilli Tuff same as above except no spotty lim                                                                                            |                                               |                    |          |          |          |          |     |                                       |     |     |     |          |
| 87 50    | 91 14    | Light-medium green Lapilli Tuff partial welded, grading downward to<br>densely welded, mod sel chlor-cal alt, frac dens 5-10/m (40-70°),<br>competent core |                                               |                    |          |          |          |          |     |                                       |     |     |     |          |
| 91 14    | [        | ЕОН                                                                                                                                                        |                                               | L                  |          |          |          |          |     |                                       |     |     |     |          |
|          |          |                                                                                                                                                            |                                               |                    |          |          |          |          |     |                                       |     |     |     |          |
|          |          |                                                                                                                                                            |                                               |                    |          |          |          |          |     |                                       |     |     |     |          |
|          |          |                                                                                                                                                            |                                               |                    | L        |          |          |          |     |                                       |     |     |     |          |
|          |          |                                                                                                                                                            |                                               |                    |          | L        | L        |          |     |                                       |     |     |     | L        |
|          |          |                                                                                                                                                            |                                               |                    |          |          |          |          |     |                                       |     |     |     |          |
| L        |          |                                                                                                                                                            |                                               | ļ                  |          |          | <u> </u> | <u> </u> |     |                                       |     |     |     |          |
|          | L        |                                                                                                                                                            |                                               | ļ                  |          |          | L        | L        | L   |                                       |     |     |     |          |
|          | ļ        |                                                                                                                                                            | L                                             | ļ                  | L        |          |          |          |     | L                                     |     |     |     | L        |
| L        |          |                                                                                                                                                            |                                               | ļ                  |          |          | I        | Ì        |     | L                                     |     |     |     | L        |
|          |          | ·                                                                                                                                                          | ļ                                             | 1                  |          | L        |          | ļ        |     |                                       |     |     |     | L        |
|          |          |                                                                                                                                                            | <u></u>                                       | <b>_</b>           | ļ        |          | I        | ļ        |     |                                       |     |     |     | L        |
|          |          |                                                                                                                                                            |                                               | <b></b>            |          |          | <u> </u> |          |     | · · · · · · · · · · · · · · · · · · · | ļ   |     |     | L        |
|          | L        |                                                                                                                                                            | '                                             | ·                  |          |          | ļ        | L        |     | ļ                                     |     |     |     | <u> </u> |
|          |          |                                                                                                                                                            |                                               | <u> </u>           |          |          | ļ        | Ļ        | ļ   |                                       |     |     |     |          |
| ļ        | ļ        |                                                                                                                                                            | L                                             | ļ                  |          |          | ļ        | ļ        |     | L                                     | l   |     |     | <b></b>  |
|          | ļ        |                                                                                                                                                            |                                               | <b>I</b>           |          | <b></b>  | ļ        | ļ        | L   |                                       |     |     |     |          |
| ļ        | ļ        |                                                                                                                                                            |                                               | <u> </u>           |          | ļ        | +        |          |     | ļ                                     | ļ   |     |     | ļ        |
| L        |          |                                                                                                                                                            |                                               | <b></b>            |          |          | <u> </u> | └──      |     | L                                     |     |     |     | <u> </u> |
| <u> </u> |          |                                                                                                                                                            |                                               | <b> </b>           |          | L        | ļ        |          | ļ   | L                                     |     |     |     | ļ        |
|          | L        |                                                                                                                                                            |                                               | <b></b>            |          |          |          |          |     |                                       | L   |     |     | ļ        |
| ·        |          |                                                                                                                                                            |                                               | ļ                  |          |          | ļ        |          |     | ļ                                     |     |     |     |          |
|          |          |                                                                                                                                                            |                                               | <b>.</b>           |          | <u> </u> |          | <u> </u> |     |                                       |     |     |     |          |
|          | <b>}</b> | ······································                                                                                                                     | <b> </b>                                      | ļ                  | <u>.</u> | ļ        |          |          |     |                                       |     |     |     |          |
|          | }        |                                                                                                                                                            | <u>↓ · · · · · · · · · · · · · · · · · · </u> |                    |          |          |          | <u> </u> |     |                                       |     |     |     | ·        |
|          |          |                                                                                                                                                            |                                               |                    |          |          |          | ÷        |     |                                       |     |     |     |          |
|          | <u> </u> | · · · · · · · · · · · · · · · · · · ·                                                                                                                      |                                               | <u> </u>           |          |          | <u> </u> | <b> </b> |     | <u> </u>                              |     |     |     |          |
| <u> </u> | <u> </u> |                                                                                                                                                            | <b> </b>                                      | <u> </u> · · · · ∣ |          |          | <u> </u> | <u> </u> |     |                                       |     |     |     | <b>├</b> |
|          | ļ        |                                                                                                                                                            | Į                                             |                    |          |          | <u> </u> | <u> </u> |     | <u> </u>                              |     |     |     |          |
| <u> </u> | <u> </u> |                                                                                                                                                            |                                               | <u> </u>           |          |          | <u> </u> | <u> </u> |     |                                       |     |     |     |          |
|          |          |                                                                                                                                                            | ļ                                             | <u>├</u>           |          | ļ        | <u> </u> | <u> </u> |     |                                       |     |     |     |          |
|          |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                      | <b> </b>                                      | <u> </u>           |          |          | <u> </u> |          |     |                                       |     |     |     | <u> </u> |
|          | ļ        |                                                                                                                                                            | h                                             | <u></u>            |          |          | <b> </b> | <b> </b> |     |                                       | ·   |     |     |          |
| L        |          |                                                                                                                                                            |                                               |                    |          |          |          | L        |     |                                       |     |     |     | 1        |

