Rimfire Minerals Corporation

2002 TECHNICAL REPORT ON THE CARPENTER PROJECT

Located in the Mayo Mining District NTS 106D/6, 11 64° 28' North Latitude 135° 20' West Longitude

-prepared for-DEPARTMENT OF ENERGY MINES & RESOURCES GOVERNMENT OF YUKON P O Box 2703 Whitehorse, Yukon, Canada Y1A 2C6

> -prepared by-Mark E Baknes, P Geo EQUITY ENGINEERING LTD. Suite 700, 700 West Pender Street Vancouver, British Columbia, Canada V6C 1G8 markb@equityeng bc ca www equityengineering com

December 2002

2002 TECHNICAL REPORT ON THE CARPENTER PROJECT

TABLE OF CONTENTS

10	INTRO	DUCTION	<u>Page</u> 1
20	PROPE	RTY TITLE	1
30	LOCAT	ION, ACCESS AND GEOGRAPHY	1
40	EXPLO	RATION HISTORY	1
50	EXPLO	RATION PROGRAM	2
60	REGIO	NAL GEOLOGY	2
70	PROPE	RTY GEOLOGY	2
	71 Lith	nology	2
	7 2 Alte	ration and Mineralization	3
80	SOIL G	EOCHEMISTRY	4
90	DISCUS	SSION AND CONCLUSIONS	5
APP	ENDICES	3	
Appe	endix A	Bibliography	
Appe	ndıx B	Rock Sample Descriptions	
Appe	ndıx C	Certificates of Analysis	
Appe	ndıx D	Geologist's Certificate	
LIST	OF TAB	LES	_
Table	e 7 2 1	Rock Sample Results	Page 3
Table	e 8 0 1	Soil Sample Results Carpenter Occurrence	4
LIST	OF FIGL	JRES	Following
Figur	e 1	Location Map	1
Figur	e 2	Claim Map	1
Figur	e 3	Regional Geology	1
Figur	e 4	Project Area Geology and Sample Locations	-Pocket-
Figur	e 5a	Pb (ppm) Geochemistry in Soils	4
Figur	e 5b	Zn (ppm) Geochemistry in Soils	4
Figur	e 5c	Ag (ppm) Geochemistry in Soils	4

1.0 INTRODUCTION

The Carpenter target area was selected for its potential to host mineralization similar to the Blende Zn-Pb-Ag carbonate hosted deposit (19 4 million tones grading 2 8% Pb, 3 04% Zn and 55 9 g/t Ag)(Robinson, 1995) located 30 km to the southeast (Figure 1) The Carpenter Ridge project area contains two documented mineral occurrences, the Silver Hill which was drilled in 1929 and 1990, and the Carpenter occurrence, which was explored in the 1920's The geological setting at Carpenter Ridge is very similar to that at the Blende, which is underlain by Proterozoic dolomite of the upper Gillespie Lake Group intruded by Proterozoic diorite and gabbro sills There is very little detailed information published on the Carpenter Ridge occurrences making an assessment difficult Rimfire Minerals Corporation (Rimfire) considered that new potential might be revealed by examining the Carpenter Ridge showings in the context of published data on the Blende A two-man, five-day field program was carried out on Carpenter Ridge in July The occurrences were examined and extensively sampled to obtain representative samples and determine the local controls on mineralization Area mapping was aimed at locating other areas of potential and extensions to known mineralization. Two reconnaissance soil lines were also established to investigate a southward extension to the mineralization at the Carpenter showing Equity Engineering Ltd was contracted to execute the 2002 Carpenter fieldwork and report on the results

2 0 PROPERTY TITLE

There are currently 13 Yukon Mining Leases covering the Silver Hill prospect (Figure 2) The Yukon Minfile maps have the location of the Silver Hill prospect misplotted 1.5 kilometres to the south of the actual location. This incorrect location wrongly indicates that the prospect is on open ground

30 LOCATION, ACCESS AND GEOGRAPHY

The Carpenter Ridge Project area is located approximately 65 km north of Keno at 64° 28' north latitude, 135° 20' west longitude (NTS 106D\6,11)(Figure 1) Access to the project area is achieved via helicopter from Mayo 105 km to the south The Wind River Trail, a winter access road, passes 20 km east of Carpenter Ridge The project area is situated in the Wernecke Mountains in north central Yukon and is bound on the south by Police Creek, on the east by Carpenter Creek, on the north by the Hart River, and on the west by Elliot Creek Topography is steep to moderate with elevations ranging from 900 metres in the valley bottoms to 1800 m on the most prominent peaks and ridges Tree line is at approximately 1200 m and all areas examined are well within the alpine with only minor grassy vegetation between extensive outcrops and felsenmeer

The Carpenter is subject to a northern continental climate, with short warm, summers and cold and dry winters Snow fall depths range between 2 and 3 m

40 EXPLORATION HISTORY

The Carpenter occurrence was first staked in 1922 and later restaked in 1927 and 1928 During this period several hand trenches were excavated that exposed the Carpenter occurrence The Silver Hill occurrences were first staked in 1923 with 9 claims Cominco optioned the claims in 1929 and performed hand trenching in 1930 and drilled 4 holes totalling 455 7 m and took the original claims to lease in 1931 The claims were acquired by Ventures Ltd, which added additional claims By 1952, through a series of transactions the claims became the property of Beaver River Silver Lead Mining Ltd Additional claims were taken to lease in 1956 and ownership transferred to what is now

Falconbridge Limited Big Creek Resources Ltd optioned the property in 1990 and added claims, and drilled 5 holes totalling 610 m

50 EXPLORATION PROGRAM

A five-day program of prospecting, mapping and rock sampling was conducted on the property A Mayo-based helicopter moved two men and a fly camp from the staging point at McQuesten Lake to Carpenter Ridge A magnetic declination of 27° 56' E was used for all compass measurements All maps and UTM coordinates are referenced to the 1927 North American Datum (NAD-27)

A total of 24 rock samples were taken and submitted for analysis Descriptions of the rock samples are attached in Appendix B A single silt sample was collected from the stream draining the Silver Hill occurrence to aid in the interpretation of regional silt sample data Sixteen soil samples were collected from the Carpenter occurrence area Sample sites were marked by orange and blue flagging and aluminum tags for rocks and Tyvek tags for soil samples All samples were analyzed by ACME Analytical Labs of Vancouver (Appendix C) Locations for all 2002 silt, soil and rock samples are plotted on Figure 4

60 REGIONAL GEOLOGY

The Carpenter Ridge project area is underlain by Proterozoic dolomite of the upper Gillespie Lake Group (Figure 3)(unit IPG)(Gordey, 1999), which forms the upper section of the Wernecke Supergroup, a Middle to Late Proterozoic shelf assemblage deposited during extension at the margin of ancestral North America (Thompson, 1986) Diorite dikes (unit MPH), dated at 1380 ± 4 Ma (Robinson, 1995), intrude the Gillespie dolomites The Proterozoic rocks are unconformably overlain by flat lying Paleozoic carbonates (CDB) exposed on the highest ridges This same regional setting persists to the southeast for a distance of 50 km in association with other Pb-Zn±Cu showings. The most significant occurrence is the Blende carbonate hosted Zn-Pb-Ag deposit located some 30 km southeast along this same regional trend Mineralization there is spatially associated with a mid-Proterozoic fault zone that crosscuts stromatolitic dolostones of the Gillespie Lake Group Recent work concludes that the controls on the largely replacement style mineralization are both stratigraphic and structural Many of the stromatolitic beds are mineralized and are best mineralized close to normal faults Lead isotope model ages indicate an age of 1 4 to 1 5 Ga for the deposit. This age is considered older or penecontemporaneous with the diorite sill complex The close spatial association of mineralization with the sills and the indications of high fluid temperatures suggest a genetic link between the sills and the mineralization (Robinson, 1995)

