

ASSESSMENT REPORT THE LIVINGSTONE PROJECT LIVINGSTONE CREEK AREA, YUKON TERRITORY

YUKON GEOLOGICAL SURVEY 2005 YMIP (05-026) TARGET EVALUATION PROGRAM

> By Mark Lindsay Cordilleran Minerals Ltd

TABLE of CONTENTS

SUMMARY											5
INTRODUC	TION							"	"		6
LOCATION	AND A	CCESS									6
PHYSIOGR.	APHY, V	VEGETA	ATION	AND C	CLIMA	ГЕ	<u> </u>				6
HISTORY A	ND PRI	EVIOUS	WORI	K		-			4		6
PROPERTY	AND C	LAIM S	TATUS	S	<u> </u>		:		-	<u>L</u> -	8
2005 WORK	COMP	LETED		-1				- 1	- "	-	9
REGIONAL	GEOLO	ЭGY	-			= , .					10
GEOLOGIC	AL LEG	END		-							11
STRUCTUR	E		-			-		-			12
QUARTZ V	EINS AI	ND FRA	.CTURI	E ZONI	Ε					-	12
ALTERATIO	ON			<u>-</u>	- 1		-		-		12
ECONOMIC	GEOLO	OGY	-	-		<u>.</u>			.		14
ROCK ANA	LYSIS	7		- 4	- ;		Ţ. j. v	-	-	- 1.	14
SOIL ANAL	YSIS		-	-		T i	-	- 1	-		14
CONCLUSIO	ONS AN	ID REC	OMME	NDATI	ONS		-		-		15
STATEMEN					3						16
FIGURE 1: Y				-							3
FIGURE 2: L			-								4
FIGURE 3: L											4
FIGURE 4: L							7.1.5				10
FIGURE 5: L	_	_	-								11
FIGURE 6: L											13
FIGURE 7: M											13
FIGURE 8: Se											13
FIGURE 9: Li	_	-									13
FIGURE 10: I											13
FIGURE 11: I											13
FIGURE 12: 0	Jopper M	meranza	uon								13
APPENDIX A											17
APPENDIX E			-				***				18
APPENDIX C					and Loc	cations					20
APPENDIX I): Livings	stone Wo	rk Invoi	ces							56

Figure 1

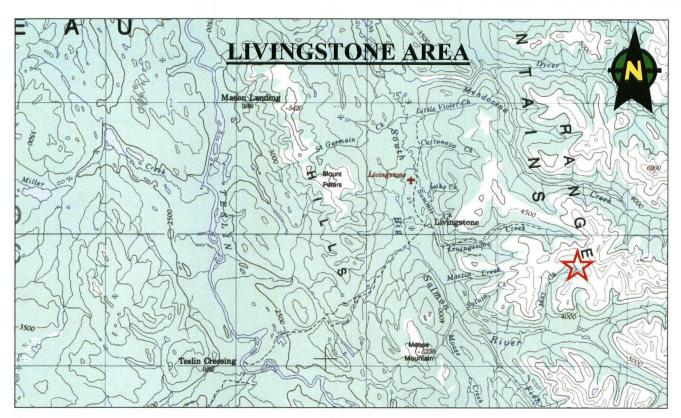


Figure 2

Figure 3

SUMMARY

In the late fall of 2005 a soil sampling program was conducted over a central portion of the Livingstone Creek (Liv) property of Cordilleran Minerals. The program was conducted late in the year due to unexpected problems encountered earlier in the 2005 exploration season.

The Liv target is located within the world class Livingstone Placer Gold Camp and is associated with a circular structure is being interpreted to be a ring fracture caused by a buried intrusion. The ring structure is specifically located at the headwaters of Livingstone Creek.

The soil program was conducted to test for gold and copper mineralization that may be associated with the large circular (landsat) feature. The circular feature is interpreted to be a ring dyke – radial dyke structure caused by recessive weathering over a buried intrusion.

Soils sampling conditions were very difficult. Snow conditions encountered while conducting the survey were described as deep and compact.

Approximately 525 soils samples were collected during the survey. Soil sample quality was compromised in some circumstances because of the difficult conditions in which samples were taken.

Assay results were not available at the time of writing this report.

INTRODUCTION

The area of interest regarding this report is known as the Liv Target Area (fig.3).

During late 2005 a soils sampling program was carried out over the Liv Target Area at Livingstone Creek, Yukon. The program was conducted by Cordilleran Minerals Limited.

Exploration over the Liv Target Area was conducted to identify any gold or copper mineralization found to be associated with what appears to be an intrusion related ring structure over the target area.

This report will discuss the general geology of the area and the analytical results from soil samples taken across the target.

LOCATION AND ACCESS

The Liv Target Area is located in south-central Yukon. The target area is 25 kilometers east of the Teslin River at the headwaters of Livingstone Creek (fig. 3) on NTS mapsheet 105E 08 (fig. 4 & 5). It is within the Whitehorse Mining District.

The approximate geographical center for the target area would be located at UTM 544658 E / 6799358 N

PHYSIOGRAPHY, VEGETATION AND CLIMATE

The Liv Porphyry Project is located in a sparsely forested area of high rolling hills to rough mountainous terrain. The highest point in the area is 2000 m. Drainage in the area is very good. Local creeks have a continuous supply of water during the spring and summer months. Most of the creek water is provided from melting permafrost. Some wetlands are located in the lower valleys alongside local creeks and rivers.

Vegetation in the area is relatively sparse. Moss, lichen and grasses, common to the area, cover much of the high alpine slopes of the target area. Willow, buck-brush and Black Spruce are found spread-out through the valleys, along with other varieties of moss and long grasses.

The climate of the area is typical of the interior continental region at this latitude. Winters are long with short hours of daylight and average daily temperatures of -20 Celsius. Summers are pleasant and warm with long days (20 hours of daylight on June 21), although it can be quite rainy at times. The average summer temperature is 19 Celsius with highs ranging into the low 30's (Celsius).

HISTORY AND PREVIOUS WORK

The real history of the Livingstone Creek area probably began in the early 1880's when prospectors first found gold in the southern Yukon. In 1881 explorers ascending the Big Salmon River discovered payable quantities of gold on many of the river bars along its watercourse. In

1884 substantial amounts of fine gold were discovered on Cassiar Bar, on the Yukon River just 73 kilometers north-west of the Livingstone Creek Placer Camp. It has been suggested that these placer gold occurrences may have been derived from glacial materials carrying gold away from the course placer gold fields at Livingstone Creek.

The news of early placer gold discoveries in the southern Yukon probably led to more prospectors exploring in the area. In 1894 it is reported that Joseph E. Peters prospected on Livingstone Creek. The initial gold discovery of the Livingstone Placer Camp is recorded as being made on Cottoneva Creek in 1898. All of the other creeks in the camp were also discovered in that year. Active mining in the camp was thought to have started after rich course gold was found by Peters on Livingstone Creek. J. Peters and George Black started to mine the creek near the turn of the century and they name the creek after Black's friend and fellow lawyer M.D. Livingstone.

The creek was mined on a continuous basis until the First World War. It was claimed that over a million dollars worth of gold was taken from Livingstone Creek before 1920. The other creeks in the camp also produced significant amounts of course gold. In 1905 a 39 ounce nugget was found on Summit Creek, a drainage immediately north of Livingstone. Placer production from the entire area almost ceased for about 20 years after WWI, but that has passed and now the creeks of the Livingstone camp have been mined on a continual basis from about the 1940's until today.

The amount of placer gold found in the Livingstone Camp is quite significant considering that the area has been glaciated on three occasions. Glaciers moving through an area usual spell the end of any placer deposits formed over time. The shear weight of glacial ice usual scours clean everything in its path. The Livingstone Camp was spared this sacrifice because the latest glaciers moved across the area at right angles to the general direction that the local creeks flow. This preservation event and others in the area helped create the world class placer deposits that existed at Livingstone. If the area had not been touch by glaciers (like the Klondike gold fields) the Livingstone Camp may well have been one of the richest placer gold discoveries on earth.

The lode source for the Livingstone Placer Camp has always been a bit of an enigma. Over 1500 men lived at the town site of Livingstone, near the turn of the 20th century, and it is said that many of them looked for the source of the placer gold but it was never found in big way. Some smaller veins were discovered and mined but the mother lode source for the camp was never found. The early history of lode prospecting and mining in the area has been lost so we may never know to what extent the locals knew of any lode sources or ideas regarding such sources. Lode prospecting and exploration in the Livingstone Camp has been very limited since the early 1900's.

Recently a few exploration companies have made interesting discoveries over the Livingstone area but most have not had a good model from which to continue to conduct their exploration programs. In the early 1970's prospectors started to stake claims in the Livingstone camp area. The high gold price of the 1980's led larger companies to the area. In 1981 DuPont Exploration of Canada conducted a large widespread regional stream sediment survey across approximately 20,000 sq. km of land in southern Yukon and northern British Columbia. The Liv Project area was detected in that survey as having an anomalous gold and copper signature. Subsequent exploration of the area found a heavy metal copper, gold and silver anomaly coming from the central zone of the Liv Porphyry target but no follow up work was conducted in the area. In 1986 Archer-Cathro explored the west side of the Liv area and found bonanza grade gold and silver in

quartz vein float. Two specimens assayed 303 g/t Au, 8.24 g/t Ag, 23.4% Sb, 0.01% Pb, and 66.5 g/t Au, 2756.5 g/t Ag, 30.4% As, 6.3% Pb, 0.4% Zn, 0.5% Sb, respectively. The source of the quartz was not found and their claims were eventually sold along with their interest because they did not have a good model from which to continue their exploration of the area.

In the early 1990's two German geologists conducted research on veins in the Livingstone area and concluded that veins carrying gold in the area were of epithermal origin and could be the source for the placer gold at Livingstone because of chemical similarities between placer gold and gold from local quartz veins. This theory has dominated and thus restricted the exploration of the Livingstone Placer Camp since that release of the report in 1992.

In 1995 a private company, Ross River Gold, explored in the area of the Liv Project. Robin Tolbert, Vice-President of exploration for Ross River Minerals (public equivalent) told the author that he had discovered gold mineralization on the immediate east side of the Liv Project area and he was inclined to stake the area but he could not convince the CEO of the company to commit to such a venture without having a solid exploration model to guide the process. Tolbert also said that he had notice a large amount of pyrite in the local drainage (Mendocina Creek) and that the pyrite existed in such huge quantities that the area was blanketed with a smell of sulfur from the decomposing sulfides.

More recently a large block of claims was staked on the western side of the Livingstone Camp in 1997-98. The prospectors who staked the block were interested in exploring for economic gold bearing quartz veins that were being touted as the source for the Livingstone placer gold.

Cordilleran Minerals Ltd. staked quartz claims in the area in November of 2004.

PROPERTY AND CLAIM STATUS

Cordilleran Minerals Limited owns 616 quartz mineral claims within the Livingstone area. See Appendix A for diagram.

Claim	Grant #	Renewal Term	Expiry Date
MIK 1 - 159	YC37133 - YC37291	1.00	29 Nov 2006
MIK 161	YC37293	1.00	29 Nov 2006
MIK 163	YC37295	1.00	29 Nov 2006
MIK 165	YC37297	1.00	29 Nov 2006
MIK 168 - 204	YC37300 - YC37336	1.00	29 Nov 2006
MIK 210 - 247	YC37342 - YC37379	1.00	29 Nov 2006
MIK 254 - 289	YC37386 - YC37421	1.00	29 Nov 2006
MIK 296 - 325	YC37428 - YC37457	1.00	29 Nov 2006
MIK 327	YC37459	1.00	29 Nov 2006
MIK 332	YC37464	1.00	29 Nov 2006
MIK 334 - 361	YC37466 - YC37493	1.00	29 Nov 2006
MIK 364 - 398	YC37496 - YC37530	1.00	29 Nov 2006
MIK 400 - 597	YC37532 - YC37729	1.00	29 Nov 2006
MIK 599 - 612	YC37731 - YC37744	1.00	29 Nov 2006
MIK 615	YC37747	1.00	29 Nov 2006
MIK 617	YC37749	1.00	29 Nov 2006
MIK 619	YC37751	1.00	29 Nov 2006
MIK 621	YC37753	1.00	29 Nov 2006
MIK 118	YC37250	2.00	29 Nov 2007
MIK 120	YC37252	2.00	29 Nov 2007

MIK 122	YC37254	2.00	29 Nov 2007
MIK 124 - 129	YC37256 - YC37261	2.00	29 Nov 2007
MIK 160	YC37292	3.00	29 Nov 2008
MIK 161	YC37293	2.00	29 Nov 2007
MIK 162	YC37294	3.00	29 Nov 2008
MIK 163	YC37295	2.00	29 Nov 2007
MIK 164	YC37296	3.00	29 Nov 2008
MIK 165	YC37297	2.00	29 Nov 2007
MIK 166 - 167	YC37298 - YC37299	3.00	29 Nov 2008
MIK 168 - 169	YC37300 - YC37301	2.00	29 Nov 2007
MIK 170	YC37302	1.00	29 Nov 2006
MIK 171	YC37303	2.00	29 Nov 2007
MIK 202 - 204	YC37334 - YC37336	2.00	29 Nov 2007
MIK 205 - 209	YC37337 - YC37341	3.00	29 Nov 2008
MIK 210	YC37342	1.00	29 Nov 2006
MIK 211	YC37343	2.00	29 Nov 2007
MIK 212 - 213	YC37344 - YC37345	1.00	29 Nov 2006
MIK 244	YC37376	1.00	29 Nov 2006
MIK 245 - 247	YC37377 - YC37379	2.00	29 Nov 2007
MIK 248 - 251	YC37380 - YC37383	3.00	29 Nov 2008
MIK 252 - 253	YC37384 - YC37385	2.00	29 Nov 2007
MIK 254 - 255	YC37386 - YC37387	1.00	29 Nov 2006
MIK 286 - 287	YC37418 - YC37419	1.00	29 Nov 2006
MIK 288 - 289	YC37420 - YC37421	2.00	29 Nov 2007
MIK 290 - 293	YC37422 - YC37425	3.00	29 Nov 2008
MIK 294 - 295	YC37426 - YC37427	2.00	29 Nov 2007
MIK 296 - 297	YC37428 - YC37429	1.00	29 Nov 2006
MIK 324 - 325	YC37456 - YC37457	1.00	29 Nov 2006
MIK 326	YC37458	3.00	29 Nov 2008
MIK 327	YC37459	2.00	29 Nov 2007
MIK 328 - 331	YC37460 - YC37463	3.00	29 Nov 2008
MIK 332	YC37464	1.00	29 Nov 2006
MIK 333	YC37465	2.00	29 Nov 2007
MIK 334 - 335	YC37466 - YC37467	1.00	29 Nov 2006
MIK 358 - 360	YC37490 - YC37492	1.00	29 Nov 2006
MIK 361 - 362	YC37493 - YC37494	2.00	29 Nov 2007
MIK 363	YC37495	3.00	29 Nov 2008
MIK 364	YC37496	1.00	29 Nov 2006
MIK 365	YC37497	2.00	29 Nov 2007
MIK 366 - 369	YC37498 - YC37501	1.00	29 Nov 2006
MIK 392 - 398	YC37524 - YC37530	1.00	29 Nov 2006
MIK 399	YC37531	2.00	29 Nov 2007
MIK 400 - 403	YC37532 - YC37535	1.00	29 Nov 2006

2005 WORK COMPLETED

Cordilleran Minerals Limited conducted a soil sampling program over the Liv Target area in November 2005. The soil sampling collection was contracted out to mining exploration contractor Coureur Des Bois of Whitehorse, Yukon. A group of 8 employees worked on the project from November 8-28, 2005.

A one day visit to the area by Cordilleran Minerals employees Mark Lindsay, Richard Baker and Adam Mickey was also carried out on July 23, 2005. The trip was conducted for prospecting purposes.

Trans North Helicopters provided support for all of the ventures carried out in the Livingstone area in 2005.

REGIONAL GEOLOGY

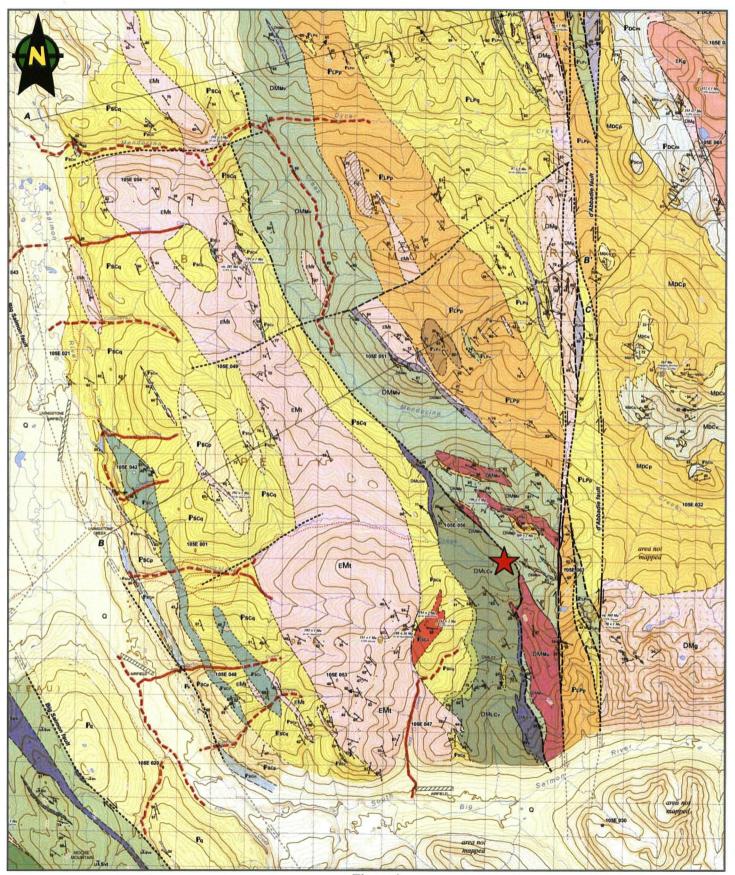


Figure 4

GEOLOGY LEGEND

LEGEND QUATERNARY UPPER DEVONIAN AND OLDER ? QUATERNARY: unconsolidated glacial, glaciofluvial and glaciolacustrine deposits; fluviatile silt, sand, and gravel, and local volcanic ash, in part with cover of soil and gravel, and local volcanic ash, in part with cover of soil and gravel. PLPE coarse-grained, strongly foliated arkosic grit, polymictic pebble to cobble metaconglomerate. INTRUSIVE ROCKS FLPm light grey to white marble; along contact with K-feldspar augen granite (DMg), brownwesthering, medium-grey, fine-grained silicitied marble. LATE CRETACEOUS LAST PEAK GRANITE: fine- to medium-grained, weakly foliated biotite granite, localty K-feldspar porphyritic, commonly protomylonitic (UPb monazite - 96 ± 1 Ma). PLPv strongly foliated and lineated siliceous chloritic phytitie, quartzofeldspathic and epidote layers along foliation. EARLY CRETACEOUS Purq tun-weathering micaceous and calcareous quartzite and quartz-muscovite±chlorite schist; black, grey and white quartzite, locally gritty; tan marble horizons; minor carbonaceous phyllite EKg DYCER CREEK STOCK: medium- to coarse-grained, unfoliated, biorite quartz monzonite (U/Pb monazite - 112 ± 1 Ma). PLPp black graphitic phyllite and quartzite; minor light grey quartz-muscovite schist and micaceous quartzite; minor buff-weathering marble. PERMIAN MISSISSIPPIAN AND YOUNGER ? fine-grained, rusty weathering, strongly foliated felsic schist (U/Pb zircon - 260 ± 2 Ma). Dycer Creek upper succession variably foliated, medium- to coarse-grained muscovite-biotite teucogranite, locally pegmatitic (UPb zircon - ca. 285 Ma). Mpcq light greenish-grey, fine- to medium-grained quartzite, locally gritty and arkosic (detrital zircons [U/Pb] - ca. 360, 450, 560, 1790, 2500 Ma); minor recessive grey phyllite. MDCv green chloritic phyllite/schist, Mt-rich; local intercalations of graphitic phyllite and quartzite. strongly foliated, light to medium grey, fine-grained tonalite gneiss; medium-grained, equigranular, strongly foliated hornblende-biotite granodiorite gneiss (UPP zircon ~ 351 ± 1 Ma). Moce graphitic phylite and black calcareous metasitistone. LATE DEVONIAN - EARLY MISSISSIPPIAN UPPER DEVONIAN AND OLDER ? moderately to strongly foliated, K-feldspar augen two-mica granite; protomylonitic to mylonear of Abbadie fault (UPP zircon - 355 ± 7 Ma, 358 ± 1 Ma). South of Mendocina Creek, variably foliated, fine- to madium-grained hornblend-biotile diorite, locally K-feldspar porphyritic granodiorite (UVPb zircon - ca. 369 Ma). Dycer Creek lower succession light grey to white, medium- to coarse-grained marble; locally garnet-diopside-epidote skarn. LOWER CLASTIC SUCCESSION: medium grey quartz-plagioclase-muscovite-biotite schist, locally quartz-plagioclase-biotite-homblende-epidote schist; coarse-grained andalusite-biotite schist; calc-allicate schist, marble, quartzie; inhusied by aheets of K-feidsper augen granite greists [Mg]. LAYERED ROCKS STIKINIA UPPER TRIASSIC - JURASSIC? Semenof formation (Simard, 2003) SYMBOLS PORPHYRITIC FLOW MEMBER: light to medium grey/green clinopyroxene-plagioclasse-phyric basalt, locally brecistated and/or amygdaloidal (u.Sas); medium to dark green amphibole-clinopyroxene-plagioclase-phyric basalt, locally brecistated (u.Sas) oKar geologic contacts (defined, approximate, inferred, covered [grey])...... VOLCANICLASTIC MEMBER: massive dark green, brown, purple and/or red, pebble to co volcanic conglomerate (fix-ev), well-bedded, tight green, coarse-grained crystal and tithic to, grading into tine-grained sel-hulf, minor lapilli utif (utiles); massive, light to dark grey volcar sandstone, minor black argilitis, clast-supported pubble to cobble breccia (utiles). fault; movement not known (defined, approximate, inferred, covered)...... uTsv LIMESTONE MEMBER: massive, light grey to beige, recrystallized limestone ($u\bar{x}san$); class-supported, pebble to cobble limestone conglomerate, contains up to 30% angular baselt and ribbon-chert clasts ($u\bar{x}sac$). dextral strike-slip fault (defined, approximate, inferred, covered)...... · **** **BOSWELL ASSEMBLAGE** normal fault PENNSYLVANIAN Boswell formation (Simard, 2003) bedding..... Pai beige to grey limestone, commonly bioclastic. 10 foliation (dominant)..... elongation or mineral lineation Paq rusty-weathering, medium-grained quartz sandstone. Pec calcareous, massive, poorly sorted polymictic conglomerate and fitharenite, clasts include angular fragments of black chert, argillite, mafic and felsic volcanic rocks and limestone. fold axis (dominant phase)..... MISSISSIPPIAN AND OLDER field station.... Moose formation (Simard, 2003) IMM rusty-weathering, pink quartz-feldspar-phyric rhyolite (U-Pb zircon - 359 ± 3 Ma). uDMs dark green, fine-grained, massive and pillowed basalt. иОмг light grey, massive limestone. NOTES 1) Geology of the Semenof Hills, west of the South Big Salmon River, is after Simard (2003). uDate green conglomeratic sandstone with volcanic and sedimentary clasts. 2) Selected Ar/Ar dates and two Devonian-Mississippian UIPb dates are from Hansen et al. (1989, 1991). The remaining UIPb dates are unpublished data by S.D. Carr; three additional Ar/Ar muscovite dates are unpublished data by M. Colpron. Older, less reliable K/Ar and Rb/Sr dates reported in Hansen et al. (1989) are not shown on this map. Till We YUKON-TANANA TERRANE 3) Detrital zircon dates from a quartzite of the Dycer Creek succession (Moc_q) is unpublished data by M. Colpron. PALEOZOIC (?) Loon Lake succession (Barresi, 2004) Compilation of the geology of Yukon-Tanana Terrane has benefited from unpublished map and notes by J.L. Harvey, provided by S.D. Carr, and mapping by Gallagher (1999). Pq foliated, intercalated quartzite, sitstone and phyllite. 4) Metasedimentary rocks of the Loon Lake succession were studied in detail by Barresi (2004). Ps dark grey carbonaceous sittstone, quartz sandstone LIPPER DEVONIAN AND OLDER REFERENCES Snowcap complex Barresi, T., 2004. Sedimentology, structure, and depositional setting of the Loon Lake sedimentary rock unit, southern Semenof Hills, central Yukon. Unpublished B.Sc. Honours thesis, Saint Mary's University, Halfax, Nova Scolle, 65 p. light to medium green, variably siliceous, fine- to medium-grained calcareous chloritic schist; locally contains layers of buff-weathering siliceous marble. Pscv Deklerk, R. and Traynor, S., 2005. Yukon MINFILE 2005 - A database of mineral occurrences Yukon Geological Survey, CO-ROM. Pscm marble. quartzite, micaceous quartzite, quartz-muscovite-biolite schist, minor carbonaceous schist; locally quartz-pebble conglomerate. Pscq Gallagher, C.S., 1999. Regional-scale transposition and tate large-scale folding in the Teslin Zone, Pelly Mountains, Yukon. Unpublished M.Sc. thesis. Carleton University, Ottawa, Ontario, 199 p. Pscp dark grey to black carbonaceous phyllite and schist, locally graphitic Hansen, V.L., Mortensen, J.K. and Armstrong, R.L., 1989. U-Pb, Rb-Sr, and K-Ar isotopic constraints for ductile deformation and related metamorphism in the Tealin suture zone, Yukon-Tannan terrane, south-central Yukon. Canadian Journal of Earth Sciences, vol. 26, p. 2224-2235. dark green to black, fine-grained garnet amphibolite Psea Hansen, V.L., Heizler, M.T. and Harrison, T.M., 1991. Mesozoic thermal evolution of the Yukon-Tanana composite terrane; new evidence from ⁴⁰Ar/³⁶Ar data. Tectonics, vol. 10, p. 51-76. DEVONIAN-MISSISSIPPIAN? Livingstone Creek succession Lipovsky, P.S., Lebarge, W., Bond, J.D. and Lowey, G., 2001. Yukon placer activity map. Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, 1:1 000 000. Bight green to light grey quartizite, quartz-muscovite-plagioclase-chlorite schist, minor greenstone. DMcm buff-weathering dolomitic marble and quartrite; light grey marble DMLCr fine-grained, quartz-muscovite-plagioclase white schist. RECOMMENDED CITATION **DEVONIAN-MISSISSIPPIAN?** Colpron, M., 2005. Geological map of Livingstone Creek area (NTS 105E/8), Yukon (1:50 000 scale). Yukon Geological Survey, Open File 2005-9. Mendocina succession Digital cartography and drafting by Maurice Colpron, Yukon Geological Survey. OMe Any revisions or additional geological information known to the user would be welcomed by the Yukon Geological Survey. DMMm marble Paper copies of this map, the accompanying report and Yukon MINFILE may be purchased from Geoscience Information and Sales, cio Whitehorse Mining Recorder, Energy, Mines and Resources, Yukon Government, Room 102 - 300 Main St., Whitehorse, Yukon, Y1A 285. Ph. 867-867-5200, Fx. 867-867-5150, Email geoscient@gov/yk.ca. DMMv fine-grained phyllitic greenstone, rarely massive; locally, medium- to coarse-grained plagioclase-homblende metagabbro. DMMp graphitic phylite.

