Geological Report: 2009 Diamond Drill Program on theWildcat Property

Watson Lake Mining District, Yukon Territory

Quartz Claims Involved:

ClaimName	ame Claim Number			
L	1, 2			
WILDCAT	1-25, 27, 29-31, 33, 35-95			
TIPPY	1			

Owners: Gary Lee (50%) and Ronald Stack (50%) Operator: Killdeer Minerals Inc.

Coordinates of the centre of the property: Latitude: 60° 03' 37" N, Longitude: 130° 21' 17" W) UTM coordinates: 424500E and 6658800N (Zone 9; NAD 83)

NTS map 105B.01

Field work completed between September 15th and October 4rd, 2009

March 27th, 2010

Prepared by:

Krzysztof Mastalerz, PhD, P.Geo.(British Columbia)

SUMMARY

The Wildcat property located in southern Yukon includes a significant silver-lead-zinc prospect (Lord showing – Minfile # 105B 001) and several minor mineral occurrences. The property comprises 94 contiguous mineral claims and covers an area of approximately 1950 hectares. The property is situated within the Cassiar terrane and is underlain by the Lower Paleozoic carbonates and siliciclastic sediments which are bound by the intrusive rocks of the Cassiar batholith to the west. The area is cut by several steep tectonic zones and host minor intrusive bodies. The region is known from numerous silver-zinc-lead veins and occurrences of replacement style mineralization, including the Silvertip deposit (15 km south of the Wildcat property).

Mineralization on the property was discovered in the early 1940's. Butler Mountain Minerals aggressively explored the central and westerns parts of the property in 1983 through 1985. The most exploration effort was directed to the Main Zone which was tested by numerous drill holes. Killdeer Minerals Inc. optioned the property in 2008 and completed an exploration program which included ground geophysical HLEM survey and contour soil sampling. HLEM survey identified several conductors - most of them roughly coincidental with the conductors delimited by older, historical surveys. Five high-priority targets have been identified in the NI 43-101 Report. Soil sampling documented several belts of significant base-metals/silver anomalies in the central and western parts of the property.

2009 exploration program on the Wildcat property included 5 diamond drill holes totaling 902.74 metres, reconnaissance rock sampling and limited geological observations and measurements. The first four drill holes were designed to test a postulated manto-style mineralization in the footwall of the fault-controlled Main Zone. The last drill hole tested a set of conductors parallel to the Main Zone (approximately 900 apart). In total, 249 core samples were collected from selected intervals and analyzed by ICP, assay and some other analytical methods in two independent laboratories.

All drill holes intersected numerous intervals of strongly leached and oxidized mineralization and minor intersections of poorly oxidized, sulfide-rich zones. Encountered grades range from a few to 789 g/t silver, and reaches up to 1.43% lead and 4.77% zinc over relatively short intervals. Effects of oxidation/leaching occur at substantial depth in the footwall of the Main Zone and are enhanced by faulting and strong fracturing of the host rocks. The most common types of argentiferous lead-zinc mineralization occur in association with extensive intervals of strong fracturing, faulting and within hydrothermal fluidization breccias. Encountered mineralization types form a very complex system and include some elements which were not addressed properly during the 1983-85 exploration campaigns.

The Killdeer 2009 drill program failed to prove the existence of economically significant, manto-style mineralization in the tested areas. Mineralization in the footwall of the Main Zone resulted obviously from a fracture-controlled propagation of hydrothermal(?) fluids

related to minor Tertiary intrusions. However, the primary mineralization of the zone have been a subject to strong oxidation and leaching processes due to extensive faulting and fracturing which accompany the Main Zone, and which led to its significant degradation and depletion of original ore grades.

However, the program has justified a significant potential of the Wildcat property to host a primary, unleached, higher-grade mineralization of silver/base metals. Some features characteristic of the nearby Silvertip deposit (mineralization focused along tectonic discontinuities and paleokarst features, similar mineralogy and frequent oxidized facies/zones) have been documented at Wildcat property. Additionally, the Killdeer exploration program resulted in discovery of significant copper (up to 1.49 %) and lowgrade gold mineralization on the property.

A limited exploration program which would include geological mapping (with emphasis on stratigraphic correlation and structural features) and soil sampling is recommended to follow up to-date results and to identify other geological settings favorable for potential occurrence of manto-style mineralization of better integrity, as well as continuation of gold and copper mineralization. Field or airborne EM survey should follow where warranted by the results of the mapping and soil sampling programs.

Table of Contents

1.0 Introduction	1
1.1 Location and Access.	1
1.2 Physiography, Vegetation and Climate	1
1.3 Property Definition and Claim Information	
2.0 History of Exploration	5
3.0 Technical Data and Interpretation.	8
3.1 Regional Geology	8
3.2 Property Geology	10
3.2.1 Stratigraphy	10
3.2.2 Structural Geology	16
3.3 Reconnaissance Rock Sample Program	18
3.4 Diamond Drill Program.	22
3.5 Types of Mineralization	36
4.0 Conclusions and Recommendations	42
5.0 References	45
6.0 Statement of Expenditures	48
7.0 Certificate of Prefessional Qualifications	49

List of Figures:

Fig. 1. Location map (1:2,000,000)

Fig. 2. Claim map (1:40,000)

Fig. 3. Main tectonic elements of northern British Columbia and southern Yukon (1:1,750,000)

Fig. 4. Rock sample locations (1:10,000)

Fig. 5. Drill hole locations (1:10,000)

Fig. 6a. Drill hole WT-1 – Lithology and silver concentrations

Fig. 6b. Drill hole WT-1 – Lead and zinc concentrations

Fig. 7a. Drill hole WT-2 – Lithology and silver concentrations

Fig. 7b. Drill hole WT-2 – Lead and zinc concentrations

Fig. 8a. Drill hole WT-3 – Lithology and silver concentrations

Fig. 8b. Drill hole WT-3 – Lead and zinc concentrations

Fig. 9a. Drill hole WT-4 – Lithology and silver concentrations

Fig. 9b. Drill hole WT-4 – Lead and zinc concentrations

Fig. 10a. Drill hole WT-5 – Lithology and silver concentrations

Fig. 10b. Drill hole WT-5 – Lead and zinc concentrations

List of Appendices:

- 1. Rock sample locations and descriptions
- 2. Drill hole logs
- 3. Assay certificates

4. Quality control and assurance program

APPENDICES

- APPENDIX 1 Rock Sample Locations and Descriptions
- APPENDIX 2 Drill Hole Logs
- APPENDIX 3 Assay and Analyses Certificates
- APPENDIX 4 Quality Assurance/Control Program

K Mastalerz Assessment Report 2010

GEOLOGICAL REPORT ON 2009 DIAMOND DRILL PROGRAM ON THE WILDCAT PROPERTY, SOUTHERN YUKON TERRITORY. (105B/1)

1.0. INTRODUCTION

1.1 Location and Access

The Wildcat property is located approximately 90 kilometres west of the town of Watson Lake, southern Yukon Territory, approximately 5 km north of the BC/Yukon boundary (Fig. 1). The property is centered at latitude 60° 03' 37" North and longitude 130° 21' 17" West (NTS map 105B.01) and at UTM coordinates 424500E and 6658800N (Zone 9; NAD 83). Access to the property is by Alaska Highway (13 km east from the Rancheria Motel which is situated at Mile 701 on Alaska Highway), then by 8 km of gravel/dirt road (Silver Tip/Midway Mine Road) and 3 km access road to the property. A basic cabin is located on the property at the "camp area" which also includes core storage from 1983-85 campaigns and from 2009 drill program. Most services and supplies needed for exploration are available in Whitehorse (including a full-service airport) 340 kilometers by road to the northwest of Rancheria. More limited services are available in Watson Lake, approximately 125 kilometers by road east of Rancheria. A helicopter base and hospital are also located in Watson Lake.

1.2 Physiography, Vegetation and Climate

The Wildcat property is situated within the Cassiar Mountains, in the northwestern part of the drainage area of Tootsee River which is the right-bank tributary of the Rancheria River. The property covers two broad east-west trending valleys and adjoining prominent, although unnamed hills. Creeks flow toward the east into the Tootsee River. An informal topographic nomenclature which has been gradually introduced since C.S. Lord (1944) pioneer work is used in this report.

Elevations on the property range from approximately 1150 meters a.s.l. (valley floor in the northern part of the property) to 1650 meters a.s.l. in the southernmost claims. Timberline is at an elevation of approximately 1350 meters a.s.l. Vegetation consists of widely spaced spruce and balsam fir with moderate undergrowth. Some parts of the valleys contain thick cover of willow and alder, and limited grassy areas. Vegetation above the timberline consists of grass, moderately diversified herbs and low, isolated bushes. The uppermost parts of the hills are barren and rugged.

The climate of the property is cool and moderately wet. Temperatures average 10-20°C during the summer, and -20 to -25°C during winter months. Precipitation varies widely, however usually results in relatively thick snow cover in winter. The property is free of snow from April/May through September/October.

Bedrock exposure is relatively common in the topmost parts of the hills, although it accounts for less than 5% of the total area of the property. Several poor quality outcrops of the bedrock still exist as exposed by historical trenching activity.

1.3 Property Definition and Claim Information

The Wildcat property is located in the Watson Lake Mining Division and comprises 94 contiguous mineral claims which cover an area of approximately 1950 hectares (Table 1, Fig. 2). The property is jointly owned by Gary C. Lee and Ron Stack of Whitehorse, Yukon Territory, and is under option (since June 14th, 2008) to Kildeer Minerals Inc. of Vancouver.

Table 1.	Claim status	of the '	Wildcat Pro	perty, Watson	Lake Min	ing Division,	Yukon
m • •			·		-	- "·	
1 erritory	•						

Grant Number	Claim Name	Claim Number	Claim Owner	Recording Date	Expiry Date
YB62265	L	1	Gary Lee - 50%, Ronald Stack - 50%.	9/22/1995	12/22/2019
YB62266	L	2	Gary Lee - 50%, Ronald Stack - 50%.	9/22/1995	12/22/2017
YB87611	TIPPY	1	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87612	WILDCAT	1	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87613	WILDCAT	2	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87614	WILDCAT	3	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87615	WILDCAT	4	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87616	WILDCAT	5	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87618	WILDCAT	6	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87619	WILDCAT	7 -	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2018
YB87620	WILDCAT	8	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2018
YB87621	WILDCAT	9	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87622	WILDCAT	10	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87623	WILDCAT	11	Gary Lee - 50%, Ronald Stack - 50%.	. 10/16/1996	10/16/2019
YB87624	WILDCAT	12	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87625	WILDCAT	13	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87626	WILDCAT	14	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87627	WILDCAT	15	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87628	WILDCAT	16	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87631	WILDCAT	17	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87632	WILDCAT	18	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87635	WILDCAT	· 19 ·	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87637	WILDCAT	20	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017
YB87651	WILDCAT	21	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2017

Page 3

-

•

-__

.

YB87652	WILDCAT	22	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2018
YB87653	WILDCAT	23	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87654	WILDCAT	24	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2019
YB87655	WILDCAT	25	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2018
YB87656	WILDCAT	27	Gary Lee - 50%, Ronald Stack - 50%.	10/16/1996	10/16/2018
YB91856	WILDCAT	29	Gary Lee - 50%, Ronald Stack - 50%.	10/28/1998	10/28/2018
YB91857	WILDCAT	30	Gary Lee - 50%, Ronald Stack - 50%.	10/28/1998	10/28/2018
YB91858	WILDCAT	31	Gary Lee - 50%, Ronald Stack - 50%.	10/28/1998	10/28/2017
YB91859	WILDCAT	33	Gary Lee - 50%, Ronald Stack - 50%.	10/28/1998	10/28/2017
YB92576	WILDCAT	35	Gary Lee - 50%, Ronald Stack - 50%.	1/28/2000	1/28/2018
YB92577	WILDCAT	36	Gary Lee - 50%, Ronald Stack - 50%.	1/28/2000	1/28/2018
YB92578	WILDCAT	37	Gary Lee - 50%, Ronald Stack - 50%.	1/28/2000	1/28/2018
YC73401	WILDCAT	38	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73402	WILDCAT	39	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73403	WILDCAT	40	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73404	WILDCAT	41	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73405	WILDCAT	42	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73406	WILDCAT	43	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
¥C73407	WILDCAT	44	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73408	WILDCAT	45	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73409	WILDCAT	46	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73410	WILDCAT	47	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73411	WILDCAT.	. 48	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008 .	6/30/2018
YC73412	WILDCAT	49	Gary Lee - 50%; Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73413	WILDCAT	50	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73414	WILDCAT	51	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73415	WILDCAT	52	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73416	WILDCAT	[•] 53	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73417	WILDCAT	54	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73418	WILDCAT	55	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73419	WILDCAT	56	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73420	WILDCAT	57 -	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73421	WILDCAT	58	Gary Lee - 50%, Ronald Stack - 50%.	6/30/2008	6/30/2018
YC73972	WILDCAT	59	Gary Lee - 50%, Ronald Stack - 50%.	10/10/2008	10/10/2014
YC73973	WILDCAT	60	Gary Lee - 50%, Ronald Stack - 50%.	10/10/2008	10/10/2014
YC73974	WILDCAT	61	Gary Lee - 50%, Ronald Stack - 50%.	10/10/2008	10/10/2014
YC73975	WILDCAT	62	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73976	WILDCAT	63	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73977	WILDCAT	64	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73978	WILDCAT	65	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73979	WILDCAT	66	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73980	WILDCAT	67	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73981	WILDCAT	68	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73982	WILDCAT	69	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73983	WILDCAT	70	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73984	WILDCAT	71	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73985	WILDCAT	72	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73986	WILDCAT	73	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73987	WILDCAT	74	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014

YC73988	WILDCAT	75	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73989	WILDCAT	76	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73990	WILDCAT	77	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73991	WILDCAT	78	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73992	WILDCAT	79	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73993	WILDCAT	80	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73994	WILDCAT	81	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73995	WILDCAT	82	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73996	WILDCAT	83	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73997	WILDCAT	84	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73998	WILDCAT	85	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC73999	WILDCAT	86	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74000	WILDCAT	87	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74001	WILDCAT	88	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74002	WILDCAT	89	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74003	WILDCAT	90	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74004	WILDCAT	91	Gary Lee - 50%, Ronald Stack - 50%	10/15/2008	10/15/2014
YC74005	WILDCAT	92	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74006	WILDCAT	93	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74007	WILDCAT	94	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014
YC74008	WILDCAT	95	Gary Lee - 50%, Ronald Stack - 50%.	10/15/2008	10/15/2014

Expiry dates listed above are contingent upon acceptance of this assessment report.

2.0 HISTORY OF EXPLORATION

Mineralization on the property was discovered by C.S. Lord in 1943 during the geological reconnaissance work conducted along the newly constructed Alaska Highway (Lord, 1944). During the early years after discovery, the mineral claims have been staked and lapsed several times, commonly with no significant exploration work completed (Yukon Minfile #105B 001 – Lord showing).

- Early exploration work on the property focused on argentiferous high-grade lead-zinc veins. Hand and bulldozer trenching in 1946 1948 exposed some narrow "shear" zones and veins on the slopes of Faith, Guy and Little Guy Hills. Grab samples from these narrow mineralized zones assayed up to 28.8 oz/t silver and 70.9% lead (Caron, 2008). Detailed geological mapping, soil sampling and magnetometer surveys were completed on parts of the property during 1967-1970 (Tagseth, 1967; Yukon Minfile #105B 001; Caron, 2008). The results of the early exploration work have been discussed in details by L. Caron (2008).
- Butler Mountain Minerals extensively explored the central and western parts (YP and Idaho claims) of the present-day property in 1983 through 1985. The exploration work included trenching, geological mapping, EM field geophysical survey, soil geochemical survey and diamond drilling (Cukor, 1983; White, 1983, 1984, Furneaux and Dawson,

1985). Some other parts of the property (Flo and Lydia claims) were simultaneously explored by Jantar Resources Corporation (Price, 1983; Melnychuk, 1984; Christopher, 1984c; Medford and Christopher, 1984).

Butler's EM survey programs resulted in the discovery of a strong, NNE-trending conductor of the Main Zone and several additional conductors (White, 1983, 1984). The main conductor was tested in 1983 by 9 drill holes which detected locally massive pyrrhotite-sphalerite mineralization associated with this conductor at various depths. The width of the steeply dipping west zone was estimated at approximately 30 metres. The most significant results include a 7-feet intersection which returned 5.06% zinc and 9.89 oz/t silver (White, 1983). A further 26 drill holes were completed on the property during the following two summer seasons. However, the drill logs from these campaigns are not available and several collar locations and drill-hole navigation data remain unknown. Significant results of these drill campaigns were summarized by White (1984) and Furneaux and Dawson, (1985). Results reported there include drill-hole intervals from 1.5 to 21 feet long, which return low-grade lead (0.03 - 3.20% Pb), low-to-moderate-grade zinc (0.14-11.58% Zn) and low-grade silver (0.28-5.20 oz/t Ag) mineralization. Concise, tabularized information on the significant intersections has been provided by L. Caron (2008).

G. Lee and R. Stack staked the Wildcat property in 1995 through 2008 (Table 1). Ground magnetometer and VLF-EM surveys were completed on the key part of the property surrounding the Main Zone during 1998 and 1999 (Power, 1999, 2000). A broad positive magnetic anomaly and a strong NNE-trending VLF-EM conductor were assigned to the mineralization of the Main Zone. Several weaker conductors were identified in other parts of the survey grid.

Killdeer Minerals Inc. acquired the mineral exploration rights to the Wildcat property in 2008 by way of an option agreement. In 2008 the company completed a reconnaissance rock (27 samples) and contour soil (166 samples) sampling programs, partly re-established pre-existing grid-lines and completed Horizontal-Loop EM (HLEM) field geophysical survey (approximately 32 line kilometers). HLEM survey identified seven prominent conductors (Lebel, 2008) - most of them roughly coincidental with the conductors delimited by older, historical surveys. Two types of conductors in the Main Zone were interpreted as related to two distinct styles of mineralization: 1) steeply west-dipping (fault controlled), and 2) shallow east-dipping (stratigraphically controlled, manto-style). Five high-priority targets have been identified (Caron, 2008). Soil sampling documented several belts of significant base-metals/silver (and minor gold) anomalies in the central and western parts of the property.