7 0 PROPERTY GEOLOGY

7 1 Lithology

The oldest lithologies in the target area belong to the Gillespie Lake Group The dominant lithology is orange to pinkish weathering silty dolostone (unit DO) (Figure 4) that ranges from massive to laminated and cross bedded Green and grey and locally maroon thinly laminated shale (unit SHL) is locally interbedded with the dolostone and forms discrete horizons. Green to grey fine-grained siltstones (unit SLT), transitional to the shale also occur as narrow sections. This silty material is a common constituent of the dolostone. The cross cutting diorites (unit DI) are generally dark green fine-grained intergrowths of chlorite- and epidote-replaced mafics that form resistant outcrops Limestone (unit LS) forms the ridge west of Silver Hill and is extensive north of the project area

LITHOLOGIC LEGEND (to accompany Figure 3)

MID-CRETACEOUS

mKS SELWYN SUITE plutonic suite of intermediate (g) to more felsic composition (q) and rarely syenitic (y) composition, equivalent felsic dykes (f), complete compositional gradation so that these designations are somewhat arbitrary

CARBONIFEROUS TO PERMIAN

CPT TSICHU thin- to medium-bedded, siliceous calcarenite, dolomite, sandy dolomite and minor grey quartzite, buff and grey weathering, thick-bedded, dark grey bioclastic limestone, black to silvery shale, minor chert, and chert-pebble conglomerate **(Tsichu)**

MISSISSIPPIAN

MK KENO HILL massive to thick-bedded quartz arenite, thin- to medium-bedded quartz arenite interstratified with black shale or carbonaceous phyllite, local scour surfaces and shale intraclasts, locally foliated and lineated **(Keno Hill Quartzite)**

DEVONIAN AND MISSISSIPPIAN

DME EARN complex assemblage of submarine fan and channel deposits (1), (5) within black siliceous shale and chert (2), (4) and including separated small occurrences of felsic volcanic rocks (3), barite common, and many occurrences of stratiform Pb-Zn

LOWER AND MIDDLE DEVONIAN

DG GOSSAGE assemblage consists of limestone and dolostone (1) and partly equivalent black limestone (2) and shale (3)

UPPER CAMBRIAN TO LOWER DEVONIAN

CDB BOUVETTE lower Paleozoic undivided carbonate (1) with locally named tongues(?) (2) and (3)

MIDDLE PROTEROZOIC

- **mPPFI** *PINGUICULA/FIFTEEN MILE (LOWER)* dominantly carbonate assemblage with basal clastics comprising two regionally correlated units (1) and (2), includes possible other correlative carbonate, clastic and volcanic rocks (3) and (4)
- mPH HART RIVER mafic volcanic flows (1) and (3) and their possible intrusive equivalents (2)

ORDOVICIAN TO LOWER DEVONIAN

ODR ROAD RIVER - SELWYN black shale and chert (1) overlain by orange siltstone (2) or buff platy limestone (3), locally contains beds as old as Middle Cambrian (4), correlations with basinal strata in Richardson Mountains include ODR1 with CDR2 (upper part) and ODR2 with CDR4 (Road River Gp)

UPPER PROTEROZOIC TO LOWER DEVONIAN

PCH HYLAND consists upwards of coarse turbiditic clastics (1), limestone (2) and fine clastics typified by maroon and green shale (3), may include younger (4) units, includes scattered mafic volcanic rocks (5) (Hyland Gp)

LOWER PROTEROZOIC

- LPG GILLESPIE LAKE dolostone and silty dolostone, locally stromatolitic, locally with chert nodules and sparry karst infilings, interbedded with lesser black siltstone and shale, laminated mudstone, and quartzose sandstone, local dolomite boulder conglomerate (Gillespie Lake Gp)
- LPQ QUARTET black weathering shale, finely laminated dark grey weathering siltstone, and thin to thickly interbedded planar to cross laminated light grey weathering siltstone and fine grained sandstone, minor interbeds of orange weathering dolostone in upper part (Quartet Gp)

c

The limestone is characteristically light grey in contrast to the dolostone and is generally massive and unstratified Locally spectacular exposures of stromatolitic limestone indicate shallow to flat bedding orientations

7.2 Alteration and Mineralization

Mineralization at the Carpenter occurrence is exposed in five hand trenches that extend in a north-south direction for approximately 50 m. The pits are in an area of heavy talus of dolostone and diorite and do not obviously penetrate to solid bedrock. The mineralized zone is hosted in dolostone within 10-15 m of the footwall contact of a diorite sill to the west. Replacement and breccia style galena (±sphalerite) mineralization occurs within strongly recrystallized sparry-granular dolostone (dolomite). Mineralization also contains ragged blebs of silica. Pisolites were noted in some of the adjacent dolomite float, a feature not seen elsewhere. Results in Table 7.2.1 indicate significant grades of Pb and Ag, but with very low associated Zn values. Sample 275967 located 700 metres to the southwest of the trenches is an isolated cobble of float having metal concentrations and textures similar to mineralization in the trenches.

	Sample		Au	Pb	Zn	Ag		
			(ppb)	(%)	(%)	_ (ppm)	glt See	, , + 5
	275910	Carpenter	<u>21</u>	_103	01	98 2	45507	Sherr
	275911	Carpenter	16	4 3	00	40 9		
	275968	Carpenter	12	22 3	08	ີ 131 8		
	275969	Carpenter	8	<u></u> ,10 5	01	52 8		
	275970	Carpenter	7	17	15	20 4	Į	
	275967	S Carpenter	7	26 1	07	140 9		
	275925	S Silver Hill	29	46	07	35 9		
	275926	S Silver Hill	24	15	08	18 0	ļ	
	275916	Silver Hill	2	47 0	20 2	329 5		
	275917	Silver Hill	5	64 0	<u>_</u> 11`1`	468 9		
	275918	Silver Hill	3	44 4	18 8	275 6		
	275919	Silver Hill	< 2	26 5	11 1	[*] 170 4		
	275920	Silver Hill	6	55 7	10 5	274 6		
	275922	Silver Hill	2	43	17 4	146 3		
	275923	Silver Hill	3	40 1 🗍	.s.15 9 🤅	304 5		
	275971	Silver Hill	18	41 1	0 8	170 4		
į	275972	Silver Hill Breccia	< 2	21 7	5 0	101 2		
	275913	W Silver Hill	4	0.2	25	13		

Table 7.2.1 Rock Sample Results

The Silver Hill prospect is hosted in a section of steeply-dipping dolomite capped by stromatolitic limestones. Mineralization is primarily confined to a 25 to 40 m thick section of shale to siliceous argillite within the dolomite sequence. A 30 to 40 m thick north-dipping shear zone, exposed in a saddle 800 m to the southwest, projects beneath the mineralized zone. Numerous moderately northwest-dipping faults occur in and around the mineralized area. Mineralization is dominated by approximately 5 veins of massive galena with lesser sphalerite and pyrite, sparry dolomite and quartz. These veins are massive and carry from 40-90% sulphides and often have a footwall of sparry dolomite and sphalerite stockworks. The veins vary from 1 5 to 2 0 m thickness as exposed in numerous hand trenches. Trenches expose up to 40 m strike length before the veins are covered in heavy talus toward the valley bottom. Stratigraphy is oriented at 070°/65°NW whereas veins average 060°/45°NW. A breccia zone, exposed over a 35 m by 25 m dip-slope area, is oriented parallel to the

_ Equity Engineering Ltd _

veins, but is at least 3 to 5 m thick. The breccia consists of 15-20% galena and sphalerite in a sparry dolomite matrix. It appears that the veins and breccias are discordant to the stratigraphy and are controlled by the prevalent northwest-dipping faults. Results from sampling in the Silver Hill area in Table 7.2.1 reveal results high in Pb, Zn and Ag, which contrasts with the Carpenter occurrence samples that are relatively low in Zn content.

