

SUMMARY REPORT ON THE LIV PORPHYRY PROJECT, LIVINGSTONE CREEK, YUKON TERRITORY

YUKON GEOLOGICAL SURVEY - PROSPECTING PROGRAM YMIP 04-054

FALL 2004

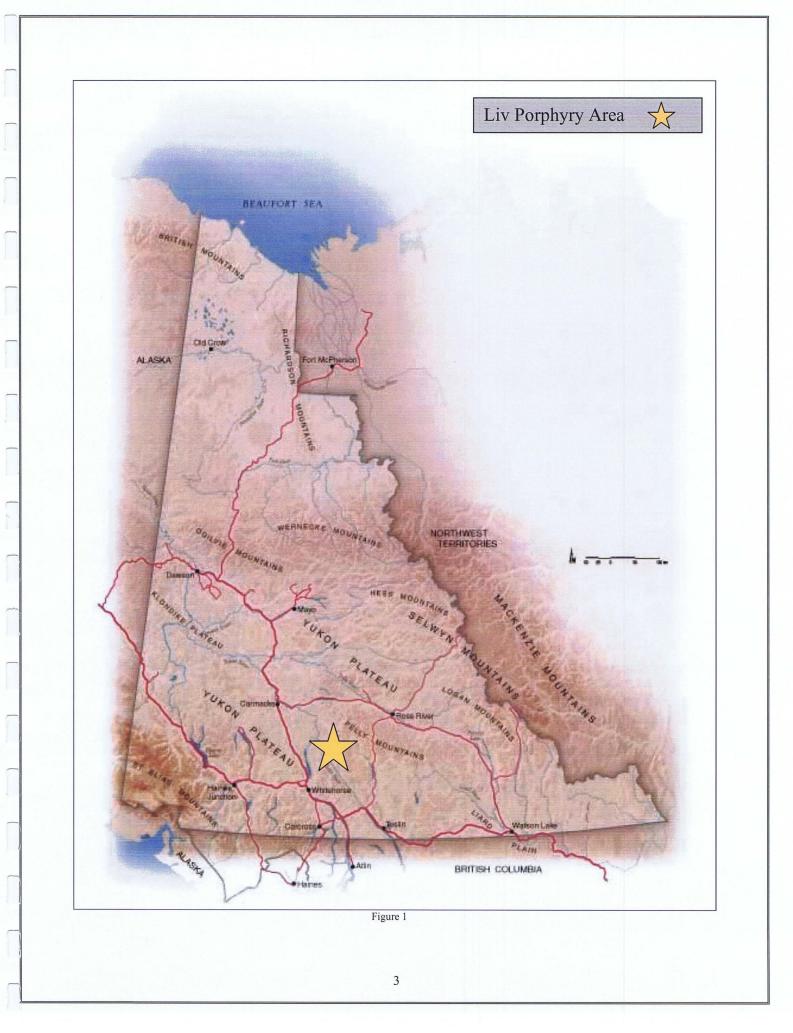

By Mark Lindsay Cordilleran Minerals Ltd

TABLE OF CONTENTS

4

_

SUMMARY								 4
INTRODUCTION								 5
LOCATION AND ACCESS								 5
PHYSIOGRAPHY, VEGETATION	N AND C	LIMATI	Ξ					 5
HISTORY AND PREVIOUS WOR	RK							 7
PROPERTY AND CLAIM STATU	JS						'	 8
2004 WORK COMPLETED								 8
REGIONAL GEOLOGY								 9
2004 AIRBORNE SURVEY SPEC	IFICATI	ONS						 10
2004 AIRBORNE SURVEY RESU	JLTS							 13
ELECTROMAGNETIC SURVEY								 15
MAGNETIC SURVEY								 19
RADIOMETRIC SURVEY								 22
CONCLUSIONS AND RECOMM	ENDATI	ONS						 24
FIGURE 1: Yukon Map								 3
FIGURE 2: Property Map								 4
FIGURE 3: Airborne Grid Location	n Map							 4
FIGURE 4: Miklin Claims Map								 8
FIGURE 5: Miklin Area Geology								 9
FIGURE 6: Airborne Survey Helico								-
		riummi	igona ms	strument				 14
FIGURE 7: Horizontal offset Map								 15
FIGURE 8: Horizontal Offset Close	e-Up							 16
FIGURE 9: Conductance Map								 17
FIGURE 10: Circular Resistivity A	nomaly							 18
FIGURE 11: 980 Hz Conductance	Value Svi	mbols						 18
FIGURE 12: Total Magnetic Field								 19
FIGURE 13: Magnetic Map with in		nctural li	neament	5				 20
FIGURE 14: Second Magnetic Der								 21
	1 7 4 1 1 0 1 1 1	up or OI	annante s	JUUK	-	-	-	 22
FIGURE 15: Potassium Map								
FIGURE 16: Thorium/Potassium R	ano Map							 23
APPENDIX 1: Reduced Size 2004	Airborne	Geophys	sical Surv	vey Maps				 25

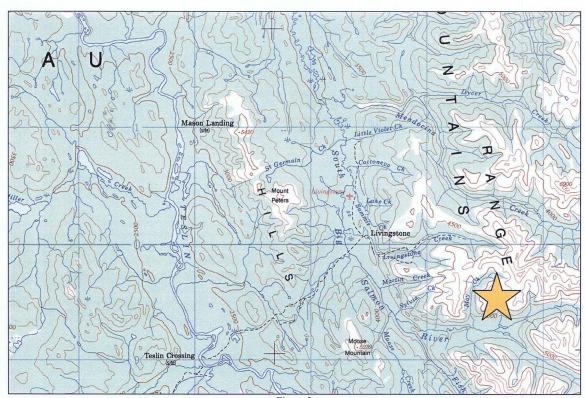


Figure 2

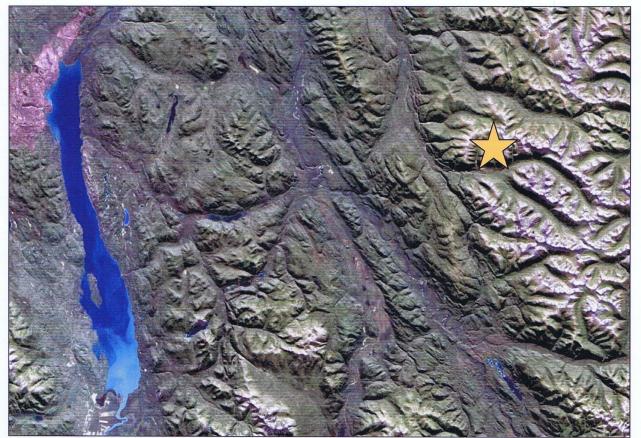


Figure 3

SUMMARY AND CONCLUSIONS

In the fall of 2004 a prospecting project (Liv Porphyry) was conducted over a large circular (landsat) feature at the headwaters of Livingstone Creek. The circular feature was interpreted to be caused by recessive weathering over a young intrusion related ring dyke – radial dyke structure.

The entire Liv Porphyry target area is located within the world class Livingstone Placer Gold Camp and the circular structure is specifically located at the headwaters of Livingstone Creek, a drainage that has produced well over 100,000 ounces of course gold. The creeks within the Livingstone Camp have had on going placer gold production for well over 100 years.

Initial prospecting efforts within the circular structure have revealed quartz-carbonate veins carrying very anomalous copper values (6115 ppm Cu) as well as highly fractured country rock with anomalous gold values (1142 ppb Au). The target area has been observed to have an abundance of quartz veins and veinlets in the area where mineralization has been found. It has been reported by two independent sources that substantial amounts of pyrite exist in a large creek draining the eastern extent of the Liv Porphyry target. The two sources have also said that the creek has a strong smell of sulphur emanating from eroding pyrite in the creek bed.

A Yukon Government geologist mapping in the area in 2004 also found some very interesting mineralization. Geologist Maurice Colpron found unknown extents of copper mineralization (malachite and chalcopyrite) as well as hydrothermal nickel mineralization (nickeline). He also commented that the area has an unusual amount of sulfide (pyrite) present in all of the bedrock units. Colpron also found a young intrusive dacite porphyry body and other intrusive dykes within the circular feature. A large elongated breccia body was also located along the western edge of a vertical strike-slip fault that cuts the circular landsat feature.

All of the mineralized areas, found to date, are located within the circular landsat feature or just on its outer edge.

The circular landsat feature also has a coincident magnetic anomaly that is itself circular in shape.

A large block of quartz claims have been staked over the target and an exploration program, designed to locate a porphyry Cu-Au deposit, will be conducted over the area in 2005. The exploration will consist of soil sampling, silt sampling, alteration assemblage mapping, prospecting, airborne geophysics, and ground geophysics.

Core drilling will be conducted in late 2005 or 2006 on any significant geophysical anomalies found in the 2005 summer exploration season.

5

INTRODUCTION

The area of interest regarding this report is known as the Liv Porphyry Area (fig.3).

During late 2004 a prospecting program was carried out over the Liv Porphyry Area at Livingstone Creek, Yukon. The program was conducted by Cordilleran Minerals Limited. Cordilleran Minerals collected rock samples and soils from the Liv Porphyry Area.

Exploration over the Liv Porphyry Area was conducted to identify any gold or copper mineralization found to be associated with porphyry or other intrusion related igneous rocks in the target area.

This report will discuss the general geology of the area and the analytical results from preliminary rock and soil samples taken across the target.

LOCATION AND ACCESS

The Liv Porphyry Area is located in south-central Yukon. The target area is 25 kilometers east of the Teslin River at the headwaters of Livingstone Creek (fig. 3) on NTS mapsheet 105E 08 (fig. 4 & 5). It is within the Whitehorse Mining District.

The approximate geographical center for the target area would be located at UTM 544658 $\rm E$ / 6799358 $\rm N$

PHYSIOGRAPHY, VEGETATION AND CLIMATE

The Liv Porphyry Project is located in a sparsely forested area of high rolling hills to rough mountainous terrain (fig.2). The highest point in the area is 2000 m. Drainage in the area is very good. Local creeks have a continuous supply of water during the spring and summer months. Most of the creek water is provided from melting permafrost. Some wetlands are located in the lower valleys alongside local creeks and rivers.

Vegetation in the area is relatively sparse. Moss, lichen and grasses, common to the area, cover much of the high alpine slopes of the target area. Willow, buckbrush and Black Spruce are found spread-out through the valleys, along with other varieties of moss and long grasses.

The climate of the area is typical of the interior continental region at this latitude. Winters are long with short hours of daylight and average daily temperatures of -20 Celsius. Summers are pleasant and warm with long days (20 hours of daylight on June 21), although it can be quite rainy at times. The average summer temperature is 19 Celsius with highs ranging into the low 30's (Celsius).

HISTORY AND PREVIOUS WORK

The real history of the Livingstone Creek area probably began in the early 1880's when prospectors first found gold in the southern Yukon. In 1881 explorers ascending the Big Salmon River discovered payable quantities of gold on many of the river bars along its watercourse. In 1884 substantial amounts of fine gold were discovered on Cassiar Bar, on the Yukon River just 73 kilometers north-west of the Livingstone Creek Placer Camp. It has been suggested that these placer gold occurrences may have been derived from glacial materials carrying gold away from the course placer gold fields at Livingstone Creek.

The news of early placer gold discoveries in the southern Yukon probably led to more prospectors exploring in the area. In 1894 it is reported that Joseph E. Peters prospected on Livingstone Creek. The initial gold discovery of the Livingstone Placer Camp is recorded as being made on Cottoneva Creek in 1898. All of the other creeks in the camp were also discovered in that year. Active mining in the camp was thought to have started after rich course gold was found by Peters on Livingstone Creek. J. Peters and George Black started to mine the creek near the turn of the century and they name the creek after Black's friend and fellow lawyer M.D. Livingstone.

The creek was mined on a continuous basis until the First World War. It was claimed that over a million dollars worth of gold was taken from Livingstone Creek before 1920. The other creeks in the camp also produced significant amounts of course gold. In 1905 a 39 ounce nugget was found on Summit Creek, a drainage immediately north of Livingstone. Placer production from the entire area almost ceased for about 20 years after WWI, but that has passed and now the creeks of the Livingstone camp have been mined on a continual basis from about the 1940's until today.

The amount of placer gold found in the Livingstone Camp is quite significant considering that the area has been glaciated on three occasions. Glaciers moving through an area usual spell the end of any placer deposits formed over time. The shear weight of glacial ice usual scours clean everything in its path. The Livingstone Camp was spared this sacrifice because the latest glaciers moved across the area at right angles to the general direction that the local creeks flow. This preservation event and others in the area helped create the world class placer deposits that existed at Livingstone. If the area had not been touch by glaciers (like the Klondike gold fields) the Livingstone Camp may well have been one of the richest placer gold discoveries on earth.

The lode source for the Livingstone Placer Camp has always been a bit of an enigma. Over 1500 men lived at the town site of Livingstone, near the turn of the 20th century, and it is said that many of them looked for the source of the placer gold but it was never found in big way. Some smaller veins were discovered and mined but the mother lode source for the camp was never found. The early history of lode prospecting and mining in the area has been lost so we may never know to what extent the locals knew of any lode sources or ideas regarding such sources. Lode prospecting and exploration in the Livingstone Camp has been very limited since the early 1900's. Recently a few exploration companies have made interesting discoveries over the Livingstone area but most have not had a good model from which to continue to conduct their exploration programs. In the early 1970's prospectors started to stake claims in the Livingstone camp area. The high gold price of the 1980's led larger companies to the area. In 1981 DuPont Exploration of Canada conducted a large widespread regional stream sediment survey across approximately 20,000 sq. km of land in southern Yukon and northern British Columbia. The Liv Project area was detected in that survey as having an anomalous gold and copper signature. Subsequent exploration of the area found a heavy metal copper, gold and silver anomaly coming from the central zone of the Liv Porphyry target but no follow up work was conducted in the area. In 1986 Archer-Cathro explored the west side of the Liv area and found bonanza grade gold and silver in quartz vein float. Two specimens assayed 303 g/t Au, 8.24 g/t Ag, 23.4% Sb, 0.01% Pb, and 66.5 g/t Au, 2756.5 g/t Ag, 30.4% As, 6.3% Pb, 0.4% Zn, 0.5% Sb, respectively. The source of the quartz was not found and their claims were eventually sold along with their interest because they did not have a good model from which to continue their exploration of the area. Other small blocks of claims have been staked in the area but no history exists for any work conducted by the owners or the reasons behind the staking initiative.

In the early 1990's two German geologists conducted research on veins in the Livingstone area and concluded that veins carrying gold in the area were of epithermal origin and could be the source for the placer gold at Livingstone because of chemical similarities between placer gold and gold from local quartz veins. This theory has dominated and thus restricted the exploration of the Livingstone Placer Camp since that release of the report in 1992.

In 1995 a private company, Ross River Gold, explored in the area of the Liv Project. Robin Tolbert, Vice-President of exploration for Ross River Minerals (public equivalent) told the author that he had discovered gold mineralization on the immediate east side of the Liv Project area and he was inclined to stake the area but he could not convince the CEO of the company to commit to such a venture without having a solid exploration model to guide the process. Tolbert also said that he had notice a large amount of pyrite in the local drainage (Mendocina Creek) and that the pyrite existed in such huge quantities that the area was blanketed with a smell of sulfur from the decomposing sulfides.

More recently a large block of claims was staked on the western side of the Livingstone Camp in 1997-98. The prospectors who staked the block were interested in exploring for economic gold bearing quartz veins that were being touted as the source for the Livingstone placer gold. They did find many interesting veins, some carrying gold, but in the end the veins did not appear to be a sure source for the rich placer deposits at Livingstone.

Cordilleran Minerals Ltd. staked 637 quartz claims over an intrusion related ring structure and related magnetic signature in November of 2004. We intend to explore the area for a gold and copper bearing porphyry deposit.

PROPERTY AND CLAIM STATUS

Cordilleran Minerals Limited owns 637 quartz mineral claims within the Liv Project area at this moment. The area is equivalent to approximately 130 square kilometers. The status of the claims is listed below.

<u>Claim</u>	Name
MIK 1	- 637

<u>Grant Number</u> YC37133 - YC37769 105E-08 Expiry Date 2005/11/29

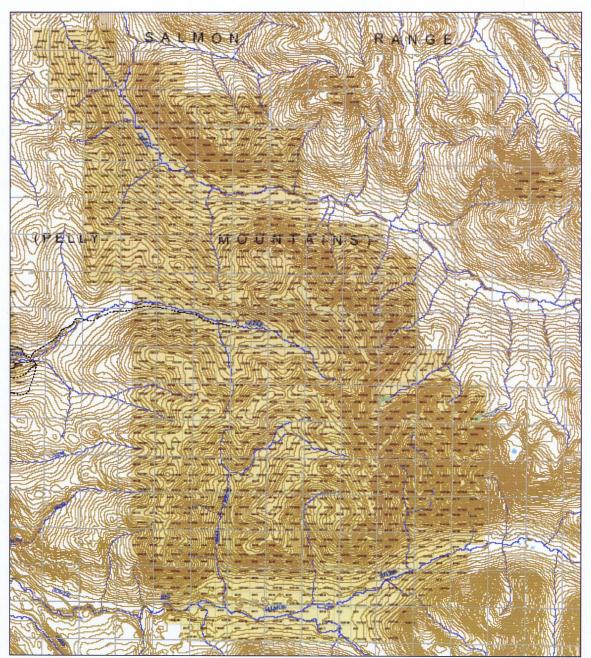


Figure 4

2004 WORK COMPLETED

Cordilleran Minerals Limited conducted preliminary prospecting work over the Liv Porphyry Area in late 2004. Employees Mark Lindsay, Dale Brown and Adam Mickey provided support and help for the prospecting program. The prospecting program was carried out on September 11th, September 18Th, and November 15th, 2004.

REGIONAL GEOLOGY

The Liv Project area is located within the morphogeological Omineca Belt. In many areas of Yukon the Omineca Belt is dominated by crystalline rocks of the Yukon Tanana Terrane. This appears to be the case in the Liv Porphyry Area, but this may change in the near future due to a recent geological mapping project being conducted in the area by the Yukon Geological Survey.

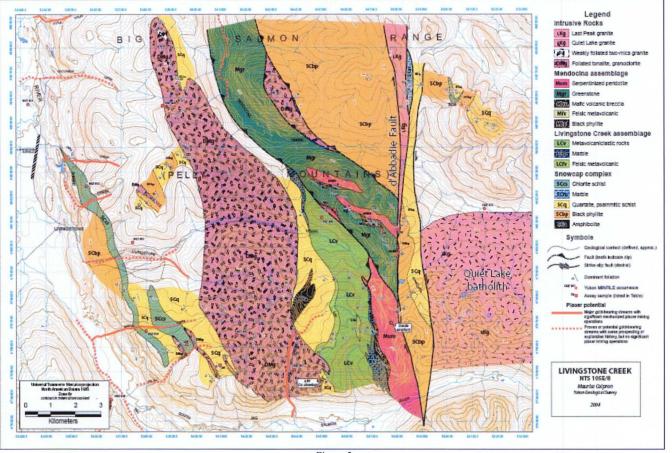


Figure 5

The geology in the immediate area of Liv Project (fig. 6) is composed of rocks of Yukon Tanana Terrane. They include the **Snowcap Complex (SC** - Metasedimentary basement to Yukon-Tanana Terrane; Consists predominantly of quartzite, psammitic schist and graphitic phyllite, and subordinate chlorite schist and amphibolite; <u>Continental margin</u>

<u>assemblage</u>; Chlorite schist is alkaline (OIB); Amphibolite tholeiitic (MORB); Intruded by Mississippian tonalite and granodiorite), and the Livingstone Creek Assemblage (LC – Predominantly volcaniclastic rocks; minor greenstone, felsic meta-volcanic rocks and marble; <u>Arc assemblage rocks</u> that resemble the Carboniferous Little Salmon formation in Glenlyon map area) and also the Mendocina Assemblage (M - Greenstone (MORB), gabbro and serpentinized peridotite; minor carbonaceous phyllite and felsic metavolcanic; Possibly correlative with the Fire Lake formation of the Finlayson Lake district). Intrusive rocks include the Cretaceous Last Peak granite (LKg), Quiet Lake granite (EKg) and an older foliated tonalite and granodiorite body (DMg).

STRUCTURE

Several structural trends occur within the general target area. A major fault is trends in a north/south direction, along or close to the contact between the mapped location of the Quiet Lake Batholith (see fig.6) and the adjacent ultramafic and metamorphic rocks. This fault may be the conduit that allowed the upward movement of the Liv Porphyry into its current position.

Thrust faults have also been mapped in the area. Figure 6 shows the location of the thrust faults. The faults may be conduits to fluids produced by the intrusion of the Liv Porphyry into the area. The thrust faults mirror the extensive magnetic signature of the area and may reflect the presence of fault related mineralization.

A large area of brecciation occurs along the western edge of the major fault transecting the area.

QUARTZ VEINS

Several large northwest/southeast trending quartz veins have been seen in outcrop in the target area. The veins were not traced on surface but they appeared to be quite persistent and approximately 1m wide. A section of one vein carried significant copper values. The quartz vein material is white, and it is carrying a good quantity of sulfide minerals.

There appeared to be a large number of white quartz veins in the local area.

<u>ALTERATION</u>

Alteration assemblages also appear to be associated with the target area. Pyrite alteration (Figure 7) was seen on a ridge on the east side of the Liv ring structure. An area of outcrop near the vein copper showing appeared to have substantial sericite alteration.

The ultramafic in the area shows several signs of being altered. Numerous veins cut through the unit near the major fault in the area. Some bleached ultramafic rocks were

also observed in the target area.

ECONOMIC GEOLOGY

Sulphide mineralization is found in most if not all rocks throughout the target area. Pyrite is the predominant sulfide mineral, with occurrences of chalcopyrite and rare occurrences of nickeline. The most obvious mineralized sites seemed to be related to the occurrence of structures that may be related to the ring structure. Some rusty quartz veins were seen carrying significant chalcopyrite and malachite. Assayed samples of the quartz vein material returned values as high as 6100 ppm Cu and 22.7 g/t Ag. Minor copper (chalcopyrite) was also observed in other quartz veins in the area.

