YEIP 2006 -004

> 2006 YMIP 06-004 Host Project 115 H-04

Geochemical & Prospecting Report

on the Host Claims

Whitehorse Mining District

NTS 115 H / 4

Lat. 61 08 16.5 Long. 137 53 05.1

Ruby Creek Valley

by: Brad Mackinnon Owner

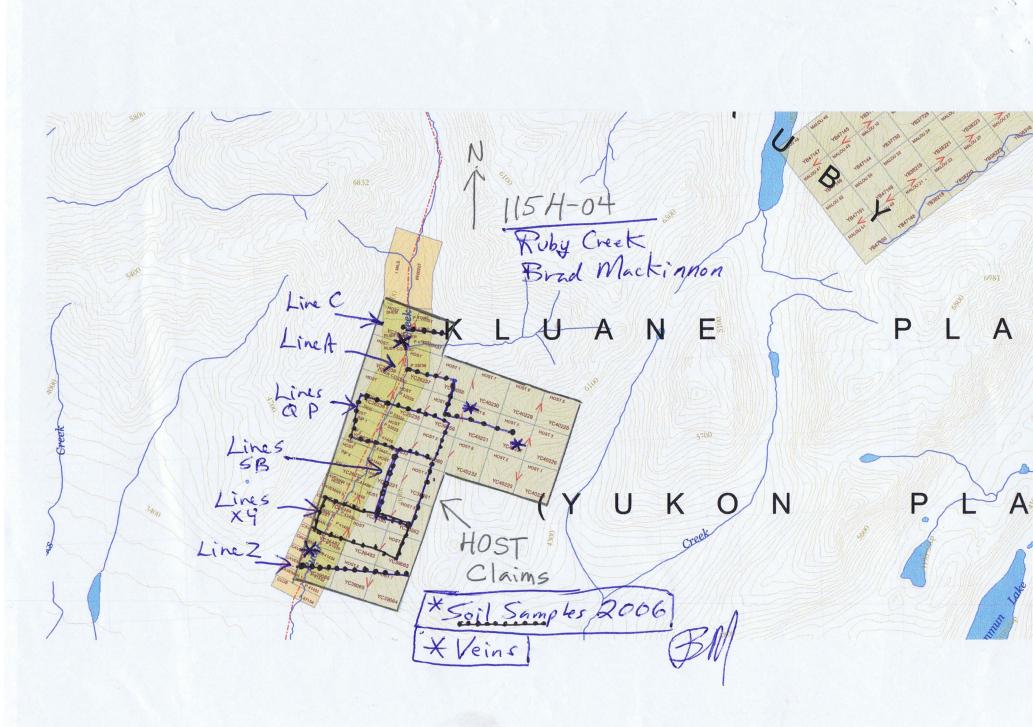
Glacial Influence:

Ruby creek valley was at one time gouged by glacial ice. It seems apparent that that the main ice flow moved up valley to the confluence of Little Ruby Creek. At this point the valley rapidly narrows. This would have caused the ice to stall somewhat before being forced up and over the mountain to the west side. Air photo's can substantiate this idea. Most likely there would also have been an existing valley glacier. This is supported by a rapid rise in bedrock and Ruby Falls which is not to far above Little Ruby.

The dominance of locally derived clasts within the valley gravels shows that transport of materials by ice was not excessive. Air photo's also show that 4th of July Creek, Granite Creek and Ruby all flowed westward to Kluane Lake at one time. As Cultuss Creek valley filled with sediment, and Glacial Lake Kloo receded, a new course was cut southerly to Jarvis River.

Solifluction:

As solifluction appears to be the most dominant mechanical event at present, it must be contemplated from a prospecting point of view. Most glacial debris remained within the valley which would have contributed to the rapid infill of lower Ruby. The drainage area of Ruby Creek is to small to provide sufficient water to transport large volumes of material. The advance of side hill debris by solifluction has been the main cause of valley build up.


Miners of the 1900's sunk shafts over sixty feet. Written history is difficult to come by, so I assume that ground water would have become a great problem. Placer gold is recovered throughout the entire gravel profile which supports side hill creep as a gold source. Pay streaks are rare, yet the ground pays well enough to mine. At this point, only soil samples from the "active" layer have been analyzed. Transport of pay into the creek valley must have mostly occurred in this top section of glacial till.

As the 'freeze-thaw cycle" is the most crucial element to solifluction, this may help to explain the presence of dendritic gold. Some have speculated that dendritic gold may have formed due to percolation. As gold is rather inert, I doubt this theory. Features of this type of gold reflect the workings of "Jack Frost."

The generally rounded nature of the majority of my gold also supports side hill creep. This gold was probably transported a very short distance by glacial ice before being frozen in place.

Conclusion:

Minor glacial transport, affected by major solifluction, perhaps best describe the transport of Ruby Creek gold. Unusually high Au soil sample analysis reflects lack of distribution, or possibly a nugget effect.

2006 / OVERVEIW

During the 2006 season I was fortunate enough to acquire funding through the YMIP. Previous to this I had been financing all work out of my own pocket.

The majority of previous soil sampling was conducted mostly within the central portion of my claim block due to the presence of dendritic, crystalline and quartz- gold found in my placer concentrates. Several geologists had suggested in past years that my gold may have been released from glacially transported clasts. Others had suggested that I was merely collecting gold that had been re-concentrated from glacial till. How far would gold travel in till without being distorted from a crystalline state? As these were questions that had been asked, I decided to utilize the YMIP funding to either prove or disprove these theories.

For several years I have been studying all I could find on glacial transport as well as the origins of various gold types. The local schist of Ruby area does not hold many clues as far as glacial striations. This rock is subject to rapid surface deterioration due to weathering. Even so, some other glacial features do lend evidence to ice-flow. Evidence points to a strong erosional event having occurred within the lower portion of Ruby Valley up to its junction with Little Ruby Creek. As the area has been subjected to several ice episodes it may also be fair to assume that a valley glacier was already present when major ice flows pushed up-valley.

Previous to 2006 I had already determined that it was most likely that some of my "fresh" gold samples had most likely been transported down-hill by solifluction. Lets give the critics some benefit of doubt here and say that yes, some gold has been re-concentrated from glacial till.