A digital PDF (Portable Document File) file of this map may be downloaded free of charge from the Yukon Geological Survey website: http://www.geology.gov.yk.ca.

STRUCTURE

A circular structure anomaly exists at the headwaters of Livingstone Creek (fig. 6). The circular feature was initially interpreted to be caused by recessive weathering over a buried intrusion related ring—radial fracture complex. A coincident regional magnetic anomaly is located in the exact center of the circular landsat image. The regional magnetics also follow along the same orientation as northwest trending faults that have been mapped within the Livingstone Camp.

Several structural trends also occur within the general target area. A major strike slip fault trends in a north/south direction, along or close to the contact between the mapped location of the eastern DMg granite (see fig. 4) and the adjacent ultramafic and metamorphic rocks. This fault may be the conduit that allowed the upward movement of the <u>proposed buried intrusion</u> into its current position.

Several other strike slip faults have been inferred to exist in the area. Figure 4 shows the location of the faults. The faults may have allowed the movement of <u>proposed intrusive rocks</u> into the more northern parts of the target area. The faults mirror the extensive magnetic signature of the area and may reflect the presence of intrusion/fault related mineralization.

QUARTZ VEINS and FRACTURE ZONE

Several large NW/SE trending quartz veins have been seen in outcrop in the target area. The veins have not been traced on surface but they appeared to be quite persistent and approximately 1m wide. A section of one vein carried significant copper values. A relatively extensive fracture zone (May Zone sample fig. 7) exists in the area of the quartz veins and appears to cover a relative large section of the southwest side of the inner circular structure.

The May Zone outcrops along a ridge on the southwest side of the inner ring structure for approximately 300 meters in length. The zone hosts sheeted and stockwork-type veins carrying sulfides and appears to continue under cover for a greater distance considering that other areas of fractures and veining, of similar nature, were noted further north along the inner ridge as it curves off to the east. The two most significant rock grab samples containing gold, found to date, came from this zone.

ALTERATION

The May Zone appears to host areas that have been affected by significant alteration processes. The rock sample in fig. 8 appears to have considerable sericite alteration. This rock sample hosts the highest gold values found to date on the property.

Altered porphyry (fig. 9) was also observed in the central area of the ring structure. The matrix of many of the samples of the porphyry found in the central area reacted to dilute hydrochloric acid.

The color anomaly on the east side of the Liv ring structure (fig.10) may be associated with an (intrusive) alteration event.

The ultramafic in the area also shows several signs of being altered. Numerous veins cut through the unit and some bleached ultramafic rocks were also observed in the area.

Figure 8

Figure 10

Figure 7

Figure 9

Figure 11

Figure 12

ECONOMIC GEOLOGY

Sulphide mineralization is found in most if not all rock units throughout the target area. Pyrite is the predominant sulfide mineral, with occurrences of chalcopyrite, hematite and rare occurrences of nickeline from the alteration of the eastern ultramafic unit. The most obvious mineralized sites seemed to be related to the May Fracture Zone. In the May Zone rusty quartz veins were seen carrying significant chalcopyrite and malachite.

Exploration highlights from Livingstone in 2004/2005 all come from the May Zone area (big star in fig. 11) and include: 1.8 g/t & 518 ppb Au from sericite altered grab samples of quartzite (fig. 8) and .72% Cu & 26g/t Ag from a large quartz carbonate vein (fig 12). Minor copper mineralization has been found in other locations in the target area as well (small star in fig. 11).

Soil samples results from the 2005 soil survey were not available at the time of writing and will be appended to this report in the future.

ROCK ANALYSIS

9 rock grab samples were collected from the target area on July 23, 2005.

The samples were sent to Acme Laboratories Ltd. in Vancouver, British Columbia for analysis. At Acme Labs the rocks will be crushed and sieved to -150 mesh, digested in hot HCL / HNO3 and analyzed by ICP-MS.

The assay results and location map are available in appendix "B".

SOIL ANALYSIS

Approximately 525 soil samples were collected from the target area between November 8 and November 28, 2005. The samples were collected in wet strength Kraft sample bags and air-dried at Whitehorse.

The soil samples were taken at 100 m intervals along lines that were spaced at 200m in an E-W orientation. Samples were taken in very adverse conditions and as such the quality of some of the samples may have been compromised due to the constraints of having only "one opportunity" to dig for the sample in frozen, snow covered ground. Snow depths in the area at the time of the survey were anywhere from 10 to 130 cm.

Sample sites were dug with a grub hoe and samples were taken, when available, from the "B" horizon.

The soils were sent to Acme Laboratories LTD. in Vancouver, British Columbia for analysis. At Acme labs the soils were dried and sieved to -80 mesh, digested in hot HCL/HNO3 and analyzed by ICP-MS.

The assay results were not available at the time of writing this report.

Assays and analysis will be submitted as an addendum in appendix "C" when they are received.

CONCLUSIONS and RECOMMENDATIONS

The Livingstone area has a long placer gold mining history. Hard-rock exploration in the area has not been extensive and unfortunately documentation regarding any early hard-rock exploration was lost in a fire in the 1950's. Recent exploration has found anomalous and sometimes bonanza grades of gold, copper and silver in the area.

The large circular feature at the headwaters of Livingstone Creek may be associated with a buried intrusion. All significant mineral occurrences in the area appear to be associated with a new fracture zone within the circular feature. Initial prospecting in 2004/05 identified anomalous concentrations of gold, copper and silver in rocks and soils over the circular landsat feature. The fracture zones are potentially related to a buried intrusion under the target area. Results from a late season soil sampling program should be released in January 2006. Unfortunately the quality of samples from the late season soil program may have been compromised due to the adverse weather conditions.

Additional, <u>well planned</u> mineral exploration surveys and mapping over the area may help to define mineralized zones.

It is recommended that an airborne geophysics survey be conducted over the Livingstone area. The survey should employ the use of equipment for recording the magnetic and radiometric attributes of the target. Detailed geological mapping should also be conducted over the ring structure area. Expanded prospecting and soil sampling programs should also be conducted as it will help to further asses the gold potential of the area.

STATEMENT OF COSTS

2005 Assessment Work Valuation for the Livingstone Property – Mik Claim Block – 105C 08

A. FIELD WORK

M. Lindsay, Party Chief – Whitehorse, Yukon

July 23, 2005; 1 day @ \$400/day = \$400.00

A. Mickey, Assistant – Whitehorse, Yukon

July 23, 2005; 1 day @ \$200/day = \$200.00

R. Baker, Assistant – Whitehorse, Yukon

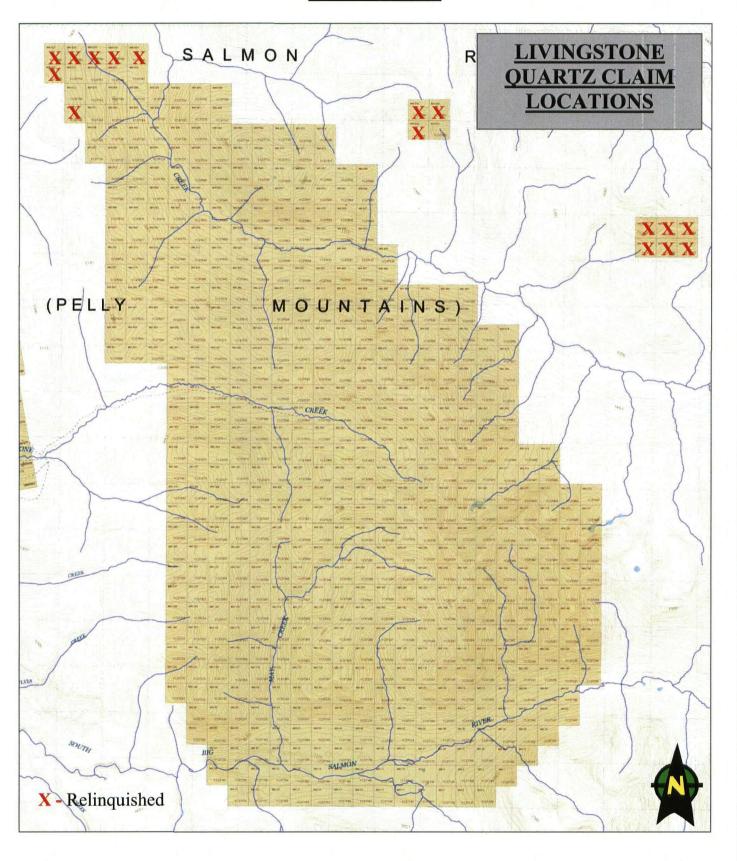
July 23, 2005; 1 day @ \$200/day = \$200.00

Coureur Des Bois, Soil Survey Contractor – Whitehorse, Yukon
November 8-28, 2005; 91 man-days@ \$325/man-day+tax = \$31645.25

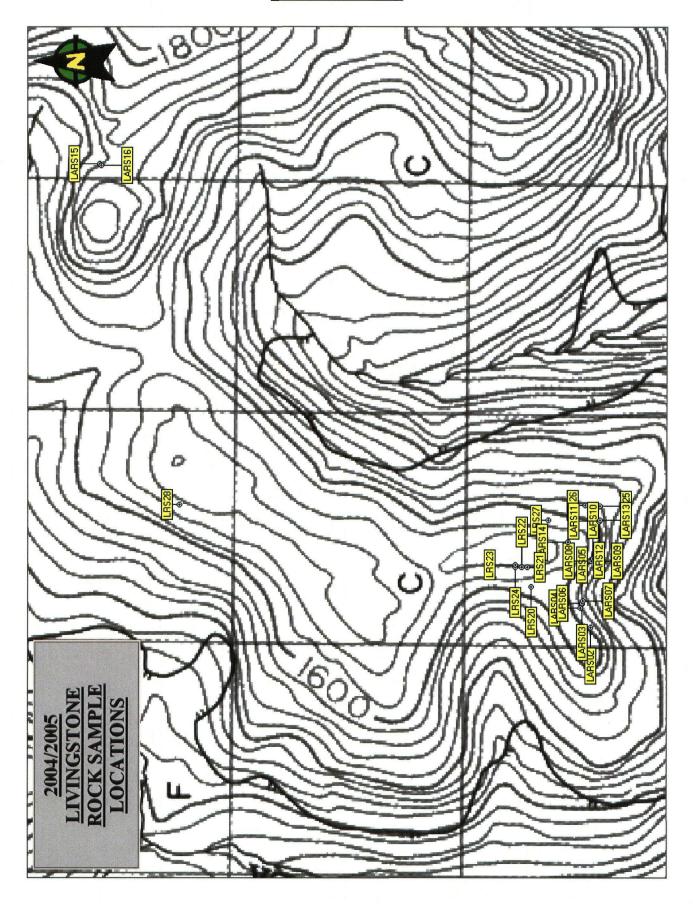
B. GEOCHEMICAL ANALYSIS

9 Rock Samples – July 2005 (Acme Lab) @ 17.25/sample+tax = \$182.00 525 Soil Samples - November 2005 (Acme Lab) @ \$14.25/sample+tax = \$8931.83

C. SUPPORT COSTS


Helicopter (Trans North)(July) -2 hours @ 975/hr (+ fuel&tax) = \$2119.46 Helicopter (Trans North)(November) -26.8 hours @ 975/hr (+ fuel&tax) = \$32043.56

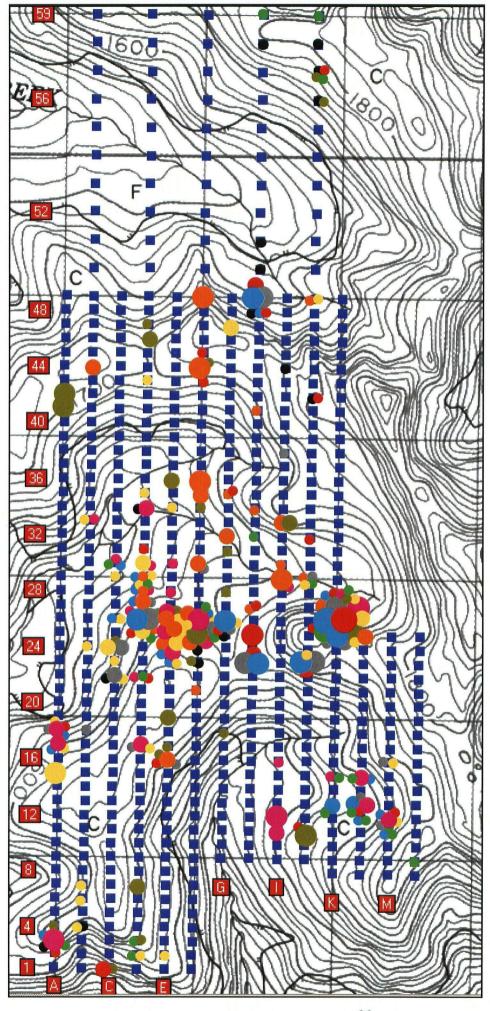
D. REPORT PREPARATION


M. Lindsay – 2.5 days @ \$400/day \$1000.00

TOTAL VALUATION OF 2005 ASSESSMENT WORK = \$76722.10

APPENDIX "A"

APPENDIX "B"


2005 Livingstone Rock Sample Assay Results

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

To Cordilleran Minerals

Analysis: GROUP 1DX - 30 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN 03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS.

ONE HOUR	, DILU	TED TO	000 C	ML, AN	ALYS	ED B	CICP-I	MS.								
EL EMEN T	Mo	Cu	Pb	Zh	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	St .	Cd	Sb
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	рръ	ppm	ppm	ppm	ppm
LRS-20	0.5	33.9	3.3	33	0.2	26.7	8.4	919	2.01	3	0.5	3.2	2.3	206	0.2	0.2
LRS-21	0.9	443	7.2	22	0.2	19.5	7.6	915	1.66	1.8	0.2	2.9	1	576	0.3	0.2
LRS-22	0.3	20.2	56.8	52	0.8	36.6	8.7	765	1.97	0.7	0.3	5.2	2.4	461	0.3	0.1
LRS-23	0.3	159	6.8	25	0.1	9.7	12.7	601	5.11	0.5	0.8	1.8	3.2	155	0.3	0.1
LRS-24	0.9	113	1.8	12	0.1	2.7	3.2	263	1.07	1.6	0.2	1.7	1.8	68	0.2	0.3
LRS-25	0.2	29	2.3	40	<.1	2.2	3.2	966	2.19	0.6	0.3	8.6	2.9	348	0.3	0.1
LRS-26	1.7	3523	19.4	34	3.4	14.6	60.4	529	5.19	1.4	0.6	517.7	2.6	34	0.1	0.4
LRS-27	0.6	79.6	12	255	0.5	29.7	655	1296	18.43	<.5	0.5	17.5	2.3	7	<.1	0.1
LRS-28	0.3	12.8	7.8	34	0.1	2.1	3.8	678	2.14	0.8	0.4	5.3	14.5	91	0.3	0.2
EL EMEN T	Bi	V	Ca	P	La	Ctr	Mg	Ba	Ti	В	Al	Na	K	W	Hg	Sc
SAMPLES	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm
LRS-20	0.3	27	2.32	0.057	8	20.3	0.92	289	0.007	2	037	0.094	0.05	29	<.01	4.5
LRS-21	0.3	13	5.94	0.028	3	21.5	0.49	368	0.009	2	0.19	0.04	0.07	3.7	<.01	3.4
LRS-22	0.8	42	3.99	0.045	6	40.4	0.78	566	0.036	1	0.62	0.049	033	0.1	<.01	4.7
LRS-23	0.3	27	2.88	0.052	11	5.3	0 35	37	0.029	1	0.44	0.076	0.16	2.1	<.01	2.7
LRS-24	0.3	4	0.97	0.025	7	8.3	0.14	1465	0.001	3	032	0.051	0.18	33	<.01	2.5
LRS-25	0.2	3	3.55	0.021	8	2.8	0.74	1648	0.001	2	0.07	0.039	0.01	03	<.01	5.6
LRS-26	2.8	58	0.79	0.065	4	17.6	1 28	56	0.01	2	138	0.041	0.23	22	0.01	7.2
LRS-27	1.1	248	0.03	0.028	2	89.8	5.48	39	0.017	<1	4.79	0.008	0.05	33	0.01	18.2
LRS-28	0.1	11	1.82	0.031	23	3.4	0.36	1211	0.01	1	0.28	0.118	0.04	0.3	<.01	6
EL EMEN T	Tl	S	Ga	Se												
SAMPLES	ppm	%	ppm	ppm						18 3						
LRS-20	<.1	0.21	2	0.5										1 2 61		
LRS-21	<.1	0.48	1	<.5												
LRS-22	0.2	0.32	5	0.6												
LRS-23	0.1	4.33	2	4.6												
LRS-24	0.1	0.07	1	<.5												
LRS-25	<.1	0.08	≺l	<.5												
LRS-26	0.1	2.86	5	73												
LRS-27	<.1	4.23	31	159												
LRS-28	<.1	0.13	1	<.5												
									4							
									1							
								1								

APPENDIX "C"

<u>Livingstone</u> <u>Soil Geochemical</u> **Anomaly Location**

Anomaly Strength

Liv Survey 95 %tile

Liv Survey > 98 %tile

Strong Anomaly

- Mo (95% 1.4 ppm) (100% - 7.2 ppm) (Strong Anomaly - 10 ppm)
- Cu (95% 85 ppm) (100% - 208 ppm) (Strong Anomaly - 140 ppm)
- Pb (95% 39 ppm) (100% - 2222 ppm) (Strong Anomaly - 100 ppm)
- Zn (95% 131 ppm) (100% - 3470 ppm) (Strong Anomaly - 300 ppm)
- Ag (95% 0.9 ppm) (100% - 12.5 ppm) (Strong Anomaly – 2 ppm)
- Mn (95% 1504 ppm) (100% - 4328 ppm) (Strong Anomaly - 3000 ppm)
- As (95% 38 ppm) (100% - 170.1 ppm) (Strong Anomaly - 100 ppm)
- Au (93% 20 ppb) (100% - 100.7 ppb) (Strong Anomaly - 100 ppb)
- Sb (95% 1.1 ppm) (100% - 12.2 ppm) (Strong Anomaly - 15 ppm)

To Cordilleran Minerals	inerals																
Acme file # A600068	890																
Analysis: GROUP 1DX	DX - 15.00 G	- 15.00 GM SAMPLE LEACHED WIT	E LEACH		H 90 ML 2-2-2 HCL-HNO3-H2O	2 HCL-H	NO3-H20	AT 95	DEG. C FOR	ONE HOUR,		DILUTED TO	300 ML,	ANALYSED BY		ICP-MS	
ELEMENT Mo	Cu	Pb	Zu	Ag	Ni	Co	Mn	Fe	As	N	Au	Th	Sr	PO	Sb	Bi	^
SAMPLES ppm	ppm	ppm	m	n	ppm	ppm	ppm	%	n	ppm	qdd	mdd	ppm	ppm	ppm	ppm	mdd
1.1	23.1	11.9	53	0.1	23.5	10.7	462	2.71	28.2	6.0	3	1.1	26	0.1	0.3	0.4	51
1	11.5	3.4	59	0.1	11	8.5	675	1.61	3.1	0.4	2.3	9.0	22		0.1	0.1	36
1.3	35.5	39.8	135		23.9	15.1	988	3.07	154.8	2.0	6.9	2.7	18		2.3	0.4	41
1.1	35.5	14	104	0.2	25.1	16.2	4	2.27		8.0	3.6	1.4	28	2	9.0	0.3	46
1	19.4	37.7	75		12.8	7.2		2.3		8.0	16.2	2.4	17		0.4	0.5	47
0.7	22.4	10.1	26	0.1	17.7	9.4		2.79		1.2	9.8	1.9	16		0.3	7.0	47
0.7	19.4	11.7	47	0.1	16.6	8.9	342	2.66		8.0	7.3	3.2	13		0.4	9.0	46
0.3	11.1	4.4	34	1	7.4	4.4		1.36		9.0	2	0.4	19		0.1	0.1	34
.SA-10 0.8	15.1	10.8			12.3	5.2		2		2.6	3.1	0.1	14		0.3	9.0	40
.SA-11 0.6	14.4	6.	51		12.1			1.87		1.5	4.7	0.1	10	0.3	0.3	9.0	36
-SA-12 0.8	40.7				33.3			3.35		1.9	8.4	0.5	23		0.4	9.0	62
.SA-13 0.4			0		31.3			3.52		1.2	9.3	2.2	34		0.4	0.3	28
-SA-14 0.5		20.4			45.4			3.46		1.2	9.8	0.7	17		0.5	0.4	62
					27.8			3.1		1.1	100.7	3.5	17		0.4	0.4	44
LSA-16 0.5		21.4		0.3	48.6	16.4	649	3.83	21.4	0.7	15.9	1.7	28	0.2	0.3	0.4	99
4-160.4					47.5			3.76		0.7	16.4	1.5	26		0.3	0.4	53
LSA-17 0.3	63.2				42.1			4.02		1.4	42.5	6.4	23		0.5	0.4	99
0.5			130	1	37.2			3.9			25.7	4.8	30		0.7	0.4	61
0.7			4		43.2			4.11			13.2	4.5	33	0.4	0.5	0.5	74
	9				42.3			2.4			4.9	0.8	15		0.3	0.2	48
					42.4	2.6		2.89			5.2	1.7	22		0.3	0.3	22
	24	15			11.8			1.97		8.0	2.3	0.1	16		0.2	0.3	44
	13.6				9.9	3.7		1.45			9.0	0.1	17		0.2	0.2	44
			20		5.7			1			1.4	0.1	. 6		0.2	0.2	28
					19.3			2.23	11.6	1	3.7	6.0	12		0.4	0.5	47
11					21.2			3.02			5.3	0.5	14		0.4	0.4	64
	33.1	10.7			16.4	7		2.95	1		1.6	1.1	15		0.3	0.3	80
A	22.1				13.9			1.16			3.3	0.3	34		0.3	0.2	25
-	25.4	8			17.6	8.5		2.59		0.7	4.4	8.0	9	0.2	0.4	0.5	52
T			41	0.1	12.6	3.3	260	0.92	10.5	11.6	0.5	0.2	24	0.2	0.1	0.1	19
00 00 00												1			The second secon		

