

GEOLOGICAL MAPPING AND STREAM SEDIMENT GEOCHEMISTRY OF THE REGION AROUND THE EZ-JASPER CLAIM GROUP, HASSELBERG LAKE 105A-13.

YMIP TARGET EVALUATION PROGRAMME AND PART OF GRASSROOTS PROSPECTING PROGRAMME FIELDWORK JULY - SEPTEMBER 2001

> T Liverton Ph D F G S F G A C December 2001

HASSELBERG AREA 105A-13 PROPERTY EVALUATION AND PROSPECTING THE IMMEDIATE VICINITY OF THE EZ-JASPER CLAIMS 2001: GEOLOGICAL REPORT

INTRODUCTION

The Hasselberg Lake area is in the NW corner of map sheet 105A-13 It has been a region of prospecting and production of jade from glacially and fluvially transported boulders for at least 25 years Minor production of placer gold has also taken place from Bourget Creek, the main creek draining eastward to the north end of Hasselberg Lake Prospecting for hard-rock gold or base metal mineralization has not been hitherto attempted in any systematic manner, save that of a recent aerial geophysical survey by Cominco that covered much of the middle Palaeozoic rocks of the Yukon-Tanana terrane east of the Tintina Fault The current claim evaluation and prospecting under YMIP grants has been performed to investigate the possibility of gold / base metal and jade / talc occurrences in the vicinity of the EZ-Jasper claim blocks This report concerns geological and geochemical investigations over that immediate area A separate report of prospecting activities over a larger area is being prepared by Mrs Stella Hearty

The fieldwork carried out during the 2001 summer season has generally followed that outlined in the proposal for the YMIP All known areas of rock exposure have been mapped, using a G P S receiver to obtain UTM coordinates This work has been compiled at 1 25,000 scale The region of previously located anomalous gold assays has also been mapped in detail (1 1000 scale) and sampling of accessible quartz veins carried out. It was originally proposed to lay out a soil sampling grid over this region This approach was rejected as impractical after an initial careful examination of the ground, however a series of soil samples were taken along a traverse crossing the known mineralized area to test whether anomalous metal values could be detected in soils This vicinity was subjected to close-spaced stream sediment and panned concentrate sampling That approach was extended to cover the entire region surrounding the claim blocks as such geochemistry is seen as the best method to detect possible mineralization since rock exposure tends to be either abundant or entirely absent Both geological mapping and geochemical sampling were extended outside of the immediate claim boundaries to cover the entire length of the drainages to obtain sufficient samples for interpretation of results and also as part of the grassroots prospecting of the open ground Reinterpretation of some aspects of the geology in the region since the 2000 season has also changed the opinion as to prospective ground

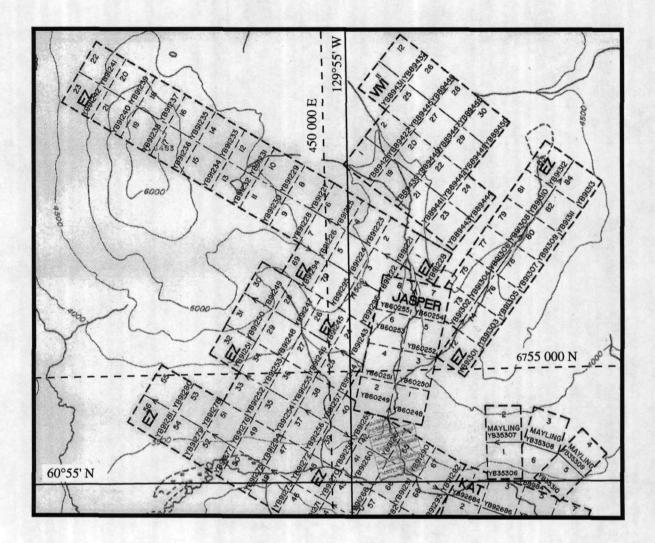


Figure 1. Portion of claim map 105A-13 showing the EZ and Jasper claim blocks. Scale 1:50,000.

CHANGES IN INTERPRETATION OF THE GEOLOGY OF THE EZ / JASPER REGION

The reconnaissance mapping carried out last year found several occurrences of fine grained to aphanitic mafic rocks that were called 'tuff', e g , U T M coordinates 51520E, 56600N, 'basalt', e g , 51100E, 55100N, and 'green volcanics', e g , 51200E, 54160N on the basis of hand specimen identification A more careful re-evaluation of these exposures this year indicated that these localities likely represent altered, often tectonised, fine-grained ultramafic lithofacies rather than volcanics (see geological map presented with the YMIP proposal and also the assessment report filed for the Jasper/EZ claim groups) This has been confirmed by an initial suite of thin sections prepared during mid season and further material (T1-T5) has recently been received from Vancouver Petrographic The lack of volcanics within the metasedimentary sequence in this area obviously diminished the possibility of finding VMS type base metal mineralization. The possibility of finding gold-bearing quartz as fault fillings within the quartzite and slate sequence remained, hence the adoption of an expanded geochemical sampling programme The geology of the region and traverse routes are presented at 1 25,000 scale (Figures 2 & 3)

GEOLOGY

(see petrographic notes sections T1, T3 and T4)

This mapping has demonstrated the existence of several ultramafic intrusions in the NW corner of 1 50,000 map sheet 105A-13, as follows from the NW corner (Fig 2) (1) A sill of average 20 m thickness (but rather variable) that has been mapped for 3 km. This body is uniformly serpentinised and was clearly originally an intrusion rather than a thrust sheet since andalusite and cordierite have been observed in the metasediments above. The interval approximately 50 m below the lower contact may be sheared, however, as green, mafic, slaty rocks are observed at 48,300E, 58300N. Thin sections of these rocks indicate they are likely thin (on the order of 3 metres thick) lower sills that are now of predominantly amphibole mineralogy.

(11) The majority of exposures of meta-gabbro, rare unaltered pyroxenite and ultrabasics in varying degrees of talc-carbonate alteration or serpentinisation are part of a large intrusion. Those fine-grained rocks noted last year are serpentinised (and, in the case of the 'tuff' locality noted in 2000, carbonate altered). They are interpreted as a chilled margin along the SE contact of the main ultrabasic intrusion.

(11) Aphanitic mafic rocks noted last year at the lower end of the canyon in quartzite (see detailed map Fig 4) are now an amphibolite (thin section H2) These represent a further semiconcordant basic intrusion that is considerably thicker than the sill (1) Although the lower contact is not exposed the presence of 8 cm long crystals of andalusite in pelite cataclasite (thin section H4) at the canyon of Bourget Creek (51040E, 53720N) indicates its proximity

(1v) A further locality noted last year (51213E, 54172N), where a 10 m high exposure in a

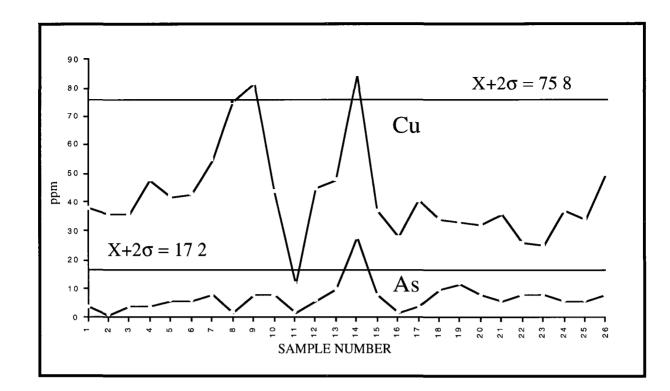
gully is of fine grained mafic rock might be an eastward extension of the same intrusion as (iii), but this probably does not extend past 54000E since there is no exposure of ultrabasics in the creek at that easting

Metasediments exposed above the NW sill are predominantly pelites that contain andalusite in places (e g, thin section T2), with one minor marble found halfway up the ridge and further decimetre-scale marble bands exposed immediately below the peak Quartzites are found on the lower slopes (below the sill) and slates predominate to the SE. The presence of andalusite in the pelites indicates that the ultramafic is indeed intrusive, despite evidence of tectonised mafic rocks below

At the canyon mapped in detail (1 1000 scale map Fig 4) the cliffs are of micaceous quartzite which shows a general shallow SE dip One major (2 3 m thick) near vertical quartz vein crosses the canyon and shows arsenopyrite and trace chalcopyrite mineralization This is likely the source of the sample taken by the Heartys that yielded significant gold (\approx 2ppm) Further dm-scale semiconcordant quartz veins were noted at the base of the cliffs on the east side of canyon and two 15 cm veins in the creek bed were sampled (samples 25-1 &2 see 1 1000 scale map, Fig 2) Northeast of the canyon the metasediments are slates At Bourget Creek (the southernmost geological data point) the metasediments have comparatively coarse mica and very long (8 cm) andalusite crystals The coarse grainsize is likely due to contact metamorphism by the ultramafic intrusion immediately to the north, but cataclastic texture of the rock (T2) indicates that some shearing of the units has occurred, probably prior to intrusion since the cm-scale andalusite is euhedral and randomly oriented in the outcrop

EVALUATION OF THE QUARTZ VEINS AS A POSSIBLE GOLD PROSPECT

Part of the YMIP proposal was to evaluate the quartz veins in the quartzites as potential gold prospects Two anomalous analyses were reported by the Heartys from their earlier work (see assessment report for 2000) These were in specimens obtained about 1.5 km apart. The eastern specimen was obviously from the canyon that has been mapped. Before any soil sampling was attempted it was deemed advisable to try to relocate those quartz occurrences. A line was traversed westward from the canyon to the location of the western sample as indicated on Mrs. Hearty's map. No sign of any outcropping quartz was found in that vicinity (although there are abundant float boulders in the adjacent creek bed around 49,800E). Since no exposure could be found it was considered inadvisable to locate a soil grid using a suspect location. In addition much of the ground on the west side of the canyon is swampy or has obvious deep till cover that is expected to interfere with possible geochemical recognition of mineralization. Instead of regular grid sampling a detailed stream sediment and panned concentrate sampling was used to cover the region. Detailed mapping of the quartzite canyon (Fig. 4) has shown that there is just one near vertical sulphide-bearing quartz vein of any size exposed. Chip samples across this vein were taken at intervals of 0-0 5, 0 5-1 0, 1 0-1 5, 1 5-2 0 and 2 0-2 3 metres.


possible response of soil, geochemical samples were obtained at approximately 20 metre intervals along the hillside on the east side of the canyon The results for trace element analysis have been received

RESULTS ORIENTATION SOIL SURVEY

Of the trace elements only arsenic and copper show any interpretable variation in contents As has slightly elevated values over the vertical quartz vein (stations 18 and 19), but these would not be considered anomalous in any statistical treatment Taking mean + two standard deviations as threshold for anomaly would give (admittedly for a very small sample population of 26) values of 17 and 76 ppm as threshold for As and Cu There is a coincident, just anomalous response in both elements at station 14 (see following page) This location corresponds to that of several bedding parallel quartz veins at the base of the cliffs below, but no explanation for the anomalous Cu peak at site 9 can be given. It would seem that there is a weak response to the sulphide content in these quartz veins. At the location of the sample line there is under 2 metres of till / soil cover above bedrock. Whether soil geochemistry would be effective in areas of greater cover is doubtful

RESULTS CHIP SAMPLING OF QUARTZ VEINS

Chip sampling of the quatz veins (samples 4-1, 6-1 to 6-5, 25-1 and 25-2) were analysed by fire assay / AAS by Chemex for Au and by ICP for Ag, Cu, Ni, Co, Fe, As, Pb, Zn and also S The highest Au value obtained was 280 ppb and Ag was 5 ppm at the highest Arsenic did not exceed 0 01%, despite there being visible scorodite in hand specimen The anomalous but decidedly not ore-grade gold contents of these quartz veins might be the source of occasional gold grains in the drainage system, but do not represent a target for further exploration

RESULTS OF SOIL GEOCHEMISTRY FOR THE TEST LINE SAMPLED ON THE EAST SIDE OF THE CANYON SAMPLE NUMBERS ARE THOSE SHOWN ON THE 1 1000 SCALE GEOLOGICAL MAP THE OUTCROPPING NEAR VERTICAL QUARTZ VEIN TRENDS BETWEEN NUMBERS 18 & 19 VALUES OF Mean + 2 s d ARE SHOWN FOR THE RESPECTIVE RESULTS

PROSPECTING FOR JADE

The current geological mapping has noted in situ jade at only one new locality at the waterfall on the east branch of the central creek (51,390E, 55230N) Figs 6 & 2 There one metre-sized boulder was seen in the creek at the top of the waterfall amongst other boulders of fine-grained serpentinised ultrabasics This part of the creek bed is considered to be sub-outcrop i.e.,

movement downstream of only a few metres is expected The entire 3 km length of the western sill that was mapped is of fine-grained serpentinised ultrabasic, except for coarse (10 mm) talc alteration along joints at around (48,600E, 56,970N) The southernmost intrusion (50,800E, 54,400N) is poorly exposed and those exposures visited show very fine-grained slightly serpentinised rock. It would seem that massive, coarse serpentinite is the most common host for lenses of jade in this region and that type of serpentinite is scarce in the area prospected this year.

MINERALOGY OF PANNED CONCENTRATES

The location of stream sediment and panned concentrate samples that cover the EZ-Jasper claims (and overlap some of the adjacent ground held by J P Ross) is shown on a map at 1 25,000 scale (Fig 6) and notes are given in the appendix These concentrates were examined under the binocular microscope before sending them for analysis The main differences in mineral composition of the concentrates are variation in magnetite/chromite content and presence or absence of abundant, mostly euhedral red garnet The garnet is restricted to the westernmost creek sampled (1 e, around 49,500E) and the lowest samples of the west fork of the next creek east (around 50,900E, 55,000N above the canyon) If the garnets found in the west fork were dispersed eastward in glacial till, then it is likely that the source is to the west of the area mapped This conclusion is supported by garnetiferous rocks being reported from the next creek to the west (around 46,000E, 58,000N and to the north) These were noted during prospecting by Mrs Hearty That particular creek drains the eastern side of the larger ultrabasic body found in the NE corner of map sheet 105B-16 Boulders in glacial till and verbal report (V Crickbaum, 2001) indicate also the presence of a syenite intrusion in that range Whether these might be a suitable prospect for any base / precious metal mineralization is uncertain until the region can be examined next season

Only the east fork of the central creek, draining the bog on the main ultrabasic intrusion contains just spinels (either or both of magnetite and chromite), along with occasional amphibole and jade (nephrite) in the concentrates The easternmost creek was not sampled for heavy minerals The following table summarises the minerals noted Locations are given in Appendix 1

	PANNED CONCENTRATES
390251	much euhedral-subhedral red garnet, rare ? olivine and pyroxene, much spinel, one jade fragment
390253	euhedral red garnet, a little spinel, rare amphibole
390260	Mostly slate fragments, only rare spinel and garnet
390263	euhedral red garnet, a little amphibole and pyroxene, mica, spinel
390301	much spinel, some red garnet, jade, feldspar
390302	euhedral red and brown garnet, amphibole, mica, much spinel
390303	spinel, rare amphibole
390304	spinel, amphibole, feldspar
390305	much spinel, feldspar, rare red garnet
390306	slate, spinel
390307	slate, spinel, amphibole
390308	much spinel, frequent jade, no garnet
390309	mostly slate, spinel and occasional amphibole
390310	much spinel, some red garnet, green ? jade, mica
390327	euhedral garnet, amphibole, mica, a little spinel

SUMMARY

Geological mapping during during the 2001 season has shown that the vicinity of the Jasper-EZ claims consists of a sequence of slate and lesser thickness of quartzite with very rare limestone bands of under 1 metre thickness near the (structural) top of the succession. The sequence is gently folded and dips are predominantly either to the west at $<30^{\circ}$ or gently easterly. Ultrabasic to basic igneous intrusions are found as one sill in the west, an irregular large discordant intrusion in the central northern part of the area and another semi-concordant intrusion in the south. Both the western sill and southern intrusion have produced a contact aureole in the pelites.

The sole metallic mineralization noted in this work has been trace arsenopyrite-chalcopyrite contained in one 2.3 metre thick, E-W striking quartz vein that cuts the quartzites. Evidence of new jade occurrence consists of the one locality at the waterfall (see geochemical location sketch, Fig. 6).

STREAM SEDIMENT GEOCHEMISTRY

In order to prospect the entire claim block above the region of heavy till cover the streams were sampled for sediment (-80 mesh) analysis and a number of panned concentrate samples obtained Since the region is quite small sediment samples were obtained at from 200-300 metre intervals, depending on suitability of the stream bed for sampling This has provided enough samples to allow interpretation of results. Heavy mineral samples were obtained by measuring a 20 litre bucketful of gravel, which was washed through a 20 mesh sieve and the sand then panned by hand to give a fairly 'dirty' heavy mineral concentrate. Sediments were dried and sieved to -80 mesh before shipping to Chemex Labs for ICP trace element analysis. Heavy mineral concentrates were analysed by Chemex using fusion then ICPMS for Au, Pt and Pd

This sampling also serves to indicate the geochemical response of the NW ridge and covers both the EZ 1-23 block and the vacant ground north and south of the two-claim wide strip that has been included as part of the grassroots prospecting programme

RESULTS STREAM SEDIMENTS

The stream sediment analyses reflect the local rock tyes quite distinctly and are best evaluated according to the detailed geology Plots are shown at 1 40,000 scale for each element of interest (Figures 7 to 12)

<u>N1</u>

Indicates extent of the ultrabasic/basic intrusions by there being a sharp cutoff in contents above the upper fork of the central creek system Values drop from the 132-666 ppm range to under 66 ppm above the inferred contact of the main ultrabasic body Values in the SE creek (slate exposures only noted) at from 132 to 232 ppm in the upper section may reflect the presence of a continuation of one of the sills to the east, since that part of the NW creek draining sediments has values below 60 ppm

<u>Cr</u>

Shows a similar response to N1, with the upper parts of the central creek system having markedly lower contents The uppermost two samples from the SE creek are also relatively high in Cr

Cu, Pb, Zn

Have no clearly anomalous results Perhaps the northernmost sample from the central creek system (sample 372) is barely anomalous in Pb at 42 ppm

١

<u>As</u>

Is somewhat enigmatic in that only the east branch of the central creek system has relatively elevated values (to 488 ppm) but taking this branch of the creek as one population, a mean of the 16 analyses is 277 ppm Using the 'simple-minded criterion' mean + 2 s d is 492 ppm, so even the highest value obtained might not be anomalous. It is suggested that the comparatively higher As contents of this creek may be due to trace sulphides in the fine-grained ultrabasic and basic intrusions that were noted in that valley.

Other elements

Most of the other elements are below or just above detection limits Mo is elevated in samples 352-355, which are from the lowest part of the SE creek, where glacial till is obvious, so these values likely reflect transported material Specimen 376 has anomalous Sb at 10 ppm and the adjacent specimen 377 has somewhat elevated Ag at 0 8 ppm (but since many of the Ag results are below detection liomit at 0 2 ppm it is difficult to estimate a threshold for anomaly) Similar Ag is seen in the upper part of the SE creek (spec 351) The only Hg values above detection limit are from the upper part and right fork of the same creek These results may indicate weak sources of metals in this drainage, presumably in the contact aureole of the ultramafics, but are not obviously highly significant

RESULTS HEAVY MINERAL CONCENTRATES

Of the fourteen panned concentrates analysed for Au, Pt and Pd two results stand out as obviously anomalous 302 and 305 at 3800 and 540 ppb Au respectively (Fig 13) Pt contents are below 8 ppb Although these two Au values are anomalous, the low values indicated by the rest would tend to indicate that the region is not a significant source of the metal The two high results could be produced by single microscopic grains of gold in the concentrate and coming from an initial 20 kg gravel sample they are not so exciting!

SUMMARY

The geochemical results do not indicate an obvious target for further prospecting for Au or base metals. The one (statistically) high gold value in panned concentrates is explainable by the 'nugget effect', which is this case requires only one tiny grain of the metal in the concentrate. The regionally low Au-Pt values indicate that the ultramafics here are not an obvious source of gold or platinoids.

CONCLUSIONS

Geological mapping and geochemical stream sediment sampling in the immediate vicinity of the Jasper and EZ claims has failed to detect any ore-grade mineralization Obvious exposed quartz veins carry trace gold only and the stream sediment / heavy mineral geochemistry would indicate that there is not an obvious source of gold or base metals within the ultramafic bodies mapped Anomalous mercury noted at the northern edge of the area investigated is not explained, but other metals are not indicative of mineralization

One minor occurrence of jade was found This part of the valley might be worth further prospecting however, the topography would make any removal of jade boulders very difficult Occurrences of talc have been noted to the NE by the Heartys and will be covered in their prospecting report

Timothy Liverton 16th January 2002

APPENDICES

- APPENDIX 1 Table of coordinates of geochemical sample points
- APPENDIX 2 Petrographic notes
- APPENDIX 3 Analytical results
- APPENDIX 4 Geological diary
- APPENDIX 5 Estimate of breakdown of time spent on the YMIP target evaluation and grassroots prospecting programmes

FIGURES LARGE SHEETS (FOLDED)

F1g 2	Geology of the region of Jasper-EZ claims Scale 1 25,000
Fig 3	Geological traverses, Scale 1 25,000
Fig 4	Geology of the Jasper claims (canyon) Scale 1 1000
Fig 5	Data points geology and claim posts
Fıg 6	Stream sediment - panned concentrate geochemistry location of sample points Scale 1 25,000

APPENDIX 1 HASSELBERG GEOCHEMICAL SAMPLES										
		RTHING TYPE								
250	49983	54581 SS								
251	49983	54581 HM								
252	49983	54581								
253	49141	56356 HM								
254	49141	56356 SS								
255	49280	56266 SS								
256	49423	56206 SS								
257	49513	56089 HM								
258	49513	56089 SS								
259	49637	55836 SS								
260	49568	55711 HM								
261	49568	58711 SS								
262	49661	55684 SS								
263	49823	55242 HM								
264	49823	55242 SS								
265	49873	54995 SS								
266	51115	55792 SS								
267	51033	55573 SS								
268	50970	55432 SS								
269	50910	55183 SS								
270	52805	57144 SS								
271	52695	56997 SS								
272	52584	56810 SS								
273	52407	56646 SS								
274	52251	56511 SS								
275	52170	56307 SS								
276	52046	55967 SS								
278	51930	55791								
279	51708	55563 SS								
280	51630	55416 SS								
281	51390	55237 SS								
282	51321	55153 SS								
283	51164	55135 SS								
284	51027	55027 SS								
285	50904	54899 SS								
286	50893	54931 SS								
289	50928	54815 SS								
291	55236	52535 SS								
292	55045	52658 SS								
293	54911	52861 SS								
294	54766	52984 SS								
295	54530	53144 SS								
296	53967	55012 SS								
297	53937	54829 SS								
298	53968	54703 SS								

NOTE / DUPLICATE OF

299 300 301 302 303 304 305 306 307 308	54010 54097 51115 50910 52805 52407 52170 51930 51321 50975	54596 SS 54459 SS 55792 HM 55183 HM 57144 HM 56646 HM 56307 HM 55791 HM 55153 HM 54968 HM
309 310	50904 50893	54899 HM 54931 HM
327	51155	57410 SS
344 345	52019	55841 SS SS
346		SS
347		SS
348 351	54016	SS 54392 SS
352	54077	54232 SS
353	54186	53902 SS
354 355	54320 54384	53714SS 53598SS
356	49204	57918 SS
357	49390	57938 SS
358 359	49724	57942 SS
359 362	49866 50356	57875 SS 57772 SS
363	50553	57649 SS
364	50648	57595 SS
365 366	50758 51021	57585 SS 57241 SS
367	51114	57225 SS
368	51156	57410 SS
369 370	51076 50922	57533 SS 57857 SS
370	50686	58366 SS
372	50576	58486 SS
373	51069	56704 SS
374 375	51053 51117	56901 SS 56361 SS
375	51131	56115 SS
377	51170	56012 SS
378		SS
403 407	46319 46266	60057 SS 59844 SS

APPENDIX 2: PETROGRAPHY

HASSELBERG	REGION:	105A-13
	Е	N
Hl	49280	56256
H2	50780	54518
H3	50904	54949
H4	51040	53735
H5	51352	55184
H6	51883	55728
H7	51798	56496
H8	51799	56678
H9	52047	55884
H10	52060	55905
H11	52067	56074
H12	53064	58463
H13	53325	58501
H14	53561	58839
H15	53748	59004
H16	54400	59159
T1	47737	59309
T2	47909	58219
T3	47979	59098
T4	47985	58635
T5	48106	58173

<u>H1</u>

Unaltered. Distinctly foliated, composed of 90% amphibole (actinolite) crystals to a max. of 0.4 mm long with some interstitial feldspar (some twinned plagioclase discernable) and elongated aggregates of magnetite to 0.5 mm long alternating with up to 2 mm thick layers of feldspar with only a little amphibole. Occasional amphibole crystals are grown perpendicular to the foliation in the feldspathic layers.

<u>H2</u>

Unaltered A fairly homogeous aggregate of actinolite and feldspar with possibly some quartz amphibole is in 0.1 mm laths The feldspars define a faint layering, but amphibole orientation is fairly random Opaques constitute $\approx 2\%$ in 0.02 mm grains surrounded by some (?) sphene, forming 0,5 mm long aggregates

<u>H3</u>

Unaltered Euhedral, acicular actinolite to 0.4 mm long (50%) in very fine-grained anhedral feldspar (twins rare) and possibly some quartz (too fine for unequivocal identification) The rock has a very strong preferred orientation of minerals - only a few of the coarser ampiboles have grown across the foliation Opaques and (?) sphene form agregates to 0.8 mm long that follow the foliation

<u>H4</u>

Slightly altered cataclasite Ragged porphyroblasts of red biotite (to 1 2 mm) and partially disaggregated feldspars (1 5 - 4 mm) that contain much fine opaque minerals are in a matrix of 0.05 - 0.1 mm feldspar and quartz The matrix (or groundmass) shows an anastomosing foliation

<u>H5</u>

Talc-serpentine rock A 20 mm mass of talc is in contact with serpentine. Serpentine invades the talc in flame-like forms

<u>H6</u>

Similar to H1 - 3 Acicular actinolite to 0.3 mm in feldspar Has somewhat less strong preferred orientation of minerals than (1) Opaques are 0.3 mm aggregates without any sphene

<u>H7</u>

A mass of 0.2 mm tremolite with some interstitial (?) quartz as 1 mm polygonised semi-elliptical shaped masses Both carbonate and quartz form 0.1 -0.2 mm thick veins

<u>H8</u>

Coarse actinolite - feldspar rock Actinolite is up to 6 mm long as ragged, anhedral forms Twinned plagioclase (2 mm, rarely to 4 mm) has relict euhedral forms, but is penetrated by the actinolite Euhedral magnetite to 1 mm ($\approx 2\%$ of the volume)

<u>H9</u>

A mass of 1 mm tremolite crystals with perhaps 15% groundmass of feldspar and (?) quartz

<u>H10</u>

Quartz-amphibole-epidote rock (hornfels?) Acicular tremolite, 1 mm long defines a distinct foliation Quartz grains are up to 0.3 mm across, anhedral, polygonised and interstitial to the amphiboles Epidote is anhedral and up to 0.3 mm size

<u>H11</u>

Coarser-grained variant of (10), but contains some plagioclase and biotite Has a fairly strong preferred orientation of minerals which is anastomosing 1 mm long aggregates of tremolite may be pseudomorphing pyroxenes Interstitial quartz is 0 1 mm grainsize, with the occasional plagioclase grain 0 3 mm euhedral crystals of epidote are associated with the tremolite The mica is pleichroic from colourless to pale brown and form occasional 2 mm anhedral grains in the quartz matrix Opaques are cubic forms from 0 05 - 0 1 mm size Tremolite 30%, opaques 1 %, biotite and epidote <1%

<u>H12</u>

Fine-grained amphibole-quartz rock Ampiboles are up to 0.3 mm long and constitute 50% of the bulk Opaques are <1% Very occasional 0.1 mm epidote crystals are seen

<u>H13</u>

Slightly serpentinised amphibole-rich rock Ragged, almost equidimensional tremolite is up to 0.6 mm across (70% of the bulk) in a serpentine matrix There are only rare opaques

<u>H14</u>

Meta-syenite? Amphibole-feldspar rock The amphibole is pleichroic from pale green to faint pink (tremolite-actinolite) and is in 3 mm masses The matrix is perthite and plagioclase with occasional masses of epidote

<u>H16</u>

Inhomogeneous epidote-chlorite-tremolite rock, with only occasional plagioclase Tremolite crystals are 4 mm long Epidote masses are up to 50% of the volume There are local concentrations of tremolite to 30% Chlorite can locally form 40% Opaques 1% No preferred orientation noted

