

AURORA GROSCIENCES LID.

GEOLOGICAL AND GEOPHYSICAL CONSULTANTS YILLOWENIFE, NT, CANADA WENTERCERE, YE, CANADA

YEIP 05-053 2005

.

•

SIGNET MINERALS INC.

PROSPECTING, SCINTILOMETER AND GRAVITY SURVEYS AT THE CURIE PROPERTY, NORTHEASTERN YUKON TERRITORY 05-053

Claim Name	Record Number
BOHR 1 - 48	YC39970 - YC40017
PLANCK 1 - 64	YC41418-YC41481
BETA 1 - 48	YC41482 - YC41529
GAMMA 1 - 36	YC41530 - YC41565
FERMI 1 - 48	YC41566 - YC41613
GEIGER 1 - 16	YC41614 - YC41629
CURIE 1 - 16	YC38921 - YC38936
CURIE 17 - 48	YC39624 - YC39655
CURIE 57 - 76	YC39656 - YC39675
CURIE 49 - 56	YC41630 - YC41637
CURIE 77 - 399	YC41638 - YC41956
CURIE 401	YC41957
GROUT 1 - 268	YC41958 - YC42225

By Phil Jackson, B.Sc. P. Geoph. and Derek Torgerson, B.Sc.

Aurora Geosciences Ltd 108 Gold Road Whitehorse, Yukon, Y1A 2W3

Location: 65° 13' N, 134° 50' W NTS: 106 E 02 Mining District: Mayo, YT Date: January 31, 2006

SUMMARY

Aurora Geosciences Ltd conducted a prospecting and gravity survey on the Curie Property for Signet Minerals Inc. to locate the source of extensive uranium and copper soil and stream sediment geochemical anomalies identified in government regional geochemical surveys and by previous claim holders in the area. The region is recognized as prospective for Olympic Dam-type Iron-Oxide Copper-Gold (IOCG) or unconformity-related uranium targets. The gravity survey should assist in determining if such targets exist at depth. The surveys were centred on a NNW trending Proterozoic inlier flanked on both sides by lower Paleozoic rocks. Iron oxide breccias intrude the Proterozoic rocks within the inlier.

The gravity survey was conducted to cover an area including and surrounding the historical Deer Uranium Showings. The survey was performed with an automated gravimeter and station locations and elevations were measured with a differential GPS system. The data, collected at 131 stations, was corrected for instrument drift using drift checks at a base station prior to and after each day's survey. Latitude, elevation (Free Air, Bouguer Slab and Bullard-B) and terrain corrections were also applied to the gravity data. The Bouguer Anomaly data collected during this survey were inverted to investigate the density, depth and shape of the source body or bodies creating the observed field.

The central gravity feature on the property is a 3.2 mGal anomaly coincident with the Deer Showing and extending southwest of that location. The anomaly consists of a subcircular central high with a WNW trending arm at the northwest corner of the anomaly. The anomaly is defined by the 131 gravity stations surrounding it and is closed off in all directions except to the north. The Bouguer high appears to be a subsidiary feature on a regional gravity plateau covering the eastern half of the survey area.

The gravity results do not indicate the presence of a single high-density feature in the area. Instead, the large density high enclosing material less than 3.00 g/cm³ could be caused by a mass of iron metasomatized rock. Within this larger mass, the smaller high-density sources could indicate the presence of hematite or magnetite breccias.

The prospecting program returned significantly anomalous uranium values from rock samples collected in the area of the Deer 1 Showing. In particular, two samples returned 7.40% U (9.02% U_3O_8) and 46.3% U (54.3% U_3O_8).

Recommendations for future work on the property are to:

- 1 Conduct an airborne magnetic and electromagnetic survey over the full property position.
- 2 Stake additional claims to cover the northern gravity anomaly.
- 3 Expand the gravity survey to north to close-off the anomaly and expand it eastward to cover the claim package.
- 4 More prospecting, geological mapping and rock and soil sampling over the complete property package.
- 5 3,000 m of diamond drilling to test the gravity anomalies at depth.

Table of Contents

SUMMARY

-

1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	1
3.0	CLAIM STATUS	4
4.0	HISTORY	5
5.0	REGIONAL GEOLOGY	9
6.0	2005 EXPLORATION PROGRAM AND EQUIPMENT	11
6.1	Prospecting	11
6.2	Scintillometer Survey Specifications	
6.3	Gravity Survey Specifications and Field Procedure	
6.4	Gravity Data Processing and Reductions	
7.0	GEOCHEMICAL ANALYTICAL PROCEDURE	15
8.0	GRAVITY MEASUREMENT ERROR	
7.1	Measurement error	
7.2	Instrument drift	
7.3	Elevation Error	17
7.4	Latitude correction error	
7.5	Terrain correction	
7.6	Global error estimate	
9.0	GRAVITY INVERSION	18
10.0	RESULTS	19
10.	1 Prospecting Program Results	19
10.	2 Scintillometer Survey Results	
10.	3 Gravity Survey Results	
11.0	CONCLUSIONS AND RECOMMENDATIONS	21
12.0	STATEMENT OF EXPENDITURES	23
13.0	REFERENCES	25

LIST OF TABLES

Table 1	Claim Information	4
Table 2	Curie Area Regional Stratigraphy	9

LIST OF FIGURES

1

.

1000

1

đ

Page

Figure 1	Property Location	2
Figure 1A	Property Location and Access Map	3
Figure 2	Claim Map	In Pocket
Figure 3	Regional Geology	
Figure 4	Sample Location Map	In Pocket
Figure 5	Scintillometer Survey TC1 Channel	In Pocket
Figure 6	Scintillometer Survey TC2 Channel	In Pocket
Figure 7	Scintillometer Survey K Channel	In Pocket
Figure 8	Scintillometer Survey U Channel	In Pocket
Figure 9	Scintillometer Survey Th Channel	In Pocket
Figure 10	Bouguer Anomaly map	In Pocket
Figure 11	Bouguer Anomaly map with topography contours	In Pocket
Figure 12	Gravity model results & perspective views	In Pocket
Figure 13	Compilation Map	In Pocket

APPENDICES

APPENDIX A	CERTIFICATE OF QUALIFICATIONS
APPENDIX B	SURVEY LOG
APPENDIX C	SAMPLE DESCRIPTIONS
APPENDIX D	GEOCHEMICAL ANALYTICAL CERTIFICATES
APPENDIX E	GRAVITY THEORY
APPENDIX F	INVERSION THEORY
APPENDIX G	GRAVITY MEASUREMENTS & REDUCTIONS
APPENDIX H	GPS THEORY
APPENDIX I	SCINTILLOMETER READINGS

1.0 INTRODUCTION

Aurora Geosciences Ltd. was retained by Marksmen Resources Ltd. to perform prospecting, scintillometer and gravity surveys at the Curie Property, north of Mayo, central Yukon Territory. The Curie property was optioned by Markmen from 37999 Yukon Inc. in the spring of 2005. In the fall of 2005, the principals behind Marksmen Resources created a new company called Signet Minerals Inc. The mineral exploration properties of Marksmen where then transferred to Signet.

The 2005 work program was conducted to trace uraniferous hematite breccias at depth and to locate the source of uranium, copper and gold geochemical anomalies on the Curie property. The program was conducted in two phases. The first phase of the program consisted of prospecting, scintillometer and gravity surveying and was conducted from July 30 to August 10, 2005. The second phase of the program consisted of additional prospecting and gravity surveying, as well as claim staking. The second phase of the program was conducted from September 9 to September 19, 2005. The program involved the evaluation of three historical showings on the property and the collection of gravity readings at 90 stations. This report describes the survey, data processing and results, and contains an interpretation of the data.

2.0 LOCATION AND ACCESS

The Curie Property is located 190 km NNE of Mayo and 260 km NE of Dawson City, Yukon Territory. The property is centered at 65° 13' N, 134° 50' W in north-central Yukon Territory (Figure 1). The Curie claims are located in the Wernecke Mountains on NTS map sheets 106E01 and 106E02. The property is quite remote, however there are a number of airstrips and lakes in the general area allowing access to the region by fixed wing aircraft, floatplane or helicopter from the towns of Mayo or Dawson.

The town of Mayo is located 380 km by road from the city of Whitehorse. Travel between Whitehorse and Mayo is by the North Klondike Highway and then north on the Silver Trail Highway. Dawson City is located 520 km north of Whitehorse, on the North Klondike Highway. Both the North Klondike Highway and the Silver Trail Highway are paved roads and are generally in good condition.

3.0 CLAIM STATUS

The Curie Property consists of 928 Quartz Claims staked in accordance with the Yukon Quartz Mining Act in the Mayo Mining District¹ (Figure 2) The claims have not been surveyed and expiry dates are as listed in the table below:

Claim Name	Record Number	Expiry Date
BOHR 1 - 48	YC39970 - YC40000 YC41401 - YC41417	14 Oct 2006
PLANCK 1 - 64	YC41418-YC41481	14 Oct 2006
BETA 1 - 48	YC41482 - YC41529	14 Oct 2006
GAMMA 1 - 36	YC41530 - YC41565	14 Oct 2006
FERMI 1 - 48	YC41566 - YC41613	14 Oct 2006
GEIGER 1 - 16	YC41614 - YC41629	14 Oct 2006
CURIE 1 - 16	YC38921 - YC38936	09 Dec 2010
CURIE 17 - 48	YC39624 - YC39655	19 Sept 2006
CURIE 57 - 76	YC39656 - YC39675	19 Sept 2006
CURIE 49 - 56	YC41630 - YC41637	14 Oct 2006
CURIE 77 - 399	YC41638 - YC41956	14 Oct 2006
CURIE 401	YC41957	14 Oct 2006
GROUT 1 - 268	YC41958 - YC42225	14 Oct 2006
		•

Table 1. Claim Information

The CURIE 1 to 16 claims are owned 100% by 37999 Yukon Inc. These claims are subject to an agreement with Signet Minerals Inc., whereby Signet has option to earn 100% interest in the property by making payments totaling \$50,000 to 37999, issuing a total of 250,000 shares to 37999 and completing \$500,000 exploration work on the property according to the following schedule:

1

Claim information from Mayo Mining Recorder on Jan 02, 2006.

Date	Option Payment	Shares	AURORA GEOSCIENCES LTD. Exploration \$
On signing	\$12,500	50,000	Nil
December 31, 2005	Nil	50,000	\$50,000
December 31, 2006	\$10,000	50,000	\$100,000
December 31, 2007	\$12,500	50,000	\$100,000
December 31, 2008	\$15,000	50,000	\$250,000
Totals	\$50,000	250,000	\$500,000

Upon earning 100% interest in the Curie 1 to 16 claims Signet will be required to pay to 37999 a 2.0% Net Smelter Royalty (NSR) on any future mineral production from the property. Signet can purchase fifty percent (50%) of the royalty from 37999 for a cash payment of \$2,500,000. The property is also subject to a three (3) kilometer area of influence such that any claims acquired by staking within the area of influence will become part of the property.

The BOHR, PLANCK, BETA, GAMMA, FERMI, GEIGER, GROUT, CURIE 49 to 56, CURIE 77 to 399 and CURIE 401 claims are owned 100% by Signet Minerals Inc. At the time of writing this report the CURIE 17 to 48 and 57 to 76 claims were owned 100% by Marksman Resources. These claims are to be transferred to Signet Minerals Inc. A portion of these claims fall within the 3 km area of influence.

4.0 HISTORY

The Wernecke Mountains region of Yukon has an extensive exploration history. Claim staking records in the area date back to 1910 when claims were first staked in the Quartet Lakes area. There is no record of mineral exploration in the region until the 1970s. Since then, there has been extensive amount of prospecting, geological mapping, geochemical and geophysical surveys, trenching, pitting and diamond drilling in the search for gold, copper, uranium, lead, zinc and coal.

In June, 1975 the Wernecke Joint Venture (Standard Oil Co. of B.C. Ltd., Aquitaine Co, of Canada Ltd., and Messrs L & H Clay) discovered a uranium showing on the North slope of Quartet Mountain and staked the Wernecke claims. Later that year they conducted a program consisting of reconnaissance soil sampling, geological mapping, airborne and ground radiometric surveys. The program identified hard, black, vitreous crystalline masses of brannerite with traces of thorite and uranothorite up to several inches in diameter in a distinctive light pink to buff banded zone up to fifty feet thick in sedimentary rocks. A contour airborne radiometric survey flown around Quartet Mountain at elevation intervals of 500 feet identified a distinct radiometric anomaly on the North Slope of the mountain. The program recommended further prospecting to determine the origin and extent of radioactivity and located the source of mineralized float.

Also in 1975, Cyprus Anvil Mining Corporation conducted soil sampling programs on the Chloe claims 5 km west of Kiwi Lake and at the Gremlin Claims, 5 km south of Kiwi Lake. The Chloe claims were staked to cover an area anomalous lead and zinc in stream sediments. The program returned a significant lead and zinc soil anomaly in the valley

AURORA GEOSCIENCES LTD.

bottom on the north side of the claim group and at the western edge of the claims. The soil sampling program on the Gremlin claims returned anomalous values for copper with two values being 8,000 and 15,000 ppm copper. Further soil sampling, hand trenching, Induced Polarization surveying and detailed geological mapping were recommended at both properties.

In 1976, A. Harman & Associates staked the MTR claims northeast of the Wernecke claims. The claims were sold to New Minex Resources Ltd and later that year they conducted a soil sampling and prospecting program. The results returned two areas of weakly anomalous U308 geochemistry and a coincident uranium-copper anomaly. They recommended a follow-up program consisting of detailed prospecting and scintillometer surveys to determine the source and extent of the soil geochemistry anomalies.

Also in 1976, the Fairchild Joint Venture (Mountaineer Mines Ltd and Pan Ocean Oil Ltd) staked the Loon and Wolf claims approximately 10 km north of Quartet Lakes. In 1977, they conducted a program of geological mapping, prospecting, stream sediment sampling and hand trenching. The program discovered brannerite crystals in interbedded white quartzite/pale green phyllite. A float sample containing brannerite assayed 5% U3O8. The stream sediment sampling program returned only one anomalous value from 18 samples.

In 1977, The Fairchild Joint Venture conducted a program of soil sampling and scintillometer prospecting on the Fox, Deer, Frog, and Mosquito claims, west of Kiwi Lake in the area of the current Curie claims. A total of 217 stream sediment samples and 512 soil samples were collected from the Fox Creek area. Stream sediment values ranged from <0.5 ppm to greater than 400 ppm uranium. Anomalous or highly anomalous stream sediment values were returned from all but two of the major tributaries flowing northerly into Mosquito Creek. The main body of Mosquito Creek yielded anomalous or highly anomalous stream sediment values over most of its length. Soil results ranged from <0.5 ppm to 90 ppm uranium and defined an anomalous area that was 915 m long on the northwest side of the Fox Creek valley starting approximately 1219 m upstream from the mouth of the creek.

In 1978, the Joint Venture carried out an extensive exploration program on their Kiwi Lake holdings that at that time comprised 937 mineral claims around Kiwi Lake. The program consisted of geological mapping, prospecting, geochemical surveying, magnetometer, spectrometer and alpha-nuclear surveys, bulldozer trenching and diamond drilling. A total of 650 m of diamond drilling was completed in 8 holes with 199 water samples, 74 silt samples and 41 soil samples being collected over the claim area.

Also in 1978, Scylla Corporation staked the A and B claim blocks south and south west of Kiwi Lake, respectively. In the summer they conducted a program of airborne radiometric surveying, scintillometer prospecting, diamond drilling and blast trenching. The airborne spectrometer survey indicated a number of areas (15+) to be of interest. Scintillometer and conventional prospecting follow-up of these areas, however failed to locate any significant mineralization. Two trenches were completed on the claim block but no significant uranium occurrences were located.

In 1979, the Fairchild Joint Venture conducted additional diamond drilling (1549 m in 17 holes) with down hole gamma logging, extensive bulldozer trenching, scintillometer prospecting, magnetic, electromagnetic, spectrometer, and alpha nuclear radon ground surveys. The program identified the Deer No. 1 showing, located near the top of Deer Mountain, to be a high-grade uranium occurrence. Trenching and diamond drilling at this showing returned high-grade uranium mineralization in a chlorite rich horizon that was 1.5 to 3 m thick. The ground surveys identified radon anomalies and radiometric U/Th highs the south slope of Deer Mountain. The bulldozer trenching on this slope, however, failed to locate any uranium showings. Trenching at the Deer No. 2 showing, on the north slope of Deer Mountain identified breccia diatreme rocks containing large brannerite crystals in alteration haloes in an area of strong radioactivity confined to erratically distributed hot spots. The Deer No. 2 breccia showing, however was of limited extent. No further work was done and the properties were later allowed to lapse.

In 1982, The Wernecke Joint Venture staked the Demon claims to cover the Gremlin copper-cobalt occurrence formerly held by Cyprus Anvil Mining Corp. Exploration work that year consisted of detailed mapping and chip sampling. The chip samples returned values of up to 3.85% Cu, 11.2 ppm Ag, 396 ppb Au, and 1.1 lb/ton Co. Wernecke Breccia samples typically contained 3 to 20 percent disseminated platy specular hematite, up to 2% pyrite and up to 0.5% chalcopyrite. However, no zones of anomalous radioactivity or economic concentrations of metals were discovered. The property was later allowed to lapse.

In 1992, Westmin Resources Ltd. staked the Slab and Hoover claims, located approximately 15 km South of Quartet Lakes, and conducted a program of geological mapping, prospecting, soil and rock sampling. The properties were acquired to evaluate breccia bodies in the area for Olympic-Dam style Cu, U, Au, and Ag mineralization. At the Slab Property 132 lithogeochemical, 38 rock, 17 rock chip and 5 soil samples were collected. Values of up to 3.52% copper, and 7310 ppb gold were returned from rock grab samples.

At the Hoover Property, Westmin collected 55 lithogeochemical, 38 rock grab and 9 rock chip samples. The rock chip sampling returned values up to 4.0% copper and 300-400 ppb Gold and a grab sample returned 20.2 g/t gold and 2.24% copper. Based on these encouraging results, Westmin expanded the Slab property by staking an additional 124 claims and the Hoover by staking an additional 114 claims to link the two claim blocks.

In 1993, Archer Cathro and Associates conducted a field program of geochemical sampling and geological mapping on the Kiwi Property located 3 km south of Kiwi Lake and adjacent to the Demon Claims. The program was designed to determine the source of lead – zinc soil and stream sediment anomalies in the area and to evaluate the potential of to host sedimentary-exhalative deposits. A total of 205 rock, 95 stream sediment and 684 soil samples were collected. Thirty three of the rock samples returned values greater than 400 ppm Pb and 1000 ppm Zn, with the highest values being 0.38% Pb and 4.33% Zn. The soil sampling identified three lead–zinc soil anomalies (>251 ppm Pb, >551 ppm Zn) of greater than 1 Km² on the property. They recommended additional

AURORA GEOSCIENCES LTD.

geological mapping, rock, soil and stream sediment sampling to be conducted on the property.

In 1994, Westmin partnered up with Newmont Exploration Ltd. to form the Fairchild Joint Venture to explore the Slats and Hoover claims. The joint venture conducted a program consisting of geological mapping, prospecting, soil sampling, stream sediment sampling, and an airborne geophysical survey. Highlights of the program include a sample of breccia returning values of 930 ppb gold and 5170 ppm copper. The joint venture recommended a follow-up program consisting of geological mapping, geochemical sampling, geophysical surveys including Induced Polarization, magnetics and VLF-EM, to be followed by diamond drilling, however no further work was done on the property. At some time later, the property was sold to Breakwater Resources Ltd, which later turned it over to NVI Mining Ltd, a wholly owned subsidiary.

In 1995, Pamicon Developments Ltd conducted a diamond drill program (850 m in 5 holes) on the Anthea claims. Highlights of the program include assay results of >10000 ppm copper, 145 ppb gold, and 471 ppm cobalt. There is no record of any further work on the property. The claims are currently in good standing.

5.0 REGIONAL GEOLOGY

The geology in the area of the Curie Property is summarized by Gordey and Makepiece (2003). Formations in the area of the property are shown in Figure 3 and summarized in Table 2 below.

Formation	Description
(Age)	
Shublik Formation	Shale, siltstone and sandstone; silty bioclastic
(TrS)	limestone.
(Triassic)	
Tuttle Formation	Chert granule to pebble conglomerate,
(ICT)	sandstone with subordinate siltstone and
Carboniferous	shale; minor coal.
Ford Lake Formation	Black silty pyritic shale and siltstone with
(uDPF1)	lesser sandstone, conglomerate & silty
(Upper Devonian to Permian)	limestone
Imperial Formation	Shale and siltstone overlain by lithic
(uDI)	sandstone and siltstone in sharply graded
(Upper Devonian)	beds.
Road River Group	Calcareous black shale and limestone.
(CDR1)	
(Cambrian to Devonian)	
Bouvette Formation	Dolomite and limestone; minor argillaceous
(CDB1)	limestone, limestone conglomerate, and black
(Upper Cambrian)	shale; dolostone.
Slats Creek Formation	Turbiditic, quartz sandstone with minor shale
(ImCS1)	and siltstone, quartzite pebble and cobble
(Lower Cambrian)	conglomerate and limestone; argillite with
	minor quartzite and limestone.
Illtyd Group	Fine crystalline limestone; medium crystalline
(ICI1)	dolomite.
(Lower Cambrian)	
Quartet Group	Shale, finely laminated siltstone, and fine
(IPQ)	grained sandstone; minor interbedded orange
(Proterozoic)	weathering dolostone near top of formation.

Table 2. Curie Area Regional Stratigraphy (After Gordey & Makepiece (2003))

The property is located in the Richardson Fault Array and is centered on a horst of Illtyd and older Quartet Group rocks bounded by north-northwest trending normal faults on the west and east flanks. Folding along axes with similar trends are also mapped on a regional scale.

The Curie Property covers an 800 by 1800 m heterolithic diatreme breccia containing angular fragments of Quartet Group wallrock in a fine matrix. The outer margins of the CURIE PROPERTY 2005 REPORT – PAGE 9

AURORA GEOSCIENCES LTD.

intrusion are irregular and the wallrock contacts are gradational. The breccia pipe hosts two distinct types of mineralization. An early massive magnetite-hematite-jasper-quartz phase with minor disseminated chalcopyrite in the matrix. It occurs in an irregular zone about 30 m across in the northern part of the diatreme. Coarsely crystalline brannerite with quartz and pink K feldspar, occurs at the east edge of the core of the pipe. Although staked for uranium, no assays are reported in the Yukon Minfile.

6.0 2005 EXPLORATION PROGRAM AND EQUIPMENT

The crews mobilized to the property for the first phase of the program on July 30th and arrived on site on August 1st, 2005. This phase of field work was completed on August 8th and the crew returned to Whitehorse on August 10th. The crew mobilized to the property for the second phase of the exploration program on September 9th and returned on the 19th. Survey logs for the exploration programs are included in Appendix B. For the first phase of the program the crew was equipped with a 4-person camp, including 2 - 12'x14' tents, kitchen gear, a 1000 Kva generator and a Satellite phone. For the second phase of the program the crew operated from a hotel in Dawson. The crew, survey parameters and equipment for each of the components of the program are described below.

6.1 **PROSPECTING**

The prospecting was conducted by Derek Torgerson and Jane Wei. They collected 27 rock grab, 5 soil and 3 stream sediment samples. While prospecting the crew collected Scintillometer readings on their traverses. The scintillometer readings were recorded at approximately 20 m to 50 m intervals. The location of the readings are shown in Figures 5 through 9. The crew was equipped with the following instrument:

Scintillometer: MiniScint UG130 Portable 5 Channel Threshold Scintillometers

6.2 SCINTILLOMETER SURVEY SPECIFICATIONS

The scintillometer readings was conducted according to the following specifications:

Parameters read:	TC1 - Total Count 1 – Energy > 0.08 MeV TC2 - Total Count 2 – Energy > 0.4 MeV KUT - Potassium + Uranium + Thorium – Energy > 1.36 MeV UT - Uranium + Thorium – Energy > 1.66 MeV T - Thorium - Energy > 2.46 MeV
Sample Rate:	Counts were sampled at a 1 second interval.

<u>Other:</u> Station coordinates were recorded with non-differential GPS receivers along traverse lines

6.3 GRAVITY SURVEY SPECIFICATIONS AND FIELD PROCEDURE

The initial gravity survey was performed in two phases by the following personnel:

August survey:

Carla Kennedy Bernard Stehelin Geophysicist Technician

September survey:

Phil Jackson	Geophysicist
Tobius Schoettler	Field assistant / Geologist

The crews was equipped with the following instruments and equipment:

<u>Gravimeter:</u>	Scintrex CG-5
<u>GPS base:</u>	Trimble 4000 SSE Antenna 12619 (dual frequency / no ground plane)
<u>GPS rover:</u>	Trimble Pro-XRS
<u>Other:</u>	Impulse laser range finder (ALG22) P-1.2GHz laptop & colour printer 2 - VHF radios

The gravity surveys were conducted according the following specifications with exceptions as noted:

Instrument preparation: August & September surveys:

The gravimeter was levelled on a concrete slab and warmed up for a period of 48 hours to stabilize. Thereafter, the instrument was cycled for approximately 24 hours, taking readings for 120 seconds every 10 minutes. Based on this calibration, no change to the instrument drift constants were undertaken. The instrument remained under power at all times throughout the survey operation.

Horizontal survey datum: NAD 1983 (Canada) with all data projected in UTM Zone 8N coordinates.

Vertical survey datum: Mean sea level (EGM96 (Global)) with all heights in meters. CURIE PROPERTY 2005 REPORT – PAGE 11 Station marking: Stations were marked with flagged nails.

GPS base station: The Geodetic Survey of Canada Whitehorse Base Station was used due to equipment problems experienced with the grid GPS base station.

Gravity base station: August survey: Two separate gravity base stations were used. The first was used for the first three days and was located on a hill south east of camp. The other was located at camp. Both stations were marked with a post and flagged. The nominal gravity base station datum used for all drift corrections was 5232.129 mGal.

September survey:

The gravity base station located in camp used for the August survey was occupied again and used as the datum for the extension. The nominal gravity base station datum used for all drift corrections was 5232.129 mGal

Gravity readings: Readings were stacked for 60 s. One reading was taken at each station if the standard deviation was less than 50 µGals. If the gravity readings exceeded this threshold, at least three repeat measurements were collected.

Drift corrections: August survey:

Drift check-in readings were conducted prior to and after each day's survey. Check-in readings were taken at the gravity base station. Readings at the hill station are denoted as Line 99 / Station 99. Readings at the camp base station are denoted as Line 98 / Station 98. Please note that the gravity base station changed throughout the survey from the hill station to the camp station to save time. The data was then interpolated into one file.

