[YMIP 01 028]

ASSESSMENT REPORT

DIAMOND DRILLING

on

HAT 27 and HAT 23 CLAIMS YB58049 and YB58023

May 24 - June 13 2001

Latitude 60°44 44 N Longitude 134°44 44

NTS 105 D/11 14

WHITEHORSE MINING DISTRICT YUKON TERRITORY

for

Kluane Drilling Ltd 14 MacDonald Road Whitehorse Yukon Y1A 4L1 YUKON FNERGY MINES & RES C S LIBRARY PO Box Whitehorse Yukon Y1A 2C6

by Xiangdong Jiang consulting geologist

July 20 2001

Summary

In the summer of 2001 Kluane Drilling Ltd continued its exploration program on the HAT claims in the north end of the Whitehorse Copper Belt Three diamond drill holes totaling 2005 ft (611 12m) were completed HT 3 and HT-4 drilled in the garbage dump site intersected scattered skarn Cu– Au –(Ag) mineralization with the best being 9 6 ft averaging 3 12% Cu and 359 ppb Au and 13 8 ppm Ag from HT-4 The third hole HT-5 drilled in the northwest was entirely within the intrusive – granodiorite which for several hundred feet is scattered with fine quartz-(calcite)-chalcopyrite-(bornite) veinlets with highly anomalous copper values up to 1 02% Cu and local elevated gold values up to 1 76 g/t Au The IP anomaly to the west of HT-5 appears getting stronger (over 60 milli-seconds) and open beyond the end of the survey line Potential for an intrusive hosted (modified Fort Knox style?) Cu Au deposit may exist Further drilling is strongly recommended for this area. It is also recommended that the garbage dump site be further drill tested for both skarn and intrusive hosted Cu Au mineralization

TABLE OF CONTENTS

1
3
3
5
5
5
6
6
35
36
37
38

TABLES AND FIGURES

TABLE 1	HAT CLAIM STATUS	3
TABLE 2	DIAMOND DRILL LOG HT-3	8
TABLE 3	DIAMOND DRILL LOG HT-4	16
TABLE 4	DIAMOND DRILL LOG HT-5	24
FIGURE 1	LOCATION MAP 1 5 000 000	4
FIGURE 2	CLAIM MAP 1 20 000	BACK POCKET
FIGURE 3	HAT PROPERTY GEOLOGY AND DATA COMPILATION MAP 1 4	800 BACK POCKET
FIGURE 4	HT-1 3 AND 4 DRILL HOLE SECTION (AU) (1 800)	29
FIGURE 5	HT 1 3 AND 4 DRILL HOLE SECTION (CU) (1 800)	30
FIGURE 6	HT 1 AND 4 DRILL HOLE SECTION (AU) (1 800)	31
FIGURE 7	HT 1 AND 4 DRILL HOLE SECTION (CU) (1 800)	32
FIGURE 8	HT-5 DRILL HOLE SECTION (AU) (1 800)	33
FIGURE 9	HT 5 DRILL HOLE SECTION (CU) (1 800)	34

APPENDIX

APPENDIX I ANALYTICAL DATA AND ASSAY CERTIFICATES	39
---	----

Introduction

In the summer of 2001 Kluane Drilling Ltd based on previous trenching geophysics and diamond drilling carried out further exploration on the HAT claims in the north end of Whitehorse Copper Belt Work completed this year include three diamond drill holes totaling 2005 ft (611 12 m) A total of 70 drill core samples were collected and analyzed for gold and copper and 32 additional elements by ALS Chemex in North Vancouver

The overall target evaluation program is partially funded by Yukon Mining Incentive Program (YMIP designation number 01 028) The diamond drilling was done by Kluane Drilling Ltd of Whitehorse as owner operator

Property Location and Access

The HAT property consists of 52 contiguous mineral claims including HAT 1 - 48 and Bornite 1 2 and Zircon 2 and Zircon 4 The claim status and ownership are listed in Table – 1 The claims are located about 5 km NW of Whitehorse City downtown and to the west of Alaska Highway with its center at about latitude 60° 45 3 N and longitude 135° 10 5 W straddling NTS sheets 105D/11 and 14 (Figure 1 and 2) The claims cover the north end of Whitehorse Copper Belt with the abandoned War Eagle open pit to its south The newly stripped northern portion of the garbage dump site lies on HAT-1 and HAT 27 claims

Claim Name	Grant Number	Number of Claims	Mining District	Ownership	New Expiry Date
Hat 1 20	YB57537 YB57556	20	Whitehorse	KD 50% Norwest 50%	2009/11/11
Hat 21 26	YB58021 YB58026	6	Whitehorse	KD 50 /6 Norwest 50%	2011/11/11
Hat 27 34	YB58049 YB58056	8	Whitehorse	KD 50% Norwest 50%	2011/11/11
Hat 35 36	YB58139 YB58140	2	Whitehorse	KD 50% Norwest 50%	2010/11/11
Hat 37 40	YB66395 YB66398	4	Whitehorse	KD 50% Norwest 50%	2009/11/16
Hat 41 44	YC18449 YC18452	4	Whitehorse	KD 50% Norwest 50%	2009/11/11
Hat 45 46	YC18695 YC18696	2	Whitehorse	KD 50% Norwest 50%	2009/11/11
Hat 47 48	YC18853 YC18854	2	Whitehorse	KD 100%	2005/11/11
Bornite 1 2	73783 73784	2	Whitehorse	KD 100%	2010/01/01
Zircon 2	64183	1	Whitehorse	KD 100%	2010/01/01
Zircon 4	74157	1	Whitehorse	KD 100%	2010/01/01

Table 1 HAT Claim Status

Access to HAT claims is very convenient from Whitehorse City Several roads lead to the claims including mainly the Whitehorse copper haul road the garbage dump site road and the road from south of Crest View A number of trails exist on the property including the well cut Whitehorse Traverse Reference Line

Physiography, Climate and Vegetation

The Hat property lies below tree line on a gentle slope west of Alaska Highway The highest point on the property is about 1230 meters above sea level while the lowest at about 750 meters above sea level The climate is of interior continental with annual precipitation of about 300 mm The region has cold and long winters followed by warm summers Snow free season starts from about mid-May to late September Permafrost may exist as small patches on the steep north facing slopes Most of the property is well treed by black spruce willow and alder etc except in a few small swampy areas where low dense brush and moss are well developed Outcrops on the Hat claims are sparse Overburden depth varies from a few meters to several tens of meters

Previous Work

There is great amount of work done on the Whitehorse Copper Belt over it's more than one hundred year history Numerous publications are available today From the first claim staked by Jack McIntrye on July 6th 1898 the Whitehorse Copper Belt has seen quite a few booms and busts caused either by world copper prices or by infrastructure problems Major companies that have worked on the belt include Richmond Yukon Company worked in late 1920's Noranda Mines worked in late 1940's Hudson Bay Exploration and Development Company worked in 1950's and from late 1970's to 1990's and Imperial Mines and Metals (later changed name to New Imperial Mines Ltd in 1957) from 1950's to late 1970's The Whitehorse Copper mining operations ceased at the end of 1982 The production for the 1967 1982 period included 267 490 930 pounds copper 224 565 ounces gold and 2 837 631 ounces of silver from 11 017 738 tons of ore milled Further exploration on the Copper Belt has been relatively dormant since 1982 Only minor amount of drilling trenching and geophysics were conducted with no new economic discoveries

From 1998 to 1999 a trenching sampling program was completed mainly in the dump site area by Kluane Drilling Ltd followed by data compilation In 2000 two diamond drill holes totaling 1172 ft (357 23m) and five line-kilometers of Induced Polarization survey were completed in and near the current dump site area Significant skarn mineralization was intersected in HT 1

Regional Geology

The geological setting of the Whitehorse Copper Belt is well summarized by D Tenney (1981) The Whitehorse Copper Belt is within the Whitehorse Trough a subdivision of the Intermontane Belt The trough trends northwestwards through south central Yukon and represents an island arc complex that ranges from upper Paleozoic through Jurassic in age Within the Copper Belt clastic and carbonate rocks of the upper Triassic Lewes River Group and clastic rocks of the Lower Jurassic Laberge Group are the dominant rock types The copper bearing skarns occur over a length of about 32 km along the western side of a Cretaceous diorite batholith of the Coast Platonic Complex

Property Geology

The Hat Claims are located in the north end of the Whitehorse Copper Belt Past producer War Eagle open pit sits right to the southern edge of the claims About two thirds of the property is underlain by sedimentary rocks of Upper Triassic Lewes River Group and Lower to Middle Jurassic Laberge Group The rest is occupied by Mid Cretaceous Whitehorse Batholith The Lewes River Group is composed of a mixture of calcareous and dolomitic siltstone sandstone and mudstone pyritic siltstone sandstone argillite limestone dolomite and fragmental rocks The Laberge Group is consisted of poorly sorted greywacke and sandstone with interbeded argilite and siltstone (no calcareous units) (Watson 1984) The Whitehorse Batholith is composed of grey equigranular medium to coarse grained biotite hornblende guartz monzonite to granodiorite and hornblende diorite The contact between the sedimentary rocks and the Batholith is believed to be about 300m east of the War Eagle open pit This contact zone has never been well defined due to overburden Coincidental geophysical anomalies were found near the dump site area where several widely spaced holes were previously drilled by Hudson Bay to test the main contact zone The best intersection returned 16 5 feet averaging 1 78% Cu in hole HS-7

Mineralization on HAT claims are mainly of skarn style as iron rich and silicaterich copper skarns developed in the Upper Triassic Lewes River Group limestones and clastic sedimentary rocks near contact with granodiorite. Other styles of mineralization reported on the Whitehorse Copper Belt include mainly porphyry Cu - (Au) However so far there is no such economic deposit found on the belt. The new trenches on HAT claims and the many mineralized floats give strong indication that a porphyry style deposit may exist on HAT claims

2001 Diamond Drilling Program

In the summer of 2001 three diamond drill holes totaling 2005 ft (611 12m) were completed on the HAT property including two holes in the garbage dump site area and one hole in the northwest on L132N / 16+50 west Drilling started on May 25 2001 and finished by June 11 2001 Kluane Drilling Ltd as owner operator completed the diamond drilling The first hole HT – 3 was re-drilled from the same collar after drill rod stuck at 180 ft Core recoveries were above 95% Ground disturbance was kept to minimal

The objective of this program is to drill test the extent of the skarn mineralization (10 55m averaging 4 99% Cu 1 05 g/t Au and 40 28 g/t Ag) intersected last year in drill hole HT 1 and to further explore the possibility for a porphyry style Au – Cu – Mo deposit in the north end of Whitehorse Copper Belt Cu Au mineralization was found scattered in all three holes drilled this year although with no significant width The best copper mineralization intersected this year is from HT-4 with 9 6 ft averaged 3 12% Cu and 359 ppb Au The scattered highly anomalous Cu-(Au) values intersected in HT-5 shed new light in searching for an intrusive hosted Cu-Au-Mo deposit in the region

HT - 3 was drilled right inside the garbage dump site to scissor the section with HT 1 drilled last year HT-3 drilled mainly within well developed exoskarn zones with local granodiorite dikes Mineralizations occur as scattered small intervals of skarn and/or altered granodiorite with disseminated chalcopyrite bornite and local molybdenite. The best sample in this hole assayed 1 99% Cu and 695 ppb Au and 17 8 ppm Ag from a small felsic dikelet. No significant zones were intersected in HT 3

(see Table 2 for drill log and Figure-4 to Figure 7 for sections)

HT – 4 was drilled at right angle to the HT-1 and 3 section and went through the section at 75 ft above the mineralization zone intersected in HT 1 Only 9 6 ft similar style skarn mineralization was intersected averaging 3 12% Cu 359 ppb Au and 13 8 ppm Ag It seems the zone is pinching out on this direction (see Table-3 for drill log and Figure-4 to Figure-7 for sections)

HT – 5 was drilled in the northwest on Line 132N / 16+50W to test the IP chargeability anomaly The entire hole is in granodiorite. The intrusive is scattered with fine quartz-(calcite) chalcopyrite (bornite) veinlets mostly less than a centimeter thick with associated disseminated chalcopyrite halos. The veining is better developed from about 300 ft down hole to about 560 ft. Normally 2-3 veinlets per five feet to local 2-3 veinlets per foot. Anomalous copper values all way through with local elevated gold values. The best copper mineralization is from 326 to 330.5 ft assayed 1.02% Cu. 560 ppb Au and 11.2 ppm Ag. The best gold values of 1.76 g/t Au came from 478.8 to 482 ft. where three quartz-chalcopyrite-bornite veinlets were found together with a few fine chalcopyrite stringers. This sample also has 0.54% Cu and 4.4 ppm Ag. (see Table-4 for drill log and Figure 8.9 for sections).

