YUKON MINING INCENTIVES PROGRAM

YMIP PROJECT 99-054

FORTYMILE RIVER AREA HARDROCK PROSPECTING

JULY 3, 1999 - JANUARY 30, 2000

TRANSVERSE MERCATOR PROJECTION CO-ORDINATES latitude $64^{\circ} 20^{\prime}$ - longitude $140^{\circ} 40^{\prime}$ PLACER CLAIM SHEET 116C-7

1. Introduction: The purpose of this prospecting project was to examine the Canadian portion Fortymile River and some of its tributary creeks, for lode gold occurrence.

The Fortymile River mining district is located approximately 40 air miles northwest of Dawson The area is covered by NTS map and claim sheet 116C-7 and is shown on Map 1. The latitude of the area in which I worked is approximately $64^{\circ} 20^{\prime}$ and the longitude is approximately $140^{\circ} 40^{\prime}$. The specific areas which I prospected are located on Maps 2,3, and 4.

I performed most of my prospecting work in the late fall and early winter period. This allowed me to take advantage of the ice on the Fortymile River for travel by snowmobile, and to walk up the frozen creek beds. I worked with an assistant for most of the program, for efficiency and safety. We travelled by snowmobiles to the various prospecting areas from our camp at Marten Creek, travelling both by road and over the frozen river..
2. Deposit Type and Geology: The Fortymile mining district encompasses the drainage of the Fortymile River, including its numerous forks and feeder creeks. This geographical area straddles the Alaska-Yukon border, with approximately 85% of the drainage located in Alaska. The Fortymile has gained notoriety as a prolific placer producing area, yielding approximately $1 / 2$ million ounces of free gold since its discovery in 1886. Despite the extensive placer production, there has been very little hardrock mining in the district.

The Fortymile region is part of a larger area referred to as the Yukon-Tanana upland in Alaska. In Canada the area is called the Yukon Crystalline Terrane (Templeman-Kluit 1976) "It is primarily a terrane of quartzitic, pelitic, calcic, and mafic-metasedimentary rocks that have been extensively intruded by Mesozoic and Cenozoic granitic rocks and minor amounts of intermediate and mafic rocks." (USGS Open File Report 92-213.) "The subterrane that includes most of the rocks in the Fortymile region consists primarily of quartz biotite gneiss, marble, schist, quartzite, and amphibolite metamorphosed to amphibolite and epidote-amphibolite facies, and intruded by dikes and plutonic rocks.... Tertiary (?) to Palaeozoic (?) igneous rocks intrude older metamorphic rocks. Small areas of Tertiary sedimentary and volcanic rocks overlie older igneous and metamorphic rocks." (USGS Bulletin 2125, 1996, synthesising material from various USGS publications)
"Geological maps of the Eagle quadrangle (Foster, 1976) and of the eastern Yukon-Tanana region (Foster, 1992) clearly show the prevalence and almost unique occurrence of one geologic unit mapped in this area....It is readily identified on the geologic map of east-central Alaska by being almost completely encircled by thrust faults. Herein, it is called the gneiss, schist, amphibolite, and marble unit. The spatial association of this mapped unit with the occurrence of placer gold-rich creeks and rivers seems too precise to be attributed to chance. Therefore, I propose that the presence of this unit in the Fortymile River area is somehow linked to the occurrence of lode gold in the area. One theory is that this unit includes rock types containing gold that eventually, through remobilization, became concentrated in quartz veins. Another theory is that this unit provided a structural environment conducive to emplacement of gold-rich plutonic rocks, which gave rise to gold-rich quartz veins." (USGS Bulletin 2125, 1996)

Numerous theories have been advanced as to the source of the gold which produced the rich placer deposits of the Fortymile River. Some the theories are as follows:

- Spurr (1898) concluded that the quartz veins and quartz schists were the source of the gold.
- Mertie (1938) proposed quartz rich veins associated with concealed granite
- Foster and OLeary (1982) found that sheared mineralized and quartz diorite, quartz-calcite veins, and calcite veinlets cutting metamorphic rocks and sheered granitic rocks in the Chicken Creek area contain gold.
- Foster (1987) found that gold is present in crushed faulted zones in the Dome and Canyon Creek area (adjacent to the Yukon border)
- Prindle (1909) reported the presence of lode gold at 4 localities 1) brecciated zones of quartz diorite along the Mosquito Fork, 2) thin calcite seams in black phyllite, 3) brecciated vein quartz in quartzite schist within a zone of intrusions in Canyon Creek, 4) quartz veins on Davis Creek.
- Mertie (1930) described gold bearing sulphides associated with calcite and veinlets of quartz; a sample of this rock assayed at 1.87 ounces of gold per ton.