September survey: Drift check-in readings were conducted prior to and after each day's survey at a minimum. Camp base readings are denoted as Line 99 / Station 99

Base GPS:The base station GPS receiver was cycled using a 10 s epoch
(reading interval) as an optimum compromise between
memory requirements and rover acquisition time. PDOP
masks were set to <6.0, elevation mask to > 2⁰ and signal to
noise (SNR) ratio mask was set to >2.0 at the base station
receiver. All elevation readings were corrected for base GPS

AURORA GEOSCIENCES LTD. antenna height. The base antenna was rigidly mounted on a tripod throughout the survey.

Rover GPS: Antenna was placed on the gravity survey station hub and elevations were corrected for rover antenna height. A minimum of 3 measurements of 15 readings were taken per station survey and these measurements were averaged to determine the final station location. The rover elevation, mask was set higher than corresponding base station mask to ensure that all rover measurements had matching base station satellite records.

Near station terrain corrections: Terrain within 20 m of the survey station was surveyed with the laser rangefinder in 6-60⁰ sectors. Because of the extreme topography near many stations, some of the terrain measurements are estimates.

6.4 GRAVITY DATA PROCESSING AND REDUCTIONS

Gravity data processing included the following steps and procedures:

- 1. *GPS processing.* The GPS data was processed with Trimble Pathfinder Office (2.90) using carrier phase and code processing. The Geodetic Survey of Canada Whitehorse GPS base station location was used as the reference position for all station measurements and the antenna heights of the rover was checked daily and used in the corrections. The data was exported in UTM NAD 83 (Zone 8N) coordinates with elevations in meters above mean sea level with a geoid model EGM96/Global.
- 2. *Position merge.* The gravity data was merged with the GPS data based on common line / station coordinates of readings in each data set.
- 3. Drift corrections.

August survey:

Daily drift files were created from the check-in measurements. Drift corrections were applied by linear interpolation between the nearest-in-time check-in measurements prior to and after the field reading.

September survey:

Daily drift files were created from the check-in measurements. The nominal gravity base station reference value from the August survey was used in all corrections. Drift corrections were applied by linear interpolation between the nearest-in-time check-in measurements prior to and after the field reading.

4. Latitude correction. The latitude correction was applied by calculating the linear

gradient in the latitude effect at the centre of the survey area and removing the latitude effect calculated relative to this point. The central point used in the latitude calculation was 509219E 7230450N at a latitude of 65.2° N. The effect of the declination between UTM Grid North and True North was removed by adjusting the distance north of the central point using the measured declination of 0.3° E.

- 5. *Elevation corrections*. Free Air, Bouguer Slab and Bullard-B corrections were applied using mean sea level (z=0 m) and a density of 2.67 g/cm³.
- 6. Near station terrain corrections. The terrain effect from topography within 20 m of the station was removed using the measurements described above and by applying the sector equation. An assumed density of 2.67 g/cm³ was used.
- 7. Far station terrain corrections. A digital terrain model was created from the Geodetic Survey of Canada NTS topographic sheet 106 E/02 by extracting the coordinates of contour line segment end points and gridding this data using a 20 m cell size. The DTM extends from 504800E 7226600N to 513900E 7234600N and encompasses an area at least 3 km from any station in the survey area. The far station terrain corrections were applied with an exclusion distance of 20 m to complement the near station terrain corrections applied with direct terrain measurements within 20 m of the station. The far station terrain correction algorithm calculates the gravity effect of a flat-topped prism with dimensions equal to the node spacing.
- 8. Plotting. The final gravity data spreadsheet after all corrections and plan maps at 1:20,000 are attached. Plan maps include the Bouguer Anomaly map showing the colour contoured reduced gravity data (Figure 10) and the Bouguer Anomaly together with topography contours (Figure 11). Figure 12 illustrates model results, including the observed gravity data (a), the gravity data predicted by the best-fit model (b) and the difference between the observed and predicted gravity (c). Figure 12 (d) through (i) illustrates perspective views of the final model. Digital copies of these plots are included in the digital archive on CD-ROM.

7.0 GEOCHEMICAL ANALYTICAL PROCEDURE

The samples were sent to Saskatchewan Research Council (SRC) in Saskatoon for processing. A total of 27 rock, 5 soil and 3 stream sediment samples were collected in the 2005 program. All samples were handled in a secure manner and placed in sealed poly bags and in sealed 5 gallon containers for shipment to the lab. Geochemical Analytical Certificates are included in Appendix D and sample descriptions are included in Appendix C.

The analytical procedure for the soil and stream sediment samples consisted of drying the samples then sieving to -180 um. Two digestions of the 0.5 grams of the -180 um material were then run; one in aqua-regia solution, the other in a tri-acid for total digestion. Each of the two digestions was then analyzed by the SRC Uranium Exploration Major and Trace Element Package, which involved an ICP analysis.

The analytical procedure for the rock samples consisted of drying the sample then crushing and pulverizing. The pulverized material was then run with 2 digestions and analyzed by ICP as with the soil and stream sediment analysis. Rock samples returning greater than 500 ppm uranium were assayed for uranium.

8.0 GRAVITY MEASUREMENT ERROR

This section describes the sources of error present in the data and estimates the overall error in the Bouguer Anomaly after the application of all standard reductions.

8.1 Measurement error

Each gravity reading was stacked 60 times and, if the reading standard deviation exceeded 50 μ Gal, the reading was repeated three times and averaged. The discrepancies between repeat readings at noisy stations rarely exceeded 20 μ Gal and this value is taken as a measure of raw measurement error.

8.2 Instrument drift

August survey:

The gravimeter had an average daily drift in the order of 40 μ Gal. Although the drift curve below does not demonstrate a linear drift, the daily variance was minimal and therefore the gravimeter is considered stable within an acceptable tolerance throughout the entire survey. The drift curve for the project at the survey area base station is shown below for reference.

September survey:

The gravimeter was linear throughout the survey with an average daily drift in the order of 50 μ Gal. The drift curve from the instrument preparation is shown below for reference. CURIE PROPERTY 2005 REPORT – PAGE 15

There were no tares or temperature excursions noted in the data. Due to windy conditions and soft ground several base station readings had a standard deviation higher than 50 μ Gal. Error due to incorrectly estimated drift is estimated at no more than 10 μ Gal.

The September 2005 gravity data was merged with the August 2005 gravity data. In addition to the gravity base station the operator occupied two other previously surveyed gravity stations from August 2005. The drift corrected gravity values repeated to within 100 μ Gal, allowing successful merging of the data sets

8.3 Elevation error

In addition to repeat GPS measurements taken during the course of the survey the GPS indicated elevations of the gravity stations were checked against the indicated elevations of these points on the digital elevation model. It should be noted that the DTM with which these points were compared did not incorporate the GPS elevations themselves but relied upon contour map elevations. Maximum discrepancies in the order of \pm 5 m were noted between the GPS indicated stations elevations and the interpolated elevations of the gravity stations derived from the digital topographic maps. This too suggests that the GPS-derived gravity station elevations are correct. Error in elevation is estimated at no more than \pm 50 cm (0.100 mGal).

8.4 Latitude correction error

The latitude correction error is assumed to be negligible given the assumed horizontal accuracy of the station locations (\pm 50 cm).

8.5 Terrain correction

The operator made a concerted effort to ensure that the ground around each gravity stations was flat for at least 2 meters, however the following points were not ideal due to the steep topography: Station 3,8, 31, and 56. The operator made a concerted effort to accurately estimate the terrain near each station but some of the stations were located in very steep topography where areas were obscured and therefore were estimated. Errors in far station terrain corrections are due to three sources. These include the effect of the simplified geometry of each DTM node (flat topped prism) and the node size (20 m); errors in the topographic maps from which the DTM was constructed; and round-off error. Errors introduced by the first source are likely minimal given the great distance between the sources (nodes) and the gravity stations. Errors in the topographic maps would likely create small local anomalies - largely single station anomalies in this case. Round-off error is likely not significant as the processing is performed with double precision float variable and rounding errors should in general cancel as there is as much chance of rounding up as rounding down in any calculation. As an approximation, far station terrain corrections errors are assumed to be no more than 5% of the applied far station terrain correction, averaging 57 µGal.

8.6 Global error estimate

The error in the Bouguer Anomaly from all sources is the sum of the errors in each correction and is estimated to be about 200 µGal.

9.0 GRAVITY INVERSION

The gravity data was modelled using the University of British Columbia Geophysical Inversion Facility Grav3D software package. This section describes the inversion methodology and the parameters used to invert and interpret the gravity data.

Starting with a model of the earth consisting of rectangular prism elements (a finite element mesh) with varying dimensions and initial densities, Grav3D iteratively adjusts the densities of each element until the forward modelled response matches the observed gravity within the bounds of measurement error. The program uses a forward modelling subprogram to model the gravity response for a given model, computes the differences between the forward modelled data and the observed data, and adjusts the density of each node using a sensitivity matrix which encapsulates the contribution of each node to the observed gravity at a given station. At a given station for a given difference between observed and modelled gravity, the adjustment is calculated by adjusting the density of each node by an amount scaled from the sensitivity matrix.

10.0 RESULTS

Proterozoic Wernecke Breccias in the Yukon have been explored for copper, gold and uranium since the association was established between these rocks and correlative Proterozoic rocks in Australia. The latter host the Olympic Dam Cu-Au-U Deposit and other deposits of lesser tonnage, all hosted by iron-oxide breccias in Proterozoic rocks. The results of the 2005 exploration program are discussed below.

10.1 PROSPECTING PROGRAM RESULTS

The prospecting program was conducted over an eight day period and focused mainly around the historic Deer 1 and Deer 2 showings. There is very little outcrop exposed on the property, however there is abundant loose regolith and scree that appears to be very proximal to the source. The property has been mapped by previous workers and their work is shown on Figure 13.

The sampling program returned 10 samples with greater than 500 ppm uranium, including two grab samples with 7.40% U (9.02% U_3O_8) and 46.3% U (54.3% U_3O_8). These float boulder samples of hydrothermally altered quartz-feldspar-chlorite veined, fine-grained sediments with carnotite mineralization near trenches at the Deer 1 showing. This mineralization was not observed in outcrop. These results are considered extremely anomalous.

A stream sediment sample collected below the West Deer Showing (CUR05STR-03) returned a highly anomalous value of 148 ppm uranium as compared to 22 and 33 ppm for the other 2 stream sediment samples. The soil samples did not return any significantly anomalous results.

10.2 SCINTILLOMETER SURVEY RESULTS

The scintillometer was used more as a prospecting tool, rather than conducting a systematic gridded survey. It was used to help the field crew to locate areas of anomalous radiometric readings to allow them to focus their prospecting and sampling activity. The results show the area around the Deer 1 Showing to be anomalous for K, U and Th. As well, there are a few scattered Th anomalies north of the Deer 2 showing and south of the Deer 1 Showing. In each of these areas the crew collected a number of samples and, as discussed above, the Deer 1 Showing returned samples with abundant uranium and thorium content.

10.3 GRAVITY SURVEY RESULTS

The setting, exploration history and geophysical response of the Olympic Dam Deposit is described by Roberts and Hudson (1983). The deposit is characterized by coincident total magnetic field and gravity highs. The former is attributed to the magnetite phase of

AURORA GEOSCIENCES LTD.

the mineralization while the latter is likely caused by iron oxides and overlying barite. Sulphide mineralization consisting of pyrite-chalcopyrite-bornite-chalcocite is also readily detectible with induced polarization and resistivity surveys. Classic Olympic Dam mineralization would be expected to produce strong coincident total magnetic field and gravity highs with weaker associated chargeability highs. Depending upon the tenor of the sulphide mineralization and the degree of alteration, apparent resistivity lows may be associated with the chargeability highs.

The central gravity feature on the property is a 3.2 mGal anomaly coincident with the Deer Showing and extending southwest of that location. The anomaly consists of a subcircular central high with a WNW trending arm at the northwest corner of the anomaly. The anomaly is defined by the 131 gravity stations surrounding it and is closed off in all directions. The Bouguer high appears to be a subsidiary feature on a regional gravity plateau covering the eastern half of the survey area.

The Bouguer Anomaly data collected during this survey were inverted to investigate the density, depth and shape of the source body or bodies creating the observed field. The gravity modelling was confined to the area bounded by 505000E 7226000N to 514000E 7235000N. The regional field was removed by subtracting 5393.00 mGal from the data set; this is the average background value in the centre of the map, off the main anomaly. The gravity measurements were assigned an estimated average measurement error of 0.200 mGal.

For the model, topography was gridded using 100 m cells in the area covered by the gravity data and this topography grid was used to truncate the mesh, thereby incorporating surface topography into the final model. Modelling was conducted to fit the 129 points within the model area rather than attempting to fit a grid derived from this data. The model employed grid cells 100 m x 100 m in plan and 50 m thick near surface. The inversion was conducted with default (1.0) chi-factors, default α 's and with default z_0 and β coefficients to counteract depth insensitivity. Reference and initial models consisted of cells with a zero density contrast.

The inversion fitted all the data within 0.5 mGal except for stations 122 and 117, the latter being an anomalous single station low. Figure 12 illustrates model results, including the observed gravity data (a), the gravity data predicted by the best-fit model (b) and the difference between the observed and predicted gravity (c).

Figure 12 (d) through (i) illustrates perspective views of the final model. The solid shown encloses all material with density greater than 0.06 g/cm³ above background (ie. greater than 2.73 g/cm³ relative to average crustal density of 2.67 g/cm³). The inversion results suggest that the source is a vertically persistent, possibly bowl-shaped body with numerous small shallow sources of high density (>3.20 g/cm³) embedded within it. The results do not indicate the presence of a single high density feature in the area. Instead, the large density high enclosing material less than 3.00 g/cm³ could be caused by a mass of iron metasomatized rock. Within this larger mass, the high smaller high density sources could indicate the presence of hematite or magnetite breccias.

A digital archive is appended to this report as a CD-ROM and contains the gravity data in Excel and Geosoft data base format. The archive also contains all raw GPS and gravity data, near station terrain measurements, the digital terrain model used in the corrections and a digital copy of the maps.

11.0 CONCLUSIONS AND RECOMMENDATIONS

The 2005 exploration program returned significantly anomalous uranium values from rock samples collected in the area of the Deer 1 Showing. In particular, two samples returned 7.40% U (9.02% U_3O_8) and 46.3% U (54.3% U_3O_8). The scintillometer survey was helpful to direct the crew with their prospecting and sampling. It identified the Deer 1 Showing area as being significantly anomalous for K, U and Th. As was discovered by previous explorers in the area there are a number of high-grade surface showings in the region. The goal of the program was to determine the source of the uranium mineralization and to look for a possible Olympic Dam-type Iron-Oxide Copper-Gold (IOCG) target or unconformity-related uranium target deeper in the system. The gravity survey should assist in determining if such targets exists at depth.

Figures 10 and 11 (Back pocket) are Bouguer Anomaly maps showing the colour contoured reduced gravity data (Figure 10) and the Bouguer Anomaly together with topography (Figure 11). Figure 12 illustrates model results, including the observed gravity data (a), the gravity data predicted by the best-fit model (b) and the difference between the observed and predicted gravity (c). Figure 12 (d) through (i) illustrates perspective views of the final model. The solid shown encloses all material with density greater than 0.06 g/cm³ above background (ie. greater than 2.73 g/cm³ relative to average crustal density of 2.67 g/cm³). The inversion results suggest that the source is a vertically persistent, possibly bowl-shaped body with numerous small shallow sources of high density (>3.20 g/cm³) embedded within it. The results do not indicate the presence of a single high density feature in the area. Instead, the large density high enclosing material less than 3.00 g/cm³ could be caused by a mass of iron metasomatized rock. Within this larger mass, the high smaller high density sources could indicate the presence of hematite or magnetite breccias.

Recommendations for future work on the property are to:

- 5 Conduct an airborne magnetic and electromagnetic survey over the full property position.
- 6 Stake additional claims to cover the northern gravity anomaly.
- 7 Expand the gravity survey to north to close-off the anomaly and expand it eastward to cover the claim package.
- 8 More prospecting, geological mapping and rock and soil sampling over the complete property package.
- 9 3,000 m of diamond drilling to test the gravity anomalies at depth.

Respectfully submitted, AURORA GEOSCIENCES LTD.

Phil Jackson B.Sc. P.Geoph. Geophysicist

And

Scott Casselman, B.Sc. Geologist

12.0 STATEMENT OF EXPENDITURES

1

Gravity Survey and Prospecting Expenditures

Data Compilation – Scott Casselman – 19 hours @ \$69.55		\$1,321.45
Field Crew Wages (July 30 to Aug	10)	
- Derek Torgrerson	- 12 days @ \$428.00	5,136.00
- Carla Kennedy	- 12 days @ \$428.00	5,136.00
- Jane Xie	- 12 days @ \$347.75	4,173.00
- Bernard Stehlin	- 12 days @ \$347.75	4,173.00
(Sept 9 to 19, partial – 2 person gra	avity crew)	
- Phil Jackson	- 5 days @ \$428.00	2,140.00
- Tobias Schoettler	- 5 days @ \$347.75	1,738.75
Truck rental	- 6 days @ \$107.00	642.00
Groceries		1,427.57
Camp rental (incl phone, gen, etc)	- 7 days @ \$128.40	898.80
Gravity meter rental	- 17 days @ \$350.00	5,950.00
Differential GPS rental	- 17 days @ \$180.00	3,060.00
Room and board (Sept 9 to 19, par	tial)	2,897.65
Supplies		133.60
Fuel	 Jet B and Avgas 	1,716.25
Sample shipment		72.29
Sample Analysis – SRK Labs		1,721.50
Helicopter Charter		2,586.48
Fixed Wing Charter		2,777.75
Expediting		690.15
Aurora Project Administration charge	jes	500.00
Report Writing - Aurora Geoscience	es Ltd	<u>5,350.00</u>
Total exploration costs		<u>\$ 54,242.24</u>

(Sept 9 to 19, partial – 2 person stat	king crew)	
- Warren Kapaniuk	- 5 days @ \$374.50	1,872.50
- Casey Adshead	- 5 days @ \$374.50	1,872.50
(Sept 27 to Oct 9 – 4 person staking	g crew)	
- Phil Jackson	- 17 days @ \$374.50	6,366.50
- Warren Kapaniuk	- 5 days @ \$374.50	1,872.50
- Casey Adshead	- 17 days @ \$374.50	6,366.50
- Ed Able	- 15 days @ \$374.50	5,617.50
Truck rental	- 3 days @ \$107.00	321.00
Trailer rental		160.50
Truck fuel and mileage charges		3,011.64
Fuel	- Jet B and Avgas	5,149.64
Claim posts	- 130 @ \$3.50	9,322.41
Supplies	-	940.66
Room and Board		10,289.21
Helicopter Charter		135,202.49
Fixed Wing Charter		44,170.41
Aurora Project Administration charges		8,919.20
Fuel mobilization charges – T. Wood from Dawson		1,155.60
Filing Fees		<u>10,008.00</u>
Total claim staking costs		\$ <u>252,618.76</u>

Claim Staking Expenditures

1

•

۲

A

13.0 REFERENCES

- Archer, A. R., 1976. Report on Soil Geochemistry, Geology and Radiometric Surveys, Wernecke 1-82 Claims. Yukon Government Assessment Report # 090099.
- Baknes, M. E., Caulfield, D. A., Stammers, M. A., 1993. 1993 Summary Report on the Slab 1-208 Claims. Yukon Government Assessment Report # 093181.
- Darney, R and Ikona, C. K., 1976. Geochemical Report on the MTR 9-16, 25-32, 39-49 Mineral Claims. Yukon Government Assessment Report # 090172.
 - _____, Yeager, D., R. Yorston, Stammers, M. and Ikona, C., 1978. Summary Report on the Kiwi Lake Holdings in the Fairchild Project Area, NTS 106E1 and 2. Yukon Government Assessment Report # 090440.
- Dean, P., 1975. 1975 Exploration Report, Chloe Mineral Claim Group. Yukon Government Assessment Report # 090051.
- Eaton, W. D., 1982. Wernecke Joint Venture (WJV) Diamond Drill Report, IGOR 1-26 Claims. Yukon Government Assessment Report # 091445.
- Gordey, S.P. and A.J. Makepeace (1999) Yukon Digital Geology, Open File D3826. Geological Survey of Canada: CD-ROM.
- Hulstein, R., 1994. Assessment Report on the 1993 Geological and Geochemical Investigation of the Kiwi Property, KL 1-196. Yukon Government Assessment Report # 093197.
- Ikona, C. K. and Yeager, D., 1978. Geological and Geochemical Report on the Fox Creek Area, Including DEER, FROG, MOSQUITO, CLAM Claim Groups. Yukon Government Assessment Report # 090365.
- Klatt, H. M., Stammers, M. A., 1994. 1994 Geological and Geochemical Assessment Report on the Arch 1-24 Claims. Yukon Government Assessment Report # 093233.
- LaFehr, T.R. (1991a) Standardization in gravity reduction. Geophysics Vol. 56, No. 8. pp 1170-1178.
- LaFehr, T.R. (1991b) An exact solution for the gravity curvature (Bullard B) correction. Geophysics Vol. 56, No. 8. pp 1179-1184.
- Longman, I.M. (1959) Formulas for computer the tidal accelerations due to the moon and the sun. Journal of Geophysical Research Vol. 64 No. 12.

- Pamicon Developments Ltd, 1995. 1995 Assessment on Diamond Drilling on the Anthea 1-66 Mineral Claims. Yukon Government Assessment Report # 093439.
- Roberts, D.E. and G.R.T. Hudson (1983). The Olympic Dam Copper-Uranium-Gold Deposit, Roxy Downs, South Australia. Economic Geology Vol. 78 No. 5 p799-822.
- Stammers, M. A., 1992. 1992 Geochemical Report on the Slab 1-82 Mineral Claims. Yukon Government Assessment Report # 093119.
- Telford, W.M., L.P. Geldart and R.E. Sheriff (1990) <u>Applied Geophysics (2nd Edition)</u> New York: Cambridge University Press.
- Touborg, J. F. and Chan, A. K., 1980. Report on 1979 Season Faairchild Uranium Program. Yukon Government Assessment Report # 090648.
- White, P. S., 1979. Geological, Geophysical and Physical Work Report for Representation on the A 1-56 and B 1-38 Claim Group.
- Whitman, W.W. (1991) A microgal approximation for the Bullard B earth's curvature gravity correction. Geophysics Vol.56 No. 12 pp 1980-1985.
- R. Yorston, Yeager, D. and Ikona, C., 1977, Assessment Report on the Loon 1-12 and Wolf 1-60 Mineral Claims. Yukon Government Assessment Report # 090286.

APPENDIX A

1

122

CERTIFICATES OF QUALIFICATIONS

CURIE PROPERTY 2005 REPORT - PAGE 26

Statement of Qualifications

I, Scott Casselman, residing at 33 Firth Road, Whitehorse, Yukon Territory, Y1A 4R5, certify that:

- 1) I graduated from Carleton University in Ottawa, Ontario with a Bachelor of Science Degree in Geology in 1985.
- 2) I am a geologist employed by Aurora Geosciences Ltd. of Whitehorse, Yukon Territory.
- 3) I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, Registration No. 20032.
- 4) I supervised the fieldwork described in this report on the Curie Property between July 30 and September 19, 2005.

Dated this ____th day of _____, 2006, at Whitehorse, Yukon Territory.

Scott G. Casselman, BSc., P.Geo.

APPENDIX B

1

1

100

-

SURVEY LOG

CURIE PROPERTY 2005 REPORT - PAGE 28

AURORA GEOSCIENCES CURIE GEOLOGY & GRAVITY

LTD.

JOB: MRX-05-02-YT CURIE MARKSMAN RESOURCES LTD.

Period: July 30th -August 10th , 2005

Personnel: Derek Torgerson Geologist Crew Chief Carla Kennedy Geophysicist Jane Xie Field Assistant Bernard Stehlin Field Assistant Jack Kodwat Sr Driver

Sat July 30 05 Mobe

Mobed from Whitehorse to McQueston Lake with DT, CK, JX, BS, and JK Left Whitehorse at 5:30 am arrived at McQueston Lk at 12:00 pm. Raining at McQueston and no plane waiting for us. Waited and tried to track down pilot till 4:00 pm. Found that Big Salmon Air was weathered in, in Mayo YT. Returned to Mayo, stayed at Bedrock Hotel.

Sun July 31 05 Mobe

Met Dave Young at Bedrock motel at 7:00 am. Drove to Mayo airport to do weather check. Weather found to be to poor for flying. Decided to wait till 10:00 am and check again. Checked weather at 9:45 am, it had improved enough to fly. Moved mobe location to Mayo. Had first load of gear in air at 11:00 am. Cloudy and overcast all day. Dave Young flew 3 trips to Kiwi lake, at 3 hours turn around per trip. Returned to Bedrock hotel at 7:00 pm. Met Dave Young after his final trip, returned to Bedrock Hotel 10:30 pm.

Mon Aug 1 05 Mobe

Sunny Day. First flight out by Dave Young at 8:00 am. Bought more Av Gas from Mayo Airport 386 L at 1.52 / L. Sent Dave for second load at 11:00 am. BS stayed with Dave Young to help load and fuel. JK to McQueston Lake to haul drums back to Whitehorse. DT, CK, JX to airport to meet Trans North Helicopter Pilot. DT dropped off at Curie camp 1:00 pm. CK, JX to Kiwi Lake to load slings of gear. DT, CK, JX and BS in camp and set up by 7:00 pm. Dave Young 3 trips, for a total of 6 trips. Trans North 3.2 hours and 170 L of fuel.

Tues Aug 2 05 Gravity & Geology

Clear and sunny in day, rain in evening. BS & CK gravity 11 points. JX & DT located Deer 1 Showing, rock and soil samples collected.

Wed Aug 3 05 Gravity & Geology

Clear and sun in morning, rain in afternoon and overnight. BS & CK 18 gravity points. JX & DT Scintillometer survey, rock sampling, exposed radioactive source at Deer 1 showing.

Thurs Aug 4 05 Gravity & Geology

Rain most of day. BS & CK gravity 11 points. JX & DT continued with scint survey of Deer 1 showing, and rock sampling around showing.

- Fri Aug 5 05 Gravity & Geology Clear day. BS & CK technical problems with GPS base station, 5 gravity points. Will continue survey using Whitehorse base station. JX & DT mapping, prospecting around Deer 1 showing; moved to Deer 2 showing, unable to locate significant source of radioactivity. Samples collected.
- Sat Aug 6 05 Gravity & Geology Cloudy and rain, more rain at end of day. BS & CK 20 gravity points. JX & DT scint. prospecting for Deer 2 showing unable to locate. Samples collected
- Sun Aug 7 05 Gravity & Geology Overcast day, significant smoke in sky, rain overnight. BS & CK 15 gravity points. JX & DT moved to search for West Deer showing, scint. prospecting. No significant radioactivity found. Samples collected.
- Mon Aug 8 05 Gravity & Geology

Clear day, smoke beginning to clear. BS & CK 10 gravity points. JX & DT scint. Prospecting of trenches at south base of Deer Mtn, samples collected. Confirmed demobe arrangements with TNTA and BSA. TNTA to begin demobe to Kiwi Lk at 6:00 am Tues morning. BSA to arrive at Kiwi Lk at 7:30 am to fly gear to Mayo. Amanda to meet crew in Mayo with truck. Begin to tear down camp.