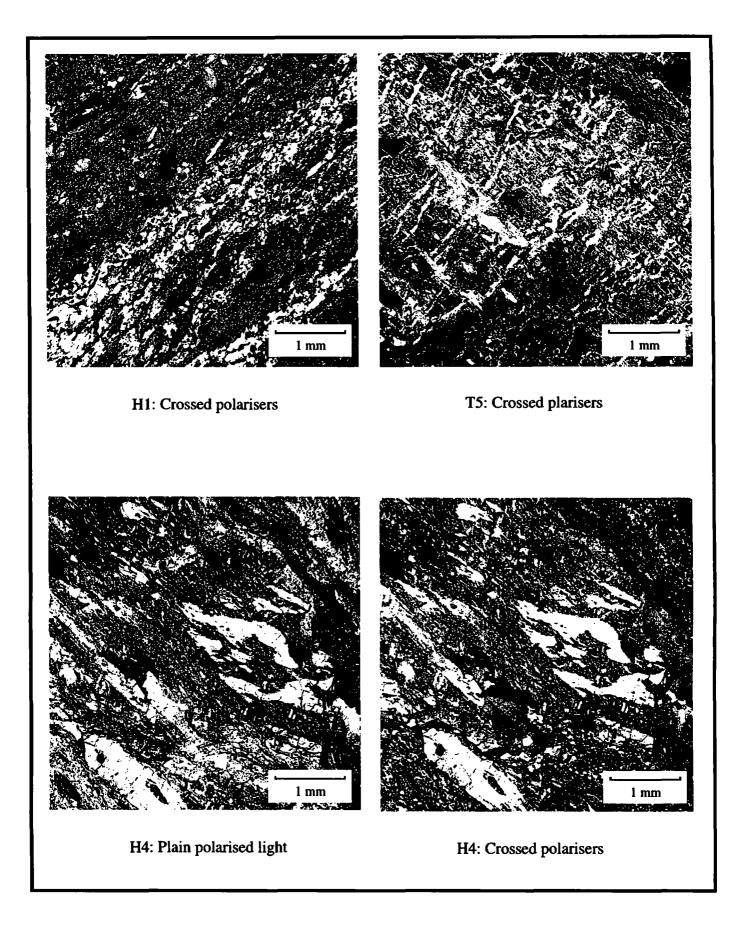
<u>T1</u>

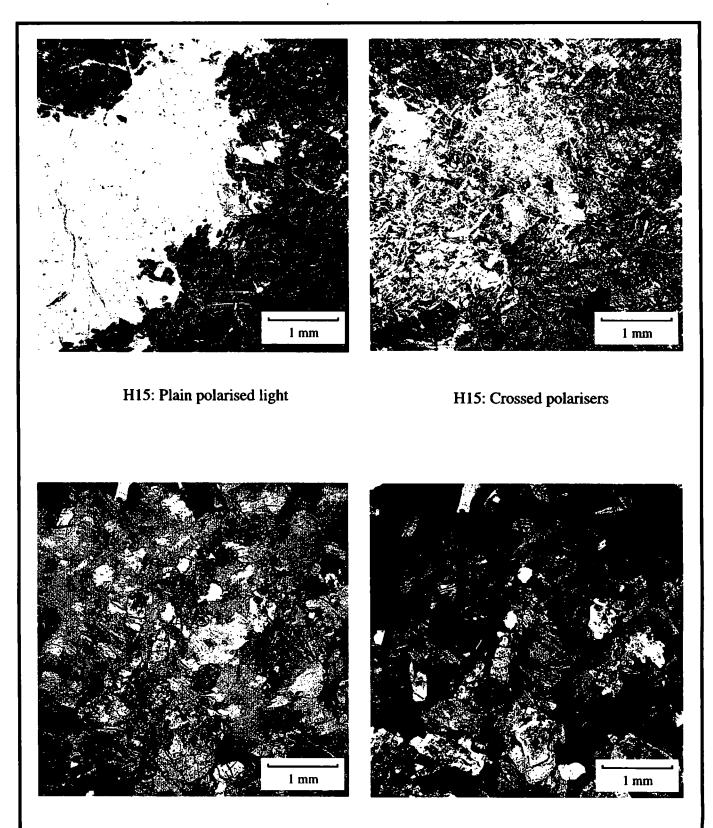
Elongate subhedral polygonised calcite masses up to 6 mm long may be pseudomorphing pyroxene phenocrysts The remainder of the rock is 70% tremolite-actinolite in acicular crystals to 0 7 mm long in a matrix of (?) quartz (0 1 mm grainsize) and similar-sized amphiboles A few opaques only are seen

<u>T2</u>

Andalusite-biotite-quartz schist Has a distinct foliation which does not especially anastomose or curve around the andalusite porphyroblasts Andalusite are 1 mm long by 0.5 mm in cross-section and constitute $\approx 20\%$ Biotite (pleichroic from colourless to red-brown and near uniaxial -ve) is 15% of volume in 0.2 - 0.4 mm long anhedral forms The matrix is 0.1-0.2 mm quartz grains

<u>T3</u>


Tremolite-actinolite quartz biotite 'schist' 80% tremolite-actinolite as acicular crystals to 0.5 mm long with a strong preferred orientation Quartz is interstitial Opaques ($\approx 1\%$) are 0.1 mm long needles Biotite (pleichroic from colourless to red-brown and near uniaxial) forms discreet layers up to 0.4 mm thick


<u>T4</u>

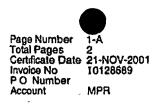
Tremolite-actinolite plagioclase rock Random oriented, fairly equidimensional raged phenocrysts of the amphibole from 0.5 - 1 mm grainsize are included in a plagioclase matrix, the feldspar being mostly as polygonised 0.1 mm grains

<u>T5</u>

Highly serpentinised durite Some relict olivine is present (15% in places) but it is pervasively fractured and serpentine altered Large (>4 mm) fields of serpentine and talc are interstitial

H16: Plain polarised light

H16: Crossed polarisers


ALS Chemex Aurora Laboratory Services LId.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984-0221 FAX 604-984-0218

To HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

ł

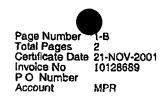
1

٠

										CERTIFICATE OF ANALYSIS					A0128689				, ,	
Sample	PREP CODE	weight Kg) Ag	-	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga pp:s	Hg ppm	К %	la ppm	Mg %
390250	2259400	0 02	0.8	2.82	22	< 10	280	15	< 2	0 57	05	18	103	66	3.12	10	< 1	0.40	10	1 49
390252	2259400	0 02	< 0.2	2.58	8	< 10	310	0.5	< 2	0 41	< 0 5	15	97	42	3 27	< 10	< 1	0.47	< 10	1 29
390255	2259400	0 02	< 0.2		10	< 10	270	10	2	0.58	0 5	16	91	59	2.97	< 10	< 1	0 40	10	1.28
390256	2259400	< 0.02	< 0 2		12	< 10	290	10	< 2	0 47	< 0.5	16	94	50	3 30	10	< 1	0 53	10	1 36
390258	2259400	< 0 02	< 0.2	2.72	12	< 10	300	10	2	0.46	< 0 5	17	96	50	3.34	10	< 1	0.52	10	1 37
390259	2259400	0 02	0.6		10	< 10	270	0 5	4	0 46	< 0.5	15	97	43	3.06	< 10	< 1	0.43	< 10	1 29
390260	2259400	0.02	0.2		14	< 10	240	0 5	< 2	0.31	< 0 5	12	71	37	3.09	< 10	< 1	0.47	< 10	0 74
390261	2259400	0 02	0.2		10	< 10	290	0 5	2	0.44	< 0.5	16	101	48	3.23	< 10	< 1	0.45	< 10	1 46
390262	2259400	0 02	0 2		12	< 10	290	05	< 2	0.43	< 0 5	16	98	47	3.18	10	< 1	0 47	< 10	1,42
390264	2259400	< 0 02	< 0 2	2 82	10	< 10	310	05	< 2	0.38	< 0 5	16	100	48	3 39	10	< 1	0 55	" < 10	1.35
390265	2259400	< 0 02	0.2	2 56	8	< 10	300	05	< 2	0.37	< 0 5	15	95	39	3.18	< 10	< 1	0 50	< 10	1.33
390266	2259400	< 0 02	0.2	1 69	18	< 10	190	05	< 2	0.35	< 0 5	20	145	37	3 20	< 10	< 1	0 42	< 10	1 71
390267	2259400	< 0 02	0 2	1 72	16	< 10	190	0.5	< 2	0 35	< 0 5	20	, 133	38	3.21	< 10	< 1	0 36	< 10	1 63
390268	2259400	< 0 02	0 2	1 86	22	< 10	200	05	2	0 37	< 0 5	21	150	38	3 47	10	< 1	0 42	< 10	1 81
390269	2259400	< 0 02	04	1 91	18	< 10	200	0.5	< 2	0 38	< 0.5	21	173	38	3.47	< 10	< 1	0 41	< 10	1 77
390270	2259400	0 02	0.6	1 44	90	< 10	290	0 5	< 2	0 31	0 5	43	312	16	5 66	10	< 1	0 03	< 10	0 95
390271	2259400	< 0 02	< 0 2	1 38	320	< 10	260	05	6	0 22	05	48	351	14	5.83	10	< 1	0.03	< 10	,1 74
390272	2259400	< 0 02	< 0.2		362	< 10	250	0.5	< 2	0 20	< 0 5	45	s 179	20	4 87	10	< 1	0.19	< 10	2 62
390273	2259400	< 0.02	08		294	< 10	250	05	4	0 28	4 5	37	202	40	4 19	< 10	< 1	0 09	10	1 98
390274	2259400	0 02	04	1.67	356	< 10	180	05	< 2	0.31	20	30	183	27	4.05	< 10	< 1	0 05	10	1 20
390275	2259400	< 0 02	< 0 2		312	< 10	200	05	2	0.32	15	26	168	29	3 84	< 10	< 1	0 23	10	1 36
390276	2259400		0 2		224	< 10	190	0.5	< 2	0 33	2 5	25	169	35	3 44	< 10	< 1	0.10	10	1 11
390277			NotRed			NotRed	NotRed			NotRed		NotRed			NotRed	NotRed		NotRed		
390278	2259400	< 0 02	< 0 2		420	< 10	160	05	< 2	0.40	15	22	167	36	3.54	< 10	< 1	0 10	10	1.25
390279	2259400	< 0.02	02	1 89	326	< 10	210	0.5	2	0 37	20	24	168	34	3 33	< 10	< 1	0 10	10	1.27
390280	2259400	< 0 02	02		308	< 10	160	0.5	2	0.37	15	24	186	37	3 32	< 10	< 1	0.09	10	1.25
390281	2259400	< 0.02	02		224	< 10	180	0.5	< 2	0.38	10	24	166	35	3 13	< 10	< 1	0 10	< 10	1 33
390282	2259400	< 0 02	0.2		230	< 10	170	05	4	0.39	20	25	212	36	3 30	10	< 1	0 10	< 10	1 70
390283	2259400	< 0.02	< 0.2			< 10	210	05	6	0.48	10	28	203	34	3 46	10	< 1	0.10	< 10	1 82
390284	2259400	< 0 02	< 0.2	1 90	180	< 10	280	05	2	0 44	0.5	26	178	36	3 30	< 10	1	0 12	10	1.65
390285	2259400	< 0.02	< 0 2	1.38	112	< 10	180	0.5	2	0 32	0.5	20	177	27	2 66	< 10	< 1	0.10	, < 10	1 36
390286	2259400	0.08	< 0 2		6	< 10	160	< 0 5	4	0.25	< 0.5	13	84	26	2.21	< 10	< 1	0.13	< 10	0 76
390289	2259400	0 10	< 0.2		2	< 10	190	0 5	< 2	0 26	< 0 5	15	93	30	2 53	< 10	< 1	0 16	< 10	0 96
390291	2259400	< 0 02	0 2		16	< 10	160	0.5	2	0 50	3.5	11	76	30	2 31	< 10	< 1	0 12	10	0 71
390292	2259400	< 0.02	04		24	< 10	190	05	2	0 69	4 0	12	87	37	2.60	< 10	< 1	0 10	20	0 75
390293	2259400	< 0.02	0.2	1 42	14	< 10	140	0 5	< 2	0.62	25	12	^{\$} 98	30	2 37	< 10	< 1	0 05	20	0 78
390294	2259400	< 0.02	< 0 2			< 10	180	0 5	2	0.73	25	12	98	37	2 51	< 10	< 1	0 07	30	0 84
390295	2259400	0.02	0.4		12	< 10	100	< 0 5	< 2	0.52	25	6	44	21	1 29	< 10	< 1	0.02	10	0.40
390296	2259400	0 04	0.2		32	< 10	100	1 0	< 2	0.34	30	22	332	60	4.54	< 10		0.20		1 07
390297	2259400	< 0 02	< 0.2	2.01	30	< 10	170	10	< 2	0 34	3.0	19	203	54	4 19	10	< 1	0 30	. 10	1.23
																				,
	L	<u> </u>																		

CERTIFICATION

and the second s


ALS Chemex Aurora Laboratory Services Ltd

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984-0221 FAX 604-984 0218

HEARTY STELLA To

BOX 81 WATSON LAKE, YT Y0A 1C0

ſ

Project
Comments ATTN STELLA HEARTY CC DR. TIM LIVERTON

										CERTIFICATE OF ANALYSIS					YSIS	/	A0128689	< *
SAMPLE	PREP CODE	Mn DDai	+			P ppm	Pb ppm	s s		Sc ppn	Sr ppm	Ti %	Tl ppm	U Dira	ppm V	ppm W	Zn ppm	
390250	2259400	315	2	0 03	167	850	8	0 07	2	6	41	0.09	< 10	< 10	73	< 10	66	<u> </u>
390252	2259400	300			107	640	8	0 03	< 2	8	25	0 13	< 10	< 10	77	< 10	52	
390255 390256	2259400	345 375			112 114	750 670	6	0.05	< 2	7	40 28	0 10 0 13	< 10 < 10	< 10 < 10	75 80	< 10 < 10	56 52	
390258	2259400	370				700	6	0 04	< 2	8	26	0 14	< 10	< 10	79	< 10	56	
390259	2259400	335				700	6	0 04	< 2	7	25	0.12	< 10	< 10	71	< 10	48	
390260 390261	2259400 2259400	530 350				730 620	10 5	0.03	< 2	5 8	15 27	0 15 0.13	< 10 < 10	< 10 < 10	66 76	10 < 10	80 48	
390262	2259400					620	2	0.03	< 2	8	24	0 12	< 10	< 10	76	< 10	48	:
390264	2259400	345				630	10	0 02	< 2	9	21	0 14	< 10	< 10	84	< 10	56	,
390265	2259400					550 630	6	0 02	< 2	8	21 12	0 13	< 10 < 10	< 10	77 72	< 10	52 62	۰.
390266 390267	2259400					610	8	0 02	< 2	7	14	0.11	< 10	< 10 < 10	69	< 10	66	
390268	2259400					610	6	0.02		7	14	0 13	< 10	< 10	74	10	72	
390269	2259400	475	< 1	0 03	142	660	8	0 01	< 2	7	15	0 13	< 10	< 10	78	10	68	
390270	2259400					810 680	6 8	0 05		3	23 17	0 03	< 10	< 10 < 10	52 48	< 10 < 10	92 92	
390271 390272	2259400					450	2	0 03	2	5	16	0.03	< 10 < 10	< 10	62	< 10	32 89	
390273	2259400					890	10	0.05		6	17	0 04	< 10	< 10	53	< 10	112	
390274	2259400	1760	2	0 01	345	790	6	0 05	2	4	20	0 04	< 10	< 10	45	< 10	102	
390275	2259400					740 860	6 8	0 07	2	5	24 24	0.07	< 10 < 10	< 10 < 10	61 47	30 10	105 112	``````````````````````````````````````
390276 390277	2259400						-			-						NotRed :	• =	
390278	2259400					840	6	0 07	< 2	5	29	0 05	< 10	< 10	48	20	112	
390279	2259400	1120	2	: 0 01	264	780	4	0 06	2	4	27	0 05	< 10	< 10	45	< 10	112	
390280	2259400					800 730	6	0 06		5 5	25	0 04	< 10 < 10	< 10 < 10	44 46	10 < 10	104 90	
390281 390282	2259400					750	4	0 05		5	29 27	0.05	< 10	< 10	47	< 10	104	,
390283	2259400					700	8	0 05		5	31	0 05	< 10	< 10	51	10	90	w'
390284	2259400	695	< 1	0.02	313	680	8	0 05	4	6	29	0 06	< 10	< 10	52	< 10	86	
390285	2259400					540	4	0.03	< 2	4	20	0.05	< 10	< 10	44	10	64	
390286 390289	2259400					720 730	5	0 01	2 < 2	45	11 13	0 07	< 10	< 10 < 10	47 56	< 10 < 10	50 60	
390289	2259400					530	14	0 06		3	29	0 04	< 10	< 10	37	< 10	108	
390292	2259400					600	14	0 08	2	3	39	0 04	< 10	< 10	44	< 10	154	
390293	2259400					580	4	0.06		3	36	0 03	< 10	< 10	42	< 10	116	· · · · · · · · · · · · · · · · · · ·
390294 390295	2259400				141	690 420	8 6	0 08	< 2 < 2	3 1	43 24	0.03	< 10 < 10	< 10 < 10	47 23	< 10 < 10	140 70	
390295	2259400					580	12	0 10	2	6	27	0 05	< 10	< 10	92	< 10	170	
390297	2259400					600	14	0.11	2	6	36	0 06	< 10	< 10	101	< 10	186	
L	i	L											·····					

ALS Chemex Aurora Laboratory Services Ltd Analytical Chemists * Geochemists - Registered Assayers

 $\dot{\gamma}_{2}$

8

212 Brocksbank Ave, North Vancouver British Columb a, Canada V7J 2C1 PHONE 604 984-0221 FAX, 604-984-0218

TO HEARTY, STELLA

BOX 81. WATSON LAKE, YT Y0A 1C0

Page Number Total Pages 2-Certificate Date 21 NOV-2001 Invoice No P O Number Account MPR

Project Comments A

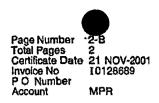
8.7

.

î ^r

nts	ATTN	STELLA	IEARTY	CC DR	TIM LI	VERTON		
CI	ERTI	ICATE	OFA	NALY	sis	Ą	01286	89
Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	R

Sample	PREP CODE	Weigh K) ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppn	Co ppm	Cr 	Cu ppm	Fe %	Ga ppm	Hg ppm	r z	La ppm	Ng S
390298 390299 390300 390327 390344	2259400 2259400 2259400 2259400 2259400 2259400	< 0 0 < 0 0 < 0 0 < 0 0 < 0 0	2 0 2 0 2 < 0	6 2 02 2 2 13 2 1 73	32 34 34 28 488	< 10 < 10 < 10 < 10 < 10 < 10	160 170 190 220 140	1 0 1 0 1 0 0 5 0 5	< 2 < 2 < 2 2 < 2 < 2	0 38 0 38 0 38 0 31 0 41	3 0 3 0 3.0 0.5 1.0	18 18 19 12 19	135 170 151 65 89	48 49 51 35 27	3 76 3 97 4.09 2 93 3 07	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0 22 0.26 0.30 0 46 0.19	10 10 < 10 10	1 15 1.18 1 24 0.75 1 28
390345 390346 390346 390347 390348 390351	2259400 2259400 2259400 2259400 2259400 2259400	< 0 0 < 0 0 0.0 0 0 < 0 0	2 0 6 0 4 < 0	4 1 43 4 1 77 2 1.08	8 102 8 4 14	< 10 < 10 < 10 < 10 < 10 < 10	160 340 210 90 150	< 0 5 0 5 0 5 < 0.5 0.5	< 2 < 2 < 2 6 2	0 23 0 31 0 28 0 28 0 81	< 0.5 0 5 < 0 5 < 0.5 4 0	13 50 16 17 11	74 345 109 146 80	26 15 33 23 53	2.16 6 17 2 69 1.85 2 23	< 10 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1 <1 <1	0.13 0 03 0 20 0 12 0 12	< 10 < 10 < 10 < 10 < 40	0 73 1.27 1.10 1.03 0.93
390352 390353 390354 390355 390355 390356	2259400 2259400 2259400 2259400 2259400 2259400	, 00 , 00 , < 00 , < 00 , < 00	2 0 2 0 2 0		26 20 20 ~20 ~22 6	< 10 < 10 < 10 < 10 < 10 < 10	160 160 160 170 210	050505050505	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0 56 0 60 0.65 0 70 0 25	4 0 3 0 3.5 3 5 < 0 5	16 12 13 14 14	102 80 78 82 73	46 32 36 37 39	3 01 2 35 2 53 2 64 3 60	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.19 0 09 0 09 0 10 0 57	10 10 20 20 < 10	1 15 0.81 0.85; 0.96, 0.76
390357 390358 390359 390362 390363	2259400 2259400 2259400 2259400 2259400 2259400	< 0 0 < 0 0 < 0 0 < 0 0 < 0 0	2 < 0. 2 0. 2 < 0	2 1.71 ² 2 1.86	22 10 12 20 10	< 10 < 10 < 10 < 10 < 10 < 10	280 230 230 250 220	0 5 0 5 0 5 0 5 0 5	2 < 2 < 2 2 2 < 2	0.26 0 24 0 30 0.36 0 31	< 0 5 < 0 5 < 0 5 < 0 5 < 0 5 < 0 5	14 12 12 14 12	63 53 73 81 68	57 38 40 65 40	3.42 2 98 3 00 3 37 3 13	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.64 0 54 0 45 0 49 0 50	< 10 < 10 10 10 < 10	0.75 0.72 0.71 0.76 0.67
390364 390365 390366 390366 390367 390368	2259400 2259400 2259400 2259400 2259400 2259400		2 < 0. 2 < 0 2 < 0 2 < 0	2 1.75 2 1.72 2 0.78	22 18 18 18 18 26	< 10 < 10 < 10 10 30	210 230 210 110 80	05 05 05 05 05	< 2 2 < 2 < 2 < 2 < 2 < 2	0.29 0 32 0 33 0 95 1 78	< 0 5 < 0 5 < 0.5 < 0 5 < 0 5 < 0 5	12 12 12 42 46	69 66 67 212 440	37 35 34 17 14	2 94 2 95 2 86 3 06 3.26	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 2	0 42 0 45 0.39 0.14 0 01	< 10 < 10 < 10 < 10 < 10 < 10	0.65 0.68 0.67 5.61 8.94
390369 390370 390371~ 390372 390372 390373	2259400 2259400 2259400 2259400 2259400 2259400	<pre>.<< 0 0 < 0 0 < 0 0 < 0 0 < 0 0</pre>	2 0. 2 < 0 2 < 0	2 2 10 2 1 90 2 1 89	44 48 40 40 32	< 10 < 10 < 10 < 10 < 10 < 10	150 200 160 130 150	15 20 20 15 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0 47 0 60 0 48 0 46 0 55	05 <05 <05 05 <05 <05	18 12 12 9 23	139 124 56 60 194	33 37 34 29 28	3 01 3 27 3 16 2 90 3 21	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 4 1 7	0 33 0.35 0.36 0.25 0 30	10 10 10 10 4 10	2 23 1 12 0 61 0.62 3.27
390374 390375 390376 390377 390377 390378	2259400 2259400 2259400 2259400 2259400 2259400	<pre>< 0 0 < 0 0 0 < 0 0 0 0 < 0 0 < 0 0 < 0 0 0 < 0</pre>	2 0. 2 < 0. 4 0	2 1.55 2 1 61 8 1 63	32 22 32 30 28	< 10 < 10 < 10 10 < 10	210 170 190 170 220	1 S 1 0 1.0 0.5 1 0	< 2 2 < 2 < 2 < 2 < 2 < 2	0 53 0 42 0.44 0 33 0.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 17 17 20 15	165 158 138 177 110	31 31 43 63 37	3 14 3 06 3.31 2 60 2 90	< 10 < 10 < 10 < 10 < 10 < 10	8 < 1° 5 < 1 4	0.31 0.28 0 40 0 08 0.21	<pre>< 10 < 10 < 10 < 10 < 10 < 10 10</pre>	2.05 1 85 1.89 1.71 1 24
390403 390407	2259400 2259400	00		2 1 24	× 18 24	10 < 10	90 [°] 110	05	2 < 2	0 34 0 37	< 0 5 < 0 5	20 19	169 118	29 28	2.21 2 77	< 10 < 10	< 1 3	0.14 0.12	< 10 + < 10	1.24 1 10
		*	ĩ		 						2. 			CERTIFIC	CATION					



ALS Chemex Aurora Laboratory Services Ltd

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984 0221 FAX 604-984-0218

BOX 81 WATSON LAKE, YT Y0A 1C0

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

										CE	RTIFI	CATE	OF A	NALY	'SIS	A	0128689	
SAMPLE	PREP CODE	Ma Ma	Mo ppm	na z	Ni ypn	ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	u DDm	d d d d d d d d d d d d d d d d d d d	M M	Zn ppm	
390298	2259400	345	8	0 04	151	630	12	0 10	< 2	6	35	0.05	< 10	< 10	96	< 10	192	
390299	2259400	355	9	0 04	170	580	10	0 11	2	6	38	0.06	< 10	< 10	97	< 10	194	
390300	2259400	380 560	10 1	0 04	171 53	610 730	14 6	0 11 0 02	2 < 2	6 5	42 15	0 06 0 15	< 10	< 10 < 10	105 66	< 10 < 10	208 76	
390327 390344	2259400 2259400	355	1	0.01	244	870	16	0 06	4	4	34	0.05	< 10 < 10	< 10	45	< 10	124	
390345	2259400	360	1	0 01	87	720	6	0.01	< 2	4	10	0 07	< 10	< 10	47	< 10	52,	
390346	2259400	5470	3	0 01	361	790	2	0 04	2	3	27	0 03	< 10	10	52	< 10	92	
390347	2259400	440 275	< 1 < 1	0 01 0 03	119 137	660 660	8 < 2 <	0 01	< 2 < 2	6	14	0.11 0.09	< 10 < 10	< 10 < 10	60 45	< 10 < 10	64 22	
390348 390351	2259400 2259400	350	4	0 03	146	590	10	0.07	2	4	44	0.05	< 10	< 10	70	< 10	190	
390352	2259400	320	6	0.03	160	650	10	0 10	4	5	40	0 05	< 10	< 10	76	< 10	186	
390353	2259400	345	5	0 03	132	600	6	0 07	2	3	36	0.04	< 10	< 10	59	< 10	152	
390354	2259400	370 390	5	0 03 0 03	143 152	590 650	8 12	0.07	< 2	3	38 43	0 04	10 < 10	< 10 < 10	65 73	< 10 < 10	176 182	
390355 390356	2259400	550	1	0.03	59	580	10	0 00	< 2	5	14	0 15	< 10	< 10	63	< 10	86	
390357	2259400	590	< 1	0 02	57	830	6	0.04	< 2	6	11	0.17	< 10	< 10	78	< 10	84	
390358	2259400	535	< 1	0~03	51	650	8	0.03	2	5	10	0.15	< 10	< 10	61	< 10	84	
390359	2259400	565	1	0 02 0 2	56 57	740 790	14	0.04	< 2	6 7	15 19	0.14 0 15	< 10 < 10	< 10 < 10	64 73	< 10 20	82 84	
390362 390363	2259400 2259400	660 610	< 1	0.02	49	790	8	0.02	< 2	6	15	0.15	< 10	< 10	72	< 10	86	
390364	2259400	580	1	0.02	50	740	8	0 03	< 2	5	13	0 13	< 10	< 10	66	< 10	82	and and a second se
390365	2259400	600	< 1	0 02	47	740	10 6	0 03	< 2	6	13	0.14	< 10	< 10	66	< 10	80 74	4
390366 390367	2259400	535 765	< 1 < 1	0 01 0.01	47 591	720 290	12	0.03 0 01	< 2 < 2	5	14 30	0 13 0.05	< 10 < 10	< 10 < 10	64 31	< 10 < 10	52	
390368	2259400	870		< 0.01	666	180	14 4		< 2	8		< 0 01	< 10	< 10	25	< 10	34	
390369	2259400	510	2	0 01	218	640	24	0 04	2	5	15	0.10	10	< 10	55	20	86	• /************************************
390370	2259400	515	< 1 -		66	760 670	26 32	0 04	8 < 2	6	21	0.15	< 10	< 10	78 47	20 40	94 138	
390371 390372	2259400	580 610	< 1 2	< 0 01 0 01	58 54	820	32 42	0.08	< 2	4	9 14	0 10	< 10 < 10	< 10 < 10	4/ 52	80	138	
390373	2259400	665	1	0 01	280	600	16	0.02	8	6	11	0.09	< 10	< 10	54	< 10	74	
390374	2259400	575	< 1	0.01	187	590	18	0 02	2	6	16	0 10	1.0	< 10	59	10	70	
390375	2259400	530	3	0 01	168	560	20	0 02	< 2	5	15	0.10	< 10	< 10	57	30	68	
390376 390377	2259400	545 270	<1	0 01 0.01	214 387	630 570	20 12	0.02	10 6	6 6	9 11	0.10	< 10 < 10	< 10 < 10	56 43	< 10 < 10	72 50	
390378	2259400	440	4	0 01	132	750	16	0 01	< 2	6	12	0.05	< 10	< 10	43 63	< 10	76	
390403	2259400	310	< 1	0 01	163	750		< 0 01	12	4	10	0.10	10	< 10	53	< 10	34	
390407	2259400	620	2	0.02	152	730	8 •	< 0 01	< 2	4	10	0.09	< 10	< 10	53	< 10	36	
																	:	
			······································										******		·······			

CERTIFICATION

ĕ.

