
Tillei Lake Glacial Till Project

Yukon Mining Incentives Program Grassroots – Grubstake Proposal - 2002 Grant # 02-085 For Prospecting and basic exploration work

Watson Lake Mining DivisionNTS map sheets105 HFrancis LakeClaim map sheets105H 11, 12, 13, 14Latitude and longitude.centered on 61 45' / 129 30'One Target area (five subsections)

Work completed by Jeff Boyce, Alynne Iversen, Melanie Mott August to Sept 2002

Author Jeffrey D Boyce

Tillei Lake Glacial Till Project

Summary

From August to September of 2002 Jeff Boyce and two Field Assistants undertook a program of basic prospecting and exploration work directed at appraising the Au and Base metal potential of the region around Tillei Lake We applied new Glacial Till sampling methodology and interpreted glacial flow direction through study of existing surficial maps and new field observations. This effort was made to generate new mineral targets and discoveries in an large area with scarce outcrop and no minfile references.

Targets were based on airborne magnetic anomalies from government regional geophysics data referenced to geological mapping, regional minfile occurrences, and a positive record of mineral discoveries in the greater area

Numerous deposit models were considered for elements Au, Ag, Pb, Zn, Ba, Cu, Mo, W Such as Skarn, Porphyry, Vein and Sedex deposits

As the goal was to identify potential targets for focused exploration, we used a three pronged strategy

-Prospecting with rock sampling, and random stream sediment sampling when creeks were encountered

-Extensive regular stream sediment sampling of all creeks draining areas of prospective geology (or of areas thought to have potential of hidden prospective geology) -Running widely spaced lines of Glacial Till samples across the deduced glacial ice flow direction

This prospecting and exploration activity took place over the period of August & September and of 2003

Table of Contents:

Introduction Pg 4
Property Description
-Location and Access
-Physiography, Climate, and Vegetation

Work Program Pg 5
Exploration History
Current Program
What did you do? When? Where? Why?

• Geology Pg 9 -Regional Geology -Property Geology -Mineralization

• Geochemistry Pg 10 -Silt Geochemistry -Collection Method -Analysis Method -Interpretation of results

Panned Samples
Collection Method
Analysis Method
Interpretation of results

-Rock Geochemistry -Collection Method -Analysis Method -Interpretation of results

-Glacial Till Geochemistry -Collection Method -Analysis Method -Interpretation of results

• Conclusion and Recommendation Pg 13

• Appendicies Pg 14 -detail Deposit models

-Tables of assay results from Acme Analytical Laboratories Ltd

-Final Budget spreadsheet (with envelope containing Receipts and Invoices)

-Map of Targets including sample locations, traverses, and some significant geology

-Claim maps / Surficial map / Forest Fire Map /Aeromag map / Geology map

Introduction:

Property description:

This Project looked at areas without current mineral claims or proposed or enacted First Nation Land claims (A or B lands)

In the Selwyn Basın, eastern Yukon, just north of the east arm of Francıs lake

Target area:

Situated to the east of the main road from Watson Lake to Ross River Approximately a 15 km radius around Tillei lake

Mining division	Watson Lake Mining Division
Claim map sheets	105H 11, 12, 13, 14
NTS map sheets	105 H Francis Lake
Latitude and longitude	centered on 61 45' / 129 30'

Access -route and method of transportation:

- Access from Whitehorse is via the Alaska Highway to Watson Lake Then up the Watson Lake to Ross River road to Finlayson Lake (where the truck was stored in Inconnu Lodge's locked parking area)
- Access at this point would be via float plane (the Beaver from Inconnu Lodge) to Tillei lake
- From camp access to target areas was by boat or on foot

Physiography of the region is a mixture of

- a large lake (Tillei) with shorelines sloping moderately uphill
- A few bench foothills and in the south a large area of lower rolling hills to 1556 m elevation interspersed with numerous (less than 1km in any direction) swampy areas
- In the northern half of the target area a slope further rising with increasing steepness to peaks and ridges formed of resistant units (intrusives) up to 1813m in the northeast and to 1895 in the northwest
- Drainages that exit the map area flow south into the Pelly River
- Some of the creeks draining into the lake have very large wide valleys with prominent depositional fans
- The entire target area is covered with Glacial till of varying thickness as Veneer or Blanket

Climate typical climate for the eastern Yukon with sunny summer mornings being the norm, then inevitable showers from afternoon storm cells, which both remain isolated and coalesce in larger local storms

Vegetation Mature forest of fairly closely spaced trees with moderate to dense undergrowth making cross country travel average to difficult (especially on west facing shores) Most low plateaus and valley bottoms consist of mixed white and black spruce with an understorey of willow and dwarf birch The exception being the large burn from the previous summer where black ash, standing deadwood and the occasional swampy grass patch make travel conditions ideal

Work Program:

Exploration History:

This area has been consistently explored in the last 100 years with occasional bursts of intense activity on a current metal (or metals) in high demand (ie Uranium, gold, leadzinc-silver, or more recently, Tungsten)

This coverage is represented by the abundant Minfile occurrences in the immediate area (ie in the same structural / tectonic / sedimentary regimes) (within 20 km of Tillei Lake) There are 20 Skarn type Minfile occurances (W, Mo, Pb, Zn, Cu, V, Ag)

4 Porphyry Minfile occurances (Cu, W, Mo)

2 Vein Minfile occurances (Ba, Pb, Zn, Ag)

3 Sedex Minfile occurances (Zn, Pb)

Current Program:

Reason / Rationale for project:

The target area was chosen for its high mineral potential based on historical mining, anomalous RGS data, Minfile occurrences, geologic mapping, aeromag anomalies, and accessibility

Specifically, the variety of showings in the area (Skarn, Vein, Sedex, Porphyry, etc.) reflect very good prospecting ground with wide ranging economic potential

The RGS data supports this

Area #1 is based on a multi-element anomaly (Sn predominant)

area #2 is based on a multi-element anomaly (Au, Zn, Pb, Cu, As, including a Fe/Cu showing)

area #3 is based on a multi-element anomaly (Au, Zn. Pb, Cu, Ni, As, Co. Fe, U, Sn, including an anomalous Mo / U Till Sample)

area #5 is based on a multi-element anomaly (Zn, Sn, Ni, U, H, Sb)

Please see attached RGS data map of Au values

Geophysical Anomalies:

There are aeromag highs and lows where one would expect them to the north and north east of Tillei lake which are an expression of outcropping units 15, 16, 1 and 2 (please see attached geology and aeromag maps)

What is not explained by geology is the large, anomalous, aeromag high to the southwest end of Tillei Lake This is important data because I believe it is the signature of a sub surface intrusive, most probably unit 15 (monzonite, granodiorite, diorite, gneiss) with the same mineral potential as the northern area 3 I have called this area 4b as a sub-area of area 4

Forest fire exposure:

Last summer there was a 1603 hectare fire off the south west end of Tiller This gives a single-summer window of opportunity to prospect previously heavily vegetated and forested land and find usually hidden outcrop (see attached 2001 fire map)

5 strengths / advantages this type of project had over past exploration programs

• **Till geochemistry** - with the advent of this new methodology low lying, swampy areas, such as found to the west, south and east of Tillei lake (labeled as Till blanket / Till veneer) can now be successfully prospected

This was proven over the last two summers by with Jeff Bond's regional Till Geochemistry program in the Finlayson Lake map area 105H (and by the previous Faro pilot project) Having worked a season with Jeff, I have competent training to use Till sampling to explore the land area, around southern Tillei Lake, which is characterized by scarce outcrop, no mineral showings nor minfile occurrences During grass roots exploration there is bias towards large easy to map outcrops, and I feel previous prospectors have preferentially chosen the high areas rather than walk the targeted low areas

Bonus – We found that for most every day walking the traverses during the Till Geochemistry program, we had new discoveries of outcrop or even mineralization (the Spice claims) to show for it. This stems from the simple fact that a till sampling traverse is planned over very different ground than a typical prospecting day.

- Better geochemistry today advances leading to lower detection levels and a larger suite of elements means a better geochemical tool for exploration than in the past
- Heap Leach recently, there is an increased viability of large low-grade gold/ Cu/ etc deposits due to the technological advances of heap-leach extraction (greater recovery and lower costs) Today areas, which were passed over by prospectors looking for high-grade veins, may now have significant potential

- New deposit models See above under deposit (Sedex, etc.), "hidden" mineralization of a Carlin deposit, fine-sheeted veinlets of a Fort Knox style deposit, or skarn mineralization such as found at the McQuestin property, may have been misunderstood or overlooked by earlier prospectors
- Access Lastly, the target area is not in conflict with any proposed or current Protected Area Lands or First Nations Land Claims, and yet is close enough to be economically connect to a major all season haul road

Prospecting Targets:

We were looking for the following minerals: Au, Ag, Pb, Zn, Ba, Cu, Mo, W found in an extensive variety of deposit types (as research showed, all are represented in Minfile occurances in the immediate area around Tillei lake)

- There are 20 **Skarn** type Minfile occurrences (W, Mo,Pb, Zn,Cu,V, Ag)
 - 4 Porphyry Minfile occurrences (Cu, W, Mo)
 - 2 **Vein** Minfile occurrences (Ba, Pb, Zn, Ag)
 - 3 Sedex Minfile occurrences (Zn, Pb)

Prospective Deposit types.

Please see the Appendix for detailed descriptions taken from the BCGS website

W SKARNS K05 **Mo SKARNS** K07 **Pb-Zn SKARNS** K02 **Cu SKARNS** K01 **Au SKARNS** K04

PORPHYRY Mo (Climax-type) L08 PORPHYRY W L07 PORPHYRY Mo (LOW-F-TYPE) L05 PORPHYRY Cu+/-Mo+/-Au L04

SEDIMENTARY EXHALATIVE Zn-Pb-Ag

BESSHI MASSIVE SULPHIDE Zn-Cu-Pb G04

VEIN BARITE 110 POLYMETALLIC VEINS Ag-Pb-Zn+/-Au 105

What did we do? / When? / Where?

The prospecting crew consisted of myself, Jeffrey Boyce, with two very capable prospecting assistants Alynne Iversen and Melanic Mott

Before leaving Whitehorse, we carefully studied air photos (at a scale of 1 40,000) of the target areas for old access trails, "kill zones", small hidden outcrop, etc

In addition we studied surficial geology maps and reports on regional glaciation in conjunction with air photo evidence to determine glacial ice directions and therefor to determine an effective sampling strategy and best site locations

As the goal was to identify potential targets for focused exploration, we used a three pronged strategy on the ground

-Prospecting with rock sampling, and random stream sediment sampling when creeks were encountered during traverses. These same creeks were panned at the sample sites and a vial was filled with the concentrate for later ID using a microscope. Our goal was to use any float and outcrop found on the low lying (unit 16) areas to help explain the large anomalous aeromag high at the southeast end of Tillei

- Till samples were taken at regular intervals in several lines trending across ice direction Clasts were also collected at each site and later washed and identified Some of "Till" trips were overnight or multi-day because of the tough travelling conditions found in the bush on the west facing slopes (old burns)

-Extensive regular stream sediment sampling of all creeks draining areas of prospective geology (or areas thought to have hidden prospective geology)

The area of last years burn was a priority for prospecting, because of the opportunity afforded by open unvegetated space to find outcrop

Description of type and amount of work:

\Rightarrow	Prospecting (rock sampling / panning / test sluice)	20 days
\Rightarrow	geochemical surveys (stream sediment)	27 days
\Rightarrow	Report writing	5 days

Total number of working days spent in the field by the applicant:

Time was 47 field days (not including an additional 2 unpaid field days) and an additional 6 unpaid mob days

In total·

```
stream sediment samples were collected
60 stream sediment samples were analyzed
rock samples were collected
13 rock samples were analyzed
Till samples were collected
8 Till samples were analyzed
```

Geology:

Regional Geology:

Please see attached geology map "Frances lake" MAP 6-1966

Generally this area could be characterized as Selwyn Basin, with sediments of various ages being intruded by Cretaceous? monzonites and granodiorites

The ice accumulation in east-central Yukon occurred in the Selwyn mountains at the divide with the Northwest Territories, and in the Pelly mountains to the south Tiller Lake is located only a few km south of a regional ice divide that developed during the last glaciation. The ice divide corresponds roughly with the current hydrologic divide between Yukon River and Liard River drainages

An ice-sheet covered all but the highest peaks at least once during the Pleistocene Epoch, leaving erratics at elevations greater than 6,600 feet

Little evidence of direction of ice movement remains in the upland areas, but forms of drumlinoid ridges indicate that the ensuing valley glaciers flowed southward down the major drainage systems

Streamlined landforms such as crag and tails, and glacial grooves in bedrock, provide the evidence for the ice flow history **Please see the Surficial Geology map in the appendix.** During the waning stages of the glaciation, the ice sheet thinned and became topographically controlled Evidence of valley-confined ice flow is present only where topography is higher

Property Geology:

Tillei lake is surrounded by a outcropping of Unit 1 (shale, phyllite, feldspathic quartzite, quartz and feldspar conglomerate, and sandstone) with exposure being complete to the northwest, north and northeast and very spotty to the south. In the north Unit 1 is intruded by Unit 15 (Cretaceous? monzonite, granodiorite, minor diorite and gneiss

In the southern area of our target, somewhere between the end of Tillei and the expoure of another widespread set of units 12 (dolomite and quartzite, minor dolomitic quartzite and silty to sandy dolomite) & 13 (Shale, chert, quartzite, greywacke, chert-pebble conglomerate) there is an important contact which remains buried and unmapped

It was hoped that the presence of this contact, the various carbonate rock units (and their potential for replacement mineralization), and a subsurface intrusive (to provide heat and hydrothermal fluids) would lend to a significant mineral occurrence

The whole southern area of our target is covered with significant quaternary units of unconsolidated glacial and alluvial deposits (both Till Veneer and Till Blanket) Basal tills have been categorized into two divisions based on presumed thickness

Basal till veneers are less than one meter in thickness and are commonly found on plateau summits and on slopes that faced into the direction of glacial flow

Basal till blankets are greater than one meter in thickness and are often mapped in local depressions and on slopes that are in the lee direction of the advancing ice sheet

Geochemistry / Testing:

Stream Sediment (Silt) Geochemistry

Collection Method

Sample site is located If creek enters a lake the sample is taken slightly up from the entry point to avoid contamination with lake shore sediments (lake levels rise and fall) Usually the strategy, at this grass roots level, is to sample each main tributary as it enters the creek and sample the main creek just up from these confluences

Samples are taken from silt size material in the creek bed (avoiding contamination from bank material) and are often a composite from a number of sites in close proximity to each other. If there is no silt/ sand material available (in a very fast moving creek for instance) then moss mats may be sampled. These mats are rigorously washed into the bag and the organic matter is discarded. Samples are as large as can possibly fit in the bags.