Previous soil samples had been collected at about 100 meter intervals. Some of the high analysis numbers look rather lonely and may have perhaps looked better with samples at closer intervals. This year I took samples at 30-meter intervals. The main focus of my 2006 sample grids was to determine the effects or direction of glacial transport. The generally insignificant analysis values recovered to the south may help suggest that rich gold bearing till was not pushed into the valley. Some fairly strong results at the head of the valley could suggest another vein outcrop or perhaps these are due to transport of gold-rich till being pushed up valley from a local source.

The results from this season's soil program should narrow down the main target area quite dramatically. It appears that the old-time miners were right once again. Look straight up hill. As I have pointed out elsewhere the turn of the century miners had drifted into both banks not far above my current placer workings. These cribbed drifts are still well preserved probably by permafrost.

Daily Description of Work YMIP – Host Project 06 – 004

. *

Due to work commitments I did not get moving towards Ruby Creek until June 15th. The road had many washouts and so I had to spend some time making it passable. Final materials for my building project arrived and so I had to head back out to do final touches. If I had been born rich I could concentrate solely on mining.

All soil samples were designated to a line letter as well as sample number and gps location and elevation.

July 12th Cam and myself made our first foray up the mountain to the east. We used atv's to get close to the base and then spent about 2 hours reaching the top. Our objective was to examine closer the veins that we had found in 2005. Some time was spent digging at the schist / quartz contacts to try and get less weathered samples. About 30 pounds was taken from two veins and we left our packs here while hiking right to the peak to see if we could find other outcrops. We did find one fairly significant vein just off my claim block to the northeast. No samples were taken as we already had a fairly good load for the trip back down the mountain.

July 14th Carn and myself headed up the mountain to the east once again. The objective today was to collect soils and look for outcrops along the spur that juts out on the south side of Little Ruby Creek. After leaving the 4 wheelers we hiked up the same gully as the day before to about the 5000-foot level. We then headed west back towards the creek and collected soils. Eventually we reached the point of the spur where we had to turn to the north as we were trying to maintain a fairly constant elevation. We decided that it was getting to late in the day to go back to the atv's so headed straight down to the creek. We called this line A.

July 15th Cam and myself headed back up the mountain to get the 4 wheelers. I was to worn out to try climbing again today so decided we would head south down the creek. We poked around on both sides of the valley and so called these soil samples E and W.

July 16th Cam & self headed down the valley again to where the road meets Ruby Creek. We headed north east towards a quartz outcrop about half way up the mountain. The quartz turned out to be large transported chunks. Heading back to the 4 wheelers I decided to take soil samples and we called these NZM. Left for Haines Junction about 7 p.m.

July 27 Cam and self decided it looked like it would be a good day for hiking so took 4 wheelers down to my bottom claim. I wanted a line of soils here to see if results might indicate glacially transported gold being pushed into the valley. We headed for the rounded knob to the east. The higher we got the thicker the willows became. The only notable observation was that most rocks we encountered were granite. The nearest granite outcrops that I am aware of are many miles away so this may help confirm that glacial ice pushed northerly or up valley.

Aug. 2nd the main ram on hoe cracked again so decided to go for a hike. Nice and sunny. We hiked up to Little Ruby and then followed ridge up to the top. The wind was howling and we had to take shelter behind rocks to get warm. I wanted to walk the entire ridge to the bottom of Ruby valley to see if there were any more quartz outcrops. The

wind howled all day until about 4 pm. The only odd thing we seen were some highly deformed schist with thick layers of waxy green rock that may be "potstone". We got to the big notch just above the bottom knob of the valley. Arrived back to camp about 7 p.m.

August 18th. Cam and myself headed down valley again to do soils on line Z to the west this time to be sure that gold bearing till had not been pushed up into the valley. Local schist was more dominant along this side than we had noticed on the opposite side of the valley. The only other thing we noticed was the presence of pink colored quartz, which we had not observed elsewhere. Some of my enhanced gold photos show a pink tinge but we never encountered any veins.

August 21st. I'm getting real tired of working on things instead of mining so decided to collect soils again. Thinking of hard rock gold being straight uphill from where you find it I decided to do a grid or rectangle around the area where I had recovered my gold samples. We headed up the mountain to the east starting about 400 feet upstream from camp. This we called line P and across the top we called it PQ. Coming back down about 400 feet below camp was line Q. Once again we gps'd all sample sites and replaced plugs so that moose would not break a leg. Large plugs typically have to be cut out on this side of the valley due to the thick layer of topsoil. Many of these sample sites are frozen under the protective mat, which makes getting decent samples rather difficult.

August 22nd. I have realized that this summer is basically a total loss as far as placer mining goes so must make the decision to now try and meet the requirements of the YMIP. Time in the summer is short; especially this summer. I know in my heart that the many soils as well as my placer testing will be of great benefit to my future endeavors. I will for sure have to find winter work this year. Today we headed up the mountain to the west behind my cabin in order to complete grid PQ. The initial couple of holes made me think that this was going to be a breeze because there was very little top soil. The willows became so thick that we had to step on branches to make our way forward. Coming back down was easier as the willows generally lean downhill.

August 23rd. This year I am going to find where my gold is coming from and so today Cam and I headed up the creek to look for other veins or anomalies. On the way back we went up Little Ruby and did some panning but never seen anything exciting. I know that others have tried some testing on this tributary in the past without much luck. Previous soils have also been weak in this area. Bostock reports that the turn of the century miners never found much gold above the confluence of Little Ruby and the main creek. Made the decision to dismantle sluice plant and concentrate fully on YMIP. Time flies by.

September 01. Cam is gone back south again to play hockey. Sometimes I'm not sure who's dream is bigger, his or mine. I suppose he comes by it honestly. Tara is done her guiding job and so is now going to spend the month of September with me on Ruby. Decided to hike ridge on west side today to look for outcrops or anomalies. We loaded the 4 wheeler into the back of the truck and hauled it to the bottom of the creek to save a 2 mile hike up hill at the end of the day. Got back to the cabin about 10 a.m. and then headed up mountain. Once we got out of the willows the going was not to bad. Only one vein was found which was surprising as there are many veins at the creek level. I would love to have a larger hoe so that I could do more aggressive testing at the creek level. There must be some simple explanation as to why veins are so frequent at base level yet do not seem to continue into the higher elevations even though the host rock seems very similar. Bostock reports also mentioned that the bedrock drops off suddenly about 800 feet below my current camp location. Shafts to 60 feet deep failed to reach bedrock where-as my deepest bedrock intercept was 22 feet. It has also been suggested that mushy bedrock I dig up may be in fact fault gouge. Arial photos also indicate a possible fault line at this point that trends in a curve towards the KIllerman Lake Property.