Samples 275925 and 275926 represent weakly mineralized quartz float containing geochemical levels of Au found in the drainage immediately south of Silver Hill Samples 275913 consists of a gossanous quartz vein hosted in the Paleozoic limestones unconformably lying on top of the dolostones. The different host rocks, style and metal content of this mineralization suggest a distinct mineralizing event

8.0 SOIL GEOCHEMISTRY

Two soil sample lines were established to test for extensions to the mineralization exposed at the Carpenter occurrence (Figure 5a-5c) The two lines, separated by 150 m, tested below the suspected controlling dolomite-diorite contact. The most northerly line, which tested the soil response over the known mineralization, returned high concentrations of Cu, Pb, Zn and moderate values of Ag in two samples separated by 25 m. The line 150 m to the south returned similarly anomalous results, but over a wider zone 100 m wide. The Cu anomaly is partly offset from the Pb-Zn-Ag anomaly and more closely associated with the diorite. Minor Cu mineralization in quartz veins was commonly noted within and adjacent to the diorite sills elsewhere in the area. No mineralization was noted in the partial talus where the anomaly is located, however the soil was well developed and had a distinctive red colouration. These anomalous results certainly indicate potential to extend the Carpenter Zone southward, however, it is possible that at least some of the anomalous response, particularly at the east end of the line could represent down-slope dispersion from the trenches.

Sample	Cu	Pb	Zn	Ag	Au
	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
48300N 85000E	151	1361	693 •	17:,:	4
48300N 85025E	237	599	212	07	3
48300N 85050E	68	198	144	03	3
48300N 85075E	30	82	130	01	3
48300N 85100E	23	42	85	01	1
48300N 85125E	19	48	94	01	3
48150N 84850E	495	163	138	03	13
48150N 84875E	137	183	133	02	9
*48150N 84900E	111	104	146	02	13
48150N 84925E	143	209	164	02	4
48150N 84950E	117	263	409	04	9
48150N 84975E	37	281	296	07	4
48150N 85000E	55	3782	426	<u>,</u> , ⊳ 2 1	<1
48150N 85025E	74	809	423	0.8	3
48150N 85050E	38	92	114	02	1
48150N 85075E	51	79	130	02	1

Table 8.0.1Soil Sample Results Carpenter Occurrence

* average of lab duplicates

9 0 DISCUSSION AND CONCLUSIONS

There are three questions worth considering in the evaluation of the Carpenter Ridge area potential

- 1 How does the mineralization on Carpenter Ridge compare to the Blende?
- 2 What are the controls on mineralization at Silver Hill?
- 3 Does the Carpenter-occurrence share enough positive characteristics with Silver Hill and/or the Blende to warrant further exploration?

With regard to question 1, there is good evidence based on the regional geological setting, mineralization styles and textures that the age and basic genesis of the mineralization at the Blende and Carpenter Ridge are essentially equivalent. The stratigraphic framework is the same in both areas where Gillespie Lake Dolomites are intruded by a large volume of diorite sills. At the Blende these sills are hypothesised to be the ultimate heat source for the mineralization and delineate primary fault structures related to rifting. Genetic links between sill emplacement and mineralization at the Blende are demonstrated and indicated by a spatial association at the Carpenter occurrence. Texturally and mineralogically the mineralization at the Blende and Carpenter Ridge are similar although there are no detailed petrographic studies of the Carpenter Ridge mineralization.

In answer to question 2, mineralization at Silver Hill has both a stratigraphic control and a very clear structural control analogous to the Blende Carbonaceous shale and siliceous argillite at Silver Hill appear to have provided a "brittle" host allowing dilation and vein infilling The significant breccia mineralization at Silver Hill may represent purely structurally controlled mineralization along a substantial (growth?) fault structure No sulphide replacement of stromatolitic horizons is evident at Silver Hill although there does appear to be an association of mineralization and pisolites at the Carpenter occurrence Rotating stratigraphy to the horizontal at Silver Hill results in a geometry where controlling faults have a normal sense of movement, again bearing strong resemblance to the Blende

The answer to the last question is not surprisingly more difficult to answer. It has been established that the mineralization on Carpenter Ridge is in the same genetic class as that found at the Blende Mineralization at the Silver Hill occurrence is significant and in the authors opinion has not been properly tested through drilling There does not appear, however, to be obvious potential to extend the Silver Hill mineralization beyond the current mining leases. The Carpenter occurrence represents the best area to focus exploration. Soil sampling indicates possible extensions of this mineralization to the south and a sample of strongly mineralized float found 700 m to the southwest indicates other potential Testing of this potential is best carried out by establishing a soil grid over the area to the south of the trenches, focusing on the diorite-dolomite contact. There are two negative factors regarding the potential of the Carpenter that are important to consider Firstly, if significant mineralized zones project to surface to the south in the area of best potential, there should be visible mineralized float However, no significant mineralization was noted during the single traverse through the area It is possible that potential zones could be covered by heavy diorite talus cover, which appears to be the case north of the trenches Secondly the mineralization so far sampled at the Carpenter is of significantly lower grade than at the Silver Hill Newly uncovered zones if they exist will need to contain higher grades to be considered potentially economic

Respectfully submitted, OFEDSIC PROVINCE M E BAKNES ٠. COLUMBIA Mark E Baknes, P Geo SCIENT EQUITY ENGINEERING LTD

Vancouver, British Columbia December 2002 APPENDIX A

BIBLIOGRAPHY

,

-

BIBLIOGRAPHY

- Gordey, S P and Makepeace, A J , 1999, Yukon Digital Geology, Geological Survey of Canada, Open File D3826
- Robinson, M, Godwin, C I Genesis of the Blende Carbonate-Hosted Zn-Pb-Ag Deposit, North-Central Yukon Territory Geologic, Fluid Inclusion and Isotopic Constraints, Econ Geol V 90, 1995, pp 369-384
- Thompson, R I, Mercier, E, and Roots, C F, 1986, Extension and its influence on Canadian Cordilleran passive margin evolution. Geological Society of London Special Publication, v 28, p 409-420

APPENDIX B

ROCK SAMPLE DESCRIPTIONS

MINERALS AND ALTERATION TYPES

AK	ankerite	AL	alunite	AS	arsenopyrite
AU	native gold	AZ	azurite	BA	barite
BI	biotite	BO	bornite	BT	pyrobitumen
CA	calcite	CB	Fe-carbonate	CC	chalcocite
CD	chalcedony	CL	chlorite	CP	chalcopyrite
CV	covellite	CY	clay	DO	dolomite
EN	enargite	EP	epidote	GE	goethite
GL	galena	GR	graphite	HE	hematite
HS	specularite	HZ	hydrozincite	JA	jarosite
KF	potassium feldspar	MC	malachite	MG	magnetite
MN	Mn-oxides	MO	molybdenite	MR	mariposite/fuchsite
MS	sericite	MT	marcasite	MU	muscovite
NE	neotocite	PA	pyrargyrite	PL	pyrolusite
PO	pyrrhotite	PY	pyrite	QZ	quartz veining
RE	realgar	RN	rhodonite	SB	stibnite
SD	siderite	SI	silicification	SM	smithsonite
SP	sphalerite	SR	scorodite	TR	tremolite
TT	tetrahedrite				