					ppm		9	_	6	7	7	2	4	0	2	2	8	2	4	2	3	9	_	4	8	7	4	4	8	7	4	0	2	2	6	~ +
			IS	/			1 36		3 46		7 47		1 34	5 40			3 58		1 44			1 66		5 74	2 48		3 44		2 28		1 64					14
H			ICP-MS	Bi			0.1	7.0	0.3	0.5	0.7	9.0	0.1	0.5	9.0	9.0	0.3	7.0	0.7	0.7	7.0	7.0	0.4	0.5	0.2	0.3	0.3	0.2	0.2	0.5	0.4	0.3	0.2	0.5	0.1	0.1
			SED BY	qs	ppm	0.3	0.1	2.3	9.0	0.4	0.3	0.4	0.1	0.3	0.3	0.4	0.4	0.5	0.4	0.3	0.3	0.5	0.7	0.5	0.3	0.3	0.5	0.5	0.2	0.4	0.4	0.3	0.3	0.4	0.1	0.2
3158			ANALYSED BY	pO	mdd	0.1	0.1	2.1	2	1.4	0.2	0.2	0.1	0.5	0.3	1	0.5	9.0	0.2	0.2	0.2	1.4	0.4	0.4	0.2	0.5	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	1.3
4) 53-			300 ML, A	ir (n				28			13						8										5						6		
E (60			10	S	m p																															
HON			DILUTED	Th	dd	1.1	9.0	2.7	1.4	2.4	1.9	3.2	0.4	0.1	0.1	0.5	2.2	0.7	3.5	1.7	1.5	6.4	4.8	4.5	0.8	1.7	0.1	0.1	0.1	3.0	0.5	1.1	0.3	0.8	0.2	0.1
V6A 1R6 PHONE (604) 53-3158			HOUR, DI	Au	qdd	3	2.3	6.9	3.6	16.2	9.8	7.3	2	3.1	4.7	8.4	9.3	9.8	100.7	15.9	16.4	42.5	25.7	13.2	4.9	5.5	2.3	9.0	1.4	3.7	5.3	1.6	3.3	4.4	0.5	1.3
			ONE	n	mdd	6.0	0.4	2.0	8.0	8.0	1.2	8.0	9.0	2.6	1.5	1.9	1.2	1.2	1.1	0.7	2.0	1.4	1.3						9.0				9.6		9	3.8
JVER			G. C FOR	As	md	28.2	3.1	54.8	28	18.4	13.4	2.2	9:	8.	7.3	3	7	5	6.3	1.4	1.5	0.8	62.8	0.8	4.	3	ω.	.5	6.	11.6	6.6	.1	5	3	10.5	
NCOL			. 95 DEG.					70				2.66																						2.59 1		53 4
ST. V	_		120 AT	Fe	% ر	2.			+								-		-				3.9													0.
NGS 8			HN03-I	Mn	ppm	462	675	988	183	206	512	342	188	413	649	126	883	1029	877	649			620			761	636	304	230	329	009	695	588	464	260	177
HASTII			-2 HCL-	Co	ppm	10.7	8.5	15.1	16.2	7.2	9.4	8.9	4.4	5.2	5.4	11.4	12.2	16.6	12.6	16.4	15.7	18.4	13.8	16.9	10	12.6	7	3.7	2.8	6.9	11.5	11.7	6.2	8.5	3.3	2.2
852 E. HASTINGS ST. VANCOUVER BC		1	0 ML 2-2		pm	3.5	1	3.9	5.1	2.8	7.7	9.9	4.	2.3	2.1	3.3	1.3	5.4	7.8	9.8	7.5	2.1	7.2	3.2	2.3	2.4	1.8	9.	.7	9.3	1.2	6.4	3.9	9.7	5.6	5.8
-			WITH 9	Z																			3													
RIES			CHED	Ag	ppm	0.1	0.1	0.3	0.2	9.0	0.1	0.1	0.2	0.2	0.2	0.4	9.0	9.0	0.3	0.3	0.3	0.5	1	0.8	0.4	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.1
RATO			LE LEA	Zu	ppm	53	29	135	104	22	26	47	34	24	51	104	100	96	29	73	20	120	130	104	65	78	51	41	20	20	73	22	99	99	41	09
. LABORATORIES LTD			M SAMP	Pb	ppm	11.9	3.4	39.8	14	37.7	10.1	11.7	4.4	10.8	10.9	21	15.7	20.4	18.2	21.4	21.1	52.4	58.5	17.3	12.9	18.2	15	6.4	6.3	11.2	17.9	10.7	6.1	16.8	1.9	2.1
ACME ANALYTICAL	als	~	15.00 G				11.5	35.5		19.4		8																								
(NAL)	Miner	# A600068	· 1DX -	Cn		23.1	11			19	22.4	19.4	11.1	15.1								63.2								24.4						13.1
ME A	leran	# A6	SROUF	IT Mo	S ppm	1.1	-	1.3	1.1	1	0.7	0.7	0.3	0.8	9.0	0.8	0.4	0.5	9.0	0.5	160.4	0.3	0.5	0.7	0.3	0.4	0.5	0.4	0.4	9.0	0.4			0.5	0.7	0.3
From AC	To Cordilleran Minerals	Acme file	Analysis: GROUP 1DX - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20	ELEMENT	SAMPLES	LSA-1	LSA-2	LSA-3	LSA-4	LSA-5	LSA-6	LSA-7	LSA-9	LSA-10	LSA-11	LSA-12	LSA-13	LSA-14	LSA-15	LSA-16	RE LSA-160.4	LSA-17	LSA-18	LSA-19	LSA-20	LSA-21	LSA-22	LSA-23	LSA-24	LSA-25	LSA-26	LSA-27	LSA-27A	LSA-28	LSA-29	LSA-30

	_	Г			Γ	Г	Г	Г						Γ	П					Г		Г	Г	Г				Г		Г	Г					П
>	udd	15	40	9	32	31	53	19	37	∞	39	28	20	9	28	42	23	31	22	15	10	63	41	74	99	48	41	36	65	40	52	26	128	38	44	113
Bi	mdd	0.1	0.4	0.1	0.5	0.4	0.3	0.4	0.3	0.1	0.3	0.2	0.2	0.1	0.3	0.5	0.3	0.4	0.2	0.1	0.1	6.0	-	0.7	9.0	1.2	1.1	0.1	0.5	1.6	9.0	0.4	0.1	0.4	0.7	0.2
qs	mdd	0.1	0.4	0.2	0.5	0.5	0.4	0.4	0.4	0.4	6.0	0.4	9.0	0.3	0.4	0.4	0.3	0.3	0.2	0.1	0.2	0.4	0.4	0.4	0.4	0.4	0.4	0.1	0.3	0.3	0.4	0.3	0.4	0.4	0.5	0.4
B	mdd	0.4	0.4	1.1	0.2	1	0.2	1.1	6.0	6.0	0.5	0.2	0.7	1.1	0.2	0.1	0.2	0.5	0.3	0.2	0.2	0.4	0.2	0.4	0.4	0.4	0.3	0.1	0.4	0.1	0.3	0.2	0.2	0.3	0.3	0.3
S	mdd	24	12	99	10	27	12	34	21	84	37	18	26	89	12	14	13	14	7	6	99	22	20	22	21	15	12	7	16	9	11	17	22	11	11	23
Th	mdd	0.1	9.0	0.2	1.6	3.3	4.2	0.5	1.4	0.3	_	2.2	1.7	0.7	4.2	3.1	8.4	1.9	8.0	0.1	0.1	1.8	3.1	2.5	2.5	3.2	3.5	0.1	3.3	1.1	1.9	1.7	8.2	7.8	3.6	10.1
Au	qdd			1.5					4.9																									13		Н
n	ppm	6.0	6.0	0.5	1.3				8.0																2.2	8						1		1.6		
As	ppm	1.2	6.4	1.4	6.2	13.6	12	5	10.5	3.4	26	19.7	35.8	3.7	11.7	6.9	3.8	7.2	2.8	2.0	6.0	24.1	16.3	20	14.5	11.6	10.3	2	9.6	4.8	11.9	2.7	8.1	8.6	14.5	6
Fe	%			37																														2.66		П
Mn	ppm	158	609	999	424			1	559													9 8			737									861		1116
ပ္ပ	ppm	2	5.4	2.5	6.7	8.2	14.2	6.4	8	2.7	12.9	11.6	56.4	6.2	14.6	8.7	7.2	7.4	4.3	2.8	3.8	15.3	10.2	14.8	13.6	9.5	9.1	3.5	18.4	3.8	14.1	10.8	30.6	11	13.7	28.6
īZ	ppm	3.4	11.2	8.8	20.1	39.5	40.2	17	27.4	40.8	42	33.8	58.6	53.7	41.4	23.8	15.2	14.3	7.2	3.9	4.6	35.7	20	38.5	29.7	18.3	17.8	3.3	43.7	8.7	26.2	56.9	108	17.6	17.7	132.9
Ag	n							8	0.1																0.3									9.0		0.4
Zn	ppm								06			96													65									20		100
Pb	mdd	2.3	7.7	12.2	10.2	15.2	19.1	10.5	11.8	3.4	18.2	28.2	24.2	2.6		_	6		4			28.5				14.1				8.7	19.6	12	8.2	17.8	25.1	8.8
Cu	ppm								26.8									1							29								58.7		79.8	
	_								0.4					8.0											8.0								П	0.3		
ELEMENT Mo	S	LSA-31			- 1		43		LSA-37 (Per		LSA-42 (11				LSB-7	11		- 7		438			100			LSB-19 (0

	_															Г	Г		Γ			Г		Γ			П			Г						
>	ppr	23	29	37	49	45	32	35	19	38	39	34	10	37	22	45	46	32	26	33	35	37	25	20	65	27	62	46	48	20	26	34	39	72	61	20
Bi	mdo	.2	.3	.3	4.(4.0	.3	4.(1.1	4.	.5	4.	1.1	9.6	.5	4.0	4.	4.0	1.0	.3	4.0	4.0	.3	8.	6.0	4.	.3	4.	4.	4.	3.3	4.	.3	0.4	1.	1.1
	d L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
qs	ppr	0.2	0.3	0.3	0.7	0.4	0.3	0.3	0.1	0.4	0.4	0.4	0.1	0.5	0.8	0.3	0.4	0.3	0.1	0.4	0.3	0.3	0.2	0.3	0.3	9.0	0.4	0.4	0.5	0.4	9.0	0.4	0.4	0.3	0.2	0.2
po	mdd	8.0	0.3	0.1	0.4	0.5	0.4	0.2	0.2	0.4	0.3	0.3	0.1	2.0	9.0	0.3	0.1	0.5	0.1	9.0	0.4	0.1	0.1	0.2	0.3	9.0	6.0	0.1	0.2	0.2	0.2	0.4	0.3	0.4	0.5	0.1
Sr	mdd	18	21	16	11	17	16	16	13	12	12	13	16	68	18	19	20	19	12	20	25	13	19	22	27	99	16	10	6	8	11	15	14	17	25	15
Th	ppm	2.5	1.8	0.2	4.8	1.7	0.5	0.3	0.1	3	3.9	0.7	0.3	1.5	0.2	6.0	1.8	1.4	0.1	1.3	2.9	0.2	4.7	3.6	3.8	6.0	1.1	1.9	1.8	1.7	4.5	6.2	6.3	3	1.8	2.9
														1	7																					
Au	qdd	4.9	6	5.3	10.	22.	12.	9.8	6.2	13.	11.	4.4	0.5	11.4	27.2	3	7.9	7.9	1.5	9.4	14.	2.7	8.9	3.6	5.6	9.7	1.5	7.5	4.9	9.0	27	8.5	8.4	5.8	3.9	1
)	mdd	1	1	1	1	1.3	8.0	1	0.7	8.0	6.0	2.5	2.1	3.8	1.3	8.0	3.7	1.9	0.2	6.0	3.6	8.0	1.6	2.7	1.4	3.8	6.0	1.1	1	8.0	1.4	8.0	8.0	1.2	0.7	0.7
	٦				1																															
As	ppm	3.7	7.1	4.5	10.	14.3	10.4	11.9	3.9	15.6	20	13.8	3.7	20.8	46	11.2	12.4	12.4	9.0	18.3	8.3	8.9	3.4	9.6	6.7	4.1	8.3	11.6	11.5	6.9	18.3	2	2	5.3	4.2	3
Fe	%	2.1	2.99	2.04	3.12	3.08	2.27	2.12	1	2.65	2.77	1.98	0.56	2.51	3.46	2.41	2.67	1.91	0.85	2.23					3.39						3.47	2.41	2.74	3.85	3.43	2.61
Mn	mdd	1297	616	589	1082	922	1083	401	878	814	628	553	65	730	643	258	320	397	86	218	685	419	356	562	635	741	827	434	410	493				1103		
ပ္ပ	ppm	7.8	13.5	7.6	11.8	11.6	8.6	6.3	4.6	10.3	10.1	9.7	2.1	10.7	13.1	18	16.6	10.3	3.1	11	9.7	5.4	6.3	14	15.1	9.5								38.7		
														3		8					8							- 1								
Z	ppm	11.1	28.3	15.6	16.3	16.1	12	13.5	6.1	16.1	23.1	18.7	2.2	32.1	30.1	163	159.4	66.2	2.8	41.8	34.9	15.8	16.9	53.8	48.4	52.6	52.9	47.4	49.6	38.9	18.1	6.97	85.9	402.2	348.	144.6
Ag	mdd	0.4	0.3	0.7	0.3	0.4	0.4	0.5	0.4	0.2	0.2	0.2	0.1	9.0	0.3	0.2	0.2	0.2	0.1	0.1	0.5	0.1	0.1	0.2	0.3	0.5	0.2	0.1	0.1	0.1	0.4	0.3	0.2	0.2	0.1	0.1
Zn	ppm	3										26		0				63		92					66	5					8			22		
																		3					7												-	-
Pb	ppm	22.3	17.5	14.5	28.6	26.1	19.3	18.6	8.1	29.4	24.9	17.2	1.5	29.2	27.4	12.4	12.2	12.3	1.5	23.8	19	12.8	8.3	15.3	14.7	12	12	12.9	12.8	24.6	27.2	21.6	20.5	10	8.3	4.7
no	mdd	24.6	65.1	36	51	50.2	29.9	25.2	14	40.6	36.7	21	4.3	41.3	44.6	27.7	27	20	4.1	20.2	34.3	13.2	13.8	35.3	45.4	121.8	32.2	20.5	20.9	23.5	30.6	36.3	38	44.5	47.7	23.9
Mo	mdd	8.0	0.5	0.5	0.4	9.0	0.5	0.5	0.4	0.4	0.4	0.4	0.1	9.0	8.0	0.4	0.3	0.4	0.1		6.0				9.0		0.4	0.5	0.5	9.0	0.7	0.5	0.4	0.4	-	0.4
											100						1 10						4 6	-		4	5	9	B-46	1 2	8	6	0	_	To a	
ELEMENT	SAMPLES	LSB-2	LSB-2	LSB-2	LSB-2	LSB-24	LSB-2	LSB-2	LSB-27	LSB-2	LSB-2	LSB-30	LSB-3	LSB-3	LSB-3	LSB-3	LSB-3	LSB-36	LSB-3	LSB-38	LSB-39	LSB-40	LSB-4	LSB-4	LSB-43	LSB-44	LSB-4	LSB-4	RE LS	LSB-4	LSB-48 0.7	LSB-4	LSB-5	LSB-51	LSB-52	LSB-53

															_		_				_								_	_	_				_	
/	ppm	44	19	44	30	23	27	63	63	39	40	63	42	51	42	48	46	36	35	44	49	49	09	40	25	28	34	49	36	47	27	30	27	35	29	09
Bi	ppm	0.2	0.2	1.2	0.4	0.1	0.3	9.0	9.0	1	1	6.0	1	9.0	2.0	0.5	9.0	8.0	2.0	8.0	2.0	1	0.5	9.0	9.0	0.2	0.4	0.5	0.2	0.2	0.2	0.3	2.1	0.2	0.4	0.4
qs	ppm	0.2	0.1	0.7	0.2	0.1	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.2	0.3	0.3	0.2	0.2	0.2	0.3	0.3	0.3	0.5	0.4
Cd	ppm	0.1	0.1	1	6.0	0.1	0.1	3.6	3.8	0.3	0.4	0.2	0.2	0.2	0.2	0.1	0.1	6.0	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	6.0	0.2	0.1	0.1	0.1	0.2	0.7	0.3	0.4	0.4
Sr																																		13		
Th							0.2																											2.9		ı
Au												9.8	8.9	3.9	4.4	5.3	6.1	2.9	11.4	2.6	1.1	4.1	12.2	3.7	2.5	7.3	10.4	9.6	0.5	2.6	26.9	21.7	88.2	5.7	6.2	29.3
)	mdd		9	1.6								1.3			1.1							1.5												.2		1
1																																				П
As																																		5.5		
Fe	%	2.37	0.67	2.45	1.5	0.73	1.14	4.1	4.05	2.28	2.19	2.7	2.76	2.16	2.11	1.76	1.6	2.05	1.96	2.29	2.05	2.43	3	1.84	1.46	1.19	2.78	3.09	2.42	2.89	1.75	2.68	3.31	2.64	2.89	2.92
Mn	ppm	277	153	514	315	243	128	1555	1504	470	492	202	526	234	263	222	198	295	375	355	227	406	715	247	196	130	921	794	685	711	235	1070	1865	754	268	575
လ	ppm	9.4	2.2	10.3	5.3	2.4	3	20.5	19	7.4	7	8.8	10.9	5.1	6.2	3.9	3.7	6.2	7.5	7.1	5.3	8.2	12	5.2	3.9	3.5	9.3	10.9	9.6	9.6	3.7	8	6.6	7.8	13.1	13.3
ij	mdc	53.8	9.8	12.8	15.6	2.8	3.2	13.7	13.7	15.4	12.9	15.6																		7.3	4.9	10.1	18.5	6	16.2	15.9
Ag	п																																	0.4		7.4
Zn /												-																						92 (1	
Z																	2			12												100				
Pb	ppm	9.9	3.5	15.5	7.5	1	4.5	15.6	14.8	9.4	9.5	11.7	12.5	9.2	12.1	10.6	9.7	12.4	10.4	10.9	9.1	10.1	13.3	10.3	10	5.7	22	16.8	5.3	13.2	26.6	24	22.3	19.6	39.9	40.5
Cu	mdd	14.3	3.4	24.1	12.2	2	7.8	73.4	76.1	24.2	19.4	22.7	30.7	12.2	19.2	10.9	8.6	19.6	22.5	22.2	12.6	34.7	71.2	21.8	9.7	17.9	30.8	43.5	13.1	26	25.5	49	81.2	28.4	46.7	46.8
Mo		9.0	0.4	0.5	0.4	0.2	0.4	2.2	2.1	0.7	0.7	1.2	1	8.0	0.7	6.0	8.0	0.7	0.4	9.0	8.0	0.7	0.5	0.7	0.4	9.0	0.5	9.0	0.7	0.3	1.6	0.4	1.7	0.7	0.4	0.5
ELEMENT	S				-	4.99	LSB-59				LSC-3	LSC-4	1						LSC-10					1	LSC-16	100	-1	-51	LSC-20		1				LSC-26	RE LSC-240.5

														_																						
>	mdd	47	49	54	54	36	22	74	43	52	19	45	64	16	49	43	35	39	26	20	52	34	26	53	29	35	47	54	7	39	15	22	47	46	53	37
Bi	mdd	0.5	0.5	0.3	2.0	0.4	0.4	0.4	0.5	0.3	0.2	0.4	0.5	0.1	8.0	9.0	9.0	9.0	0.4	0.5	0.4	0.2	0.4	9.0	9.0	0.4	9.0	9.0	0.2	8.0	0.2	8.0	0.7	1	1.2	8.0
qs		9.0										1																						0.3	0.4	0.3
Р	mdd	9.0	0.4	0.4	0.7	0.5	0.1	0.1	0.3	0.3	0.5	0.3	0.2	0.1	0.2	0.2	0.3	0.5	0.1	0.1	0.2	0.2	0.5	0.2	1.3	8.0	0.2	0.1	3.1	0.4	0.4	0.1	0.3	0.2	0.2	9.0
Sr	ppm										. ,																							12		
Th	mdd	4.1	1.2	2.7	2.5	0.2	0.2	6.0	3.7	1.8	0.3	1.6	1.9	0.2	0.7	6.1	6.0	3.4	1.8	0.4	2.8	0.3	1.3	1.9	0.4	0.3	1.5	1.2	0.1	0.7	0.1	1.4	2	2	1.7	8.0
Au		8.2			ľ																													0.5		
																																		1.1		
																																				1
As	mdd	21	26.5	19	43	10	17	17	18.7	13	9.9	8.9	7.8	2.8	9.2	12	7.1	13	8.6	7.5	10	2.2	3.4	3.6	23	17.8	8.3	4.7	2.5	7.9	1	7	4	4	8.8	6.2
Fe	%	2.82	2.8	3.07	3.08	1.78	2.47	2.46	2.44	2.85	0.98	2.31	3	1.05	2.38	2.71	2.21	2.73	2.91	1.93	2.61	1.9	1.87	2.39	2.22	2.01	2.16	1.9	0.41	2.39	0.58	2.9	1.8	1.76	2.24	2.3
Mn	mdd	802	532	417	774	1291	302	240	325	335	1145	853	712	658	714	572	622	716	581	299	582	437	1211	721	1478	1802	331	295	421	2717	405	191	208	204	411	092
လ	mdd	11.7	10.6	10.2	15.4	7.5	8.1	9.6	14	19.4	5.3	14.6	25.2	3.3	8.9	16	6.7	12.3	12.5	8.2	15.1	6.4	8.5	10.9	9.7	8.1	7.3	6.1	2.4	11.3	2.1	6.1	5.8	5.9	9.1	8.3
ラ	mdc	20.2	21	15.1	36.4	14	27.1	15.2	108	220.4	17.1	37.2	269.4	6.7	35.6	111.2	42.3	90.3	70.4	44.2	38.7	19.9	74.7	17.4	9.1	17.4	13.1	10	4.4	15.7	3.9	10.9	10.8	10.8	19.1	14.2
Ag	_																																	0.1		
																																		35 (
Zn	d	6	6	8	76)9	47	38	99	5	38	79	9	2	58	9	89	8	99	3,	9)9	9	9	99	2(4.	3,	6	5	3,6	4	3;	35	5,	1
Pb	mdd	37.5	38.9	31.4	46.1	6	10.7	15.1	18.1	14.3	5.4	11.1	10.6	2.3	16.5	22.7	21	18.2	12.9	11.8	20.5	6.4	17.4	7.1	34.8	8.9	10.6	7.7	1.8	13.7	2.7	14.2	7.1	8.9	7.7	10.2
n _O	mdd	48.1	38.3	45.1	66.4	19.3	27.8	21.3	31.5	36.2	23.9	22.8	37.2	7.9	17.2	28.8	22	32.3	25.5	15.5	23	13.1	80.4	24.5	25.2	20.2	17.6	12.4	12.9	41.6	5.7	26.1	17	16.8	31.9	23.4
Mo	mdd	0.4	0.5	0.4	0.7	8.0	9.0	7	0.3	0.3	0.7	9.0	0.3	0.3	8.0	0.4	6.0	7	9.0	1.9	9.0	0.7	1.1	9.0	1.3	1.7	9.0	0.7	9.0	6.0	0.5	1.5	9.0	9.00	0.4	0.7
ELEMENT Mo	SAMPLES					244			LSC-34		-	7 19							LSC-44								-	12.5	LSD-6		7,5		(RE LSD-10		LSD-12