September 04. Tara and I now have the testing of the Caveman placer claims underway. As today is sunny we decided to go down the creek and examine another quartz outcrop that we had spotted the previous day higher up the mountain. Climbing up to this spot took much longer than expected due to the steepness. This is a very large and impressive outcrop similar to the one at the top of the mountain to the east. Assay results were very poor. I just received these a couple of days ago.

September 15th. Hiked up Ruby and then up mountain above Rick's cabin. Collected soils on the way back down and then made our way down into the canyon. Walked upstream to look at the large clay banks. These are a very hard clay with large chunks of local schist poking out at higher elevations. Hard to fathom that this bank could have survived many years of flooding or rain. Possibly the result of a large slide. Found a vein in the canyon on the way back down and took quite a large sample. Assay was very poor.

September 27th. Tara and self took 4 wheelers down the valley. Decided to spend a few hours searching for the source of the pink quartz on the west side. Never found any veins but did notice that the schist in this area also has a pinkish sheen. Topsoil is also very thick in this area and many large slabs of rock lying about. Perhaps a glacial advance may have died off near this point. Arial photo's show a large river delta at lower elevations which indicates that Ruby and 4th of July creeks most likely flowed west at some time not to far in the past. Tara has to be out for speed skating in Whitehorse tomorrow night so headed out to the Junction.

September 29th. Laura came back in with me for the weekend to try and finish things off. Took 4 wheelers down valley to the top of the Caveman group of claims and collected soils on the east side. XY lines. Previous high soils suggested that there could also be some form of hillside supply in this area. Resulting analysis from this season suggests that the source is most likely upstream. One sample from the west bank at quite a distance above the creek had a return of over 5000 ppb Au.

September 30th. Laura and I headed up the east side to do a large grid on the side of the mountain where I had a sample of over 4000ppb Au in 2005. Line SB.

October 1st. We spent the day drying, screening and indexing all remaining samples.

October 2nd. Packed up and headed back to Haines Junction.

AA					1000			ont		tir	g)	PRO		TI	?ro	1ec	:t	Rul	<u>oy</u>	TIF Fi ≊d by	le	#	A6(082	58		Pagi							Å
SAMPLE#	Mo ppm	Cu ppm		Zn ppm				o Mr n ppn		As ppm			u Th bppm									Cr ppm		Ba ppm		8 ppm					-	Sc ppm		SG %pp
G-1 A-1 A-3 A-5 A-7	.9 .9	1.6 66.9 96.6 52.3 43.9	4.4 4.5 4.5	90 92 85	.2 .3 .1	64.8 91.4 58.5	21.2 30.2 22.2	2 4 3 5 2 524 2 418	3.81 3.77 3.93	10.1 11.2 17.3	.9 1.7 .8	18. 19. 13.	9 3.6 5 4.7 6 2.6	43 42 32	.2 .2 .1	.3 .4 .2	.1 .1 .1	82 79 92	.46 .50 .42	.081	15 24 12	51 49 59	1.06 .97 1.18	138 103 164	.102	<1 1 <1	2.08 1.99 2.23	.012	.48 .40 .57	.1 .1	.02	4.7 4.8 4.9	.3<.0 .3<.0 .3<.0 .4<.0 .4<.0	15 15 15