The only lode gold mine in the area was the Purdie Quartz Mine which operated for a short time in the Chicken area, in the early 1900's.

In the course of a placer prospecting project which I carried out in 1998, I took a number of hardock samples in interesting looking rock (most of which was quartz) which I encountered in the field. While my samples did not reveal significant gold anomalies, they did show elevated levels of some indicator minerals. The quartz samples which I took did not show any significant mineralization. However, the ultramafic rocks which I sampled had elevated levels of nickel, manganese, zinc, copper, strontium, lead, calcium, chromium, arsenic, antimony, and magnesium in varying degrees. A number of these samples were in serpentine. My most interesting hardrock samples came from Cone Hill, located close to the Fortymile Bridge on the right limit of the river. The other samples which exhibited significant anomalies were obtained from a rock outcrop exposed in a riprap borrow pit directly across the river, approximately 1 km from Cone Hill.

I excavated some pits on a bar in the river adjacent to Cone Hill, as part of a previous placer evaluation of the bar gravels in 1989. The soft, black graphitic schist bedrock had large pyrite cubes embedded in it; pyrite is sometimes associated with gold.

3. Approach

I covered a fairly wide geographical area in this project. I was particularly interested in investigating the Cone Hill area, on the lower Fortymile River, where I had taken some samples which returned interesting results last season. In this area I took a large number of closely spaced chip samples from exposed outcrops and large boulders which had fallen from these outcrops. I had heard that there was an old addit on Cone Hill; I devoted some time to looking for it and eventually found it. I sampled the rock face surrounding the addit as well as the interior of the tunnel.

I took chip samples from outcrops on the Fortymile River from 1 kilometre upstream of Browns Creek to the Fortymile River canyon, a distance of approximately 13 km . In these areas I sampled quartz veins, as well as some of the host rock schists and basalts. I prospected parts of Clinton Creek, Marten Creek, and Browns Creek in the same manner.

I obtained samples of the bedrock chunks which had been deposited in the tailings left behind from placer dredging cuts on gravel bars of the Fortymile River primarily on the left limit, for a distance of approximately 3 km upstream of Marten Creek.

I assembled all of my hardrock samples in camp and sorted out the most interesting ones. (I wanted to keep the expenditure on assaying within budget for the project). The samples, which I selected, were split so that I could keep part of each sample, to facilitate reevaluating anomalies. I weighed, bagged and labelled a 400-500 gram portion of each sample for assay.

I took soil samples in Marten Creek, Sparks Creek and Bar 5 Creek (an unnamed left limit Fortymile tributary approximately 1 km . upstream of Marten Creek). I collected soil samples from cutbanks, from road cuts and from streambanks. I took samples in the lowest soil horizon which I could access, generally about 0.5 m below the surface, although this depth was not consistent for all of the samples.

I prepared the soil samples for assay by first screening them to - 10 mesh, to eliminate the pebbles and coarser material. I weighed out approximately 300 grams of each sample, and bagged and labelled them to be assayed. I was careful to use clean screening equipment so as not to contaminate the soil samples with placer gold, which may have been present from previous use. I retained the remaining material, as well as the +10 mesh for possible future confirmation of anomalies.

I had the selected hardrock and soil samples assayed by Acme Analytical Laboratories in Vancouver. Samples were assayed for 30 elements by ICP-ES analysis, with results expressed in either parts per million (ppm) or as a percentage. As well, the samples were fire assayed for gold, platinum, and palladium, with results expressed in parts per billion (ppb).

4. Areas investigated and results obtained

For purposes of this report, I have grouped the various areas which I investigated according to their geographical proximity as follows:
a) Cone Hill: Cone Hill is a distinct geographic feature located approximately 5 km from the confluence of the Fortymile and Yukon Rivers. It is located on the right limit of the Fortymile River, rising 200-250 meters above the river. The shape of the hill is conical as the name suggests, indicating that it is likely of volcanic origin. The north face consists of massive steep

Photo 1 - Collecting a soil sample in an exposed overburden bank in Marten Creek

Photo 2 - The pinnacle of the Cone Hill rock outcrop can be seen framed by the spruce trees
outcrops of orange stained, mafic rock. Much of the rock is bright green in colour; serpentine and asbestos are evident. Large boulders have broken off this outcrop and litter the steep hillside and base of the hill. The east face is heavily treed, while the west side is nearly bare (Cone Hill is locally referred to as $50 / 50$ because it is half treed and half bare).