Page 7

30 TECHNICAL DATA AND INTERPRETATION

3 1 Regional Geology

The Wildcat property is situated within the Cassiar terrane which constitutes the northern part of the Omineca Belt of the Canadian Cordillera (Fig 3) The northwest trending Tintina Fault forms the eastern boundary of the terrane with the Mackenzie platform to the east Both platforms originally belonged to the western continental shelf of the ancient North American continent. The stratigraphic column of the Cassiar terrane is composed of Upper Proterozoic through Middle Devonian carbonate and clastic rocks related to sedimentation in a marine platform/shelf setting, and overlying Devonian-Mississippian rift-related clastic sediments. The Upper Paleozoic island-arc-related sediments and magmatic rocks of the Sylvester allochton (Slide Mountain terrane) unit structurally overlie the Cassiar terrane (Fig 3)

The rock successions of the Cassiar terrane were moderately folded and thrust-faulted in the Jurassic, and later faulted in an extensional transcurrent regimen in the Late Cretaceous and early Tertiary The later faulting episode was predeceased and probably partly associated with a large-scale granite-granodiorite intrusion (Cassiar Batholith) and associated up-warping in middle Cretaceous Small plutonic stocks and plugs of possible Late Cretaceous to Early Tertiary age intruded the Proterozoic-Paleozoic successon and resulted in localized hydrothermal alteration

The region is known from numerous mineral showings (Yukon Minfiles) The main mineral deposits of the region are related to two significant mineralization episodes

- 1) syngenetic barite, zinc and lead accumulations in Paleozoic sediments and
- 2) skarns, veins and replacement bodies related to Cretaceous/Tertiary intrusive and hydrothermal activity

The Silvertip deposit (15 km south of the Wildcat property, Fig 3) contains a resource of 2 57 million tones grading 325 g/t silver, 6 4% lead and 8 8% zinc (Robertson and Belanger, 2002)

The principal sources of information concerning regional geology, stratigraphy, structure and mineralization are Gabrielse (1963), Lowey and Lowey (1986), Nelson and Bradford (1987, 1993), Rees (1998) and Nelson and Colpron (2007) The general geology of the area is shown on Geology Map of the Wolf Lake sheet by Green at al (1960)

3.2 Property Geology

The Wildcat property is underlain by the Lower Paleozoic carbonates and siliciclastic sediments which are bound by the intrusive rocks of the Cassiar Batholith to the west. The area is cut by some steep tectonic zones and minor intrusive bodies. However, relatively good exposure on the property is limited to the hill tops above the tree line. Valley floors and slopes are covered by glacial till and alluvium. The general geology of the area is shown on the small-scale (1:253,444) geology map of the Wolf Lake sheet by Green at al. (1960).

The Wildcat property was never mapped satisfactorily on a property scale basis. A compilation map showing outline of geology of the property has been recently presented by Caron (2008 - Figs. 4, 5 and 8). This version is based on the results of regional geological mapping by Lowey and Lowey (1986) and some property-scale exploration work by Poole (1954) and White (1983). Additional information can be adopted from Tagseth (1967) and, Furneaux and Dawson (1985). However, these versions of geological maps cannot be regarded as satisfactory representations of geological structure and stratigraphic relationships observed during the Killdeer 2009 drill program and will not be reproduced in this report. The property undoubtedly requires rigorous geological mapping.

3.2.1. Stratigraphy

Atan Group (Lower Cambrian)

This stratigraphic unit encompasses a predominant part of the stratigraphic column of the Wildcat property. The rocks of the Group are generally subdivided into two lithostratigraphic formations characterized by distinct lithological composition and are assigned to the Lower Cambrian age.

Boya Formation (Lower Cambrian)

Siliciclastic rocks of the Boya Formation are the oldest stratigraphic member of the sedimentary succession of the Wildcat property. On the Wildcat property the Formation consists predominantly of weakly metamorphosed argillites, mudstones and phyllites. Thin layers of fine-grained quarzites and/or re-crystallized siltstones occur locally within the finer-grained sequence. The rocks are characterized by commonly well preserved lamination and thin bedding, and display light gray-to-brownish color. Locally argillites are weakly calcareous, sideritic and/or display considerable admixtures of volcaniclastic(?) material. Some thin, graphite-rich intervals were intersected in drill holes. On the Wildcat property, rocks of the Boya Formation are exposed along the Main Zone and south of Guy

Hill. Considerable parts of the drill-hole intersections of the Boya Framation consist of tectonic and fluidization breccias.

The upper contact of the Boya Formation has a gradational character and is formally defined at the base of a set of numerous thin-to-moderately thick layers of limestones interbedded with argillites and/or phyllites. However, this criterion might be difficult to satisfy in some areas – the drill hole WT-3 intersected a long interval of thin bedded, folded calacareous turbidites which gradationally replace thin bedded limestones of the overlying Rosella Formation. The lower contact and total thickness of the Formation on the property are not known.

On some adjoining areas Boya Formation includes a lower quartzite member which consists of recrystallized quartz arenites (Lowey and Lowey, 1986). However, to date, this stratigraphic member was not documented on the Wildcat property with certainty.

The rocks of the Boya Formation commonly show evidence of gentle to strong isoclinal folding. Incipient foliation is usually parallel to primary bedding. Crenulation and/or planar-axial cleavage occur locally.

Boya Formation is assigned to the Lower Cambrian on the base of correlation with neighboring areas (Fritz, 1980; Lowey and Lowey, 1986).

Rosella Formation (Lower Cambrian)

The Rosella Formation includes almost exclusively carbonate rocks. Its lower member consists predominantly of bluish-gray to whitish, thick bedded, moderately-to-weakly recrystallized, locally marbly, limestones. Dolostones become gradually more abundant and dominate in the upper part of the Formation. Weathered, slightly oxidized dolostones display tan to pinkish-brown tint. The lowermost member of the formation, which reaches approximately ten to few tens of metres in thickness, is characterized by interbedded limestones and calcareous mudstones/argillites which display bedding of moderate to thin thickness. True thickness of the formation in the Wildcat property is not known but could be estimated at 250-300 metres (comp. Lowey and Lowey, 1986).

Numerous intervals of the Rosella Formation are characterized by significant degrees of fracturing, up to development of stockwork-like patterns, and brecciation. Fractures are commonly filled with iron (and/or manganese) oxides with some relics of primary sulfide minerals and goethite pseudomorphs after pyrite. Breccias are characterized by an abundant yellowish-orange to reddish-brown matrix composed of carbonates and clay minerals with abundant admixture of iron/manganese oxides. Some types of matrix-supported, very poorly sorted breccias most probably originated due to karst processes. In places there are common relics of the primary sulfide mineralization and goethite pseudomorphs after pyrite within the fine-graine ferruginous matrix. Extremely profound supergene leaching, oxidation and probably incorporation of clay minerals resulted in development of poorly lithified to completely loose rock formations which are characterized by yellowish-orange to reddish-brown colours. These rocks are labeled here as "replacement iron formations"

(Appendix 2). Replacement iron formations occur also in intervals dominated by siliciclastic deposits and/or along boundaries of some quartz-feldspar porphyry intrusives.

The lower boundary of the Rosella Formation has a gradational character and represents typical facies transition to the underlying siliciclastic rocks of the Boya Formation. The time-stratigraphic position of this boundary may span a considerable period of time. The upper contact of the Rosella Formation was not intersected in drill holes of the Killdeer 2009 program and its character remains unknown. Caron (2009) mentioned that "rocks exposed on Charity Hill, in the eastern part of the property consist of rusty weathering shale, and interbedded limestone and fossiliferous shale beds stratigraphically overlie the thick dolomitic limestones exposed on Faith and Hope Hills". However, it is not clear if these rocks define the upper contact of the Rosella Formation in the property.

The rocks of the Rosella Formation dip generally at moderate to low angles toward the east-south-east. Some gentle folding is discernible from measurements of bedding surfaces in the area between Main Zone and Hope Hill. Sedimentary succession of the Rosella Formation experienced strong faulting in the area of the Main Zone. Paleokarstic(?) features of limited extent were noted in the drill holes.

Stratigraphic position of the Rosella Formation is assigned to the higher Lower Cambrian by correlation with neighboring areas where rocks of the Formation contains numerous fossils of Archeocyatids which locally form bioherm buildups (Lowey and Lowey, 1986).

Sedimentary succession of unknown age (probably Lower Paleozoic)

Drill hole WT-09-5 which was designed to test a set of EM conductors located between Hope and Charity Hills intersected a significant interval of fine siliciclastic sediments and the lower portion of the overlying unit composed of carbonate rocks. Intersected rock formations cannot be assigned to other known lithostratigraphic formations since their lithology is known solely from the drill hole WT-5 and stratigraphic position and correlation are not clear in the context of the lithostratigraphic units established on the property. Numerous effects of strong faulting and localized brecciation of sediments encountered in this drill-hole additionally obscure description and understanding of the stratigraphic relationships between these rocks.

Siliciclastic Succession (age unknown – probably Lower Paleozoic)

The lower boundary of this unit is not known – the lowermost part of the intersection of the drill hole WT-5 consists predominantly of fault gouges and tectonic breccias (Eastern Fault Zone; Fig. 4). This 20-25-metre thick interval includes some better preserved slabs of thinly laminated siltstones, fine-grained volcaniclastics(?) and approximately 4.5 metre thick interval of a relatively fine grained conglomerate. The conglomerate consists of well rounded to sub-angular pebbles of various compositions with predominant quartz/silicarich fragments.

The lower, 20-25metre thick interval of the Siliciclastic Succession consists of relatively well-sorted siltstones, fine-grained mature sandstones and mudstones. The deposits display ripple-cross and parallel laminations. Relatively common are rhythmically laminated sets characteristic of sediments deposited in shallow-marine, tide-controlled environments. In some sections common are bioturbations including vertical and horizontal burrows.

Pale-greenish, fine-grained volcaniclastic unit, approximately 15 metres thick, forms the higher unit of the Siliciclastic Succession. This part of the succession is disrupted by few minor faults. Volcaniclastics include redeposited tuffs, some hyaloclastic units and apparently contain substantial admixtures of fine-grained siliciclastic material. Sedimentary structures are represented by thin contorted laminations and common intraclast-rich units.

The uppermost part of the Siliciclastic Succession consists of thin-bedded, calcareous siltstones and fine-grained detrital limestones. This unit attains approximately 6 metres in thickness and locally includes some admixtures of volcaniclastic material. Sediments are characterized by parallel-, and less common ripple-cross laminations. Some strata display effects of bioturbation. The upper boundary of the unit has a gradational character and is characterized by distinct decrease in contents of siliciclastic material.

Carbonate Formation of Charity Hill (age unknown – probably Lower Paleozoic)

The Siliciclastic Succession is overlain by a thick succession of carbonate sediments. The lower part of this succession attains 60-65 metres in thickness and consists predominantly of dark-gray, moderately thick-to-thin-bedded limestones which contain thin bands and elongated nodules of sideritic-cherty(?) composition. Thicker-bedded limestones occur rarely in this part of the succession. Numerous intervals display distinctly cavernous textures and strong development of a secondary calcite cementation. Cavernous intervals are commonly accompanied by effects of secondary leaching and oxidation, as well as by incipient development of replacement iron/manganese-rich clayey formations.

The higher, 15 metre thick, part of this formation intersected in drill-hole WT-5 consists of dark bluish-gray, thick bedded, crystalline dolomitic limestone. Some strata display internal parallel laminations with gradational contacts. Locally, muddy intraclasts and structures related to bioturbation of freshly deposited sediment occur in these limestones. Higher stratigraphic members of this formation are exposed on the slopes of Charity Hill.

Cassiar Batholith (Cretaceous)

The westernmost part of the Wildcat property is underlain by light gray to locally pinkish granitoid rocks. The rocks show phaneritic, medium to coarse crystalline, equigranular to porphyritic textures. They consist of predominant feldspars, some 25% quartz and minor biotite and muscovite. Pinkish phenocrystals of zoned orthoclase are characteristic components of these rocks. Biotite- and hornblende-rich xenoliths occur locally in these rocks. The rocks can be classified as granite to granodiorite and belong to Cassiar Batholith (cf. Lord 1944). Radiometric dates of this unit range from 87 to 105 Ma (Gabrielse et al.,

1980). Numerous silver-lead-zinc veins of the Rancheria district occur within the marginal zone of this unit.

The eastern contact of the Cassiar Batholith with the Paleozoic sedimentary rocks is generally irregular (Lowey and Lowey, 1986). A contact metamorphic aureole is locally present with development of typical marbles and schists (e.g. Sterling showing). On the Wildcat property, contact of the Cassiar Batholith with Paleozoic sediments is concealed under thick layer of glacial till and/or slope deposits and was not observed.

Younger intrusive and related rocks (Tertiary?)

Smaller-size, subordinate intrusive bodies of various petrographic compositions are known from the Main Zone area of the Wildcat property. They form irregular plug-like intrusions which are accompanied by numerous apophyses, more regular dykes and diversified breccias. Similar rock formations were reported from several other neighboring areas (e.g. Lowey and Lowey, 1986; Rees 1998)

Quartz-Feldspar Porphyry (Tertiary?)

A significant body of quartz-feldspar porphyry is exposed in the Main Zone of the Wildcat property, on the northwest slope of Hope Hill. A minor dyke which shows very strong clay alteration is exposed along the old access road on the southwest slope of this hill. Killdeer drill holes (similarly to historical Butler Mountain holes) intersected several bodies of quartz-feldspar porphyry associated with the Main Zone.

The quartz-feldspar porphyries are white to buff, locally lightly green. They usually show a very distinctive porphyritic texture with abundant euhedral crystals of clay-altered feldspar and gray quartz in a fine-crystalline to afanitic, leucocratic groundmass. Contacts of these rocks are sharp, irregular and commonly discordant. Contacts are frequently accompanied by zones of more-or-less prominent, though localized brecciation of the surrounding sedimentary rocks. Some occurrences of the quartz-feldspar porphyry are apparently associated with fault zones of the host rocks.

Numerous bodies of quartz-feldspar porphyry are accompanied by distinct fluorite (pinkish and/or very light green) mineralization in the Wildcat property. Sinclair (1998) suggested two intrusive phases responsible for emplacement of these bodies, an older topaz/tournaline-bearing phase and a younger fluorite-bearing phase. The quartz-feldspar porphyry bodies commonly show obvious evidence of hydrothermal alteration (argillization, sericitization, silicification) especially prominent along their contacts and internal zones of faulting.

Mafic dykes (Tertiary?)

Mafic dykes show coarse-crystalline to porphyro-aphanitic textures. Biotite, hornblende and pyroxene (augite) are distinguished visually as coarse-crystalline petrographic components. These components are commonly set into a dark-green fine-crystalline to aphanitic groundmass. Dykes are usually thin (centimeter to tens of centimeter scale) and show distinct finer-crystalline, apparently chilled contacts. Contacts of the dykes are usually regular (planar) and sharp. Numerous mafic dykes are accompanied by massive and/or disseminated pyrite-galena-sphalerite mineralization.

Mafic dykes have not been radiometrically dated but are believed to be of similar, early Tertiary age, as felsic dykes and quartz veins (Abbott, 1983; Lowey and Lowey, 1986). Felsic dykes reported previously from YP (present-ay Wildcat) property were not intersected on the Wildcat property during Killdeer drill program.

Abbott (1983) obtained a Sr-Rb radiometric age of 52 Ma from a felsic dyke on the YP property. Felsic dykes were not encountered on the Wildcat property during the Killdeer 2009 drill program, although Lowey and Lowey (1986) describe them as a relatively common element of the Tertiary dyke-vein system in the Rancheria district area.

Tectonic and hydrothermal breccias (Tertiary?)

Breccias of various characters constitute significant parts of the drill-hole intersections and can be found in many outcrops on the Wildcat property. Before, Furneaux and Dawson (1985) noted a significance of breccias as important elements of the local "stratigraphy". Breccias of the Wildcat property are strongly diversified with respect to their textures and composition.

Numerous breccias could be attributed to intrusion of the quartz-feldspar porphyry bodies and associated fracturing and faulting of the sediments of the Atan Group. Some of these breccias show evidence of fluidization processes due to localized releases of over-pressured gases and solutions generated during hydrothermal activity. These breccias usually contain disseminated ore minerals (pyrite, chalcopyrite, sphalerite and galena) and show various degrees of silicification and/or argillization.

Some other breccias were apparently formed due to karstic and/or dolomitization processes. Age of these breccias is, most probably, much older than Tertiary. It is obvious that karstic processes and dolomitization played a significant role in preparation of porosity for the Tertiary mineralized solutions. Another group of breccias is attributed to tectonic faulting and brecciation and their ages are difficult to assess.

Quartz and quartz-carbonate veins (Tertiary?)

Veins and irregular concentrations of whitish coarse-crystalline quartz and quartzcarbonate-(feldspar) occur in various parts of the sedimentary succession of the Atan Group. These veins and irregular bodies are most commonly associated with faults and zones of brecciation/fracturing, and cut discordantly host sediments. Veins are generally thin and do not exceed a few tens of centimeters in width. Some of the veins carry disseminated pyrite. Lowey and Lowey (1986) reported a potassium-argon age of 50.8 Ma obtained from a quartz vein on nearby Fiddler property.

Calcite-rhodochrosite veins (Tertiary?)

Thin (usually few to several centimeters in width), pinkish-gray to almost white, veins of coarse-crystalline carbonates, predominantly calcite and rhodochrosite, which cut discordantly sedimentary succession of the Atan Group and quartz-feldspar porphyry occur in many parts of the Wildcat property. They are commonly accompanied by abundant; semimassive-to-massive mineralization of pyrite-galena-sphalerite. Weathered, oxidized zones of these veins are rusty-brown to almost black due to abundance of secondary minerals, predominantly goethite and pyrollusite. These veins were commonly intersected in drill-holes on the Main Zone and frequently appear to be associated with mafic dykes and/or quartz-feldspar porphyry intrusions.

3.2.2 Structural geology

To date, the outline of geology of the Wildcat property was adopted from the results of regional geological mapping by Green et al. (1960), Lowey and Lowey (1986) and scarce information acquired from some property-scale exploration work (Poole, 1954; Tagseth, 1967; White, 1983; Furneaux and Dawson, 1985). A compilation map showing the general geology of the property was also presented by Caron (2008 - Figs. 4, 5 and 8). However, information on structural geology of the property as contained in these sources is very limited.

Caron (2008) summarized the structural geology of the Wildcat property as follow (op. cit.): "The Paleozoic rocks are folded into a north-northeast trending, south plunging anticline, with its hinge line essentially following the dip between Faith and Hope Hills. Small scale isoclinal folds are common. One or more north to north-northeast trending faults are localized along the axial zone of the anticline. In addition, an Eocene-aged quartz feldspar porphyry intrudes the Paleozoic sediments near the crest of the anticline." The same author added (op. cit): "Drilling has shown that the quartz-feldspar porphyry occurs within a elongate, north trending zone that measures at least 600 meters long by 250 meters wide. It is extremely irregular in shape, with a series of arrow dykes and dyke-like apophyses extending outwards from the main plug." Moderate to shallow east-southeastern dip of the stratified carbonate rocks of the Hope Hill, as well as an approximate boundary between the Cassiar Batholite and Paleozoic rock formations are also known from the authors mentioned above. Such limited amounts of geological information do not coincide well with the amount of drilling and other kinds of exploration work completed to date on the property.

Limited structural observations and measurements were collected along a few traverses in the central and western parts of the Wildcat property during the 2009 drill program. These observations were designed to give better insight into the structural features of the area recommended for test drilling (Caron, 2008) and especially to provide information on potential distribution and attitude of conformable, manto-style mineralization.

Paleozoic succession of the Wildcat property has been subjected to tectonic deformation of variable intensities. Steep fault of the Main Zone is characterized by strong rock fracturing

and brecciation, small-scale complex folding and localized development of tectonic fabric. Primary structures of the rock formations exposed in the Main Zone display considerable changes of attitude over short distances. Strongly deformed rock complexes of the Main Zone have been invaded by quartz-feldspar porphyry intrusions of complicated geometry and cut by veins and dykes of various composition. The Zone is locally overprinted by effects of hydrothermal alteration and mineralization. The style of deformation and alteration encountered within the Main Zone is typical of complex, multi-storey tectonic zones. The fault system of the Main Zone is interpreted to be developed along the axis of the major anticline of a relatively simple geometry (Caron 2008 - Figs. 4-8). However, the geological structure of this area is much more complex.