•

2 7

iii

,

| Diamo     | nd Drill                                                                                                                 | Hole Record                     | (in meters)                            |                         |                                       | Ruby Pr          | roperty -  | Yukon      |           |          |           |            |       | Company   | Tiber   | on Miner | als Ltd. |
|-----------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|-------------------------|---------------------------------------|------------------|------------|------------|-----------|----------|-----------|------------|-------|-----------|---------|----------|----------|
| Hole N    | o RU                                                                                                                     | D99-02                          | Bearing                                | 90° az                  | Collar Coord                          | inates (UTM)     | 6,65       | 2,020N     | Casing    | 1 22 m   | V         | Vater      |       | Start     | 1       | 999-08-0 | 2        |
| Drill De  | epth 63                                                                                                                  | 86                              | Inclination                            | -55°                    |                                       |                  | 48         | 34,400E    | Core D    | iameter  | - HQ 12   | 22-27 43   |       | Finish    | 1       | 999-08-0 | 4        |
| Sample    | es 1972                                                                                                                  | 16-219, 226                     | Survey (acid                           | ) -63°@63 m             | Collar Eleva                          | tion (masl) 1    | 969        | l          |           |          | NQ 27     | .43-63 86  |       | Logge     | ed by B | Meyer    |          |
| Object    | ve Cor                                                                                                                   | nie Vein (sou                   | in slope)                              | 4 05 04 45              |                                       |                  | - 14       |            |           |          |           |            |       |           |         |          |          |
| Ubsen     | ations                                                                                                                   | Intersected Co                  | onnie vein at 3                        | 51 95-34 15 m CC        | prisisting of per                     | vasive sericite- | -altered \ | OICANICS 1 | - very th | n qız-py | -asp(-sui | osait) vei | niets |           |         |          |          |
| - Wilnera | h/m)                                                                                                                     | wineralization                  | Description (                          | Hokinale live in        | CKINESS IS Z U I                      | Recov Juben      | < 100%     | 1          | San       | anle     |           | Pecou      | 40    | <b>An</b> | A.,     | Δe       | Dh       |
| From      | То                                                                                                                       |                                 | Description (L                         |                         | 1                                     | Run              | - 100 %    | Number     | From      | То       | Lngth     | %          | oz/t  | ppm       | pob     | maa      | ppm      |
| 1 22      | 8 30                                                                                                                     | Light-med gre                   | y-green Lapilli T                      | uff densely welded      | t, eutaxitic                          |                  |            |            | 1         |          |           | 1          |       |           |         |          |          |
|           |                                                                                                                          | foliation 40-50                 | ° to c a, mod se                       | lective chlor alt, fra  | c dens 10-                            |                  |            | 1          |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          | 15/m irreg/pla                  | nar 10-80°, mair                       | nly hairline calcite fi | illings + minor                       |                  |            |            |           |          |           |            |       |           |         |          |          |
| 8 30      | 19.00                                                                                                                    | Pale grey broy                  | wal solly Tuff a                       | xy intervals            |                                       |                  | ┼          | +          | +         |          |           | <u> </u>   |       |           |         |          |          |
| 0.00      | 19 00 Pale grey-brown Lapilli Tuff gradational with above unit,<br>weided, clasts mainly <1 cm, some up to 8 cm, mod dev |                                 |                                        |                         |                                       |                  |            |            |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          | eutaxitic fol 50                | -60°, wk sei chi                       | or alt + wk web-like    | texture of                            |                  |            |            |           |          |           |            | 1     | 1         |         |          |          |
|           |                                                                                                                          | mustard color                   | ed jarosite(?), fri                    | ac dens 10-15/m (0      | -70°), mainly                         |                  |            |            |           |          |           |            |       | 1         |         |          |          |
|           |                                                                                                                          | hainine cai tili                | ngs, trace diss p<br>le                | by, competent core      | with numerous                         |                  |            |            |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          | 10 45-10 70 A                   | pinte cream, mo                        | d perv clay-ser alt,    | few strong                            |                  |            |            |           |          |           |            |       | 1         |         |          |          |
|           |                                                                                                                          | lim-jar-hem vr                  | its 60° to c.a                         |                         | · · · · · · · · · · · · · · · · · · · |                  |            |            |           |          |           |            |       |           |         |          |          |
| 19 00     | 24 00                                                                                                                    | Light-med gre                   | y-green Lapilli T                      | uff partial welded,     | poor dev                              |                  |            |            |           |          |           |            | 1     |           |         |          |          |
|           |                                                                                                                          | eutaxitic fol 50                | ", mod sei chior                       | alt, frac dens 10-1     | 5/m, mainly                           |                  |            |            |           | }        |           |            |       |           |         |          |          |
|           |                                                                                                                          | core with bloc                  | kv intervals                           | 114065 0011, 1 4155     | py, competent                         |                  |            |            |           |          |           |            |       |           |         |          |          |
| 24 00     | 31 95                                                                                                                    | Pale grey Lap                   | illi Tuff partial w                    | eided as above, w       | k-mod sel clay-                       | 26 67-27 43      | 61         | 197216     | 29 95     | 31 95    | 2 00      | 90         |       | 68        | 8       | 622      | 122      |
|           |                                                                                                                          | chlor alt, few r                | narrow aplite inte                     | ervals (<20 cm), fra    | c dens >15/m                          | 27 43-28.35      | 46         |            |           |          |           | 1          | 1     |           |         |          |          |
|           |                                                                                                                          | irreg/planar, a                 | pproaching stoc                        | kwork, mainly haid      | ine lim fillings                      | 29 72-30 18      | 78         |            |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          | 26 40-26 60 G                   | Color to rock) +                       | e arev, strong perv     | ser + ciav alt.                       | 30 10-31 24      |            |            |           |          |           |            | 1     |           |         |          |          |
|           |                                                                                                                          | brecciated, 60                  | ° to c a                               | - g ,,                  |                                       |                  |            |            |           |          |           |            |       |           |         |          |          |
| 31 95     | 34 15                                                                                                                    | Connie Vein                     | bale yellow-grey                       | mod perv ser-alte       | red lapilli tuff,                     |                  |            | 197217     | 31 95     | 32 95    | 1 00      | 100        | 8 33  |           | 204     | 34587    | 1406     |
|           |                                                                                                                          | frac dens >15                   | m, irreg-planar,                       | haidine to very thin    | n (2 mm) lim or                       |                  |            | 197218     | 32 95     | 34 15    | 1 25      | 100        |       | 277       | 23      | 8342     | 178      |
|           |                                                                                                                          | quz-sumae vni<br>sulfoselts) as | units microlense                       | s clusters v blkv       | r% py + asp(-                         |                  |            |            |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          | crumbly section                 | ns                                     |                         |                                       |                  |            |            |           |          |           |            |       |           |         |          |          |
| 34 15     | 38 90                                                                                                                    | Pale green-gr                   | ey Lapilli Tuff / A                    | plite partial welde     | d, mod dev                            |                  |            | 197219     | 34 15     | 36 15    | 2 00      | 100        |       | 56        | 3       | 194      | 143      |
|           |                                                                                                                          | eutaxitic fol 70                | )° to c a, mod pe                      | r pale green chior      | + mod sel ser                         |                  |            |            | 1         |          |           | ł          |       |           |         |          |          |
|           |                                                                                                                          | 10/m 10-70° 1                   | o c a mainly ha                        | with ignimonite trag    | js, irac dens o-                      |                  |            |            |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          | clusters v f gr                 | gytz-sulfides(-su                      | ilfosalts?), compete    | ent core with                         |                  |            |            |           |          | -         |            |       |           |         |          |          |
|           |                                                                                                                          | one narrow bl                   | ocky zone                              |                         |                                       |                  |            |            |           |          | -         |            |       |           |         |          |          |
|           |                                                                                                                          |                                 | ······································ |                         |                                       |                  |            |            |           |          |           |            |       |           |         |          |          |
|           |                                                                                                                          |                                 |                                        |                         |                                       |                  |            |            |           |          | 1         |            |       |           |         |          |          |
|           |                                                                                                                          |                                 |                                        |                         |                                       | 1                |            |            | 1         | 1        |           |            |       |           |         |          |          |

•

~

د م

-

÷

| Dep      | th (m)       | Description (Lith / Alt/ Min / Cor)                                                                                                                                                                                                                                                                                          | Recov (when <                         | 100%)     |          | San       | nple     |          | Recov                                         | Ag        | Ag        | Au       | As      | Pb       |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|----------|-----------|----------|----------|-----------------------------------------------|-----------|-----------|----------|---------|----------|
| From     | То           |                                                                                                                                                                                                                                                                                                                              | Run                                   | %         | Number   | From      | To       | Lngth    | %                                             | oz/t      | ppm       | ppb      | ppm     | ppm      |
| 38 90    | 41 60        | Aplite Dike pale green-grey, aphanitic, cream colored<br>ignimbite xenoliths (<1 cm) com, few narrow lapilli tuff<br>intervals, mod perv pale green chlor +mod sel ser alt, frac dens<br>5-10/m with lim-ser fillings, tr diss py +clstrs v f gr qtz-sulfides(-<br>sulfosalts?), competent core                              |                                       |           | 197226   | 39 00     | 41 00    | 2 00     | 100                                           |           | 22        | 8        | 23      | 60       |
| 41 60    | 55 50        | Pale-light green-grey Lapilli Tuff partial welded, cream-pale<br>green pumice/fiamme, poor dev eutaxitic fol, mod sel pale<br>green chlor alt, no mineralization, competent core with few<br>narrow blocky zones<br>46 60-47 30 Intensely frac (>15/m) with strong lim/sulfide (py-<br>asp-gn(-sulfosalt) vnlts, very blocky | 45 11-46 63<br>46 63-47 40            | 87<br>87  |          |           |          |          |                                               |           |           |          |         |          |
| 55 50    | 63 86        | Light grey-brown Lapilli Tuff partial welded, it-med green<br>chlontic pumice/fiamme, poor dev eutaxitic fol, 50-60° to c a,<br>mod sel chlor alt, frac dens 5-10/m (0-70°), mainly with lim vnlts<br>+ mnr calcite, no mineralization, competent core                                                                       | 63 40-63 86                           | 78        |          |           |          |          |                                               |           |           |          |         |          |
| 63 86    |              | ЕОН                                                                                                                                                                                                                                                                                                                          |                                       |           |          |           |          |          |                                               |           |           |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       |           |          |           |          |          |                                               |           |           |          |         |          |
|          | L            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                        |                                       |           |          | ļ         | I        |          |                                               | <u> </u>  | L         |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       | <u> </u>  |          | <u> </u>  | ļ        | ·        | ļ                                             |           | ļ         |          |         | ļ        |
|          |              |                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · | +         |          | h         |          | ļ        |                                               | <u> </u>  |           |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       |           |          |           |          |          |                                               |           | ·····     | <u> </u> |         | ·        |
|          | +            |                                                                                                                                                                                                                                                                                                                              |                                       |           |          | +         | +        |          |                                               | <u>} </u> |           |          |         | <u> </u> |
| <b> </b> | <del> </del> |                                                                                                                                                                                                                                                                                                                              |                                       | +         |          |           | <u> </u> |          |                                               | ·         | <u> </u>  | +        |         |          |
| <u> </u> | +            |                                                                                                                                                                                                                                                                                                                              | +                                     | 1         |          |           | +        | 1        | <u> </u>                                      | +         |           |          |         |          |
|          | 1            |                                                                                                                                                                                                                                                                                                                              |                                       | +         | 1        | 1         | h        |          | <u>†                                     </u> |           | <u> </u>  |          |         |          |
|          | <u> </u>     |                                                                                                                                                                                                                                                                                                                              |                                       |           |          |           | 1        |          |                                               | · ·       | 1         |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       |           |          |           |          |          |                                               |           |           |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       |           |          |           | [        |          |                                               |           |           |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       |           | L        |           |          | ļ        | l                                             |           |           |          |         |          |
|          | ┝            |                                                                                                                                                                                                                                                                                                                              |                                       |           |          | ļ         | ļ        |          |                                               |           |           |          |         |          |
| <u> </u> |              |                                                                                                                                                                                                                                                                                                                              |                                       |           |          | ļ         | <u> </u> | L        | I                                             |           |           |          |         | Ļ        |
|          | <u> </u>     |                                                                                                                                                                                                                                                                                                                              | ļ                                     |           | ļ        |           | ļ        |          | ļ                                             | <u> </u>  | <u> </u>  | ļ        |         | L        |
| <b></b>  | <b> </b>     | ······································                                                                                                                                                                                                                                                                                       |                                       | - <b></b> |          |           | <u> </u> |          |                                               | <u> </u>  | · · · · · |          |         | <u> </u> |
|          | <u> </u>     |                                                                                                                                                                                                                                                                                                                              |                                       | +         |          | <u> </u>  | <u> </u> | <u> </u> | +                                             | <u> </u>  | <u> </u>  |          | ··      |          |
|          |              |                                                                                                                                                                                                                                                                                                                              |                                       | +         |          | · · · · · |          |          |                                               | <u> </u>  |           |          |         |          |
| <b></b>  | +            |                                                                                                                                                                                                                                                                                                                              |                                       | +         |          | +         | +        | <u> </u> | <u>├</u>                                      | <u> </u>  | +         |          |         | <u> </u> |
| <u> </u> | <u> </u>     |                                                                                                                                                                                                                                                                                                                              |                                       |           | ····     | <u> </u>  | 1        | <u> </u> | <u> </u>                                      | <u>├</u>  | <u>├</u>  |          |         |          |
|          |              |                                                                                                                                                                                                                                                                                                                              | <u>+</u>                              | +         | <u> </u> | <u>+</u>  | <u> </u> | <u> </u> | <u> </u>                                      | <u> </u>  | <u> </u>  |          |         | h        |
|          |              |                                                                                                                                                                                                                                                                                                                              | <u>}</u>                              | 1         | <u> </u> |           | 1        | <u> </u> | <u> </u>                                      | <u> </u>  | <u> </u>  |          | ~~ ···· |          |
|          | 1            |                                                                                                                                                                                                                                                                                                                              |                                       | 1         |          |           | t        | t        | <u> </u>                                      | t         | t         |          |         |          |
| [        | 1            |                                                                                                                                                                                                                                                                                                                              |                                       |           |          | <u> </u>  |          | t        | · · · · · ·                                   | 1         |           |          |         | ·        |