Tues Aug 9 05 Demobe

Clear sunny day. Helicopter arrived at Curie camp 5:45 am. Demobe to Kiwi lk with TNTA 2.4 hours. 4 trips to mayo with Big Salmon Air. All crew out, met Amanda; set up wall tent at Bedrock hotel Mayo.

Wed Aug 10 05 Demobe

Dave Young demobe from Kiwi Lk to Mayo, 3 trips. Bought 99 litres of Av. Gas from Mayo airport. Drove home to Whitehorse.

Survey Days:	7.0 days
Standby Days:	0.0 days
Mobe/Demobe:	5.0 days
Period: September 9th - 19, 2005

Personnel: Phil Jackson Geophysicist Crew Chief Warren Kapaniuk Staker / IP Tech Casey Adshead Staker / IP Tech Tobius Schoettler Geologist

Fri Sept 09, 05 Mobe Mobed from Whitehorse to Dawson City. Only a four man crew rather than five. Meet with fireweed pilot, plan set for Curie job in the morning. Crew staying at Eldorado Hotel.

Sat Sept 10, 05 - Curie -

Attempt made to get to curie job. Weather and fog too bad in mountains. Crew grounded in Dawson due to bad weather. Bad weather anticipated for Sunday and clearing on Monday, so plan switched to complete shell creek job first. - weather - scattered cloud with fog

Sun Sept 11, 05 Work on another project in the Dawson area. Helicopter has a forced landing. Crew is OK. Will not be able to go to Curie for a few days.

Mon Sept 12, 05 Work on another project in the Dawson area.

Tues Sept 13, 05 Work on another project in the Dawson area. Helicopter is repaired and ready to begin working on Curie project.

Wed Sept 14, 05- Curie -

Morning fog, late start but made it out to Curie by ~11am. Some gravity and staking completed, anticipate two more days of work, but will try to add geology work into program on third day.

Thurs Sept 15,05 - Curie -

More morning fog, out to Curie by driving to top of dome and picked up by heli there. Out by 9:30. Good productive day. All gravity points completed, and all but one staking line completed. Will do detail grav and geology tomorrow. Only one staker required to finish one line and do some tagging.

Fri Sept 16, 05 - Curie -WK & CA get curie staking notarized in Dawson & buy 50 more staking

posts. WK completes staking/tagging at Curie, PJ & CA complete more grav stations and some detail readings where possible. TS prospects showings. Overcast with some light rain in late afternoon. Some difficulty on fly home, flight + 2hrs. Back in Dawson by 8:30.

Sat Sept 17, 05 Work on another project in the Dawson area.

Sun Sept 18, 05 Work on another project in the Dawson area.

Mon Sept 19, 05 - demobe -

PJ records Prosperity claims. PJ & MP demobe to Whitehorse.

Survey Days: Standby Days: Mobe/Demobe: 3 for Curie; 2 for Shell Creek; 1 for Prosperity; 1 for Hart River 1 for Curie; 1 for Prosperity 2.0 days

APPENDIX C

.

۲

1

11

ő

10000

M

100

100

SAMPLE DESCRIPTIONS

CURIE PROPERTY ROCK SAMPLE NOTES

0	INA DOG U	TALA DOOLUT	TOA	TCO			T	Description
Sample	NAD83 U	INAD83 UT			<u> </u>	-10		Description
R01	509142	7230680	320	41	6	4	2	Metamorphized green/grey siltstone; argillite
R02	509178	7230797	159	30	6	6	3	Green/grey siltstone gradually graded to shale
R03	509325	7231191	201	41	10	8	4	Darkgreen, metamorphized sittstone; iron rich; trace feldspa growth
R04	509558	7231822	158	38	6	4	3	Highly metamorphized blue/green slitstone; trace feldspar g
R05	509553	7231817	248	53	12	11	3	Weathered siltstone bedrock; iron rich (possibly hematite weathering)
R06	509685	7232016	310	63	12	10	6	Chloritic schist w. bedding (siltstone) in bedrock; feldspar v
R07	509688	7232002	7503	5063	1070	987	304	Carnotite crystallization on chloritic schist
R08	509695	7232012	871	199	32	27	13	Chloritic, highly altered siltstone; feldspar growth (crushed/weathered)
R09	509649	7232009	195	48	8	6	3	Quartz vein with hematite mineralization; layered with siltsto
R10	509690	7232000	415	141	20	18	8	Chloritic schist; quartz crystals in vugs, altered (crushed/weathered) feldspar, and hematite mineralization
R11	509677	7231983	1655	793	115	90	27	Chloritic and quartzite banded siltstone; feldspar alteration
R12	509712	7232016	1423	972	183	156	58	Metamorphized chloritic siltstone w. feldspar veining; possil hematite mineralization in feldspar;alteration around veining
R13	509711	7232022	2365	1183	230	202	52	Quartz vein in chloritic siltstone; feldspar and hematite grow associated w. quartz vein
R14	509722	7232016	362	138	21	17	9	Quartz vein in chloritic siltstone; abundant feldspar and trac hematite w. brown weathering; possible biotite;
R15	509670	7232020	1310	527	81	49	20	Chloritic banded siltstone w. quartzite bands; feldspar mineralization
R16	509672	7232021	672	251	61	28	10	Chloritic banded siltstone w. quartz veining; feldspar, trace hematite, and green mineralization; possible brannerite mineralization
R17	509674	7232019	8409	5043	861	666	232	Chloritic schist w. quartz veining, feldspar and carnotite
R18	509683	7232029	581	146	27	22	8	Chloritic schist w. quartz veining; feldspar and hematite
R19	509438	7232841	138	40	7	6	3	Breccla of sedimentary clasts; malachite and irredescent (peacock) pyrite
R20	509653	7232115	151	42	10	7	2	Chlorite rich clast breccia w. feldspar and hematite minerali
R21	509277	7232866	181	59	12	10	4	Breccia w. trace hematite mineralization; quartz and sandsto clasts; sandstone matrix; staining on clast surfaces vugs
R22	509282	7232831	138	46	5	7	4	Breccia w. trace hematite mineralization; quartz clasts and sandstone matrix; vugs
R23	509283	7232829	153	48	12	5	2	Highly metamorphized, chloritic rich, (likely siltstone); malac mineralization
R24	508470	7232146	264	32	7	5	2	Breccia w. chloritic metamorphized siltstone clasts
R25	508475	7232150	289	35	6	6	3	Breccia; quartz clasts; sandstone matrix; hematite mineraliz
R26	508336	7232284	304	33	8	5	3	Weathered breccia; siltstone and quartz clasts;trace hemat sandstone matrix
R27	507870	7231901	304	35	8	5	2	Iron and chlorite rich breccia in bedrock; quartz clasts

-

1

2

1000

111

CURIE PROPERTY SOIL SAMPLE NOTES

			S	CINTILLON	IETER RE	ADING on	SAMPLE
Sample	NAD83 UTME	NAD83 UTMN	TC1	TC2	K	U	T
					· · · ·		
SS01	509554	7231815	369	56	10	7	8
			- <u>-</u>				
<u>SS02</u>	509684	7232015	311	58	8	6	3
	1500000	1700 (007	1470				
5503	1209690	/231997	4/2	85	12	111	5
SS04	509434	7231409	363	53	9	5	8
SS05	509113	7230612	343	22	3	5	2

	ſ

CURIE PROPERTY STREAM SEDIMENT SAMPLE NOTES

			SC	INTILOME	TER REAL	DING on S/	AMPLE	7
Sample	NAD83 UTME	NAD83 UTMN	TC1	TC2	K	U	Т	Description
STR01	509460	72231407	359	55	14	7	3	Stream at base of Deer Mountain (south side)
STR02	508509	7231951	358	47	10	9	2	Deer Creek
STR03	508312	7232057	372	78	14	13	5	West Deer Creek

APPENDIX D

GEOCHEMICAL ANALYTICAL CERTIFICATES

Marksman Resources

Attention: PO #/Project: Samples: 12 SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 05-801 Date: September 13, 2005

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)

Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)

Dyspmnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)

Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)

Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

SRC Geoanalytical Laboratories Marksman Resources

Attention: PO #/Project: Samples: 12

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 05-801 Date: September 13, 2005

ICP6.3 Total Digestion

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

Marksman Resources

Attention: PO #/Project: Samples: 12

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 05-801 Date: September 13, 2005

ICP6.3R Partial Digestion

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium in ppm (U, ICP) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

) []]						
					S	RC Geo	analyti	cal Labo	oratorie	S							
Marksman Resources				125	- 15 Inno	vation Bl	vd., Sask	atoon, Sa	skatchev	van, S7N	2X8						
Attention:				Tel: (30	6) 933-81	18 Fax:	(306) 93	3-5656 H	Email: ge	ochem@	src.sk.ca			Re	port No:	05-801	
PO #/Project:					-				-					Da	- ate: Septe	mber 13,	2005
Samples: 9						IC	P6.3 Tota	al Digesti	ion						-		
Samela	٨٩	A1202	Po	Pa	6-0	64	6.	6.	6-	C 14	Dv	F-	F	5-202	6-	C1	
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM	0.2	17.6	2240	2.1	4.93	0.6	169	18	117	2	3.2	2.9	2.8	6.91	21	6.2	4.0
CUR05SS-01 -180UM	0.2	13.5	729	1.8	0.48	<0.2	98	9	67	26	1.6	1.9	1.4	7.09	19	3.8	4.0
CUR05SS-02 -180UM	<0.2	20.6	405	2.0	1.02	<0.2	174	5	42	3	2.5	1.4	2.2	1.79	19	8.7	1.6
CUR05SS-04 -180UM	<0.2	13.1	787	1.9	1.05	<0.2	112	8	54	32	4.2	2.6	1.8	4.03	17	6.3	3.0
CUR05SS-05 -180UM	<0.2	14.8	883	2.3	0.85	<0.2	106	9	65	18	3.3	2.2	1.9	4.95	17	6.0	3.0
CUR05STR-01 -180UM	0.3	21.0	1090	4.1	0.70	0.2	129	12	84	64	3.9	2.8	2.0	5.26	25	7.5	2.7
CUR05STR-02 -180UM	0.2	18.1	963	3.3	0.93	<0.2	162	12	64	35	3.8	2.4	2.5	5.18	22	8.4	3.0
CUR05STR-03 -180UM	0.6	1.06	268	0.3	4.49	0.4	7	2	8	16	<0.2	<0.2	0.2	0.38	2	1.4	<0.5
CUR05STR-03 -180UM R	0.6	1.05	267	0.3	4.48	0.3	7	2	7	16	<0.2	<0.2	0.2	0.38	2	1.5	<0.5

Marksman Resources Attention: PO #/Project:		1 -	. –	125 Tel: (30	- 15 Inno 06) 933-8	SRC Geo ovation B 118 Fax:	oanalyti lvd., Sasi (306) 93	ical Lab katoon, Sa 33-5656 1	oratorie askatchev Email: ge	s van, S7N ochem@	2X8 src.sk.ca	· , –	•• <i>i</i> . •	Re	port No:	05-801 mber 13.	2005
Samples: 9						IC	P6.3 Tot	al Digest	ion							· · · ,	
Sample Number	Ho ppm	K2O wt %	La ppm	Li ppm	MgO wt %	MnO wt %	Mo ppm	Na2O wt %	Nb ppm	Nd ppm	Ni ppm	P2O5 wt %	Pb ppm	Pr ppm	Sc ppm	Sm ppm	Sn ppm
CG515/LS4/BM CUR05SS-01 -180UM CUR05SS-02 -180UM CUR05SS-04 -180UM CUR05SS-05 -180UM	1.1 0.9 0.4 1.3 1.2	3.14 2.19 1.19 2.20 2.45	94 50 97 65 77	29 30 23 31 41	2.80 1.36 2.12 1.35 1.44	0.075 0.089 0.029 0.065 0.077	1 1 <1 <1	3.25 1.01 8.44 1.58 1.20	8 5 <1 4 5	66 38 74 50 57	21 26 58 23 25	0.671 0.835 0.561 0.172 0.153	18 18 7 11 14	19 10 20 12 15	11 10 5 10 11	9.2 6.3 11.2 7.6 8.8	4 <1 <1 <1
CUR05STR-01 -180UM CUR05STR-02 -180UM CUR05STR-03 -180UM CUR05STR-03 -180UM R	1.1 1.0 <0.4 <0.4	3.85 3.11 0.202 0.198	76 104 7 7	57 51 2 2	1.89 1.73 0.264 0.264	0.119 0.143 0.231 0.232	1 1 16 15	1.04 1.10 0.09 0.09	1 1 <1 <1	57 77 6 6	32 34 2 3	0.139 0.135 0.323 0.320	26 12 3 3	15 20 2 2	16 13 <1 <1	9.2 11.7 1.2 1.0	1 2 <1 <1

SRC Geoanalytical Laboratories

Marksman Resources

Attention:

PO #/Project:

Samples: 9

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 05-801 Date: September 13, 2005

ICP6.3 Total Digestion

Sample Number	Sr ppm	Ta ppm	Tb ppm	Th ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Yb ppm	Zn ppm	Zr ppm
CG515/LS4/BM	1130	<1	0.6	14	0.985	<2	130	<1	21	2.1	82	142
CUR05SS-01 -180UM	81	<1	<0.3	19	0.412	<2	125	<1	12	2.0	70	107
CUR05SS-02 -180UM	66	<1	1.7	23	0.079	7	51	<1	12	1.1	18	- 58
CUR05SS-04 -180UM	138	<1	0.7	15	0.379	3	97	<1	20	2.5	71	91
CUR05SS-05 -180UM	149	<1	0.5	15	0.385	5	122	<1	19	2.2	74	85
CUR05STR-01 -180UM	154	<1	0.9	23	0.226	22	109	<1	27	3.0	115	97
CUR05STR-02 -180UM	139	<1	0.9	19	0.209	33	84	<1	28	2.3	83	72
CUR05STR-03 -180UM	187	1	0.3	3	0.027	148	10	<1	4	0.3	67	6
CUR05STR-03 -180UM R	186	<1	<0.3	3	0.028	155	11	<1	4	0.3	62	5

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HCIO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Marksman Resources Attention: PO #/Project:	Under , ,	•••••••••••••••••••••••••••••••••••••••	. –	125 Tel: (30	S - 15 Inno 6) 933-81	RC Ge vation B 118 Fax:	banalyti lvd., Sask (306) 93	cal Lab catoon, S 3-5656	o ratorie askatchev Email: ge	es wan, S7N ochem@	2X8 src.sk.ca	. .		Re	port No:	05-801	U ir, .
Samples: 9						ICP	5.3R Par	tial Dige	stion					Da	ite: Septe	mber 13,	2005
Sample	Ag	As	Bi	Co	Cu	Ge	Hg	Mo	Ni	Pb	Sb	Se	Te	U, FI.	V	Zn	B
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	<0.1	12.6	0.7	38.9	47.6	0.3	<0.2	12.7	47.6	24.0	0.7	0.6	0.7	33.6	101	194	95
CUR05SS-01 -180UM	<0.1	7.9	1.9	7.2	22.3	0.4	<0.2	1.2	15.5	12.9	1.5	1.3	1.4	2.86	37.0	50.5	50
CUR05SS-02 -180UM	<0.1	2.8	<0.2	3.5	2.5	<0.2	<0.2	<0.1	34.7	5.52	<0.2	<0.2	<0.2	8.83	9.4	12.7	16
CUR05SS-04 -180UM	<0.1	3.5	0.7	5.7	28.3	<0.2	<0.2	0.5	14.8	5.03	0.5	<0.2	1.1	4.57	22.1	48.0	66
CUR05SS-05 -180UM	<0.1	5.0	1.0	6.4	15.8	<0.2	<0.2	0.5	17.3	9.17	<0.2	<0.2	0.8	6.85	30.5	51.8	59
CUR05STR-01 -180UM	<0.1	5.7	1.7	9.5	59.4	<0.2	<0.2	1.2	24.1	11.2	0.8	0.5	2.1	25.2	16.0	86.8	81
CUR05STR-02 -180UM	<0.1	2.3	0.5	8.4	32.3	<0.2	<0.2	0.7	21.7	4.67	0.7	<0.2	1.3	36.1	11.9	51.8	43
CUR05STR-03 -180UM	0.1	1.8	<0.2	1.8	15.5	<0.2	<0.2	15.4	2.3	1.98	2.9	3.2	1.3	146	4.6	51.6	15
CUR05STR-03 -180UM R	0.1	2.0	<0.2	1.8	16.2	0.2	<0.2	16.3	2.4	2.03	2.8	3.6	<0.2	155	4.6	53.4	13

Partial Digestion: A 1.00 g pulp is digested with 2.25 ml of 9:1 HNO3:HCl for 1 hour at 95C. The standard is LS4.

Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

				\Box (\square	\square	\square	\square						\square		
					S	RC Geo	oanalyti	cal Labo	oratorie	\$								
Marksman Resources				125 -	- 15 Inno	vation Bl	vd., Sask	atoon, Sa	skatchev	van, S7N	2X8							
Attention:				Tel: (30	5) 933-81	18 Fax:	(306) 93	3-5656 H	Email: ge	ochem@	src.sk.ca			Re	port No:	05-801		
PO #/Project:														Da	- ite: Septe	mber 13,	2005	
Samples: 3 ICP6.3 Total Digestion																		
Sample Number	Ag ppm	AI2O3 wt %	Ba ppm	Be ppm	CaO wt %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cu ppm	Dy ppm	Er ppm	Eu ppm	Fe2O3 wt %	Ga ppm	Gd ppm	Hf ppm	
CG515/LS4/BH CUR05SS-03 -180UM CUR05SS-03 -180UM R	0.3 0.3 0.2	17.9 19.3 20.0	2350 1080 1110	2.4 3.7 3.7	5.07 1.43 1.44	0.7 0.3 0.5	147 160 164	18 10 11	122 80 79	2 12 11	3.0 6.7 6.9	2.4 2.7 2.7	2.5 2.5 2.6	7.49 4.24 4.38	22 29 29	5.0 9.7 10.0	4.0 2.3 2.0	

			. 1		1	E SRC Geo	analyti	al Lab	B oratorie	s.	. 1		. , 1	an an			R
Marksman Resources				125	- 15 Inno	vation B	lvd., Sasl	katoon, Sa	askatchev	van, S7N	2X8						
Attention: PO #/Project:				Tel: (30	6) 933-8	118 Fax:	(306) 93	3-5656]	Email: ge	ochem@	src.sk.ca	l		Re Da	port No: ate: Septe	05-801 mber 13,	, 2005
Samples: 5						IC	P6.3 Tot	al Digest	ion								
Sample Number	Ho ppm	K2O wt %	La ppm	Li ppm	MgO wt %	MnO wt %	Mo ppm	Na2O wt %	Nb ppm	Nd ppm	Ni ppm	P2O5 wt %	Pb ppm	Pr ppm	Sc ppm	Sm ppm	Sn ppm
CG515/LS4/BH CUR05SS-03 -180UM CUR05SS-03 -180UM R	1.3 1.1 1.2	3.14 3.00 3.06	82 85 87	30 45 46	2.84 3.56 3.91	0.078 0.044 0.047	1 1 1	3.15 3.01 3.14	7 <1 <1	63 69 70	20 113 115	0.671 0.869 0.872	16 119 121	18 25 26	11 12 12	9.2 12.7 12.8	4 1 <1

•

			. 1	·· · ·		SRC Ge	analyti	al Lab	oratorie	s and the second			b .		.
Marksman Resources				125	- 15 Inn	ovation B	lvd., Sasl	atoon, Sa	askatchev	van, S7N	2X8				
Attention: PO #/Project:				Tel: (30)6) 933-8	118 Fax:	(306) 93	3-5656 1	Email: ge	ochem@	src.sk.ca		Report Date: S	No: 05-80 September	1 13, 2005
Samples: 3						IC	P6.3 Tot	al Digest	ion						
Sample Number	Sr ppm	Ta ppm	Tb ppm	Th ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Yb ppm	Zn ppm	Zr ppm			
CG515/LS4/BH CUR05SS-03 -180UM CUR05SS-03 -180UM R	1180 74 75	<1 <1 <1	0.6 1.1 1.1	12 21 24	1.02 0.261 0.268	3 760 760	141 113 114	<1 <1 <1	21 23 25	2.0 2.3 2.5	83 24 26	137 104 105			

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Marksman Resources			. •	125 -	S 15 Inno	RC Geo vation Bl	vd. , Sask	cal Lab	oratorie askatchev	s van, S7N	2X8	. –		-		•	
Attention: PO #/Project: Samples: 3				Tel: (306	5) 933-81	18 Fax:	(306) 93	3-5656]	Email: ge	ochem@	src.sk.ca			Re Da	port No: ite: Septe	05-801 mber 13,	2005
Samples: 3 ICP6.3R Partial Digestion																	
Sample Number	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Ge ppm	Hg ppm	Mo ppm	Ni ppm	Pb ppm	Sb ppm	Se ppm	Te ppm	U, ICP ppm	V ppm	Zn ppm	B ppm
CG515/LS4/BH CUR05SS-03 -180UM CUR05SS-03 -180UM R	<0.1 <0.1 <0.1	10.7 7.5 7.2	0.6 0.2 0.2	41.5 8.3 7.9	48.5 9.1 9.0	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	13.5 0.1 0.1	52.3 52.1 53.3	25.2 111 116	0.6 <0.2 <0.2	0.7 <0.2 0.2	0.5 <0.2 0.3	34.2 740 750	98.1 13.5 13.5	208 20.6 19.5	96 27 23

Partial Digestion: A 1.00 g pulp is digested with 2.25 ml of 9:1 HNO3:HCl for 1 hour at 95C. The standard is LS4. Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

\square					\square			\square	\square	\square					\square			\square	
						5	SRC Ge	oanalyti	cal Lab	oratorie	s								
Marksman	Resources				125	- 15 Inno	ovation B	lvd., Sask	atoon, Sa	skatchev	van, S7N	2X8							
Attention: PO #/Project	t:	Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca ICP6.3 Total Digestion														port No: ate: Septe	05-801 mber 13,	2005	
Samples: 4	s: 4 ICP6.3 Total Digestion																		
Sample Number		Ag ppm	Al2O3 wt %	Ba ppm	Be ppm	CaO wt %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cu ppm	Dy ppm	Er ppm	Eu ppm	Fe2O3 wt %	Ga ppm	Gd ppm	Hf ppm	
CG515/LS4/B CUR05R-06 CUR05R-18 CUR05R-18 R	M	0.2 0.3 0.3 0.2	17.5 30.2 18.6 18.9	2220 2200 241 247	2.1 4.0 1.2 1.3	4.85 0.27 0.38 0.40	0.5 1.2 <0.2 <0.2	167 27 71 74	18 13 10 10	116 129 92 95	3 1 6 6	3.4 1.2 4.0 5.7	2.7 1.2 3.0 3.6	2.9 0.6 1.2 1.6	6.98 2.79 1.51 1.55	18 57 11 10	6.2 3.0 5.1 7.8	4.7 4.4 1.6 1.1	

 \square

Page 3 of 5

Marksman Resources Attention: PO #/Project: Samples: 4		· •	- •	125 Tel: (30	- 15 Inno 6) 933-8	SRC Geo ovation B 118 Fax: IC	Danalyti lvd., Sasi (306) 93 P6.3 Tot	ical Lab katoon, Sa 33-5656	oratorie askatchev Email: ge ion	s van, S7N ochem@	2X8 src.sk.ca	•	·	Re Da	port No: ite: Septe	05-801 mber 13,	2005
Sample Number	Ho ppm	K2O wt %	La ppm	Li ppm	MgO wt %	MnO wt %	Mo ppm	Na2O wt %	Nb ppm	Nd ppm	Ni ppm	P2O5 wt %	Pb ppm	Pr ppm	Sc ppm	Sm ppm	Sn ppm
CG515/LS4/BM CUR05R-06 CUR05R-18 CUR05R-18 R	1.2 <0.4 0.5 0.7	3.15 6.81 0.946 0.984	95 14 35 37	31 38 21 21	2.79 4.42 1.66 1.71	0.074 0.019 0.026 0.027	1 1 1	3.24 2.83 7.71 7.80	9 4 2 2	62 9 23 33	22 106 40 40	0.662 0.139 0.094 0.093	19 21 46 45	18 3 8 9	11 39 2 2	9.3 2.6 6.2 8.2	3 4 1 <1

		, L	. 1												ŧ.	
						SRC Ge	oanalyti	cal Lab	oratorie	S						
Marksman Resources	5			125	- 15 Inn	ovation B	lvd., Sasl	atoon, Sa	askatchev	van, S7N	2X8					
Attention: PO #/Project: Samples: 4				Tel: (30)6) 933-8	8118 Fax:	(306) 93	3-5656]	Email: ge	ochem@	src.sk.ca		R D	eport No ate: Sep	o: 05-801 stember 1.	3, 2005
Samples. 4						IC	P6.3 Tot	al Digest	ion							
Sample Number	Sr ppm	Ta ppm	Tb ppm	Th ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Yb ppm	Zn ppm	Zr ppm				
CG515/LS4/BM CUR05R-06 CUR05R-18 CUR05R-18 R	1120 72 46 53	<1 <1 <1 <1	0.7 <0.3 1.1 1.0	14 32 59 62	1.01 0.341 0.183 0.177	2 211 581 588	134 233 27 27	<1 <1 <1 <1	21 8 19 20	2.2 1.3 2.2 2.4	82 11 12 13	145 142 50 49				

.

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

•

Marksman Resources Attention: PO #/Project:	W atan	α .	•	125 - Tel: (30	S - 15 Inno 6) 933-81	RC Ge ovation B 118 Fax:	■ Danalyti Ivd., Sask (306) 93	cal Lab atoon, S 3-5656	oratorie askatchev Email: ge	s van, S7N ochem@	2X8 src.sk.ca	•	L	Re	port No: ate: Septe	• 05-801 2 mber 13,	2005
Samples: 4						ICPO	6.3R Par	tial Dige	stion						-		
Sample	Ag	As	Bi	Co	Cu	Ge	Hg	Mo	Ni	Pb	Sb	Se	Te	U, ICP	V	Zn	B
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	<0.1	11.1	0.2	40.2	48.4	0.3	<0.2	13.4	49.1	23.7	0.6	0.8	0.8	34.5	97.2	206	95
CUR05R-06	<0.1	4.3	<0.2	12.7	1.1	<0.2	<0.2	0.2	58.2	19.7	<0.2	<0.2	0.4	197	9.7	7.4	16
CUR05R-18	<0.1	3.7	0.4	9.9	4.1	<0.2	<0.2	0.5	24.8	45.5	0.2	<0.2	<0.2	526	4.8	8.0	20
CUR05R-18 R	<0.1	3.5	0.3	9.6	4.1	<0.2	<0.2	0.4	26.1	43.8	0.2	0.3	<0.2	504	4.7	8.4	19

Partial Digestion: A 0.5 g pulp is digested with 2.25 ml of 9:1 HNO3:HCl for 1 hour at 95 C. The standard is LS4.

Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

-

	-			-	S	- RC Geo		cal Lab	oratorie	es —							
Marksman Resources				125	- 15 Inno	vation B	vd., Sask	catoon, Sa	askatchev	wan, S7N	2X8						
Attention:				Tel: (30	6) 933-81	18 Fax:	(306) 93	3-5656	Email: ge	ochem@	src.sk.ca			Re	port No:	05-801	
PO #/Project:				•			```		U	0				Da	te: Sente	mber 13.	2005
Samples: 17														20			2000
Sumpros. 17						IC	P6.3 Tot	al Digest	ion								
Sample	Aa	AI2O3	Ba	Be	CaO	Cd	Се	Co	Cr	Cu	Dv	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BL	0.2	17.2	2240	2.1	4.94	1.2	165	18	116	3	3.2	2.8	2.9	7.05	19	6.2	4.6
CUR05R-01	0.2	3.14	183	0.4	0.17	0.2	36	2	173	4	1.8	1.0	0.9	1.62	5	3.3	2.4
CUR05R-02	0.2	15.2	605	2.4	0.04	<0.2	149	11	124	10	3.0	2.2	2.1	4.02	17	7.2	4.3
CUR05R-03	0.2	17.9	882	3.3	0.76	<0.2	99	18	9 6	2	2.5	2.4	1.5	7.40	20	5.6	2.7
CUR05R-04	0.2	21.4	1210	2.9	0.24	0.2	51	11	103	4	1.0	1.6	0.9	4.75	22	3.5	3.8
CUR05R-05	0.3	20.3	1110	2.7	0.22	<0.2	83	15	89	7	1.9	2.4	1.1	5.33	24	5.0	3.8
CUR05R-09	<0.2	3.14	15	14.0	0.28	<0.2	5	1	242	3	<0.2	0.6	0.3	5.37	1	1.0	1.1
CUR05R-19	0.3	17.7	116	1.3	4.14	<0.2	283	3	110	3170	3.9	2.6	3.3	1.10	21	9.5	2.3
CUR05R-20	<0.2	16.1	407	1.2	0.18	<0.2	97	4	107	3	0.7	1.5	1.1	3.37	11	3.8	2.1
CUR05R-21	0.2	13.2	36	0.5	2.19	<0.2	52	5	119	3	0.6	1.4	1.1	6.77	16	2.9	2.7
CUR05R-22	0.2	13.1	58	1.0	4.40	<0.2	167	2	112	2	3.0	2.5	2.3	3.34	12	7.5	2.5
CUR05R-23	0.2	16.3	53	1.4	0.47	<0.2	42	13	121	4300	1.0	1.1	0.5	1.78	23	2.2	2.9
CUR05R-24	0.3	19.6	241	1.7	0.18	<0.2	224	11	97	7	1.3	1.1	2.3	4.43	26	7.7	4.0
CUR05R-25	0.2	15.8	103	0.5	3.36	<0.2	312	6	112	3	1.8	2.4	3.2	5.45	9	9.0	2.6
CUR05R-26	<0.2	16.3	56	1.0	0.37	<0.2	182	4	98	3	1.4	1.7	2.1	5.99	14	6.7	2.8
CUR05R-27	0.5	2.15	402	0.6	25.4	0.9	23	11	11	27	<0.2	0.6	0.7	4.76	4	2.2	1.0
CUR05R-27 R	0.6	2.17	402	0.5	25.8	0.5	23	11	10	28	<0.2	0.4	0.7	4.75	3	2.4	1.1

			,		I ,		E	E ical Lah	E orstorie							Ł	
Markeman Desources				125	- 15 Inno	wation B	lud Sael	katoon S	actoric	van S7N	288						
Mai Kinan Kesuu Ces				T-1. (20	$\sim 10 \text{ mm}$	110 East	$(206) 0^{-1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$		achem@				De	nort Mo:	05 901	
Attention:				1 el: (30	0) 933-8	118 Fax:	(300) 92	02-2020 1	eman: ge	ocnem@	SIC.SK.Ca			NC T	port No.	03-001	000 <i>0</i>
PO #/Project:														Da	ite: Septe	mber 13,	, 2005
Samples: 17						IC	P6.3 Tot	al Digest	ion								
															_	_	_
Sample	Ho	K20	La	Li	MgO	MnO	Мо	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	Wt %	ppm	ppm	ppm	ррт	ppm
CG515/LS4/BL	1.1	3.23	93	31	2.71	0.075	1	3.28	9	65	21	0.673	19	18	11	9.2	4
CUR05R-01	0.5	1.19	15	12	0.302	0.005	<1	0.02	7	18	4	0.137	6	4	2	4.2	<1
CUR05R-02	1.0	4.12	72	33	0.826	0.016	<1	1.24	11	67	16	0.044	4	17	9	10.6	4
CUR05R-03	0.8	3.03	54	66	2.30	0.224	1	0.53	<1	42	45	0.133	9	11	12	7.2	<1
CUR05R-04	0.5	4.69	25	26	1.66	0.032	<1	1.01	5	19	26	0.145	2	5	15	3.2	2
CUR05R-05	0.6	4.24	42	29	2.17	0.034	<1	0.85	1	33	37	0.142	2	9	14	5.8	1
CUR05R-09	<0.4	0.055	3	2	0.322	0.005	<1	1.54	<1	2	9	0.175	2	<1	<1	0.9	<1
CUR05R-19	1.3	1.66	162	9	2.48	0.182	4	7.86	1	115	8	0.131	2	30	16	16.2	<1
CUR05R-20	<0.4	1.63	40	23	1.06	0.024	<1	5.57	2	37	18	0.076	2	9	7	6.7	1
CUR05R-21	0.4	0.055	30	17	1.67	0.102	1	6.72	2	20	28	0.167	3	5	6	3.5	<1
CUR05R-22	0.8	0.059	98	5	0.682	0.193	1	7.44	2	69	3	0.144	3	17	8	10.7	<1
CUR05R-23	0.4	0.612	14	19	1.84	0.036	3	8.65	<1	15	27	0.123	3	3	12	3.2	<1
CUR05R-24	0.9	2.95	127	32	4.48	0.029	1	4.31	7	89	46	0.139	3	23	11	11.7	3
CUR05R-25	1.0	0.069	184	21	3.98	0.350	<1	8.23	6	123	7	0.199	3	31	9	16.1	<1
CUR05R-26	0.7	0.138	107	15	1.36	0.085	<1	8.39	3	72	15	0.217	2	18	3	10.4	<1
CUR05R-27	<0.4	0.634	11	3	14.0	1.28	<1	0.06	3	6	1	0.072	685	2	2	<0.5	<1
CUR05R-27 R	<0.4	0.632	11	2	14.0	1.33	<1	0.06	4	6	2	0.076	685	2	2	<0.5	<1

1

						SRC Geo	oanalyti	cal Lab	oratorie	S			
Marksman Resources				125	- 15 Inn	ovation B	lvd., Sask	atoon, S	askatchev	van, S7N	2X8		
Attention:				Tel: (30)6) 933-8	8118 Fax.	(306) 93	3-5656	Email: ge	ochem@	src sk ca		Report No: 05-801
PO #/Project							(500) 22						Date: Sentember 13, 2005
													Date. September 15, 2005
Samples: 17						IC	P6.3 Tota	al Digest	ion				
Sample	Sr	Та	Th	Th	TiO2	U. ICP	v	w	Y	Yb	Zn	7r	
Number	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
CG515/LS4/BL	1110	<1	0.6	13	1.01	2	136	<1	19	2.2	83	153	
CUR05R-01	11	<1	0.6	7	0.272	<2	26	<1	10	1.1	15	79	
CUR05R-02	41	<1	0.6	18	0.420	<2	62	<1	21	2.1	50	126	
CUR05R-03	121	<1	0.7	16	0.142	2	82	<1	21	2.2	161	52	
CUR05R-04	78	<1	<0.3	21	0.306	2	86	<1	12	2.1	15	115	
CUR05R-05	84	<1	0.4	19	0.171	<2	80	<1	20	2.2	14	108	
CUR05R-09	9	<1	<0.3	<1	0.110	<2	95	<1	2	0.6	7	1	
CUR05R-19	30	<1	1.5	16	0.220	4	60	<1	23	2.3	11	91	
CUR05R-20	87	<1	0.3	9	0.180	4	45	<1	5	1.2	15	72	
CUR05R-21	36	<1	0.4	41	0.274	4	96	<1	6	1.3	18	57	
CUR05R-22	36	<1	0.9	13	0.165	16	40	<1	20	2.3	10	68	
CUR05R-23	50	<1	0.8	12	0.207	<2	83	<1	5	1.4	17	89	
CUR05R-24	18	<1	0.5	17	0.275	<2	92	<1	8	1.8	18	129	
CUR05R-25	16	<1	1.1	15	0.170	<2	40	<1	18	2.1	24	61	
CUR05R-26	23	<1	0.5	15	0.204	<2	63	<1	7	1.3	27	61	
CUR05R-27	30	<1	0.9	3	0.009	9	4	<1	7	0.7	289	15	
CUR05R-27 R	30	<1	0.7	3	0.018	9	6	<1	7	0.6	287	16	

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

	-	-	-	-	S	- RC Geo	analyti	cal Lab	oratorie	s							
Marksman Resources				125	- 15 Inno	vation Bl	vd., Sask	atoon, Sa	askatchev	van, S7N	2X8						
Attention:				Tel: (30	6) 933-81	18 Fax:	(306) 93	3-5656 1	Email: ge	ochem@	src.sk.ca			Re	port No:	05-801	
PO #/Project:					-,		(0	Ŭ				Da	ite: Septe	mber 13,	2005
Samples: 17							2D D	4-1 D?							•		
						ICPO	5.3K Par	tial Dige	suon								
Sample	Aq	As	Bi	Co	Cu	Ge	Ha	Мо	Ni	Pb	Sb	Se	Те	U, FI.	v	Zn	в
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BL	<0.1	12.3	0.7	38.7	47.9	0.2	<0.2	13.3	47.5	24.3	0.7	0.7	0.6	31.7	101	196	17
CUR05R-01	<0.1	0.7	<0.2	1.2	2.5	<0.2	<0.2	0.7	3.5	4.21	0.6	0.2	0.4	0.89	7.9	10.9	39
CUR05R-02	<0.1	1.5	<0.2	8.1	7.1	<0.2	<0.2	0.3	12.0	2.41	1.6	<0.2	0.6	1.18	5.7	35.7	49
CUR05R-03	<0.1	0.9	0.5	15.2	0.5	<0.2	<0.2	<0.1	35.6	2.05	0.9	<0.2	1.1	2.41	14.6	128	37
CUR05R-04	<0.1	1.5	0.5	9.6	3.5	<0.2	<0.2	0.2	21.2	1.27	1.2	<0.2	1.1	1.88	8.2	12.4	30
CUR05R-05	<0.1	1.4	0.8	12.2	7.0	<0.2	<0.2	<0.1	28.9	1.41	0.7	0.3	1.2	2.08	9.4	11.2	27
CUR05R-09	<0.1	1.1	<0.2	0.6	2.3	<0.2	<0.2	0.7	7.7	1.27	<0.2	<0.2	0.3	0.66	17.9	4.5	2
CUR05R-19	0.1	0.7	17.9	1.5	3130	<0.2	<0.2	3.8	4.7	0.97	5.0	<0.2	<0.2	2.90	4.6	10.1	116
CUR05R-20	<0.1	0.5	<0.2	4.3	2.7	<0.2	<0.2	0.2	15.2	1.69	0.3	<0.2	<0.2	4.78	8.0	11.7	28
CUR05R-21	<0.1	5.5	0.3	5.7	1.5	<0.2	<0.2	0.1	22.1	1.97	1.5	<0.2	<0.2	2.18	28.9	12.8	2
CUR05R-22	<0.1	3.2	<0.2	1.6	2.0	<0.2	<0.2	0.8	2.2	2.02	6.0	<0.2	<0.2	7.01	12.0	9.2	2
CUR05R-23	0.1	1.2	21.3	12.2	4290	<0.2	<0.2	2.4	23.3	2.44	0.6	0.2	0.9	2.24	38.2	14.9	100
CUR05R-24	<0.1	2.1	0.7	8.2	6.4	<0.2	<0.2	<0.1	32.2	1.54	0.7	0.3	0.6	1.35	24.6	12.9	35
CUR05R-25	0.1	5.4	3.5	5.1	3.1	<0.2	<0.2	0.3	5.4	2.08	4.4	<0.2	0.4	2.03	15.9	18.6	2
CUR05R-26	0.1	2.1	0.8	4.1	1.7	<0.2	<0.2	0.2	11.7	1.46	<0.2	<0.2	<0.2	2.42	15.6	20.6	3
CUR05R-27	0.5	89.1	<0.2	9.1	26.7	<0.2	<0.2	<0.1	1.5	570	62.0	<0.2	<0.2	0.20	0.9	261	13
CUR05R-27 R	0.5	89.9	<0.2	9.1	27.0	<0.2	<0.2	0.2	1.5	575	64.6	<0.2	<0.2	0.20	1.0	265	13

Partial Digestion: A 1.00 g pulp is digested with 2.25 ml of 9:1 HNO3:HCl for 1 hour at 95C. The standard is LS4. Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

Marksman Resources				125	l S - 15 Inno	RC Ge e vation B	analyti vd., Sask	■ cal Lab atoon, Satoon, Sato	E oratorie askatchev	s van, S7N	2 X8						
Attention:				Tel: (30	6) 933-81	18 Fax:	(306) 93	3-5656	Email: ge	ochem@	src.sk.ca			Re	port No:	05-801	
PO #/Project				(•,••••		()			0				Da	ite: Sente	mber 13.	2005
Samples: 12						IC	P6.3 Tota	al Digest	ion					20			
Sample Number	Ag ppm	Al2O3 wt %	Ba ppm	Be ppm	CaO wt %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cu ppm	Dy ppm	Er ppm	Eu ppm	Fe2O3 wt %	Ga ppm	Gd ppm	Hf ppm
CG515/LS4/BM	0.3	17.6	2200	2.1	4.88	0.6	167	18	121	3	3.3	2.6	2.9	6.99	20	6.1	4.3
CUR05R-08	0.2	28.9	1610	3.4	0.46	0.4	49	16	124	7	20.3	10.6	2.5	4.16	41	13.4	4.3
CUR05R-10	<0.2	22.2	578	1.7	2.35	<0.2	167	20	106	9	11.7	6.6	3.1	3.96	30	14.1	1.1
CUR05R-11	0.2	24.5	2210	4.3	0.20	1.5	24	7	91	<1	19.9	11.3	3.9	2.55	27	11.0	2.0
CUR05R-13	0.3	14.3	187	1.3	0.94	<0.2	42	6	147	3	41.9	20.1	6.6	5.67	<1	23.1	<0.5
CUR05R-14	<0.2	11.9	58	0.6	0.35	<0.2	52	4	186	3	11.6	5.2	2.0	1.37	4	9.7	<0.5
CUR05R-15	0.2	22.1	1830	3.5	0.18	0.7	89	7	79	1	16.0	8.7	3.2	2.21	32	11.2	2.8
CUR05R-16	0.2	4.30	212	0.6	0.15	<0.2	4	6	177	15	8.3	4.9	1.1	1.17	6	4.0	<0.5
CUR05R-12	<0.2	8.69	353	1.1	2.32	<0.2	164	3	161	13	49.6	24.9	8.5	2.29	<1	32.1	<0.5
CUR05R-17	9.2	2.42	2980	1.3	0.72	1.0	<1	11	206	103	68.0	54.6	14.8	1.18	<1	8.6	<0.5
CUR05R-07	570	2.32	15000	6.3	2.65	N/D	<1	21	98	171	407	360	101	1.38	<1	67.6	<0.5
CUR05R-07 R	570	2.33	15000	6.4	2.63	N/D	<1	22	97	172	406	351	102	1.40	<1	69.4	<0.5

												1					.
				-	-	SRC Ge	oanalyt	ical Lab	oratorie	S							
Marksman Resources				125	- 15 Inno	ovation B	lvd., Sas	katoon, S	askatchev	van, S7N	2X8						•
Attention:				Tel: (30	6) 933-8	118 Fax:	(306) 93	33-5656	Email: ge	ochem@	src.sk.ca	L		Re	port No:	05-801	
PO #/Project:							. ,		Ũ	Ŭ				Da	ate: Septe	mber 13.	2005
Samples: 12						10			•							,	
•						IC.	P6.3 Tot	tal Digest	1011								
Sample	Ho	K2O	La	Li	MgO	MnO	Мо	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	1.1	3.16	92	31	2.80	0.074	1	3.22	8	65	21	0.667	20	18	11	9.1	4
CUR05R-08	3.4	5.28	24	85	7.61	0.051	3	2.80	6	27	232	0.292	108	12	30	11.5	3
CUR05R-10	1.7	1.74	91	69	8.79	0.043	1	5.29	<1	73	248	1.79	35	19	8	14.5	1
CUR05R-11	2.7	5.62	16	48	4.32	0.029	<1	0.97	7	17	115	0.129	249	17	24	11.4	3
CUR05R-13	5.6	0.375	20	20	1.47	0.041	4	6.98	2	42	42	0.545	396	23	8	24.3	<1
CUR05R-14	1.6	0.203	27	10	0.708	0.017	1	6.27	<1	30	23	0,156	44	8	2	9.7	<1
CUR05R-15	2.4	5.05	50	37	3.58	0.021	<1	1.15	7	41	95	0.114	155	18	23	12.6	2
CUR05R-16	0.9	0.525	4	17	2.36	0.017	<1	0.28	<1	6	67	0.092	85	5	3	5.6	1
CUR05R-12	7.6	0.965	83	8	0.616	0.026	4	2.66	1	94	35	1.68	366	38	8	33.5	<1
CUR05R-17	<0.4	0.116	18	21	2.12	0.020	2	0.09	1	<1	53	0.447	12100	168	3	50.6	<1
CUR05R-07	<0.4	0.342	13	48	2.53	0.030	15	0.11	7	<1	131	1.52	119000	1002	13	331	1
CUR05R-07 R	<0.4	0.340	14	47	2.53	0.030	17	0.11	6	<1	130	1.52	118000	1011	13	327	2

SRC Geoanalytical Laboratories Marksman Resources 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Attention: Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Report No: 05-801 PO #/Project: Date: September 13, 2005 Samples: 12 **ICP6.3 Total Digestion** Sample Sr Та Тb Th TiO2 U, ICP V w Y Yb Zn Zr Number ppm ppm ppm wt % ppm ppm ppm ppm ppm ppm ppm ppm CG515/LS4/BM 1110 <1 0.7 14 0.975 2 132 2.2 <1 21 82 135 CUR05R-08 64 <1 2.9 68 0.508 2600 208 <1 76 8.4 27 184 46 CUR05R-10 <1 2.0 331 0.146 560 97 <1 40 3.5 25 38 CUR05R-11 68 <1 3.9 42 0.669 5410 189 <1 71 8.9 11 203 CUR05R-13 50 <1 7.1 227 0.687 6120 48 <1 115 14.2 17 78 CUR05R-14 26 <1 2.6 29 0.138 <1 32 850 12 31 4.0 11

168

29

42

26

107

106

54

25

181

146

689

683

7.4

3.3

17.1

17.9

126

131

<1

<1

<1

<1

<1

<1

166

39

83

19

<1

<1

9

13

18

10

25

27

3700

1900

7040

74000

463000

462000

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HCIO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

35

14

257

217

1300

1320

0.495

0.171

0.657

0.067

0.181

0.176

CUR05R-15

CUR05R-16

CUR05R-12

CUR05R-17

CUR05R-07

CUR05R-07 R

64

10

34

77

574

571

<1

<1

<1

31

27

1

3.8

1.5

8.9

20.1

40.0

42.2

Marksman Resources	-		-	125	S - 15 Inno	RC Geo vation B	banalyti vd., Sask	cal Lab	oratori askatche	es wan, S7N	2X8	-		-	_	-	
Attention: PO #/Project:				Tel: (30	6) 933-81	18 Fax:	(306) 93	3-5656 I	Email: g	eochem@	src.sk.ca			Re Da	port No: ite: Septe	05-801 mber 13,	2005
Samples: 12						ICPO	6.3R Par	tial Dige	stion								
Sample	Ag	As	Bi	Со	Cu	Ge	Hg	Мо	Ni	Pb	Sb	Se	Te	U, ICP	V	Zn	В
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	<0.1	14.3	<0.2	40.4	49.5	<0.2	<0.2	13.1	50.5	24.5	0.6	0.7	0.7	34.5	99.2	209	89
CUR05R-08	<0.1	117	0.8	8.9	7.1	0.4	0.2	2.8	230	99.5	1.2	0.2	<0.2	1840	32.9	20.9	18
CUR05R-10	<0.1	40.7	1.1	15.4	9.6	<0.2	<0.2	1.1	155	33.7	<0.2	2.4	0.4	548	23.2	21.8	5
CUR05R-11	<0.1	21.1	<0.2	8.9	<0.1	0.9	<0.2	0.6	71.0	209	1.7	<0.2	<0.2	4640	20.4	5.6	16
CUR05R-13	<0.1	17.1	2.4	5.3	0.5	1.7	<0.2	1.4	41.0	324	1.3	1.1	<0.2	5670	13.7	11.3	10
CUR05R-14	<0.1	9.2	2.3	7.3	2.7	<0.2	<0.2	1.1	21.5	43.0	0.8	0.2	<0.2	825	4.6	8.0	8
CUR05R-15	<0.1	6.1	<0.2	6.3	<0.1	1.1	<0.2	0.4	51.3	153	1.0	0.7	<0.2	3650	17.8	5.1	3
CUR05R-16	<0.1	7.9	0.3	4.0	13.8	0.5	<0.2	0.9	41.3	82.7	0.9	<0.2	<0.2	1860	9.7	4.4	8
CUR05R-12	<0.1	24.3	4.1	5.5	9.7	2.2	0.3	2.2	33.1	302	3.7	0.5	<0.2	6150	11.9	11.3	34
CUR05R-17	1.4	72.9	24.6	6.7	92.5	2.1	0.3	2.7	52.7	11900	13.9	9.4	<0.2	71000	25.5	10.9	20
CUR05R-07	<0.1	279	202	17.6	144	2.3	0.4	12.3	105	101000	48.2	5.1	<0.2	450000	101	21.1	22
CUR05R-07 R	<0.1	276	199	17.4	142	2.4	0.6	12.0	107	105000	38.5	5.6	<0.2	460000	100	20.6	25

Partial Digestion: A 0.5 g pulp is digested with 2.25 ml of 9:1 HNO3:HCl for 1 hour at 95C. The standard is LS4. Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

APPENDIX E

-

GRAVITY SURVEY THEORY

GRAVITY SURVEY THEORY

Gravity survey theory is well summarized in Telford *et. al.* (1990). This section describes aspects of gravity survey theory pertinent to the project described in this report.

Gravity surveys measure gravitational acceleration. The force of gravity on between two objects is:

$$F = \frac{GM_1M_2}{r^2}$$

where F is the force, G is the universal gravitational constant, M_1 and M_2 are the masses of the two objects and r is the distance between them. When the force is normalized against a test mass, the result is the gravitational acceleration (a) due to the second mass:

$$a=\frac{F}{M_1}=\frac{GM_2}{r^2}$$

The acceleration of the test mass is then due to the distribution of the second mass. In the case of a gravity survey, the second mass is the earth and the distribution of mass therein. Explicitly:

$$a = G \int \frac{d \bullet r}{r^3} dv$$

where d is the density, **r** is the radial vector to the mass element and **a** is the acceleration. Gravitational acceleration is measured in Galileos (Gals) where 1 Gal is an acceleration of 1.0 cm/s^2 . Average overall gravitational acceleration is 980 Gals and the gravitational acceleration due to targets of interest in the earth's crust are in the order of 10^{-3} (1 milliGal (mGal)) to 10^{-6} (1 microGal (mGal)). Thus a high precision gravity survey measures gravitational acceleration to approximately 1 part in 1 billion.

Gravity meter function

The Scintrex Autograv gravimeter contains a small test mass suspended by a zero-length fused quartz spring. An electrostatic system is used to maintain the test mass in a constant position where the spring response is linear. Charges are placed on a pair of plates to maintain the test mass in a constant location and the size of this charge (voltage on the plates) will vary with the gravitational force on the test mass. The voltage is converted into a measure of the gravitational acceleration by normalizing the force by the mass of the test mass.

The spring response is a function of force, temperature, air pressure, the inclination of the spring relative to the earth's gravitational field and a slow change in spring constant

(instrument drift). Since the force of gravity on the test mass is the quantity to be measured, the remaining influences must be mitigated. The temperature in the spring housing is maintained at a constant value in excess of 45° C by a thermostatically controlled heating element. This avoids drift due to changes in temperature. The effect of air pressure is minimal provided the instrument is not operated over a wide range of elevations and changes due to weather are not significant. Instrument inclination may vary during the course of a measurement because of tripod settling. The Autograv measures the vertical component of the gravity field and as the housing moves off true vertical, the apparent gravity acting on the test mass is reduced. At angles near the vertical, this effect is small and linear, and electronic compensation using a sensitive tilt sensor is used to correct the gravity data for this effect. Instrument drift cannot be totally removed through instrument design but the Autograv eliminates much of the instrument drift by using a correction algorithm. Repeated measurements over a minimum 24 hour period are used to determine an average linear daily drift and this value is extrapolated to determine the drift at any measurement time within 90 days of the last calibration. This drift value may change over time and the remnant instrument drift is removed by a procedure discussed in a following section.

The gravitational acceleration measured by the gravimeter is not a direct measure of true local gravitational acceleration but is relative to an instrument constant and to the range of acceleration in which the measurement was taken. Gravitational acceleration measured by the gravimeter can be leveled to the Geological Survey of Canada gravity control network by the addition or subtraction of an instrument specific constant determined in the field by taking a gravity reading at a GSC control point and computing a static shift.

Factors affecting gravity readings

The gravitational acceleration at any point is a function of the earth's mass distribution relative to the gravimeter, the distribution of other extraterrestrial masses and the earth's centrifugal force. The sun and moon exert gravitational forces on the earth evident in the tides and the acceleration due to these sources must be removed to yield the gravitational acceleration due to the earth alone. The elevation of the instrument above the ground surface exerts a strong control on the gravitational acceleration. The closer the gravimeter is to masses within the earth, the greater the gravitational acceleration. If mass lies above the gravimeter, however, this will tend to reduce the gravitational acceleration by exerting an upwards force on the test mass. Both effects must be considered. Finally, the centrifugal force of the earth's rotation exerts an upwards force on the test mass in a gravimeter, thereby reducing the earth's gravitational acceleration. This effect varies with latitude and must be removed from gravitational acceleration data. A number of standard corrections are performed to eliminate external sources of acceleration, thereby producing measurements of gravitational acceleration due solely to sources within the earth's crust. The following corrections are commonly applied to the raw gravity data:

1. Drift correction

- 2. Latitude correction
- 3. Elevation correction
- 4. Terrain corrections

These are discussed in turn.