The bags used are standard kraft sample bags or small rice bags, and are clearly labeled on both sides with the sample number in indelible pen. At each site a piece of flagging is tied with the sample number penned on A GPS reading is taken and recorded on Sample Data Sheets along with stream width, flow, gradient, sediment color, and any other pertinent information

Analysis Method

Geochemistry was tested by ACME Analytical Laboratories Ltd of Vancouver, B C Digestion was by Aqua Regia, Analysis by ICP-MS This method offers near total precious and base metal data, but acts as only partial leach for rock forming elements As a result, the measured element concentrations of Cr, Fe, Mg, S, Sr, and Ti are lower than the actual concentrations in the sediments For more details please see attached Assay sheets in appendix or visit Acme's web site

Interpretation of results

There were numerous anomalies and a few significant results Significance of values were checked against a geochem database for Selwyn Basin rocks and against the Yukon Geoscience data base of average elemental values for various terranes

Unfortunately the following are only anomalous within the target area TL63SD01 slightly anomalous Co (27 2) Mn (8174) As (43 1) TL71SD01 slightly anomalous Cu (44 4) Zn (212) Ni (46 6) Ba (443) TL82SD01 slightly anomalous Au (45 4ppb)

Note two sets of duplicate samples give an different ideas of reproducibility 1) In the field we re-sampled a number of times to gauge reproducibility of our sampling method Only one of these field duplicated was analysed (95SD01 / 95SD01A PAN) which shows reasonable correlation except for typical problems with Au and the nugget effect

 As to quality control at ACME labs, the sets (65SD01 / RE65SD01) and (84SD01 / RE 84SD01) show the lab reproducing most element values in the sample quite well, except Au which again shows typical problems with variation

Panning:

Collection Method

Sites are selected in the same manner as with silts, but fewer are chosen as priority is given to the main creek and main tributaries Panning occurs only where a test sluice sample is not possible Material is dug up from as deep in the sediment as possible with a shovel and at least two pans are panned down to the heavies These heavies are placed in a marked vial

Analysis Method

Heavies are later placed on a small white paper plate to dry and are then examined under a microscope and mineral grains identified

Interpretation of results

This identification is still in progress at the writing of this report A couple of creeks have had visible gold and significant amounts of magnetite black sands. Some creeks with negligible gold in geochem results have visible gold illustrating the problems with a "nugget effect" when sampling

Rock Geochemistry

Collection Method

Sites where chosen based on geology and minerals present Where possible enough material was taken to produce both a hand sample and a portion to send to the lab for analysis

Samples were put in clear plastic poly bags with sample number clearly written on both sides Flagging with the sample number was tied at the site A GPS reading was taken and recorded on Rock Sample Sheet with rock description (color, texture, mineralogy, magnetic?, fizz in HCl?, and other information)

Analysis Method

Geochemistry was tested by ACME Analytical Laboratories Ltd of Vancouver, B C Digestion was by Aqua Regia,

Analysis by ICP-ES

This method offers near total precious and base metal data, but acts as only partial leach for rock forming elements As a result, the measured element concentrations of Cr, Fe, Mg, S, Sr, and T₁ are lower than the actual concentrations in the Rock For more details please see attached Assay sheets in appendix or visit Acme's web site

Interpretation of results.

There was only one rock sample of any note and it was anomalous only against the Target area samples TLRK04 Sr (124ppm) Ca (5 35%) Mg (1 28%) and Au (15 1ppb)

As to quality control at ACME labs, the set (TLRK06 / RE TLRK06) shows the lab reproducing all element values in the sample quite well

Till Sampling:

Following the procedure used by Jeff Bond while we were doing a regional till geochemistry program to the north of the Tillei Lake target area on the Finlayson map sheet. The following borrows from Jeff Bond

Till samples were collected along crude traverse lines oriented perpendicular to sub-perpendicular to the former ice-flow direction. This enables maximum geochemical coverage of the underlying geology

At each sample station a shovel was used to collect a 2kgbulk sediment sample Hand excavation was used to expose the C-horizon sediment or unweathered parent material

We made an effort to chose our samples sites in only lodgement and basal meltout tills and avoided ablation tills, glaciolacustrine deposits and glacialfluvial deposits

We used a data sheet to record information at sample sites, including UTM coordinates, slope, surficial map unit, bedrock proximal, drainage, vegetation, soil properties (oxidation, permafrost) matrix properties (color, texture, percentage clay) and a basic description of the clasts sampled (angularity, minerals present)

Sample preparation and analysis – At Acme Till samples were oven-dried at 60C, and then screened through a –80 mesh stainless steel Tyler sieve (mesh aperture of 177 um) Several Till samples were split to obtain an estimate of sample precision, and the laboratory staff at ACME inserted additional analytical quality control samples of known composition to monitor the accuracy

Geochemistry was tested by ACME Analytical Laboratories Ltd of Vancouver, B C Digestion was by Aqua Regia, Analysis by ICP-MS This method offers near total precious and base metal data, but acts as only partial leach for rock forming elements As a result, the measured element concentrations of Cr, Fe, Mg, S, Sr, and Ti are lower than the actual concentrations in the Till

Interpretation of results

There was only one Till sample of note and only relative to the other Till samples analyzed which it stood out against in the majority of elements TLGT03 elevated Sb (2 5ppm), minor Mo, Cu, Pb, Zn, Ca, Ba

Conclusion and Recommendation:

Unfortunately, our geochem results do not suggest any significant potential for mineralization in our target area. In itself though this is significant data, as it gives a greater degree of confidence to a company to not spend it's valuable exploration dollars on a target of low potential

I still have great confidence in the potential of Till Geochem sampling (when combined with surfacial mapping) as a useful exploration tool especially suited to low lying areas with dual problems of deep till overburden and swampy heavily vegetated terrane

Appendix:

Full Descriptions of DEPOSIT MODELS

W SKARNS

K05

COMMODITIES (BYPRODUCTS) W (Mo, Cu, Sn, Zn)

CAPSULE DESCRIPTION Schechte-dominant mineralization genetically associated with a skarn gangue

HOST/ASSOCIATED ROCK TYPES Pure and impure limestones, calcareous to carbonaceous pelites Associated with tonalite, granodiorite, quartz monzonite and granite of both I and S-types W skarn-related granitoids, compared to Cu skarn- related plutonic rocks, tend to be more differentiated, more contaminated with sedimentary material, and have crystallized at a deeper structural level

Mo SKARNS

K07

COMMODITIES (BYPRODUCTS) Mo (W, Cu, Pb, Zn, Sn, Bi, U, Au)

CAPSULE DESCRIPTION Molybdenite-dominant mineralization genetically associated with a skarn gangue (includes calcic and magnesian Mo skarns) Mo skarns are broadly separable into polymetallic and "molybdenite-only" types (see comments below)

HOST/ASSOCIATED ROCK TYPES Stocks and dikes of evolved, commonly leucocratic quartz monzonite to granite (some containing primary biotite and muscovite) intruding calcareous clastic rocks Deposits tend to develop close to intrusive contacts. Some of the Mo skarns in British Columbia are associated with high-level intrusions that have explosive breccia textures.

Pb-Zn SKARNS K02

COMMODITIES (BYPRODUCTS) Pb, Zn, Ag, (Cu, Cd, W, Au)

CAPSULE DESCRIPTION Galena and/or sphalerite-dominant mineralization genetically associated with a skarn gangue

HOST/ASSOCIATED ROCK TYPES Variable, from high-level skarns in thick limestones, calcareous tuffs and sediment to deeper level skarns in marbles and calcilicate-bearing migmatites Associated intrusive rocks are granodiorite to leucogranite, diorite to syenite (mostly quartz monzonite) Pb-Zn skarns tend to be associated with small stocks, sills and dikes and less commonly with larger plutons. The composition of the intrusions responsible for many distal Pb-Zn skarns is uncertain

Cu SKARNS

K01

COMMODITIES (BYPRODUCTS) Cu (Au, Ag, Mo, W, magnetite)

CAPSULE DESCRIPTION Cu-dominant mineralization (generally chalcopyrite) genetically associated with a skarn gangue (includes calcic and magnesian Cu skarns)

HOST/ASSOCIATED ROCK TYPES Porphyritic stocks, dikes and breccia pipes of quartz diorite, granodiorite, monzogranite and tonalite composition, intruding carbonate rocks, calcareous volcanics or tuffs. Cu skarns in oceanic island arcs tend to be associated with more mafic intrusions (quartz diorite to granodiorite), while those formed in continental margin environments are associated with more felsic material.

Au SKARNS

K04

COMMODITIES (BYPRODUCTS) Au (Cu, Ag)

CAPSULE DESCRIPTION Gold-dominant mineralization genetically associated with a skarn gangue consisting of Ca - Fe - Mg silicates, such as clinopyroxene, garnet and epidote Gold is often intimately associated with Bi or Au-tellurides, and commonly occurs as minute blebs (<40 microns) that lie within or on sulphide grains. The vast majority of Au skarns are hosted by calcareous rocks (calcic subtype). The much rarer magnesian subtype is hosted by dolomites or Mg-rich volcanics. On the basis of gangue mineralogy, the calcic Au skarns can be separated into either pyroxene-rich, garnet-rich or epidote-rich types, these contrasting mineral assemblages reflect differences in the hostrock lithologies as well as the oxidation and sulphidation conditions in which the skarns developed

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING Most deposits are related to plutonism associated with the development of oceanic island arcs or back arcs, such as the Late Triassic to Early Jurassic Nicola Group in British Columbia

HOST/ASSOCIATED ROCK TYPES Gold skarns are hosted by sedimentary carbonates, calcareous clastics, volcaniclastics or (rarely) volcanic flows They are commonly related to high to intermediate level stocks, sills and dikes of gabbro, diorite, quartz diorite or granodiorite composition Economic mineralization is rarely developed in the endoskarn. The I-type intrusions are commonly porphyritic, undifferentiated, Fe-rich and calc-alkaline. However, the *Nambija Wabu* and *QR* Au skarns are associated with alkalic intrusions.

PORPHYRY Mo (Climax-type)

L08

COMMODITIES (*BYPRODUCTS*) Mo (W, Sn, pyrite and monazite have also been recovered from the Climax deposit)

CAPSULE DESCRIPTION Stockworks of molybdenite-bearing quartz veinlets and fractures in highly evolved felsic intrusive rocks and associated country rocks. Deposits are low grade but large and amenable to bulk mining methods

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING High-level to subvolcanic felsic intrusive centres, multiple stages of intrusion are common

HOST/ASSOCIATED ROCK TYPES Genetically related felsic intrusive rocks are high-silica (>75% SiO2), F-rich (>0 1% F) granite/rhyolite, they are commonly porphyritic and contain unidirectional solidification textures (USTs), particularly comb quartz layers. Contents of Rb, Y and Nb are high, Ba, Sr and Zr are low Mineralized country rocks may include sedimentary, metamorphic, volcanic, and older intrusive rocks. Tuffs or other extrusive volcanic rocks may be associated with deposits related to subvolcanic intrusions.

PORPHYRY W

L07

COMMODITIES (BYPRODUCTS) W (Mo, Sn, Ag)

CAPSULE DESCRIPTION Stockwork of W-bearing quartz veinlets and fractures in felsic intrusive rocks and associated country rocks. Deposits are low grade but large and amenable to bulk mining methods

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING High-level to subvolcanic felsic intrusive centres, multiple stages of intrusion are common

HOST/ASSOCIATED ROCK TYPES Highly variable, mineralized rocks may be predominantly genetically related intrusive rocks, but may also be related or unrelated sedimentary, volcanic, igneous and metamorphic rocks. Genetically related felsic intrusive rocks are commonly F-rich (fluorite and/or topaz bearing) and porphyritic, unidirectional solidification features, particularly comb quartz layers, may also be present. Tuffs or other extrusive volcanic rocks may be associated with deposits related to subvolcanic intrusions.