Carbonate rocks of the Rosella Formation exposed on the Hope Hill area, east of the Main Zone, tend to dip gently (10-30°) eastward. However, the attitude of bedding varies significantly in the area directly adjoining the Main Zone. Northwestern, southern and northeastern dips of the bedding, as well as, common tectonic brecciation of rocks are observed in this area. Distinct, although gentle, smaller-scale folding of the strata has been observed on the lower, southwestern slope of Hope Hill. The axis of a small-scale anticline observed in this area is striking north-northeastward, obliquely to the trend of the Main Zone. Moderately-to-thin bedded limestones of the lowermost part of the Rosella Formation and transitional calcareous turbidites are involved in much stronger deformation, especially folding, on the northeastern slope on Hope Hill. Strongly folded strata of this part of the Cambrian succession were observed in drill hole WT-3.

Approximately 900 metres east-southeastward of the Main Zone runs another, parallel tectonic zone (Eastern Fault Zone; Figs.4 and 5) which was partly intersected in drill hole WT-5. This zone is coincident with the set of HLEM conductors labeled H-C (Lebel, 2008; Caron, 2008) and it apparently has its expression in development of local drainage. Carbonate to mixed, carbonate-siliciclastic rocks dip toward east to north-eastward but dip angles vary considerably (10 - 45°) east of this fault zone

Attitudes of bedding of the carbonate (Rosella?) and fyllite (Boya?) rock formations exposed locally on the southern slopes of Guy Hill vary considerably. Limestones near the contact with the Main Zone display shallow (5-15°) dips toward the northeast. Dip of the carbonate rocks encountered some 200-300 metres further away from the contact dip steeply (65-80°) toward the southwest. Very steep western beddings were also measured further westward in fyllites/schists exposed near the contact with granitoid rocks of the Cassiar Batholith. Northern to northwestern dips were noticed in limestones/dolostones of the Little Guy Hill area.

Information concerning structural geology of the Wildcat property available to date is far too limited for satisfactory understanding geological structure of the area. Rigorous geological mapping supported by systematic structural observations and measurements are necessary for sound interpretation of structural geological elements and better prognosis concerning location of potential entrapment zones for hydrothermal fluids and mineralization.

3 3 Reconnaissance Rock Sampling Program

Reconnaissance rock geochemistry sampling previously conducted by L Caron in 2008 proved the existence of narrow zones of high-grade mineralization on the Wildcat property Ten selected grab samples were collected from outcrop, subcrop and dumps of the historic exploration pits and trenches Additional 4 samples were collected from historic drill core stored at the property and returned significant concentrations of silver, lead and zinc in previously untested core intervals (Caron, 2008 – Appendix 3) One check sample from the core stored at H S Bostock Core Laboratory in Whitehorse did not return expected high-grade gold value (Furneaux and Dawson, 1985), although it displayed significant concentrations of silver, zinc and arsenic

A limited rock sampling program in 2009 was design to provide more specific information on the character and concentration of a potential replacement/manto-style mineralization The sampling was confined to outcrops in two selected areas. The sample locations and descriptions are listed in Appendix 1, and complete analytical results of the rock sampling program in Appendix 3. Figure 4 shows sample locations and Table 2 lists the selected analytical results. Sample locations were tied by hand-held Garmin GPS unit

	0 1	Ag-AA62	Zn-AA62	Pb-AA62	Au-TL42	ME-MS41
Sample Label	Sample Type	Silver (Ag)	Zinc (Zn)	Lead (Pb)	Gold (Au)	Cu
	rype	ppın	%	%	ppm	ppm
KMW09-01	Grab	2 43	678 ppm	218 ppm	0 003	4 7
KMW09-02	Grab	38 3	3 36	3 76	0 007	719
KMW09-03	Grab	84	1 42	5.09	0 008	1140
KMW09-03A	Grab	7 89	0 098	0 12	0 003	38 5
KMW09-03B	Grab	129	2 05	14.1	0 012	1190
KMW09-04	Grab	2 13	0 23	0 056	0 002	58 4
KMW09-05	Grab	3 94	1 42	0 66	0 008	241
KMW09-06	Grab	76	2 37	1 94	0 034	1660
KMW09-07	Grab	4 38	0 39	0 27	0 007	241
KMW09-08	Grab	13 05	1 22	0 059	0 084	25 5
KMW09-09	Grab	163	13 1	6 4 1	0 064	320
KMW09-10	Grab	25 5	0 27	03	0 028	88
KMW09-11	Grab	63	1 99	1 42	0 008	31.4
KMW09-12	Grab	80	2 75	0 302	0 023	1640

Table 2Selected results of the rock sampling program (for sample locations see Appendix1and Fig 4, complete analytical results – Appendix 3)

Sample KMW09-01 tested mineralogically unidentified dark green blebs of clay-like (?), probably secondary minerals, which are hosted in a buff, strongly fractured dolostone on the south slope of the Hope Hill The sample returned slightly, but significantly elevated concentrations of silver (Ag), lead (Pb) and zinc (Zn) However, this sample was best

characterized by unusually high concentrations of chromium (Cr) and phosphorus (P), which were accompanied by strongly elevated values of magnesium, potassium and, to a lesser degree, zirconium, thorium and nickel (Appendix 3) Similar blebs and fragments were encountered in some drill intersections. Most of the occurrences of the dark-green blebs appear to be associated with well-developed fracture zones in dolostones.

Samples KMW09-02 through KMW09-07 and sample KMW09-12, come from the Hope Hill area Samples KMW09-02, -03, -03A, and -06 represent narrow steep structures (veins, fracture fills) which cut through dolomite and/or limestone Samples KMW09-03B and KMW09-12 were collected from small-scale concordant, intrastratal to stratiform accumulations of identical mineral composition as the former group All these samples are characterized by ore-grade concentrations of silver, lead and zinc (Table2) and very high concentrations of iron and manganese (Appendix 3) Base metals and silver are accompanied by strongly elevated concentrations of ore indicator elements (arsenic, antimony, cadmium, bismuth and Hg) and significantly anomalous copper

Both types of these small-scale bodies, discordant dyke/vein-like and concordant sill-like forms, are characterized by dark brown to almost black colour They consist of an abundant fine-grained matrix composed of secondary limonite-goethite and minor psilomelane, which contains minor relics and relics and pseudomorphs of the primary ore minerals (galena, pyrite), and of angular fragments of host limestone and/or dolostone Primary, brecciated textures of these bodies are conspicuous Gangue minerals are represented by calcite, rhodochrosite, quartz, and minor siderite and, probably, ankerite

Both types of the small-scale mineralized bodies are interpreted as elements of a complex natural plumbing system which expanded along preexisting discontinuities (faults, fractures and intrastratal surfaces) under the pressure of heavily mineralized hydrothermal solutions and hot gases. Connections between some subvertical, feeder-type features (dykes, veins) and apparently their more distal stratiform counterparts are visible in some outcrops Angular fragments of brecciated host rocks have been frequently incorporated into bodies of hydrothermal breccias. Original mineral composition of the veins is not known since all the examined bodies show very strong effects of secondary supergene oxidation, leaching and replacement. It is understood that the present-day grades of the oxidized bodies are considerably lower their original sulphide-rich predecessors (cf. Rees, 1998, Robertson and Belanger, 2002)

Three samples from the Hope Hill area (KMW09-04, -05 and -07) were collected from large-scale bodies of dolomite/limestone breccia with an abundant goethite-limonite-rich calcareous matrix. These samples area characterized by distinctly lower grades of silver, lead and zinc compared with veins, dykes and small-scale concordant sills (Table 2). Primary ore minerals are very difficult to discern since they have been apparently strongly leached and replaced by supergene secondary oxides. These large-scale breccia bodies are interpreted as recipients of diluted hydrothermal solutions and potential hosts of economically significant mineralization. Brecciation is considered as partly preceding hydrothermal processes and mineralization. It is understood that early brecciation of host rocks was partly related to processes independent on hydrothermal activity (faulting, magmatic intrusion, karst development) and resulted in preparation of rock space for

penetration by hydrothermal solutions. Similarly, due to strong supergene leaching and oxidation, original ore-grades must have been substantially depleted (cf. Rees, 1998, Robertson and Belanger, 2002).

Four samples (KMW09-08 through KMW09-11) were collected from the Guy Hill – Little Guy Hill area (Fig. 4). Only one of these samples, KMW09-09, comes from a small-scale concordant body of breccia filling in between stratification surfaces of the host, thick-bedded dolostone. The remaining three samples represent small-scale discordant structures rich in iron and manganese oxides. Grades of mineralization are comparable to similar structures/bodies encountered on the slopes of Hope Hill (Table 2, Appendix 3).

3.4 Diamond Drill Program

The 2009 diamond drill program on the Wildcat property consisted of 5 drill holes totaling 902.74 metres. Diamond drilling services were provided by Kluane Drilling of Whitehorse, Yukon. The company used thin-wall NTW rods (core diameter - 44 milimeters). Drilling started on September 20th and was completed on October 01st. An additional day was spent on the completion of core logging and sampling, splitting core, shipping samples, preparing storage for core, and completing reclamation work on the property. On-going reclamation work was conducted concurrently with the drilling. The drill program and sampling were supervised by the author on behalf of Killdeer Minerals Inc. Drill-hole collar coordinates and navigational data are listed in Table 3. The most significant results of the drill program are presented in Table. 4. The complete drill logs are presented in Appendix 2 and a set of complete analytical results of core samples in Appendix 3.

			Location(*)					
	Drill Hole	UTM (Zoi	NAD83, ne 9)	(Claim)	muth Dip Depth		Depth	Target
,		Easting	Northing		[•]	[•]	[m]	
	WT-1	423810	6657790	YB87622	294	65.5	211.84	HLEM conductors; postulated "manto-style" mineralization in proximal footwall of the southern part of the Main Zone
	WT-2	423739	6657626	YB87622	285	50.5	172.21	HLEM conductors; postulated "manto-style" mineralization in proximal footwall of the southern part of the Main Zone
	WT-3	423902	6658120	YB87624	_ 292	55.5	234.7	HLEM conductors; postulated "manto-style" mineralization in proximal footwall of the northern part of the Main Zone
	WT-4	423963	6657980	YB87624	285 -	55.5	132.59	Postulated "manto-style" mineralization in footwall of the Main Zone

Table 3. Drill-hole collar locations and basic data.

WT-5	424638	6657573	YB62266	296	60.5	152.4	HLEM conductors; postulated
							prominent fault parallel to the
							Main Zone

* - based on hand-held GPS

The first four drill holes were designed to test a postulated disseminated, manto-style mineralization in the footwall (eastern wall) of the fault-controlled Main Zone (Caron, 2008). The last drill hole tested a set of HLEM conductors coincident with a postulated fault zone parallel to the Main Zone and located approximately 900 metres eastward (Lebel, 2008; see also Fig. 5).

The core was logged and the designated intervals were split for sampling on the property. Core samples were designed to test lithological and mineralogical variability of the host rocks and mineralized zones, and were collected over intervals considerably shorter than 1.52 metre where necessary (Appendix 2). In total, 249 core samples were collected from selected intervals and analyzed by ICP, assay and some other analytical methods in two independent laboratories. The quality assurance/control procedure was implemented by means of the standard, blank and duplicate samples inserted randomly into the sequence of core samples. A complete set of analyses and assay certificates is shown in Appendix 3. The remaining core material is stock-piled and stored in core boxes on the property (Fig. 5).

All drill holes intersected numerous intervals of strongly leached and oxidized mineralization and minor intersections of sulfide-rich zones (Figs. 6 through 10). Oxidation and leaching occur at substantial depth in the footwall of the Main Zone and have been enhanced by faulting and strong fracturing of the host rocks. The most common types of mineralization encountered in the footwall of the Main Zone occur in extensive intervals of strong fracturing, faulting, as well as within tectonic and fluidization breccias. Encountered mineralization types form a very complex, multistory system and include some elements which were not addressed properly during the 1983-85 exploration campaigns.

Drill	From	То	Interval	Zinc (Zn)	Lead (Pb)	Copper (Cu)	Silver (Ag)
noie	m	m	m	%	%	%	g/t
WT 1	28 28	33 80	5.52	1.40			
including	28.28	29.30	1.02	2.67	0.42	0.14	20.9
and	47.00	48.18	1.18	2.49			
and	73.84	74.55	0.71	4 77			
and	101.65	102.11	0 46	0.50	0.91	0.03	789.0
including	111.35	111.70	0.35	2.01	0 96	0.11	63.7
and	151.95	153.60	1.65	0.55			
Including	152.90	153.60	0.70	0.64	0.42		17.9
WT 2	79 30	82.85	2.95	2.45	1.03	0.62	15.6
and	90.54	94.49	3.95	0.57			-

Table 4. Significant results of the 2009 diamond drill program (weighted averages where composite sample intervals).

and	107.50	112.60	5.10	0.72			
including	110.50	111.86	1.36	1.88	0.84	0.11	32.9
WT 3	79.25	79.63	0.38	0 31	0.31	-	256.0
and	117.65	121.92	4.27	0.15	0.14		64.7
and	154.01	154.60	0.59	1.83	1.43		39.5
WT 4	4.88	9.50	4.62	0.20			
and	34.00	36.40	2 40	0.24			
and	55.27	56 25	0.98	0.25	0.24		
and	124.30	124.95	0.65			1.59	
			a~			1	
WT 5	48.69	52.45	3.76	0.27	0.25		
and	143.93	152.40	8.47	Gold (Au) - 73 ppb			

Drill holes WT-1, WT-2 and WT 3 were designed to test a set of HLEM conductors and postulated zone of concordant, manto-style mineralization in the proximal footwall of the fault controlled mineralization of the Main Zone (Figs. 5 through 8). Drill intercepts demonstrate the existence of a complex system of an apparently multistorey mineralization which accompanies numerous intervals of strong faulting, fracturing and brecciation, and is host by "replacement iron formations", which contain abundant limonite/goethite locally with relics of pyrite, galena, sphalerite and pyrrhotite. Most mineralized intervals occur in the oxidation zone and the primary ore-minerals were dissolved and replaced (common goethite pseudomorphs after pyrite). Numerous intervals of quartz-feldspar porphyry were intersected at various depths in these drill holes.

Drill hole WT-4 was collared further eastward from the Main Zone (Figs. 5 and 9) to test more distal extension of postulated manto-style mineralization and to verify results of the historical drill hole 83-5 (Furneaux and Dawson, 1985; Caron, 2008) located nearby, which intersected two significant intervals of strongly oxidized Ag-Pb-Zn mineralization of moderate grade (White, 1983). Mineralization grades returned from drill hole WT-4 were much lower than expected (Table 4). However, this drill hole intersected a 0.65 metre long interval of significant copper mineralization host by fluidization breccia.

Drill hole WT-5 was designed to test a set of HLEM conductors located approximately 900 metres east of the Main Zone (Figs. 5 and 10). The conductors were inferred to be related to a prominent tectonic zone (Eastern Fault Zone; Fig 5) which runs parallel to the Main Zone. Rock formations of this area were also potential host of high-grade concordant mineralization encountered at the eastern slopes of the Hope Hill (rock samples KMW09-03, 03A and 03B) as suggested by projection of the structural form-lines related to this occurrence. The drill hole did not reach target depth and due to technical problems was prematurely terminated in a fault zone enriched in gold related to pyrite-chalcedony mineralization.

The Killdeer 2009 drill program generally failed to prove the existence of economically significant, manto-style mineralization in the drill tested areas. The mineralization in the

The second secon	
7.5% Tools I.S. I.S. I.S. I.S. I.S. I.S. I.S. I.S	
San ment	LEGEND (see Fig. 7a)
25%	0 SCALE 25 m
	KILLDEER MINERALS INC.
	WILDCAT PROPERTY Exploration Project 2009 (Assessment Report 2010)
	NTS Nos.: 105 B/1 Watson Lake Mining District
	Drill Hole WT-2 LEAD (Pb) and ZINC (Zn) ASSAYS
	K. MastalerzScale:Date:Consulting Geologist1:500March 2010

Image: state of the state					
WILLDEER MINERALS INC. WILLDEER MINERALS IN		DOL	Dolostones, usually thick bedded, massive		
W W Weither and metering and the design of the design	30	FYL	Fyllites and schists		
Wint Minito	S BIT AR	VC	Volcaniclastics and metavolcanics		
CLE 25 ml CLE 25 ml		MS	Metasediments		
WT-3 (D 234.70 m) U SCALE 25 m U SCALE 25 m	22.8 841	cMS	Calcareous metasediments, usually thin bedded		
WT-3 (ID 234.70 m) 0 SCALE 21m 0 SCALE 21m	No de la companya de la compa	SCL	Siliciclastics, predominantly fine-grained to sandy,		
WT Outre (ddpart optic) P Outre (ddpart optic) <t< td=""><td></td><td>CGL</td><td>usually slightly metamorphosed/recrystallized Conglomerates</td></t<>		CGL	usually slightly metamorphosed/recrystallized Conglomerates		
Defer mile (gabbrei, dabae) Quez addre erbonare vers and replacement RV RV RV RV RV Replacement (scendrary loor fornation, usually amply drags BX Replacement (scendrary loor fornation, usually amply drags RX Replacement (scendrary loor fornation, usually amply drags RX Replacement (scendrary loor fornation, usually amply drags RX Replacement (scendrary loor fornation, usually amply drags RX Ry RX RX RY RX RX RX RX RX RX RX RX RX RX		OFP	Quartz-feldspar porphyry		
Quitz andér autorise unboate veins and replacements Replacement decembers insults arrows ar		D	 Dykes, mafic (gabbroic, diabase)		
Image: State of the state	1 and a start of the start of t		Ouartz and/or carbonate veins and replacements		
Notesting of the second			Bhadachracite-carbonate vains		
Image: Scale 25 m Image: Scale 25 m	T / Sta		Bankacement (secondary) iron formation yourly		
BX BA Backetas (lectome, mentase, mandazinon) FZ Fault zone et Charles et Still LDEER MINERALS INC. WILLDEER MINERALS INC. Will be WT-3 (TD 234.70 m) 0 SCALE 25 m 0 SCALE 25 m	3 Ad		strongly clayey		
V V a Clayey gauge a Clayey gauge b a b b b b b b b b c SCALE 25 m b Clayey gauge	7/0	BX			
Image: State Image: State	× ×	FZ	Fault zone		
Market of the second	· · · · · · · · · · · · · · · · · · ·	cl	Clayey gouge		
Mathematical Structure Millipsie Mathematical Structure Killipsie Millipsie Killipsie Milipsie Killipsie	The state				
WT-3 (TD 234.70 m) O SCALE 25 m 0 SCALE 25 m K.Mastalere Scale: Date: March 2010 Fig. 8a					
WT-3 (TD 234.70 m) 0 SCALE 25 m 0 SCALE 25 m K. Mastalers Scale: Date: Combined Function Date: Fig. 8a		KILL	LDEER MINERALS INC.		
with the contract of the cont	and the second sec	WILF	OCAT PROPERTY		
WT-3 (TD 234.70 m) 0 SCALE 25 m 0 SCALE 25 m 0 SCALE 25 m 1 Watson Lake Mining District 0 SCALE 25 m 1 Watson Lake Mining District	South State	Fxi	ploration Project 2009		
WT-3 (TD 234.70 m) 0 SCALE 25 m 0 SCALE 25 m 1 SOCON March 2010 Fig. 8a	A A A A A A A A A A A A A A A A A A A		(Assessment Report 2010)		
WT-3 (TD 234.70 m)					
WT-3 (TD 234.70 m)	₹ ³	N 15 Nos.: 105 B/1	watson Lake Mining District		
(TD 234.70 m) 0 SCALE 25 m K. Mastalerz Scale: Date: Date: Fig. 8a Completing Product 1 + 500 March 2010 Fig. 8a	WT-3	Drill Hole WT-3			
K. Mastalerz Scale: Date: Fig. 8a	(TD 234.70 m) 0 SCALE 25 m	LITHOLO	GY and SILVER (Ag) ASSAYS		
		K, Mastalerz Consulting Geologist	Scale: Date: Fig. 8a		

