

99-065

SILVER SABRE RESOURCES LTD.

GEOPHYSICAL SURVEYS, GEOLOGICAL MAPPING AND DIAMOND DRILLING ON THE BEE AND CEE CLAIMS, WHITEHORSE, YUKON TERRITORY

Mike Power, M.Sc. P.Geoph.

CLAIMS

BEE 1-4 Y 91728-Y 91731
BEE 5-12 Y 91732-Y 91739
BEE 21-24 Y 91748-Y 91751
BEE 25-27 YA03106 - YA03108
BEE 28-35 YA18302-YA18309
BEE 60-63 YA92340-YA92343
CEE 7-8 YA82530-YA82531
CEE 10-13 YA82532-YA82535
CEE 19 YA82581
CEE 20-21 YA85579-YA85580
CEE 25-26 YA85584-YA85585
CEE 24-26 YA86010-YA86012

Work performed: June 1 - September 15, 1999
Mining District: Whitehorse
NTS: 105 D/14 Location: $60^{\circ} 47^{\prime} \mathrm{N} 135^{\circ} 12^{\prime} \mathrm{W}$
December 3, 1999

SUMMARY

A program of geological mapping, induced polarization and resistivity surveys, and diamond drilling was completed on the Bee and Cee Claims, Haeckel Hill area, Whitehorse Mining District during June to September 1999. The program was designed to investigate potential intrusive-hosted gold mineralization in a small stock of the Nisling Plutonic Suite.

The Bee and Cee Claims are located 20 km north of Whitehorse. The property is underlain by the Hancock and Mandana Members of the Laberge Group which consist of limestone and argillite, and greywacke, tuff and argilite respectively in this area. These formations are intruded by Paleocene Nisling Plutonic Suite (NPS) hypabyssal granitic rocks. The known gold mineralization is associated with a small NPS stock exposed in a 400 by 800 m area and centred in the core of a large west-trending anticline. The axial region of the fold containing the stock is cut by a shear zone of indeterminate displacement which localizes most of the known gold occurrences.

The IP and resistivity survey detected coincident chargeability highs and resistivity lows which weaken to the west, particularly at short separations. Subsequent diamond drilling confirmed that the source is a zone of extensive pyrite and pyrrhotite mineralization proximal to the shear and plunging to the west in the core of the anticline.

Three diamond drill holes were sited to test the strongest and shallowest IP responses on the east end of the survey grid at the western contact between the stock and metasediments. Two holes intersected the stock beneath a cupola of Mandana Member metasediments. The third hole (Bee 99-3) failed to intersect the stock but did intersect a quartz carbonate breccia zone in the apparent hanging wall of a steeply dipping fault. This hole also returned anomalous gold (70 ppb over 84 feet).

The exploration program demonstrated that the gold mineralization does not report with the sulphide mineralization on the property and that an additional vector will be required to locate the source of the gold mineralization.

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 LOCATION AND ACCESS 1
3.0 PROPERTY DESCRIPTION AND TENURE 1
4.0 PHYSIOGRAPHY 2
5.0 REGIONAL GEOLOGY 3
6.0 PROPERTY HISTORY 4
7.0 PROPERTY GEOLOGY AND MINERALIZATION 4
8.0 INDUCED POLARIZATION SURVEYS 7
8.1 Personnel and equipment. 7
8.2 Survey specifications 8
8.3 Results 8
8.4 Interpretation 8
9.0 DRILLING 12
10.0 CONCLUSIONS 14
11.0 RECOMMENDATIONS 14
REFERENCES CITED 15
APPENDIX A. STATEMENT OF QUALIFICATIONS 16
APPENDIX B. PROJECT LOG 17
APPENDIX C. STATEMENT OF EXPENSES 18
APPENDIX D. PSEUDOSECTIONS 19
APPENDIX E. DRILL LOGS 20
APPENDIX F. ASSAY CERTIFICATES 21

LIST OF FIGURES

Figure 1. Property location Following page 1
Figure 2. Claim location Following page 1
Figure 3. Property geology Back pocket
Figure 4. Cross section - L 1550E Following page 13

1.0 INTRODUCTION

This report describes a program of geological mapping, line cutting, induced polarization (IP) / resistivity surveys and diamond drilling conducted on the Bee and Cee Claims near Whitehorse, Yukon. The work was performed to evaluate the potential for intrusive hosted gold mineralization on the property.

2.0 LOCATION AND ACCESS

The Bee and Cee Claims are located on the northwest boundary of the city Whitehorse, Yukon, on map sheet 105 D/14, at 6047 'N 135 12'W, southwest of the junction between the Alaska and North Klondike Highways (Figure 1). The route to the property is as follows:

Section | Distance Remarks |
| :--- |
| (km) |

Whitehorse to Old Gun Club Road
Alaska Highway to Old Gun Club
Old Gun Club to showings1.5
0.5

All weather paved highway
All weather gravel road
CAT trail

3.0 PROPERTY DESCRIPTION AND TENURE

The Bee and Cee Property consists of 45 claims granted under the Yukon Quartz Mining Act in the Whitehorse Mining District. Claim data ${ }^{1}$ is summarized below:

Claim	Record Number	Expiry Date
BEE 1-4	Y91728- Y91731	December 6, 2002
BEE 5-8	Y91732 - Y91735	December 6, 2001
BEE 9-11	Y91736 - Y91738	December 6, 2002
BEE 12	Y91739	December 6, 2001

[^0]

Elevation in feet above sea level
BEE 21-22 Y91748-Y91749 December 6, 2002

BEE 23-24 Y91750 - Y91751 December 6, 2001
BEE 25-26 YA03106 - YA03107 July 29, 2003
BEE 27 YA03108 July 29, 2004
BEE 28 YA18302
September 17,2002
BEE 29-35 YA18303-YA18309 September 17,2001
BEE 60-63 YA92340-YA92343 July 2, 2003
CEE 7-8 YA82530 - YA82531 July 3, 2003
CEE 10-13 YA82532-YA82535 July 3, 2001
CEE 19 YA82581 July 4, 2001
CEE 20-21 YA85579-YA85580
CEE 24 YA86010
October 9, 2001
October 23, 2002
CEE 25 YA85584
CEE 25 YA86011
October 9, 2001

CEE 26 YA85585
October 23, 2002

CEE 26
YA86012
October 9, 2001
October 23, 2002

Silver Sabre Resources Ltd. of Whitehorse, Yukon is the sole registered owner of the claims.