PORPHYRY Mo (LOW-F-TYPE) L05

COMMODITIES (BYPRODUCTS) Mo (Cu, W)

CAPSULE DESCRIPTION Stockwork of molybdenite-bearing quartz veinlets and fractures in intermediate to felsic intrusive rocks and associated country rocks. Deposits are low grade but large and amenable to bulk mining methods

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING High-level to subvolcanic felsic intrusive centres, multiple stages of intrusion are common

HOST/ASSOCIATED ROCK TYPES All kinds of rocks may be hostrocks. Tuffs or other extrusive volcanic rocks may be associated with deposits related to subvolcanic intrusive rocks. Genetically related intrusive rocks range from granodiorite to granite and their fine-grained equivalents, with quartz monzonite most common, they are commonly porphyritic. The intrusive rocks are characterized by low F contents (generally <0.1 % F) compared to intrusive rocks associated with Climax-type porphyry Mo deposits.

PORPHYRY Cu+/-Mo+/-Au

L04

COMMODITIES (BYPRODUCTS) Cu, Mo and Au are generally present but quantities range from insufficient for economic recovery to major ore constituents Minor Ag in most deposits, rare recovery of Re from Island Copper mine

CAPSULE DESCRIPTION Stockworks of quartz veinlets, quartz veins, closely spaced fractures and breccias containing pyrite and chalcopyrite with lesser molybdenite, bornite and magnetite occur in large zones of economically bulk-mineable mineralization in or adjoining porphyritic intrusions and related breccia bodies. Disseminated sulphide minerals are present, generally in subordinate amounts. The mineralization is spatially, temporally and genetically associated with hydrothermal alteration of the hostrock intrusions and wallrocks.

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING High-level (epizonal) stock emplacement levels in volcano-plutonic arcs, commonly oceanic volcanic island and continent-margin arcs Virtually any type of country rock can be mineralized, but commonly the high-level stocks and related dikes intrude their coeval and cogenetic volcanic piles

HOST/ASSOCIATED ROCK TYPES Intrusions range from coarse-grained phaneritic to porphyritic stocks, batholiths and dike swarms, rarely pegmatitic Compositions range from calcalkaline quartz diorite to granodiorite and quartz monzonite Commonly there is multiple emplacement of successive intrusive phases and a wide variety of breccias Alkalic porphyry Cu-Au deposits are associated with syenitic and other alkalic rocks and are considered to be a a distinct deposit type (see model <u>1.03</u>)

Final Expenses YMIP -Grassroots -Grubstake Proposal -2002 Tillei Lake, field work completed Sept 10 #02-085 New costs Included

1) Daily Living Expenses	[<u> </u>]	
No of days x YG rate/person, per day	47 x \$35	\$ 1,645 00		
2) Travel (state method road, air, etc)				
Truck - total km x YG rate/km	2900km x \$ 42	\$ 925 38	1	
Kluane Airways Ltd, Beaver 3hrs @ \$600/hr		\$ 1,926 00	\$	1,926 00
above includes 1 helicopter set out with Hugh	es 500			
3) ACME Analytical (see invoice for details)		\$ 1,078 58	\$	1,078 58
4) Equipment Rentals / Supplies	<u>_</u>			
10' inflatable boat & 7 5HP motor	490/wk, \$90/day	\$ 1,300 00		
Truck (4 x 4)	\$1450/mnth, \$65/day	\$ 1,170 00		
Satelite Telephone	\$200/mnth	\$ 200 00		
dome bug tent le "office"	\$5/day	\$ 170 00		
35w solar panel, deep cycle battery, inverter	equiv To 500w gen	\$ 180 00		
chainsaw	\$450/mnth, \$35/day	\$ 450 00		
GPS	\$90/mnth	\$ 90 00		
steel bear-proof barrels	\$40 x 2	\$ 80 00		
Flagging tape, HCI, Topofil, shells, notebook	70	\$ 121 07	\$	34 22
Soil & Sed sample bags, rice bags, H cont	80	\$ 85 60		
Computer paper, disks, ink, film & develop	60	\$ 73 72	\$	11 12
Fuel for stove, sm lantern, candles		\$ 80 59	\$	35 07
Maps & Books		\$ 161 07	\$	81 03
5) n/a				
6) n/a				
7) n/a				
8) n/a				
9) n/a				
10) n/a				
12) n/a				
13) Other Expenses				
Satelite Phone air time	75min 30sec	\$ 209 21	\$	209 21
Wages of Prospectors Assistant	\$140/day	\$ 2,925 00		
shipping of samples	\$1/kg	\$ 165 00	\$	165 00
Report Preparation	40 hrs @ \$20 / hr	\$ 800 00	\$	800 00
Total Costs		\$ 13,836 22	\$	4,340 23

YUKON MINING INCENTIVES PROGRAM

FINAL SUBMISSION FORM

INSTRUCTIONS: Please read the guidebook before completing form.

Please type or print.

Submit completed form and summary or Technical Report by January 31 for the Grassroots Prospecting, Grassroots Grubstake, Focused Regional and for the Target Evaluation programs to

> Yukon Mining Incentives program Energy, Mines and Resources Government of the Yukon $2099 - 2^{nd}$ Avenue Box 2703, Whitehorse, Yukon, Y1A 2C6

TO BE COMPLETED AFTER PROJECT COMPLETION AND ACCOMPANIED BY THE SUMMARY OR **TECHNICAL REPORT**

Proposed project area(s) (NTS map no and project name) completed? Attach list if space is insufficient.

1 Tillei Lake	Glacial Till Prepet 105H (11,12,13,14) (Yes) No	
2	Yes No	,
3	Yes No	
4	Yes No	
Changes to proposed proj	ect(s) (if any)	
because of problem	is with our boat motor (reliability etc) we	spect less time working
the North end of To	Ile: Than was proposed.	·
	onnel that worked on the project.	
Jeff Boyce	with assistants Alynne Iverson c	ind Melance Mott
I WORK PERFO	DRMED BY APPLICANT	
1 Project #1 area/name	Tillei Lake	No of days worked by Applicant
Traditional prospecting	Panning & Rock Samples 13 Analysed No of Samples	20
Geological surveys	Scale	
Geophysical surveys	Type	
Geochemical surveys	Type No of Samples Stream Sediment 60 Analysed	27
Drilling	Type Ft (m)	
Trenching	Method	
Other	Туре	
	TOTAL	47

ł

II. SIGNIFICANT RESULTS (please complete)

Project Area	New Showings and/or Anomalies	Commodity	Best Analyses
Unfortunatly No		<u></u>	
III CLAIMS STAKED	DURING / AFTER ACTIV	ITY (please complete)	
Project Area	Claim Numbers	1	Number of Claim Units

N . A		
none		
N OPTION & CREEME	NTE DESUITING EDOM VMID D	
IV. OF HON AGREENIE	NTS RESULTING FROM YMIP P	ROJECT (please complete)
Optionee	Property/Claum	Dollar Value of
none		Work Component
	1	
V. TYPE OF MINERAL	EXPLORATION UNDERTAKEN	(please check one)
		4
	ry work on claims	
Initial exp	bloration	
Initial exp	bloration I exploration	
Initial exp Advanced	bloration I exploration	
Initial exp Advancec Developm	oloration d exploration ment	timate please complete)
Initial exp Advanced Developm	oloration d exploration ment AND SERVICES PURCHASED (es	tımate, please complete)
Initial exp Advancec Developm	oloration d exploration ment	tımate, please complete)
VI. VALUE OF GOODS A Within the Yukon\$	Noration d exploration ment AND SERVICES PURCHASED (es 7850.00	tımate, please complete)
VI. VALUE OF GOODS A	oloration d exploration ment AND SERVICES PURCHASED (es	tımate, please complete)
VI. VALUE OF GOODS A Within the Yukon \$ Outside the Yukon	s 1078.58	
VI. VALUE OF GOODS A Within the Yukon Outside the Yukon	Noration 1 exploration nent AND SERVICES PURCHASED (es # 7850.00 \$ 1078.58 RAL EXPLORATION (please com) New Exploration Methodology (T	
VI. VALUE OF GOODS A Within the Yukon \$ Outside the Yukon VI. RESULTS OF MINEI Αρβued The discove	Noration 1 exploration nent AND SERVICES PURCHASED (es 7850.00 \$ 1078.58 RAL EXPLORATION (please comp New Exploration Methodology (T ery of a new prospect.	olete) MScmpling) to New Area
VI. VALUE OF GOODS A Within the Yukon \$ Outside the Yukon VI. RESULTS OF MINEI A ρρ bed The discove The identific	Noration 1 exploration nent AND SERVICES PURCHASED (es # 7850.00 \$ 1078.58 RAL EXPLORATION (please com) New Exploration Methodology (T	olete) illSempling) to New Arean rexploration

S	ummary of expenditures Plage See attached Sh
	UMMARY OF EXPENDITURES PLEASE See attached Sh Daily Living Expense
	No of days x YG rate/person, per day \$
	Travel (state method road, air, etc.) Truck – total km x YG rate/km \$
	Aır\$
	Other \$
	Analyses/Assay Costs (specify sample type and price/assay)
_	\$\$
	Equipment Rentals/Supplies
	\$
	\$
	Contractors (state name and type of work)
	\$
	\$
	Line Cutting No of km x pnce/km \$
	Geochemical Survey (specify sample type) No of km x price/km \$
	Geophysical Survey (specify type of survey) No of km x price/km \$
	Trenching (specify equipment used and price/hour)
	Drilling (specify diamond or percussion and rod size) No of meters x price/meter\$
	Reclamation (specify type) \$
	Report Preparation \$
	Other Expenses (specify)
	\$
	\$

١

¢

٩

Attach list if space is insufficient

The Department of Energy, Mines and Resources may verify all statements related to and make herein this application

- I am the person, or the representative of the company or partnership, named in the Application for Contribution under the Yukon Mining Incentives Program
- 2 I am a person who is nineteen years of age or older, or represent a person, who is ordinarily a resident of Canada.
- 3 I have complied with all the requirements of the said program

٩

1

4 I hereby apply for the final payment of a contribution under the Yukon Mining Incentives Program (YMIP) and declare the information given above to be true and accurate

____ Date ___ Jan 26, 2003 Jeffrey David Boyce Signature of Applicant Name (print) Prospector Position or Title (if applicable)

١

ACME ANALYTICAL LABORATORIES LTD.

852 East Hastings,, Vancouver, B C , CANADA V6A 1R6 Phone (604) 253-3158 Fax (604) 253-1716 Our GST # 100035377 RT

	FINIS TERRE EXPLORATION LTD. 1795 W 13th Ave Vancouver, BC V6J 2H2			A205175 Dec 10 2002
QTY	ASSAY		PRICE	AMOUNT
13 60 13	GROUP 1DA (10 gm) @ GROUP 1D - 32 ELEMENTS @ GROUP 3A - AU @ SS80 - STREAM SED @ R150 - ROCK @ SS80 - TILL @		10 35 6 17 5 67 1 35 4 50 1 35	80 21 73 71 81 00
		GST Taxable 7 00% GST		1008 02 70 56
		CAD \$		1078 58

١

Project TL 2002 Samples submitted by Jeffrey Boyce FILE # A205175, A205176 & A205177 - UNIT PRICE REFLECTS 10% DISCOUNT

COPIES 1

Please pay last amount shown Return one copy of this invoice with payment TERMS Net two weeks 15% per month charged on overdue accounts

[COPY 1]