.

| ······   |                   |                |                                     |                                           |                                      |                        |         |            |           |           |            |          |            |            |           |                 |          |
|----------|-------------------|----------------|-------------------------------------|-------------------------------------------|--------------------------------------|------------------------|---------|------------|-----------|-----------|------------|----------|------------|------------|-----------|-----------------|----------|
| Diamor   | <u>nd Drill H</u> | ole Record     | (in meters)                         |                                           |                                      | Ruby Property          | - Yuk   | on         |           |           |            |          | Co         | mpany      | Tibero    | <u>on Miner</u> | als Ltd. |
| Hole No  | D RUD             | 99-03          | Bearing                             | 250°az                                    | Collar Coordinates                   | (UTM). 6,65            | 52,201  | IN Cas     | ing 183   |           | Water      |          |            | Start      | 1         | 999-08-0        | 19       |
| Drill De | pth 121:          | 31             | Inclination                         | -55°                                      |                                      | 4                      | 34,45   | DE Core    | e Diamete | er - HQ   | 1 83-21    | 79       |            | Finish     | 1         | 999-08-1        | 2        |
| Sample   | s: 19722          | 0-225          | Survey (acid)                       | -61°@ 121 m                               | Collar Elevation (mr                 | isl) <sup>-</sup> 1943 |         |            |           | NQ.       | 21 79-1    | 21 31    |            | Logged     | iby 8     | Meyer           |          |
| Objectiv | ve. Steve         | Vein           |                                     |                                           |                                      |                        |         |            |           |           |            |          |            |            |           |                 |          |
| Observ   | ations N          | o vein inters  | ected Few sc                        | attered thin inter                        | vals of weakly minera                | lized veinlets         |         |            |           |           |            |          |            |            |           |                 |          |
| Mineral  | zation: 36        | 5 10-36 40·3   | thin (<1 cm) sem                    | n-mas sulfide-qtz v                       | /nits. py>an>cp 57 6-58              | 75. Tr py-an in lir    | n vnlts | . 71 25-71 | 58. Steve | Vein? der | nsely frac | dured. s | trong Im-i | ar filling | & few thi | n calcite/      | ov vnits |
| 96 20-97 | 7.60 & 98 3       | 0-99 60 1-29   | 6 sulfides (py-gn                   | -sp-ср)                                   |                                      |                        |         |            |           |           |            |          |            | •          |           |                 | •        |
| Dept     | th (m)            |                | Descriptio                          | n (Lith / Alt/ Min /                      | / Cor)                               | Rec (when < 1          | 00%)    |            | Sam       | ple       |            | Rec      | Ag         | Ag         | Au        | As              | Pb       |
| From     | To                |                |                                     |                                           |                                      | Run                    | %       | No.        | From      | To        | Lgth       | %        | oz/t       | ppm        | ppb       | ppm             | ppm      |
| 1 83     | 10 80             | Medium gre     | y-green Lapilli Ti                  | uff dens welded, v                        | vell dev eutaxitic fol               |                        |         |            |           |           |            |          |            |            |           |                 |          |
|          |                   | 45-55° to c    | a, dk green chlor                   | -alt fiamme, irreg/r                      | planar frac dens 10-                 |                        |         | 1          |           | 1         |            |          |            |            |           |                 |          |
|          |                   | 15/m (maini    | y 50-70°), hairlini                 | e calcite fillings co                     | m, tr lim, tr diss py,               |                        |         |            |           |           |            | 1        |            |            |           | 1 1             |          |
|          | ļ                 | DIKY-V DIKY C  |                                     | ad alread and day                         | ulum alt faultioouan at              |                        |         |            |           |           | 1          | 1        |            |            |           | {               |          |
|          |                   | 40° to c a     | a eanirorange mu                    | ou-strong pervicay                        | /-intrait laulugouge at              |                        |         |            |           |           |            |          |            |            |           | 1               |          |
| 10.80    | 41.50             | Light grey-g   | reen Laouli Tuff                    | orades to brown-c                         | rev partial welded                   |                        | +       | 197225     | 36 10     | 36.40     | 0.30       | 100      | 13 58      |            | 3007      | 229             | 4685     |
|          | 1.00              | oradational    | with above unit.                    | eutaxitic fol 50° to                      | c a, wk sei chior alt of             |                        |         |            |           |           |            |          |            |            |           |                 |          |
| 1        | ]                 | fiamme, qtz-   | -kspar mtx, irreg/                  | /planar frac dens 1                       | 0-15/m, hairline calcite             |                        |         |            |           |           |            |          | 1          |            |           | 4               | 1        |
|          |                   | vnits com, n   | o mineralization,                   | , core is hard, com                       | petent                               |                        | 1       |            |           |           |            | 1        |            |            |           | \$              | Į        |
| 1        |                   | 17 68-18 18    | Aplite Dike crea                    | am colored, mod p                         | erv ser alt, 2 cm wide               |                        |         |            |           | 1         |            | 1        |            |            |           |                 |          |
|          |                   | calcite vnlt a | it 30° to c a with                  | i lim selvage                             |                                      |                        |         |            |           |           |            | 1        |            |            |           |                 | 1        |
|          |                   | 36 10-36 40    | 3 thin (<1 cm) s                    | semi-mas sulfide-q                        | itz vnits, py>gn>cp at               |                        |         |            |           |           |            |          |            |            |           | 1               | 1        |
| 41.60    | GAEE              | 30-40° 10 C    | A                                   | unomagina lacilli a                       |                                      |                        | +       | 107220     | 40.60     | 40.00     | 0.20       | 100      | £ 42       |            | 204       | 42402           | 7070     |
| 41.50    | 04 55             | Light blown    | unt mod weider                      | increasing rapini c<br>well dev entaxitir | c fol 50-60° to c a pale             |                        |         | 197220     | 57 60     | 59 75     | 1 1 15     | 100      | 513        | 75         | 204       | 42193           | 672      |
| 1        |                   | oreen chior-   | alt fiamme, frac                    | dens 5-10/m (med/                         | planar, mainly 20-50°.               |                        |         |            |           |           |            |          |            |            | - '       | 2400            | 0.2      |
|          |                   | hairline calc  | ate volts com, tr (                 | diss py, competent                        | cor except 49 45-                    |                        |         |            |           |           |            |          |            |            |           |                 |          |
|          |                   | 50 20 v biky   | to crumbly                          |                                           | •                                    |                        |         |            | 1         |           |            | 1        |            |            |           |                 |          |
|          | ł                 | 48 95-51 15    | <ul> <li>Mod lim fracs 8</li> </ul> | k fiamme nms, stro                        | ong perv ser alt at 49 6-            |                        |         |            |           |           |            |          | {          |            |           |                 |          |
|          |                   | 49 9 m, core   | is crumbly                          |                                           |                                      |                        | 1       |            |           |           |            |          |            |            |           |                 |          |
|          |                   | 54 0-58 75     | Thin lim vnits co                   | m                                         |                                      |                        |         |            |           |           |            |          |            |            |           |                 |          |
| 64.55    | 69.50             | 5/ 0-38 / 3    | If py-gn in lim vi                  | nits                                      | have unit ended                      |                        | +       |            |           |           |            | <u> </u> | <u> </u>   |            |           |                 | <u> </u> |
| 64 55    | 00 30             | weided poo     | grey Lapin i un j                   | yrauadunal with at                        | con 6% up to 6 cm                    |                        | 1       |            |           |           |            |          |            |            |           | '               | 1        |
|          |                   | wk sel chlor   | alt of clasts 5-1                   | 0% lithic clasts fra                      | ac dens < 5/m traiss                 |                        |         |            |           |           | 1          | 1        |            |            |           |                 | 1        |
| 1        |                   | ov. compete    | ant core                            | 0.10 (11.110 0.2010), 114                 |                                      |                        | }       |            |           |           |            | ł        |            |            | ł         | ا<br>ا          |          |
|          | 1                 | 68 00-68 50    | Polymict clast-                     | supported lapili-ag                       | glomerate(?), clasts                 |                        |         |            |           |           |            |          |            |            |           |                 |          |
|          |                   | up to 8 cm     | •                                   |                                           | · · · ·                              |                        |         |            |           |           |            |          |            |            |           | 1               | Í        |
| 68 50    | 75 48             | Cream-colo     | red Lapilli Tuff: n                 | onwelded, kspar p                         | hync (sparce),                       | 69 50-72 54            | 97      | 197222     | 71 25     | 71 58     | 0 33       | 99       |            | 50         | 7         | 1114            | 337      |
|          |                   | pumice/lithic  | clasts generally                    | / <1 cm, frac dens                        | >15/m, irreg/x-cutting,              |                        |         |            |           |           | 1          |          |            |            |           |                 |          |
|          |                   | with hairline  | lim fillings & mn                   | r calcite, spotty lim                     | i thru-out, rare diss                |                        | 1       |            | 1         |           | 1          |          |            |            |           |                 | 1        |
| ļ        | 1                 | Suindes, Cor   | npetent core exc                    | xept / 1 25-/1 58 m                       | i v Diky<br>th atrana lun und filter | 1                      |         |            |           | 1         |            |          |            |            |           | į l             | i i      |
| 1        | 1                 | 2 few this of  | en veinv everc                      | insely fractured with                     | us suong iim-jar niing<br>to c a     | 1                      |         |            |           |           |            |          |            |            |           |                 | 1        |
|          | ł                 |                | worden Aure ah                      |                                           |                                      |                        |         |            | 1         |           |            | 1        |            |            |           |                 | 1        |
|          |                   |                |                                     |                                           |                                      | 1                      |         |            |           |           |            | ,        |            |            |           |                 |          |