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

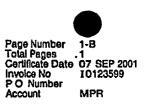
212 Brooksbank Ave ,North VancouverBritish Columbia, CanadaV7J 2C1PHONE 604-984 0221FAX 604-984 0218

7.	LICANTUR	OTCI &
To	HEARTY,	SICLLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Project Comments ATTN STELLA HEARTY, CC DR TIM LIVERTON

A0128690 **CERTIFICATE OF ANALYSIS** • • *....* Pd ppb Pt ppb PREP Weight Au ppb ICP-MS ICP-MS ICP-MS SAMPLE CODE KgX 0.02 б 5.0 3 390251 2359400 2359400 0.02 1 2.0 2 390253 2359400 0.02 4 1.5 1 1 390257 2359400 0 02 < 1 1.0 390260 17 2 2359400 0.02 2.5 390263 0.02 40 3.0 2 2359400 390301 0.02 3800 3 5 З 2359400 390302 75 6.5 ž 2359400 0.02 390303 12 8.0 З 2359400 0.02 390304 1 2359400 0 02 540 2.0 390305 225 0.02 7 4.0 2359400 390306 2 6 5.5 2359400 0.02 390307 6 5 0.02 390308 2359400 2 2.5 2 0.02 390309 2359400 0.02 3 2.0 1 390310 2359400 s * ~* * , ; ~ 2 p^{2} . . uz h CERTIFICATION



Analytical Chemists * Geochemists * Registered Assayers

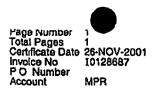
212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604 984-0221 FAX 604-984-0218

BOX 81 WATSON LAKE, YT Y0A 1C0

٦

Project Comments ATTN STELLA HEARTY

										CEI	RTIF	CATE	OF A	NALY	SIS	A	0123599	
SAMPLE	PREP CODE	Mn ppm	Mo	Na Z	Ni ppm	ppm.	bb u 5p		Sb pm	Sc ppm	Sr ppm	T1 %	T1 ppm	D Bibu	v mqq	W Ppm	Zn pjm	
T-1) 390379 T-2) 390380 T-3) 390381 T-4) 390382 T-5) 390383	94069407 94069407 94069407 94069407 94069407	370 405 465 510 585	1 1 1 1	0 01 0 01 0 01 0 01 0 01 0 01	133 188 168 181 162	530 640 670 770 750	10 0 0 6 < 0.0 8 < 0.0 10 0.0 10 0.0)1 <)1 <	2222222	7 7 7 8 7	16 15 18 16 17	0 12 0.10 0 11 0.11 0 10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 65 69 71 65	< 10 < 10 < 10 < 10 < 10 < 10	78 66 74 82 80	
(T-6) 390384 (T-7) 390385 (T-8) 390386 (T-9) 390387 (T-10) 390388	94069407 94069407 94069407 94069407 94069407	395 590 215 350 405	1 1 1 1 2	0 01 0 01 0.01 0.01 0.01	161 183 106 124 177	620 590 290 430	8 0 (6 0 (6 0 (6 0 (8 0 ()1 <)1 <	2 2 2 2 2 2	7 8 5 5 7	17 14 12 16 17	0 11 0 08 0 06 0.05 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 75 57 65 68	< 10 < 10 < 10 < 10 < 10 < 10	74 56 48 40 52	nadad Mide di e ar
(T-11) 390389 [T-12] 390390 (T-13) 390391 (T-14) 390392 (T-15) 390393	94069407 94069407 94069407 94069407 94069407	245 380 560 670 275	1 1	<pre>< 0 01 0 01 0 02 < 0.01 < 0 01</pre>	61 186 306 111 149	270 410 230 240 230	6 < 0 (8 0.(8 0 (6 < 0.(8 0 ()1 <)1 <	2 2 2 2 2 2 2	4 8 9 10 7	8 13 13 7 11	0.11 0 12 0 10 0.08 0 09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 76 68 87 68	< 10 < 10 < 10 < 10 < 10 < 10	40 56 48 60 56	
(T-16) 390394 (T-17) 390395 (T-18) 390395 (T-18) 390396 (T-19) 390397 (T-20) 390398	94069407 94069407 94069407 94069407 94069407 94069407	295 355 280 275 320	1 4	<pre>c 0.01 c 0 01 c 0 01 c 0 01 c 0.01 c 0.01</pre>	126 112 141 200 132	230 300 180 140 510	6 < 0 (6 0 (5 < 0 (4 0 (10 0 ()1)1 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 7 6 7 7	11 13 9 8 14	0 08 0.10 0.10 0.09 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 72 69 64 85	< 10 < 10 < 10 < 10 < 10 < 10	56 52 54 38 66	
(T-21) 390399 (T-22) 390400 (T-23) 390422 (T-24) 390423 (T-25) 390424	94069407 94069407 94069407 94069407 94069407 94069407	315 305 285 420 375	2 3 3 1 3	0 01 0 01 0 01 0 01 0 01 0 01	154 152 113 136 153	230 440 390 630 250	8 0.4 6 0.4 8 0.4 8 0 (6 0.4)1 <)1 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 6 5 7 10	17 15 13 17 12	0 11 0,12 0 11 0.10 0 18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 91 83 64 116	< 10 < 10 < 10 < 10 < 10 < 10	54 76 72 58 68	
(T-26) 390425	94069407	275	1	0 01	176	260	8 D (<u>)1</u> <	2	7	13	0 12	< 10	< 10	68	< 10	46	,
							<u> </u>							CERTIFIC	ATION		· Davel le	0



Analytical Chemists ' Geochemists Registered Assayers 212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984-0221 FAX 604 984 0218

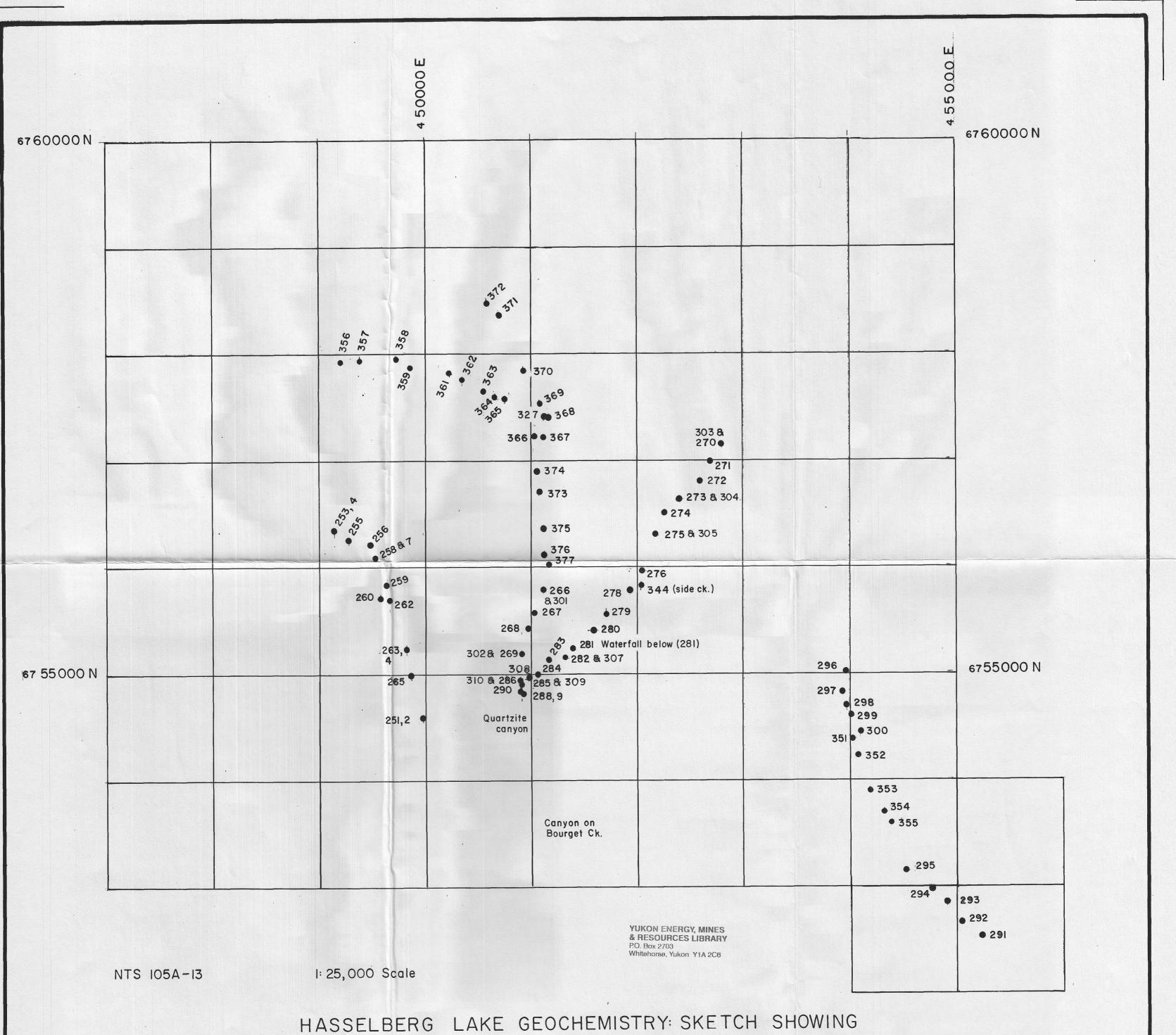
BOX 81 WATSON LAKE, YT Y0A 1C0

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

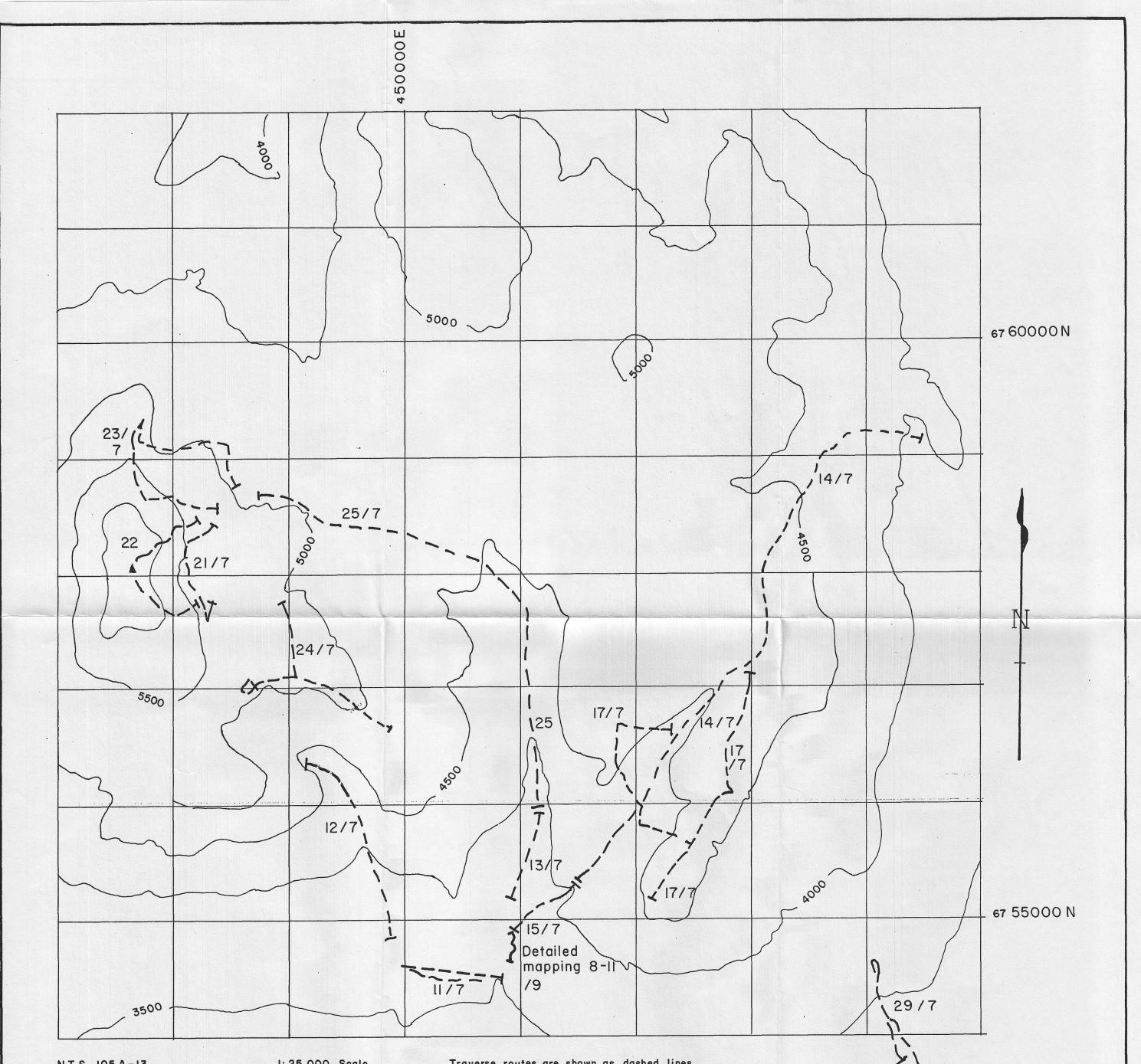
CERTIFICATION

1.

							_		CERTI	FICATE	OF AN	ALYSIS	5 J	1012868	37	
SAMPLE				ац ррб Ранаа	λg g/t	Cu %	ni %	Co %	S % (Leco)	70 %	Ав %	РЬ %	Zn %			
4-1 6-1 6-2 6-3 6-4	281 281 281	277 277 277 277 277 277	2.22 1 62 1 80 2 44 2 06	20 45 280 155 15	< 1 1 4 5 1	0 005 0.020 0 015 0 015 0 015	< 0 005	< 0 002 0 002 < 0 002 < 0.002 < 0 002	0 04 0.91 1.99 1.09 0 30	05 35 26 21 19	< 0 01 < 0 01 0 01 < 0 01 < 0 01	< 0 02 < 0.02 < 0 02 < 0.02 < 0.02 < 0 02	< 0 01 0 01 < 0 01 < 0 01 < 0 01 < 0.01			
6-5 25-1 25-2	281 281	277 277 277	1 34 1 36 1 92	< 5 < 5 < 5	< 1 < 1 < 1	0 025 0 010 0.010	0 010	0 004 < 0 002 < 0 002	0 78 0 01 0.01	18 9 0 6 0.6	< 0 01 < 0 01 < 0 01	< 0 02 < 0 02 < 0 02	0.02 < 0.01 < 0.01			
													/			


APPENDIX 4 GEOLOGICAL MAPPING / GEOCHEMISTRY BY T. LIVERTON DIARY FOR 2001

10th	July	Fly to Hasselberg Lake
11th	July	Fieldwork traverse possible grid baseline
12th	July	Fieldwork mapping and stream sediment sampling
13th	July	Fieldwork mapping and stream sediment sampling
14th	July	Fieldwork mapping and stream sediment sampling
15th	July	Fieldwork mapping and stream sediment sampling
16th	July	Heavy rain
17th	July	Fieldwork ridge traversing
18th	July	Fly back to Watson Lake
20th	July	Two flights into Hasselberg Lake (supplies)
21st	July	Fieldwork ridge traversing
22nd	July	Fieldwork ridge traversing
23rd	July	Fieldwork ridge traversing
24th	July	Fieldwork ridge traversing
25th	July	Fieldwork traversing down creek back to Hasselberg
26th	July	Fly back to Watson Lake
29th	July	Fly to Hasselberg Lake, fieldwork
30th	July	Fly back to Watson Lake
6th	September	Fly to Hasselberg Lake
7th	September	Heavy rain
8th	September	Fieldwork detailed mapping of canyon
9th	September	Heavy rain
10th	September	Heavy rain
11th	September	Fieldwork detailed mapping of canyon (flying ban)
12th	September	Flying ban
13th	September	Fly back to Watson Lake

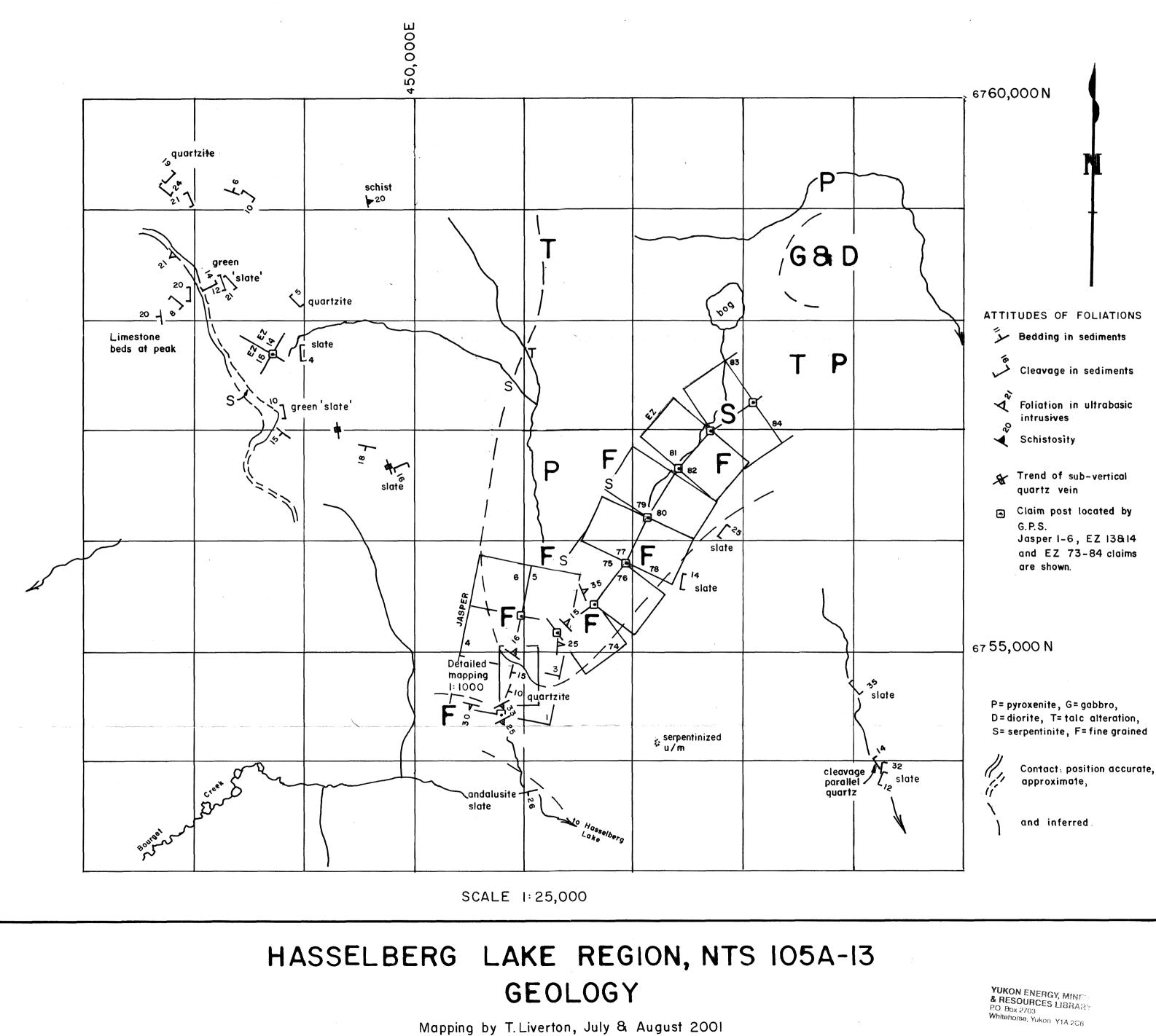


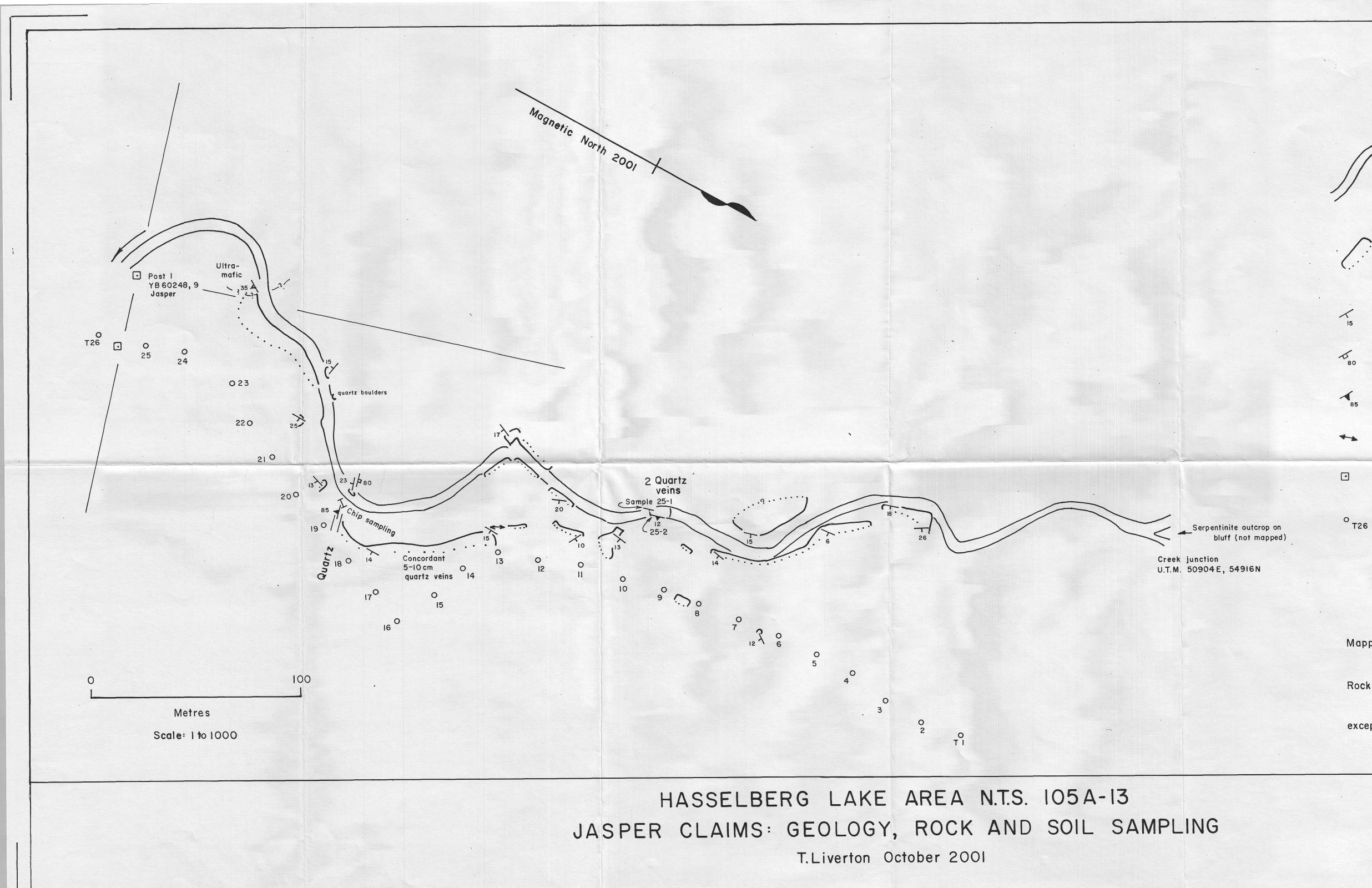
APPENDIX 5 GEOLOGICAL MAPPING AND GEOCHEMISTRY DIVISION OF TIME BETWEEN TARGET EVALUATION AND GRASSROOTS PROSPECTING

It is estimated that three days' work should be alloted to the grassroots programme to cover geochemistry and mapping around the fringes of the claim blocks and supervision of the Heartys' work The remainder of fieldwork (17 days) is applicable to the target evaluation programme

SAMPLE LOCATIONS

N.T.S. 105 A-13


1:25,000 Scale


Traverse routes are shown as dashed lines

YUKON ENERGY, MINES & RESOURCES LIBRARY P.O. Box 2703 Whitehorse, Yukon Y1A 2C6

HASSELBERG LAKE MAPPING 2001: SKETCH SHOWING GEOLOGICAL PEREGRINATIONS

T.LIVERTON, NOVEMBER 2001.

LEGEND

Creek bed

Rock exposure (cliffs, except for two localities in the creek bed by the quartz veins). Dots indicate approximate upper limit.

8

Attitude of bedding

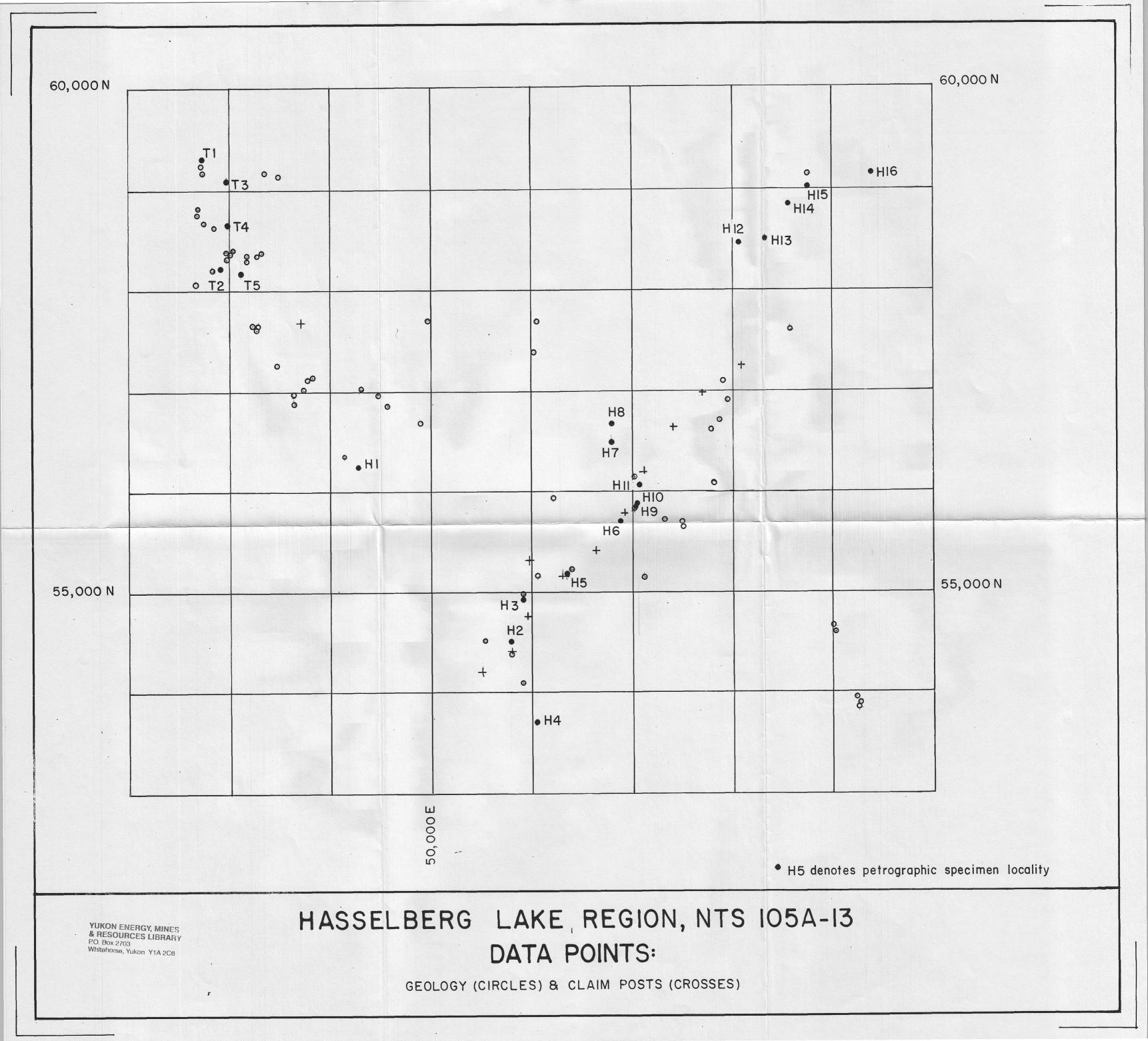
Jointing

Attitude of quartz veins

Horizontal fold axis

•

Claim posts


Soil sample location

Mapped using compass, tape and clinometer

Rock exposures in this canyon are entirely of quartzite,

except for the southernmost ultramafic outcrop.