4.0 PHYSIOGRAPHY

The Bee and Cee Property is situated on the low lying rolling hills of the Yukon Plateau. Elevations in the area of the property vary from 2500 to 5100 feet. Tree line is at approximately 4500 feet. Below this level, black spruce with pine in sandy areas predominate. Above tree line, vegetation consists of dwarf birch, willow and alder.

The area is subject to a northern continental climatic regime. Temperature averages vary from -12 degrees Celsius in the winter to 15 degrees Celsius in the summer. Precipitation in the area is generally light.

5.0 REGIONAL GEOLOGY

The area of the Bee and Cee Property has been mapped by Wheeler (1961) and Hart (1997). The property is on the southwest flank of the Whitehorse Trough and is underlain by Mesozoic through Tertiary sedimentary and intrusive rocks. Formations in the area of the property are summarized in Table I.

Table I. Regional Stratigraphy (after Hart (1997))

Overburden (Quaternary)	Till and colluvium
Nisling Range Plutonic Suite (Late Paleocene)	Medium to coarse grained horneblende-biotite granite and granodiorite
Aksala Formation	Undifferentiated sedimentary rocks including in decreasing abundance (Upper Triassic)
lime siltstone, siltstone, shale, sandstone and conglomerate locally with limestone.	
Mandana Member	Undifferentiated green and maroon (Upper Triassic)
sandstone, mudstone, shale and tuff.	
Hancock Member	resistant light grey weathering (Upper Triassic)
	massive and well bedded locally fossiliferous limestone.

Sedimentary rocks in the area of the property dip generally to the northeast although they are locally folded about northwest trending axes. Large scale northwest trending folds with wavelengths of up to 10 km are mapped north of the property. Intrusive bodies appear to have steeply-dipping discordant contacts with surrounding sedimentary rocks.

6.0 PROPERTY HISTORY

The Whitehorse Trough hosts significant copper-gold skarn deposits in the Whitehorse area, just south of the Bee and Cee Property. First reports of copper in the area were made by prospectors on their way to the Klondike in 1897. The Copper King claim, staked in 1898 by Jack McIntyre, was the first recorded find in the district and by 1899 the area had been well prospected (Tenney, 1981). Between 1900 and 1921, small high grade shipments were made from the Copper King, Grafter, Valerie and Arctic Chief deposits and the Pueblo Mine went into production, yielding 126,000 tons of copper ore at 3.6% before being shut down after a calamitous rock fall which killed several men. Production resumed under New Imperial Mines Ltd. in 1967 and continued until 1982 when virtually all mines in the Yukon were shut down by a precipitous decline in metal prices. No production has occurred thence.

The Bee and Cee claims were staked in 1974 by Larry Patnode. Trenching, geophysical and geochemical surveys, and drilling was conducted on these and adjoining claims. Significant mineralization was encountered in a 1982 drill hole testing the contact between quartz vein and tuffaceous clastics. Assays returned $34 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, $0.34 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 1.8 \% \mathrm{~Pb}$, and $1.6 \% \mathrm{Zn}$ (MacKay, 1995). In 1985, further geophysical surveying, soil and rock sampling, line cutting, mapping, prospecting, and trenching was conducted by Noranda. Best assays returned was $1.65 \mathrm{~g} / \mathrm{Au}$ (MacKay, 1995). Further trenching and sampling in 1989 and drilling in 1994 failed to locate additional mineralization. In 1995, sampling of the 1985 trenches produced gold values of 1000 to 5000 ppb within Tertiary rhyolites.

7.0 PROPERTY GEOLOGY AND MINERALIZATION

The property geology has been described by MacKay and Reid (1986) and by MacKay (1995). In addition, the author spent several days mapping on the property during June 1999. The property is underlain by argillite, limestone, conglomerate and grit sedimentary rocks and is intruded by granite and rhyolite. Rock units mapped on the property by the author are summarized in Table II.

The property is predominantly underlain by the rocks of the Upper Triassic Aksala Formation (Units 1 and 2). These include clastic rocks mapped as undifferentiated Aksala Formation or Mandana Member and limestones mapped as Hancock Member (Hart, 1997).

Table II. Rock units - Bee \& Cee Property (Classification follows Hart (1997))
Overburden
Unit 3 (Nisling)
Unit 2 (Mandana Member)
Unit 1(Hancock Member)
Tan to light brown till and greyblack colluvium
Granite and rhyolite
Greywacke with lesser conglomerate and argilite
Limestone and marble with minor argillite interbeds.

Greywackes with lesser conglomerate and argillite are the dominant rock type on the property. The greywacke is generally dark to medium grey weathering light grey, medium to fine grained with angular to subangular clasts of amphibole, quartz and plagioclase. The matrix is siliceous with locally calcareous beds. Resistant quartz and plagioclase clasts impart a speckled texture and colour to the rock. Bedding varies from 10 cm to massive and locally beds are graded. Jointing is common on planes spaced up to 1 m apart but more generally are around 30 cm .

Limestone conglomerate assigned to Unit 1 is found at one location approximately 150 m SW of the Old Gun Club. The conglomerate is dark grey weathering light grey to medium buff and brown and contains irregular subrounded clasts up to 20 cm in diameter in a cryptocrystalline matrix. Locally the rock bears a striking resemblance to agglomerate but it is highly calcareous.