A-9 A-11 A-13 A-15 B-1	.7 .7 .6	34.5 43.6 37.8 29.2 30.4	5.7 4.8 5.3	83 89 95	.2 .1 .1	38.1 41.4 38.0	14.7 16.4 15.3	7 312 4 367 3 371	3.58 3.98 3.45	19.7 31.6 14.8	1.0 .6 .5	98. 34. 104.	5 3.1 5 2.8 8 3.1	28 27 29	.1 <.1 .1	.2 .2 .2	.2 .2 .2	88 85 79	.43 .35 .39	.055 .075 .072 .087 .091	9 9 8	57 55 54	1.07 1.16 1.13	146 136 120	.113 .122 .117 .104 .095	1 <1 <1	2.22 2.35 2.19	.008	.26 .37 .34	.1 .1 .1	.02 .02 .01	4.8 4.4	.3<.0 .3<.0 .3<.0 .3<.0 .2<.0	15 15 15
8-3 8-5 8-7 8-9 8-11	.6	38.1 26.3 27.8 50.1 29.1	4.3 4.1 4.5	84 73 62).1 < .1	32.9 30.9 33.1	13.8 11.6 16.2	3 440 5 275 2 391	3.49 3.19 3.08	8.7 6.6 6.6	.6 .7 .6	3. 2. 2.	2 3.1 0 2.6 2 2.2 2 2.6 9 2.4	29 25 31	.1 <.1 .1	.2 .2 .4	.1 .1 .1	80 72 73	.42 .36 .48	.056 .085 .070 .070 .063	7 8 10	55 50 50	1.12 1.02 .97	140 125 110	.120 .107 .109	1 1 1	2.14	.010 .009 .014	.32 .26 .20	.1 .1 .1	.02 .02 .03	4.2	.3<.0 .3<.0 .2<.0 .2<.0 .2<.0	15 15 15
8-13 8-15 8-17 8-19 C-1	.3 .7 .7	51.1 27.9 34.4 32.6 41.2	4.2 3.7 5.0	80 87 91	<.1 .1 <.1	35.9 38:5 36.8	14.2 15.8 15.4	291 378 434	3.23 3.64 3.67	5.4 7.3 9.6	.6 .5 .6	3.4 1.4	2 2.8 4 2.8 0 2.9 4 2.3 4 2.8	25 26 26	.1 .1 .1	.2 .2 .2	.1 .1 .1	77 87 89	.33 .35 .33	.084 .065 .088 .064 .102	8 8 9	56 63 60	1.15 1.21 1.19	149 181 179	.138 .145 .127	<1 <1 1	1.76 2.24 2.39 2.27 2.36	.010 .008 .010	.39 .42 .31	.1 .1 .1	.01 .01 .02	4.6 4.9 4.6	.2<.0 .3<.0 .3<.0 .3<.0 .2<.0	5 5 5
C-2 C-3 C-4 C-5 C-6	.6 .6 .8	47.1 36.6 34.4 50.7 50.6	3.7 3.7 4.0	63 85 84	.1 <.1 .2	31.6 42.8 44.6	11.7 15.0 18.1	365 395 507	3.51	8.7 10.4 15.9	.6 .5 .7	1.0 1.1 36.0	5 1.8 1 2.3	'30 26 32	<.1 <.1 .1	.2 .1 .2	.1 .1 .1	71 83 87	.46 .34 .41	.069	9 7 11	45 52 53	.96 1.13 1.10	165 136 148	.097 .136 .125	1 1 1	2.30 1.96 2.27 2.29 2.33	.010 .007 .008	.21 .44 .41	.1	.02	3.7 4.3 4.7	.2<.0 .2<.0 .3<.0 .3<.0 .3<.0	5 5 5
1T-1 1T-2 RE MT-2 1T-3 1T-4	.6 .6 1.1	38.6 48.0 49.1 77.4 52.2	2.9 3.0 4.0	76 80 81	<.1 .1 .3	41.3 44.2 53.9	15.8 15.8 19.6	444 461 579	3.27 3.34	23.9 24.0 28.9	.5 .5 .8	48.0 12.2 17.0	2.0 3 2.7 2 2.6 4 1.8 3 1.7	38 36 32	.2 .2 .1	.1 .2 .2	.1 .1	60 62 78	.96 .91 .52	.091 .119 .111 .101 .087	9 9 9	42 43 54	1.19 1.08 1.13 1.17 .93	144 154 191	.086 .089 .097	1 1 1	1.81 1.87	.008 .008 .009	.47 .49 .54	.1 .1 .1	.31 .32 .28	3.2 3.3 3.8	.2<.0 .2<.0 .2<.0 .2<.0 .2<.0	5 5 5
1T-5 NZ-1 NZ-2 NZ-3 P-21	1.2	49.5 27.9 28.4 32.7 34.4	3.8 3.3 3.8	72 45 66	<.1 <.1 <.1	29.2 25.0 35.0	16.6 9.2 12.4	571 320 394	4.88 2.13 2.74	35.5 7.0 14.7	.5 .4 .5	191. 8. 7.9	5 1.4 9 2.0	32 29 29	.1 .2 .2	.3 .2 .2	.1 .1 .1	69 48 61	.62 .58 .55	.089	8 9 8	28 38	.87	111 51 94	.087 .065 .087	1 1 1	1.56	.011 .011 .010	.21 .14 .25	.1 .1 .1	.41 .31 .25	3.2 2.8 3.1	.2<.0 .1<.0 .1<.0 .2<.0	5 5 5
GROUP 1D (>) CONC - SAMPLE	X - 15 ENTRAT	.0 GM ION EX	SAMPL	E LE	ACHE	ED WIT	TH 90 S. S	ML	2-2-2	HCL-I	INO3- Ay be	H20 /	T 95	DEG.	. C F TACKE	OR O	NE H REFR	OUR, ACTO Rer	DIL RY A	UTED '	TO 3 APHI	OD M TIC	L, AN SAMPL	ALYSI Es ci	ED BY AN LIN	ICP	-MS.		ß	3.8	A	oT vmon	d Chai	