One of my goals for this project was to find an old addit which was rumoured to have been driven somewhere on Cone Hill. I had heard both that it was a vein silver mine from early in the 1900's, and that it had been part of chromium discovery made by the Canadian government searching for strategic minerals in the 1950's cold war period. I made a thorough search of Cone Hill, and eventually located the addit near the base of the large outcrop approximately half way up the north face of the hill. The addit is in perfect condition; its dimensions are approximately 12 m . long by 2 m high by 1.5 m wide. There is a side drift, approximately 3.5 m . long, at right angles off the end of the main tunnel. I found an asbestos seam, approximately 20 cm . wide, near the mouth of the tunnel. There is also a narrow quartz vein in this area. The tunnel is driven into the ultramafic rock face, which is dark green in colour with bright green mineralization, perhaps related to chromium. My investigations of Cone Hill are noted on pages $\mathbf{8 , 9 , 1 0 , 3 7 , 5 1}$, and 52 of my diary, and Map 2 shows the sample locations. I concluded that the addit must have been driven some time ago as I did not see any evidence of heavy equipment having been used to bring drilling equipment to the site.

My assay results from the Cone Hill samples are identified with an "A" on the attached assay certificates. The assays confirm the mafic nature of the rock, with elevated levels of nickel, manganese, and magnesium. Arsenic is present in some of the samples in quantities which may be significant, with ppm up to 321 . Antimony is also elevated with up to 537 ppm . Chromium is present in levels up to 1623 ppm . None of the samples returned gold showings of greater than 3 ppb , although there are low level indications of platinum in many of these samples.
b) Rip-rap borrow pit: When the Clinton Creek asbestos mine access road and Fortymile River bridge were under construction in the early 1960's, a rip-rap borrow pit was opened up approximately 1 km north of the Fortymile River. This pit exposed the rock of the hillside aver a distance of approximately 200 m . The pit has two floors, one approximately 12 m above the other. The rock in this pit is similar to that found on Cone Hill, approximately 1 km away. Again, the rock is primarily mafic, though not as dark or as green as at Cone Hill. A lustrous foliated mica schist is present. A distinctive oxidized rusty orange-red colour is present on the surface of most of the rock. Numerous small quartz veins are found throughout the structure. Pages 19, 20, 21, 55, and 56 in my diary refer to my sampling work in the rip-rap pit. Map 3 shows the sample locations.

Samples assayed from this area are marked with a " \mathbf{B} " on the attached assay certificates. Composition of these samples is similar to the Cone Hill samples. Arsenic is present at interesting levels of up to 3740 ppm , and zinc up to 175 ppm , indicating a possible mesothermal quartz type deposit. Although gold presence is minimal in most of these samples, one quartz sample did return 163 ppb of gold in the fire assay - this was the same sample which had the highest arsenic showing. Strontium is also quite high, with levels up to 1267 ppm .
c) Clinton Creek, Marten Creek, Bar 5 Creek, Sparks Creek, Brown's Creek: Clinton Creek is a large left limit tributary of the Fortymile River, approximately 4 km above the confluence of the Fortymile and Yukon Rivers. The abandoned Clinton Creek asbestos mine is located approximately 9 km upstream on Clinton Creek. I prospected the lower reaches of Clinton Creek, hoping to extend the boundaries of the Cone Hill/riprap pit hardrock anomaly. I took samples for an exposed outcrop along the mine road which looked similar to the riprap pit rock. Two of the samples had quartz crystals approximately 1.5 cm in length embedded in the host rock. Samples showed high anomalies of barium, with elevated levels of coper, zinc, manganese, and arsenic. One sample showed 12 ppb of gold, and there were minor showings (up to 5 ppb) of palladium. Pages 1,2,3,14 and 15 of my diary refer to work in Clinton Creek, and sample locations are shown on Map 2. Assay results from Clinton Creek are marked with a "K" on the attached assay certificates.