Argilite is common near the contact with Unit 2 in the area of the main showings. This rock type is dark grey to black weathering medium to light grey, thin bedded with local thin interbedded siltstone layers. Calcite veining is common near the limestone contact.

Unit 2 rocks form a distinct unit within the predominantly clastic sequence. This unit consists of limestone described as medium grey weathering buff with white crusts, medium to cryptocrystalline and massive to thin $(10 \mathrm{~cm})$ bedded. Contact metamorphism extends to within 100 m of the contact with Unit 4. Near the contact, tremolite knots, iron staining and intense silicification are common together with epidote alteration along and adjacent to fractures.

Unit 3 granite is found in a large intrusion in southern portion of the claim block and in a small stock north of the main intrusion. This unit, part of the Paleocene Nisling Plutonic Suite, is described as white (felsic) and dark green (mafic) weathering white and brown,
anhedral with crystals to 3 mm consisting of plagioclase (?albite) (50\%), amphibole and biotite (30\%) and quartz (10-20\%). This rock unit is massive with widely spaced (1 to 2 m) joints. Marble and amphibolite inclusions up to several metres across are common near the contact with Unit 1.

The northern stock consists of rhyolite and granite in a shallow hypabyssal stock centred at 488250E 6739250N. This stock contains the Main Showing which has been drilled and trenched during 1985-1997. The dominant rock type within the stock appears to be a subvolcanic rhyolite or dacite. In the centre of the main showing it medium grey to buff weathering light grey and contains plagioclase phenocrysts to 3 mm in an aphanitic ground mass. Near the margins of the plug, the rhyolite is locally vesicular or contains quartz amygdules, is intensely silicified and contains 1 to 4\% pyrite. Manganese stain, chlorite alteration and reddish iron stain are also common near the contact with Unit 1. Silicification is intense near the contact and especially proximal to a shear zone in the centre of the plug. Contacts with surrounding argillite and limestone are difficult to pinpoint because of the alteration on the western portion of the contact.

Structure on the property is dominated by a west plunging anticline whose core contains the Unit 4 hypabyssal stock. The fold is exposed in cross section in the east facing slope of Haeckel Hill and contains a shear zone in the axial region which cuts both the intrusion and the surrounding sediments. This structure evidently served as a conduit for ascending hydrothermal fluids as intense alteration and economic mineralization are found near and within it. The rhyolite intrusive extends at least 500 m west of the outcrop exposure, having been intersected at a depth of 14 m in a drill hole near the upper showing.

Mineralization on the property occurs in two settings. The upper showing consists of sheeted to subparallel galena-sphalerite-pyrite bearing quartz veins, and has returned assays of 6-20\% lead-zinc, 144 gpt Ag and 5480 ppb Au (Schulze, 1995). This style of mineralization is confined to the intersection of a shear zone and Unit 2 limestone approximately 400 m west of the margin of the Unit 4 stock. The veins extend for approximately 30 m and are exposed in several blast trenches.

The second style of mineralization is low grade gold within the rhyolite stock (Main Showing). Exploration by Noranda in the 1980's focussed on the shear zone within the stock. Quartz veins containing pyrite, pyrrhotite, galena and sphalerite returned up to 2180 ppb Au from trench chip samples (Doherty, 1997) and the best drill intersection was 280 ppb over 3.3 m in a drill hole beneath an anomalous trench sample (MacKay and Reid, 1986). Drilling during 1997 intersected the rhyolite at depths of 14 to 47 m , 500 m west of the exposed stock and returned 1206 ppb Au from a 1.52 m sample from 30.5 to 32.0 m . The results from this hole suggested that the rhyolite intrusion may
contain significant low grade gold mineralization and merits additional investigation.

8.0 INDUCED POLARIZATION SURVEYS

Induced polarization surveys were conducted to locate disseminated sulphides and to map alteration in the area between the upper showing and the main showing. This section describes survey specifications, results and an interpretation.

8.1 Personnel and equipment.

The IP / resistivity survey was conducted by a 3 man crew consisting of the following personnel:

Person	Position
Mike Power	Crew chief
Gary Lee	Technician
Graeme Gibson	Technician

The crew was equipped with the following instruments and equipment:
Transmitter: \quad Phoenix IPT-1 transmitter and MG-2 2 KW motor generator equipped with spare regulator. A spare IPT-1 was provided as backup.

Receiver:
IRIS IP-10 digital 6-channel IP receiver.

Other equipment: $\quad 4 \mathrm{~km} 16$ gauge wire in good repair, breast reels and speedy winders, stainless steel electrodes, VHF radios, 50 m receiver cables, miscellaneous equipment, F350 2WD crew cab.

Data processing:
486DX66 or better laptop computer, colour printer. Plotting with Geopak IPSECT. Proprietary conversion software used to produce Geosoft format data.

8.2 Survey specifications

The IP / resistivity survey was conducted according to the following specifications:
Array: Dipole-dipole
Dipole spacing: 25 m

Separations read: $n=1$ to 6
Tx mode / signal: \quad Standard time domain signal (2s +on, 2 s off, 2 s -on, 2 s off)

Receiver sampling: Logarithmic sampling of the decay curve, stacked minimum 15 times.

Parameters read: $\quad M_{t}$ - total chargeability (ms)
R_{o} - apparent resistivity
M_{1} to $M_{10}-10$ channel samples of decay curve
V_{p} - Primary voltage
Sp - spontaneous potential
E - error in chargeability (ms)
Noise: \quad Standard deviation of the chargeability was kept to 5 ms or less wherever possible.

Other: \quad Station-to-station terrain slopes were recorded with a clinometer.

8.3 Results

Digital data is appended to this report in Geosoft .dat format. Pseudosections of the apparent resistivity and chargeability are included in Appendix D. The location of significant chargeability and resistivity anomalies are indicated by thick bars centred over the apex of each source. These anomalies are discussed in the following section.