ACHE ANALYTICAL

Big Bud Contracting PROJECT Project Ruby FILE # A608258

Page 2

ACHE ANALYT	ICAL																												Anno inclusione and a			-	ACHE	ANAL
SAMPLE#	Mo ppm	Cu		Zn			Co ppm			As ppm				Sr ppm					Ca %		La ppm			Ba ppm	Ti %		Al %			W mag				Gi ppr
G-1 P-23 P-25 P-27 P-29	.5 .8 .9 .8	1.9 46.6 52.7 67.5 42.3	2.9 4.9 4.9 5.7	39 98 90 80	<.1 .2 .1 .2	5.7 46.3 47.7 47.8	3.6	431 385 412 394	1.52 3.62 3.70 3.27 3.20	<.5 20.6 12.0 13.0	1.6 .8 .8 1.4	1.9 6.2 2.7 3.7	3.2 2.6 2.6	54 40 36 42	<.1 <.1 .1 <.1	<.1 .2 .2	.1 .2 .1 .2	29 82 88 73	.54 .74	.064 .062 .058	6 8 8 12	53 56 58 48	.51 1.10 1.13 .94 1.03	128 134 141	.103 .119 .082	1 1 1	.97 2.18 2.18 1.97 1.98	.010 .010 .010	.38 .40 .25	.2 .1 .1	.01 2 .05 4 .02 4 .02 4	.3	.3<.05 .3<.05 .3<.05 .2<.05 .2<.05 .3<.05	
P-31 PQ-1 PQ-2 PQ-3 PQ-4	.6 .6 .5	40.9 44.8 44.1 46.9 46.4	6.5 6.7 4.8	78 94 82	.6 <.1 .2	37.2 33.8 36.6	11.0	325 241 441	2.97	7.2 6.0 9.8	.9 1.1 .7	5.2 4151.2 22.0 279.0 908.6	2.8 2.7 1.9	30 33 44 40	.1 .2 .3 .3	.2 .4 .2	.1 .1 .1	78 75 70	.49 .67 1.03 .73 .49	.081 .113 .099	10 10 14	52 49 47	1.05 .97 .97	120 146 150	.127 .106 .106	1 2 1	1.93 1.91 1.88 1.82 2.22	.012 .011 .009	.23 .20 .31	.2 .1 .1	.02 4 .22 4 .02 5 .02 4 .07 5	.3	.2<.05 .2<.05 .2 .06 .2<.05 .2<.05	t t t
PQ-5 PQ-6 PQ-7 PQ-8 Q-1	3.3 .7 .5	25.1 103.6 29.7 40.2 33.8	5.4 4.6 5.0	179 97 85	.3 .3 <.1	84.4 37.0 40.9	67.5 13.7 15.9	10293 377 378	6.56 3.35 3.92	17.7 6.5 11.0	1.6 .5 .9	1764.6 250.6 1334.5 9.0 1713.4	4.3 2.4 2.7	136 29 27	2.8 .1 .1	1.3 .3 .3	.1 .1 .1	71 86 81	3.58 .48 .41	.307 .086 .070	18 8 11	51 60 53	.86 1.13	369 157 156	.095 .137 .123	7	2.32 2.16 2.13	.026 .008 .010	.28 .34 .26	.1 .	.01 6 .03 4 .02 4	.7	.3<.05 .3 .39 .3<.05 .2<.05 .2<.05	1
Q-3 Q-5 Q-7 Q-9 Q-11	.9 .3 .5	30.8 48.2 36.4 37.2 31.8	5.4 4.4 4.7	76 69 116	.1 <.1 <.1	36.8 30.9 44.7	12.9 12.5 18.8	301 326 579	3.73 2.57 3.92	10.9 4.0 10.6	2.0 .4 .7	180.7 20.9 210.2 161.8 141.6	3.1 2.2 3.2	28 27 35	.2 .2 .1	.3 .2 .2	.1 .1 .1	79 63 99	.47 .46 .50 .66 .58	.094 .098 .085	10 9 9	50 42 65	1.03 .98 1.30	116 98 180	.110	1 1 <1	2.01 1.73 2.43	.010 .014 .010	.25 .23 .40	.1 .	.01 4 .02 3	.3 .6 .6	.3<.05 .2<.05 .2<.05 .3<.05 .2<.05	!
QP-1 QP-3 QP-5 QP-7 SB-1	.8 1.0 2.2	42.3 58.5 38.1 83.4 24.4	4.5 4.3 4.8	82 82 86	.1	52.4 43.4 46.0	17.9 15.8 20.0	405 370 645	3.64 3.44 3.41 3.62 4.22	20.5 16.0 20.0	.8 .6 1.1	6.4 3.9 3.6	2.5 2.2	33 33 37	.1 .1	.3 .2 .3	.1	78 78	.52 .55 .58 .70 .51	.080 .076 .107	12 8 15	52 51 44	1.09 1.09 .90	173 145 149	.115 .115 .104	<1 : <1 : 1 :	2.07 2.08 1.80	.010 .012 .014	.40 .39 .27	.1. .1. <.1.	.02 4 .02 4 .04 4	.6	.3<.05 .2<.05 .3<.05 .2 .06 .3<.05	•
SB-2 SB-3 SB-4 SB-5 X-1	.3	26.1 34.4 27.6 34.3 42.4	4.6 4.4 4.4	84 80 79	<.1 <.1 <.1	38.9 33.6 35.5	16.1 13.3 14.7	379 316 367	3.67 3.51 2.76 3.30 2.54	7.6 4.5 7.7	.7 .8 .6	2.1 8.6 1.8		27	<.1	.3 .2 .2	.1 .1 .1	66 77	.40 .43 .60 .46 2.02	.074 .080 .077	10 9 9	55 49 51		156 136 130	.123 .110 .116	<1 <1 1	2.18	.010 .014 .014	.36 .29 .31	.1 . .1 . .1 .	.01 4 .03 4 .02 4	.6 . .4 . .1 .	.3<.05 .3<.05 .2<.05 .3<.05 .1<.05	
X-3 X-5 X-7 RE X-7 X-9	.5 .5 .5	35.3 45.4 35.3 36.1 24.8	4.1 4.7 5.0	75 69 73	<.1 <.1 <.1	40.7 35.1 35.7	14.3 16.4 17.3	492 321 325	2.36 3.08 3.23 3.31 3.12	7.4 6.9 6.9	.3 .6 .6	2.0 2.6 2.5	1.6 2.1 2.3 2.3 2.0	44 30	.3 .2 .2	.3 .3	.1 .1 .1	73 73 73	3.70 1.36 .64 .63 .58	.096 .089 .090	9 9 9	47 ⁻ 44 ⁻ 46 ⁻	.95 1.13 1.05 1.05 1.00	121 101 99	.108 .114 .112	1 · 1 · 1 ·	1.78 1.88 1.87	.018 .018 .016	.25 .23 .22	.1 . .1 . .1<.	.04 4 .01 4 .01 4	.4 . .4 . .4 .	.1<.05 .2<.05 .2<.05 .2<.05 .2<.05	
STANDARD	20.4	107.5	67.7	378	.8	55.4	9.4	623	2.40	46.8	4.6	69.8	4.2	83	6.2	5.8	4.4	85	1.07	.077	14 2	213	1.04	374	. 128	38	1.14	.089	.46	3.7 .	19 2	.5 4,	.1 .18	

Standard is STANDARD DS7. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data ____ FA