	ANAL								D.		852	E.	HA	3TI)	NGS	ST	. V.	INC	νυς	er :	BC	V6A	1R6		Ŧ	HON	3 (6	04)2	53-3:	158	Fax	(60)4)2	53-1	171	.6
££	(ISÓ	9002	AC	CTR	111		ini	·	err			lor		on	Lt	<u>d.</u>	PR	<u>OJ</u>	ECI	r T	L 2	002	ATE F Jeffr	ile		A2	05:	177						4		4
SAMPLE#	M pp			Pb 7 xpm pg		Ag opm	N1 ppm	Co ppm	Mn ppm	Fe %		U ppm	Au ppb			Cd ppm	Sb ppm	Bı ppm	V ppm	Ca %	P %	La ppm	Сг ррп	Mg %	Ba ppm	T1 %	B opm	Al %	Na %	к %	W ppm		Sc ppm		S %	Ga ppm
G-1	1.	83	1 2	.5 4	43 -	<.1	5.9	4.4	547	2.07	<.5	2.0	5	4.4	87	< 1	<.1	.1	42	.60	077	9	16.2	55	237	.142	1	1 02	097	51	2 6.	<.01	23	3 <	05	5
TLGT01		6 12.	8 19	2 6	54	1	22.2	10 6	289	2.50	10.1	7	31	74	6	2	.4	3	22	.05	042	18		41	111	.018	1	1 73	004	04	6	.01			: 05	
TLGT02	2.			.0 10		-	20.3	3.3		1.40		4	8		17	-	1.9	.1	37		036	6		.09		.001	1	58	002	.03	1		12		.05	
TLGT03	4.			.5 10			43.3				12.9	9	27	3.6	32	- 7	2.5	2	46		084	10	12.9			.002	1		< 001	.06	.1		25	2 <		-
TLGT04	•	77.	5 11	7 2	26 •	<.1	5.2	3.1	173	1.15	2.6	8	< 5	.1	6	1	.3	4	23	.03	029	13	80	10	52	010	1	70	007	.04	1	.01	3	1 <	05	5
TLGT06		48.	78	3 3	56 -	<.1	8.6	4.6	146	2.19	4.2	7	10	68	5	< 1	.4	3	31	.02	020	20	9.1	. 18	58	.009	<1	1 09	002	04	4-	4.01	1.5	1 <	05	7
TLGT07		37.	0 9	4 '	13 -	< 1	4.7	3.4	156	1.73	5.0	4	< 5	33	5	<.1	.3	2	13	02	013	10	47	05	41	003	1	.65	003	.05	1	.01	9	1 <	05	3
TLGT20	1	7 12.	2 15	.8 6	57	.1	14.0	6.1	227	2.49	9.5	4	2.1	23	10	8	7	3	50	14	067	7	13.4	21	247	.006	<1	1 13	005	05	3	02	14	1 <	05	4
TLGT21	. .	8 11.	5 14	.1 5	56	.1	14.4	4.8	206	2 29	13.7	6	1.5	5.8	7	1	7	4	28	.08	053	17	14 2	37	64	020	<1	.99	003	05	7	01	12	.1 <	. 05	4
STANDARD DS	54 6	4 119.	4 31	-6 15	55	3	34.7	11.8	751	3 22	22.5	63	24 3	3.6	28	53	47	5 0	73	52	.082	16 1	161 3	57	137	.087	1	1.68	030	15	37	27	35	1 1	07	6

GROUP 1DA - 10.0 GM SAMPLE LEACHED WITH 60 ML 2-2-2 HCL-HN03-H20 AT 95 DEG C FOR ONE HOUR, DILUTED TO 200 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM - SAMPLE TYPE TILL SS80 60C

DATE RECEIVED:

All results are considered the confidential property of the client Acme assumes the liabilities for actual cost of the analysis only.

Data

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

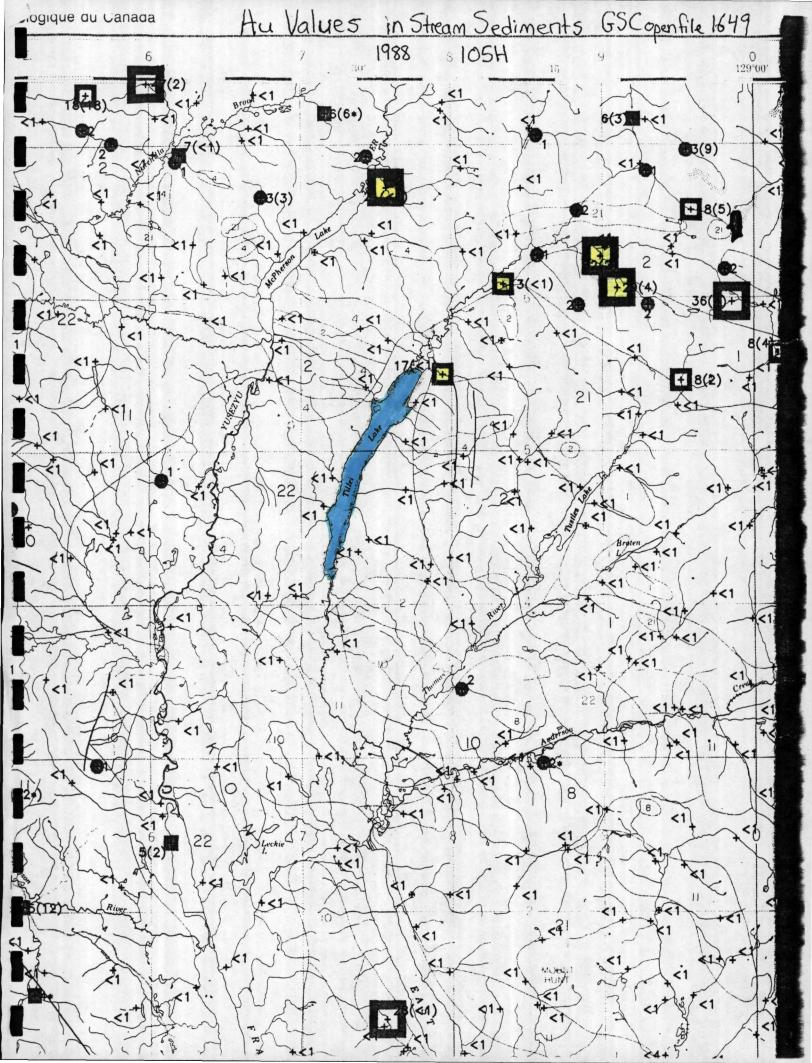
	50 9	902 .	ACC1	redi	Ltec	1 66	*• }			Ģ	EOC	HE	(IC)	AL	AN/	Υ Τλ	SI	s c	ER]	rifj	(CA	TE											Å	Å
TT				<u> Fir</u>	nis	Te	orre	EX				<u>1 Ц</u> Аvе,										e # ffrey			175		Pag	e 1	-				T	T
SAMPLE#	Mo ppm	Cu ppm		Zn ppm	-			Mn ppm		As ppr					Cđ ppm			V ppm	Ca %		La ppm	Cr ppm	Mg %	Ва ррп	T1 %	B ppm	Al %	Na %				Sc T opm pp		Ga ppm
G-1 TL1SD01 TL1SD02 TL1SD03 TL1SD04	31 32	30 19.6 20.4 18.5 17.2	13.8 15.6 16.1	155 205 202	.2 .2 .1	23.5 36.8 37.1	8.0 14.6 16.1	5897 6583	2 89 4.05 4 18	12.4 23.0 25 8	24 20 15	1.7 2.1 6	1.7	47 62 52	1.1 1.9 1 6	8 10 10	3 .3 3	31	.89 1.03	.110 090	8 8 7	16 4 13.1 16.0 16.4 15.3	36 .39 .39	312 595 766	007 .008 .009	3 4 2	1.06 1 05 1.12 1 09 1 05	.009 .011 006	.06 .06 .06	1 1 1.5 .4	06 1 06 2 05 2	18 21 21	3<.05 1 11 1 12 1 09 1 06	3 3 4
TL1SD05 TL1SD06 TL2SD01 TL2SD02 TL3SD01	1 2 1 6 6	22 2 28 1 36.0 25.9 19.2	16 9 14 9 11.4	178 137 120	.2 .3 .3	30.7 30.3 22.6	7.5	636 183 212 175 646	1 85 1 54 1 45	3.6 4.7 4.8	2.5 52 21	1.0 2 0 7	25 3.5 2.8	44 44 37	16 20 11	1.1 5 9 8 5	2 3	32 23 24 28 25	87 .64 73	117 .076 .070 086 076	5 10 9	17.6 16 4 17.7 11.3 14 6	32 .40 .28	239 279 310	004 003 .003	2 1 1	1.17 1.12 1 50 91 1 17	010 .008 005	.06 .06 .04	2 .2 1	12 2 10 2 12 2 13 2 .10 2	25 26 22	1 .15 1 .70 1 29 1< 05 1 .15	3 4 3
TL3SD02 TL4SD01 TL5SD01 TL5SD02 TL6SD01	4 .8 1 3	22 1 15.3 16 5 27.6 19.3	11 7 9.8 15.3	102 140 153	.2 .3 3	18.0 22.4 24.1	60 6.9 8.6	572 201 420 178 643	1 54 2 29 1.59	4.6 95 71	.8 1.1 3.8	1.1 <.5 2.9	2.5 2.4 3.6	38 76 55	9 5 9 1.5 6	5 5 7 .6	2 1	24 26 26	1.15	.073 .121	8 7 9	15 9 10 4 11 0 16.4 15 2	28 32 .39	187 307 362	003	1 2 2	1.24 .81 79 1 19 1 11	.007 .007 .009	05 05 .08	.2 .1 2	11 3 .09 1 12 2 11 3 08 2	1.9 2.5 . 5 8 .	1 21 1 .07 1 .08 1 19 1 10	2 2 3
TL10SD01 TL12SD01 TL60SD01 TL61SD01 TL61SD02	1.1 1.7 8	14.5 15.4 38.2 41.3 29.2	11 9 18 7 17 5	133 205 227	.2 .4 .4	21 5 40 4 38.7	9.3 12.1 88	2031 3666 772 325 422	2 59 2 95 2 01	12.6 8.8 4.3	10 1.4 8	<.5	22 29 31	67 53 44	1.3 19 1.5	6 4 7 7 .7	2 .3 3	22 28	1 00 1.04 .53 1.07 81	083 068	7 7 8	13 0 12.7 14.8 14.5 11 7	37 39 37	509 362 349	006 004 003 003 .003	3 1 3	1.08 1.15 1 07		.08 08 .07	2 2 2	.06 2 08 2 .10 2 25 3 17 2	25 27 37	1< 05 1 .08 2< 05 1 .08 1< 05	3 3 3
TL62SD01 TL63SD01 TL64SD01 TL65SD01 RE TL65SD01	1.6 1 8 4	13 1 27.8 16.2 18.9 18 7	18.6 15.7 17.6	101 101 82	.1 .1 .1	32.4 20.8 17.7	27.2 10.4 98	8174 714	6 96 2 76 2.42	43.1 11 3 8 2	24 10 1.9	1.1 7 1 2	5.1 4.1 4.4	63 33 64	2 1.4 .5 2 3	3	.3 4	23 20 19	.72 41 81	.069 .073 061	13 10 13	14 7 14.7 13 9 15 6 15 5	40 .37 41	345 244 146	013 .004 .010	1 1 1	.88 1.07 1 23	009 011 .007 .009 009	06 .05 .07	6 4 3	02 2 04 2 05 2 03 2 03 2	26	1< 05 2<.05 1<.05 1<.05 1<.05	3 3 4
TL66SD01 TL67SD01 TL68SD01 TL69SD01 TL70SD01	7 1.4 1.7	15.4 11.1 23 8 25.8 15.0	97 172 201	75 114 127	.1 .1 .2	16.2 26 5 27.1	8.2 11.7 13.2	526	2 11 2 79 3 18	65 8.6 10.7	.7 1.2 1.3	9 1.3 1.3	4.3	37 39 41	.3 6 .8	8	2 4 4	16 24	.34 52 53	.060 070 074	10 11 11	13.8 13 2 16 6 16 7 10.7	.36 .40 41	220 261 281	005 .004 .004	<1 1 ⁻ 2 ⁻	1.04 .97 1 25 1.27 .86	008 008 007 008 008 007	.04 07 07	3 3 .3	072 093	2 4 < 7 0 . 1 <	1< 05 1< 05	3 4 4
TL70SD02 TL70SD03 TL70SD04 TL70SD05 TL70SD05 TL70SD06	.3	9.4 17 0 15 1 19.8 22.9	19 1 14 9 19.8	99 111 163	<.1 .1 .1	20.1 14 7 18.7	13.3 8.5 12.0	402 710	3 47 2 34 3 23	81 5.0 6.7	1.2 1.0 1 4	.6 <.5 5	10 1 4.3 5.1	24 45 46	.2 .3	.7 5 7	.3 3 5	14 16 15	24 62 61	043 060 067	16 13 15	11 4 12 6 11 9 11 7 13.3	.34 31 .31	79 88 106	.008 .013 011	1 2 1	- 80 - 88 87 - 89 - 89	008 009	.08 .06 .08	1 4 3	01 3 03 2 03 3	.0 < .0 < .5 < .1	1< 05 1< 05 1<.05	3 3 3
STANDARD DS4	67	121.6	31.8	160	.3	33.6	11 8	792	3.22	22 4	6.2	25.2	36	28	5.3	4.9	52	74	54	.089	16	162 9	.57	138	.089	1 '	1.76	.030	.14	3_7	28 3	.7 1	1< 05	6
		UPPE	RLI	MITS	- AG	, AU		W = '	100 PI	Р М; М	o, co	, CD,	SB,	BI,	тн, ι	U & E	B = 2	2,00	O PPM		ΡВ,	, DILL ZN, M <u>ns.</u>												
DATE RE	CEIV	ED:	NOV	/ 22	2002	D	ATE	REPO	ORT :	MAII	ED:	y)e	13	0	r	ł	SIG	NED	BY	Ľ.	Ļ.	••••	70.	тоуе	, C L	EONG	, J.	WANG,	CER	TIFI	ED B	C AS	SAYER	s
All resul	ts ar	cons	idere	ed th	ie co	nfide	ential	prop	perty	of tl	ne cl	ient.	Acme	ass	umes	the	lıat	51l11	ties	for a	ctual	cost	of	the a	analy	S15 C	only.				Da	ata 🖌	<u>_</u> FA _	