8.4 Interpretation

Line 1200E

Chargeability anomaly \mathbf{A} has a target apex located at 1350N. The target is thin and steeply dipping. Depth to top is approximately 0 to 25 metres. The target is approximately 50 metres wide, extending over the line interval 1337 N to 1375 N , and
extends off line. The response is seen over the intervals $\mathrm{n}=1$ to $\mathrm{n}=6$. Intrinsic chargeability is estimated to be $90-130$ milli-seconds.

Anomaly \mathbf{A} is found in a zone of low resistivity that is bounded to the south by a sharp contact with more resistive rocks. This is annotated as resistivity anomaly \mathbf{A} on the resistivity pseudosection. The width of the source cannot be determined.

Chargeability anomaly B is centred at 938 N . The response is weak and appears to be from a thin, shallow, steeply dipping source. Target width appears to be no greater than one dipole spacing (i.e. 25 metres or less). Depth to top is less than 25 metres. The response is visible over the intervals $n=1$ to $n=2$. Intrinsic chargeability is estimated to be in the order of 60-80 ms.

Chargeability anomaly \mathbf{C} has a target apex located at 837.5 N . The response is seen at separations $n=2$ to $n=6$. Target geometry appears to be thin and steeply dipping. The source is likely three-dimensional (strike limited). Width is no greater than 50 metres. Depth to top is approximately 50-75 metres and intrinsic chargeability is estimated to be $60-70 \mathrm{~ms}$.

Chargeability anomaly \mathbf{D} is a weak response seen over the line intervals 737.5 N to 787.5 N and at separations $n=3$ to $n=6$. The depth to top is therefore approximately 50 to 75 metres. This anomaly may be a response from the same target that creates the response seen in anomaly C located 75 metres to the north.

Anomalies B, C and D are likely related to the westward dipping intrusion located in the central portion of the grid. Moving eastwards across the grid from L1200E to L1600E, the chargeable response from this target increases considerably.

Resistivity anomaly A has a target apex located at 1350N. The anomaly corresponds to a resistivity low as well as a chargeable high over roughly the same line interval. The response suggests a thin. Steeply dipping body that is three-dimensional and approximately 50 to 75 metres wide. Although the exact width is difficult to determine as the response extends past the end of the line.

Resistivity anomaly B is located at 1062.5N. The target appears to be steeply-dipping and corresponds to a sharply defined resistivity low seen on the pseudosection. The anomaly is located in an area of anomalously low chargeability. Depth to top of the source is 25 metres or less. The target is approximately 50 metres wide. The response is visible over separations $n=1$ to $n=6$.

Resistivity anomaly C is a small, moderately low response with an apex located at 962N. The target appears to be two-dimensional and depth limited. The response
indicates a moderate to steeply-dipping body that has a depth to top of 50 to 75 metres. Target width extends over the line interval 950 N to 975 N . This anomaly roughly corresponds to a moderately high chargeability response in the same interval.

Resistivity anomaly D has a target apex situated at 787.5 N . The response appears to be from a very thin source about one dipole spacing wide. The target is steeply dipping. Depth to top is 25 to 50 metres. The response extends over the line interval 775 N to 800 N and is seen at separations $\mathrm{n}=1$ to $\mathrm{n}=6$. This resistivity anomaly seems to correspond to the deep chargeable source on L1200E over the same interval.

Line 1300E

Anomaly \mathbf{A} is a high chargeable response that has an apex located at 1350 N . The response suggests a three-dimensional, steeply dipping source that has a depth to top of 0 to 25 metres. The target width is approximately 75 metres extending from 1300 N to 1375 N and continuing past the northern end of the line. Intrinsic chargeability for the body is estimated to be in the order of $90-130 \mathrm{~ms}$. This anomaly corresponds to a sharply defined contact between rocks of low resistivity and those of higher resistivity to the south.

Chargeability anomaly B has a target apex situated at 1025N. The source appears to be steeply dipping and thin. Depth to top is 25 metres or less and target width is approximately 25 to 50 metres. Intrinsic chargeability is estimated to be $60-90 \mathrm{~ms}$.

Anomaly \mathbf{C} is a moderate chargeability response that may be associated with anomaly B. The target apex is located at 975 N . The source is most likely a steeply dipping body approximately 50 metres wide. The target appears to have a depth to top of 25 metres or less. Intrinsic chargeability is approximately $50-80 \mathrm{~ms}$.

Anomalies \mathbf{B} and \mathbf{C} appear to be related to the same source, which is most likely the westward plunging pluton that extends roughly east-west across the central part of the property.

Resistivity anomaly A has a target apex situated at 1362.5 N . The source is threedimensional and appears to be steeply dipping and extends off line. The anomaly is defined by a strong resistivity low corresponding to a chargeability high over the same interval. Depth to top for this source is $\mathbf{2 5}$ metres or less.

Resistivity anomaly B is a resistivity low that has a target apex located at 987.5 N and appears to be caused by a narrow relatively deep source. Target width is in the order of 25 to 50 metres. Apparent dip is difficult to estimate. The source appears to be threedimensional. Depth to top is 75 metres or greater. The target appears to broaden at
depth.
Resistivity anomaly \mathbf{C} is a strong resistivity low response centred at 887N. The target is steeply dipping and three-dimensional. Depth to top is 25 metres or less. The width of the response indicates a relatively narrow source less than 50 metres wide.

Resistivity anomalies B and C lie within a zone defined by moderate to high chargeability response.

Line 1400E

Anomaly \mathbf{A} is a strong, positive chargeability response centered at 1375 N . The target is three-dimensional, narrow and steeply dipping. The target extends from 1350 N to 1375 N and beyond the end of the line. It has a depth to top of 25 metres or less. The intrinsic chargeability is estimated to be about 60-90 ms.

Chargeability anomaly B is a moderate chargeability high that has a target apex situated at 1012.5 N . The response is from a shallow thin source with an intrinsic chargeability of roughly $50-70 \mathrm{~ms}$.