Marten Creek is a left limit tributary of the Fortymile River located approximately 20 km upstream of its confluence with the Yukon River. Marten Creek has a steep walled valley with many sheer rock cliffs. Most of the outcrops are of a foliated schist. Small quartz veins and stringers are common throughout the valley. I prospected this area taking both hardrock and soil samples. Work in Marten Creek is referred to on pages $11,12,13,18,29,30,31,39$, and 40 , of my diary. Sample locations are shown on Map 3. Assays from Marten Creek are marked with "C" on the assay certificates.

Assays from the hardrock samples showed traces of gold, platinum and palladium (up to 4,3 , and 8 ppb respectively). The soil samples from Marten Creek had strong indications of precious metals with values of up to $43,572 \mathrm{ppb}$ of gold, up to 367 ppb of platinum, and up to 31 ppb of palladium.

I took some soil samples from Bar 5 Creek, the unnamed tributary located approximately 1 km upstream of Marten Creek. Unfortunately all of these samples were too small after sieving to be sent in for

Photo 4-Sampling a foliated schist outcrop laced with quartz stringers in Marten Creek assay, so I did not get any results from my work in this area. Work in this area is referred to on diary pages $\mathbf{2 3}, \mathbf{2 4}, \mathbf{2 5}$, and $\mathbf{2 6}$, and samples from this are shown on Map 3.

Sparks Creek is a small left limit Fortymile River tributary, approximately 4 km in length, located 5 km upstream of Marten Creek. Because this valley does not have the numerous rock outcrops and cliffs that Marten Creek has, I took a series of soil samples.
Unfortunately, most of these soil samples were too small for assay after they were screened; the one which I did send out returned a value for gold of $3,212 \mathrm{ppb}$. My dairy refers to my sampling in Sparks Creek on page 22, and 23. The locations which I sampled are shown on Map 4. Assays from Sparks Creek are coded with an " E " on the assay certificates.

Brown's Creek is a large right limit tributary of the Fortymile River, located approximately 10 km upstream of Marten Creek. Brown's Creek has a broad valley, containing numerous rock cliffs and outcrops. I took both hardrock and soil samples from the first km upstream of the confluence of Brown's Creek and the Fortymile River. The only hard rock sample from this area which I had assayed had only 2 ppb of gold; however, the soil samples showed gold values of up to 843 ppb of gold, and 7 ppb of platinum. Diary pages 48, 49, and 50 describe my work in Brown's Creek. Sample locations are shown on Map 4. Results from samples form Brown's Creek are marked with "F" on the assay certificates.
d) Fortymile River valley $1 \mathbf{k m}$ upstream of Brown's Creek to Canyon: I prospected the middle reach of the Fortymile River commencing approximately 1 km upstream of Brown's Creek and then downstream to the Fortymile Canyon - a distance of approximately 20 km . The river in this area alternates its channel from side to side of the valley with steep rocky cliffs on one side and gravel bars on the other. Prospecting when the river was frozen allowed me to access the rocky cliffs, which would have been very difficult to sample in the summer because the river channel flows right against them. These cliffs are composed primarily of schist and basalts, with some quartz intrusions. I sampled both the quartz seams and the mafic host rock. Results of these samples did not turn up anything of interest. Samples from the area between Sparks Creek and Brown's Creek are coded on the assay certificate with a "G". Samples from upstream of Brown's Creek are marked with

Photo 5-Large quartz seam sandwiched between layers of schist in Brown's Creek.

Photo 6 - Sampling an outcrop on the Fortymile River upstream of Spark's Creek
an"H", samples obtained from the portion of the Fortymile River located between Marten Creek and the canyon are marked with an "I". Diary pages $16,17,32,35,36,42,43,44,45,46$, and 47 refer to the prospecting work in this area, and sample locations are noted on Maps 2,3 and 4.
e) River bar bedrock from dredge cuts: I took the opportunity to examine bedrock excavated during placer dredge mining of river gravel bars upstream of Marten Creek on the Fortymile River. Some of these dredge cuts produced coarse gold nuggets with quartz embedded in them, The fragile nature of these nuggets suggests that they have not travelled far, and therefore may have originated in local quartz seams. Because I know which areas along the river were good producers of coarse gold, I thought it may be productive to examine the underlying hardrock in these vicinties. I traversed the tailings from dredge cuts on foot looking for bedrock chunks left on the surface of the tailings. This river bedrock is comprised of a heavy, black schist. In places this schist is decomposed to a greasy, sticky graphitic schist. This black schist is interlaced with white quartz veinlets (which may be the source of the placer gold). I was disappointed to find that bedrock showed only minor traces of mineralization, 2 and 3 ppb - of gold. Samples from the dredge cut tailings are marked " J " on the assay certificates, sample locations are shown on Map 3, and the work is discussed on diary pages 4,5 and 6 .