Another rock samples from the target area carried significant gold values. The sample, taken from a pyrite, sericite altered section of bedrock, assayed higher than 1100 ppb Au and 248 ppm arsenic.

Soil samples returned high metal values in Pb and Ag. Assay highs of 102 ppm Pb and 1.6 ppm Ag were found in soils along the west side of the major north-south fault in the area. Copper values were elevated but hovered only around the 50 ppm mark.

ROCK ANALYSIS

14 rock grab samples (Lars 02-16) were collected from the property between September 11 and November 15, 2004. The rocks selected were all grab samples.

The samples were sent to Acme Laboratories Ltd. in Vancouver, British Columbia for analysis. At Acme Labs the rocks were crushed and sieved to -150 mesh, digested in hot HCL/HNO₃ and analyzed by ICP-MS.

SOIL ANALYSIS

5 soil samples (Lass 01-05) were collected from the target area between September 11 and November 15, 2004. The samples were collected in wet strength Kraft sample bags and air-dried in Whitehorse.

The soils were collected from partially frozen ground. The samples were taken at 100 m intervals along the west side of the major north-south trending fault that cross through the target area. Sample sites were dug with a grub hoe and samples were taken, by hand, from the "B" horizon.

The soils were sent to Acme Laboratories LTD. in Vancouver, British Columbia for analysis. At Acme labs the soils were dried and sieved to -80 mesh, digested in hot HCL/HNO₃ and analyzed by ICP-MS.

CONCLUSIONS AND RECOMMENDATIONS

The Liv Porphyry Area at the Livingstone Creek Placer Gold Camp in the Yukon Territory covers geology permissive to host a potentially large Porphyry Au or Porphyry Cu-Au mineral deposit. To fully explore these possibilities the following program of work is recommended for the 2005 exploration season:

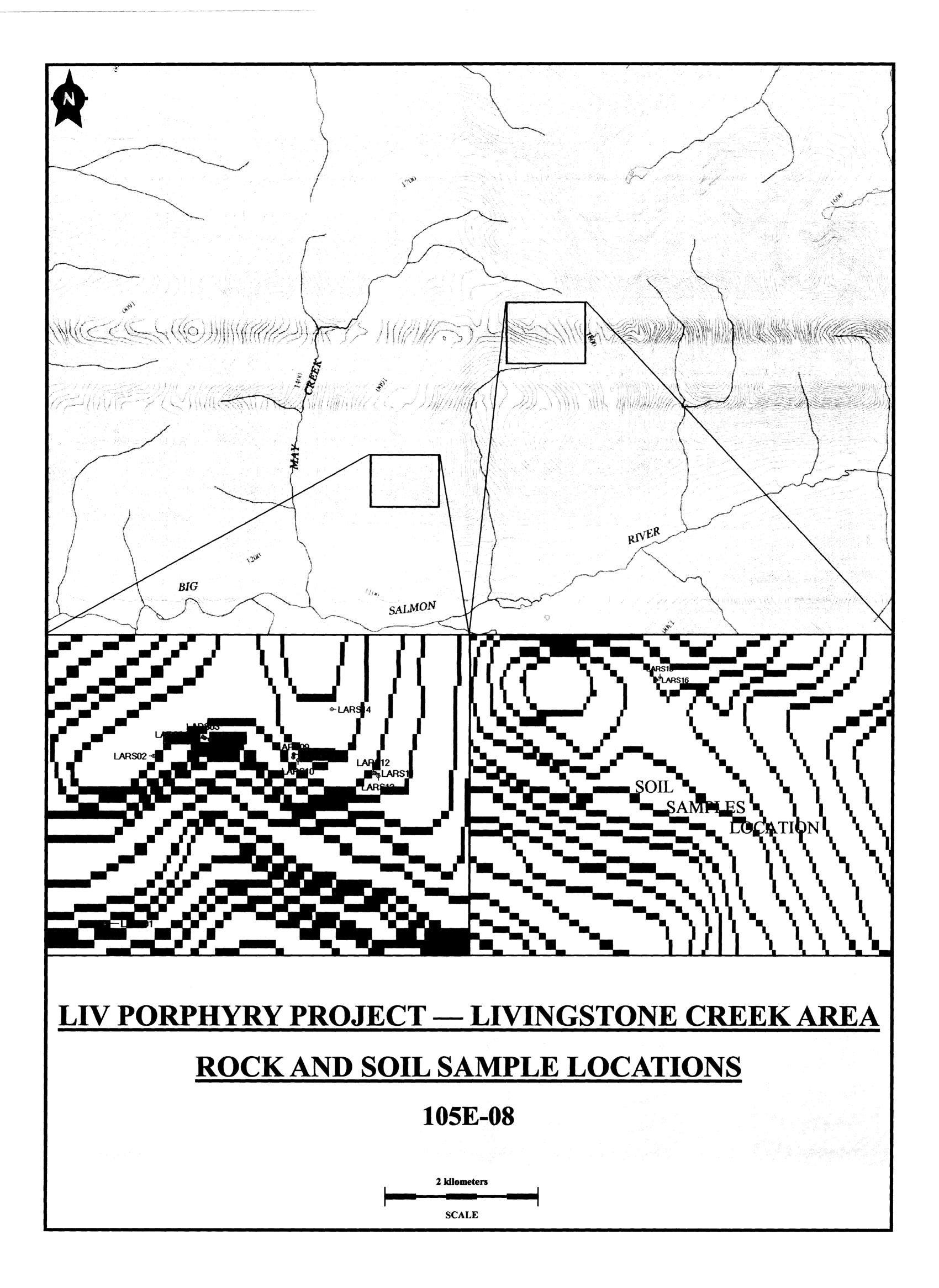
- a) Conduct an airborne geophysical survey over the Liv Project area. The airborne survey should entail collecting magnetic and time domain electromagnetic data over the target.
- b) Conduct a soil sampling program over the central (ring structure) area of the target. The soil survey should cover the extent of the magnetic anomaly that exists within the ring structure and where the magnetic anomaly exists outside the ring structure. Compile all geochemical data as it is received, plot it on a geological map and examine it for any anomalous gold or copper trends or geochemical trends associated with Porphyry Cu-Au mineralization. Carry out additional sampling if necessary.
- c) Carry out alteration mapping and prospecting throughout the Liv Porphyry area. This reconnaissance work should be carried out on a priority basis with the highest priority projects being deemed the ones associated with the (said) ring structure and associated magnetic anomaly and any areas immediately north of the ring structure where the magnetic anomaly can be traced. Reconnaissance prospecting work, in other areas, should be carried out throughout the season as is convenient.
- d) Complete a compilation of all known exploration, geochemical, geophysical and geological data. Use the data to plan the first drill program. Carry out examinations of any new prospects identified during the compilation. Reconnaissance prospecting and mapping should be conducted on any new areas when convenient.
- e) Conduct a program of diamond drilling to test any geophysical anomalies identified by the processes of the above section (d). The length of holes would be determined by the results of the surveys but should probably total about 2000 metres per target in a first reconnaissance phase of drilling. Depending on the results of the geophysics surveys and the diamond drilling, it may be necessary to drill some targets in late fall.

The 2005 program should be staffed with a project geologist and technician / core splitter, as well as a consulting geophysicist and a consulting mapping geologist. An exploration services firm should be hire to conduct the soil survey and the all geophysical surveys.

APPENDIX I

ſ

1


1

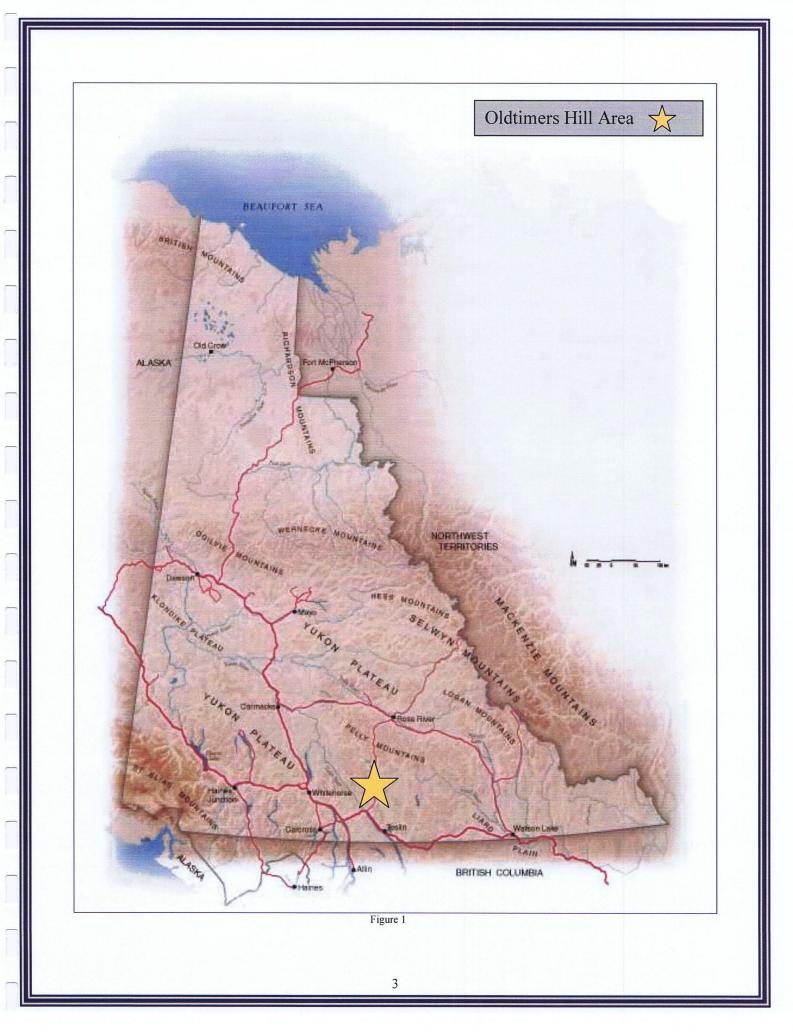
From ACM	From ACME ANALYTICAL LABORATORIES LTD. VANCOUVER BC.																	
To Cordille																		
Acme file #			eceive	ed: OC	T 18	2004	* 16 9	sampl	es in t	his dis	k file.	1						
Analysis: C																		
ELEMENT		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	
LARS 02	1.1	25	11.5	52	0.1	19	10	427	2.45	3.8	0.9	0.9	14.7	14	<.1	0.7	0.1	
LARS 03A	0.8	3.1	14.5	4	<.1	2.1	1.7	1613	0.5	1.7	<.1	<.5	0.1	314	0.7	0.1	<.1	
LARS 03B	1.3	14.9	8.4	10	0.1	5.1	6	693	1.49	4.7	0.8	3	12.4	49	0.4	0.2	0.1	
LARS 05	1	1132.5	13.5	7	2	4.3	1.9	541	0.9	7.6	0.3	4.1	0.5	117	0.4	1.3	0.1	
LARS 06	2.7	6115.1	38.1	9	22.7	3.9	3.5	291	1.28	25.2	0.6	41	0.1	55	1.3	10.2	0.7	
LARS 07	0.8	51.1	5.4	4	0.2	2.1	0.7	520	0.39	1.4	0.1	<.5	0.2	1757	0.1	0.2	<.1	
LARS 08	2.2	55.6	3.9	30	0.4	5	8.8	1104	3.27	248.3	0.2	1142.9	0.8	262	0.2	0.5	0.2	
LARS 09	2.2	11.8	1.6	10	0.1	5.3	1.5	249	0.76	1.9	0.1	2.6	0.2	20	0.1	0.1	<.1	
LARS 10	1.2	7.9	7.2	3	0.3	2.5	0.5	247	0.36	0.7	0.1	<.5	<.1	133	0.2	0.1	0.4	
LARS 11	1.2	11.8	4.2	10	<.1	1.1	1	184	0.62	0.8	0.2	<.5	0.1	18	0.2	0.1	0.1	
LARS 13	0.7	11.8	6.8	14	0.1	1.9	1.8	608	0.63	3.2	0.3	6.5	0.1	40	0.4	0.1	0.1	
LARS 14	1.2	8.4	7.9	10	0.3	3.1	10.7	240	1.65	6.1	10.9	41.1	1.3	70	0.2	0.3	0.3	
RE LARS	1.4	8.6	8	9	0.3	3.9	10.6	239	1.66	5.8	10.8	45.3	1.4	72	0.2	0.3	0.3	
LARS 15	0.5	278.6	2.6	75	0.3	7.9	18.6	595	3.46	1.1	0.4	2.5	2.1	65	0.1	0.3	<.1	
LARS 16	0.5	150.7	2.3	76	0.1	8	18.2	557	3.36	1.3	0.3	<.5	1.7	71	<.1	0.4	<.1	
V	Ca	P	La	Cr	Mg	Ba	Ti	В	AI	Na	K	W	Hg	Sc	TI	S	Ga	Se
ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
															-			
12	0.72	0.035	43	14.9	0.53	207	0.004	3	1.08	0.035	0.31	0.1	<.01	2.6	0.1	<.05	3	<.5
<1	7.21	0.002	2	3.9	0.07	2478	<.001	1	0.02	0.007	0.01	1.5	0.01	2.7	<.1	<.05	<1	<.5
6	1.5	0.012	22	6.2	0.06	717	0.003	1	0.24	0.077	0.05	0.1	<.01	1.6		<.05	1	<.5
5	1.69	0.023	2	7.7	0.02	1452	0.001	2	0.06	0.015	0.02	1.7	0.03	1	<.1	0.08	<1	<.5
1	0.61	0.002	1	9.6	0.01	294	<.001	2	0.01	0.004	0.01	<.1	0.21	0.6		0.39	<1	1.6
3	14.73	0.003	2	4.7	0.05	2281	0.001	<1	0.02	0.012	<.01	1.7	0.01	0.6	<.1	0.12	<1	<.5
7	3.08	0.12	5	3.7	0.65	131	0.004	2	0.26	0.057	0.13	0.3	<.01	2.3	<.1	1.19	1	<.5
2	0.46	0.006	1	7.9 5.6	0.04	161	0.001	<1	0.05	0.012	0.02	0.1	<.01	0.8	<.1	<.05	<1	<.5
<1	1.81 0.04	0.001	<1		0.01	2170	<.001 0.001	1	0.01	0.008	<.01	2.1 0.1	<.01	0.5	<.1	0.07	<1	<.5 <.5
<1	0.04	0.01	<1	3.8 3.6	0.02	360	0.001	2	0.18	0.095	0.03	0.1	<.01					
<1	0.51	0.026	1	<u>3.0</u> 5	0.01	491	0.001	<1	0.15	0.094	0.03	0.5	<.01 <.01	0.8	<.1	0.08	<1	<.5
<1	0.78	0.12	1	9 4.6	0.01	510	0.002	<1	0.16	0.084	0.02		<.01	0.8	<.1	0.14	<1	0.8
88	1.32	0.121	6	5.1	1.59	401	0.003	2	1.79	0.086	0.02	0.4	<.01	4.3	<.1 0.1	0.16	<1 7	0.7 <.5
93	1.32	0.115	5	4.9	1.55	320	0.125	1	1.79	0.039	0.10	0.4	0.01	4.3	0.1	<.05	6	<.5
93	1.52	0.110	5	4.9	1.55	320	0.143	1	1.70	0.045	0.23	0.1	0.01	3.0	0.1	<.05	0	. .5
					- A-													

From ACN	IE ANA	ALYTICA	AL LA	BORA	TORI	ES L1	D. VA	NCOL	JVER	BC.								
To Cordille	ran Mi	nerals																
Acme file #	‡ A4064	495 Re	eceive	ed: OC	CT 18	2004	* 7s	ample	es in t	his disk	file.							
Analysis: G	ROUF	2 1DX - 3	30.0 0	ΒM														
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm
LASS 01	0.2	54.5	55.6	96	1.1	315	25.8	821	2.97	71.9	0.6	33.4	2.1	16	1.6	1.1	0.4	64
LASS 02	0.2	41.3	54.7	92	0.8	231	20.1	1065	2.33	33.6	0.5	10.3	1.2	21	1.6	0.8	0.3	47
LASS 03	<.1	39	102	162	1.6	199	17.2	735	2.71	22.7	0.5	9.7	2	26	1.4	1.3	0.3	57
LASS 04	0.2	53	4.9	47	<.1	451	32.3	452	2.54	3.6	1.2	0.8	1.8	13	0.2	0.3	0.6	62
LASS 05	0.2	49.2	11.4	55	<.1	368	26.3	460	2.61	8.1	1.2	1.9	1.2	9	0.2	0.4	0.7	62
Ca	Ρ	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	
%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	
0.59	0.05	11	263	2.11	243	0.05	3	1.3	0.01	0.07	0.5	0.04	6.9	0.2	<.05	5	<.5	
1.2	0.05	10					2	1.13		0.04	0.5		4.9	<.1	<.05		<.5	
1.12	0.07	10	180		748	0.03	2	1.41	0.01	0.06	0.4		7	<.1	0.1	5		
0.3	0.05		360		78		2	1.67	0.01	0.12		<.01	5.1		<.05		<.5	
0.21	0.05	10	331	2.48	112	0.06	2	1.64	0.01	0.08	1.1	<.01	5	0.2	<.05	5	<.5	

ſ

r

PROSPECTING PROGRAM AND AIRBORNE GEOPHYSICAL SURVEY


<u>YUKON GEOLOGICAL SURVEY - PROSPECTING PROGRAM</u> <u>YMIP 04-054</u>

SUMMER 2004

By Mark Lindsay Cordilleran Minerals Ltd

TABLE OF CONTENTS

SUMMARY								 	 4
INTRODUCTI	ON							 	 5
LOCATION A	ND ACC	CESS						 	 5
PHYSIOGRA	PHY, VE	GETAT	ION AN	ID CLIN	IATE			 	 5
HISTORY AN	D PREV	IOUS W	/ORK					 	 7
PROPERTY A	ND CLA	AIM STA	ATUS					 	 8
2004 WORK C	COMPLE	TED						 	 8
REGIONAL G	EOLOG	Y						 	 9
2004 AIRBOR	NE SUR	VEY SP	PECIFIC	ATION	S			 	 10
2004 AIRBOR	NE SUR	VEY RE	ESULTS					 	 13
ELECTROMA	GNETIC	C SURV	EY					 	 15
MAGNETIC S	URVEY							 	 19
RADIOMETR	IC SURV	/EY						 	 22
CONCLUSION	NS AND	RECON	1MEND	ATION	S			 	 24
FIGURE 1: Yu	kon Mar)						 	 3
FIGURE 2: Pro								 	 4
FIGURE 3: Air			tion Ma	p				 	 4
FIGURE 4: Mi								 	 8
FIGURE 5: Mi								 	 9
FIGURE 6: Air					mmingh	ird Instr		 	 14
FIGURE 7: Ho						nu msu		 	 15
FIGURE 8: Ho								 	 16
FIGURE 9: Co								 	
FIGURE 10: C		-		 alaz				 	 17
					 .1a			 	 18
FIGURE 11: 98				•	ois			 	 18
FIGURE 12: T								 	 19
FIGURE 13: M								 	 20
FIGURE 14: S		0	Derivativ	ve Map o	of Ultran	natic Sto	OCK	 	 21
FIGURE 15: P		-						 	 22
FIGURE 16: T	horium/F	'otassiun	n Katio I	Мар				 	 23
APPENDIX 1:	Reduced	l Size 20	04 Airb	orne Ge	ophysica	l Survey	/ Maps	 	 25
APPENDIX II:								 	 39

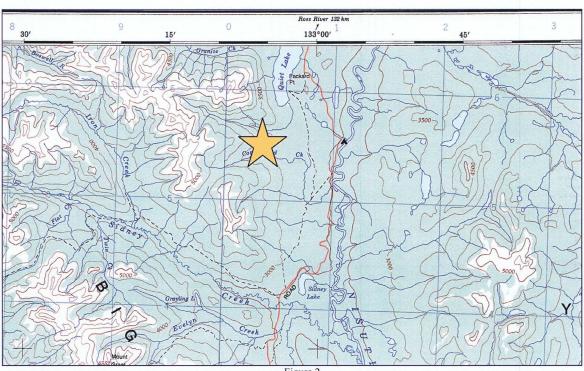


Figure 2

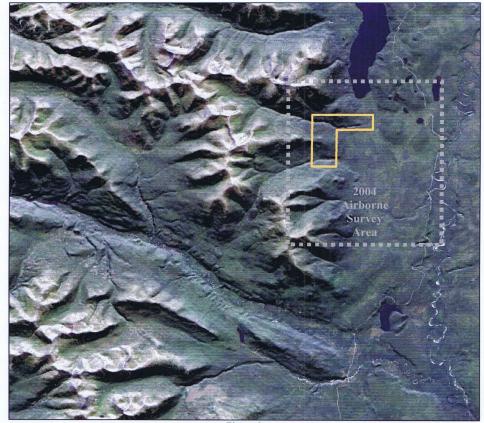


Figure 3

SUMMARY

In the summer of 2004 a (10km x 12km) helicopter-borne geophysics survey was conducted over the Miklin Claims near the south end of Quiet Lake in Yukon. The Miklin Claims cover the area known in this report as Oldtimers Hill, which exists in the west central part of the survey grid.

The rocks that underlie the airborne survey area are diverse and have been described as mainly calcareous metasedimentary and metavolcanic rocks with associated granitic intrusions. Limited amounts of extrusive felsic volcanic rocks have also been observed in the project area as well as a relatively large ultramafic stock. Outcrop is very scarce within the survey area.

The airborne survey outlined several interesting conductors within the Miklin Claim block. The survey also highlighted an apparent network of major linear structures that exists on the nose of the section of Quiet Lake Batholith that intrudes into the area. The linear structures and many EM conductors occur in coincidence. At one such occurrence two deep seated EM conductors exist near the intersection of four major linear (fault) structures. Several other very interesting EM anomalies occur further to the south west.