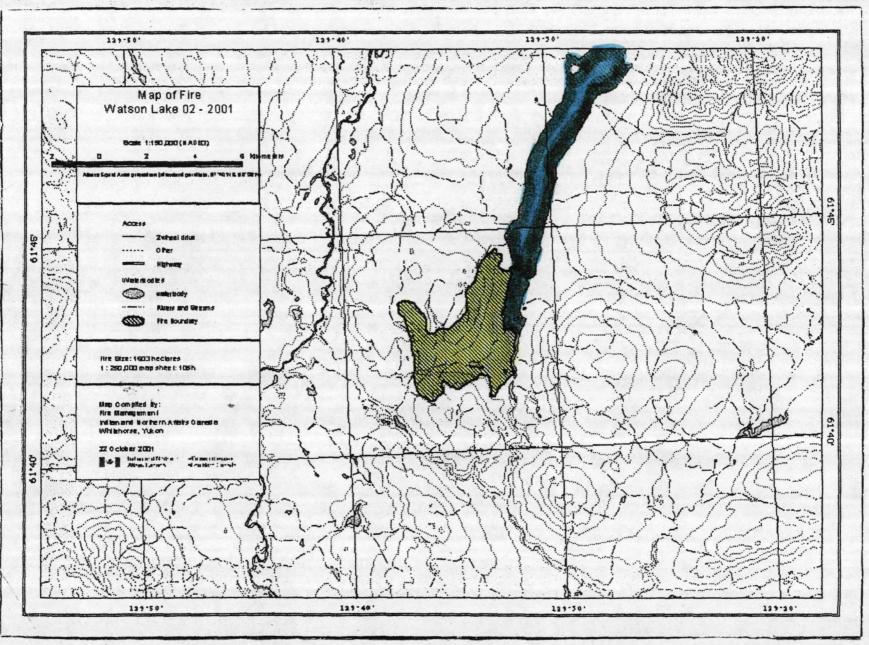
Finis Terre Exploration Ltd. PROJECT TL 2002 FILE # A205175

Data_AFA

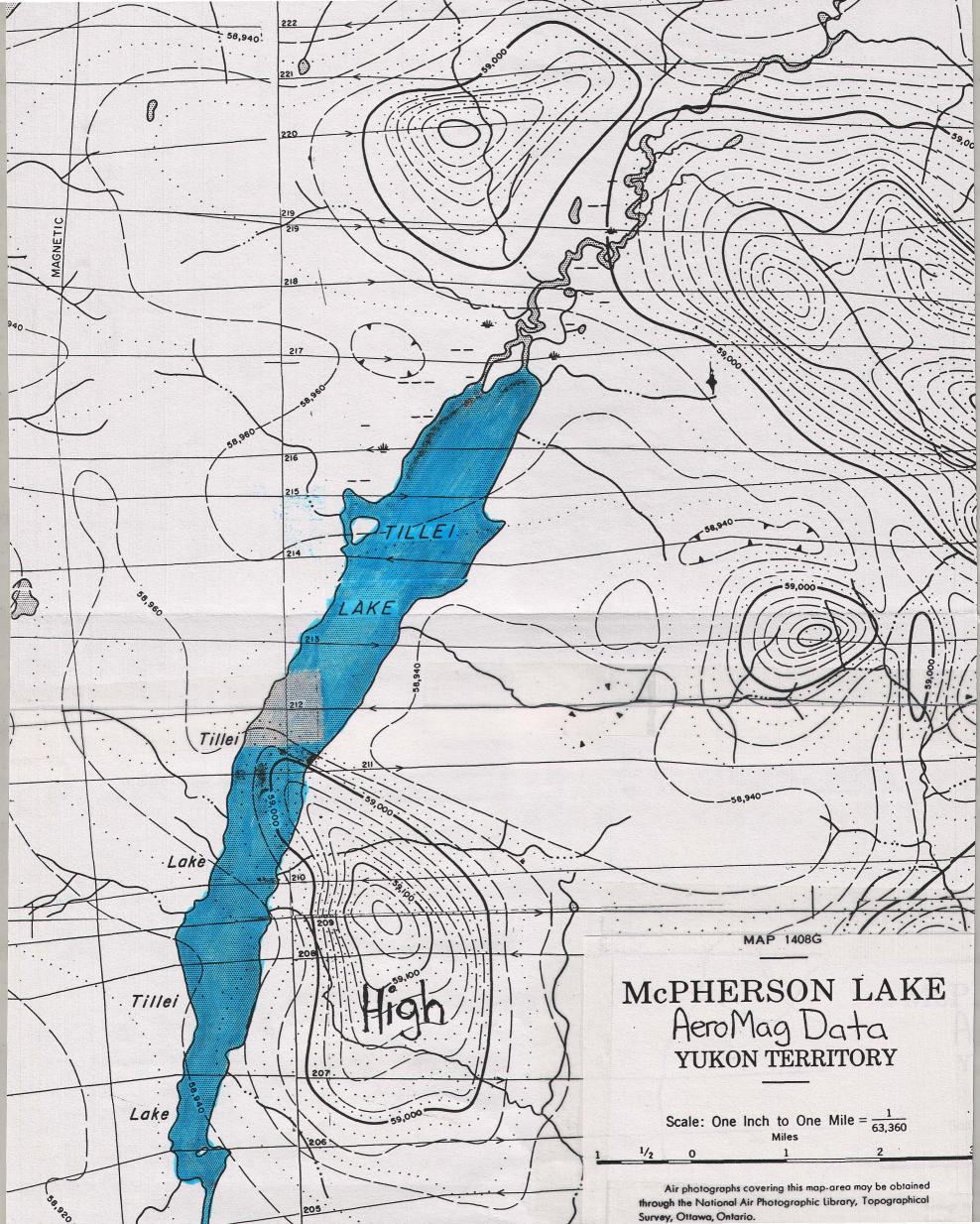
Page 2

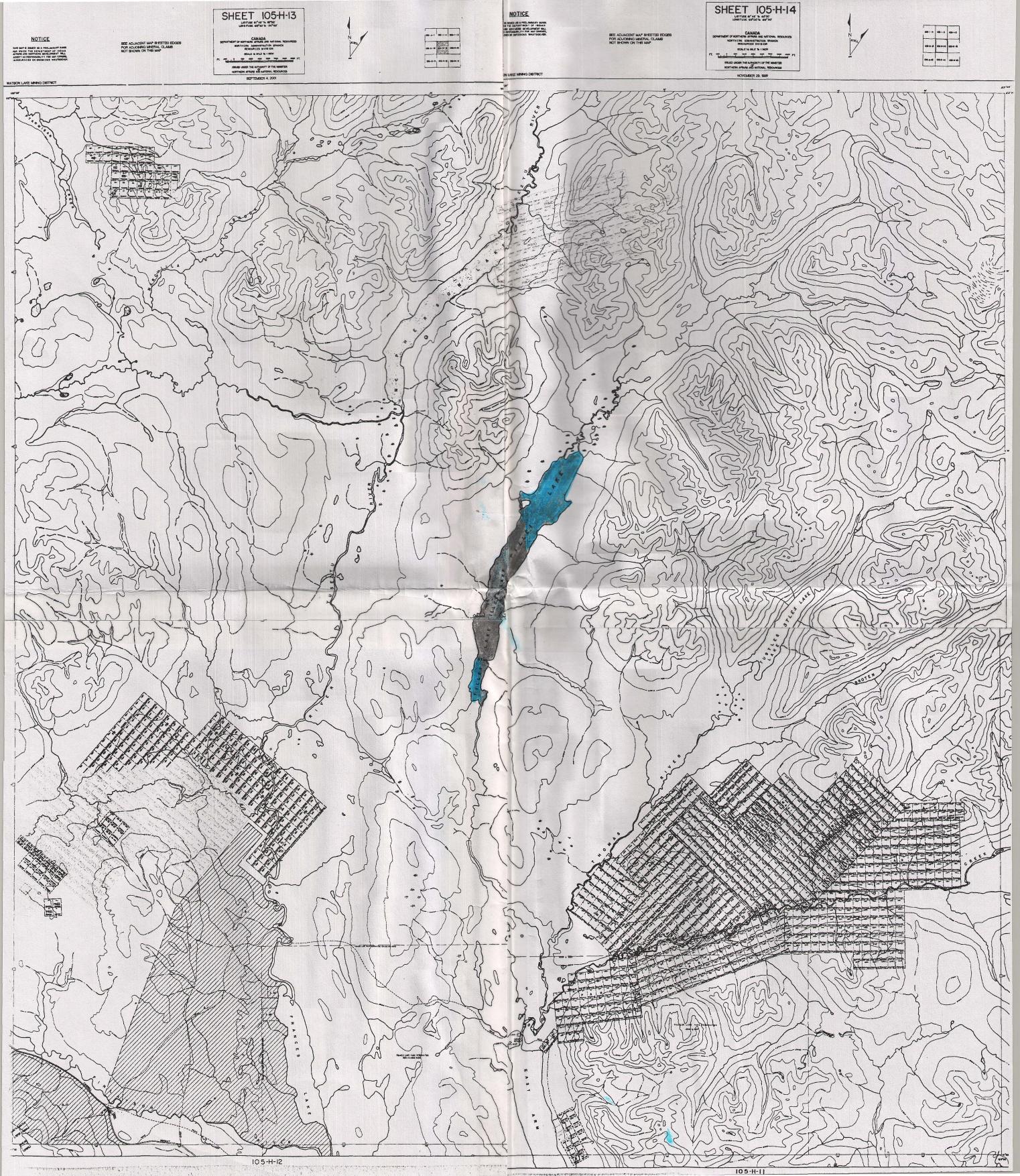
Acite American										-																				<u></u>			ليستعيب
SAMPLE#	Mo	Cu	P	b Zr	n Ag	N 1	Co	Mn	Fe	As	U	Au	Th S	r C	d Sb	Bı	v	Ca	Р	La	Cr	Ma	Ba	Τı	B	AL	Na	κ	N N	Ha	Sc Tl	S	Ga
1	ppm	ppm			-	ppr				ppm p		ppb p						%		ppm			ppm				%				pm ppm		ppm
L	pp	- ppii		<u>" pp</u>		PP			/6	- 1944 B	- prin	PP0 P			" ppii	PPin	ppin	70		PPin	220	70	Ppili	/0	ppin	~	~~~		ppin				PP:
			-					F 07	2 20				4 10			4		10	075	40	10.9	10	770	. 157		4 74	1/0		~	01 3	/ 7	< 05	4
G-1												134													-				-				0
TL71SD01	1.2											4.7 3					29		075		16.1						.010			.18 3		06	4
TL72SD01	8											3.1 5					19				16.3			011						.01 1		< 05	-
TL73SD01	5	8.0	12.2	2 73	5 < 1	16 6	8.5	407	2.42	5.4 1	1.2	.75	6 2	3	2.2	.2	18	.31	049	12	16.5	48	71	018	<1 1	1 11	003	.05	.3	.01 1	6 <.1	<.05	4
TL74SD01	2	56	7.0	6 50) <.1	11 6	6.1	282	1.55	3.6 1	1.0	3.4 5	.3 1	8.	1.1	2	14	27	043	13	11.2	36	65	.018	<1	88	.005	.04	.5	.01 1	.3 < 1	< 05	3
TL75SD01	2	0 6	11	6 77	t 1	18 7		342	2 62	311	1 4	106	5 2	2	1 1	3	17	34	045	15	16.0	46	50	013	<1 1	1 23	007	04	8	02 1	6 < 1	< 05	4
TL76SD01												< 5 6									14.2										.4 < 1		7
														· ·																			4
TL77SD01										7.9		.6 5		4 (2 3				056												.4 < 1		6
TL78SD01										581		.75		3							28.6										1 < 1		
TL79SD01	.6	25.3	20.	195	51	24.2	11.1	744	3.12	922	23	83	.2 5	63	5.5	.3	22	1 17	056	9	21 3	.56	162	017	11	1 59	.011	.06	.4	.03 1	9.1	07	5
	}																																
TL79SD01A	5	26 0	17.3	7 80) .1	19 1	9.1	575	2.53	8.1 3	32	132	1 6	7.3	54	.3	18	1 50	052	7	17.5	.46	146	.014	<1 1	1 31	.010	05	.5	03 1	6 < 1	07	4
TL80SD01	1 5	22.9	23.0	0 120) .1	27 9	14.0	1179	3.11	13.0 1	1.1	94	6 3	4 .1	3 7	3	28	57	.063	12	13.4	.36	256	.007	1 1	1.03	008				6 .1		
TL81SD01	1	24.8					-			4 5 1									.056		9 1						008				.2 .1		2
TL82SD01		20.1																			12 6						008			05 2		09	- ;
	1																								•				-				-
TL83SD01	0	12.6	11.0	5 /:) 1	14.7	75	477	2.08	5.5	8	94	73	5 3	5.4	.2	17	53	046	12	11.1	32	115	012	<1	81	.008	.05	5.	.02 1	.8 < 1	< 05	5
	1.						_	_								_																	
TL83SD03		98								4.5 1		.5 5			53						11.5		- 99 -	.011	1	-81	.009				8 <.1	< 05	3
TL83SD06	2	16 9	10 7	7 58	3.1	14 3	7.2	332	1.92	3.8 1	4	< 5 2.	.78	4 [.]	14	- 3	16	.97	.071	11	11.7	39	117 .	.018	1	.97	.012	07	.3	05 2	6.1	.06	3
TL84SD01	.5	14.3	10 4	4 61	.1	15.5	78	316	2.17	4.8 1	0	185.	.3 34	4 ;	2 5	2	19	44	048	13	10 8	.31	95	.011	<1	79	008	06	3	02 2	.0 1	< 05	2
RE TL84SD01	.5	14.2	10 3	3 60) 1	16.3	78	324	2.24	461	0	165	4 3	4	1 4	.2	19	44	048	14	10 8	.31	95	011	1	79	008	.06		02 2		< 05	3
TL85SD01												.5 5					22				11.9			014			.008		-	02 1		< 05	
	1				•••	14 /	0.6							-					0.50	14		51	,,,	014	••	04		.00	•	02 1	7 1	. 05	5
TL86SD01	7	13.3	11 0	5 115	. 1	14 7	07	/75	2 10	551	7	< 5 4	0 7	. 1 .	n /	7	10	50	0/7	1/	12 6	77	00	01/	1	~	.009	00	,	<u></u>	2 .1.	< 0F	7
TL88SD03		19.5										865																					- 1
	1																				12.3										2 .1.		
TL88SD04		26.4										1.4 4					14		.071			.26			<1		006			05 3.		< 05	2
TL90SD01	8	16 4	15.4	4 68	3 1	19 2	9.2	485	2.32	7.1 1	.0		4 1		57	.3	25	23	056	21	16 2	.44	95	031	<1 1	1.21	010	.09	4	02 2	_3 _1∢	< 05	4
TL91SD01	4	18.5	19.0) 94	<.1	30 8	16.3	727	4.10	5.91	2	86.	1 29	9.'	1.1	.3	20	54	050	13	26 8	60	52	.007	<1 1	1.89	.005	.03	2	.02 2	1 < 1	<.05	6
TL95SD01	4	15 8	14.5	87	'.1	18.8	13.3	1097	4.09	27 7 1	-1	<.5 4	4 5	3 /	3	.4	22	98	069	14	15.9	.48	310	.024	2 1	35	013	10 4	15	04 2	1 1	26	4
TL95SD01A PAN												104					21		064		14 6									03 1	•	26	• 1
		23.6										142.					52		.066		50 1	99											-
LT Tob																														.02 3		06	-
		29 1					16.4					182			6.	1	61		.068		93.4						013			03 3		< 05	4
STANDARD DS4	04	121.1	51.4	+ 152	.3	55 2	11.8	790	5 19	22 8 6	0 2	25.2 3	6 2	(5 2	: 5.1	50	74	54	080	15	160.9	.57	136 .	.088	11	.76	030	15 4	+.0	26 3	5 1 1	: 05	6

