YEIP
 2003
 -60

 NOKUYUKON EXPLORATION INC.

 NOKUYUKON EXPLORATION INC.}

SUMMARY REPORT

ON

KINGDOME RIDGE AREA

N.T.S. mapsheet 105C 14
UTM 602736 E/6752721 N

NOKUYUKON EXPLORATION INC.

SUMMARY REPORT
 ON

KINGDOME RIDGE AREA
N.T.S. mapsheet 105C 14

UTM 602736 E / 6752721 N

By
Mark Lindsay

Duration of Work
JUNE 4 - September 12, 2003

TABLE OF CONTENTS

LOCATION MAPS 3
SUMMARY 4
INTRODUCTION 5
LOCATION AND ACCESS 5
PYHSIOGRAPHY, VEGETATION AND CLIMATE 5
HISTORY AND PREVIOUS WORK 6
PROPERTY AND CLAIM STATUS 6
2002 WORK COMPLETED 6
REGIONAL GEOLOGY 7
TABLE OF FORMATIONS 8
Ingenika Assemblage 9
Amphibolite Assemblage 9
Nasina Assemblage 9
Cassiar Suite 10
STRUCTURE 10
QUARTZ VEINS 11
ALTERATION 11
ECONOMIC GEOLOGY 12
ROCK ANALYSIS 12
SOIL ANALYSIS 13
CONCLUSIONS AND RECOMMENDATIONS 13
FIGURE 1: Location Map 3
FIGURE 2: Property Map 3
FIGURE 3: Regional Geology Map 7
FIGURE 4: Structure Map 11
SOIL GEOCHEMICAL ANALYSIS 14
ROCK GEOCHEMICAL ANALYSIS 21
UTM SAMPLE LOCATIONS 23
SAMPLE LOCATIONS MAP 25MAP POCKET: Property Geology Map, Sample Locations Map.

SUMMARY

In the summer and fall of 2003 a prospecting and soil sampling project was conducted over a large portion of Kingdome Ridge and Old-timers Hill by staff from Nokuyukon Exploration Inc.

Kingdome Ridge and adjacent Old-timers Hill are located approximately 5.5 kilometers south-southwest of the south end of Quiet Lake in the Yukon Territory. The rocks that underlie these areas have been described as mainly calcareous metasedimentary and metavolcanic rocks with associated granitic intrusions. Extrusive volcanic rocks have also been observed in the project area. The target areas have not been mapped in any detail greater than 1:250,000 scale reconnaissance mapping from the mid 1900's.

Prospecting as well as soil and rock assays have identified what appears to be a mineralized system along the main the main section of Kingdome Ridge. The mineralization has the signature of a gold-quartz vein system. An extensive epidote skarn also exists over a large portion of the ridge.

Soil sampling across the Kingdome Ridge produced values as high as 1231 ppm As, 957 ppb Au , and 442 ppm Cu .

Rock grab sampling across the same area yielded assay values as high as 912 ppm As , $15.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and $4.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$.

A new soil sample program conducted at closer spaced intervals may reveal new areas of gold and gold pathfinder mineralization. A new soil sample program should employ soil augers as the sampling device due to permafrost and the thick nature of some of the moss beds in the area.

An airborne geophysics survey should be conducted over the area so as to try to identify any structural features that may be associated with the gold/arsenic mineralization in the area.

INTRODUCTION

The areas of interest regarding this report are known as Kingdome Ridge and Old-timers Hill. Mineral exploration over these areas in the summer of 2003 was conducted to identify the source of placer gold that is found in adjacent Cottonwood Creek and lode gold mineralization that was reported by a local prospector.

This report will discuss the geology of the areas and the analytical results from rock and soil sampling conducted across the two targets.

Work was carried out on the target areas between June 4 and September 122003 by personnel from Nokuyukon Exploration Inc.

LOCATION AND ACCESS

Kingdome Ridge and Old-timers Hill are located on N.T.S. mapsheet 105 C 14, and are within the Whitehorse Mining District. The target areas are located approximately 5.5 kilometers southwest of the south end of Quiet Lake. Both areas are accessible from Whitehorse, to the west, by helicopter; a flight of approximately 108 Km .

The approximate geographic center of the target areas is UTM $602736 \mathrm{E} / 6752721 \mathrm{~N}$.
A staging area near Kingdome Ridge/Old-timers Hill can be accessed in the summer months by driving 135 Km east along the Alaska Highway from Whitehorse to Johnson's Crossing, and then north on the Canol Road for another 80 Km .

PYHSIOGRAPHY, VEGETATION AND CLIMATE

Kingdome Ridge is located on a heavily forested northeast trending mountain ridge. The ridge line has several steep contour changes. The northwestern edge of the ridge is a prominent abrupt decline. Bedrock exposures are abundant on the north side of the ridge. To the west are more rugged slopes covered with thick Dwarf Birch.

Old-timers Hill is located across the Cottonwood Creek valley from Kingdome Ridge. The target area is also on a ridge, but of more subdued and gentler topography.

The elevation of the areas averages between 1100 m to 1200 m . Drainage in both areas is good. Local creeks have a continuous supply of water during the spring and summer months. Most of the creek water is provided from melting permafrost.

Vegetation in the area is very dense. Black Spruce, Dwarf Birch and Willow are found throughout the entire area. The terrain is generally sound for walking, with some swamps and creeks in lower sections. Moss and long grasses are found everywhere.

The climate of the area is typical of the interior continental region at this latitude. Winters are long with short hours of daylight and average daily temperatures of -20 Celsius. Summers are pleasant and warm with long days (20 hours of daylight on June 21), although it can be quite rainy at times. There is a yearly average of 120 days of precipitation. The average summer temperature is 22 Celsius with highs ranging into the low 30's.

HISTORY AND PREVIOUS WORK

The Quiet Lake are has been explored intermittently since prospectors first ascended the Big Salmon River to Quiet Lake in 1897/98 in their search for placer gold deposits. The few who prospected this part of the territory recognized the mineral potential and settled in the area. A few creeks in the region produced placer gold and men built small settlements around their discoveries. Cottonwood Creek, which flows through the valley immediately to the north of Kingdome Ridge, was the site of one such settlement.

Gold was discovered on Cottonwood Creek near the turn of the $20^{\text {th }}$ century. At its height the settlement at Cottonwood Creek, at the base of Old-timers Hill, had approximately 7 cabins. Placer workings on the creek are quite extensive for such a remote drainage. It appears that a fire burnt down all of the cabins sometime in the early 1900's. A lone prospector was living and mining on the creek as late as 1925. Equipment found at the prospector's cabin suggested that he was engaged in placer and hard-rock mining.

In more recent times there has been very little prospecting in the area. One of the few people to prospect the area has been Joe Lindsay. Lindsay made a few trips up to Kingdome Ridge to inspect the rock types and look for sulfide mineralization. In 1974, on one of his trips up the ridge, he found a highly altered rhyolitic volcanic rock with large flakes of pure white sericite mica. Doug Craig, a geologist who worked for the Federal Government, identified what he thought was visible gold in the rock sample and suggested that the rock be assayed for its gold content. In 1974 gold was not as highly sought after as it is today, as it was only worth $\$ 35 /$ ounce, so the rock was never assayed and the property was forgotten.

PROPERTY AND CLAIM STATUS

Quartz claims were not staked over the target area in 2003.

2003 WORK COMPLETED

Nokuyukon Exploration Inc. conducted prospecting, rock sampling and soil sampling on Kingdome Ridge in 2003. Soil samples, rock grab samples, and silt samples were collected from the Kingdome Ridge area between June 4-5 / July 2-11 / September 11-12, 2003. Prospector Mark Lindsay and Nokuyukon Exploration employee, Roy Adair, collected all samples from the property.

REGIONAL GEOLOGY

Cretaceous
Cassiar Suite

Devonian/Mississippian
Nasina Assemblage

Paleozoic/Proterozoic Amphibolite Assemblage

Proterozoic/Cambrian
Ingenika Assemblage
medium to coarse grained, equigranular to porphyritic (K-feldspar) granite and biotite quartz monzonite; biotite-hornblende quartz monzonite and granodiorite quartzite, micaceous quartzite, quartz muscovite (+/-chlorite; +/- feldspar augen) schist, and minor metaconglomerate and metagrit as in (1), but may locally include significant Klondike Schist Assemblage \& marble calcareous actinolite-plagioclase-chlorite-biotite schist, plagioclase-actinolite-chlorite schist, and lesser carbonaceous phyllite and quartzite; metamorphosed ultramafic rocks including dunite and pyroxenite, locally serpentinized thin bedded slate, siltstone, quartzite and minor limestone with local medium to coarse grained, feldspathic sandstone to orthoquartzite; muscovite biotite +/- garnet schist, micaceous quartzite, minor amphibolite and marble; rare granodiorite gneiss

Ingenika Assemblage - PCI4

The Ingenika Assemblage is included in the table of formations, for the simple purpose of describing all rock units in the general target area. The rocks from this assemblage apparently do not occur in the immediate location of Area 1 or 2.

Amphibolite Assemblage - PPA3

Amphibolite Assemblage rocks supposedly do not occur in the immediate area of the south end of Quiet Lake. This assumption could be up for discussion once geological mapping is undertaken in the area, as Amphibolite rocks do occur adjacently to the east.

The author, whose has inspected many, if not all of the limited outcrops in the general target area suggests that the Amphibolite Assemblage is likely the source of the carbonaceous phyllites, ultra mafic rocks and many of the chloritized metamorphic rocks found to the northeast in the valley at the south end of Quiet Lake. It may be proven that this assemblage of rocks occurs amongst the rocks described as Nasina Assemblage.

Amphibolite Assemblage rocks may be dominant in Area 1. Ultra mafic rocks exist on a small dome shaped hill immediately to the east of Kingdome Ridge, and the assemblage may have already been described in Area 1 (see below). Epidote, found pervasively along the main ridgeline, in the form of an epidote skarn, may be the key to discerning the geology of the area. The epidote may have formed from the alteration of mafic components in close proximity to the heat of the approaching Cassiar Suite granitic rocks.

Stevens et al describes rocks near Area 1 as "relatively mafic schist, containing more chlorite + biotite + actinolite than muscovite". This description sounds like a derivative of Amphibolite Assemblage.

The location of ultra mafic rocks in the target area is marked as "UM" in Figure 3.

Nasina Assemblage - DMN4/DMN2

Nasina Assemblage rocks are mapped as the dominant rock package in Area 1 and 2. Nasina quartzites, micaceous quartzites or quartz muscovite schist's have not been seen in the proximity of Area 1 by the author. If they do occur they are scattered in the area.

Rocks more inclined to be described as Nasina Assemblage are found in Area 2
Regardless of the dominant assemblage is in Area 1 (Amphibolite? or Nasina?); the rock can be described as both dark and light greenish grayish banded and massive. An impressive body of epidote skarn is found over a large portion of Area 1. Folding has been observed in some areas, and a migmatization fabric seems to exist in many of the rocks examined.