The survey also discovered a large circular resistivity anomaly. The anomaly is actually coincidental with an EM conductor that is found in the exact center of the area of high resistivity.

The large circular resistivity anomaly is also coincident with the location of the highly magnetic ultramafic intrusive stock in the area. The stock is bounded on all sides by what appear to be long linear fault structures. Another north trending fault cuts through the middle of the ultramafic. Several EM anomalies (including the two mentioned earlier) occur around the perimeter of the ultramafic.

The higher frequency EM channels did not detect any anomalies near the surface on the Miklin Claims and the stronger anomalies were detected by the lowest EM frequencies (980 Hz/880 Hz). The EM anomalies also appear to be more flat lying than vertical as they have respond the strongest to the 880 coplanar (lowest) frequency.

The strength of the EM conductors is also quite interesting. The conductance values for the survey area anomalies varies from < 10S (Siemens) to over >10,000S, with several high values in between.

Ground EM, IP and Mag geophysics survey should be conducted over parts of the Miklin Claims so as to ground-truth all EM/Mag anomalies of interest. This would identify any possible conductors associated with massive sulfides linked to the emplacement of the Cretaceous granite into the area of the ultramafic stock. The magnetic survey will identify any magnetic or structural features that may be associated with mineralization and an IP survey will highlight disseminated sulfides targets in the area.

INTRODUCTION

The areas of interest regarding this report are known is known as Oldtimers Hill (fig.3).

The 2004 airborne geophysics survey was conducted by McPhar Geosurveys on behalf of Cordilleran Minerals Ltd. The survey collected electromagnetic (EM), magnetic (Mag) and radiometric (RAD) geophysical data. The job was started on August 1st and finished on August 7th, 2004. The survey covered the areas known as Smoker Flats, Kingdome Ridge and Oldtimers Hill. Ground support for the airborne survey and helicopter crews was provided by Cordilleran Minerals Ltd.

Geophysical exploration over the Smoker Flats area was conducted to identify the conductive, magnetic or radiometric source of gossanous materials found in certain places throughout the area and of gold mineralization found in drill core from the central part of the target area.

This report will discuss the general geology of the area and the analytical results from helicopter-borne geophysics survey across the target.

LOCATION AND ACCESS

Oldtimers Hill is located on N.T.S. mapsheet 105C 14, and is within the Whitehorse Mining District. The target area is located immediately at the south end of Quiet Lake. The area is accessible from Whitehorse, to the west, by helicopter; a flight of approximately 110 Km. A staging area near Oldtimers Hill can be accessed in the summer months by driving 135 Km east along the Alaska Highway from Whitehorse to Johnson's Crossing, and then north on the Canol Road for another 80 Km.

The approximate geographic center of the target areas is UTM 606962 E / 6755060 N.

PHYSIOGRAPHY, VEGETATION AND CLIMATE

Oldtimers Hill is located on the eastern flanks the Big Salmon Mountains and at the immediate southern end of Quiet Lake. Bedrock exposures are almost non-existent along the far eastern side of the target area but the central and western portions of the Oldtimers Hill area have good exposures of bedrock.

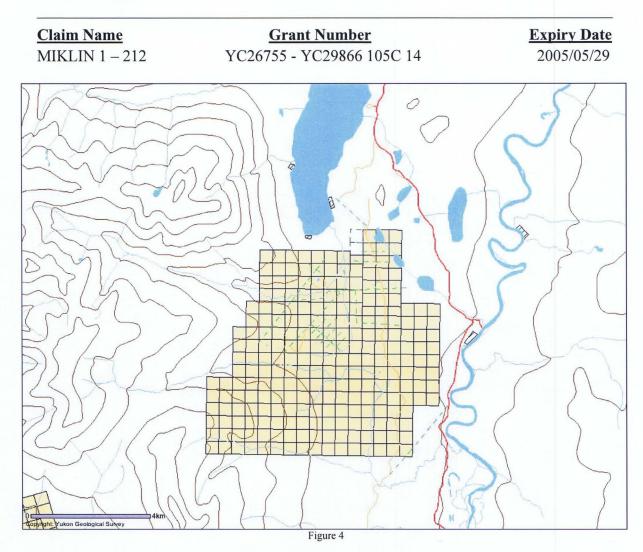
The elevation of the area is from 820m to 1840m. Drainage in the area is good to very good in some location and poor in lower lying areas. Local creeks have a continuous supply of water during the spring and summer months. Most of the creek water is provided from melting permafrost.

Vegetation in the mid and lower lying areas is very dense. Black Spruce, Lodge-pole Pine and Alder Willow are found throughout the entire area. Trees start to get a little scarce above 1300 meters. Moss, lichen and long grasses are found everywhere. The terrain for the most part is split between dry woodland foothills and alpine mountainous areas.

The climate of the area is typical of the interior continental region at this latitude. Winters are long with short hours of daylight and average daily temperatures of -20 Celsius. Summers are pleasant and warm with long days (20 hours of daylight on June 21), although it can be quite rainy at times. There is a yearly average of 120 days of precipitation. The average summer temperature is 22 Celsius with highs ranging into the low 30's.

HISTORY AND PREVIOUS WORK

The general area of the south end of Quiet Lake has been explored intermittently since prospectors first ascended the Big Salmon River to Quiet Lake in 1897/98 in their search for placer gold deposits. The few who prospected this part of the territory recognized the mineral potential and settled in the area. A few creeks in the region produced placer gold and men built small settlements around their discoveries. Cottonwood Creek, which flows through the southern part of the Oldtimers Hill Area, was the site of one such settlement.

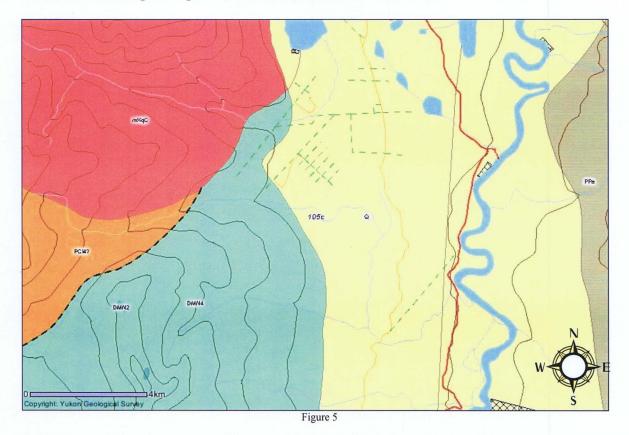

Gold was discovered on Cottonwood Creek near the turn of the 20th century. At its height the settlement at Cottonwood Creek had approximately seven cabins. Placer workings on the creek are quite extensive for such a small remote drainage. It appears that a fire burnt down all of the cabins sometime in the early 1900's. A lone prospector was living and mining on the creek as late as 1925. Equipment found at the prospector's cabin suggests that he was engaged in placer gold and hard-rock mining.

In the mid 1960's interest in the target area began when a large rust gossan was discovered by people who were salvaging pipe from the 1940's Canol Road pipeline. It was later revealed that the US Army had also recorded finding large rust gossans in the southern parts of the area, while building the Canol Road. Continuous exploration was conducted in the area from 1966 to 1973.

Mineral exploration programs conducted around the south end of Quiet Lake during the 1960's and 1970's, for the most part, were of a reconnaissance nature. Work carried out in the area included airborne geophysics [electromagnetics and magnetics], a variety of ground electromagnetics and magnetics geophysical surveys, geochemical soil sampling, and very limited diamond drilling. Many of the surveys were not extensive enough to define the sources of anomalies that exist in the area, and the greater numbers of anomalies were not investigated. Mineral exploration surveys from the area have created a good template to guide future work programs. There have been limited amounts of exploration in the area since the mid 1970's.

PROPERTY and CLAIM STATUS

Cordilleran Minerals Limited owns 212 quartz mineral claims (fig.4) over the Smoker Flats area. The area is equivalent to approximately 44 square kilometers. The status of the claims is listed below.



2004 WORK COMPLETED

McPhar Geosurveys Ltd conducted a helicopter-borne electromagnetic, magnetic and radiometrics geophysical survey over the Oldtimers Hill area in 2004. The survey was carried out between August 1st and August 7Th 2004. Cordilleran Minerals provided a base-camp and employees Mark Lindsay, Dale Brown, Adam Mickey and Chad Pen provided support and help for the survey and helicopter crews while they worked in the Oldtimers Hill area. Prospecting of the target area was conducted between August 1 and August

REGIONAL GEOLOGY

The Canol Project Area is located within the morphogeological Omineca Belt? The Omineca Belt is dominated by crystalline rocks of the Yukon Tanana Terrane. The Yukon Tanana Terrane, which is the largest terrane in the Yukon, is well recognized for its mineral deposit potential through the discovery of the several massive sulphide deposits within its bounds in southeast Yukon. The world class Fort Knox and Pogo intrusion related gold deposits, in Alaska, also occur within Yukon Tanana Terrane.

The geology in the immediate area of Canol Project (fig. 5) is composed of rocks of the Nasina Assemblage (**DMN** - graphitic quartzite and muscovite quartz-rich schist, with interspersed marble [4] and marble [2]). Ingenika Group rocks (**PCI4** - thin bedded slate, siltstone, quartzite and minor limestone with local medium to coarse grained, feldspathic sandstone to orthoquartzite; muscovite biotite +/- garnet schist, micaceous quartzite, minor amphibolite and marble; rare granodiorite gneiss) may be in the local area, as they are known to occur immediate to the west of the target area. Amphibolite (2) ultramafic rocks of unknown association and (3) mafic-ultramafic intrusions within Nasina assemblage) occur to the east of the Canol Project Area and may have some association with the ultramafic rocks that occur (under cover) in the central part of the target area. The Cassiar Suite intrusive (**mKqC** - medium to coarse grained, equigranular to porphyritic [K-feldspar] granite and biotite quartz monzonite; biotite-hornblende quartz monzonite and granodiorite), known as the Quiet Lake Batholith, is thought to intrude all other rock units in the area of the Canol Project.

2004 AIRBORNE SURVEY SPECIFICATIONS

FLIGHT SPECIFICATIONS

1. Flight Lines

Line directions and line spacings are specified in Schedule B, but may be subject to change and will therefore be confirmed between McPhar's and Client's representative immediately prior to the commencement of the survey operations.

2. Terrain Clearances

Optimum terrain clearances for the helicopter and instrumentation during normal survey flying are:

- Helicopter 60 metres
- Gamma ray Spectrometer 60 metres
- Magnetometer 30 metres
- Hummingbird EM sensor 30 metres

3. Airspeed

Normal helicopter airspeed will be approximately 110 km/hr, but this may vary in areas of rugged terrain. With a sampling rate of 0.1 second, EM, magnetometer and altimeter measurements are acquired approximately every 3 metres along the survey line.

Gamma ray Spectrometer data are collected approximately every 30 metres along the survey line.

Tab	ole 1	
SURVEY SPEED (km/hour)	SURVEY SPEED (metres/sec)	SAMPLING INTERVAL (0.1 second)
110	30 metres	3 metres

4. Magnetic Diurnal

Flight lines, or portions thereof, will be re-flown if the magnetic diurnal exceeds 25nT in a straight-line chord over 5 minutes. Survey data acquisition will be stopped altogether in the case of severe magnetic diurnal activity.

5. Sampling Rates

SYSTEM/No. of CHANNELS	SAMPLING RATES/SEC.
Total Field Magnetometer (1 channel)	0.1 sec
E.M 880 Hz (2 channels) Coplanar	0.1 sec
E.M. – 980 Hz (2 channels) Coaxial	0.1 sec
E.M. – 6.6 kHz (2 channels) Coplanar	0.1 sec
E.M. – 7 kHz (2 channels) Coaxial	0.1 sec
E.M. – 34 kHz (2 channels) Coplanar	0.1 sec
Gamma ray Spectrometer (512 channels plus U, Th, K, TC and cosmic)	1.0 sec
Radar Altimeter (1 channel)	1.0 sec
DGPS Navigation	1.0 sec

Table 2

SURVEY INSTRUMENTS

1. The Helicopter-borne HUMMINGBIRD5 Digital Electromagnetic System

The HUMMINGBIRD5 is an all-digital, high-performance, multi-sensor airborne geophysical surveying system designed to fully utilize the latest technologies and digital data acquisition techniques in a low-weight, lowest-cost configuration.

The HUMMINGBIRD5 sensor, which is the heart of this system, can be simply described as a multi-frequency, multi-coil electromagnetic system, which measures the in-phase and quadrature responses from a number of coil-pairs installed in a tubular bird, towed beneath a helicopter.

HUMMINGBIRD5 features horizontal coplanar and vertical coaxial coil sets at frequencies of 880 Hz, 980 Hz, 6.6 kHz, 7 kHz and 34 kHz.

The system noise of the EM sensor is less than 2 ppm of the transmitted field, under ideal conditions. A total of ten EM channels of information are sampled at 0.1 second intervals or approximately every 3 metres along the survey line (at a survey airspeed of approximately 110 kph), with a time constant of 0.1 second.

The EM system is calibrated with an external coil at the start and end of each survey and with an internal coil approximately three times per hour during survey flights. The phasing of the EM system is checked with an external ferrite rod before each survey flight.

For ease of shipping, the HUMMINGBIRD5 sensor/bird is constructed in 3 sections, each of approximately 2.2 m in length. The three sections are shipped in their own separate containers and joined together in the field in a matter of a few hours by the operating crew.

COIL FREQUENCY	COIL ORIENTATION	COIL SEPARATION	CHANNELS
880 Hz	Coplanar	6.0 metres (19 ft)	I, Q
980 Hz	Coaxial	6.0 metres (19 ft)	I, Q
6.6 kHz	Coplanar	6.3 metres (20.5 ft)	I, Q
7 kHz	Coaxial	6.3 metres (20.5 ft)	I, Q
35 kHz	Coplanar	4.9 metres (16 ft)	I, Q

Table 3	
---------	--

I = In-Phase

Q = Quadrature

Sferic activity can be reduced by post-survey processing to less than 2.0 ppm.

The electromagnetic system and ancillary equipment will be operating for a sufficient period prior to survey flying to allow for sufficient warm-up of the equipment. Nulling, ferrite and external Q-coil calibration for the EM system will only be performed after the system has stabilized following the-warm-up period. All of these ground calibrations will be completed before commencement of each flight. Internal calibrations will be performed frequently throughout the survey flights.

2. Airborne High Sensitivity Magnetometer

Either a Scintrex CS-2 Cesium or a Geometrics G-822A split-beam total-field magnetometer sensor, installed in the HUMMINGBIRD airfoil, with a sampling rate of ten times per second and an in-flight sensitivity of 0.01 nT, will be utilized. The magnetometer will perform continuously in areas of high magnetic gradient with the ambient range of the sensor approximately 20k-100k nT. Aerodynamic magnetometer noise should not exceed 0.25 nT.

3. Gamma-ray Spectrometer System

A Pico-Envirotec GRS-410 multi-channel gamma-ray spectrometer with 16.8 litres "downward looking" NaI sensor and 4.2 litres "upward looking" NaI sensor will be utilised during this survey, and will sample data once per second. The thermally isolated sensor will be installed in the cabin of the helicopter.

The GRS-410 is a self-stabilizing spectrometer, and tracks and corrects for the spectral drift by following a spectral peak, typically thorium. The standard regions of interest, as listed below, will be recorded and processed. The 256 channel digital data will be recorded and provided to Client. An example of the standard regions of interest that will be recorded, with window limits in MeV, is given in the table below:

Sample of Standard Windows		
Element	Approximate Lower Boundary (MeV)	Approximate Upper Boundary (MeV)
Total Count	0.41	2.81
Potassium	1.37	1.57
Uranium	1.66	1.86
Thorium	2.41	2.81
Cosmic	3.00	8
Upward-looking Uranium	1.66	1.86

Table 4 Sample Regions of Interest (ROI)

The spectrometer will be calibrated daily using standard calibration thorium (Th), cesium (Cs) and uranium (U) sources.

2004 AIRBORNE SURVEY RESULTS

The results of the 2004 helicopter-borne geophysics survey are summarized in the next few sections. The boundary for the Oldtimers Hill Area (red in Fig. 7) exists around the mid western part of the survey grid.

The summary of results is based on observations made by Cordilleran Minerals staff and is not the opinion of a professional geophysicist. A full analysis of the airborne geophysical specifications, methods and results, analyzed by a professional geophysicist, will be attached to this report at a later date.

The electromagnetic survey carried out over the Miklin Claims in 2004 collected data from the 6600Hz, 980Hz and 880Hz electromagnetic frequencies. The EM data was

13

converted to maps showing horizontal offset profiles and as apparent conductivity contours and points.

The magnetic data was collected in the following formats: Total magnetic field contours; reduction-to-the-pole (RTP) magnetic contours; calculated first vertical derivative contours; calculated second derivative contours and analytic signal of the magnetic contours

Radiometric data was collected in the following formats: Total count contours, uranium contours, thorium contours and potassium contours and the selected radiometric ratio color contour for Th/K.

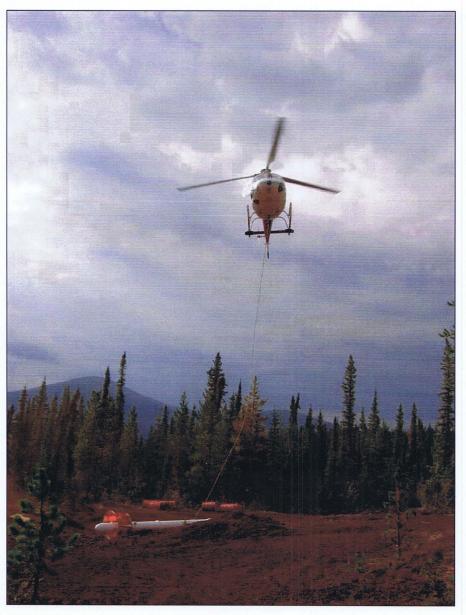
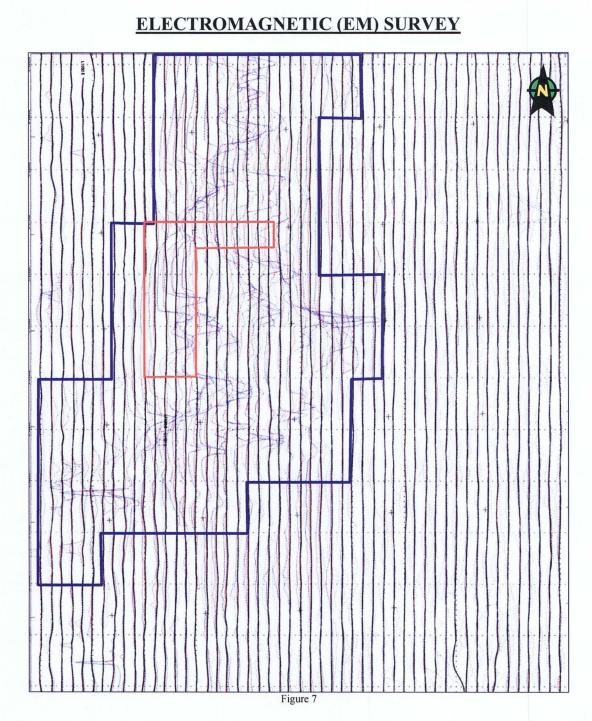
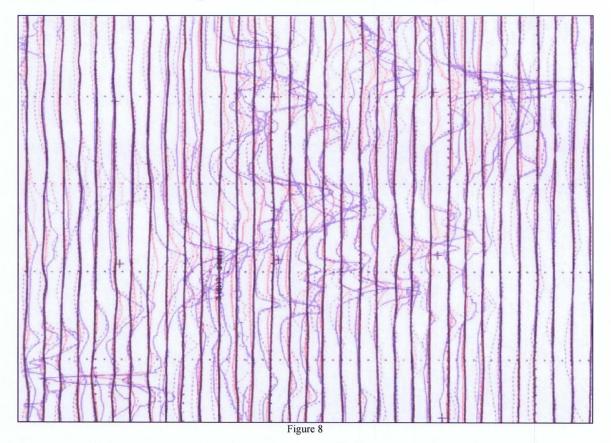



Figure 6


The 2004 air geophysics survey discovered a broad area of heightened conductivity (blue in Fig. 7) on the nose of the section of the Quiet Lake Batholith that intrudes into the general target area. The area of enhanced EM conductivity in Figure 7 is approximately 45 sq. km.

The EM response in the higher frequencies (near surface) was poor. Analysis of the highest EM frequencies (35000 &7000 Hz) was not included in the final airborne geophysics report. The EM response in the horizontal offset 6600Hz coplanar frequency

(highest frequency for this report) detected some small anomalies nearer to the surface, but overall the data was subdued. The horizontal offset response for the coaxial 7000 Hz frequency (not included in report) was reported as basically flat across the entire airborne grid as was the 35000 Hz frequency.

The lowest frequency coil (coplanar 880Hz) expressed the largest horizontal offset. The horizontal offset EM response over the target area, as shown in Figure 8, was (at least) twice as strong in the 880Hz coplanar EM coil as compared to the 980Hz coaxial EM coil. The strength in responsiveness of the 880Hz EM coil appears to show that the focal point of conductive zones in the target area exists relatively deep (as deep as the system could detect) in the local stratigraphy. The height difference between the (880 and 980 Hz) horizontal offset profiles shows that the EM anomalies are potentially wide (flatter lying) structures as compared to usual narrow (vertical) dykes or veins. The 880 Hz coil can detect anomalies that exist about 100 meters below surface.

Figure 8 shows an example of a method of presenting EM data (horizontal offset profiles). The blue lines are 880 Hz coplanar and the red lines are 980 Hz coaxial.