ALTERATION INTENSITY

m	moderate	S	strong	tr	trace
vs	very strong	W	weak		

,

--

			1	Roc	k Sample	e De	escript	ions				
	<u>Project N</u>	<u>ame</u>	: Carpenter Ri	dge	<u>Project</u>	<u>t</u> F	RFM02-10	<u>NTS:</u>	106D/6, 11			
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	sCB	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275910	UTM 7148290 89	Ν	UTM 485050 51	Е	Strike Length Exp		Metallics	3-5%GL	21	98 2	<100	<100
Carpenter	Elevation 4920	ft	Sample Width 0	cm	True Width	ст	Secondaries	sHE	<u>Cu (ppm)</u>	<u>Mo (ppm)</u>	Pb (ppm)	<u>Zn (ppm)</u>
Sampled By TB 05-Jul-02	Talus sample taken 7	75-100	m east across slope fr	om main	trenches Mineraliz	ation is	near contact wi	th diorite above	10	<10	103000	1000
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	sCB	Au (ppb)	Ag (ppm)	As (ppm)	BI (ppm)
275911	UTM 7148439 2	Ν	UTM 485025 59	Е	Strike Length Exp		Metallics	trCP, 1-2%GL	16	40 9	100	<100
Carpenter	Elevation 4860	ft	Sample Width 0	cm	True Width	cm	Secondaries	mHE	<u>Cu (ppm)</u>	Mo (ppm)	Pb (ppm)	<u>Zn (ppm)</u>
Sampled By TB 05-Jul-02	Taken 150-200m NE	of tren	ches Mineralization is	s near co	ntact with diorite abo	ove			90	<10	43400	100
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	QZ	Au (ppb)	Ag (ppm)	As (ppm)	BI (ppm)
275912	UTM 7150710 61	Ν	UTM 485753 29	Е	Strike Length Exp		Metallics	1%GL, 2-3%PY, 1%	6SP 4	2	<100	<100
Carpenter	Elevation 5540	ft	Sample Width 0	cm	True Width	cm	Secondaries	wHE, wJA	Cu (ppm)	<u>Mo (ppm)</u> <10	Pb (ppm) 1800	<u>Zn (ppm)</u> 1200
Sampled By TB 06-Jul-02	Float taken in first rig	ht cree	k fork above camp Fi	ne-grain	ed sediments with 2-	-3% pyrı	te Quartz vein	material has 1% pyr	rite-1% sphalerite		1000	1200
Sample Number	Grid North	N	Grid East	E	Type Grab		Alteration	QZ	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275913	UTM 7151921 25	Ν	UTM 486074 59	Е	Strike Length Exp	3 m	Metallics	trGL, trPY	4	13	100	<100
Carpenter	Elevation 5550	ft	Sample Width 25	cm	True Width	cm	Secondaries	sGE, sHE,sJA,sN	IN <u>Cu (ppm)</u>	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Zn (ppm)</u>
	Ve	in 090)°/?°		Host Dolomite				20	<10	2300	24700
Sampled By TB 06-Jul-02	Taken above (?) hill f	renche	s on side hill 2m wide	e grey gr	een very frothy quar	z vein						
Sample Number	Grid North	N	Grid East	E	Type Grab		Alteration	QZ	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275914	UTM 7151920 49	Ν	UTM 486074 85	Е	Strike Length Exp	3 m	Metallics	trGL, trPY	4	16 4	<100	<100
Carpenter	Elevation 5550	ft	Sample Width 25	cm	True Width	cm	Secondaries	sGE, sHE,sJA,sN	IN <u>Cu (ppm)</u>	Mo (ppm)	<u>Pb (ppm)</u>	<u>Zn (ppm)</u>
ouipontoi		090)°/°		Host Diorite				20	<10	4200	500
Sampled By TB 06-Jul-02	Taken 5 m across sk	pe to I	NE from 275913 Grey	green fr	othy quartz							
Sample Number	Grid North	N	Grid East	E	Type Grab		Alteration	QZ	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275915	UTM 715191947	Ν	UTM 486074 61	Е	Strike Length Exp	3 m	Metallics	>1%GL, tr PY	2	73	<100	<100
Carpenter	Elevation 5550	ft 090	Sample Width 25	cm	True Width Host dolomite	cm	Secondaries	sGE,sHE,sJA,sM	N <u>Cu (ppm)</u> 10	<u>Mo (ppm)</u> <10	<u>Pb (ppm)</u> 2400	<u>Zn (ppm)</u> 200
Sampled By TB 06-Jul-02	Taken between 2759	13 and	275914 Same type c	of quartz								

--

		•		R	bcl	< Sample	e D	escript	ions					
	<u>Projec</u>	t Name [.]	Carpenter	r Ridg	е	<u>Projec</u>	<u>t:</u> F	RFM02-10	<u>NTS:</u>	106	D/6, 11			
Sample Number	Grid North	N	Grid East		Е	Type Chip		Alteration	sCB,sQZ		Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275916	UTM	N	UTM		E	Strike Length Exp	12 m	Metallics	90%GL, 1%PY, 4%	SP	2	329 5	100	<100
Carpenter	Elevation 4920	ft	Sample Width	1 I	n	True Width	cm	Secondaries	sGE,sHE,sJA,sMI	N,mHZ	<u>Cu (ppm)</u>	Mo (ppm)	<u>Pb (ppm)</u>	Zn (ppm)
•		Vein				Host					40	<10	469700	201800
Sampled By TB 06-Jul-02	Taken in Silver H Location SILVE	III trenches	Massive lead wi	ith some	zinc a	nd pyrite	_							
Sample Number	Grid North	N	Grid East		Е	Type Chip		Alteration	sCB, sQZ		Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275917	UTM	N	UTM		Е	Strike Length Exp	12 m	Metallics	100%GL		5	468 9	100	<100
Carpenter	Elevation 4910	ft	Sample Width	50 (cm	True Width Host		Secondaries	sGE, sHE, sJA, sl	MN, m	<u>Cu (ppm)</u> 110	<u>Mo (ppm)</u> <10	Pb (ppm) 640400	<u>Zn (ppm)</u> 110800
Sampled By TB 06-Jul-02	Taken 7m below Location SILVE	275916 on R HILL	same vein Mas	sive lead										
Sample Number	Grid North	N	Grid East		E	Type Chip		Alteration	sCB, sQZ		Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275918	UTM	N	UTM		Е	Strike Length Exp	20 m	Metallics	90%GL, 5%SP		3	275 6	<100	<100
Carpenter	Elevation 4910	ft	Sample Width	1 1	n	True Width Host	cm	Secondaries	sGE, sJA, sHZ		<u>Cu (ppm)</u> 120	<u>Mo (ppm)</u> <10	<u>Pb (ppm)</u> 444400	<u>Zn (ppm)</u> 187600
Sampled By TB 06-Jul-02	Taken in next ve Location SILVE	in east of 27 R HILL	75917 vein Mas	sive lead	, som	e zinc								
Sample Number	Grid North	N	Grid East		E	Type Chip		Alteration	sCB, sQZ		Au (ppb)	Ag (ppm)	As (ppm)	BI (ppm)
275919	UTM	Ν	UTM		E	Strike Length Exp	20 m	Metallics	75%GL, 5%SP		< 2	170 4	<100	<100
Carpenter	Elevation 4920	m	Sample Width	30 (cm	True Width	cm	Secondaries	sJA, sHZ		<u>Cu (ppm)</u>	Mo (ppm)	Pb (ppm)	Zn (ppm)
• ·····		Vein				Host					60	<10	264600	110700
Sampled By TB 06-Jul-02	Taken 10m abov Location SILVE	e 275918 sa R HILL	ample in same ve	ein										
Sample Number	Grid North	N	Grid East		Е	Type Chip		Alteration	sCB, sQZ		Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275920	UTM 7152045	N	UTM 486577		Е	Strike Length Exp	20 m	Metallics	90%GL, 5%SP		6	274 6	100	<100
Carpenter	Elevation 5000	ft	Sample Width	12	m	True Width	m	Secondaries	sJA, sHZ		<u>Cu (ppm)</u>	Mo (ppm)	<u>Pb (ppm)</u>	<u>Zn (ppm)</u>
						Host Dolomite					70	<10	556700	104500
Sampled By TB 07-Jul-02	Taken in top exp	osure of vei	n Samples 2759	18 and 2	75 91	9 are from same ve	in taker	n lower down M	lassive lead with son	ne zinc				
Sample Number	Grid North	N	Grid East		Е	Type Grab		Alteration	sCB, sQZ		Au (ppb)	<u>Ag (ppm)</u>	As (ppm)	Bi (ppm)
275921	UTM 7152056	N	UTM 486595		Е	Strike Length Exp		Metallics	2-3%GL, 2-3%SP		< 2	95	<100	<100
Carpenter	Elevation 4980	ft	Sample Width	50	cm	True Width	cm	Secondaries	mJA, sHZ		<u>Cu (ppm)</u>	<u>Mo (ppm)</u>	Pb (ppm)	<u>Zn (ppm)</u>
•		Vein				Host Dolomite					10	<10	7300	19100
Sampled By TB 07-Jul-02	A grab across ve	ein location i	n talus and subc	rop Eas	t alon	g slope 10m from 2	275920	vein						