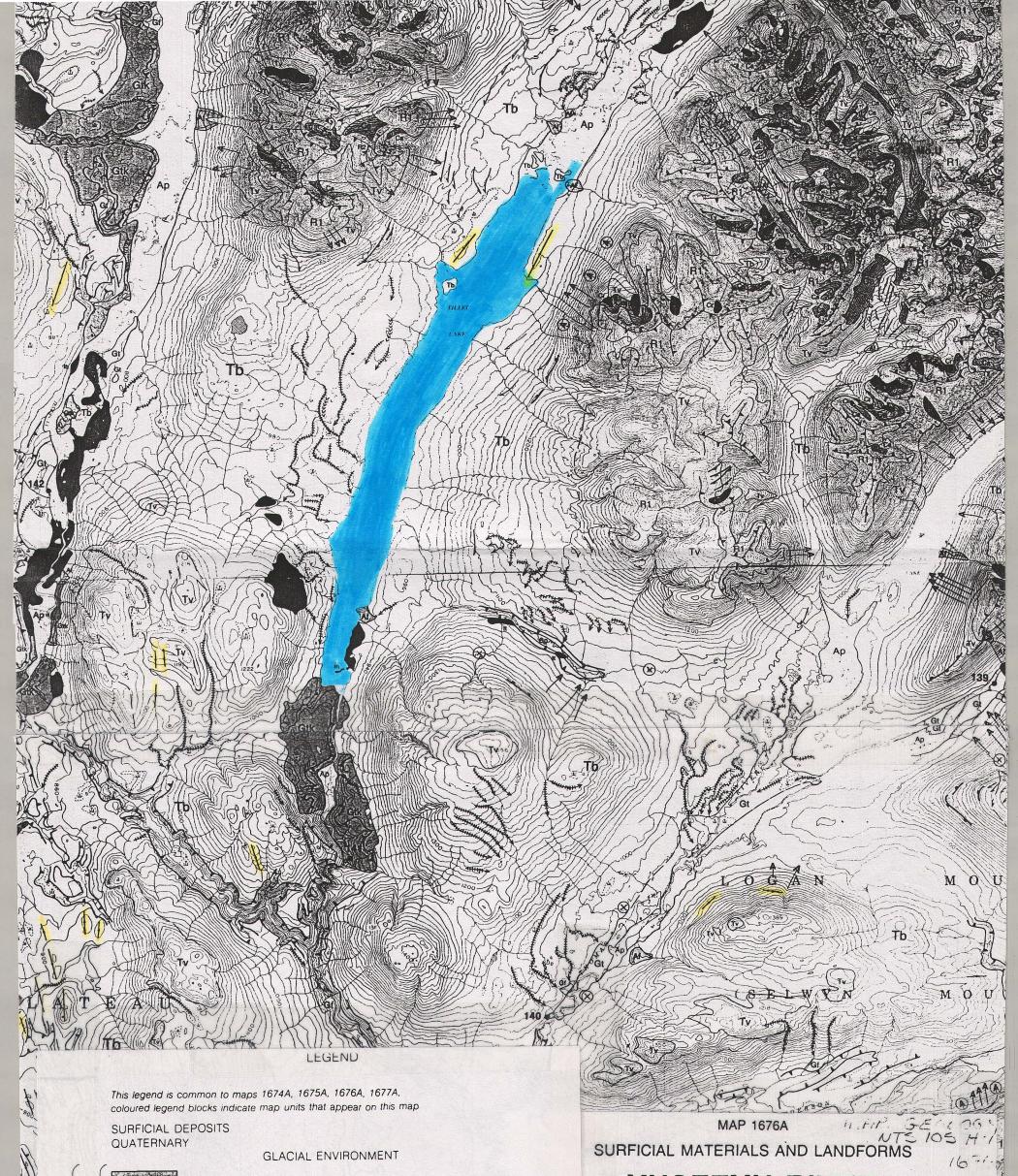

Sample type: STREAM SED . Samples beginning (RE' are Reruns and (RRE' are Reject Reruns


All results are considered the confidential property of the client Acme assumes the liabilities for actual cost of the analysis only

ACME ANALYTI (ISO 900									4TD		1	352	E.	H	ASI	IN	gs	ST.	VA	NCC)UVI	R BC	V6	A 1	R 6		PHO	NE (e	504)	253	-315	8 F	AX	(60	4):	253	1 716
£ £									Te:	rre		cp.	lor	at	:io	n	Ьt	đ.		ĴĴŦ	CT	TL	CIFI 200 ted by	2	Fi	le : Boyc		205	176	5							£ {
SAMPLE#				Pb ppm			-	N 1 ppm			· · · ·	e / %p		-	Au opm				sb ppm	Bı ppm	V mqq	Ca %	P %	La ppm			Ba ppm	T1 %	B ppm	Al %				w 1 pm pi		Hg ppm	Au* ppb
SI		1	3	16		4	.4	1	1	3	0	6	2	<8	<2	<2	2	<.5	<3	<3	<1	08	<.001	<1	3	< 01	-	<.01	3	< 01		.0'	1	2 ·	<5	<1	2
TLCS7001		1	8	12		3 <		5	6		1 9	_		-	<2	11		<.5	-	3	2	1.21	.010		11		124			.35				-	<5	<1	.6
TLCS7002		1	5	15				12	8		2.1		_	_	<2	- 2		<.5		<3	7	51	.013		21		85			-88				•	-	<1	<.2
TL1CS01		1	10	119	_		4	10	3		1.6		_		<2	3		<.5		<3	4	.47	.024		13	42		<.01	4	75				_	-	<1	< 2
TL1CS02		3	4	36	2	6 <	.3	4	6	1749	1.0	5	5 ·	<8	<2	<2	7	< 5	<3	<3	<1	.38	.030	<1	22	.02	63	<.01	7	05	< 01	0.	1	8 -	<5	<1	< 2
TLRK01		7	6	3	16	8 <	3	17	4	161	1.4	2 3	21 ·	<8	<2	<2	13	8	<3	<3	36	.10	.056	2	23	.05	78	< 01	3	30	< 01	06	6	8 -	<5	<1	12
TLRK02		4	3	12	2	7 <	3	7	3	1133	1.5	9.	<2 ·	<8	<2	<2	6	< 5	<3	<3	3	.29	.040	<1	16	.13	43	< 01	<3	36	< 01	01	1	2 .	<5	<1	3
TLRK03		2	6	- 3	2	8 <	3	6	4	433	1.4	0	3	<8	<2	7	5	< 5	<3	4	1	18	010	5	12	.03	39	< 01	<3	20	01	07	7	6 •	<5	<1	7
TLRK04	1	1	4	<3	1	7 <	3	10	8	1608	3.9	8	5	<8	<2	5	124	< 5	<3	5	<1	5 35	.028	4	9	1.28	30	< 01	<3	25	01	13	3	2 .	<5	1	15 1
TLRK05		1	15	12	6	9 <	: 3	19	12	360	2.7	7	6	<8	<2	6	4	< 5	<3	<3	4	04	.007	6	9	. 11	39	<.01	<3	45	.01	14	4	4 ·	<5	<1	35
TLRK06		1	5	<3	1	1 <	.3	5	4	243	9	ζ	5	8	<2	15	8	< 5	<3	<3	1	32	.012	14	8	03	32	< 01	<٦	24	.01	. 1!	5	2 .	<5	<1	17
RE TLRK06		:1	5	<3		2 <		6	4	243		_	ŝ.	-	<2	15	-	<.5	<3	<3	2	32			9	03		<.01	-	25			-	_		<1	15
TLRK07		2	3	8	1	_	3	4	2	315			-	-	<2	<2	-	<.5		<3	<1	10	.006	1	12	09		<.01			<.01				<5	•	.5
TLRK80		1	8	ž	-	5 <	-	5	1	63	-		_		<2	<2		<.5	<3	<3	<1	.02	006	i	14	.01		<.01		.03				-	<5	•	.5
TL77SD01		1	4	<3		3 <		3	1	327					<2	<2		<.5	<3	<3	<1	.28	.101	<1	10	<.01		<.01	3		<.01				<5		6
STANDARD DS4/AU-R		7 1	19	34	150	6	3	34	12	767	3.0	5 2	23 -	<8	<2	4	27	5.4	5	6	71	50	.089	16	153	55	139	08	<3	1 64	03	15	5	4 .	<5	<1	441 8


GROUP 1D - 0 50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES UPPER LIMITS - AG, AU, HG, W = 100 PPM, MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM, CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns


Data FA



.

TILL: nonsorted debris, commonly bouldery, 0.5-20 m thick, forming discontinuous veneers, fluted, hummocky, or channelled blankets, and lateral and end moraine ridges; distinguished from older till by its general lack of vegetation; includes deposits of six advances, oldest of which postdates White River tephra (ca. 1200 years old)

NONGLACIAL ENVIRONMENT

COLLUVIAL DEPOSITS: block accumulations and landslide debris, 1-50 m thick

Talus (scree): accumulations of blocks, commonly exceeding 3 m in diameter, as much as 50 m thick, forming aprons and fans below cliffs; commonly crossed by debris flow channels and levees. Most slopes active

Rock glacier debris: accumulations of talus deformed by flow of interstitial ice to form rock (talus) glaciers, generally 10-50 m thick, with pronounced transverse and longitudinal ridges and furrows, steep sides and fronts; includes deposits of several ages, at least three older and six younger than White River tephra (ca. 1200 years old)

Landslide debris: rock avalanches more than 10 m thick and slumped and slid till incorporating organic detritus, 1-10 m thick, with hummocky or rolling surfaces and steep fronts

Ch

Alluvial fan deposits: poorly sorted gravel and sand with organic detritus and buried organic soils; fans commonly laterally amalgamated, commonly crossed by debris flow channels and levees and subject to shifting stream courses

ALLUVIAL DEPOSITS: gravel, sand, and organic detritus 2-20 m thick

Alluvial plain and terrace deposits: well sorted gravel and sand with detrital organic beds, including concentrations of logs, forming meander scrolled plains Ap, and terraces At

Lt,p

EOLIAN DEPOSITS: sand, 1-5 m thick, forming sharp crested dunes, now stable; probably formed immediately after deglaciation and prior to establishment of a vegetation cover

PROGLACIAL AND GLACIAL ENVIRONMENT

GLACIOLACUSTRINE DEPOSITS: fine sand, silt, and clay, 10-30 m thick, forming terraces deeply dissected by postglacial erosion where thick or plains where thin; deposited in glacier dammed lakes

GLACIOFLUVIAL DEPOSITS: gravel and sand, 2-30 m thick, deposited on, beneath, and in front of the marginal zone of a glacier

LAST GLACIATION

Proglacial outwash: gravel and sand forming distal outwash terraces Gt, plains Gp, and fans Gf, and proximal kettled outwash terraces Gtk, and plains Gpk; characterized by abandoned braided channel patterns