Intercalated among the dominant assemblage in Area 1 are relatively thick sections of carbonate rocks. The rock is a tan orange rusty color and reacts to acid quite readily. The carbonate layers appear at the highest elevations along the top of the ridge in Area 1. Fine carbonate appears to be interspersed through a greater portion of the entire assemblage in Area 1. Many of the rocks from this area react when in contact with dilute acid.

The limited amount of metamorphic rock seen in Area 2 seems to be much more schistose in nature. The rock seen here is rusty dark grayish black and it breaks with a definite horizontal cleavage when hit with a hammer. Carbonate was not noticed in Area 2.

Cassiar Suite - mKqC

Cassiar Suite granitic rocks in the target area, known as the Quiet Lake Batholith, have not been seen in any greater detail in Area 1. However, the epidote skarn in the area is evidence of how close the granite unit must be to the area. Being on the very nose of a section of the Quiet Lake Batholith would suggest that the granite may have intruded many of the units around it. Evidence of this is found in Area 2.

In Area 2 the Cassiar Suite is found about 500 meters due west of an old bulldozer line as it crests over the highest part of the ridge. The Granitic rocks extend down into the Cottonwood Creek valley and outcrop near an area of old placer workings. A hornfelsic rock was observed near the contact with the surrounding metamorphic rocks.

The granite rocks of this suite are massive and mottled grayish white in color. They are quite course grained in many of the samples examined. A definite porphyritic texture has been observed in some of the suite rocks from Area 2.

STRUCTURE

Several structural trends occur within the general geological scope of the report. A major fault is inferred to trend in an apparent northwest/southeast direction, along or close to the contact between the nose of the Quiet Lake Batholith and the adjacent metamorphic rocks. This fault has been inferred from GSC aeromagnetic maps published in the 1960's.

Smaller northeast/southwest trending faults have been observed on the ground in Areas 1 \& 2 . One of the faults is responsible for the relatively steep escarpment that exists in the northwestern part of Area 1. A long, deep gouge like topographic feature was seen along the old bulldozer line just before the highest point of the road, in Area 2. The abrupt nature of this feature suggests that it is a steeply dipping fault structure.

An east west trending fault was interpreted from geophysics conducted on mineral claims to the northeast. Reports from geologists who have examined other mineral exploration properties to the northeast of Kingdome Ridge have described long thrust fault lineaments that trend in a northwest / southeast direction.

QUARTZ VEINS

Two large northwest/southeast trending quartz veins have been seen in outcrop in Area 1. One of the veins traced on surface suggests that the structure is greater than 10 m wide and 250 m in length. A section of this vein carried significant gold values. A second vein, seen on the top of the hill above Area 1 appears to be a reasonably wide structure as well.

The quartz vein material is white, and it is carrying a small quantity of sulfide minerals. A limited outcrop of rhyolitic volcanic rock has been observed in contact with the quartz veins.

ALTERATION

Alteration associated with the target areas includes skarn, carbonate and potassic assemblages. Skarn alteration is dominant and most obvious in Area1. The epidote skarn is characterized by a banded (typical) epidote green color and appearance and is massive.

The skarn extends for approximately 1000 meters along Kingdome Ridge.
Secondary carbonate is pervasive throughout the rocks of Area 1. Secondary biotite (potassic) alteration was seen in a few locations as well. The most noted potassic alteration observed was along the edges of the gold bearing quartz veins that cross cut the ridge.

Alteration was not noted in many of the rocks of Area 2. This was in part due to the limited amount of outcrop in the area, and the limited amount of time spent prospecting.

Signs of contact metamorphic alteration were seen in rocks in close proximity to the Quiet Lake Batholith.

ECONOMIC GEOLOGY

Sulphide mineralization is found in rocks throughout the target area. Pyrite is the predominant sulfide mineral, with occurrences of pyrrhotite and marcasite. The most obvious mineralized sites seemed to be related to occurrences of quartz veining. Some very rusty quartz veins were seen in the area of Kingdome Ridge. The mineralization in the quartz vein material averaged 1 or 2 percent sulfide. This would be typical for gold quartz vein deposit models.

Area 2 mineralization is not well defined due to the lack of time spent in the area. Several rock that were examined had what appeared to be pyrite deposited between schist layers. The samples were very rusty along horizontal cleavage partings.

Rock samples from Area 1 have the potential to carry significant gold values. One sample assayed 15241 ppb Au and 912 ppm As , another sampled assayed 210 ppb Au .

Soil samples returned values up to 957 ppb Au and 1231 ppm As. An anomalous copper trend also exists along the entire length of the soil survey area. Copper values as high as 442 ppm were found in soil samples.

The epidote skarn mentioned in area 1 may be a host for gold deposition in areas not yet examined..

ROCK ANALYSIS

32 rock grab samples were collected from the property between June 4 and September 12, 2003. The rocks selected were all grab samples.

The samples were sent to Acme Laboratories Ltd. in Vancouver, British Columbia for analysis. At Acme Labs the rocks were crushed and sieved to -150 mesh, digested in hot $\mathrm{HCL} / \mathrm{HNO}_{3}$ and analyzed by ICP-MS.

SOIL ANALYSIS

150 soil samples were collected from the target area between June 4 and September 12, 2003. The samples were collected in wet strength Kraft sample bags and air-dried at camp. 5 silt samples were also collected from isolated small creeks in the Kingdome Ridge area.

The greater numbers of soils were collected from a grid that was established over Kingdome Ridge. A main east/west baseline was cut and cross lines were flagged off at 100 m intervals. Samples were taken at 50 m intervals along each cross line.

A small number of reconnaissance soil samples (6) were collected from Area 2. Reconnaissance soil samples were also collected west of the soil grid on Kingdome Ridge.

Sample sites were dug with a grub hoe and samples were taken, by hand, from the "B" horizon.

The soils were sent to Acme Laboratories LTD. in Vancouver, British Columbia for analysis. At Acme labs the soils were dried and sieved to -80 mesh, digested in hot $\mathrm{HCL} / \mathrm{HNO}_{3}$ and analyzed by ICP-MS.

CONCLUSIONS AND RECOMMENDATIONS

The Kingdome Ridge area has the potential to host a gold quartz vein deposit. A gold bearing quartz vein found in the area suggests that the gold mineralization may be associated with northwest / southeast trending veins. Anomalously high gold and arsenic values found in soils along the ridge suggest that gold bearing veins may exist over a substantial width of bedrock. The width and length of the veins along Kingdome Ridge suggest that the vein system may be quite large.

An epidote skarn along the main ridge in Area 1 may be an indication for the potential of gold skarn mineralization existing in other locations not yet recognized. Anomalously high copper values found in soils over the length of Kingdome Ridge may be a reflection of the existence of a larger skarn body in the area.

Further work is recommended over Kingdome Ridge. Staking claims over the ridge is strongly recommended. To better define the potential for economic gold mineralization in the area, a follow up soil survey should be conducted over the existing grid in the areas where anomalous trends exist. New cross lines should be flagged and sampled between older lines in areas designated as good targets. Soil auger tools should be used for sampling, as they have a better chance of recovering an adequate sample in areas of permafrost and thick moss cover. Sampling spacings should continue to be on lines 100 m apart and with 50 m sample sites along each line.

Nokuyvkn Exploration Inc. - Kingdome Ridge Soil Samples

Acme file \# A302687 Pagel Reedived: Jll 182003 * 155 samples in this disk file.