The conductances map in figure 9 shows the areas where the calculated EM conductances were strongest in the target area. The conductance's (6600Hz frequency) were calculated with the help of a computer program. The point conductance values (Fig. 11) for the 980 coaxial coils were most numerous in the 10-50S (Siemens) range with several anomalies in the 50-100S range and one at 100-500S, two at 500-1000S and one over 10,000s.

A very interesting anomalous feature on the conductance map is a circular area of high resistivity (yellow circle Fig. 9 & 10) near the north end of the survey grid. The resistivity anomaly is large (\sim 3km x 3km). The anomaly is very odd by the fact that it has a conductor in its center? The conductive zone is approximately 1 kilometer wide (Fig. 10). The area has the strongest conductor (> 10,000S) on the airborne grid and it appears to exists on the edge of the ultramafic.

The circular resistivity anomaly is also ringed by smaller conductive areas. One large conductive zone exists immediately to the south. Any of these conductors could be reflecting the occurrence of massive sulfide bodies associated with the ultramafic intrusion.

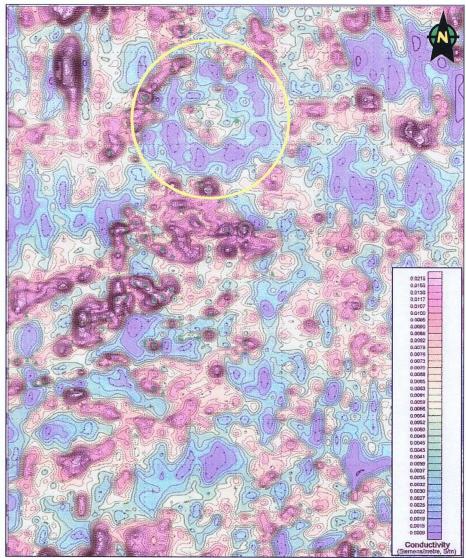
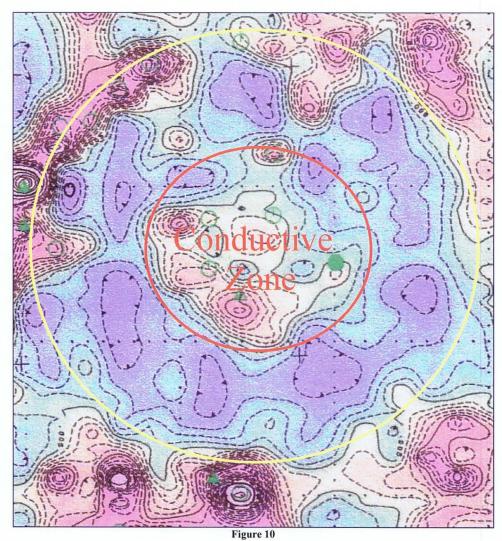



Figure 9

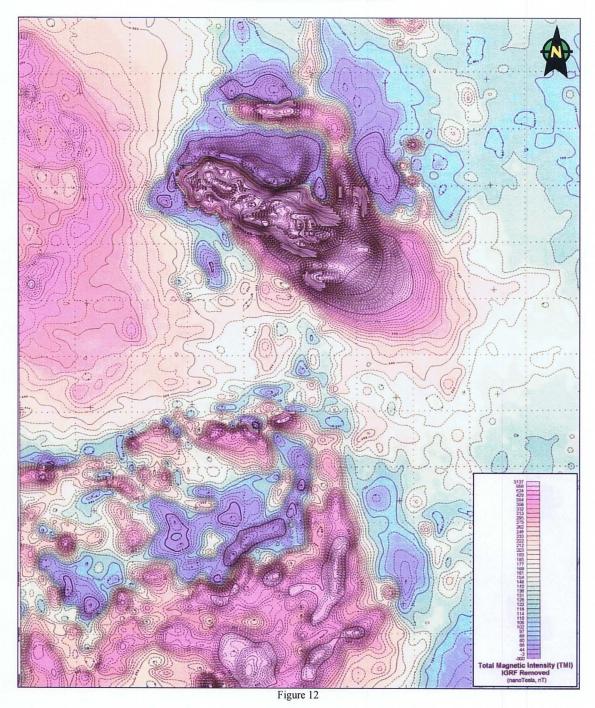

Coaxi	al Coil Anomaly	980 Hz (Conductance, S)
	> 10000	
0	< 10000	
6	1000 - 5000	
	500 - 1000	
0	100 - 500	
0	50 - 100	

Figure 11

10-50

Δ

MAGNETIC SURVEY

The results of the magnetic survey (Fig. 12) over the Miklin Claims have provided an interesting glimpse at the major structural features that exist at this geographic location.

The magnetic data has highlighted several linear features on the nose of the Quiet Lake Batholith. The most evident fault structures are outlined in figure 13. The two northwest trending linear anomalies in figure 13 (on the immediate northeast side of the dominant magnetic anomaly) have been ground-truthed and thus are real fault structures. The size and emplacement of the ultramafic intrusive stock (the dominant magnetic appears to be closely constrained by the apparent fault/fracture zones.

The most dominant feature on the magnetic map is the highly magnetic ultramafic stock. The stock is substantially more magnetic than other rocks in the area. The high degree of magnetism in the ultramafic may be due to a metamorphic alteration process that has occurred in the rock. The absolute magnetic intensity of the ultramafic (above background – earth's magnetic field) is \sim 3200 nT.

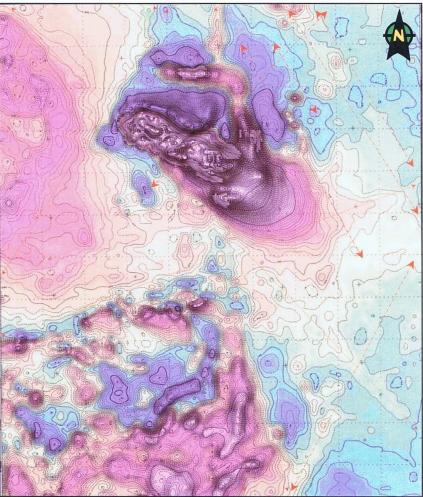
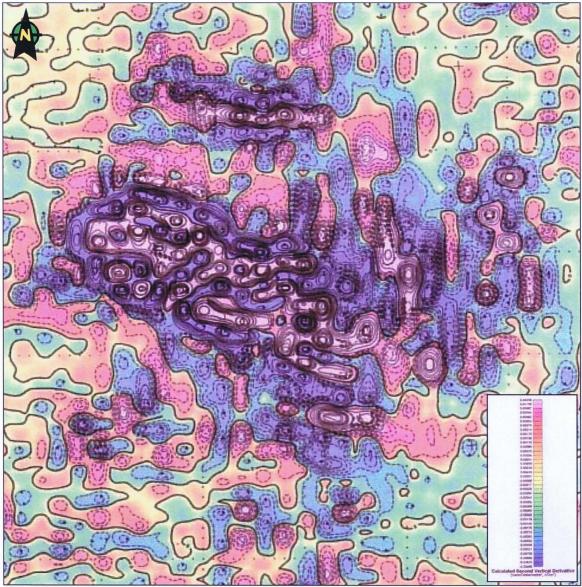



Figure 13

There is another fault bound block to the southwest, which exhibits some relatively strong magnetic signatures. The geological nature of this area is poorly understood. The author has seen ultramafic rocks, mafic sediments and schists in the area. The magnetic anomalies may be from granites that have intruded these units.

Another important feature regarding the magnetic data is the large area of magnetic low that is an intricate part of the overall magnetic signature associated with the pronounced location of the ultramafic intrusive stock. The low magnetic areas may be related to alteration brought on by the intruding granite rocks from the west.

The magnetic low areas (violet color in Fig. 14) are interwoven within the ultramafic magnetic high areas (light and dark pink colors) and form a northward curving shape that mirrors the location of the previously mentioned circular resistivity anomaly. The magnetic lows are also intimately associated with some of the EM conductors. The magnetic low areas are possible locations of alteration where magnetite has been destroyed and replaced with clay, carbonate or quartz.

RADIOMETRIC SURVEY

The radiometric data from the 2004 airborne survey was useful in helping to decipher areas that had been affected by the intrusion of the Quiet Lake Batholith. A large part of the survey area is covered with significant depths of overburden and this factor may have affected the collection of accurate gamma-rays emissions for the survey.

The most diagnostic radiometric data from the survey is the potassium contours map. The map (Fig. 15) highlights the main outcrop locations along the west side of the grid area. The Quiet Lake Batholith intrudes from the west and is conspicuous from the large amount of pink coloration all along the western side of the airborne grid. In the central and east portion of the grid the colors blue are most dominant indicating the locations of bodies of water, swamps (lowest %K) that known to occur in the area and accentuating the (probable) locations of deep sections of overburden.

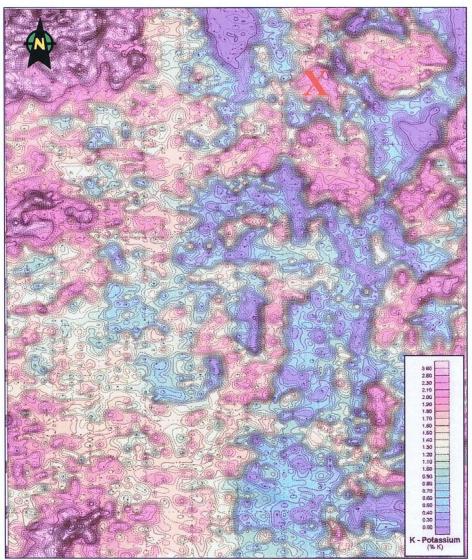


Figure 15

An example of how the map helps in defining an area is given in figure 15, where the red X marks a spot where a 22m wide quartz vein with significant pyrite and sericite mineralization was encountered while ground-truthing an anomaly in 2003. The sericite probably produced the potassic anomaly at this location.

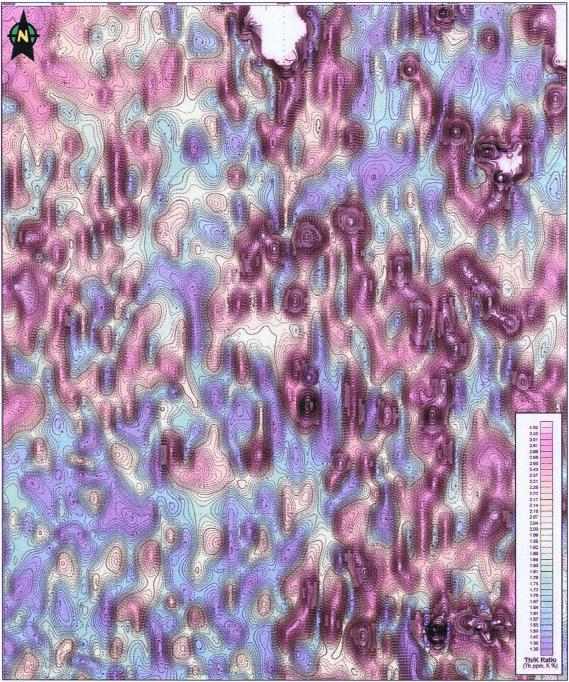


Figure 16

Another interesting piece of radiometric data is the thorium/potassium (Th/K) ratio map in figure 16. Very low Th/K ratios (violet color) sometimes indicate areas of alteration in regard to felsic related intrusive processes.

The map shows several areas that are the anomalously lowest of Th/K ratios. The Th/K anomalies seem to trend in a southwest-northeast pattern and may be reflecting and may be reflecting alteration processes associated with the location of the Quiet Lake Batholith. Some of these areas correspond to known alteration zones and others may also be related to alteration zones, but are in need of investigation.

The areas of high Th/K ratios on the east side of the grid may be reflecting the deep overburden conditions that possibly exist in that area. The high ratios in the upper-middle part of the grid may be associated with the known occurrence of ultramafic rocks.

PROSPECTING

A limited amount of prospecting was conducted in the Oldtimers Hill area due to unforeseen circumstances regarding the execution of the airborne geophysics survey.

The area has very little outcropping rock. Silt sampling of the two main creeks draining the target area was carried out as well as prospecting of any rock outcrops along the edges of the streams.

A day was also spent looking for new showings and rock outcrop.

ECONOMIC GEOLOGY

Although there is pronounced lack of outcropping rock in the target area there is always some sulphide mineralization found in most if not all rocks found throughout the target area. Pyrite is the predominant sulfide mineral, with occurrences of pyrrhotite and marcasite. The mineralization probably averages 1 or 2 percent sulfide.

No new outcrops or showings were discovered during the time spent in the Oldtimers Hill area.

8 rock samples were collected from target area. All of the samples came from outcrops along stream valleys. The highest copper value found in rock was 108 ppm and the highest gold value was 4.8 ppb.

16 Silt samples were collected from two streams in the target area. Quiet Creek and Cottonwood Creek were the streams that were tested. Assays returned one anomalously high value of 330 ppb Au from Quiet Creek. This high value comes from within the area of the large circular resistivity feature (mentioned earlier) and coincides with high silt gold values found in this stream from past exploration.

ROCK ANALYSIS

8 rock grab samples were collected from the property between August 1 and 7 2004. The rocks selected were all grab samples.

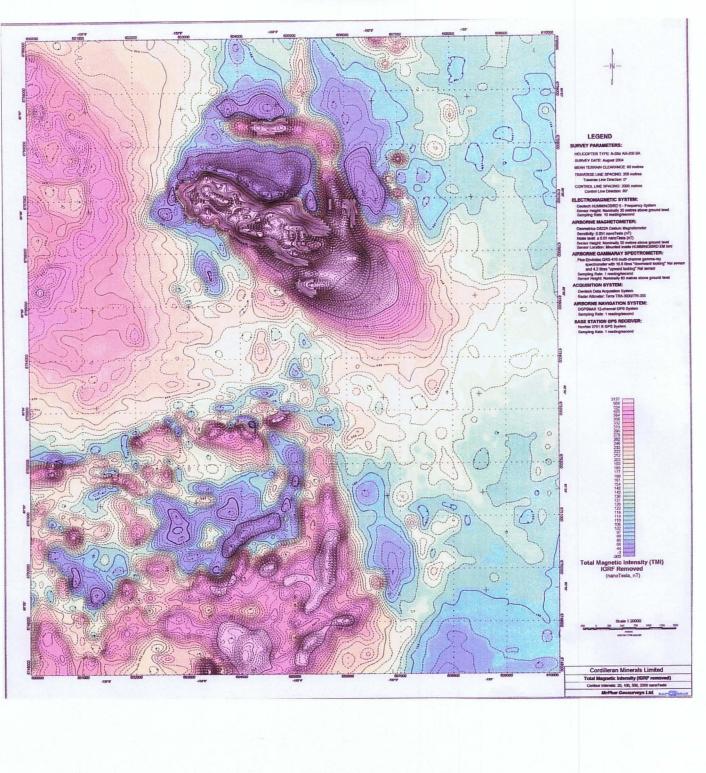
The samples were sent to Acme Laboratories Ltd. in Vancouver, British Columbia for analysis. At Acme Labs the rocks were crushed and sieved to -150 mesh, digested in hot HCL/HNO₃ and analyzed by ICP-MS.

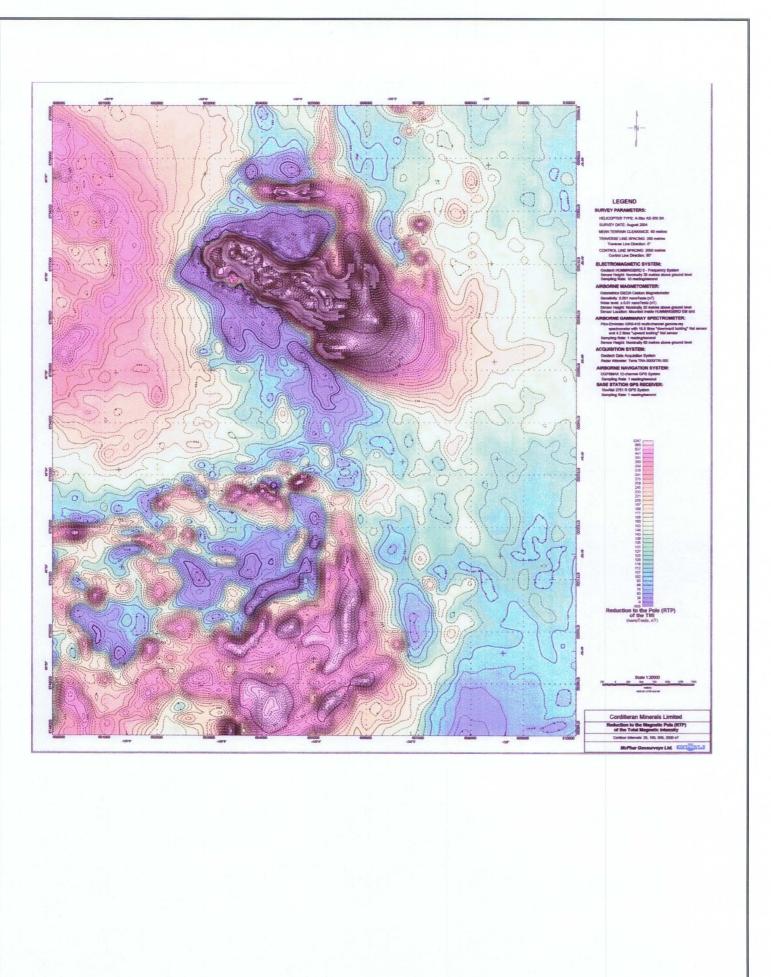
SOIL ANALYSIS

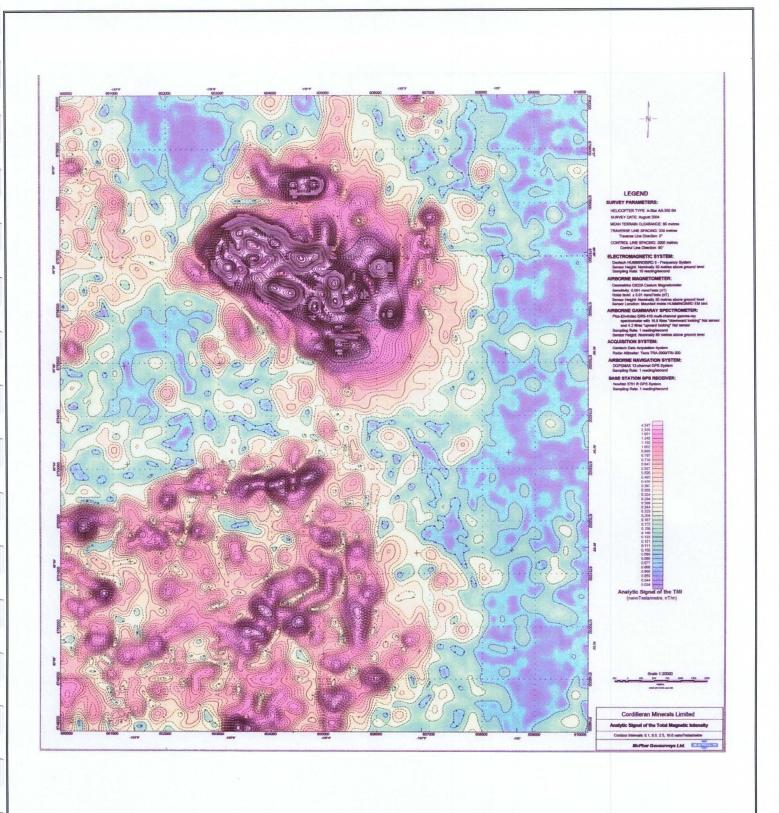
16 silt samples were collected from the target area between August 1 and 7 2004. The samples were collected in wet strength Kraft sample bags and air-dried at camp.

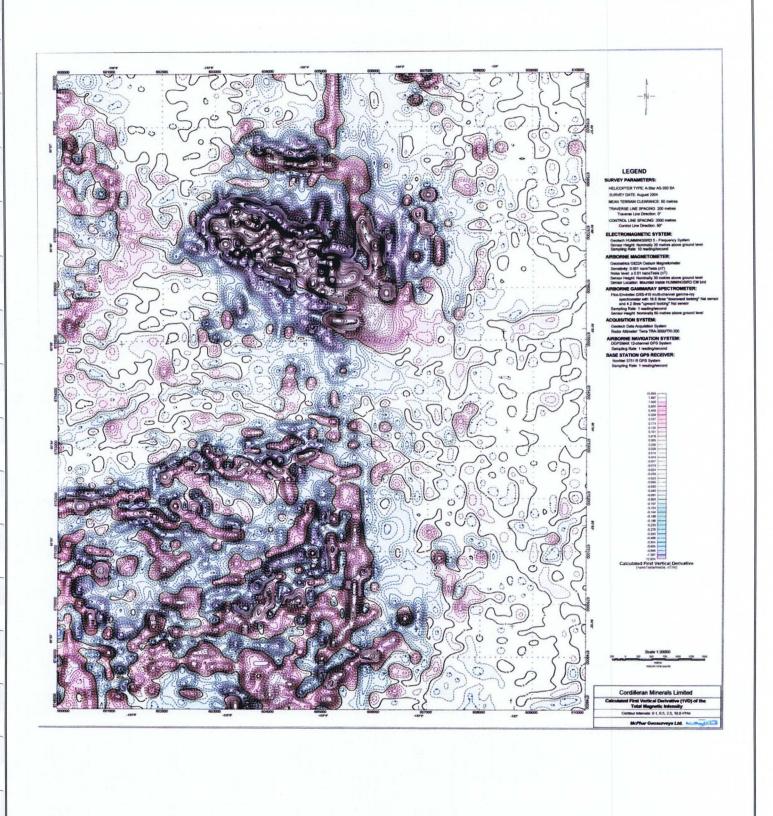
The silts were sent to Acme Laboratories LTD. in Vancouver, British Columbia for analysis. At Acme labs the silts were dried and sieved to -80 mesh, digested in hot HCL/HNO₃ and analyzed by ICP-MS.