YUKON ENERGY, MINES & RESOURCES LIBRARY P.O. Box 2703 Whitehorse, Yukon Y1A 2C6

COPY

OF

GRANT DOCUMENTS

01-050 Target 2001

01-050

April 20, 2001

Stella Hearty Box 81 Watson Lake, YK Y1A 1C0

Dear Mrs Hearty

The Yukon Government recognizes the valuable contribution that the exploration industry makes towards the discovery of new mineral deposits and the development of new mines within the Yukon For this reason, we are pleased to continue the Yukon Mining Incentives Program and offer financial assistance for field expenses to individuals and exploration companies

It is my pleasure to inform you that your application for a contribution under this program on the Hasselberg Lk property has now been approved for the upcoming field season Please find enclosed a contribution agreement which I would ask you to sign and return in full within 30 days to Ken Galambos, Mineral Resources Branch, PO Box 2703, Whitehorse, YT Y1A 2C6

I would like to wish you the greatest success during your exploration program

Sincerely,

Angus Robertson Deputy Minister Economic Development

\enc

YUKON ENERGY MINES & RESOURCES LIGHARY PO Box 2703 Whitehorse Yukon Y1A 2C6

01-050

April 20, 2001

Stella Hearty Box 81 Watson Lake, YK Y1A 1C0

Dear Mrs Hearty

YUKON MINING INCENTIVES PROGRAM

LETTER OF OFFER/AGREEMENT - APPLICATION #01-050

On behalf of Angus Robertson, Deputy Minister of Economic Development, I am pleased to be able to provide you with an agreement for a contribution under the Yukon Mining Incentives Program The project has been reviewed and approved with the designation number 01-050 expiring 31 March, 2002 On the basis of the information supplied on the application form, subject to the terms and conditions contained herein, I hereby offer the Applicant financial assistance by way of a contribution in the amount stated in Section 2

Purpose

1 The purpose of the contribution is to assist the Applicant with the cost of the designated program of exploration work on the Hasselberg Lk area as more fully described in Schedule "A" attached hereto

Amount

2 The amount of the contribution will consist of 50% of eligible exploration expenses up to a maximum of \$19,700 00 Eligible exploration expenses will include costs for salaries and wages, equipment and machinery rental, supplies, services, transportation and accommodation which are in the opinion of the Department reasonable and are directly attributable to the designated program of mineral exploration

Page 1 of 6

2000

Material Changes

3 No material changes shall be made to the exploration program as described in Schedule "A" without the prior written approval of the Department, such consent not to be unreasonably withheld

Obligations of the Applicant

- 4 The Applicant
 - (1) will keep and maintain proper and accurate books of account and records (and their supporting documents) of expenditures made during the course of the exploration program described in Schedule "A" and will, upon notice, afford the Department access during regular business hours to such books of account and records (and their supporting documents) for a period of twelve (12) months after expiry of designation, for purposes of inspecting, copying and auditing the same,
 - (2) will, upon 24 hours advance notice, afford the Department at any time and from time to time, unrestricted access to the exploration program for purposes of inspecting the same
 - (3) will, submit a technical report in duplicate that summarizes all of the information generated by the designated work program as required under Schedule "B"

Local Benefits

5 The Applicant undertakes to hire Yukon residents and contract to Yukon businesses to the greatest extent possible

Application for Payments

6 (1) Upon completion of the designated program of mineral exploration, the Applicant may apply for payment of a contribution, and the Department may pay a contribution to the Applicant in an amount not exceeding the contribution limit established under Section 2

- (2) A contribution may be paid provided that
 - (a) the Applicant has submitted a statement of costs listing eligible exploration expenses as defined in Schedule "A" that indicates that the designated program of work was carried out and all outstanding accounts have been paid,
 - (b) the Applicant has submitted in duplicate all reports, maps, analytical results and all other information generated by the designated program of work as required under Schedule "B",
 - (c) the Department is satisfied that all such reports, maps, analytical results and all other information submitted meet the requirements established in Schedule "B",
 - (d) the Department is satisfied that the Applicant has substantially complied with the terms and conditions of this contribution agreement

Governing Law

7 This offer and the Agreement resulting from acceptance by the Applicant of this offer will be construed in accordance with and be governed by the laws of the Yukon Territory

Entire Agreement

8 The provisions contained herein constitute the entire Agreement between the Applicant and the Government of Yukon and supersede all previous communications, representations (other than those contained in the application) and agreements, whether oral or written, between the Applicant and the Government with respect to the subject matter hereof

Waiver

9 No term or condition of the Agreement resulting from the acceptance by the Applicant of this offer and no breach by the Applicant of any such term or condition will be deemed to have been waived unless such waiver is in writing and signed on behalf of the Department The waiver by the Department of any breach of any term or condition of the Agreement resulting from acceptance by the Applicant of this offer will not be deemed a waiver of such term or condition or of any subsequent breach of the same or of any other term or conditions of said Agreement

Demands and Notices

10 Any demand, notice, request or other document that the Government may, at any time or times after acceptance of this offer by the Applicant, wish to make or give to the Applicant will be in writing and will be effectively made or given if mailed in Canada with postage prepaid addressed to the Applicant at the address set forth on Page 1 hereof and any such demand, notice, request or other document so mailed will be deemed made or given to the Applicant on the tenth business day after mailing of the same

Assignment of Contribution

11 The right to receive a contribution under this program shall not be assigned, charged, attached or given as security, and any transaction purporting to assign, charge, attach or give as security the right to receive a contribution is void

Indemnity

12 The Applicant and the Government of Yukon shall each indemnify and save harmless the other and any of their respective employees and agents from and against all losses, claims, debts, judgments, damages, costs, actions or proceedings arising out of or relating to the performance of this Agreement

Confidentiality

13 All reports, maps and other information submitted by the Applicant in support of an application for payment shall be held in confidence by the government for a period of two years following expiry of designation, after which time they will be made available for public inspection

Headings and Captions

14 The headings or captions of paragraphs of this offer are inserted only for convenience of reference and in no way define, limit, construe or describe the scope or intent of any of those paragraphs

Legislative Approval of Funds

15 This Agreement is subject to the Financial Administration Act and the Yukon Government's obligation to pay is subject to money being appropriated by the Legislature for the purpose the contract

Acceptance of Offer

16 This offer shall be open for acceptance for thirty (30) days from the date set forth on Page 1 hereof, and may be accepted by the Applicant duly executing the original copy of this offer where indicated below and returning same by mail or in person to

> The Department of Economic Development Energy and Mines Branch Government of Yukon PO Box 2703 Whitehorse, Yukon Y1A 2C6

The date of acceptance of this offer will be conclusively deemed to be that date on which the original copy of this offer, duty executed by the Applicant, is actually received by the Department in Whitehorse

> GOVERNMENT OF YUKON TERRITORY Per

Witness

Manager, Mineral Resources Economic Development

APPLICANT

Fig

Witness

Authorized Signatory Stella Hearty

SCHEDULE "A"

Yukon Mining Incentives Program

Application #01-050- Stella Hearty

Description of Mineral Property

1 The mineral property to which the contribution is applicable is the Hasselberg Lk property located on map sheet NTS 105A/13 as is described in the application

Eligible Exploration Expenditures

2 For the following work, the amount of the contribution will be (50% of expenditures) for a total of up to \$19,700 00

All exploration activities as described in the application

3 Reimbursement will be made only on the basis of receipts showing the actual cost of the materials and/or work done and paid for by the Applicant The expenditures to be reimbursed must be an element of the approved work plan

Effective Period of Agreement

4 The agreement is deemed to cover eligible exploration expenditures incurred between 1 April, 2001 and 31 January, 2002

Environmental and Legal Requirements

- 5 This Agreement is conditional upon all legal permits and other requirements having been secured buy the Applicant
- 6 The Applicant shall not conduct an exploration program on lands withdrawn from mineral staking such as Class A Lands as identified in the Umbrella Final Agreement or within lands identified as Study Areas for Special Management Areas or future Territorial and National Parks
- 7 The applicant shall not unnecessarily damage wildlife habitat in conducting this land use activity Methods of reducing impact include (1) reducing the size and number of clearings where possible, (2) reducing access development, and (3) minimizing impacts to drainages by reducing the number of crossings, crossing in appropriate locations and incorporating a buffer between the work area and the drainage

SCHEDULE "B"

- 1 After completion of the work outlined in the Program Proposal the successful applicant must duly complete a Final Submission Form and submit it with a Summary or Technical Report in duplicate order to receive approval for the final payment
- 2 The completed Prospecting and Exploration Report Form and the Summary or Technical Report should be submitted as soon as possible after completion of the work outlined in the Program Proposal Deadlines for the Prospecting and Exploration Report Form and the Summary or Technical Report is January 31 for the Grassroots Prospecting, Grassroots Grubstake programs and for the Target Evaluation program The final contribution payment will be forfeited and the advance contribution payment will be recalled if the Prospecting and Exploration Report Form and the Summary or Technical Report are not received by this date Failure to successfully complete a project may have a bearing on your eligibility for a contribution in the future
- 3 The Final Submission Form briefly summarizes the work performed and the results obtained by the applicant while on YMIP The Form includes a brief work summary, significant results, claims staked during/after prospecting activity, option agreements resulting from the YMIP, the type of mineral exploration undertaken, the goods and services purchased, the results of mineral exploration and a summary of expenditures for the work program This information must be complete in order to be eligible for the final contribution payment
- 4 The Summary or Technical Report is a report documenting work performed, complete with supporting data A separate summary or technical report with the corresponding maps must be completed for each project However, these reports may be bound in one folder If work was performed on claims, a copy of the applicable assessment report (provided it describes all the work funded under the program) may be submitted in lieu of this Technical Report
- 5 The Summary or Technical Report should include the following information where applicable
- a) For evaluation and prospecting surveys the following information shall be submitted
 - 1) a summary of all previous relevant investigation,
 - 11) details of surface evaluation,
 - 111) details of evaluation based on underground work,
 - iv) a description of the methods of sampling employed,
 - v) the methods of analyzing and assaying,
 - v1) tabulated results of all analyses and assays,
 - vii) conclusions and recommendations
- b) For geological surveys the following information shall be submitted
 - 1) a table of geological formations,
 - 11) detailed geological information concerning rock types, structures, veins or mineralized zones or coal seams occurring on the claims or leases,
 - 111) an interpretation of the geological observations made,
 - iv) conclusions and recommendations

- c) For geophysical surveys the following information shall be submitted
 - 1) a description of the methods and equipment used,
 - 11) method of survey,
 - 111) dates of survey,
 - iv) number of stations established,
 - v) kılometers of line surveyed,
 - vi) copies of geophysical readings or profiles, including pertinent calculations,
 - v11) an interpretation of the data collected, including references to the available geology and a brief description of the topography,
 - viii) conclusions and recommendations
- d) For geochemical surveys the following information shall be submitted
 - 1) type and amounts of samples collected including the particular soil horizon sampled,
 - 11) method of sample collection including the tools used
 - 111) survey dates,
 - iv) a description of the methods and equipment used in analyzing the samples,
 - v) copies of all analyses (except where adequate contoured maps are provided showing the data in graphic form),
 - v1) reference to the sample location including a brief description of topography
 - v1) an interpretation of the data collected, including references to the available geology
 - viii) conclusions and recommendations
- e) For analytical results the following information shall be submitted
 - 1) the total number of samples collected,
 - ii) sample location and description
 - iii) metals determined and concentration units,
 - iv) analytical methods used and the name of the commercial lab,
 - v) If a field analytical method is used for determined the metal content, a description of the method
- f) Assay results shall be accompanied by the following information
 - 1) assay or analytical certificates,
 - 11) plans or sections or both showing the assay results and the sample dimensions and indicating the type or grab, chip, panel, channel, drill core or other type of sample taken
- g) For trenching the following information shall be submitted
 - 1) dates the work was carried out,
 - 11) names of all persons who performed the work,
 - 111) the equipment used,

- an accurate plan showing the locations of trenches or other surface workings relative to the local topography and claim or lease boundaries (including the distance and direction form a legal claim post),
- v) the dimensions of the workings and the volume of material extracted,
- v1) descriptions of the materials excavated
- v11) assays or other analytical results obtained from samples or specimens taken from the workings
- h) For diamond drilling the following information shall be submitted
 - 1) a report, either separately or combined with other reports, which outlines the objectives, results and recommendations of the drilling program and including the following information
 - the name and address of the drilling contractor,
 - starting and finishing dates, bearing and initial dip, size of core for each hole and results of dip tests, if taken,
 - depth of overburden and total depth of each hole,
 - description of the locations of core storage,
 - 11) an accurate map showing the location of drill holes relative to the local topography and claim boundaries (including the distance and direction from a legal post), and their bearing and dip,
 - 111) complete drill logs, including rock types, mineralization, assays or analysis and the results of physical or chemical tests performed, and assays of core or sections of core, and if no assays are provided, the reason for their absence,
 - 1v) diamond drill core from at least one complete hole which is representative of the lithologies intersected during the drilling program shall be properly identified, placed in core boxes complete with drill logs, securely packaged and delivered at the applicant's expense to the core library of Exploration and Geological Services Division, 200 Range Road, Whitehorse upon completion of the drilling program
- 1) For rotary (percussion) drilling the following information shall be submitted
 - 1) a report, either separately or combined with other reports, which outlines the objectives, results and recommendations of the drilling program and including the following information
 - the name and address of the drilling contractor,
 - starting and finishing dates, bearing and initial dip, size of core for each hole and results of dip tests, if taken,
 - depth of overburden and total depth of each hole,
 - description of the locations of core storage,
 - an accurate map showing the location of drill holes relative to the local topography and claim boundaries (including the distance and direction of a legal post), and their bearing and dip,
 - 111) complete drill logs, including rock types, mineralization, assays or analysis and the result of physical or chemical tests performed, and assays of core or

sections of core, and if no assays are provided, the reason for their absence,

- rotary drill chip samples from at least one complete hole, which is representative of the lithologies intersected during the drilling program shall be properly identified, placed in core boxes complete with drill logs, securely packaged and delivered at the applicant's expense to the core library of Exploration and Geological Services Division, 200 Range Road, Whitehorse upon completion of the drilling program
- J) For shafts, adits and any other underground work not less than three metres below surface, the following information shall be submitted
 - 1) an accurate map showing the locations of all shafts, aduts or other work relative to the local topography and claim boundaries, including the distance and direction from a legal claim post,
 - 11) the dimensions of the workings and the volume of material excavated,
 - 111) descriptions of the materials excavated,
 - assays or other analytical results obtained from samples or specimens taken from the workings
- 6 The Summary of Technical Report should have the following format
- a) the text of the paper shall be typewritten on good grade bond paper of either 8 1/2" x 11" or 8 1/2" x 14" size,
- b) reports shall be bound in suitable folders in such a manner that all the text on every page and every map, sketch or diagram when unfolded may be readily seen,
- c) any maps or plans not fastened securely into the binder shall be inserted into an envelope or pocket which is fastened securely into the binder,
- d) the following data shall appear on the front cover of the report binder
 - 1) the designation number of the program,
 - 11) the nature of the report (1 e prospecting, geological, geophysical etc.)
 - 111) the names and or numbers of the claims or leases or groups of claims or leases to which the report refers,
 - the claim sheet NTS number(s) and the location of the property described either by precise latitude and longitude or by precise universal transverse mercator (UTM) grid coordinates,
 - v) the name(s) if the author(s) and, if not the same, the name of the person under whose supervision the work was done,
 - v1) the name(s) of the person(s), partnership(s) or corporations for whom the report was prepared,
 - vii) the dates between which the work was done

- e) each report shall contain the following information
 - 1) a table of contents
 - 11) a list of the claims or leases by name and/or number and tag number and the names of the holders of the claims or leases,
 - 111) a description of the work done and the data collected during the survey, including the manner in which it was collected and an interpretation of such data,
 - where applicable, a description of the method of control survey and the amount of line cutting, and all cut and/or surveyed lines and tie -ins shall be shown on an accurate map or plan,
 - v) the names and addresses of all persons and contractors employed in performing the work and preparing the report and the time employed in preparing the report
- f) for maps and plans submitted the following formats shall apply
 - 1) all plans and maps shall have an astronomic or magnetic north arrow and a scale and shall show claim lines, claim numbers, existing survey or grid lines, roads, streams and other prominent topographic features,
 - prospecting maps should have numbered discoveries keyed to accurate location map(s) maps must show location of work areas and traverses listed in daily reports Government NTS 1 50,000 scale topographic maps or claim location maps are recommended,
 - 111) geological maps shall have a legend with rock types coded with alphanumeric symbols and shall show outcrops, characteristics and structural symbols

ESTIMATED COSTS

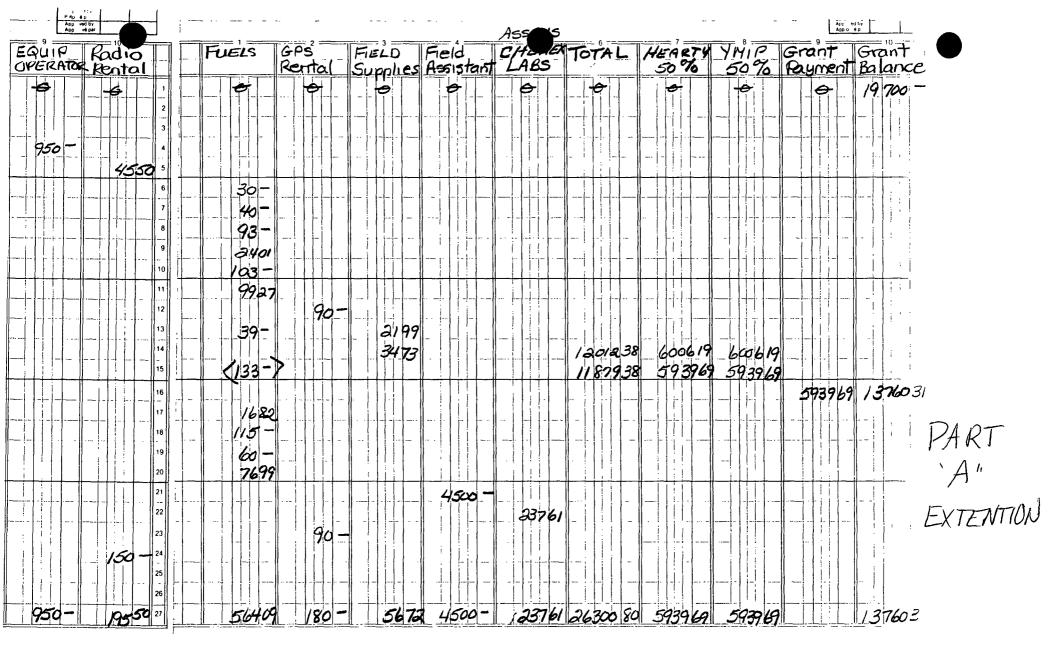
Subsistence 24 man-days @ \$35 00/day x 3	2520 00
Transport to field 314km return x 2	263 76
Transport in field by Argo with operator	3680 00
Soil/sediment analysis (256 @ \$27 00ea)	6912 00
Rock analysis (40 @ 33 00ea)	1320 00
Geological mapping (14days @ \$400 00/day)	5600 00
Report preparation (4 days 2 \$400 00/day)	1600 00
Sub-total	\$21,895 76
Truck rental (one month)	1450 00
Helicopter (approx 3 hours)	3300 00
Trailer rental for Argo	480 00
Chainsaw rental (one month)	450 00
SBX 11 radio (one month)	150 00
Lines/grid/markings for soils/sediments	3500 00
Soils/sediments collection of samples	1250 00
Trenching 62 hours @ 15 00/hr	930 00
Waste removal/hand trenching filled in	1000 00
Prospector's assistant (17days @ 250 00/day)	4250 00
Fuel supplies	630 85
Sub-total	\$17,390 85

TOTAL EXPENDITURES

\$39,286.61

<u>ر</u>

ACCOUNTS


OF

COPY

TARGET EVALUATION

~

								(5		· - 1:	
200	2	DESCRIFTON	TIM DICL 7577 L	La bour	PER Djem	SAW Reittal	TRUCK 4X9 Renta	Km/km 4854	Trailer	Argo Rental	
JUN		BALANCE FWD	Ð	-0-	6	6	-0-	-	Ð	0	
JUNI		5. Glesbrecht	2590-	2100 -	490-					i	
		J. HEARTY	3225-	2250 -	525-	450 -					
		R HEARTY	559729		665-		1450 -	15229	480 -	1900	
		Radio	4550		:						
		FUEL (Chainsow	30-								
		FUEL (TRUCK	40 -								
		FUEL (TRUCK	93-								
		FUEL (Chainsaw	2401								
		FUEL (Argo	103-	·····		:					
		OIL (Argo/equipment GPS MTHLY Rental	9927								
	 	GPS MTHLY Rental	90-								
i		Chain OIL/Files	6099								
			3473							I	
		ERROR Fuel-(40+93=133)	<133-7	>						O(a	
		PA4ment FROM YMIP								AGE	[]
Jul	1-31	Fuel (Argo	1682								
		FUEL (Argo	115 -							PADT	-
		FUEL (Argo FUEL (Chainson	60-							וארו	
		FUEL (Chain caw	7699		 				·····	PAGE PART "A "	
		T. LIVERTON	4500-						-		
		Chemex Labs	23761						1		
		GPS Rental	90-								
		T.LIVERTON SBX Rental	150-			J. J.					
		J. HEARTY K CHAPUT	6030-	4500-	al e e	480 -					
ļ		K CHAPOT	3145-	1 1 .							
ļ			2630080	11400-	3325-	930-	1450 -	15229	480 -	1900	

			TARG	T					
	DATE 2001	DESCRIPTION	TOTAL	LABOUR	PER DIEM	SAW	TRUCK AX + RENTAL	Km .4854	Trailer
1		BALANCE FWD	2630080	11400 -	3325-	930 -	1450 - 1450 -	48830	480 -
2	Jul 1+31	R. HEARTY YMIP PAYMENT	847830		1260 -		1450-	48830	480 -
4	fug1-3	Propone	- 58 -	·····	· · · · · · · · · · · · · · · · · · ·				
5		FUEL (Argo J. Hearty	58 358						
7		D. nearty R Hearty	5540-	·····	840 - 700 -		1450		
8		R. Hearty FUEL (Argo	4999						
9		FUEL (Arao	95-						· · · · · · · · · · · · · · · · · · ·
10		Argo parts Batteries + SBX Rental	6993						
12	Senoi-	o R. Hearty	3665-		455-		780-		480 -
13		D. HEARTY J. HEARTY T. LIVERTON + SBX Padio	3405-		455-	4 1 C 1			
14		T. LIVERTON + SBX Kadio	83328						
16		T. LIVERTUN (Supplies FUEL (Chainsow	2809						
17		FUEL (Argo	4451						
18		FUEL (Argo Freight - Argo Fuel (Argo	- 30-	· · · · · · · · · · · · · · ·					
19 20		Fleight - Higo							
21		MAP	428						
2		BATTERIES GPS (AUG SEPT)							
3		Parts - Argo	3464						
5		Payment VMIP(Aukson	1) 2429375						
6		ASSAY Payment YMIP(Ausso OVER YMIP							
7			59172 ⁸⁵	13800-	7035 -	930 -	5130-	64059	1440 -

PAGE 2 PART "B"

Prigo Equip Rodio Fuels Gres Field Assaus Total Henry Ynip Greant Great Great Great		i Dy par kô Dy vô Dar	Prepar Prépar Appro										_						-																																				1				nd by par nd by rvit pa		Prec Prec App	F											_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	anT	Gro	স	RÅ	0	P	8 = 11	7r		τy	RI	Ä	E	4	1	_	41		= 6 27	Te	1	ß	4 4	ŝ	S	A		1	îā	ē	Fie	Īſ	D	Ē	= 3 E	=	1		Ś	d	51	I C	S	L	<u>آ</u>	ū	-1	F		F	T		0	. i c	Ī		20					_	。: リ	= (2(50	Þ	T		6	8 : G	- 7r	K	Ē
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	alanc	Ba	rent	hyn		70	0	50		76	57	50	5					_									ที	ste	15	35	As	s	IE	P	P	<u>5u</u>	Ę		ta	m	20	F											$\overline{\mathbf{N}}$	ā	nt	n	e	R		(a	47	24	k	e	71	0		21	te		2	K	L
3 58 58 58 57500 5750 5750 5750 5750 5750 5750 5750 5750 57	37603	13	769	593	7	96	73	5		69	9/	3	57	¢		88	3	9	27	18	Ż	61	74	3	2		┛	6	50	15	H	2	7	56	5								09	4	6	50	4	1				•	50	55	5	9	1					0	5	6	Ī			-	0	20	I		I
$\frac{3}{58} - \frac{58}{58} - \frac{5750}{58} - 575$			-		4	38	14	1	/	84	91	4	4	14	/	74	9	Ŷ	6	2	2																														2	2						Ì		-		6	6	18				-	0	0	2		1
$\frac{4}{366} - \frac{58}{7} - \frac{3750}{7} - 3750$	19352	4	SIL	88		1							$\ $																																						3	3									Τ	Ī	Ī	T	Τ		1						
$\frac{5}{2000 - 1006 - 7}$				ĪĪ			Π	Π				Π	Π	Τ				Ţ	Π													T	Γ		Π				Π	Τ				8	52					Γ	•	4		T	T	Π		Ť	1		T		Γ	T	T		1			T	↑		
2000 - 1006 - 7							Π	T			Τ	Π	Π	T					Π	Π				T	T		1	T	ļŢ	T			Γ	T					Ī	1				i	Τi	Π		T		F	5	5		1		+			1		T	t	t	t	1		1-			ſ	╈		
2000 - 1006 - 7			1-		\parallel		11	\square			1	Ħ	Π	T				1	fi						T			-			7	1	\square	T	T	П	╞		Π	T				IT	Π	Π	1	1		T	6	6	1	\uparrow	İ		┢		╏	_	T	T	T	╧	Ť	_	╢			T	╡	1	t
8 <u>4999</u> 9 <u>9</u> 5-	1.1					-	\dagger	$\uparrow \uparrow$			1	††	11	\uparrow				1	Ħ	${\uparrow}$		4	╎		1			-	.		0	- -	ţ				∦			t				Ħ	T	Ħ	┤	1		t	7	7	-	1			+	+	1		1-	6	10	ħ	1,		1	_	6	\mathbf{r}	7		
9 95-			;								+	Ħ		T			-†-	+				-			1		╢								Ħ								99	99	44				_	Ī	в	1		1	+				1		1	-		Ť			1-		Ī	Ī	Ĩ	4	
							Π							T				T											Π	Π										T			-	5	9					ſ	9	9		T			1		1	_	1-	Ī	T	T	1		1				1	1	1
6923	+												$\uparrow \uparrow$	1				T	Ħ	Π					1								1															1		Ī	0	10	_	╎	1	Т	-				T	T	T	1			8	q:	9	4	1	Í	
150-" 2308				ÎП		1	ŤŤ				T	Ħ		Ť	-		T			Π				Π						li				Ī				8	2	2											וי	 11	-	d -	50	15	1		1	_	T	t	T	T	1	_					1	1	t
130- 650- 12			\prod			Τ	Π	\prod					Π					1						Π					Π											Ì											2	12						T]-	C	5	1	Τ				0	2	먇		1
																											-	2	a	b	a																				3	13										Ī					1			T			
		i																				_					_	9	0	5	1																				4	14		- <	0	5	1																
15 83328																																2	<u>b</u> 2	8	83								i								5	1				Ī								T						Τ	Ī		
16 28 09		i																Ì																Ī									\mathcal{P}_{1}	84	28	E					6	10									Ι			T	Ī		T			Τ			T
17 44451																																											51	4	K	2					7	17										I								Τ			
3a - 16								Π										Τ	Π	Π								Τ	Π	TI									T				1	0	3						8	11				1			╟		T	Г	T	T			-			T	T		1
21 82	1-1-						$\uparrow \uparrow$						\prod				1	T					T									1	Γ	Ī	Π				Π								T	T		ſ	9	19		Τ	T	T			T		T	1	l	T			1	8		2		-	
	+		\uparrow		1			11			T	Π	\prod	T					Π				T					T				1								T			21	şċ	88	15					0	2		Τ	1				1		T	T	T	╈					Γſ	T	ľ		
21 4/28	1-1-		Π	Π	$\ $		Π	TT				Π	Π				T	T		Π			T	Π				T		Π	1	2	b	4											Ī		T			Γ	1	2		Τ		Ī		Ī	T		T	l	Ī	T	1		Ţ		Π	T.	T	İ	t
114322 180-			\square				$\uparrow \uparrow$							1			T	T	Π	T			T	11				T		\prod								-	0	18										ſ	2	32	1:	4	1	1			╢		T	1	T	T			ľ		Ħ		1		1
						F	F			~ 1],	4	Ł	1	1			,		Π			T		T			T		Π										Ī	Π							T			3								1		1	T	T	T	Ī			U	L	34	ł		
24 24 24 24 24 24 27 26 87 1 219688 493521	Ð		352	49	2	688	196	a,	1.	87	58	91	4	7	4	z	15	1	Ţ	ł,	2	29	41	2	28	é		Τ		Π	İ																				24	2		1		Ţ			T		T	T	1	T	-		1	- 36			T		-
25K19700 = 2			Ī	TT	*	57	70	2	Kİ	~	7.		÷.	Ę	-	-		Ī		[]		1												1						1	IT				IT						25	2			T				T		1		Ι	-1-	1		-	_	Π	1	1		
28								ĪĪ		B	9	88	88	2	3			Ţ										Γ												Í	Í					\prod					26	2							T		T		T	T						T			
8638411 4400 - 5069327 105789 38208 89428 11250 - 30645059476 39477 2 4778 2888 9319700 -	0		z -	970	D	792	82	28	5	85	72	17	4	19	J		_	5	F	9	3	50	4	36	30	-	•	3-	50	2	11.	8	2	H	89			08	2	8	3		9	8	7	5	2	10			27	32	93	6	ÛĮ	50	E			_	Ø	2	ł	14	ÿ			4)	8	3	31	\$.[

LOG REPORT

OF

DAILY ACTIVITIES

HASSELBERG REGION DIARY FOR 2001

10th	July	Fly to Hasselberg Lake
11th	July	Fieldwork traverse possible grid baseline
12th	July	Fieldwork mapping and stream sediment sampling
13th	July	Fieldwork mapping and stream sediment sampling
14th	July	Fieldwork mapping and stream sediment sampling
15th	July	Fieldwork mapping and stream sediment sampling
16th	July	Heavy rain
17th	July	Fieldwork ridge traversing
18th	July	Fly back to Watson Lake
20th	July	Two flights into Hasselberg Lake
21st	July	Fieldwork ridge traversing
22nd	July	Fieldwork ridge traversing
23rd	July	Fieldwork ridge traversing
24th	July	Fieldwork ridge traversing
25th	July	Fieldwork traversing down creek back to Hasselberg
26th	July	Fly back to Watson Lake
29th	July	Fly to Hasselberg Lake, fieldwork
30th	July	Fly back to Watson Lake
6th	September	Fly to Hasselberg Lake
7th	September	Heavy rain
8th		•
	September	Fieldwork detailed mapping of canyon
9th	September	Heavy rain
10th	September	Heavy rain
11th	September	Fieldwork detailed mapping of canyon (flying ban)
12th	September	Flying ban
13th	September	Fly back to Watson Lake

..