Chargeability anomaly \mathbf{C} is a moderate response centred at 950 N . The source steeply dipping and at least 50 metres wide, becoming stronger at depth. The response is visible at separations from $n=2$ to $n=6$. The depth to the top is approximately 50 to 75 metres. Intrinsic chargeability is in the order of 50-70 ms.

Anomalies B and C appear to be related to the same source and are most likely caused by the east-west trending intrusive body found on the central portion of the property.

Resistivity anomaly \mathbf{A} is a strong resistivity low with apex at 1362.5 N . The target dips steeply, is three-dimensional and narrow. The target width is approximately 25 to 50 metres and the depth to top is 25 metres or less. This anomaly corresponds to a chargeable source over the same line interval.

Resistivity anomaly B is a thin and strong low signature centred at 937.5N. The target is three-dimensional and appears to be steeply dipping. The target is about 25 to 50 metres wide extending over the line interval 900 N to 950 N . Depth to top is 0 to 25 metres and the response is visible at all separations.

Resistivity anomaly B is likely a response from the highly chargeable target in the centre of the grid, although the response pattern differs considerably in width with that of the chargeability target.

Line 1500E

Anomaly \mathbf{A} is a strong, positive chargeable response centred on 1037.5 N . The source is steeply dipping. Strong response is visible at all separations from $n=1$ to $n=6$. The depth to top is 25 metres or less and target width is 50 to 75 metres. The source body appears to broaden at depth. Intrinsic chargeability for this anomaly is estimated to be approximately $100-150 \mathrm{~ms}$.

Anomaly \mathbf{A} is a caused by a large, chargeable target that corresponds to the location of the intrusive body in the center of the grid.

Resistivity anomaly \mathbf{A} is a strong resistivity low centred at 1000 N. The response is indicates a three-dimensional source dipping steeply. The response is seen at $n=1$ to $n=6$, extending over the line interval 950 N to 1050 N . This anomaly corresponds to the large chargeability high seen over the same interval on L1500E.

Line 1600E

Chargeability anomaly \mathbf{A} is a strong, positive response having an apex located at 950N. The nature of the response suggests a broad, steeply dipping source. Depth to top is 25 metres or less and target width is about 150 to 175 metres extending from 925 N to 1100 N . Intrinsic chargeability is estimated to be 130 to 200 ms .

Chargeability anomaly \mathbf{B} is a high response that is likely caused by the same source body creating anomaly \mathbf{A}. The target apex is at 875 N and the width of the response is estimated to be 50 metres. The response is strongest at separations $n=3$ and $n=4$. Intrinsic chargeability is in the order of 60 to 90 milli-seconds.

Resistivity anomaly A is a large, broad resistivity low centred at 1012.5N. The anomaly corresponds to the large chargeability high located on L1600E.

The anomalies on both pseudosections of L1600E are thought to be the result of a large, chargeable intrusive body that plunges westward across the centre of the grid. Response from this target appears on all the lines surveyed with the strongest response seen on L1600E.

9.0 DRILLING

Midnight Sun Drilling Co. Ltd. drilled three diamond drill holes on the property in August 1999. Drill hole data is summarized below:

Drill hole	Location	Azimuth	Inclination	Total depth
Bee 99-1	L1550E 1075N 488038E 6739205N	270°	-85 ${ }^{\circ}$	149'
Bee 99-2	L1550E 1000N 488081E 6738971N	270°	-90°	154'
Bee 99-3	L1550E 925N 488052E 6738943 N	270°	-85 ${ }^{0}$	152'

The drill holes were sited to test the source of the IP anomalies on L1600E and L1500E. The drilling was supervised by Jim McFaull, FGAC who also logged and sampled the drill core. Samples of the split core were taken over 10 foot intervals and sent for analysis to Northern Analytical Laboratories Ltd. in Whitehorse. Samples were crushed to -10 mesh, split to 200 g and pulverized to -100 mesh before assaying. The samples were analysed for gold by fire assay (1 assay-ton with an atomic absorption spectrophotometry finish) and for 30 other elements by induced coupled plasma analysis at International Plasma Laboratories Ltd. Drill logs are attached in Appendix E and assay certificates are attached in Appendix F.

Drill hole locations are shown in Figure 3 and a cross section along L1550E is shown in Figure 4. The drill holes encountered disseminated and stringer pyrrhotite and pyrite in chloritized, silicified and locally sericitized granodiorite, rhyolite and metasediments. The volume of sulphides encountered adequately explains the observed chargeability and resistivity anomalies. No significant concentrations of base metal sulphides were encountered but hole 99-1 encountered anomalous gold intersections averaging 70 ppb over 84 feet. This hole was entirely within altered metasediments and did not encounter the rhyolite porphyry.

10.0 CONCLUSIONS

The results of the work conducted on the Bee and Cee Claims during 1999 lead to the following conclusions:
a. A small stock of granite and rhyolite occurs in the centre of a large, west plunging anticline. The axial region of the stock and fold is also sheared and silicified.
b. Pyrite and pyrrhotite in disseminations and stringers is concentrated in the axial region of the fold at and surrounding the intrusive contact. Chlorite and sericite alteration together with locally intense silicification is found with the sulphide minerals.
c. The sulphide bearing alteration zone at the intrusive contact locally contains anomalous sub-economic gold in drill holes.

11.0 RECOMMENDATIONS

The following recommendation is made for further work on the claims:

1: Additional geological mapping, geophysical surveys and hand trenching should be conducted in the area of the contact between the rhyolite and metasediments. In particular, the area on the eastern side of the stock remains relatively unexplored.

2: Careful sampling should be conducted of all observed phases of the intrusive and country rocks to determine if a geochemical vector to improved mineralization can be found.

3: If trenching results are favourable, additional short holes should be drilled over surface anomalies.