A total of 70 half split (sawed) NQ sized drill core samples were taken and shipped to ALS Chemex in North Vancouver for analysis For each sample Fire Assay (30 grams) followed by Atomic Absorption method was used for gold analysis and four acid total digestion for copper (%) followed by standard nitric aqua regia digestion for 32 element ICP scan Analytical assay certificates are attached in Appendix 1

2001 HAT	Property Di	amond Drill	Log HT 3		Hole #	······································	HT 3				
Date Start	ed		May 25 200	D1	Date Finished	1	May 31 20	01	Final Dep	h	710 ft
Grid Locat	lion		110+00N /	1+00E	Inclination		45		Azımuth		002
Core Size			NQ		Drill Rig		Long Year	38	Logged B	y	XD Jiang
Core Store	ed At		200 Range	Road Whitehorse	YT Governme	ent core library					
Drilling Co	ntractor		KLUANE D	RILLING LTD 14 N	MacDonald Ro	ad Whitehorse YT Y1A	4L2				
Location			On HAT 27	claim about 1000	feet SW of HA	T 27 #1 post					
Note			Initial drillin	ng stuck at 180 ft re	drill from the	same casing re drill cores	s are kept a	nd logged	from 152 5	ft down	
Samples			322501 3	22527							
	Footage				ļ						
From (ft)	To (ft)	Width (ft)	Sample #		Descripti	on	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
00	20 0	20 0		Overburden							
20 0	23 5	3 5		Skarnified Diorite coarse grained ma phenocrysts and dis minor Gar and Ep r disseminated fine g CA	Dike light gre ssive white fe sseminated ch hear top and lo grained Py Loo	y to pink medium to Idspar 0 5 to 2mm Ioritized mafic blebs ow ends Trace wer contact at about 40					
23 5	39 8	16 3		Marble / Garnet Si coarse grained mo patches Trace diss	karn light grey stly marble wi seminated Py	and brown medium to the 10 20% garnet skarn					
39 8	46 5	6 7		Skarnified Siltstor banded local chert and stringer fine gra Diop Gar bands @	ne Purple to g y and pyritic w ained Py and I 35 50 CA	rey fine grained weakly ith 1 2% disseminated Po weakly magnetic 20%					
44 () 46 5	2 5	322501	1 2% Py and Po			<5	<0 01	<0 2	7	<2
46 5	53 5	7 0		Marble / Garnet SI coarse grained ma Py Lower contact (karn light grey ssive with sca @ 40 CA	y and brown medium to ttered Gar patches trace					
53 5	74 0	20 5		Skarnified Sandst grey fine and fine t banding recognizat local 1 2% dissemin	one / Siltston to medium gra ble mostly alte nated and strii	e Purple and greenish ined some ghosty local ered to Diop Ep skarn nger Py minor Po					
56 5	5 60 0	3 5	322502	2% Py and Po			<5	<0 01	0 2	12	4
74 0	82 5	8 5		Marble and Garne grained massive f low ends 20 cm rich broken	t Skarn Light airly pure marl n with Gar loc	grey and brown coarse ble mostly but top and al porus Lower contact					

	Footage						1		
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
82 5	93 5	11 0		Feldspar Porphyritic Dike Medium purplish grey fine to coarse grained porphyritic white feldspar phenocrysts from 0 5mm to 2 3 mm in purplish brown Gar(feldpar?) matrix 1% sulphides mostly Py and Po disseminated and local as fracture filling veinlets weak to local moderately magnetic Lower contact sharp and irregular at about 25 30 CA					
89 8	93 5	5 37	322503	1 2% Py and Po	<5	<0 01	<0 2	7	<2
93 5	108 7	15 2		Skarnified Pyritic Siltstone moderate greyish purple fine grained massive to locally weakly banded with pervasive fine grained Gar weakly magnetic with 1 2% disseminated very fine grained Py and Po Lower end 2 feet has more Diop Lower contact irregular					
108 7	121 6	12 9		Garnet Skarn brown to light brown coarse grained Gar local minor Diop Trem and Wol Trace fracture filling Py Lower contact sharp and irregular at about 30 CA					
121 6	152 5	30 9		Marble light grey medium to coarse grained fairly pure massive to local well banded @ 40 CA Lower contact sharp @ 50 CA (note initial drilling stuck at 180 feet and re drilled from the same casing at the same inclination but from 100 feet down the hole deviated into a complete new hole this marble horizon is used as a marker from next interval this log goes into the re drill core)					
152 5	155 8	3 3		Garnet Skarn and Diopside Skarn brown and light greenish grey fine to coarse grained upper half Gar dominant while the lower Diop dominant trace Ep brecciated trace to 1% Py and trace local Cpy Lower contact broken					
155 8	184 0	28 2	00052	Skarnified Siltstone / Minor Garnet Skarn purplish grey greenish grey and brown fine grained skarnified siltstone intercalated with minor coarse grained garnet skarn lenses and patches local Diop Ep skarn weak to moderate bleaching patches and along fractures with trace to local 1 2% Py and Po trace Cpy At 163 ft is 0 5 foot with trace Mo blebs Several porphyritic dioritic dikelets are seen at 161 5 and 175 7 176 9 and 177 2	25	0.17	12	24	6
1 155 8	3 160 0) 42	1 322504	1 2% Pv Po trace Cpv	25	01/	12	34	6

	Footage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
160 0	163 5	3 5	322505	Trace Py Po and Cpy trace Mo	30	0 10	06	31	<2
163 5	167 5	4 0	322506	Trace to 1% Py trace Cpy	20	0 15	0 8	25	4
176 9	180 0	31	322507	1% Py Po trace Cpy	20	0 49	34	69	2
180 0	184 0	4 0	322508	Trace to 1% Py trace Cpy	25	0 15	08	13	8
184 0	201 7	17 7		Garnet Skarn and Diopside Tremolite Skarn brown and greenish grey fine to coarse grained Gar skarn as massive lenses and patches scattered in Diop Trem skarn Top 4 inch moderately mineralized with disseminated and patches of Bor and minor Cpy Lower half more Diop skarn Lower contact irregular					
184 0	187 0	3 0	322509	1 2% Bor and Cpy	590	1 70	17 4	92	8
201 7	226 3	24 6		Skarnified Siltstone and Sandstone purple to purplish grey fine to medium grained mostly massive local foliated @ 25 45 CA Minor bleaching alteration halos near fractures Ep common trace to 1% disseminated and fracture filling fine grained Py and Po 213 8 216 5 is porus Gar skarn lens and 218 219 5 is a skarnified granodiorite dike Lower contact irregular alteration contact					
226 3	267 2	40 9		Garnet Skarn / Trem Diop Skarn and Wol Skarn brown and light greenish grey Gar as massive lenses and patches scattered in Diop Trem skarn local minor Wol skarn Pink feldspar alteration near top 231 5 234 is a feldspar porphyritic dike with broken contacts at 238 is a 0 5 ft Gar Wol skarn lens with 5 7% disseminated Mo blebs and patches 242 243 2 is Trem Diop skarn with 2 3% Bor disseminated along some wispy bands and minor Mo patches Lower contact @ 40 CA					
237 8	240 0	2 2	322510	1 2% Mo	<5	<0 01	08	>10 000	14
240 0	243 2	3 2	322511	1% Bor trace Cpy and Mo	<5	0 14	16	324	4
267 2	275 9	8 7		Skarnified Siltstone and Sandstone purple fine grained local medium grained well foliated to banded at 25 to 40 CA local cherty appearance weakly magnetic Trace to 1% disseminated very fine grained Po Py Lower contact irregular alteration contact					

	Footage									
From (ft)	To (ft)	Width	(ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
275 9	304 0	28 1			Garnet Skarn and Diopside and Tremolite Skarn light brown and light green to light grey Gar skarn is coarse grained and intercalated with fine to medium grained Diop Trem skarn lenses and patches local Wol Gar skarn disseminated Mo blebs common local trace Py and Cpy 298 5 300 is skarnified siltstone					
304 0	322 7	18 7			Diopside Tremolite Skarn light green fine grained local skarnified siltstone recognizable intercalated with about 20% irregular Gar Diop skarn lenses trace to 1% disseminated and local fracture filling Py rare Cpy blebs Lower end 2 7 ft trace Mo and local 1% Cpy Lower contact sharp at 47 CA					
320 0	322 7		27	322512	trace to local 1% Cpy Py and Mo	30	0 09	06	462	6
322 7	326 9	4 2			Wollastonite Skarn and Diopside Skarn white and green and light greenish grey coarse grained massive with 2 3% disseminated Bor blebs and patches trace Cpy and Mo					
322 7	326 9		42	322513	see above	340	0 39	32	11	26
326 9	328 6	17			Diorite Dike medium greenish grey medium to coarse grained porphyritic with dark green mafic and white feldspar phenocrysts 1 2% Bor and Cpy mostly along fractures near lower end Upper contact @ 75 CA lower contact irregular					
326 9	328 6		17	322514	see above	10	0 01	<0 2	39	2
328 6	337 0	84			Tremolite Diopside Skarn / Skarnified Siltstone Sandstone medium greenish grey fine to local medium grained local dark brown to purple siltstone recognizable most altered to Diop Trem skarn minor local Gar 1 2% disseminated and along fracture Cpy and Bor Lower contact sharp at 77 CA					
328 6	332 7		41	322515	1 2% Bor and Cpy	150	0 39	26	108	20
332 7	335 3		26	322516	2% Cpy and Bor	200	0 68	52	55	32
337 0	338 1	11		322517	Felsic Dike light greenish grey to light pink coarse grained with 2% disseminated Bor trace to 0 5% Mo and trace Cpy Lower contact @ 75 CA	695	1 99	17 8	94	136