				Roc	k Sampl	e C	Descript	tions				
	<u>Project N</u>	lame	<u>.</u> Carpenter	Ridge	Projec	: <u>t:</u>	RFM02-10	<u>NTS:</u>	106D/6, 11			
Sample Number 275922 Carpenter	Grid North UTM 7152063 Elevation 4980	N ft	Grid East UTM 486614 Sample Width	E E 1 m	Type Chip Strike Length Exp True Width 1 Host Dolomite) 1 m m	Alteration Metallics Secondaries	sCB, sQZ 1-5%GL, trPY, 5-50% mGE, mJA, sHZ	<u>Au (ppb)</u> %SP 2 <u>Cu (ppm)</u> 30	Ag (ppm) 146 3 Mo (ppm) <10	As (ppm) <100 Pb (ppm) 43400	<u>Βι (ppm)</u> <100 <u>Zn (ppm)</u> 173800
Sampled By TB 07-Jul-02	Taken in next trench	east of	275921 trench abo	out 15m								
Sample Number	Grid North	N	Grid East	E	Type Chip	•	Alteration	sCB, sQZ	Au (ppb)	Ag (ppm)	As (ppm)	BI (ppm)
275923	UTM 7152065	Ν	UTM 486638	E	Strike Length Exp	7 m	Metallics	90%GL, trPY, 1-5%S	SP 3	304 5	<100	<100
Carpenter	Elevation 4980	ft	Sample Width	12 m	True Width Host Dolomite	cm	Secondaries	sGE, sHE, sJA, sM	IN, sH <u>Cu (ppm)</u> 30	<u>Mo (ppm)</u> <10	<u>Pb (ppm)</u> 401200	<u>Zn (ppm)</u> 159100
Sampled By TB 07-Jul-02	Taken in furthest exp	osed v	ein to the east Ver	ry spectacul	ar lead							
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	sCB,	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275924	UTM 7151983 72	Ν	UTM 4868717	′4 E	Strike Length Exp)	Metallics	trCP, 1%PY, >1%SP	° <2	27	<100	<100
Carpenter	Elevation 4650	ft	Sample Width	0 cm	True Width Host Dolomite	cm	Secondaries	s sJA	<u>Cu (ppm)</u> 10	<u>Mo (ppm)</u> <10	<u>Pb (ppm)</u> 2650	<u>Zn (ppm)</u> 1800
Sampled By TB 07-Jul-02	Taken in creek below	v Arche	r-Cathro's old cam	p(?) on sout	h side of Silver Hill							
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	sQZ	Au (ppb)	Ag (ppm)	As (ppm)	BI (ppm)
275925	UTM	Ν	UTM	Е	Strike Length Exp)	Metallics	7-10%GL, 50-60%P	Y 29	35 9	<100	<100
Carpenter	Elevation 4320	ft	Sample Width	0 cm	True Width Host QTZ	cm	Secondaries	s sJA	<u>Cu (ppm)</u> 200	<u>Mo (ppm)</u> <10	Pb (ppm) 46200	<u>Zn (ppm)</u> 6500
Sampled By TB 07-Jul-02	Float taken in creek	below A	Archer-Cathro's car	mp site on th	e head of a small c	anyon						
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	sQZ	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275926	UTM 7152062 15	Ν	UTM 487179 2	23 E	Strike Length Exp)	Metallics	1-2%GL, 30-40%PY	25	18	100	<100
Carpenter	Elevation 4360	ft	Sample Width	0 cm	True Width Host QTZ	cm	Secondaries	s sJA	<u>Cu (ppm)</u> 150	<u>Mo (ppm)</u> <10	<u>Pb (ppm)</u> 15200	<u>Zn (ppm)</u> 7600
Sampled By TB 07-Jul-02	Taken above 275925	5 in cree	ek float									
Sample Number	Grid North	N	Grid East	E	Type Float		Alteration	sCA, sDO	<u>Au (ppb)</u>	Ag (ppm)	As (ppm)	Bi (ppm)
275966	UTM 7148014 03	Ν	UTM 484377 8	34 E	Strike Length Exp)	Metallics	4%GL, sSP	7	04	<100	<100
Carpenter	Elevation 5260 Beddi	ft ng 000	Sample Width)°/44° W	0 cm	True Width Host grey oran	cm ige we	Secondaries athering dolomite	s sGE	<u>Cu (ppm)</u> 40	<u>Mo (ppm)</u> <10	<u>Pb (ppm)</u> 5000	<u>Zn (ppm)</u> 14500
Sampled By MEB 04-Jul-02	30x30cm boulder N irregular to ovoid ble	ledium- bs 2-5m	grained crystalline	dolomite wi ler	th medium-grained	crystal	lline galena as irre	egular 1-5mm blebs S	Sphalerite fine- to	medium-gra	ined crystall	ine

				Roc	k Sample	Descrip	tions				
	<u>Project N</u>	lame	<u>·</u> Carpenter F	Ridge	Project [.]	RFM02-10	<u>NTS:</u>	106D/6, 11			
Sample Number	Grid North	N	Grid East	E	Type Float+Select	Alteration	mCA, sDO	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275967	UTM 7148013 78	Ν	UTM 484378 1	E	Strike Length Exp	Metallics	20%GL	7	140 9	<100	<100
Carpenter	Elevation 5220	ft	Sample Width 0	cm	True Width c	m Secondarie	s sGE	<u>Cu (ppm)</u>	Mo (ppm)	Pb (ppm)	<u>Zn (ppm)</u>
·					Host crystalline do	lomite		160	<10	260600	7100
Sampled By MEB 04-Jul-02	30x20cm boulder ne	ar sour	Example 1 Half of boulder h	neavily min	eralized - take stronges	st mineralization C	oarse galena in irregu	lar masses replacir	ng dolomite		
Sample Number	Grid North	N	Grid East	E	Type Float + Grab	Alteration	sDO, sQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	Bi (ppm)
275968	UTM 7148299 66	Ν	UTM 484996 33	E	Strike Length Exp	Metallics	trCP, 10%GL, 3% \$	SP 12	131 8	<100	<100
Carpenter	Elevation 5150	ft	Sample Width 0	cm	True Width c	m Secondarie	es wMC	Cu (ppm)	Mo (ppm)	Pb (ppm)	<u>Zn (ppm)</u>
-					Host recrystallized	dolomite		220	<10	223200	8000
Sampled By MEB 05-Jul-02	Old hand pit debris of calcite clots and strin	over 10n ngers, s	n diameter Take sa ilicified phyllite finge	amples of b rs subcrop	etter mineralized cobbl ? Pit #1, breccia also	es 30% of trench Note pisolites in ac	mineralized to this dep djacent dolostone	gree Recrystalized	d brown dolo	mite with qu	uartz and
Sample Number	Grid North	Ν	Grid East	E	Type Float + Grab	Alteration	sDO, mQZ	Au (ppb)	<u>Ag (ppm)</u>	As (ppm)	Bi (ppm)
275969	UTM 7148260 97	Ν	UTM 484979 54	E	Strike Length Exp	Metallics	10%GL, trPY, 1-2%	6SP 8	52 8	<100	<100
Carpenter	Elevation 5150	ft	Sample Width 0	cm	True Width c	m Secondarie	es sMN, wSM	<u>Cu (ppm)</u>	Mo (ppm)	<u>Pb (ppm)</u>	<u>Zn (ppm)</u>
-	Beddi	ng 035	5°/25° W	-	Host recrystallized	dolomite		40	<10	104900	1300
Sampled By MEB 05-Jul-02	2 and 4 m long pits ragged stringers Pil	Good r Is # 4&5	nineralization 50% c	of material v	well mineralized grab of	typical mineralizati	ion Coarse galena in	recrystalized dolor	mite/sider M	linor silica b	lebs
Sample Number	Grid North	Ν	Grid East	E	Type Float + Grab	Alteration	sDO, sQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Bı (ppm)</u>
275970	UTM 7148331 23	Ν	UTM 485013 97	E	Strike Length Exp	Metallics	trCP, 4%GL, 2%SF	P 7	20 4	<100	<100
Carpenter	Elevation 5100	ft	Sample Width 0	cm	True Width c	m Secondarie	es wMO	<u>Cu (ppm)</u>	Mo (ppm)	Pb (ppm)	<u>Zn (ppm)</u>
_		_			Host recrystalized	dolomite		860	<10	17400	15100
Sampled By MEB 05-Jul-02	Old hand pit debris o calcite clots and vein	iver 5m Is Sub	area Sample of be crop pit #2	etter minera	lized cobbles <10% o	f trench material lik	ewise mineralized R	ecrystalized brown	dolomite +/-	sid With q	juartz
Sample Number	Grid North	N	Grid East	E	Type Select/Grab	Alteration	wCA, sQZ	<u>Au (ppb)</u>	Ag (ppm)	As (ppm)	<u>Bı (ppm)</u>
275971	UTM 7151993	Ν	UTM 486357	E	Strike Length Exp	Metallics	30%GL	18	170 4	100	<100
Carpenter	Elevation 5100	ft	Sample Width 0	cm	True Width c	m Secondarie	es sGE	<u>Cu (ppm)</u>	<u>Mo (ppm)</u>	Pb (ppm)	<u>Zn (ppm)</u>
•					Host Grey silty arg	pillite		60	10	411400	7900
Sampled By MEB 06-Jul-02	Vuggy quartz vein w	ith mas	sive pods of crystall	ine galena	Sample grab from tree	nch face likely selec	ct of better material	Note bright red oxid	e looks like i	realgar	
Sample Number	Grid North	N	Grid East	Е	Type Grab	Alteration	sDO, wQZ	Au (ppb)	Ag (ppm)	As (ppm)	Bi (ppm)
275972	UTM 7152235	N	UTM 487038	Е	Strike Length Exp 40) m Metallics	15%GL, 5%SP	< 2	101 2	100	<100
Carpenter	Elevation 4580	ft	Sample Width 3	m	True Width 4 n	n Secondarie	es wGE, sHZ	<u>Cu (ppm)</u>	<u>Mo (ppm)</u>	Pb (ppm)	<u>Zn (ppm)</u>
•	Fa	ult 070)°/38° N		Host silty dolomite			230	<10	216800	50000
Sampled By MEB 08-Jul-02	3-4m thick sulphide in Appears to be control	matrix b olled by	reccia Crackle- to fault zone Zone sh	matrix-sup lould dip be	ported breccia dolomite eneath talus Sample p	e fragments in a gal anel grab across of	ena sparry dolomite n utcrop	natrix with mineraliz	ed quartz ar	nd sphalerite	9