Drift correction

Repeated gravity readings at a single station show temporal variations caused by solar and lunar gravity (tides), spring hysteresis and atmospheric pressure. Tidal variation is in the order of 30 to 300 mGal per day, instrument drift is in the order of 20 to 200 mGal per day and pressure variations are generally negligible unless there are thunderstorms nearby. In addition to these variations, gravimeters occasionally suffer *tares* or large shifts in base level due to mechanical shock.

To remove the effect of these temporal variations on the final gravity data, the operator establishes one or more gravity base stations and assigns fixed values of the raw gravity to these stations. Prior to, after, and if possible, at several times during each survey day, the operator will reoccupy a gravity base station and take several readings. The difference between the check-in readings and the fixed value (datum) is the instrument drift at the check-in time; this is subtracted from the raw gravity to correct for instrument drift. If tidal corrections are performed with appropriate formulas described below and if there are no tares, the remnant instrument drift is linear and of small amplitude. Consequently, the amount of drift at any station can be calculated by linearly interpolating the drift between bracketing base station measurements using the measurement times of the bracketing base station readings and the measurement time at the field station. A minimum of three base station measurements are required during a long survey day but a gravity base station reading before and after the field readings will suffice on a short day. Large changes in drift indicate that a tares has occurred and the stations between the check-in measurements bracketing the tares must be re-surveyed.

The Autograv calculates tidal drift by applying Longman's (1959) formula taking the gravity station latitude and the reading time as inputs. Because the tidal effects are uniform over large areas at any given time, the Autograv uses a single average latitude value in this calculation. During the same correction, instrument drift is also removed by applying a linear drift correction using constants determined through a cycling experiment described later in this report. Despite this latter correction, there is a small amount of remnant linear instrument drift which must be removed by linear interpolation of drift measured at the gravity base stations during the survey day.

Latitude correction

Variation in gravitational acceleration due to latitude arises from flattening of the geoid (ie. an increase in distance from the centre of the earth moving towards the equator) and from the effect of centrifugal force when approaching the equator. Both tend to reduce the gravitational acceleration when moving from the poles to the equator. The latitude

effect in mGal per km is given by:

$$\Delta G_{Lat} = 0.813 \sin 2\theta - 1.78 \times 10^{-3} \sin 4\theta$$

Latitude effect varies with north-south distance and is greatest at mid-latitudes and least at both the poles and the equator. On small grids, latitude variations are removed by calculating the latitude effect at the centre of the grid and correcting the gravity readings by a variable amount based on their north-south distance from the central station.

Elevation correction

Three elevation corrections are required. The Free Air effect compensates for the decrease in gravitational attraction resulting from an increase in elevation or, equivalently, an increase in distance from the centre of the earth. Gravity data are normally reduced to an elevation datum below that of the survey. In this case, the Free Air corrected gravity (DG_{FA}) is given by:

$\Delta G_{FA} = 0.3086 * z$

where z is the elevation of the gravity station above the survey datum. The Bouguer slab correction is next applied to compensate for the upward correction of the material above the gravity survey elevation datum. Were the gravity readings taken on this datum, the material above it would attract the test mass and reduce the measured gravity. The correction is applied by calculating the gravitational effect of an infinite horizontal slab with a thickness equal to the elevation of the gravity station above the datum. Explicitly, this correction (DG_B) is:

$$\Delta G_{\rm R} = -0.0419 \rho z$$

where r is the Bouguer density and z is the station elevation. The average crustal density of 2.67 g/cm³ is normally used in the Bouguer corrected. Finally, an additional correction is necessary to account for the finite nature of the crustal slab used in the Bouguer correction. Obviously a correction based on an infinite horizontal slab is valid only for small elevations above the survey datum and in cases where there is a large variation in topography, the Bouguer correction must itself be corrected for the effect of a finite, curved slab. This correction, the Bullard B correction, is well described by Whitman (1991) and LaFehr(1991b). It is applied to correct the gradient in the Bouguer gravity for the effect of the earth's curvature. The method is applied by using look up tables and applying Bullard-B corrections appropriate to the elevation of the gravity station above mean sea level (LaFehr 1991b). The combined Free Air, Bouguer and Bullard B corrections are combined in a single elevation correction during data processing. Figure GR-1 illustrates the effect of these corrections.

Some controversy exists concerning the selection of Bouguer density values for the elevation corrections. It has been common practice to adjust the density value away from the average crustal density value in order to minimize effects apparently caused by

topography. If an incorrect density were used, the gravity profiles should either follow topography (in the case where the density is too low) or show a negative correlation with topography where the density selected were too high. LaFehr (1991a) recommends the use of the average crustal density (2.67 g/cm^3) in all reductions and the examination of the gravity data to determine the significance of anomalies which are associated with topographic anomalies. This procedure has been followed in performing the elevation corrections described in this report.

Terrain corrections

Terrain corrections are applied to correct the Bouquer gravity for the upwards gravitational attraction of masses above the station elevation and for the reduction in gravitational acceleration due to an absence of mass in a depression or valley extending below the station elevation. Both of these corrections reduce the elevation corrected gravity. Consequently, terrain corrections are always positive and are added to the gravity data. Terrain corrections are often applied using different algorithms in several zones surrounding the gravity station. The most accurate terrain measurements and algorithms are commonly used for the topography close to the station (near station terrain correction - NSTC) and both the density of data and the accuracy of the approximation algorithms can be decreased at greater distances from the gravity station. Far station terrain corrections are usually applied with digital terrain models (DTMs). A fine DTM and more accurate algorithm is used to calculate terrain effect to within a few kilometres of the gravity station and a coarser DTM and less accurate gravitational approximation algorithm is used at greater distances. LaFehr (1990) recommends terrain corrections be taken to a distance of 160 km surrounding a gravity station and this practice is often used for regional surveys with sparsely spaced stations.

Near station terrain corrections are commonly applied with the sector equation or Kane's Method. This method is based on calculating the gravitational effect of a mass which can be approximated using the equation for the gravitational attraction of a right cylinder. The method is applied using differences in terrain elevation measured in several zones defined by radial distances. Aurora commonly employs standard zones of 2-20 m, 20-50 m and 50-200 m. Each zone is further subdivided into 6 - 60° sectors. The gravitational acceleration caused by the excess or deficit mass can be calculated by considering the effect of a pie shaped slice of topography defined by inner and outer radii (r_1 and r_0) and the angle subtended by the slice **q**. If **r** is the density, the gravitational effect of that slice **g**₁ is given by:

$$\boldsymbol{g}_{i} = \boldsymbol{\gamma} \boldsymbol{\rho} \boldsymbol{\theta} \left\{ \left(\boldsymbol{r}_{o} - \boldsymbol{r}_{i} \right) + \left(\Delta \boldsymbol{z}^{2} + \boldsymbol{r}_{i}^{2} \right)^{-0.5} - \left(\Delta \boldsymbol{z}^{2} + \boldsymbol{r}_{o}^{2} \right)^{-0.5} \right\}$$

where **g** is the universal gravitational constant and **Dz** is the difference in elevation between that of the sector and that of the station. The terrain effect is the sum of individual terrain corrections in each sector and zone. The NSTC is performed with elevation difference measurements taken by the operator in the field with a clinometer or laser range finder. Visibility limits near station terrain corrections to a distance of about 200 m surrounding the station.
At greater distances, the terrain correction is generally made with DTMs. These consist of an array of nodes to which elevations in metres above mean sea level are assigned. The vast majority of DTM's employ a rectangular distribution of nodes although it is also possible to construct DTM's with triangular node distributions. In general the nodes are uniformly distributed so that each node is square and each node can be considered as an upright prism with a height above mean sea level.

The terrain correction at a gravity station is performed by determining the elevation difference between the top of each node and the gravity station, and then calculating the gravitational effect of the node element. In this calculation, the height of the node element is the difference in elevation between the gravity station and the node top. It is immaterial whether the top of the node is above or below the gravity station as the correction is always positive.

The gravitational effect of the right prism centred at each node can be calculated using a variety of different methods, each of which incorporates some limiting assumptions. The geometry of these methods is sketched in Figure GR-2. Methods commonly applied in order of increasing accuracy include the line mass, Kane's Method, the flat topped right prism approximation (Nagy's Method) and the inclined top right prism method.

At great distances from a station, the dimensions of a node are negligible in comparison to the distance between the node centre and the gravity station. Under these conditions, the gravitational effect of the node-prism can be approximated by a line of mass at a distance r, with cross sectional area s, density r and height h as:

$$\Delta g = G \rho s \left(\frac{1}{r} - \frac{1}{\sqrt{r^2 + h^2}} \right)$$

A better approximation is to consider each node as a small sector defined by distances to the near and far sides (r_i and r_o), by an elevation difference Dz, and by the angle which the node subtends at the distance r from the station to the centre of the node (angle q). With these inputs, the sector equation can be used to calculate the gravitational effect of the node prism (Kane's Method).

A further improvement is to consider the node as a flat-topped rectangular prism at a distance r and at relative coordinates (x,y,z). The coordinates of the prism corner furthest from the gravity station are (x_2, y_2, z_1) and the coordinates of the prism corner nearest the gravity station are (x_1, y_1, z_2) . The gravitational attraction of the prism is then:

$$\Delta g = G\rho \left\| x \ln(y+r) + y \ln(x+r) - z \arcsin(\frac{z^2 + y^2 + yr}{(y+r)(y^2 + z^2)^{1/2}}) \right\|_{x_1}^{x_2} \Big\|_{y_1}^{x_2} \left\|_{x_1}^{x_2} \right\|_{x_1}^{x_2}$$

This relation (Nagy's Method) is used to perform the terrain correction with flat topped prisms. This provides the most accurate, readily calculable approximation to the terrain correction for a topography approximated with a digital terrain model.

One slight approximation remains in the terrain effect calculation. Nagy's Method

assumes that the prism has a flat top whereas a more accurate approximation to the true topography would be to construct prisms with inclined tops whose slopes (angle and direction) are determined by the relative elevations of surrounding nodes. This method is numerically challenging and prone to instability; consequently it has not be implemented in the available software.

Upon completion of the terrain corrections, the resulting corrected gravity data is is commonly referred to as the Bouguer Anomaly.

Bouguer adjustment

The raw gravity readings are made relative to an internal instrument range. The values are correct *relative* to each other across a grid but the absolute values must be levelled to the National Gravity Network. This is performed by re-occupying a government (GSC) gravity station, taking a measurement and then computing a correction factor required to level the survey data to the national network. The field data are then leveled to the national datum by the addition or subtraction of the constant. Care must be taken to apply only those corrections used on the government data to the raw survey data before computing the shift constant. In many cases, GSC data has not been corrected for terrain effect.

Residual anomaly

The Bouguer anomaly data contains features caused by density variations at various depths. The gravity anomaly caused by a source at an economic depth has a relatively high spatial frequency anomaly since it arises from a shallow source. The Bouguer anomaly from a larger crustal feature at depth will produce a higher amplitude and lower spatial frequency anomaly. It is common practice to estimate a "regional" Bouguer anomaly due to large scale features not of economic interest and to remove the regional from the Bouguer data, leaving the residual Bouguer anomaly. If properly performed, the residual Bouguer anomaly would be that portion of the gravity field due solely to shallow sources of economic interest.

There are several approaches used in calculating the regional Bouguer anomaly. A simple method is to apply a spatial low-cut filter to the data, removing long wavelength features in the process. In small surveys, regional gradients are sometimes visually estimated and removed from profile data. A third approach is based on the expected signal to noise ratio of the survey. The gravitational effect of the sought-after target can be calculated using modeling software. Given the range of observed drifts, the apparent error in elevations and other sources of error, it is also possible to determine an expected overall accuracy of the gravity survey readings. The gravitational response of the target can then be upward continued until the detectible response falls below the apparent noise level. In other words, the target could not be detected from noise at this height. The gravity data, upward continued to this elevation, can be taken as an estimate of the regional field. The upward continued data is then subtracted from the Bouguer anomaly and the residual data is then largely free from the effect of large, deep sources.

APPENDIX F

_

1

1

.

1

100

INVERSION THEORY

Forward modelling

For a series of observations $\mathbf{d} = (d_1, d_2, d_3, \dots d_i)^T$, and a model with M cells each with a density $\mathbf{r} = (r_1, r_2, r_3, \dots r_i)^T$, the value of the gravity at a given station can be written as the sum of the contributions from the various elements:

$$d_i = \sum_{j=1}^{M} \rho_j G_{ij}$$

where G_{ij} describes the gravitational effect of a prismatic element j to the observation at point i. The gravitational effect of a rectangular prism element is calculated using Nagy's (1966) method. Consider a flat-topped rectangular prism at a distance r and at relative coordinates (x,y,z). The coordinates of the prism corner furthest from the gravity station are (x₂, y₂, z₁) and the coordinates of the prism corner nearest the gravity station are (x₁, y₁, z₂). The gravitational attraction of the prism is then:

$$\Delta g = G\rho \left\| x \ln(y+r) + y \ln(x+r) - z \arcsin(\frac{z^2 + y^2 + yr}{(y+r)(y^2 + z^2)^{1/2}}) \right\|_{z_1}^{z_2} \left\|_{y_1}^{y_2} \right\|_{z_3}^{z_4}$$

The matrix **G** is the sensitivity matrix describing the geometric portion of the gravity contribution of each mesh cell to each of the observation points. In vector notation, a set of observations (d) can be forward modeled by the following relation:

$$d = \mathbf{G}\rho$$

The Grav3D subprogram GZFOR3D generates the sensitivity matrix which in turn can be used to rapidly forward model the gravitational response for a given density model defined by the vector r.

Inversion methodology

The inversion problem can be framed as follows: For a given set of observations, find a model which:

- 1. Replicates the observed data within the bounds of measurement error.
- 2. Differs as little as possible from a reference model incorporating whatever is known about the local geology and is smooth in three dimensions.

To achieve this end, a model objective function is defined which incorporates these conditions. Grav3D incorporates an objective function defined as follows:

$$\phi_{\rm m} = \alpha_{\rm s} \int_{V} w_{\rm s} w^{2}(z)(\rho - \rho_{\rm o}) dv + \alpha_{\rm x} \int_{V} w_{\rm x} \left(\frac{\partial w(z)(\rho - \rho_{\rm o})}{\partial x}\right)^{2} dv + \alpha_{\rm y} \int_{V} w_{\rm y} \left(\frac{\partial w(z)(\rho - \rho_{\rm o})}{\partial y}\right)^{2} dv + \alpha_{\rm z} \int_{V} w_{\rm z} \left(\frac{\partial w(z)(\rho - \rho_{\rm o})}{\partial z}\right)^{2} dv$$

where w_x , w_y , w_s , and w_z are spatially dependent weighting functions and a_x , a_y , a_z , and a_s are coefficients affecting the relative importance of the three different components fo the objective function. The reference model is r_0 and the closeness of the reference model to the final model is controlled by w_s . The weighting functions w_x , w_y , and w_z can be used to constrain the final solution to one which is more intense or attenuated in one or another dimension. Finally, w(z) is a depth weighing function which is used to counteract the natural insensitivity of the kernel function G with depth. Unchecked, any solution would show most of its variability near surface regardless of the other weighting functions. To overcome this, w(z) is defined in the form:

$$w(z)=(z+z_0)^{-\frac{\beta}{2}}$$

where b and z_0 are defined to ensure that the model generates features at depth. The model objective function in an optimum solution will stabilize around some constant value, indicating convergence. This value will not (and should not) be close to zero unless by coincidence the modeller were to specify a reference model which is almost an exact fit to the data.

Having defined a measure of model acceptability, it is necessary to define a measure of misfit which naturally must be minimized in an acceptable solution. The model norm is calculated as follows:

$$\phi_d = \left\| W_d (d - d^{obs}) \right\|^2$$

where d is the value at a station predicted by the model, and W_d is a diagonal matrix whose elements are the inverse of the standard deviation in the given reading d^{obs}. The inverse problems can then be restated as follows:

- 1. Minimize f_m and
- 2. Minimize f_d to a level determined by the error in the data.

The threshold for f_d in perfectly weighted data would be the number of readings in the data set (N). Since this value may be too tight for noisy data, a chi-factor is defined which is normally 1.0 but can be increased to set the threshold high enough to allow convergence to a minimum value of f_d .

Depth weighting

Because there is no unique solution to a gravity problem and because the gravitational effect of mass at depth falls off with the square of the distance, inversion models in an unconstrained algorithm consist of small and flat source masses near the surface. It has been found through experimentation that the decay of the gravitational contribution of

elements at depth follows a function in the form $(z+z_0)^2$. To remove the effect of depth weighting, we define the w(z) as shown in the previous section. Since w(z) is squared in each term for f_m , it can be expected that for b=2, the effect of depth decay would be compensated completely. In practice however, the inversion produces reasonable models for $b \le 2.0$ and at $b \ge 2.0$ the algorithm has been noted to deteriorate in some examples. As a result, the default value of b=1.9 is used in most inversions. The value of z_0 can be determined by matching the function with the field produced by a column of cells directly beneath the observation point. This is the procedure followed automatically in Grav3D.

Effect of the regional anomaly

Bouquer Anomaly data can be both positive and negative, depending upon the datum selected. It is important to remove the regional field before beginning the inversion in order to isolate the response due solely to the anomalous mass. A data set which exclusively portrays the response of local anomalous masses will invert to yield a model which is most sensitive to the geometry and density of the local anomalous masses. In particular, the sign of the data can matter. Best results with Grav3D generally occur when the polarity of the density is constrained to either entirely negative or positive density values. In order to due this, care must be taken when defining and removing the regional field to ensure that this datum shift does not unintentionally bias the data. Two general procedures are employed. First, the long wavelength regional field should be remove through prediction and subtraction, low cut spatial filtering or upward continuation and subtraction. Secondly, it is worthwhile to boost all anomalous observed gravity values above zero for a positive gravity anomaly and to depress them below zero for a negative gravity anomaly before inverting the data. This will generate a minimum of large scale deep features created to replicate a residual regional field. For a positive gravity anomaly, positivity may be invoked, restricting the modelling to generating only densities above zero. Similarly, negativity may be invoked in the case of inverting negative gravity anomalies.

APPENDIX G

ø

GRAVITY MEASUREMENTS & REDUCTIONS

Station	UTME_NAD83	UTMN_NAD83	Z	Grav	SD	Time	Latitude	FreeAir	Bouguer	Bull-B	NearStn	DTM1-Inner	Final
1	510462.4	7229970.2	1055.374	5183.459	0.424	124153	0.300	325.688	-118.124	1.151	0.102	2.760	5395.337
2	510741.8	7229879.4	1010.887	5192.919	0.071	131344	0.357	311.960	-113.145	1.119	0.087	1.978	5395.276
3	510945.5	7229855.4	963.698	5201.634	0.033	132400	0.373	297.397	-107.863	1.082	0.222	2.530	5395.375
4	511188.2	7229822.8	878.130	5216.812	0.008	140800	0.394	270.991	-98.286	1.013	0.076	3.749	5394.749
5	511448.7	7229676.6	925.207	5206.974	0.005	144200	0.485	285.519	-103.555	1.052	0.234	3.748	5394.457
6	511732.6	7229451.8	974.484	5195.175	0.016	151500	0.625	300,726	-109.070	1.091	0.239	5.578	5394.363
7	511529.1	7229197.4	1149.783	5159.472	0.068	164303	0.781	354.823	-128.691	1.215	0.285	6.582	5394.468
8	511380.5	7229368.4	1073.007	5176.243	0.080	171335	0.675	331.130	-120.098	1.164	0.263	5.287	5394.664
9	510916.7	7229381.0	851.484	5219.345	0.028	180009	0.666	262.768	-95.304	0.990	0.069	5.382	5393.916
10	510622.0	7229695.0	1005.717	5193.064	0.026	192600	0.471	310.364	-112.566	1.115	0.150	2.308	5394.906
11	510206.2	7229658.5	1028.175	5187.837	0.123	193627	0.492	317.295	-115.080	1.131	0.122	2.617	5394.415
12	509874.0	7230217.5	984.267	5196.545	0.018	112400	0.146	303.745	-110.165	1.099	0.191	3.508	5395.068
13	509621.4	7230334.5	899.857	5212.843	0.024	114400	0.073	277.696	-100.718	1.032	0.280	2.971	5394.177
14	509389.0	7230512.9	817.029	5229.032	0.020	120300	-0.038	252.135	-91.447	0.960	0.087	2.431	5393.159
15	509238.6	7230857.2	832.639	5226.561	0.011	131000	-0.251	256.952	-93.194	0.973	0.082	2.236	5393.359
16	509337.2	7231144.0	870.145	5219.271	0.029	133200	-0.428	268.527	-97.392	1.006	0.125	2.754	5393.862
17	509441.8	7231411.1	938.278	5205.940	0.010	135700	-0.593	289.553	-105.018	1.062	0.117	3.435	5394.496
18	509547.2	7231698.1	1061.717	5180.525	0.023	145100	-0.770	327.646	-118.834	1.155	0.249	5.125	5395.097
19	509584.1	7232006.6	1219.921	5146.041	0.011	160200	-0.960	376.468	-136.541	1.260	0.248	8.619	5395.134
20	509688.0	7232004.8	1241.271	5141.169	0.026	162900	-0.959	383.056	-138.931	1.272	0.284	8.783	5394.675
22	509486.9	7232566.5	1187.145	5154.051	0.018	171700	-1.306	366.353	-132.873	1.240	0.319	6.367	5394.151
23	509249.8	7232673.1	1179.540	5154.228	0.016	174400	-1.373	364.006	-132.022	1.235	0.204	6.832	5393.111
24	508703.8	7232693.0	1050.618	5181.553	0.014	180900	-1.387	324.221	-117.592	1.147	0.182	4.351	5392.476
25	508461.3	7232505.2	975.866	5198.058	0.015	183000	-1.272	301.152	-109.225	1.092	0.160	3.592	5393.557
26	508488.2	7232215.5	878.520	5217.360	0.010	185300	-1.093	271.111	-98.330	1.013	0.131	3.391	5393.583
27	508505.3	7231980.2	817.775	5229.051	0.015	191400	-0.947	252.365	-91.531	0.960	0.066	3.759	5393.724
28	508657.3	7231719.4	856.540	5222.403	0.016	193100	-0.786	264.328	-95.869	0.994	0.113	2.937	5394.120
29	508918.7	7231540.3	904.049	5213.269	0.008	194800	-0.674	278.990	-101.187	1.035	0.143	2.900	5394.476
30	510433.6	7230261.9	1097.499	5173.232	0.044	135216	0.120	338.688	-122.839	1.181	0.069	5.129	5395.581
31	510527.0	7230613.3	1054.647	5183.376	0.009	141300	-0.097	325.464	-118.043	1.150	0.057	3.546	5395.454
32	510546.5	7230971.2	1065.228	5180.311	0.022	143500	-0.318	328.729	-119.227	1.158	0.193	4.168	5395.015
33	510784.7	7230976.4	1027.770	5189.946	0.020	150200	-0.320	317.170	-115.035	1.131	0.135	2.076	5395.103
34	510802.3	7231274.5	1089.278	5177.630	0.011	152600	-0.504	336.151	-121.919	1.175	0.138	3.126	5395.798
35	510442.8	7231288.7	1049.953	5185.007	0.006	155300	-0.514	324.015	-117.517	1.147	0.148	3.175	5395.461
36	510198.0	7231163.7	983.640	5197.530	0.037	161200	-0.438	303.551	-110.095	1.098	0.117	2.831	5394.594
37	509959.2	7231041.5	928.399	5208.345	0.007	163100	-0.363	286.504	-103.912	1.054	0.222	2.541	5394.391
38	509721.0	7230932.0	893.632	5215.039	0.029	165200	-0.296	275.775	-100.021	1.026	0.152	2.330	5394.006

Station	UTME_NAD83	UTMN_NAD83	Z	Grav	SD	Time	Latitude	FreeAir	Bouguer	Bull-B	NearStn	DTM1-Inner	Final
39	509478.6	7230800.2	856.179	5222.233	0.017	171200	-0.215	264.217	-95.829	0.994	0.112	2.205	5393.715
40	509209.1	7230663.1	814.959	5229.743	0.005	172900	-0.132	251.496	-91.215	0.958	0.073	2.163	5393.086
41	509093.2	7230908.6	816.987	5229.277	0.088	152257	-0.284	252.122	-91.442	0.960	0.080	2.434	5393.147
42	508996.7	7231237.6	899.231	5213.251	0.014	155400	-0.487	277.503	-100.648	1.031	0.093	2.220	5392.963
43	508686.0	7232221.6	864.309	5220.797	0.015	164700	-1.096	266.726	-96.739	1.001	0.182	4.445	5395.315
44	509033.4	7232325.5	922.205	5207.134	0.105	173009	-1.159	284.592	-103.219	1.050	0.327	5.739	5394.464
45	508951.3	7230878.8	812.924	5230.045	0.063	104005	-0.266	250.868	-90.988	0.956	0.073	2.310	5393.000
46	508809.3	7231196.8	882.297	5216.822	0.018	111000	-0.463	272.277	-98.752	1.017	0.060	2.110	5393.070
47	508647.4	7231412.0	837.859	5224.896	0.010	113000	-0.596	258.563	-93.779	0.978	0.093	2.324	5392.480
48	508477.7	7231622.7	814.498	5228.876	0.013	114800	-0.727	251.354	-91.164	0.958	0.060	2.543	5391.900
49	508254.5	7231878.7	802.235	5233.708	0.027	120700	-0.885	247.570	-89.791	0.947	0.095	2.774	5394.417
50	508060.8	7232114.3	858.698	5222.262	0.011	123100	-1.032	264.994	-96.111	0.996	0.085	2.629	5393.824
51	507938.3	7232373.2	945.110	5204.976	0.010	130100	-1.192	291.661	-105.783	1.068	0.086	3.070	5393.886
52	507693.0	7232270.3	940.260	5205.342	0.040	135813	-1.129	290.164	-105.240	1.064	0.327	3.105	5393.633
53	507439.9	7232096.5	944.249	5204.203	0.006	141700	-1.023	291.395	-105.686	1.067	0.272	2.968	5393.196
54	507183.8	7232059.1	912.378	5210.287	0.008	144100	-1.000	281.560	-102.119	1.042	0.097	1.896	5391.762
55	506998.7	7231904.0	938.125	5205.228	0.027	145900	-0.905	289.505	-105.001	1.062	0.163	2.173	5392.226
56	506839.0	7231663.7	851.702	5220.288	0.017	152200	-0.757	262.835	-95.328	0.990	0.098	3.528	5391.654
57	506732.6	7231406.9	761.559	5236.439	0.014	154400	-0.599	235.017	-85.239	0.909	0.142	3.964	5390.634
59	507230.5	7231085.9	714.952	5245.656	0.009	164500	-0.399	220.634	-80.022	0.866	0.116	3.681	5390.533
60	507710.4	7231043.1	749.654	5240.512	0.010	173600	-0.371	231.343	-83.906	0.898	0.077	2.424	5390.977
61	507958.3	7230941.0	752.297	5240.686	0.021	180100	-0.307	232.159	-84.202	0.901	0.050	1.822	5391.108
62	508237.8	7230897.2	796.927	5232.949	0.007	182800	-0.279	245.932	-89.197	0.942	0.095	1.750	5392.192
63	508494.5	7230825.1	807.456	5231.859	0.060	185047	-0.234	249.181	-90.376	0.951	0.063	1.941	5393.385
64	508849.0	7230735.0	786.717	5234.720	0.080	191814	-0.177	242.781	-88.054	0.933	0.042	2.181	5392.425
65	508817.5	7230534.7	776.381	5236.815	0.040	101700	-0.054	239.591	-86.898	0.923	0.122	2.113	5392.614
66	508510.9	7230537.6	757.429	5240.610	0.012	103400	-0.056	233.743	-84.776	0.905	0.094	1.827	5392.347
67	508549.3	7230236.7	742.290	5243.170	0.055	110845	0.130	229.071	-83.082	0.891	0.074	1.974	5392.228
68	508699.1	7230050.8	747.036	5241.498	0.034	113100	0.245	230.535	-83.613	0.896	0.084	2.162	5391.807
69	508890.9	7229791.8	759.454	5237.621	0.025	120200	0.405	234.368	-85.003	0.907	0.092	2.191	5390.581
70	509142.8	7229570.3	798.808	5231.697	0.008	122500	0.543	246.512	-89.408	0.944	0.057	2.128	5392.474
71	509370.8	7229435.9	859.629	5220.951	0.093	124801	0.627	265.282	-96.215	0.997	0.079	2.485	5394.204
72	509655.3	7229268.6	920.802	5208.179	0.008	131600	0.731	284.159	-103.062	1.048	0.102	2.562	5393.719
73	509967.3	7229272.1	967.867	5199.423	0.045	134800	0.730	298.684	-108.330	1.086	0.159	2.667	5394.418
74	509913.3	7229525.4	995.621	5193.951	0.017	141100	0.573	307.249	-111.436	1.108	0.190	2.799	5394.433
75	509686.2	7229820.5	976.251	5197.682	0.024	143300	0.390	301.271	-109.268	1.092	0.133	3.030	5394.331
76	509426.9	7229996.7	937.088	5205.381	0.085	150444	0.281	289.185	-104.885	1.061	0.088	3.007	5394.118