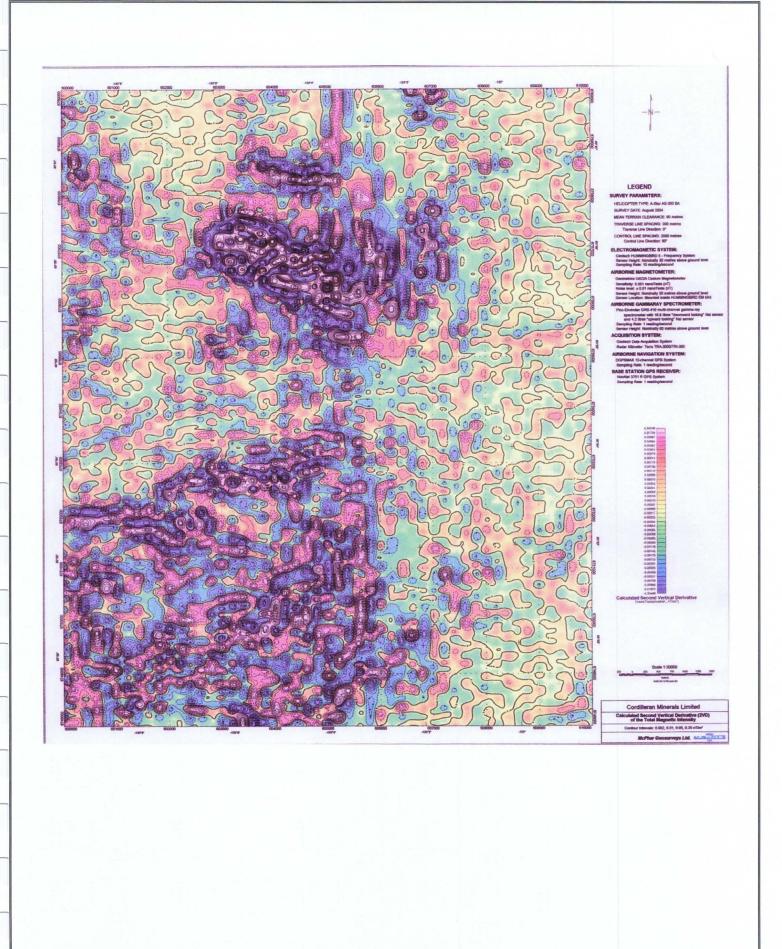
CONCLUSIONS AND RECOMMENDATIONS

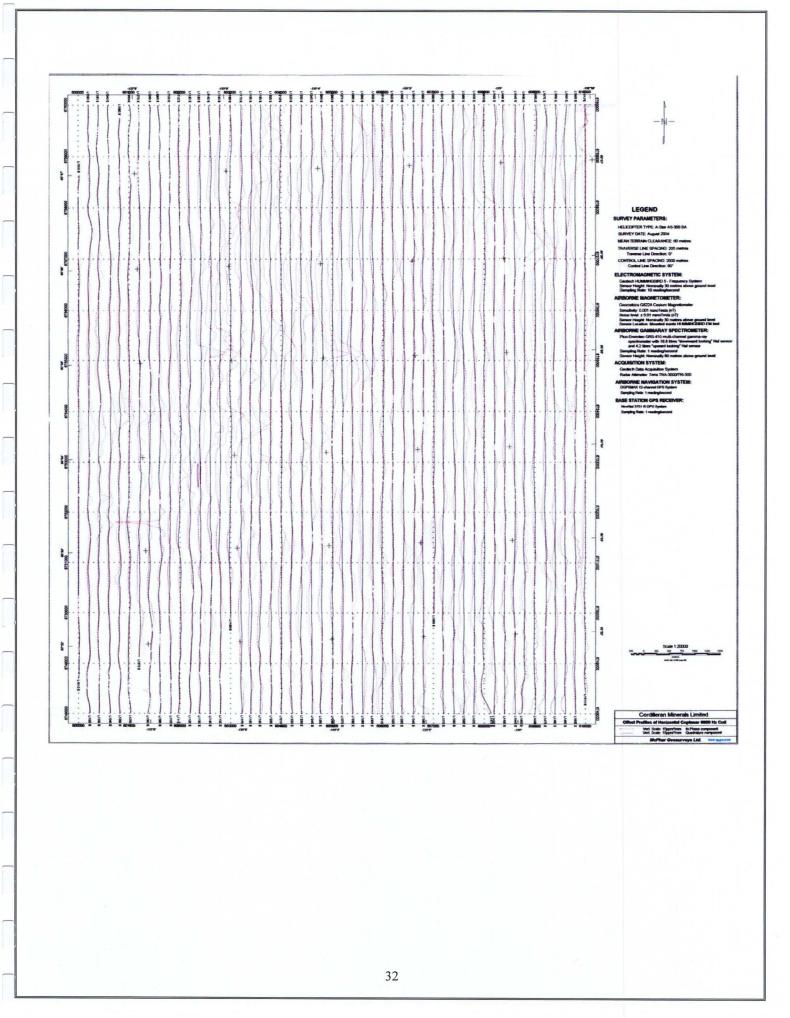

The Oldtimers Hill Area, although only represented by a small part of the 2004 Helicopter-borne Geophysics Survey, is an area that has potential to host economic mineral deposits. The target covers ground which hosts a large circular resistivity anomaly and a primitive ultramafic stock which are potentially significant areas.

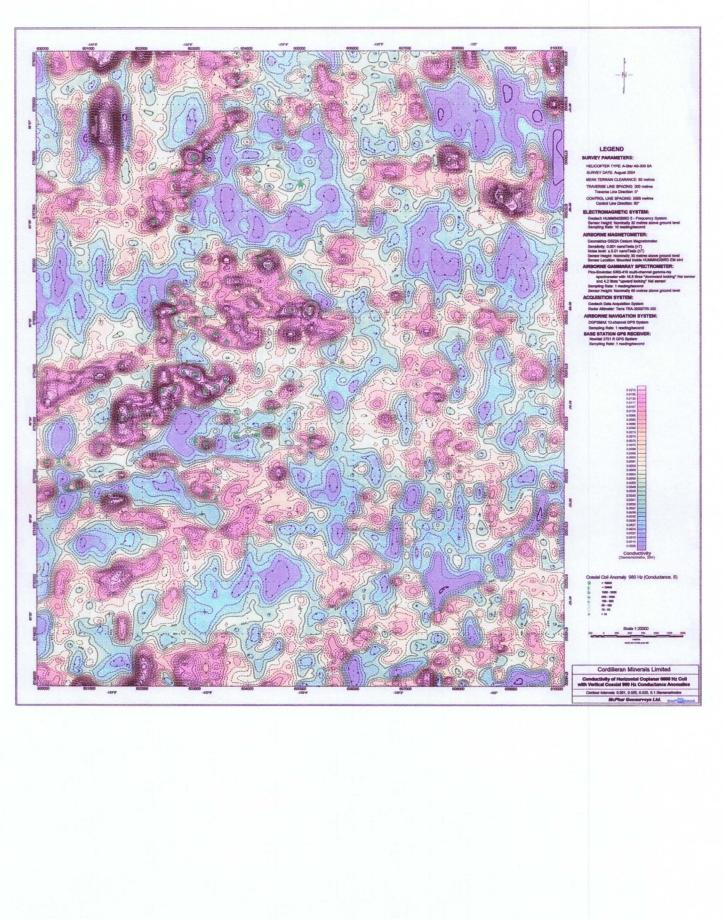

Now that interesting airborne anomalies have been discovered within the Oldtimers Hill Area the zone now needs to have ground geophysical surveys conducted over the highest potential anomalies to accurately identify ground coordinates of the anomalies for further investigation. This process will also weed out any weaker anomalies that exist.

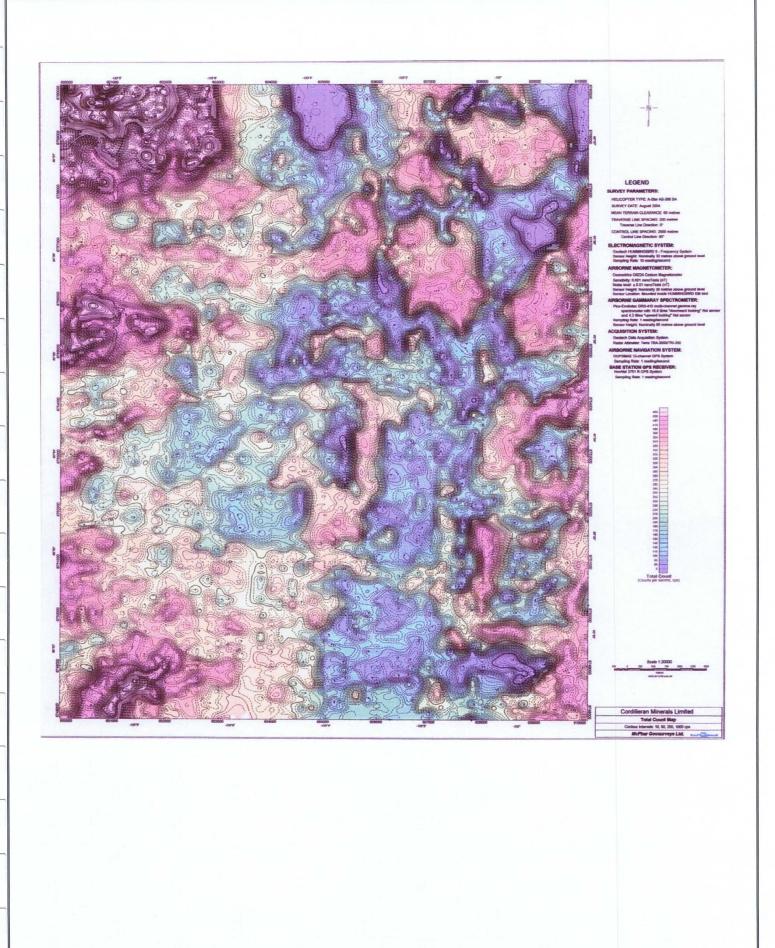

A line grid should be slashed out over all high potential conductors and resistivity anomalies. The grid should be cut perpendicular to the trend of the EM horizontal offset profiles. Maxmin Horizontal Loop Electromagnetics (HLEM), Induced Polarization (IP) and ground Magnetics (Mag) surveys should be conducted over all of the grid area.

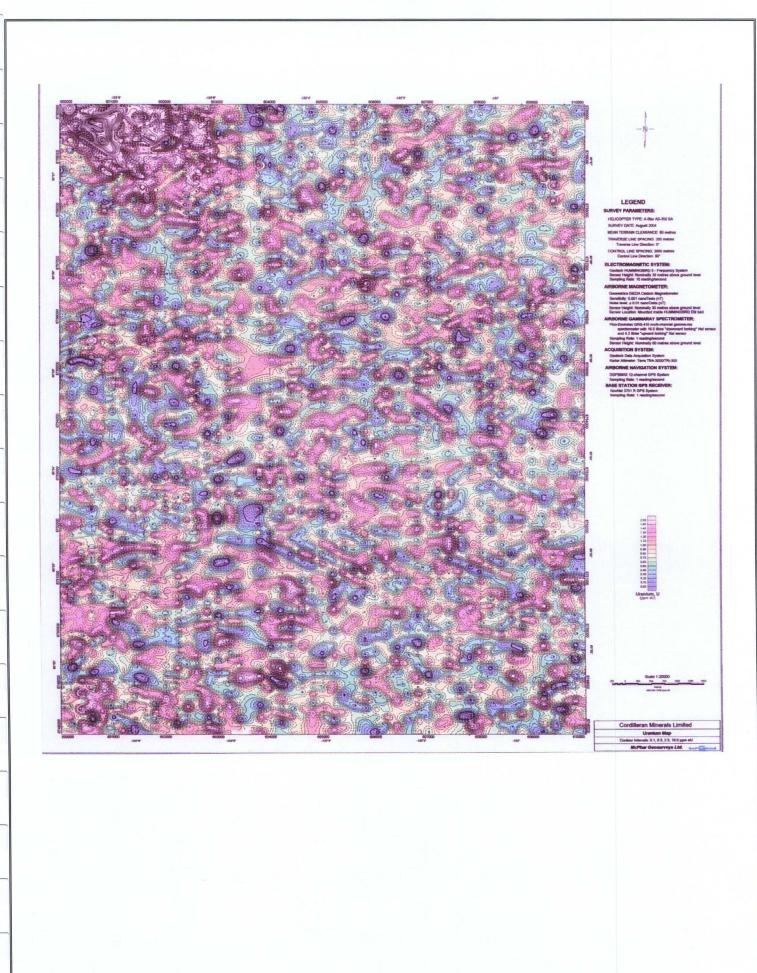

Once ground geophysics is completed the data should be analyzed and drill targets should be identified and prioritized. Drilling using a core drill should then take place at the discrepancy of the project operator.