Respectfully submitted,
AMEROK GEOACIENCES LTD.
M.A. Power Mas

Geophysicist

REFERENCES CITED

Doherty, R.A.
1998: Assessment Report - Reverse circulation drilling on the Bee and Cee Claims. INAC: Unpublished assessment report.

Hart, C.J.R.
1999: A Transect Across Stikinia: Geology of the Northern Whitehorse Map Area, Southern Yukon Territory (105 D/13-16). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Bulletin 8.112 p.

Hart, C.J.R. and J.K. Radloff
1990: Geology of Whitehorse, Alligator Lake, Fenwick Creek, Carcoss and of Robinson Map Areas (105D/11, 6, 3, 2, and 7), Aurum Geological Consultants, Inc. Indian and Northern Affairs Canada, Northern Affairs: Yukon Region, Open File 1990-4.

MacKay, G.
1995: Report on Assessment of Bee Claims 105D/14, MacKay, Falkiner, and Associates: in house report.

MacKay, S. and W. Reid
1986: Geological, Trenching and Rotary Report, 1986 on the Bee Claims. Unpublished assessment report.

Patnode, B.
1995: Assessment report on Bee and Cee Mineral Claims, NTS 105-D-14 Rotary Drilling Report, Nov. 24-25, 1994.

Schulze, C.
1995: Results of October, 1995 Property Visit, Bee and Cee Claim Block, Silver Sabre Resources Ltd., 105 D/14. Whitehorse Mining Recorder: 093446.

Tenney, D.
1981: The Whitehorse Copper Belt: Mining, Exploration and Geology (19671980). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Bulletin 1. 30p.

Wheeler, J.O.
1961: Whitehorse Map-Area, Yukon Territory, 105D, Memoir 312. Geological Survey of Canada.

APPENDIX A. STATEMENT OF QUALIFICATIONS

I, Michael Allan Power, m.sc. P.Geo., P.Geoph., with business and residence in Whitehorse, Yukon Territory do hereby certify that:

1. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (registration number 21131) and a professional geophysicist registered by the Northwest Territories Association of Professional Engineers, Geologists and Geophysicists (licensee L942).
2. I am a graduate of the University of Alberta with a B.Sc. (Honours) degree in Geology obtained in 1986 and a M.Sc. in Geophysics obtained in 1988.
3. I have been actively involved in mineral exploration the Northern Cordillera since 1988.
4. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in Silver Sabre Resources Ltd. or any of its properties.
5. The foregoing report is based on publically available data, reports and maps, on geological mapping and geophysical surveys conducted by the author and on diamond drilling supervised by Jim McFaull, FGAC with the assistance of the author.

Dated this $3^{\text {nd }}$ day of December 1999 in Whitehorse, Yukon Territory.

Michael A. Persidec Misc. P. Geo.
Geophysicist

APPENDIX B. PROJECT LOG

Date
10 Jun 99

11 Jun 99
12 Jun 99
13 Jun 99
14 Jun 99
15 Jun 99
16 Jun 99
17 Jun 99
12 Jul 99
19 Aug 99

20 Aug 99
21 Aug 99
22 Aug 99
23 Aug 99
24 Aug 99
25 Aug 99
26 Aug 99
27 Aug 99
02 Sep 99-10 Sep 99

Activity
M. Power, G. Gibson conduct geological mapping.
G. Lee relocates base line and begins cutting

Geological mapping, base line cutting
Geological mapping, line cutting
Line cutting - G. Gibson \& G. Lee
Line cutting - G. Gibson, G. Lee and M. Power
IP survey - L1600E - L1500E
IP survey - L1400E - L1300E
IP survey - L1200E - L1100E
Site drill holes - J. McFaull / M. Power
Mobilize diamond drill to property. J. McFaull supervising and logging.

Bee 99-1 drilling
Bee 99-1 completed
Bee 99-2 drilling
Bee 99-2 drilling
Bee 99-2 completed
Bee 99-3 drilling
Bee 99-3 drilling
Bee 99-3 completed
Logging in Whitehorse - J. McFaull

Personnel:

Jim McFaull	Gary Lee	Graeme Gibson	Mike Power
$\# 5-100$ Lewes Blvd.	Box 5348	c/o Box 5808	Box 5808
Whitehorse YT	Whitehorse YT	Whitehorse YT	Whitehorse YT
Y1A 3W1	Y1A 4Z2	Y1A 5L6	Y1A 5L6

APPENDIX C. STATEMENT OF EXPENSES

Geological mapping: Geologist and helper w/truck	$\$ 1,800.00$
3.0 days @ $\$ 600$ per diem	
Line cutting: 4.5 line-km @ $\$ 500 /$ line-km	$\$ 2,250.00$
IP survey: 4.0 line km @ $\$ 2,000 /$ line-km	$\$ 8,000.00$
Drill supervision: 8.0 days @ $\$ 350$ per diem	$\$ 2,800.00$
Drilling: 138 m in 3 holes @ $\$ 149.40$ per metre all-in	$\$ 20,617.00$
Assays (net of coupons): $\mathbf{4 2}$ analyses	$\$ 580.00$
Final report	$\$ 3,000.00$
Total project expenditures	$\$ 39,047.00$

I certify that these expenditures are true and correct to the best of my knowledge.

Geophysicist

December 5, 1999

APPENDIX D. PSEUDOSECTIONS

APPENDIX E. DRILL LOGS

Location: Bee Claims, Haeckel Hill Hole \#: Bee 99-1 Azimuth: 270° Mining District: Whitehorse

NTS: 105 D/14
Dip: -85°
Lat. $60^{\circ} 47^{\prime} 24^{\prime \prime}$
Depth O/B: $9^{\prime \prime}$
Logged By: J. McFaull

| Footage |
| :--- | :--- | :--- | :--- |
| From |
| Box 1 | To Interval RCY\%

$0^{\text {Box } 1}$

AMEROK GEOSCIENCES LTD.