Г	-															ł														Г						
>	ppr	44	53	49	43	69	62	20	42	40	49	46	21	22	41	54	63	88	61	74	43	29	61	20	46	22	62	53	28	52	61	99	62	64	47	36
Bi	mdo	6.0	6.0	6.0	.5	۲.	6.	0.7		4.	4.	5.	7.	3.3	7.	33	9.	7.	9.	9.	8.	5.	9.	9.	9.	8.	80.	6.	7.	3.3	4.	4.	2	0.1	4.	.2
																0	0																			
Sp	mdd	0.3	0.4	0.5	0.4	9.0	0.5	0.5	0.4	0.4	0.4	0.4	0.2	1.2	1.2	6.0	1.1	~	6.0	0.7	0.4	0.5	0.8	0.4	0.4	0.7	0.3	0.4	0.7	0.4	0.4	0.4	0.4	0.3	0.4	0.3
B	mdd	0.2	0.2	0.2	0.5	0.3	0.7	0.1	0.2	0.2	0.2	0.3	0.1	0.4	2.7	1.8	9.0	0.3	0.4	0.5	0.2	0.5	0.5	0.2	0.7	0.5	0.2	0.4	2.1	0.5	0.2	0.4	0.3	0.3	0.3	9.0
Sr		18									E.																							10		
Th	_							1.6																										0.8		
				Ì	0	,				-										8 4																J
Au	qdd	2.1	5.9	1.3	11.9	24.9	10.1	2.3	1.3	5.8	4.7	8.1	6.5	14.8	55.4	12.1	30.8	26	70.2	10.9	9.5	7.4	20.1	1.6	4.6	6.1	3.5	4.6	10.9	5.7	10.6	20.8	1.2	2.6	1	0.5
D	mdd	1.6	1.1	1.4	1.6	2.3	3	1.6	1.8	1	1.3	1.3	1.6	1.7	1.8	1.2	7.0	1	2.0	5.5	6.4	4.8	1.1	1.3	6	30.7	3.3	10.3	1.5	9.7	1.2	1.1	0.4	0.3	1.1	6.0
S	ppm	4.6	9		.3	4.2	5.3		9.6	2	3	2	6	3.3	5.8	3.8	3								13.1											6
As																						1 10				69				16					4	
Fe	%	2.05	2.61	2.54	2.07	3.73	3.11	2.2	1.93	2.56	2.18	2.38	1.04	4.29	2.94	2.89	3.31	3.95	2.95	3.77	1.9	3.72	3.16	2.69	2.64	3.23	3.16	2.7	1.71	2.73	3.05	3.03	3.28	3.24	2.05	1.12
Mn	mdd	530	541	548	718	1146	1067	447	275	393	381	478	260	006	1052	1161	699	772	609	393	220	370	661	423	1358	792	579	820	1241	834	456	611	267	652	2467	2043
လိ	ppm	6.7	10.7	7.2	8	10	0		5.5			6.3																						38.1		44
																					1 17															
Z	ppm	11.9	17.5	14.1	15.7	24.9	21.9	19.7	12.7	9.6	15.7	11.1	5.4	16.2	12.1	17.9	22.3	29.8	42.2	64.7	38.7	52.1	128.1	127.8	136	160.4	174.7	428.5	289.2	423.7	358	258.7	349.3	332.4	09	45.6
Ag	٦			0.2					0.1			0.3		8.0			9.0				1 84	0.3			0.4					27					0.1	
Zn	ш					94	-							7	171			101							119				4							
7	р	5	5	5	5	6	1	4	4	2	4	5	3	_	1	8	8	-	9	_	8	8	7	5	7	8	9	7	1	177	65	92	2	61	4	2
Pb	mdd	6	10.6	10.5	14	21.4	15.6	8.8	11	11.5	10.3	12.3	12.2	27	350.5	40.4	9.89	46.4	28.9	16.4	13.2	10.6	15.6	9.4	12.5	14.2	11.7	9.3	9.7	9.5	10.3	11.3	11.1	10.1	10.3	6.1
3	ppm	16.7	30.5	35	49.5	79.4	7.77	34.8	11.6	25.6	21	25.3	62.3	57	85.5	106	92.2	97.9	66.1	43.6	24	26.6	52.1	26.7	35.2	49.1	30.5	39.5	46.5	41	38.3	27.3	31.3	28.6	14.3	10.5
			9.0			8.0																			0.4					0.5			0.2			1.1
LLN	ES p	3												4		34		100		18					TH		• •			4						· V
ELEMENT Mo	SAMPLES ppm	LSD-13	LSD-14	LSD-15	LSD-16	LSD-17	LSD-18	LSD-19	LSD-20	LSD-21	LSD-22	LSD-23	LSD-24	LSD-25	LSD-26	LSD-27	LSD-28	LSD-29	LSD-30	LSD-32	LSD-33	LSD-34	LSD-35	LSD-36	LSD-37	LSD-38	LSD-39	LSD-40	LSD-41	RE LSD	LSD-42	LSD-43	LSD-44	LSD-45	LSD-46	LSD-47

															_															_						\Box
>	ppm	63	27	29	18	9/	14	65	20	4	32	31	28	49	26	39	51	44	51	6/	81	40	34	45	21	47	26	22	49	9/	42	42	43	99	32	63
Bi																			8.0	9.0	0.7	0.5	8.0	1.2	0.4	1	1	1.2	1.5	1.4	0.4	7.0	0.5	6.0	1.3	8.0
Sb		0.4		1																														0.3		
PS	mdd	0.2	0.2	0.2	8.0	0.2	0.1	0.2	0.1	1	0.4	6.0	9.0	0.2	0.3	0.1	0.3	9.0	0.2	0.2	0.2	0.1	6.0	0.2	1.1	0.2	0.5	0.3	0.2	0.5	8.0	0.2	0.4	0.2	0.1	0.3
Sr		13								V.										u,										١,				28		
Th	mdd	0.3	5.1	5.2	0.2	2.8	0.2	3.9	<.1	0.1	1	1.7	0.5	9.0	0.5	1.1	8.0	0.4	3.1	1.5	1.5	1.5	1	3.5	0.4	2.3	2.8	2.4	8.0	1.2	0.4	0.5	0.3	8.0	0.2	2.1
Au	qdd	2.5	16.1	12.1	4.2	4.4	0.5	1.7	2.0	0.5	2.7	2.2	1.9	2.1	28	2.9	5.1	2.4	2.5	2.8	2.5	1.3	2.6	1.6	3.2	3	6.5	9	1.6	7.5	2.6	1.9	1.2	6.0	1.5	8.9
n	mdd	0.4	2.2	2.2	0.4	0.6	0.2	2.3	0.5	9.9	1.4	2.4	1.5	0.5	8.0	1.6	1.1	1.7	1.3	1.5	1.5	1	1.9	1.3	1.1	1.6	2.5	2.8	1.6	9	2.2	1.8	0.8	2.1	2.4	1.6
As		7.1																																3.1		
1197																																		2.54 3		
																																		511 2		
Mn																																				3 619
3	ppr	31.3	17.	18.	12.	28.	1.8	19.	3.3	1.4	10.	6.3	6.7	4.8	4.4	6.4	7	6.4	9.5	11.	11.	6.2	7.2	8.9	5.1	10	12	11.	9.5	18.	15	5.8	8.4	7.4	4	12.3
Z	mdd	138	9.08	88.4	9.795	260.8	7.5	130.1	3.1	18.8	118.5	36.7	27.6	11.3	7.2	13.9	15.5	13	19.4	26	27.1	12.5	13.2	13.1	13	18.8	22.8	20.6	19.6	35.8	20.5	14.7	14.1	19.9	9.6	20.7
Ag	mdd	0.1	0.1	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.3	0.1	0.2	0.1	0.1	1.0	0.2	0.1	0.1	0.1	0.4	0.5	0.5	0.4	0.1	1	8.0	0.1	0.2	0.1	0.5	0.3
Zn	mdd	39	89	86	66	91	21	95	28	123	62	11	84	92	74	48	2.2	25	46	64	29	37	107	52	98	69	105	83	82	132	105	69	99	22	34	82
Pb	mdd	11.2	15	15.1	3	6.1	1.1	6.8	1.7	1.9	6.8	6.4	9.7	9.1	6.1	7.8	10.1	7.8	7.1	11.1	11.3	6.8	9.5	7.2	5.3				10.5			9.1	9.4	9.2	10.7	28
Cu	mdd		31.6						10						2	17			28.5						37.3	-				9	79.1					45.1
	udd			9.0					0.3										0.4						6.0			0.5								0.4
ELEMENT Mo	SAMPLES			CSD-50 (4		u F	SD-55 (11/9	111	6	LSE-1					LSE-6		 -				LSE-11 (-			11		

_																_								_						_				_		
^	mdd	47	84	26	84	89	69	37	62	20	40	20	51	29	11	29	17	52	16	28	62	99	65	53	53	26	54	29	34	24	13	12	49	106	41	17
Bi	mdd	0.4	8.0	1.0	9.0	0.2	0.4	0.2	0.2	0.4	0.3	0.3	0.5	0.7	0.3	0.3	0.1	9.0	0.1	0.4	0.3	0.4	0.4	0.4	0.2	0.2	0.3	0.4	0.4	0.1	0.1	0.1	0.5	6.0	0.4	0.1
qs		0.7		6.0			6	4				0.4																5						0.2		
PO	ppm	0.4	0.5	9.0	0.5	9.0	0.5	0.2																	21									0.1		
Sr									12									16		*	25									,				18		
Th				2.2								2.7																						1.2		
		3	2	4			6												1																	
Au	qdd	24	29	57.	61	7.	17.	7.	18	3.8	2.2	9	28	5.8	5	1.	0.5	2.8	0.5	1.8	4.8	1.	1.5	0.	11.6	2	15	3.	0.5	0.	0.	0.	0.	0.5	0.	0.
n	ppm	6.0	6.0	0.5	7.0	9.0	8.0	0.5	0.7	1.2	2.2	1.8	8.0	1.6	36.1	3.3	0.4	3.1	0.4	6.0	1.4	1.1	6.0	1.4	0.5	1.2	1.4	6.0	0.3	0.4	0.1	0.3	9.0	6.0	0.7	0.4
As	mdo	36.7	53.6	52.6	52.6	27	45.3	18.3	48.3	16.3	15.2	14.1	18.2	18.8	6.1	4.7	7.0	8.9	9.0	9.7	8.3	7.4	6.6	6.4	8.2	9.8	16.1	19.8	2.3	1	0.5	0.5	3.3	2.6	3.1	1.3
																																		3.16		
Mn			1036						7 9/9															1										551		1 1
	100											23.7 5																						16.5 5		
ပိ	d	6	1	21.8	2(12	17	7	1	1	9	23	2;	2	9	7	2	2(2.	2.	3	3(2	2	118	2;	2	28	5.	9	1	1	1.	1	9	2
īZ	mdd	11.8	27.7	34.6	32	17.4	41.6	21.5	35.8	26.6	24	277.9	207.1	192.5	127	185	22.5	263.5	23.3	280	327.3	320.5	226.8	112.5	163.8	196.8	159.9	262.4	8.6	7.3	1.3	2.1	20.2	44.4	13.7	2.8
Ag									0.5																									0.2		
Zn /	mdd								75																									74		
																	,	ω	.,	4					9	1	3		.,	.,	,	È	7		4,	Ì
Pb	mdd	48.5	44.2	35.6	34.3	21.2	25	10.9	22.2	9.4	8	11.2	14.3	18.6	4	6.1	1.2	10.3	1.3	9.1	13.5	11.3	10.4	10	6	10	18	13	5.3	4.2	1.3	1.5	7.1	22.4	6.4	2.1
Cu	mdd	64.4	116.2	131.3	117	38.3	22	25	61.1	19.8	17.3	56.4	43.5	38.9	38.5	32.9	6.3	36.8	6.5	25.4	45.9	22.8	29.9	17.6	33.5	40.8	37.9	35.5	6	17.4	1.9	4.2	16.1	25	13.2	5.1
Mo	mdd	6.0	0.4	0.5	0.4	1.2	6.0	0.4	7.0	0.5	0.7	0.2	0.3	0.3	1.1	8.0									0.3						0.1	0.1	0.4	0.4	0.3	0.3
ELEMENT	SAMPLES	LSE-23				- 1			LSE-30								RE LSE-39					LSE-42			LSE-45		-							LSF-6		1775

>	ppm	36	42	23	30	28	34	13	44	17	27	28	28	66	27	56	43	46	84	15	45	20	121	9	99	19	38	6	99	64	63	64	64	46	9	31
Bi	mdd	0.5	6.0	0.4	9.0	0.5	8.0	0.1	0.5	0.1	0.5	0.4	2.0	6.0	0.4	9.0	8.0	6.0	8.0	0.1	9.0	0.3	9.0	0.5	0.4	0.2	0.3	0.1	0.2	0.2	0.2	0.3	8.0	0.4	9.0	0.3
Sb																																		0.3		
po	_					0.2																												6.0		
Sr		6																	1															29 (
-	d mdd																																	0.7		0.5
Th																									1	0	0	0	~				A STATE			
Au	qdd	0.5	0.5	0.5	2.4	0.5	0.5	0.5	1.8	0.5	10.7	1.7	1.1	15.5	12.4	1.2	1.7	21.8	79.3	4.5	8.9	16.4	9.4	7	7.4	5.1	1.7	8	18.8	6.4	8	4.7	8.3	1.3	1.9	4.4
n	ppm	0.5	1.9	9.0	2.1	1.1	1.6	0.4	1.3	0.3	2.4	1.7	1.2	2.1	1.2	3.8	3.1	3.7	2.5	0.4	1.3	6.0	1.7	1.1	1.9	8.0	1	8.0	1.7	6.0	8.0	1	6.3	1.9	1.3	1.9
As	mdd	4	7.1	4.2	19.8	4.6	7.7	9.0	18.6	1.6	13.8	4.3	3.8	23.7	9.7	3.9	4.3	88.6	170.1	8.8	8.1	2.6	17.1	15.6	15.8	2.9	7.8	2.5	15.3	8.8	9.2	7.8	21.8	3.9	4.6	2.7
10	%		2.12																															2.16		
Mn		138				153										5	1013	254		386														21621		
												-,						1.4	- 23															22 7		
3	- 1												11-																							
z	mdd	6.4	25.3	8.4	45.4	16.6	23.8	1.6	17.1	2.4	16	10.8	9.7	45.8	14.7	8.1	12	31.3	35.9	9.7	30.7	30.3	73	112.2	106.5	61.9	55.5	298.5	376.4	266.4	270.6	396.3	303.8	224.7	278	410.1
Ag	mdd	0.1	0.1	0.1	0.2	0.1	0.1	0.3	0.4	0.2	0.4	0.4	0.1	8.0	0.4	0.3	0.2	1.3	1.3	0.2	0.1	0.4	1	6.0	0.4	6.0	0.3	9.0	8.0	0.2	0.2	0.2	9.0	0.2	0.1	0.3
Zn	mdd	38	74	39	81	58	81	13	09	19	95	53	41	98	51	54	77	80	120	53	83	06	95	92	96	45	40	42	109	92	94	26	102	84	91	102
	mdd		1		2				8.4												15.2		20.7			V			1			100				
Pb	dd			3.9		6.3		-										_	46	9.7			1					9 5.2	4 16.							
D O	mdd	11.7	22.2	8.9	23.8	14.7	17.8	2.9	19.3	3.3	25.4	16.9	13.4	87.4	34.6	14.5	13.5	124.8	112	35.9	46.8	59.4	101.	63.6	64	40.4	30.5	125.9	143.	57.1	52.9	54.3	80.1	27.7	39.3	70.9
- Mo	3 ppm	9.0	6.0	0.5	0.5	_	6.0	0.2	9.0	0.3	0.4	9.0	0.3	0.5	0.5	1.5	7.2	1.2	1.1	0.5	0.3	0.5	0.7	0.4	6.0	9.0	6.0	8.0	9.0	0.4	370.4	0.4	0.4	0.4	0.4	0.7
ELEMENT Mo	SAMPLES ppm	LSF-9	LSF-10	LSF-11	LSF-12	LSF-13	LSF-14	LSF-15	LSF-16	LSF-17	LSF-18	LSF-19	LSF-20	LSF-21	LSF-22	LSF-23	LSF-24	LSF-25	LSF-26	LSF-27	LSF-28	LSF-29	LSF-30	LSF-31	LSF-32	LSF-33	LSF-34	LSF-35	LSF-36	LSF-37		LSF-38	LSF-39	LSF-40	LSF-41	LSF-42

																		Г						_		Г		Г	Г	Г		Г				
>	mdd	21	20	3	36	81	12	90	65	9/	64	69	69	46	33	77	20	72	51	41	22	22	18	21	31	36	37	22	13	38	46	34	43	44	22	41
Bi	mdc	0.2	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.3	2.0	0.2	0.3	7.0	0.5	6.0	0.3	8.	0.5	9.4	0.2	0.1	0.2	9.6	9.6	1	1.1	0.3	7.0	7.0	9.6	7.4	1	1.1	0.4
	E																													ŀ						
Sp	ldd	0.5	0.4	0.4	0.4	0.4	0.1	0.4	0.5	0.2	0.2	0.2	0.2	0.1	0.2	0.4	9.0	0.4	0.5	9.0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.2	0.4	0.4	0.3	0.2	0.4	0.5	0.4
PO	mdd	1.1	8.0	0.7	1	0.2	9.0	0.4	0.4	0.2	0.1	0.3	0.3	0.5	0.2	0.4	0.3	0.1	0.2	1.1	0.2	9.0	0.1	1.2	0.5	0.2	0.4	6.0	1.3	9.0	0.4	0.2	0.2	0.1	0.2	0.2
Sr	mdd	34	34	51	37	14	25	23	20	21	11	14	15	27	25	23	16	12	15	19	10	16	13	20	17	14	21	56	15	14	11	24	25	21	23	21
Th	-	ĺ	ĺ																															5.9		
																									- 10							n e				
Au	dd	2.1	10.	3.1	5.5	2.3	0.5	5.7	18	2.6	1.8	1.4	1.8	2.1	1.2	7.7	117.	1.7	0.7	1.8	0.7	0.7	9.0	1.2	0.9	0.9	3.4	0.7	0.7	1.4	0.5	3.1	2.9	4	2.7	2.3
0	mdd	6.0	1.4	0.4	9.0	0.4	0.2	8.0	0.5	0.5	1	1.2	1.2	4.9	1.6	-	1.7	8.0	2.3	6.0	0.4	9.0	0.2	1.4	2	1.7	2.5	8.5	1.7	1.4	1.7	4.1	1.6	2.6	1.9	1.6
As	mdc	2.1	7.3	1.1	9.6	11	1.8	9.6	10.9	3.9	3	2.7	2.7	2.3	10.9	8.9	27.7	4.3	5.5	30	1.9	1.9	7.0	2	2	10.3	15.2	9.6	2	3.2	7.4	3.1	7	8.7	3.4	4.4
																																		2.74		
Fe	% "		100																			- 1										100				11000
Mn	hdd	143	193	586	941	655	594	126	743	887	510	404	402	131	322	563	563	718	337	208	455	143	102	375	502	309	345	102	211	370	287	274	218	399	617	564
රි	ppm	10.4	21	1.6	15.3	28.3	14.6	22.7	19.1	32.1	25.3	21.2	20.7	14.5	2.5	14.3	13.1	10.3	6.7	8	3.9	2.5	2.3	4.1	5.5	6.4	12.3	3.2	5.5	5.9	2.7	6.1	9.9	10.2	13	9.3
	bpm	21.4	92.2	9.0	43.8	7.97	19.8		7.2	43.1	51.8	21.4	22.7	0	9.8	8.8	9.6	1.6	0.1	4.2	8	9	1	1	7.5	6.0	42.8	0.3	1.9	4.5	5.2	9.3	1.7	7.5	7.4	4.6
Z			1	6	1,	2	1	.6	2	3,	1	1.	1															1	1	1,	1			2	2	-
Ag	ppm	0.2	0.8	0.1	0.3	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.4	0.3	0.4	0.3
Zu	mdd	141	121	176	118	74	47	113	83	92	29	29	69	80	20	85	72	26	92	105	20	26	16	62	62	99	29	23	33	09	69	75	46	29	77	64
Pb	mdd	4	7.1	1.8	6.5	9.8	2.8	10.3	11	5.1	5.8	6.5	6.9	6.9	6.2	10.7	20.8	8.4	8.3	17.71	4.3	3.5	1.2	5	8.9	11.4	11.5	2	2.8	9.6	9.8	9.5	12.4	11.9	34.1	9.2
ng S	ppm	6.97	208.3	80.8				146.6		48.6						29.8						4.9		1					16.3					79.3		
Mo	mdd		.5	6.0				7.4																					6.0					0.5		.3
ENTIN	LES				-113			41			-		-53								95		1 81			8	-	1			×c					5
ELEMENT	SAMPLES	LSF-43	LSF-44	LSF-45	LSF-4	LSF-47	LSF-48	LSF-49	LSF-50	LSF-51	LSF-5.	LSF-53	RE LSF	LSF-5	LSF-5	LSF-56	LSF-5	LSF-5	LSF-59	LSG-9	LSG-1	LSG-11	LSG-12	LSG-13	LSG-14	LSG-15	LSG-16	LSG-17	LSG-18	LSG-19	LSG-20	LSG-21	LSG-22	LSG-23	LSG-24	LSG-25

	_	Γ			Г			Г	Г	Г				Г	Γ	Г	Γ				Γ							Г	Г	Γ		Γ	Г			Г
>	ppm	27	45	63	51	48	18	89	28	22	43	45	64	72	74	69	99	35	7	09	29	28	31	33	41	38	16	25	14	44	30	18	61	61	39	51
Bi	mdd	0.3	1.3	0.3	0.5	0.5	0.1	0.3	0.1	8.0	9.0	0.5	9.0	0.7	8.0	0.5	0.4	0.5	0.1	8.0	0.5	9.0	0.7	9.0	0.7	6.0	0.3	0.2	0.2	9.0	0.5	0.2	0.3	0.4	0.7	9.0
qs	mdd																															0.1		0.4		
po	mdd	9.0	0.3	0.2	0.2	0.1	6.0	9.0	0.1	0.3	2.7	0.3	0.3	0.5	0.3	9.0	0.2	1	1.1	0.2	0.2	1.4	8.0	1.2	9.0	0.3	8.0	0.1	0.3	0.3	0.3	0.1	0.2	0.2	6.0	0.4
Sr				21		19			-									187																25		
Th	ppm	3.4	3.7	5.2		5.6													i.															2.2		
Au	qdd	1.5	.1	.3																												IS I		5.2		
A			2	9	5	3	2	5	2	4	7	3	4	9	5	5	3	4	0	3	9	7	0	1	1	2	1	0	2	3	3	0	9	5	3	1
n	ppm	1.3	2.9	1.5	2.4	1.3	1.5	-	0.7	2.2	1.7	2.3	6.0	2.9	1.7	1.5	6.0	1.7	0.7	1.5	1.1	0.8	1.4	1.1	2.1	1.7	8.0	0.3	1.1	3.5	7.1	9.0	1	0.9	1.5	2
As	mdd	11.2	8.9	3.5	8.9	6.5	5.2	8.4	2	11.3	39.7	7.7	6.3	8	1.1	6.2	6.1	3.2	1.1	6.4	19.5	15.8	7.4	8.4	10.3	22.4	4.8	1.7	2.9	22.5	3.2	2	15.4	16.2	10.6	9.6
Fe	%					3.31						2.26																								
Mn	mdd	476	409	1842	535	864	2046					487																			157	-		456		
ပ္ပ	mdd	7.2	8.4	19.4	14.5	14.3	21.3																											20.4		
	m	.2																									0.00							193.2		
Z	dd	13	25	14	45	40	44	49	89	170	20	11	25	33	31	32	31	43	30	21	18	19	14	17	17	27	11	4.5	6.3	18	43	18	19	19	88	42
Ag	ppm	1.3	0.1	0.2	0.3	0.1	0.4	0.2	0.2	0.3	0.5	0.2	0.1	9.0	0.3	0.3	0.1	0.3	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.3	0.3	0.1	2.8
Zu	mdd	188	99	115	92	06	40	78	16	69	140	54	65	81	08	80	48	78	32	48	52	91	28	74	52	22	38	16	23	18	53	18	43	45	63	229
Pb	mdd	115.8	11.8	27.8	24.1	18.2	9.3	14.5	4.9	14.3		9.1				4	8				13.8				12.3			2.5			8	3.5			10.6	256.8
no	mdd	36.4	56	25	27.3	38	28	41.7	17.1	44.4	93	48.4	34.8	77.8	59.6	54.1	36.2	61	37.5	30.6	14.7	20.5	11.4	12.4	13.3	20.9	14.1	1.6	9.2	25.3	15	4.3	73.3	64.7	25.6	37.9
Mo	Е																																	0.4		
ELEMENT N	SAMPLES p			. 4							4.4				-		-						-				*			, , ,				177		4.
ELE	SAM	LSG-26	LSG	LSG	LSG	LSG-30	LSG	LSG	LSG	LSG	LSG	LSG-38	FSG-39	LSG-40	LSG-41	LSG-42	LSG-43	LSG-44	LSG-45	LSG	LSG-47	LSH-8	LSH-9	LSH-10	LSH-11	LSH-12	LSH-13	LSH	LSH	LSH	LSH-18	LSH-19	LSH	LSH-21	LSH	LSH-23