	ос доонос WT-4 (TD 132.59 m)	and the second second	and the second					
						L (s	EGEND ee Fig. 9a)	
						0 S.C.	ALE 25 m	
					KILLDEER MINERALS INC. WILDCAT PROPERTY Exploration Project 2009 (Assessment Report 2010)			C. Y
					NTS Nos.: 10: LE K. Mastalerz Consulting Geologist	5 B/1 Drill Hole AD (Pb) and ZIN Scale: 1 : 500	Watson Lake Mini e WT-4 C (Zn) ASSAYS Date: March 2010	ng District Fig. 9b

2° FIN	\$ \$	CGL	Conglomerates		
		QFP	Quartz-feldspar po	orphyry	
WT-4		D] Dykes, mafic (gab	obroic, diabase)	
(TD 132.59 m)		QCV	Quartz and/or car	bonate veins and replacement	ts
		RV	Rhodochrosite-ca	rbonate veins	
		IF	Replacement (sec	ondary) iron formation, usua	lly
		BX	Breccias (tectonic	, intrusive, fluidization)	
		FZ	Fault zone		
		cl	Clayey gouge		
		K	Lithology code (sin	of lithological intervals nplified) NERALS ING	C.
	•	WI	LDCAT P Exploration Pr (Assessment R	ROPERTY roject 2009 eport 2010)	Z
		NTS Nos.: 105	B/1	Watson Lake Minir	ng District
			Drill Hold	WT_1	
	0 SCALE 25 m	LITHO	LOGY and SIL	VER (Ag) ASSA	YS
		K, Mastalerz Consulting Geologist	Scale: 1 : 500	Date: March 2010	Fig. 9a

1.43 00 PD 9.92 00 PD 1.43 00 PD 9.92 00 PD 1.43 0	1.83 ag th 80 ag
June 1	LEGEND (see Fig. 8a)
ASS AND	0 SCALE 25 m
and the second s	KILLDEER MINERALS INC.
The state of the s	WILDCAT PROPERTY Exploration Project 2009 (Assessment Report 2010)
Land ison	NTS Nos.: 105 B/1 Watson Lake Mining District
WT-3 (TD 234.70 m)	Drill Hole WT-3 LEAD (Pb) and ZINC (Zn) ASSAYS
\sim	K. Mastalerz Scale: Date: Fig. 81

Start Start Clevated Pb	
WT-5 (TD 152.60 m)	LEGEND (see Fig. 10a)
	0 SCALE 25 m
	KILLDEER MINERALS INC.
	WILDCAT PROPERTY Exploration Project 2009 (Assessment Report 2010)
	NTS Nos.: 105 B/1 Watson Lake Mining District
	Drill Hole WT-5 LEAD (Pb) and ZINC (Zn) ASSAYS
	K. Mastalerz Consulting Geologist 1:500 March 2010 Fig. 10b

footwall of the Main Zone resulted obviously from a fracture- and breccia-controlled propagation of hydrothermal fluids related to minor Tertiary intrusions. Some parts of pre-existing fractures, limestone caverns and highly vuggy/porous breccia zones resulted, most probably, from earlier (Carboniferous-Tertiary?) karstic processes. However, the primary, sulfide-rich mineralization has been subjected to strong oxidation and leaching which led to significant degradation and depletion of the primary ore grades. Leaching and oxidation were facilitated by strong faulting and fracturing which accompany the Main Zone. Similar, lower-grade ore zones resulted from leaching of base metals and silver were identified in surroundings of the nearby sulfide-rich Silvertip deposit (Rees 1998; Robertson and Belanger, 2002). However, the Kılldeer 2009 drill program has justified a significant potential of the Wildcat property to host a primary, unleached, high-grade mineralization of silver/base metals.

An additional interesting aspect of mineralization in the Main Zone is related to occurrences of fluorite. Fluorite occurs in association with irregular intrusions of quartz-feldspar porphyry and some fluidization breccias.

Core recovery

The quality of the recovered core material was predominantly satisfactory for reliable assessment of its lithological and mineralogical character and, to limited extent, of geometry, as well as for approximate assessment of the grade of mineralization in most of the intersected intervals. It varied usually between 90 and 100%. However, several intervals displayed considerably lower recovery – down to 40-70%, and occasionally less. Low-recovery intervals were especially common in strongly oxidized and clay-rich intersections of replacement iron formations and some breccias. It is understood that significantly lowered recoveries reported from these intervals might have a considerable influence on laboratory results. Since mineralization on the property was frequently bound to these lithologies, it is strongly advised to perform some microscope petrographic examinations of these rocks for better understanding their mineralogy, composition and for satisfactory interpretation of the processes of their formation.

Core recoveries were frequently lowered in intersections of fault gouges, and zones of stronger development of fractures.

Quality control and assurance program

Sample preparation procedures used by Killdeer personnel follow standard industry practice and professional guidelines. After logging of drill core, the sample intervals were been marked with plastic tags and the core was split using a core splitter. One half of the core was placed in a labeled plastic bag and the second half returned to the core box. The remnant core is stored on the property (Fig. 5).

A quality assurance/control program was implemented by means of base-metal and silvergold standard, blank and duplicate samples inserted randomly into the sequence of regular core samples. Some re-check analyses were conducted on selected samples to provide additional data on the reproducibility of the laboratory results. The results of the quality control samples were monitored by the author and found to fit satisfactorily within acceptable ranges. Appendix 4 summarizes the results of the quality control program.

3.5 Types of Mineralization

The Killdeer 2009 exploration program on the Wildcat property was designed to verify the hypothesis about occurrences of a conformable, manto-style mineralization in the footwall of the Main Zone (Caron, 2008). The fault-related argentiferous lead-zinc mineralization of the Main Zone was previously tested by numerous historical drill holes (Furneaux and Dawson, 1985). The Killdeer program resulted in documentation of some zones of copper mineralization, and proved an existence of significantly elevated gold concentrations on the property. Concentrations of rare-earth elements were tested on limited number of samples.

German et al., (1992) distinguished four distinct phases of mineralization on the Wildcat (YP) property as based on their detailed microscope-microprobe study. These authors estimated a maximum formation temperature of 465-490°C (early stage of mineralization) and formation pressure corresponding to a depth of approximately 2500 metres as based on arsenopyrite geothermometry and fluid inclusion study. The high formation temperatures associated with cataclastic deformation of the ore minerals were interpreted in terms of close relationship between faulting and magmatism on the property. Low salinity of fluid inclusions reported by Germann et al. (1992) appears to indicate a mixed (magmatic-metamorphic?) source of metals of the mineralization on the property. Results of microprobe analyses by the same authors did not provide evidence for occurrence of gold mineralization on the Wildcat property.

The following classification of mineralization types encountered on the property is based exclusively on visual examination of core and rock samples, results of laboratory analyses and available published information. More accurate classification would require complementary microscope-microchemical studies.

Argentiferous lead-zinc veins and dyke-related accumulations.

Argentiferous veins were probably the earliest recognized type of mineralization on the Wildcat property (Lord, 1944). The mineralization occurs as steep discontinuous lenses and fracture fillings which cut through dolomite and/or limestone. The veins exposed on surface are usually strongly oxidized and filled with a mixture of iron/manganese oxides and relics of the primary sulfide minerals (galena, sphalerite, pyrite and, locally, subordinate chalcopyrite). Limonite, goethite and locally botryoidal psilomelane are the main mineral components of these veins. The gangue minerals observed in drill-hole intersections are represented by calcite, pinkish rhodochrosite, siderite and, rarely, quartz. Veins are characterized by significant, ore-grade concentrations of silver, lead and zinc. These elements are accompanied by strongly elevated concentrations of ore indicator elements (arsenic, antimony, cadmium, bismuth and Hg) and, commonly, significantly anomalous copper.

Wildcat Property Diamond Drill Program 2009

Massive concentrations of predominant pyrite, with minor sphalerite, galena, and subordinate chalcopyrite were encountered in association with mafic dykes in drill hole WT-1. Origin of these accumulations of sulfides is not clear. Frequently, major fracturecontrolled dykes act as impermeable barriers for hydrothermal solutions and lead to accumulations of ore minerals along their walls (cf. Germann et al., 1992).

Argentiferous lead-zinc manto-style mineralization

The Killdeer 2009 exploration program prove the existence of conformable, stratiform to stratabound mineralization on the property. Small-size, sill-like bodies of iron-and-manganese oxides with relics of primary sulfide minerals were proved to occur in the Hope and Little Guy Hill areas (Chapter 3.3). These bodies are interpreted as parts of the Tertiary hydrothermal mineralization system driven by hot hydrothermal solutions and, probably, contained gases. The other, more proximal, elements of this system were observed in drill-hole intersections in the form of veins and fluidization breccias. The breccias tend to form bodies of variable geometry including irregular intrusion-like forms, dykes and sills. However, drill intersections frequently do not provide enough evidence on the character and geometry of many of these breccias.

Numerous occurrences of breccia display close spatial relation to the Main Zone – subvertical zone of strong faulting, fracturing and hosting intrusive bodies of quartzfeldspar porphyry, mafic dykes and veins of various compositions. Undoubtedly, hydrothermal activity was focused along the Main Zone which constituted the most important feeder zone of the individual bodies of manto-style mineralization.

Important elements of the manto-style mineralization on the Wildcat property are numerous bodies of replacement iron formations. Their contacts frequently parallel stratification surfaces in the surrounding rocks. Replacement iron formations usually carry significant silver-lead-zinc mineralization and sometimes also elevated concentrations of copper and other metals. The formations are interpreted as important elements of the mineralization system, which conducted significant part of hydrothermal (and/or mixed) solutions and received a significant part of an original sulfide-rich mineralization. However, original sulfide mineralization contained within these bodies were strongly leached and replaced by oxide minerals and clays due to subsequent supergene processes which were enhanced by high primary porosity of the host rocks and strong faulting and fracturing of the adjoining rock formations.

Pyrrhotite (and minor pyrite) mineralization

Pyrrhotite mineralization encountered during 2009 drill program is evidently associated with deeper stratigraphic horizons (Boya Formation) within the Main Zone. There occurs abundant pyrrhotite within the fyllites and schists of the Main Zone as small, dispersed, bleb-like forms elongated parallel to primary stratification surfaces (incipient metamorphic foliation usually parallels surfaces of bedding). Character and age of this mineralization is unknown. However, it must at least partly predate tectonic faulting and brecciation since the fragments of schists/fyllites with dispersed pyrrhotite mineralization are elements of tectonic breccias at various levels (including surface occurrences) within the Main Zone.

Some occurrences of pyrrhotite are apparently associated with the external contact rocks of the quartz-feldspar porphyry bodies. Although, it is not clear if these concentrations are related to re-mobilization of the primary mineralization along the intrusive contacts. This problem cannot be solved without microscope examination supported by a study of micro-geochemistry (e.g. microprobe analysis; see also discussion by Germann et al., 1992).

Massive to seminassive bodies of pyrrhotite-dominated sulfides (including also sphalerite and arsenopyrite) has been described commonly as typical of the YP (Lord) showing (e.g. Minfile # 105B 001) and can be observed locally in the core from the historical drilling stored on the property. Germann et al. (1992) assigned these occurrences to early, hightemperature phase of hydrothermal mineralization.

Gold mineralization

A single significant gold value (0.446 oz/t gold over 18-feet long interval) on the Wildcat property was reported from the historical drill hole "83-3" (Furneaux and Dawson, 1985). The core from this hole is stored in the H.S. Bostock Core Library in Whitehorse. In 2008, L. Caron collected a quarter-split sample from the corresponding interval (759-777 feet) and assayed it in ALS Chemex Laboratories to verify this historical result. The result was not reproduced and the sample returned insignificant gold value of 0.014 ppm gold (procedure AA-23) from this interval (Caron, 2008 - Appendix 3). Earlier, Germann et al., (1992) conducted some microprobe study to verify existence of disseminated gold on the Wildcat property. However, their conclusion was negative.

During the Killdeer 2009 exploration program samples were not assayed for gold on a regular bases. However, all collected rock samples and approximately 170 core samples were analysed for gold by ICP method in Pioneer Laboratories (Richmond, British Columbia). Additionally, 15 core samples were analysed for gold by procedure TL42 in ALS Chemex Laboratories in North Vancouver for verification.

Background concentration of gold in most rock types on the property is very low and ranges up to only first few ppb. The highest gold concentrations discovered in the rock samples collected on the property during the program range from 23 to 84 ppb Au. The highest gold concentrations documented in analysed core samples ranged from 30 to 230 ppb Au. Higher concentrations of gold show generally moderate correlation with elevated contents of silver and base metals but this relationship is very far from perfect. Higher concentration of gold was found to be frequently related to sampled intervals cut through quartz-feldspar porphyry, replacement iron formation, breccias and fault zones. Especially strong association of elevated gold values and quartz-feldspar porphyry are found in drill holes WT-1 and WT-3, and between gold and replacement iron formations in drill holes WT-1 and WT-5. Less common is association of gold with rhodochrosite veins and mafic dykes.

The most interesting gold mineralization was intersected in drill hole WT-5. This drill hole did not reach target depth due to technical problems and was prematurely terminated in a zone of brecciation and clay-silica alteration related to a prominent fault. Consistently elevated gold values range from 39 to 130 ppb in 6 consecutive samples of the final 8.47-metre long intersection (Fig. 10a). The interval enriched in gold is characterized by pyrite-chalcedony mineralization. Gold mineralization on the Wildcat property warrants further investigations, especially when one consider similarities with the mineralization system with the nearby Silvertip deposit where argentiferous basemetal sulfide mineralization is accompanied by grades of 0.46-0.85 g/t gold (Rees 1998, Robertson and Belanger, 2002).

Copper mineralization

Numerous core samples collected during 2009 drill program returned significantly elevated concentrations of copper (Cu) which varied from 200 to 1600 ppm. Two extremely rich samples returned 0.62 and 1.59% Cu, respectively. It is hard to prove statistically significant relationship between copper and other elements, although samples with anomalously high concentrations of copper frequently display coincident high values of silver, lead, zinc and gold. However, in a number of samples elevated copper values do not coincide with the other base and/or precious metals.

Significantly elevated concentrations of copper on the Wildcat property are especially frequently associated with two lithologies: replacement iron formations and tectonic/fluidization breccias. The highest concentrations of copper have been encountered in replacement iron formation in drill hole WT-2 (0.619% Cu) and in a body of a polymictic fluidization breccia in drill hole WT-4 (1.59% Cu). The latter occurrence is evidenced by abundant (1 + 4 %) chalcopyrite. Worth mentioning is that the first run of the ICP analysis returned only 1167 ppm Cu from this sample (Appendix 3) and it may be related to low efficiency of the ICP method in detection of elevated levels of copper. Less commonly, elevated copper values are related to quartz-feldspar porphyry and mafic dykes.

Seven out of 14 rock samples returned concentrations of copper within a range from 241 to 1660 ppm. All these samples represent narrow veins and concordant stratabound bodies filled by breccias with abundant oxidized iron-manganese-rich matrix. Visual examination did not result in detection of copper minerals in these samples.

Older, pre-deformational quartz veins.

Irregular, strongly deformed (folded and locally fractured) quartz, and quartz-feldspar(?) veins were encountered in some deeper drill-hole intersections (e.g. WT-1, WT-2, WT-3) of the Boya Formation. These veins commonly contain finely disseminated pyrite, pyrrhotite and, minor and less frequently, arsenopyrite. Laboratory analyses of a few selected samples did not return significant concentrations of precious or base metals.

Obvious effects of tectonic deformations indicate that these veins must pre-date main phase of tectonic deformation.

Concentrations rare-earth elements

The ME-MS41 procedure applied by ALS Chemex Laboratories to a limited set of duplicate core samples returned some considerably elevated concentrations of Cerium (Ce), Yttrium (Y) and Lantanium (La). Elevated concentrations of cerium (50 - 107 ppm) and yttrium (38 – 75 ppm) were discovered in 9 samples of tectonic and/or fluidization breccias, quartz-feldspar porphyry and some replacement iron formations. The same procedure (ME-MS41) applied to additional 28 samples selected from rejects of the "suspect" and associated/neighboring lithologies returned again elevated concentrations of Ce, Y and La in similar ranges of values. Analyses of additional samples brought about slightly elevated background values of these elements. The same laboratory procedure applied to rock samples did not return results in similar range (Appendix 3).

Rejects of 14 samples were additionally analysed by lithium borate fusion ICP-MS (procedure (ME-MS81D) to obtain concentrations of 14 REE elements and yttrium. Most samples were selected to represent various bodies of quartz-feldspar porphyry, 3 samples – fluidization and tectonic breccias, one sample was taken from replacement iron formation and one from quartz-feldspar porphyry cut by thin rhodochrosite vein. Rejects for this analysis were selected from samples which returned significantly elevated concentrations of zinc, lead, and silver by standard ICP analysis. Applied procedure gave additionally whole rock analyses of the samples. Analysis failed to confirm significant concentrations of REE in the samples, although it proved elevated backgrounds of cerium, yttrium and lantanium.

Rare-earth elements are known to occur commonly in association with fluorite which was also observed on the Wildcat property in some drill intersections of quartz-feldspar porphyry and along its contacts (Appendix 3). Occurrence of fluorite and topaz in association with intrusions of quartz-feldspar porphyry were already reported earlier from the property (Sinclair, 1998). Both minerals are most probably related to the Tertiary intrusive bodies and associated hydrothermal activity. Re-sampling of the core-material which display occurrence of fluorite is necessary to express more conclusive opinion concerning concentrations of REE in the rock formations of the Wildcat property. To date results show that cerium, yttrium and, to a lesser degree, lantanium can be used as indicative elements in soil geochemistry when searching for bodies of quartz-feldspar porphyry and replacement iron formation in areas characterized by apparently homogenous cover of carbonate rocks which are characterized by very low concentrations of these elements. All three elements can be reported in result of typical ICP analyses.

Results of whole rock analysis of selected samples

Rejects of 14 samples were analysed by ICP-06 procedure (ME-MS81D package of ALS Chemex). Most of the samples represented various bodies of quartz-feldspar porphyry (including one sample cut by thin vein rich in rhodochrosite), 3 samples – fluidization and tectonic breccias and one sample was taken from replacement iron formation (Table 5). Full results of this analysis are listed in Appendix 3.