LIE 58 37060	1	14	6.8	49	0.1	31	9	304	2	4.9	0	1.2	2	11	0.3	0.4	0	54	0.2	0	10	42	1	125	0.1	1	1	0	0	0	0	3	0.1	$\stackrel{8}{4}$	5	$\bigcirc .5$
$\begin{aligned} & \hline \text { IIE ES } \\ & 37059 \\ & \hline \end{aligned}$	1	10	7	47	0.1	18	6	202	2	3.7	0	1.6	1	12	0.3	0.3	0	45	0.2	0	10	36	0	80	0.1	<1	1	0	0	0	0	2	0.1	. ${ }_{\text {c }}$	5	< 5
$\begin{aligned} & \hline \text { LIE 7S } \\ & 37058 \\ & \hline \end{aligned}$	4	138	26	262	2.2	112	21	1776	3	34	7	5.5	2	49	7.5	1.3	0	56	1.5	0.1	28	64	1	857	0	2	3	0	0	0	0.2	7	0.2	0.1	7	3
$\begin{aligned} & \text { LIE } 8 \mathrm{~S} \\ & 37057 \\ & \hline \end{aligned}$	2	50	11	86	0.2	48	16	624	3	38	2	4.1	1	18	0.4	0.4	0	57	0.4	0.1	12	47	1	233	0.1	1	2	0	0	0	0	3	0.1	$.05$	6	0.7
$\begin{aligned} & \text { LIE SS } \\ & 37056 \end{aligned}$	1	6	7.1	37	<1	22	4	129	1	2.5	0	0.5	2	9	0.1	0.2	0	39	0.1	0	9	68	0	81	0.1	4	1	0	0	0	<. 01	2	0.1	$.05$	5	$\checkmark .5$
$\begin{aligned} & \text { LIE IDS } \\ & 37055 \\ & \hline \end{aligned}$	1	45	9.3	62	0.1	41	11	353	3	17	0	6.1	2	12	0.1	0.4	0	63	0.3	0	10	48	1	198	0.1	1	2	0	0	0	0	4	0.1	$.05$	7	< 5
$\begin{aligned} & \text { L2E IS } \\ & 37054 \end{aligned}$	3	59	12	102	0.4	48	15	741	3	18	6.	3.5	1	65	1.6	0.6	0	45	1.5	0.1	11	46	1	355	0	1	2	0	0	0	0.1	5	0.1	0.1	5	2.5
$\begin{aligned} & 12 \mathrm{ES} \\ & 37053 \end{aligned}$	1	15	8.1	46	0.1	20	7	206	2	5.8	1	1.3	1	19	0.4	0.3	0	42	0.3	0	10	29	0	203	0.1	1	1	0	0	0	0	2	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	6	< 5
$\begin{aligned} & \hline \text { L2E } 3 \mathrm{~S} \\ & 37052 \\ & \hline \end{aligned}$	1	28	7.4	67	4.1	37	12	491	2	7.9	0	3.4	5	21	0.2	0.5	0	57	0.5	0.1	14	5	1	176	0.1	1	2	0	0	0	0	5	0.1	$.05$	5	0.5
$\begin{aligned} & \text { L2E 4S } \\ & 37051 \end{aligned}$	1	33	7.6	63	0.2	35	12	515	2	16	1	2.3	1	31	0.5	0.4	0	46	0.7	0	11	39	1	266	0.1	1	2	0	0	0	0	3	0.1	05	5	0.7
$\begin{aligned} & \hline 12 E 5 S \\ & 37050 \end{aligned}$	1	29	7.5	75	0.1	49	14	304	3	6.6	1	210	3	11	0.4	0.5	0	58	0.2	0	18	56	1	162	0.1	1	2	0	0	0	0	4	0.1	$.05$	6	\bigcirc
$\begin{aligned} & \text { L2E BS } \\ & 37049 \end{aligned}$	1		5.9	62	< 1	25	8	260	2	5.2	0	1.7	2	10	0.3	0.4	0	53	0.2	0	10	33	1	78	0.1	$\bigcirc 1$	1	0	0	0	< 010	2	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	7	< 5
$\begin{aligned} & \text { SIANDARD } \\ & \text { DSS } \\ & \hline \end{aligned}$	13	147	25	139	0.3	26	13	789	3	18	6	43.9	3	47	5.8	3.8	7	62	0.8	0.1	12	191	1	144	0.1	18.	2	0	0	5	0.2	4	1.1	.05	7	4.9
$6-1$	3	3.6	2.8	44	<. 1	4.7	4	545	2	0.7	2	< 5	5	86	$<.1$	0.1	0	45	0.7	0.1	9	21	1	262	0.1	1	1	0.2	1	4	c. 01	3	0.3	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	5	$\times 5$
$\begin{aligned} & \text { L2E 7S } \\ & 37048 \end{aligned}$	1	15	8	67	0.1	24	7	276	3	6.3	0	1.5	3	8	0.5	0.4	0	56	0.1	0	9	35	1	117	0.1	2	2	0	0	0	0	3	0.1	.05	5	< 5
$\begin{aligned} & \text { L2E 8S } \\ & 37049 \end{aligned}$	2	42	6.7	58	0.2	50	10	628	2	5.7	5	2.3	1	31	0.4	0.4	0	43	1	0.1	12	36	1	365	0	2	2	0	0	0	0.1	3	0.1	$\begin{array}{r} < \\ .05 \\ \hline \end{array}$	4	1.5
$\begin{aligned} & \mathrm{L2E} \mathrm{SS} \\ & 37046 \end{aligned}$	5	23	9.3	78	0.2	41	15	705	6	11	0	2.2	2	6	0.5	0.8	1	160	0.1	0.1	4	126	1	131	0.1	1	2	0	0	0	0	8	0.1	.05	9	< 5
$\begin{aligned} & \hline \text { L2E IDS } \\ & 37045 \end{aligned}$	1	22	II	91	< 1	37	10	350	4	9.8	0	1	4	7	0.7	0.5	0	73	0.1	,	8	47	1	131	0.1	<1	2	0	0	0	0	3	0.1	.05	8	< 5
$\begin{aligned} & \text { L2E IIS } \\ & 37044 \end{aligned}$	1	15	9.9	77	< 1	54	16	504	3	6.9	0	0.8	2	13	0.5	0.3	0	73	0.3	0	7	78	1	170	0.1	2	2	0	0	0	0.1	3	0.1	$.05$	7	$\bigcirc .5$
$\begin{aligned} & \hline \text { LBE 2S } \\ & 37143 \\ & \hline \end{aligned}$	1	27	5	43	0.5	27	5	131	2	4.9	1	0.6	1	25	0.2	0.3	0	32	0.5	0	6	23	0	297	0	1	1	0	0	0	0	2	0.1	$.$	4	0.5
L3E 3S 37144	3	38	9.7	78	0.2	42	1	538	3	18	3	3.7	2	37	0.6	0.4	0	57	0.8	0.1	12	44	1	335	0.1	1	2	0	0	0	0	4	0.1	$.05$	5	1.2
$\begin{aligned} & \hline \text { L3E } 45 \\ & 37145 \\ & \hline \end{aligned}$	1	21	8	64	$<.1$	40	10	403	2	7.9	0	2.3	3	18	0.3	0.4	0	49	0.4	0.1	10	35	1	181	0.1	1	1	0	0	0	0	3	0.1	$.15$	4	0.5
$\begin{aligned} & \text { L3E 5S } \\ & 37145 \end{aligned}$	2	40	9.6	82	0.2	42	11	489	3	29	2	1.3	2	33	0.9	0.4	0	61	0.8	0.1	12	45	1	323	0.1	1	2	0	0	0	0	4	0.1	$.05$	6	1.3
$\begin{aligned} & \hline \text { L3E GS } \\ & 37147 \\ & \hline \end{aligned}$	1	24	6.7	45	0.1	39	9	412	2	5.2	1	3.3	4	17	0.2	0.3	0	47	0.4	0	13	33	1	206	0.1	<1	1	0	0	0	0	3	0.1	.	4	0.5
$\begin{aligned} & \text { L3E 7S } \\ & 37148 \\ & \hline \end{aligned}$	1	24	7.4	61	0.1	40	9	341	2	6.6	0	1.2	2	14	0.2	0.4	0	59	0.3	0.1	11	37	1	218	0.1	< 1	2	1	0	0	0	3	0.1	$.05$	5	$<.5$
$\begin{aligned} & \hline \text { L3E 8S } \\ & 37149 \end{aligned}$	1	15	6.7	57	0.1	23	7	289	2	5.2	0	11.9	3	14	0.2	0.3	0	48	0.3	0	10	30	1	121	0.1	-1	1	0	0	0	0	2	0.1	$\stackrel{\checkmark}{65}$	4	$<.5$

$\begin{aligned} & \text { L3E 9S } \\ & 37150 \end{aligned}$	1	83	8.9	103	0.2	55	11	506	3	12	2	14.2	3	23	0.7	0.4	0	61	0.6	0.1	18	55		310	0.1	<1	2	\square	0	0	0	6	0.1	¢ ${ }^{\text {c }}$	5	0.7
$\begin{aligned} & \text { L3E IDS } \\ & 37151 \\ & \hline \end{aligned}$	0	24	2.5	68	$\bigcirc \cdot 1$	90	17	164	4	6.7	0	< 5	8	15	< 1	<.1	0	141	0.8	1	6	153	3	223	0.2	<1	3	0	0	. 1	< 01	14	<1	. 05	12	$<.5$
$\begin{aligned} & \hline \text { L3E IIS } \\ & 37152 \end{aligned}$	1	52	4.7	55	0.2	49	11	555	2	5.3	2	1	1	45	0.9	0.2	0	52	1.9	0.1	9	58	1	288	0	1	2	1	0	0	0.1	4	0.1	0.1	4	1.6
$\begin{aligned} & \text { L3E I2S } \\ & 37153 \\ & \hline \end{aligned}$	1	442	16	128	0.5	252	23	910	5	46	3	5.1	4	29	0.9	0.5	0	106	0.6	0.1	25	90	1	571	0	1	5	0	0	0	0	10	0.3	$.05$	10	0.7
$\text { RE L4E } 45$ 37157	1	34	11	71	0.1	40	12	484	2	17	1	3.7	3	30	0.4	0.3	0	58	0.7	0.1	11	45	1	251	0.1	1	2	0	0	0	0	4	0.1	$\begin{gathered} 6 \\ .05 \\ \hline \end{gathered}$	5	0.7
$\begin{aligned} & \text { I4E IS } \\ & 37154 \\ & \hline \end{aligned}$	2	22	7.3	70	0.1	83	13	366	2	11	1	1.3	2	16	0.4	0.3	0	57	0.2	0	10	41	1	202	0.1	1	1	0	0	0	0	3	0.1	$.05$	5	< 5
$\begin{aligned} & 14 E 2 S \\ & 37155 \\ & \hline \end{aligned}$	3	25	11	79	0.1	38	12	411	3	14	1	2.3	4	28	0.3	0.4	0	70	0.5	0	12	52	1	281	0.1	1	2	0	0	0	0	5	0.1	$.05$	6	1.1
$\begin{aligned} & 14435 \\ & 37156 \\ & \hline \end{aligned}$	1	24	7.5	59	$<.1$	36	10	426	2	5.8	1	2.4	3	18	0.2	0.3	0	61	0.4	0.1	12	5	1	187	0.1	< 1	2	0	0	0	0	4	0.1	$\begin{array}{r} < \\ .05 \\ \hline \end{array}$	5	< 5
ELEMENT	Ma	Cu	Pb	ln	Ag	Ni	Co^{\square}	Mn	Fe	As	U	Au	Ih	Sr	Cd	Sb	Bi	V	Сa	P	la	[r	Mg	Ва	Ti	B	Al	Na	K	W	Hg	Sc.	II	S	Ga	Se
$\begin{aligned} & \text { L4E 4S } \\ & 37157 \end{aligned}$	1	31	10	67	0.1	36	11	444	2	17	1	1.1	3	28	0.6	0.3	0	58	0.7	0.1	11	44	1	251	0.1	1	1	0	0	0	0	4	0.1	$.05$	5	0.7
$\begin{aligned} & \text { L4E 5S } \\ & 37158 \end{aligned}$	1	11	6.5	36	<. 1	17	5	153	1	3.7	0	1	1	8	0.2	0.2	0	42	0.1	0	8	32	0	112	0.1	<1	1	0	0	0	- 01	2	0.1		4	< 5
$\begin{aligned} & 14 E 5 S \\ & 37159 \end{aligned}$	1	24	7.8	67	0.1	27	10	381	3	5.8	0	1	2	12	0.2	0.4	0	67	0.2	0	10	40	1	158	0.1	1	2	0	0	0	0	3	0.1	$.05$	6	$<.5$
$\begin{aligned} & 14275 \\ & 37160 \\ & \hline \end{aligned}$	1	20	6.2	43	0.1	25	6	184	2	3.7	0	2.8	1	11	0.2	0.3	0	44	0.1	0	10	26	0	179	0.1	1	1	0	0	0	0	2	0.1	05	4	< 5
$\begin{aligned} & \text { L4E } 8 S \\ & 3761 \end{aligned}$	1	11	6.5	26	0.1	14	3	80	1	3.8	1	< 5	< 1	10	0.3	0.1	0	23	0.2	0	4	15	0	113	0	4	1	0	0	<. 1	0	0	<. 1	${ }^{\circ} .05$	3	<. 5
$\begin{aligned} & \text { L4E SS } \\ & 37162 \end{aligned}$	1	71	7.3	65	0.2	79	17	509	3	12	2	1.4	1	25	0.8	0.3	0	76	0.9	0.1	9	80	1	275	0.1	2	2	0	0	0	0	5	0.1	$.05$	5	0.8
$\begin{aligned} & \text { L4E IDS } \\ & 37163 \\ & \hline \end{aligned}$	1	18	12	64	< 1	29	10	189	2	35	1	0.7	3	12	0.3	0.4	0	45	0.3	0	10	38	1	148	0.1	1	1	0	0	0	0	2	0.1	${ }_{\text {¢ }} \times$	3	$<.5$
$\begin{aligned} & \text { L4E IIS } \\ & 37154 \\ & \hline \end{aligned}$	2	13	22	105	0.1	23	9	308	4	33	0	0.8	3	8	0.8	0.4	0	115	0.1	0	8	57	1	97	0.1	1	2	0	0	0	0.1	4	0.1	$.05$	7	$<.5$
$\begin{aligned} & \text { L4E 12S } \\ & 37165 \\ & \hline \end{aligned}$	2	33	16	79	0.1	48	18	731	3	32	1	2.3	3	21	0.5	0.4	0	100	0.6	0.1	13	62	1	306	0.1	-1	2	0	0	0	0	6	0.1	. 05	7	0.8
$\begin{aligned} & \text { L4E 13S } \\ & 37166 \end{aligned}$	1	17	8.7	76	0.1	52	14	178	3	6.1	0	0.8	2	15	0.3	0.5	0	98	0.3	0	9	83	1	163	0.1	1	2	0	0	0	0	3	0.1	$.$	8	< 5
L4E 14S 37167	2	12	7	54	<. 1	310	28	508	3	7.8	0	0.6	2	7	0.9	0.3	0	47	0.2	0	7	158	3	71	0	1	1	0	0	0	1	2	0.1	$.05$	4	$<.5$
L4E 15S 37168	1	11	11	51	0.1	29	7	276	3	23	0	2.8	3	7	0.3	0.3	0	57	0.1	0	8	52	1	85	0.1	1	2	0	0	0	0	3	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	6	$<.5$
$\begin{aligned} & \text { L5E IS } \\ & 37043 \end{aligned}$	3	37	15	87	0.2	32	10	397	3	14	2	8.9	4	36	0.7	0.4	0	72	0.7	0	11	50	1	395	0.1	1	2	0	0	0	0	4	0.1	$.05$	6	1.3
$\begin{aligned} & \mathrm{L} 5 E 2 S \\ & 37042 \end{aligned}$	3	42	9.6	97	0.2	45	12	696	3	18	3	3	2	51	1.1	0.4	0	57	1.1	0.1	12	45	1	384	0.1	<1	2	0	0	0	0.1	4	0.1	0.1	5	1.9
STANDARD 055	12	137	25	129	0.2	23	12	766	3	18	E	45.1	3	45	5.5	3.5	6	62	0.8	0.1	11	181	1	138	0.1	17	2	0	0	5	0.2	3	1.1	$\begin{gathered} < \\ . .15 \\ \hline \end{gathered}$	6	5.1
5.1	2	3.9	2.7	47	<. 1	5	5	581	2	< 5	2	0.7	5	84	< 1	$<.1$	0	42	0.6	0.1	9	21	1	240	0.1	4	1	0.1	1	4	0	3	0.3	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	6	$<.5$
$\begin{array}{r} 15 \mathrm{SS} \\ 37040 \\ \hline \end{array}$	1	24	7.6	61	0.2	35	II	325	3	9.9	1	2.6	2	29	0.3	0.4	0	54	0.7	0.1	10	45	1	308	0.1	<1	2	0	0	0	0	5	0.1	${ }_{\text {c }}^{\text {c }}$	5	0.7
L5E 48	1	15	8.6	62	0.1	30	10	37	2	5.3	0	1.4	2	14	0.2	0.3	0	52	0.3	0	9	5	1	III	0.1	<1	1	0	0	0	0	3	0.1	<	6	$<.5$