APPENDIX C

CERTIFICATES OF ANALYSIS

,

ACME ANALYTICAL LABORATORIES LTD. (19002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Data NF

GEOCHEMICAL AN ISIS CERTIFICATE

Equity Engineering Ltd. PROJECT RFM02-10 File # A202269

700 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Mark Baknes

SAMPLE#	Mo (Cu	Pb Zn	Ag	Νı	Со	Mn	Fe	As	U	Au Th	n S	r Cđ Sb	B٦	٧	Ca	Ρ	La	Cr	Mg Ba	Tı	B A1	Na	K	N H	g Sc	TI	S G	a
	ppm pj	pm	ppm ppm p	pm	ppm	ppm	ррт	8	ppm p	pm	ppb ppr	а рр	m ppm ppm	ppm	ppm	*	x	ppm	ppm	% ppm	%р	pm %	*	% pp	n ppi	m ppm	ppm	% ppr	m
G-1	132	3	2 4 41 <	1	38	37	489	1 79	7 1	. 8	1239) 6	5 < 1 < 1	1	40	54	071	7	13 3	50 171	114	1 85	071	41 1	4< 0	1 2 8	3< 1)5 4	4
CARP 48300N 85000E	1 1 150	7 13	361 4 693 1	7	133 8	56 7	34615	21 27	124 7 1	. 2	3929) 3	32449	9	52 1	12	081	38	14 2	45 389	006	2 56	004	02 <	1 2	6 12 6	1	1	2
CARP 48300N 85025E	1 0 237	4 5	598 9 212	7	36 9	23 8	6309	8 51	21 2	7	2623	31	2 8 3 8	4	34	56	074	23	16 6	48 183	019	2 81	005	03 <	1 0	8 3 8	1 .	0	3
CARP 48300N 85050E	11 68	2 1	198 4 144	3	277	20 4	4042	5 84	16 0	9	2822	2	9 529	4	30	59	073	20	12 7	39 216	019	2 64	005	04 <	1 1	0 3 4	1 (9 3	2
CARP 48300N 85075E	1029	9	81 5 130	1	26 8	15 5	1425	4 95	13 8	8	301	1 1	4 3 1 7	4	38	78	088	18	20 8	40 110	018	1 1 17	006	04	10	4 2 8	1	2	4
CARP 48300N 85100E	1023	2	417 85	1	26 1	13 8	1102	4 28	1471	. 0	1119) 1	3 3 1 6	4	45	57	071	18	24 8	48 139	020	1 1 32	006	05	2 0	5 3 2	1< /)5 !	5
CARP 48300N 85125E	1019	1	48 4 94	1	26 8	128	1089	4 28	13 1	9	3013	31	3 215	3	41	62	076	18	24 5	46 128	017	2 1 26	006	04	1 0	2 2 8	1 (6 4	4
CARP 48150N 84850E	5 494	7 1	162 7 138	3	41 1	297	3047	6 70	62	6	13 3 2 3	31	8 3 8	2	128]	05	072	17	29 8 2	17 102	037	2 2 46	005	05	1 0	277	2< 1)5 !	9
CARP 48150N 84875E	7 137	3 1	183 4 133	2	48 4	27 1	1797	5 45	10 4	8	912	51	2 312	2	111	47	060	17	34 3 1	65 114	030	1 2 19	006	04	20	376	1< /)5 (8
CARP 48150N 84900E	8 109	0 1	103 2 144	2	38 2	23 4	2501	5 43	12 5	8	10330) 1	1 4 2 0	3	69	36	054	18	23 3	92 159	027	2 1 41	005	04	1 0	8 5 3	1< /)5 !	5
RE CARP 48150N 84900E	7 112	9 1	104 9 148	2	38 7	23 2	2540	5 52	12 8	9	16429) 1	2 520	3	70	36	054	19	24 3	95 164	028	1144	005	04	1 0	750	1< ()5 !	5
CARP 48150N 84925E	5 143	3 2	208 5 164	2	38 9	275	2967	592	20 7	6	4230	5	7 624	4	62	48	070	14	179	82 111	015	2 1 03	003	07	10	3 5 8	1< /)5 4	4
CARP 48150N 84950E	1 0 117	3 2	263 2 409	4	39 4	28 7	3834	5 44	34 6	9	8723	2	91357	6	26	99	082	17	88	41 184	006	2 46	003	04	10	934	1< /)5 3	2
CARP 48150N 84975E	12 36	6 2	280 7 296	7	29 5	19 0	4231	494	1771	. 0	3919)	9836	3	25	37	076	18	12 4	25 100	010	1 70	003	04	1 1	0 3 1	1< 1)5 3	2
CARP 48150N 85000E	11 55	3 37	781 7 426 2	1	42 0	23 8	11577	9 12	22 8	9	< 5 1	71	21460	3	18	74	097	17	70	26 203	006	2 52	003	05	1 1	3 4 0	1 (8 3	2
						_				_		_													_		_	_	_
CARP 48150N 85025E	1 2 74	4 8	809 2 423	8	37 4	23 5	5018	5 48	24 4	7	302	51	01542	4	14]	L 06	068	16	52	46 136	004	3 29	003	05 <	10	6 3 6	1< ()5	1
CARP 48150N 85050E	1 3 38	2	91 9 114	2	25 2	20 3	1830	3 74	14 8	6	122	1	9 3 3 3	4	11	91	064	18	61	46 53	006	3 34	003	04 <	10	3 2 4	1< ()5	1
CARP 48150N 85075E	6 50	6	79 4 130	2	29 2	22 5	1778	3 82	17 0	6	101	/ 1	2 4 3 0	4	12 1	ι 42	083	16	73	68 63	005	2 39	004	04 <	10	6 2 6	1< ()5	1
STANDARD DS3	94118	4	33 7 151	3	37 7	12 1	790	326	28 9 6	57	23 2 4 1) 3	06053	60	80	55	081	18	180 3	57 138	086	2 1 71	034	15 3	82	3 3 9	1 2< ()5	7

GROUP 1DA - 30 0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS UPPER LIMITS - AG, AU, HG, W = 100 PPM, MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM, CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM - SAMPLE TYPE. SOIL SS80 60C Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns

All results are considered the confidential property of the client Acme assumes the liabilities for actual cost of the analysis only

(I' 9002 Accredited Co.)