Sample	Lithology	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06
		SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	MnO	P_2O_5
		%	. %	%	%	- %	%	%	%	%
WT1-29	QFP	76.2	14.55	0.81	0.95	0.67	0.06	3.73	0.05	0.02
WT1-30	QFP	70.1	11.60	4.53	3.21	0.90	0.03	2.32	0.03	0.01
WT1-31	QFP (70.5	11.20	2.35	5.18	0.86	0.03	2.98	0.04	0.02
WT1-32	fBX	40.1	6.46	17.10	8.72	1.66	<0.01	1.49	0.12	<0.01
WT1-45	QFP	67.5	11.70	6.56	2.58	0.51	0.03	3.07	0.06	0 01
WT2-08	QFP	67.5	18.20	0.93	2 72	0.43	0 05	3.26	0 14	0.03
WT3-13	QFP/RV	71.6	13.10	[,] 2.22	1.86	0.77	0.04	3.46	0.80	0.01
WT3-14	fBX	48.8	15.50	5.35	13.10	1.80	0.28	3.84	0.23	0.08
WT3-29	QFP -,	75.6	12.60	2 .53 [°]	1.22	0.55	0.04	3.34	0.38	0.02
WT3-30	QFP	76.0	13.50	1.19	1.04	0.47	0.04	3.34	0.53	0.03
WT3-31	QFP	76.2	12.50	- 1.24	1.92	0.37	0.04	3.18	0.48	0.01
WT3-32	QFP	74.7	13.15	1.13	2.66	0.33	0.04	3.27	0.59	0.01
WT4-18	BX	1.0	0.48	2.51	43.50	8.09	<0.01	0.07	0.16	0.05
WT5-16	RIF	19.7	6.67	5.11	34.90	0.69	0.05	1.84	0.39	0.22

Table 5. Results of whole rock analysis of selected samples.

The tested samples of quartz-feldspar porphyry are characterized by very high, as expected, concentrations of SiO₂, although, two groups of the samples are characterized by distinct ranges of silica contents: 67.5 - 70.5% and 74.7 - 76.2% respectively. Similar subdivision can be done on the basis of Al₂O₃ contents (Table 5). Quartz-feldspar porphyry intrusions of the Wildcat property are also characterized by high concentrations of K₂O and surprisingly low concentrations of Na₂O.

Sample WT5-16 which represent stratiform, incipient replacement iron formation host in a succession of thick bedded limestones, is characterized by low concentration of silica and high concentrations of calcium carbonate (probably residual), and iron (most probably secondary introduction).

4.0 CONCLUSIONS and RECOMMENDATIONS

The Wildcat property is located in a region known from numerous occurrences of silverrich lead-zinc mineralization. There occur tens of distinct mineral showings in a radius of approximately 25 kilemetres from the centre of the property, which are recorded in the Minfile system (Yukon and British Columbia). Long known occurrences on the Wildcat property itself belong to three main styles of mineralization: 1) fault/fracture controlled (pyrrhotite-sphalerite-pyrite), 2) sphalerite-galena-rich veins and fracture fillings, and 3) concordant zones of manto-style replacement mineralization.

The rock formations intersected by the 2009 drill holes are represented by moderately diversified carbonates (predominantly dolostones and limestones) and by mixed-composition meta-siliciclastic/volcaniclastic rocks, which belong to the Cambrian Atan Group (stratigraphic position of a part of the succession remains unknown), and by quartz-feldspar porphyry intrusives and associated diabase dykes, both most probably of Tertiary age. The rock formations display diversified effects of low-grade metamorphism, tectonic deformation, fracturing and brecciation, alteration and mineralization.

All drill holes of the 2009 program intersected numerous intervals characterized by variable amounts and various types of mineralization. Encountered mineralization form a very complex system and include some elements which were not addressed properly during the 1983-85 exploration campaigns. Most mineralized intervals occur in the oxidation zone and the primary ore-minerals were partly dissolved/replaced, and goethite pseudomorphs and other new minerals were formed. The most common types of mineralization encountered in the footwall of the Main Zone include extensive intervals of strong fracturing, faulting, as well as tectonic and fluidization breccias, which contain abundant limonite, goethite and hematite locally with relics of pyrite, galena, sphalerite and pyrrhotite.

Mineralization in the drill-tested, proximal eastern footwall of the Main Zóne resulted from a fracture-controlled propagation of hydrothermal fluids related to minor Tertiary intrusions and dykes. Undoubtedly, the feeder part of this hydrothermal system was focused within the complex, steep fault of the Main Zone. The zone was preferentially invaded by minor late intrusions which were locally followed by hydrothermal processes, rock alteration and mineralization. Localized development of over-pressured zones resulted in emplacement of fluidization breccias which also gathered significant part of mineralized solutions. The hydrothermal system was canalized further along pre-existing discontinuities, including intrastratal surfaces and karst-related breccias and caverns. Several mineral zones bounded by contacts conformable with stratification were intersected in drill holes of the Killdeer 2009 program. These zones represent elements of the manto-style mineralization system.

The Killdeer 2009 drill program generally failed to prove the existence of economically significant mineralization in the western-to-central part of the Wildcat property. Primary

mineralization of the drill-tested area has been a subject to strong oxidation and leaching processes which led to its significant degradation. Argentiferous lead-zinc mineralization is host by strongly altered rock formations rich in iron-manganese oxides and clay minerals. These rocks were labeled as "replacement iron formations" in this report. The replacement iron formations are frequently accompanied by extensive intervals of a stockwork-style Fe-oxides, hosted in slightly silicified carbonate rocks. Similar lowergrade ore zones, resulted from leaching of base metals and silver, were identified in surroundings of the nearby sulfide-rich Silvertip deposit (Rees 1998; Robertson and Belanger, 2002).

However, the Killdeer drill program has justified significant potential of the Wildcat property to host a primary, unleached, high-grade mineralization of silver/base metals. There occurs abundant evidence of development of a manto-style replacement mineralization on the drill-tested area on the property. Some features characteristic of the nearby Silvertip deposit as mineralization focused along tectonic discontinuities and paleokarst features, similar mineralogy and frequent oxidized facies/zones, have been documented at Wildcat property. The property is located in an area known from numerous (approximately 50) mineral showings, predominantly of similar to Wildcat (Lord) character/style of mineralization

Additionally, the Killdeer exploration program resulted in encountering significant copper mineralization, which was not documented earlier. Few narrow intervals grading from 0.03 to 0.14 % copper have been intersected in drill holes. The longest copper-rich interval reached 2.39 metres and returned 0.62% copper. The highest grade interval of copper mineralization (1.49 % Cu) was documented in drill hole WT-4 and was 0.65 metre long. Copper mineralization is most commonly related to fluidization and tectonic breccias which occasionally contain significant amount of chalcopyrite. However, strongly elevated concentrations of copper occur frequently in replacement iron formations and within intrusive bodies of quartz-feldspar porphyry.

The last drill hole completed during the program, WT-5, intersected significant interval of low-grade gold mineralization which is apparently associated with a prominent fault zone (Eastern Fault Zone), sub-parallel to the Main Zone. The Eastern Fault Zone is located approximately 900 metres eastward from the Main Zone (Fig. 5) and could be associated with another hydrothermal feeder system, similarly to Main Zone. The drill hole did not reach the target depth and was prematurely terminated due to technical problems in the fault zone hosting gold mineralization. The area was never explored carefully before.

Fluorite mineralization and some elevated concentrations of REE associated with the intrusions of quartz-feldspar porphyry in the Main Zone need further exploration.

A limited exploration program which would include geological mapping (with emphasis on stratigraphic correlation and structural observations/measurements) and soil sampling is recommended to follow up to-date results and to identify other geological settings favorable for potential occurrence of manto-style mineralization of better integrity. A few selected MMI soil geochemistry traverses should be completed in the eastern part of the property where till cover is thick. Field or airborne EM survey should follow where warranted by the results of the mapping and soil sampling program.

In spite of numerous mineral exploration programs conducted on the property to date, the geological structure and stratigraphy of the area is still poorly documented and, consequently, poorly understood. Further, property-scale geological mapping is strongly recommended before any other aspects of exploration are involved. Detailed geological mapping including structural observations and measurements should aid in much better understanding the orientation and continuity of the structures potentially hosting mineralization. A complementary rock and soil sampling is recommended to be conducted along cross sections selected in result of geological mapping. Part of the soil sampling program should be designed to follow the newly discovered fault zone and related gold mineralization, which were intersected in drill hole WT-5. A mobile metal ions (MMI) soil geochemistry study may be considered as an optional method along selected traverses. The sensitivity of this method is considered to be of great importance in resolving geology and mineralization problems in the areas with deeper blanket of loose overburden.

Further field work on the property should be preceded by a microscopic study of polished thin-sections. A similar study appeared to be very effective in understanding character of mineralization of the nearby Silvertip deposit (Rees, 1998). Re-examination and limited sampling/assaying of the historic drill core stored in the government core laboratory in Whitehorse would aid in the construction of the mineralization model of the Wildcat property. The following table lists the elements and budget of the proposed exploration program.

		Approximate	Approximate	
ltem	Quantity	unit cost	total cost	
		[\$]	[\$]	
Microscope study	14 polished thin sections	300.00	4,200.00	
Geological mapping (including 1 day of				
core re-logging and sampling)	16 days	600.00	9,600.00	
Field assistant and soil geochem sampling	20 days	240.00	4,800.00	
Hand trenching	8 trenches	250.00	2,000.00	
Analytical (soil sampling)	250 samples	25	6,000.00	
Analytical (MMI soil sampling)	50 samples	45	2,250.00	
Analytical (rock sampling)	70 samples	30	2,100.00	
Geophysical ground EM survey	25-30 km		30,000.00	
Line cutting	Approximately 18 km	500	9,000.00	
Travel			3,000.00	
Accommodation			2,000.00	
Food	120 pers-days	50.00	6,000.00	
Fuel, rentals (truck, ATV, gen-set etc.)			8,000.00	
Camp costs and supplies			3,000.00	
Reporting and drafting		-	10,500.00	
Other costs (sample shipment, reclaimation			1	
etc.)			2,000.00	
Total		_	104,450.00	

Table 6. Budget to recommended exploration program.

5.0 REFERENCES

Abbott, J.G., 1983. Silver-bearing veins and replacement deposits of the Rancheria District. Yukon Exploration and Geology, 1983. DIAND, p. 34-41.

Caron, L., 2008. National Instrument 43-101 Technical Report on the Wildcat Property, Rancheria District, NTS 105B/1. (for Killdeer Minerals Inc.), December 31, 2008.

Christopher, P.A., 1984. Geochemical and Geophysical Report, Karen and Lydia A-F Claims, Watson lake Mining District, Yukon Territory. (for Jantar Resource Corp.), July 25, 1984. Assessment Report 091556.

Cukor, V., 1983. Butler Mountain Minerals Corp. Lola – Idaho – YP Claims, NTS 105B-1, Watson Lake MD, Y.T., Engineering Report, June 17, 1983. Prospectus – Assessment Report 062158.

Fritz, W.H., 1980. Two new formations in the Lower Cambrian Atan Group, Cassiar Mountains, north-central British Columbia. In: Current Reaserch, Part B, GSC Paper 80-18, p 217-225.

Furneaux, B.T. and J.M. Dawson, 1985. Summary Report on the 1984 and 1985 Field Season on the YP Property. For Butler Minerals Corp., November 22, 1985. [only pages 9 through 16 of the report and title page availale]

Gabrielse, H., 1963. McDame map-area, Cassiar District, British Columbia. GSC Memoir 319.

Gabrielse, H., D.J. Tempelman-Kluit, S.L. Blusson and R.B. Campbell, 1980. MacMillan River, Yukon – District of MaKenzie – Alaska, Sheet 105, 115. Geol. Surv. Canada, Map 1398A.

Germann, A., G. Friedrich and R. Schattner, 1992. Ore Mineralogy and Formation Conditions of Vein and Replacement-type Pb-Zn-Ag Occurrences, Logan and YP Properties, Rancheria District, Yukon, Canada. In: Yukon Geology, Vol. 3, Exploration and Geological Services Division, Yukon, DIAND Canada; p. 37-44.

Green, L.H., W.H. Poole and J.A.Roddick, 1960. Map 10-1960. Geology – Wolf Lake, Yukon Territory. Scale 1:253,440. Geol. Surv. Canada.

Lebel, A., 2008. Horizontal Loop Electromagnetic Survey at the Wildcat Property, RAncheria Area, Yukon Territory. (for Killdeer Minerals Ltd.) December 31, 2008.

Lord, C.S., 1944. Geological Reconnaissance along the Alaska Highway between Watson Lake and Teslin River, Yukon and British Columbia. GCS Paper 1944-25.

Lowey, G.W. and J.F. Lowey, 1986. Geology of Spencer Green 105 B/1 and Daughney Lake 105 B/2, Rancheria District, Southeast Yukon. YGS Open File 1986-1.

Medford, G. and P.A. Christopher, 1983. Geological, Geochemical and Geophysical Report, Lydia and Flo Claims, Rancheria Area, Yukon Territory, Watson Lake Mining District. (for Jantar Resource Corp.), October 30, 1983. Assessment report 091492.

Nelson, J.L., 2005. Polymetallic Mantos Ag-Pb-Zn. BC Geological Survey Branch, Mineral Deposit Profile J01, modified for Yukon by A. Fonseca and Bradshaw, YGS Open File 2005-5.

Nelson, J.L. and J.A. Bradford, 1987. Geology of the Midway area, northern British Columbia (1040/16); BC Ministry of Energy, Mines and Petroleum resources, Open File 1987-5.

Nelson, J.L. and J.A. Bradford, 1987. Geology of the Midway-Cassiar area, northern British Columbia (104O, 104P); BC Ministry of Energy, Mines and Petroleum resources, Bulletin 83, 94 pp.

Nelson, J. and Colpron, M., 2007. Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present. In: Goodfellow, W.D. (ed.): Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geol. Assoc. Canada, Mineral Deposits Division, Spec. Publ. No. 5, p.755-791.

Poole, W.h., 1954. Western Ranges Prospecting Syndicate report by D.R. Derry, including property geology map. Assessment report 092052.

Power, M.A., 1999. Total Magnetic Field and VLF-EM Surveys at the Wildcat Property, Rancheria Area, Yukon. (Amerok GeoSciences Ltd., for Gary Lee). January 18, 1999, Assessment Report 093939.

Power, M.A., 2000. Total Magnetic Field and VLF-EM Surveys at the Wildcat Property, Rancheria Area, Yukon. (Amerok GeoSciences Ltd., for Gary Lee). April 13, 2000, Assessment Report 094104.

Price, B.J., 1983. Geological Report on the Lydia and Flo Claims, rancheria Area, Yukon, Watson Lake Mining District. (for Jantar Resource Corp.) February 14, 1983. Assessment Report 062179.

Rees, C., 1998. 1997 Summary Report: Geological Mapping, Seismic Surveying and Diamond Drilling (Silvertip Mining Corporation, Imperial Metals Corporation); Volumes 1 through 4. April 9, 1998. Assessment Report 25495.

Robertson, S. and M. Belanger, 2002. Technical Report – Review of the Silvertip property, Northern British Columbia (for Imperial metals Corp.) October 2002.

Sinclair, W.D., 1998. Unpublished letter to Gary Lee dated on June 16th, 1998, with accompanying interpretive map and cross-section of the YP property. Geol. Survey of Canada.

Tagseth, E.A., 1967. Geological and Geophysical Report on the Andrew Claim Group, Claim Sheet 105 B-1, Watson lake Mining Division, Yukon Territory. December 1967. Assessment Report 061863.

White, G.E., 1983. Drilling Report on the YP Property. (for Butler Mountain Minerals Corp.), December 9, 1983. Assessment report 091501.

White, G.E., 1984. Geophysical Report – Magnetometer and Pulse EM on the YP, Idaho, BTF, Blue and Kent Claims. (for Butler Mountain Minerals Corp.) September 10, 1984. Assessment report 091644.

Yukon Minfile # 105B 001 (Lord) http://servlet.gov.yk.ca

Respectfully submitted,

Krzysztof Mastalerz

6.0 STATEMENT OF EXPENDITURES

Item	Cost (\$CAD)
Field Personnel – September 15 to October 04, 2009:	
Field geologist (K. Mastalerz) 18 days @ \$650.00 per day	11,700.00
Field assistant and core splitting (D. Pugh) 20 days @ \$350.00 per day	7,000.00
Supervision (Mike Elson) 12 days @ \$350.00 per day	1,600.00
Drilling (Kluanie Drilling Ltd.) including logistics	126,290.65
Laboratory analytical costs	8,924.01
Travel	2,960.26
Food and meals	4,815.66
Accomodation	4,449.54
Rentals (two 4x4 trucks, ATV, generator)	5,286.00
Fuel	9,728.53
Supplies and small equipment	1,384.87
Phones and satellite phone costs	547.57
Repairs	210.00
Geology – office (K. Mastalerz)	3,250.00
Report writing	5,600.00
Drafting	1,600.00
Total cost	195.347.09

7.0 CERTIFICATE OF PROFFESSIONAL QUALIFICATIONS

I, Krzysztof Mastalerz, do hereby certify that:

- 1. I am a geologist with an office at 2005 Bow Drive, Coquitlam, British Columbia
- 2. I am a graduate of the University of Wrocław, Poland, (M.Sc. in Geology in 1981, Ph.D. in 1990).
- 3. I am a Professional Geoscientist registered with the APEG of the province of British Columbia as a member, # 31243.
- 4. I have continually practiced my profession since graduation in 1981 as an academic teacher (University of Wrocław, A. Mickiewicz University of Poznań) through 1997, a research associate for the State Geological Survey of Poland (1993-1995), and independent consulting geologist in Canada and Peru since 1994.
- This report is based upon field work carried on the Wildcat property, Watson lake Mining District, in southern Yukon Territory, from September 15th through October 3rd, 2009.
- 6. I have, personally, conducted field work and supervised drill program on the Wildcat property in 2009.
- 7. Interpretations and conclusions presented in this report are based on my field observations, core logs, analytical results and on previously published and archive literature available for the area.

Dated at Coquitlam, BC, this 27th day of March, 2010.