Page 3

ACHE ANALYTI																																		ACME A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	-			o Mr nppn		As ppm				Sr ppm					Ca %		La ppm			Ba ppm		8 ppm	Al %					Sc ppm		SG %pp
G-1 X-11 X-13 RE X-13 X-15	.5 .8 .9	2.5 34.8 24.7 25.3 45.4	4.6 4.5 4.2	70 74 74	<.1 <.1 <.1	33.3 34.8 33.9	13. 18. 18.	5 289 7 539 3 577	3.84	8.0 9.3 9.4	.6 .4 .4	1.9 5.7 2.2	2.1 2.2 2.2	25 23	.1 .1 .1		.1 .1 .1	75 80 85	.49	.094	9 7 7	45 48 51	.60 1.00 1.05 1.08 1.28	95 123 121	.112 .115 .126	1 1 1	1.67 1.78 1.84	.015 .013 .013	.17 .27 .28	.1 .1 .1	.01 .02 .01	3.6 3.4 3.6	.4<. .2<. .2<. .2<. .3	05 05 05
(-17 (Y-1 (Y-3 (Y-5 (Y-7	.5 .4 .4	46.7 42.6 49.0 26.9 24.1	4.6 5.5 3.6	77 91 74	<.1 .1 <.1	40.5 42.7 30.9	15. 17. 13.	7 324 5 328 5 330	3.66 3.73 3.27	8.4 7.8 6.5	.6 .9 .5	4.0 3.4 2.5	2.9 2.5 2.3		.2 .1 .1	.3 .3 .2	.1 .1 .1	80 84 76	.69 .46 .54 .45 .47	.075 .082 .101	10 10 7	53 56 50	1.31 1.15 1.19 1.09 1.20	137 168 116	.129 .125 .120	1 1 1	2.19 2.03 2.11 1.82 1.93	.013 .011 .010	.36 .25 .31	.1 .1 .1	.06 .04 .03	4.0 4.8 3.5	.2 .2<. .2 .2<. .2<.	05 09 05
-20 -21 -22 -23 -24	.6 .5 .5	35.3 45.4 37.6 29.9 34.2	5.1 4.0 3.3	80 48 66	<.1 <.1 .1	40.8 30.4 27,8	14. 11. 10.	5 526 2 344 7 356	3.13	8.9 7.3 6.0	.4 .4 .6	3.4 4.6	2.4 2.2 1.5	64 39 33	.2 .1 .2	.5 .4 .3	.1 .1 .1	71 64 66	1.19 2.53 1.37 1.01 1.08	.095 .076 .093	10 9 8	47 40 34	1.02 1.18 .86 .76 .87	119 108 94	.114 .105 .093	2 2 2	1.59 1.28 1.15	.022 .018 .014	.24 .20 .19	.1 .1 .2	.01 .01 .02	4.1 3.5 2.8	.2 .1 .2<.1 .1<.1	05 05 10
-25 -1 -3 -5 -7	.3 1.0 .5	22.0 25.3 83.2 50.3 41.8	2.7 5.6 5.7	48 101 107	<.1 .2 .1	24.3 75.7 43.0	9. 29. 17.	2 335) 477 3 377	2.18	7.2 13.5 9.7	.4 .7 1.5	8.1 569.6 13.5	2.0 4.4 3.5	23 16 35	.1 .3 .2	.2 .2 .3	.1 .1 .1	52 130 80	.85	.103 .059 .097	8 11 10	-27 82 55	.90 .72 1.75 1.17 1.09	54 110 175	.080 .240 .139	1 1 2	1.03 3.24	.012 .015 .014	.14 .80 .34	.1 .1 .1	.01 .01 .01	2.7 7.3 4.9	.2<.0 .1<.0 .6<.0 .2<.0	05 05 05
-9 -11 -21 -23 -25	6 .5 .8	24.2 26.3 36.1 44.1 32.4	3.1 3.8 5.5	72 62 66	<.1 <.1 <.1	33.5 36.8 42.7	11.0 12.0 15.0	5 352 5 362 5 388	3.28 2.92 3.43	4.5 9.2 12.6	.4 .4 .8	32.3 4.9 6.6	1.8 2.0 2.8	20 32 30	<.1 .1 .1	.1 .2 .4	.1 .1 .1	75 77 87	.64 .38 1.05 .61 .57	.069 .101 .076	6 8 15	52 47 56	1.08 1.28 1.21 1.16 1.00	140 117 103	.147 .127 .139	1 1 1	1.94 1.63 1.87	.011 .022 .019	.46 .33 .35	.1 .1 .1	.01 .01 .02	3.8 3.8 6.5	.2<.0 .2<.0 .3<.0 .3 .0	05 05 06
-27 -29 TANDARD	1.1	32.1 140.6 108.2	8.1	102	.4	100.3	20.0	5 426	3.51	9.7	1.6	6.9	1.3	58	.9	1.0	.1	77	.42 1.60 .99	.151	11	42	.90	259	.080	7	1.71	.021	.12	.2	.03	3.6	.2<.(.1 .' 4.4 .2	11

Standard is STANDARD DS7. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data___ FA __

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

ASSAY CERTIFICATE

DATE REPORT MAILED:

SAMPLE#	Au** gm/mt	Pt** gm/mt	Pd** gm/mt
G-1 V-04 STANDARD FA-10R	<.01 <.01 .49	<.01 <.01 .48	<.01 <.01 .49

NOV 1 2006

DATE RECEIVED:

DEC 0 2 2006

File # A608261

Data FA

PHONE (604) 253-3158 FAX (604) 253-171

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-171 (ISO 9001 Accredited Co.)

ASSAY CERTIFICATE

Big Bud Contracting PROJECT Project Ruby File # A608260 Box 5407, Haines Junction YT YOB 1L0 Submitted by: Brad MacKinnon

SAMPLE#	Au** gm/mt
G-1 V-01 V-02 V-03 STANDARD SL20	<.01 <.01 <.01 <.01 <.01 6.03

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150

12-01-06 A11:05 OUT

Data FA

DATE RECEIVED:

NOV 1 2006 DATE REPORT MAILED:.....

	SAMPLE#	Au ppb
	G-1 A-2 A-4 A-6 A-8	1.2 65.7 20.8 51.9 20.9
	A-10 A-12 RE A-12 A-14 B-2	13.6 24.7 13.4 11.2 2.6
	B-4 B-6 B-8 B-10 B-12	7.7 2.1 2.4 2.3 2.5
	B-14 B-16 B-18 P-1 P-2	1.8 1.4 1.8 379.8 18.2
	Р-3 Р-4 Р-5 Р-6 Р-7	58.9 216.7 137.6 84.3 392.1
	P-8 P-9 P-10 P-11 P-12	119.6 516.6 150.7 2004.2 558.5
· · · · · · · · · · · · · · · · · · · ·	P-13 P-20 P-22 P-24 P-26	42.3 4.1 4.7 3.9 2.8
	STANDARD DS7	75.0
GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML - SAMPLE TYPE: SOIL SS80 60C <u>Samples begin</u>	2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ming 'RE' are Reruns and 'RRE' are R	ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

Page 2

ACME ANALYTICAL			ACI
	SAMPLE#	Au ppb	
	G-1 P-28 P-30 P-32 Q-2	1.2 6.1 2.7 5.5 459.4	
	Q-4 Q-6 Q-8 Q-10 Q-20	20.4 32.6 129.1 660.8 4.0	
· .	Q-21 Q-22 Q-23 Q-24 Q-25	2.5 4.4 3.5 2.9 3.7	
	Q-26 Q-27 Q-28 Q-29 Q-30	2.7 6.7 3.0 11.2 3.7	
	Q-31 QP-2 QP-4 QP-6 QP-8	3.0 2.8 6.8 7.6 3.3	
	S-1 RE S-1 S-2 S-3 S-4	2.4 23.1 2.7 4.8 216.0	
	5-5 57 557 55-9	901.4 158.1 202.1 2.6 2.1	
	STANDARD DS7	66.0	
Sample type: SOIL SS80 60C. Sampl	es beginning 'R	E' are Reruns	and 'RRE' are Reject Reruns.