	Footage				[1
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
338 1	346 8	8 7		Garnet Skarn and Diopside Skarn light brown and light greenish grey fine to coarse grained local weakly banded minor Wol skarn Lower contact gradational					
346 8	350 0	3 2	322518	Skarnified Siltstone dark brown fine grained weakly banded with 2 3% disseminated and fracture fill Cpy stringers Lower contact irregular	70	0 80	16	171	6
350 0	359 3	9 3		Garnet Skarn and Diop Trem Skarn brown and light green fine to coarse grained irregular patches and bands of Gar in Diop skarn local trace to 1% Bor and Cpy along fractures Lower contact irregular					
353 () 355 8	3 28	322519	0 5 1% Cpy and Bor in Diop skarn	30	0 19	14	22	10
359 3	363 3	40		Skarnified Siltstone dark brown to purplish brown with light green patches fine grained local weakly foliated trace Py and Cpy					
363 3	375 0	11 7		Diopside Skarn and Garnet Skarn light green and brown fine grained and coarse grained local weakly foliated @ 35-40 CA 35% Gar skarn lenses Trace disseminated Mo and Cpy Lower end 1 ft has 1 2% Py Cpy					
375 0	391 0	16 0		Skarnified Siltston / Sandstone and Feldspar Porphyry dark purplish brown to greenish brown fine to medium grained massive to local well foliated with biotitic foliations @ 30 40 CA There are 5 feldspar porphyrytic dikelets in this interval from 1 inch to 1 foot thick at 30 40 CA some with trace disseminated Cpy and Mo Lower contact irregular					
381 8	385 8	3 4 0	322520	35% feldspar dikelets trace disseminated Cpy and Mo	10	0 09	04	275	4
391 0	419 3	28 3		Diopside Tremolite Skarn light greenish grey fine grained massive to local foliated @ 30 50 CA local purlish brown skarnified siltstone recognizable 403 406 4 is a Gar skarn lens 406 4 411 4 has 60% feldspar porphyry dike at very low core angle with trace to 1% disseminated Cpy and Mo From 411 4 ft down about 1% Cpy mostly as fracture filling veinlets up to a couple mm thick trace Bor and Mo					
409 () 411 4	24	322521	60% feldpsar porphyry trace disseminated Cpy and Mo	320	0 27	34	422	32

	Footage				<u></u>			1	
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
411 4	414 0	26	322522	Diop skarn minor Gar skarn trace disseminated and veinlet Cpy trace Mo	520	0 62	42	55	36
414 0	416 5	2 5	322523	Diop skarn and skarnified slitstone with 1% Cpy veinlets	30	0 37	06	63	10
419 3	441 7	22 4		Garnet Skarn and Tremolite Skarn light brown to whitish brown coarse grained massive to weakly foliated @ 40 CA moderately porous There is 2 inch Ep band at 424 ft Minor fracture filling Bor and Cpy from 423 6 426 3 ft trace local Mo blebs Lower contact sharp @ 70 75 CA					
423 6	426 3	27	322524	trace to 1% Bor and Cpy	50	0 37	3	6	22
441 7	464 5	22 8		Skarnified Granodiorite / Granodiorite from 441 7 449 ft is skarnified granodiorite light greenish grey medium to coarse grained massive with minor disseminated Gar Mo blebs common From 449 464 5 ft is Granodiorite light grey medium to coarse grained local weakly altered (mostly Ep) Dark grey mafic inclusions and purple siltstone inclusions common Lower contact broken at about 40 CA					
464 5	476 7	12 2		Garnet Tremolite Skarn light brown and white medium to coarse grained lower half minor fine grained Diop skarn lower end 0 5 ft with 2% disseminated and veinlet Bor minor Cpy Lower contact @ 25 30 CA					
474 7	476 7	2 (322525	see above	220	0 77	66	11	62
476 7	489 0	12 3		Diopside Skarn light greenish grey fine to coarse grained with minor mixed patches and lenses of Gar skarn Ep common Local minor fracture filling Cpy near 480 ft and Cpy Mo near 486 3 ft Lower contact sharp @ 50 CA					
489 0	521 1	32 1		Skarnified Arkosic Sandstone / Siltstone dark grey greenish grey to brownish grey fine to coarse grained mostly massive local well banded with biotitic bands and feldspathic bands at 25 to 30 CA Minor Gar skarn at top A few small granitic dikelets Local weakly to moderately magnetic by very fine grained Po and magnetite Trace fracture fill Cpy veinlets at 493 ft Lower contact sharp @ 30 CA					

	Footage					1		1	Γ
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
521 1	540 5	19 4		Granodiorite Dike light grey medium to coarse grained massive weakly skarnified pink K spar altered at both up and low ends and a couple of pink feldspar dikelets (2 inch and 4 inch) at 75 to 80 CA Lower contact @ 35 CA					
540 5	566 4	25 9		Skarnified Siltstone and Sandstone medium grey to brownish grey fine grained mostly local medium grained foliated to banded with biotitic foliations at 30 35 CA wispy bands common Weak to moderately magnetic by very fine grained Po and magnetite At 55 ft is an 8 inch granodioritic dikelet at 45 CA Lower contact sharp @ 60 CA					
566 4	570 7	4 3		Granodiorite Dike light grey medium to coarse grained massive chloritized mafic dark grey fine grained mafic inclusions common lower contact sharp @ 20 CA	-				
570 7	603 6	32 9		Skarnified Siltstone and Sandstone medium brown to greenish brown fine grained local medium grained foliated to banded with biotitic foliations @ 40 CA skarnification mostly weakly developed along fractures less as irregular patches Local trace sulphides Lower contact gradational					
603 6	639 2	35 6		Diop Skarn / Siltstone / Granitic Dikes this is a mixed interval of mostly skarnified sedimentary rocks intruded by some 20 dikelets (40% of interval) The dikelets are from 1 cm to 0 5m thick mostly at 30 60 CA two major types the early granodioritic and the later pinkish granitic compositions with occasional specks of Cpy Lower 1/3 of interval has a few Cpy veinlets of few mm scale as fracture fill in both sediments and dikes Lower contact sharp @ 40 45 CA					
635	638 6	36	322526	40% dike rest sediments 1% disseminated and veinlets Cpy	15	0 36	0 2	19	10
639 2	657 1	17 9		Granodiorite Dike / Siltstone light grey to light pinkish grey medium to coarse grained massive 20 30% chloritized mafic's local weakly magnetic Trace local Cpy blebs Upper half with 4 siltstone lenses Lower contact irregular					

	Footage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Ві ррт
657 1	661 3	4 2		Siltstone / Sandstone medium grey fine to medium grained weakly foliated with irregular halo and patches and bands of light grey feldspathic assimilation by granodiorite local gneissic appearance Lower contact sharp @ 50 CA					
661 3	686 9	25 6		Leuco Granodiorite light grey medium to coarse grained massive less mafic (10%) than above weakly magnetic pinkish ringer dikelets common In the upper portion there are 4 upto 1 cm Cpy and Cpy Bor fracture fill veinlets and minor disseminated halos veinlets @ 50 CA Lower contact sharp @ 70 CA					
664 5	668 3	38	322527	1 2% Bor and Cpy see above	225	1 84	22 4	31	108
686 9	710 0	23 1		Sandstone / Siltstone dark grey to brownish grey fine to					
710 0				EOH					

2001 HAT	Property D	amond Dril	Log HT	HT 4 Hole # HT 4							
Date Start	ed		May 31 20	001	Date Finished	June 05 2	001		Final Dep	th	633 feet
Grid locati	on		111+35N /	1+00W	Inclination	52			Azımuth		90
Core Size			NQ		Drill Rig	Long Year	38		Logged B	y	XD Jiang
Core Store	ed At		200 Range	Road Whitehorse YT	Government core libi	ary					
Drilling Co	ontractor		KLUANE D	RILLING LTD 14 Mac	Donald Road Whiteh	orse YT Y1A	4L2				
Location			On HAT 27	claim about 900 feet s	outhwest of HAT 27	#1 post					
Samples			322528 3	22547					-		
	Footage										
From (ft)	To (ft)	Width (ft)	Sample #		Description		Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
00	13 0	13 0		Overburden							
13 0	33 0	20 0		GARNET SKARN AND and light green medium intercalated with fine to trace Cpy more Diop s drill bits lost	DIOPSIDE SKARN n to coarse grained G medium grained Dio karn in lower half Bro	light brown ar skarn o skarn local oken ground 3					
33 0	58 0	25 0		MARBLE AND GARNE marble intercalated with patches medium to coa Marble is locally weakly between marble and Ga from 20 to 40 CA and s Lower contact broken b	ET SKARN light to m a 35% Gar skarn lens arse grained minor lo foliated @ 35 45 C ar skarn lenses are s some are irregular Ti but seems gradationa	edium grey es and ocal Diop skarn A Contacts narp and range race local Py					
58 0	63 0	50	322528	DIOPSIDE SKARN lig grained weakly fracture veinlets weakly pyritic Py Lower contact grad	ht to medium green f ed and healed by fine with 1 2% disseminat ational	ine to medium Ep Py ed fine grained	70	0 26	12	44	16
63 0	79 3	16 3		SKARNIFIED SILTSTO grained weakly pyritic v Py 1 2% moderately fr local pyritic veinlets tra	DNE light purplish gr with disseminated ver actured and healed b ice Cpy Lower conta	ey fine y fine grained y siliceous to ct gradational					

	Footage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
79 3	117 7	38 4		DIOPSIDE SKARN / SKARNIFIED SILTSTONE light greenish grey fine to medium grained well developed Diop skarn with minor local purplish fine grained skarnified siltstone lenses and patches minor local Gar Most of the skarn portion is pyritic with 1 2% disseminated very fine grained Py local pyritic bands and fractures Lower contact sharp and irregular at low CA					
117 7	131 8	14 1		GAR SKARN / MARBLE AND TREM DIOP SKARN brown light grey and light green medium to coarse grained Gar skarn at top and bottom with a marble lens (121 7 123 8) and a Trem Diop skarn lens (123 8 129 5) in the middle Contacts are sharp from 30 to 40 CA The marble is moderately foliated at 20 30 CA One ft above lower end has a couple inches of kaolinic fault gouge Lower contact sharp @ 20 30 CA					
131 8	162 1	30 3		SKARNIFIED ARGILLITE / SILTSTONE purplish grey to greenish grey very fine grained weak to moderately fractured local pyritic Diop skarn developed around fractures and as patches At 144 5 ft about 1% disseminated Mo blebs Local weakly magnetic due to Po Trace local Cpy 158 159 ft is a Qz healed breccia vein @ 25 30 CA with minor Py Lower contact gradational into coarser grained arkosic sediments					
143 0	146 0	3 0	322529	Diop skarn 1% Py trace Cpy and Mo	15	0 11	0 2	337	10
162 1	166 7	46		SKARNIFIED ARKOSIC SANDSTONE pbrownish purple medium grained massive to local weakly foliated @ 25 CA feldspathic included a 1 5 ft Diop skarn lens with disseminated Mo blebs Lower contact gradational due to assimilation					
166 7	177 0	10 3		GRANODIORITE light greenish grey medium to coarse grained massive granular 20 30% chloritized mafics 2 3% disseminated fine grained Py local trace Cpy Lower					
173 5	177 0	3 5	322530	see above	<5	0 04	<0 2	15	10
177 0	180 8	38		GARNET SKARN medium brown to greenish brown coarse grained minor Diop lower contact sharp @ 30 CA					