.

,

ì

\*

| Dept   | h (m)     | Description (Lith / Alt/ Min / Cor)                                                                                                                                                                                                                                                                                        | Rec (when < 10                            | )0%)         |                  | Sam            | ple                                   |                                       | Rec        | Aq       | Aq           | Au      | As      | Pb           |
|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|------------------|----------------|---------------------------------------|---------------------------------------|------------|----------|--------------|---------|---------|--------------|
| From   | То        |                                                                                                                                                                                                                                                                                                                            | Run                                       | %            | No.              | From           | To                                    | Lgth                                  | %          | oz/t     | ppm          | ppb     | ppm     | ppm          |
| 75 48  | 90 45     | Pale green-grey Lapili Tuff(?) nonwelded, clasts generally <1 cm,<br>inhic clasts com, wk sel chlor alt, frac dens 5-10/m, irreg halrine<br>chlor, calcite, qtz vnlts, no sulfides, competent hard core<br>78 50-78 95. Clast-supported lapilli-agglomerate, clasts up to 8 cm                                             |                                           |              |                  |                |                                       |                                       |            |          |              |         |         |              |
| 90 45  | 96 20     | Bleached-cream colored Lapilli Tuff' nonwelded, wk sei ser-chior alt,<br>spotty lim com, frac dens 10-15/m (mainly 10-40°), hailine lim filling &<br>scattered calcte vnits up to 1 cm, biky sections at 91 45-91 65 m &<br>93 8-94 5 m<br>91 45-91 65 Mod lim clay-chlor gouge.                                           |                                           |              |                  |                |                                       |                                       |            |          |              |         |         |              |
| 96 20  | 101 70    | Pale grey Lapilli Tuff' nonwelded, mainly clast supported, pumice<br>clasts up to 12 cm, tube vesicle texture (qtz-kspar), wk perv sil,<br>irreg/planar frac dens 5-10/m (mainly 20-50°)<br>96 20-97 60 & 98 30-99 60 1-2% sulfides (py-gn-sp-cp) as clstrs &<br>discontinuous microlenses within mbx, competent hard core |                                           |              | 197223<br>197224 | 96 20<br>98 30 | 97 60<br>99 60                        | 1 40<br>1 30                          | 100<br>100 |          | 21 3<br>14 5 | <2<br>4 | 41<br>7 | 1872<br>1148 |
| 101 70 | 107 60    | Pale grey-cream colored Lapilli Tuff nonwelded, pumice/clasts<br>mainly <.5 cm, wk sel sil-ser alt, spotty lim com, no sulfides,<br>competent core                                                                                                                                                                         |                                           |              |                  |                |                                       |                                       |            |          |              |         |         |              |
| 107 60 | 121 31    | Light-medium green Lapili Tuff nonwelded, 10-15% dk green chlonte<br>in mtx, 20-30% clasts, frac dens <5/m (40-70°), lim fillings, no<br>sulfides, competent core                                                                                                                                                          |                                           |              |                  |                |                                       |                                       |            |          |              |         |         |              |
| 121 31 |           | ЕОН                                                                                                                                                                                                                                                                                                                        | L                                         | ļ            |                  | ļ              | <u> </u>                              | <u> </u>                              |            |          |              |         |         | ļ            |
|        |           |                                                                                                                                                                                                                                                                                                                            | ļ                                         | <u> </u>     |                  |                |                                       | <b> </b>                              | —          | L        |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | +            |                  | <u> </u>       | <u> </u>                              |                                       |            | <u> </u> |              |         |         | <b> </b>     |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | <u> </u>     |                  |                |                                       | <u>+</u>                              |            |          |              |         |         | <u> </u>     |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | +            |                  |                | +                                     | +                                     |            |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | +            |                  |                | +                                     | +                                     |            | <u> </u> |              |         |         |              |
|        |           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                      |                                           | +            |                  | +              |                                       | +                                     |            |          | <u> </u>     |         |         |              |
|        | · · · · · |                                                                                                                                                                                                                                                                                                                            | t                                         | 1            |                  |                |                                       |                                       |            | <b></b>  |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           |              |                  |                |                                       | 1                                     | 1          |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           |              |                  |                |                                       |                                       |            |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           |              |                  |                |                                       |                                       | L          | <br>     |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | Ļ            |                  | ļ              |                                       | ļ                                     |            |          |              |         |         |              |
|        | <u> </u>  |                                                                                                                                                                                                                                                                                                                            |                                           | <u> </u>     |                  |                | · · · · · · · · · · · · · · · · · · · | <b></b>                               | <b></b>    | ļ<br>    |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | <b></b>      |                  |                |                                       | <b> </b>                              |            | ļ        |              |         | ·····-  | ļ            |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | <b> </b>     |                  |                |                                       |                                       |            | <u> </u> |              |         |         |              |
| J      |           |                                                                                                                                                                                                                                                                                                                            |                                           | <del> </del> |                  |                |                                       | <u> </u>                              | <u> </u>   | <b>_</b> |              |         |         |              |
| ┝┥     |           |                                                                                                                                                                                                                                                                                                                            | <u> </u>                                  | –            |                  |                | <u> </u>                              | +                                     | <u> </u>   |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            | <u> </u>                                  | ╉────        | <b> </b>         | <u> </u>       | <u> </u>                              | <u> </u>                              | <b> </b>   |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | +            |                  |                | +                                     | +                                     |            |          |              |         |         | <u> </u>     |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | +            |                  | <u> </u>       |                                       | <u> </u>                              | <b> </b>   |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            |                                           | <u> </u>     |                  | <u> </u>       |                                       |                                       | 1          |          |              |         |         |              |
|        |           |                                                                                                                                                                                                                                                                                                                            | A real of the second second second second |              |                  |                |                                       | · · · · · · · · · · · · · · · · · · · |            |          |              |         |         |              |

•

ŧ.