5. Conclusions and recommendations

My soil samples from Marten and Sparks Creeks showed good potential. Gold values are significant and platinum and palladium results are also elevated. Because these two creeks drain the same ridge, I believe that the high precious metals showngs may indicate the presence of a hardrock deposit. It is unlikely that the gold found in these assays is placer gold because the percentage of silver in the samples is approximately 7%, whereas placer gold from the area assays at approximately 18% silver.

I recommend a structured and detailed soil sampling program in both the Marten Creek and Sparks Creek drainages. I believe that the platinum and palladium anomalies in this area showed particular promise, given the current price of these metals.

Elevated levels of arsenic, bismuth, and antimony are associated with major gold plays in Alaska; the Donlin (?) Creek and True North mines are associated with high levels of antimony, the Fort Knox mine has high bismuth associations, and Pogo find is associated with arsenic and bismuth. Mesothermal quartz or mother lode (listwanite) type deposit model may be applicable to the Cone Hill for the following reasons:

- there is an elevated level of indicator minerals including arsenic, iron, and chromium,
- the area is located in a known placer producing area
- there is serpentine present in the sample area
- there are numerous quartz veins and veinlets (which are barren)

Although the samples from the Cone Hill and riprap pit areas did not return the gold values which I had hoped for (except for one sample showing 163 ppb of gold), they did have elevated levels of indicator mineralization of a listwanite type deposit. For example, arsence levels in some samples were quite high. Given the distance over which these anomalies occur, I recommend further prospecting in these areas.

Addtional Information

People who worked on the project
Leslie Chapman
Dawson City
Thomas Claxton
Dawson City
Dawson City

Area Investigted

Fortymile River drainage, located on claim sheet 116C-7

Report Preparation
Leslie Chapman prepared the report in 30 manhours.

MAP 1-PROPERTY LOCATION (from "DAWSON" Map Sheet 116B \& C)
scale: $1^{\prime \prime}=6$ miles (approx) 9

MAP 2 - Sample Locations, Lower Fortymile Area
scale: $1 \mathrm{~cm}=1.25 \mathrm{~km}$ approx.

MAP 3 - Sample Locations Mid-Reach Fortymile Area scale: $\mathbf{1 c m}=\mathbf{1 . 2 5} \mathbf{~ k m}$ approx

MAP 4 - Sample Locations Fortymile Area Upriver
scale: $1 \mathbf{c m}=1.25 \mathrm{~km}$ approx

SAmplet terth

Suly 4199
Eeturned by fruck to am... unteresthy - bopury deccuporett quart ontcrop an elution a

35-1 from hebble at baec..

35:2 $\sim \operatorname{lm}$ uppilltron $35=1$
3s-x 5 sm up from $3 s-2$
U. decemenerad giwents fiesn
..- courtre. of van -riusty
35-4 - ftem lerge Bondelor. ~ $10 \mathrm{~N}_{1}$ N. 4 Outhir sampe epithermall achuily?
Walhod dereras orect exath to chede ond obyf thane + ondinamel :coctin sthet anes ssumet

Aug 20, 99 -
Todry... l unad the $A+U$ to tramul ower toas upshram

 on f pal Earemplen of to heek! Prow alver exent.
Examind doncm streer and 7 whla DIAMP. tred bepotted maible ofd in ohinh di. excondilt healiact - bufl! Roduch sod ennythin thed
 wan hais im hem? ?. .
HO\% 2001 - heaw black beetrect wicicall?: nuwertive quart weers This sianarest fremerinctin

Od 21199 $\sim-5^{\circ} \mathrm{C}$, po
$\vdots 102101$ buase of syso.
serpentime:
HM 1021.02 clore bex of matic brek.