	Footage		· · · · · · · · · · · · · · · · · · ·		1			Τ	
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
180 8	183 5	27	322531	GRANODIORITE similar to that of 166 7 177 ft but with more chloritized mafic minor irregular skarn inclusions 2 3% Py minor Po trace local Cpy Lower contact sharp @ 65 CA	15	0 05	<0 2	26	20
183 5	199 4	15 9		DIOPSIDE SKARN light to medium green fine grained with minor Gar skarn patches and lenses disseminated Mo common (esp in upper 4 ft) trace Cpy and trace Bor near lower end Lower contact irregular					
183 5	187 5	4 0	322532	1 2% disseminated Mo blebs and trace Cpy	<5	0 01	<0 2	499	16
199 4	225 0	25 6		GARNET SKARN light brown to greenish brown medium to coarse grained minor Wol skarn near top intercalated with some light green Diop skarn lenses in lower portion Minor fine fracture filling dolomite veinlets Lower contact sharp @ about 10 20 CA					
225 0	234 4	94		DIOPSIDE SKARN light green fine grained with Gar patches and feldspathic patches weakly pyritic up to 1% local disseminated fine grained Py Lower contact gradational					
234 4	267 4	33 0		SKARNIFIED SILTSTONE purplish grey to greenish purple fine grained lower portion moderately fractured with skarnification halos around fractures Local 1 2% fine grained Py very trace Cpy Local silicified Lower contact sharp at about 50 CA					
267 4	275 2	78		GARNET SKARN light brown fine to coarse grained minor Trem and Wol Lower contact sharp but irregular					
275 2	291 0	15 8		DIOPSIDE SKARN light green to greenish grey fine to medium grained with various shaped to sub rounded bleached feldspathic and tremolitic patches minor Ep local weakly pyritic with about 1% disseminated very fine grained Py At 278 5 ft is a 0 5 ft banded Dol Cal Qz vein at 42 CA Lower contact gradational within short distance				I	

	Footage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
291 0	332 6	41 6		SKARNEFIED SILTSTONE purple to greenish purple fine grained weak to local moderately fractured with various shaped light green patches of skarnification local pyritic with 1 2% disseminated and fracture fill Py minor Po very trace Cpy Lower contact sharp @ 65 CA At 322 5 ft is 3 inch Qz feldpar porphyritic dikelet with some graphic texture its contacts are 22 CA					
332 6	338 7	6 1		GRANODIORITE DIKE light pinkish to greenish grey coarse grained massive with chloritized mafic's K spar altered near lower end is a 6 inch skarnified siltstone inclusion with about 1% disseminated fine grained Py and trace Cpy Lower contact sharp @ 60 CA					
338 7	366 7	28 0		SKARNIFIED SILTSTONE / ARGILLITE AND DIOP SKARN mixed purple fine grained siltstone / argillite and light green medium grained Diop skarn lenses and patches (about 50%) moderately fractured pyritic up to 3% disseminated and fracture fill Py local minor Cpy mostly along fractures Rich Mo from 359 to 361 7 ft Lower contact sharp irregular					
341 5	344 0	2 5	322533	342 343 5 is a Gar skarn lens rest are Diop skarn siltstone 1% Py and trace to 0 5% Cpy	10	0 09	06	264	28
344 0	348 0	4 0	322534	80% Diop skarn 2 3% disseminated and fracture fill Py trace to 0 5% Cpy	<5	0 11	0 2	35	22
356 0	359 0	3 0	322535	Skarnified silstone 2 3% disseminated and fracture fill Py trace to 0 5% Cpy	25	0 25	08	23	12
359 0	361 7	2 7	322536	Diop skarn 2 3% Disseminated Mo 0 5 1% Cpy	285	0 61	30	8070	58
361 7	366 7	5 0	322537	Skarnified siltstone 2 3% disseminated and fracture fill Py 1% Cpy	40	0 45	08	99	16
366 7	378 0	11 3		GARNET SKARN light brown coarse grained some well zoned euhedral Gar crystals lower portion has trace disseminated Cpy and Bor blebs to 1 2% at lower end 0 5 ft Lower contact sharp @ 46 CA					
374 2	378 0	38	322538	0 5% Cpy and 0 5% Bor	65	0 31	14	14	20

	Footage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
378 0	387 6	96		MINERALIZED GARNET SKARN light brown greenish brown and purplish brown coarse grained 80% massive Gar skarn minor Diop as matrix surrounding mega crystic Gar Local irregular Qz patches Heavily mineralized with 5 7% Bor 3 4% Cpy and trace Cc local Bor up to 25 30% in 0 5 ft interval as matrix enveloping Gar crystals 382 2 384 5 ft included a 1 cm thick Cal Dol (Qz) Jasper Cpy vein at very low CA (about 5 degrees) more Cpy near the vein The lower contact of this mineralized portion is sharp and clean @ 55 CA with next fairly pure marble (limestone)					
378 0	383 0	5 0	322539	8 10% Bor 3 4% Cpy trace Cc and Mo	450	4 14	20 6	6	238
383 0	387 6	46	322540	3 4% Bor 2 3% Cpy trace Cc and Mo	260	2 03	64	6	128
387 6	419 4	31 8		MARBLE (LIMESTONE) light grey medium to coarse grained massive to weakly foliated @ 23 CA fairly pure and clean marble with only occasional Cc fine veinlets near top and a 0 5 ft Gar skarn near lower end with minor Cc as hairline fracture fillings Lower contact @ 45 CA with disseminated patches of Bor Cpy and Cc					
387 6	390 6	3 0	322541	Marble with trace fine fracture fill Cc veinlets	<5	0 03	<0 2	2	<2
418 0	421 0	3 0	322542	Sample crossed geological boundary 50% Marble 50% granodiorite 1% disseminated and veinlets Bor Cpy and Cc on both side near the contact	115	0 49	2 4	14	28
419 4	430 2	10 8		GRANODIORITE light to medium greenish grey massive to local weakly foliated local bleached and moderately fractured 30 40% chloritized mafic minor local magnetite esp in more mafic portion. Several Qz veinlets of mm scale at low core angles with Bor. Cpy and trace Mo. and associated disseminated Bor. Cpy halos. Over all 0.5 1% Lower contact sharp and irregular at about 75 80 CA					
421 0	426 0	5 0	322543	0 5 1% Bor and Cpy minor magnetite trace Mo	125	0 29	18	99	32
126 0	130 2	12	322544	50% bleached 0.5% Bor and Cov	95	0.19	18	44	30

	Footage						1		
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
430 2	438 9	8 7		GARNET SKARN / MARBLE brown coarse grained Gar skarn at top with trace disseminated Bor and Cpy minor Trem skarn local thin light grey to white marble lenses lower half with 30% irregular granodiorite dikelets associated with 1% disseminated and fracture fill Py Lower contact sharp and irregular at about 50 CA					
438 9	481 6	42 7		GRANODIORITE medium grey medium to coarse grained weakly fractured minor dark grey fine grained sedimentary inclusions near top and bottom intruded by a few pink feldpar porphyritic dikelets up to one foot at 25 to 35 CA Trace to 1% disseminated Py and Po minor magnetite Lower end 2 ft skarnified porous Lower contact @ 50 CA					
481 6	494 4	12 8		SKARNIFIED SILTSTONE purple and light green fine grained foliated and banded @ 40 CA local quite biotitic with brown biotite Skarnification along fractures and as patches Ep common trace to loca 1% fracture fill and disseminated fine grained Py Lower contact irregular					
492 8	495 1	2 3	322545	Sample crossed geological boundary 60% skarnified siltstone with 1 2% disseminated Py and fracture fill Cpy trace Bor 40% pink skarnified granodiorite with 1 2% disseminated Bor in the first 6 inches	35	0 27	08	18	10
494 4	503 9	95		SKARNIFIED GRANITIC DIKE light pinkish grey medium to coarse grained massive pink K spar altered minor Qz about 5% dark chloritized mafic mineral blebs minor biotite Lower contact sharp @ 80 CA					
503 9	525 7	21 8		SKARNIFIED SILTSTONE purple and light green fine grained mostly massive to local weakly banded @ 35 40 CA local fine grained biotitic bands irregular patches and lenses of Skarnification where associated with 1 2% disseminated fine grained Py There are a few small dioritic dikelets Lower contact sharp but irregular alteration contact					

	rootage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
525 7	539 0	13 3		GARNET SKARN AND DIOPSIDE SKARN light brown and light green medium to coarse grained Gar skarn intercalated with fine to medium grained Diop skarn Top 1 ft included an irregular Cpy patch and 0 5% disseminated Bor Trace Cpy near lower end Lower contact gradational					
539 0	551 8	12 8		SKARNIFIED SILTSTONE AND DIOPSIDE SKARN purple and green fine grained weakly foliated pyritic local 3 5% disseminated Py Diop and Ep skarn patches and lenses common local trace Cpy and Mo There are five granodioritic dikelets ranging from 20 to 60 CA and one Qz feldspar dikelet at 35 CA Lower contact sharp @ 30 CA					
537 0	540 0	3 (322546	Sample crossed geological boundary 1% disseminated fine grained Py trace Cpy and Mo	<5	0 12	0 2	7	8
548 8	551 8	3 (322547	Skarnified pyritic siltstone with 15% granodioritic dikelets 3 5% disseminated Py	<5	0 06	<0 2	28	8
551 8	567 8	16 0		ALTERED GRANODIORITE light grey to light pinkish grey medium to coarse grained weakly fractured pink K spar altered with minor Qz and Qz Feldspar veinlets local trace magnetite minor secondary brown biotite Lower contact sharp @ 65 CA					
567 8	569 2	14		MARBLE light grey to white medium to coarse grained weakly foliated @ 37 CA with minor dark grey carbonaceous bands Lower contact sharp irregular at about 80 CA					
569 2	575 0	58		TREM GAR DIOP SKARN whitish grey brown and light green medium to coarse grained patchy to spotted Gar in Trem and Diop skarn local some hard rosy pink Qz (rhodonit?) patches Lower contact irregular					
575 0	590 7	15 7		MARBLE light grey to white coarse grained massive to weakly foliated @ 30 CA with minor dolomitic portions Lower contact sharp at about 45 CA					
590 7	595 8	5 1		WOLLASTONITE DIOPSIDE SKARN light green to white coarse grained massive to weakly foliated @ 45 CA prismatic Wol in Diop skarn lower end minor Gar bands Lower contact sharp @ 45 CA					

	Footage								
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
595 8	604 4	86		GARNET SKARN brown coarse grained massive more than 90% Gar minor fracture filling dolomite and dolomite Qz veinlets and patches lower contact sharp @ 65 CA					
604 4	625 0	20 6		GRANODIORITE medium to dark grey medium to coarse grained gneissic appearance contain some small intervals of various grain sized and various mafic contents inclusions (or dikes?) intruded by a few light pink granitic dikes Local trace to 1% disseminated and fracture fill Py Lower contact broken at about 50 CA					
625 0	629 2	4 2		BASALTIC DIKE dark green fine grained chloritic minor darker green mafic phenocrysts lower end 1 ft fractured with 20% Qz vein patches Lower contact sharp @ 47 CA decomposed with minor fault gouge					
629 2	633 0	38		GRANODIORITE medium grey medium grained gneissic appearance lower portion contains fair amount of brown biotite Trace disseminated Py					
633 0				EOH					