JULY 8/01	BOURGET CREEK - MINESITE
JULY 12/01	SUSIE CREEK
JULY 13/01	EUGENE CREEK - JASPER CLMS 7 - 8 AND 3-4/5-6 SAMPLING
JULY 14/01	DEEP CREEK CLMS 83-84 ETC
	DEEP CREEK TO MOUTH OF CREEK
JULY 15/01	
JULY 16/01	DO UP NOTES/ PREPARE SAMPLES - REPAIRS TO ARGO
JULY 17/01	CLMS 72 - 84 PROPSECT/GEOPHYSICAL
JULY 18/01	T LIVERTON RETURN TOWATSON LAKE WITH SOME SAMPLES
JULY 19/01	MOUTH DEEP CREEK TO EUGENE CREEK - SAMPLING
	SOUTHWARD
JULY 20/01	KETTLE CREEK - SAMPLINGSOUTHERN PART T LIVERTON
	RETURNED
JULY 21/01	SOURCE OF KETTLE CREEK TO CONNECT WITH PREVIOUS
	AREA
JULY 22/01	TRAVEL UP MOUNTAIN TO PEAK CLMS 1 - 24 AREA
JULY 23/01	SAMPLES FROM FEEDER CREEKS INTO EUGENE
	T LIVERTON - GEOPHYSICAL ON RIDGES OF PEAK
	SAMPLES FROM JASPER 1 AND 8
JULY 24/01	PROSPECT/GEOPHYSICAL NW ON RIDGE PEAK
JULY 25/01	COMPLETE SAMPLING/TAKE DOWN CAMP RETURN TO MAIN
	CAMP
JULY 26/01	CUT FIREWOOD FOR MAIN CAMP, TIM FLEW TO WATSON LAKE
	MINING INSPECTOR IN TODAY - CHECKED MAYLING CLAIMS
	ETC
JULY 27/01	COMPLETE LAST HALF KILOMETER FO EUGENE CREEK
	SAMPLES
JULY 28/01	TRIP TO WATSON LAKE FOR SUPPLIES/SEND SAMPLES
JULY 29/01	TIM RETURNED KETTLE CREEK - GEOPHYSICAL/GPS AREA
JULY 30/01	TIM FLEW OUT TODAY/VAN KRAUCHBAUM AND SON CAME IN
AUG 01/01	EUGENE CREEK SAMPLE GRID ON RIGHT HAND RIDGE AREA
AUG 30/01	EUGENE CANYON - DAMPLES FOR pge TEST
SEPT 01/01	PAPERWORK/DO UP SAMPLES
SEPT 02/01	COMPLETE PAPERWORK AND SAMPLE LISTING
SEPT 03/01 05/01	TRIP TO WATSON LAKE SUPPLIES/SEND SAMPLES
SEPT 06/01	SET UP FOR MAPPING EUGENE CANYON
SEPT 07/01	COMMENCE MAPPING/MEASURING/GPS
SEPT 08/01	CONTINUE MAPPING/MEASURING/GPS/SAMPLES
SEPT 10/01	PAPERWORK/SAMPLES LISTED
SEPT 11/01	BOMBING OF BUILDINGS IN NEW YORK - RETURN TO EUGENE
	CREEK AND COMPLETE MAPPING/MEASURING/GPS/SAMPLES
	WALK GRIDLINE/GPS/MEASURE AND MAP/ PLANESGROUNDED
SEPT 12/01	PAPERWORK/ TIM DOING MAPPING ENTRIES
SEPT 13/01	PLANES CAN FLY- TIM LEFT FOR WATSON LAKE - FINISH
	PAPERWORK AND LIST REMAINING SAMPLES

SEPT 14/01	PREPARE FOR FURTHER SAMPLING/PROSPECTING/BOURGET
	CREEK
SEPT 15/01	BOURGET CREEK - KITKAT CLAIMS 1 - 8
SEPT 18/01	BOURGET CREEK - KITKAT 7 - 8 DRILL BOULDERS-SERPENTINE
SEPT 19/20/01	MIGRANE UNABLE TO WORK
SEPT 21/01	BACK ON THE JOB - BOURGET CREEK WESTWARD
SEPT 22/01	KASTRUKOFF CREEK - CLM TYRELL (NEW CLM)
SEPT 23/01	TRIP TO WATSON LAKE GROCERIES/GAS/PROPANE
SEPT 25/01	RETURN TO CAMP PACK UP CLOSE DOWN CAMP FOR SEASON

n July 08/01 larget 60°55'032N 7 Trench + Sample 129°52'523W) HM. 60 \$ \$1'967 N Z Samples 129°52'363WS Rock

Target July 1010s Tim Leverton fly-in. Set up for Samples Check for area o Hagold Concentrate -July nos Jarget lim - Creek - Susii Commence Sampling of H.M. S.S. and Rock. after warking area to Seek gold input? Unable to locate area at this time - Sample previously brought in to camp by Line / Claim layers. Not positive of exact area - Checked Lover area between busene Creek and Jusce Creek -Unakle to Cocate - Decide on S.S. & H.M. from Susce Creek -

Jarget-July 13/0, Eugene Creek 8 30 Am leave Camps 9.30 pm arrive @ Creek Pite: Aboe Canyon. Raining lightly to start Jasper Clains 7+8, 6,5, part (3+4) Start point) Went upstream to gust abre Post 2 - 7+8 -Commence Sampling 4 Samples 5.5 2 Samples H M 5 Pm Return to Camp

Jarget July 12/01 June Creek Spring, Jonathan, Kon & I commence Triptu Susa Crail for Sampling Take first Sample @ the begenning & Sample area-Climb to Tip D'Creel area and Conmisce to -take H.m + SS Samples dron to the beginning Samples 6 Hm Samples Kalun Hone (S:30Pm)

Jarget July 15/01 9 Am - Travel up to lover end Deep Creck- do final sampling to Mouth of Creek-Take one sample lack of Silts & Keany mening m (Jusper y-Elizene Creeks ahove mouth of Deep Creel. 5Pm retern Home 5 pamples 55 4 Samples H.m.

Target July 14/01 - Deep Creek lats Bog - (Tim/Ron/Sun/Stella Mapping Sampling / Frospector 7 Am Travel to Deep Cred Clmt 's 83-84 Commonce pampling 12 Samples 55 4 Samples - Himr 4 Samples - Rock 930Pm return to Camp

July 16/01 Target Soggy Day - Kain del up notes. Repairs to Argo (fish for Supper.)

Sent in appeary list & your pupply Parmadey day tiday made ilse of the ald perceb board !! Oh joy !! Back to the field July 19/01 Target 8 Am rave up to Eugene reek - North ward Kon, Jon Stell Keevin N, ommence Sampling durinstream from mother Lleep Cheek 2 Hm Samples 1 SS Sample 7 Rock Semples

Jarget. Am-SPM ent to claims Rospected and hipical. the of 1 Kleep Crack m North end to Duch end - Rock piet par 5 Pm return home large uly 18-Sim flew out today toak Hay and ss Samples out Ketion Drior Sat depending on weather conditions Seft 11 Am - aring WC 12.15P.M.

Jarget Kettle July 20/01 Lake 9 Am - Grances a to Mouth & Rettle Creek Joak siet pamples and Meany minus Jamples for approx 2Km g Creck-Stopped @ trail Classing Returned to Camp. 5 pamples 55 3 Samples HM

Tim Returned to day made 2 trips Uin plane

och Samples + 55 Sample from first wall showing in the North end of the Campon on Signe Creek Lunch Travelled Northward upstream Callecting Koch camples to sald of Jospin Claims. elucard home boom

Target July 22/01 Ron, Stelle Kevin Pack up camp + traine up to mountain peak- 4 hour thip one Way- Set up Camp Make Supper For crew plus Jim + Jon. Unnange plans for next aug.

Jarget July 21/01 Kettle Creek-Source heft 8 Am travelle up to Source & Kettle Creek - Commerced Hm + 55 Samples Dury 200m + 500m Konge Sourig -Returned to Camp SPm 10 Samples 55 4 Samples Hm 4 Samples Rock Ron frok Tim & Jon to Mountain peak today they will he up them I days

Weather hot i clear "

July 24/01 Target Tim Jon Kevin - go NW on mountain to Source of Keette Creek Samples and Geophysical Ron Stelle NE along Midgets back Side 8 Mountain- down Lakini Ce took Samples 4 Sals 5 4 Hm 4 Rock Samples Keturn to Camp 6" Pm Jupper - Fain again that evening - Cold '

9 Am 23/01 Taropt Jon + Kevin guen task ? Collecting HMX SS from both "Y"S IN Eugene Creek upper end Collected 7 Samplus Hry 17 " 2.2 4 Samples Rock Returned to Camp 6 Pm Thes did Seophysical around Adja - Contrascon. Ron & Stella did Dock Sompler down toward Eugene Creek yiling at #8 Jasper # 1 EZ Chem Return to Camp Male Super- Rain

July 26/01 Day of rest Cut fire wood for main Campdrep out Tent & lacip Clean v get ready for Next day. Tim year to town. @ 10 Am - anie W.L 11 15 Am Approx He is supposed to return Sunday. 10.30 Am Start Wood perperj. HAM Chopper arrival -Checked out claim "6" "Mayling" etc. Returned landed + Mining inspector etypes ky + pus porky" received Complaint that we were withing our egapment

July 25/01 Target Work Complete EZ1-23lack up camp and head back to main camp took 2 Samples on return (Racks) IN place! 4hr return approx. Tim Walking down this plide - unload argo + So pick him up (Ron) Tim put his back out doing his packing to return to main (any - Not too bad now (Spm) 4 flats on the argo !! and we took it easy -Bated bread, put on Roast for suppor while Ron went to P. U. Tim.

Target Ron 8mm July 27/01 took Jon & Kevin to Eugene Creek - Complete last · 66 mi joampleo-HM + 85. Stellas Ron pun one guid line 53°N -7 143°W 4 89° ENE to end 8 Canyon Wall, Line flagged 1 cut-Stella went to mouth O Canyon travelled up Caryon floor collected Rock Samples - yound Three Outerops of pipite Supply. (Copper??) Jon v Keven brought back Sample & BEDROCK pyrite : ARSNIC? 4 Sorts pamplis 2 Hard m-Samples Stella - 9 Rack Samples 1 Sort Sample

IT Claims ound hig US. advind - walled equip up to claims only- No working outside Cisters of we had land use for mining we equip adversed equip under 20 Tonno - but not Jising at this time as we are doing Vorget project + prospieling project this yea to om Mining inspector left to continue on to Walusino Lake for his work.

Went back to getting firmood etc.

July 28/01 Ron tork Jon & Kevin out for time off Kevin going to Work for 416 Ton to return in couple Adays. Ilan Cahin bake bread bake CCCelli

ptil! Leaving about 200' R Canifor to complete Dampling of Canifm on horth end Return home 5Pm. 4 55 Samples 2 H.M. Samples 2 Rock Samples 9 Rock Sumplies S.S. Sample

YUKON FREPGY, MINES 2 RELUDRCES LIBRARY PC) INNX 701 Muhdihonin Yukon Y1A 208

July 31 10, Target Pripart to highway Whi to complete Sampling & do one Une que I Stayed in Camp baked bread once again and did laundrif on the of perub board

July 29/01 Kettle Creel - 10 Am-9 000m Jim flaw in brought Grocenes age of plus. gas for us. 10 m went to Kette Creel harf ware up need - warked to first test area - did go phy 1) not crops GPS type etc. (Tim) returned to main Camp 4.30Pm Only 2 days lift to July 30101 Tim flew back ret today - stayed mennish Van Krauchhaum + Son onwurd last noght-plept ouer left @ clunchtime Day Shot!

10101 Went to top by Ridge after Damples from creek ommenced one () line grid - Sampling lvery 20 m. took 26 Samplis - Kength V Canyon (Gugene) Day completed return home base 5pm.

In coched suppor! Dice rest !!

8 Rock Samples 5 outerup 26 GRID-TEST Samples Only (one) trip left to Canyon for Mapping -

Targe lugist 1/01 8 Am Ron' took wo Jon, Keu + Stella back up to Campon-Eugeni Greek. startel once again @ mouth aid GPS and collected more pamples from bedrock-Main Interesting forms Start @ 50843 5 35 17' 54527N and end @ 50896E) 54632NI 3654' Copper bloom " pipite? prox 30'-40' 2 mili ne needs measurement to be Dure 4 mi as raven

dept TARGET Hing 6/01 RST RST Tim flew into main. Camp Hoday. Set out Schedule for mapping Canyon & Sampling. Prepare for day 1 trep to Canyon RST 习. 1/01 hught driggle early morning-decided to go ahead with persedute 9 Am left camp arrived C Canyon 10. 30 Am raw very light - start mapping campon - rain Clanged to heavy snowdecide to return too resky on Dochs - Safety first. retur @ camp 5 pm

Target Hug 30/ Eugene Canpon an pris for PGE TEST. RS+T Aug 31/01 Prospect Hearty Creek-South Ind to complete lower pection. Jack puls to Beauer dams. Last part heavily dammed-No proper panper can bi lakero! Austiloi - Main)do paper with Samples Check - Cook / Lake, Sept 2/01 Still quite wet day of nest!

Lept 3-4-5 Go to WL Lei rich supliew - Santo peturo Diri plane in Camb 6th

TARGET Bept8/01 8 Am RST aci Forday Cloudy hut No vain - return to Changon Continue - Mapping - Samples map out crops - return. Samples to Corso - Lunch - Continue mapping - return to Chyo 6 20 pm - return to Camp 7 40 pm - Supper- day's done.

Supt 9/0, Prospect Rained most of the right -De up paperer sh this A m. 1.m: Checked North Shore West 3,000' brilders Consist - perpestice, Jade, quarty, Dozystone Nante -fine gade Constomente Semilar to 105 8 16

Raining again this Am- do more paper und St J. P.M. Sun peaking throw Checkie 3000' phoreline North on last pide bouldus - pmale mostly grante ou conglomorate pame os pemilar to mot Ayuntai pome prale Jade + Dirguentine - mostly gravel & Sand wich pmalle rah bottom_ Shoreline orce grown not as phallow as West side .. * still auch it Was August []] Nave to phone Chemy for more Some

Sept 12/01 ----Kaining once more All planes still -Grounded -Les up paperwork Tim working on -Mapping Caryon. Day (SEPT 11/01) Visitors Came in oger Mark + Ray. lorado, Mark (Lawry) and Ray (Rancher, Black Congue) from Wyoming = In to. the pome site pering & fishing! Staiping to us in the Cabin!

TAKGET bags - another 250 ? Rentagon-bonded pt 10/01 - That Centre Bombed ! Return to Eugene Ros Creek - complete mapping Campon - kallect more Pamples from bedrock. hunch 2.30-3. Pm Walk gred - take Compass readings 4 Alt: measure lach Pample hole distance for mapping g hid Return to main Camp @ 7 30 P.m.

all planes grounding anada + U.S.A.

Sept 15/01 before lunch - headed Out to highway -going up mountain & Sprite Jude Mountain' We get our equipment Klady to go aut and do some more prospecting Sept 15/01 R4S Mavelled out to Creek West - J camp Checked for pade Coulders - may have found pome pmaller pres! Have to drie them or Ceit à pièce of! (NEXT Project)

Sept 12/01 Planio still grounded. Continue to paperwork . Sim Continues a mapping Other gup out fishing in the rain! Fish for supper! L(I don't eat fish - (a pandurch is amine)] Sept 13/01 Reanes can fly Tim took Nthes

afternoon pest. before the pain startic onthe more! Sup our at other lale Jishing - SKUNKED NO FISH !! Yeah! Ham for Supper!

Supt 18/01 RS5 Do back to Kat 748 area - drill pouldus perfectione, - darn !! rained all day 1' got Soaked -Creeks pose 1 foot -2 feet from all the Rain Thundu Storm larly 3 Am - lightening too! Canoe (20') 1/2 filled before morning light drained & got about another 5 gal in it during the day ."

Supt 16/01 Rus Entered Bourgeet Oree K @ KAT 7+8post #2 Claims Prospected for Jade boulders tound 2 and some pmaller ones Have to take samples from them upet. Sept 17/01 Weather changing Cloudy but clearing Hope the pice Weather holds centil the weekend is over! Service ango this AM Pick up Jon this afternoon.

RSJ drilles boulder BINGO!! Time to take a Dreak Reltern to Camp. Sept 23/01 RSJ Travel to Watson Kahe propane_ propane_ (Suage hardon propane tanks). 25 Sept of Return te Camp Sample pack ap pemples / perplies equipment and phut down camp for this year !

ept 19/01

toy right down to noon rain ploured 5 night then mig from clian for tomarrow !! Have Migrane - took pills hope it goes away lettin a lauple days ! Unshlots

Sept. 20/01 Migrane stell actain - starping Very queit today. RSU pt 21/01 10 mm migrane gone - gone

to dril Some those

Danedis _ NO good ones

ASSAY RESULTS FROM

ALS CHEMEX LABS

VANCOUVER, B.C.

GEOLOGICAL MAPPING AND STREAM SEDIMENT GEOCHEMISTRY OF THE REGION AROUND THE EZ-JASPER CLAIM GROUP, HASSELBERG LAKE 105A-13.

YMIP TARGET EVALUATION PROGRAMME AND PART OF GRASSROOTS PROSPECTING PROGRAMME FIELDWORK JULY - SEPTEMBER 2001

T Liverton Ph D FGS FGAC December 2001

HASSELBERG AREA 105A-13 PROPERTY EVALUATION AND PROSPECTING THE IMMEDIATE VICINITY OF THE EZ-JASPER CLAIMS 2001. GEOLOGICAL REPORT

INTRODUCTION

The Hasselberg Lake area is in the NW corner of map sheet 105A-13 It has been a region of prospecting and production of jade from glacially and fluvially transported boulders for at least 25 years Minor production of placer gold has also taken place from Bourget Creek, the main creek draining eastward to the north end of Hasselberg Lake Prospecting for hard-rock gold or base metal mineralization has not been hitherto attempted in any systematic manner, save that of a recent aerial geophysical survey by Cominco that covered much of the middle Palaeozoic rocks of the Yukon-Tanana terrane east of the Tintina Fault The current claim evaluation and prospecting under YMIP grants has been performed to investigate the possibility of gold / base metal and jade / talc occurrences in the vicinity of the EZ-Jasper claim blocks This report concerns geological and geochemical investigations over that immediate area A separate report of prospecting activities over a larger area is being prepared by Mrs Stella Hearty

The fieldwork carried out during the 2001 summer season has generally followed that outlined in the proposal for the YMIP All known areas of rock exposure have been mapped, using a G P S receiver to obtain UTM coordinates This work has been compiled at 1 25,000 scale The region of previously located anomalous gold assays has also been mapped in detail (1 1000 scale) and sampling of accessible quartz veins carried out It was originally proposed to lay out a soil sampling grid over this region This approach was rejected as impractical after an initial careful examination of the ground, however a series of soil samples were taken along a traverse crossing the known mineralized area to test whether anomalous metal values could be detected in soils This vicinity was subjected to close-spaced stream sediment and panned concentrate sampling That approach was extended to cover the entire region surrounding the claim blocks as such geochemistry is seen as the best method to detect possible mineralization since rock exposure tends to be either abundant or entirely absent Both geological mapping and geochemical sampling were extended outside of the immediate claim boundaries to cover the entire length of the drainages to obtain sufficient samples for interpretation of results and also as part of the grassroots prospecting of the open ground Reinterpretation of some aspects of the geology in the region since the 2000 season has also changed the opinion as to prospective ground

CHANGES IN INTERPRETATION OF THE GEOLOGY OF THE EZ / JASPER REGION

The reconnaissance mapping carried out last year found several occurrences of fine grained to aphanitic mafic rocks that were called 'tuff', e g , U T M coordinates 51520E, 56600N,

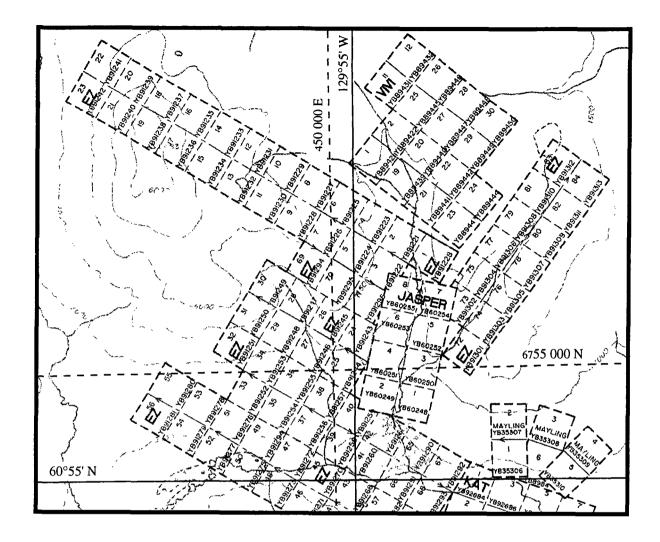


Figure 1 Portion of claim map 105A-13 showing the EZ and Jasper claim blocks Scale 1 50,000

'basalt', e g , 51100E, 55100N, and 'green volcanics', e g , 51200E, 54160N on the basis of hand specimen identification. A more careful re-evaluation of these exposures this year indicated that these localities likely represent altered, often tectonised, fine-grained ultramafic lithofacies rather than volcanics (see geological map presented with the YMIP proposal and also the assessment report filed for the Jasper/EZ claim groups). This has been confirmed by an initial suite of thin sections prepared during mid season and further material (T1-T5) has recently been received from Vancouver Petrographic. The lack of volcanics within the metasedimentary sequence in this area obviously diminished the possibility of finding VMS type base metal mineralization. The possibility of finding gold-bearing quartz as fault fillings within the quartzite and slate sequence remained, hence the adoption of an expanded geochemical sampling programme. The geology of the region and traverse routes are presented at 1 25,000 scale (Figures 2 & 3).

GEOLOGY

This mapping has demonstrated the existence of several ultramafic intrusions in the NW corner of 1 50,000 map sheet 105A-13, as follows from the NW corner (Fig 2) (1) A sill of average 20 m thickness (but rather variable) that has been mapped for 3 km This body is uniformly serpentinised and was clearly originally an intrusion rather than a thrust sheet since andalusite and cordierite have been observed in the metasediments above The interval approximately 50 m below the lower contact may be sheared, however, as green, mafic, slaty rocks are observed at 48,300E, 58300N Thin sections of these rocks indicate they are likely thin (on the order of 3 metres thick) lower sills that are now of predominantly amphibole mineralogy (see petrographic notes sections T1, T3 and T4)

(11) The majority of exposures of meta-gabbro, rare unaltered pyroxenite and ultrabasics in varying degrees of talc-carbonate alteration or serpentinisation are part of a large intrusion. Those fine-grained rocks noted last year are serpentinised (and, in the case of the 'tuff' locality noted in 2000, carbonate altered). They are interpreted as a chilled margin along the SE contact of the main ultrabasic intrusion.

(III) Aphanitic mafic rocks noted last year at the lower end of the canyon in quartzite (see detailed map Fig 4) are now an amphibolite (thin section H2) These represent a further semiconcordant basic intrusion that is considerably thicker than the sill (i) Although the lower contact is not exposed the presence of 8 cm long crystals of andalusite in pelite cataclasite (thin section H4) at the canyon of Bourget Creek (51040E, 53720N) indicates its proximity

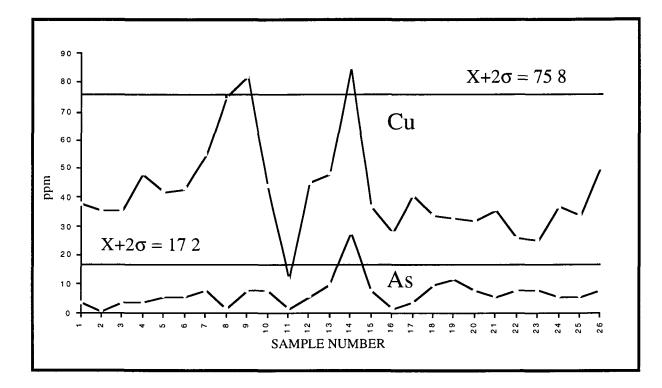
(iv) A further locality noted last year (51213E, 54172N), where a 10 m high exposure in a gully is of fine grained mafic rock might be an eastward extension of the same intrusion as (iii), but this probably does not extend past 54000E since there is no exposure of ultrabasics in the creek at that easting

Metasediments exposed above the NW sill are predominantly pelites that contain andalusite in places (e g , thin section T2), with one minor marble found halfway up the ridge and further

decimetre-scale marble bands exposed immediately below the peak Quartzites are found on the lower slopes (below the sill) and slates predominate to the SE The presence of andalusite in the pelites indicates that the ultramafic is indeed intrusive, despite evidence of tectonised mafic rocks below

At the canyon mapped in detail (1 1000 scale map Fig 4) the cliffs are of micaceous quartzite which shows a general shallow SE dip One major (2 3 m thick) near vertical quartz vein crosses the canyon and shows arsenopyrite and trace chalcopyrite mineralization This is likely the source of the sample taken by the Heartys that yielded significant gold (\approx 2ppm) Further dm-scale semiconcordant quartz veins were noted at the base of the cliffs on the east side of canyon and two 15 cm veins in the creek bed were sampled (samples 25-1 &2 see 1 1000 scale map, Fig 2) Northeast of the canyon the metasediments are slates At Bourget Creek (the southernmost geological data point) the metasediments have comparatively coarse mica and very long (8 cm) andalusite crystals The coarse grainsize is likely due to contact metamorphism by the ultramafic intrusion immediately to the north, but cataclastic texture of the rock (T2) indicates that some shearing of the units has occurred, probably prior to intrusion since the cm-scale andalusite is euhedral and randomly oriented in the outcrop

EVALUATION OF THE QUARTZ VEINS AS A POSSIBLE GOLD PROSPECT


Part of the YMIP proposal was to evaluate the quartz veins in the quartzites as potential gold prospects Two anomalous analyses were reported by the Heartys from their earlier work (see assessment report for 2000) These were in specimens obtained about 1.5 km apart. The eastern specimen was obviously from the canyon that has been mapped Before any soil sampling was attempted it was deemed advisable to try to relocate those quartz occurrences A line was traversed westward from the canyon to the location of the western sample as indicated on Mrs Hearty's map No sign of any outcropping quartz was found in that vicinity (although there are abundant float boulders in the adjacent creek bed around 49,800E) Since no exposure could be found it was considered inadvisable to locate a soil grid using a suspect location In addition much of the ground on the west side of the canyon is swampy or has obvious deep till cover that is expected to interfere with possible geochemical recognition of mineralization Instead of regular grid sampling a detailed stream sediment and panned concentrate sampling was used to cover the region Detailed mapping of the quartize canyon (Fig 4) has shown that there is just one near vertical sulphide-bearing quartz vein of any size exposed Chip samples across this vein were taken at intervals of 0-0 5, 0 5-1 0, 1 0-1 5, 1 5-2 0 and 2 0-2 3 metres In addition, to test the possible response of soil, geochemical samples were obtained at approximately 20 metre intervals along the hillside on the east side of the canyon The results for trace element analysis have been received

RESULTS ORIENTATION SOIL SURVEY

Of the trace elements only arsenic and copper show any interpretable variation in contents As has slightly elevated values over the vertical quartz vein (stations 18 and 19), but these would not be considered anomalous in any statistical treatment Taking mean + two standard deviations as threshold for anomaly would give (admittedly for a very small sample population of 26) values of 17 and 76 ppm as threshold for As and Cu There is a coincident, just anomalous response in both elements at station 14 (see following page) This location corresponds to that of several bedding parallel quartz veins at the base of the cliffs below, but no explanation for the anomalous Cu peak at site 9 can be given. It would seem that there is a weak response to the sulphide content in these quartz veins. At the location of the sample line there is under 2 metres of till / soil cover above bedrock. Whether soil geochemistry would be effective in areas of greater cover is doubtful

RESULTS CHIP SAMPLING OF QUARTZ VEINS

Chip sampling of the quatz veins (samples 4-1, 6-1 to 6-5, 25-1 and 25-2) were analysed by fire assay / AAS by Chemex for Au and by ICP for Ag, Cu, Ni, Co, Fe, As, Pb, Zn and also S The highest Au value obtained was 280 ppb and Ag was 5 ppm at the highest Arsenic did not exceed 0 01%, despite there being visible scorodite in hand specimen The anomalous but decidedly not ore-grade gold contents of these quartz veins might be the source of occasional gold grains in the drainage system, but do not represent a target for further exploration

RESULTS OF SOIL GEOCHEMISTRY FOR THE TEST LINE SAMPLED ON THE EAST SIDE OF THE CANYON SAMPLE NUMBERS ARE THOSE SHOWN ON THE 1 1000 SCALE GEOLOGICAL MAP THE OUTCROPPING NEAR VERTICAL QUARTZ VEIN TRENDS BETWEEN NUMBERS 18 & 19 VALUES OF Mean + 2 s d ARE SHOWN FOR THE RESPECTIVE RESULTS

PROSPECTING FOR JADE

The current geological mapping has noted in situ jade at only one new locality at the waterfall on the east branch of the central creek (51,390E, 55230N) Figs 6 & 2 There one metre-sized boulder was seen in the creek at the top of the waterfall amongst other boulders of fine-grained serpentinised ultrabasics This part of the creek bed is considered to be sub-outcrop i.e.,

movement downstream of only a few metres is expected The entire 3 km length of the western sill that was mapped is of fine-grained serpentinised ultrabasic, except for coarse (10 mm) talc alteration along joints at around (48,600E, 56,970N) The southernmost intrusion (50,800E, 54,400N) is poorly exposed and those exposures visited show very fine-grained slightly serpentinised rock. It would seem that massive, coarse serpentinite is the most common host for lenses of jade in this region and that type of serpentinite is scarce in the area prospected this year.