Hozios: molk uy lof ofore

Byi simomachiss ufasacident to Came Hill (sylso) over .. the raed -
*i snaw is shigtly skimpy in plocos por sNowmadines, hat a ittur ploce

 Somll facf texaminin itate Doulders thent towe. inderabled dran difit highar outergax Aypic w/ ubtho brigh geen. Sapolea ate fran Hem bootion. All

$\operatorname{Oct} 22 / 99 \ldots 7^{\circ} \mathrm{C}$ clear 2 snowmadiens to Cone Wd to look pe ctol oudit. heort it. was on eopt side of the hill so we wathe all! theresh the dran No sdagh 4 acting. In when hote, there one no comterpss an tho eioler
 Oct $23 / 99-6^{\circ} \mathrm{C}$ mostly clear
2 snownachencs to Cone Hill again to tesume worch por (ldit ithis than iun oppopiched from fin Reod.
-. (shth -jos) I eacior yetrin but une col sot heaully thead, but ixtul ats of of previon watingo. - nd samplea focting
\qquad

Octailia $-5^{\circ} \mathrm{C}, 22^{2}$ new singu walked up creat to wifl sampter fram $0 . f=4$ Marten (α) SS-1027-0il sod sampl \approx IVm belas sumpace - gney son-14nty-roved att
ss-1077-02 crit seil sampie from creek. cut benk ~.Im... doum $=$ samdy
ss-1027-03 soil sample fram creat: out bank - clay. suface photo. from
Ss-1027-04 sin sample flom. cresk out bake redctiok. spudy soid. neor surface
sample locatome are martot on. map frain Oct, z_{4}

Otaal99 $-19^{\circ} \mathrm{C}$ clear lanowachic to retrap botes pat moor chation of (or trad) of tuestryoth ptor tond
He Mr mol
culoa ancose triend
w/ nowert quanctima
\# Mocmer altermoduc
Hen arad heat

 H102904
is Steon soluat
Sampig 02 is from ion ares $\Rightarrow 10^{n}$ squas whers when Treblai I weind - Rean ument or proilty vent for aremid hoir the na traids
$\therefore 0$ (4) $31 / 99 .-10^{\circ} \mathrm{C}$, mostly clent
Brack to riprom pit aldane loy snoulinachic anof stad souplect coontre w easi ssed $\& p u$ unter Govel
$14103101=$
\cdots - uncuin poie urusty quet.iyter in leatilarowas

HM
mater schist
kodstar Lit kat
HMpisial luctuan

riel och os
phoder
semplus shom on Mäp foocodz

28 now macheies on 4omile R to Spans. Ck ($4 / 4$ unit 14) buchwacked on foet up
creck or goom spors on got seal
 movith - sisudy - Bzone
 up onek A zone-eloy.
 Toot wellhus inserchan cmutso

Nou, $2 \quad-\sqrt{\circ}{ }^{-1}$ mosty choor 2 snowi mochings our reati up to small reght cimit tris...ppowe Y_{2} mile inpstrean of Mortent Cr left unist of Fortymile
wälked ap. trith about 1 mile to p's oryign boteman 2 hate. wanden is tabe hiotrect sompite but ded not find any simpthe segite. fter sbownid-onets rews onbr moss $/ \mathrm{m}$ hipleg. $=$ heaxy ..arillowas
Itm interested un the trib orea. becounse urtmon-ther rivertir near (t est the mptreame) the mouth of the trin. wrop plower mined, valuen, wele Phocip many, nuegest with ... quenty aftanded .. Were

- Nov $3=15^{\circ} \mathrm{C}$ mostly clear.

2 snowmachine bach up whit we virived yestonday...
T decurd to bot par acea. whore I could take sel samples. opfluint to Ss-p/pa3-0t - neaf mouth s5-1103-02 -seomple fromjunt ss-llos ois pod singere of
Silil alt soit stmples op fram 'A' zmit Cow fur hode A. Aliapkan Prexper tof

: $11107199 \quad-12^{\circ} \mathrm{C}$ clear (32) 2 sncromachions to just: shostream of Epen's at seme ofon spets an hasting
NQ 010701 sene al aurt seans mintua what schim seans ore Menoty 4 crumblu ni placo reminchat of 'Llcus, allsort' guent/stoty sampow frous. bedrock pan plow ber: unmery
HM110702 +03 gruite matem schay locally quiste decampese
HM $110704 / H 0 / 107.05$ ret 300 m upstrican of Bran Cl betp lind ematinec ychoset ox tre formy rother gitaty

HQ $1 / 1806: R L$ whin cumifn wh

Nou 19/99 -90 C clondy
: 2 snownadion corad bill over lroad
H9 $11901-\quad$ base of 50 -
Mup wi minkatijume.
chrowil $*=$ eap
grems
HM: $111902-40$ olyn ingos ou upstepe forn of toi pontre
 sermanatus
HA $11905+06$
it -....- upstepe from $05 / 04$