2001 HA	T Proper	ty Diamon	id Drill Log	HT 5	Hole #	HT 5					
Date Sta	irted		June 06 2	2001	Date Finished	June 11 2001			Final Dep	vth	662 feet
Grid loca	ation		L132+00N	/ 16+50W	Inclination	48			Azımuth		270
Core Sız	е		NQ		Drill Rig	Long Year 38			Logged E	y	XD Jiang
Core Sto	ored At		200 Range	e Road Whitehorse Y	T Government core I	ibrary					
Drilling C	Contracto	r	KLUANE (DRILLING LTD 14 Ma	acDonald Road Whit	ehorse YT Y1A 4L	2				
Location			On HAT 2	3 claim about 1100 fe	et southeast of HAT	23 #2 post and abou	t 50 ft off tl	ne Whiteho	rse Traverse	e Line	
Samples			322548 3	322570							
	Footage	9									
From (ft)	To (ft)	Width (ft)	Sample #		Description		Au ppb	Cu %	Ag ppm	Mo ppm	Ві ррт
0 0	37 0	37 0		Overburden glacial	deposits						
				GRANODIORITE me	edium arey to light are	eenish arev medium					
				to coarse grained ma	assive granular to loc	al weak to moderately	1				
		1		fractured chloritized	mafic 25 40% minor	secondary dark					
				brown biotite weakly	to local moderately n	nagnetic Fairly					
37 0	92 8	55 8		homogeneous but w	ith some Ep alteration	n patches and along					
				fractures minor blead	ched silicious fracture	es normally associated	d				
				with disseminated ha	los of Cpy local Bor	and Mal stain from 5	0				
				to 58 3 ft Cpy nearly	1% Lower contact s	harp @ 40CA					
50 0	52 5	2 5	322548	1% disseminated Cp	y in and near bleache	ed fractures	<5	0 16	<0 2	7	10
52 5	55 0	2 5	322549	0 5% disseminated C	ру		20	0 20	0 2	1	2
55 0	58 3	3 3	322550	1 1 5% disseminated	Сру		65	0 29	06	6	26
67 2	72 0	48	322551	1% Cpy Mal minor (Cup along fractures		30	0 14	04	3	14
				MAFIC DIKE dark gr	een fine grained ch	loritic minor					
92 8	94 0	12		disseminated light gro	ey to white carbonate	blebs weakly					
				calcareous Lower co	ntact sharp @ 48 CA	Α					
	404 -			GRANODIORITE sa	me as 37 92 8 ft Lo	ower contact sharp @					
94 0	101 7	77		53 CA							
94 0	99 0	5 0	322552	trace to 1% Cpy and	trace Mal along fract	ures	20	0 15	<0 2	3	8
404 7	402.4	4.4		MAFIC DIKE same a	as 92 8 94 ft Lower	contact sharp @ 45					
1017	103 1	14		CA							
				GRANODIORITE sa	me as 37 92 8 ft bu	ut 20 30% are Ep					
103 1	110 0	69		altered patches and a	along fractures at low	core angles Lower			4		
				contact sharp but bro	ken at about 60 CA						
				MAFIC DIKE same a	as 92 8 94 ft Lower	contact sharp but					1
110 0	110 8	08		broken at about 75 C	A	•					

	Footage	;					I		
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Ві ррт
110 8	121 0	10 2		GRANODIORITE same as 37 92 8 ft From 115 to 123 ft is a fault zone well fractured and some decomposed granodiorite with minor local fault gouge Lower contact broken					
121 0	124 4	34		MAFIC DIKE similar to that of 92 8 94 ft upper half well fractured in fault zone 3 5% fracture filling calcite veinlets Chlorite Ep altered (propylitic alteration) Lower contact sharp @ 42 CA					
124 4	158 6	34 2		GRANODIORITE same as 37 92 8 ft top 2 ft skarnified with minor Gar and Qz veinlets over all only occasional disseminated Cpy lower contact sharp @ 40 CA					
158 6	162 2	36		MAFIC DIKE similar to that of 92 8 m 94 ft lower contact sharp @ 40 CA					
162 2	220 4	58 2		GRANODIORITE same as 37 92 8 ft trace sulphides occasional Cpy lower contact 0 5 ft weakly silicified contact sharp @ 42 CA					
220 4	230 8	10 4		LAMPROPHYRE DIKE dark grey greenish grey to brown medium to coarse grained massive biotitic chlorite altered weakly calcareous moderately magnetic minor Hem stained dark pinkish red feldspars Lower contact sharp at about 90 CA					
230 8	240 3	9 5		GRANODIORITE same as 37 92 8 ft but weakly mineralized with 0 5 1% disseminated Cpy near bleached silicious fractures (mostly @ 60 75 CA)					
230 8	234 0	3 2	322553	0 5% Сру	15	0 06	<0 2	1	8
234 0	237 3	3 3	322554	1% Сру	15	0 11	<0 2	6	8
237 3	240 3	3 0	322555	<0 5% Cpy	<5	0 11	<0 2	69	8
240 3	242 5	2 2		MAFIC DIKE same as 92 8 94 ft upper contact @ 40 CA lower contact @ 55 CA					
242 5	272 3	29 8		GRANODIORITE same as 37 92 8 ft disseminated Cpy common in upper half but over all less than 0 5% At 244 9 ft is a 0 5 cm Bor Cpy Qz veinlet @ 40 CA with 0 5 ft disseminated Cpy halo Lower contact sharp @ 40 CA					
242 5	246 5	4 0	322556	1% Cpy trace Bor	35	0 17	2 0	56	20
272 3	275 0	27		MAFIC DIKE same as 92 8 94 ft lower contact sharp @ 36 CA					

	Footage)							
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
275 0	326 0	51 0		GRANODIORITE same as 37 92 8 ft weakly mineralized with Cpy and local Cpy Bor veinlets and associated disseminated Cpy halos Cpy up to 1% At 285 ft there are two Bor Cpy veinlets @ 20 25 CA Lower contact gradational					
298 2	301 0	28	322557	1 1 5% Cpy veinlets and disseminated Cpy trace Mo	10	0 29	<0 2	13	6
305 6	309 0	3 4	322558	1 2% Cpy trace Bor Including 7 Cpy (Bor) Qz(or siliceous) veinlets of several mm mostly @ 55 60 CA	855	0 52	2 8	109	46
326 0	330 5	4 5	322559	MINERALIZED GRANODIORITE same as 37 92 8 ft but mineralized with about 30 veinlets mostly less than 0 5 cm except one 3 cm composed of siliceous material (Qz) Cpy (Bor) (Mo) nearly parallel at about 70 CA Over all about 2% Cpy 1% Bor and trace Mo	560	1 02	11 2	139	76
330 5	395 0	64 5		ALTERED GRANODIORITE similar to that of 37 92 8 ft but with 35 40% bleached and Ep altered patches and ghosty bands along fractures (most @ about 30 CA) occasional Qz Cpy veinlets and disseminated specks local some rusty fractures with trace Cup Mal and native copper Lower contact gradational					
340 5	343 0	2 5	322560	0 5% Cpy trace Mal and Cup	65	0 29	14	5	18
395 0	428 5	33 5		WEAKLY MINERALIZED GRANODIORITE similar to that of 37 92 8 ft but with more Ep altered bleached patches and more Qz Cpy veinlets on average about 2 3 veinlets per five feet local 2 3 veinlets per foot the veinlets are mostly few mm thick some 1 3 cm thick arranging from 35 70 CA normaly associated with disseminated Cpy halos Also minor calcite veinlets and chloritic fractures Some of the Qz veinlets seems to be chalcedonic easier to scratch with a carbide scratcher Also found in one small vug are some white to clear adularia (?)					
404 1	406 8	2 7	322561	Including a 2 cm and a 1 cm Qz Cpy and a 2 mm Cal Cpy veinlets 1 1 5% Cpy trace Bor and Mo	20	0 26	0 2	6	8
416 9	420 4	3 5	322562	Including two fine Ep Cpy stringers two Qz Cpy (Mo) and one Mo Cpy veinlets 0 5 1% Cpy trace Mo	20	0 22	<0 2	173	4
424 0	426 0	2 0	322563	Including five fine Cpy stringers in the middle one Qz Cpy veinlet (1 cm) and disseminated Cpy halos 2 3% Cpy	25	0 52	0 2	4	6

	Footage	3							
From (ft)	To (ft)	Width (ft)	Sample #	Description	Au ppb	Cu %	Ag ppm	Mo ppm	Bi ppm
				WELL FRACTURED CHLORITIZED GRANODIORITE medium					
428 5	467 0	38 5		to dark green local bleached well fractured with fine chloritic					
				(calcitic) fillings local moderately calcareous Occasional					
445 0	449 5	4 5	322564	Trace disseminated Cpy	25	0 28	06	5	10
	1			WEAKLY MINERALIZED GRANODIORITE similar to that of					
				395 428 5 ft but the Qz Cpy veinlets are bigger (thicker)					
467 0	564 0	97 0		normaly in cm scale including a 8 cm one and the Cpy content					
				is higher some with Bor and Cc (at 547) the veining intensity					
				on average about 3 4 veinlets per five feet to about one veinlet					
				per foot locally Lower contact gradational					
				Including 3 Qz Cpy Bor veinlets @ 40 45 CA and a few fine					
4788	482 0	32	322565	Cpy stringers some Ep Chi fractures but few with Cpy specks	1760	0 54	44	14	74
				Over all Cpy 1 1 5% trace Bor and Mo					
488.8	492 3	3.5	322566	Including 5 Qz Cpy (Bor) veinlets minor silicification over all 2	70	0.69	0.8	18	32
	.02.0		022000	3% Cpy trace Bor and Mo					
				One 8 cm Qz Cpy Bor Mo vein @ 55 CA with 5 7% sulphides					
505 4	508 6	32	322567	in it A few fine Qz Cpy and one Cal Cpy veinlets over all 2%	145	0 50	60	71	38
				Cpy Bor and trace Mo					
				A few mm scale Qz Cal Cpy veinlets brecciated in the middle					
508 6	513 0	44	322568	with bleached granodiorite breccia supported by dark green	<5	0 12	<0.2	6	14
				Chloritic and calcitic matrix minor Cpy blebs over all 0.5 1%	_				
				Cpy Madarataly fractional with Chil Cal fillings, lagal algoridation					
513 0	517 0	40	322569	moderately fractured with Chi Cai fillings local slicified	70	0 39	26	28	20
				Including 5 Q2 Cpy (Cal) verniets over all 1 1 5% Cpy					
				Including 7 Qz Cal Cpy fine veinlets with one 2cm thick @ 25					
559 0	563 0	40	322570	CA along fracture minor native copper and Mal on fracture	10	0 38	14	149	10
				surface Over all 1 2% Cpy Bor and trace native copper and					
				Mal and Mo					
				WEAKLY ALTERED GRANODIORITE similar to above but					
564 0	607 5	43 5		with less veining and most of the veinlets do not carry as much					
				Cpy or barren Lower contact sharp @ 40 CA					
				ALTERED MAFIC DIKE dark greenish grey medium to coarse					
607 F	615 2	7 8		grained massive Ep propylitic alteration weakly calcareous					
00/ 0	010 0	10		minro Cal stringers Lower contact sharp @ 50 CA					
1	1	1							

	Footage	Э —										
From (ft)	To (ft)	Width (ft)	Sample #		Description		Au ppb	Cu %	Ag ppm	Мо	ppm	Bı ppm
615 3	662 0	46 7		GRANODIORITE sim altered minor chloritic and Cpy stringers At 6 (Cpy) vein @ 75 CA C SAME INTRUSIVE WH MINERALIZED WITH S MINOR DISSEMINATE	ilar to that of 37 92 8 v fractures trace local dise 330 4 ft is a 5 cm banded OVER ALL THE ENTIRE HICH IS MOSTLY WEAK SCATTERED QZ CPY V ED CPY	veakly Ep seminated Cpy I Qz Cal Hem HOLE IS IN THE KLY /EINLETS AND						
662 0				END OF HOLE								

GRANO GARNET 629.00 ft.	DIORITE I SKARN 633.00	GRANODORITE 					Leuco-Granodionte Sandstone / Siltstone 710.00 ft.
					11400N		2100 0000000000000000000000000000000000
2000	0	feet Scale: 1 / 800		2000	Diar	Kluane nond Dr HAT F HT-1 H	Drilling Ltd. ill Hole Section Property T-3 and HT-4
YUKON E					Figure 4 Scale: 1" = 6	with Au ass 66 2/3 ft	say bar graph Section: 100 East
N 25835	11100N	11200N	11300N		North -Sou Drawn by:	th Section XD Jiang	Facing West July 16, 2001

Conclusions and Recommendations

The drilling result for this year has shown no significant break through in looking for both skarn and porphyry style mineralization in the garbage dump site area However drill hole HT 5 intersected highly anomalous Cu-Au values scattered for several hundred feet in granodiorite in the northwest on line 132N Instead of porphyry style the mineralization looks rather like Fort Knox style intrusive hosted but with higher temperature veining. To the west of HT 5 Induced Polarization survey indicated that the chargeability anomaly associated with high resistivity is getting stronger (over 60 milli seconds) and open to the west beyond the end of the survey line. Further drilling in this area is strongly recommended Possibilities for intrusive hosted mineralization may also exist in the garbage dump site area especially to the east-south east of hole HT-1 where a VLF- EM anomaly about 1000 feet long is trending north east. Further drilling in the garbage dump site is recommended.