37039																																			. 05		
$\begin{aligned} & \hline \text { L5E 5S } \\ & 37038 \end{aligned}$	1		33	8	69	0.1	41	14	517	3	8.3	1	2.1	3	26	0.3	0.5	0	60	0.6	0.1	12	50	1	305	0.1	1	2	0	0	0	0	5	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	6	0.5
$\begin{aligned} & \hline \text { L5E 6S } \\ & 37037 \\ & \hline \end{aligned}$	1		20	7	55	0.1	32	12	452	2	4	1	1.5	2	16	0.3	0.3	0	44	0.3	0	10	37	0	233	0.1	<1	1	0	0	0	0	3	0.1	$.05$	5	< 5
$\begin{aligned} & \text { L5E 7S } \\ & 37036 \\ & \hline \end{aligned}$	1		26	7.3	59	0.1	32	10	339	3	4.9	0	1.6	3	13	0.2	0.5	0	59	0.3	0	11	38	1	186	0.1	<1	1	0	0	0	0	4	0.1	$.05$	5	$\times .5$
$\begin{aligned} & \hline 15 E 8 S \\ & 37035 \end{aligned}$	2		44	18	132	0.2	58	22	1280	4	20	1	1.3	2	34	1.1	0.5	0	74	0.8	0.1	12	64	1	390	0.1	1	2	0	0	0	0	6	0.1	$.05$	8	0.9
$\begin{aligned} & \text { L5E SS } \\ & 37034 \end{aligned}$	1		22	8.2	60	0.1	32	12	433	2	6.2	1	1.9	2	16	0.2	0.4	0	51	0.3	0.1	10	39	1	154	0.1	1	1	0	0	0	0	3	0.1	$. .55$	4	< 5
$\begin{aligned} & \text { L5E IDS } \\ & 37033 \end{aligned}$	1		23	7.4	67	0.1	31	12	455	3	7.9	1	1.9	3	18	0.3	0.3	0	60	0.5	0	10	48	1	179	0.1	2	1	0	0	0	0	4	0.1	$.05$	5	0.5
$\begin{aligned} & \text { L5E IIS } \\ & 37032 \\ & \hline \end{aligned}$	2		88	19	100	0.9	80	17	683	3	18	5	3.2	1	44	1.5	0.5	0	73	1.2	0.1	11	81	1	438	0.1	<1	2	0	0	0	0.1	7	0.2	$.05$	7	1.9
LSE I2S 37031	1		92	13	97	0.7	58	13	417	2	14	4	3.8	1	45	2.7	0.5	0	42	2	0.1	12	59	1	291	0.1	1	2	0	0	0	0.1	6	0.1	$.05$	5	1.6
$\begin{aligned} & \text { LSE ISS } \\ & 37030 \\ & \hline \end{aligned}$	0		144	4.2	19	0.4	28	7	259	1	4.1	4	6.1	0	54	0.7	0.4	0	32	3.5	0.1	14	39	0	159	0	<1	1	0	0	0	0.1	2	0.1	0.1	3	3
$\begin{aligned} & \text { [5E 14S } \\ & 37029 \end{aligned}$	1		106	28	13	0.3	18	6	698	1	2	3	1.4	0	63	0.9	0.2	0	27	3.3	0.1	4	34	0	180	0	4	1	0	0	0	0.1	4	0.1	0.1	2	1.4
$\begin{aligned} & \text { LISE 15S } \\ & 37028 \\ & \hline \end{aligned}$	1		16	6.2	34	0.1	124	17	317	2	7.1	\square	1.9	3	18	0.2	0.3	0	34	0.4	0	10	76	1	110	0.1	1	1	0	0	0	0	2	< 1	$.05$	3	< 5
LSE IIS 37027	1		59	10	58	0.4	180	21	474	2	153	1	3.6	3	25	0.6	0.9	0	33	1	0	10	73	1	154	0	1	1	0	0	0	0	4	0.1	$\text { . } 05$	3	0.9
RE LSE 15537028	1		16	6.5	37	0.1	127	18	315	2	7.6	1	1	3	13	0.1	0.4	0	33	0.4	0	III	77	1	113	0.1	<1	1	0	0	0	0	3	< 1	$.05$	3	< 5
$\begin{aligned} & \text { LGE ISS } \\ & 37184 \end{aligned}$	0		281	3.9	32	0.9	III	8	364	1	50	5	6.6	0	71	3.4	1.3	0	17	3.5	0.1	22	23	0	307	0	1	1	0	0	0	0.1	4	0.1	0.1	2	2.3
$\begin{array}{\|l\|l\|} \hline \text { L6E 17S } \\ 37183 \\ \hline \end{array}$	1		70	6.3	65	0.2	212	24	480	2	47	2	1.5	1	61	3.3	0.4	0	29	2.3	0.1	8	90	1	237	0	1	1	0	0	0	0.1	4	0.1	0.1	3	1.2
$\begin{aligned} & \text { LEE I8S } \\ & 37182 \\ & \hline \end{aligned}$	2		8.4	5.8	49	0.1	23	5	115	2	10	0	0.6	3	7	0.4	0.6	0	50	0.2	0	11	30	0	55	0.1	<1	1	0	0	0	0	2	0.1	.05	4	<. 5
$\begin{aligned} & \text { 16E ISS } \\ & 37181 \end{aligned}$	1		81	9.4	53	0.2	38	12	723	2	11	2	2.5	1	30	1.6	0.3	0	59	1.2	0.1	9	48	1	276	0.1	<1	2	0	1	0	0	5	0.1	$.05$	6	1
$\begin{aligned} & \text { LBE 20S } \\ & 37180 \end{aligned}$	1		18	7.4	67	0.2	26	9	255	3	8.8	0	1.1	2	9	0.4	0.4	0	81	0.2	0	8	45	1	123	0.1	$\bigcirc 1$	2	0	0	0	0	4	0.1	$.$	7	< 5
$\begin{array}{\|l\|l\|} \hline \text { L6E 2IS } \\ 37179 \\ \hline \end{array}$	1		20	5.5	41	0.1	23	8	273	2	7.7	0	3.7	3	16	0.2	0.3	0	47	0.4	0.1	9	32	1	132	0.1	<1	1	0	0	0	0	3	0.1	$.05$	3	<. 5
$\begin{array}{\|l\|} \hline \text { L6E 22S } \\ 37178 \\ \hline \end{array}$	3		21	17	95	0.1	67	14	503	5	117	1	3.9	4	7	0.5	0.6	0	93	0.1	0.1	7	124	1	163	0.1	1	3	0	0	0	0	5	0.1	$.85$	8	0.6
$\begin{aligned} & \text { LBE 23S } \\ & 37177 \end{aligned}$			12	6.9	40	$<.1$	16	5	186	2	3.1	0	0.6	1	9	0.2	0.4	0	46	0.1	0	9	26	0	85	0.1	<1	1	0	0	0	0	2	0.1	$.05$	5	$<.5$
$\begin{array}{\|l\|} \hline \text { L6E 24S } \\ 37176 \\ \hline \end{array}$			31	18	112	0.2	32	11	3 BL	3	17	0	0.8	1	13	0.8	0.4	[76	0.2	0	7	51	1	148	0.1	4	2	0	0	0	0	4	0.1	$\text { . } 15$	9	0.5
$\begin{aligned} & \hline \text { L6E 25S } \\ & 37175 \\ & \hline \end{aligned}$			17	7.4	47	0.1	30	10	415	2	5.7	0	1.3	3	17	0.2	0.4	0	44	0.3	0.1	12	33	1	145	0.1	1	1	0	0	0	0	3	0.1	05	4	$<.5$
L6E 26S 37174			20	7.2	51	0.1	29	11	385	2	4.4	0	11	3	16	0.1	0.4	0	52	0.3	0	11	37	1	170	0.1	<1	1	0	0	0	0	4	0.1	$\begin{aligned} & < \\ & .05 \\ & \hline \end{aligned}$	4	<. 5
$\begin{array}{\|l\|l\|l\|} \hline \text { L6E 27S } \\ 37173 \\ \hline \end{array}$			56	6	45	0.4	39	7	232	2	5.5	2	1.3	0	22	0.7	0.3	0	45	0.5	0	8	35	1	326	0.1	<1	2	0	0	0	0	3	0.1	05	5	$<.5$
LEE 28S			12	14	50	0.2	15	4	192	1	12	0	< 5	1	23	0.5	0.2	0	48	0.5	[10	3 F	1	279	0.1	<1	1	0	0	0	0	3	0.1	<	6	< 5