.

1

| Diamor   | nd Drill H | ole Record                                                                                                                                                      | (in meters)                                                                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                                                     | Ruby Prope | orty - Yuk          | on       |           |        |         |         | C       | mpany    | Tibero | on Miner | als Ltd. |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|----------|-----------|--------|---------|---------|---------|----------|--------|----------|----------|
| Hole No  | RUD        | 99-04                                                                                                                                                           | Bearing                                                                                                                                                                                                                   | 250°az                                                                                                                                                                               | Collar Coordinates                                                                                                                                                                                                  | (UTM)      | 6,652,20            | IN Cas   | ing 183   |        | Water   | ***     |         | Start    | 1      | 999-08-1 | 2        |
| Drill De | pth 139    | 50                                                                                                                                                              | Inclination                                                                                                                                                                                                               | -70°                                                                                                                                                                                 |                                                                                                                                                                                                                     | • •        | 484,45              | DE Cor   | e Diamete | r - HQ | 1 83-12 | 19      |         | Finish   | 1      | 999-08-1 | 5        |
| Sample   | s 19722    | 27-229                                                                                                                                                          | Survey (acid)                                                                                                                                                                                                             | -70° @ 139                                                                                                                                                                           | Collar Elevation (ma                                                                                                                                                                                                | asi) 1943  |                     |          |           | NQ     | 12 19-1 | 39 60   |         | Logge    | by B   | Meyer    |          |
| Objectiv | e Steve    | Vein                                                                                                                                                            | ······                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                     |            |                     |          |           |        |         |         |         |          |        |          |          |
| Observ   | ations N   | o vein encoi                                                                                                                                                    | untered                                                                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                                                                     |            |                     |          |           |        |         |         |         |          |        |          |          |
| Mineral  | zation 1   | lo significan                                                                                                                                                   | t mineralization                                                                                                                                                                                                          | encountered                                                                                                                                                                          |                                                                                                                                                                                                                     | <u> </u>   |                     |          |           |        |         | <u></u> | <b></b> | <b>_</b> |        |          | <u></u>  |
| Dept     | h (m)      |                                                                                                                                                                 | Descriptio                                                                                                                                                                                                                | n (Lith / Alt/ Min                                                                                                                                                                   | / Cor)                                                                                                                                                                                                              | Rec (when  | <u>1 &lt; 100%)</u> | <u> </u> | Sam       | ple    |         | Rec     | Ag      | Ag       | Au     | As       | Pb       |
| From     | To         |                                                                                                                                                                 |                                                                                                                                                                                                                           | T. 10. 4                                                                                                                                                                             |                                                                                                                                                                                                                     | Run        |                     | No.      | From      | To     | Lgth    | 70      | oz/t    | ppm      | рръ    | ppm      | ppm      |
| 183      | 36 70      | Light-med g<br>at 60° to c a<br>10/m (30-50<br>1 83-5 18m<br>8 50-10 50<br>& bleached<br>13 15-14 30<br>18 80-19 95<br>qtz-kspar m<br>downward t<br>32 90-34 00 | (rey-green Lapili<br>a, dk green chlor<br>o'), hairline calcit<br>& 13 15-14 30 m<br>Frac dens >15/n<br>kspar(?) altered<br>Frac dens >15/o<br>Mottled pink &<br>tx, angular-sbrd<br>o irreg microbrec<br>Frac dens >15/o | Tuff dens weided<br>fiamme <1 cm, <5<br>e, Im, chior fillings<br>h<br>m (0-50°), mod-st<br>green intrusive(?)<br>lapilit tuff fragmen<br>coated frac fillings<br>(m with irreg dk gr | I, well dev eutaxitic fol<br>1% lithics, frac dens 5-<br>3, tr diss py, v biky core<br>1 chior with mnr calcite<br>rong thin lim fillings<br>breccia with pinkish<br>is up to 4 cm, grading<br>een chior vnits with |            |                     |          |           |        |         |         |         |          |        |          | •        |
| 36 70    | 51 60      | pinkish qtz-<br>Brown-grey<br>well dev eut<br>up to 2 cm,<br>kspar, tr v f<br>welded with                                                                       | Kspar alt margin<br>Lapilli Tuff light<br>taxitic fol at 60-70<br>frac dens 5-10/n<br>gr py diss, comp<br>i light & dk green                                                                                              | s and mnr calcite<br>green fiamme/lith<br>0°, fiamme up to 4<br>1 (40-70°), mainly<br>etent core, bottom<br>clasts                                                                   | vnits<br>c clasts, dens welded,<br>cm long, 10% clasts<br>hairline calcite & qtz-<br>e 2 m grading to partial                                                                                                       |            |                     |          |           |        |         |         |         |          |        |          |          |
| 51 60    | 67 65      | Pale grey L<br>mainly med<br>phenos 2 m<br>10/m (40-70<br>no sulfides,<br>64 70-67 65<br>pts brecciat                                                           | apilli Tuff partial<br>-dk gm fiamme/p<br>im com, 5-10% ir<br>)°), hairline dk gr<br>competent core<br>5 Parts mottled p<br>ed with gm chlor                                                                              | welded, poor dev<br>pumice <1 cm, cre-<br>thic fragmentals u<br>een chlor, qtz-ksp<br>pale grey/med gred<br>fillings/mtx & qtz-                                                      | eutaxitic foi at 65°,<br>am colored kspar<br>p to 2 cm, frac dens 5-<br>ar & tr calcite fillings,<br>an, frac dens >15/m,<br>kspar frags                                                                            |            |                     |          |           |        |         |         |         |          |        |          |          |
| 67 65    | 70 20      | Pale green-<br>alt, frac den                                                                                                                                    | grey/cream Lapi<br>is <5/m, haidine (                                                                                                                                                                                     | li Tuff partial weld<br>calcite vnits, no su                                                                                                                                         | ied, wk sel chlor-clay<br>Ifides, competent core                                                                                                                                                                    |            |                     |          |           |        |         |         |         |          |        |          |          |
| 70 20    | 76 30      | Paie grey-g<br>5-10/m, hau                                                                                                                                      | reen Lapilli Tuff<br>rline calcite & tr li                                                                                                                                                                                | partial welded, wk<br>m vnits, no sulfide                                                                                                                                            | sel chlor alt, frac dens<br>s, competent core                                                                                                                                                                       |            |                     |          |           |        |         |         |         |          |        |          |          |
| 76 30    | 79 46      | Lapilistone<br>sbang, class<br>vesicle text<br>frac dens <                                                                                                      | /Lapilli Agglomer<br>t supported, clas<br>ure com, parts w<br>5/m with lim & ca                                                                                                                                           | ate pate grey-gree<br>ts mainly <3 cm, o<br>th 10% lithic clast<br>lote fillings, tr diss                                                                                            | en, nonwelded, sbrd-<br>ne frag 30 cm, tube<br>s,lt-dk green chlor mtx,<br>s py, competent core.                                                                                                                    |            |                     |          |           |        |         |         |         |          |        |          |          |
| 79 46    | 80 90      | Pale grey-g                                                                                                                                                     | reen Lapilli Tuff                                                                                                                                                                                                         | same as 70 20-76                                                                                                                                                                     | 30                                                                                                                                                                                                                  |            |                     |          |           |        |         |         |         |          | 1      |          |          |