DIAMOND DRILL LOG

Location: Bee Claims, Haeckel Hill Hole \#: Bee 99-1 Azimuth: 270°

 Mining District: Whitehorse$\left.\begin{array}{llll}\text { Footage } \\ \begin{array}{l}\text { From } \\ \text { Box 4 }\end{array} & \text { To } & \text { Interval } & \text { RCY\% } \\ 74 & 94 & 20 & 100\end{array} . \begin{array}{ll} & \end{array}\right)$

Box 5

Box 5			
94	125	31	71
94	105	11	100
105	115	10	60
115	125	10	50

Box 6
125

147	149	2	75

NTS: 105 D/14 Lat. $60^{\circ} 47^{\prime} 24^{\prime \prime}$ Long. $135^{\circ} 13^{\prime} 11^{\prime \prime} \quad$ UTM 08 488038E 6739205N Dip: -8° Depth O/B: 9' Depth: 149' Casing: 10' Core Size: NQ Logged By: J. McFaull Date Drilled: August 30-31, 1999
Geological Description
Moderately hard, strongly brecciated white \& gray, quart

carbonate vein-fault breccia with 1\% very fine grained disseminated pyrite. The wall rock of volcaniclastic tuff becomes more whitish or "bleached" looking from 77' to 94' possibly due to sericitization along the fault. Occassional stringers of pynte throughout the section. No HCl reaction on the tuff wall rocks, a weak eaction on some of the narrow white veinlets. The number of veinlets decreases down section Brecciation of the luff decreases slightly down section.

Slightly brecciated volcaniclastic tuff with minor white quartzcalcte veinlets to 105 . 2% very fine grained disseminated pyrite. Vein-fault. Strongly faulted \& gouged with $\mathbf{4}^{\prime}$ core'loss. 1% very fine grained disseminated pyrte.
Dark greenish/gray siliceous moderately hard aphanitic silistone. 5 -10\% pyrite in calcite veins \& fracture fillings \& disseminated. @ 115'-117' strong HCl reaction in calcite stockwork. Heavy ulphides as clots in the larger veins.
 with 5-10\% pyrite in calcite stockworks \& fracture fillings \& diss eminations. No HCl reaction. From 125'-134' a stockwork of hairine sulphide stringers with heavy pyrite in larger veins. At 134' the siltstone changes to a dark gray aphanitic siltstone with 2% pyrite as fracture fillings and disseminations. No HCl reaction. Core is rubbly @ 144'-146', possible fault. 1' core loss @ 125'135^{\prime} and 2^{\prime} core loss @ 135'-145'.

Dark gray aphanitic siltstone with 2% pyrite as fracture fillings and disseminations. No HCl reaction.
END OF HOLE

TOTAL RECOVERY $=\mathbf{1 2 1}^{\prime}$ OF $140^{\prime}=86.4 \%$

AMEROK GEOSCIENCES LTD.

DIAMOND DRILL LOG

AMEROK GEOSCIENCES LTD.

DIAMOND DRILL LOG

Footage From	To	Interval	RCY\%	Geological Description	Assays Interval	Sample\#	Au OPT	Ag ppm	$\begin{gathered} \text { Pb } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathbf{Z n} \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathbf{B i} \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	As ppm
47	66	19	100	Volcaniclastic agglomerate / tuff as above. Trace very fine grained disseminated pyrmotite throughout section. @ 48 $8^{\circ}-48.5^{\prime}$ white calcite vein with trace dissemunated galena \& pyrite. @ 57' -58.5^{\prime} white calcareous veinlets. @ 61-63' very leached, moderately broken core, numerous narrow rusty veinlets @ 10° to core axis. Veinlets are calcite.										
Box 4														
66	84.5	18.5	100	Volcaniclastic agglomerate / tuff as above. Trace very fine grained disseminated pyrmotite throughout the section.	70.5'-80'	1269	<0.001	$<$	15	24	32	$<$	$<$	15
81	84			@ 81 ' tuff is in contact with black to gray silicified argillte. Contact is approximately parallel to foliation @ 75° to core axis. Argillite is barren of sulphides.	80'-89.5'	1270	<0.001	$<$	22	157	56	$<$	$<$	22
84	84.5			Pale gray limestone with trace disseminated pyrite Very strong HCI reaction.										
Box 5														
84.5	104.5	20	100	@ 84.5'-85.5' black to gray sillcified argillite. No sulphides visible. @ 85.5'-95.5' hard, silicified gray to dark gray limestone, virtually barren of sulphides except for a thin folia of pyrmotite @ 88.25'										
				@ 95.5'-101' argillite as above. © 101'-101.6' black sillcified quartz feldspar porphyry myolite sill. Hanging wall contact is sharp \& parallel to bedding @ 70° to core axis. @ 101.6'-102.25' limey siltstone / limestone with strong folia and clots of pyrmotite. @ 102.25'-104.5' black slicified quartz feldspar porphyry	89.5'-99.5'	1271	<0.001	0.1	20	167	45	<	<	16
				rhyolite with 5% very fine grained disseminated pyrhotite \& pyrite The phenocrysts are faint \& possibly altered.	99.5'-108'	1272	<0.001	0.1	18	187	47	$<$	$<$	70

AMEROK GEOSCIENCES LTD.