37172																																		. 05		
$\begin{aligned} & \hline \text { IGE } 24 S \\ & 37171 \\ & \hline \end{aligned}$	2	31	10	126	0.3	39	11	517	3	37	3	1.5	2	50	2.5	0.4	0	52	1.1	0.1	11	48	1	320	0.1	2	2	0	0	0	0.1	5	0.1	-	5	2.2
$\begin{aligned} & \text { LGE } 30 S \\ & 37170 \end{aligned}$	1	30	7.7	59	0.1	38	12	551	3	9	1	2.4	4	29	0.4	0.4	0	55	0.6	0	13	43	1	213	0.1	1	1	0	0	0	0	5	0.1	< ${ }_{\text {c }}$	4	0.7
$\begin{aligned} & \text { L6E } 315 \\ & 37168 \end{aligned}$	1	25	9.8	75	<. 1	38	12	442	3	35	1	4.7	5	22	0.5	0.5	0	64	0.5	0.1	12	50	1	270	0.1	1	1	0	0	0	0	4	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	4	0.6
$\begin{aligned} & 17715 \\ & 37199 \end{aligned}$	1	26	7.1	71	0.3	37	II	645	2	7.3	1	1	1	44	0.8	0.4	0	45	0.9	0.1	10	42	1	286	0.1	2	1	0	0	0	0.1	3	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	4	1.1
$\begin{aligned} & \text { L7E 2S } \\ & 37198 \end{aligned}$	1	10	6.1	67	0.1	19	7	220	2	5.6	0	8.9	2	11	0.3	0.3	0	64	0.2	0	8	38	1	III	0.1	1	1	0	0	0	0	3	0.1	$\begin{gathered} \text { < } \\ .05 \end{gathered}$	5	<. 5
$\begin{aligned} & 17745 \\ & 37197 \end{aligned}$	1	28	9	84	0.1	92	18	352	3	151	1	0.9	3	11	0.5	1.2	0	72	0.2	0	9	94	1	222	0.1	2	2	0	0	0	0	5	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	6	0.5
$\begin{aligned} & \text { STANDARD } \\ & \text { OS5 } \end{aligned}$	13	139	24	136	0.3	25	12	745	3	17	6	45.9	3	44	5.4	3.7	6	59	0.7	0.1	11	183	1	135	0.1	18	2	0	0	5	0.2	4	1	$\begin{gathered} < \\ .05 \end{gathered}$	7	5.1
6-1	3	3.8	5.4	47	<1	4.7	5	576	2	0.7	2	< 5	5	88	< 1	< 1	0	48	0.7	0.1	10	20	0	259	0.1	1	1	0.2	1	4	< Ol	3	0.4	.	6	< 5
$\begin{aligned} & \hline 17 E 5 S \\ & 37195 \\ & \hline \end{aligned}$	3	52	14	47	0.9	55	14	814	2	30	2	2.4	1	65	0.7	0.7	0	42	1.8	0.1	18	38	0	507	0	1	2	0	0	0	0.1	2	0.1	0.1	5	1.9
$\begin{aligned} & \text { L7E 6S } \\ & 37194 \\ & \hline \end{aligned}$	2	5	15	137	0.3	62	18	753	4	21	2	2.1	2	30	0.9	0.4	0	84	0.7	0.1	14	70	1	578	0.1	< 1	3	0	0	\square	0	5	0.1	$\begin{array}{r} 6 \\ .05 \\ \hline \end{array}$	9	0.7
$\begin{aligned} & 17 \mathrm{7S} \\ & 37193 \\ & \hline \end{aligned}$	1	19	11	68	0.1	33	10	328	2	8.9	1	1.5	2	17	0.4	0.3	0	49	0.3	0.1	12	39	1	180	0.1	<1	2	0	0	\square	0	3	0.1	$\begin{aligned} & < \\ & .05 \\ & \hline \end{aligned}$	5	0.6
$\begin{aligned} & \text { L7E } 8 \mathrm{~S} \\ & 37192 \\ & \hline \end{aligned}$	1	38	11	69	0.1	42	14	865	3	9.4	1	1.8	4	26	0.3	0.5	0	62	1.6	0.1	15	47	1	282	0.1	<1	2	0	0	0	\square	5	0.1	.15	5	0.5
$\begin{aligned} & \hline 17 E 98 \\ & 37191 \\ & \hline \end{aligned}$	1	20	10	55	<. 1	29	9	288	2	5.5	0	1.2	4	13	0.2	0.4	0	57	0.2	0	13	41	1	157	0.1	1	2	0	0	0	0	3	0.1	$\begin{aligned} & < \\ & .05 \end{aligned}$	5	< 5
L7E IDS 37190	1	5.8	9.1	33	<. 1	23	6	170	2	3.3	0	1.4	2	8	0.1	0.2	0	38	0.1	0	10	36	0	85	0.1	<1	1	0	0	0	0	2	< 1	$\begin{gathered} \ll \\ .05 \\ \hline \end{gathered}$	4	$\bigcirc 5$
$\begin{aligned} & \text { L7E IIS } \\ & 37189 \\ & \hline \end{aligned}$	1	10	14	47	<. 1	16	5	132	1	6.8	0	<. 5	1	8	0.2	0.3	0.	50	0.2	0	10	36	0	83	0.1	<1	1	0	0	0	0	2	0.1	$\begin{array}{r} < \\ .05 \\ \hline \end{array}$	6	< 5
$\begin{aligned} & \hline \text { L7E 12S } \\ & 37188 \\ & \hline \end{aligned}$	1	12	10	71	0.1	16	8	272	3	8.9	0	0.7	3	8	0.6	0.4	0	67	0.1	0	9	36	0	78	0.1	<1	1	0	0	0	0	2	0.1	$\begin{gathered} \ll \\ 0.05 \\ \hline \end{gathered}$	6	< 5
$\begin{aligned} & \mathrm{L} 7 \mathrm{E} / 3 \mathrm{~S} \\ & 37187 \end{aligned}$	1	24	10	73	0.1	32	10	267	2	9.2	0	2.2	3	15	0.4	0.4	0	54	0.3	0.1	11	41	1	187	0.1	1	2	0	0	0	0	3	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	6	< 5
ELEMENT	M 0	Cu	Pb	$2 n$	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Са	P	La	Сг	Mg	Ba	Ji	8	A	$\mathrm{Na}^{\text {a }}$	K	W	Hg	Se	It	S	Ca	Se
$\begin{aligned} & \text { L7E 14S } \\ & 37186 \\ & \hline \end{aligned}$	1	29	11	68	0.1	53	13	376	3	13	0	0.5	3	13	0.3	0.4	0	76	0.3	0.1	10	56	1	200	0.1	<1	2	0	0	0	0	4	0.1	$\text { . } 05$	7	< 5
$\begin{aligned} & \hline 17 \mathrm{I} 5 \mathrm{~S} \\ & 37185 \\ & \hline \end{aligned}$	1	102	14	99	1	91	14	481	3	31	2	1.8	1	29	2.4	0.3	0	65	0.8	0.1	16	59	1	379	0	<1	2	0	0	0	0.1	4	0.1	$\begin{array}{r} \text { < } \\ .05 \\ \hline \end{array}$	7	0.7
RE LBE IS 37001	1	17	12	38	0.1	26	7	252	2	4.3	1	1.4	3	18	0.1	0.3	0	37	0.4	0	13	30	0	183	0.1	<1	1	0	0	0	0	2	0.1	$.05$	4	0.6
L8E IS 37801	1	16	11	35	0.1	23	7	233	2	3.7	1	1.4	2	19	0.2	0.3	0	34	0.4	0	13	28	0	172	0.1	$\leqslant 1$	1	0	0	0	0	2	0.1	¢	4	< 5
$\begin{aligned} & 18 E 2 S \\ & 37002 \end{aligned}$	1	22	11	77	0.1	41	13	325	: 3	6.3	0	1.5	3	15	0.2	0.5	0	67	0.3	0	12	53	1	181	0.1	1	2	0	0	0	0	4	0.1	$.05$	7	0.5
$\begin{aligned} & \hline 18 E 3 S \\ & 37003 \end{aligned}$	1	42	11	58	0.1	44	14	450	3	12	1	2	4	18	0.2	0.4	0	67	0.4	0.1	15	56	1	304	0.1	1	2	0	11	0	0	4	0.1	¢	6	0.7
$\begin{aligned} & 18 E 4 S \\ & 37004 \\ & \hline \end{aligned}$	1	36	10	77	0.1	41	13	235	2	10	1	1	4	27	0.7	0.4	0	60	0.7	0.1	13	52	1	254	0.1	1	1	0	0	0	0	5	0.1	. 0	5	1.4
$\begin{aligned} & \hline 18 E 5 S \\ & 37005 \\ & \hline \end{aligned}$	1	26	9.7	65	0.2	38	10	355	2	8.1	1	1.3	3	31	0.3	0.5	0	49	0.8	0.1	12	42	1	309	0.1	1	2	0	0	0	0	4	0.1	. $\times 1$	5	0.9