Statement of Costs

1	Field Work Personnel	
	Xiangdong Jiang consulting geologist	
	May 24 – June 13 2000 21 days @ \$250/day	\$5 250 00
	J Covne May 27 31 2000 2 days @ \$240/day	\$480.00
	D Coyne May 24 2000 1 day @ \$200/day	\$200 00
2	Diamond Drilling	
	Three drill holes 2005 ft (611 12m) @ \$22 00 / ft	\$44 110 00
	Mob demob and site preparation	\$1 090 00
3	Assay and other	
	Assay ALS Chemex 87 samples	\$2 360 00
	Sample shipping (BTS)	\$107 65
	Truck for geologist 21 days @ \$60/day	\$1 260 00
	Travel for geologist	\$495 99
	Field work supplies	\$265 11
4	Report and Drafting	
	Copy and drafting	\$535 73
	Report writing	\$1 250 00
Si	ih-Total	\$57 404 48
00		φ37 404 40
G	ST (7% of above)	\$4 018 31
Тс	otal Assessment Value	<u>\$61,422 79</u>

Statement Of Qualifications

I Xiangdong Jiang residing at #8 – 10238 155A Street Surrey B C V3R 0V8 hereby certify that

- 1 I am an independent consulting geologist with office at the above address
- 2 I studied for four years at Changchun Geological University and graduated in 1982 with a Bachelor of Science degree major in Mineral Geology and Exploration
- 3 I have been practicing in my profession for over 18 years as contract geologist and as independent consultant with major and junior mining companies working in Canada and overseas
- 4 I do not have any financial interest in the property described in this report or in any other properties held by the same owners nor do I expect to receive any interest in the properties either directly or indirectly
- 5 This report is based on field work performed by myself and data from other reliable sources
- 6 I consent to the use of this report by Kluane Drilling Ltd provided that no portion is used out of context

Dated on this 20th day of July 2001 in Surrey British Columbia

, 74 d

Xiangdong Jiang B Sc Consulting Geologist

Mailing address as above Tel (604) 585 0880 Fax (604) 585 0890 E mail xiangdongjiang@yahoo.com

References

- Kindle E D 1963 Copper and Iron Resources Whitehorse Copper Belt Yukon Territory Geological Survey of Canada Paper 63-41
- Tenney D 1981 The Whitehorse Copper Belt Mining Exploration and Geology (1967 1980) Dept Indian and Northern Affairs Geology Section Yukon Bulletin 1 29 p
- Watson P H 1984 The Whitehorse Copper Belt A Compilation Exploration and Geological Services Division – Yukon Indian and Northern Affairs Canada Open File 1 25 000 scale map with marginal notes
- Meinert L D 1986 Gold in Skarns of the Whitehorse Copper Belt Southern Yukon in Yukon Geology Vol 1 Exploration and Geological Services Division Yukon Indian and Northern Affairs Canada p 19-43
- Yukon Archives in July 1999 Hudson Bay Exploration and Development Co donated more than 40 boxes and map tubes of data on Whitehorse Copper Belt to Yukon Archives
- Jiang X D 2000 Diamond Drilling on HAT 27 and HAT 28 Claims assessment report

Appendix 1

Į

ļ

Analytical Data and Assay Certificates

S Chemex Α Aurora Laboratory Services Ltd

Analytical Chemists Geochemists Registered Assayers 212 Brooksbank AveNorth VancouverBritish Columbia CanadaV7J 2C1PHONE 604 984 0221FAX 604 984 0218

То KLUANE DRILLING LTD

14 MACDONALD RD WHITEHORSE YT Y1A 4L2

A0118613

Comments ATTN JIM COYNE

CC XD JIANG

CERTIFICATE A01186	13		ANAL	YTICAL PF	ROCEDURE	ES 2 of 2	
(RHA) KLUANE DRILLING LTD Project HAT P.O. #	METHO		R S DESCRIF	PTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples submitted to our lab in Vancouver 3 This report was printed on 06-JUL-2001	C W IC: Zn IC:	P41 71 P41 71	W ppm 32 element Zn ppm 32 element	soil & rock : soil & rock	ICP AES ICP AES	10 2	10000 10000
SAMPLE PREPARATION							
METHOD NUMBER CODE SAMPLES DESCRIPTION							
LOG 22 CRU 31 71 Samples received without CRU 31 71 SPL 21 71 PUL 31 71 STO 21 71 229 71 Crush to 70% minus 2mm Splitting Charge PUL 4550g to >85%/ 75 m Reject Storage First 90 D 1CP AQ Digestion charge	barcode Loron Lys						
NOTE 1. The 32 element ICP package is suitable for trace metals in soil and rock samples Elements for which the nitric-aqua regia digestion is possibly incomplete are Al Ba Be Ca Cr Ga K La Mg Na Sr Ti T1 W							

ALS Chemex

Analytical Chemists Geochemists Registered Assayers 212 Brooksbank Ave North Vancouver British Columbia Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218

A0118613

(RHA) KLUANE DRILLING LTD

CERTIFICATE

Project HAT PO#

Samples submitted to our lab in Vancouver BC This report was printed on 06 JUL 2001

	ļ	SA	MPLE	PREPARATION
	METH CO	OD DE	NUMBER SAMPLES	DESCRIPTION
	LOG CRU SPL PUL STO	22 31 21 31 21 29	71 71 71 71 71 71	Samples received without barcode Crush to 70% minus 2mm Splitting Charge Pulv <250g to >85%/ 75 micron Reject Storage First 90 Days ICP AQ D gestion charge
NOT	F 1.			

The 32 element ICP package is suitable for trace metals in soil and rock samples Elements for which the nitric-aqua regia digestion is possibly incomplete are Al Ba Be Ca Cr Ga K La Mg Na Sr Ti Ti W To KLUANE DRILLING LTD

14 MACDONALD RD WHITEHORSE YT Y1A 4L2

Comments ATTN JIM COYNE

CC XD JIANG

			OCEDURI	ES 1 of 2	
METHOD CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Au AA23 Cu AA62 Ag ICP41 Al ICP41 B ICP41 Ba ICP41 Ba ICP41 Ba ICP41 Ca ICP41 Ca ICP41 Ca ICP41 Ca ICP41 Cr ICP41 Ga ICP41 Fe ICP41 Ga ICP41 Ma ICP41 Ma ICP41 Ma ICP41 Na ICP41 S ICP41 S ICP41 S ICP41 CI ICP41	71 71 71 71 71 71 71 71 71 71 71 71 71 7	Au AA23 Au ppb Fuse 30 grams Cu % HNO3 HClO4 HF HCl dig n Ag ppm 32 element soll & rock As ppm 32 element soll & rock B ppm 32 element soll & rock Be ppm 32 element soll & rock Ca % 32 element soll & rock Cd ppm 32 element soll & rock Cd ppm 32 element soll & rock Co ppm 32 element soll & rock Co ppm 32 element soll & rock Cu ppm 32 element soll & rock Cu ppm 32 element soll & rock Cu ppm 32 element soll & rock Ga ppm 32 element soll & rock Cu ppm 32 element soll & rock Cu ppm 32 element soll & rock Ma 2 element soll & rock Hg ppm 32 element soll & rock Ma 2 element soll & rock Ma 32 element soll & rock Mn ppm 32 element soll & rock Na % 32 element soll & rock Na % 32 element soll & rock Ni ppm 32 element soll & rock Ni ppm 32 element soll & rock S % 32 element soll & rock S ppm 32 element soll & rock	FA-AAS AAS ICP AES ICP AES	5 0 01 0 2 10 10 10 0 5 2 0 01 0 5 1 1 0 01 10 0 01 10 0 01 10 0 01 10 0 01 10 2 0 01 10 0 01 10 10 0 01 10 10 0 1 10 10 0 1 10 10 0 1 10 10 0 5 1 1 10 10 0 5 1 1 10 10 0 5 1 10 10 0 5 1 10 10 0 5 1 10 10 0 5 1 10 10 0 5 1 10 10 0 5 1 10 10 0 5 11 10 0 10 0	10000 50 0 100 0 15 00 10000 10000 15 00 500 10000 15 00 10000 15 00 10000 15 00 10000 15 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

A0118613

S Chemex Д Aurora Laboratory Services Ltd

Analytical Chemists Geochemists Registered Assayers

212 Brooksbank Ave North Vancouver British Columbia Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218 North Vancouver

То KLUANE DRILLING LTD

14 MACDONALD RD WHITEHORSE YT Y1A 4L2

Page Number 1 A Total Pages 2 Certificate Date 27 JUN 2001 Invoice No I0118613 PO Number Account RHA