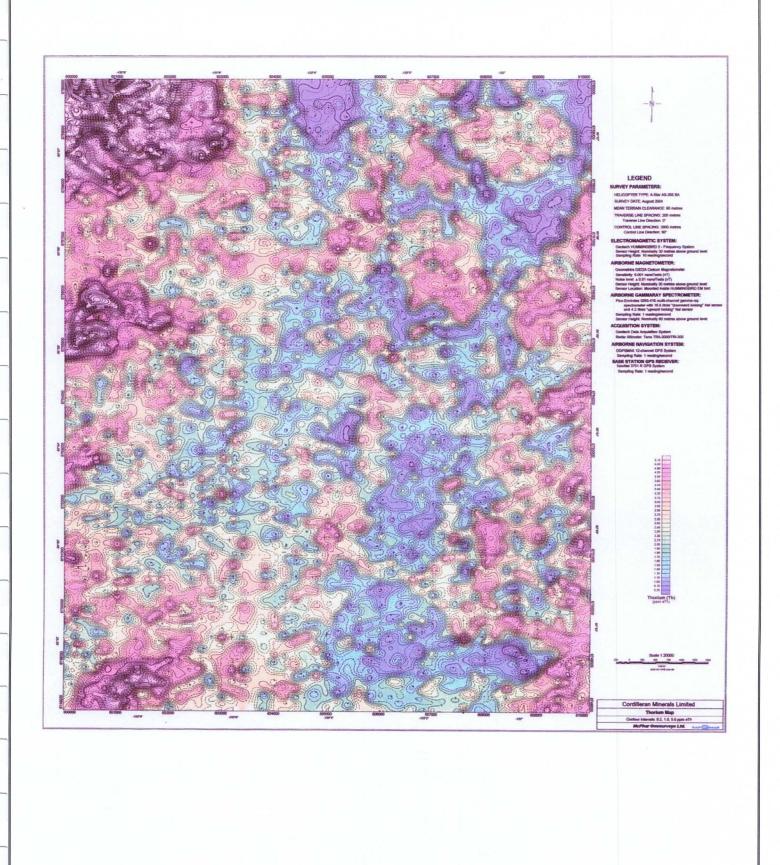

APPENDIX I

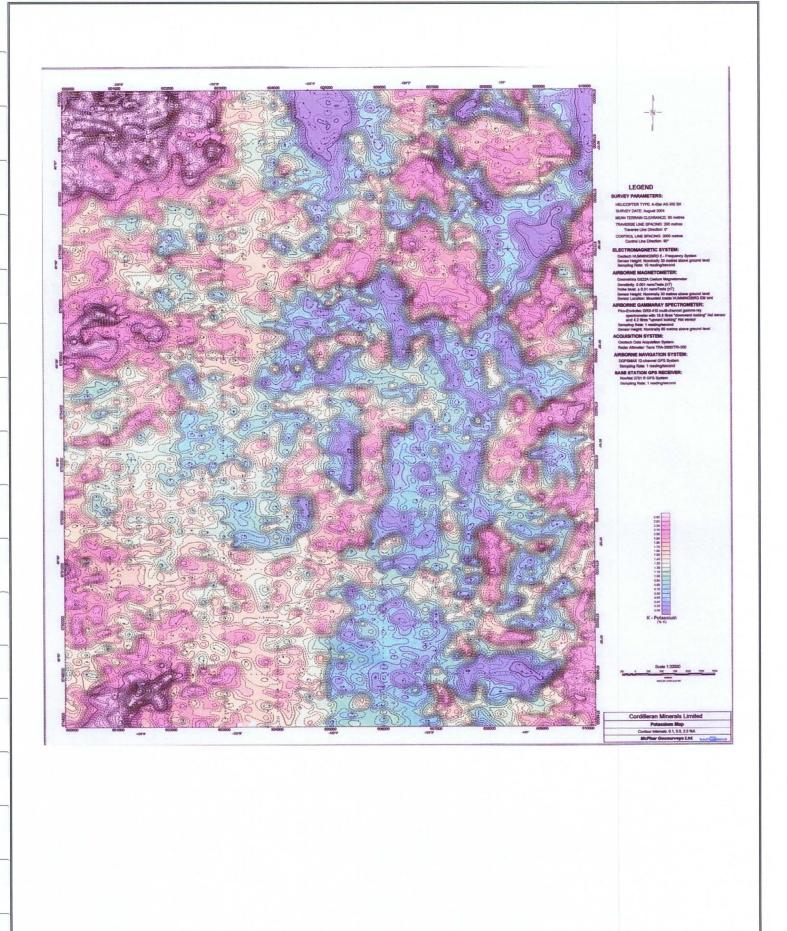


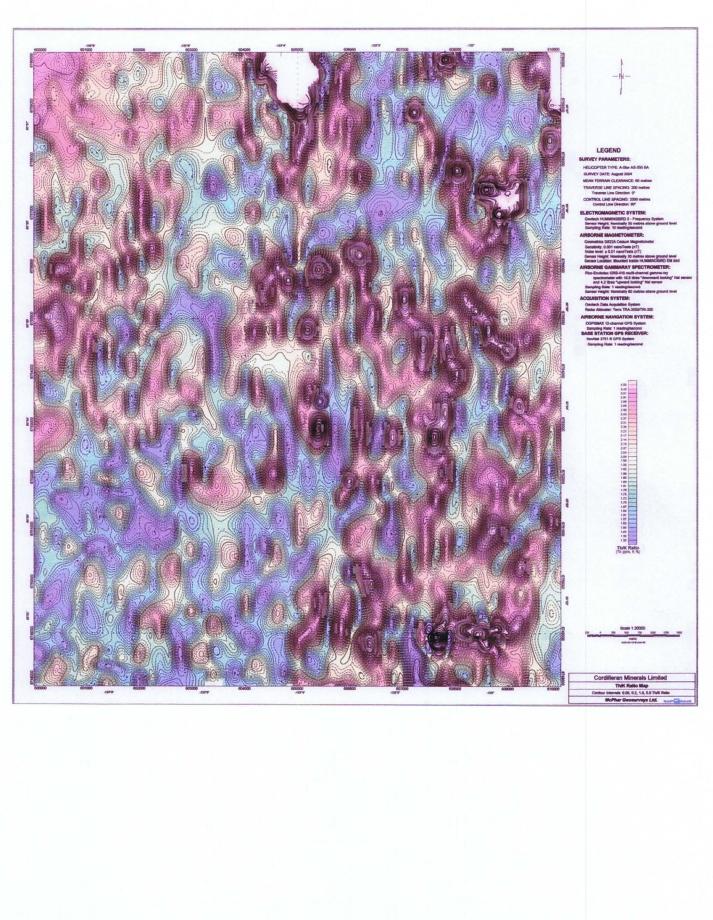




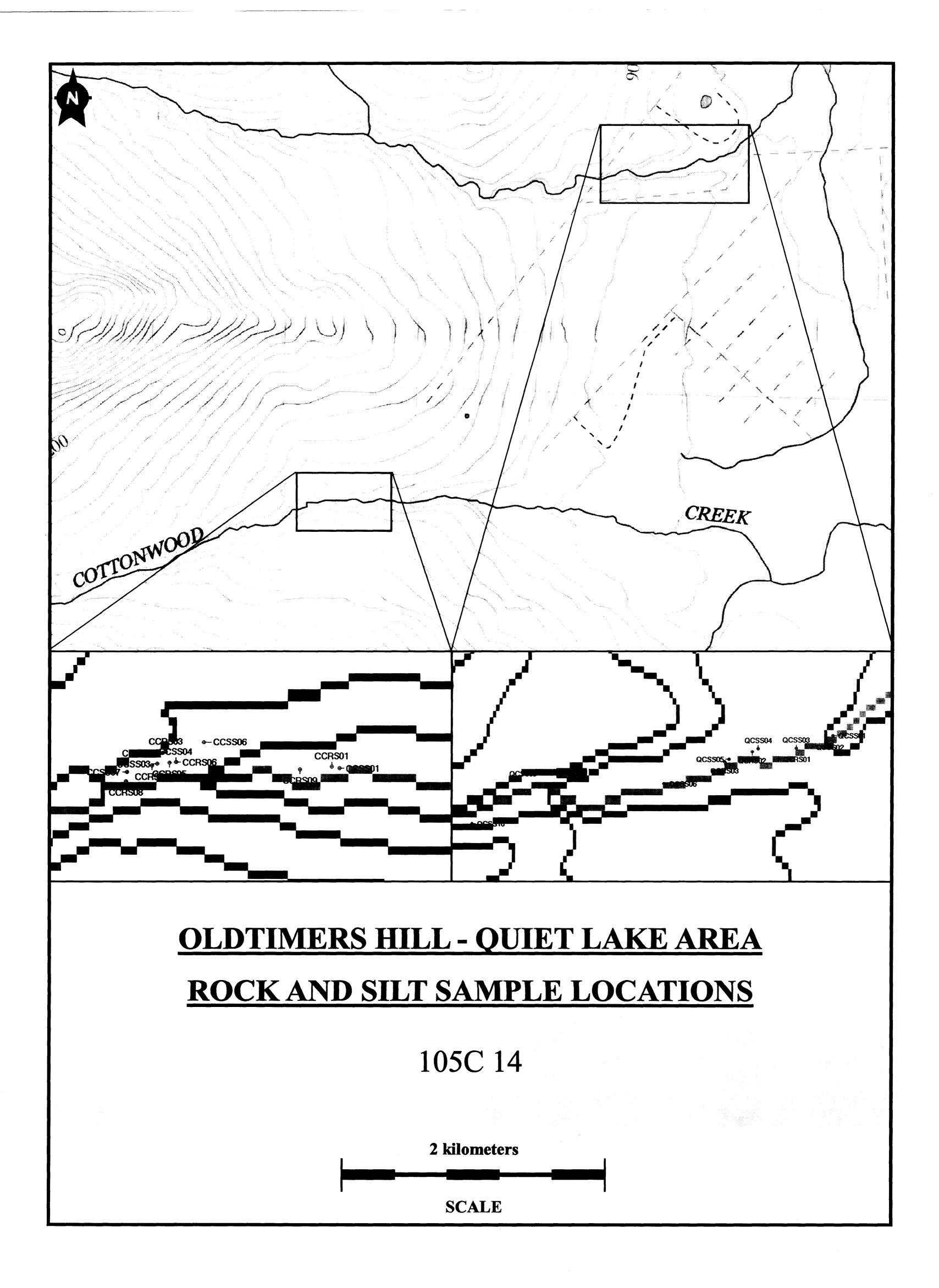



	11000	11000 B		11000 1	11000	Ling		11400	LINGT	110018	LINK	111000	113001	112108	LIZZE I	1 BORT	112502	11200 1	11270 8	11000	1.1000	1000	unet	13001	11300	LISTOR	1000	1000	L'ADOR	Listan E	14096	1400	11400		14801		1410 198	acedera"	•	
		11										N. N	1000	TAN								2														1 Martin				
- 2			+	ŀ				- Hannahar		-			1	1-A	110	in the second	+	1		-	· · · · · · · · · · · · · · · · · · ·		1	+							+			1			A	Nego Nego		
		1				and a state of the state of the	A THE PARTY	1.	1.	Comes -	A.S.	the state	1	P	N. C.	7 D			The second s						- 1	Harris Constant												SUN NO		
							1	N. Aller		R.	1 miles		t	1 to	A SI	No.		ALL IN					10000							-								No.W.	LEGEND SURVEY PARAMETERS: HELICOPTER YTHE A Star AS 300 I SARMEY CATE: August 2004	
			+					F	R	The second secon	N.	and a	the second	t	1 mil	Pares.	The second)							ľ								MEAN TEADAON CLEARANCE: 60 m TRANSISE UNE DACING: 200 met Transise Line Denkton: 01 CONTEXC. LINE: SYNCHIC 200 met Control Line Onection: 50* ELECTROMAGNETIC SYSTEM	-
	in the second	1		ľ	-			1	111		1				N. N	FRANK	A C	·					Sector Sector Sector				1		1							·		NOT	Gedisch-HAMERKGISHD 5 - Frisper Sensor Height Nonalsuby 20 settles Sampting Edit: 00 neeting/second ASREDCENE: MAGNETCHEETER: Gesselberg GE20A Creater Magnet Samshing: 0.001 neeroTeste (nT) Note Invest a D.D1 neeroTeste (nT) Sectes Height, Namhudy 20 netwo Samshing: 0.001neeroTeste (nT)	
		. .			-			1.0	ALL IN		NEN	X	·		11.	Dre	1					AV.	· ·					.			+							100000 T	Secura Yong's Nonhardy 30 indexe Dennet Control: Miscardine Installe H2 ARREPORTE GAMMARAY SPECT Fito-Environter with 552 All New Ya and 42 there "spenare behavio" Sampting Ratis: 1 andergehoscont Denner Hagyit: Nonemathy 60 andres	
				1				N. C. C.	- A	1	A	A	A					1	-	1														and the second s				\$224909	ACCURATION SYSTEM: Geolech Data Acquation System Rathe Attentic: Term 17(A-20017) AIRIBOROM: NAVIGATION SYST DGPSMAX T2-charvel (PS System Darright Rate 1 reading/accuration)	-300 EM:
			+			the second	144	N IN	AL AL	THE A	TAC	14.00	年+	STATE AND			14	Cot-VA-	A A					+							+							coltary	BASE STATION GPS RECEIVES tookis 255 R GPS System Sangling Rule: 1 reading/accord	
			T					Freedom		the second	17	JAN -	T		A	i ter																						1000		
. .	1			i			-	The second	N. A.			tot					-						- Warner	. .			-							-		-		12500 W.W.		
-			1																A CALL AND A					-	+			1												
															K	- Aller	1					and the second second																ersexeta		
-			and the second second			0					-	()	4	and the second		and the second	1	+		A CONT																		a.a	Soute 123	0000 19 100 120 190
-11				ŀ		ŀ						1	-									the second						· · de				.							Cordilleran Mineral	
			1.1				1.			-								-				100								1	-		-	1				1	Cordilleran Mineral Officel Profiles of Horizontal Cop Vertical Coaxiel 599 Vet Scale 2 Sponten, Scalat Vet Scale 2 Sponten, Scalat Vet Scale 2 Sponten, Scalat	anar 180 Hz Coll an Hz Coll
35	100	100	100		8		a a	101	20	a a	OR OF	100	3 000	108	308		10	8	TON I	10	300	- 10	100 2	NOR.	Non Non	BOUR	BOR	8	8	1	305	0.0	200	100	-	LIBOOL	BOR	F		une component Coptanue 8 pra Litel.





APPENDIX II


From AC			VTIC		ROP		ESIT		NICOL		RC									
To Cordil						AIUKI	ESLI	D, VF		VER	ВС									
Acme file				Popoiv	od: Al	JG 16 :	2004	* 16	sampl	oc in t	bio di	ok filo								
Analysis:							2004	10	Sampi	es III I		SKIIIE								
ELEMENT	-					Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Са
SAMPLES			1	and the second second second		0	and the second second		ppm			-			11212	ppm	ppm	State State Street	ppm	%
QCSS01		1.3	36.8	8.8	67	0.1	60.9	14	691	2.48	6.3	1.6	50.3	5.7	26	0.3	0.4	0.1	53	0.55
QCSS02	-	1.1	19.5	6.4	56	0.1	47.5	9.9	535	1.99	4.9	1.5	7.8	5.3	26	0.3	0.4	0.1	43	0.56
QCSS03		1.1	24	7.5	61	0.1	49.1	11	581	2.24	5.4	2.8	12.6	5.1	30	0.4	0.5	0.1	43	0.61
QCSS04		1.1	27.1	8.1	70	0.1	52.8	11.2	615	2.22	5.5	2.7	1.9	4.5	34	0.5	0.5	0.1	43	0.68
QCSS05		0.8	18.3	6.4	52	0.1	40.7	8.6	467	1.77	4.2	1.7	2.1	4.9	27	0.3	0.4	0.1	36	0.53
QCSS06		0.8	19.8	8.1	58	0.1	41.6	9.3	460	1.9	4.5	2	16	4.5	28	0.3	0.4	0.1	39	0.6
QCSS07		1.1	18.8	8.1	50	0.1	40.8	9.2	534	1.78	5	1.9	1.4	4.6	24	0.4	0.3	0.1	38	0.55
QCSS08		1.4	25.6	7.7	60	0.1	50	10.5	662	1.98	5	2.9	330.4	4.2	36	0.5	0.6	0.1	39	0.72
QCSS09		1	19.4	7.8	55	0.1	44	10	481	2.08	4.6	2	16.5	5.7	27	0.3	0.4	0.1	44	0.57
QCSS10		0.7	17.1	6.2	46	0.1	34.3	8	412	1.77	3.9	1.5	1	4.1	25	0.3	0.4	0.1	36	0.53
CCSS01		0.8	30.9	7.1	60	0.1	45.7	12.2	493	2.98	6.2	2.5	6.6	5.9	36	0.2	0.5	0.1	67	0.86
CCSS02		0.9	19.4	6	49	<.1	33.2	9.3	443	2.11	4.2	1.6	0.7	5.5	24	0.2	0.3	0.1	53	0.58
RE CCSS	03	0.9	25.3	6.4	51	0.1	40	11.5	582	2.14	4.7	1.2	42.7	4.7	33	0.3	0.4	0.1	46	0.82
CCSS03		0.8	24.5	6.2	52	0.1	41.4	11.4	576	2.1	4.4	1.3	2.8	4.7	33	0.4	0.4	0.1	47	0.8
					47	0 4	00 4	100	400	0 50										
CCSS04		0.9	21.5	6.6	47	0.1	36.4	10.2	433	2.59	5.1	2	4.5	6.5	31	0.3	0.4	0.1	65	0.84
CCSS04 CCSS06		0.9 0.9	21.5 40.2	6.6 8.9	47	0.1	<u>36.4</u> 52.2	10.2	433 692	2.59	5.1 6.6	2 1.6	4.5 3.1	6.5 5.4	31 41	0.3	0.4	0.1	65 56	0.84
CCSS06		0.9	40.2	8.9	74	0.1	52.2	14	692	2.98	6.6	1.6	3.1	5.4	41	0.4	0.5	1000		
CCSS06 P	Charles and	0.9 _a	40.2 Cr	8.9 Mg	74 Ba	0.1 Ti	52.2 B	14 Al	692 Na	2.98 K	6.6 W	1.6 Hg	3.1 Sc	5.4 TI	41 S	0.4 Ga	0.5 Se	1000		
CCSS06 P %	р	0.9 _a opm	40.2 Cr ppm	8.9 Mg %	74 Ba ppm	0.1 Ti %	52.2 B ppm	14 Al %	692 Na %	2.98 K %	6.6 W ppm	1.6 Hg ppm	3.1 Sc ppm	5.4 TI ppm	41 S %	0.4 Ga ppm	0.5 Se ppm	1000		
CCSS06 P % 0.	р 104	0.9 _a opm 18	40.2 Cr ppm 54.3	8.9 Mg % 0.97	74 Ba ppm 183	0.1 Ti % 0.1	52.2 B ppm 2	14 Al % 1.08	692 Na % 0.021	2.98 K % 0.13	6.6 W ppm 0.2	1.6 Hg ppm 0.03	3.1 Sc ppm 3.5	5.4 TI ppm 0.2	41 S % <.05	0.4 Ga ppm 5	0.5 Se ppm <.5	1000		
CCSS06 P % 0. 0.	088 p	0.9 _a _pm _18 _17	40.2 Cr ppm 54.3 41.8	8.9 Mg % 0.97 0.7	74 Ba ppm 183 181	0.1 Ti % 0.1 0.076	52.2 B ppm 2 2	14 Al % 1.08 0.92	692 Na % 0.021 0.017	2.98 K % 0.13 0.11	6.6 W ppm 0.2 0.3	1.6 Hg ppm 0.03 0.02	3.1 Sc ppm 3.5 2.7	5.4 TI ppm 0.2 0.1	41 S % <.05 <.05	0.4 Ga ppm 5 3	0.5 Se ppm <.5 0.6	1000		
CCSS06 P % 0. 0. 0.	104 088 087	0.9 _a opm 18 17 18	40.2 Cr ppm 54.3 41.8 40.3	8.9 Mg % 0.97 0.7 0.79	74 Ba ppm 183 181 213	0.1 Ti % 0.1 0.076 0.075	52.2 B ppm 2 2 2 2	14 AI % 1.08 0.92 1.11	692 Na % 0.021 0.017 0.015	2.98 K % 0.13 0.11 0.12	6.6 W ppm 0.2 0.3 0.2	1.6 Hg ppm 0.03 0.02 0.04	3.1 Sc ppm 3.5 2.7 3.2	5.4 TI ppm 0.2 0.1 0.1	41 S <.05 <.05 <.05	0.4 Ga ppm 5 3 4	0.5 Se ppm <.5 0.6 0.8	1000		
CCSS06 P % 0. 0. 0. 0.	104 088 087 087	0.9 _a ppm 18 17 18 18 18	40.2 Cr ppm 54.3 41.8 40.3 40.7	8.9 Mg % 0.97 0.7 0.79 0.77	74 Ba ppm 183 181 213 237	0.1 Ti % 0.1 0.076 0.075 0.074	52.2 B ppm 2 2	14 Al % 1.08 0.92 1.11 1.19	692 Na % 0.021 0.017 0.015 0.017	2.98 K % 0.13 0.11 0.12 0.13	6.6 W ppm 0.2 0.3 0.2 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05	3.1 Sc ppm 3.5 2.7 3.2 3.5	5.4 TI ppm 0.2 0.1 0.1 0.1	41 S % <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4	0.5 Se ppm <.5 0.6 0.8 1.2	1000		
CCSS06 P % 0. 0. 0. 0. 0. 0.	104 088 087 083 083 083	0.9 _a ppm 18 17 18 18 18 18	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3	8.9 Mg 0.97 0.7 0.79 0.77 0.61	74 Ba ppm 183 181 213 237 179	0.1 Ti % 0.1 0.076 0.075 0.074 0.067	52.2 B ppm 2 2 2 2 2 2 1	14 Al % 1.08 0.92 1.11 1.19 0.81	692 Na % 0.021 0.017 0.015	2.98 K % 0.13 0.11 0.12	6.6 W ppm 0.2 0.3 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03	3.1 Sc ppm 3.5 2.7 3.2	5.4 TI ppm 0.2 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7	1000		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0.	104 088 087 087	0.9 _a ppm 18 17 18 18 18 16 16	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2	8.9 Mg 0.97 0.77 0.79 0.77 0.61 0.66	74 Ba ppm 183 181 213 237 179 188	0.1 Ti % 0.1 0.076 0.075 0.074 0.067 0.073	52.2 B ppm 2 2 2 2 2 2	14 Al 1.08 0.92 1.11 1.19 0.81 0.91	692 Na % 0.021 0.017 0.015 0.017 0.015	2.98 K % 0.13 0.11 0.12 0.13 0.1	6.6 W ppm 0.2 0.3 0.2 0.2 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4	5.4 Tl ppm 0.2 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4	0.5 Se ppm <.5 0.6 0.8 1.2 0.7	1000		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0.	p 104 088 087 083 082 082 077 077	0.9 _a ppm 18 17 18 18 18 18	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4	8.9 Mg 0.97 0.79 0.79 0.77 0.61 0.66 0.61	74 Ba ppm 183 181 213 237 179 188 182	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.073	52.2 B ppm 2 2 2 2 2 1 3	14 Al % 1.08 0.92 1.11 1.19 0.81 0.91 0.81	692 Na % 0.021 0.017 0.015 0.017 0.015 0.017	2.98 K % 0.13 0.11 0.12 0.13 0.1 0.11 0.11	6.6 W ppm 0.2 0.3 0.2 0.2 0.1 0.1 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3 2.4	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.7	0.2		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	104 088 087 083 083 082 082	0.9 .a ppm 18 17 18 18 18 16 17 15	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2	8.9 Mg 0.97 0.77 0.79 0.77 0.61 0.66	74 Ba ppm 183 181 213 237 179 188	0.1 Ti % 0.1 0.076 0.075 0.074 0.067 0.073	52.2 B ppm 2 2 2 2 2 2 1 3 3 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.81 0.99	692 Na % 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.016	2.98 K % 0.13 0.11 0.12 0.13 0.1 0.11 0.11	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.1 0.2 0.2	1.6 Ppm 0.03 0.02 0.04 0.05 0.03 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3 2.4 3 2.4 3.2	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.7 1 0.6 1.5	0.2		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	p 104 088 087 083 083 082 077 077 077	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4 38.8 40.3	8.9 Mg 0.97 0.79 0.79 0.77 0.61 0.66 0.61 0.71	74 Ba ppm 183 181 213 237 179 188 182 229	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.077 0.072	52.2 B ppm 2 2 2 2 2 2 1 1 3 3 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.81 0.99 0.89	692 Na % 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.016 0.013	2.98 K 0.13 0.11 0.12 0.13 0.1 0.11 0.11 0.12 0.11	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.03 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3 2.4 3.2 2.4 3.2 2.6	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 3 4	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.6 1.5 0.7	0.2		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	P 104 088 087 083 083 083 083 077 0776 0793	0.9 _a ppm 18 17 18 18 16 17 15 17 17 17	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4 38.8 40.3 33.5	8.9 Mg 0.97 0.79 0.77 0.61 0.61 0.61 0.67 0.61	74 Ba ppm 183 181 213 237 179 188 182 229 177 164	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.073 0.075 0.075 0.068	52.2 B ppm 2 2 2 2 2 2 1 1 3 3 2 2 2 2 2 2 2 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.81 0.99 0.89 0.89 0.89	692 Na % 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.016 0.013	2.98 K 0.13 0.11 0.12 0.13 0.1 0.11 0.11 0.12 0.11 0.12	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.03 0.03 0.38 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3.2 2.4 3.2 2.6 2.6 2.5	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 3 3 4 4 4	0.5 Se ppm <.5 0.6 1.2 0.7 1 0.6 1.5 0.7 0.6	0.2		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	P 104 088 087 083 083 083 087 087 087 087 087 087 087 087 087 087 087 087 093 .093 .093	0.9 -a ppm 18 17 18 18 16 17 15 17 17 15 15	40.2 Cr ppm 54.3 41.8 40.3 33.3 36.2 34.4 38.8 40.3 33.5 49.7	8.9 Mg 0.97 0.79 0.77 0.61 0.61 0.61 0.67 0.61 0.61 0.86	74 Ba ppm 183 181 213 237 179 188 182 229 177 164 205	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.073 0.077 0.075 0.068 0.132	52.2 B ppm 2 2 2 2 2 2 1 1 3 3 2 2 2 2 2 2 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.81 0.92 0.81 0.89 0.89 0.81	692 Na 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.016 0.013 0.013 0.019	2.98 K % 0.13 0.11 0.12 0.13 0.11 0.11 0.11 0.11 0.12 0.11 0.12 0.11	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.03 0.03 0.03 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3.2 2.4 3.2 2.4 3.2 2.6 2.5 3.8	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 3 3 3 3 4 4 4 3 4 4 3 4 4 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.6 1.5 0.7 0.6 0.6 <.5	0.2		
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	P 104 088 087 083 082 077 0777 0776 .093 .093 .094	0.9 .a ppm 18 17 18 18 16 17 15 17 17 15 17 15 18	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4 38.8 40.3 33.5 49.7 37.6	8.9 Mg 0.97 0.79 0.77 0.61 0.66 0.61 0.67 0.61 0.86 0.59	74 Ba ppm 183 181 213 237 179 188 182 229 177 164 205 153	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.073 0.072 0.075 0.068 0.132 0.095	52.2 B ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.81 0.92 0.81 0.93 0.89 0.89 0.89 0.89 0.91	692 Na 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.016 0.013 0.013 0.013 0.019 0.015	2.98 K % 0.13 0.11 0.12 0.13 0.11 0.11 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.14 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3.5 2.4 3.2 2.6 2.5 3.8 2.5 3.8 2.5 3.3	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 4 4 4 3 3 4 4 4 3 3 4 4 3 3 3 4 4 5 5 5 5	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.6 1.5 0.7 0.6 <.5 0.6			
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	P 104 088 087 083 082 077 077 076 .093 .084 .0108	0.9 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4 38.8 40.3 33.5 49.7 37.6 37.6	8.9 Mg 0.97 0.79 0.77 0.61 0.66 0.61 0.67 0.61 0.67 0.61 0.86 0.59	74 Ba ppm 183 181 213 237 179 188 229 177 164 205 153 183	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.073 0.075 0.075 0.068 0.132 0.095	52.2 B ppm 2 2 2 2 2 2 1 1 3 3 2 2 2 2 2 2 2 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.81 0.92 0.81 0.93 0.89 0.89 0.89 0.89 0.91	692 Na 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.016 0.013 0.013 0.019 0.015 0.019	2.98 K % 0.13 0.11 0.12 0.13 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.09 0.11 0.08 0.11 0.08 0.11 0.08	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.04 0.05 0.02 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3.2 2.4 3.2 2.6 2.5 3.8 2.5 3.8 3.2 3.2	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 3 4 4 4 3 3 4 4 3 3 3 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.6 1.5 0.7 0.6 0.6 <.5 0.5 <.5			
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	P 104 088 087 083 087 087 077 077 077 077 076 093 084 093 0.071 0.084 0.108 0.111	0.9 -a ppm 18 17 18 18 16 17 15 17 15 18 16 15 18 16 15 14 18	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4 38.8 40.3 33.5 49.7 37.6 37.4 35.7 44.3	8.9 Mg 0.97 0.79 0.77 0.61 0.66 0.61 0.67 0.61 0.67 0.61 0.59 0.77 0.75 0.63	74 Ba ppm 183 181 213 237 179 188 182 229 177 164 205 153 183 178 178 155	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.075 0.068 0.132 0.095 0.095 0.093 0.121	52.2 B ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.89 0.89 0.81 0.92 0.91 0.91 0.92 0.93 0.94 0.95 0.91 0.91	692 Na 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.013 0.013 0.013 0.019 0.019 0.019 0.019	2.98 K % 0.13 0.11 0.12 0.13 0.11 0.12 0.11 0.11 0.09 0.11 0.09 0.11 0.08 0.11 0.08	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.04	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3.5 2.4 3.2 2.6 2.5 3.8 2.5 3.8 3.2 2.5 3.2 3.2 2.5	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 \$ \$ <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 3 4 4 4 3 3 3 3 3 3 3 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.6 0.6 <.5 0.5 <.5 <.5			
CCSS06 P % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	P 104 088 087 083 087 083 087 083 087 077 076 093 084 0.93 .084 .087 .087 .087 .084	0.9 -a ppm 18 17 18 18 16 17 15 17 15 18 16 15 18 16 15 14	40.2 Cr ppm 54.3 41.8 40.3 40.7 33.3 36.2 34.4 38.8 40.3 33.5 49.7 37.6 37.4 35.7 44.3	8.9 Mg 0.97 0.79 0.77 0.61 0.66 0.61 0.67 0.61 0.67 0.61 0.59 0.77 0.75 0.63	74 Ba ppm 183 181 213 237 179 188 182 229 177 164 205 153 183 178 178 155	0.1 Ti % 0.076 0.075 0.074 0.067 0.073 0.075 0.068 0.132 0.095 0.095 0.093 0.121	52.2 B ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 AI % 1.08 0.92 1.11 1.19 0.81 0.91 0.89 0.89 0.81 0.92 0.91 0.91 0.92 0.93 0.94 0.95 0.91 0.91	692 Na % 0.021 0.017 0.015 0.017 0.015 0.017 0.016 0.013 0.013 0.019 0.019 0.019 0.019 0.014	2.98 K % 0.13 0.11 0.12 0.13 0.11 0.12 0.11 0.11 0.09 0.11 0.09 0.11 0.08 0.11 0.08	6.6 W ppm 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3	1.6 Hg ppm 0.03 0.02 0.04 0.05 0.03 0.04 0.05 0.02 0.03 0.03	3.1 Sc ppm 3.5 2.7 3.2 3.5 2.4 3.5 2.4 3.2 2.6 2.5 3.8 2.5 3.8 3.2 5 3.2 5 3.2 5 3.2 5 3.2 5 3.5 5 2.4 3.5 5 2.4 3.5 5 2.4 3.5 5 2.5 5 2.7 5 5 2.7 5 5 2.7 5 5 2.7 5 5 2.7 5 5 5 2.7 5 5 5 2.7 5 5 5 2.7 5 5 5 5 5 2.7 5 5 5 2.7 5 5 5 2.7 5 5 5 2.7 5 5 5 5 2.7 5 5 5 5 2.7 5 5 5 5 2.4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.4 TI ppm 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	41 S <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	0.4 Ga ppm 5 3 4 4 4 3 3 3 3 4 4 4 3 3 4 4 3 3 3 3	0.5 Se ppm <.5 0.6 0.8 1.2 0.7 1 0.6 1.5 0.7 0.6 <.5 0.5 <.5 <.5			