185 6S 37006	2	45	16	188	0.1	62	25	912	4	22	1	1.5	3	28	0.6	0.5	1	113	0.7	0.1	13	88	2	460	0.1	1	3	0	0	0	0	7	0.2	-	9	1	
L8E 7S 37007	2	20	4.9	57	0.1	28	10.	433	2	6.4	1	0.6	4	21	0.3	0.4	0	47	0.4	0.1	15	37	1	160	0.1	1	1	0	0	0	0	3	0.1	. 05	4	0.5	
$\begin{aligned} & \hline 18 E 8 S \\ & 37008 \\ & \hline \end{aligned}$	1	20	9.3	55	0.1	28	8	256	2	5.6	0	1.7	3	14	0.3	0.4	0	46	0.2	0	13	32	1	154	0.1	1	1	0	0	0	0	2	0.1	${ }_{\text {c }}$.	4	$<.5$	
$\begin{aligned} & \hline \text { L8E SS } \\ & 37009 \end{aligned}$	1	25	11	89	0.1	33	10	273	3	8.5	0	< 5	3	10	0.4	0.5	0	69	0.2	0	10	49	1	106	0.1	1	2	0	0	0	0	4	0.1	$.05$	8	0.6	
L8E IOS 37010	1	22	9.7	73	0.1	27	10	323	3	6.3	0	0.5	2	13	0.3	0.3	0	64	0.3	0.1	10	44	1	140	0.1	1	2	0	0	0	0	3	0.1	$.05$	6	$<.5$	
$\begin{aligned} & \text { L8E IIS } \\ & 370 \\| \end{aligned}$	1	22	9.3	55	0.1	27	11	353	2	4.1	0	0.8	2	16	0.2	0.3	0	56	0.3	0	11	39	1	149	0.1	4	1	0	0	0	0	3	0.1	$.05$	5	$<.5$	
$\begin{aligned} & \text { L8E I2S } \\ & 37012 \\ & \hline \end{aligned}$	1	20	12	126	1.5	34	15	364	4	15	0	957	2	9	0.4	0.4	0	103	0.2	0.1	7	67	1	128	0.1	<1	2	0	0	0	0	4	0.1	$.05$	8	0.5	
$\begin{aligned} & \hline \text { L8E I3S } \\ & 37013 \end{aligned}$	1	14	11	75	0.1	24	10	292	3	12	0	<. 5	2	10	0.6	0.4	0	104	0.1	0	7	59	1	141	[. 2	1	2	0	0	0	0	4	0.1	$.05$	9	< 5	
$\begin{aligned} & \text { L8E 14S } \\ & 37014 \end{aligned}$	2	17	13	81	0.1	31	14	467	4	16	0	1.2	3	10	0.5	0.5	0	105	0.2	0.1	10	63	1	105	0.1	1	2	0	0	0	0	4	0.1	$.95$	7	0.7	
$\begin{aligned} & \hline 18 \mathrm{EES} \\ & 37015 \\ & \hline \end{aligned}$	2	19	13	97	< 1	36	14	422	4	18	0	1.6	3	9	0.4	0.4	0	109	0.2	0.1	7	63	1	198	0.1	<1	2	0	0	0	0	6	0.1	. 0.5	8	0.5	
L8E 165 37016	1	56	19	107	0.4	58	15	76 B	3	83	2	2.2	2	28	1.3	0.4	0	55	1	0.1	17	54	1	249	0.1	3	2	0	0	0	0	5	0.1	0.1	6	1	
$\begin{aligned} & \hline \text { L8E 17S } \\ & 37017 \\ & \hline \end{aligned}$	2	80	12	65	0.2	42	16	686	2	67	2	3.4	2	34	1.2	0.5	0	60	1.3	0.1	13	39	0	238	0.1	1	1	0	0	0	0.1	4	0.1	0.1	5	1.4	
$\begin{aligned} & 18 \mathrm{EE} 18 \mathrm{~S} \\ & 37018 \\ & \hline \end{aligned}$	1	28	12	72	0.1	37	11	347	3	13	1	1	3	15	0.3	0.5	0	59	0.3	0.1	11	43	1	161	0.1	1	1	0	0	0	0	3	0.1	$05 .$	5	0.6	
ST OS5	13	147	27	135	0.3	24	13	788	3	17	6	43.7	3	48	5.3	3.9	6	63	0.8	0.1	13	181	1	146	0.1	17	2	0	0	5	0.2	4	1.1	$\begin{gathered} \langle \\ .05 \\ \hline \end{gathered}$	7	4.9	
[-1	2	3.5	2.5	45	<1	4.4	4	542	2	1.2	2	0.7	5	90	< 1	$<.1$	0	40	0.7	0.1	III	20	0	257	0.1	2	1	0.2	1	5	0	3	0.4	. 05	5	<. 5	
S37065	3	26	11	104	0.1	27	10	417	3	22	1	8.7	0	13	0.5	0.5	0	69	0.2	0.1	1	45	1	256	0	1	2	0	0	0	0	2	0.2	$\begin{gathered} < \\ 0.05 \\ \hline \end{gathered}$	8	0.5	
S37065	1	28	6.6	62	0.1	48	14	493	3	15	1	4.6	3	14	0.3	0.4	0	60	0.3	0	12	70	1	237	0.1	1	2	0	0	0	0	4	0.1	$\begin{aligned} & 8 \\ & .85 \\ & \hline \end{aligned}$	5	0.6	
\$37067	2	13	B. 4	62	0.1	24	9	374	2	36	1	19.5	3	17	0.2	0.3	0	45	0.4	0	13	36	1	231	0.1	1	1	0	0	0	0	3	0.1	$\begin{array}{r} \text { < } \\ .05 \\ \hline \end{array}$	4	0.7	
\$37068	2	19	8.1	64	0.1	46	11	261	2	10	2	6	5	26	0.4	0.7	0	44	0.7	0.1	16	42	1	192	0.1	2	1	0	0	0	0	4	0.1	$\begin{gathered} < \\ .05 \\ \hline \end{gathered}$	5	1.6	
S37069	2	32	5.6	129	0.3	43	旧	799	3	22	1	1.5	1	44	1.1	0.4	0	88	1.5	0.1	10	78	2	518	0.1	4	2	0	0	0	0.1	7	0.1	0.1	7	1.3	
\$37070	1	36	8.5	77	0.4	77	23	1307	4	25	1	2.6	2	49	1	0.4	\bigcirc	139	1.8	0.1	18	110	2	615	0.1	1	3	0	0	0	0.1	15	0.1	0.1	7	0.8	
S37071	6	61	12	172	0.3	37	18	1030	5	26	1	2.1	3	25	1.2	1.1	0	54	0.9	0.1	20	29	0	299	0	1	2	0	0	0	0	8	0.1	$\begin{gathered} < \\ \hline .05 \\ \hline \end{gathered}$	3	1.3	
S37071A	1	24	10	69	0.1	41	13	309	3	8.5	0	1.4	5	8	0.3	0.6	0	63	0.1	\square	11	48	1	185	0.1	2	2	0	0	0	0	4	0.1	$.05$	7	$<.5$	
S37072	2	96	8.2	95	0.1	45	17	657	3	61	6	1.9	3	29	1.3	0.4	0	66	0.6	\square	18	60	1	525	0.1	1	2	0	0	0	0	11	0.2	$\dot{6}$	7	1	
S37073	2	12	8	60	< 1	15	6	213	2	5.7	0	0.7	2	9	0.5	0.4	0	84	0.1	0	! 1	31	0	78	0.1	<1	1	0	0	0	0	2	0.1	$\begin{aligned} & \text { < } \\ & .05 \end{aligned}$	8	$<.5$	
S37074	1	21	7	74	<. 1	24	11	404	3	10	0	1.2	2	11	0.6	0.4	0	77	0.2	0	9	36	1	76	0.1	1	1	0	0	0	0	3	0.1	$.05$	7	$<.5$	
S37075	1	27	17	III	0.1	35	13	446	3	16	2	1.8	3	22	1.5	0.4	0	55	0.6	0	14	46	1	218	0.1	1	1	0	0	0	0	4	0.1	${ }_{\text {c }} .05$	6	0.6	
RE S37075	1	26	18	107	0.2	36	13	450	3	17	2	4	3	23	1.7	0.4	0	60	0.6	0	14	50	1	2116	0.1	$\bigcirc 1$	2	0	0	\square	0	4	0.1	$.05$	6	0.5	

Nokuyukon Exploration Inc. - King Dome Ridge Silt Samples
Acme file \# A302698 Received: لالUL 182003 *
Analysis: GRRUP IOX - 15.00 GM

Element	Mo	Cu	Pb	Ln	Ag	Ni	C_{0}	Mn	fe	As	1	An	Th	Sr	[d	Sb	Bi	V	La	P	L8	Cr	Mg	Ba	Ii	B	Al	Na	K	W	Hg	Sc	II	s	¢a	Se
SAMPIES	ppm	\%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm	ppm							
6-1	2	3.6	2.8	45	< 1	4.5	4	562	2	< 5	2	¢. 5	5	93	c. 1	< 1	0	43	0.6	0.1	10	20	1	251	0.1	2	1	0.1	1	4	<. 01	3	0.3	. 05	5	< 5
KDSS 01	1	27	7.2	69	0.1	35	12	419	2	15	1	1.5	3	29	0.8	0.4	0	52	0.7	0.1	12	46	1	249	0.1	2	1	0	0	0	0	4	0.1	. 05	4	0.7
KDSS 02	1	31	8.9	65	0.1	39	15	637	3	8.2	1	0.6	5	25	0.3	0.5	0	68	0.6	0.1	16	5	1	212	0.1	2	1	0	0	0	0	4	0.1	. 05	5	< 5
G0LDS. 1	3	66	16	85	0.7	43	31	4026	5	23	1	1.5	1	28	0.8	0.5	0	82	1	0.1	19	65	1	335	0	1	3	0	0	0	0.1	4	0.1	. 05	7	0.6
$6010 \mathrm{~S}-2$	3	21	12	66	0.2	22	16	1511	3	12	1	1.1	1	18	0.3	0.4	0	88	0.6	0.1	11	48	1	198	0.1	1	2	0	0	0	0	3	0.1	. 05	8	<. 5
$\begin{aligned} & \text { L7E } 3 \mathrm{~S} \\ & 37197 \end{aligned}$	1	28	8.2	68	0.1	38	13	653	2	20	1	2	3	30	0.8	0.5	0	54	0.7	0.1	13	44	1	235	0.1	1	1	0	0	0	0	4	0.1	0.05	4	<. 5
STOS5			25	137	0.3	24	12	794	3	17	6	44.2	3	5	5.6	4	6	61	0.8	0.1	13	186	1	141	0.1	17	2	0	0	5	0.2	4	1	. 05	7	4.9

Nokuyukon Exploration Inc - Dldtimers Hill Soil Samples Acme file \# A30c004 Received: DEC 52003 * Analysis: GRRUP 10X - 15.0 GM																																				
ELEMENT	Mo	Cu	Pb	ln	Ag	\#i	C_{0}	Mn	Fe	As	U	Au	Th	$\mathrm{Sr}^{\text {r }}$	Cd	Sb	Bi	V	Ca	P	La	Cr_{r}	Mg	Ba	Ii	日	Al	$\mathrm{Na}^{\text {a }}$	k	W	Hg	Sc	1	s	Ba	SE
SAMPIES	ppm	.ppm	\%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm	ppm						
OTSS 01	2	7.3	8.1	60	0.2	10	5	165	2	1.9	0	0.6	2	7	1.5	0.3	0	5	0.1	0	11	17	0	57	0.1	1	1	0	0	0	0	1	0.1	. 05	5	0.5
OTSS 02	1	10	6.6	60	0.1	19	7	27	2	3.7	0	7	3	12	0.2	0.4	0	41	0.2	0	12	27	1	120	0.1	3	1	0	0	0	0	2	0.1	${ }^{\circ} \mathrm{C}$	5	<. 5
DTSS 03	1	20	20	114	1.6	23	8	325	3	5.7	1	< 5	4	8	0.6	0.6	1	66	0.1	0.1	14	39	0	130	0.1	2	2	0	0	0	0	3	0.2	. 15	7	c. 5
OISS 04	1	13	13	87	0.2	25	7	283	3	7.1	1	< 5	5	8	0.1	0.7	0	60	0.1	0	12	36	1	173	0.1	3	2	0	0	0	0	3	0.1	. 05	7	$<.5$
DISS 05	1	8.1	10	60	<. 1	9. 4	4	269	2	27	,	21	7	6	0.1	0.3	1	47	0.1	0.1	14	23	0	81	0.1	3	1	0	0	1	0	2	0.1	<	8	<. 5