Station	UTME_NAD83	UTMN_NAD83	Z	Grav	SD	Time	Latitude	FreeAir	Bouguer	Bull-B	NearStn	DTM1-Inner	Final
77	509207.7	7230194.7	889.382	5215.251	0.013	152700	0.158	274.463	-99.545	1.023	0.036	2.430	5393.815
78	509560.4	7231038.4	887.925	5215.860	0.019	170300	-0.362	274.014	-99.382	1.021	0.071	2.500	5393.722
79	509758.1	7231318.3	951.548	5203.309	0.007	173100	-0.535	293.648	-106.503	1.073	0.176	3.077	5394.245
80	509904.6	7231595.8	1035.936	5187.116	0.029	180300	-0.705	319.690	-115.949	1.137	0.465	4.127	5395.881
81	511127.7	7231163.9	1050.014	5185.114	0.025	105300	-0.435	324.034	-117.524	1.147	0.216	2.765	5395.318
82	511154.6	7230838.4	974.215	5200.485	0.021	112900	-0.234	300.643	-109.040	1.091	0.084	2.259	5395.287
83	511050.8	7230557.7	941.604	5207.217	0.009	115000	-0.061	290.579	-105.390	1.065	0.076	1.990	5395.475
84	510814.4	7230382.4	987.527	5198.992	0.033	121300	0.047	304.751	-110.530	1.101	0.071	1.937	5396.369
85	511210.4	7230313.8	916.181	5211.603	0.033	123600	0.091	282.733	-102.545	1.045	0.088	2.304	5395.319
86	511342.1	7230044.9	895.414	5214.530	0.008	130000	0.257	276.325	-100.220	1.028	0.107	3.207	5395.233
87	511025.9	7229569.1	868.692	5217.465	0.008	134700	0.550	268.078	-97.230	1.005	0.107	4.747	5394.722
88	510647.7	7229236.0	837.421	5221.958	0.007	141600	0.754	258.428	-93.730	0.978	0.114	5.057	5393.560
89	510392.1	7229015.8	817.528	5225.521	0.018	143500	0.890	252.289	-91.503	0.960	0.062	5.035	5393.253
90	510137.5	7228856.8	803.156	5228.625	0.012	145800	0.987	247.854	-89.894	0.948	0.102	4.516	5393.137
122	509476.1	7232790.0	1305.180	5121.980	0.023	131019	-1.444	402.779	-146.084	1.310	0.012	13.872	5392.423
123	509494.0	7233237.2	1160.830	5158.234	0.027	133853	-1.721	358.232	-129.928	1.223	0.016	7.976	5394.033
124	508851.9	7232924.0	1167.370	5156.915	0.062	135228	-1.529	360.250	-130.660	1.227	0.030	5.970	5392.203
125	508259.1	7233103.5	1187.250	5150.343	0.087	140216	-1.642	366.385	-132.885	1.240	0.126	7.747	5391.314
126	507523.7	7232476.0	1064.550	5176.918	0.080	141317	-1.257	328.520	-119.151	1.157	0.035	5.107	5391.330
127	507066.5	7233339.5	965.270	5198.179	0.031	142202	-1.792	297.882	-108.039	1.084	0.010	3.353	5390.678
128	506664.8	7232900.8	810.550	5229.957	0.025	143229	-1.522	250.136	-90.722	0.954	0.033	1.882	5390.718
129	506499.5	7232029.5	1069.040	5170.469	0.016	144305	-0.984	329.906	-119.654	1.161	0.072	8.153	5389.122
100	506441.2	7231066.7	704.460	5247.696	0.034	145509	-0.390	217.396	-78.848	0.856	0.009	1.985	5388.704
101	507270.6	7230350.4	720.660	5244.927	0.015	150923	0.055	222.396	-80.661	0.871	0.036	1.215	5388.840
102	508172.6	7229985.2	731.570	5243.926	0.022	152800	0.284	225.763	-81.882	0.881	0.023	1.335	5390.330
103	508329.8	7228984.7	751.880	5239.746	0.047	163146	0.902	232.030	-84.155	0.900	0.036	1.235	5390.694
104	511421.6	7228570.9	1238.870	5139.540	0.023	115259	1.168	382.315	-138.662	1.271	0.013	8.470	5394.115
105	512550.4	7229243.2	1389.930	5102.305	0.022	120410	0.756	428.932	-155.570	1.353	0.178	13.982	5391.936
106	512127.5	7229611.3	1220.610	5144.510	0.018	121507	0.527	376.680	-136.618	1.260	0.192	7.528	5394.079
107	510561.5	7229203.7	833.790	5222.515	0.044	122610	0.774	257.308	-93.323	0.974	0.155	5.157	5393.560
108	510986.8	7229499.2	861.120	5217.913	0.020	124002	0.593	265.742	-96.382	0.998	0.126	5.246	5394.235
109	512114.8	7230426.6	931.610	5206.813	0.057	125341	0.024	287.495	-104.272	1.057	0.028	3.403	5394.548
110	511797.6	7230557.8	1070.930	5179.937	0.021	130448	-0.058	330.489	-119.865	1.162	0.023	3.626	5395.314
111	511804.0	7231121.0	980.870	5199.091	0.015	131708	-0.406	302.696	-109.785	1.096	0.035	2.426	5395.153
112	512542.1	7231422.7	1241.320	5142.917	0.020	141711	-0.590	383.071	-138.936	1.272	0.069	5.075	5392.878
113	512743.2	7232533.2	1499.770	5081.172	0.064	142849	-1.275	462.829	-167.864	1.402	0.198	12.721	5389.183
114	512009.4	7233369.9	1111.860	5175.149	0.041	144031	-1.794	343.120	-124.446	1.191	0.019	2.466	5395.703

Ê

Station	UTME_NAD83	UTMN_NAD83	Z	Grav	SD	Time	Latitude	FreeAir	Bouguer	Bull-B	NearStn	DTM1-Inner	Final
115	511637.2	7232391.0	1304.650	5128.573	0.018	145049	-1.191	402.615	-146.025	1.309	0.122	8.722	5394.125
116	511108.0	7231765.3	1272.040	5137.047	0.011	150052	-0.806	392.552	-142.375	1.291	0.035	6.339	5394.083
117	510794.5	7232016.5	1443.090	5089.170	0.020	151214	-0.962	445.338	-161.520	1.377	0.197	18.655	5392.254
118	511189.9	7232841.0	989.030	5196.391	0.059	152546	-1.470	305.215	-110.699	1.102	0.137	4.767	5395.443
119	510316.8	7233240.4	892.690	<u>5216.019</u>	0.038	154034	-1.720	275.484	-99.916	1.026	0.106	4.109	5395.108
120	510249.1	7232567.8	1160.840	5161.568	0.028	160553	-1.305	358.235	-129.929	1.223	0.230	6.485	5396.507
121	509765.4	7232061.2	1268.540	5134.036	0.041	161849	-0.993	391.471	-141.983	1.288	0.107	10.163	5394.089
44	509032.3	7232324.4	923.670	5207.119	0.085	164515	-1.158	285.045	-103.383	1.051	0.188	5.591	5394.451
78	509559.2	7231038.6	888.360	5215.867	0.052	165829	-0.362	274.148	-99.431	1.022	0.050	2.501	5393.794
134	507886.0	7233906.2	1059.790	5175.957	0.036	115925	-2.139	327.051	-118.618	1.154	0.072	7.087	5390.564
135	508890.4	7233975.7	1141.820	5157.022	0.018	121322	-2.179	352.366	-127.800	1.210	0.163	10.031	5390.814
136	509744.5	7234048.8	802.080	5231.774	0.054	122904	-2.221	247.522	-89.774	0.947	0.024	4.026	5392.299
137	512166.7	7228685.7	1393.180	5100.853	0.023	124452	1.099	429.935	-155.934	1.355	0.213	13.776	5391.298
138	511067.3	7228173.5	1252.300	5131.274	0.020	125549	1.412	386.460	-140.165	1.279	0.053	13.113	5393.426
139	509863.4	7228165.8	775.680	5234.436	0.019	130813	1.413	239.375	-86.819	0.922	0.014	2.892	5392.233
140	509239.0	7228555.0	759.720	5238.035	0.027	131809	1.170	234.450	-85.033	0.908	0.019	1.590	5391.138
133	510122.9	7228856.6	803.680	5228.554	0.025	135920	0.987	248.016	-89.953	0.948	0.128	4.474	5393.154
132	509904.7	7228706.5	788.860	5232.223	0.016	141701	1.079	243.442	-88.294	0.935	0.025	3.093	5392.503
131	509636.6	7228611.2	774.340	5235.417	0.017	143125	1.137	238.961	-86.669	0.921	0.112	2.281	5392.160
130	510478.3	7227506.8	791.030	5230.261	0.023	152357	1.822	244.112	-88.537	0.937	0.036	2.651	5391.281

F

APPENDIX H

í۵

.

1

1

(and

.

GPS THEORY

GPS THEORY

Gravity station elevations must be surveyed in to at least \pm 10 cm in order to produce gravity data accurate to \pm 20 mGal. This can be achieved through spirit level, total station or global position system (GPS) surveys. GPS survey methods were used to determine the elevation of the survey stations in the survey described in this report and this section summarizes the measurement method.

The Navstar Global Positioning System consists of 26 low altitude satellites, a master controlling station in Colorado Springs, CO and three uplink stations in Hawaii, Ascension Island, Diego Garcia and Kwajalein in the western Pacific Ocean. The satellites circle the earth at an altitude of 20,200 km with 4 satellites (space vehicles of Svs) in each of 6 planes inclined at 55° to the equator. Two SV's are spares. Each SV contains an atomic clock and transceiver.

The GPS signal quite complicated and occupies a wide bandwidth in order to nullify jamming. The system fundamental frequency (f_0) is 10.23 MHz. Satellites transmit messages on two carrier frequencies:

L1 carrier - 1575.42 MHz (154 f_0) with a wavelength of 19 cm L2 carrier - 1227.60 MHz (120 f_0) with a wavelength of 24 cm

Several signals are impressed on the carrier frequencies by amplitude modulation:

<u>Name</u>	Carrier (freq)	Description
Navigation message	L1 & L2 (1500 Hz)	Satellite status, ephemeris and clock corrections
P-Code	L1 (10.23 MHz)	Precision Code: Encrypted pseudorandom noise signal containing clock time signal (time of transmission). The encryption is unclassified and available for civilian use. Pseudorange accuracies with this code are in the order of 30 m.
Y-Code	L1 (10.23 MHz)	Encrypted P or Anti-spoofing (AS) Code: Encrypted pseudorandom noise signal containing clock time signal (time of transmission). The encryption is classified and this signal is for military use. Accuracy of the GPS system with this code is degraded to 100 m but military users can achieve psuedorange accuracies of better than 30 m by removing the encryption.
C/A-code	L1 and L2 (1.023 MHz)	Clear acquisition code: Non-encrypted clock time signal with pseudoranges accurate to ± 100 m.

Positioning

GPS receivers contain an internal clock (oscillator) which is synchronized to GPS time. GPS time is the absolute time standard used for the entire GPS system and is expressed in coordinated universal time (UTC). Each SV has a clock synchronized to GPS time and

transmitted clock errors are contained in the navigation message. The C/A and P or Y code transmissions contain the time of transmission from the satellite. Once the GPS receiver has 4 satellites in view, it can come up with a unique solution for the four variables in the position equation: x,y,z and t (time). The receiver generates a best-fit solution to GPS time and synchronizes the receiver clock to GPS time. The phase shift in time between the code signal picked up by the receiver and the internal receiver clock yields the transit time (time of receipt less time of transmission). This time, together with the known propagation velocity of the radio wave yields a pseudorange. The satellite navigation message transmits the satellite ephemeris - a precise description of the satellite's orbit and thus, its position. Using the ephemerides and pseudoranges, the location of the receiver can be calculated to an accuracy limited by the psuedorange accuracy and the relative geometry of the satellites. GPS positions are accurate to \pm 30 m with P-Code and to \pm 100 m with C/A Code.

Differential corrections

The accuracy of GPS positions can be improved by differential processing. A base station GPS is placed on a point whose geographic coordinates are accurately known. The base receiver then tracks the same satellites that are used by a nearby receiver (rover) which is being used to determine an unknown position. The base receiver computes the error in pseudoranges by comparing the apparent pseudorange from the SV's P or C/A code with the known pseudorange computed from the satellite ephemerides and the known base station position. The errors in satellite pseudoranges are then used in either real-time (via radio link) or post-acquisition processing of the rover's position. Differential correction can yield positions accurate to 0.50 m in x, y and z provided the PDOP is acceptable.

Dilution of precision

The accuracy of a GPS position depends upon both the accuracy of the pseudoranges and the distribution of the satellites relative to the receiver. If the SV's are clustered in one location in the sky, small changes in the pseudoranges will translate into large variations in the station coordinates. In particular, if the SV's are clustered overhead, the error in elevation will be increased. The effect of the SV distribution on the quality of the position measurement is quantified as the "dilution of precision" or DOP. DOP is further subdivided into horizontal (HDOP) and vertical (VDOP). A quantity which describes the overall accuracy of the position measurement considers the length of the error ellipse axes, the largest of which is quantified as the point dilution of precision (PDOP). In general, a PDOP less than 6.0 is considered desirable to achieve accuracies of \pm 50 cm in a differential correction.

Carrier phase processing

GPS positions can be refined further by employing the short wavelength carrier phase to refine the position accuracy. In simplified terms, the method is as follows: A base receiver is set up at a known point and a rover is set up at the point whose position is to be determined. The two receivers then record data from at least 5 SV's in common view for periods of time which depend upon the method being used. Three techniques are in

common use:

Static survey	Receivers record each base line for at least 45 minutes. Post processing uses the C/A code and the carrier phase shift to calculate base lines.
Fast static survey	Receivers record each base line for at least 5 minutes and use the P-Code and carrier phase shift to calculate base lines.
<u>Kinematic survey</u>	Both the base station and the rover are set up over a known point and, after a short initialization period, the rover is moved from point to point and base lines are measured for period of 30 to 60 seconds. Both receivers must maintain a lock on the same receivers.

Static surveys can achieve accuracies of 5 mm + 5 ppm while Fast Static and kinematic surveys can achieve accuracies of 5 mm + 10 ppm. Carrier phase processing requires that the receiver be capable of recording at least 1 carrier phase (single frequency receiver) but better results under a wider variety of operating conditions are possible using receivers capable of receiving both L1 and L2 carriers (dual frequency receivers). Carrier phase processing uses several techniques to measure base lines. Differentially corrected GPS positions are used to narrow down a range within which possible solutions to the base line equation may be found. Under optimum conditions this would involve a preliminary determination of distance to within 1 to 2 m. To further improve accuracy, the carrier phase difference (phase shift) between the two receivers is considered. The fraction of a wavelength phase difference between the two receivers can be determined very rapidly but the integer number of full wavelengths phase difference between the receivers cannot be readily determined with a single phase difference. This is referred to as the integer ambiguity. In addition, the method has to be able to correct itself if one of the receivers loses contact with one of the satellites and "loses its place" in the signal (cycle-slip). Finally, the processing must account for propagation error caused by unknown velocity variations within the ionosphere. Several methods are used together to remove external sources of error, resolve the integer ambiguity and correct for cycle-slip:

Single difference Difference in phase between 2 recei measuring the same satellite over same interval (epoch). This removes effect of satellite clock, orbital atmospheric delays.	vers the the and
Double difference Difference between 2 single differen	ces.
This removes the effect of receiver	and
satellite clock drift.	
Triple difference Difference over time between 2 do	Jple
differences. This removes inter-	er
ambiguity and resolves cycle-slips	•

Combinations of the differences for a large number of readings are solved for a best-fit solution using least-squares methods. Carrier phase processing generates one of several possible types of solutions depending upon the data available:

Float solution	Poor solution as the processor is unable to resolve the
	integer ambiguity. Errors in the order of 1 wavelength (19 to
	24 cm) are possible.
Fixed solution	Good solution; one solution yields integer values
	significantly better than others. Errors less than 1

Fixed solutions for dual frequency receivers fall into one of three types:

wavelength are possible.

Wide Lane Fixed Uses L1 and L2 differences, generating a base line solution using a wavelength of 86.2 cm. This is used in long base line surveys.

Narrow Lane Fixed Uses combinations of L1 and L2 solutions generating a base line solution using a wavelength of 10.2 cm. This solution effectively removes ionospheric effects.

Ionospheric free solution Best possible solution generated using L1 and L2 to achieve maximum possible accuracy.

Factors affecting GPS survey accuracy

The relative satellite geometry, signal status and elevation of the satellites above the horizon control the accuracy of a base line determination or of a position fix. Selective Availability (SA) is the military term for the deliberate dithering of the clock signals from the GPS satellites to degrade positional accuracy. A slow variation in position is caused by the introduction of error into the satellite ephemeris in the navigation message and a smaller and much more rapid position error is introduced into the code transmission. This latter effect causes significant errors in velocity determinations. The encryption of P-Code to Y-Code can affect Fast Static surveys since these use the P-Code to determine the starting position for a base line solution. The user range accuracy (URA) is a measure of the accuracy of a pseudorange. If this number is greater than 30 m, selective availability is probably in effect.

The signal to noise ratio (SNR) is a measure of the strength of the signal relative to background noise. An SNR of at least 6 is required for a decent positional fix or base line solution, common ranges are from 12 to 20.

A minimum of 5 visible (ie. detectable) satellites are required for carrier phase processing and for an accurate differential GPS position. A minimum of 4 SV's is required for routine positioning. A solution with more than 4 satellites is referred to as an over-determined 3D (OD3D) solution.

The relative geometry of the satellites exerts a strong influence on the accuracy of a solution. If all SV's are directly overhead, the generated position solution is relatively insensitive to horizontal error whereas a much tighter solution is possible if the satellites are spread across the sky. The point dilution of precision (PDOP) is a measure of the error in location caused by geometry. Values of 4 or less are good, 5 to 7 are acceptable and greater than 7 is considered very poor.

Multi-path errors are caused by SV signals reflecting off surfaces near the receiving antenna. Multipath errors are a major concern in both differential and carrier phase surveys where reflections near a base station receiver can significantly degrade the quality of the positions and base line solutions. Fortunately they are largely avoidable through care and attention in the field.

-

÷۳

ک

AURORA GEOSCIENCES LTD.

APPENDIX I SCINTILLOMETER READINGS

CURIE PROPERTY TRAVERSE SCINTILLOMETER SURVEY

Station	NAD83 UTME	NAD83 UTMN	TC1	TC2	K	<u> </u>	T
1	509117	7230617	110	40	5	5	5
2	509134	7230669	161	48	9	10	4
3	509166	7230785	156	47	9	9	5
4	509204	7230881	150	42	8	11	4
5	509233	7230963	121	37	10	10	7
6	509246	7231037	189	51	9	7	4
<u></u> -	509270	7231102	204	42	7	8	7
8	509297	7231156	207	46	12	8	3
9	509363	7231252	214	51	10	7	11
10	509372	7231307	193	75	15	12	3
11	509381	7231394	248	76	15	13	4
12	509377	7231497	229	56	12	8	4
13	509433	7231541	266	77	12	8	6
14	509466	7231606	253	72	13	10	7
15	509420	7231644	264	81	15	12	4
16	509441	7231692	270	86	18	18	11
17	509526	7231701	296	78	17	16	9
18	509397	7231745	305	77	12	111	7
19	509296	7231812	264	60	18	13	8
20	509226	7231925	306	82	18	13	4
21	509245	7231959	296	75	15	11	4
22	509298	7231954	286	65	11	9	 .
23	509393	7231957	254	60	9	9	6
24	509458	7231959	271	77	11	11	6
25	509549	7231990	233	64	10	14	5
26	509638	7232006	327	92	17	16	
27	509673	7232002	770	249	40	23	14
28	509687	7232012	1713	682	104	80	34
29	509630	7232062	365	93	19	17	8
30	509613	7232070	379	89	15	11	7
31	509589	7232078	334	86	17	113	- 5
32	509568	7232103	326	74	15	11	7
33	509558	7232120	334	74	15	7	
34	509527	7232146	307	66	15	15	
35	509489	7232168	322	63	-11	9	5
36	509467	7232200	291	60	14	11	5
37	509418	7232242	309	73	17	111	5
38	509364	7232273	303	80	16	10	5
39	509306	7232302	390	90	17	14	5
40	509243	7232293	286	77	17	12	7
41	509135	7232288	365	76	12	16	2
42	509089	7232322	269	180	16	12	6
43	508030	7232317	200	85	15	11	
<u>45</u> 44	508752	7232260	300	77	17	11	
<u>45</u>	508588	7232064	257	68	10		6
46	508678	7231832	237	70	18		6
47	508752	7231645	200	- 10	12	10	- 5
40	500000	7001000	200	70	14		
40	1208000	1/23/331	220	1/0	14	111	lo I

CURIE PROPERTY TRAVERSE SCINTILLOMETER SURVEY

Station	NAD83 UTME	NAD83 UTMN	TC1	TC2	K	U	Т
49	509036	7231051	120	30	7	5	3
50	509484	7231614	230	79	17	10	6
51	509678	7232096	384	89	19	18	6
52	509698	7232192	312	82	19	14	7
53	509709	7232287	292	79	16	12	8
54	509674	7232366	338	75	16	16	6
55	509647	7232453	305	83	14	13	5
56	509604	7232517	243	63	13	13	5
57	509496	7232560	248	62	14	11	6
58	509431	7232580	249	66	15	14	8
59	509303	7232650	308	78	15	11	6
60	509196	7232703	218	64	19	10	6
61	509060	7232750	298	83	15	11	5
62	508864	7232747	323	82	13	10	5
63	509438	7232840	225	58	8	8	5
64	509533	7232957	240	66	11	8	6
65	509584	7232907	254	74	11	8	4
66	509623	7232720	172	50	8	7	5
67	509179	7231685	268	80	16	8	8
68	509156	7231691	284	93	17	10	7
69	509575	7232044	269	85	21	15	6
70	509618	7232068	284	100	15	14	7
71	509606	7232104	282	93	18	13	6
72	509648	7232140	282	75	16	14	8
73	509663	7232155	282	98	17	14	6
74	509653	7232115	299	108	12	8	7
75	509638	7232087	252	92	17	9	3
76	509627	7232024	305	104	19	13	9
77	509726	7232462	217	70	14	10	5
78	509666	7232536	215	64	17	11	5
79	509675	7232742	223	63	10	10	4
80	509709	7232822	252	71	12	11	5
81	509665	7232969	250	74	13	11	6
82	509607	7233070	257	86	10	11	9
83	509494	7233113	234	66	11	12	13
84	509546	7233043	233	81	14	13	5
85	509613	7233028	269	77	17	14	6
86	509614	7232903	281	82	11	10	6
87	509402	7232862	268	69	12	11	7
88	509200	7232895	268	80	14	14	5
89	508995	7232896	232	88	16	15	4
90	508860	7232934	220	62	13	10	6
91	508661	7233112	238	86	16	12	5
92	508537	7233327	166	58	11	10	5
93	509096	7232898	300	99	16	17	9
94	509239	7232859	215	70	14	9	5
95	509325	7232826	202	61	10	8	5
96	509168	7231176	128	50	10	7	4
97	509089	7231334	155	52	9	9	4
98	508982	7231453	209	64	14	9	6