Krzysztof Mastalerz

Samala	UTM (NAD83, 9 Z	Ione)						
Jahol	East	North	Elev	Туре	Description				
	[m]	[m]	[m]	-					
KMW09-01	423820	6657583	1456	Grab	1-3 cm blebs of dark greenish clayey-talcose(?) rock in fractured and slightly slickensided light buff, fine-grained dolomite				
KMW09-02	423825	6657808	1480	Grab	Dark brown to almost black Mn/Fe-oxide encrustations and pods in fractured buff dolomite and/or dolomitic limestone				
KMW09-03	424093	6657746	1508	Grab	Irregular, small-size impregnations and encrustations of Fe/Mn (Goethite) oxides developed along fractures in light gray to buff, medium-crystalline dolomitic limestone; relics of galena, pyrite and sphalerite; locally whitish spots of secondary minerals of Zn (smithsonite?) and Mn?				
KMW09-03 <u>A</u>	424097	6657737	1510	Grab	Fine-to-medium-grained breccia (tectonic?) of medium- crystalline, light-gray to buff dolomitic limestone with relatively abundant light-brown to rusty matrix rich in Fe oxides				
KMW09-03B	424097	6657737	1510	Grab	Dark brown to black lenses of goethite-galena (with minor relic pyrite and sphalerite) filling intrastratal gaps in medium-crystalline dolomitic limestone; stratiform accumulations				
KMW09-04	424048	6657949	1470	Grab	Massive medium-to-fine grained breccia of buff, fine/medium-crystalline dolomite with relatively abundant brown to rusty, limonitic matrix				
KMW09-05	423929	6657984	1457	Grab	Fe-Mn encrustations along fractures in light gray/buff dolomitic limestone; rarely small relics of galena and sphalerite; locally whitish secondary minerals of Fe and Zn?				
KMW09-06	423915	6658010	1450	Grab	Dark brown to black, locally rusty, massive secondary encrustations and impregnations of Mn-Fe oxides in strongly fractured dolomitic(?) limestone; relics of primary galena, pyrite and minor sphalerite, pseudomorphs after pyrite or galena; locally whitish secondary minerals				
KMW09-07	423876	6657974	1455	Grab	Fine-to-medium grained breccia of dolomitic(?) limestone with local incipient development of Mn-Fe encrustations; abundant limonite-goethite -rich matrix				
KMW09-08	422890	6658505	140 <u>2</u>	Grab	Brownish-to-black limonite-goethite-Mn-rich stringers in subvertical shear(?) fracture zone developed in massive dolomitic(?) limestone; no relics of primary sulfides				
KMW09-09	422876	6658726	1345?	Grab	Black to dark-brown lenses/veins and irregular impregnations of Mn-Fe oxides with common relics of galena and sphalerite in fractured, distinctly bedded limestone; some lenses developed along intrastratal surfaces: locally rhodochrosite				

-

KMW09-10	422844	6658921	1336?	Grab	Composite grab of numerous blackish Mn-Fe-oxide encrustations developed along fractures and intrastratal surfaces in slightly silicified limestone; locally rhodochrosite
KMW09-11	423750	6658929	1386?	Grab	Massive Mn-Fe-oxides (predomiantly psylomelan) with common rhodochrosite and locally rare relics of galena in limestone
KMW09-12	423797	6657911	1448	Grab	Dark brown to black, locally rusty, massive secondary encrustations and impregnations of Mn-Fe oxides in strongly fractured dolomitic(?) limestone; rare relics of primary galena, pyrite and sphalerite; locally whitish secondary minerals; some of lenses developed along intrastratal surfaces

K. Kıl	Mastaler Ideer Mi	z nerals I	nc.	Wildcat 2009 Project Assessment Report 2010					Dril	Append Il Hole I pa	lix 2 Logs ge 1
Killde	er Mine	rals Ltd	•					Diamono	l Drill Lo	og - ddi	1 WT-1
Project		Wildcat	2009	Datum NAD83 Zone	9			,			
Drill Hol	e	WT-1		Easting: 423810	Contractor	Kluane	;	Dip tests:			
Core		NTW		Northing: 6657790	Started	20-Sep-09	I	Method	Depth	Azı	Dıp
TD	(695 ft) 2	1184 m		Elevation: 1476	Finished	23-Sep-08		Compass	0	294	-65 5
Claım	•	YB87622		Azimuth: 294	Logged by	K Mastalerz	:				
NTS		105 B/1		Dip: -65.5	Date logged	20-Sep-09	•				
_				-		24-Sep-07					
From	То	Length	Code	Lithology and Structure	Alteration	Ore	Fracture	Sample	From	То	Length
m	m	m				Minerals	Density	Label	m	m	m
0.00	2.14	2.14	ob	Overburden							
2.14	11.20	9.06	LST	Light gray, micritic massive limestone/dolomite, slightly recrystallized,	Ox1d-st,	Goe, Lim	md				
•				modertely fractured, some calcite-Fe-oxide veins	Cl-wk						
11.20	11 28	0.08	LST	Yellowish-gray marly limestone, vuggy	Ox-st		st				
11.28	13.50	2.22	RIF	Light brownish to orange limonite-Mn gouge (fault?); loose material	Ox-st, Cl-	Goe, Lim-	ft?	WT1-01	11.28	12.19	0.91
					st?	Mn		WT1-02	12.19	13.50	1 31
13.50	15.20	1.70	DOL	Light gray, partly rusty-yellow, strongly fractured dolomite		Goe, Lim-		WT1-03	13.50	15.24	1.74
				,	Ox-st, Cl	Mn	st				
15.20	18.50	3.30	DOL	Light creamy-to-gray micrite dolomitic limestone; microfractured; commo	n Ox	'.	md				
				stylolite sutures at 65-80deg rca; locally diffuse layering due to			ſ				
				recrystallization at 60-70deg rca; fractures with Fe-rich infills are							
	'			predominantly sub-parallel to core axis		·					
18.50	18.96	0.46	IIF	Dark-brown mudstone, strongly limonitic, with some calcite blebs; contact	s Ox, Cl	Lim, Goe		WT1-04	18.55	19.27	0.72
				at 65-80deg rca							
18.96	19.27	0.31	DOL	Light creamy dolomite, lower contact discordant at 45deg rca	(Ox)	Lim-Goe	md				
1						1]	1	1 1		
19.27	20.26	0.99	IIF	Brown with greenish spots, limonitic mud-clay gouge; lower contact sharp	Ox	Lim		WT1-05	19.27	20.26	0.99
		1		irregular (probably originally volcaniclastic or clayey material admixed)				ſ	1 1		
_											
20.26	23 00	2.74	LST	Gray crystalline marbly limestone; relics of primary layering at 65deg rca,		1					
,		1		incipient foliation at 60deg rca							
23.00	24.33	1.33	LST	Gray marbly limestone as before but strongly fractured with rusty limonite	Ox	Lim	st-md				
,		r		along fractures; lower contact sharp, slightly irregular at 65deg rca						1	
		1		· · · · · · · · · · · · · · · · · · ·							
24.33	25.91	1.58	LST	Gray crystalline marbly limestone, apparently massive, few calcute veins	Ox-wk	(Lim-Goe)	wk	'			
				1					1		
25.91	25.96	0.05		Dark brown, strongly oxidized clay-limonite layer/zone with sharp contact	s Ox/Cl-st	lim				1	
			•	at 20deg rca (true width 3.5 cm)							

Killdeer Minerals Inc. Assessment Report 2010									Drill Hole Logs		
25.96	28.28	2.32	DOL	Grayish dolomitic/marbly limestone, locally very well developed foliation at 50-60deg; in lower part numerous fractures filled with limonite-goethite and veinlets subparallel and sub-perpendicullar to foliation; lower contact sharp irregular at 75-80deg	Ох	lim-goe	wk/md	WT1-06	27.73	28.28	0.55
28.28	29.30	1.02	RIF	Strongly limonitic interval/clayey gouge, locally numerous limonite-goethite encrustations; lower contact gradational at 30-35deg	Ox-st, Cl	lım-goe		WT1-07	28.28	29.30	1.02
29.30	32.28	2.98	LST	Dark greenish-gray massive marbly limestone with admixed volcaniclastic(?) material	Chl, Ox, Calc?	lım/goe-fr	wk	WT1-08	29.30	30.26	0.96
32 28	33.79	1.51	RIF	Strongly limonitic interval/clayey gouge; lower contact sharp irregular, upper sharp at 45deg	Ox-st, Cl- st?	lım-goe		WT1-09	32.28	33.80	1 52
33.79	47.00	13.21	LST	Grayish slightly marbly limestone to dolomite, locally well-developed foliation at 70deg, locally stylolites	Ох	lim/goe-fr	md/wk				
47.00	48.18	1.18	LST	Grayish-to-creamy micronodular limestone to marble; strongly broken to chipped core	Ox	goe/lim-fr	st/md	WT1-10	47.00	48.18	1.18
48.18	50.20	2.02	LST	Yellowish-to-grayish marbly limestone, crude layering at 60-65deg; lower contact gradational							
50.20	51.18	0.98	LST	Yellowish-to-grayish marbly limestone, fractured and calcite veinlets	Ox, Chl?	lım/goe-fr	md-st	WT1-11	50.70	51.21	0.51
51.18	57.20	6.02	LST	Yellowish-to-grayish marbly limestone, foliation at 65deg, fractures subparallel to core axis; lower contact gradational	Ox	lım/goe-fr	wk-md				
57.20	58.25	1.05	DOL	Light gray dolomite/limestone, slightly siliceous	Sil		wk				
58 25	63.15	4.90	DOL	Light gray dolomite/limestone, stockwork of limonite-filled fractures, locally blebs of goethite	Ox	lım-fr, goe	st	WT1-12 WT1-13 WT1-14	59.50 60.35 61.87	60.35 61.87 63.15	0.85 1.52 1.38
63.15	68.23	5.08	LST	Dark gray marbly limestone, weakly developed foliation at 75-80deg, few stylolites at 75-80deg							
68.23	68.38	0.15	DB	Dark greenish diabase/gabbroic dyke?, or volcaniclastic rock; sharp contacts at 45-50deg	Chl? Ep?	d/f Py, minor Apy	wk			,	
68.38	70.03	1.65	LST	Dark gray to whitish marbly limestone		<u> </u>		L			
70.03	70.29	0.26	DB	Dark greenish, fine grained diabase/gabbroic dyke or volcaniclastic rock; contacts at 60deg; sulphides disseminated, fracture-controlled and along contacts	Chl/Ep?	d/f Py, minor Apy	wk				
70.29	71.11	0.82	LST	Dark gray to whitish marbly limestone with thin dykelet at 70.95 m, distinctly white along the contacts with diabase(?) dykes; at 70.92 m load cast or buckle structure; lower contact sharp but irregular at 60-65deg	Chl? Ep?	d Py					
71.41	71.37	0.26	DB	Dark greenish, fine grained diabase/gabbroic dyke or volcaniclastic rock; contacts at 60deg; sulphides disseminated, fracture-controlled and along contacts	Chl/Ep?	d/f Py, minor Apy	wk				
71.37	73.87	2.50	LST	Gray to whitish marbly limestone; lower contact irregular but sharp				WT1-16	73.15	73.84	0.59

Wildcat 2009 Project

Appendix 2

K. Mastalerz

K. Kil	Mastaler Ideer Mi	z nerals I	nc.	Wildcat 2009 Project Assessment Report 2010					Dri	Append Il Hole L pa	ux 2 Logs ge 3
73.87	74.55	0.68	DB	Zone of strong replacement sulphide mineralization associated with diabase/gabbroic dyke; lower part - massive Py (70-75%), middle part - breccia with pyritic cementation, upper part - massive pyrite; subordinate - pyrrhotite; minor sulphides: galena, sphalerite and arsenopyrite; upper contact at 45-50deg, lower at 40-45deg; limestones along both contacts are white, bleached	Chl/Ep?, Sulph	m/sm Py 45- 75%, Po (5- 15%); (Ga, Sph, Apy)	loc bx	WT1-17 WT1-18	73.84 74.36	74.36 74.55	0.52 0.19
74.55	78.28	3.73	LST	Dark gray, spotty marbly limestone, foliation at 50deg; lower contact gradational; distinct fracture-controlled pyrite mineralization along the upper contact		Py-fr	wk	WT1-19	74.55	74.93	0.38
78.28	79 25	0.97	DOL	Whitish marbly-dolomitic limestone, commonly silicified, with irregular fractured diabase dykelets, disseminated and fracture controlled pyrite in dykelets	Sil, Chl (Ox)	d/fr Py	md				
79.25	80.28	1.03	LST	Whitish, spotty marbly limestone	(Ox)						
80.28	80.64	0.36	DB	Greenish gabbroic/diabase dyke; contacts at 30-35deg, lower contact parallel to foliation in underlying marbly limestone; sulhide mneralization	Chl/Ep?	d/fr Py, bl Po at contact	wk				
80:64	82.18	1.54	LST	Whitish spotty, marbly limestone, foliation at 40deg; includes very thin stylolité-deformed dykelet, locally silicified	Sil	tr Py				1	
82.18	82.43	0.25	DB	Greenish-gray diabase/gabbroic dykelet, contacts at 40-45deg	Chl/Ep?	Py at contacts					
82.43	83.00	0.57	LST	Whitish marbly limestone, distinctly fractured, includes some brecciated dykelets, lower contact at 60deg	Ox	lim-fr, goe	md			-	
83.00	86.87	3.87	LST	Grayish marbly limestone, incipient foliation at 65-70deg							
86.87	89.50	2.63	DB	Complex diabase/gabbroic dyke, greenish; lower contact at 30-35deg, numerou calcite/carbonate veins; both contacts show minor mineralization; mineralization also penetrates along fractures into the adjoining limestones	Chl/Ep?	Py, Po at contacts	wk	WT1-21 WT1-22	86.87 88.90	87.85 89.50	0.98 0.60
89.50	101.65	12.15	LST	Grayish marbly limestone, foliation at 60deg, some calcite veins with diffuse contacts; lowermost part lighter gray		tr Py, Po	wk	WT1-23	101.05	101.65	0.60
101.65	102.11	0.46	LST	Gray marbly limestone with 1-2 cm thick vein at 10-15deg, filled with rhodochrosite-pyrite, minor galena and sphalerite, and subordinate chalcopyrite along edges		Py, (Ga, Sph, Cpy)		WT1-24	101.65	102.11	0.46
102 11	104.35	2.24	LST	Gray to whitish marbly limestone				WT1-25	102.11	102.65	0.55
104.35	105.00	0.65	BX	Breccia of limestone frags within abundant diabase-composition matrix; strongly broken core; tectonic or contact (intrusive) related brecciation		tr Py, Po	tbx?	WT1-26	104.35	105.00	0.65
105.00	105.85	0.85	LST	Dark gray marbly limestone, foliation at 45-50deg; lower contact sharp at 40deg						1	
105.85	106.55	0.70	BX	Breccia of predominant limestone frags with minor magmatic frags, dark- gray matrix; lower contact sharp at 20-25deg		tr dPy/Po	tbx?	WT1-27	105.80	106.68	0.88
106.55	108.35	1.80	LST	Gray marbly limestone, locally siliceous, local brecciation and tectonic deformations; lower contact blurred (clay altered intrusive)	Sil	tr dPy	(bx)	WT1-28	106.68	108.35	1.67

K. Mastalerz	
Killdeer Minerals	Inc.

۰,

Wildcat 2009 Project Assessment Report 2010

										pa	ge 4
108.35	109.85	1.50	QFP	Very strongly clay-altered quartz-feldspar porphyry, some steep slickensides; pinkish K-spar(?) alteration locally; gradational lower contact	Cl-st, Kspar	1		WT1-29	108.35	109.85	1.50
109.85	110.38	0.53	QFP	Light greenish QFP with some black stringers with accompanied pyrite and minor galena	Cl-st, Ox- wk	fr Py 1-3%, tr Ga		WT1-30	109.85	110.57	0.72
110.38	110.57	0.19	QFP	Brownish-rusty, strongly oxidized QFP with dark-gray stringers	Cl-st/md, Ox-st	stPy3-5%	md				
110.57	111.37	0.80	QFP	Light-brownish-rusty, strongly oxidized QFP with dark-gray stringers and a zone of incipient brecciation and Py-Po mineralization in the upper part	Ox-st, Cl	stPy/Po 2- 3%	wk-tbx	WT1-31	110 57	111.35	0.78
111.37	111.60	0.23	fBX?	Dark gray breccia of QFP; contacts at 35deg, carbonate-silica cementation; coarse-crystalline pyrite mineralization	Ox, Cl	crPy 5-7%	tbx?	WT1-32	111.35	111.70	0.35
111.60	115.50	3.90	QFP	Light creamy QFP; in the upper part thin calcite veins	(Ox), Cl- md						
115.50	121.00	5.50	QFP	Light creamy QFP; in the upper part thin calcite veins	Cl-wk						
121.00	124.00	3.00	QFP	Light creamy QFP; in the upper part thin calcite veins	(Ox), Cl- md						
124 00	129.30	5.30	QFP	Light creamy QFP; in the upper part thin calcite veins	Cl-wk						
129.30	132.50	3.20	QFP	Light creamy QFP; in the upper part thin calcite veins	(Ox), Cl- md/wk						
132.50	137.55	5.05	QFP	Light greenish QFP, locally rusty, lower contact sharp at 15deg	(Ox), Chl? Sil?	·		WT1-33	136.50	137.45	0.95
137.55	139.30	1.75	tBX?	Dark gray coarse-grained breccia composed of fragments of dark gray metamorphic schists, calcite cementation; blebs of Po and minor Py in fragmens	Cl-st	blPo 3-10%, tr Py, Spy	tbx?	WT1-34 WT1-35	137.45 138.68	138.68 140.21	1.23 1.53
139.30	145.25	5.95	tBX?	Dark gray coarse-grained breccia composed of fragments of dark gray metamorphic schists	Cl-md/wk	blPo 3-10%, tr Py	tbx?	WT1-36 WT1-37 WT1-38	140.21 141.73 143.26	141.73 143.26 144.60	1.52 1.53 1.34
145.25	151.10	5,.85	tBX?	Dark gray coarse-grained breccia composed of fragments of dark gray metamorphic schists	Cl-st	blPo 2-7%, bdPy 1-5%	tbx?	WT1-39 WT1-40 WT1-41 WT1-42	144.60 146.15 147.83 149.35	146.15 147.83 149.35 150.88	1.55 1.68 1.52 1.55
1'51.10	152.80	1.70	tBX?	Dark gray coarse-grained breccia composed of fragments of dark gray metamorphic schists	Cl-wk	blPo 1-3%, Py 3-7%, tr Sph, Ga	tbx?	WT1-43 WT1-44	150.88 151.95	151.95 152.90	1.07 0.95
152.80	152.90	0.10	tBX?	Dark gray coarse-grained breccia composed of fragments of dark gray metamorphic schists	Cl-st	Po, Py, Ga 1%, Sph-1- 2%	tbx?				e
152.90	153.60	0.70	QFP	Very light greenish QFP, slickensides; locally lenses enriched in Py blebs; lower contact sharp irregular at 60deg	Cl-st	blPy 1-5%, tr Ga, Sph , Po	flt?	WT1-45	152.90	153.60	0.70