MINERALOGY OF PANNED CONCENTRATES

The location of stream sediment and panned concentrate samples that cover the EZ-Jasper claims (and overlap some of the adjacent ground held by J P Ross) is shown on a map at 1 25,000 scale (Fig 6) and notes are given in the appendix These concentrates were examined under the binocular microscope before sending them for analysis The main differences in mineral composition of the concentrates are variation in magnetite/chromite content and presence or absence of abundant, mostly euhedral red garnet A table is given in Appendix 1 The garnet is restricted to the westernmost creek sampled (1 e, around 49,500E) and the lowest samples of the west fork of the next creek east (around 50,900E, 55,000N above the canyon) If the garnets found in the west fork were dispersed eastward in glacial till, then it is likely that the source is to the west of the area mapped This conclusion is supported by garnetiferous rocks being reported from the next creek to the west (around 46,000E, 58,000N and to the north) These were noted during prospecting by Mrs Hearty That particular creek drains the eastern side of the larger ultrabasic body found in the NE corner of map sheet 105B-16 Boulders in glacial till and verbal report (V Crickbaum, 2001) indicate also the presence of a syenite intrusion in that range Whether these might be a suitable prospect for any base / precious metal mineralization is uncertain until the region can be examined next season

Only the east fork of the central creek, draining the bog on the main ultrabasic intrusion contains just spinels (either or both of magnetite and chromite), along with occasional amphibole and jade (nephrite) in the concentrates The easternmost creek was not sampled for heavy minerals The following table summarises the minerals noted Locations are given in Appendix 1

	PANNED CONCENTRATES
390251	much euhedral-subhcdral red garnet, rare ? olivine and pyroxene, much spinel, one jade fragment
390253	euhedral red garnet, a little spinel, rare amphibole
390260	Mostly slate fragments, only rare spinel and garnet
390263	euhedral red garnet, a little amphibole and pyroxene, mica, spinel
390301	much spinel some red garnet jade feldspar
390302	euhedral red and brown garnet, amphibole, mica, much spinel
390303	spinel, rare amphibole
390304	spinel, amphibole, feldspar
390305	much spinel, feldspar, rare red garnet
390306	slate, spinel
390307	slate, spinel, amphibole
390308	much spinel. frequent jade, no garnet
390309	mostly slate, spinel and occasional amphibole
390310	much spinel, some red garnet green ? jade, mica
390327	euhedral garnet, amphibole, mica, a little spinel

SUMMARY

Geological mapping during during the 2001 season has shown that the vicinity of the Jasper-EZ claims consists of a sequence of slate and lesser thickness of quartzite with very rare limestone bands of under 1 metre thickness near the (structural) top of the succession The sequence is gently folded and dips are predominantly either to the west at <30° or gently easterly Ultrabasic to basic igneous intrusions are found as one sill in the west, an irregular large discordant intrusion in the central northern part of the area and another semi-concordant intrusion in the south Both the western sill and southern intrusion have produces a contact aureole in the pelites

The sole metallic mineralization noted in this work has been trace arsenopyrite-chalcopyrite contained in one 2.3 metre thick, E-W striking quartz vein that cuts the quartzites Evidence of new jade occurrence consists of the one locality at the waterfall (see geochemical location sketch, Fig. 6)

STREAM SEDIMENT GEOCHEMISTRY

In order to prospect the entire claim block above the region of heavy till cover the streams were sampled for sediment (-80 mesh) analysis and a number of panned concentrate samples obtained Since the region is quite small sediment samples were obtained at from 200-300 metre intervals, depending on suitability of the stream bed for sampling This has provided enough samples to allow interpretation of results. Heavy mineral samples were obtained by measuring a 20 litre bucketful of gravel, which was washed through a 20 mesh sieve and the sand then panned by hand to give a fairly 'dirty' heavy mineral concentrate. Sediments were dried and sieved to -80 mesh before shipping to Chemex Labs for ICP trace element analysis. Heavy mineral concentrates were analysed by Chemex using fusion then ICPMS for Au, Pt and Pd

This sampling also serves to indicate the geochemical response of the NW ridge and covers both the EZ 1-23 block and the vacant ground north and south of the two-claim wide strip that has been included as part of the grassroots prospecting programme

RESULTS STREAM SEDIMENTS

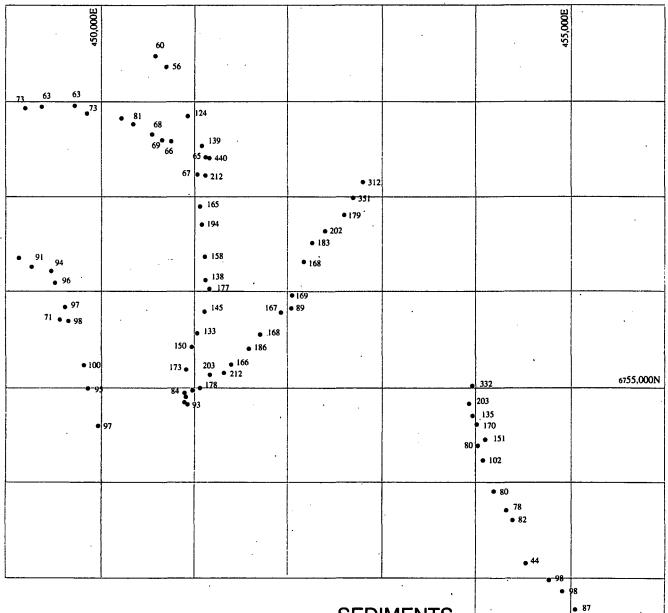
The stream sediment analyses reflect the local rock tyes quite distinctly and are best evaluated according to the detailed geology Plots are shown at 1 40,000 scale for each element of interest (Figures 7 to 12)

<u>N1</u>

Indicates extent of the ultrabasic/basic intrusions by there being a sharp cutoff in contents above the upper fork of the central creek system Values drop from the 132-666 ppm range to under 66 ppm above the inferred contact of the main ultrabasic body Values in the SE creek (slate exposures only noted) at from 132 to 232 ppm in the upper section may reflect the presence of a continuation of one of the sills to the east, since that part of the NW creek draining sediments has values below 60 ppm

<u>Cr</u>

Shows a similar response to N₁, with the upper parts of the central creek system having markedly lower contents the uppermost two samples from the SE creek are also relatively high in Cr


Cu. Pb. Zn

Have no clearly anomalous results Perhaps the northernmost sample from the central creek system (sample 372) is barely anomalous in Pb at 42 ppm

ш			· · · · · · · · · · · · · · · · · · ·		[11]	l
450,000E	54 • • 58			· .	455,000E	·
59 57 51	•					
56	• 57 • • 49	66				
	· 50 • • 47 5	₂218 3 ∞ 666				
	47	• • 591	• 301			
		• 187 • 280	• 410 • 462 • 409 • 345			
• 112 • 114 • 118	`	• 168 214 • 387	• 255			· .
• 120 59 • • 124	· ·	• 132 258 • • 139 • 264	• 265 •			
104 •	144 • 142 •	• 287 335 • 293 • • 311 313				6755,0001
101	. 90 🧯	228 108	· · · · · · · · · · · · · · · · · · ·	<u>232</u> • 181 •	161	
` 107 _●				145	• 170	
					• 132 • 143 • 152	
					• 228	
		·	SEDIM Ni, pp	IENTS, om	141 •	128 • 139 • 112

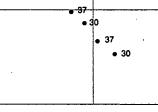
1:40,000

•

SEDIMENTS

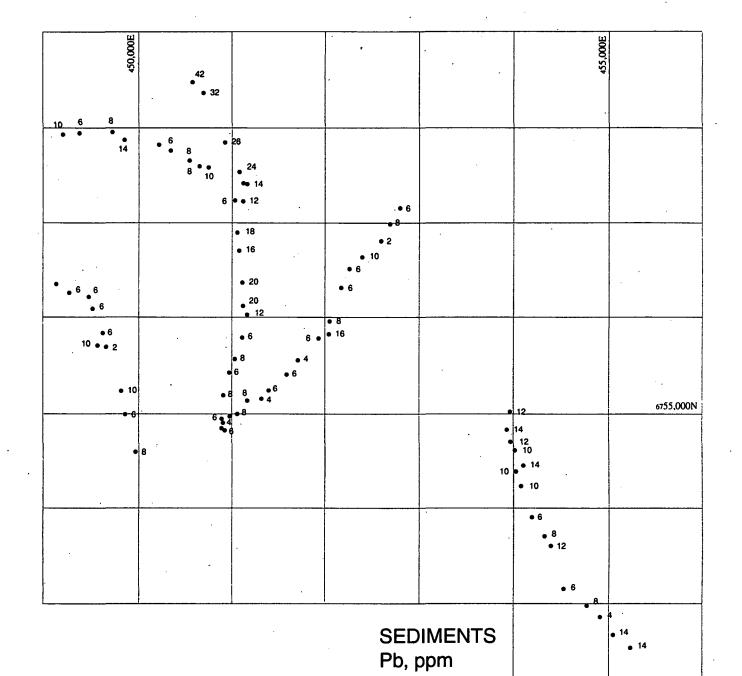
Cr, ppm

1:40,000

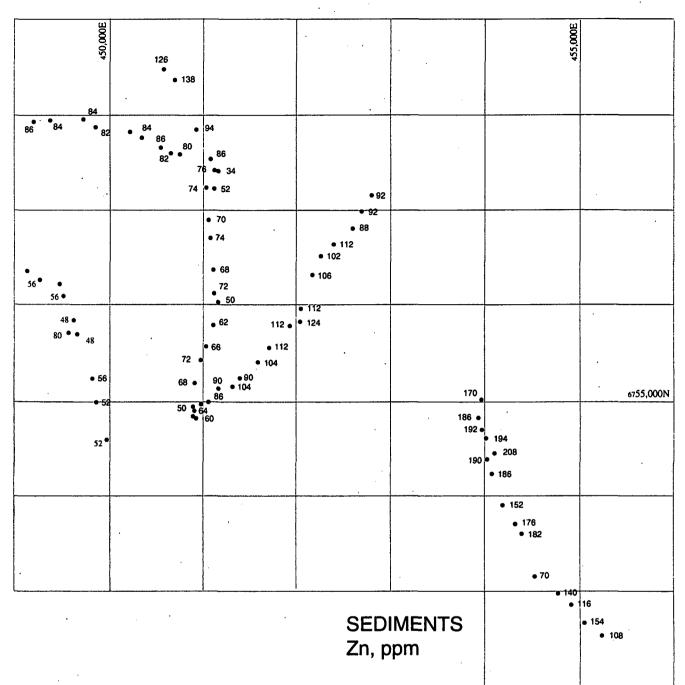

Figure 8

• 76

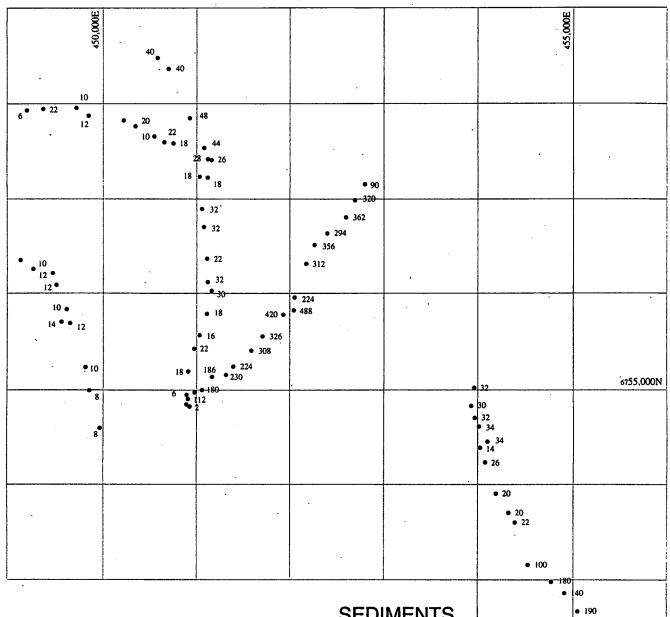
450,000E 455,000E 29 • 34 38 • 40 39 57 • 37 • 40 45 37 • 35 • 33 34 • 17 • 16 • 31 20 • 28 • 31 • 29 s۵ • 43 • 63 50 • 35 • 27 36 43 • • 37 37 47 38 • 34 38 37 35 • 48 38 6755,000N 26 27 30 -3 48 42 51 53 • 46 • 32 • 36 • 37 • 21 -97 • 30


SEDIMENTS

Cu, ppm



1:40,000


Figure 9

1:40,000

1:40,000

SEDIMENTS,

As, ppm

1:40,000

• 160

450,000E				455,000E	
	•			-	
			75, 6.5, 2 •		
2.2		•	• 12, 8, 3		
, 2, 2 • 4, 1.5, 1	· · · · · · · · · · · · · · · · · · ·		• 540, 2, 1		····-
<1, 1, 1 •			7, 4, 2		
17, 2.5, 2 •	3800, 3.5, 3 • 6, 6.5, 5	• 2, 5.5, 2			6755,000N
6, 5, 3 •	•	2, 2.5, 2			
				-	
	-				

PANNED CONCENTRATES Au, Pt, Pd, ppb

1:40,000

Is somewhat enigmatic in that only the east branch of the central creek system has relatively elevated values (to 488 ppm) but taking this branch of the creek as one population, a mean of the 16 analyses is 277 ppm Using the 'simple-minded criterion' mean + 2 s d is 492 ppm, so even the highest value obtained might not be anomalous. It is suggested that the comparatively higher As contents of this creek may be due to trace sulphides in the fine-grained ultrabasic and basic intrusions that were noted in that valley.

Other elements

Most of the other elements are below or just above detection limits Mo is elevated in samples 352-355, which are from the lowest part of the SE creek, where glacial till is obvious, so these values likely reflect transported material Specimen 376 has anomalous Sb at 10 ppm and the adjacent specimen 377 has somewhat elevated Ag at 0 8 ppm (but since many of the Ag results are below detection liomit at 0 2 ppm it is difficult to estimate a threshold for anomaly) Similar Ag is seen in the upper part of the SE creek (spec 351) The only Hg values above detection limit are from the upper part and right fork of the same creek These results may indicate weak sources of metals in this drainage, presumably in the contact aureole of the ultramafics, but are not obviously highly significant

RESULTS HEAVY MINERAL CONCENTRATES

Of the fourteen panned concentrates analysed for Au, Pt and Pd two results stand out as obviously anomalous 302 and 305 at 3800 and 540 ppb Au (Fig 13) Pt contents are below 8 ppb Although these two Au values are anomalous, the low values indicated by the rest would tend to indicate that the region is not a significant source of the metal The two high results could be produced by single microscopic grains of gold in the concentrate and coming from an initial 20 kg gravel sample they are not so exciting!

SUMMARY

The geochemical results do not indicate an obvious target for further prospecting for Au or base metals The one (statistically) high gold value in panned concentrates is explainable by the 'nugget effect', which is this case requires only one tiny grain of the metal in the concentrate The regionally low Au-Pt values indicate that the ultramafics here are not an obvious source of gold

· •

<u>As</u>

CONCLUSIONS

Geological mapping and geochemical stream sediment sampling in the immediate vicinity of the Jasper and EZ claims has failed to detect any ore-grade mineralization Obvious exposed quartz veins carry trace gold only and the stream sediment / heavy mineral geochemistry would indicate that there is not an obvious source of gold or base metals within the ultramafic bodies mapped Anomalous mercury noted at the northern edge of the area investigated is not explained, but other metals are not indicative of mineralization

One minor occurrence of jade was found This part of the valley might be worth further prospecting however, the topography would make any removal of jade boulders very difficult Occurrences of talc have been noted to the NE by the Heartys and will be covered in their prospecting report

APPENDICES

- APPENDIX 1 Table of coordinates of geochemical sample points
- APPENDIX 2 Petrographic notes
- APPENDIX 3 Analytical results
- APPENDIX 4 Geological diary
- APPENDIX 5 Estimate of breakdown of time spent on the YMIP target evaluation and grassroots prospecting programmes

FIGURES LARGE SHEETS (FOLDED)

- Fig 2 Geology of the region of Jasper-EZ claims Scale 1 25,000
- Fig 3 Geological traverses, Scale 1 25,000
- Fig 4 Geology of the Jasper claims (canyon) Scale 1 1000
- Fig 5 Data points geology and claim posts
- Fig 6Stream sediment panned concentrate geochemistry location of
sample points Scale 1 25,000

	PENDIX 1	
HASSELBERG G	EOCHEMICAL S	AMPLES
NUMBER EAS	STING NO	RTHING TYPE
250	49983	54581 SS
251	49983	54581 HM
252	49983	54581
253	49141	56356 HM
254	49141	56356 SS
255	49280	56266 SS
256	49423	56206 SS
257	49513	56089 HM
258	49513	56089 SS
259	49637	55836 SS
260	49568	55711 HM
261	49568	58711 SS
262	49661	55684 SS
263	49823	55242 HM
264	49823	55242 SS
265	49873	54995 SS
266	51115	55792 SS
267	51033	55573 SS
268	50970	55432 SS
269	50910	55183 SS
270	52805	57144 SS
271	52695	56997 SS
272	52584	56810 SS
273	52407	56646 SS
274	52251	56511 SS
275	52170	56307 SS
276	52046	55967 SS
278	51930	55791
279	51708	55563 SS
280	51630	55416 SS
281	51390	55237 SS
282	51321	55153 SS
283	51164	55135 SS
284	51027	55027 SS
285	50904	54899 SS
286	50893	54931 SS
289	50928	54815 SS
291	55236	52535 SS
292	55045	52658 SS
293	54911	52861 SS
294	54766	52984 SS
295	54530	53144 SS
296	53967	55012 SS
297	53937	54829 SS
298	53968	54703 SS

/

NOTE / DUPLICATE OF

299	54010	54596 SS
300	54097	54459 SS
301	51115	55792 HM
302	50910	55183 HM
303	52805	57144 HM
304	52407	56646 HM
305	52170	56307 HM
306	51930	55791 HM
307	51321	55153 HM
308	50975	54968 HM
309	50904	54899 HM
310	50893	54931 HM
327	51155	57410 SS
344	52019	55841 SS
	02010	
345		SS
346		SS
347		SS
348		SS
351	54016	54392 SS
352	54077	54232 SS
353	54186	53902 SS
354	54320	53714 SS
355	54384	53598 SS
356	49204	57918 SS
357	49390	57938 SS
358	49724	57942 SS
359	49866	57875 SS
362	50356	57772 SS
363	50553	57649 SS
364	50648	57595 SS
365	50758	57585 SS
366	51021	57241 SS
367	51114	57225 SS
368	51156	57410 SS
369	51076	57533 SS
370	50922	57857 SS
371	50686	58366 SS
372	50576	58486 SS
373	51069	56704 SS
374	51053	56901 SS
375	51117	56361 SS
376	51131	56115 SS
377	51170	56012 SS
378		SS
0.0		\sim
403	46319	60057 SS
407	46266	59844 SS

APPENDIX 2 PETROGRAPHY

HASSELBERG	REGION	105A-13
	Е	Ν
H1	49280	56256
H2	50780	54518
H3	50904	54949
H4	51040	53735
H5	51352	55184
H6	51883	55728
H7	51798	56496
H8	51799	56678
H9	52047	55884
H10	52060	55905
H11	52067	56074
H12	53064	58463
H13	53325	58501
H14	53561	58839
H15	53748	59004
H16	54400	59159
T1	47737	59309
T2	47909	58219
Т3	47979	59098
T4	47985	58635
T5	48106	58173

<u>H1</u>

Unaltered Distinctly foliated, composed of 90% amphibole (actinolite) crystals to a max of 0.4 mm long with some interstitual feldspar (some twinned plagioclase discernable) and elongated aggregates of magnetite to 0.5 mm long alternating with up to 2 mm thick layers of feldspar with only a little amphibole Occasional amphibole crystals are grown perpendicular to the foliation in the feldspathic layers

<u>H2</u>

Unaltered A fairly homogeous aggregate of actinolite and feldspar with possibly some quartz amphibole is in 0.1 mm laths The feldspars define a faint layering, but amphibole orientation is fairly random Opaques constitute $\approx 2\%$ in 0.02 mm grains surrounded by some (?) sphene, forming 0.5 mm long aggregates

<u>H3</u>

Unaltered Euhedral, actual actualite to 0.4 mm long (50%) in very fine-grained anhedral feldspar (twins rare) and possibly some quartz (too fine for unequivocal identification) The rock has a very strong preferred orientation of minerals - only a few of the coarser ampiboles have grown across the foliation Opaques and (?) sphene form agregates to 0.8 mm long that follow the foliation

<u>H4</u>

Slightly altered cataclasite Ragged porphyroblasts of red biotite (to 1.2 mm) and partially disaggregated feldspars (1.5 - 4 mm) that contain much fine opaque minerals are in a matrix of 0.05 - 0.1 mm feldspar and quartz The matrix (or groundmass) shows an anastomosing foliation

<u>H5</u>

Talc-serpentine rock A 20 mm mass of talc is in contact with serpentine. Serpentine invades the talc in flame-like forms

<u>H6</u>

Similar to H1 - 3 Acicular actinolite to 0.3 mm in feldspar Has somewhat less strong preferred orientation of minerals than (1) Opaques are 0.3 mm aggregates without any sphene

<u>H7</u>

A mass of 0.2 mm tremolite with some interstitial (?) quartz as 1 mm polygonised semi-elliptical shaped masses Both carbonate and quartz form 0.1 -0.2 mm thick veins

<u>H8</u>

Coarse actinolite - feldspar rock Actinolite is up to 6 mm long as ragged, anhedral forms Twinned plagioclase (2 mm, rarely to 4 mm) has relict euhedral forms, but is penetrated by the actinolite Euhedral magnetite to 1 mm ($\approx 2\%$ of the volume)

<u>H9</u>

A mass of 1 mm tremolite crystals with perhaps 15% groundmass of feldspar and (?) quartz

<u>H10</u>

Quartz-amphibole-epidote rock (hornfels?) Acicular tremolite, 1 mm long defines a distinct foliation Quartz grains are up to 0.3 mm across, anhedral, polygonised and interstitial to the amphiboles Epidote is anhedral and up to 0.3 mm size

<u>H11</u>

Coarser-grained variant of (10), but contains some plagioclase and biotite Has a fairly strong preferred orientation of minerals which is anastomosing 1 mm long aggregates of tremolite may be pseudomorphing pyroxenes Interstitial quartz is 0 1 mm grainsize, with the occasional plagioclase grain 0 3 mm euhedral crystals of epidote are associated with the tremolite The mica is pleichroic from colourless to pale brown and form occasional 2 mm anhedral grains in the quartz matrix Opaques are cubic forms from 0.05 - 0.1 mm size Tremolite 30%, opaques 1 %, biotite and epidote <1%

<u>H12</u>

Fine-grained amphibole-quartz rock Ampiboles are up to 0.3 mm long and constitute 50% of the bulk Opaques are <1% Very occasional 0.1 mm epidote crystals are seen

<u>H13</u>

Slightly serpentinised amphibole-rich rock Ragged, almost equidimensional tremolite is up to 0.6 mm across (70% of the bulk) in a serpentine matrix There are only rare opaques

<u>H14</u>

Meta-syenite? Amphibole-feldspar rock The amphibole is pleichroic from pale green to faint pink (tremolite-actinolite) and is in 3 mm masses The matrix is perthite and plagioclase with occasional masses of epidote

<u>H16</u>

Inhomogeneous epidote-chlorite-tremolite rock, with only occasional plagioclase Tremolite crystals are 4 mm long Epidote masses are up to 50% of the volume There are local concentrations of tremolite to 30% Chlorite can locally form 40% Opaques 1% No preferred orientation noted

<u>T1</u>

Elongate subhedral polygonised calcite masses up to 6 mm long may be pseudomorphing pyroxene phenocrysts The remainder of the rock is 70% tremolite-actinolite in acicular crystals to 0 7 mm long in a matrix of (?) quartz (0 1 mm grainsize) and similar-sized amphiboles A few opaques only are seen

<u>T2</u>

Andalusite-biotite-quartz schist Has a distinct foliation which does not especially anastomose or curve around the andalusite porphyroblasts Andalusite are 1 mm long by 0.5 mm in cross-section and constitute $\approx 20\%$ Biotite (pleichroic from colourless to red-brown and near uniaxial -ve) is 15% of volume in 0.2 - 0.4 mm long anhedral forms The matrix is 0.1-0.2 mm quartz grains

<u>T3</u>

Tremolite-actinolite quartz biotite 'schist' 80% tremolite-actinolite as acicular crystals to 0.5 mm long with a strong preferred orientation Quartz is interstitial Opaques ($\approx 1\%$) are 0.1 mm long needles Biotite (pleichroic from colourless to red-brown and near uniaxial) forms discreet layers up to 0.4 mm thick

<u>T4</u>

Tremolite-actinolite plagioclase rock Random oriented, fairly equidimensional raged phenocrysts of the amphibole from 0.5 - 1 mm grainsize are included in a plagioclase matrix, the feldspar being mostly as polygonised 0.1 mm grains

<u>T5</u>

Highly serpentinised durite Some relict olivine is present (15% in places) but it is pervasively fractured and serpentine altered Large (>4 mm) fields of serpentine and talc are interstitial

ALS Chemex

Aurora Laboratory Services Lid Analytical Cremists * Geochemists * Registered Assayers

212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218

To HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Page Number 1-A Total Pages 2 Certificate Date 21-NOV-2001 Invoice No I0128689 P O Number Account MPR

+

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

	· · · · · · · · · · · · · · · · · · ·	- • • • • • • • • • • • • • • • • • • •								CE	RTIF	CATE	OF A	NAL	YSIS		A0128	689		
SAMPLE	PR3P CODE	deight Kg	Ag ppm	лі %) Хв	B	Ba ppm	Be ppm	B1 ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm	Hg ppm	K %	La prm	ng t
390250 390252 390255 390256 390256 390258	2259400 2259400 2259400 2259400 2259400 2259400	0 02 0 02 0 02 < 0 02 < 0 02 < 0 02	0.8 < 0.2 < 0 2 < 0 2 < 0 2 < 0 2	2 82 2.58 2 59 2 76 2.72	22 8 10 12 12	< 10 < 10 < 10 < 10 < 10 < 10	280 310 270 290 300	15 05 10 10 10	< 2 < 2 < 2 < 2 < 2 < 2	0 57 0.41 0 58 0 47 0 46	05 <05 05 <05 <05 <05	18 15 16 16 17	103 97 91 94 96	66 42 59 50 50	3 12 3 27 2 97 3 30 3 34	10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1	0 40 0.47 0 40 0 53 0 52	10 < 10 10 10 10	1 49 1 29 1 28 1 36 1 37
390259 390260 390261 390262 390264	2259400 2259400 2259400 2259400 2259400 2259400	0 02 0 02 0 02 0 02 0 02 < 0 02	0 6 0.2 0.2 0 2 < 0 2	2 49 1 87 2 59 2 59 2 82	10 14 10 12 10	< 10 < 10 < 10 < 10 < 10 < 10	270 240 290 290 310	0 5 0 5 0 5 0 5 0 5	4 < 2 2 < 2 < 2 < 2	0 46 0 31 0 44 0 43 0 38	< 0 5 < 0 5 < 0 5 < 0 5 < 0 5 < 0 5	15 12 16 16 16	97 71 101 98 100	43 37 48 47 48	3 06 3 09 3 23 3 18 3 39	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0 43 0 47 0 45 0 47 0 55	< 10 < 10 < 10 < 10 < 10 < 10	1 29 0 74 1 46 1 42 1 35
390265 390266 390267 390267 390268 390268	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02 < 0 02 < 0 02 < 0 02 < 0 02 < 0 02	0 2 0 2 0 2 0 2 0 2	2 56 1 69 1 72 1 86 1 91	8 18 16 22 18	< 10 < 10 < 10 < 10 < 10 < 10	300 190 190 200 200	05 05 05 05 05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0 37 0 35 0 35 0 37 0 38	< 0 5 < 0 5 < 0 5 < 0 5 < 0 5 < 0 5	15 20 20 21 21	95 145 133 150 173	39 37 38 38 38	3.18 3 20 3 21 3 47 3 47	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0 50 0 42 0 36 0 42 0 41	< 10 < 10 < 10 < 10 < 10 < 10	1.33 1.71 1 63 1 81 1 77
390270 390271 390272 390272 390273 390273 390274	2259400 2259400 2259400 2259400 2259400 2259400	0 02 < 0 02 < 0 02 < 0 02 < 0.02 < 0.02 0 02	0.6 < 0 2 < 0 2 0 8 0 4	1 44 1 38 1 66 1 63 1 67	90 320 362 294 356	< 10 < 10 < 10 < 10 < 10 < 10	290 260 250 250 180	05 05 05 05 05	< 2 5 < 2 4 < 2	0 31 0 22 0 20 0 28 0 31	0 S 0 5 < 0 5 4 5 2 0	43 48 45 37 30	312 351 179 202 183	16 14 20 40 27	5 66 5 83 4 87 4 19 4.05	10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0 03 0 03 0 19 0 09 0 05	< 10 < 10 < 10 10 10	0 95 1 74 2 62 1 98 1 20
390275 390276 390277 390278 390278 390279	2259400 2259400 	< 0 02 < 0 02 NotRed < 0 02 < 0 02	< 0 2 0 2 NotRcd < 0 2 0 2	2 01 2 01 NotRcd 2 02 1 89	312 224 NotRcd 420 326	< 10 < 10 NotRed < 10 < 10	200 190 NotRed 160 210	0 5 0 5 NotRcd 0 5 0 5	2 < 2 NotRed : < 2 2	0 32 0 33 hotRcd 0 40 0 37	1 5 2 5 NotRcd 1 5 2 0	26 25 NotRcd 22 24	168 169 NotRed 167 168	29 35 NotRed 36 34	3 84 3 44 NotRed 3 54 3 33	< 10 < 10 NotRcd < 10 < 10	< 1 < 1 NotRcd < 1 < 1	0 23 0 10 NotRcd 0 10 0 10	10 10 NotRcd 10 10	1 36 1 11 NotRcd 1 25 1 27
390280 390281 390282 390282 390283 390284	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02 < 0 02 < 0 02 < 0 02 < 0 02 < 0 02	0 2 0 2 0.2 < 0 2 < 0 2	1.95 1 89 1 75 1 73 1 90	308 224 230 186 180	< 10 < 10 < 10 < 10 < 10 < 10	160 180 170 210 280	0 5 0 5 0 5 0 5 0 5	2 < 2 4 6 2	0.37 0 38 0.39 0 48 0 44	15 10 20 10 0.5	24 24 25 28 26	186 166 212 203 178	37 35 36 34 36	3 32 3 13 3 30 3 46 3 30	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.09 0 10 0 10 0 10 0 10 0 12	10 < 10 < 10 < 10 < 10 10	1 25 1 33 1 70 1 82 1 65
390285 390286 390286 390289 390291 390291	2259400 2259400 2259400 2259400 2259400 2259400	< 0.02 0 08 0 10 < 0 02 < 0 02	< 0 2 < 0 2 < 0 2 0 2 0 2 0 4	1.38 1 30 1 61 1 46 1 65	112 6 2 16 24	< 10 < 10 < 10 < 10 < 10 < 10	180 160 190 160 190	05 <05 05 05 05	2 4 < 2 2 2	0 32 0.25 0 26 0 50 0 69	05 <05 <05 35 40	20 13 15 11 12	177 84 93 76 87	27 26 30 30 37	2 66 2.21 2 53 2 31 2.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0 10 0 13 0 16 0 12 0 10	< 10 < 10 < 10 10 20	1 35 0 76 0 96 0 71 0 75
390293 390294 390295 390295 390296 390296 390297	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02 < 0.02 0.02 0 04 < 0 02	0 2 < 0 2 0 4 0 2 < 0.2	1 42 1.69 0 78 1.67 2 01	14 14 12 32 30	< 10 < 10 < 10 < 10 < 10 < 10	140 180 100 100 170	05 05 <05 10 10	< 2 2 < 2 < 2 < 2 < 2 < 2	0 62 0 73 0 52 0 34 0 34	2 5 2 5 2 5 3 0 3 0	12 12 6 22 19	98 98 44 332 203	30 37 21 60 54	2 37 2 51 1 29 4 54 4 18	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0 05 0 07 0 02 0.20 0 30	20 30 10 10	0 78 0 84 0 40 1 07 1 23