								_										_												_						
>	mdd	45	3	99	63	29	73	54	62	œ	26	86	29	48	09	89	72	47	64	74	74	61	29	74	73	26	47	42	29	47	32	52	22	63	14	31
Bi	mdd	1.8	0.1	8.0	8.0	9.0	0.1	0.1	0.2	0.2	0.3	0.2	0.2	0.4	0.3	0.4	0.4	0.5	0.2	~	7.0	0.3	0.5	0.4	0.4	0.2	0.2	0.2	0.3	←	0.2	0.3	9.0	0.4	0.1	8.0
Sb	mdd	0.3	0.4	0.4	0.4	0.4	0.3	0.2	0.3	1.1	0.4	0.7	0.5	0.4	7.0	0.3	0.3	0.5	0.5	0.5	9.0	0.3	0.2	0.2	0.3	0.5	8.0	0.4	0.2	0.4	0.2	0.3	0.4	1.5	0.1	0.3
PO																																		0.2		
Sr				22			- 1																											28		
Th																						8 1						×			-			1.7	-	
					~	13.3																			3.4											
Au	bl	3.	3.	8	11	1,	9	3	4.	-	5.	6.	4	2.	3.	3.	3.	5.	4.	9	7	2.	0	2.	3.	8	1	9	1.	3.	1.	<u>-</u>	5	<u></u>	0	<u>-</u>
n	ppm	2.5	1.5	2	2	2.4	0.5	8.0	9.0	2.6	0.4	1.2	2.0	0.7	8.0	6.0	6.0	1.1	0.5	1.9	1.5	2.0	6.0	0.7	1.2	6.0	1.2	1	8.0	1.4	1	1.3	1.9	1.2	0.3	1.6
As	mdd	6.1	8.0	11.5	11.4	8.4	7.5	3.7	5	1.5	8.5	14.7	12.6	11.1	15.5	4.4	4.5	4.1	13.2	9	6.1	3.7	2.5	3.3	7.1	17.8	29	16.8	2.3	6.9	2.5	5	10.5	13.2	8.0	9.5
																						2												2.62		
Mn		274	0	949		1				275			1						100							-						-	200	283		
ပ္ပ	u		1.7		1																														2.3	
			8																																	
Z	ppr	21.	18.	64.	. 49	57.	32,	129	117	187	288	109	61.	136	118	536	512	424	61.	407	357	307	34	433	32,	89	91.	55.	11(42.	13.	31.	71.	26.9	4.2	31.
Ag	mdd	0.2	0.2	0.2	0.3	8.0	0.1	0.1	0.1	9.0	0.2	0.5	0.2	0.2	0.3	0.2	0.2	0.3	0.2	0.4	0.3	0.1	0.1	0.2	0.2	0.5	2.1	0.2	0.1	0.1	0.1	0.2	0.4	0.1	0.1	0.1
Zn	mdd	82	301	87	28	132	53	44	09	11	51	94	99	40	85	11	73	69	71	92	82	62	59	54	99	159	272	102	99	78	28	92	122	99	22	65
Pb	mdd	16.3	1.9	18.7	18.5	37	11.8	2.9	11.4	4	11.7	21.2	12.5	7.2	10.7	8.1	8.2	8.8	11.1	13.8	13.7	7.3	5	9	11.5	46.7	113.1	11.6	5.2	14.9	9.7	12	18.5	5.2	1.3	10.2
Cu	mdd	19.4	56.5	48.8	48.9	85.1	77.3	46.7	46.3	125	35.8	91	45.6	19.5	63.1	20.5	48.8	29	45.1	85.9	48	37.3	38.9	46.3	42.8	55.5	43.3	30.2	23.7	24.6	18.8	52.8	42.8	24	3.5	15.7
Mo	mdd			0.3																														0.5		
ELEMENT	SAMPLES		-25	RE LSH-26	-26	7			-		-			12H-36		LSH-38	LSH-39	LSH-40 0.5	RE LSH-35	LSH-41	LSH-42	LSH-43	LSH-44				18				LSH-54			-3		

		_	_				_	_					_									_					_		_	_		_				
>	mdd	43	43	31	39	33	28	34		62	73	29	47	15	85	09	61	72	78	84	84	29	65	63	89	20	99	117	74	41	17	15	42	49	38	29
Bi	mdd	6.0	~	0.1	9.0	0.5	0.7	0.3		0.2	0.3	0.3	0.3	0.1	0.2	0.3	0.5	0.5	0.5	0.3	0.3	0.2	0.1	0.1	0.3	0.2	0.1	0.1	0.2	-	0.2	0.2	6.0	1.2	8.0	0.4
gs	mdd	9.8				0.3						0.3																	0.2		0.3	_	5.6	9.0	7.4	0.2
p	mdd					0.1						0.7																			1.1			9.0		
						13 0																					N.									
S											2 24							5 13																3 23		
Th	mdd	~	3.	0.5	2.5	2.5	1.6	0		1.2	3.2	1.	7	0.2	2	2,	0.6	1.6	0.9	7.	0.7	1.5	_	1,	1.7	2.7	3.0	3.6	2,	2,	0.7	0.9	3.6	5.8	3	0.7
Au	qdd	4.7	12.7	0.5	8.0	1.1	4.1	0.5		19.9	9.5	6.2	5.2	15.9	9.8	5.1	2.9	9.1	9.2	1.6	1.8	2.5	3.5	3.4	4.3	9.0	2.7	0.5	0.5	1.2	1.1	5.3	4.8	7.4	1.4	1.5
n	mdd	1.6	1.5	0.3	1.7	1.3	1.4	0.7		8.0	1.1	8.0	1.2	1.2	9.0	0.7	9.0	0.7	1.2	2.0	1	9.0	9.0	9.0	0.5	2.0	0.4	0.4	6.0	1.4	-	1.3	1.3	2	1.7	3.5
As	mdd	4.1	17	1.4	11.7	6.1	38.1		-	44.4	15.3	0.1	.3	3.9	4	13.2	6.	7.	4	.5	4.	9.	7.	8.	.5	9.	6.	.5	7.	2.6	80.	1.7	3.4	17.5	5.8	33
	d %		71 1			1.66 6																												2.48		
														3														- 55								
Mn						257					482	901				513													808			100		301		
သ	mdd	9.1	11.4	3.6	8.9	2.9	31.6	4.2		33.5	21	43.1	29.4	6.7	23	22.4	15.9	23.6	28	44.2	55.5	28.1	11.5	11.3	35.2	28	21.1	22.8	26.9	11.7	5.2	7.7	13.9	17.5	12	4.9
īZ	mdd	25.3	59.8	3.3	28.9	24	490.4	13.4		238.7	188.6	645.1	375	325.8	133.9	176	99.1	231.7	488.4	509.1	9.629	365.8	80.2	81	342.8	227.2	78.8	52.1	242.9	61.3	31.5	93.4	116.8	143.2	105.4	27
Ag	u					0.1						0.3						0.1										2						0.3		
Zn						42				89															99		3				12	0		83		
Z									to LSI-28							,		9	5																	4
Pb	mdd	12.	13	9.0	10.	6.9	24.	5.6		24	14.	16	9.6	2.6	24.1	7.3	11.2	18	16	4.8	6.4	8	7	7	8.8	11.3	8.9	9.9	13.6	13.	4.6	9.7	12.	14.4	10.1	7
Cu	ppm	16	44.5	18.1	13.5	11.6	53	2.9	lost from LSI-18	144.2	87	52.8	37.8	102.5	71	22	29.8	48.5	73.9	47.1	67.1	58.2	23.7	22.4	2.09	32.8	43.4	24.8	74.8	18.2	19.6	34.2	21.3	31.7	17.9	12.1
Mo		0.7	0.4	0.1	9.0	0.5	0.3	0.7	ost fror	0.4	0.2	0.3	0.4	9.0	0.2	0.3	9.0	0.4	0.4	0.2	9.0	0.3	0.5	0.4	0.2	1.3	0.7	0.3	0.5	0.5	0.5	8.0	0.3	0.2	0.2	0.2
ELEMENT	SAMPLES	LSI-11	LSI-12	LSI-13	LSI-14	LSI-15	LSI-16	LSI-17	SS	LSI-29	LSI-30	LSI-31							LSI-38			LSI-41	-42							136					LSJ-14	LSJ-15

>	ppm	62	41	41	22	29	26	71	54	64	99	17	29	49	30	16	80	80	77	99	22	22	82	54	62	39	143	81	99	85	62	71	73	99	89	99
Bi	mdd	2.0	0.7	9.0	9.0	0.3	8.0	6.0	0.5	0.5	0.2	0.2	0.2	0.4	0.3	0.3	0.3	0.3	0.3	0.5	0.2	0.3	0.4	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.2	0.2	0.2
qs			8.0																															0.3		П
po									0.2	0.4	0.5	9.0	9.0	9.0	1.5	3.5	0.2	0.3	0.3	0.3	0.1	0.1	0.1	0.3	0.2	2.2	0.2	0.3	0.3	0.1	0.3	0.1	0.4	0.1	0.2	0.1
Sr		22																																14		П
Th	ppm																																	2.9		
Au	qdd	3.9	9.3	6.3	1.8	2.6	22.1	36.1	1	1.9	11.1	25.2	6.4	3.7	12.1	2.5	12.4	16.4	14.6	8.8	1.7	1.6	2	1.1	1.8	1.1	1.6	1.1	3.6	1.9	1.8	10.1	26.3	1	0.5	1.4
		2.7		.2					8.0																									9.0		
				1																																
As									11.8																									2.1		
Fe	%	2.47	2.34	2.58	2.55	1.31	2.84	3.53	2.12	2.76	3.36	3.73	2.71	2.25	1.52	98.0	3.6	3.56	3.33	2.65	3.32	3.34	3.48	2.77	3.95	4.32	5.47	4.05	2.81	4.01	4.79	3.63	3.52	2.89	2.99	2.76
Mn	mdd	415	632	931	424	223	754	902	349	592	775	831	850	811	1142	174	642	653	989	468	872	554	477	638	1013	029	945	966	1012	722	1088	944	826	457	473	403
3	6		13	_	0																						48	36.5	36.1	52	23	30.7	40.6	22	22.9	15.6
īZ	mdd	254.4	65	171.3	376.2	42.5	131.6	126.1	66.2	100.4	308.6	255.5	497.6	277.8	557.8	77.5	307.8	359.4	374.2	357.6	563.4	552.9	526.3	220.2	621.5	20.1	481.3	390	274.2	596.6	87.2	199.9	452.5	119.1	123.5	60.2
Ag	_		0.3						0.2									l																0.1		
Zn	mdd								36	57	75	66	80	81	89	134	75	29	69	70	53	64	70	09	29	147	78	72	81	42	89	53	48	47	48	51
Pb	mdd		12.5				_	5			17.9						8.7	21.8	20	9.5	4.2	4.1	5.8	7	5.8	11.1	4.5	6.1	8.2	9.9	12.1	6.3	9.2	4	4	3.6
Cu	mdd	32.4	25.5	40.3	45.2	12.5	36.1	6.97	18.3	30.9	77.3	91.4	40.6	24.2	73	18.1	73.1	58	47.2	38.6	44.7	38.2	45.1	31.9	33.2	35.2	55.2	34.1	17.3	34.3	30.7	63.8	91.5	27.5	28.8	38.2
Mo	mda	0.3	1.1	0.4	0.3	0.4	0.3	0.4	9.0	0.5	0.3	0.3	0.5	0.7	9.0	0.5	0.2	0.2	0.2	0.2	0.1	0.2	0.3	0.4	0.3	4.1	0.2	_	9.0	0.1	_	0.3	0.5	0.3	0.4	0.3
ELEMENT Mo	SAMPLES ppm	LSJ-16 (LSJ-18 (LSJ-20						111		3							LSJ-36					LSJ-41	LSJ-42		LSJ-44	LSJ-45	LSJ-46		LSJ-48	LSJ-49	LSJ-50	-50	LSJ-51

																	Г																			
>	ppm	99	54	83	06	145	79	38	108	48	23	46	54	51	36	25	62	72	46	38	46	52	29	46	49	80	59	48	170	64	62	72	22	99	9	75
Bi	ppm	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.7	0.4	0.3	8.0	9.0	9.0	0.2	0.7	0.7	8.0	0.5	1.2	0.7	9.0	0.4	0.7	0.2	0.5	0.4	0.2	9.0	0.5	0.3	0.2	0.2	6.0	0.1
qs	E D						1.6																		0.5			~						0.4		
Cd							0.4											1.1	0.3	9.0	0.2	0.3	0.2	0.3	0.4	1.2	1.4	12.2	1.8	0.5	0.2	0.1	0.1	0.2	0.4	0.1
Sr																		19	19	6	10	21	11	13	18	22	18	12	12	16	11	13	11	14	10	6
Th					8.0				1.3									1							1.5										1	1.2
Au	qdd	0.5	16.3	0.5	2.0	1	0.5	1.6	0.5	2.2	6.4	2.5	9.6	6.2	5.8	0.5	9.6	4.6	2.6	0.5	9.2	1	2.8	8.7	11.8	22.2	10.5	81.7	27.8	7.1	9.7	2	11.4	6.3	3	1.8
							1.4				8.0									1					1.2	-1								1.1		0.3
							22.9																		20.4			2								
As								ì		1																				1				1 4		
Fe	%	2.3	2.3	3.3	4	6.7	8.6	1.2	5.4	2.8	1.2	1.7	2.9	2.8	2.0													7.00						3.61		
Mn	mdd	546	300	513	388	1688	1770	635	814	583	457	174	651	868	282	84	1466	1132	407	748	669	447	523	275	829	824	887	1919	1204	519	533	523	491	664	726	648
ပ္ပ	mdd	14.6	10.7	18	18.4	33.3	55.4	5.6	24.8	23.5	10.9	6.7	26.6	25.3	15.3	6.5	39.1	34.6	16.5	9.8	14.5	34.5	32.6	20.9	17.5	22.2	30.2	16	21.2	39.9	31.6	42.3	32	28.8	29.5	46.9
Ę	mdc	37.8	33.1	53.6	15.2	52.5	548.7	10.1	39.2	275.9	113.8	58.8	295.1	253.5	149.7	35.1	542.7	184.8	151.1	26.4	31.7	529.2	408.3	358.9	509.9	154.6	398.9	75.1	107.4	539.3	333.5	517.2	307.4	347.1	229.8	497
Ag	u						0.1																				1.4	2.5	2					0.2		
Zn //	d wdd				75 (158 (75 (93 (44					117	131	3470	155					71 (
Z																3	6		4	3	3						4	2 3								
Pb	mdd	7.3	6.1	5.8	3.6	4.8	21.3	9	4.4	23.4	14.2	10.	21.4	22	75.6	6.3	37	36.8	9.1	7.1	12.6	7.5	14.	13.	19.6	27	159.	222	49.2	23.4	9.6	6.2	3.5	9.6	14.8	3.8
Cn	mdd	25.2	22.4	9.09	24.3	34	6	11.7	41.8	32.1	17.8	19	33	37.4	23.4	19.2	9.69	54.5	21.4	10.6	30.3	58.1	53.5	47.7	33.9	52.1	45.8	114.9	78.9	52.5	32.2	45.8	28.1	53.3	30.4	37.2
Mo	mdd	-	_	0.5	9.0	3.2	2.4	1.5	-	0.2	9.0	0.2	0.3	0.3	0.2	0.1	0.4	0.4	0.3	0.5	0.5	0.4	0.2	0.2	0.2	0.2	0.4	0.4	0.3	0.4	0.2	0.2	0.2	0.4	0.4	0.2
ELEMENT	SAMPLES	LSJ-52	LSJ-53	LSJ-54	LSJ-55	LSJ-56	LSJ-57	LSJ-58	LSJ-59	LSK-8	LSK-9	LSK-10	LSK-11	LSK-12	LSK-13	LSK-14	LSK-15	LSK-15A	LSK-16	LSK-17	LSK-18	LSK-20	LSK-21	LSK-22	LSK-23	LSK-24	LSK-25	LSK-27	LSK-28	LSK-29	LSK-30	LSK-31	LSK-32	LSK-33	LSK-34	LSK-35

>	ppm	17	133	75	11	22	61	64	35	51	18	23	20	39	09	45	69	33	69	46	28	26	46	49	73	74	53	49	17	84	75	69	09	28	51	20
Bi	mdd	0.1	0.1	0.2	0.2	0.1	0.2	0.2	0.7	8.0	0.3	0.3	9.0	9.0	0.4	0.5	0.4	0.2	0.3	1.1	1.1	0.7	0.5	0.7	6.0	1	0.5	0.5	0.4	0.3	0.2	0.2	0.5	0.3	1.2	1.3
									6.0																0.4									8.0		
qs																																				
PO																																		0.5		
Sr	ppm	12	12	11	6	8	16	16	32	23	27	52	20	24	12	20	14	25	12	36	20	15	20	11	20	21	17	15	36	11	11	10	12	12	19	19
Th	mdd	1.4	1	0.3	2.0	2.2	5.6	5.1	1.3	2	0.3	0.5	1.7	1.8	1.1	1.7	2.2	0.2	1.4	0.7	2.7	2.5	1.8	1.8	2	1	2	2.9	1.7	1.2	1.4	1.3	2.5	1.3	5.1	5
Au	qdd	2.4	3.3	6.0	9.0	0.5	0.7	9.0	5.2	2.9	2.4	3.1	4.1	11.5	3.1	8.9	7.0	10.2	13	1.3	1.2	0.5	0.5	0.5	9.0	0.5	3.5	6.3	21.9	1.7	3.7	2.1	1.7	25	6.0	1.8
									1.4																									2.0		
	p	0	0	0	0	0																														
As	ppm	3.9	1.9	3.5	3.1	2.5	1.7	1.8	16.8	15.7	7.9	17	23.1	74.8	14.8	55.7	2.8	12.7	20.5	3.5	3.3	2.9	1.9	2	3.4	4.4	25.1	25.3	62	7.4	4.6	4.2	2.5	20	2.7	2.8
Fe	%	3.67	4.88	3.26	3.11	3.27	2.54	2.58	1.99	2.54	0.97	1.25	2.76	2.36	2.75	2.57	3.07	1.58	3.56	2.31	2.68	2.69	2.37	2.43	3.45	3.5	2.68	2.92	2.05	3.41	3.51	3.35	3.2	3.46	2.53	2.51
Mn	mdd	902	1059	1007	603	473	374	404	975	484	691	723	943	829	413	715	292	499	622	822	515	429	539	390	633	830	574	906	718	563	503	472	479	823	352	413
ප									17.2																											ıı
ラ	mdo	177.5	372.9	225.3	165.8	106.4	33.9	35	152.2	227.6	32.2	104	341	210.3	479.9	288.2	9.999	131.1	510	511.8	128.7	443.6	447.6	117	944.5	791.1	260	352.9	36	551.1	363.3	353.5	593.9	186.7	395.8	347.7
Ag	L								0.3																									1.3		
Zn							48			55			114	168		124	41												8					26		
Pb							4.6			15.2	12.4	24	51.2	8.76	12.3	74.4	3.4	13.2							4						3.7	3.8	7.1	20	3.8	4.3
Cu	ppm								22.9				7												73.9				15.6			75.8				
Mo	mdd														7.7	4.(3.3	8.0).2	9.0	7.4	0.3	7.7	7.7	.3	9.0	.3							0.3		
FINT	ES		7	8	9	8	6	K-490	0.3	0	0	1			1 C	2 (3 (7	3 (9 (6) (1 (2 10	3 (1 C	2 (0	1 1	2 (3 6	4 (M-14C	5 (
ELEMENT	SAMPL	LSK-3	LSK-37	LSK-3	LSK-3	LSK-4	LSK-49	RE LSK	R-TST	6-TST	LSL-1 (LSL-13	LSL-12	LSL-13	LSL-14	LSL-1	LSL-16	LSL-17	LSL-18	LSL-19	LSL-2(LSL-2	LSL-22	LSL-23	LSL-24	LSL-2	LSM-1	LSM-1	LSM-1	LSM-1	LSM-1	RE LSM-140.1	LSM-15	LSM-16	LSM-17	LSM-18

_																					_					_
/	mdd	26	52	99	64	51	26	46	61	09	19	64	52	99	20	92	83	74	26	99	58	53	65	63	^	mdd
Bi	mdd	6.0	8.0	9.0	9.0	0.3	0.5	9.0	2.0	0.4	0.5	0.2	0.4	1.6	1	6.0	9.0	8.0	1.1	0.3	9.0	1.3	8.0	8.0	Bi	mdd
qs	mdd	0.3	0.2	0.3	0.3	0.2	0.3	1.6	0.2	0.2	0.2	0.2	0.4	0.3	9.0	0.4	0.7	0.3	0.4	0.4	0.2	0.5	0.4	0.4	Sb	mdd
Cd	mdd	0.1	0.1	0.1	0.1	0.1	0.1	1	0.3	0.1	0.1	0.1	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	Cd	mdd
Sr	ppm			13	13	12	20	32			6	10	15	15	13	15		12	11	10	13	11	10		Sr	mdd
Th	mdd		4.2	3	2.7		3.1			1	1.1	0.2		2.5			6.0	3.4	3.2	0.4	1	3.4		2.1	Th	mdd
																					9					
Au	qdd	0.7	9.0	0.5	0.7	0.5	0.5	3.7	2.1	0.7	0.5	0.5	7	0.9	0.5	1.1	1.4	6.0	1.1	0	9.0	1.7	1.1	1.2	Au	qdd
n	mdd	1.8	2	1.4	1.7	0.7	1	1.3	1.3	0.5	9.0	0.3	1.2	3	1.5	2	1.3	1.5	1.7	9.0	1	2.3	1.2	1.3	n	mdd
As	ppm	3.9	2.2	3.2	3.4	2.3	3	12.1	11.6	3.3	3	1.6	3.3	3.6	5.4	6.9	9.8	5.5	6.9	3.2	2.8	6.4	5.8	5.7	As	ppm
Fe	%	2.53	46	3	2.98		~	2.3	2.93	2	2.7	2.87		2.96	2.55	3.26		3.26	2.68	2.02	2.58		3.08			%
Mn	mdd			530		515	607	496			531			452			757		526		875	372	532		Mn	mdd
Co	mdd	27.2	23.7	42.2	39.5	52.3			32.7			27.4		23.2		38.3			26.3	11.2	57.1	12.2		36.6	Co	mdd
īZ																					12	53.7			Ni	mdd
Ag	mdd	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Ag	mdd
Zn	mdd	47	48	47	43	31	34	99	53	43	43	41	36	79	44	63	46	48	53	26	44	58	44	44	Zn	mdd
Pb	mdd	4.2	4.1	3.2	3.2	2	2.9	16.9	18.7	3.7	4.2	2.5	3.9	5.9	4	2	3.7	4.5	6.4	5.4	4.5	7.1	5	5.3	Pb	mdd
Cu	mdd	29.6	31	44.9	72.8	1.79	36.3	48.3	54.7	47.8	42.1	51.4	31.8	79.9	41.7	39.3	44.5	26.2	19.5	12.7	18.2	18.6	21	20.5	Cu	mdd
		0.3	0.2	0.3	0.2	0.1	0.2	0.3	6.0	0.4	0.3	0.3	0.2	0.5	1.2	0.4	9.0	9.0	0.7	2.0	8.0	7.0	0.5			
ELEMENT Mo	SAMPLES ppm	LSM-19	LSM-20	LSM-21	LSM-22	LSM-23	LSM-24	6-NST	LSN-10	LSN-11	LSN-12	LSN-13	LSN-14	LSN-16	LSN-17	LSN-18	LSN-19	LSN-20	LSN-21	LSN-22	LSN-23	LSN-24	LSN-25	RE LSN-290.6	ELEMENT Mo	SAMPLES ppm

T		Se	ppm	3.5	3.5	3.5	3.5	3.5	0.5	0.5	0.5	3.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	7.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	1.2	2.1
+		Ga	p	5 6	5 3	5 5	5 6	5 6	2 9	5 6	6 3	1 7	8 6	7 8	5 7	9	5 5	5 7	5 7	5 7	5 7	6 9	5 6	5 6	5 5	5 6	5 3	9 9	5 7	5 7	3 3	5 7	5 2	6 1
+		S	-						90.0																									0.16
_		F	ppm	0.2	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1
		Sc	mdd	2.2	1.5	3.4	5.6	2.3	2.7	2.8	1.2	0.3	0.4	5.6	4.9	4.1	3.6	2.8	2.7	6.4	9.6	7.1	3.4	4.6	6.0	0.7	0.4	2.4	2.3	3.6	9.0	2.4	0.4	0.4
		Hg	mdd																													0.02		0.02
		M							6.0																							0.3		0.1
		X	%	0.19					0.15								0.11											60.0						0.03
									0.006				14.15				0.005											0.01						0.033
+	\vdash	Na	%																	1														
+	\parallel	A	%	1.22	0.73	1.07	0.79	0.88	1.4	1.3	9.0	1.33	1.09	1.66	1.88	2.03	1.57	1.9	1.88	2	1.89	2.4	1.52	1.72	1.17	0.9	0.6	1.25	1.7	1.59	0.86	1.43	0.56	0.45
		В	mdd	-	1	7	~	7	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	4
		Ti	%	0.048	0.046	0.059	0.07	0.055	0.062	0.064	0.04	0.01	0.012	0.03	0.02	0.029	0.031	0.067	0.069	0.062	0.048	0.04	0.035	0.045	0.015	0.048	0.017	0.04	0.032	0.075	0.015	0.038	0.028	0.018
		Ba	L						163			86																184						335
		Mg			0.37				8.0					1.09			0.93		1.41	1.39	1.18			1.24				0.62			0.29		0.12	
T			, wdd						33.8								44.6		68.4		2.99				100							34.6		
+	H	స	1		21	30	38	23	33	32							8		39															4
+	\vdash	La	mdd	14	∞	12		13		11		8						14	14	25											8	10		
		Ь	%	0.053	0.087	0.065	0.069	0.036	0.075	0.055	0.088	0.109	0.085	0.106	0.116	0.093	0.094	0.12	0.122	0.115	0.095	0.109	0.092	0.096	0.107	0.046	0.064	0.064	0.097	0.111	0.137	0.059	0.043	980.0
		Ca	%	0.33	0.3	0.21	0.45	0.23	0.21	0.16	0.28	0.16	0.11	0.3	0.56	0.28	0.24	0.27	0.27	0.33	0.41	9.0	0.28	0.43	0.24	0.14	0.12	0.18	0.16	0.33	0.84	0.14	0.5	1.49
		ELEMENT	SAMPLES	LSA-1	LSA-2	LSA-3	LSA-4	LSA-5	LSA-6	LSA-7	LSA-9	LSA-10	LSA-11	LSA-12	LSA-13	LSA-14	LSA-15	LSA-16	RE LSA-16	LSA-17	LSA-18	LSA-19	LSA-20	LSA-21	LSA-22	LSA-23	LSA-24	LSA-25	LSA-26	LSA-27	LSA-27A	LSA-28	LSA-29	LSA-30