Data (FA

Page 3

ACHE ANALYTICAL		
	SAMPLE#	Au ppb
	G-1 S-10 S-11 S-12 S-13	.7 2.0 3.9 1.8 2.8
	S-14 S-15 S-16 S-17 RE S-17	11.7 1.6 8.2 43.4 1.4
	S-18 S-19 S-20 X-2 X-4	2.2 2.8 4.0 3.0 3.0
	X-6 X-8 X-10 X-12 X-14	2.5 3.5 2.5 2.6 11.4
	X-16 X-18 XY-2 XY-4 XY-6	3.2 3.7 3.6 1.7 3.8
	XY-8 Y-1 Y-2 Y-3 Y-4	3.2 3.5 3.0 2.8 2.9
	Y-5 Y-6 Y-7 Y-8 Y-9	3.0 3.0 1.6 1.5 2.9
	STANDARD DS7	78.1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data F FA

Page 4

😳 Data

FA

ACHE ANALYTICAL			ACHE ANAL
·	SAMPLE#	Au ppb	
	G-1 Y-10 Y-11 Y-12 Y-13	<.5 3.3 5.0 17.5 4.1	: Saga Na
	Z-2 REZ-2 Z-4 Z-6 Z-8	126.1 167.5 281.4 28.0 14.3	
	Z-10 Z-22 Z-26 Z-30 Z-32	29.2 7.7 7.9 60.0 8.0	· .
	Z-36 STANDARD DS7	2:1 79:1	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

Brad Mckinnon - 06 Ym

2006-00

LINE	SAMPLE #	ELEVATION	LATITUDE	LONGITUDE
P P	1 2	1155 1168	61 08.299 61 08.289	137 52.954 137 52.907
Р	3	1177	61 08.285 61 08.272	137 52.869 137 52.839
P	4 5	1182 1191	61 08.272	137 52.800
P P	6	1202	61 08.262	137 52.765
P	7	1210	61 08.251	137 52.726
P	8	1217	61 08.243	137 52.691
P	9	1220	61 08.235	137 52.652
P	10	1231	61 08.223	137 52.595
Р	11	1236	61 08.218	137 52.552
Р	12	1250	61 08.204	137 52.505
Ρ	13	1259	61 08.202	137 52.468
PQ	1	1254	61 08.185	137 52.492
PQ	2	1243	61 08.164	137 52.521
PQ	3	1237	61 08.133	137 52.548
PQ	4	1234	61 08.112	137 52.563
PQ	5	1237	61 08.092	137 52.568
PQ	6	1230	61 08.070	137 52.590 137 52.609
PQ	7 8	1227 1225	61 08.050 61 08.029	137 52.609 137 52.634
PQ	8	1225	01 08.029	
Q	1	1224	61 08.011	137 52.656
Q	2	1218	61 08.018	137 52.692
Q	3	1208	61 08.024	137 52.738
Q	4	1201	61 08.033	137 52.780
Q	5 6	1189 1181	61 08.051 61 08.059	137 52.830 137 52.880
Q	7	1171	61 08.074	137 52.880
Q	8	1161	61 08.088	137 52.985
Q Q	9	1152	61 08.091	137 53.032
Q	10	1144	61 08.096	137 53.080
Q	11	1142	61 08.106	137 53.125
Р	20	1160	61 08.326	137 53.062
Р	21	1171	61 08.341	137 53.086
Р	22	1182	61 08.352	137 53.114
Р	23	1192	61 08.368	137 53.136
Р	24	1199	61 08.378	137 53.171
P	25	1209	61 08.386	137 53.220
P	26	1224	61 08.406	137 53.244
P P	27	1247	61 08.414	137 53.278
P	28 29	1256	61 08.428	137 53.304
P	30	1272 1284	61 08.438	137 53.340
P	30	1284	61 08.449 61 08.463	137 53.366 137 53.396
F	51	1293	01 00.403	13/ 23.320

Z	1	1044	61 07.045	137 56.191
Z	2	1050	61 07.072	137 54.069
Z	3	1053	61 07.067	137 53.968
Z	4	1064	61 07.056	137 53.822
Z	5	1071	61 07.039	137 53.701
Z	6	1082	61 07.032	137 53.596
Z	7	1095	61 07.035	137 53.481
Z	8	1104	61 07.022	137 53.355
Z	9	1121	61 07.024	137 53.242
Z	10	1139	61 07.010	137 53.135
Z	11	1160	61 07.021	137 53.041
Z	20	997	61 06.924	137 54.488
Z	21	998	61 06.934	137 54.615
Z	22	1019	61 06.974	137 54.720
Z	23	1014	61 06.991	137 54.828
Z	24	1014	61 07.010	137 54.966
Z	25	1022	61 07.047	137 55.049
Z	26	1028	61 07.075	137 55.117
Z	27	1031	61 07.074	137 55.128
Z	28	1034	61 07.117	137 55.249
Z	29	1043	61 07.154	137 55.422
Z	30	1047	61 07.168	137 55.478
Z	31	1040	61 07.190	137 55.588
Z	32	1029	61 07.201	137 55.679
Z	33	1032	61 07.239	137 55.815
Z	34	1032	61 07.271	137 55.918
Z Z	35	1026	61 07.299	137 55.988
Z	36	1034	61 07.329	137 56.060