,

------

I

•

| Dept     | :h (m)   | Description (Lith / Alt/ Min / Cor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rec (when < 10 | 0%)      |                            | Sam                     | ple                     |                      | Rec               | Ag                                    | Ag              | Au     | As               | Pb            |
|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------------------------|-------------------------|-------------------------|----------------------|-------------------|---------------------------------------|-----------------|--------|------------------|---------------|
| From     | To       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run            | %        | No.                        | From                    | To                      | Lgth                 | %                 | oz/t                                  | ppm             | ppb    | ppm              | ppm           |
| 80 90    | 139 60   | Pale green-grey Lapilli Tuff nonwelded, gradational with above unit,<br>5% cream colored mod clay alt clasts <1 cm to 110 m, wk sel chlor<br>alt slightly coarser grained mtx, tube vesicle texture com, frac dens 5-<br>10/m (mainly 10-30°), calcite vnits (hairline-1 5 cm) & tr lim vnits, no<br>sulfides, competent core<br>80 90-82 30 spotty-patchy web-like mod lim alt<br>86 06-86 86 Aplite dike cream, aphanitic, no volc frags, wk sel ser-<br>chlor alt, irreg/planar frac dens >15/m (20-30° to c a ), hairline-4 mm<br>calcite & strong lim vnits<br>89 20-90 25 3 thin ( 5 cm) drusy qtz vnits with strong lim boxwork,<br>30° to c a<br>93 25-98 60 Few calcite-lim vnits 5-2 cm width 10-20° toc a<br>103 4-104 5 Spotty mod lim com<br>107 3-108 4 Few calcite-lim vnits 5-1 5 cm width, within mod ser alt<br>rock. | 92 66-93 27    | 84       | 197227<br>197228<br>197229 | 86 06<br>89 20<br>94 75 | 86 86<br>90 25<br>95 60 | 0 80<br>1 05<br>1 85 | 100<br>100<br>100 |                                       | 2 1<br>< 3<br>8 | 7 22 2 | 288<br>573<br>11 | 20<br>11<br>3 |
| 139 60   | <b> </b> | EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | <u> </u> |                            | +                       |                         | L                    |                   | <u> </u>                              |                 |        |                  |               |
| 10000    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | 1                       |                         |                      |                   | <u> </u>                              |                 |        | }                |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            |                         |                         |                      |                   |                                       |                 |        |                  |               |
| [        | [        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | ļ                       | <b></b>                 | <b></b>              | <b>_</b>          |                                       |                 |        | ļ                |               |
| J        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>       | <u> </u> |                            | <u> </u>                | <u> </u>                | <u> </u>             | <u> </u>          |                                       |                 |        |                  | ļ             |
| <u> </u> | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b></b>        | ──       |                            | <u> </u>                | <b> </b>                |                      |                   |                                       |                 |        | <u> </u>         |               |
| <u> </u> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | ╂        |                            |                         | <u> </u>                | <u> </u>             |                   |                                       |                 |        | {                |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | <u> </u> |                            | <u>†</u>                | <u> </u>                |                      | <b> </b>          |                                       |                 |        |                  |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>       |          |                            | 1                       |                         |                      |                   |                                       |                 | ·      |                  |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | <u> </u> |                            |                         |                         |                      |                   | · · · · · · · · · · · · · · · · · · · |                 |        |                  | r             |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | T                       |                         |                      |                   |                                       |                 |        |                  |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            |                         |                         |                      |                   |                                       |                 |        |                  |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            |                         |                         |                      |                   |                                       |                 |        |                  |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            |                         |                         |                      |                   |                                       |                 |        |                  |               |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | L                       | ļ                       |                      |                   | <u> </u>                              |                 |        |                  |               |
| ļ        | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ļ              |          |                            | <u> </u>                | L                       |                      |                   |                                       |                 |        |                  | L             |
| L        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | İ              |          |                            |                         |                         |                      | L                 | ļ                                     |                 |        |                  | L             |
| J        | ļ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | <b> </b>                | · · · · · ·             |                      |                   |                                       |                 |        |                  | L             |
|          | ļ        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |                            | ļ                       | ļ                       |                      |                   |                                       |                 |        |                  | ļ             |
|          | <b> </b> | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ļ              | +        |                            | <u> </u>                | <b> </b>                |                      | <b> </b>          |                                       |                 |        |                  | <b> </b>      |
|          | <b>├</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | <u> </u>                | ┣────                   | <u> </u>             |                   |                                       |                 |        |                  | <b> </b>      |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                            | ┼───                    |                         | <u> </u>             |                   | <b> </b>                              |                 |        |                  |               |
| <u> </u> | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>       | <u> </u> |                            | ┟┄───                   | ┟                       |                      |                   | <u> </u>                              |                 |        |                  | <u> </u>      |
|          | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f              |          |                            | <b> </b>                | <u>├</u>                | <b>├</b>             |                   | <u> </u>                              |                 |        |                  | <u> </u>      |
| <b> </b> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>       |          |                            | <u> </u>                | <u> </u>                |                      |                   |                                       |                 |        |                  |               |
| L        | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L              | L        | L                          | L                       | L                       |                      |                   | L                                     | لمستحملا        |        |                  |               |

•

-

iı

APPENDIX VI

1

RUBY PROPERTY - DRILL CORE GEOCHEMICAL ANALYSIS CERTIFICATES

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) V6A 1R6 PHONE (604) 253 - 3158 FAX (604) 253

GEOCHEMICAL ANALYSIS CERTIFICATE

ST. VANCOUVER BC

**A**A

Tiberon Minerals Ltd. PROJECT RUBY File # 9902912 950 - 550 - 6th Ave S.W., Calgary AB T2P 0S2

Έ.