																		_																		
Se	ppm	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.7	1.1	0.5	0.5	0.5	0	0	0	9.0	0.5	0	0.5	0	0	0	0	0.5	9.0	0.5	0	0	0	0	0
Ga	mdd	2	9	1	2	4	2	3	4	1	2	9	9	1	2	9	4	4	3	2	2	8	9	8	7	7	7	3	8	2	7	9	11	5	9	6
S	K 8	0.12	0.07	0.29	0.12	0.16	0.05	0.2	0.05	0.33	0.13	0.05	80.0	98'0	90.0	0.05	0.05	0.05	0.05	90.0	0.18	60'0	0	0	0	0	0	0	0	0	0	0	0			
I	ppm	0.1		0.1																					0.3								0.3	0.2	0.2	0.4
Sc	mdd	0.3	1.2	0.4	1.7	2.8	4.5	0.7	2.3	0.7	3.3	3.9	3.7	1.5	4.4	3.2	5.6	1.7	1	0.4	0.4	5	3.3	6.2	5.5	3.8	3.1	0.4	7.3	1.3	3.5	3.5	8.7	4.2	5	11
Hg	mdd			0.13																												0.03				
M	mdd	0.1		0.1																					9.0									0.4		П
×	%	0.04	0.12									0.18									0.04	0.16	0.21	0.2	0.2	0.14										
Na	%	0.025		0.013	-																		0.008				0.008					0.007			0.005	900.0
				0.43 0															0.48 0						1.89 0											
B	% mdd			3 0														1 0	1 0	1 0	1 0			1 1		1 1	1 1						1 3		1 1	1 2
		0.02	0.044									90.0							0.04			0.055	. 890'0		0.078			0.047	0.048						7	206
a	% mdd	136 0.																																314 0.		
Ba	d		1 131																								524									
Mg	%	0.12	0.34	0.1	0.5	6.0	1.1	0.3	0.8	0.28	0.8	1.14	0.81	0.11	1.26	0.7	9.0	0.42	0.18	0.14	0.1	1.01	0.78	11.1	1.01	0.88	0.7	0.1	1.73	0.5	1.32	0.96	3.4	0.93	0.8	3.3
C	mdd	6.1	24.3	10.3	35.4	63.9	9.53	22.5	43.2	12.4	6.64	54.4	629	18.4	8.53	34.8	20.5	20.5	10.2	4.8	6.1	60.4	33	64.6	48.5	31.7	30	6.2	90.2	19.5	8.99	68.9	284.1	26.7	28.7	280
La	ppm	2		5								12					34		3			16	10	13					13	2	14			22		
Ь	%	0.062	0.061	0.116	0.073	0.116	90.0	0.165	0.091	0.114	0.139	0.062	0.148	0.154	0.083	690'0	0.091	0.068	0.051	0.051	0.101	0.1	0.044	690.0	0.076	90.0	0.093	0.032	0.091	0.044	0.088	790.0	0.118	0.116	0.11	0.089
		1		2.14 (0.26					~								0.28						0.13			0.36		
ELEMENT	SAMPLES	LSA-31						LSA-36		LSA-38					LSA-43	LSA-44	LSA-45		1		100						1	LSB-9	LSB-11				1		1	

Se	ppm	0	8.0	0	0	0.5	C	0.5	C	0	0	0	0	0.9	0	0	0	0	0	0	9.0	0	0	0	0	1.7	0	0	0	0	0	0	0	0	0.5	0
Ga		3 (2																								2		
1			0	0.18	0	0.07				0						90.0				0	80.0	0.07													60'0	
TI (, mdd	0.1	0.1		0.1		0.1			0.1													0.1											0.2		
Sc		2.4		1.2									9					2.2					,											6.2		
Hg	d mdd	0.08	0.02																																	
W H	d mdd		0.3 0	0.2 0																														0.6 0		
			0.09	0.07	0.17 [0	0.15	0.08			0.1								0.12																0.13		
X	%									0.004						6									3									0.012 0		
Na	%	7 0.01	3 0.009	2 0.01	7 0.004			8 0.007													600.0															
A	% U		1.93	1.42	1.37	1.42	1.3	1.38	9.0	1.3	1.4	1.18	0.4	1.9	1.3	1.2	1.3	1.12	0.39	1.2	1.45	1.07	0.98	1.7	2.24	1.0	1.8	1.3	1.28	1.3	1.06	1.1	1.2	2.42	2.0	1.35
В	mdd	7	7	_	1	-	1	1	1	1	1					1					2	_		1		2					1				2	
Ξ	%	0.015	0.037	0.015	0.058	0.028	0.016	0.012	0.011	0.033	0.044	0.02	0.031	0.031	0.009	0.031	0.041	0.038	0.052	0.022	0.03	0.019	0.041	0.067	0.079	0.012	0.037	0.052	0.054	0.03	0.013	0.039	0.041	0.065	0.041	690.0
Ba	wdd	463	375	509	330	601	427	466	283	297	269	315	72	202	205	199	152	266	58	233	902	185	342	326	338	864	290	181	182	137	421	325	309	279	396	140
Mg	%	0.51	1.45	0.63	1.04	0.88	0.71	69.0	0.23	1	96.0	0.63	0.14	1.29	0.82	1.52	1.69	0.84	0.11	0.79	0.79	98.0	0.54	1.21	1.63	0.71	1.35	98.0	0.81	0.82	0.42	1	1.06	3.03	2.8	1.56
Cr	mdd	21.1	56.4	26	29	26.1	9.2	24.6	9.1	4.4	33	30.9	.5	42.9	2.9	187.5	92.6	71.1	4.	4.6	9.7	9.2	25.1	9.1	65	1.2	4.8	5.5	4.3	0.1	30.2	1.7	98	337.5	6.09	163.3
La	1 -1	11 2		11 2	12 2	13 2	10 1	10 2	6 9		13 3			15 4			10 1	11 7			17 4	10 2	19 2	18 7	12 6	19 5		10 7			21 3			12 3		1
	a	0.096	0.099	0.091	0.114	0.086	0.111	0.103				0.092	0.071			0.104 7			0.062 4	0.082	0.105			0.075	0.075			0.055						0.064	660.0	0.117 7
В	%																																2 0.09			
Ca	%	0.44	0.42	0.3	0.36	0.28	0.28	0.2	0.2	0.31	0.2	0.3	0.2	1.1	0.3	0.68	9.0	0.47	0.26	0.41	1.09	0.19	0.58	0.58	0.5	2.87	0.4			0.1	0.2	0.3	0.32	0.38	0.63	0.37
ELEMENT	SAMPLES	LSB-20	LSB-21	LSB-22	LSB-23	LSB-24	LSB-25	LSB-26	LSB-27	LSB-28	LSB-29	LSB-30	LSB-31	LSB-32	LSB-33	LSB-34	LSB-35	LSB-36	LSB-37	LSB-38	LSB-39	LSB-40	LSB-41	LSB-42	LSB-43	LSB-44	LSB-45	LSB-46	RE LSB-46	LSB-47	LSB-48	LSB-49	LSB-50	LSB-51	LSB-52	LSB-53

			_												Г		_					Г						Г					Г			
Se	mdd	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ga	mdd	5	2	9	5	2	4	7	7	9	9	9	9	7	9	7	9	9	4	7	7	7	9	5	2	က	5	9	7	∞	က	5	က	9	7	7
S	%	0	0.05	0.08	90.0	0.05	0.05	0	0	0.07	0.07	0.07	0	90.0	0	0	0	0	0	0	0	90.0	0	0.07	90.0	0.13	0	0	80.0	0	0.07	0	0.08	0	0	0
F	mdd	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2
Sc	ppm	2.7	0.3	4	1.3	0.2	9.0	7.8	7.7	2	1.8	2.4	3.4	2	2	1.7	1.6	2.4	2.7	2.7	2	2.1	5.1	1.1	1.4	0.3	4.5	4.1	3.1	6.1	1.1	4.2	3.3	4.1	4.8	4.8
Hg	L								0.03						90.0																0.05		80.0			
M	mdd		0.4	1								1.6																			0.2					
×	%	0.08	0.03	0.3	0.07	0.02	0.04	0.13	0.13	0.17	0.17	0.17	0.19	80.0	0.11																			0.2	1	0.11
Na	%	0.007	0.018	0.013	0.014	0.023	0.011	0.003	0.003																				900.0			0.009	0.012		0.004	0.004
				1.79 (1.39 (1.62											1.32		1.79
B /	, mdd			2		1 (1	1	1	1	1	1		1	1 (0	0			7	0
Τİ	%	0.061	0.014	0.064	0.033	.031	.03	0.029	0.029	0.043	0.053	0.047	0.07		0.054		T I						0.051			2.5		0.026	0.057	9			0.021			0.055
Ba	bpm	169 (20 (0						290 (0			215 (0	104 (0		102								374 [0											398		
Mg																										u 8					0.14					
	_o mdd			51.1								29.6																			10.3					
Cr	1		11	5,	23	4.	17	20	2.	26	25	8			25	26	23	25	40	32	25	3.	36			14	21	30	25	14	10	16	24	18	30	30
La	ppm	6	3	110	8	2	2	22	22	12	13	12	15	110	6	6	8	11	14	14	11	12	15	10	16	9	19	16	10	14	6	25	17	24	15	14
Ь	%	0.057	0.051	0.086	0.075	0.064	0.044	0.067	0.062	0.067	0.062	0.085	0.042	0.039	0.051	0.034	0.032	0.056	0.073	0.073	0.043	0.082	0.104	0.062	0.101	0.112	0.11	0.13	0.132	0.143	0.061	0.127	0.161	0.064	0.079	0.079
Ca	%	0.27	0.36	1.31	0.65	0.28	0.1	0.14	0.13	0.2	0.19	0.18	0.12	0.15	0.11	0.1	0.1	0.15	0.21	0.21	0.13	0.16	0.42	0.09	0.17	0.13	0.4	0.4	0.26	0.33	0.09	0.36	0.33	0.23	0.27	0.27
ELEMENT	SAMPLES	LSB-54	LSB-55	LSB-56	LSB-57	LSB-58	LSB-59	LSC-0	LSC-1	LSC-2	LSC-3	LSC-4	LSC-5		4								X	LSC-15	LSC-16	LSC-17	LSC-18	LSC-19	LSC-20	LSC-21	LSC-22		-			.26

								_			_																									
Se	mdd	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0	0	0.5	0	0	0	0.5	8.0	0	0	0	0	0	0	9.0	0	0.7	0	0	0	0
Ga	mdd	9	9	2	9	2	9	7	4	4	က	9	9	2	9	2	5	5	9	2	9	4	3	9	4	5	2	9	_	9	2	6	9	9	7	7
S	%																		1			ĺ								0.11				90.0		90.0
E	mdd	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0	0.1	0.3	0.1	0.1	0.3	0.3	0.1	0.5	0.2	0.5	0.2	0.2	0.2	0.2
Sc	mdd	5.1	3.2	4.5	5.3	2.0	1.5	1.9	4.2	4.2	8.0	3.5	9.6	0.5	1.8	4.1	1.6	4.4	4	1.6	3.5	1.9	3.8	3.6	1.4	6.0	2.7	2.4	0.5	2.8	0.2	2.9	2.3	2.2	3.1	1.9
Hg	ppm	0.02	0.02	0.02	0.03	0.01	0.01	0.03	0.01	0.01	0.03	0.04	0.02	0.02	0.02	0.02	0.05	0.05	0.03	0.07	0.03	0.12	0.17	0.03	0.04	0.07	0.03	0.04	0.15	0.08	0.14	90.0	0.03	0.04	0.02	0.02
M	mdd			0.4																										1.2		1		1.6		
×	%	0.13	0.11	0.07	0.16	0.07	0.07	0.07	0.13	0.07	0.04	90.0	90.0	0.03	0.11	0.11	0.12	0.12	0.08	90.0	0.08	80.0	90.0	0.17	0.11	0.12	0.1	0.07	80.0	0.14	90.0	0.1	60.0	60.0	0.13	0.16
Na	%	200.0			0.008					600.0								0.007				0.004									0.018	0.007	600.0		0.009	
A	%	1.75 (1.29								1.25				0.75								1.8				0.91		
В	ppm	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	3	1	1	1	0	0	3	1	1	1	1	1	1	1
ij	%	0.056	0.028	0.036	0.047	0.017	0.025	0.074	0.067	0.047	0.023	0.052	0.073	0.037	0.038	0.068	0.017	0.051	0.044	0.027	990.0	0.007	0.013	0.082	0.022	0.025	0.061	0.079	0.011	0.036	900.0	0.058	0.081	0.078	0.07	0.041
Ba	mdd																			190			3	321						917			106			
Mg		1.31	1.08	1															1.36			0.59										0.42		0.44		
		30	32.8	25.1					137.4			124.1				2	8.79	103.7				38						9		7	8.6			25.5		
La Cr									12 1			12 13					19 6.	15 1		1																
٦	d					9 69	72 9	10		38 9				5 3					6 9/	2 1	0			+										18 9		
В	%	0.065	0.089		0.093	0.159	0.072	0.048	0.114			0.094					0.12	0.069	0.076	0.167						0.076			0.146	0.091		0.095	0.046		0.068	
Ca	%	0.54	0.45	0.47	0.62	0.61	0.35	0.09	9.0	0.73	0.81	0.64	0.54	0.34	0.36	0.28	0.4	0.86	0.27	0.26	0.2	0.33	1.6	0.41	0.29	0.39	0.15	0.11	1.25	0.61	0.18	0.1	0.17	0.17	0.21	0.46
ELEMENT	SAMPLES	LSC-27	LSC-28	LSC-29	LSC-30	LSC-31	LSC-32	LSC-33	LSC-34	LSC-35	LSC-36	LSC-37	LSC-38	LSC-39	LSC-40	LSC-41	LSC-42	LSC-43	LSC-44	LSC-45	LSC-46	LSC-47	LSC-48	LSD-1	LSD-2	LSD-3	LSD-4	LSD-5	LSD-6	LSD-7	LSD-8	LSD-9	LSD-10	RE LSD-10	LSD-11	LSD-12

	L							Г				Г					П	Г								Г										
Se	ppr	0	0	0	9.0	0	0	0	0	0	0	0	9.0	0	0.7	0.5	0	0	0	0	0	0.9	0	0	0.5	2.1	0	0.5	0.5	0	0	0	0	0	0	0
Ga	mdd	7	9	7	5	ω	7	9	7	7	9	9	2	9	2	9	9	6	9	œ	8	7	7	9	9		8	5	3	5	9	5	5	4	2	3
S	%	0	0.07	0	0.1	60.0	0.14	0	0	0	0	0.08	80.0	0	0.17	0.1	0	0	0	0.07	60.0	0	0	0	0.13	0.18	80.0	0.09	0.23	80.0	0	0	0	0	0.15	0.25
E	mdd	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0	0.2	0.1
Sc	mdd	1.3	3	2.4	2.4	5.5	4.1	2.7	1.3	3.6	2.3	2.1	1.8	7.9	က	3.7	5.7	7.7	5.3	5.5	3.1	4.2	5.5	3.9	3.4	4.2	4.4	4	1.8	4	5.9	3.9	4.9	4.3	1.7	1
Hg	mdd	0.02	0.08	0.04	0.04	0.05	90.0	0.03	0.03	0.01	0.03	0.05	0.04	0.04	60.0	0.04	0.03	0.04	0.01	0.04	0.05	0.04	0.02	0.02	0.04	0.05	0.03	0.03	90.0		0.02			0.04		0.17
×	mdd	1	1	0.7	0.4	0.5			0.7																											0.2
*	%	0.12	0.11	0.14	80.0	0.13	0.12	0.09	60.0	0.17	0.07	0.08	0.04	60.0	20.0	20.0	0.1	0.15	0.11	0.1	0.08	0.1	0.21	0.15	60.0	0.13	0.1	90.0	80.0	0.05	90.0	80.0	20.0	0.03	90.0	80.0
Na	%	0.008	0.007	0.008	0.02	600.0	0.01	0.013	0.013	0.007	0.007	0.007	0.029	900.0	0.015	600.0	900.0	200.0	900.0	600.0	0.007	0.00	0.014	600.0	600.0	0.013	0.011	0.012	0.008	0.011	0.013	0.012	0.013	0.012	0.008	600.0
A	%	1.2							1.52										22				1.71											0		0.41
B	mdd	1	1	1	1	1	2	-	1	1	1	1	1	1	2	1	1	0	1	1	1	1	1	1	2	2	1	1	3	1	2	1	2	1	1	2
i=	%	0.04	0.067	0.071	0.032	0.041	0.035	0.053	0.044	0.068	0.051	0.039	0.035	0.012	0.015	0.021	0.043	0.057	0.061	0.042	0.036	0.065	0.084	0.092	0.044	0.058	90.0	0.031	0.015	0.03	0.07	0.054	0.054	0.046	0.022	0.023
Ba	ppm	251	328	127	932	904	1033		127		177	336	187	1088	912	791	437	222					219					1	1006			166			361	
Mg	%	0.45	8.0	0.58	0.58	1.28	1.07	0.77	0.32	0.85	0.52	0.43	0.25	0.81	0.57	0.92	1.19	1.69	1.23	1.24	0.85	66.0	1.7	1.53	1.15	1.56	1.68	2.16	66.0	2.13	2.97	2.32	3.29	2.85	0.48	0.29
స	mdd	26.6	41.5	30.5	31	2.73	45.7	40.6	25.8	19.4	30.9	27.2	8.8	24.8	18.8	24.5	37.5	52.3	60.2	268.6	68.3	71.7	137.6	160.5	115.5	155.9	192.8	279.9	129.3	277.9	337.4	269.2	382.3	376.2	96	43.9
La	ppm		6	12					14		3	12							-				14									11			9	
Ь	%	0.062	0.052	0.053	0.089	0.1	0.123	0.063	0.067	0.068	0.065	0.079	0.094	0.115	0.135	0.148	0.075	0.08	0.1	0.151	0.095	0.088	0.1	0.086	0.13	0.082	0.082	0.119	0.161	0.117	0.065	0.076	0.049	0.034	0.187	0.15
Ca	%								0.21						0.92								0.8							20						0.46
ELEMENT			***	LSD-15									, v v.			A PATRICE		1		A. 18.			LSD-35				1			-40						LSD-47

_		_						_																												
Se	mdd	0	0	0.5	6.0	0.5	0	0.5	0.5	0.5	0.5	0.5	0.5	0	0	9.0	0	0.5	0	0	0	0	0	0	9.0	0	0	0	0	0	0	0	0	0	0	0
Ga	mdd	5	3	3	2	8	2	2	2	1	4	4	4	9	4	5	2	9	9	8	8	4	9	7	4	9	8	8	8	6	4	6	5	8	9	6
S	%	20			23		0	X																		0				_				0.11		
E	ppm	0.1	0.1	0.1	0.1	0.1	0	0.2	0.1	0.3	0.2	0.2	0.1																0.2	0.3	0.2	0.1	0.2	0.2	0.1	0.2
Sc	mdd	2.9	. 9	6.2	8.0		0.3	4.4	0.2	0.2	2.1	2.4	1.1	1.4	1.5	2	2.2	1.5	3.4	6.9	6.1	2.1	1.8	2.8	1.1	3.4	5.4	4.7	2.3	6.3	2.3	1.4	1.4	2.2	8.0	4.5
Hg	ppm	0.05	0.03	0.02	0.11	0.03	0.01	0.02	0.01	0.1	0.03	0.03	0.02	90'0	60.0	0.03	0.03	0.05	0.03	0.03	0.04	0.01	0.02	0.02	60'0	0.04	0.04	0.03	0.03	0.1	0.16	90.0	0.12	0.14	0.14	0.07
M	ppm	9.0	0.3	0.2			0.1	0.2	0.1			0.5																						0.3	7.0	0.7
~	%	0.05	60.0	80.0	0.04	0.1	0.02	0.13	0.02	0.07	80.0	0.1	80.0	60.0	60.0	0.08	0.11	0.1	0.13	0.14	0.14	90.0	0.15	0.2	90.0	0.18	0.25	0.16	0.12	0.17	80.0	0.07	0.12	80.0	0.1	0.14
Na	%	0.01	3000	900.0	200'0	0.012	0.033	0.01	0.022	0.008	0.012	0.012	0.014	900.0	0.015	600.0	0.01	900.0	700.0	700.0	700.0	000.0	000.0	900.0	0.008	200'0	600.0	900.0	9.00%	0.011	0.01	0.013	900'0	0.017	800'0	0.016
Lu I)3		1.	0.55	97	0.32	78	31		1.11 (99.0						11707																1.84
B /	om			1						187		1														, 1								1	1 (1
		129		0.011					0.027			0.041	0.023	0.062		0.038	0.061	0.031								0.072								0.068	0.022	0.071
	L											199 0.																								
Ba	ppr	14.	22	09	80	30	61	30	32	35	15	16	14	88	33	26	21	30	15	45	44	18	21	17	75	38	19	22	31	38	10	36	211	103	163	172
Mg	%	1.44	0.89	96.0	0.91	2.37	0.11	1.45	0.12	0.25	0.87	0.61	0.4	0.35	0.23	0.47	0.67	0.41	0.82	1.07	1.07	0.51	0.53	0.59	0.32	0.77	0.83	1.02	0.76	1.35	0.76	0.34	0.54	0.37	0.23	0.97
5	mdd	255.7	80.2	91.9	102.6	275.6	5.4	155.5	4.6	11.9	114.4	45.1	33	28	13.6	29.5	42.5	32	51.1	70.3	73.8	31.8	26.7	32.5	21.5	37.8	45.3	45.7	45	75	47.3	30.2	31.2	45.1	22	35.2
La									2	3	6	12	10	8		14	6	10			11													12		
Ь									0.067				260.0	0.047	0.064	0.067	0.048	0.065	0.051	690'0	0.07	0.051	0.073	0.05	0.105	9/0.0	0.089	0.087	0.095	0.169	0.207	920.0	0.088	0.105	0.137	0.084
-									0.24				0.72	0.12				0.28		0.54			0.28							0.59		0.23			0.21	0.29
ELEMENT	SAMPLES												•								2		LSE-9									LSE-18	LSE-19	LSE-20		

ind	ر		Г			Г			Γ				Г				Г		Г										Г			Γ			Г	
Se	ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1.9	9.0	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ga	mdd	9	8	<u>∞</u>	8	9	7	4	7	9	4	9	5	7	2	4	2	9	2	2	9	9	7	2	9	9	7	7	4	က	-	2	9	6	5	2
S	%	0.12	0	0	0	80.0	0	0	0	0	0.18	0	0	0	0.29	0.19	0	0	0	0	0	0	0	0.18	0	0	0	0	0	0	0	0	0	0	0	0
IL	mdd	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0	0.2	0	0.1	0.1	0.1	0.2	0.1	0.1	1.0	0.1	0.1	0.4	0.3	0.1	0.1	9.0	0.5	0.2	0.1
Sc	ppm	2.3	8	8.3	9.7	3.5	3.4	1.8	3.9	1.5	0.5	5	4.6	4.8	8.0	1.8	0.3	5.3	0.3	4.3	6.2	4.1	4.8	1.6	3.2	5.1	6.4	4.8	1.3	6.0	0.1	0.2	2.2	6	1.8	0.5
Hg	mdd			0.02								0.01						0.03				0.03	0.04		0.05						0			0.01		
W H				0.5																														0.5	8	
711		99					0.1												0.02															0.33		
		112										0.016			0.014	0.01	0.028	2	0.03															0.011		
Na	%																																			
A				2.33										1.94								1.5	1.72	0.8	1.47	1.85	2.12	1.86	39.0	0.56	0.14	0.24	1.13	2.18	36.0	0.38
В	ppm	2	0	_	1	_	-	1	-	0	0	1	1	2	3	3	0	1	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0
Ξ	%)27		0.071		0.045	0.034	0.036	0.042	0.022		0.058		0.061	0.01	0.021	0.032	0.061		0.071		0.041	0.081	0.017	0.039	0.063	0.015	990.0	0.071	0.038	0.014	0.015	0.091	0.122	0.051	0.033
Ba							290		145					153		3				213					80											41
Mg	%	0.54	1.43	1.89	1.55	0.7	6.0	0.43	1.04	0.85	0.42	2.27	2.03	1.85	0.43	16.0	0.12	1.68	0.12	2.54	2.58	2.2	2.54	1.16	2.04	2.21	2.04	2.52	68.0	0.24	0.05	0.1	0.82	1.98	0.57	0.13
Cr		21.8	14.4	58.9	19.2	30.3	9.08	9.62	56.2	61	50.5	256.5	218.5	207.8	42.9	106.1	10.6	187.4	10.8	303.6	304.5	303.1	276.5		227.5						3.7			3	3	
100	l mdd																															4,7				
La	d			10		3 7	5 11		8				5 12			10	3 2	9 18		7 2	3 12				3 5							1	7	8		3
Ь	%	0.11	0.095	0.101	0.103	0.086	0.095	0.069	0.1	0.089	0.151	0.077	0.105	0.069	0.172	0.12	0.048	0.069	0.048	0.062	0.083	0.099	0.078	0.19	0.086	0.057	0.184	0.049	0.022	0.028	0.013	0.02	0.031	0.046	0.044	0.021
				0.83					0.18				0.92						0.15				0.3								0.05	90.0	0.16		0.12	90.0
ELEMENT	SAMPLES	LSE-23	LSE-24	LSE-25	LSE-26	LSE-27	LSE-28	LSE-29	LSE-30	LSE-31	LSE-32	LSE-33	LSE-34	LSE-35	LSE-36	LSE-37	RE LSE-39	LSE-38	LSE-39	LSE-40	LSE-41	LSE-42	LSE-43	LSE-44	LSE-45	LSE-46	LSE-47	LSE-48	LSF-1	LSF-2	LSF-3	LSF-4	LSF-5	LSF-6	LSF-7	LSF-8