153.60 172.09 18.49 QFP Light creamy, medium/fine-grained QFP, slightly greenish with contact zones; lower contact sharp at 40deg; in lower part some dendritic forms 172.09 176.02 3.93 FYL Dark gray slightly metamorphic schists/fyllites (locally slightly with admixed volcaniclastic material), thin bedding to lamination 55deg; locally diffuse stratiform and wispy concentrations of Pyllower contact gradational - here concentration/remobilization of 10%; thin irregular calcite veins with blebs of Pollower contact gradational - here concentration/remobilization of 10%; thin irregular calcite veins; blebs of Py and Po common in calcite and calcite-quartz veins; blebs of Py and Po common in in 179.01 186.95 7.94 FYL Dark gray slightly metamorphic schists/fyllites, locally graphitic volcaniclastic material, commonly calcareous; distinct thin bedding/lamination at 35-60deg (folded); few quartz-carbonate 186.95 187.25 0.30 tBX Fine-grained tectoric breccia to in situ cataclastic zone 187.25 190.75 3.50 FYL Dark gray metamorphic schists/shales/fyllites; thin bedding at 3 (gentle folding and faulting) 190.75 191.62 0.87 tBX Tectonic breccia of metamorphic schists/material, at lower part nodule of quartz-carbonate with black stringers 191.62 196.20 4.58 FYL Thinly bedded/laminated metamorphic schists/fyllites (similar a commonly calcareous to sideritic?; bedding at 15-30deg (folded fractures fil	'roject ort 2010			Dri	Appendi 11 Hole L	ix 2 .ogs re 5
172.09176.023.93FYL and the provided of the pro	in the Cl-vw Mn-Fe	wk tr Py	WT1-47	165.30	165 65	0.35
176.02179.012.99tBXTectonic breccia and/or deformation/fracture zone, some steep, calcite and calcite-quartz veins; blebs of Py and Po common in179.01186.957.94FYLDark gray slightly metamorphic schists/fyllites, locally graphitic volcaniclastic material, commonly calcareous; distinct thin bedding/lamination at 35-60deg (folded); few quartz-carbonate186.95187.250.30tBXFine-grained tectonic breccia to in situ cataclastic zone187.25190.753.50FYLDark gray metamorphic schists/shales/fyllites; thin bedding at 3 (gentle folding and faulting)190.75191.620.87tBXTectonic breccia of metamorphic schists material, at lower part nodule of quartz-carbonate with black stringers19162196 204.58FYLThinly bedded/laminated metamorphic schists/fyllites (similar a commonly calcareous to sideritic?; bedding at 15-30deg (folded)196.20211.8415.64BXCoarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)	graphitic or Chl/E n at 50- / 1-5%; Py up to 5-	Ер Ру, Ро	WT1-48 WT1-49	172.07 174.96	174.96 176.02	2.89 1.06
179.01186.957.94FYLDark gray slightly metamorphic schists/fyllites, locally graphitic volcaniclastic material, commonly calcareous; distinct thin bedding/lamination at 35-60deg (folded); few quartz-carbonate186.95187.250.30tBXFine-grained tectonic breccia to in situ cataclastic zone187.25190.753.50FYLDark gray metamorphic schists/shales/fyllites; thin bedding at 3 (gentle folding and faulting)190.75191.620.87tBX191.620.87tBXTectonic breccia of metamorphic schists material, at lower part nodule of quartz-carbonate with black stringers191.62196.204.58FYL196.20211.8415.64BXCoarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)	irregular Chl/C matrix Sil, C	Cl, blPy 3-7%, Carb Po 1-2%, tr	tbx? WT1-50 WT1-51	176.02	177.10 178 15	1.08
186.95187.250.30tBXFine-grained tectonic breccia to in situ cataclastic zone187.25190.753.50FYLDark gray metamorphic schists/shales/fyllites; thin bedding at 3 (gentle folding and faulting)190.75191.620.87tBXTectonic breccia of metamorphic schists material, at lower part nodule of quartz-carbonate with black stringers191.62196.204.58FYLThinly bedded/laminated metamorphic schists/fyllites (similar a commonly calcareous to sideritic?; bedding at 15-30deg (folded fractures filled with calcite196.20211.8415.64BXCoarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)	, with Chl/E	Ga, Spn Ep? d/stratPo 2- 5%, frPy 1- 3%	WT1-52 WT1-53	179.02	179.02	1.53
187.25 190.75 3.50 FYL Dark gray metamorphic schists/shales/fyllites; thin bedding at 3 (gentle folding and faulting) 190.75 191.62 0.87 tBX Tectonic breccia of metamorphic schists material, at lower part nodule of quartz-carbonate with black stringers 191.62 196.20 4.58 FYL Thinly bedded/laminated metamorphic schists/fyllites (similar a commonly calcareous to sideritic?; bedding at 15-30deg (folded fractures filled with calcite 196.20 211.84 15.64 BX Coarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)		dPo 2-4%, fr/blPy 2- 3%, tr Ga ,	tbx?		-	
190.75 191.62 0.87 tBX Tectonic breccia of metamorphic schists material, at lower part nodule of quartz-carbonate with black stringers 191.62 196.20 4.58 FYL Thinly bedded/laminated metamorphic schists/fyllites (similar a commonly calcareous to sideritic?; bedding at 15-30deg (folded fractures filled with calcite 196.20 211.84 15.64 BX Coarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)	0-35deg	d/stratPo 2- 4%, Py 1%	WT1-54	189.40	190.75	1.35
191 62 196 20 4.58 FYL Thinly bedded/laminated metamorphic schists/fyllites (similar a commonly calcareous to sideritic?; bedding at 15-30deg (folded fractures filled with calcite 196.20 211.84 15.64 BX Coarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)	irregular big Sil-Ca	alc d/stratPo 1- 4%, Py 1%	tbx? WT1-55	190.75	191.62	0.87
196.20211.8415.64BXCoarse-grained breccia composed predominantly of metamorph and some sericite-epidote(?) altered meta-volcanics, relatively a blebs of pyrite, locally sphalerite, galena and chalcopyrite (espe interval 206-35 - 206.60 m)	s before), Calc), few steep	d/stratPo 1- 4%, Py 2- 3%, tr Ga	wk			
	ic schists bundant cially rich is	blPo 1-5%, bl/frPy 1- 4%; loc Sph, Ga, Cpy	tbx? WT1-56 WT1-57 WT1-58 WT1-59 WT1-60 WT1-61 WT1-62 WT1-63 WT1-64	196.20 197.80 199.20 204.20 205.74 206.90 207.60 208.79 210.32	197.80 199.20 200.85 205.74 206.90 207.60 208.79 210.32 211.84	1.60 1.40 1.65 1.54 1.16 0.70 1.19 1.52 1.52
EOH @ 211.84 m (695 ft)	Other	r samples:	WT1-15	STD		

.

WT1-20	BLK
WT1-46	STD
WT1-09A	DPK
WT1-39A	DPK
WT1-59A	DPK

K. Mastalerz Killdeer Minerals Inc. Wildcat 2009 Project Assessment Report 2010 Appendix 2 Drill Hole Logs page 6

Abbreviations:

Lithological Code ob - overburden, cl - clay gouge (no genetic interpretation), LST - limestone, DOL - dolostone, DLS - dolomitic limestone, LTT - thin bedded limestone, LTa - allodapic limestone, LSS - limestone with sideritic and/or cherty bands, FYL - fyllite to schists, VCL - volcaniclastic rock, MVC - meta-volcaniclastic rock, SCL - siliciclastic rocks (siltstone and/or fine sandstone), CGL - conglomerate, MS - metasediments (usually fine grained), cMS - calcareous metasediments (commonly turbiditic), BX - breccia, fBX - fluidization breccia, tBX - tectonic breccia, FZ - fault zone, QFP - quartz-feldspar prophyry, DB - diabase/gabbroic (mafic) dyke, VQC - quartz-carbonate-feldspar veins and quartz veins, VRD - rhodochrosite- carbonate veins, RIF - replacement iron formation, IIF - incipient iron formation

Alteration Sil- silicification, Cl - clay, Chl - chlorite, Ox - oxidation, v - vein, p - pervasive, wk - weak, md - moderate, st - strong
Ore Minerals Py - pyrite, Cpy - chalcopyrite, Apy - arsenopyrite, Ga - galena, Sph -sphalerite, Po - pyrrhotite; tr - trace, f - fracture/vein controlled d - disseminated, c - cubed, b - blebs, m - massive
Fracture/vein density (relative) wk - weak, md - moderate, st - strong

Sample designation: STD - standard, BLK - blank, DPK - duplicate

K. Kıl	Mastale ldeer M	rz inerals I	nc.	Wildcat 2009 Project Assessment Report 2010				-	Dril	Append l Hole I pa	ix 2 .ogs ge 7
Killde	er Mine	rals Ltd	•					Diamond	Drill L	og - ddh	WT-2
Project		Wildcat	2009	Datum NAD83 Zone	9						
Drill Ho	le	WT-2		Easting: 423739	Contractor	Kluane		Dip tests:			·
Core		NTW		Northing: 6657626	Started	23-Sep-08		Method	Depth	Azı	Dıp
TD	(565 ft) 1	72 21 m		Elevation: 1453	Finished	25-Sep-08		Compass	0	285	-50 5
Claım		YB87622		Azimuth: 285	Logged by	K Mastalerz			<u> </u>		
NTS		105 B/1		Dip50.5	Date logged	24-Sep-09					
						26-Sep-07		,			
From	To	Length	Code	Lithology and Structure	Alteration	Ore	Fracture	Sample	From	_To	Length
m	m	m			1	Minerals	Density	Label	m	m	m
0.00	2 44	2.44	ob	Overburden							
2.44	7.45	5.01	DLS	Light creamy to yellowish-rusty micritic dolomitic limestone, locally silicified	Ox, (Sil)	Lim-fr, goe	wk/md				
7.45	8.60	1.15	BX	Brownish-rusty dolomitic breccia, calcite-limonite cementation	Ox	blL1m-Goe		WT2-01	7.45	8.60	1.15
8.60	10.50	1.90	DLS	Light brownish dolomitic limestone, locally marly	Ox		md				
10.50	10.71	0.21	RIF	Brownish-orange, clayey breccia, dolomitic - replacement iron formation	Ox-st, Cl-s	Lim-Goe					
10.71	14.00	3.29	DLS	Light gray to brownish-rusty, fractured, fine-crystalline dolomitic limeston	e, Ox, Cl?	Lim	st-tbx	WT2-02	11.55	12.30	0.75
				locally siliceous, strong fracturing to incipient brecciation with orange							
				cementation between frags; locally large tectonic frags of greenish clay							
				altered material							
14.00	17 60	3.60	DOL	Light greenish, micritic siliceous rock - silicified dolomite(?), protolith	Sil, (Ox)	frLim	md				
				probably already brecciated/fractured							
17.60	19.50	1.90	DOL	Same rock as above but very strongly fractured to incipient brecciation in	S1l, Ox	frLim/Goe	st/tbx	WT2-03	17.60	18.76	1.16
	1			situ; goethite pseudomorphs along fractures							
19.50	26.63	7.13	DOL	Light gray massive micritic dolostone, strongly silicified; locally carbonate	- Sil	Lim	wk		ĮĮ		
				limonite nodules							
26.63	26.76	0.13	tBX	Brown, fine-grained tectonic breccia, contacts sharp at 35deg	Sil, Ox-st	Lim-Goe	tbx				
26.76	34.88	8.12	DOL	Light grayish to creamy, massive micritic siliceous dolostone, locally	Sil, Ox	Lim-Goe	wk-st				
				fractured, goethite pseudomorphs; lowermost interval - strong fracturing to							
		r		brecciation			•				
34.88	35.15	0.27	BX	Brown fine-grained, matrix-suported breccia of silicified dolomite		Lim, Hem- Goe	tbx	WT2-04	34.85	35.33	0.48
35.15	35.33	0.18	cl	Clayey gouge			flt?	1			
35.33	37.20	1.87	DOL	Brownish-rusty very strongly silicified and fractured (up to in-situ	Sil-st	Lim/Goe-fr	st-tbx	WT2-05	35.33	37.12	1.79
				brecciation) dolomite; locally incipient replacement iron formation							_
37.20	37.90	0.70	DOL	Gray strongly silicified dolomite	S1l-st	(Lim)	md-wk			Y	
37.90	38.85	0.95	DOL	Brownish-rusty very strongly silicified and fractured (up to in-situ	Sil-st	Lim/Goe-fr	st-tbx				
				brecciation) dolomite, gradational contacts							

•

-

ł

1

ŧ

1

1

K. Mastalerz	
--------------	--

.- ,

Killdeer Minerals Inc.

Wildcat 2009 Project Assessment Report 2010

.

,

,

Appendix 2 Drill Hole Logs

										pa	ge ð
38.85	40.60	1.75	DOL	Gray strongly subcified dolomite, gradational contacts	S1l-st	(Lım)	md-wk				
40 60	42.15	1.55	DOL	Brownish locally silicified and fractured/brecciated (in situ) dolomite few	(Sil CI)	Lim/Goe-fr	st-thx	WT2-07	40.86	42 15	1 29
10.00	12.10	1.00		thin zones rich in limonite-goethite: lower contact sharp @ 38deg: incinient			or tox		10.00	12.13	1.27
				RIF		1					
42.15	43 35	1 20	QFP	Whitish, locally rusty QFP, very strong clay alteration - almost clay gouge,	Cl-vst, Ox	Lim		WT2-08	42.15	43.28	1.13
	•			common dendritic structures along fractures							
43.35	54.75	11.40	QFP	Whitish, locally brownish-rusty, medium-to-fine grained QFP,	Cl-md(st),	(Lim, Goe)	wk/md				
				predominantly moderate clay alteration; fractures at 30-60deg, common	Ox			1			
				dendrites		-					
54 75	55.03	0.28	BX	Light gray-to-whitish, medium-grained breccia (tectonic and/or intrusive)	Cl-st, Ox		tbx/ibx	WT2-09	54.86	56.57	1.71
				composed of frags of silicified dolomite(?), abundant whitish clayey matrix;							
				lower contact sharp at 80-85deg							
55.03	55.26	0.23	DOL	Light gray strongly fractured, silicified dolomite	Sıl, Cl, Ox	Lım, Goe	md-st				
55.26	56.00	0 74	DOL	Brownish to rusty, strongly fractured silicified dolomite, abundant limonite-	Sil CL Ox	Lim-Goe	md-st				
00.10	20100	017.1	202	goethite, lower contact irregular sharp	st	(abundant)					
56 00	56.57	0.57	fBX?	Light creamy to rusty breccia of silicified dolomite and OFP, abundant	Cl. Ox-st	Lim. Goe	tbx?				
				clayey matrix		,					
56 57	56.99	0.42	BX	Brownish breccia, similar to the one above, very abundant limonite-goethite	Cl, Ox-st	Lim-Goe	tbx?	WT2-10	56.57	57.57	1.00
						(abundant)					
56.99	57.55	0.56	fBX?	Light creamy to rusty breccia of silicified dolomite and QFP, abundant	Cl, Ox-st	Lim, Goe	tbx?				
				clayey matrix; increase in limonite-goethite concentration along the contacts							
57 55	60.80	3.25	tBX?	Tectonic breccia (partly in situ) of predominant dark grav laminated		Lim	itbx	WT2-11	57 57	59 74	2 17
5,55	00.00	5.20		limestone-to-calcareous shale, numerous intervals are characterized by					0,.0,	07.71	2.17
, 1				strong clay alteration and slickensides; numerous irregular calcite veins and						,	
r L		,	Ŧ	nods			1	, 5	, i		
60.80	62.60	1.80	tBX	Tectonic breccia as above; no strong clay alteration zones	Cl, Ox	Lim	tbx				
62.60	64.00	1.40	LTt	Dark gray, thinly bedded to parallel laminated limestone/calcareous shale,	(Ox)	(Lim)	wk	,		1	
1				bedding at 45deg						-	
64.00	64.40	0.40	BX	Dark brown to locally pinkish breccia of dolomitic limestone to strongly	Ox-st, (Cl)	Lim-Goe	st-bx	WT2-13	64.00	65.33	1.33
F				fractured dolomitic limestone	-		1	,			
64.40	64.98	0.58	LTt	Dark gray, thinly bedded to parallel laminated limestone to	(Ox)	(Lim)	wk				
1			l .	calcareous/volcaniclastic(?) shale, bedding at 75-80deg; lower contact sharp		1				2	
÷	1			at 55deg		1		-	ļ	1	
64.98	65.33	0.35	BX	Dark brown to locally pinkish breccia of dolomitic limestone to strongly	Ox-st, (Cl)	Lim-Goe	st-bx	1	1		
				fractured dolomitic limestone, abundant calcite cementation		ł			ļ'		
65.33	67.10	1.77		Dark to light gray, thin to medium bedded limestone, bedding at 35-50deg	(Ox)	(L1m)	wk	۰. ۱	1 + +	1	
67.10	67.70	0.60	FZ	Yellowish-brown clayey gouge, probably fault zone	(Ox)	(Lim)	flt	WT2-14	67.10	67.70	0.60

K. I Kill	K. Mastalerz Killdeer Minerals Inc.		nc.	Wildcat 2009 Project Assessment Report 2010		Appendix 2 Drill Hole Logs page 9					
67.70	68 50	0.80	BX	Dark brown breccia of dolomitic limestone to strongly fractured dolomitic limestone, common strong calcite cementation, abundant limonite-goethite	Ox-st, (Cl)	Lim-Goe	st-bx	WT2-15	67.70	68.50	0.80
68.50	69 73	1.23	DLS	Gray, cloudy dolomitic limestone; thin intervals of in situ brecciation and calcite veins	(Ox)	(Lim)	wk, (bx)	WT2-16	68.50	69.73	1.23
69.73	70.20	0 47	FZ	Yellowish-brown clayey gouge, probably fault zone	(Ox)	(Lim)	flt				
70.20	79.30	9.10	DLS	Dark to light gray, dolomitic limestone, massive to crudely layered at approx 45deg, common fractures at 45-60deg	(Ox)	(Lim)	md				
79.30	82.25	2.95	RIF	Dark orange-brown hematite-limonite-clay gouge (replacement iron formation?); soft material, poor recovery	Ox-st, Cl	Lim-Hem- Goe- abundant		WT2-17	79.30	82.25	2.95
82.25	90.54	8.29	DLS	Light gray to whitish dolomitic limestone, crudely bedded at 55-65deg, strongly fractured; few intrastratal surfaces filled with clay-limonite-goethite mixture; lower contact sharp	(Ox)	Lim/Goe-fr	st	WT2-18	83.85	84.20	0.35
90.54	91.14	0.60	FZ	Yellowish-brown clayey gouge, some fragments of dark-gray limestones; probably fault zone	Cl-st	Lim	flt?	WT2-19	90.54	91.14	0.60
91 14	92.55	1.41	LST	Dark gray, thinly bedded limestone, locally strongly fractured-to-brecciated, bedding at 80deg	(Ox)	(Lım)	wk-st- bx	WT2-20	91.14	92.55	1.41
92.55	94.49	1 94	RIF	Dark brown iron formation (limestone/marl strongly replaced by limonite- goethite-clay, also probably siderite), strong fracturing/brecciation, numerous goethite pseudomorphs	Ox-st, Cl	Lım/Goe- abundant	st/bx	WT2-21	92.55	94.49	1.94
94.49	98.58	4.09	IIF	Several zones of partial/incipient replacement of dark gray limesto/dolomitic limestone (now brecciated and/or strongly fractured) by immature iron formation, numerous clayey-limonite gouges; lower contact sharp, irregular; numerous irregular veins of calcite	Qx-st/md	Lım/Goe- abundant	st/bx				
98.58	100.40	1.82	DLS	Gray dolomitic limestone, numerous irregular fractures, some calcite veining	(Ox)	Lim	st/md				
100.40	101.25	0.85	FZ	Fault/clayey-limonitic gouge; numerous small frags of gray limestone	Ox	Lim-(Goe)	flt?				
101.25	104.50	3.25	DLS	Gray dolomitic limestone, numerous irregular fractures, some calcite veining	(Ox)	Lim	st/md				
104.50	105.05	0.55	IIF	Zone of partial replacement of strongly fractured.brecciated limestone by immature iron formation	Qx-st/md	Lim/Goe- abundant	st/bx				
105.05	105.60	0.55	DLS	Gray dolomitic limestone, numerous irregular fractures, some calcite veining	(Ox)	Lim	st/md				
105.60	108.05	2.45	İIF	Zone of partial replacement of strongly fractured.brecciated limestone by immature iron formation; interbedded with thin intervals of strongly fractured dolomitic limestone	Qx-st/md	Lim/Goe- abundant	st/bx	WT2-22	107.50	108.05	0.55
108.05	109.73	1.68	RIF	Dark brown iron formation (limestone/marl strongly replaced by limonite- goethite-clay, also probably siderite), strong fracturing/brecciation, some goethite pseudomorphs	Ox-st, Cl	Lım/Goe- abundant	st/bx	WT2-23	108.05	109.73	1.68
109.73	110.50	0.77	DLS	Gray dolomitic limestone, strong irregular fracturing, numerous calcite veins	Ox	Lim	st/bx	WT2-24	109.73	110.50	0.77

,

K. Mastalerz Killdeer Minerals Inc.

.

t t

¢.