Nokuyukon Exploration Inc. - Kingdome Ridge Rack Samples
 Acme file \# A302699 Rectived: UUL 18 2003 *

Analysis: GROUP 1DX - I5.19 [M																																				
ElEMENT	Mo	Сu	Pb	In	Ag	Ni	C0	Mn	Fe	As	U	All	Th	Sr	[d	Sb	Bi	V	Сa	P	La	Cr	Mg	Ba	Ii	B	Al	Na	k	W	Hg	Se	II	S	Гa	Se
SAMPIES	ppm	\%	ppm	ppm	_pph	ppm	ppm	ppm	ppm	PPM	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm	ppm	ppm	ppm	\%	ppm	ppm							
SI	0	0.2	0.3	1	< 1	0.1	0	1	0	<. 5	< 1	<. 5	<. 1	3	<. 1	0.1	< 1	<1	0.1	80	<1	<1.0	0	3	0	2	0	0.5	0	< 1	< 01	< 1	<. 1	0.1	$\bigcirc 1$	< 5
R37001	3	110	6.5	71	0.3	480	55	332	4	37	0	14.1	0	11	0.1	1.2	0	115	0.5	0.1	1	558	3	104	0.1	1	3	0	0	0	< 01	4	0.1	0.7	7	6.6
R37002	1	140	1	77	0.1	11	18	1077	3	0.7	0	6.1	0	29	0.2	0.3	0	110	0.5	0.1	2	9.1	1	1690	0.1	1	1	0	1	0	$<.01$	9	0.2	. 05	8	$\checkmark 5$
R37003	1	33	0.5	25	4	25	13	360	2	0.9	< 1	0.7	0	22	0.1	0.3	< 1	57	2.2	0.1	1	40	1	67	0.1	<1	1	0	0	0	<. 01	4	$\bigcirc .1$. 05	2	< 5
R37004	1	64	1.6	87	< 1	55	31	2602	4	31	< 1	1.7	0	57	0.1	0.3	<. 1	163	3.7	0.1	1	137	2	1308	0.2	1	3	0.1	1	0	< 01	13	0.2	0.1	8	<. 5
R37005	3	92	1.3	68	< 1	33	25	2516	3	1.6	0	0.3	1	50	0.1	0.2	< 1	132	3.9	0.1	2	102	2	1258	0.2	1	3	0.1	1	0	$<.01$	10	0.1	0.2	6	< 5
R37006	1	94	2.3	84	< 1	40	32	2572	4	6.7	0	2.1	0	58	0.2	0.4	0	154	4.6	0.1	2	120	2	169	0.2	1	3	0.2	1	0	< 01	10	0.2	0.7	8	0.5
R37007	2	74	1.4	57	$\bigcirc 1$	34	26	3519	3	2.2	0	0.8	0	56	0.2	0.3	0	109	6.7	0.1	2	90	2	526	0.1	1	2	0.1	0	0	< 011	7	0.1	0.4	5	<. 5
R37008	8	135	2	57	0.1	42	37	1729	4	3.6	<. 1	2.3	0	19	0.1	0.4	0	133	3	0.1	1	97	2	70	0.2	1	3	0.1	1	0	< 01	7	0.2	1.2	6	0.8
R37009	1	6.5	2	5	< 1	3.9	2	1050	0	1.4	$<.1$	< 5	< 1	245	0.1	0.1	< 1	7	6.7	0	1	9.7	0	55	0	\checkmark	0	0	0	< 1	< 01	2	$<.1$. 05	<1	< 5
R37010	1	58	18	78	0.1	50	14	984	4	12	0	< 5	7	4	0.2	0.1	0	57	0.2	0	17	49	1	287	0	3	2	0	0	< 1	< 01	3	0.1	. 05	6	0.5
R370II	1	84	4.5	56	0.4	19	13	1404	3	21	[4.5	1	44	0.3	0.4	0	45	1.6	0	5	9.5	1	III	0	$\bigcirc 1$	1	0	0	0	< . II	7	<. 1	. 05	5	0.5
R37012	0	12	6	75	< 1	58	20	1068	4	56	1	<. 5	0	367	0.7	1	$\times .1$	77	16	0.1	7	66	3	130	0	<1	2	0	0	0	<. 01	14	< 1	. 05	5	<. 5
R37013	0	18	3.6	5	<. 1	26	10	768	2	17	0	0.5	\square	356	0.8	0.4	<1	22	21	0.1	3	18	1	103	0	1	0	0	0	0	0	9	< 1	0.2	1	< 5
R37014	0	45	1	99	0.1	47	23	1175	5	1.7	< 1	0.7	1	22	0.4	0.3	< 1	175	3.1	0.1	1	189	2	188	0.3	< 1	3	0	1	0	< 010	10	0.1	. 0.5	10	< 5
R37015	0	38	2.7	60	0.2	53	3 B	174]	B	25	<. 1	0.9	0	108	0.2	0.7	0	199	4.1	0.1	2	191	3	341	0.1	<1	4	0.1	0	0	<. CH	27	0.1	1.4	II	0.6
RE R37015	4	36	2.5	58	0.2	5	3 B	1758	6	24	<. 1	0.7	0	99	0.2	0.7	0	200	4.1	0.1	2	182	3	338	0.1	$\times 1$	4	0.1	0	\square	< 01	26	0.1	0.4	10	<. 5
R37016	1	24	0.5	15	< 1	17	8	231	2	0.9	<. 1	<. 5	0	27	0.1	0.3	< 1	59	1.3	0.1	1	46	1	19	0.2	1	1	0.1	0	0	<. 01	3	$<.1$. 05	3	$\times .5$
R37017	2	3	10	35	< 1	3.8	4	337	1	1.5	0	<. 5	7	13	0.3	0.1	1	12	1	0	15	4.9	1	204	0	<1	1	0	0	< 1	< 010	2	<. 1	$.05$	4	$<.5$
R37018	2	1.5	0.5	5	<1	1.1	1	50	0	3.8	< 1	<. 5	0	1	<. 1	< 1	<1	3	0	0	<1	6.4	0	11	0	4	0	0	0	<. 1	$<.01$	0	$\times 1$	05	<1	<. 5
R37019	1	8.7	23	7	0.2	2.8	1	184	1	18	1	0.7	12	9	0.2	0.4	0	4	1.2	0	26	<1.0	0	75	0	1	0	0.1	0	<1	< 01	1	$<.1$	0.1	1	<. 5
R37020	2	6. 6	42	138	0.2	2.6	2	217	1	106	1	5.8	12	2	2.2	0.3	0	3	0.1	0	23	3.4	0	97	$.$	<1	0	0	0	0	< 01	1	$<.1$	$.05$	1	$<.5$
R37021	0	23	11	36	0.1	1.9	2	183	1	4.4	2	0.9	14	15	0.3	0.2	0	8	8.4	0	24	2.2	1	197	0	3	1	0.1	0	0	< 01	1	0.2	05	4	<. 5
R37022	2	3.7	74	III	4.3	1.4	1	127	1	912	1	15241	6	2	7.2	0.4	1	1	0	0	13	3.8	10	79	0	1	0	0	0	1	0	0	<1	05	4	< 5

Noblywkon Exploration. Kingdome Ridg Rack Sandies

Andysis: Gfigi iox. 15.0 CM

ELEMENT	Ma	Cu	Pb	In	Ag	Ni	C0	Mn	Fe	As	4	Au	Th	Sr	[d	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ii	B	Al	Na	K	W	Hg	Sc	II	S	la	Se
SAMPLE	ppm	\%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	pprm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm	ppm	ppm	pprn	\%	ppm	ppm							
SI	0	0.1	0.3	< 1	< 1	0.1	<. 1	3	0	< 5	< 1	5.3	- 1	4	<. 1	< 1	<. 1	<1	0.2	.001	<1	1.1	01	3	.001	<1	0	0.7	0	0	$<.01$	0	< 1	. 05	<1	<, 5
KD-01	4	70	0.4	9	0.3	7.8	1	164	1	21	1	0.7	1	3	0.1	0.2	<. 1	9	0.1	0	2	22	0	7	. 010	<1	0	0	0	7	< 01	1	< 1	. 15	1	$<.5$
KD-02	4	26	1	23	0.1	11	5	541	1	4.1	0	< 5	1	81	0.2	0.3	<. 1	25	0.8	0	4	24	0	55	0	<1	0	0	0	6	0	3	< 21	. 05	2	<. 5
KO-03	9	37	8.1	30	0.4	37	8	56	2	13	1	0.9	1	21	0.2	2.5	0	17	0	0	4	46	0	183	0	4	1	0	0	6	0	2	0.1	0.5	3	0.6
KD-04	2	46	33	79	0. 2	35	5	170	2	22	\square	2.9	3	3	0.4	0.8	0	14	0	0	9	18	0	325	. 801	2	0	0	0	<1	0	2	<. 1	. 05	1	<, 5
K0.05	7	14	7.3	30	0.1	18	4	219	1	3.8	0	1.4	1	2	0.3	0.3	<. 1	4	0	0	4	27	0	284	001	1	0	0	0	8	< 01	1	< 1	$.05$	1	< 5
KD.06	1	394	1.3	5	0.4	65	25	444	5	2.2	0	210	0	31	0.1	0.1	0	143	1.3	0.1	1	109	2	136	0.2	2	2	0.1	0	1	0	10	< 1	. 05	6	$<.5$
KD-07	0	21	1.6	64	< 1	43	23	700	3	0.8	0	1.9	0	29	0.2	0.2	< 1.	127	1.5	0.1	1	153	1	100	0.2	1	2	0.2	0	0	< 81	14	0.1	. 05	7	< 5
ST DS 4	7	127	32	161	0.3	35	12	783	3	23	6	30.5	4	29	5.4	4.7	5	76	0.5	0.1	16	164	1	140	0.1	2	2	0	0	4	0.3	4	1.	05	6	1.3

Nokuyakon Eyploration Ine - Flditimers Hill Rack Samples
Acme file A A306003 Received: QEC 52003^{*}