HASTINGS

852

| SAMPLE#         | : Mo<br>(ppn | ) Cu<br>1 ppm | Pb<br>ppm | Zn<br>ppm | Ag<br>ppm  | N 1<br>ppm | Co<br>ppm | Mn<br>ppm | Fe<br>%  | As<br>ppm | U<br>ppm | Au<br>ppm | Th<br>ppm | Sr<br>ppm | Cd<br>ppm | Sb<br>ppm  | Bı<br>ppm | v<br>ppm | Ca<br>% | P<br>% | La<br>ppm | Cr<br>ppm | Mg<br>% | Ba      | τ<br>1<br>% pp | B<br>n     | Al<br>%    | Na<br>%  | к<br>% р   | w<br>W     | ti<br>pomin | Hg<br>ppm | Au**<br>ppb |
|-----------------|--------------|---------------|-----------|-----------|------------|------------|-----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------|------------|-----------|----------|---------|--------|-----------|-----------|---------|---------|----------------|------------|------------|----------|------------|------------|-------------|-----------|-------------|
| 0 107201        | 1            | : 10          | 6.6       | 118       |            | <br>د ا    | <br>z     | 1060      | <br>۵ 10 | RR        | ج۶       | دى        | 5         | 24        | 1 2       | ~3         | τ         | 5        | 56      |        | 34        | 5         | - 16    | 1120    | n1 ~           | ۲.         | <b>6</b> 7 | ٥،       | 25         | ~2         |             | د1        |             |
| D 107202        |              | 10            | 44        | 266       | 2.0<br>/ Z | 2          | 4         | 2/.05     | 3 77     | 63        | -28      | ~2        | ś         | 20        | 5 0       | ~7         | ~7        | ś        | . 22    | 078    | 20        | ś         | 10      | 1082    |                | z .        | 78         | 07       | 2/         | ~2         | 25          | 21        | ~2          |
| D 107202        |              | . 17          | 40        | 740       | 7.5        | 5          | 7         | 740       | / 97     | 220       | ~0       | ~2        |           | 50        | 5.7       | ~7         | ~7        | 5        | .23     | 070    | 21        |           | . 10    | 7402    | 01 2           | , .        | /0 .<br>47 | 03       | , 64<br>25 | ~2         | ~5          | 1         | ~2          |
| 0 197203        |              | 740           | 10/       | 170       | 10 5       | 1          | <u></u>   | 124       | 9.03     | 1/30      |          | ~2        | ž         | 24        | .0<br>1 Z | ~7         | ~7        | 2        | .00     | .077   | 15        | 0         | .00     | 522     | 01 >           | י. כ<br>ז  | 07.<br>70  | 03       | 27         | <u>`</u> , | 5           | -1        | 45          |
| D 197204        |              | 17            | /7        | / 10      | / 7        | - 1        |           | 110       | 2.30     | 3047      |          | 22        | 2         | 40        | 1.5       | -7         | 7         | 2        | .05     | .001   | 10        | 0         | .03     | 564     | 01 4           | , .<br>,   | )7 .<br>/0 | 07       | . 31       | 4          | 5           |           | 1/          |
| 0 197205        | 2            | • • • •       | 43        | 410       | 4.3        | \$1        | 4         | 110       | 2.01     | 2003      | 50       | 54        | 2         | 10        | • (       | < <b>3</b> | 2         | 2        | . 23    | .004   | 15        | y         | .05     | 205.0   | 01 5           | <b>.</b> . | 40.        | 03       | .47        | 2          | \$3         | < 1       | 14          |
| D 197206        | 4            | 14            | 149       | 179       | 5.5        | <1         | 2         | 86        | 2.90     | 5525      | <8       | <2        | 2         | 26        | .5        | 6          | <3        | 2        | .24     | .096   | 11        | 7         | .02     | 56<.    | D1             | 4 .:       | 39.        | 02       | .48        | 3          | <5          | <1        | 95          |
| D 197207        | 4            | 221           | 629       | 1456      | 64.8       | 3          | - 4       | 1130      | 4.10     | 481       | <8       | <2        | 4         | 24 2      | 21.7      | 3          | <3        | 2        | .53     | .091   | 24        | 7         | .12     | 91<.0   | 01 <           | 3.         | 63.        | 03       | . 32       | <2         | <5          | <1        | 53          |
| D 197208        | - 5          | 104           | 10215     | 679       | 219.0      | 1          | <1        | 67        | 6.14     | 4699      | <8       | 4         | 3         | 37        | 8.1       | 26         | <3        | 1        | .05     | .095   | 16        | 8         | .02     | 68<.    | 01 <           | 3.         | 53.        | 02       | . 88       | 3          | <5          | <1        | 2395        |
| D 197209        | 4            | 160           | 264       | 1415      | 34.0       | <1         | 2         | 344       | 3.91     | 360       | <8       | <2        | 4         | 18        | 13.9      | 3          | <3        | 2        | .12     | .096   | 22        | 5         | .06     | 160<.0  | 01             | 4 1.0      | 00<.       | 01       | .32        | <2         | <5          | <1        | 87          |
| D 197210        | 4            | 92            | 589       | 868       | 35.0       | 2          | 1         | 76        | 4.31     | 459       | <8       | <2        | 3         | 33        | 5.1       | <3         | <3        | 2        | .06     | .070   | 22        | 6         | .03     | 253<.0  | 01 <           | 3.         | 75.        | 02       | .59        | <2         | <5          | <1        | 82          |
|                 |              |               | or r /    |           |            |            |           |           |          | 40705     |          | ~         | ~         |           | • •       |            |           | •        | ~7      |        | ~         | ~         |         | (       | ~ 4            |            |            | ~ ~      |            |            | -           |           |             |
| 0 197211        | 2            | 122           | 9554      | 174       | 255.4      | 1          | <1        | 40        | 7.10     | 10782     | <8       | 2         | 5         | 57        | 0.8       | 49         | <2        | 2        | .05     | .039   | 9         | 9         | .02     | 68<.    | 01             | 4 .        | 55.        | 01       | .82        | 4          | <>          | <1        | 2720        |
| 0 197212        | 10           | 1421          | 4190      | 169       | 115.5      | <1         | 1         | 45        | 3.84     | 15575     | 10       | <2        | 4         | 19        | 18.7      | - 58       | د>        | 2        | .04     | .057   | 9         |           | .02     | 56<.    | 01 <           | 5.         | 58.        | 01       | .47        | 6          | <5          | <1        | 954         |
| 0 197213        | e            | 57            | 1641      | 84        | 66.9       | 3          | <1        | 37        | 3.56     | 3048      | <8       | <2        | 3         | 37        | 3.2       | 11         | <3        | 1        | .10     | .057   | 16        | 12        | .04     | 77<.0   | 01 <           | 5.         | 41.        | 01       | .66        | 4          | <5          | <1        | 260         |
| RE D 197213     | 6            | 56            | 1612      | 83        | 62.5       | 3          | <1        | 40        | 3.51     | 3002      | <8       | <2        | 2         | 36        | 3.1       | 9          | <3        | 1        | .10     | .056   | 16        | 11        | .04     | 87<.    | 01 <           | 3.         | 41.        | 01       | .66        | 4          | <5          | <1        | 276         |
| D 197214        | 3            | 88            | 1473      | 766       | 46.8       | <1         | <1        | 73        | 4.87     | 261       | <8       | <2        | 2         | 17        | 2.0       | 5          | <3        | 1        | .11     | .079   | 20        | 9         | .04     | 153<.0  | 01 <           | 3.         | 54.        | 01       | .65        | 3          | <5          | <1        | 73          |
| D 197215        | , ,          | 81            | 2030      | 509       | 58.8       | 2          | <1        | 60        | 4.08     | 338       | <8       | <2        | 3         | 21        | 1.4       | 4          | <3        | 1        | .09     | .058   | 21        | 12        | .03     | 180<.   | 01 <           | 3.         | 63         | 01       | 54         | 2          | <5          | 1         | 238         |
| D 197216        |              | 35            | 122       | 641       | 6.8        | <1         | 3         | 1353      | 3.48     | 622       | <8       | <2        | 3         | 18        | 5.8       | <3         | <3        | ż        | .18     | .069   | 26        | 6         | .05     | 1082<   | 01 <           | 3          | 52         | 01       | .38        | <2         | <5          | <1        | 8           |
| D 197217        |              | 110           | 1406      | 1491      | 284.8      | 5          | <1        | 154       | 4.28     | 34587     | <8       | <2        | 2         | . o .     | 30.0      | 31         | <3        | 1        | .09     | .043   | 11        | 11        | .02     | 69<     | 01 <           | 3          | 30         | 01       | 36         | 2          | <5          | <1        | 204         |
| 0 197218        | 1            | 37            | 178       | 228       | 27 7       | <1         | 3         | 266       | 2.16     | 8342      | <8       | 2         | 2         | ó         | 0 3       | Å          | <3        | 1        | 17      | 065    | 16        |           | 03      | 114 < 1 | 01 <           | ξ.         | 46         | 01       | 20         | ž          | <5          | <1        | 23          |
| n 107210        |              | 67            | 143       | 64.0      | 5 6        | 2          | 5         | 1675      | 3 18     | 104       | 28       | ~2        | 5         | 20        | 83        | ~3         | ~3        | 2        | 80      | 058    | 27        | ĕ         | 15      | 101<    | 01 2           | z .        | 40.        | 01<br>01 | 22         | õ          | -5          | 21        | 3           |
| 0 177217        | 1            |               | 145       |           | 2.0        |            |           |           | 5.10     | .,,4      | .0       | .5        | -         | ~/        | 0.5       |            |           | 6        |         |        |           | U         |         | 10151   |                |            | ••••       |          |            | · E        | .,          | •••       | 2           |
| STANDARD C3/AU- | r   29       | 71            | 36        | 186       | 6.9        | 40         | 15        | 861       | 3.72     | 58        | 18       | 4         | 22        | 33 2      | 25.7      | 17         | 28        | 87       | .62     | .094   | 19        | 189       | .63     | 176 .0  | 09 2           | 1 2.       | 10.        | 05       | . 18       | 18         | <5          | 1         | 485         |
| STANDARD G-2    | 2            | - 4           | 3         | 45        | <.3        | 5          | 4         | 564       | 2.13     | 4         | <8       | <2        | 4         | 75        | <.2       | <3         | 3         | 42       | .67     | .102   | 8         | 82        | .60     | 236 .   | 13 <           | 3.         | 99.        | 07       | .51        | 2          | <5          | 1         | <2          |

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB SAMPLE TYPE: ROCK AU\*\* ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 16 1999 DATE REPORT MAILED: HAG 20/99

Assony Ag in progress if 7 30 ppm.

SIGNED BY .......D. TOYE, C.LEONG, J. WANG; CERTIFIED B C ASSAYERS

| A A                        | Tiberon Minerela            | ASSAY CERTIFI                                               | ICATE                                  | 2                                            | A4          |
|----------------------------|-----------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------------------------|-------------|
|                            | 950 -                       | 550 - 6th Ave S.W., Ca                                      | algary AB T2P 0S2                      | C C C C C C C C C C C C C C C C C C C        |             |
|                            |                             | SAMPLE#                                                     | Ag**<br>oz/t                           |                                              | <u></u>     |
|                            |                             | D 197207<br>D 197208<br>D 197209<br>D 197210<br>D 197211    | 1.86<br>22.73<br>1.03<br>1.10<br>20.58 |                                              |             |
|                            |                             | D 197212<br>D 197213<br>D 197214<br>RE D 197214<br>D 197215 | 3.21<br>1.84<br>1.21<br>1.20<br>1.73   |                                              |             |
|                            |                             | D 197217<br>D 197218<br>STANDARD R-1                        | 8.33<br>.80<br>2.91                    |                                              |             |
| DATE RECEIVED: AUG 20 1999 | Same<br>Date report mailed: | Ng 25/99 SIG                                                | Reruns and 'RREpare Reject Reru        | n <u>s.</u><br>C.LEONG, J. WANG; CERTIFIED B | .C ASSAYERS |
|                            |                             |                                                             |                                        |                                              |             |
|                            |                             |                                                             |                                        |                                              |             |
|                            |                             |                                                             |                                        |                                              |             |
|                            |                             |                                                             |                                        |                                              |             |

CME ANALYTICAL LABORATORIES LTD (ISO 9002 Accredited Co.)