111

CURIE PROPERTY TRAVERSE SCINTILLOMETER SURVEY

Station	NAD83 UTME	NAD83 UTMN	TC1	TC2	K	U	Τ
99	508843	7231425	184	50	10	9	5
100	508656	7231722	219	53	12	7	6
101	508531	7231926	170	58	10	7	4
102	508432	7232031	170	66	11	9	5
103	508440	7232048	204	60	13	10	4
104	508356	7232029	227	81	14	15	5
105	508294	7232108	210	64	14	13	5
106	508324	7232071	230	69	11	10	8
107	508454	7232098	228	74	10	10	4
108	508404	7232096	228	71	13	10	4
109	508271	7232195	253	68	16	11	4
110	508414	7232123	264	82	19	11	7
111	508465	7232135	201	57	12	7	5
112	508470	7232177	204	60	23	111	5
113	508327	7232167	218	78	13	11	6
114	508244	7232257	224	63	18	10	5
115	508310	7232226	230	69	16	12	6
116	508406	7232170	232	81	16	12	4
117	508503	7232265	181	48	10	8	4
118	508438	7232213	201	80	10	10	5
119	508292	7232272	246	69	16	111	6
120	508260	7232328	200	63	11	9	5
121	508379	7232236	224	172	12	112	6
122	508457	7232288	232	71	16	13	5
123	508338	7232284	216	86	16	11	6
124	508291	7232392	191	56	15	111	5
125	508402	7232292	187	68	15	111	8
126	508374	7232353	185	54	111	18	4
127	508209	7232449	186	67	14	13	5
128	508075	7232446	174	54	10	16	4
129	507946	7232475	266	77	12	15	5
130	507936	7232362	189	53	12	10	15
131	507852	7232272	200	77	14	10	1 A
132	507864	7232212	215	76	15	12	
133	507955	7232275	260	79	14	12	5
134	507944	7232192	225	79	14	6	5
135	507824	7232130	197	61	11	8	1 A
136	507893	7232015	194	68	15	10	
137	507962	7232077	196	64	14	19	5
138	508015	7232213	190	67	12	9	4
139	508059	7232110	194	74	13	10	4
140	507976	7231986	205	69	16	8	4
141	507824	7231929	201	70	111	8	4
142	507946	7231917	196	72	13	10	17
143	508095	7231967	193	61	12	10	5
144	508188	7232144	209	57	111	10	3
145	508884	7231369	252	62	13	11	5
146	508906	7231440	302	63	10	6	5
147	508928	7231529	302	71	15	15	17
						+·	<u></u>

CURIE PROPERTY TRAVERSE SCINTILLOMETER SURVEY

Station	NAD83 UTME	NAD83 UTMN	TC1	TC2	K	U	Т
149	509031	7231401	252	60	15	9	4
150	509021	7231308	275	62	15	11	6
151	509109	7231215	264	52	11	6	4
152	509126	7231286	237	43	12	7	2
153	509172	7231399	367	68	18	12	6
154	509273	7231453	356	69	14	10	7
155	509374	7231399	302	67	14	11	6
			TC1	TC2	K	U	Т
		Minimum	110	30	5	5	2
		Maximum	1713	682	104	80	34
		Average	259	76	14	11	6
		Standard Devia	136	54	8	6	3

CURIE PROPERTY DEER 1 SHOWING GRID

60550W 60 509 7231950 283 78 20 13 6 60540W 60 40 509616.7 7231950.9 263 90 15 13 6 60530W 40 -20 509636.1 7231950.7 272 70 14 13 5 60530W 40 -10 509645.6 7231950.2 299 92 16 14 5 60530W 60 10 509645.7 7231950.4 245 60 14 10 7 60530E 60 20 509646.4 7231950.2 245 69 14 12 4 60530E 60 50 509704 7231950.3 316 99 21 13 7 60530E 80 50 509704 723197.3 278 15 11 5 60530W 40 5006965.7 723197.47 228 71 12 13 6	Point	Line	Station	X	Y	TC1	TC2	K	U	Τ
60540W 60 40 509610F 7231950.9 263 90 15 13 12 60520W 40 30 509626.4 7231950.6 275 81 13 12 7 60500W 40 10 509645.8 721950.6 299 92 16 14 15 5 60500E 40 10 509665.2 7231950.4 245 60 14 10 7 60520E 60 20 509674.9 7231950.3 316 99 21 13 7 60520E 60 20 509674.9 7231950.3 316 99 21 13 4 60500E 500764 7231950.3 316 99 21 13 5 60500E 500764 7231970.3 267 78 19 14 7 405500W 40 5096964.7 723197.8 287 78 19 14 7	L60S50W	-60	-50	509607	7231951	238	78	20	13	5
60530W 60 -30 609626 4 7231950.7 272 70 14 13 5 60530W 60 -20 509636.1 7231950.7 272 70 14 13 5 60510E 60 10 5096456.5 7231950.6 249 92 16 14 15 60510E 60 10 5096456.5 7231950.4 245 60 14 10 7 60530E 60 20 509646.4 7231950.3 316 99 21 13 7 60530E 60 50 509704 7231950.3 304 B1 16 12 4 60530W 40 50 509870.3 7231974.75 278 71 12 13 5 40550W 40 -40 509686.2 7231973.58 287 78 19 14 7 40550W 40 -10 509686.4 7231973.58 287	L60S40W	-60	-40	509616.7	7231950.9	263	90	15	13	6
6062000 606 -20 609836.1 72318950.7 272 70 14 13 6 60810W 60 10 509665.5 72318950.5 249 74 13 9 5 60810W 60 10 509665.2 7231950.3 249 74 13 9 5 60820E 60 20 509674.4 7231950.3 316 99 21 13 7 60530E 60 20 509674.4 7231975.33 130.4 81 16 12 4 60550E 60 509616.2 7231974.75 227 78 19 14 7 40530W 40 -30 509636.3 7231974.72 227 78 19 14 7 40530W 40 -10 509666.5 7231972.42 320 99 15 13 9 40500E 40 0 509676.7 7231971.83 311 93 <td>L60S30W</td> <td>-60</td> <td>-30</td> <td>509626.4</td> <td>7231950.8</td> <td>275</td> <td>81</td> <td>13</td> <td>12</td> <td>7</td>	L60S30W	-60	-30	509626.4	7231950.8	275	81	13	12	7
GOSTOW 60 10 SOBGE 60 14 5 GOSCE 60 0 SOBGES 7231950.6 249 74 13 9 5 GOSTOE 60 10 SOBGES 7231950.4 245 60 14 10 7 GOSSOE 60 30 SOBGES 7231950.1 304 81 16 12 4 GOSSOE 60 500 SOBGES 7231950.1 304 81 16 12 4 GOSSOE 60 500 SOBGES 7231976.33 278 17 12 13 5 405SOW 40 20 SOBGES 7231973.42 280 78 19 14 7 40SOW 40 10 SOBGES 7231974.42 320 99 15 13 9 40SOE 40 0 SOBGES 7231970.67 286 61 13 16 64 <t< td=""><td>L60S20W</td><td>-60</td><td>-20</td><td>509636.1</td><td>7231950.7</td><td>272</td><td>70</td><td>14</td><td>13</td><td>5</td></t<>	L60S20W	-60	-20	509636.1	7231950.7	272	70	14	13	5
GRSDE 60 0 509655.5 7231950.4 248 74 13 9 5 GRSTDE 60 10 509667.9 7231950.2 245 60 14 12 4 GRSSDE 60 30 509684.6 7231950.2 245 69 14 12 4 GRSSDE 60 60 509694.7 7231950.3 319 95 19 13 4 GRSSDE 60 50 509616.2 7231970.3 1304 81 16 12 13 5 40850W 40 -30 509686.3 723197.475 228 78 19 14 7 40850W 40 -10 509668.5 723197.38 267 78 19 14 7 40850W 40 0 509668.6 723197.08 282 80 17 10 6 40850E 40 10 5096662.7 723197.08 <	L60S10W	-60	-10	509645.8	7231950.6	299	92	16	14	5
G6S10E 60 10 509667.9 7231950.4 245 60 14 10 7 G0S20E 60 20 509674.9 7231950.3 316 99 21 13 7 G0S30E 60 30 509664.6 7231950.1 304 81 16 12 4 G0S50E 60 509704 7231950.3 319 95 19 13 4 G0S50E 60 509704 7231975.33 278 54 15 11 5 40350W 40 -30 509665.6 723197.33 278 78 17 12 7 40530W 40 -10 509666.6 723197.42 320 99 15 13 9 40510W 40 10 509666.6 723197.42 300 86 13 15 6 40520E 40 509667.7 723197.67 296 86 13 15 <t< td=""><td>L60S0E</td><td>-60</td><td>0</td><td>509655.5</td><td>7231950.5</td><td>249</td><td>74</td><td>13</td><td>9</td><td>5</td></t<>	L60S0E	-60	0	509655.5	7231950.5	249	74	13	9	5
GRS2DE 60 20 509674.9 7231950.3 316 99 21 13 7 GRS3DE 60 30 509684.6 7231950.2 245 69 14 12 4 GRS4DE 60 40 5096964.3 7231950.3 319 95 19 13 4 AUSSDW 40 50 509616.2 7231974.75 228 71 12 13 5 40530W 40 -30 509666.3 7231973.56 287 78 19 14 7 40520W 40 -10 509666.7 723197.183 311 93 16 13 9 4050E 40 10 509676.7 723197.183 311 93 16 13 5 4050E 40 509706.9 723197.08 280 17 10 6 40530E 40 509706.9 723197.08 280 17 17 5 <	L60S10E	-60	10	509665.2	7231950.4	245	60	14	10	7
GRS30E 60 30 509884.6 7231950.1 304 81 16 12 4 60550E 60 50 509704 7231950.3 139 95 19 13 4 40550W 40 -50 5099616.2 723197.33 278 54 15 16 7 40530W 40 -30 509666.3 723197.477 228 78 15 11 5 40530W 40 -20 509666.6 723197.38 287 78 19 14 7 40510W 40 -10 509666.6 723197.23 207 78 17 12 7 40530E 40 10 509666.6 723197.08 280 18 13 5 40530E 40 30 509668.7 723197.08 262 80 17 10 6 40530E 40 509 50917.7 723198.6 309 17	L60S20E	-60	20	509674.9	7231950.3	316	99	21	13	7
60540E 60 40 609664.3 7231950.1 304 81 16 12 4 60550E 60 50 509704 7231950.3 278 19 13 4 40550W 40 -40 509666.3 7231974.75 228 71 12 13 5 40530W 40 -30 509666.3 7231974.75 228 71 12 13 5 40530W 40 -30 509666.6 7231973.82 267 78 17 12 7 4050E 40 0 509666.6 7231971.23 301 93 16 13 6 4050E 40 10 509666.8 723197.07 206 86 13 15 6 40530E 40 50 509717 7231967.53 286 97 18 12 8 20550W -20 506666.7 7231997.53 286 97 18	L60S30E	-60	30	509684.6	7231950.2	245	69	14	12	4
B0550E 60 50 509714 7231950. 319 95 19 13 4 40550W 40 -50 509616.2 7231974.75 228 71 12 13 5 40530W 40 -30 509686.3 7231974.75 228 71 12 13 5 40530W 40 -30 509686.4 7231973.86 287 78 19 14 7 40510E 40 0 509666.6 723197.48 311 93 16 13 6 40510E 40 0 509666.8 723197.48 311 93 16 13 6 40520E 40 20 509666.8 723197.08 228 80 17 10 6 40530E 40 500 50962.53 723199.67 36 80 13 14 7 20550W 20 -50 509665.7 723199.43 392	L60S40E	-60	40	509694.3	7231950.1	304	81	16	12	4
440550W 40 50 509616.2 7231975.33 278 54 15 11 5 40530W 40 -30 509626.3 7231974.77 5228 71 12 13 5 40530W 40 -20 509646.4 7231973.82 278 78 19 14 7 4050E 40 0 509666.6 7231972.42 320 99 15 13 9 4050E 40 0 509666.6 7231971.42 300 86 15 13 5 40520E 40 20 509686.8 7231970.67 296 86 13 15 6 40530E 40 30 509695.3 7231970.67 296 80 17 17 5 20550W -20 -50 509625.3 7231996.47 316 80 13 14 7 20530W -20 -40 509636.6 7231997.53 286 97 18 12 8 20530W -20 -10 <t< td=""><td>L60S50E</td><td>-60</td><td>50</td><td>509704</td><td>7231950</td><td>319</td><td>95</td><td>19</td><td>13</td><td>4</td></t<>	L60S50E	-60	50	509704	7231950	319	95	19	13	4
40540W 40 509626.3 7231974.75 228 71 12 13 5 40530W 40 -20 509646.4 7231973.58 287 78 19 14 7 40520W 40 -20 509646.4 7231973.58 287 78 17 12 7 40510E 40 0 509666.5 7231971.83 311 13 16 13 6 40510E 40 10 509666.8 7231971.83 311 15 13 5 40520E 40 20 509686.8 7231970.08 262 80 17 10 6 40530E 40 50 509717 7231997.08 262 80 13 14 7 20550W 20 -50 509625.3 7231997.53 286 97 18 13 8 20550W 20 -50 509666.7 7231996.67 316 80 13 14 7 2050W 20 -20 509666.7 7231996.73	L40S50W	-40	-50	509616.2	7231975.33	278	54	15	16	7
40530W 40 30 509636.3 7231974.17 252 78 15 11 5 40520W 40 -20 509646.4 7231973.26 287 78 19 14 7 40510W 40 -10 509666.6 7231973.26 200 99 15 13 9 40520E 40 10 509666.6 7231971.25 300 86 15 13 5 40520E 40 20 509686.8 7231971.25 300 86 15 13 5 40520E 40 30 509696.8 7231970.67 296 86 13 15 6 40550E 40 50 509717 7231990.67 316 80 13 14 7 20550W -20 40 509685.8 7231997.53 286 97 18 12 8 20550W -20 40 509665.7 7231994.33 392 120 19 15 7 20530E -20 10	L40S40W	-40	-40	509626.3	7231974.75	228	71	12	13	5
40520W 40 -20 509646.4 7231973.58 287 78 19 14 7 4050E 40 0 509666.6 7231973.24 220 99 15 13 9 4050E 40 10 509676.7 7231971.83 311 93 16 13 6 40530E 40 20 509666.8 7231971.67 296 86 13 15 6 40530E 40 509706.9 7231970.67 296 86 13 15 6 40530E 40 509706.9 7231970.67 296 80 17 10 6 40530E 40 50 509705.7 7231970.67 296 80 13 14 7 20550W 20 -50 509625.3 7231995.4 309 93 17 17 5 20550W 20 -40 509667.2 7231996.4 327 97 18 13 8 20510E 20 0 509677.7 723199.4	L40S30W	-40	-30	509636.3	7231974.17	252	78	15	11	5
40510W 40 -10 509666.5 7231973 267 78 17 12 7 40510E 40 0 509666.6 7231972.42 320 99 15 13 9 40510E 40 10 509666.7 7231971.85 311 93 16 13 6 40520E 40 20 509666.8 7231971.85 300 86 15 13 5 40530E 40 30 509668.8 7231970.08 262 80 17 10 6 40550E 40 50 509717 7231969.5 309 93 17 17 5 20550W 20 -50 509625.3 7231997.63 286 97 18 13 8 20550W -20 -30 509667.7 7231997.43 392 120 19 16 8 20550W -20 -10 509667.7 7231997.43 392 120 19 16 8 20500F -20 10 50	L40S20W	-40	-20	509646.4	7231973.58	287	78	19	14	7
440S0E 40 0 509666.6 7231972.42 320 99 15 13 9 440S10E 40 10 509676.7 7231971.23 311 93 16 13 6 400S20E 40 30 509696.8 7231970.67 296 86 13 15 6 400S30E 40 30 509696.8 7231970.8 296 86 13 15 6 40550E 40 50 509717 7231990.67 316 80 13 14 7 20550W 20 -50 509625.3 7231997.63 286 97 18 12 8 20530W 20 -40 509636.7 7231996.47 327 97 18 13 8 20520W 20 -20 509667.7 7231994.33 392 120 19 16 8 20520E 20 0 509673.7 7231994.33 392 120 19 16 8 20530E 20 0 50	L40S10W	-40	-10	509656.5	7231973	267	78	17	12	7
440 10 509676.7 7231971.83 311 93 16 13 6 40530E 40 20 509866.8 7231970.67 286 86 13 15 6 40530E 40 30 509696.8 7231970.67 286 86 13 15 6 40030E 40 509717 7231980.67 309 93 17 17 5 20550W 20 -50 509625.3 7231996.6 343 104 19 15 7 20530W 20 -30 509646.3 7231996.47 327 97 18 12 8 20530W 20 -30 509667.7 7231996.47 327 97 18 13 8 20500E 20 0 509677.7 7231994.33 392 120 19 16 8 20500E 20 0 509671.7 7231992.27 77 246 33 31 18 20502E 20 10 509634.17 7231990.07	L40S0E	-40	0	509666.6	7231972.42	320	99	15	13	9
40S20E 40 20 509686.8 7231971.25 300 86 15 13 5 40S30E 40 30 509696.8 7231970.67 296 86 13 15 6 40S30E 40 40 509706.9 7231970.08 282 80 17 10 6 40S50E 40 509717 7231996.5 309 93 17 17 5 20S50W 20 -50 509653.8 7231996.47 343 104 19 15 7 20S30W 20 -30 509665.7 7231995.47 383 110 17 15 7 20S10W 20 -10 509667.7 7231995.4 333 110 17 15 6 20S10E 20 0 509698.1 7231993.27 787 246 33 31 18 20S40E 20 40 509730 7231990.07 70 81	L40S10E	-40	10	509676.7	7231971.83	311	93	16	13	6
40S30E 40 30 509696.8 7231970.67 296 86 13 15 6 40S50E 40 50 509717 7231970.08 262 80 17 10 6 40550E 40 50 509717 7231999.67 316 80 13 14 7 20550W 20 -50 509625.3 7231997.53 286 97 18 13 8 20S30W 20 -30 509646.3 7231997.53 286 97 18 13 8 20S20W 20 -20 509656.7 7231995.4 383 110 17 15 7 20S20W 20 10 509677.7 7231994.33 392 120 19 16 8 20S10E 20 0 509678.6 7231992.7 787 246 33 31 18 20S20E -20 20 509698.6 7231990.07 270 81 15 11 5 20S40E -20 40 50	L40S20E	-40	20	509686.8	7231971.25	300	86	15	13	5
440S40E 40 509706.9 7231970.08 262 80 17 10 6 440S50E 40 50 509717 7231980.5 309 93 17 17 17 5 200550W 20 40 509625.3 7231998.6 343 104 19 15 7 200540W 20 40 509635.6 7231997.53 286 97 18 12 8 200510W 20 -20 5096667.7 7231995.4 383 110 17 15 7 20050E 20 0 509667.7 7231995.4 383 110 17 15 7 20050E 20 0 509677.7 7231994.3 392 120 19 16 8 200510E 20 0 509679.6 7231991.3 302 79 18 16 5 200520E 20 30 509730 7231991.3 302 79 18 16 5 20540E -20 50 5097	L40S30E	-40	30	509696.8	7231970.67	296	86	13	15	6
40850E 40 50 509717 7231969.5 309 93 17 17 5 20550W -20 -50 509625.3 7231998.6 343 104 19 15 7 20530W -20 -30 509646.3 7231997.53 286 97 18 12 8 20530W -20 -20 509656.7 7231994.43 392 120 19 16 8 20850E -20 0 509677.7 7231994.33 392 120 19 16 8 20850E -20 0 509677.7 7231992.2 317 90 17 15 6 20850E -20 10 509688.6 7231992.7 77 246 33 31 18 20850E -20 30 509709.1 7231990.07 270 81 15 11 5 20850E -20 30 509634.5 7232024 384 86 18 13 7 20850E -20 509667.1	L40S40E	-40	40	509706.9	7231970.08	262	80	17	10	6
20850W -20 -50 509625.3 7231999.67 316 80 13 14 7 20840W -20 -40 509646.3 7231998.6 343 104 19 15 7 20830W -20 -30 509646.3 7231998.6 343 104 19 15 7 20820W -20 -309656.7 7231996.47 327 97 18 13 8 20520W -20 -10 509667.2 7231994.33 392 120 19 16 8 20850E -20 10 509688.6 7231992.2 317 90 17 15 6 20850E -20 30 509709.1 7231990.07 270 81 15 11 5 20850E -20 40 509634.5 7232024 384 86 18 13 7 20850E -20 50 509634.5 723202.45 371 <t< td=""><td>L40S50E</td><td>-40</td><td>50</td><td>509717</td><td>7231969.5</td><td>309</td><td>93</td><td>17</td><td>17</td><td>5</td></t<>	L40S50E	-40	50	509717	7231969.5	309	93	17	17	5
20S40W -20 -40 509635.8 7231998.6 343 104 19 15 7 20S30W -20 -30 509646.3 7231997.53 286 97 18 12 8 20S20W -20 -20 509656.7 7231994.43 327 97 18 13 8 20S10W -20 0 509677.7 7231994.33 392 120 19 16 8 20S10E -20 0 509688.6 7231992.2 317 90 17 15 6 20S30E -20 20 509688.6 7231992.2 317 90 17 15 6 20S40E -20 40 509790.7 7231990.07 70 81 15 11 5 20S50E -20 50 509730 7231989 279 73 17 15 6 20N40W 0 -40 509667.1 72320224.5 371 <td>L20S50W</td> <td>-20</td> <td>-50</td> <td>509625.3</td> <td>7231999.67</td> <td>316</td> <td>80</td> <td>13</td> <td>14</td> <td>7</td>	L20S50W	-20	-50	509625.3	7231999.67	316	80	13	14	7
20S30W -20 -30 509646.3 7231997.53 286 97 18 12 8 20S20W -20 -20 509656.7 7231996.47 327 97 18 13 8 20S10W -20 -10 509667.7 7231995.4 383 110 17 15 7 20S0E -20 0 509677.7 7231994.33 392 120 19 16 8 20S10E -20 10 509686.6 7231992.2 317 90 17 15 6 20S30E -20 30 509709.1 7231991.13 302 79 18 16 5 20S40E -20 40 509730 7231989.279 73 17 15 6 20S40E -20 50 509634.5 7232024 384 86 18 13 7 20S50E -20 509667.1 7232019.35 518 114 21	L20S40W	-20	-40	509635.8	7231998.6	343	104	19	15	7
L20S20W -20 509656.7 7231996.47 327 97 18 13 8 L20S10W -20 -10 509667.2 7231995.4 383 110 17 15 7 L20S0E -20 0 509667.2 7231993.27 787 246 33 31 18 L20S10E -20 20 509698.6 7231992.2 317 90 17 15 6 L20S20E -20 20 509698.6 7231990.07 270 81 15 11 5 L20S40E -20 40 509719.5 7231989 279 73 17 15 6 L20S40E -20 50 509730 7231989 279 73 17 15 6 L0N50W 0 -50 5096645.4 7232022.45 371 84 19 13 6 L0N40W 0 -40 509667.1 7232017.8 530 13	L20S30W	-20	-30	509646.3	7231997.53	286	97	18	12	8
L20S10W -20 -10 509667.2 7231995.4 383 110 17 15 7 L20S0E -20 0 509677.7 7231994.33 392 120 19 16 8 L20S10E -20 10 509688.6 7231992.2 787 246 33 31 18 L20S20E -20 20 509698.6 7231992.2 317 90 17 15 6 L20S30E -20 40 509719.5 7231991.13 302 79 18 16 5 L20S40E -20 40 509730 7231980.07 270 81 15 11 5 L20S50E -20 50 509634.5 7232024 384 86 18 13 7 L0N40W 0 -40 509667.1 7232019.5 518 114 21 17 8 L0N10W 0 -10 509699.6 7232017.8 5	L20S20W	-20	-20	509656.7	7231996.47	327	97	18	13	8
L20S0E -20 0 509677.7 7231994.33 392 120 19 16 8 L20S10E -20 10 509688.1 7231993.27 787 246 33 31 18 L20S20E -20 20 509698.6 7231992.2 317 90 17 15 6 L20S30E -20 30 509709.1 7231991.13 302 79 18 16 5 L20S40E -20 40 509719.5 7231990.07 270 81 15 11 5 L20S50E -20 50 509730 7231989 279 73 17 15 6 L0N50W 0 -50 509645.4 7232022.4 384 86 18 13 7 L0N40W 0 -40 509667.1 7232017.8 530 136 20 18 8 L0N10W 0 -10 509699.6 7232017.8 530<	L20S10W	-20	-10	509667.2	7231995.4	383	110	17	15	7
L20S10E -20 10 509688.1 7231993.27 787 246 33 31 18 L20S20E -20 20 509698.6 7231992.2 317 90 17 15 6 L20S30E -20 30 509709.1 7231991.13 302 79 18 16 5 L20S40E -20 40 509730 7231990.07 270 81 15 11 5 L20S50E -20 50 509634.5 7232024 384 86 18 13 7 L0N50W 0 -50 509665.2 7232024.5 371 84 19 13 6 L0N30W 0 -30 509666.1 7232019.35 518 114 21 17 8 L0N10W 0 -10 509671.7 7232014.25 733 199 35 19 7 L0N10E 0 10 509698.6 7232013.15 463	L20S0E	-20	0	509677.7	7231994.33	392	120	19	16	8
L20S20E -20 20 509698.6 7231992.2 317 90 17 15 6 L20S30E -20 30 509709.1 7231991.13 302 79 18 16 5 L20S40E -20 40 509719.5 7231989 279 73 17 15 6 L20S50E -20 50 509634.5 7232024 384 86 18 13 7 L0N50W 0 -50 509634.5 7232022.45 371 84 19 13 6 L0N30W 0 -30 509656.2 7232022.45 371 84 19 13 6 L0N10W 0 -40 509667.1 7232012.45 371 84 19 13 6 L0N10W 0 -10 509671.9 7232017.8 530 136 20 18 8 L0N10W 0 10 5096967.9 7232011.7 560	L20S10E	-20	10	509688.1	7231993.27	787	246	33	31	18
L20S30E -20 30 509709.1 7231991.13 302 79 18 16 5 L20S40E -20 40 509719.5 7231990.07 270 81 15 11 5 L20S50E -20 50 509634.5 7231989 279 73 17 15 6 L0N50W 0 -50 509645.4 7232024 384 86 18 13 7 L0N40W 0 -40 509645.4 7232022.45 371 84 19 13 6 L0N40W 0 -40 509667.1 7232017.8 530 136 20 18 8 L0N10W 0 -10 509667.9 7232017.8 530 136 20 18 8 L0N10E 0 0 509688.8 7232014.7 560 120 19 18 6 L0N20E 0 20 509710.5 7232013.15 463	L20S20E	-20	20	509698.6	7231992.2	317	90	17	15	6
L20S40E -20 40 509719.5 7231990.07 270 81 15 11 5 L20S50E -20 50 509730 7231989 279 73 17 15 6 L0N50W 0 -50 509634.5 7232024 384 86 18 13 7 L0N40W 0 -40 509645.4 7232022.45 371 84 19 13 6 L0N30W 0 -30 509656.2 7232019.35 518 114 21 16 7 L0N20W 0 -20 509667.1 7232019.35 518 114 21 17 8 L0N10W 0 -10 509677.9 7232017.8 530 136 20 18 8 L0N10E 0 10 509698.6 7232014.7 560 120 19 18 6 L0N20E 0 20 509710.5 7232013.15 463	L20S30E	-20	30	509709.1	7231991.13	302	79	18	16	5
L20S50E -20 50 509730 7231989 279 73 17 15 6 L0N50W 0 -50 509634.5 7232024 384 86 18 13 7 L0N40W 0 -40 509645.4 7232022.45 371 84 19 13 6 L0N30W 0 -30 509656.2 7232020.9 490 120 21 16 7 L0N20W 0 -20 509667.1 7232017.8 530 136 20 18 8 L0N10W 0 -10 509677.9 7232017.8 530 136 20 18 8 L0N0E 0 0 509688.8 7232017.5 733 199 35 19 7 L0N10E 0 10 509699.6 7232013.15 463 108 26 14 9 L0N30E 0 30 509721.3 7232010.05 397 <t< td=""><td>L20S40E</td><td>-20</td><td>40</td><td>509719.5</td><td>7231990.07</td><td>270</td><td>81</td><td>15</td><td>11</td><td>5</td></t<>	L20S40E	-20	40	509719.5	7231990.07	270	81	15	11	5
LON50W 0 -50 509634.5 7232024 384 86 18 13 7 LON40W 0 -40 509645.4 7232022.45 371 84 19 13 6 LON30W 0 -30 509656.2 7232020.9 490 120 21 16 7 LON20W 0 -20 509667.1 7232019.35 518 114 21 17 8 LON10W 0 -10 509677.9 7232016.25 733 199 35 19 7 LON10E 0 0 509688.8 7232016.25 733 199 35 19 7 LON10E 0 10 509699.6 7232014.7 560 120 19 18 6 LON20E 0 20 509710.5 7232013.15 463 108 15 16 4 LON30E 0 30 509743 7232010.05 397	L20S50E	-20	50	509730	7231989	279	73	17	15	6
LON40W 0 -40 509645.4 7232022.45 371 84 19 13 6 LON30W 0 -30 509656.2 7232020.9 490 120 21 16 7 LON20W 0 -20 509667.1 7232019.35 518 114 21 17 8 LON10W 0 -10 509677.9 7232017.8 530 136 20 18 8 LON0E 0 0 509688.8 7232016.25 733 199 35 19 7 LON10E 0 10 509699.6 7232014.7 560 120 19 18 6 LON20E 0 20 509710.5 7232013.15 463 108 26 14 9 LON30E 0 30 509732.2 7232010.05 397 79 19 13 9 LON40E 0 40 509663.7 7232048.33 289	LON50W	0	-50	509634.5	7232024	384	86	18	13	7
L0N30W 0 -30 509656.2 7232020.9 490 120 21 16 7 L0N20W 0 -20 509667.1 7232019.35 518 114 21 17 8 L0N10W 0 -10 509677.9 7232017.8 530 136 20 18 8 L0N0E 0 0 509688.8 7232016.25 733 199 35 19 7 L0N10E 0 10 509699.6 7232014.7 560 120 19 18 6 L0N20E 0 20 509710.5 7232013.15 463 108 26 14 9 L0N30E 0 30 509721.3 7232010.05 397 79 19 13 9 L0N40E 0 40 509732.2 7232048.3 289 93 23 13 5 L0N50E 0 50 509643.7 7232048.3 289 93 23 13 5 L20N40W 20 -40 509666.1<	L0N40W	0	-40	509645.4	7232022.45	371	84	19	13	6
LON20W 0 -20 509667.1 7232019.35 518 114 21 17 8 LON10W 0 -10 509677.9 7232017.8 530 136 20 18 8 LON0E 0 0 509688.8 7232016.25 733 199 35 19 7 LON10E 0 10 509699.6 7232014.7 560 120 19 18 6 LON10E 0 10 509699.6 7232013.15 463 108 26 14 9 LON30E 0 30 509710.5 7232013.15 463 80 15 16 4 LON30E 0 30 509721.3 7232010.05 397 79 19 13 9 LON40E 0 40 509732.2 7232048.33 289 93 23 13 10 5 L20N50W 20 -50 509643.7 7232048.33 289 93 23 13 5 L20N40W 20 -40 <td>LON30W</td> <td>0</td> <td>-30</td> <td>509656.2</td> <td>7232020.9</td> <td>490</td> <td>120</td> <td>21</td> <td>16</td> <td>7</td>	LON30W	0	-30	509656.2	7232020.9	490	120	21	16	7
LON10W 0 -10 509677.9 7232017.8 530 136 20 18 8 LON0E 0 0 509688.8 7232016.25 733 199 35 19 7 LON10E 0 10 509699.6 7232014.7 560 120 19 18 6 LON20E 0 20 509710.5 7232013.15 463 108 26 14 9 LON30E 0 30 509721.3 7232010.05 397 79 19 13 9 LON40E 0 40 509732.2 7232010.05 397 79 19 13 9 LON50E 0 50 509743 7232048.33 289 93 23 13 5 L20N50W 20 -50 5096643.7 7232046.3 311 106 16 17 7 L20N30W 20 -30 509666.1 7232042.23 317	LON20W	0	-20	509667.1	7232019.35	518	114	21	17	8
LONOE 0 509688.8 7232016.25 733 199 35 19 7 LON10E 0 10 509699.6 7232014.7 560 120 19 18 6 LON20E 0 20 509710.5 7232013.15 463 108 26 14 9 LON30E 0 30 509721.3 7232011.6 463 80 15 16 4 LON40E 0 40 509732.2 7232010.05 397 79 19 13 9 LON50E 0 50 509743 7232048.5 386 69 13 10 5 L20N50W 20 -50 509643.7 7232048.33 289 93 23 13 5 L20N40W 20 -40 509654.9 7232046.3 311 106 16 17 7 L20N30W 20 -30 509666.1 7232042.23 317 86	LON10W	0	-10	509677.9	7232017.8	530	136	20	18	8
LON10E010509699.67232014.756012019186LON20E020509710.57232013.1546310826149LON30E030509721.37232011.64638015164LON40E040509732.27232010.053977919139LON50E0505097437232008.53866913105LON50W20-50509643.77232048.332899323135L20N40W20-40509654.97232046.331110616177L20N30W20-30509666.17232042.233178616119L20N10W20-10509688.67232040.22898314125L20N0E200509699.87232038.173468419138L20N10E2010509711.17232036.133928819135	LONOE	0	0	509688.8	7232016.25	733	199	35	19	7
LON20E020509710.57232013.1546310826149LON30E030509721.37232011.64638015164LON40E040509732.27232010.053977919139LON50E0505097437232008.53866913105LON50W20-50509643.77232048.332899323135L20N40W20-40509654.97232046.331110616177L20N30W20-30509666.17232044.272988417115L20N20W20-20509677.47232042.233178616119L20N10W20-10509688.67232040.22898314125L20N0E200609699.87232038.173468419138L20N10E2010509711.17232036.133928819135	LON10E	0	10	509699.6	7232014.7	560	120	19	18	6
LON30E030509721.37232011.64638015164LON40E040509732.27232010.053977919139LON50E0505097437232008.53866913105LON50W20-50509643.77232048.332899323135L20N40W20-40509654.97232046.331110616177L20N30W20-30509666.17232044.272988417115L20N20W20-20509677.47232042.233178616119L20N10W20-10509688.67232040.22898314125L20N0E200509699.87232038.173468419138L20N10E2010509711.17232036.133928819135	L0N20E	0	20	509710.5	7232013.15	463	108	26	14	9
LON40E040509732.27232010.053977919139LON50E0505097437232008.53866913105L20N50W20-50509643.77232048.332899323135L20N40W20-40509654.97232046.331110616177L20N30W20-30509666.17232044.272988417115L20N20W20-20509677.47232042.233178616119L20N10W20-10509688.67232040.22898314125L20N0E200509699.87232038.173468419138L20N10E2010509711.17232036.133928819135	LON30E	0	30	509721.3	7232011.6	463	80	15	16	4
LON50E 0 50 509743 7232008.5 386 69 13 10 5 L20N50W 20 -50 509643.7 7232048.33 289 93 23 13 5 L20N40W 20 -40 509654.9 7232046.3 311 106 16 17 7 L20N30W 20 -30 509666.1 7232044.27 298 84 17 11 5 L20N20W 20 -20 509677.4 7232042.23 317 86 16 11 9 L20N10W 20 -10 509688.6 7232040.2 289 83 14 12 5 L20N0E 20 0 509699.8 7232038.17 346 84 19 13 8 L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	LON40E	0	40	509732.2	7232010.05	397	79	19	13	9
L20N50W 20 -50 509643.7 7232048.33 289 93 23 13 5 L20N40W 20 -40 509654.9 7232046.3 311 106 16 17 7 L20N30W 20 -30 509666.1 7232044.27 298 84 17 11 5 L20N20W 20 -20 509677.4 7232042.23 317 86 16 11 9 L20N10W 20 -10 509688.6 7232040.2 289 83 14 12 5 L20N0E 20 0 509699.8 7232038.17 346 84 19 13 8 L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	LON50E	0	50	509743	7232008.5	386	69	13	10	5
L20N40W 20 -40 509654.9 7232046.3 311 106 16 17 7 L20N30W 20 -30 509666.1 7232044.27 298 84 17 11 5 L20N20W 20 -20 509677.4 7232042.23 317 86 16 11 9 L20N10W 20 -10 509688.6 7232040.2 289 83 14 12 5 L20N0E 20 0 509699.8 7232038.17 346 84 19 13 8 L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	L20N50W	20	-50	509643.7	7232048.33	289	93	23	13	5
L20N30W20-30509666.17232044.272988417115L20N20W20-20509677.47232042.233178616119L20N10W20-10509688.67232040.22898314125L20N0E200509699.87232038.173468419138L20N10E2010509711.17232036.133928819135	L20N40W	20	-40	509654.9	7232046.3	311	106	16	17	7
L20N20W 20 -20 509677.4 7232042.23 317 86 16 11 9 L20N10W 20 -10 509688.6 7232040.2 289 83 14 12 5 L20N0E 20 0 509699.8 7232038.17 346 84 19 13 8 L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	L20N30W	20	-30	509666.1	7232044.27	298	84	17	11	5
L20N10W 20 -10 509688.6 7232040.2 289 83 14 12 5 L20N0E 20 0 509699.8 7232038.17 346 84 19 13 8 L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	L20N20W	20	-20	509677.4	7232042.23	317	86	16	11	9
L20N0E 20 0 509699.8 7232038.17 346 84 19 13 8 L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	L20N10W	20	-10	509688.6	7232040.2	289	83	14	12	5
L20N10E 20 10 509711.1 7232036.13 392 88 19 13 5	L20N0E	20	0	509699.8	7232038.17	346	84	19	13	8
	L20N10E	20	10	509711.1	7232036.13	392	88	19	13	5