DIAMOND DRILL LOG

Location: Bee Claims, Haeckel Hill	NTS: 105 D/14	Lat. $60{ }^{\circ} 47^{\prime \prime} 15^{\prime \prime}$	Long	13'10"	UTM 08 488052E 6738943N
Hole \#: Bee 99-3 Azimuth: $270{ }^{\circ}$	Dip: -85	Depth O/B: 9'	Depth: 152'	Casing: $\mathbf{1 0}^{\prime}$	Core Size: NQ
Mining District: Whitehorse	ed By: J. McFau				Date Drilled: August 25-27, 1999

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Footage From \& To \& Interval \& RCY\% \& Geological Description \& Assays Interval \& Sample\# \& Au OPT \& Ag ppm \& \[
\begin{gathered}
\text { Pb } \\
\text { ppm }
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{Zn} \\
\mathbf{p p m}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{Cu} \\
\mathrm{ppm}
\end{gathered}
\] \& \[
\begin{gathered}
\mathbf{B i} \\
\text { ppm }
\end{gathered}
\] \& Hg ppm \& \[
\begin{gathered}
\text { As } \\
\text { ppm }
\end{gathered}
\] \\
\hline \[
{ }_{68}^{B o x 4}
\] \& 87 \& 19 \& 100 \& © 68'-78.5' pale greenish / gray hard, sillceous altered(?) volcaniclastic agglomerate / tuff. Clots of pyrnotite to \(2^{2}\) diameter, some appear to replace (?) mafic fragments. @ \(785^{\prime}\) contact with dark gray, hard, sillceous quart feldspar porphyry myolite with contact © 30 to core axis. 1-5\% very fine grained disseminated pyrthotte. \& \begin{tabular}{l}
69'-79' \\
\\
79 \\
\hline 1 -89'
\end{tabular} \& 1284
1285 \& 0.001
0.001 \& < \& 13
41 \& 18
58 \& 47
47 \& < \& \(<\)
\(<\) \& 248 \\
\hline \[
87^{\text {Box } 5}
\] \& 106.5 \& 19.5 \& 100 \& @ 87'-93' dark gray, hard, sillceous quartz feldspar porphyry myolite. \(1-5 \%\) very fine grained disseminated pyrrhotite Minor fractures with trace limonite. @ \(93^{\prime}-101\) ' contact with pale greenish/gray hard limestone. Strong HCI reaction. Contact appears gradational over 4-6". 1-2\% disseminated pyrrhotte some clots of pyrmotite to \(2^{\prime \prime}\) diameter. @ 101-104' gradational contact into pale greenish/gray tuff as above. @ 104'-106.5' gradational contact into dark gray hard, sillceous siltstone with trace very fine grained disseminated pyrite \& 89'-99'

99'-109' \& 1286

1287 \& <0.001

0.001 \& 0.1 \& 29
42 \& 45
42 \& 27
23 \& < \& < \& 1888

523

\hline \[
$$
\begin{gathered}
\text { Box } 6 \\
106.5
\end{gathered}
$$

\] \& 126 \& 19.5 \& 100 \& © 106.5'-112' dark gray hard siliceous siltstone with trace pyrhotte. @ 112'-119' hard sillceous white/gray/black limestone. Strong HCI reaction. 1-2\% very fine grained disseminated pyrite. © 119'-126' dark gray hard sillceous quark feldspar porphyry myolite with 2% very fine grained disseminated pyrrhotite. \& | 109 |
| :--- |
| 1119 |
| 119 | \& 1288

1289 \& 0.001
<0.001 \& 0.1
0.1 \& 27
12 \& 77
33 \& 21
7 \& < \& < \& 532
216

\hline
\end{tabular}

AMEROK GEOSCIENCES LTD.

Location: Bee Claims, Haeckel Hill	NTS: 105 D/14	Lat. $60^{\circ} \mathbf{4 7}{ }^{\prime 1} 5^{\prime \prime}$	Long. $135^{\circ} 13^{\prime \prime} 0^{\prime \prime}$		UTM 08 488052E 6738943N
Hole \#: Bee 99-3 Azimuth: 270°	Dip: -85	Depth O/B: 9'	Depth: 152'	Casing: 10'	Core Size: NQ
Mining District: Whitehorse	d By: J. McFaul				Date Drilled: August 25-27, 1999

APPENDIX F. ASSAY CERTIFICATES

\# of pages (not including this page): 2
Amerok Geosciences
Jim McFaull

Date Received: 13/09/99

SAMPLE PREPARATION: \# of
Code Samples Type Preparation Description (All wet samples are dried first.)

dc	42	drill core	Crush to -10 mesh; riffle split 200g; pulverize to -100 mesh			
ANALYTICAL METHODS SUMMARY:						
			Method (A:assay)		Lower	Upper
Symbol	Units	Element	(G:geochem)	Fusion/Digestion	Limit	Limit
Au	0z/ton	Gold	A: FA/AAS	1AT FA / aqua regia	0.001	0.400

AAS = atomic absorption spectrophotometry
FA = fire assay

$$
1000 \mathrm{ppb}=1 \mathrm{ppm}=1 \mathrm{~g} / \mathrm{mt}=0.0001 \%=0.029166 \mathrm{z} / \mathrm{ton}
$$

CERTIFICATE OF ANALYSIS iPL 99I0934

2036 Columbia Street Vancouver, BC Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898
42 Samples $42=$ Pulp

Client : Northern Analytical Laboratories Project: WOH 00009

Sample Name	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{cc} \text { As } & \mathrm{Sb} \\ \text { ppm } \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Hg}}$	$\begin{array}{cc} \text { Mo Tl } \\ \text { ppm ppr } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Cd}}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{N}_{1} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \text { ppm } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\underset{\text { ppm }}{V}$	$\begin{gathered} \text { Mn } \\ \text { ppп } \end{gathered}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Zr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	${ }_{7}$	Al	$\underset{\star}{\mathrm{Ca}}$	Fe	$\stackrel{\mathrm{Mg}}{\dot{*}}$	\ddot{x}	Na	*
$\begin{aligned} & 1290 \\ & 1291 \end{aligned}$		32	14	64	337					9	19	68 118	29	29	$\begin{aligned} & 251 \\ & 190 \end{aligned}$	16	$\begin{array}{r} 57 \\ 139 \end{array}$	4									

[^0]: ${ }^{1}$ Claim data as reported by the Whitehorse Mining Recorder on November 2, 1999. The expiry dates have not been adjusted for work performed in 1999.