#### GEOCHEMICAL ANALYSIS CERTIFICATE

V6A

Tiberon Minerals Ltd. PROJECT RUBY File # 9902966 950 - 550 - 6th Ave S.W., Calgary AB T2P 0S2

| SAMPLE#          | Mo<br>mag | Cu  | Pb   | Zn<br>ppm | Ag<br>ppm | N 1<br>ppm | Co<br>ppm | Mn<br>ppm | Fe<br>% | As<br>ppm | U<br>mqq | Au  | Th<br>ppm | Sr<br>ppm                             | Cd<br>ppm | Sb<br>ppm | Bi<br>ppm | V<br>ppm | Ca<br>% | P<br>% | La<br>ppm | Cr<br>ppm | Mg<br>% | Ba<br>ppm | ۲۱<br>% | B    | Al<br>% | Na<br>% | K<br>% | W   | lT<br>IT | Hg .<br>ppm | Au**<br>ppb |
|------------------|-----------|-----|------|-----------|-----------|------------|-----------|-----------|---------|-----------|----------|-----|-----------|---------------------------------------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|------|---------|---------|--------|-----|----------|-------------|-------------|
|                  | i'        | ·   |      |           |           | <u> </u>   | <u> </u>  |           |         |           | · · _    | · · |           | · · · · · · · · · · · · · · · · · · · |           | <u></u>   | <u> </u>  |          |         |        |           | <u> </u>  |         |           |         |      |         |         |        | · · | <u> </u> |             | <u> </u>    |
| D 197220         | 8         | 65  | 7070 | 886       | 184.6     | <1         | <1        | 100       | 4.98    | 42193     | <8       | <2  | 2         | 34                                    | 30.2      | 12        | <3        | 1        | .52     | .021   | 11        | 4         | .02     | 128<      | .01     | <3   | .22     | .06 .   | 41     | <2  | <5       | <1          | 204         |
| D 197221         | 3         | 100 | 572  | 1183      | 7.5       | 2          | 1         | 698       | 4.38    | 2406      | <8       | <2  | 2         | 57                                    | 13.9      | <3        | 8         | 2        | .64     | .036   | 23        | 3         | .05     | 152<      | .01     | <3   | .42     | .08 .   | 43     | <2  | <5       | <1          | 21          |
| D 197222         | 2         | 88  | 337  | 2411      | 5.0       | 2          | 10        | 1205      | 3.67    | 1114      | <8       | <2  | 4         | 88                                    | 34.7      | 9         | 5         | 3        | 7.59    | .038   | 37        | 4         | .13     | 95<       | .01     | <3   | .35     | .03 .   | 22     | <2  | <5       | <1          | 7           |
| D 197223         | 3         | 408 | 1872 | 2246      | 21.3      | 1          | 3         | 1239      | 2.32    | 41        | <8       | <2  | 6         | 54                                    | 126.6     | 5         | <3        | 4        | 1.66    | .043   | 37        | 7         | .13     | 80<       | .01     | <3   | .22     | .05 .   | 13     | <2  | <5       | <1          | <2          |
| D 197224         | 2         | 290 | 1148 | 967       | 14.5      | 1          | 2         | 1300      | 2.15    | 7         | <8       | <2  | 5         | 80                                    | 40.0      | 6         | 3         | 7        | 2.43    | .045   | 36        | 8         | . 16    | 91<       | .01     | <3   | .24     | .05 .   | 12     | <2  | <5       | <1          | 4           |
|                  |           |     |      |           |           |            |           |           |         |           |          |     |           |                                       |           |           |           |          |         |        |           |           |         |           |         |      |         |         |        |     |          |             |             |
| D 197225         | 2         | 431 | 4685 | 3298      | 363.9     | 2          | 1         | 963       | 6.40    | 229       | <8       | 3   | 5         | 29                                    | 53.5      | 29        | <3        | 4        | .41     | .039   | 23        | 5         | .13     | 102<      | .01     | <3 ′ | .05     | .04 .   | 24     | <2  | <5       | <1          | 3007        |
| D 197226         | 2         | 14  | 60   | 220       | 2.2       | 2          | 1         | 1365      | 2.81    | 23        | <8       | <2  | 4         | 55                                    | 5.1       | <3        | <3        | 2        | 2.11    | .046   | 23        | 3         | . 16    | 81<       | .01     | <3   | .32     | .02 .   | 21     | <2  | <5       | <1          | 8           |
| D 197227         | 2         | 5   | 20   | 43        | 2.1       | <1         | 1         | 299       | .72     | 288       | <8       | <2  | 6         | 12                                    | .7        | 6         | <3        | <1       | .54     | .005   | 26        | 4         | . 02    | 71<       | .01     | <3   | .21     | 01      | 19     | 2   | <5       | <1          | 7           |
| RE D 197227      | 2         | 5   | 19   | 43        | 1.9       | <1         | <1        | 302       | .71     | 285       | <8       | <2  | 6         | 12                                    | .5        | 5         | <3        | <1       | .54     | .006   | 25        | 4         | .02     | 71<       | .01     | <3   | .21     | 01.     | 19     | <2  | <5       | <1          | 9           |
| D 197228         | 4         | 3   | 11   | 71        | <.3       | <1         | 1         | 753       | .68     | 573       | <8       | <2  | 5         | 19                                    | 1.0       | 4         | <3        | <1       | .86     | .013   | 31        | - 4       | .03     | 43<       | .01     | <3   | .24     | 01.     | 27     | <2  | <5       | <1          | <2          |
|                  |           |     |      |           |           |            |           |           |         |           |          |     |           |                                       |           |           |           |          |         |        |           |           |         |           |         |      |         |         |        |     |          |             |             |
| D 197229         | 4         | 1   | 3    | 8         | .8        | 1          | <1        | 3426      | .80     | 11        | <8       | <2  | 5         | 114                                   | <.2       | <3        | <3        | <1       | 6.66    | .009   | 24        | - 4       | .03     | 65<       | .01     | <3   | .24     | .01 .   | 24     | 2   | <5       | <1          | 2           |
| STANDARD C3/AU-R | 26        | 64  | 36   | 171       | 5.8       | 34         | 12        | 794       | 3.43    | 58        | 22       | 3   | 21        | 31                                    | 23.9      | 17        | 21        | 81       | .59     | .089   | 18        | 175       | .59     | 153       | .09     | 21   | 1.94    | .05 .   | 17     | 14  | <5       | 1           | 491         |
| STANDARD G-2     | 2         | 3   | <3   | 41        | <.3       | 6          | 4         | 542       | 2.07    | 3         | <8       | <2  | 4         | 74                                    | <.2       | 3         | <3        | 40       | .67     | .095   | 8         | 82        | .58     | 213       | .13     | 3    | .96     | .07 .   | 48     | 2   | <5       | <1          | 4           |

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU\*\* ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 19 1999 DATE REPORT MAILED: Hug 26/99

HONETS

X (60

Arry Ag > 30 ppm in progress

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

# 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-

ASSAY CERTIFICATE



Tiberon Minerals Ltd. PROJECT RUBY File # 9902966R 950 - 550 - 6th Ave S.W., Calgary AB T2P 0S2

| SAMPLE#                             | Ag**<br>oz/t           |
|-------------------------------------|------------------------|
| D 197220<br>D 197225<br>RE D 197225 | 5.13<br>13.58<br>13.85 |

AG\*\* BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE PULP Samples beginning 'RE' are Reruns and 'RR60 are Reject Reruns.

DATE RECEIVED: AUG 27 1999 DATE REPORT MAILED:

Sept 2/99 



/ Fissures (quartz/calcite/FeOx)



Tiberon Minerals Ltd. RUBY PROPERTY DRILL HOLE PROFILE RUD99-04 Sept. 1999 Figure 12

Legend Dacite Aplite dike ~ Non welded pumice ~ Fiamme ▲ Lithic fragmentals (polymict) Eutaxitic foliation - Fissures (quartz/calcite/FeOx) Fault

139.60









# **LEGEND**

| 1925m                        | LEGEND                                        | -                                        |
|------------------------------|-----------------------------------------------|------------------------------------------|
|                              | Vein, with orientation<br>Argillic alteration | 0 5 10 15 20 25                          |
| RUD99-02<br>-55 • 090 az. OI | Diamond drill hole location                   | Metres                                   |
| <b>_</b>                     | Significant intercept                         |                                          |
| <u>8.33</u> 0.20             | Ag (oz/t) Au (ppb)                            | TIBERON MINERALS LTD.                    |
| 1.00m                        | Length                                        | RUBY PROPERTY<br>Yukon Territory, Canada |
|                              |                                               | CROSS SECTION 6652100 N<br>RUD99-01      |
|                              |                                               | DATA BY: B.M. DATE: SEPT. 1999           |
|                              | <u> </u>                                      |                                          |



|                                    | LEGEND                 |          |                                                 | -   |
|------------------------------------|------------------------|----------|-------------------------------------------------|-----|
|                                    | Vein, with orientation | 1        |                                                 |     |
|                                    | Argillic alteration    |          | 0 5 10 15 20 25                                 |     |
| RUD99-02<br>-55 o 090 az. GI       | Diamond drill hole ic  | ocation  | Metres                                          |     |
| <b></b>                            | Significant intercept  |          |                                                 |     |
| <u>8.33 0.20</u>                   | Ag (oz/t) Au (ppl      | <u>)</u> | TIBERON MINERALS LTI                            | ).  |
| 1.00m                              | Length                 |          | <b>RUBY PROPERTY</b><br>Yukon Territory, Canada |     |
|                                    |                        |          | CROSS SECTION 6652020<br>RUD99-02               | N   |
|                                    |                        |          | DATA BY: B.M. DATE: SEPT. 1                     | 999 |
| LUMINAI DRAFTING LTD ruby-sec02ddh | 1 1                    | 1        | SCALE: 1:500 FIG: 14                            |     |