Ice contact stratified drift. gravel and sand, with clasts commonly 10-100 cm across, commonly faulted, forming lateral kame terraces and delta terraces It, with ice contact escarpments and kettle holes Ik, hummocky moulin kame fields, or ice block disintegration terrain Ih, and eskers or crevasse fillings Ir

GLACIAL ENVIRONMENT

TILL: nonsorted debris, 0.5-20 m thick, ranging widely in grain size and petrological composition but including deposits locally derived almost entirely from black shale, red shale, serpentine, marble, limestone, granite, and schist

Till veneer: 0.5-2 m thick; surface mimics underlying rock surface, fluted in places, commonly channelled by meltwater

Till blanket: 2-20 m thick; much of surface lineated by flutings and drumlins or channelled by meltwater Tb, distinctly hummocky Tbh, where composed mostly or entirely of shale

ROCK PRE-OUATERNARY

ROCK: rock of various lithologies and ages forming alpine valley walls and ridges extensively modified by glacial erosion R1, and high plateau remnants of restricted extent showing little or no sign of glacial erosion R2, high plateaus and other low to moderate slopes commonly mantled by felsenmeer; patches of till and glacial erratics occur throughout

YUKON TERRITORY

Scale 1:100 000 - Échelle 1/100 000

RI

X

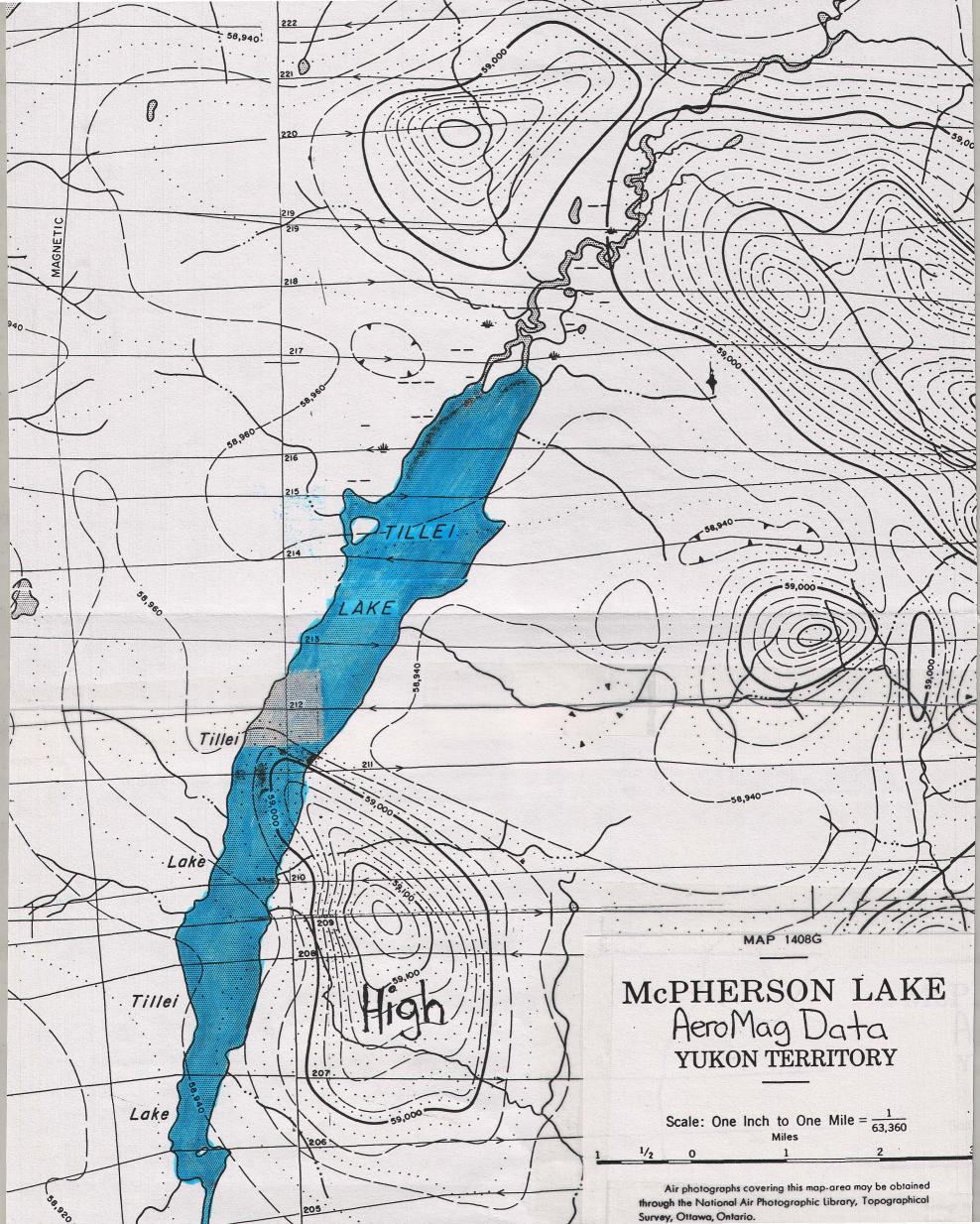
Kilomètres

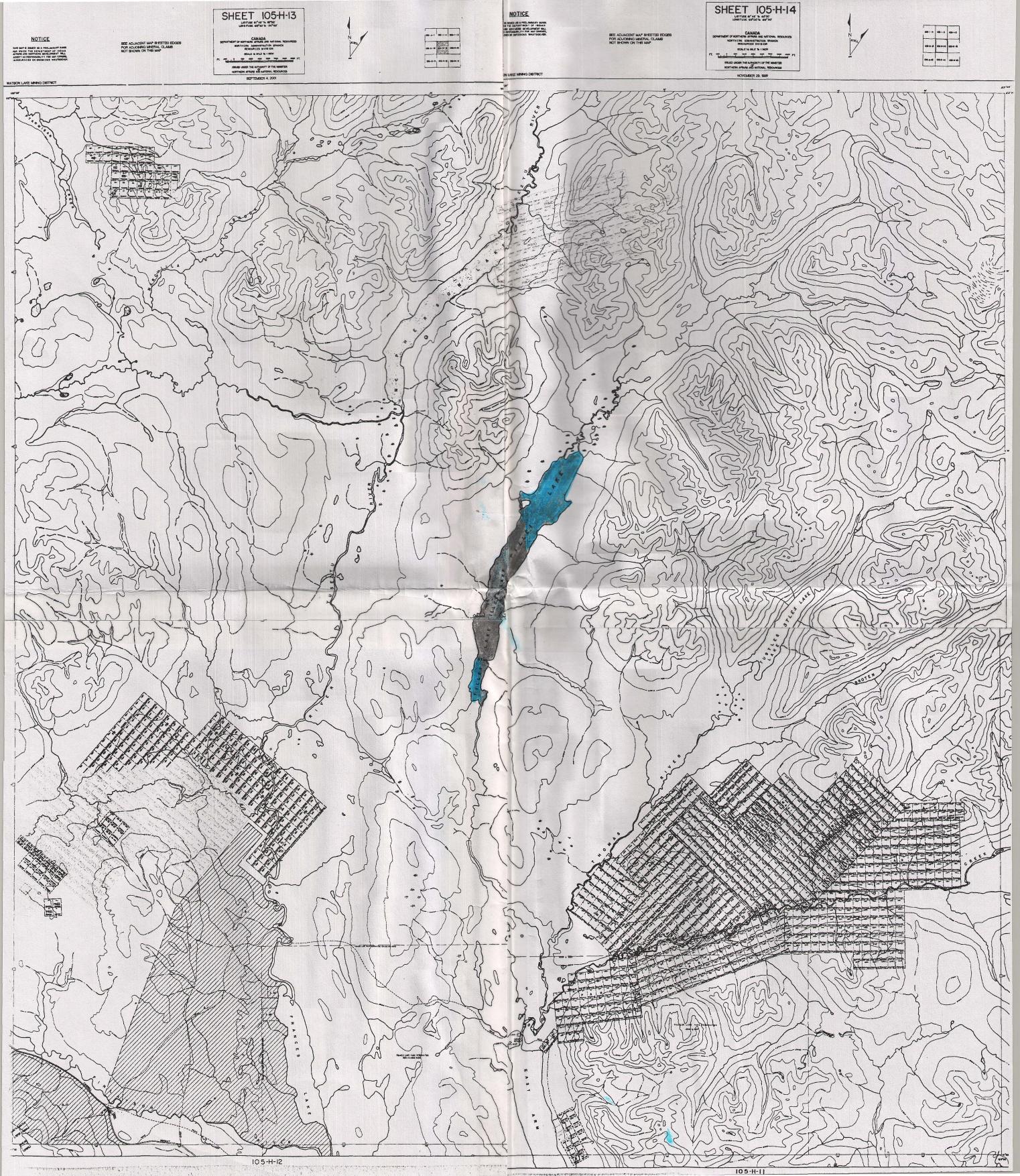

NEOGLACIATION

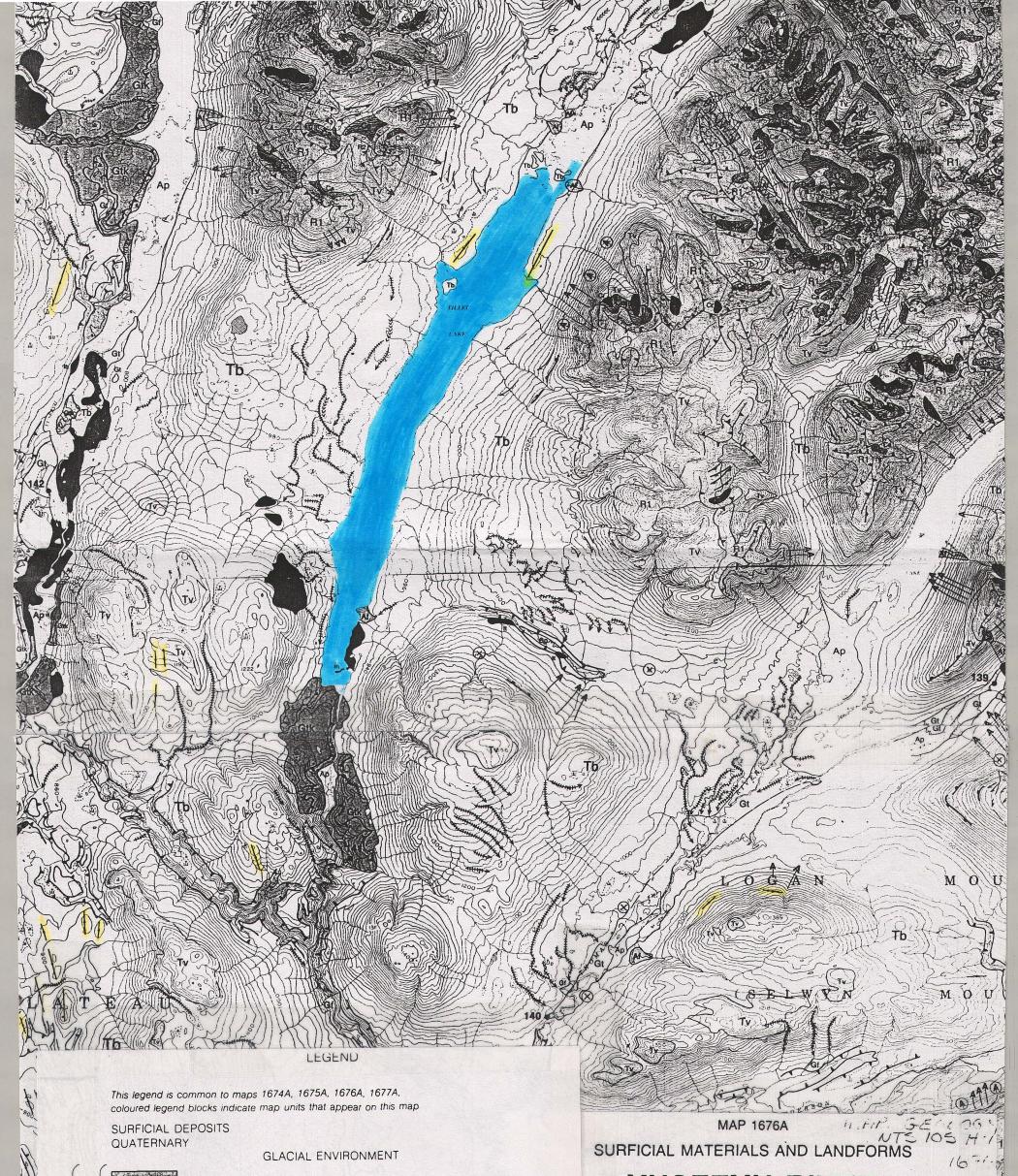
I Ver a

Geological boundary (defined, gradational)	/
Cirque; cirques and arêtes; alpine escarpment formed by glacial oversteepening of bedrock	4
Drumlins (ice flow direction unknown)	1
Crage and tail (till tail)	
Roche moutonnée or rock drumlin	
End moraine	
Lateral moraine, ornamented on glacier side	
Medial moraine	1
Esker (direction of flow known)	>>
Crevasse filling	
Kame	9
Subglacial and proglacial meltwater channel (wide, narrow)	7
Sidehill (lateral) meltwater channel; barb on upslope side	-
Escarpment in unconsolidated sediment	۲. م
Landslide scar (large, small)	2
Avalanche track, avalanche slope	D
Ground observation point	.•
Site where permafrost encountered	
Till sample with anomalously high levels of Zn,Pb, etc	•