Project HAT Comments ATTN JIM COYNE

CC XD JIANG

A0118613 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Au ppb FA+AA	Cu %	Ag ppm	A1 %	As ppm	B	Ba ppm	Be ppm	B1 ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg	K %	La ppm
322501	9400 267	7 < 5	< 0 01	< 0 2	1 73	8	< 10	100	< 0 5	< 2	5 58	< 0 5	4	34	98	1 46	< 10	1	0 57	< 10
322502	9400 267	/ < 5	< 0 01	02	1 28	< 2	< 10	50	< 0 5	4	1 38	< 0 5	10	83	118	3 26	< 10	< 1	0 39	< 10
322503	P400 267		< 0 UI 0 17	< U Z	1 02	18	< 10	100	< U 5	< 2	0 57	< 0 5	8	106	29	282	< 10	< 1	0 65	< 10
322505	9400 267	7 30	0 10	06	1 90	6	< 10	60	< 0 5	< 2	3 87	< 0 5	10	85	1025	2 52	< 10	< 1	0 23	< 10
322506	9400 267	7 20	0 15	0 8	1 66	4	< 10	40	< 0 5	4	3 87	< 0 5	10	46	1350	1 46	< 10	< 1	0 14	< 10
322507	9400 26	7 20	0 49	34	0 95	26	< 10	40	< 0 5	2	1 69	1 0	10	48	4920	1 81	< 10	< 1	0 13	< 10
322508	P400 26	7 25	0 15	08	1 45	10	< 10	40	< 0 5	8	2 08	< 0 5	11	59	1550	2 11	< 10	1	0 23	< 10
322509	9400 26	/ 590	1 70	17 4	1 68	8	< 10	< 10	< 0 5	8	6 31	< 0 5	1	109	>10000	1 42	< 10	< 1	0 07	< 10
322510	9400 265	/ < 5	< 0 01	08	0 43	< 2	< 10	< 10	< 0 5	14	>15 00	< 0 5	3	45	71	1 34	< 10	3	0 10	< 10
322511	9400 263	7 < 5	0 14	16	0 83	< 2	< 10	< 10	< 05	4	5 40	< 0 5	1	34	1415	2 17	< 10	< 1	0 05	< 10
322512	9400 26	7 30	0 09	06	1 44	6	< 10	10	05	6	5 61	< 0 5	5	47	895	0 92	< 10	< 1	0 14	< 10
322513	P400 261	7 340	0 39	32	1 40	< 2	< 10	30	< 0 5	26	2 56	< 0 5	1	20	3950	0 23	< 10	1	0 16	10
344514	P400 26		0 01	< 0 2	0 54	< 4	< 10	70	< 0.5	20	1 10	< U 5	< T	3/	231	1 10	< 10	< 1 1	0 12	10
522515	5400 20	/ 150	0.39	20	1 /0	4	× 10		< 0 5	20	1 90	< U 5		***			× 10	L		
322516	9400 26	7 200	0 68	52	2 41	< 2	< 10	40	< 05	32	3 33	< 0 5	7	34	6880	1 21	< 10	< 1	0 17	< 10
322517	₽4 00 26	7 695	1 99	17 8	2 39	< 2	< 10	30	10	136	4 30	< 0 5	3	15	>10000	0 74	< 10	< 1	0 25	< 10
322518	P400 26	7 70	0 80	16	1 95	4	< 10	50	< 0 5	6	1 19	< 0 5	16	74	7900	3 44	< 10	1	1 04	< 10
322519	P400 26	7 30	0 19	14	3 47	4	< 10	30	05	10	3 82	< 0 5	1	31	1870	0 50	< 10	1	0 21	< 10
322520	9400 26	/ 10	0 09	04	1 34	4	< 10	100	< U 5	4	1 /4	< 0 5	12	57	929	2 31	< 10		0 57	< 10
322521	9400 26	7 320	0 27	34	0 66	6	< 10	190	0 5	32	1 05	< 0 5	4	33	2430	1 00	< 10	< 1	0 43	10
322522	P400 26	7 520	0 62	42	1 66	4	< 10	100	10	36	3 42	< 0 5	5	48	5470	1 56	< 10	< 1	0 28	10
322523	9400 26		0 3/	20	1 04	14	< 10	740	10	20	L 60	< 0 5	/ 1	20	3430	2 52	< 10	× 1	0 45	2 10
322525	P400 26	7 220	0 37	50	1 90	10	< 10	40	15	62	6 90	< 0.5	1	49	7350	2 49	< 10	< 1	0 13	< 10
522525																				
322526	9400 26	7 15	0 36	02	0 55	< 2	< 10	60	05	10	1 49	< 0 5	5	56	3550	1 53	< 10	< 1	0 13	10
322527	9400 26	7 225	1 84	22 4	0 63	< 2	< 10	60	10	108	1 06	< 0 5	11	24	>10000	1 88	< 10		0 13	/ 10
344548	B400 26	7 7 15	0 20	1 4	1 57	~ 2	< 10	10	1 0	10	1 9 8	< 0.5	4	36	1030	0.82	< 10	1	0 10	10
322525	9400 26	7 25	0 04	< 0 2	0 52	< 2	< 10	50	05	10	0 85	< 0.5	8	41	391	1 46	< 10	< 1	0 09	10
522330				· • • •																
322531	P400 26	7 15	0 05	< 0 2	1 10	6	< 10	50	05	20	1 82	< 0 5	4	46	501	0 95	< 10	< 1	0 09	10
322532	P400 26	7 < 5	0 01	< 0 2	2 54	< 2	< 10	40	15	10	3 43	< 0 5	4	61	155	0 52	< 10	< 1	0 13	10 I
322533	9400 26		0 09	0 0	2 00	4	< 10	10	15	48 22	2 1 2	< 0 5	10	50	021	1 65	< 10		0 05	< 10
344334	P400 26	7 25	0 25	02	1 05	6	< 10	50	1 0	12	1 07	< 0.5	12	124	2230	3 01	< 10	< 1	0 42	< 10
522555	200 20	/ 23					· 10				± 07						· 10	<u>``</u>		. 10
322536	9400 26	7 285	0 61	30	1 65	< 2	20	20	15	58	4 03	< 0 5	1	53	5470	0 70	< 10	6	0 10	10
322537	P400 26	7 40	0 45	0 8	0 98	2	< 10	50	05	16	1 77	< 0 5	13	109	3880	2 50	< 10	< 1	0 34	< 10
322538	P400 26	7 65	U 31	14	1 72	18	< 10	< 10	05	20	TO 20	< 0 5	< 1	50	2720	4 99	< 10	< 1	0 04	< 10
322539	B400 26	7 260	2 12	40 0 4 A	1 04	2	< 10	< 10		438 199	11 20	< 0 5	< <u>1</u>	22	>10000	7 01	< 10 < 10	< 1 2 1	/ 0 01	< 10
544540	P*00 20	· 200	∡ v3	0 4	T 00	•	× 10	× 10	5 5	120	11 30		-	26	>10000	, 01	$\left[\begin{array}{c} 1\\ 1\end{array}\right]$	` -	1	× 10
				·······													-1-1-		L	
																		2101	ĺ	
														CHRTIE	R A DOM		و	· · · · · · · · · · · · · · · · · · ·	1	

CERTIFICATION ____

.S Chemex A Aurora Laboratory Services Ltd

Analytical Chemists Geochemists Registered Assayers 212 Brooksbank Ave North Vancouver British Columbia Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218

То KLUANE DRILLING LTD

14 MACDONALD RD WHITEHORSE YT Y1A 4L2

Page Number 1 B Total Pages 2 Certificate Date 27 JUN 2001 Invoice No I0118613 P O Number Account RHA

Project HAT Comments ATTN JIM COYNE

CC XD JIANG

CERTIFICATE OF ANALYSIS A0118613

SAMPLE	PRE	P)E	Mg %	Mn ppm	Mo ppm	Na %	N1 ppm	P ppm	Pb	S %	Sb ppm	Sc ppm	Sr ppm	T1 %	Tl ppm	U mqq	V mqq	W Maga	Zn ppm	
322501	9400	267	1 28	170	7	0 13	5	590	8	0 69	6	< 1	220	0 09	< 10	< 10	18	< 10	48	
322502	9400	267	088	120	12	0 17	16	580	2	2 02	2	1	89	0 15	< 10	< 10	79	< 10	32	
322503	6400	267	1 38	65	34	0 10	31	1220	< 2	1 69	۵ 4	3	91	0 13	< 10	< 10	55	< 10	44.4 3.8	
322505	9400	267	0 67	125	31	0 13	27	1290	2	1 26	2	1	160	0 12	< 10	< 10	56	< 10	38	
322506	9400	267	0 35	85	25	0 08	26	1420	2	1 18	< 2	< 1	187	0 10	< 10	< 10	26	< 10	22	
322507	9400	267	0 81	105	69 12	0 10	28	2010	42	1 10	84.	2 I	89	0 12	< 10	< 10	40	< 10	20	
322508	6400	267	1 06	155	92	0 03	11	1980	4	1 32	6	1	76	0 09	< 10	< 10	36	< 10	20	i
322510	9400	267	0 13	680	>10000	0 01	1	660	12	1 49	28	< 1	44	0 01	< 10	< 10	5	1610	< 2	
322511	9400	267	0 26	315	324	< 0 01	1	360	< 2	0 10	4	< 1	9	0 02	< 10	< 10	23	100	8	
322512	P400	267	0 76	265	462	0 09	9	1150	< 2	0 18	2	1	121	0 05	< 10	< 10	20	10	36	
322513	9400	267	0 19	65 50	30	0 22	1	1120	< 2	0 06	4	< 1	431	0 08	< 10	< 10	36	< 10	12	
322515	9400	267	0 99	90	108	0 28	12	1070	< 2	0 49	2	< 1	149	0 17	< 10	< 10	46	< 10	26	
322516	9400	267	0 32	65	55	0 49	10	1180	< 2	0 94	2	< 1	298	0 14	< 10	< 10	24	< 10	44	
322517	P400	267	0 30	60	94	0 12	6	500	< 2	1 05	< 2	< 1	627	0 06	< 10	< 10	8	< 10	14	
322518	9400	267	2 32	150	1/1	0 15	20	1120	< 2	1 8%	~ 2	× 1	372	0 45	< 10	< 10	20	< 10	22	
322520	9400	267	0 97	140	275	0 15	20	1090	< 2	0 98	< 2	< 1	121	0 22	< 10	< 10	69	< 10	28	
322521	9400	267	0 60	90	422	0 11	11	730	14	0 47	< 2	< 1	118	0 17	< 10	< 10	29	< 10	32	
322522	P400	267	0 63	120	55	0 14	15	1360	8	0 77	4	2	177	0 14	< 10	< 10	39	< 10	30	
322523	400	267	1 50	180	63	0 13	∡o 3	2070	6	1 1/	< 2	2	45	0 18	< 10	< 10	25	< 10	40	
322525	9400	267	0 05	275	11	0 08	4	780	10	0 39	6	Ĩ	240	0 09	< 10	< 10	44	< 10	16	
322526	9400	267	0 56	175	19	0 11	15	1550	4	0 56	2	3	60	0 15	< 10	< 10	47	< 10	24	
322527	9400	267	0 45	175	31	0 10	8	800	8	1 13	6	1	68	0 11	< 10	< 10	38	< 10	20	
322528	P400	267	0 26	75	44	0 12	14	980	6	1 54	2	1	150	0 10	< 10	< 10	19	< 10	54	
322530	9400	267	0 17	55	15	0 12	12	720	6	0 91	8	< 1	62	0 09	< 10	< 10	15	< 10	10	
322531	9400	267	0 13	70	26	0 18	11	1100	12	0 48	< 2	< 1	395	0 13	< 10	< 10	22	< 10	24	
322532	9400	267	0 22	65	499	0 35	12	2100	6	0 32	< 2	1	405	0 13	< 10	< 10	25	< 10	20	
322533	9400	267	0 08	250	264	0 12	7	1130	16	0 22	< 2	1	300	0 07	< 10	< 10	24	< 10	26	
322535 322535	9400	267	1 28	120	23	0 34 0 11	37	1350	12	1 91	< 2 2	6	602	0 11	< 10 < 10	< 10 < 10	35 99	< 10 < 10	40 52	
322536	9400	267	0 17	125	8070	0 29	6	1280	14	1 04	< 2	< 1	141	0 13	< 10	< 10	18	< 10	16	
322537	9400	267	0 97	125	99	0 10	33	1160	6	1 59	6	5	96	0 14	< 10	< 10	70	< 10	32	
322538	9400	267	0 04	680	14	0 01	2	1040	6	0 17	4	3	23	0 07	< 10	< 10	42	< 10	2	
322539	P400	267	0 06	570	6	0 01	4	260	8	1 60	12	1	26	0 03	< 10	10	33	< 10	18	
322540	9400	207	0.08	590	6	0 01	4	290	< 2	T 28	6	1	53	0 03	< 10	< 10	38	10	8	العلمى
L																	<u></u> ,	++-	-(-+)	; <u>-</u>
															CERTIE			N	7 1	