																																				Г
Se	ppm	0	0	0	9.0	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0.7	9.0	0	0	0	0	0	0	0.5	0	0.5	0	0	0	0	0	0	0	0
Ga	ppm	2	5	4	4	4	5	2	9	2	2	4	4	8	3	3	6	5	7	2	9	9	9	7	9	2	2	1	7	9	9	7	8	2	9	3
S	%	0	0	0	80.0	0	0	0	0	90.0	0.14	0.15	0	0.13	0.21	0.21	0.11	0.15	90.0	0.24	0	0	0.13	0	0.12	0.27	0.11	0.23	60.0	0	0	90.0	0	0	0	0.17
I	ppm	0.1	0.2	0.1	0.2	0.1	0.2	0	0.1	0	0.1	0.2	0.1	0.3	0.1	0.4	0.4	0.4	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.2	0.2	0.2
Sc	mdd	1.4	2.6	9.0	2.9	1.5	2.5	0.2	2.1	0.3	1.4	0.7	1.2	10.7	2.8	0.4	1.5	4.2	9.7	1	4.9	2	4.8	6.3	4.8	1.2	1.5	1.2	10.7	4.9	2	6.5	9.9	3.5	4.8	2.3
Hg	mdd		0.01			0.02										10.0					0.02	0.03	60.0	0.04	90.0	60'0	0.05	0.17	0.07					90.0		
W	mdd		1.4			8.0																								6.0		0.5				
	%	90.0	0.16	0.07	0.12	0.11																	0.1	0.13			0.08							0.08	0.08	90.0
3		0.011	0.008	0.013	1			0.034								900'0			600.0											0.011		0.013			0.014	0.014
	% "			0.53 0																	1.66 0			1										1.29 0		1.03 0
A	% mdd				0	0	1																				9									
B	d			26 0	42 1	45 1	67 1												55 2				-											44 2		
Ξ	%	0.067	0.063	0.026	0.042	0.045	0.0	0.015	0.0	0.0	0.0	0.017	0.044	0.08	0.019	900'0	0.047	0.02	0.0	0.012	0.061	0.032	0.02	0.065	0.033	0.016	0.029	900'0	0.025	0.045	0.044	0.05	0.067	0.044	0.045	0.022
Ba	mdd	85	138	41	238	22	83	33	416	82	330	271	127	299	453	167	160	333	344	582	412	262	984	435	472	412	303	932	813	382	404	243	276	242	223	497
Mg	%	0.18	0.61	0.22	69.0	0.37	0.51	0.07	0.59	60.0	0.47	0.33	0.35	1.8	0.54	0.13	0.35	26.0	1.37	0.25	1.22	1.12	1.08	1.79	1.46	0.48	0.62	0.46	3.18	2.49	2.56	3.57	2.82	1.82	2.2	1.24
C	mdd	13.4	37.9	11.6	9.6	18.6	29.2	3.5	39.2	3.5	23.3	50.6	14.1	126.9	38.4	16.7	22.2	51.4	63.9	12	48.2	49.8	71.3	133.3	114.5	42.1	52.8	52.3	298.7	240.4	240.4	369	273.2	209.1	263.2	134.4
La	mdd		14	9		12		1		3				11		9		11	13	4			. 07		12	9								8		
Ь	%	0.039	0.105	0.031	0.098			0.02				0.132	0.054	60'0				0.127	0.086	0.126	0.098		0.13		0.116	0.14							0.089			
Ca	6 %	0.09		0.08								0.94				0.37			0.63		0.51		0.84		0.85								0.84		0.61	
		LSF-9	LSF-10			100									2				LSF-26				100								-37	111	LSF-39		LSF-41	

	1.13																																			
Se	ppm	0	0	0	0.5	0	0	0	0	0.5	0	0	0	2.3	0.5	0.5	0.5	0.5	0.5	0	0	0	0	0	0	0	0	6.0	0.5	0	0	0	0	0	0	0.5
Ga	ppm	2	9	0	4	9	1	8	2	9	7	7	7	7	4	8	9	8	8	2	3	3	2	3	2	5	5	3	3	9	7	9	9	6	10	9
S	%	0.2	0.12	0.25	0.22	0	0.3	0	0	0	0	0	0	0.07	90.0	0.05	0.05	0.05	0.05	0	0	0.11	0	0.15	0	0	0	0.29	0.12	0	0	0	0	0	0	60.0
I	mdd	0.1	0.1	0	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.3	0.2	0.1	0.1	0	0.1	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.1	0.4	0.2	0.2
Sc	- mdd	1.2	6.7	0.3	2.6	5.6	8.0	6.7	6.2	5.8	4.4	5	5.2	3.6	1	5.8	3.8	2.9	2.6	4	9.0	0.4	0.3	0.7	1.2	2	3.6	0.5	0.7	1.1	1.4	2.5	2	5	5.2	2.6
Hg	mdd	0.11	0.11	0.17	0.16			XX				0.01												0.04							0.02	0.01	0.02	0.03	0.02	90.0
W	L																							0.3												0.3
×	%	0.07	60.0																					0.05										0.25	0.17	0.14
Na	%	0.011	0.007	0.01	600.0		8					0.015												0.02					0.039		0.007					(0)
A	%					1.79		2.38				1.96	Г						1.64					98.0												
В	mdd	5	1	9	2	2	2	1	1	2	1	0	1	0	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	2	1
I	%	1	0.014	0.002	0.014	90.0	600.0	0.099	0.026	0.068	0.109	0.117	0.118	0.081	0.019	0.092	0.074	0.068	0.086	0.048	0.044	0.022	0.039	0.018	0.028	0.049	0.075	0.034	0.032	0.04	0.05	0.062	0.045	0.113	0.119	0.025
Ba	и			398		174		514																96							66			327		
Mg			1.7									1.66																						1.01		
ر ت	mdd		8			337.2			108		Г	149.3	Г						29.9					14		32.4	110.5	8.8			34.7			51.5		
La			, 91		, 9	5		12				15				10	16	7					3		14		16	9	8	13		22		27		
		0.155	0.111	0.123	0.149		0.143					0.105	Г		0.133	_	0.07	0.056						0.129		0.074	0.053	180.0	990.0	0.073	0.054					П
Ca P	% %	1.94 0.	1.66 0.	3.09 0.		0.39 0.						0.6	Π	П		Г								0.99 0.		0.37 0.	0.71 0.	1.09 0.			0.29 0.			0.33 0.		П
		LSF-43		LSF-45								LSF-53 (53			LSF-56 (LSF-59 (LSG-13 (LSG-23 (

																	_				Г															Г
Se	ppm	0	0	0	0	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	9.0	0.5	9.0	0.5	0.5	0.5
Ga	mdd	4	2	6	8	2	2	9	3	2	4	5	2	9	7	9	5	က	1	2	9	4	4	5	5	2	3	3	က	9	4	3	2	4	5	9
S	%	0	0	0	0	0	0.15	90.0	90.0	0	60.0	90.0	0	60.0	0	80.0	0	0.17	0.3	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.18	0.05	60.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05
I	ppm	0.1	0.3	0.1	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.3	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.2
Sc	bpm	2.9	3	8.3	4.5	4.8	1.3	5.3	8.0	2.5	2.7	3.2	5	6.1	6.5	6.3	5.3	2.1	0.3	3.4	4.7	2.9	2.3	2.3	2.6	3.7	0.7	0.4	9.0	4.1	2.8	0.4	5.3	5.3	3.1	4
Hg	n		0.02																					0.02				0.02				0.02				Г
W	ppm		2.7		0.4					1.6																				8.0		0.3	1			
×	%	0.1	0.17	0.07	0.13					0.12													0.17	0.12	0.13		0.07		0.04	0.08		0.03	0.11	0.11	0.24	0.12
Na	%	0.007	0.009	0.003	0.005	0.005													0.007			200.0	0.01	600.0	0.008	3	0.02	0.018	0.025	0.017	0.012	9			0.012	0.004
Al	%		1.59							1.77															1.24	1.49	76			1.53		0.44	1.44	10		_
В	mdd	0	1	0	0	1	0	2	0	1	2	0	2	2	2	2	2	7	8	2	1	3	1	1	1	1	3	1	1	2	1	1	2	-	2	_
i	%	0.011	0.068	600.0	0.053	0.046	0.011	0.05	0.035	0.046	0.022	0.037	0.058	0.038	0.064	0.045	0.073	0.02	0.004	0.068	0.071	0.026	0.052	0.046	0.046	0.081	0.022	0.03	0.017	0.054	0.055	0.016	0.061	0.061	990.0	0.055
Ba	ppm	551	118	328						247									430		111		26				113	28	68			32			and the same	
Mg	%	0.47	9.0	1.43	1.28	1.29	0.36	3.15	0.37	1.09	8.0	1.23	2.28	2.18	2.75	2.43	2.76	1.29	0.34	1.73	1.84	0.81	0.42	9.0	0.54	0.87	0.29	0.16	0.19		0.59				1.2	1.18
C	ppm	23.6	39.9	20.9	77.5	6.09	29.7	310.5	45.1	96	62.4	100.5	239.9	253.5	262	264.9	280.9	134.1	22	214.2	211.9	22.4	21.7	26	29	30.5	13.4	8	9.6	156.4	47.7	26.5	269.6	284.6	130.7	6.69
La	mdd			20						13				11	6			9		11	6	8	11	11		21			5	11	16	5	11		12	
		680	0.061	0.203								0.072							0.133	0.058	0.032	0.103	0.045	0.061	0.058		0.107		0.094	0.061	0.062					
12	% 9				0.28 0.					0.27 0.		0.43 0.					5		9		0.23 0.		0.48 0.			3				0.53 0.				0.52 0.		
		0.	0.	0.	0.	0.	0.	0.	0.	0	1	0	0	0	0	0.	0	1.	2.	0.	0	1.	0.	0.	0	0.	1.	0	0.	0.	0.	0.	0.	0	0	0
ELEMENT	SAMPLES	LSG-26	LSG-27	LSG-28	LSG-29	LSG-30	LSG-31	LSG-32	LSG-33	LSG-34	LSG-35	LSG-38	LSG-39	LSG-40	LSG-41	LSG-42	LSG-43	LSG-44	LSG-45	LSG-46	LSG-47	RSH-8	FSH-9	LSH-10	LSH-11	LSH-12	LSH-13	LSH-14	LSH-15	LSH-16	LSH-18	LSH-19	LSH-20	LSH-21	LSH-22	LSH-23

Se	mdd	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	6.0	0.5	9.0	0.5	0.5	0.5	9.0	0.5	9.0	0.5	2.0	0.5	0.5	0.5	0.5	0.5	1.6	1.6	8.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ga	mdd	8	1	7	7	8	5	5	9	2	5	9	9	2	9	9	9	4	9	7	9	2	9	5	7	9	5	9	9	9	3	2	7	8	2	5
S	%		0.27	0.05	0.05																			0.05							0.11	0.05		0.05	0.05	0.05
F	mdd		0.1	0.2					0.1															0.1										0.2		
- 1	-									40		9								-																П
Sc	dd	3.7	0.	5.	2	6.	5.	3	4	0	5,	110	2	2.	4.	9.	9	3.	5.	6.	9	5.	9	6.3	9	4.	5.	4	4	3	_	2.	5.	3	0.	2
Hg	mdd	0.03	0.25	0.02	0.02	0.05	10.01	0.02	0.01	0.08	0.03	90.0	0.03	0.11	0.03	0.04	0.05	0.07	0.02	0.04	0.04	0.05	0.03	0.01	0.04	0.02	0.03	60.0	0.03	90.0	0.04	0.02	0.03	0.05	0.01	0.05
M	mdd	3.8	0.1	2	1.9	0.4	0.3	0.2	9.0	0.1	9.0	0.2	0.3	6.0	0.4	9.0	9.0	8.0	0.3	1.6	2.1	1	1.7	1.1	1.4	0.2	0.3	0.2	0.2	2.5	0.3	0.3	0.7	1.2	0.2	3
ᅩ	%	0.19	0.1	0.25	0.22	0.21	0.11	0.07	60.0	0.03	0.05	80.0	0.1	60.0	0.07	0.12	0.11	0.12	0.11	0.2	0.16	60.0	0.14	0.1	90.0	60.0	90.0	0.04	0.35	0.16	90.0	60.0	0.17	0.23	0.03	0.18
Na	%	0.01	0.011	0.008	800.0	900'0	0.008	0.013	900'0	900.0	0.011	200'0	900.0	900'0	0.007	0.015	0.014	0.013	900.0	0.015	0.016	0.013	0.018	0.016	0.013	0.004	600.0	0.01	0.014	900'0	0.013	0.01	900.0	0.024	0.029	0.016
**	%	1.48	0.26			2.09				29.0						1	1.92							1.63												
		-			Ì																															
B	dd	-	9	-	_	1	1	~	~	4	7	2	1	1	2	2	3	9	1					2					1	-	7	1	7	1	1	~
iΞ	%	0.061	0.004	0.089	0.097	0.041	0.075	0.044	990.0	0.01	0.059	0.061	0.012	0.042	0.022	0.05	0.058	0.029	0.011	0.071	0.077	0.042	0.076	0.081	0.059	0.042	0.027	0.014	0.12	0.064	0.023	0.035	0.064	0.098	0.028	0.05
Ba	mdd	351	269	348	354	704	144	201	217	395	71	223	436	102	210	245	247	434	422	346	160	279	163	107	156	144	204	238	86	133	367	245	445	88	34	26
Mg	%	0.74	0.15	1.38	1.45	1.41	2.97	1.18	1.77	0.26	2.67	2.36	1.64	0.92	1.98	3.05	3.41	1.99	1.53	2.61	2.82	2.59	2.93	3.03	3.18	1.56	1.52	1.22	1.34	0.89	0.37	98.0	1.3	0.75	0.17	69.0
C	E		12.2	6,	85	73.5	323.4	115.7	152.2	9.09	609.5	188.2	9.9	30.2	132	89.2	01.9	214.3	99.4	95.3	31.5	69.3	596.3	373.8	309.2	3.9	9.77	53.7	134.1	59.2	22	13.9	97.9	41.1	9	35.1
٢				7	8	7	(5)	_	_	4)	(1)	_	0)	_	_	(+)	4	(1	0,		(1)	(1	(1	(1)	(1)		_	4	7	4)		7	0,	7	9	(1)
La	ppr	15	11	20	20	19	7	∞	7	12	2	10	2	2	9	9	9	2	2	6	7	9	9	9	11	14	24	12	12	13	9	11	13	6	3	12
Ь	%	0.078	0.13	0.082	0.082	0.072	0.068	0.083	0.091	0.236	0.058	0.074	0.077	80.0	0.077	0.063	0.065	0.091	0.074	90.0	0.065	80.0	0.058	0.062	0.056	0.193	0.179	0.137	0.109	0.07	0.093	0.1	0.111	0.109	0.05	0.094
Ca	%	0.34	2.26		0.35		0.37	0.26	0.5									1.92	0.44	0.91	99.0	8.0	0.71	0.44	0.29	0.79	29.0	9.0	0.52	0.21	0.33	0.26	0.43	0.28	0.3	1.04
ELEMENT	2/22	LSH-24		-26	LSH-26	LSH-27						LSH-34							RE LSH-35	LSH-41	13.				LSH-46	LSH-48	LSH-49				LSH-54	LSH-55	LSH-58	LSH-59	FSI-9	LSI-10

						_	_		_				_								_			_					_	_	_	_	_			
Se	mdd	9.0	0.5	0.5	0.5	0.5	0.5	0.5				0.5			0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	8.0	0.7	1.7	0.5	0.5	0.5	0.7	0.5	0.5	0.5	0.5
Ga	ppm	9	9	1	5	4	5	5		5	9	9	4	1	9	5	9	7	9	2	9	5	5	5	9	2	6	11	7	9	2	2	9	7	5	5
S	%	90.0	90.0	0.05	90.0	0.05	20.0	90.0	30.3	0.12	0.05	0.11	0.19	0.42	0.05	0.05	0.12	0.05	20.0	90.0	0.13	0.14	90.0	0.05	0.05	90'0	0.05	0.05	0.05	0.11	0.24	0.27	0.05	0.05	0.05	60.0
F	ppm	0.2	0.3	0.1	0.2	0.1	0.2	0.1		0.1	0.2	0.1	0.1	0.1	0.1																			0.4		
Sc	wdd	2.2	5.4	0.3	2.6	1.9	5.4	0.4		7.2	5.2	6.2	3.8	6.0	9.4	5.3	3.1	4.7	9.7	1.7	6.5	8.9	3.1	3.1	6.3	9.6	5.5		8.3	3.7	1.3	1.8	4.6	2.5	3.7	1.9
Hg	ppm	0.04	0.07	0.01	0.01	0.01	0.02	0.01		0.05	0.03	0.03	0.08	0.11	0.03	60.0	0.03	0.03	0.05	0.01	0.04	0.07	0.02	0.01	0.01	0.03	0.01							0.03		0.04
W	mdd	1.4	1	0.1	1.4	1.1	6.0	0.3		0.4	0.5	0.4	0.5																					3		8.0
~	%	0.13	0.17	0.02	0.17	0.1	80.0	90.0		60.0	0.18	0.13	60.0	90.0	0.07	0.08	20.0	0.07	0.12	20.0	80.0	0.07	0.05	0.05	0.05	0.04	0.15	0.33	80.0	0.16	0.05	0.05	0.17	0.28	0.14	0.07
Na	%	0.011	0.012	0.027	200.0	0.009	0.012	0.014		0.009	0.008	0.016	600.0	600'0	0.005	0.005	0.004	800.0	0.011	0.016	0.014	0.015	0.01	0.01	0.017	0.013	0.005	0.004	0.01	0.019	0.011	600.0	0.021	0.021	0.016	0.017
	%	18						0.78			1.8		9	0.49			3				1	1.49							1.75					1.93		1.39
В			2										3	2		1													2					2		2
Ti I	%							0.023	=	0.026	0.08	0.055	0.036	0.007	0.047	0.061	0.031	0.052	0.051	0.105	0.044	0.043	0.064	0.063	0.055	0.048	0.032	0.083	0.075	0.064	0.015	900.0	60.0	0.114	0.077	0.039
Ba	1						125				150			841	202							863							339						8	66
								0.28		2.4	2.06		2.05					2.57											2.6							0.53
Cr	mdd	38.8		3.7			3	20.2			T A				217.6	235	188.3	288	366					139.4	360.7	267.5			8)			40.7
La		10 3		4 3	16 3		6			8	9	2	9		8		4	8				2	10 1	10 1		13 2				11 7		5 [12 4
	%							0.063		0.083		0.071	0.081	0.18	0.057		0.093		960'0			0.064	990'							0.106				0.109	920.	0.116
	6 %	3		0.34 0						0.81			1.05	1.82	0.35		0.21		0.9		0.86													0.8		0.95
	SAMPLES	LSI-11				27		LSI-17					LSI-32								LSI-40		RE LSI-42	LSI-42	1.1					116		LSJ-11				LSJ-15

		_					_		_																											
Se	ppm	8.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	7.3	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5
Ga	mdd	7	7	5	5	4	9	<u>∞</u>	5	9	5	9	2	5	က	2	2	9	9	9	9	9	∞	5	9	7	10	9	9	9	10	9	9	9	9	
S	%	90.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.12	0.13	0.28	0.26	0.07	0.05	0.05	0.05	0.05	0.05	0.05	80.0	0.05	0.34	0.05	90.0	0.08	0.05	0.05	0.05	0.05	0.05	0.05	0.05
IL	ppm	0.2	0.2	0.2	0.2	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Sc	mdd	5.9	2.3	5.1	5.5	1.3	6.3	8.9	2.6	3.9	5.8	10.8	5.5	3.3	2	8.0	7.7	7.5	9.9	4.9	6.7	6.5	7.3	4.8	6.5	2.9	13.3	8.1	3	6.4	5.9	5.6	5.8	4.1	4.3	4
Hg	ار										ı	0.03																							0.01	0.01
W	ppm		8.0		3				7.0																									0.2		
	%	0.11	0.12	0.17	0.12				90.0				7		20.0														0.05					0.24		0.29
G	%	0.013	0.008	0.012		0.025						9	- 1	4		0.007	0.011	0.011																		0.013
	6 %	1.89 0	1.48 0					2.02									2.1 0						6						1.43 0					.44	1.46 0	1.63 0
B //			2									3 2 7																					2	1	1	1
		0.071	0.04	0.075	.075	.034	.075	60.	0.046	.053	0.077	0.048		0.04	0.013		0.04	.084	760.	.082	860	0.108	.102	.045	.058	.004	0.117	0.063	0.054	0.136	0.042	0.021	0.094		10	0.14
Ba Ti	_			252 0		11																							235 0					70 07		107 0
27		-												9 50					1000020	24.52011	250		-	194953		820	20.000	1000		100 8						
Mg									1																	E								9 1.6		
Ö	ppm	291	06	160.8	339.	54.7	171.	159.	131.6	170.	346.	241.9	319.8	309	178.	77.1	359.	407.	450.	343.	514.	476.7	500.	260.	627.	8.9	827.2	473.	391.7	548.1	88.2	270.6	432.3	178.6	186.7	103.9
La	ppm	11	11	13	10	9	12	15	2	7	7	7	4	4	11	3	7	7	2	8	9	9	8	7	2	21	က	2	4	4	22	12	2	11	7	14
Ь	%	0.084	0.068	0.071	990.0	0.079	0.072	0.072	0.089	20.0	0.065	0.094	0.105	0.08	0.146	0.126	0.065	0.052	0.048	0.051	0.054	0.059	90.0	0.075	0.062	0.226	0.049	0.075	0.068	0.016	0.228	0.075	0.042	0.121	0.127	0.133
11			0.19			0.32			0.34						1.56			0.51				0.43								0.29					0.48	
	ES			LSJ-18				R.				LSJ-28			5		1		100																1-50	LSJ-51