-

1

1

1

i ana

CURIE PROPERTY DEER 1 SHOWING GRID

Point	Line	Station	Х	Y	TC1	TC2	K	U	T
L20N20E	20	20	509722.3	7232034.1	267	79	13	10	6
L20N30E	20	30	509733.5	7232032.07	243	65	15	10	4
L20N40E	20	40	509744.8	7232030.03	203	77	17	14	7
L20N50E	20	50	509756	7232028	253	76	11	10	7
L40N50W	40	-50	509652.8	7232072.67	261	84	18	15	5
L40N40W	40	-40	509664.5	7232070.15	330	109	20	14	8
L40N30W	40	-30	509676.1	7232067.63	303	85	19	12	10
L40N20W	40	-20	509687.7	7232065.12	289	90	16	11	10
L40N10W	40	-10	509699.3	7232062.6	300	76	14	13	7
L40N0E	40	0	509710.9	7232060.08	273	82	15	11	6
L40N10E	40	10	509722.5	7232057.57	252	69	13	11	6
L40N20E	40	20	509734.2	7232055.05	243	72	15	9	6
L40N30E	40	30	509745.8	7232052.53	306	74	16	14	6
L40N40E	40	40	509757.4	7232050.02	220	59	10	10	3
L40N50E	40	50	509769	7232047.5	231	67	16	9	4
L60N50W	60	-50	509662	7232097	304	97	18	15	7
L60N40W	60	-40	509674	7232094	321	100	23	14	9
L60N30W	60	-30	509686	7232091	229	94	15	20	8
L60N20W	60	-20	509698	7232088	298	90	17	13	7
L60N10W	60	-10	509710	7232085	270	93	13	13	6
L60N0E	60	0	509722	7232082	250	77	11	11	6
L60N10E	60	10	509734	7232079	224	67	16	12	5
L60N20E	60	20	509746	7232076	236	65	12	12	5
L60N30E	60	30	509758	7232073	237	67	13	11	7
L60N40E	60	40	509770	7232070	203	68	15	13	4
L60N50E	60	50	509782	7232067	222	72	16	11	5

_

ount 1 Channel	
Counts / s	
 395 - 531 259 - 395 	
• < 259	
200 300 400 500 600	
metres NAD83 / UTM zone 8N	
MINERALS INC	
E PROPERTY RATION PROGRAM meter Survey TC1 Channel	
Mining District: Mayo Projection: UTM Zone 8N Job: MRK-05-02-YT	
Geosciences Ltd.	
······································	

ount 2 Channel Counts / s	
• > 184	
130 - 184 76 - 130	
• < 76	
Scale 1:10000	
200 300 400 500 600	
metres NAD83 / UTM zone 8N	
MINERALS INC	
	2
DRATION PROGRAM	
meter Survey TC2 Channel	
Mining District: Mayo Projection: UTM Zone 8N Job: MRK-05-02-YT	
Geosciences Ltd.	

nnel : Counts / s > 30 22 - 30 14 - 22 < 14	
Scale 1:10000 200 300 400 500 600	
metres NAD83 / UTM zone 8N	
MINERALS INC	
RIE PROPERTY ORATION PROGRAM Iometer Survey K Channel	
Mining District: Mayo Projection: UTM Zone 8N Job: MRK-05-02-YT	
Geosciences Ltd.	

nnel : Counts / s
 23 17 - 23
• 11 - 17
cale 1:10000
metres
AD83 / UTM zone 8N
MINERALS INC
E PROPERTY
RATION PROGRAM
ometer Survey U Channel
Mining District: Mayo Projection: UTM Zone 8N
Job: MRK-05-02-YT
Geosciences Ltd.

nnal : Counta / a	
9 - 12	
• 6 - 9	
200 300 400 500 600	
metres	
IAD83 / UTM zone 8N	
MINERALSINC	
	-
ometer Survey Th Channel	
Mining District Mayo	-
Projection: UTM Zone 8N	
JOD: MKK-05-02-YT	
Geosciences Ltd.	
	4

515000E	-134°40'				520000E		134°32′	<u> </u>			Name and the second	ana ana amin'ny fanana amin' amin	52500	0E
3 · L		0)}/5/(
	A Jos				S								MU	20
				S ()						Real Provide State				
V +					*		200		M		SS SS			
			n.					<u>T</u>						[]
			K IN						(Gao)			5		
			JE 143				125		5.0	N.		- Contraction of the second se		7
		CURIE 146 YC41707	CURIE 145 YC41705	ake			S S S	4X						
E 224 1785		CURIE 152 CU YC41713	URIE 148 C41709 CURIE 147 YC41708 CURIE	E 144		(B)		PLANCK 2 YC41419	PLANCK 1 YC41418	PLANCK 31 YG41448	PLANCK 32 YC41449	PLANOK 34 YG41451	PLANCK 33 YC41450	PLAN
CURIE 219 YC41780		CURIE 154 YC41715 CURIE 154 YC41710	CURIE 130 YC4 YC41711 CURIE 131 CURIE 141 YC41702	CURIE 142 YC41703				PLANCKA YC41421	PLANCK 3 YC41420	PLANCK 29 YC41446	PLANCK 30 YC41447	PLANCK 36 YC41453	PLANCK 35 YC41452	PLAN
E 221 CURIE 205 1782 YC41766 CURIE 203 CURIE 2	208	URIE 156 YC41712 CURIE 153 CURIE 153 YC4169	29 CURIE 134 CU YC41695 YC41695	RIE 139 241700 CURIE 14 YC41701	CURIE 138			PLANCK 6 YC41423	PLANCK 5 YC41422	PLANCK 27 YC41444	PLANCK 28 YC41445	PLANCK 38 YC41455	PLANCK 37 YC41454	PLAN YC4
VC41764 VC4176 5/201 OURIE 206 VC41767 VC41767	69 CURIE 20 CURIE 158 CURIE 210 YC41719 CURIE 210	VC41714 CURIE 209 VC41770 VC41688	CURIE 132 YO41593	VC41698 VC41698 NTHEA 12 VC416	9C41699 CURIE 136 136 YC41697			PLANCK 8 YC41425	PLANCK 7 YC41424	PLANCK 25 YC41442	PLANCK 26 YC41443	PLANGK 40 ^C YC41457	PLANCK 39 YC41456	PLAN
CURIE 204 YC41765 CURIE 1 YC4172	160 CURIE 155 21 YC41716 CURIE YC417	212 73 CURIE 125 YC41686 YC41686	ANTHEA 7 ANTHEA 7 ANTHEA 7 YB43111	YB43119 ANTHEA 23 YB43130	CURIE 133 YO41694	RIE 78 41639 CURIE 77		PLANCK 10 YC41427	PLANCK 9 YC41426	PLANCK 23 YC41440	PLANCK 24 YC41441	PLANCK 42 YC41459	PLANCK 41 YG41458	PLAN
E 202 CURIE 162 1763 YC41723 CURIE 164 CURIE 1	CURIE 157 YC41718 CURIE 214 YC41775 159CURIE 215	SURIE 123 YC41689 YC41684 ANT CURIE 126 YB	YB43114 ANTHEA 8 YB43115 42742	ANTHEA 21 ANTH YB43128 ANTHEA 20	EA 24 3131 CURIE 82	CURIE 79 YC41640		PLANCK 12 YC41429	PLANCK 11 YC41428	PLANCK 21 YC41438	PLANCK 22 YC41439	PLANCK 44 YO41461	PLANCK 43 YC41460	PLAN
VC41725 VC4172 E 166 CURIE 161 CURIE 1727 VC41722 VC41	20 YC4177 CURIE 211 YC41772 E 216 1779 CURIE 119	E 121 YC41687 4682 CURIE 124 YC41685	ANTHEA 6 YB42743	A 19 YB43129 125 ANTHEA 20	JRIE 84 341645 CURIE 8 YC41642			PLANCK 14 YC41431	PLANCK 13 AYC41430	PLANCK 19 YC41436	PLANCK 20 YC41437	PLANCK 46 YC41463	PLANCK 45 YC41462	PLAN YC4
CURIE 163 CURIE 220 YG41724 VC41781 CURIE	CURIE 213 VC41774 CURIE 117 215 VC41678 CURIE 117 VC41678	IRIE 122 ANTHEA 1 YB42738 C41683	NTHEA 4 YB42741 ANTHEA 15 YB43124	YB43127 CURIE 56 YC41647 I3125	EURIE 83 Y641344			PLANCK 16 YC41433	RLANCK 15 YC41432	PLANCK 17 YC41434	PLANCK 18 YC41435	PLANCK 48 YC41465	PLANCK 47 YC41464	PLAN
E 165 1726 CURIE 222 YC41783 CURIE 217 YC41778	CURIE 115 YC41681	ANTHEA 25 ANTHEA 26 ANTHEA 26 XB43167 ANTHEA 27 YB43168	ANTHEA 13 YB43120 ANTHEA 13 YB43120	CURIE 68 YC41649	CURIE 85 YC41646		GROUT 63 YC42020	GROUT 64 YC42021	GROUT 79 YC42036	GROUT 80 YC42037	GROUT 95 YC42052	GROUT 96 YC42053	BOHR 15 YC39984	BOH
GROUT 11 VC41968 UUT 9 1966 GROUT 12 VC4	UE 113 41674 UURIE 118 YC41879 CURIE 1	CURIE 110 ANTHEA 28 YC41671 YB43169 ANTHE CURIE 107 ANTHEA 3 YC41668 YB43171	EA29 ANTHEA 14 Y 3170 YB43121	URIE 90 C41651 CURIE 89	8		GROUT 61	GROUT 62	GROUT 77	GROUT 78	GROUT 93	GROUT 94	BOHR 13	BOH
GROUT 10 YC41967 GROUT YC41987	CURIE /16 YC41677 23 80 CURIE 114 YC41675	CURIE 109 YC41666 YC41666	CURIE 108 YC41669 CURIE 94	VC41650 OURIE 91 VC41652		\sim	GROUT 59	GROUT 60	GROUT 75	9C42085	9C42050	GROUT 92	BOHR 11	PC3
GROUT 21 1965 YC41978	GROUT 24 YC41981 CURIE YC41	CURIE 103 111 111 572 CURIE 103 YC41664 CURIE 104	E 106 YC41655 F667 CURIE 96 YC41657 CURIE 96 YC41657	33			YC42016	YC42017	YC42032	YC42033	YC42048	PC42049	YC39980	YC3
VC41976 VC419 UT 17 GROUT 20 1874 VC41927	079 YC41992 GROUT 33 GROUT 36 YC41990 YC41993	CURIE 104 YC41685 YC41662 CURIE 102 CU YC41663 YC	URIE 98 241659			15-	YC42014	YC42015	YC42030	YC42031	YC42046	YC42047	YC39978	YC3
GROUT 18 VC41975 GROUT VC419	131 GROUT 34 GR 988 YC41991 YC	OUT 47 CURIE 108 VC41661	CURIE 97 YC41658			m	GROUT 55, YC42012	GROUT 56 YC42013	GROUT 71 YC42028	GROUT 72 YC42029	GROUT 87 YC42044	GROUT 88 YC42045	BOHR7 YC39976	YC3
UT 16 GROUT 29 1973 YC41986	GROUT 32 YC41989 C4000 GROUT 45 YC42002	GROUT 48 YC42005	CURIE 99 YQ41660			o o h	GROUT 53 Y642010	GROUT 54 YC42011	CROUT 69 YC42026	GROUT 70 YC42027	GROUT 85 YC42042	GROUT 86 YC42043	BOHR 5 YC39974	BOI YG3
VC41984 VC41984 VC41985 VC41985	987 VYC42000 YV GROUT 41 GROUT 44 YC41998 YC42001	A2003		<u></u>		- m	GROUT 51 YC42008	GROUT 52 YC42009	GROUT 67 YC42024	GROUT 68 YC42025	GROUT 83 YC42040	GROUT 84 Y042041	BOHR 3 YC39972	BOI YC3
GROUT 26 YC41965 YC419	139 GROUT 42 996 YC41999		ZJ) Ö				GROUT 49. YC42006	GROUT 50 YC42007	GROUT 65 YC42022	GROUT 66 YC42023	GROUT 81 YC42038	GROUT 82 YC42039	BOHR 1 YC39970	BO
IE 348 GROUT 37 11909 YC41994	GROUT 40 YC41997					<u>E(N)</u>	BETA 15 YC41496	BETA 18 YC41497	BETA 18 YC41499	BETA 17 YC41498	BETA 47 YC41528	BETA 48 YC41529	GROUT 97 YC42054	GRO YC4
VC41907 VC419 VC41907 VC419 IE 357 GURIE 344 VC41906	138 995						BETA 13 ,YC41494	BETA 14 YC41495	BETA 20 YC41501	BETA 19 YC41500	BETA 45 YC41526	BETA 46 YC41527	GROUT 98	GROL YC4
CURIE 355 YC41916		SN				A \$ 3.85	BETA 11 YC41492	BETA 12 YC41493	BETA 22 YG41503	BETA 21 YC41502	BETA 43 YC41524	BETA 44 YC41525	GROUT 111 YC42068	GROL YC4
IE 350 (1914			V Contractions				BETA 9 YC41490	BETA 10 YC41491	BETA 24 YC41505	BETA 23 YC41504	BETA 41 YC41522	BETA 42 YC41523	GROUT 112 YC42069	GROL YC4
							BETA 7 YC41488	BETA 8 YC41489	BETA 26 YC41507	BETA 25 YC41506	BETA 39 YC41520	BETA 40 YC41521	GROUT 125 YC42082	GROL YC4
							BETA 5 YC41486	BETA 6 YC41487	BETA 28 YG41509	BETA 27 YC41508	BETA 37 YC41518	BETA 38 YC41519	GROUT 126 YC42083	GROU YC4
							BETA 3	BETA 4	BETA 30 VC41511	BETA 29 YC41510	BETA 35	BETA 36	GROUT 139	GROU
37777833							BETAI	BETA2	BETA 32	BETA 01	BETA 33	BETA 34	GROUT 140	GRO
							(YC41482	YCA1483	TC41D18	YC41512	YCA1514	YC41515	YC42097	
												S	La	kes
											The second se			
							Ne -							
										6])	{	
										Ħ	/////	/	5+	
							M				\sim			
						1MA 19 GAMMA 21 GAMMA 91548 YC41550 YC415	223 GAMMA 25 52 YC41554	GAMMA 27 0 YC41556	SAMMA 29 YC41558	AMMA 31 0 YC41560	AMMA 33 G	AMMA 35 CG41564	\sum	
100m					GAN	IMA 20 GAMMA 22 GAMMA 11549 YC41551 YC415	24 GAMMA 26 G	SAMMA 28	GAMMA 30	AMMA 32 G	AMMA 34 G	AMMA 36	B	
					GAM	IMA 18 GAMMA 16 GAMMA	14 GAMMA 12 C	SAMMA 10	GAMMA 8	замма 6	SAMMA 4	AMMA 2		
					GAN	IMA 17 GAMMA 15 GAMMA	43 9041541 13 GAMMA 11	GAMMA 9	SAMMA 7	YC41535	AMMA 3	AMMA 1		
					YC	41546 YC41544 YC415	42 YC41540	YC41538	YC41536	YC41534	(C41532	C41530	and a	
					E									
	E E Mart													
	BORIS 68	BORIS 66 BORIS 64 BORIS 6	BORIS 60 BORIS 58		STILLS.				SI					F
BORISE YC3996	93 BORIS 94 YC39936 31 YC39962 BORIS 67	YC39934 YC39932 YC39932 BORIS 65 BORIS 63 BORIS 6	BORIS 59 BORIS 57	73///										
BORIS	91 BORIS 92 YC39935 59 YC39950	YC39933 YC39931 YC3992	26 BORIS 24 BORIS 22									The second se		
BORIS YC399	89 BORIS 90 97 YC39958	YC39709 YC39707 YC39707 BORIS 29 BORIS 27 BORIS 27	25 YC39703 YC39701 25 BORIS 23 BORIS 21		550		R				R		1.t	
BORIS	87 BORIS 88 YC39710 55 YC39958	YC39708 IGOR 2: IGOR 1 YC38952 YC38958 21	IGOR BORIS 7 BORIS 8								JUL S			
BORIS	85 BORIS 86 953 YC39954	IGOR 20 IGOR 17 YC39571 YC39558	YC3937539696 YC39687					SL				(The second sec	1000	
BORIS	YC39952	18957 IGOR 23/ YC VC38879 IGOR 18GOR 5/ IGO	339557 YC39684 YC39685											
BORIS	IGOR 14 //GO YC38950 //C3 841 BORIS 82 949 //C39950	13 13 196128 Y 96 18959 160R 24 YC39900 YGOR 7	YC39682 YC39663		620000F								FORM	
515000E	-134°40'			1	520000E		-134°32'						52500	υE

includes 11 loose maps

•

•

.

•

. .