CERTIFICATION

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984 0221 FAX 604 984 0218

TO HEARTY STELLA

BOX 81 WATSON LAKE YT Y0A 1C0

+

ست_س مر مسم ر

r

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

SAMPLE 390250 390252 390255 390256 390256 390258	PREP CODE 2259400 2259400 2259400 2259400	Mn ppm 315 300	Ho ppm 2	Na %	Ni ppn	P	Pb	•										
390252 390255 390256	2259400 2259400	300	2			ppn	ppa	S S	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D D	V ppm	W ppm	Zn ppm	
390255 390256	2259400			0 03	167	850	8	0 07	2	6	41	0 09	< 10	< 10	73	< 10	66	
390256			1	0 03	107	640	8	0 03	< 2	8	25	0 13	< 10	< 10	77	< 10	52	
	1 77284001	345	2	0 02	112	750 670	6	0 05	< 2 2	7	40 28	0 10	< 10	< 10	75 80	< 10	56 52	
	2259400	375 370	1	0 03 0 03	114 118	700	6	0 04	< 2	8 8	26	0 13 0 14	< 10 < 10	< 10 < 10	79	< 10 < 10	52	
390259	2259400	335	1	0 03	120	700	6	0 04	< 2	7	25	0.12	< 10	< 10	71	< 10	48	
390260	2259400	530	1	0 02	59	730	10	0 03	< 2	5	15	0 15	< 10	< 10	66	10	80	
390251	2259400	350	< 1	0 03	130	620	6	0 04	< 2	8	27	0.13	< 10	< 10	76	< 10	48	
390262 390264	2259400 2259400	345 345	1	0 03	124 104	620 630	2 10	0 03 0 02	< 2 < 2	8 9	24 21	0 12 0 14	< 10 < 10	< 10 < 10	76 84	< 10 < 10	48 56	
390265	2259400	315	2	0 03	101	550	6	0 02	< 2	8	21	0 13	< 10	< 10	77	< 10	52	
390266	2259400	475	< 1	0.03	132	630	6	0 02	< 2	6	12	0 12	< 10	< 10	72	< 10	62	
390267	2259400	515	< 1	0 02	139 144	610 610	9 6	0 02	< 2	7	14	0 11	< 10	< 10	59	< 10	66	
390268 390269	2259400 2259400	520 475	1 < 1	0 03 0 03	144	660	8	0 01	< 2	2	14 15	0 13 0 13	< 10 < 10	< 10 < 10	74 78	10 10	72 68	
390270	2259400	4590	3	0 01	301	810	6	0 05	6	3	23	0 03	< 10	< 10	52	< 10	92	
390271	2259400	3860 3610	1	0 01	410 462	680 450	8 2	0 03	2	4 5	17 16	0.03	< 10 < 10	< 10	48 62	< 10 < 10	92 88	
390272 390273	2259400	2210	1	0 02	409	450	10	0 05	< 2	5	16	0 08	< 10	< 10 < 10	53	< 10	112	
390274	2259400	1760	2	0.01	345	790	6	0 05	2	4	20	0 04	< 10	< 10	45	< 10	102	
390275	2259400	1520	2		255	740	6	0 07	2	5	24	0 07	< 10	< 10	61	30	106	
390276	2259400	1150	1	0 01	265	860	8	0 06	2	5	24	0.04	< 10	< 10	47	10	112	
B90277	2259400	NOCKCO 730	мосжед З	NotRed 0 02	NotRcd 258	NotRed 840	NotRcd 6	NotRed : 0 07	NotRed 1 < 2	NOERCA I S	lotRcd 29	NotRed 0 05	< 10	NotRed 1 < 10	48	NotRed 1 20	112	
390278 390279	2259400	1120	2		264	780	Å	0 06	2	4	27	0 05	< 10	< 10	45	< 10	112	
390280	2259400	915	2	0 01	287	800	6	0.06	< 2	5	25	0 04	< 10	< 10	44	10	104	
390281	2259400	740	1	0 01	293	730	6	0 05	2	5	29	0 05	< 10	< 10	46	< 10	90	2
390282	2259400	885 945	<1	0.02	311 335	750 700	4	006	< 2	5 6	27 31	0 05	< 10 < 10	< 10 < 10	47 51	< 10 10	104 90	
390283 390284	2259400	695	< 1	0 02	313	680	8	0 05	4	6	29	0 06	< 10	< 10	52	< 10	86	
390285	2259400	440	< 1	0.01	228	540	4	0 03	< 2	4	20	0 05	< 10	< 10	44	10	64	
390286	2259400	370	1	0 01	90	720	6	0 01	2	4	11	0 07	< 10	< 10	47	< 10	50	
390289	2259400	410	1	0 01	108	730	6	0 01	< 2	5	13	0 09	< 10	< 10	56	< 10	60	
390291 390292	2259400 2259400	330 365	13	0 01 0 02	112 139	530 600	14 14	0 05 0 08	< 2 2	3	29 39	0 04 0 04	< 10 < 10	< 10 < 10	37 44	< 10 < 10	108 154	
390293	2259400	275	3	0 02	128	580	4	0 06	< 2	3	36	0 03	< 10	< 10	42	< 10	116	
390294	2259400	270	4	0.03	141	690	8	0 08	< 2	3	43	0 03	< 10	< 10	47	< 10	140	
390295	2259400	160	1	0.01	77	420	6	0 04	< 2	1	24	0 01	< 10	< 10	23	< 10	70	
390296 390297	2259400 2259400	400 400	5 9	0 03 0 04	232 181	580 600	12 14	0 10 0 11	2 2	6 6	27 36	0 05 0 06	< 10 < 10	< 10 < 10	92 101	< 10 < 10	170 186	

CERTIFICATION

Analytical Chemists Geochemists * Registered Assayers

212 Brooksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984 0221 FAX 604-984 0218

TO HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Page Number 2 A Total Pages 2 Certificate Date 21 NOV-2001 Invoice No I0128689 P O Number Account MPR

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON


· • • • • • • • • • • • • • • • • • • •				•						CE	RTIF	CATE	OF A	NAL	(SIS	4	0128	689	*****	
SAMPLE	PREP CODE	Weight Kg	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Bo	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppn	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg S
390298 390299 390300 390327 390344	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02 < 0 02 < 0 02 < 0 02 < 0 02 < 0 02	0 6 0 6 0 2 < 0 2 0 2	1 96 2 02 2 13 1 73 1 89	32 34 34 28 488	< 10 < 10 < 10 < 10 < 10 < 10	160 170 190 220 140	1 0 1 0 1 0 5 0 5	< 2 < 2 < 2 < 2 < 2 < 2	0 38 0 38 0 38 0 31 0 41	30 30 30 51 10	18 18 19 12 19	135 170 151 65 89	48 49 51 35 27	3.76 3 97 4 09 2 93 3 07	< 10 < 10 < 10 < 10 < 10 < 20	< 1 < 1 < 1 < 1 < 1	0 22 0 26 0 30 0 46 0 19	10 10 10 < 10 10	1 15 1 18 1 24 0 75 1 28
390345 390346 390347 390348 390351	2259400 2259400 2259400 2259400 2259400 2259400	0.06	< 0 2 0 4 0 4 < 0 2 0 8	1 23 1 43 1 77 1.08 1 66	8 102 8 4 14	< 10 < 10 < 10 < 10 < 10 < 10	160 340 210 90 150	< 0 5 0 5 0 5 < 0.5 0 5	< 2 < 2 < 2 6 2	0 23 0 31 0 28 0 28 0 81	< 0.5 0 5 < 0 5 < 0 5 < 0 5 4 0	13 50 16 17 11	74 345 109 146 80	26 15 33 23 53	2 16 6 17 2 69 1.85 2 23	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0 13 0.03 0 20 0.12 0 12	< 10 < 10 < 10 < 10 < 10 40	0 73 1.27 1 10 1 03 0 93
390352 390353 390354 390355 390355 390356	2259400 2259400 2259400 2259400 2259400 2259400	0 02 0 02 < 0 02 < 0 02 < 0 02 < 0 02	0 6 0 4 0 6 0 6 < 0 2	1 85 1.50 1 50 1 71 1 89	26 20 20 22 6	< 10 < 10 < 10 < 10 < 10 < 10	160 160 160 170 210	0 5 0-5 0 5 0 5 0 5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0 56 0 60 0.65 0 70 0 25	4 0 3 0 3 5 3 5 < 0 5	16 12 13 14 14	102 80 78 82 73	46 32 36 37 39	3 01 2.35 2 53 2 64 3.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0 19 0 09 0 09 0 10 0 57	10 10 20 20 < 10	1 15 0 81 0 85 0 96 0 78
390357 390358 390359 390362 390363	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02	< 0 2 < 0.2 0 2 < 0 2 < 0 2 < 0 2	1 87 1 71 1 86 2 00 1 73	22 10 12 20 10	< 10 < 10 < 10 < 10 < 10 < 10	280 230 230 250 250 220	0 S 0 S 0 S 0 S 0 S	2 < 2 < 2 2 < 2 < 2	0 26 0 24 0 30 0 36 0 31	< 0 5 < 0 5 < 0 5 < 0 5 < 0 5 < 0 5	14 12 12 14 12	63 63 73 81 68	57 38 40 45 40	3-42 2 98 3 00 3 37 3 13	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0 64 0 54 0 45 0 49 0 50	< 10 < 10 10 10 < 10	0 75 0 72 0 71 0 76 0 67
390364 390365 390366 390367 390368	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02 < 0 02	< 0 2 < 0 2 < 0 2 < 0 2 < 0 2 < 0 2 < 0 3	1 71 1 75 1 72 0 78 0 32	22 18 18 18 26	< 10 < 10 < 10 < 10 10 30	210 230 210 110 80	6 5 0 5 0 5 0 5 0 5	< 2 2 < 2 < 2 < 2 < 2	0 29 0 32 0 33 0 95 1 78	< 0 5 < 0 5 < 0.5 < 0 5 < 0 5 < 0 5	12 12 12 42 46	69 56 67 212 440	37 35 34 17 14	2 94 2 95 2 86 3 06 3.26	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 2	0 42 0 45 0 39 0 14 0 01	< 10 < 10 < 10 < 10 < 10 < 10	0 65 0,68 0 67 6 61 8,94
390369 390370 390371 390372 390373	2259400 2259400 2259400 2259400 2259400 2259400	< 0 02 < 0 02	0 6 0 2 < 0 2 < 0 2 < 0 2 0 2	1 60 2 10 1 90 1.89 1 35	44 48 40 40 32	< 10 < 10 < 10 < 10 < 10 < 10	150 200 160 130 150	15 20 20 15 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0 47 0 60 0 48 0 46 0 55	05 <05 <0.5 05 <05 <05	18 12 12 9 23	139 124 56 60 194	33 37 34 29 28	3 01 3 27 3.16 2 90 3 21	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 4 1 7	0 33 0.35 0 36 0.25 9 30	10 10 10 10 < 10	2 23 1.12 0.61 0 62 3.27
390374 390375 390376 390377 390378	2259400 2259400 2259400 2259400 2259400 2259400	< 0.02	< 0 2 0 2 < 0 2 0 8 1 4	1.63 1 55 1 61 1 63 1 90	32 22 32 30 28	< 10 < 10 < 10 10 < 10	210 170 190 170 220	1 5 1 0 1 0 0 5 1 0	< 2 2 < 2 < 2 < 2 < 2 < 2	0 53 0 42 0 44 0 33 0 32	< 0 5 < 0 5 < 0 5 < 0 5 < 0 5 < 0 5	19 17 17 20 15	165 158 138 177 110	31 31 43 63 37	3 14 3.06 3 31 2.60 2.90	< 10 < 10 < 10 < 10 < 10 < 10	8 < 1 5 < 1 4	0 31 0.28 0 40 0 08 0.21	< 10 < 10 < 10 < 10 < 10 10	2.05 1.85 1 89 1.71 1 24
390403 390407	2259400 2259400	0 02 0 04	< 0 2 < 0 2	1 24 1 20	18 24	10 < 10	90 110	05 05	2 < 2	0 34 0 37	< 0 5 < 0 5	20 19	169 118	29 28	2.21 2 77	< 10 < 10	< 1 3	0 14 0.12	< 10 < 10	1.24 1 10
Ĺ						818-1-1-1-1-1-1-1-1										·····		<u></u>		

Analytical Chemists Geochemists * Registered Assayers 212 Brooksbank Ave, North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984 0221 FAX 604 984 0218

To HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Γ.

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

.

										CERTIFICATE OF ANALYSIS A0128689								89
SAMPLE	PREP CODE	Ka PPm	Mo ppm	Na %	Ni ppm	ppa	Pb ppa	S *	Sb ppn	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm	
390298	2259400	345	8	0 04	161	630	12	0 10	< 2	6	35	0 06	< 10	< 10	96	< 10	192	
390299	2259400	355	9	0 04	170 171	580 610	10 14	0 11 0 11	2	6 6	38 42	0 06 0 06	< 10 < 10	< 10 < 10	97 105	< 10 < 10	194 208	
390300 390327	2259400	380 560	10 1	004 002	53	730	5	0 02	< 2	5	42 15	0 15	< 10	< 10	66	< 10	76	
390344	2259400	355	1	0 01	244	870	16	0 06	4	4	34	0 05	< 10	< 10	45	< 10	124	
390345	2259400	360	1	0 01	87	720	6	0.01	< 2	4	10	0 07	< 10	< 10	47	< 10	52	······································
390346	2259400	5470	3	0.01	361	790	2	0 04	2	3	27	0 03	< 10	10	52	< 10	92	
390347	2259400	440	< 1	0 01	119	660	8	0 01	< 2	6	14	0 11	< 10	< 10	60	< 10	64	
390348 390351	2259400	275 350	< 1 4	0 03 0 03	137 146	660 590	< 2 · 10	C 0 01 0 07	< 2 2	3	9 44	0 09 0 05	< 10 < 10	< 10 < 10	45 70	< 10 < 10	22 190	
390352	2259400	320	6	0 03	160	650	10	0 10	4	5	40	0 05	< 10	< 10	76	< 10	186	
390353	2259400	345	5	0 03	132	600	6	0 07	2	3	36	0.04	< 10	< 10	59	< 10	152	
390354	2259400	370	5	0 03	143	590	8	0 07	< 2	3	38	0 04	10	< 10	65	< 10	176	
390355 390356	2259400	390 550	4	0 03 0.03	152 59	650 580	12 10	0 08 0 09	6 < 2	4 5	43 14	0 04 0 15	< 10 < 10	< 10 < 10	73 63	< 10 < 10	182 86	
390357	2259400	590	< 1	0 02	57	830	6	0 04	< 2	6	11	0 17	< 10	< 10	78	< 10	84	
390358	2259400	535	< 1	0 03	51	650	8	0 03	2	5	10	0 15	< 10	< 10	61	< 10	84	
390359	2259400	563	1	0 02	56	740	14	0.04	< 2	6	15	0 14	< 10	< 10	64	< 10	82	
390362 390363	2259400	660 610	< 1 < 1	0 02 0 02	57 49	790 790	6 8	0.04 0.02	< 2 < 2	7 6	19 15	0 15 0.15	< 10 < 10	< 10 < 10	73 72	20 < 10	84 86	
390364	2259400	580	1	0 02	50	740	8	0 03	< 2	5	13	0 13	< 10	< 10	66	< 10	82	
390365	2259400	600	< 1	0 02	47	740	10 6	0 03	< 2	6	13	0 14	< 10	< 10	66	< 10	80	
390366	2259400	535 765	< 1 < 1	0 01 0.01	47 591	720 290	12	0 03 0 01	< 2	5 6	14 30	0 13 0.05	< 10 < 10	< 10 < 10	64 31	< 10 < 10	74 52	
390367 390368	2259400 2259400	870	< 1		666	180	14		< 2	8		< 0 01	< 10	< 10	25	< 10	34	
390369	2259400	510	2	0 01	218	640	24	0 04	2	5	15	0 10	10	< 10	55	20	86	
390370	2259400	515	< 1	0.02	66	760	26	0 04	8	6	21	0 15	< 10	< 10	78	20	94	
390371	2259400	580 610	< 1 2	< 0 01 0 01	58 54	670 820	32 42	0 06	< 2 < 2	4	9 14	0 10 0 10	< 10 < 10	< 10 < 10	47 52	40 80	138 126	
390372 390373	2259400 2259400	665	1	0 01	280	600	16	0 02	8	5	11	0 09	< 10	< 10	54	< 10	74	
390374	2259400	575	< 1	0 01	187	590	18	0 02	2	6	16	0 10	10	< 10	59	10	70	
390375	2259400	530	3	0 01	158	560	20	0 02	< 2	5	15	0 10	< 10	< 10	57	30	68	
390376	2259400	545	< 1	-0 01	214	630	20 12	002	10 6	6	9	D 10	< 10	< 10	56	< 10	72	
390377 390378	2259400 2259400	270 440	< 1 4	0 01 0 01	387 132	570 750	12	0 03	< 2	6	11 12	0 05 0 11	< 10 < 10	< 10 < 10	43 63	< 10 < 10	50 76	
390403	2259400	310	< 1	0 01	163	750		< 0 01	12	4	10	0 10	10	< 10	53	< 10	34	
390407	2259400	620	2	0 02	152	730	8	< 0 0 <u>1</u>	< 2	4	10	Q 09	< 10	< 10	53	< 10	36	
					<u> </u>													

CERTIFICATION _

<u>______</u>

+

Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave , North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984 0221 FAX 604 984 0218

To HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Page Number 1 Total Pages 1 Certificate Date 26-NOV 2001 Invoice No I0128690 P O Number Account MPR

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

٠

						CERTIFIC	ATE OF A	A01	28690		
SAMPLE	PREP CODE	Weight Kg	Au ppb ICP-MS	Pt ppb ICP-MS	Pd ppb ICP-MS						
390251 390253 390257 390260 390263	2359400 2359400 2359400 2359400 2359400 2359400	0.02 0.02 0.02 0.02 0.02	6 1 4 < 1 17	5.0 2.0 1.5 1.0 2.5	3 2 1 1 2						
390301 390302 390303 390304 390305	2359400 2359400 2359400 2359400 2359400 2359400	0.02 0.02 0.02 0.02 0.02	40 3800 75 12 540	3.0 35 6.5 8.0 2.0	2 3 2 3 1						
390306 390307 390308 390309 390310	2359400 2359400 2359400 2359400 2359400 2359400	0.02 0.02 0.02 0.02 0.02 0.02	7 2 6 2 3	4.0 5.5 6.5 2 5 2.0	2 2 5 2 1						
									 	l	
			-					CERTIFICATIO	V	a.	

ALS Chemex Aurora Laboratory Services Ltd

Analytical Chemists * Geochemists Registered Assayers

212 Brooksbank Ave North Vancouver British Columbia, Canada V7J 2C1 PHONE 604 984-0221 FAX 604-984-0218

To HEARTY, STELLA

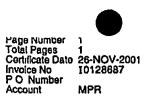
BOX 81 WATSON LAKE, YT Y0A 1C0

Page Number 1-B Total Pages 1 Certificate Date 07 SEP 2001 Invoice No I0123599 P O Number MPR Account

Project Comments ATTN STELLA HEARTY

					· ·.					CE	RTIFI	CATE	OF A	NALY	SIS	4	0123599	
Sample	PREP CODE	Mn ppm	Mo ppm	Na S	Ni ppm	P	bbur 5p	S %	Sb ppm	Sc ppm	Sr ppm	Tİ S	T1 ppm	D D D	V ppm	W ppm	Zn ppn	
(T-1) 390379 (T-2) 390380 (T-3) 390381 (T-4) 390382 (T-5) 390383	94069407 94069407 94059407 94059407 94059407 94059407	370 405 465 510 585	1 1 1 1 <	0 01 0 01 0 01 0 01 0 01 0 01	133 188 168 181 162	530 640 670 770 750		0 01 0 01 0 01 0 01 0 01	2 < 2 < 2 < 2 < 2 < 2	7 7 7 8 7	15 16 18 16 17	0 12 0 10 0 11 0 11 0 11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 65 69 71 65	< 10 < 10 < 10 < 10 < 10 < 10	78 66 74 82 80	
(T-6) 390384 (T-7) 390385 (T-8) 390386 (T-9) 390387	94069407 94069407 94069407 94069407 94069407 94069407	395 590 215 350 405	1 1 1 1 2	0 01 0 01 0 01 0 01 0 01 0 01	161 183 106 124 177	620 590 290 290 430	8 6 6 6 8	0 01 0 01 0 01 0 01 0 01 0 01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	7 8 5 5 7	17 14 12 16 17	0 11 0 08 0 06 0 05 0 11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 75 57 65 68	< 10 < 10 < 10 < 10 < 10 < 10	74 55 4B 40 62	
(T-10) 390388 (T-11) 390389 (T-12) 390390 (T-13) 390391 (T-14) 390392 (T-15) 390393	94069407 94069407 94069407 94069407 94069407	245 380 560 670 275	1 4 1 1	0 01 0 01 0 02 0 02 0 01 0 01	61 186 306 111 149	270 410 230 240 230	- 6 < 8 8	0 01 0 01 0 01 0 01 0 01 0 01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	, 8 9 10 7	B 13 13 7 11	0.11 0.12 0.10 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	58 76 68 87 69	< 10 < 10 < 10 < 10 < 10 < 10 < 10	40 56 48 60 56	
(T-16) 390394 (T-17) 390395 (T-18) 390396 (T-19) 390397 (T-20) 390398	94069407 94069407 94069407 94069407 94069407 94069407	295 355 280 275 320	2 4 1 4 1	0 01	126 112 141 200 132	230 300 180 140 510	6 < 5	0 01 0 01 0 01 0 01 0 01 0 01	2 2 < 2 < 2 < 2 2 2	6 7 6 5 7	11 13 9 8 14	0 08 0 10 0.10 0 09 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 72 69 64 85	< 10 < 10 < 10 < 10 < 10 < 10	56 52 54 38 66	
(T-21) 390399 (T-22) 390400 (T-23) 390422 (T-24) 390423	94069407 94069407 94069407 94069407 94069407 94069407	315 305 285 420 375	2	0 01 0 01 0 01 0 01 0 01 0 01	154 152 113 136 153	230 440 390 630 250	8 8 8 8	0 01 0 01 0 01 0 01 0 01	< 2 < 2 < 2 < 2 < 2 < 2	7 6 5 7 10	17 15 13 17 12	0 11 0 12 0 11 0.10 0 18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 91 83 64 116	< 10 < 10 < 10 < 10 < 10 < 10	54 76 72 58 68	
(T-25) 390424 (T-26) 390425	94069407	275	1	0 01	176	260	8	0 01	< 2	7	13	0 12	< 10	< 10	68	< 10	45	
																	()	1
<u> </u>	<u></u>					<u> </u>					·•••••••••••••••••••••••••••••••••••••			CERTIFIC			·Larl	.0

ALS Chemex


Analytical Chemists * Geochemists Registered Assayers

212 Brooksbank Ave, North Vancouver British Columbia, Canada V7J 2C1 PHONE 604-984-0221 FAX 604 984 0218

BOX 81 WATSON LAKE, YT Y0A 1C0

Project Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

								CERTI	FICATE	OF AN	ALYSIS	;	012868	7	
SAMPLE	PREP CODE	Weight Kg	ли ррв Рана		Cu %	ni %	Co %	S % (Leco)	F0 %	Аз Ұ	Pb %	Zn %			
4-1 6-1 6-2 6-3 6-4	281 277 281 277 281 277 281 277 281 277 281 277 281 277	2.22 1 62 1 80 2 44 2 06	20 45 280 155 15	< 1 1 4 5 1	0 005 0 020 0 015 0 015 0 015	0 010 < 0 005 < 0 005	< 0 002 0 002 < 0 002 < 0.002 < 0 002	0 04 0 91 1 99 1.09 0 30	05 35 26 21 19	< 0 01 < 0 01 0 01 < 0 01 < 0 01	< 0 02 < 0 02 < 0 02 < 0 02 < 0 02 < 0 02	< 0 01 0 01 < 0 01 < 0 01 < 0 01			
		2 06		1	0 025	0 005	0 004	0 30 0 78 0 01 0 01 0 01			< 0 02 < 0 02 < 0 02 < 0 02	< 0 01 0 02 < 0.01 < 0 01			

CERTIFICATION_

,

- 1 1

APPENDIX 4. GEOLOGICAL MAPPING / GEOCHEMISTRY BY T LIVERTON: DIARY FOR 2001

10th	July	Fly to Hasselberg Lake
11th	July	Fieldwork traverse possible grid baseline
12th	July	Fieldwork mapping and stream sediment sampling
13th	July	Fieldwork mapping and stream sediment sampling
14th	July	Fieldwork mapping and stream sediment sampling
15th	July	Fieldwork mapping and stream sediment sampling
16th	July	Heavy rain
17th	July	Fieldwork ridge traversing
18th	July	Fly back to Watson Lake
20th	July	Two flights into Hasselberg Lake (supplies)
21st	July	Fieldwork ridge traversing
22nc	l July	Fieldwork ridge traversing
23rd	July	Fieldwork ridge traversing
24th	July	Fieldwork ridge traversing
25th	July	Fieldwork traversing down creek back to Hasselberg
26th	July	Fly back to Watson Lake
29th	July	Fly to Hasselberg Lake, fieldwork
30th	July	Fly back to Watson Lake
6th	September	Fly to Hasselberg Lake
7th	September	Heavy rain
8th	September	Fieldwork detailed mapping of canyon
9th	September	Heavy rain
10th	September	Heavy rain
11th	September	Fieldwork detailed mapping of canyon (flying ban)
12th	September	Flying ban
13th	September	Fly back to Watson Lake

APPENDIX 5. GEOLOGICAL MAPPING AND GEOCHEMISTRY DIVISION OF TIME BETWEEN TARGET EVALUATION AND GRASSROOTS PROSPECTING

It is estimated that three days' work should be alloted to the grassroots programme to cover geochemistry and mapping around the fringes of the claim blocks and supervision of the Heartys' work The remainder of fieldwork (17 days) is applicable to the target evaluation programme

HEARTY. STELLA

BOX 81 WATSON LAKE. YT Y0A 1C0

ч	DA	Y MO.	YR.
*	3	<u> </u>	01
		CODE	PAG
		MPR	

STATEMENT OF ACCOUNT

·. .

DAY	MO.	YR.	TRANSAC	TION	INVOICE	NUMBER	DEBIT		ĊR	EDIT	BALANCE
	1.1.00.4.5					. –	-			· -	
01	NOV		BALANCE	FWRD				r. A			
15	NOV		INVOICE		1018			- 80			42.80
16			INVOICE		1012			- 35			90.15
19	NOV	1	INVOICE		1012		163				253.86
19	NOV	01	INVOICE		1012			- 86			316.72
.9	NOV NOV	01 01	INVOICE		I012		406 507				1231.30
21	NOV		INVOICE		1012	-	743				1974.95
26	NOA	01	INVOICE		1012		482				2457.47
:0 26			INVOICE		1012		369				2826.89
:0	NOV	01	INVOICE	·	10120	007V	307	*****			2020.07
'A'	мент	S R	ECEIVED	AFTER	NOV :	30 l	ILL AP	PEAI	R ON	NEXT	STATEMENT
				·			,	••			
			1			-					
							-	-		-	
						-					
										÷	
						-			•	÷ .	
	CURRENT		31 - 60 DAYS		61 - 90 DAYS		OVER 90 DAYS				
2	826.	89		0	(00	.0	_	DUE	: •\$	2826.89
TER	MS		15.0 % PE		n (00	<u> </u>				2826.89

1. 25 % PER MONTH (15. () % PER ANNUM) CHARGED ON OVERDUE ACCOUNTS.

CONTACT PRINTING 604-980-6052

C276157DMS

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A0123599

(MPR) - HEARTY, STELLA

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 07-SEP-2001.

SA	SAMPLE PREPARATION							
METHOD CODE	NUMBER SAMPLES	DESCRIPTION						
SCR-42 SCR-01 LOG-22 229		-180 micron screen - Save Minus Screen - Save Plus Charge Samples received without barcode ICP - AQ Digestion charge						
* NOTE 1:								

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. .o: HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Comments: ATTN: STELLA HEARTY

	ANALYTICAL PRO	DCEDURE	S	
METHOD NUMB CODE SAMPL		METHOD	DETECTION	UPPER LIMIT
WEI-21 26 Ag-ICP41 26 Al-ICP41 26 Ba-ICP41 26 Ba-ICP41 26 Ba-ICP41 26 Ba-ICP41 26 Ba-ICP41 26 Cd-ICP41 26 Cd-ICP41 26 Cd-ICP41 26 Cd-ICP41 26 Cu-ICP41 26 Ga-ICP41 26 Ga-ICP41 26 Ga-ICP41 26 Hg-ICP41 26 Mg-ICP41 26 Mn-ICP41 26 Mn-ICP41 26 Mn-ICP41 26 Mn-ICP41 26 Su-ICP41 26 Su-I	Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock K %: 32 element, soil & rock Hg ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock S %: 32 element, soil & rock Ni ppm: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock F ppm: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S ppm: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock S % ppm: 32 element, soil & rock	BALANCE ICP-AES	0.01 0.2 0.01 2 10 10 0.5 2 0.01 0.5 1 1 1 0.01 10 0.01 10 0.01 10 2 0.01 10 2 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 10 0.01 10 10 10 10 10 10 10 10 10	1000.0 100.0 15.00 10000 10000 10000 15.00 10000 10000 10000 10000 10.00 10.00 10.00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A0123527

(MPR) - HEARTY, STELLA

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 12-SEP-2001.