Φ	mdd	0.5	9	2	0.5	2	0.5	0.5	0.5	5	7	5	0.5	5	5	5	5	5	0.5	2	5	0.5	5	2	5	5	0.5	9	5	5	0.5	2	5	0.5	5	2
Se								0	0	0.	0.7	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0.
Ga	ppr	9	9	8	6	17	9	က	7	2	3	4	9	9	4	က	7	9	2	2	2	2	9	2	2	8	2	3	2	9	9	9	4	9	9	2
S	%	0.05	0.05	0.05	0.05	0.05	0.05	0.26	90.0	0.05	0.22	0.07	0.05	0.05	0.05	90.0	90.0	0.13	0.05	0.08	0.05	0.08	0.05	0.05	0.07	0.05	90.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
E	mdd	0.2	0.2	0.2	0.3	9.0	0.3	0.1	0.5	0.2	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.2	0.3	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Sc	mdd	3.1	3.1	4.3	2.5	11.1	16.2	0.2	8.2	4.9	1.2	1.7	5.2	5.2	3.6	1.5	9.9	6.5	4.1	1.3	2.5	5.8	5.3	4.9	5.1	11.1	5.9	8.2	8.5	7	5.2	7.5	4.2	6.8	3.6	5.4
Hg	mdd	0.01	0.01	0.02	0.05	0.05	0.07	0.11	0.11	0.05	0.1	0.02	0.03	0.03	0.05	0.03	0.05	0.03	0.01	0.03	0.03	0.02	0.01	0.04	0.03	0.05	0.08	0.11	0.05	0.01	0.01	0.02	0.02	0.02	0.02	0.01
W	mdd	0.2	0.3	0.2	0.3	0.1	0.1	0.2	0.1	2.2	2.1	1	2	1.8	1.7	0.2	9.0	9.0	2.7	8.0	8.0	1.2	1	1	0.7	0.5	2.0	0.3	0.2	1.4	1.2	2.0	0.4	0.2	2	0.3
×	%	0.19	0.2	0.18	0.61	0.77	0.31	0.11	0.25	0.1	0.07	0.05	0.14	80.0	80.0	0.03	90.0	90.0	0.26	0.07	0.07	0.2	60.0	80.0	0.07	90.0	0.1	0.07	90'0	0.22	80.0	80.0	0.03	0.05	20.0	80.0
Na	%	0.01	600.0	600.0	0.019	0.014	0.005	0.005	0.01	0.019	0.012	0.027	0.019	0.017	0.014	0.026	800'0	0.007	0.014	0.012	900.0	0.015	800'0	0.008	600.0	0.005	600.0	0.004	900.0	0.018	0.011	0.015	0.013	0.012	0.011	0.015
A	%								1.83													1.85														
В	mdd	1	1	1	1	2	9	3	2	1	4	1	2	3	1	1	1	2	2	1	1	4	2	2	1	1	3	1	1	2	1	2	1	1	1	3
i=	%	0.113	0.135	0.173	0.182	0.283	0.073	0.005	0.089	0.065	0.025	0.059	0.082	0.073	0.054	0.041	0.035	0.035	0.102	0.042	0.036	9200	0.053	0.045	0.043	0.014	0.053	0.01	0.027	0.104	0.072	0.057	0.042	0.029	0.041	0.065
Ba	mdd								10	75	_							127		138	187	114					177			132		148	88		5	92
Mg	%	98.0					1.39														1.02													2.83		
C	mda		52.3	4		72.8	+		67.2	281.8							420.3				122.7		394.1					51.6	2		2	462.2			251.1	
La						11	14	6	13 (7 6		17			6							6					0		
					2		0.088		0.115						- 1				. 260'0											0		0.066				
4	%			2 0.065		1 0.17		0.197										1 0.114			3 0.064		0.054			7 0.131				0.077	3 0.061			0.088	3 0.068	t 0.063
Ca	%	0.42	0.42	0.32	0.54	0.61	0.45	0.2	0.31	0.67	2.62	0.62	0.72	0.77	5.29	0.45	0.85	0.94	0.45	0.11	0.18	0.73	0.3	0.36	0.79	1.07	36.0	0.37	0.37	0.49	0.33	0.4	0.26	0.36	0.18	0.34
ELEMENT	SAMPLES	LSJ-52	LSJ-53	LSJ-54	LSJ-55	LSJ-56	LSJ-57	LSJ-58	LSJ-59	LSK-8	LSK-9	LSK-10	LSK-11	LSK-12	LSK-13	LSK-14	LSK-15	LSK-15A	LSK-16	LSK-17	LSK-18	LSK-20	LSK-21	LSK-22	LSK-23	LSK-24	LSK-25	LSK-27	LSK-28	LSK-29	LSK-30	LSK-31	LSK-32	LSK-33	LSK-34	LSK-35

Se	mdd	0.5	0.5	0.5	5	5	5	5	0.5	5	7.	7.	5.	5.	.5	5.	5	0.5	5	9.0	0.5	5	0.5	5	0.5	7	9.	0.5	0.5	5	0.5	2	5	0.5	2	5
																										0.7										
Ga	ppr	2	8	5	9	9	9	9	4	2	2	2	5	4	5	2	2	3	2	9	7	9	4	2	7	8	5	5	2	9	5	4	5	4	9	9
S	%	13	0.05	0.11	0.08	0.05	0.05	0.05	0.15	0.05	0.24	0.28	0.07	0.05	0.08	0.07	90.0	0.21	0.05	0.2	0.05	0.05	0.05	0.05	0.09	0.12	0.05	0.05	0.14	0.05	0.05	0.05	0.05	0.05	0.05	0.05
E	mdd	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.2	0.1	0.1	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.3	0.3
Sc	mdd	7.4	10.3	3.5	3.1	4.5	4.4	4.6	2.8	4.4	6.0	1.5	5.9	4.8	6.5	5.1	9	1.5	9.9	3.2	4.7	5	4.5	3.8	8.9	9	4.4	2	3.6	6.2	7.1	8.9	5.9	5	4.3	4.8
Hg	mdd	0.01	0.01	0.05	0.03	0.02	0.01	0.01	90.0	0.03	0.24	0.18	80.0	0.07	0.02	0.07	0.01	0.07	0.03	0.05	0.04	0.02	0.01	0.02	0.04	0.07	0.04	80.0	0.16	0.01	0.01	0.01	0.01	0.05	0.01	0.01
W	mdd	0.2	0.1	0.2	0.4	0.1	0.2	0.2	1.4	1.3	1.2	0.5	3.5	0.4	0.5	0.4	1.1	0.4	0.7	1.6	1.8	1.8	1.1	2.2	1.1	1.6	1.2	6.0	0.2	0.4	0.5	0.4	1	0.7	2.6	2.7
×	%	90'0	0.1	0.03	90'0	0.11	0.44	0.46	0.07	0.1	80.0	80.0	80.0	0.11	0.05	60.0	0.12	90.0	0.05	0.16	0.2	0.18	0.14	0.11	0.2	0.18	90.0	90.0	0.05	0.03	0.04	0.04	0.11	0.05	0.25	0.29
Na	%	0.014	0.005	0.011	600'0	0.016	0.021	0.02	0.014	0.015	0.007	0.008	0.007	0.011	0.005	0.01	0.01	600.0	800'0	0.012	0.018	0.016	0.01	0.011	0.018	0.012	0.015	0.011	0.011	0.009	0.011	0.01	0.011	0.01	0.024	0.026
A	%	1.71	2.52	1.48		1.54																	6								1.73					1.79
В	mdd	2	1	1	1	1	1	1	2	3	4	8	2	2	2	2	3	1	3	3	2	2	2	2	3	3	2	2	2	2	3	3	3	2	2	2
ij	%	0.065	0.122	0.027	0.059	0.076	0.125	0.123	0.03	0.055	0.017	0.013	0.034	0.021	0.046	0.026	9/0.0	0.015	0.062	0.046	0.105	0.1	0.079	0.072	0.089	0.056	0.053	0.043	0.008	0.122	0.079	0.073	0.076	0.043	0.118	0.111
Ba	ppm	140	177	139	111	77	91	66	114	87	93	139	135	162	52	131	20	156	85	3			69	40	116				9	44		45	52	120	65	74
Mg	%	3.57	3.59	2.51	1.85	2.86	1.26	1.2	1.25	1.67	0.58	0.84	2.48	1.73	3.37	2.31	4.39	8.0	3.92	2.32	2.11	2.88	3.75	3.09	5	4.51	2.19	2.47	0.54	4.43	4.75	4.32	4.16	3.25	2.8	2.51
Cr	ppm	466.9	555.4	467.8	316.5	378.9	82.5	87.9	150.6	207.8	64.3	81.6	225.2	123.9	458.9	231.4	537.4	162.1	565.3	237.4	206.8	297.2	400.2	340.2	447.1	492.5	224.8	254.9	48.4	568.5	687.7	644.2	544.3	479.2	221.1	202.3
La		5				9			6			5							9				5					11			2		7		14	
Ь	%	0.062	0.061	0.091	0.061	0.065	0.154	0.152	0.073	0.049	0.104	0.121	0.088	0.1	0.054	0.098	0.055	0.141	0.051	0.117	0.065	0.063	0.037	0.057	0.059	0.154	0.091	0.075	0.087	0.041	0.053	0.049	0.063	0.058	0.065	0.098
6						0.26						3.16			0.42									0.27						0.43						0.47
ELEMENT	SAMPLES	LSK-36	1 11/12		1.5	LSK-48		-49	RST-8	150							LSL-16	A STATE OF		A 200 1								021			1	-14				LSM-18

Se	ppm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Se	шdd
Ga	mdd	9	9	9	9	4		5	7	9	9	9	4		5	8	9		7	5	5	8	9	9	Ga	mdd
S	%	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.07	0.08	60.0	0.05	0.05	S	%
F	mdd		0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.3	0.1	0.2	TI IT	mdd
Sc	mdd	4.7	4.1		6.4	4.3	4.9	6	5.6	3.4	3.1	2.9	5.2	4.5	4.2	5.7	6.7	5.3	3.4	9.	4.1	3.9	4.4	4.6	Sc	mdd
Hg	_	0.01	0.01	0.02	0.01	0.01	0.02	0.03 3.	0.02 5	0.01	0.02	0.03	0.02 5	0.01	0.01	0.02 5	0.01	0.01 5	0.01	0.03	0.04	0.04	0.03 4	0.02	Hg S	d mdd
	d mdd		2.7 0	1.2 0	0.9	0.7 0	1.2 0	0	7	0.7 0	0.6	0.4 0	1.2 0	1.7 0	2.8 0	1.3 0	0.7 0	1.1	2.8 0	0.4 0	1.2 0		1.4 0	1.5 0		d mdd
M			0.19	0.16	0.14 0	0.08 0		0.06	0.06 0.	0.04 0	0.03 0	0.05 0	0.05	0.25 1	0.17 2	0.15 1	0.11 0	0.12	0.24 2	0.04 0		41 3	0.15 1	0.16	W	
포	%						0.11				0.			0.	0		0	0			0.1	0.41			メ	%
Na	%	0.025	0.026	0.031	0.023	0.017	0.035	0.016	0.016	0.009	0.01	0.023	0.014	0.02	0.02	0.018	0.01	0.02	0.013	900.0	0.017	0.014	0.026	0.025	Na	%
A	%	1.74	1.88	2.23	2.46	2.02	1.66	2.09	2.3	1.51	1.55	1.66	1.46	2.55	1.41	2.11	1.83	1.87	1.69	0.74	1.27	1.84	1.54	1.47	AI	%
В	ppm	2	2	2	3	3	3	3	3	2	2	1	3	2	3	2	2	2	1	1	2	1	2	2	В	mdd
Ξ	%	0.108	0.114	0.1	0.098	0.067	0.092	0.044	0.053	0.098	0.081	0.07	0.071	0.094	0.099	0.074	0.055	0.109	0.095	0.038	0.045	0.108	0.087	980'0	Ti	%
Ba	ppm	58	56	09	26	32	48	347	314	99	72	81	22		50		99	20	78	94	101	66	99	69	Ba	шdd
Mg		6	2.3	4.19	4.72	4.88	4.02	8	7	1		2.23	3		_	9	5	9			2.27	1	2.78	2.82	Mg	
Cr	ppm	197.3	188.5	361.2	417.5	413.2	372.9	349.3	551.1	352.3	335.2	9.008	391	171.2	232	263.5	495.7	332.5	149.7	170.2	284.5	58.4	270.2	269.5	C	mdd
La	ppm	12	12	8	6	4	6	6	2	2	9	2	6	6	12	8	9	12	11	2	5	11	7	7	La	mdd
Р	%	0.065	0.081	0.077	0.051	0.046	80.0	920.0	0.065	0.051	0.059	0.082	0.063	0.067	0.07	690.0	0.075	0.044	0.066	0.061	0.085	0.088	0.056	0.055	Ь	%
Ca	%	0.32	0.44	0.36	0.38	0.31	0.54	1.26	8.0	0.25	0.22	0.3	0.43	0.29	0.35	0.33	0.26	0.25	0.22	0.13	0.24	0.24	0.26	0.26		%
ELEMENT	SAMPLES	LSM-19	LSM-20	LSM-21	LSM-22		LSM-24	FSN-9	LSN-10	LSN-11	LSN-12	LSN-13	LSN-14	LSN-16	LSN-17	LSN-18	TSN-19	LSN-20	LSN-21	LSN-22		LSN-24	LSN-25	RE LSN-25		SAMPLES

APPENDIX "D"

3 RYDER PLACE, WHITEHORSE, YUKON Y1A 5T5

TELEPHONE: (867) 668-2593 FAX: (867) 668-2592

BILL TO: GLACIER DRILLING LTD

100 PLATINUM Pd

WHITEHORSE YUKON

914649

INVOICE Nº 1030

28 Nov 2005

		2 8 NOU	200 -3
QUANTITY	JOB DESCRIPTION	PRICE PER	AMOUNT
	AST: M. MIKE MICKEY M. MIKK LIZOSAY.		
	RE: Sampling Program. Mik Claim block.		
91	Nov 8 to 28/05 Man DAYS	305.00	24575. ª
	GST R+14175909	7%	2070.2
	Yours Sincere	J	
	CX VW 7.1		21/11525

INVOICE TOTAL

31645.公

TRANS NORTH HELICOPTERS

TRANS NORTH TURBO AIR LTD.

P.O. BOX 8 - WHITEHORSE - YUKON TERRITORY - YIA 5X9
TELEPHONE: (867) 668-2177 • FAX: (867) 668-3420

November 30, 2005

Cordilleran Minerals 100 Platinum Road Whitehorse, Yukon YIA 6A9

ATTN: Mark Lindsay FAX: 456-7072

Summary of outstanding invoices.

Date	Hxc	Ticket	Hours	Revenue	Fuel	GST	Total
- 11.16.05	GMIG	37100	2.8	2730.00	399.00	219.03	3348.03
11.16.05	FGGC	38017	2.5	2437.50	356.25	195.56	2989.31
11.17.05	GMIG	37101	1.2	1170.00	171.00	93.87	1434.87
11.17.05	FGGC	38018	1.2	1170.00	171.00	93.87	1434.87
11.24.05	FGGC	38019	0.4	390.00	57.00	31.29	478.29
11.24.05	GMYQ	36152	0.4	390.00	56.25	31.24	477.49
11.25.05	FGGC	38020	1.7	1657.50	242.25	132.98	2032.73
11.25.05	GMYQ	36153	2.7	2632.50	383.75	211.14	3227.39
11.26.05	FGGC	38021	3.1	3022.50	441.75	242.50	3706.75
11.26.05	GMIG	37114	2.5	2437.50	356.25	195.56	2989.31
11.27.05	FGGC	38022	1.7	1657.50	242.25	132.98	2032.73
11.27.05	GMIG _	37115	2.4	2340.00	342.00	187.74	2869.74
11.28.05	GMYQ	36155	1.5	1462.50	213.75	117.34	1793.59
11.28.05	FGGC	38023	2.7	2632.50	384.75	211.21	3228.46
TOTALS			26.8	24,130.00	3,317.25	2,096.74	32,043.56

CHARTERER BILLING ADDRESS P.O. 8, 115 Whit. ree, Yuk Tel: (\$67) 668-21 www.tntaheli.com CHARTERER C. ((()) BILLING ADDRESS POR A DRESS THAT CUSED THAT CUSED THAT CUSED THAT CUSED THAT CUSED THAT CUSED	ORTH F AMPLITO. Range Rd. on Canada 77 - Fax: (9)	Y1A 5X9		INVOICE NUMBER INVOICE INVOIC	ARCRAFT REGIS	
HOOK INSUPANCE DECLINED VALUE ACCEPTE	- 181 -		FOR LOSS	FF LIMITS THAT THE OR DAMAGE TO GOO 504 PER LB.		
FROM YXY	UP	DOWN	HOURS	REMARKS NO.	OF PASS	
rece hivingston	03.14	500	0.3	3 Ax		
REPORTING DEXT HILL	10:4	12 09	0.2			
1. 1.	14:20	14.23	0.2	164		
11 11	15:08	15:/2	0.2	3. PX		
444	17:14	17:57	0.6	3,84		
8JS GL	AMOUNT	D.Q.	7 -		C	1
1005502 19	50 00	TRANSPORTED	4.0	°915.00	195Q	20
1000131	30 80			•		
		HOLDING TIME:		• /HR.		
	38 66	FUEL 7	33	0 //0/LITRE	30	80
TERMS: PAYABLE UPON RECEIPT OF HE EX INTEREST PER MONTH BAY PER AND CHARGES ON BUL OUTSTANDING MONUMENTS IF INTEREST IS NOT PAID, PUTURE IN CHIS		FUEL		6 / LITRE		
X WWW. SHATTERES SIGNATURE	- ' <i>I</i> .'	MEALS & LODGING OTHE		V		
SHAPTERFITS NAME (PRINTED)	٠	OTHER SUB TOT	AF 56	2005	1980	ec
ENGINEER'S NAVE BHIPPONG NAME & CITY	F CLASS		SEPVICES TOUNG P			66

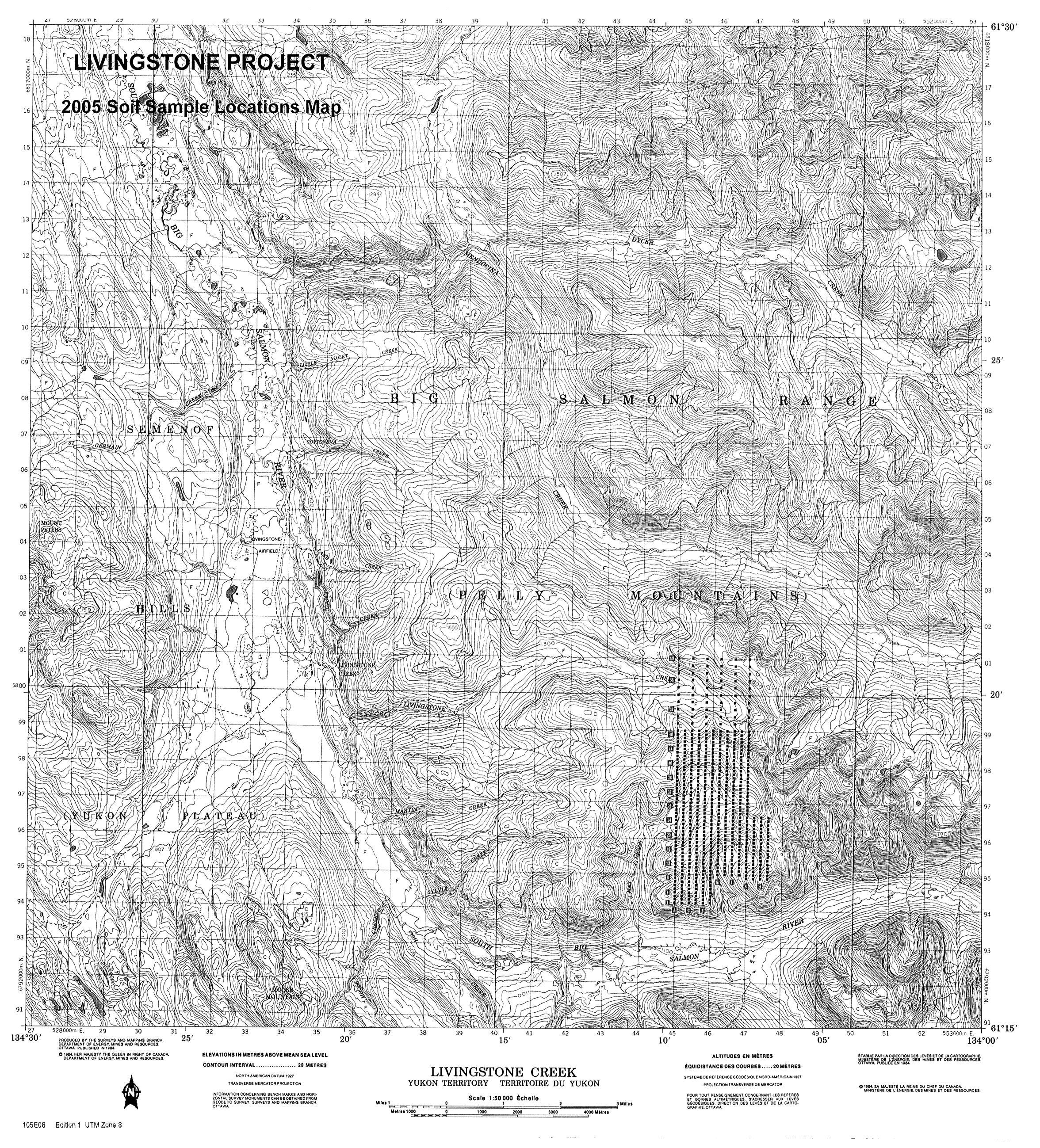
CARRIAGE SUBJECT TO TERMS OF PUBLISHED TARIFF, TARIFF AVAILABLE TO PUBLIC VIEW AT TRANS NORTH OFFICE.

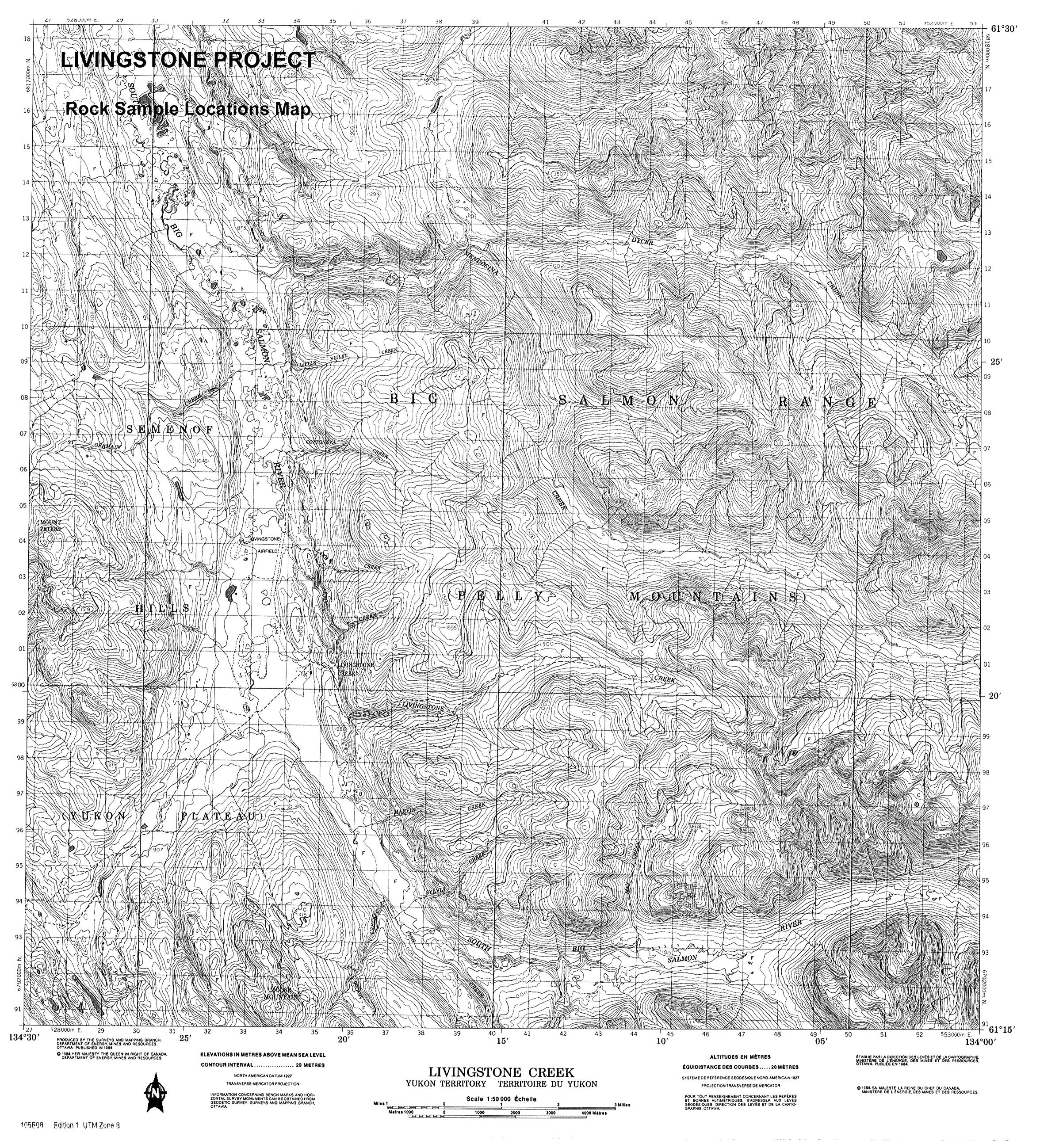
ACCOUNTING

ACME ANALYTICAL LABORATORIES LTD.

852 East Hastings., Vancouver, B.C., CANADA V6A 1R6 Phone: (604) 253-3158 Fax: (604) 253-1716 Our GST # 100035377 RT

CORDILLERAN MINERALS 60 Fireweed Drive Whitehorse, YT Y1A 5T8 Inv.#: PRO1128 Date: Nov 28 2005


QTY	ASSAY		PRICE	AMOUNT
	GROUP 1DX (15 gm) @ SS80 - SOIL @		14.25 1.65	7481.25 866.25
		GST Taxable 7.00% GST		8347.50 584.33
		CAD \$		8931.83


PROFORMA INVOICE

COPIES 1

Please pay last amount shown. Return one copy of this invoice with payment. TERMS: Net two weeks. 1.5 % per month charged on overdue accounts.

[ACME 1]

includes 2 loose pages

DATE DUE