852 E. HASIINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL AN SIS CERTIFICATE

Equity Engineering Ltd. PROJECT RFM02-10 File # A202270

700 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Mark Baknes

Data MFA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N 1 ppm	Co ppm	Mn ppm	Fe %	As U pprnpprn	Au ppb	Th ppm	Sr ppm	Cd ppm p	Sb pm p	Bi prin p	V pm	Ca %	P %	La ppm	Cr ppm	Mg Ba % ppm	Т1 % р	B Spm	Al %	Na %	К %рр	W Hg m ppn	Sc ppm	TL ppm 2	S Ga Kippm	
G-1	1.4	2.5	27	43	<.1	4.0	4.1	502 1	1.79	8 2.0	1.0	3.9	73	<.1 <	:.1	.1	40	.55	.080	7	14.3	50 205	115	1	86	.085	.44 1.	6< 01	3.2	.3<.0	5 4	
02MB-30	2.6	16.8	1444 5	1508	1.2	18.0	96	1510 2	2 04	14 4 .6	1.6	.9	42	522	.9	2	17 1	1.80	034	5	5.0	6 78 77	004	2	.14	.010	.02 <.	1.45	2.0	.2 .1	2 <1	
STANDARD	9.4	118.4	337	15 1	3	37.7	12 1	790 3	3 26	28 9 6.7	23.2	4.0	30	605	.3 6	.0	80	.55	081	18	180 3	57 138	086	21	.71	034	.15 3	8.23	3.9	1.2<.0	57	

Standard is STANDARD DS3

GROUP 1DA - 30 0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM, MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM, CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE SILT SS80 60C

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only

ACME ANALYTICAL LABORATORIES LTD. (IF 3002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

ASSAY C. IFICATE

Equity Engineering Ltd. PROJECT RFM02-10 File # A202271 700 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Mark Baknes

SAMPLE#	MO %	CU %	PB %	ZN %	AG gm/mt	NI %	со %	MN %	FE %	AS %	SR %	CD %	SB %	BI %	CA %	P %	CR %	MG %	AL %	NA %	K %	W %	Hg %	
<u> </u>	001	002		- 01	7	001	001	. 01	~ ~ ~	. 01		001		. 01	17.	. 001	001	. 01	07		01		. 001	
31 375010		.002	10 70	<.01	<.J	.001	001	<.UI	.04	< 01	<.001<			< U1	40.00		001	< 01	02	07	014	.001	<.001	
275910	1.001	.007	10 20	. 10	98.2	-002	.001	87	4 09	< 01	.005	001	.012	< 01	12 08	.004	001	5.04	.10	02	094	001	<.001	
2/5911	¢.001	009	4 54	.01	40.9	.002<	.001	86	4 50	01	005<	001	006	< 01	16.80	.004	.001	7.26	05	-03	.02<	: 001	<.001	
275912	¢ 001	005	.18	12	2.0	.006	.001	09	3 47	< 01	.008	001	001	< 01	2 71	.035	004	3.10	1 66	05	.15	.001	<.001	
275913	¢ 001	.002	23	2 47	13	003<	.001	06	3 10	.01	.002	014	.006	< 01	4.43	.011	005	2.48	1.10	01	85	.002	< 001	
· 275914 ·	4.001	.002	42	05	16 4	002<	.001	< 01	4 28	<.01	< 001<	: 001	.004	< 01	.11	.010	.002	.08	.15	< 01	.14	.001	<.001	
275915	Ł.001	.001	24	.02	73	002<	.001	<.01	1 46	<.01	<.001<	.001	002	< 01	.05	.004	.005	.05	. 18	< 01	15<	: 001	<.001	
275916	₹ 001	004	46.97	20.18	329.5	.004	002	.03	1.97	.01	.001	.091	.033	<.01	1.20	0034	<.001	.68	.02	.01	024	.001	.006	
275917	₹ 001	011	64 04	11.08	468.9	.002<	001	-02	1.39	01	.002	.057	.049	<.01	.92	001	.001	53	- 02	<.01	<_01<	.001	.004	
275918	k 001	-012	44.44	18 76	275.6	.004	.001	.04	2.47	<.01	.001	.080	025	<.01	2.29	0034	001	1 27	.03	.01	<.01	.001	-005	
275919	¢ 001	.006	26 46	11.07	170 4	006	.001	12	2 21	< 01	.004	046	016	< 01	648	.007	001	353	.04	.01	< 01•	: 001	.003	
275920	4.001	.007	55 67	10.45	274.6	003<	.001	.06	1 30	.01	.001	041	025	< 01	291	.001	< 001	1 58	.05	.01	01-	: 001	.002	
275921	¢ 001	.001	73	1.91	95	002	.001	22	2 26	< 01	.003	008	001	< 01	15 82	.011	< 001	8 50	.10	03	.06	001	<.001	
275922	4.001	.003	4 34	17.38	146.3	008	.003	17	3 09	< 01	.002	099	008	< 01	12 01	.009	001	6 66	.04	< 01	.03	: 001	.005	
275923	₹ 001	003	40 12	15 91	304.5	.017	005	05	8 82	<.01	001	082	.027	< 01	1.10	.002	< 001	.61	03	.01	02•	.001	007	
									_															
275924	¢ 001	001	.26	18	2.8	.006	003	.21	7.95	<.01	006	.001	<.001	< 01	11.38	.048	009	11.14	4 43	.02	05	.001	<.001	
RE 275924	¢ 001∙	<.001	27	18	25	.006	.002	.21	7 98	< 01	.006	.001	<.001	< 01	11.45	053	.009	11 19	4 45	03	06•	: 001	< 001	
275925	¢ 001	.020	4 62	65	35 9	014	004	.01	13 39	< 01	.001	.003	.004	< 01	.10	017	.002	05	.05	< 01	.03	002	<.001	
275926	¢ 001	.015	1 52	.76	18 0	013	005	<.01	13 00	01	<.001	.003	004	<.01	.04	007	.007	05	.13	< 01	.09	001	.001	
275966	4.001	004	.50	1.45	4	002	.002	1.10	548	< 01	.005	004	001	<.01	19 11	001	< 001	8 62	.04	.02	<.01	< 001	<.001	
2750/7		~ ~ ~															004	- ()	~~	~~				
2/596/	< 001	016	26 06	α	140.9	002	002	65	4 04	< 01	.004	003	017	< 01	12 41	003	001	5 42	-08	.02	.03	< 001	<.001	
275968	¢.001	022	22 32	80	131.8	002	001	80	4 76	<.01	004	002	022	< 01	13 21	005	< 001	5 20	07	.02	.044	< 001	<.001	
275969	¢ 001	004	10 49	13	52 8	.001<	001	1.11	5.57	<.01	004	001	008	< 01	15 15	.005	< 001	5.90	20	.01	< 01.	< 001	<.001	
275970	¢ 001	.086	1 74	1 51	20 4	.010	004	.85	5.02	<.01	004	.004	.003	< 01	13 18	.016	.001	5.18	53	03	28	001	<.001	
275971	001	006	41 14	79	170 4	.002<	001	.01	4.05	.01	.001	003	013	< 01	28	.008	002	- 14	09	01	.08	001	.002	
275972	4.001	.023	21 68	5 00	101 2	008	.003	. 14	5.54	.01	002	.020	.009	< 01	9.72	.005	<.001	5.32	06	.01	.04	< 001	.001	
STANDARD R-1	090	837	1 33	2 26	100 5	028	026	.09	6.68	94	028	046	163	03	1 46	118	026	1 01	92	.15	.42	008	<.001	
	1 0,0			~																	• -+ L			