-

5

-

	From ACME	ANA	YTICA	L LAB	ORAT	ORIES	S LTD	. VANC	COUV	ER B	C							
	To Cordillera	n Mine	erals															
	Acme file # A	4045	94 Re	eceived	: AUG	16 20	04 *	10 sa	mples	in thi	s disk f	ile.						
	Analysis: GR	OUP	1DX - 3	30.0 GN	N													
	ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi
	SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm
	CCRS01	1.1	16.3	143	491	0.6		0.7	98	1	<.5	16.9	1.1	23	2	3.6	0.3	1.1
H	CCRS02	0.5	21.8	5.1	24	0.1	10.1	3.7	183			0.2	0.6	0.2	7	0.2	0.2	0.1
	CCRS03	0.7	13.5	25.3	164	0.2	0.8	1.6	90	1.25	0.5	39.6	1.1	32.7	2	1.4	0.1	0.5
	CCRS04	6.7	7.4	101.9	97	1.2	3.6	3	529				<.5	29	26	_	0.1	3.1
	CCRS05	4.9	5.6	17.8	19	0.2	0.8	0.6	92			4.2	0.8	18	3		0.1	0.5
	CCRS06	13.7	20.1	255.8	47	5.5	7.7	27.2	106	3.55		1.9	4.8	1.1	2		0.2	29.1
I H	CCRS07	1.7	5.5	26.7	52	0.2	2.9	1.4	119		0.7	7.4	0.5	35.4	3		0.3	0.6
	QCRS02	1.5	108.5	7.2	118	0.2	61.4	16.9	446	3.86	<.5	2.5	3.9	2.9	19	0.4	<.1	0.5
	V	Са	Р	La	Cr	Mg	Ва	Ti	В	AI	Na	к	W	Hg	Sc	TI	S	Ga
I H		%	۲ %		No. Contraction	%	ppm	%	Sand with the	AI %	%	n %				ppm	S %	
	ppm	/0	/0	ppm	ppm	/0	ppm	/0	ppm	/0	/0	/0	ppm	ppm	ppm	ppm	/0	ppm
ŀ	2	0.06	0.025	11	1.4	0.07	47	0.002	1	0.22	0.026	0.07	0.2	0.01	0.6	<.1	0.15	2
	4	0.24	0.002	20.0	7.3		305	Christian Christian	1		0.002	0.01		<.01		<.1	0.4	
	1	0.05	0.018	. 32	1.8		19	0.002	<1	0.21	0.023		0.1		0.5		0.39	1
	4	0.47	0.068	23	5.3		110	0.001	1	0.37	0.019			<.01	1.2	1	0.1	1
	2	0.05	0.021	14	1.7	0.06	22	0.002	<1	0.26	0.037	0.12		<.01	0.6		0.08	2
	2	0.01	0.003	2	6.2	0.01	55	0.001	<1	0.06	0.003	0.04	0.6	0.01	0.2	0.1	1.38	<1
	4	0.07	0.028	17	3	0.08	32	0.001	<1	0.27	0.024	0.1	0.1	<.01	0.9	0.1	<.05	1
	197	0.85	0.154	4	123.5	1.66	250	0.306	<1	2.35	0.103	0.96	0.5	<.01	14	0.5	0.55	11

INVOICE

Zang Geophysical Consultant 12579 Taylor Place Summerland, B.C. V0H 1Z8 Fax 250 404 0388

<u>Client:</u> Mark Lindsay Cordilleran Minerals Ltd. 100 Platinum Road Whitehorse, Yukon Territory Y1A 6A9

Invoice #: 2009 Date: 9-Fe

2005-002 9-Feb-2005

Project: Interpretation of Helicopter-borne Geophysical Survey, Canol Area, Yukon Territory

Units	Description	Unit cost	Cost
5	Geophysical Consulting (Airborne Mag, EM, Rad data processing and interpretat	\$800 ion)	\$ 4,000.00
		Sub Total: GST (7%):	4,000.00 280.00
		Total:	\$ 4,280.00

GST Reg. No: 85129 2946 RT0001

Payable upon receipt 2% over 30 days

Zang Geophysical Consultant

Michael W. Zang 12579 Taylor Place Summerland, B.C. V0H 1Z8

(h) 250 404 0338 © 250 486 2245 (f) 250 404 0388 mzang@shaw.ca

February 8, 2005

Cordilleran Minerals Limited 100 Platinum Road Whitehorse, Yukon Territory Y1A 6A9

Subject: First pass interpretation of helicopter-borne geophysical survey Canol Survey Area

As requested the aeromagnetic, radiometric and electromagnetic data from the Hummingbird helicopter airborne survey on the Canol survey area, Yukon was reviewed. A first pass geomagnetic map was created to determine if prospective conductive anomalies may be present in the area.

The figure 1 shows the preliminary geomagnetic map generated.

The main geological units identified in the map are ultramafic, a volcanic/sedimentary sequence, granite, a meta-sedimentary sequence, near surface high magnetic intensity units and a few main structures.

The ultramatic has been identified by its shallow easterly dip and very high magnetic susceptibility. One of the distinctive effects of this unit on the Hummingbird EM system is the negative effect on the in-phase data. This makes the final picking of targets and accurate calculation of the physical properties of the target difficult.

The volcanic/sedimentary sequence has been identified by is moderate to high magnetic susceptibility.

The granite has been identified by is moderate magnetic susceptibility and coincidence with a high potassium and total count radiometric anomalies.

The meta-sedimentary sequence is a low magnetic susceptibility unit and makes up the background response.

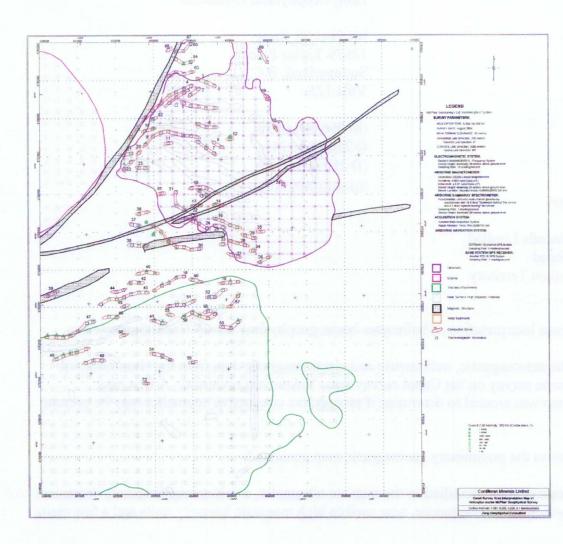


Figure 1 - Geomagnetic Map of Canol Survey Area

Table 1 presents the location of the conductive zones identified in the survey area. The east and north coordinates are the UTM limits of the zones and the zone number corresponds to the grouping found in the attached Montaj map. The grouping of the anomalies into zones was based on the similarity of the profiles and the corresponding magnetic trend.

Of the 72 zones identified, 45 are considered to be due to highly conductive material in all or part of the zone. The highly conductive zones are indicated in the table.

As can be seen in the maps the highly conductive zones fit into three main groupings. The north group located between 603000E, 6757000N and 605000E, 6760000N is coincident with north-

west limit of the ultramafic. The central group located between 602000E, 6754000N and 606000E, 6756000N is coincident with the south-west limit of the ultramafic. These two areas represent the most prospective areas for follow-up exploration. The northern area is highlighted primarily for its nickel potential and the central area for its nickel and gold potential.

The last grouping is located between 601000E, 6752000N and 605000E, 6754000N is coincident with the contact between the volcanic/sedimentary sequence and the meta-sediments. This area is considered to be of less importance than the first two groups.

Conductive Zone # East North Highly Conductive Zones Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 1

334444444444444444444444444444444444444	604114 604165 603994 603800 603593 603417 603223 602979 602605 602411 602346 602346 602415 602415	6759087 6759087 6758912 6758815 6758727 6758644 6758454 6758256 6757831 6757563 6757508 6757443 6757485 6757485	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
4 4	602600 602794	6757739 6757974	Yes Yes
4 4	602979 603223	6758159 6758371	Yes Yes
4	603422	6758556	Yes
4	603593	6758648	Yes
4	603800	6758741	Yes
4 4	603990 604054	6758815 6758861	Yes
4 4	604054 604050	6758902	Yes Yes
4	604017	6758912	Yes
4	603994	6758912	Yes
5	603800	6758713	Yes
5	603602	6758584	Yes
5 5	603413 603325	6758441 6758357	Yes
5 5	603325	6758311	Yes Yes
5	603302	6758279	Yes
5	603413	6758367	Yes
5	603597	6758510	Yes
5	603800	6758630	Yes
5	603874	6758676	Yes
5 5	603879	6758718 6758727	Yes
5 5	603842 603800	6758713	Yes Yes
6	604595	6757729	Yes
6	604391	6757729	Yes
6	604253	6757771	Yes
6	604184	6757813	Yes
6	604101	6757836	Yes
6 6	604101 604174	6757891 6757891	Yes Yes
6	604294	6757845	Yes
6	604387	6757808	Yes
6	604502	6757808	Yes
6	604585	6757803	Yes
6	604673	6757803	Yes
6 6	604687 604659	6757753 6757734	Yes
0	004009	0707734	Yes

~

~

14 004/93 0/556/3	14 604851 6755696 14 604851 6755736 14 604788 6755741 14 604707 6755764	9 9 100 100 100 100 100 100 100 100 100	602771 602789 602785 602979 603057 603076 602923 602789 602683 602789 602683 602789 603269 603269 603269 603269 603486 603519 603486 603519 603488 603389 603389 605079 604922 604927 604885 605079 604927 604885 605079 604922 604936 605024 605089 605079 604202 604386 605079 604202 604483 604483 604483 604483 604483 604483	6757268 6757282 6757651 6757693 6757720 6757762 6757762 6757763 6757679 6757628 6757651 6757651 6757651 6757651 6757300 6757323 6757323 6757328 6757397 6757397 6757397 6757397 6757397 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757402 6757404 6757402 6757405 6757405 6757406 6757406 6757406 6757408 6757408 6755914 6755914 6755914 6755914 6756057 6756029 6756103 6756109 6756057 6755690 6756057 6755690 6755673	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
	146048516755696146048516755736146047886755741	13 13 13 14	604116 604161 604202 604610	6756109 6756080 6756057 6755690	Yes Yes

- ·

14	604564	6755684			
14	604610	6755690			
15	604001	6756138	Yes		
15	604213	6756155	Yes		
15	604374	6756121	Yes		
15	604627	6756011	Yes		
15	604679	6756017	Yes		
15	604690	6756046	Yes		
15	604610	6756092	Yes		
15	604483	6756178	Yes		
15	604397	6756213	Yes		
15	604305	6756236	Yes		
15	604202	6756241	Yes		
15	604087	6756224	Yes		
15	604001	6756213	Yes		
15	603914	6756178	Yes		
15	603903	6756138	Yes		
15	603966	6756126	Yes		
15	604001	6756138	Yes		
16	604615	6755322	Yes		
16	604805	6755253	Yes		
16	605012	6755144	Yes		
16	605178	6755092	Yes		
16	605299	6755087	Yes		
16	605299 605299	6755138	Yes		
16	605178	6755173	Yes		
16	605006	6755219	Yes		
16	604805	6755334	Yes		
16	604605 604615	6755397	Yes		
16	604541	6755403	Yes		
16	604523	6755357	Yes		
16	604525 604558	6755328	Yes		
16	604615	6755322	Yes		
17	604024	6755655	105		
17	604024 604207	6755673			
17	604271	6755684			
17	604294	6755770			
17	604202	6755759			
 17	604012	6755736			
17	603955	6755701			
17	603983	6755673			
17	604024	6755655			
18	604024	6753806	Yes		
18	603577	6753764	Yes		
18 18	603378 603188	6753631 6753540	Yes Yes		
				×	
18 19	602989	6753416	Yes		
18 19	602939	6753424 6753466	Yes		
18 19	602939	6753466	Yes		
18 19	602997 602406	6753490	Yes		
18	603196	6753623	Yes		
18	603387	6753689	Yes		

	18 18 18 18 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20	603586 603768 603826 603834 603810 603776 604780 604987 605186 605269 605194 604987 604780 604697 604697 604697 604697 604697 604738 602640 602640 602533 602560 602620 602681 602674 602640	6753839 6753864 6753864 6753830 6753806 6753806 6753615 6753615 6753648 6753681 6753706 6753681 6753665 6753681 6753665 6753631 6753623 6757141 6757074 6757074 6757074 6757074 6757141 6757175 6757195	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
	21	602210	6757088	Yes
	21 21	602405 602459	6757128 6757128	Yes Yes
	21	602459	6757067	Yes
	21	602405	6757054	Yes
	21	602223	6757007	Yes
	21	602129	6757007	Yes
	21	602143	6757067	Yes
	21	602210	6757088	Yes
	22	602230	6756657	Yes
	22 22	602398 602492	6756819 6756906	Yes Yes
	22	602432	6756926	Yes
· * .	22	602405	6756899	Yes
	22	602223	6756731	Yes
	22	602149	6756664	Yes
	22	602169	6756630	Yes
	22	602203	6756630	Yes
	22	602230	6756657	Yes
	23	602593	6756677	
	23	602768	6756664	
	23 23	602869 602883	6756671 6756738	
	23	602782	6756751	
	23	602701	6756751	
	23	602634	6756751	
	23	602600	6756751	

	23	602540	6756758	
	23	602506	6756718	
	23	602553	6756697	
	23	602593	6756677	
	24	604392	6755066	Yes
	24	604173	6755182	Yes
	24	604016	6755250	Yes
	24	603907	6755319	Yes
	24	603872	6755373	Yes
	24	603927	6755367	Yes
	24	604030	6755332	Yes
	24	604214	6755250	Yes
	24	604351	6755168	Yes
	24	604392	6755148	Yes
	24	604481	6755121	Yes
	24	604481	6755066	Yes
	24	604385	6755066	Yes
	24	604392	6755066	Yes
	25	604617	6755127	Yes
	25	604815	6755086	Yes
	25	604884	6755093	Yes
·	25	604897	6755127	Yes
	25	604822	6755175	Yes
	25	604699	6755209	Yes
	25	604617	6755216	Yes
5.	25	604549	6755209	Yes
	25	604542	6755168	Yes
	25	604583	6755141	Yes
	25	604617	6755127	Yes
	26	605779	6754164	Yes
	26	605923	6754246	Yes
	26	606005	6754294	Yes
	26	606087	6754342	Yes
	26	606046	6754389	Yes
	26	605991	6754362	Yes
	26	605882	6754301	Yes
	26	605779	6754246	Yes
	26	605718	6754219	Yes
	26	605711	6754184	Yes
	26	605745	6754171	Yes
	26	605779	6754164	Yes
	27	605198	6754314	Yes
	27	605014	6754362	Yes
	27	604891	6754424	Yes
	27	604918	6754471	Yes
	27	605014	6754437	Yes
	27	605205	6754396	Yes
	27	605280	6754362	Yes
	27	605294	6754321	Yes
	27	605253	6754301	Yes
	27	605198	6754314	Yes
	28	605437	6754608	Yes

	28	605383	6754622	Yes
	28	605246	6754663	Yes
	28	605178	6754676	Yes
	28	605089	6754704	Yes
	28	605021	6754724	Yes
	28	604952	6754758	Yes
	28	604938	6754806	Yes
	28	605007	6754806	Yes
	28	605191	6754752	Yes
	28	605396	6754690	Yes
	28	605492	6754663	Yes
			6754608	
	28	605499		Yes
	28	605417	6754608	Yes
	28	605437	6754608	Yes
	29	605376	6754881	Yes
	29	605513	6754834	Yes
	29	605608	6754799	Yes
	29	605697	6754813	Yes
	29	605697	6754861	Yes
	29	605595	6754888	Yes
	29	605499	6754916	Yes
	29	605437	6754943	Yes
		605383	6754957	Yes
	29			
	29	605314	6754977	Yes
	29	605267	6754943	Yes
	29	605328	6754895	Yes
	29	605376	6754881	Yes
	30	604180	6754533	Yes
	30	603989	6754499	Yes
	30	603784	6754560	Yes
	30	603592	6754581	Yes
	30	603380	6754724	Yes
	30	603189	6754977	Yes
	30	602991	6755127	Yes
	30	602923	6755175	Yes
	30	602929	6755237	Yes
•	30	602991	6755203	Yes
8	30	603182	6755066	Yes
	30	603380	6754806	Yes
	30	603592	6754656	Yes
	30	603784	6754649	Yes
	30	603982	6754574	Yes
	30	604180	6754601	Yes
	30	604276	6754594	Yes
	30	604262	6754547	Yes
			6754533	
	30	604235		Yes
	30	604180	6754533	Yes
	31	603572	6756118	Yes
	31	603538	6756091	Yes
	31	603531	6755941	Yes
	31	603538	6755777	Yes
	31	603551	6755688	Yes
			· -	

31	603592	6755660	Yes
31	603688	6755613	Yes
31	603749	6755578	Yes
		6755544	Yes
31	603790		
31	603859	6755551	Yes
31	603879	6755585	Yes
31	603811	6755619	Yes
31	603708	6755681	Yes
31	603654	6755729	Yes
31	603613	6755742	Yes
31	603585	6755872	Yes
31	603592	6755995	Yes
31	603613	6756050	Yes
31	603592	6756118	Yes
31	603572	6756118	Yes
32	604023	6755510	Yes
32	604118	6755462	Yes
32	604159	6755414	Yes
32	604112	6755387	Yes
32	604036	6755414	Yes
32	603995	6755428	Yes
32	603948	6755455	Yes
32	603934	6755496	Yes
32	604002	6755517	Yes
32	604023	6755510	Yes
33	604802	6754731	Yes
33	604850	6754738	Yes
33	604884	6754697	Yes
33	604877	6754642	Yes
33	604815	6754635	Yes
33	604754	6754635	Yes
33	604706	6754656	Yes
33	604713	6754704	Yes
33	604761	6754731	Yes
33	604802	6754731	Yes
34	605581	6754471	
·34	605670	6754492	
34 34	605690	6754540	
34	605642	6754553	
34	605588	6754553	
34	605506	6754547	
34	605492	6754492	
34	605519	6754465	
34	605560	6754465	
34	605581	6754471	
35	605711	6754970	
35	605800	6754970	
35	605902	6754991	
35	605902 605916	6755039	
35	605861	6755052	
35	605793	6755059	
35	605697	6755032	