Hill9oz oftra frow osio serpouthint inf sama

H llifot apabre pame of simitat aserpent mid
Sampling base of Con noo side, sands manten an Mapifum odtzi:

Navi $20 / 99 . .3^{\circ}$ snowing; We took a snowmachima - inp. Matten CR Heky, Vanow
 buct: fint we got on? - Machuine stuat frying to got: app bank tow had got up et belere, lout it hao snoued alat cunce. The last trace wes arein up the creck. Then after we geet unsthet.. one machni guast y it tork a bugthei ald of wank boget. it sorning again (caphepratemi) cus acluth it wen behto. areont tiphem cany for orday...
!--

$\operatorname{Nas} 2400$
$-5^{\circ} \mathrm{C}$ gighendy.
toda- returned us Maitaral but theo time wallin - there is too much stase fr keotuiating wht on Elam, laulked uperote pact fomes ck.
1+M-1l21-al ..idant schat ay small quath stronges: fann ontrimp 91
HM. Hzl-gz RL-madin
S5 1133 -03 Soil sample from LL. strem eun flbm sondy ihtem domin.
ss 1121-04. sod sande tan optrou star focert-serpara
Ss itiros 14 soil sompt
IL cremplat banh - Vam dap.

$11123199-12^{\circ} \mathrm{C}$ clear (42) 2 Snö, machins uptaier sample- 41 upstrom of Sparts
H!123O1 - guang th seam then wharnblend forw in shait
 H12302 minediff yedon 9 Nuzz ra uhif
HM112303- mate basalt? some conilt/yellew presipit

HQ112304:- large cunath in tribiom of $4 \mathrm{~m} \times 5 \mathrm{~m}$.
in broat clif: on RL

सQ1123:05 +06

in sumine an aceen
Ytawe agot hant pasyly d / s HQuliz 307 sopt olecaypad quaf seana in besaif

$1124199:-18^{\circ} \mathrm{C}$ clear
2 snowmachin. .oprier to enamiae + samplo
 upstrean of krums C l
AMII2401
G madi schist sande. sean uy hate quarty
HQ 112402 50m dremstrom. q0i sismall guarty scan tivfolioled schirt
$\mathrm{HQ} \mathrm{HI} 2403 \sim 5 \mathrm{Om}_{\mathrm{m}}$ doum strean foz. Pram a tariy bouden lind ofherer a $7 \mathrm{~cm} \mathrm{cl} /$ sced a inhesm quory qex unded ruity

; 11/25/99 ...-18 c clear
2 snownachiner yo Vain'sth crest is frozen (laniflow fing So we wene able by whe Snownehion ryinh up the con
SST12501 -righ hiv sert takon: froul A zone -f en ssu2ss2'2 these sampleo HHesez. takem from. reht limst \sec ent Pryot almest unt ide "Sovi somple takan foin. untreatid facty deconpotiter zone Lather fayerg bock -homprek stinpery ares; montob $4 Q 112504$
teken frem ruarth sangly

- Nou $26199-21^{\circ} \mathrm{C}$ clear (52)

2 snavimachini to Cane RH by roadi: back by tiwer

HM 112601 - sampte . $3 m$ boulder bran off mothy sais

HM112602 ©pslape In on

found abtit!
HM112603:- - tahen from inswhenend of adet - mon
Hhuzsor - cuttamafic tomep hent sade com ing 3 hatifut $10^{\prime} \mathrm{m}$
HO 112605 -quart yoin noar mond ads ount.

(55)

Dec 1799- -194c partly cleady, windy
1 frowellod done by snowimadine to the rprag $\mathrm{B}=1$ sempled caut anile of
$s s 120101^{\prime}$ ven decmrow feens. cat sod
Hizoloe No.t.bal

HMQLZDEO
 vein -gdtyan some
sample beation aby on map from Get in

Deczifa -200 cordyclandy ligh shay
1 shoumadia overnod bachite treprept - lawes lead scapted body AA1202O from beabler of Praneng darkgten.
--... P:
HQ 120202 quanticken

AM20203 rantif gomeiquik nemid
 quareltheriment Somplu beation sham

Dec 5
finishod up spoittict
tabelch
syptis panked sapho

which wet not choin

samplasin of seno out
Hubity foent of shate