Analysis: ERRIMP IDX - 15.10 CM																																				
ELEMENT	Mo	Cu	Pb	ln	Ag	Ni	Co	Mn	Fe	As	U	Au	Ih	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ii	日	Al	Na	k	W	Hg	Sc	11	S	Ga	Se
SAMPLES	ppm	\%	ppm	ppm	pph	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	_ppm	\%	\%	\%	ppm	_ppm	ppm	ppm	\%	ppm	ppm							
SI	0	0.4	0.2	1	c. 1	0.1	$\leqslant 1$	12	0	< 5	<. 1	<. 5	<. 1	3	<. 1	$<.1$	< 1	2	0.1	COU	<1	<1.0	$\begin{aligned} & \overline{<} \\ & .01 \\ & \hline \end{aligned}$	2	.001	1	0	0.4	0	0	< 010	0	<1	0.1	<1	< 5
OTRS 01	23	37	14	152	0.4	21	5	452	4	< 5	3	2.3	1	10	0.9	0.1	0	117	0.2	0.1	13	50	1	65	0.2	1	2	0	0	<. 1	<. OH	3	0.1	$.05$	8	4.8
OTRS 02	0	28	3.2	58	<. 1	89	19	1436	7	0.6	0	1	2	235	0.2	0.3	<. 1	26	3.5	0.2	26	56	2	56	0	<1	0	0.1	0	<1	0	10	4.1	$\begin{aligned} & 6 \\ & .05 \end{aligned}$	2	$<.5$
ST DS5	13	147	24	141	0.3	27	13	780	3	18	6	44.2	3	46	5.8	4	6	60	0.8	0.1	11	191	1	135	0.1	16	2	0	0	5	0.2	4	1.1	$.05$	7	5

UTM COORDINATES FOR SAMPLE SITES

WP,UTM,R37001,8V,602400,6752741 WP,UTM,R37002,8V,603222,6753060 WP,UTM,R37003,8V,602513,6752869 WP,UTM,R37004,8V,602465,6752733 WP,UTM,R37005,8V,602454,6752712 WP,UTM,R37006,8V,602457,6752719 WP,UTM,R37007,8V,602460,6752728 WP,UTM,R37008,8V,602461,6752730 WP,UTM,R37010,8V,602430,6752730 WP,UTM,R37011,8V,602046,6752331 WP,UTM,R37012,8V,602144,6752335 WP,UTM,R37013,8V,602255,6752348 WP,UTM,R37014,8V,602222,6752520 WP,UTM,R37015,8V,602228,6752529 WP,UTM,R37016,8V,602718,6753048 WP,UTM,R37017,8V,602312,6752656 WP,UTM,R37018,8V,602326,6752649 WP,UTM,R37019,8V,602327,6752641 WP,UTM,R37020,8V,602449,6752556 WP,UTM,R37021,8V,602475,6752546 WP,UTM,R37022,8V,602450,6752568 WP,UTM,S37001,8V,603231,6752458 WP,UTM,S37002,8V,603230,6752509 WP,UTM,S37003,8V,603231,6752564 WP,UTM,S37004,8V,603232,6752600 WP,UTM,S37005,8V,603233,6752668 WP,UTM,S37006,8V,603242,6752700 WP,UTM,S37007,8V,603234,6752753 WP,UTM,S37008,8V,603225,6752806 WP,UTM,S37009,8V,603217,6752863 WP,UTM,S37010,8V,603219,6752909 WP,UTM,S37011,8V,603225,6752962

WP,UTM,S37012,8V,603229,6753012 WP,UTM,S37013,8V,603227,6753056 WP,UTM,S37014,8V,603218,6753108 WP,UTM,S37015,8V,603232,6753167 WP,UTM,S37016,8V,603225,6753214 WP,UTM,S37017,8V,603234,6753259 WP,UTM,S37018,8V,603230,6753307 WP,UTM,S37019,8V,602425,6752370 WP,UTM,S37020,8V,602429,6752423 WP,UTM,S37021,8V,602417,6752472 WP,UTM,S37022,8V,602417,6752520 WP,UTM,S37023,8V,602420,6752570 WP,UTM,S37024,8V,602413,6752618 WP,UTM,S37025,8V,602412,6752666 WP,UTM,S37026,8V,602414,6752702 WP,UTM,S37027,8V,602931,6753133 WP,UTM,S37028,8V,602928,6753092 WP,UTM,S37029,8V,602925,6753047 WP,UTM,S37030,8V,602927,6752993 WP,UTM,S37031,8V,602925,6752939 WP,UTM,S37032,8V,602921,6752887 WP,UTM,S37033,8V,602923,6752848 WP,UTM,S37034,8V,602926,6752789 WP,UTM,S37035,8V,602918,6752740 WP,UTM,S37036,8V,602921,6752692 WP,UTM,S37037,8V,602916,6752647 WP,UTM,S37038,8V,602919,6752593 WP,UTM,S37039,8V,602928,6752536 WP,UTM,S37040,8V,602943,6752502 WP,UTM,S37041,8V,602933,6752435 WP,UTM,S37042,8V,602934,6752429 WP,UTM,S37043,8V,602941,6752388

WP,UTM,S37044,8V,602637,6752896 WP,UTM,S37045,8V,602632,6752867 WP,UTM,S37046,8V,602634,6752821 WP,UTM,S37047,8V,602639,6752776 WP,UTM,S37048,8V,602634,6752720 WP,UTM,S37049,8V,602630,6752670 WP,UTM,S37050,8V,602627,6752626 WP,UTM,S37051,8V,602649,6752577 WP,UTM,S37052,8V,602628,6752506 WP,UTM,S37053,8V,602629,6752468 WP,UTM,S37054,8V,602627,6752421 WP,UTM,S37055,8V,602552,6752858 WP,UTM,S37056,8V,602552,6752806 WP,UTM,S37057,8V,602548,6752758 WP,UTM,S37058,8V,602555,6752721 WP,UTM,S37059,8V,602566,6752663 WP,UTM,S37060,8V,602571,6752601 WP,UTM,S37061,8V,602571,6752556 WP,UTM,S37062,8V,602579,6752512 WP,UTM,S37063,8V,602579,6752457 WP,UTM,S37064,8V,602580,6752406 WP,UTM,S37065,8V,601867,6752366 WP,UTM,S37066,8V,601944,6752381 WP,UTM,S37067,8V,601979,6752357 WP,UTM,S37068,8V,602020,6752344 WP,UTM,S37069,8V,602148,6752332 WP,UTM,S37070,8V,602168,6752325 WP,UTM,S37071,8V,602415,6752678 WP,UTM,S37072,8V,602327,6752651 WP,UTM,S37073,8V,602354,6752614 WP,UTM,S37074,8V,602400,6752574 WP,UTM,S37075,8V,602454,6752558

WP,UTM,S37076,8V,602453,6752559 WP,UTM,S37078,8V,602535,6752492 WP,UTM,S37079,8V,602568,6752459 WP,UTM,S37133,8V,601903,6752340 WP,UTM,S37134,8V,602319,6752365 WP,UTM,S37135,8V,602318,6752418 WP,UTM,S37136,8V,602314,6752473 WP,UTM,S37137,8V,602311,6752523 WP,UTM,S37138,8V,602312,6752562 WP,UTM,S37139,8V,602223,6752520 WP,UTM,S37140,8V,602226,6752473 WP,UTM,S37141,8V,602222,6752425 WP,UTM,S37142,8V,602226,6752373 WP,UTM,S37143,8V,602743,6752415 WP,UTM,S37144,8V,602740,6752467 WP,UTM,S37145,8V,602739,6752524 WP,UTM,S37146,8V,602734,6752569 WP,UTM,S37147,8V,602731,6752618 WP,UTM,S37148,8V,602736,6752664 WP,UTM,S37149,8V,602735,6752720 WP,UTM,S37150,8V,602744,6752759 WP,UTM,S37151,8V,602734,6752825 WP,UTM,S37152,8V,602733,6752869 WP,UTM,S37153,8V,602731,6752916

WP,UTM,S37154,8V,602830,6752425 WP,UTM,S37155,8V,602840,6752474 WP,UTM,S37156,8V,602829,6752528 WP,UTM,S37157,8V,602838,6752586 WP,UTM,S37158,8V,602827,6752630 WP,UTM,S37159,8V,602820,6752673 WP,UTM,S37160,8V,602824,6752727 WP,UTM,S37161,8V,602827,6752779 WP,UTM,S37162,8V,602827,6752838 WP,UTM,S37163,8V,602820,6752867 WP,UTM,S37164,8V,602817,6752927 WP,UTM,S37165,8V,602817,6752973 WP,UTM,S37166,8V,602819,6753025 WP,UTM,S37167,8V,602813,6753069 WP,UTM,S37168,8V,602812,6753128 WP,UTM,S37169,8V,603022,6752441 WP,UTM,S37170,8V,603023,6752486 WP,UTM,S37171,8V,603025,6752533 WP,UTM,S37172,8V,603028,6752589 WP,UTM,S37173,8V,603013,6752635 WP,UTM,S37174,8V,603022,6752681 WP,UTM,S37175,8V,603019,6752736 WP,UTM,S37176,8V,603011,6752777 WP,UTM,S37177,8V,603009,6752835

WP,UTM,S37178,8V,603012,6752886 WP,UTM,S37179,8V,603018,6752933 WP,UTM,S37180,8V,603009,6752983 WP,UTM,S37181,8V,603011,6753025 WP,UTM,S37183,8V,603000,6753135 WP,UTM,S37184,8V,603000,6753183 WP,UTM,S37185,8V,603121,6753137 WP,UTM,S37186,8V,603120,6753096 WP,UTM,S37187,8V,603127,6753042 WP,UTM,S37188,8V,603133,6752988 WP,UTM,S37189,8V,603134,6752940 WP,UTM,S37190,8V,603119,6752889 WP,UTM,S37191,8V,603130,6752846 WP,UTM,S37192,8V,603132,6752789 WP,UTM,S37193,8V,603132,6752745 WP,UTM,S37194,8V,603129,6752690 WP,UTM,S37195,8V,603137,6752645 WP,UTM,S37196,8V,603128,6752591 WP,UTM,S37197,8V,603133,6752536 WP,UTM,S37198,8V,603137,6752510 WP,UTM,S37199,8V,603135,6752446 WP,UTM,G0LDS 1,8V,602474,6752702 WP,UTM,OTRS01,8V,602383,6755440 WP,UTM,OTRS02,8V,601454,6755537

Figure 5

KINGDOME RIDGE SAMPLES SITES

OLDTIMERS HILL SAMPLE SITES

GEOLOGICAL MAP

$\begin{array}{|c|c|c|}\hline \text { Cretaceous } \\ \text { Cassiar Suite }\end{array} \quad$ mKqC $\left.\begin{array}{c}\text { medium to coarse grained, equigranular to } \\ \text { porphyritic (K-feldspar) granite and } \\ \text { biotite quartz monzonite; biotite- } \\ \text { hornblende quartz monzonite and } \\ \text { granodiorite }\end{array}\right]$

STRUCTURAL GEOLOGY