•

~~~	000440	0750000		
39	600148	6753262		
39	600203	6753275		
40	603121	6753884	Yes	
40	603018	6753870	Yes	
40	602916	6753884	Yes	
40	602800	6753904	Yes	
		6753904		
40	602759		Yes	
40	602704	6753884	Yes	
40	602588	6753863	Yes	
40	60251 <del>9</del>	6753863	Yes	
40	602499	6753890	Yes	
40	602533	6753925	Yes	
40	602601	6753952	Yes	
40	602697	6753972	Yes	
40	602800	6753993	Yes	
40	602923	6753979	Yes	
40	603032	6753952	Yes	
40	603114	6753938		
			Yes	
40	603128	6753911	Yes	
40	603121	6753884	Yes	
41	602984	6752599	Yes	
41	603121	6752551	Yes	
41	603216	6752517	Yes	
41	603298	6752537	Yes	
41	603333	6752585	Yes	
41	603292	6752606	Yes	
41	603216	6752613	Yes	
41	603169	6752613	Yes	
41	603107	6752654	Yes	
41	603032	6752674	Yes	
41	602970	6752674	Yes	
41	602888	6752667	Yes	
41	602888	6752619	Yes	
41	602943	6752599	Yes	
41	602943	6752599		
			Yes	
42	602731	6753638	Yes	
42	602642	6753610	Yes	
42	602595	6753617	Yes	
42	602451	6753631	Yes	
42	602369	6753624	Yes	
42	602308	6753603	Yes	
42	602280	6753631	Yes	
42	602362	6753692	Yes	
42	602417	6753720	Yes	
42	602472	6753726	Yes	
42	602574	6753699	Yes	
42	602649	6753699	Yes	
42	602697	6753699	Yes	
42	602724	6753685	Yes	
42	602731	6753672	Yes	
42	602731	6753638	Yes	
42	602786	6753364		
40	002/00	0703304	Yes	

40	000045	0750004	Ma a	
43	602615	6753364	Yes	
43	602567	6753357	Yes	
43	602444	6753316	Yes	
43	602390	6753316	Yes	
43	602328	6753289	Yes	
43	602239	6753248	Yes	
43	602178	6753228	Yes	
43	602089	6753193	Yes	
43	602007	6753180	Yes	
43	601870	6753173	Yes	
43	601809	6753173	Yes	
43 43	601699	6753113	Yes	
43	601638	6753064	Yes	
43	601590	6753043	Yes	
43	601501	6753070	Yes	
43	601556	6753111	Yes	
43	601604	6753125	Yes	
43	601679	6753193	Yes	
43	601754	6753228	Yes	
43	601816	6753255	Yes	
43	601898	6753262	Yes	
43	602007	6753248	Yes	
43	602137	6753275	Yes	
43	602191	6753310	Yes	
43	602321	6753364	Yes	
43	602390	6753392	Yes	
43	602485	6753405	Yes	
43	602540	6753433	Yes	
43	602608	6753439	Yes	
43 43	602008	6753439		
			Yes	
43	602772	6753439	Yes	
43	602854	6753433	Yes	
43	602868	6753378	Yes	
43	602841	6753364	Yes	
43	602786	6753364	Yes	
44	601857	6753392	Yes	
44	601980	6753371	Yes	
44	602089	6753405	Yes	
44	602191	6753426	Yes	
44	602260	6753480	Yes	
44	602280	6753515	Yes	
44	602246	6753508	Yes	
44	602191	6753501	Yes	
44	602075	6753460	Yes	
44	602000	6753453	Yes	
44	601925	6753446	Yes	
44 44	601925	6753446	Yes	
	601870	6753433		
44			Yes	
44	601843	6753419	Yes	
44	601857	6753392	Yes	
45	602130	6752975	Yes	
45	602198	6752988	Yes	

45	602321	6753029	Yes		
45	602355	6753077	Yes		
45	602287	6753091	Yes		
45	602246	6753084	Yes		
45	602198	6753070	Yes		
45	602130	6753029	Yes		
45	602116	6752995	Yes		
45	602130	6752975	Yes		
46	601993	6752695	Yes		
46	601891	6752708	Yes		
46	601795	6752708	Yes		•
46	601706	6752688	Yes		
46	601638	6752681	Yes		
46	601624	6752722	Yes		
46	601679	6752756	Yes		
46	601788	6752790	Yes		
46	601891	6752790	Yes		
46	601973	6752797	Yes		
46	602027	6752790	Yes		
46	602068	6752763	Yes		
46	602068	6752715	Yes		
46	602034	6752695	Yes		
46	601993	6752695	Yes		
47	601385	6752578	Yes		
47	601289	6752537	Yes		
47	601228	6752537	Yes		
47	601125	6752428	Yes		
47	601050	6752380	Yes		
47	600954	6752312	Yes		
47	600845	6752209	Yes		
47	600797	6752203	Yes		
47	600695	6752155	Yes		
47	600572	6752148	Yes		
47 47	600449	6752148	Yes		
47 47	600387 600305	6752162 6752155	Yes		
47	600305	6752155	Yes Yes		
47	600244 600175	6752168	Yes		
47	600080	6752188	Yes		
47	600087	6752223	Yes		
47	600182	6752244	Yes		
47	600292	6752244	Yes		
47	600421	6752244	Yes		
47	600517	6752237	Yes		
47	600599	6752244	Yes		
47	600715	6752271	Yes		
47	600784	6752291	Yes		
47	600913	6752373	Yes		
47	600982	6752408	Yes		
47	601098	6752503	Yes		
47	601159	6752606	Yes		
47	601228	6752626	Yes		
••			.00		

*,* 

47 47 47 47 47 48 48 48 48 48 48	601317 601385 601440 601460 601440 601385 601611 601488 601385 601235 601180	6752660 6752667 6752613 6752585 6752578 6751540 6751553 6751547 6751492 6751478	Yes Yes Yes Yes Yes Yes Yes Yes Yes
48 48	601091 601098	6751478 6751512	Yes Yes
48	601180	6751553	Yes
48	601282	6751594	Yes
48	601385	6751635	Yes
48	601488	6751635	Yes
48	601590	6751629	Yes
48	601665	6751635	Yes
48	601713 601679	6751588 6751547	Yes
48 48	601679	6751547	Yes
40 49	600312	6751540	Yes
49	600421	6751581	
49	600565	6751642	
49	600592	6751656	
49	600722	6751704	
49	600784	6751731	
49	600913	6751738	
49	600954	6751772	
49	601132	6751813	
49	601194	6751847	
49	601255	6751875	
49	601310	6751922	
<b>4</b> 9	601289	6751936	
49 49	601194 601030	6751929 6751861	
49 49	600941	6751827	
49	600845	6751813	
49	600790	6751799	
49	600667	6751758	
49	600585	6751752	
49	600490	6751711	
49	600415	6751663	
49	600353	6751649	
49	600319	6751615	
49	600312	6751588	
49	600312	6751560	
50	602075	6752175	
50	602185	6752216	
50	602273	6752250	
50	602314	6752291	

	50	602260	6752298			
	50	602191	6752291			
	50	602130	6752278			
	50	602089	6752244			
	50	602075	6752203			
	50	602075	6752175			
	51	603995	6753193	Yes		
	51	603859	6753125	Yes		
	51	603784	6753105	Yes		
	51	603667	6753105	Yes		
	51	603592	6753111	Yes		
	51	603476	6753070	Yes		
	51	603387	6753064	Yes		
	51	603346	6753064	Yes		
	51 51	603292	6753002	Yes		
	51	603333 603408	6752975 6752995	Yes		
	51	603517	6753002	Yes Yes		
	51	603585	6753016	Yes		
	51	603695	6753016	Yes		
	51	603777	6753023	Yes		
	51	603927	6753064	Yes		
	51	604009	6753105	Yes		
	51	604077	6753146	Yes		
	51	604098	6753207	Yes		
	51	604084	6753221	Yes		
	51	603995	6753193	Yes		
	52	604440	6753221	Yes		
	52	604569	6753241	Yes		
	52	604720	6753316	Yes		
	52	604795	6753405	Yes		
	52	604884	6753439	Yes		
	52	604918	6753453	Yes		
	52	604904	6753494	Yes		
	52	604795	6753494	Yes		
	52	604706	6753439	Yes		
	52	604583	6753310	Yes		
	52	604508	6753323	Yes		
	52	604433	6753316	Yes		
•	-52	604337	6753282	Yes		
	52	604344	6753241	Yes		
	52 52	604399	6753234	Yes		
	52 53	604440 604727	6753221 6752449	Yes		
	53 53	604727	6752435			
	53 53	604795 604938	6752435			
¢.	53 53	605027	6752408		~	
	53 53	605027	6752483			
	53	605205	6752565			
	53	605267	6752606			
	53	605280	6752674			
	53	605232	6752674			
	<b>~</b> ~	30020E				

53 53 53 53 53 53 53 53 53 53	605178 605109 605041 604986 604911 604863 604795 604727 604699	6752640 6752578 6752531 6752490 6752490 6752510 6752510 6752510 6752510 6752496
53	604699	6752442
53	604727	6752449
54	602882	6751752
54	602977	6751717
54	603134	6751683
54	603134	6751683
54	603210	6751670
54	603305	6751622
54	603401	6751581
54	603462	6751553
54	603497	6751581
54	603476	6751622
54	603394	6751642
54	603333	6751676
54	603257	6751711
54	603196	6751752
54	603066	6751786
54	603018	6751793
54	602977	6751799
54 54 54 54 54	602929 602895 602875 602882	6751799 6751806 6751799 6751779 6751752
55	603298	6752790
55	603380	6752763
55	603456	6752736
55	603538	6752783
55	603503	6752818
55	603421	6752845
55	603394	6752845
55	603339	6752845
55	603305	6752831
55	603298	6752818
55	603298	6752790
56	603763	6752688
56	604002	6752811
56	604112	6752756
56	604180	6752722
56	604296	6752688
56	604399	6752660
56	604501	6752688

Yes Yes Yes Yes Yes Yes Yes

56	604583	6752736	Yes
56	604645	6752804	Yes
56	604658	6752845	Yes
56	604583	6752859	Yes
56	604501	6752811	Yes
56	604426	6752763	Yes
56	604358	6752756	Yes
56	604228	6752783	Yes
56	604159	6752804	Yes
56	604084	6752859	Yes
56	603961	6752900	Yes
56	603900	6752859	Yes
56	603825	6752824	Yes
56	603749	6752763	Yes
56	603695	6752708	Yes
56	603729	6752681	Yes
56	603763	6752688	Yes
57	604993	6752988	Yes
57	605144	6753180	Yes
57	605205	6753262	Yes
57	605260	6753337	Yes
57	605260	6753378	Yes
57	605178	6753330	Yes
57	605096	6753207	Yes
57	605034	6753118	Yes
57	605000	6753064	Yes
57	604897	6753023	Yes
57	604891	6752975	Yes
57	604959	6752982	Yes
57	604993	6752988	Yes
58	604310	6752893	Yes
58	604405	6752934	Yes
58	604501	6752934	Yes
58	604515	6752886	Yes
58	604494	6752852	Yes
58	604392	6752838	Yes
58	604330	6752818	Yes
58	604269	6752852	Yes
58	604310	6752893	Yes
59	603907	6751492	
59	604016	6751492	
59	604098	6751526	
59	604132	6751567	
59	604118	6751581	
59	604077	6751581	
59	603989	6751574	
59	603920	6751560	
59	603893	6751526	
59	603907	6751492	
		-	
60	603913	6753726	
60	604009	6753699	
60	604118	6753665	

60 60 60 60 60 60 60 60 60 60 60 61 61	604194 604282 604303 604276 604194 604132 604084 604016 603961 603913 603913 603913 603126 603200	6753644 6753649 6753699 6753726 6753754 6753767 6753774 6753795 6753774 6753747 6753726 6753726 6756057 6756080
61	603274	6756097
61	603314	6756040
61	603297	6755994
61	603217	6755989
61	603148	6755972
61 61	603086	6755994
61	603074	6756029
61 62	603126	6756057
62 62	602904 602978	6757931 6757943
62	603069	6757988
62	603103	6758028
62	603086	6758056
62 62	603052 602983	6758056 6758022
62	602905	6757999
62	602892	6757971
62	602892	6757954
62	602904	6757931
63 63	604100 603997	6759213 6759184
63	603804	6759127
63	603701	6759156
63	603581	6759184
63 63	603513 603467	6759150 6759105
63	603407	6759082
63	603336	6759076
63	603314	6759105
63	603410	6759167
63 63	603507 603593	6759236 6759264
63	603712	6759241
63	603792	6759218
63	603895	6759218
63	603963	6759258

Yes Yes Yes Yes Yes Yes

Yes Yes Yes

Yes Yes

63	604026	6759258		
63	604077	6759258		
63	604100	6759224		
63	604100	6759213		
64	604071	6759503	Yes	
64	603980	6759458	Yes	
64	603860	6759418	Yes	
64	603798	6759412	Yes	
64	603707	6759446	Yes	
64	603644	6759486	Yes	
64	603598	6759515	Yes	
64	603541	6759555	Yes	
64	603507	6759606	Yes	
64	603598	6759606	Yes	
64	603695	6759543	Yes	
64	603781	6759492	Yes	
64	603872	6759492	Yes	
64	603992	6759532	Yes	
64		6759549	Yes	
64		6759515	Yes	
64		6759503	Yes	
65		6759925	Yes	
65		6759805	Yes	
65		6759743	Yes	
65		6759743	Yes	
65		6759725	Yes	
65		6759743	Yes	
65		6759811	Yes	
65		6759811	Yes	
65		6759811	Yes	
65		6759908	Yes	
65		6759982	Yes	
65		6760010	Yes	
65		6760027	Yes	
65		6759976	Yes	
65		6759948	Yes	
65		6759925	Yes	
66		6759777		
66		6759839		
66		6759891		
66		6759817		
66		6759754		
66		6759748		
66		6759754		
66		6759777		
67		6760056	Yes	
67		6760084	Yes	
67		6760033	Yes	
67		6759965	Yes	
67		6759959	Yes	
67		6760016	Yes	
67	603758	6760033	Yes	

-----

~ --

·----

Table 2 presents the location of the conductive anomalies identified in the survey area and grouped into zones in Table 1. The east and north coordinates are the UTM location of the anomalies. The RTP_MAG column represents the reduced to the pole magnetic intensity value corresponding to this location. A background of 57000nT has been removed from each value.

Table 2

<u>aute z</u>		
East		RTP_MAG
602215	6757043	225
602231	6756683	162
602403	6756855	35
602403	6757084	114
602412	6757518	198
602600	6757780	184
602616	6757101	-7
602608	6756708	-54
602780	6756699	-56
602788	6757322	-18
602780	6757682	151
602788	6758026	180
602977	6758206	181
602977	6757977	128
602977	6757731	77
602977	6757527	-47
603198	6757633	-46
603214	6758411	178
603394	6759795	173
603411	6759115	182
603419	6758599	95
603419	6758403	105
603386	6757658	-82
603386	6757346	1588
603583	6757600	-195
603599	6758354	103
603599	6758550	121
603591	6758681	72
603591	6759214	161
603591	6759558	154
603607	6759762	159
603796	6760000	127
603796	6759771	122
603796	6759443	115
603796	6759165	131
603804	6758771	-41
603804	6758665	-33
603804	6758386	201
603779	6757551	-212
603984	6757543	-236
603976	6758329	325
603976	6758616	126

603992 604000 603984 603984 604181 604181 604181 604181 604377 604393 604377 604393 604598 604598 604598 604598 604599 605794 605982 606195 606400 605786 605794 6050587 605384 605384 605384 605384 605384 605384 605188 605384 605384 605188 605597 605384 605597 605384 605597 605384 605597 605384 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605188 605204 605185 604795 604803 604795 604615 604615 604615 604615 604615 604615 604615 604615 604615	6758845 6759214 6759492 6759951 6759025 6758763 67578763 6757846 6757379 6757215 6757764 6758264 6758853 6757764 67578853 6757764 6757248 6757764 6757453 6757776 6757248 6757453 6757776 6759771 6759476 6758501 6754625 6754202 6755004 6754840 67548505 6754652 6754652 6754652 6754652 6754709 6754349 6755119 6754709 6755176 6755291 6755127 6755291 6755127 67554677 6753488 6755160 6755348 6755725 6755709 6755709 6755709 6755709 6755709	$\begin{array}{c} 44\\ 101\\ 110\\ 76\\ 75\\ 46\\ 404\\ -88\\ -469\\ -335\\ -160\\ 505\\ 12\\ -32\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -248\\ -302\\ -24$
604623	6755348	-61
604615	6755725	64
604795	6755709	134
604385	6755979	-5
604197	6753678	122
604009	6753727	129

____

Ĺ

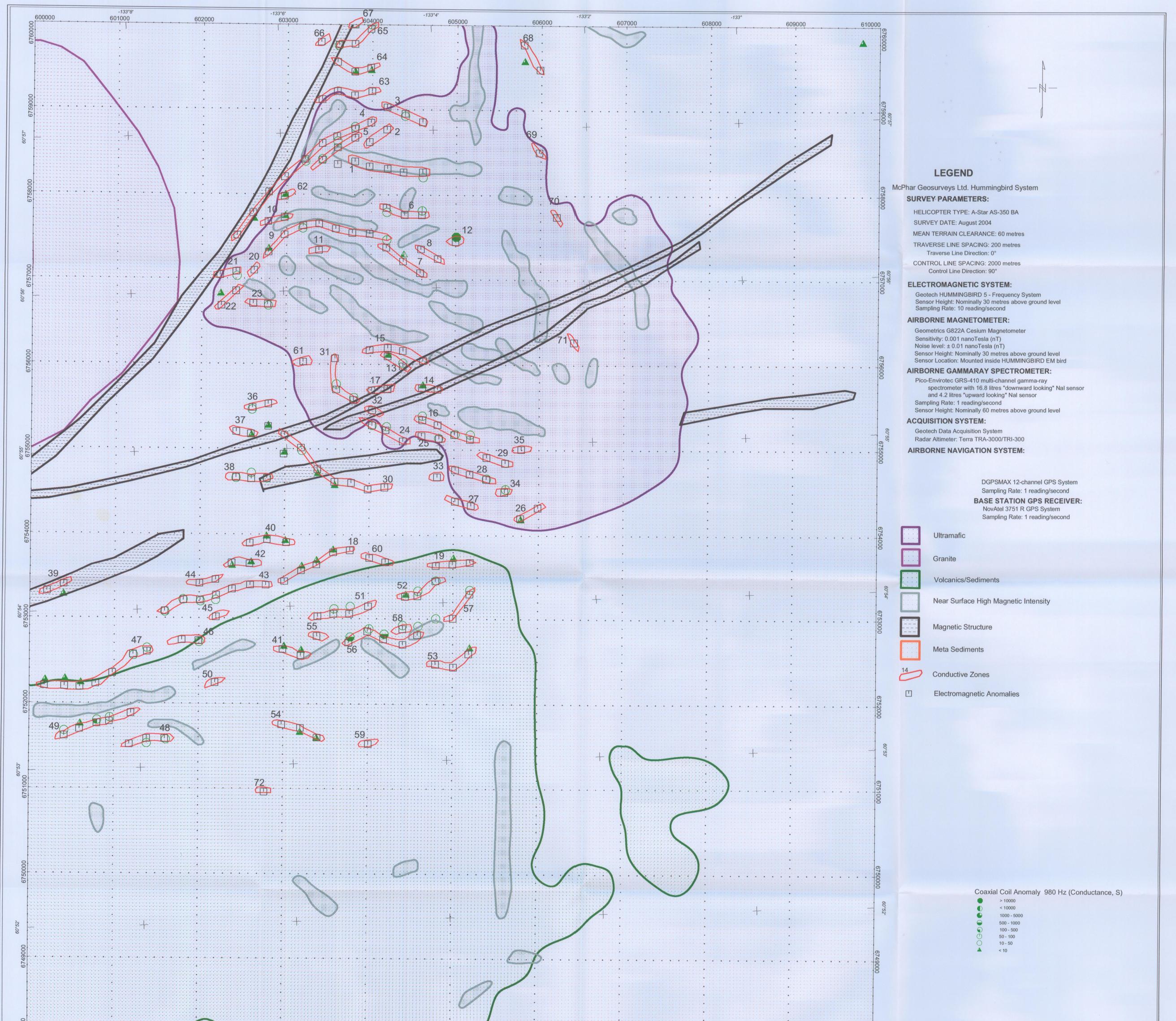
000770	0750047	4.40
603779	6753817	140
603583	6753792	150
603386	6753645	156
603206	6753571	183
604181	6754554	81
603984	6754529	98
603787	6754603	113
603591	6754611	140
603386	6754759	142
604393	6755094	104
604189	6755225	48
604025	6755283	94
604025	6755463	26
604205	6755709	-76
604017	6755692	-57
604205	6756093	-99
603992	6756167	
		-27
604205	6756192	-37
603583	6756069	-51
603804	6755577	31
603599	6755700	-15
603206	6756028	14
603190	6755012	148
602985	6754939	194
602993	6755160	116
602796	6755528	165
602608	6755487	194
602796	6755266	148
602592	6755176	200
602420	6755201	235
602420	6754660	232
602600	6754644	220
602788	6754652	191
603026	6753907	178
603026	6753907	
		170
602993	6752637	174
602985	6751753	115
603206	6751712	92
603403	6751597	24
604009	6751524	24
604795	6752465	46
604582	6752809	475
604410	6752695	187
604181	6752760	11
603992	6752850	112
603771	6752719	172
604582	6753268	100
604434	6753260	117
604000	6753145	95
603779	6753055	98
603591	6753055	85
603403	6753022	137

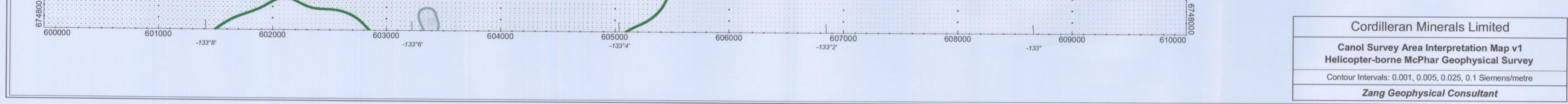
----

603394	6752793	273
603206	6752564	192
602190	6752244	143
602788	6753391	163
602796	6753940	176
602592	6753899	175
602592	6753653	194
602600	6753391	173
602387	6753342	161
602379	6753661	183
602190	6753456	175
602199	6753268	161
602199	6753014	158
601994	6752736	100
602010	6753211	145
602002	6753407	179
601814	6753211	148
601797	6752744	131
601601	6751581	49
601593	6753080	161
601388	6752605	119
601224	6752572	113
601183	6751515	71
601388	6751581	40
602780	6750959	-38
600978	6752351	123
600782	6752228	84
600593	6752187	55
600413	6752195	47
600176	6752203	98
600413	6751614	154
600593	6751696	204
600798	6751761	158
600946	6751786	156
601200	6751884	157
600200	6753309	150
600397	6753391	159
604999	6753006	115
605196	6753293	143
605188	6752588	171
605008	6752433	54
605990	6754324	78
604604	6758265	614
604405	6752879	150
004400	0102019	150

## Statement of Qualifications - Michael W. Zang

I, Michael W. Zang of 12579 Taylor Place, Summerland, in the Province of British Columbia, I do hereby certify that:


1. I am a graduate of York University, Faculty of Earth Science - degree (B.Sc.).


2. I have been engaged in mining exploration since 1981.

3. I am familiar with the use and interpretation of the airborne geophysical methods that are discussed in this report.

4. I hold no direct or indirect interest in, nor do I expect to receive any benefits from the mineral property or properties described in this report.

fulal Signed by: /// Michael W. Zang 7 Date: Feb. 8/05