GROUP 7AR - 1 000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES - SAMPLE TYPE. ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEM PRECIC METALS ANALYSIS

Equity Engineering Ltd. PROJECT RFM02-10 File # A202271R 700 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by. Mark Baknes

_ FA `Y/k

Data

 SAMPLE#
 Au** ppb

 275910
 21

 275911
 16

275912 275913 275914	$\begin{array}{c} 10\\ 4\\ 4\\ 4\\ 4\end{array}$
× 275915 275916 275917 275918 275919	2 2 5 3 <2
275920 275921 275922 275923 275924	6 <2 2 3 <2
275925 275926 RE 275926 275966 275967	29 24 25 7 7 7
275968 275969 275970 275971 275972	12 8 7 18 <2
STANDARD DS4/AU-H	R 496
GROUP 3B - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AG - SAMPLE TYPE: ROCK PULP <u>Samples beginning 'RE' are Reruns and 'RE</u>	DUA - REGIA, ICP ANALYSIS UPPER LIMITS = 10 PPM RE' are Reject Reruns A
DATE RECEIVED: OCT 24 2002 DATE REPORT MAILED: $(\mathcal{O}\mathcal{A}^{2})/\mathcal{O}\mathcal{Z}$ SIGNED	D BY D TOYE, C.LEONG, J WANG, CERTIFIED B.C ASSAYERS

APPENDIX D

GEOLOGIST'S CERTIFICATE

.

GEOLOGIST'S CERTIFICATE

I, Mark E Baknes, of 7579 Westholme Road, Westholme, in the Province of British Columbia, DO HEREBY CERTIFY

1 THAT I am a Consulting Geologist with offices at Suite 700, 700 West Pender Street, Vancouver, British Columbia

2 THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology and a graduate of McMaster University with a Master of Science degree in Geology

3 THAT I am a Professional Geoscientist registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia

4 THAT this report is based on fieldwork carried out by me or under my direction during July 2002 and on publicly available reports. I have examined the property in the field

DATED at Vancouver British Columnian this Enday of January, 2003

PROVINCE E BAKNES M Mark E Baknes, M Sc , P Geo COLUMBIA

YUKON ENERGY MINES & RESOURCES LIBRARY PO BGX 2703 WHITEHORSE, YUKON MIA 206

	LEGEND	
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to	IN TO LOWER DEVONIAN off grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River)	es, itone)
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTERC DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S ³ / ³ / ³ / ³ / ³ /	AN TO LOWER DEVONIAN th grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi r fine-grained siltstone, transitional t ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample	ers, bone, olomite) d shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTERC DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S' 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AN TO LOWER DEVONIAN the grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi r fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample	ess, stone) Dre, olomite) A shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S'	AN TO LOWER DEVONIAN th grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi r fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample	ess, stone) Dre, olomite) A shale te (DO) To YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S'	AN TO LOWER DEVONIAN th grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample	ess, stone) Done, olomite) d shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S'	AN TO LOWER DEVONIAN th grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample	ess, stone) Done, olomite) d shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S' 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/	AN TO LOWER DEVONIAN th grey, well developed stromatolities regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally marcon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional to rms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample	ess, stone) Droe, olomite) d shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S'	AN TO LOWER DEVONIAN th grey, well developed stromatolite regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally marcon thinly laminated le, locally interbedded within dolomit of fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample Soil sample 250 50	ess, stone) Droe, ologionite) d shale te (DO) o YUKON ENERGY, MINES & RESOURCES LIBRARY & RESOURCES LIBRARY & NHITEHORSE, YUKON YIA 205 WHITEHORSE, YUKON YIA 205 WHITEHORSE, YUKON YIA 205
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to SHL green to grey and silty shal SLT green to grey shale and for S ³ 3 ³ 3 ³ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴ 3	AN TO LOWER DEVONIAN th grey, well developed stromatolities regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomin fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample Soil sample	Pore, olomite) A shale te (DO) To YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S ¹ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴ 3 ⁴	AN TO LOWER DEVONIAN th grey, well developed stromatolitie regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional the rms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample Soil sample Soil sample ERALS COI	Pore, olomite) dishale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to LOWER PROTER DO orange to pin equivalent to SHL green to grey and silty shal SLT green to grey shale and for S' 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AN TO LOWER DEVONIAN th grey, well developed stromatolities regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) DZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally marcon thinly laminated le, locally interbedded within dolomin of fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample Soil sample ERALS COI ENTER PROJE	Pore, olomite) d shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY D. BOX 2703 WHITEHORSE, YUKON YIA 206 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to SIL green to grey and silty shal SLT green to grey shale and for S' S' S' S' S' S' S' S' S' S' S' S' S'	AN TO LOWER DEVONIAN the grey, well developed stromatolities regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional the ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample Soil sample ERALS COE ENTER PROJE	Pore, olomite) d shale te (DO) o YUKON ENERGY, MINES & RESOURCES LIBRARY DO BOX 2703 WHITEHORSE, YUKON YIA 206 WHITEHORSE, YUKON YIA 206
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to SIL green to grey and silty shal SLT green to grey shale and for S' 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AN TO LOWER DEVONIAN th grey, well developed stromatolities regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC kish tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional the rms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample Soil sample ERALLS COI ENTER PROJE ACCOL ACCOL ACCOL CONTER PROJE	As, tone, olomite) d shale te (DO) to YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206 YUHARSE, YUKON YIA 206 YUHARSE, YUKON YIA 206 CONTACT STATE
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to SIL green to grey and silty shal SLT green to grey shale and for S' """""""""""""""""""""""""""""""""""	AN TO LOWER DEVONIAN th grey, well developed stromatolities regional unit CDB (Bouvette Limes OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomin r fine-grained siltstone, transitional to ms component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample soil sample Soil sample Soil sample ERALS COI ENTER PROJE Area Geolog Locatio	ss, anne) Dre, olomite) d shale te (DO) o YUKON ENERGY, MINES & RESOURCES LIBRARY D BOX 2703 WHITEHORSE, YUKON YIA 205 YUHITEHORSE, YUKON YIA 205 PO BOX 2703 WHITEHORSE, YUKON YIA 205 PO BOX 2703 WHITEHORSE, YUKON YIA 205 CT Sgy and D BOX 200 CT
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to SIL green to grey and silty shal SLT green to grey shale and for S' 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AN TO LOWER DEVONIAN the grey, well developed stromatolities regional unit CDB (Bouvette Limes) OZOIC grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC which tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated le, locally interbedded within dolomi of fine-grained siltstone, transitional to rans component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample silt sample soil sample ERALLS COI ENTER PROJE Area Geolog Je Loccatio	ss, tone) Dre, olomite) A shale te (DO) To YUKON ENERGY, MINES & RESOURCES LIBRARY PO BOX 2703 WHITEHORSE, YUKON YIA 206 YUHINES RARY & D. J. YUKON YIA 206 TRARY & D. J. YUKON YIA 206 CT GY MATEHORSE, YUKON YIA 206 CT
UPPER CAMBRIA LS limestone, lig equivalent to MIDDLE PROTER DI fine-medium equivalent to SIL green to grey and silty shal SLT green to grey shale and for S' """""""""""""""""""""""""""""""""""	AN TO LOWER DEVONIAN String grained diorite intrusives (sills), regional unit mPH (Hart River) OZOIC Wish tan, dolostone and silty dolostor regional unit IPG (Gillespie Lake D r and locally maroon thinly laminated te, locally interbedded within dolomi of fine-grained siltstone, transitional to mis component of dolostone (DO) YMBOLS bedding foliation contact: inferred, approximate outcrop; float fault, defined, inferred rock sample soil sample Soil sample Soil sample ERAALS COI ENTER PROJE Area Geolog ble Loccatio	As, tone)

Date:	January 6, 2003	Scale:	1:10,000	Figure
U.T.M. Zone	UTM8 - NAD27	Mining District	MAYO	4
N.T.S.	106D\6,11	State/Province	YUKON	