MINERALS


Chromium	Cr	Molybdenum Mo	
Manganese	. Mn	Uranium U	




	GEOLOGY MAP 6-1966
	105H-06 GEOLOGY
	66 FRANCES LAKE
	YUKON TERRITORY AND DISTRICT OF MACKENZIE
	Scale 1:253,440 1 inch to 4 miles Miles 4 0 4 8 12 Miles
	Kilometres 6 0 6 12 18 Kilometres
	QUATERNARY
FNO	16 Unconsolidated glacial and alluvial deposits
MESUZUIC C	CRETACEOUS (?) IS Fine- to medium-grained biotite-quartz monzonite, granodiorite, minor diorite and gneiss; 15a, fine- and medium-grained biotite hornblende quartz monzonite and granodiorite, in part porphyritic; 15b, hornblende syenite
•	 DEVONIAN AND (?) MISSISSIPPIAN Brown and black shale, black and grey chert, quartzite, greywacke, chert-pebble conglomerate; 13a, fine-grained light grey lime-stone and minor dolomite; 13b, greenstone; 13c, serpentinite SILURIAN AND DEVONIAN (?) Fine-grained light to dark grey dolomite and quartzite; minor buff-grey dolomite quartzite and silty to sandy dolomite
:	ORDOVICIAN AND SILURIAN
PALAEOZOIC	11 Black shale, slate; minor chert, siltstone, dark limestone CAMBRIAN MIDDLE AND LATE CAMBRIAN 9 Light grey and brownish grey weathering, intercalated platy argillaceous silty limestone, silt- stone, and fine-grained grey limestone 10 Dark grey and brown silty shale and finely laminated siltstone, dark grey slate, thin-bedded brown-grey fine- grained sandstone; minor hornfels
	EARLY AND/OR MIDDLE CAMBRIAN Buff-weathering dolomite, silty and sandy dolomite; minor sandstone and shale Dark brown-grey to black, in part
	Bright yellow and orange-weathering silty and sandy dolomite B Dark brown-grey to black, in part Bright yellow and orange-weathering silty and sandy dolomite pyritic, calcareous argillite, slate, shale, and minor thin-bedded argillaceous limestone
	5 Sandstone, buff-weathering sandy and silty dolomite, dolomite, minor
	quartzite and argillaceous limestone; basic volcanic flows
	4 'Swiss-cheese' limestone, irregular interbanded dolomitic siltstone and argillaceous to silty limestone; pods and lenses of limestone; minor blue-grey fine-grained limestone and orange-weathering dolomite
	CAMBRIAN AND/OR EARLIER Brown to red-brown weathering slate, phyllite, siltstone and fine-grained quartzite; 3a, green-grey slate and phyllite
PROTEROZOIC	1 Brown, grey, maroon and green shale; grey to green slate and phyllite, gritty feldspathic quartzite, quartz- and feldspar-pebble conglomerate, sand- stone; 1a, minor limestone; 1b, light grey weathering, fine-grained grey limestone; 1c, mainly grey to green slate and phyllite; 1d, maroon and green shale and slate; 1e, mainly brown and grey shale and slate, minor maroon and green shale. Id and 1e are probably equivalent and perhaps correlative with 1c
	A Highly altered, green to brown, megacrystic, coarse-grained biotite-quartz monzonite or granodiorite. Age uncertain

Geological boundary (defined, approximate or assumed)
Bedding (inclined, vertical) / /
Foliation (horizontal, inclined, vertical)+
Lineation (horizontal, inclined)
Fault (defined, approximate)
Anticline (defined, approximate, arrow indicates plunge)
Syncline (defined, approximate, overturned)
Fossil locality
Mineral occurrence or prospect (tungsten, W; copper, Cu; zinc, Zn)
Areas of mineral prospects (zinc, Zn; lead, Pb; copper, Cu; silver, Ag)
Hot spring
Glacier

Geology by E. F. Roots, 1953; L. H. Green and J. A. Roddick, 1960 S. L. Blusson, 1962 and 1965

TILL: nonsorted debris, commonly bouldery, 0.5-20 m thick, forming discontinuous veneers, fluted, hummocky, or channelled blankets, and lateral and end moraine ridges; distinguished from older till by its general lack of vegetation; includes deposits of six advances, oldest of which postdates White River tephra (ca. 1200 years old)

NONGLACIAL ENVIRONMENT

COLLUVIAL DEPOSITS: block accumulations and landslide debris, 1-50 m thick

Talus (scree): accumulations of blocks, commonly exceeding 3 m in diameter, as much as 50 m thick, forming aprons and fans below cliffs; commonly crossed by debris flow channels and levees. Most slopes active

Rock glacier debris: accumulations of talus deformed by flow of interstitial ice to form rock (talus) glaciers, generally 10-50 m thick, with pronounced transverse and longitudinal ridges and furrows, steep sides and fronts; includes deposits of several ages, at least three older and six younger than White River tephra (ca. 1200 years old)

Landslide debris: rock avalanches more than 10 m thick and slumped and slid till incorporating organic detritus, 1-10 m thick, with hummocky or rolling surfaces and steep fronts

Ch

Alluvial fan deposits: poorly sorted gravel and sand with organic detritus and buried organic soils; fans commonly laterally amalgamated, commonly crossed by debris flow channels and levees and subject to shifting stream courses

ALLUVIAL DEPOSITS: gravel, sand, and organic detritus 2-20 m thick

Alluvial plain and terrace deposits: well sorted gravel and sand with detrital organic beds, including concentrations of logs, forming meander scrolled plains Ap, and terraces At

Lt,p

EOLIAN DEPOSITS: sand, 1-5 m thick, forming sharp crested dunes, now stable; probably formed immediately after deglaciation and prior to establishment of a vegetation cover

PROGLACIAL AND GLACIAL ENVIRONMENT

GLACIOLACUSTRINE DEPOSITS: fine sand, silt, and clay, 10-30 m thick, forming terraces deeply dissected by postglacial erosion where thick or plains where thin; deposited in glacier dammed lakes

GLACIOFLUVIAL DEPOSITS: gravel and sand, 2-30 m thick, deposited on, beneath, and in front of the marginal zone of a glacier

LAST GLACIATION

Proglacial outwash: gravel and sand forming distal outwash terraces Gt, plains Gp, and fans Gf, and proximal kettled outwash terraces Gtk, and plains Gpk; characterized by abandoned braided channel patterns

Ice contact stratified drift. gravel and sand, with clasts commonly 10-100 cm across, commonly faulted, forming lateral kame terraces and delta terraces It, with ice contact escarpments and kettle holes Ik, hummocky moulin kame fields, or ice block disintegration terrain Ih, and eskers or crevasse fillings Ir

GLACIAL ENVIRONMENT

TILL: nonsorted debris, 0.5-20 m thick, ranging widely in grain size and petrological composition but including deposits locally derived almost entirely from black shale, red shale, serpentine, marble, limestone, granite, and schist

Till veneer: 0.5-2 m thick; surface mimics underlying rock surface, fluted in places, commonly channelled by meltwater

Till blanket: 2-20 m thick; much of surface lineated by flutings and drumlins or channelled by meltwater Tb, distinctly hummocky Tbh, where composed mostly or entirely of shale

ROCK PRE-OUATERNARY

ROCK: rock of various lithologies and ages forming alpine valley walls and ridges extensively modified by glacial erosion R1, and high plateau remnants of restricted extent showing little or no sign of glacial erosion R2, high plateaus and other low to moderate slopes commonly mantled by felsenmeer; patches of till and glacial erratics occur throughout

YUKON TERRITORY

Scale 1:100 000 - Échelle 1/100 000

RI

X

Kilomètres


NEOGLACIATION

I Ver a

Geological boundary (defined, gradational)	/
Cirque; cirques and arêtes; alpine escarpment formed by glacial oversteepening of bedrock	4
Drumlins (ice flow direction unknown)	1
Crage and tail (till tail)	
Roche moutonnée or rock drumlin	
End moraine	
Lateral moraine, ornamented on glacier side	
Medial moraine	1
Esker (direction of flow known)	>>
Crevasse filling	
Kame	9
Subglacial and proglacial meltwater channel (wide, narrow)	7
Sidehill (lateral) meltwater channel; barb on upslope side	-
Escarpment in unconsolidated sediment	۲. م
Landslide scar (large, small)	2
Avalanche track, avalanche slope	D
Ground observation point	.•
Site where permafrost encountered	
Till sample with anomalously high levels of Zn,Pb, etc	•

MINERALS

Chromium	Cr	Molybdenum Mo	
Manganese	. Mn	Uranium U	

	i	GEOLOSY MAP	6-1966		•
·			LOGY		
	'é	66 FRANC	ES L	AKE	
	1	YUKON TERRITORY AND	DISTRI	CT OF MACKENZIE	
			1:253,44 to 4 miles		10 10
		Miles 4 0	4	8	12 Miles
	K	ilometres 6 0	6	12 18	3 Kilometres
20IC	QUATER	NARY			
CENOZOIC	16	Unconsolidated glacial and alluvial depos	its		
MESOZOIC	15	EOUS (?) Fine- to medium-grained biotite-quartz gneiss; 15a, fine- and medium-grained b granodiorite, in part porphyritic; 15b, ho	iotite horr	blende quartz monzonite	rite and and
-	I3 SILURIA 12	AN AND (?) MISSISSIPPIAN Brown and black shale, black and grey chert, quartzite, greywacke, chert-pebble conglomerate; 13a, fine-grained light grey lime- stone and minor dolomite; 13b, greenstone; 13c, serpentinite N AND DE VONIAN (?) Fine-grained light to dark grey dolomite and quartzite; minor buff-grey dolomitic quartzite and silty to sandy dolomite	14	Rusty brown weathering f grained schistose and spo biotite hornfels, fine-grai quartzite, black pyritic a dense light green to grey silicate hornfels and fine- marble; minor slate, silt and greywacke; 14a, light bedded fine-grained mark calc-silicate hornfels. M some 1 and 2	otted ined rgillite, calc- -grained y limestone grey thin- ole and
	ORDOVI	CIAN AND SILURIAN			1 •
i	11	Black shale, slate; minor chert, siltston	ne, dark li	mestone	. ;
PALAEOZOIC	CAMBRI MID 9	IAN DDLE AND LATE CAMBRIAN Light grey and brownish grey weathering, intercalated platy argillaceous silty limestone, silt- stone, and fine-grained grey limestone	} 10	Dark grey and brown-sil finely laminated siltston slate, thin-bedded brown grained sandstone; mino	e, dark grey grey fine-
	EAI	RLY AND/OR MIDDLE CAMBRIAN Buff-weathering dolomite, silty and sandy dolomite; minor sandstone and shale		Dark brown, grow to blog	in nout
	. 6	Bright yellow and orange-weathering silty and sandy dolomite	8	Dark brown-grey to blac pyritic, calcareous argi shale, and minor thin-be argillaceous limestone	llite, slate,
	EA1	RLY CAMBRIAN Sandstone, buff-weathering sandy and silty dolomite, dolomite, minor quartzite and argillaceous limestone; basic volcanic flows		19. 1922. Ganglerice Baldynesis on oly measuremente a marteria (* 1919.)	
	4	'Swiss-cheese' limestone, irregular int argillaceous to silty limestone; pods an fine-grained limestone and orange-wea	d lenses d	of limestone; minor blue-g	şrey
	CAMBR	IAN AND/OR EARLIER Brown to red-brown weathering slate, p 3a, green-grey slate and phyllite	phyllite, s	iltstone and fine-grained (quartzite;
PROTEROZOIC		Brown, grey, maroon and green shale; grey to green slate and phyllite, gritty feldspathic quartzite, quartz- and feldspar-pebble conglomerate, sand- stone; 1a, minor limestone; 1b, light grey weathering, fine-grained grey limestone; 1c, mainly grey to green slate and phyllite; 1d, maroon and green shale and slate; 1e, mainly brown and grey shale and slate, minor maroon and green shale. 1d and 1e are probably equivalent and perhaps correlative with 1c	2	Quartz-feldspar-mica g schist, granitoid gneiss, and micaceous quartzite schist, minor marble an numerous small granitic aplite and pegmatite; 2a coarse-grained marble	, feldspathic e, biotite id skarn; c bodies,
	A	Highly altered, green to brown, megacr monzonite or granodiorite. Age uncert		rse-grained biotite-quart	Ζ.

•

Geological boundary (defined, approximate or assumed)
Bedding (inclined, vertical)
Foliation (horizontal, inclined, vertical)
Lineation (horizontal, inclined)
Fault (defined, approximate)
Anticline (defined, approximate, arrow indicates plunge)
Syncline (defined, approximate, overturned)
Fossil locality
Mineral occurrence or prospect (tungsten, W; copper, Cu; zinc, Zn)Xw
Areas of mineral prospects (zinc, Zn; lead, Pb; copper, Cu; silver, Ag)
Hot spring
Glacier

Geology by E. F. Roots, 1953; L. H. Green and J. A. Roddick, 1960 S. L. Blusson, 1962 and 1965