х	1	1081	61 07.592	137 53.673
X	2	1084	61 07.583	137 53.641
x	3	1092	61 07.578	137 53.603
x	4	1098	61 07.563	137 53.580
	5	1105	61 07.548	137 53.549
X		1114	61 07.542	137 53.515
X	6			137 53.474
Х	7	1122	61 07.534	
Х	8	1127	61 07.523	137 53.439
Х	9	1131	61 07.521	137 53.399
Х	10	1136	61 07.517	137 53.358
Х	11	1140	61 07.509	137 53.318
х	12	1152	61 07.502	137 53.273
Х	13	1158	61 07.498	137 53.234
Х	14	1163	61 07.496	137 53.189
X	15	1171	61 07.492	137 53.160
X	16	1175	61 07.492	137 53.123
X	17	1183	61 07.489	137 53.087
X	18	1189	61 07.488	137 53.050
~	10	1105	01 071100	107 001000
XY	1	1193	61 07.503	137 53.033
		1190	61 07.523	137 53.021
XY	2	1195	61 07.546	137 53.002
XY	3			137 52.995
XY	4	1195		
XY	5	1192	61 07.585	137 52.984
XY	6	1193	61 07.602	137 52.971
XY	7	1196	61 07.624	137 52.960
XY	8	1198	61 07.643	137 52.942
Y	1	1188	61 07.652	137 52.976
Y	2	1184	61 07.663	137 53.022
Y	3	1181	61 07.675	137 53.056
Y	4	1178	61 07.686	137 53.096
Y	5	1170	61 07.696	137 53.124
Y	6	1165	61 07.707	137 53.168
Y	7	1163	61 07.719	137 53.199
Y	8	1147	61 07.701	137 53.251
Y	9	1139	61 07.699	137 53.290
Ŷ	10	1128	61 07.703	137 53.332
Ŷ	11	1128	61 07.718	137 53.361
Y	12	1128	61 07.718	137 53.361
Y	13	1120	NO SIGNAL	137 33.301
	15		NO SIGNAL	
Y	20	1101	61 07 799	127 52 500
Y Y		1101	61 07.788	137 53.580
	21	1103	61 07.801	137 53.610
Y	22	1108	61 07.808	137 53.647
Y	23	1121	61 07.819	137 53.680
Y	24	1128	61 07.822	137 53.716
Y	25	1136	61 07.835	137 53.744

S	1	1362	61 08.041	137 52.117
S	2	1364	61 08.025	137 52.153
S	3	1363	61 08.010	137 52.152
S	4	1360	61 07.998	137 52.170
S	5	1357	61 07.979	137 52.191
S	6	1354	61 07.961	137 52.209
S	7	1351	61 07.945	137 52.231
S	8	1345	61 07.930	137 52.257
5	9	1341	61 07.919	137 52.277
5	10	1340	61 07.895	137 52.291
S S S	11	1337	61 07.877(?)	137 52.305
S	12	1330	61 07.859	137 52.322
S	13	1329	61 07.842	137 52.338
S	14	1329	61 07.813	137 52.363
S	14	1323	61 07.795	137 52.378
		1322	61 07.776	137 52.390
S	16		61 07.759	137 52.408
S S	17	1316		137 52.400
S	18	1315	61 07.741	137 52.422
S	19	1310	61 07.725	
S	20	1305	61 07.705	137 52.466
SB	1	1293	61 07.711	137 52.502
SB	2	1283	61 07.719	137 52.539
SB	3	1276	61 07.729	137 52.574
SB	4	1262	61 07.738	137 52.607
SB	5	1252	61 07.749	137 52.637
30	5	1252	01 07.745	157 52.057
В	1	1258	61 07.768	137 52.623
В	2	1249	61 07.788	137 52.610
В	3	1249	61 07.802	137 52.598
В	4	1250	61 07.821	137 52.585
В	5	1252	61 07.839	137 52.577
В	6	1253	61 07.857	137 52.569
В	7	1256	61 07.976	137 52.562
В	8	1253	61 07.893	137 52.555
В	9	1257	61 07.909	137 52.541
В	10	1257	61 07.927	137 52.532
В	11	1259	61 07.944	137 52.519
В	12	1256	61 07.964	137 52.509
В	13	1266	61 07.981	137 52.309
В	13	1262	61 08.001	137 52.497
B	14	1260	61 08.018	137 52.461
В	15	1267		
				137 52.450
B	17	1270	61 08.052	137 52.435
B	18	1272	61 08.068	137 52.424
В	19	1268	61 08.093	137 52.420

Ρ	32	1306	61 08.475	137 53.425
QP	1	1304	61 08.462	137 53.450
	2	1302	61 08.448	137 53.468
QP	3	1302	61 08.432	137 53.476
QP	4	1296	61 08.417	137 53.513
QP		1296	61 08.401	137 53.533
QP	5 6	1290	61 08.380	137 53.555
QP			61 08.364	137 53.567
QP	7	1283	61 08.341	137 53.564
QP	8	1272	01 00.341	137 33.304
Q	20	1262	61 08.320	137 53.568
Q	21	1253	61 08.304	137 53.555
Q	22	1241	61 08.289	137 53.526
Q	23	1232	52 08.274	137 53.504
Q	24	1219	61 08.259	137 53.474
Q Q Q Q	25	1211	61 08.246	137 53.446
Q	26	1202	61 08.233	137 53.417
Q	27	1193	61 08.218	137 53.391
Q	28	1130	61 08.201	137 53.365
Q	29	1174	61 08.188	137 53.331
õ	30	1162	61 08.172	137 53.301
QQ	31	1147	61 08.159	137 53.259
А	1	1416	61 08.195	137 52.006
A	2	1429	61 08.209	137 52.052
A	3	1426	61 08.247	137 52.098
A	4	1435	61 08.277	137 52.104
A	5	1462	61 08.318	137 52.074
A	6	1455	61 08.363	137 52.075
A	7	1402	61 08.493	137 52.055
A	8	1356	61 08.483	137 52.202
A	9	1325	61 08.473	137 52.897
А	10	1297	61 08.459	137 52.408
A	11	1277	61 08.453	137 52.479
A	12	1256	61 08.447	137 52.556
A	13	1238	61 08.437	137 52.661
A	14	1209	61 08.430	137 52.746
A	15	1191	61 08.421	137 52.835
			01 001121	137 52.055
С	1	1280	61 08.756	137 52.611
с с с с с с с с	2	1277	61 08.761	137 52.644
С	3	1270	61 08.760	137 52.679
С	4	1266	61 08.770	137 52.713
С	5	1255	61 08.761	137 52.748
С	6	1243	61 08.756	137 52.783