CERTIFICATION

S Chemex A Aurora Laboratory Services Ltd

Analytical Chemists Geochemists Registered Assayers

212 Brooksbank Ave North Vancouver British Columbia Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218

KLUANE DRILLING LTD То

14 MACDONALD RD WHITEHORSE YT Y1A 4L2

Page Number 2 A Total Pages 2 Certificate Date 27 JUN 2001 Invoice No I0118613 P O Number Account RHA

Project HAT Comments ATTN JIM COYNE

CC XD JIANG

CERTIFICATE OF ANALYSIS A0118613

CERTIFICATION

a1107-0	PREP	Au ppb	Cu	Ag	Al	As	В	Ba	Be	Bı	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Hg	K	La
SAMPLE	CODE	YA+AA	*	ppm	*	bbw	bbw	ppm	bbw	ppm	*	ppm	ppm	ppm	ppm	*	ppm	ppm	*	ppm
322541	9400 26	7 < 5	0 03	< 0 2	0 37	< 2	< 10	50	< 0 5	< 2	>15 00	< 0 5	< 1	6	202	0 29	< 10	< 1	0 11	< 10
322542	9400 26	7 115	0 49	24	0 40	< 2	< 10	30	< 0 5	28	8 50	< 05	1	22	3920	0 56	< 10	2	0 04	10
322543	9400 26	7 125	0 29	18	0 76	6	< 10	70	05	32	2 24	< 0 5	6	63	2720	1 36	< 10	< 1	0 16	10
322544	9400 26	7 95	0 19	18	0 57	< 2	< 10	60	05	30	2 02	< 0 5	2	47	2510	0 69	< 10	< 1	0 18	10
322545	9400 26	⁷] ³⁵	0 27	08	0 63	< 2	< 10	60	05	10	1 61	< 0 5	5	50	1705	098	< 10	2	0 15	< 10
322546	9400 26	7 < 5	0 12	02	1 83	2	< 10	70	05	8	2 44	< 0 5	8	52	1155	0 85	< 10	< 1	0 16	< 10
322547	9400 26	7 < 5	0 06	< 0 2	1 59	16	< 10	60	10	8	1 04	< 0 5	13	153	659	5 14	< 10	< 1	0 28	< 10
322548	9400 26	7 < 5	0 16	< 0 2	0 96	< 2	< 10	140	05	10	1 04	< 0 5	7	73	1585	2 10	< 10	2	0 27	10
322549	9400 26	7 20	0 20		1 01	< 2	< 10	160	05	2	0 98	< 0 5	1	70	2170	2 11	< 10	< 1	0 19	10
322550	9400 20	/ 05	0 29		0 94	0	< 10	100		20	1 23	< 0 5	0	20	2930	2 02	< 10	< 1	0 21	10
322551	9400 26	7 30	0 14	04	1 09	2	< 10	120	05	14	1 43	< 0 5	8	56	1370	2 14	< 10	< 1	0 18	10
322552	9400 26	7 20	0 15	i < 0 2	0 99	< 2	< 10	120	05	8	1 36	< 0 5	6	56	1640	1 95	< 10	< 1	0 15	10
322553	9400 26	1 15	0 06		1 1 2	< 2	< 10	120		8	2 32	< 0 5	12	58	1160	2 74	< 10		0 16	10
322555	9400 26	1 5	0 11		1 14	2	< 10	130	05	0 8	1 85	< 0.5	7	56	770	2 20	< 10	< 1	0 24	10
		1																· · ·		
322556	9400 26	7 35	0 17	20	1 24	2	< 10	90	05	20	2 05	< 0 5	9	62	1705	2 50	< 10	< 1	0 20	10
322557	9400 26	7 10	0 29	< 0 2	0 78	< 2	< 10	90	05	6	0 76	< 0 5	4	48	2320	1 28	< 10	< 1	0 13	< 10
322558	9400 26	7 855	0 52	28	0 90	2	< 10	110	05	46	1 16	< 0 5	5	63	5630	1 60	< 10	< 1	0 21	10
322559	9400 26	7 560	1 02		0 73	< 2	< 10	20		/0	1 40	< 0 5	L 0	59	2000	2 3 2 2	< 10	1	0 13	10
342360	9400 20	/ 05	0 23	· · · ·	1 20	4	< 10			10	± 37				2900	<u> </u>	< 10			10
322561	9400 26	7 20	0 26	5 0 2	1 36	4	< 10	90	05	8	2 35	< 0 5	9	66	2790	2 31	< 10	3	0 13	10
322562	P400 26	7 20	0 22	2 < 0 2	1 00	10	< 10	90	05	4	1 33	< 0 5	7	48	2160	1 60	< 10	2	0 13	10
322563	9400 26	7 25	0 52	2 0 2	1 55	< 2	< 10	290	05	10	2 32	< 0 5	10	40	2910	2 34	< 10	21	0 15	10
322304	9400 20	7 1760	0 20		1 03	1	< 10	110	05	74	1 36	< 0.5	7	51	5890	1 96	< 10	< 1	0 10	< 10
322303		/ 1/00																		
322566	9400 26	7 70	0 69	9 0 8	1 29	6	< 10	130	05	32	2 93	< 05	9	49	6810	2 23	< 10	< 1	0 19	10
322567	9400 26	7 145	0 50	60	1 39	6	< 10	100	05	38	2 94	< 0 5	12	63	4830	2 48	< 10	< 1	0 15	10
322568	P400 26	7 < 5	0 12	2 < 0 2	1 58	< 2	< 10	90	< 0 5	14	4 02	< 0 5	11	47	1060	2 08	< 10	< 1	0 22	10
322569	9400 26	7 70	0 35	9 26	1 74	42	< 10	110	05	20	3 33	2 3	13	50	3/20	2 36	< 10	× 1	0 10	10
322570	9400 28	/ 10	0.30			< Z	< 10				• 14		,							10
322571	9400 26	7 < 5	< 0 01	L < 0 2	5 73	22	< 10	110	15	10	574	< 0 5	10	48	66	1 83	10	< 1	0 32	< 10
																				ł
																	Ś	1	¢	
																<u> </u>	<u> </u>	1,1		
·																	N 8	Υ.	<u>></u>	
																	11 4	41.×	*	

LS Chemex Α Aurora Laboratory Services Ltd

Analytical Chemists Geochemists Registered Assayers 212 Brooksbank Ave North Vancouver British Columbia Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218

То KLUANE DRILLING LTD

14 MACDONALD RD WHITEHORSE YT Y1A 4L2

Page Number 2 B Total Pages 2 Certificate Date 27 JUN 2001 Invoice No I0118613 P O Number Account RHA

Project HAT Comments HAT ATTN JIM COYNE

CC XD JIANG

CERTIFICATE OF ANALYSIS A0118613

SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Nı ppm	P PPm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Т1 %	T1 ppm	U ppm	V ppm	W	Zn ppm	
322541 322542 322543 322544 322544 322545	9400 267 9400 267 9400 267 9400 267 9400 267	0 36 0 21 0 75 0 31 0 21	85 105 240 150 85	2 14 99 44 18	0 03 0 05 0 10 0 10 0 14	6 5 12 6 6	< 10 640 940 720 340	< 2 < 2 8 < 2 6	0 17 0 32 0 23 0 17 0 75	< 2 < 2 < 2 < 2 < 2	< 1 < 1 4 1 < 1	749 199 88 92 182	< 0 01 0 06 0 16 0 08 0 07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	2 12 59 2 4 12	< 10 < 10 < 10 < 10 < 10	6 6 16 14 16	
322546 322547 322548 322549 322550	9400 267 9400 267 9400 267 9400 267 9400 267	0 29 1 63 0 68 0 71 0 67	65 190 225 220 215	7 28 7 1 6	0 28 0 12 0 16 0 14 0 13	13 16 12 14 12	420 740 1250 1160 1180	2 8 2 2 6	0 67 2 99 0 19 0 15 0 30	2 < 2 < 2 4 < 2	< 1 4 3 3 3	378 66 59 77 56	0 05 0 24 0 18 0 18 0 18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 110 73 73 70	< 10 < 10 < 10 < 10 < 10 < 10	32 46 24 22 22	
322551 322552 322553 322554 322555	9400 267 9400 267 9400 267 9400 267 9400 267	0 81 0 63 1 42 0 97 0 95	265 220 420 290 300	3 3 1 6 69	0 13 0 13 0 11 0 12 0 13	13 11 20 15 13	1250 1210 1200 1330 1270	2 2 2 < 2 < 2 < 2	0 08 0 15 0 05 0 14 0 09	2 < 2 8 2 < 2	3 2 6 4 3	78 85 94 70 73	0 17 0 16 0 17 0 15 0 16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 71 98 82 81	< 10 < 10 < 10 < 10 < 10 < 10	26 22 32 24 22	
322556 322557 322558 322559 322560	9400 267 9400 267 9400 267 9400 267 9400 267	1 05 0 50 0 54 0 31 1 01	325 135 155 75 305	56 13 109 139 5	0 13 0 09 0 14 0 11 0 11	16 9 11 6 16	1280 830 1200 1120 1150	4 2 4 < 2 2	0 15 0 18 0 38 0 72 0 20	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 1 2 1 4	84 64 66 81 86	0 17 0 12 0 17 0 14 0 16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 45 57 37 76	< 10 20 < 10 10 < 10	30 14 16 6 32	
322561 322562 322563 322564 322565	9400 267 9400 267 9400 267 9400 267 9400 267	1 16 0 63 1 18 1 48 0 75	335 180 305 465 210	6 173 4 5 14	0 11 0 12 0 10 0 09 0 11	17 11 17 20 14	1170 1220 1140 1180 1280	2 2 8 10 6	0 30 0 25 0 59 0 31 0 46	6 4 2 2 < 2	5 2 5 7 2	90 110 117 108 79	0 15 0 16 0 13 0 12 0 14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 64 84 88 62	< 10 < 10 < 10 < 10 < 10 < 10	30 20 28 36 22	
322566 322567 322568 322569 322570	9400 267 9400 267 9400 267 9400 267 9400 267	1 21 1 42 1 49 1 66 1 16	395 450 570 480 500	18 71 6 28 149	0 07 0 08 0 07 0 08 0 8	19 22 20 25 17	1190 1050 960 1010 970	4 12 4 12 114	0 73 0 42 0 13 0 39 0 33	2 18 6 102 < 2	5 6 5 7 5	96 103 112 144 172	0 08 0 06 0 02 0 06 0 06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	65 78 55 83 60	< 10 < 10 < 10 < 10 < 10 < 10	28 76 70 130 62	
322571	9400 267	0 51	100	1	0 33	20	850	16	0 93	12	2	457	0 13	< 10	< 10	23	< 10	38	
					<u>u-t</u> 1,			- ,		<u> </u>							()	1	(

		design by	J08 No. 99072	CLIENT	KLUANE DRILLING LTD.
		DRAWN BY PNR	DATE 23/02/00	PROJECT	
Added HAT CLAIMS 41 to 44 / Scale change to 1:20,000		APPROVED	SCALE 1.00.000		HAT CLAIM PROJECT
REVISION	APP'D	XUJ	1:20,000		

		PO: Box 2703 Whitehorse, Yukon Y1A 2C6
	FIGUR	E 2
HAT PROPERT	Y CLAIMS MAP	SHEET