SA	SAMPLE PREPARATION						
METHOD CODE	NUMBER SAMPLES	DESCRIPTION					
PUL-31 LOG-22 3285	22	Pulv. <250g to >85%/-75 micron Samples received without barcode ICP-587 Tri Acid Dig'n Charge					

HEARTY, STELLA

BOX 81 WATSON LAKE, YT Y0A 1C0

Comments: ATTN: STELLA HEARTY

			OCEDURE	S	
METHOD	NUMBER SAMPLES		METHOD	DETECTION	UPPER LIMIT
WEI-21 Am-AA23 866 Ag-ICP61 Al-ICP61 Ba-ICP61 Ba-ICP61 Ca-ICP61 Cd-ICP61 Cu-ICP61 Cu-ICP61 Mg-ICP61 Mg-ICP61 Mg-ICP61 Ni-ICP61 Sb-ICP61 Sb-ICP61 Sb-ICP61 Sb-ICP61 V-ICP61 V-ICP61 Zn-ICP61	20 20 22 22 22 22 22 22 22 22 22 22 22 2	Weight of received sample Au-AA23 : Au ppb: Fuse 30 grams Fusion weight in grams Ag ppm:Tri Acid Dig. ICP Package Al %:Tri Acid Dig. ICP Package Ba ppm:Tri Acid Dig. ICP Package Be ppm:Tri Acid Dig. ICP Package Ca %: Tri Acid Dig. ICP Package Ca %: Tri Acid Dig. ICP Package Ca ppm:Tri Acid Dig. ICP Package Cr ppm:Tri Acid Dig. ICP Package Cr ppm:Tri Acid Dig. ICP Package Fe %:Tri Acid Dig. ICP Package K %:Tri Acid Dig. ICP Package K %:Tri Acid Dig. ICP Package Fe %:Tri Acid Dig. ICP Package Mg %:Tri Acid Dig. ICP Package Mg %:Tri Acid Dig. ICP Package Na %:Tri Acid Dig. ICP Package Na %:Tri Acid Dig. ICP Package Ni ppm:Tri Acid Dig. ICP Package F ppm:Tri Acid Dig. ICP Package S %:Tri Acid Dig. ICP Package F ppm:Tri Acid Dig. ICP Fackage F ppm:Tri Acid Dig. F package F ppm:Tri Acid Dig. F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F ppm:F		0.01 5 0.01 0.5 10 0.5 2 0.01 0.5 1 1 0.01 0.01 5 1 0.01 1 10 2 0.01 5 1 0.01 2 0.01 2 0.01 1 1 0.01 2 0.01 5 1 0 0.01 0.5 2 0.01 0.5 1 0 0.5 1 0 0.01 0.5 1 0 0.01 0.	1000.0 1000 60.00 100 100000 100000 10000 10000 10000 10000 10

ALS Chemex

Aurora Laboratory Services Ltd Analytical Chemists * Geochemists Registered Assayers 212 Brooksbank Ave North Vancouver British Columbia Canada V7J 2C1 PHONE 604 984 0221 FAX 604 984 0218

HEARTY.	STELLA

BOX 81 WATSON LAKE YT Y0A 1C0

Comments ATTN STELLA HEARTY

CERT	IFICA [.]	TE A0128516			ANALYTICAL PR	OCEDURE	S	
PR) HEART Dject	Y, STELL	Α		NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
			WEI-21	4	Weight of received sample	BALANCE	0 01	1000 0
		o our lab in Vancouver, BC	Ag-ICP41	4	Ag ppm 32 element, soil & rock	ICP-AES	02	100 0
is report v	was prin	nted on 16-NOV-2001	A1-ICP41	4	Al % 32 element, soil & rock	ICP-AES	0 01	15 00
			As-ICP41	4	As ppm 32 element, soil & rock	ICP-AES	2	10000
			B-ICP41	4	B ppm 32 element, rock & soil	ICP-AES	10	10000
			Ba-ICP41	4	Ba ppm 32 element, soil & rock	ICP-AES	10	10000
			Be-ICP41	4	Be ppm 32 element, soil & rock	ICP-AES	0 5	100 0
			B1-ICP41	4	B1 ppm 32 element, soil & rock	ICP-AES	2	10000
C A		PREPARATION	Ca-ICP41	4	Ca % 32 element, soil & rock	ICP-AES	0 01	15 00
34		- FREFARATION	Cd-ICP41	4	Cd ppm 32 element, soil & rock	ICP-AES	0 5	500
			Co-ICP41	4	Co ppm 32 element, soil & rock	ICP-AES	1	10000
			Cr-ICP41	4	Cr ppm 32 element, soil & rock	ICP-AES	1	10000
METHOD	NUMBER		Cu-ICP41	4	Cu ppm 32 element, soil & rock	ICP-AES	1	10000
CODE	SAMPLES	DESCRIPTION	Fe-ICP41	4	Fe % 32 element, soil & rock	ICP-AES	0 01	15 00
			Ga-ICP41	4	Ga ppm 32 element, soil & rock	ICP-AES	10	10000
			Hg-ICP41	4	Hg ppm 32 element, soil & rock	ICP-AES	1	10000
SCR-42	4	-180 micron screen - Save Minus	K-ICP41	4	K % 32 element, soil & rock	ICP-AES	0 01	10 00
SCR-01	4	Screen - Save Plus Charge	La-ICP41	4	La ppm 32 element, soil & rock	ICP-AES	10	10000
LOG-22	4	Samples received without barcode	Mg-ICP41	4	Mg % 32 element, soil & rock	ICP-AES	0 01	15 00
229	4	ICP - AQ Digestion charge	Mn-ICP41	4	Mn ppm 32 element, soil & rock	ICP-AES	5	10000
			Mo-ICP41 Na-ICP41	4	Mo ppm 32 element, soil & rock	ICP-AES	1 0 01	10000
	1		Ni-ICP41		Na % 32 element, soil & rock Ni ppm 32 element, soil & rock	ICP-AES ICP-AES	1	10 00 10000
	1		P-ICP41	7	P ppm 32 element, soil & rock	ICP-AES	10	10000
	1		Pb-ICP41	-	Pb ppm 32 element, soil & rock	ICP-AES	2	10000
	l		S-ICP41	4	S % 32 element, rock & soil	ICP-AES	0 01	10 00
			Sb-ICP41	Ā	Sb ppm 32 element, soil & rock	ICP-AES	2	10000
			Sc-ICP41	4	Sc ppm 32 elements, soil & rock		1	10000
	i		Sr-ICP41	4	Sr ppm 32 element, soil & rock	ICP-AES	1	10000
DTE 1.			Ti-ICP41	4	Ti % 32 element, soil & rock	ICP-AES	0 01	10 00
	ı		T1-ICP41	4	T1 ppm 32 element, soil & rock	ICP-AES	10	10000
22 olomo		package is suitable for	U-ICP41	4	U ppm 32 element, soil & rock	ICP-AES	10	10000
		soil and rock samples	V-ICP41	4	V ppm 32 element, soil & rock	ICP-AES	1	10000
		the nitric-agua regia	W-ICP41	4	W ppm 32 element, soil & rock	ICP-AES	10	10000
		ly incomplete are Al,	Zn-ICP41	4	Zn ppm 32 element, soil & rock	ICP-AES	2	10000
		K, La, Mg, Na, Sr, Ti,			· ·			
W W								
			1					
			4		1			

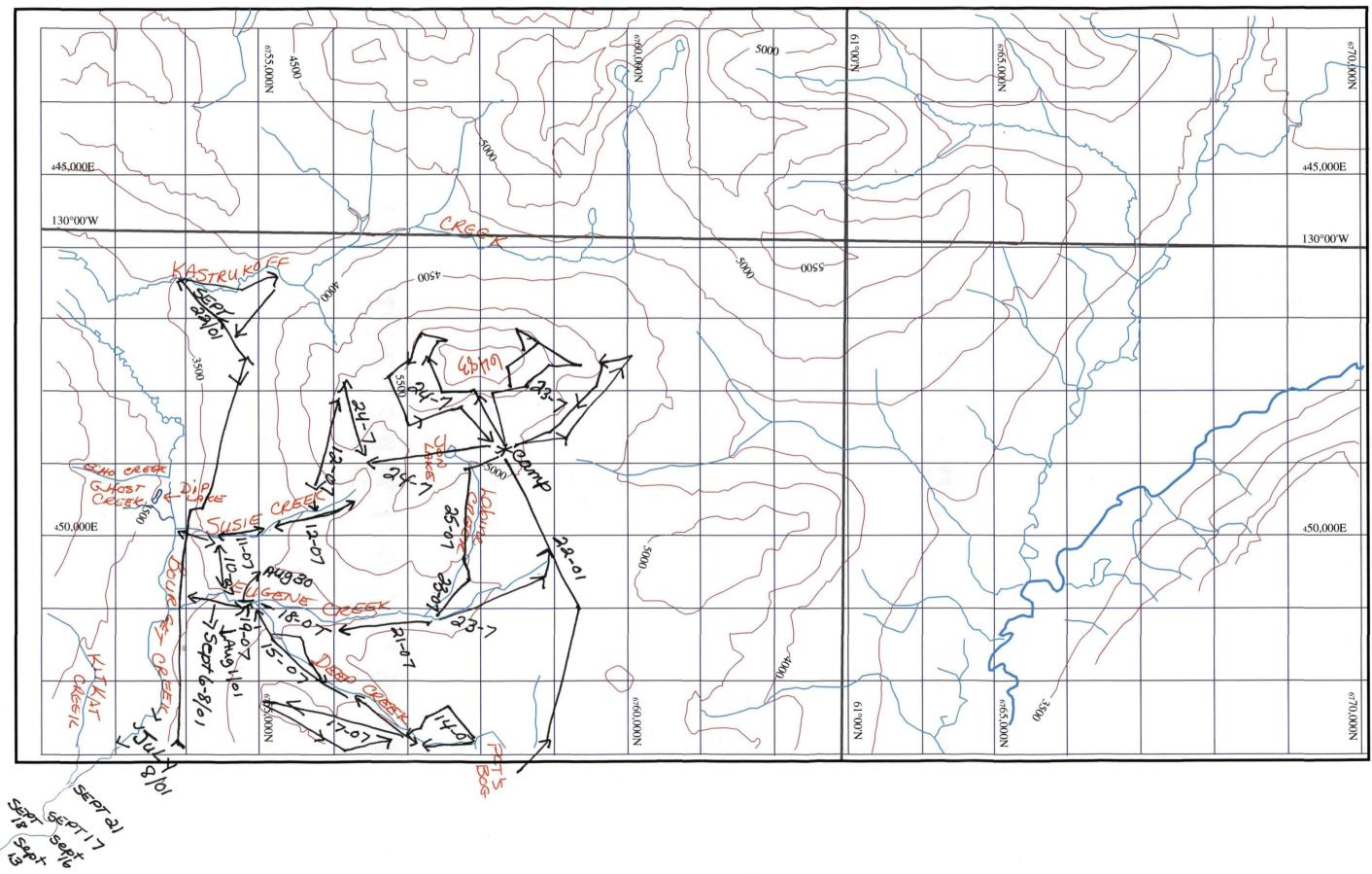
Analytical Chemists Geochemists Registered Assayers 212 Brooksbank Ave, North Vancouver British Columbia, Canada V7J 2C1 PHONE 604 984-0221 FAX 604 984-0218

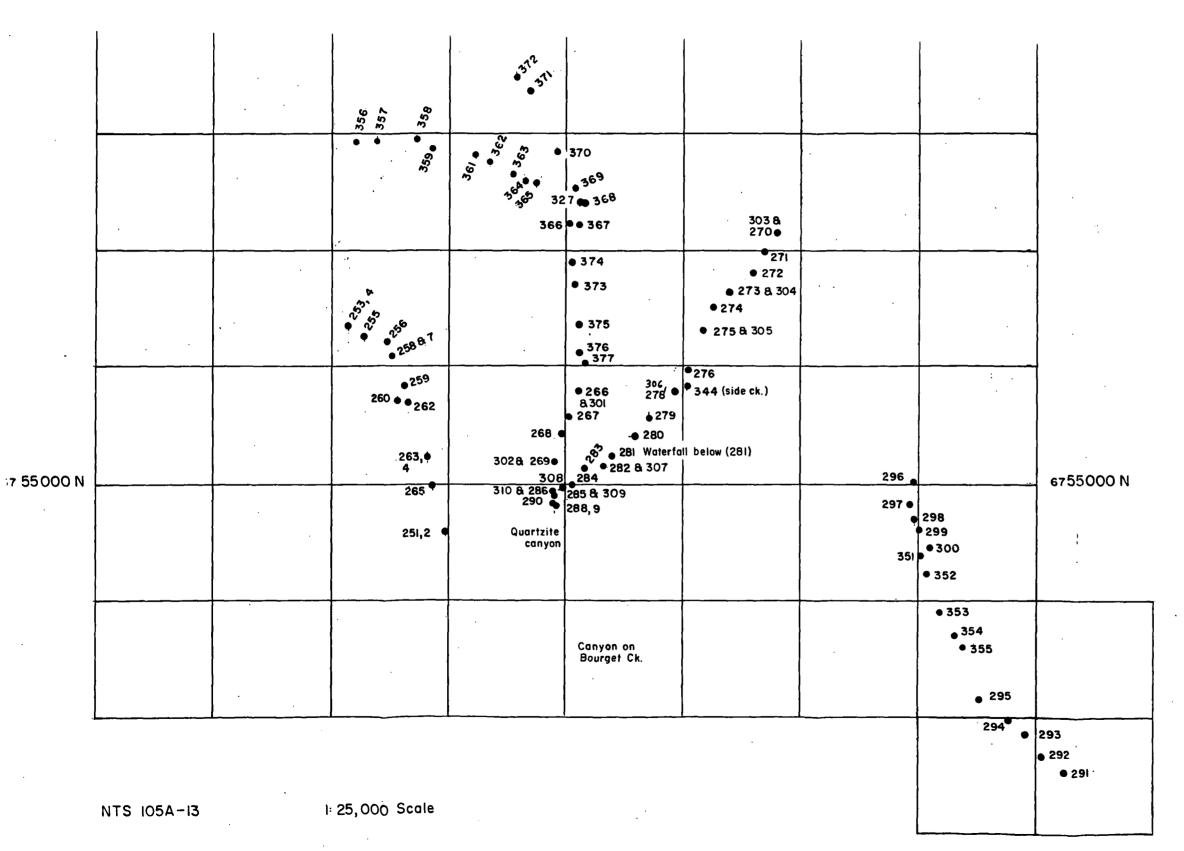
BOX 81 WATSON LAKE YT Y0A 1C0

A0128689

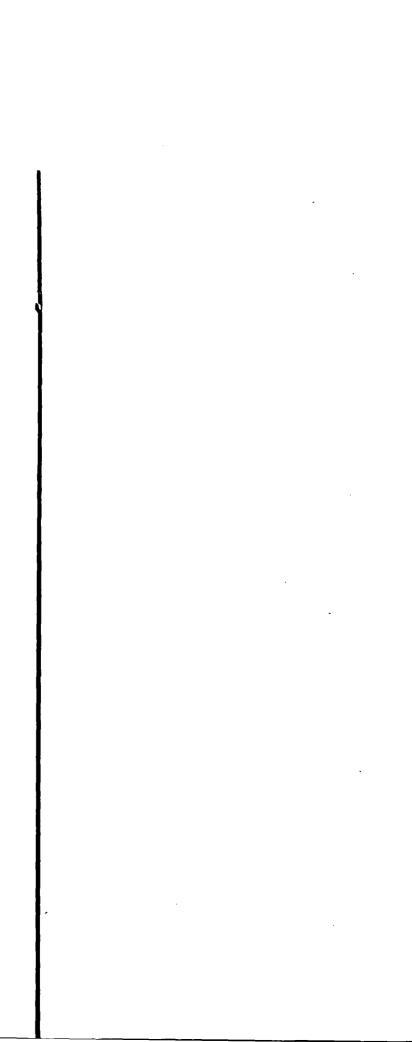
Comments ATTN STELLA HEARTY CC DR TIM LIVERTON

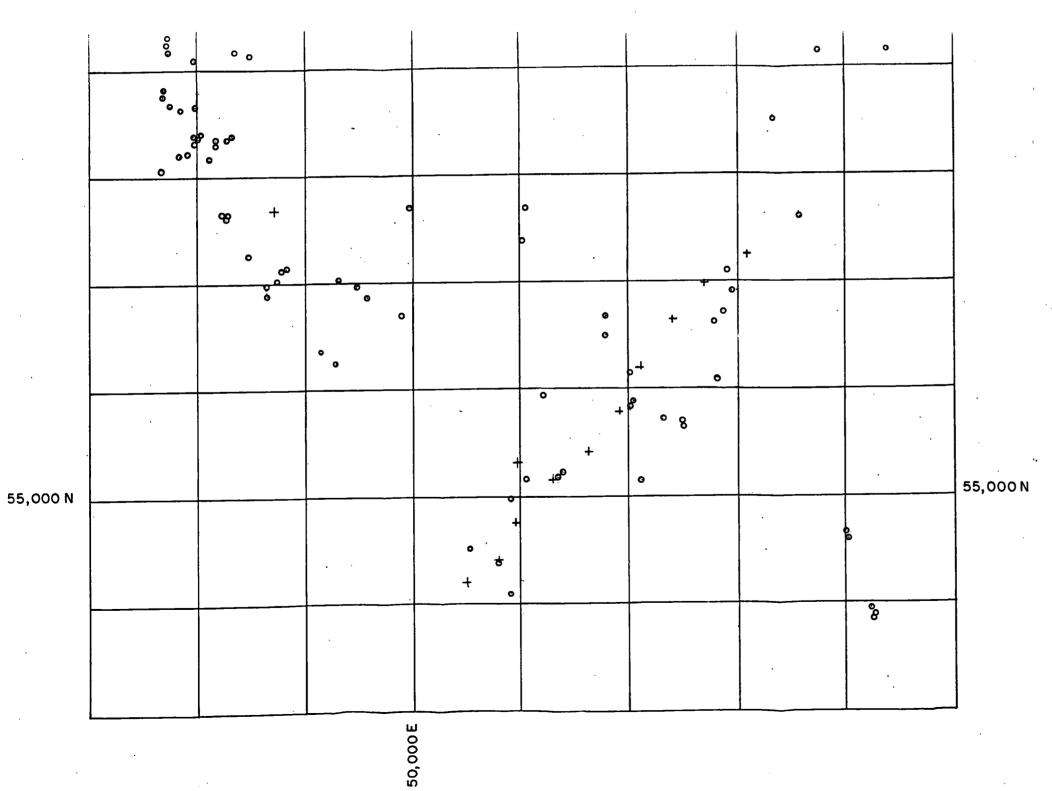
CERI	IFICA	FE A0128689
 MPR) HEART		A
roject O#		
		o our lab in Vancouver, BC hted on 21-NOV-2001
SA	MPLE	PREPARATION
METHOD CODE	NUMBER SAMPLES	DESCRIPTION
225 LOG-22 229		Run as received Samples received without barcode ICP - AQ Digestion charge
LOG-22	76	Samples received without barcode
LOG-22	76	Samples received without barcode

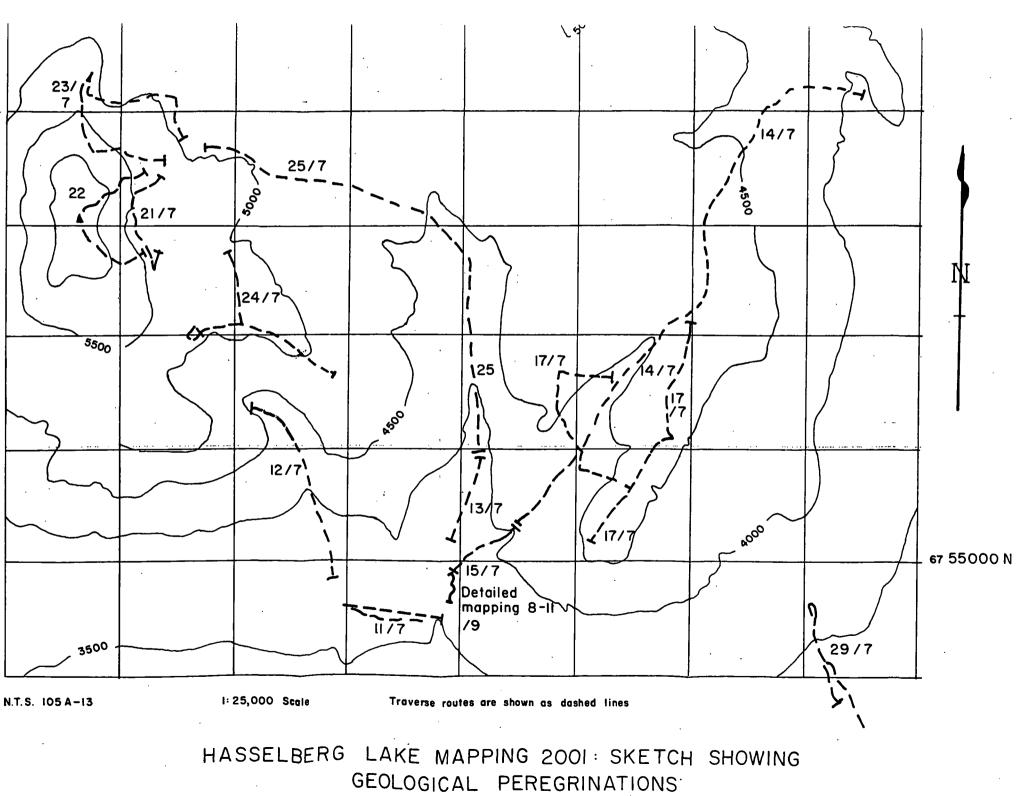

The 32 element ICP package is suitable for trace metals in soil and rock samples Elements for which the nitric-aqua regia digestion is possibly incomplete are A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W

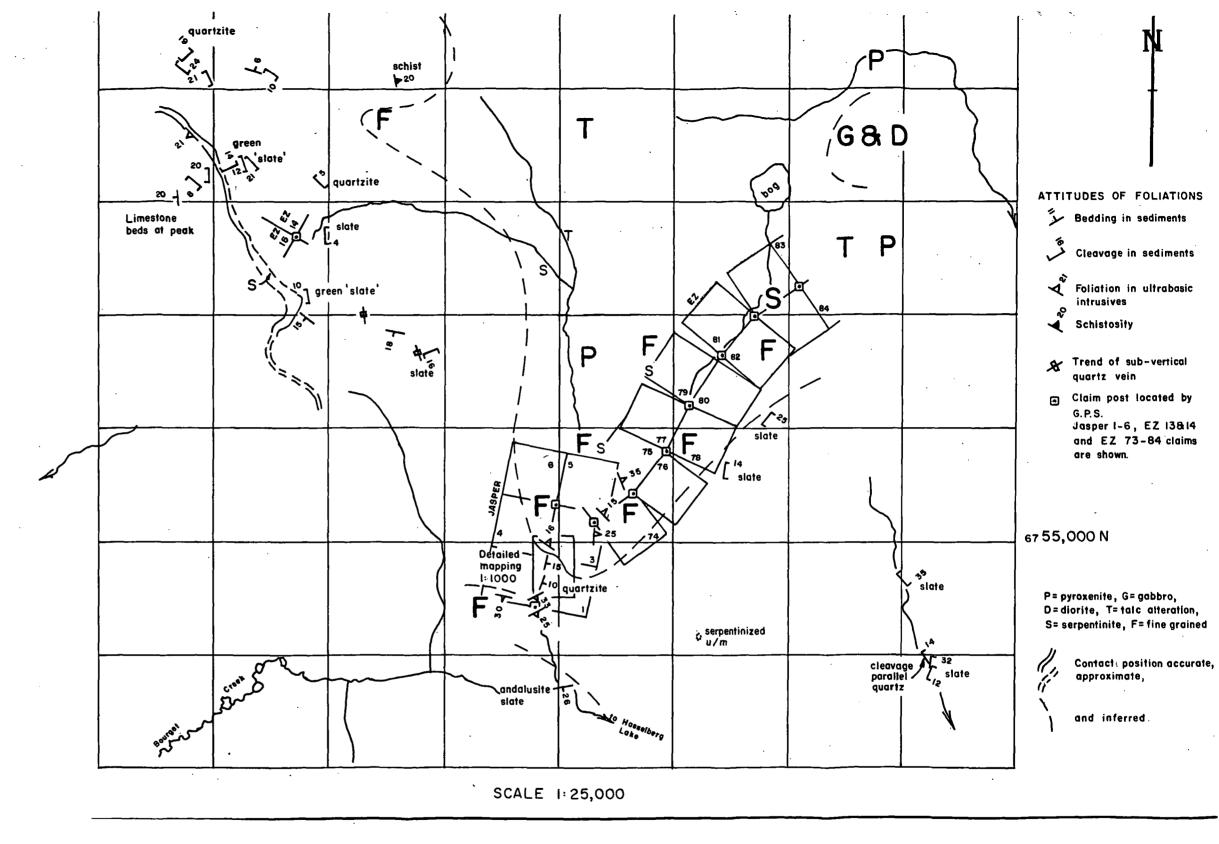

* NOTE

ANALYTICAL PROCEDURES

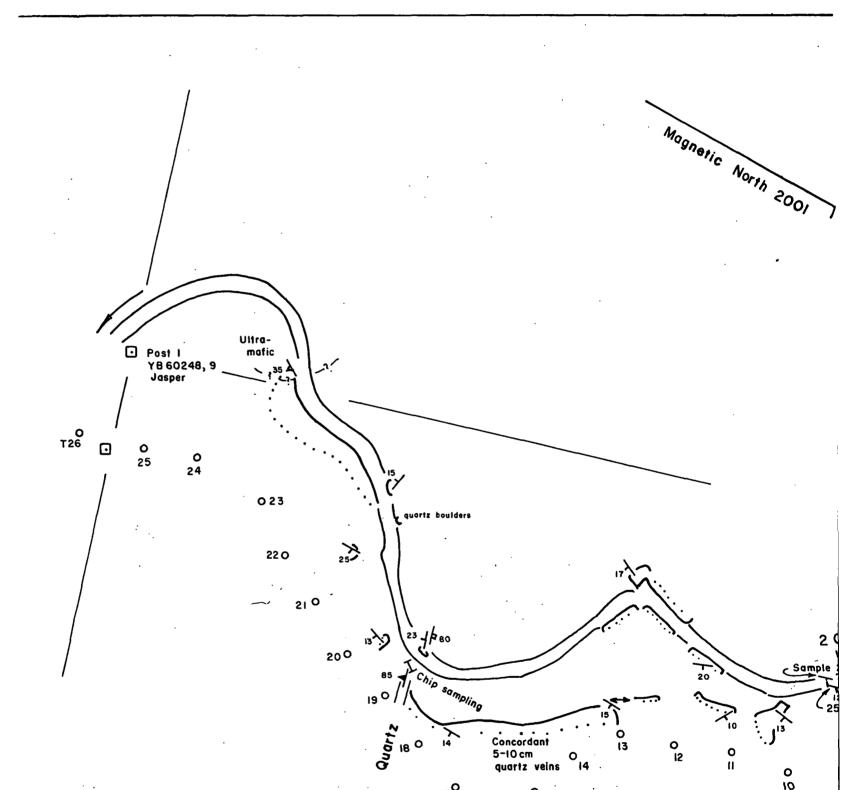

METHOD CODE	NUMBER SAMPLES	METHOD	upper Limit
	SAMPLES 76 76 76 76 76 76 76 76 76 76 76 76 76	METHOD BALANCE ICP-AES	

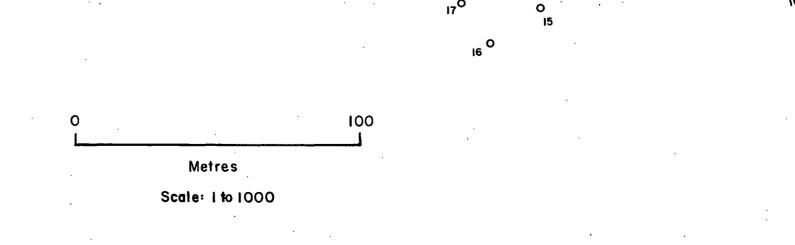



HASSELBERG LAKE GEOCHEMISTRY SKETCH SHOWING SAMPLE LOCATIONS

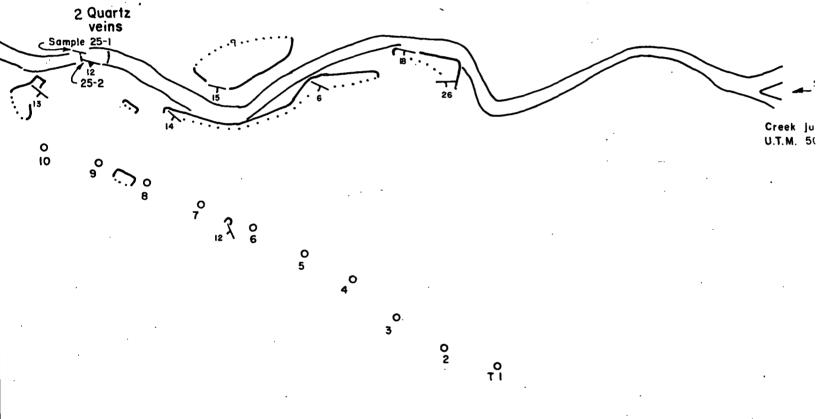

HASSELBERG LAKE REGION, NTS 105A-13 DATA POINTS:

GEOLOGY (CIRCLES) & CLAIM POSTS (CROSSES)




TLIVERTON, NOVEMBER 2001.

.


JASPER

Vorin 2001

Quartz

HASSELBERG LAKE AREA N.T.S. 105A-13 SPER CLAIMS: GEOLOGY, ROCK AND SOIL SAMPLIN T.Liverton October 2001

LEGEND

× 15

*∕*₅₀

Ο

^о т26

Creek bed

Rock exposure (cliffs, except for two localities in the by the quartz veins). Dots indicate approximate upp

Attitude of bedding

Jointing

Attitude of quartz veins Horizontal told axis

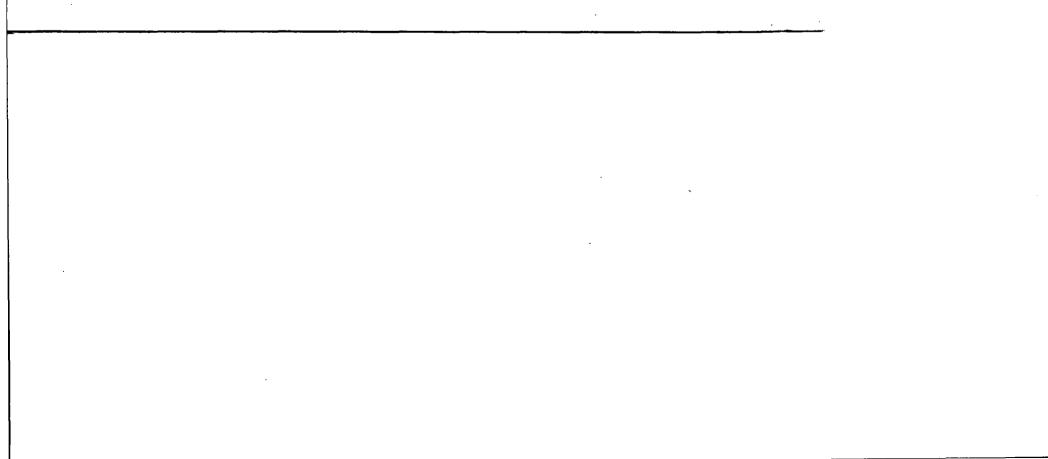
١

Claim posts

Soil sample location

Mapped using compass, tape and clinometer

Rock exposures in this canyon are entirely of quartzite,


except for the southernmost ultramafic outcrop.

)5A-13 OIL SAMPLING

bluff (not mapped)

Serpentinite outcrop on

Creek junction U.T.M. 50904E, 54916N