۰.

Wildcat 2009 Project Assessment Report 2010

.

Appendix 2

Drill Hole Logs

							-			page	<u>e 10</u>
110.50	112.60	2.10	RIF	Rusty-brown iron formation (limestone/marl strongly replaced by limonite-	Ox-st, Cl	Lim/Goe-	(st/bx)	WT2-25	110.50	111.86	1.36
		1		goethite-clay, also probably siderite), some goethite pseudomorphs		abundant		WT2-26	111.86	112.60	0.74
112.60	113.80	1.20	fBX	Yellowish-brown, tectonic(?) breccia of limestone fragments in an abundant	Ox-st. Cl	Lim/Goe	bx				
				lumonitic-clayey matrix; strongly broken(?) core	,						
113.80	116.40	2.60	LST	Gray strongly fractured to brecciated in situ limestone/dolomitic limestone,	(Ox)	Lim	st/bx				
				numerous irregular calcite veins							
116.40	121.60	5 20	IIF	Zone of partial replacement of strongly fractured.brecciated limestone by	Qx-st/md	Lim/Goe-	st/bx	WT2-27	120.60	121.60	1.00
				immature iron formation; interbedded with thin intervals of strongly		abundant					
				fractured marly limestone, locally probably fault zones							
121.60	123.44	1 84	LST/	Dark gray, tectonically deformed limestone, locally - tectonic breccia of	(Ox)	Lım	st/bx				
			BX	predominant limestone frags and minor fragments of metamorphic carbonate							
1				schists							
123.44	123.88	0.44	FZ	Grayish clayey gouge, probably fault zone	Cl-st		flt?				
123.88	124.13	0.25	VCL	Dark gray, matrix-rich meta-volcaniclastic rock (lapilli tuff to tuff breccia) -	(Ox)	1					
				fine debris flow deposit; black matrix lapilli tuff		×					
124.13	124.40	0.27	FZ	Minor dark-brown fault/clayey-limonitic gouge (fault zone?)	Cl, Ox-st	Lim/Goe-					
						abundant					
124 40	126.40	2.00	VCL	Dark gray, matrix-rich meta-volcaniclastic rock (lapilli tuff to tuff breccia) -	(Ox)						
1				fine debris flow deposit; black matrix lapilli tuff; crude layering at 80deg							
			L								
126.40	131.88	5.48	tBX	Coarse-grained tectonic breccia of fragments of dark-gray limestone and	(Ox)	(Lım)	st/bx				
		I		minor calcareous shales; minor clayey gouges; numerous calcite veins and							
			L	nods							
131.88	132.59	0.71	FZ	Fault gouge, yellowish-gray to rusty	Cl-st, Ox	Lim-Goe	flt?	ļ	1		
132.59	135.74	3.15	tBX	Coarse-grained tectonic breccia of fragments of dark-gray limestone and	(Ox)	(Lım)	st/bx				
1				minor calcareous shales; minor clayey gouges; numerous calcite veins and		1					
'				nods					1		
135.74	136.23	0.49	VQC	Whitish irregular, complex vein, quartz-carbonate, vuggy	(Ox)	Lim	ŀ	WT2-28	135.68	136.23	0.55
									<u> </u>		
136.23	136.90	0.67	FZ	Brownish clayey-limonitic gouge, fault?; strongly broken core, poor	Ox-st	Lim-Goe	flt?	,			
				recovery			1				
136.90	137.68	0.78	tBX	Coarse fault breccia or tectonic deformational package at tectonic contact of	(Ox)	(Lim) [·]	fbx	1			
108.00			X OT	dark gray limestone protolith		(7 ·)		li -	· · · · · · · · · · ·		
137.68	140.2	2.53	lst	Gray thinly bedded limestone, locally marly(?), bedding at 60-75deg, folded	(Ox)	(Lim)	WK				
1 40 01	1.10.00	1 50		- becoming steeper downhole; few calcite veins		1					
140.21	142.00	1.79	CMS	Dark gray to black carbonate shales/metasediments, thinly bedded at 60-	(Ux)	(Lim)	Wk			, i	
1 10 00		0.00	Lor	10deg - tightly folded; some thin calcite veins						1 40 77	0.5
142.00	144.90	2.90	LST/	Grayish, strongly tectonically deformed (folded and brecciated) thinly	(Ox)	(Lim)	st-tbx	WT2-29	142.04	142.75	0.71
	ľ í		I BX	Ibedded limestone; partly tectonic breccia				1	l i	1	}

K il Kil	Mastaler Ideer Mi	z nerals I	nc.	Wildcat 2009 Project Assessment Report 2010							Appendix 2 Drill Hole Logs page 11		
144.90	150.88	5.98	cMS	Dark gray to almost black, locally rusty, thinly bedded clacareous metasediments, distinctly folded, some carbonate veins; lower contact sharp discordant at 30-35deg; oxidation increases dowhole	Ox-wk/md	Lim	wk-st	WT2-31	149.85	150.88	1.03		
150.88	151.48	0.60	QFP	Light gray to yellowish, crudely banded at 30-60deg QFP; strong clay alteration; very limited oxidation	Cl-st	(Lım)		WT2-32	150.88	151.49	0.61		
151.48	154 24	2.76	QFP	Light creamy to grayish, medium/fine-grained QFP, strong development of dendritic encrustations of Mn-Fe hydroxides; lower contact sharp at 35deg - tectonic?	Cl-md	(Lım)		WT2-33	152.8	154.2	1.45		
154 24	156 40	2.16	cMS	Brownish-rusty to dark gray, thinly bedded calcareous meta-turbidites and shales; bedding at 40-50deg, some thin discontinuous carbonate veins	Ox-md	Lim	md	WT2-34	155.3	1564	1.08		
156 40	172 21	15.81	CMS	Dark gray thinly bedded calcareous turbidites and shales; bedding varies from 25 to 45deg (gentle folding); locally graded bedding and sole marks - stratigraphic top (facing) up-hole; locally few irregular calcite veins, some of them with distinct oxide mineralization and rare pseudomorphs of goethite after hematite-galena(?)	(Ox)	Lım-Goe, tr Ga	md/wk	WT2-35 WT2-36	161.60 170.35	163.12 172.21	1.52 1.86		

Other samples

For abbreviations: see drill hole log WT-1

٦

210	
BLK	2-LMS
BLK	1-QFP
DPK	
DPK	
DPK	
DPK	
	BLK BLK DPK DPK DPK DPK

amp

Kill	deer Mi	inerals I	nc			As	ssessment Report 2010					Dril	l Hole I pag	.ogs e 12
Killdee	r Mine	rais Ltd					Dotum NA D82 Zono ()				Diamond	Drill Lo	og - ddh	WT-3
Dell Hole		WT.3	12009	Facting	423002		Datum NADOJ Zone 7	Contractor	Kluono		Din tests:			
	5	WI-J		Northing:	6658120			Started	25. Sen OR	1	Dip tests.	Denth	A 71	Din
TD	(770 8) 7	34 70 m		Flevation	• 1395			Finished	23-Sep-08		Compass	Depui	202	-55.5
Claim	(//011/2 V	'B876324		Azimuth	292			Logged by	K Mastalerz		Compass		272	-355
NTS	-	105 B/1		Dip:	-55.5			Date logged	26-Sep-09	,				
								00	28-Sep-07			• •		
From	То	Length	Code		Lit	hology and Structur	e	Alteration	Ore	Fracture	Sample	From	То	Length
m	m	m							Minerals	Density	Label	m	m	m
0.00	3.25	3.25	ob	Overburde	en					_				
3.25	16.00	12.75	cMS	Dark gray,	, upper part locally	brownish, thın bedd	ed calcareous meta-	(Ox)	(Lim)	wk-md	WT3-01	6.10	6.90	0.80
				turbidites,	, bedding at 70-75, 1	ocally where folded	at 40-45deg, few calcite		1			1 1		
				veins, loca	ally strong developn	nent of fracture clea	wage at 75-80deg almost							
				perpendici	ular to bedding								1	
16.00	17.85	1.85	fBX	Coarse-gra	ained breccia compo	osed predominantly	of fragments of QFP	(Ox)	tr dPy, Po	ł	WT3-02	17.20	17.85	0.65
				(minor me	sta-turbidites), amou	int of fine-grained n	nuddy matrix varies across	1						
				the interva	al; upper contact irre	gular at approx. 20	deg, lower contact							
				obliterated	1 by broken core; flu	iidizationand/or intr	rusive breccia	1						
17.85	18 53	0.68	+BY	Brownish	-grav tectonic/conta	ct(?) breccia of prec	Iominant fragments of meta	C1	(Lim)	flt2	WT3-03	17.85	18 53	0.68
17.05	10.55	0.00	ШЛ	turbidites	irregular calcute ve	ins	iommant magnitudes of meta			110.	W15-05	17.05	16.55	0.00
18.53	24.24	5.71	cMS	Dark grav.	thin to medium be	dded carcareous me	ta-turbidites, bedding at 30-				WT3-04	23.64	24.24	0.60
				60deg (fol	ded). fracture cleav	age at 75-85deg; rel	atively common short							
				calcite ven	inlets perpendicular	to bedding; stratigra	aphic younging up-hole	ł						
						<i>0,</i> 0		Calc		wk				
24.24	24.42	0.18	tBX	Brownish-	-gray tectonic brecc	ia of meta-turbidites	s, bothe contacts at 75-85	(Ox, Cl)		tbx	WT3-05	24.24	24.42	0.18
				deg										
24.42	32.40	7.98	cMS	Dark gray,	, thin to medium be	dded carcareous me	ta-turbidites with few thin		d Po tr-0.5%					
				intervals o	of tectonic brecciation	on		Calc	· · · · · · · · · · · · · · · · · · ·	wk				_
32.40	33.63	1.23	cMS	Dark gray,	, thin to medium be	dded carcareous me	ta-turbidites, strongly		d Po tr-0.5%		WT3-06	32.40	33.53	1.13
				fractured/t	brecciated in situ an	d with numerous ca	lcite veins	Calc		st/bx				
33.63	37.38	3.75	cMS	Gray thin-	-bedded meta-turbic	lites, folded bedding	g (tight folding), well		dPo 1%, tr	wk				
27.20	40.10	0.70	D.11/	developed	fracture cleavage a	<u>t 80-85deg</u>	. 11.1	0.1.(0)1	Py		11/77.2 .0.7		10.10	1.00
37.38	40.10	2.72	BX/	Predomina	antly tectonic brecci	a of meta-turbidite	protolith with some thin	Calc/Sil-v	dPo 1-2%, tr	tbx	WT3-07	38.48	40.10	1.62
			IVQC	intervals o	of strongly folded m	etaturbidites, comm	ion irregular quartz-calcite		Ру, Ару					
				veins and i	nods (older, tectonic	cally deformed), loc	cally fracture cleavage at 75							
				85deg; fin	e disseminated arse	nopyrite accompani	es quartz veins							
40.10	42.05	1.95	cMS	Grav thin-	-bedded meta-turbic	dites folded beddin	g (tight folding) well	Calc	dPo 0.5% tr	wk	· · · · ·			
				developed	Lfracture cleavage.	+ 80-85deg few cal	eite veinsene		<u>Du</u>					

Wildcat 2009 Project

Appendix 2

K. Mastalerz

K. N Kill	Mastaler: deer Min	z nerals I	nc.	Wildcat 2009 Project Assessment Report 2010 X Fluidization (2) breccia composed of turbidite fragments and quartz blebs. Calc. d/bPo.Py 1- bx WT3-08 42						Appendix 2 Drill Hole Logs page 13		
42.05	42.67	0.62	fBX	Fluidization (?) breccia composed of turbidite fragments and quartz blebs, abundant matrix, variable textures	Calc	d/bPo,Py 1- 2%, tr Sph	bx	WT3-08	42.05	42.67	0.6	
42.67	43.60	0.93	cMS	Gray thin-bedded meta-turbidites, folded bedding and localized brecciation (thin intervals of fluidization breccias), few calcite veins	Calc	dPo/Py	md-bx					
43.60	43.80	0.20	fBX	Fluidization breccia composed of turbidite fragments, irregular, sharp boundaries	,	d/blPo 2%	bx		-			
43.80	45.54	1.74	cMS	Gray thin-bedded meta-turbidites with thin intervals of fluidization breccias, few calcite veins	Calc	dPo/Py	md-bx					
45.54	45.61	0.07	fBX	Fluidization breccia developed along fracture cleavage surfaces; polymictic composition (predominant turbidite fragments, minor igneous frags), associated veinlets with Py and Sph		d/blPo 1- 2%, bl Ga, Sph, v Py.Sph	bx					
45.61	49.15	3.54	cMS	Gray to dark gray, calcareous shale and meta-turbidites, common thin fluidization pipes/breccias, irregular quartz-carbonate veins, bedding folded 25-80deg, fracture cleavage 75-85deg; relatively common intense green minerals along some fractures	Calc	dPo/Py	md-bx					
49.15	49.40	0.25	VQC	Whitish, irregular quartz-carbonate vein/nod	Calc/Sil-st	dPy						
49 40	50.00	0.60	cMS	Gray thin bedded turbidites								
50.00	50.05	0.05	fBX	Fluidization dyke filled with polymictic breccia with numerous frags of QFP							<u> </u>	
50.05	58.10	8.05	cMS	Dark gray thin bedded, fine-grained, calcareous meta-sediments, locally distal turbidites, folded bedding, fracture cleavage at 85deg, numerous thin clastic dykes and sills filled with fluidization breccia containing fragments of QFP; locally irregularly folded quartz-calcite veins	Calc-Sil	dPo 1%	wk/md					
58.10	58.65	0.55	VQC	Set of two thick quartz veins, irregular contacts at 35-40deg; along lower contact fluidization breccia	Calc/Sil-st			WT3-09	58.05	58 70	0.6	
58.65	62.60	3.95	cMS	Dark gray thin bedded, fine-grained, calcareous meta-sediments, locally distal turbidites, bedding and fracture cleavage at 35-45deg, numerous thin fluidization breccia dykes and sills and thin quartz-calcite veins; locally irregularly folded quartz-calcite veins	Calc-Sil	dPo 1%	wk/md					
62.60	64.85	2.25	fBX	Irregular complex body of fluidization breccia with diffuse contacts, numerous thin deformed quartz veins	(Sil/Calc)	dPo 1%	bx	WT3-11	63.70	64.70	1.00	
64.85	65.34	0.49	cMS	Dark gray meta-sediments/metaturbidites as before	Calc-Sil	dPo 1%	wk/md					
65.34	65.66	0.32	fBX	Coarse-grained breccia composed predominantly of fragments of QFP (minor meta-turbidites); strikingly similar to breccia from the interval 16.00- 17.85 m; irregular contacts at approx. 35deg		blPo 1.5%				•		

una antar dana antar datar datar tatar tatar t

Κ.	Mastalerz	
----	-----------	--

.

Killdeer Minerals Inc.

Wildcat 2009 Project Assessment Report 2010

.

.

:

Appendix 2 Drill Hole Logs page 14

					·····			·····		pag	<u> </u>
65.66	67.92	2.26	cMS	Dark gray (calcareous) metasediments - fine-grained thin bedded meta- turbidites; few irregular, deformed quartz veins; fracture cleavage at 70deg	Sil, (Calc)	dPo 1%	wk				
67.92	68.23	0.31	VQC	Zone of numerous irregular, deformed (filded) quartz/(carbonate) veins in meta-turbidites	Sil-st						
68.23	69.10	0.87	cMS	Dark gray metasediments/metaturbidites as before; folded bedding, fracture cleavage at 85deg	Sil, (Calc)	bl,dPo 1%, Py 0 5%	wk				
69.10	69.35	0.25	VQC	Zone of numerous irregular, deformed (filded) quartz/(carbonate) veins in meta-turbidites	Sil-st						
69.35	71.20	1.85	cMS	Dark gray metasediments/metaturbidites as before; bedding at 75-80deg, facing (stratigraphic top) up-hole; some thin fluidization dykelets	Sıl, (Calc)	blPo 2-3%%	wk				
71.20	71.38	0.18	вх	Dark-gray, medium-grained breccia composed of fragments of metasedimeter (minor quartz veins) at the contact with underlying QFP, lower contact sharp at 30deg; (intrusive, contact breccia with minor evidence of fluidization)		blPo 3-4%, d/bl Py along intrusive contact 5- 7%		WT3-12	71.13	71.43	0.30
71.38	79.45	8.07	QFP	Light greenish-creamy, medium-grained QFP; in uppermost part of the interval a few xenolits of dark-gray metasediments and irregular dykelets of dark gray fluidization breccia (in xenoliths abundant Py), locally fluorite along the contact	Cl-md/wk, (Sıl)	d/bl Py 1n xenoliths, Fluorite	i				
79.45	79.48	0.03	VRD	Pinkish vein (2 cm thick) of carbonate-rhodochrosite, slightly slickensided parallel boudaries, sharp boundaries at 40deg; in adjoining QFP 1-3% blebs of pyrite approximately 25 cm from the contacts	Carb-st/v	Py 15-20%, Ga 5%, tr Sph, Rh		WT3-13	79.25	79.63	0.38
79.48	96.30	16.82	OFP	Light creamy QFP, lower contact sharp at 70deg	Cl-wk/md			· · · ·			
96.30	96.55	0.25	MS?	Whitish to light gray quartz-quartzite, strong development of fracturing (cleavage?); lower contact sharp at 40deg	?		!	1	l		
96.55	98.47	1.92	QFP	Light creamy medium-grained QFP, lower contact irregular, intrusive; locally fluorite along the contact	Cl-wk/md	(Fluorite)	1	1			
98.47	99.49	1.02	fBX?	Dark gray/black coarse-grained breccia composed predominantly of metasedimetary fragments but includes also fragments of QFP in the upper part of the interval; contact, intrusive breccia with some evidence of fluidization		wsPy 5-7%, Po 1-3%, Ga+Sph 0.5%	3	WT3-14	98.47	99.42	0.95
99.49	100.46	0.97	MS	Dark gray to black, organic-rich (graphitic), thin bedded/laminated metasediments, commonly strongly fractured up to incipient brecciation, bedding at 75deg, facing (stratigraphic top) up-hole; thin calcite- rhodochrosite veinlets (with traces of galena)	Carb-v	wsPy 3-4%, frPy 1%, tr Ga (in veinlets), Rh	md-bx	WT3-15	99.42	100.46	1.04

K. I Kıl	Mastaler Ideer Mi	z nerals I	nc.	Wıldcat 2009 Project Assessment Report 2010						Appendix 2 Drill Hole Logs page 15				
100.46	0.46 101.68 1.22 tBX		01.68 1.22 tBX? Dark gray to black breccia (tectonic?, partly fluidization?) composed of frags of black metasediments, numerous calcite blebs and irregular veins, locally quartz blebs/deformed veins, few rhodochrosite veinlets and associated (along the edges) pyrite		d/blPy, Po 3- 5%, Rh	i/blPy, Po 3- tbx W 5%, Rh W			100.95 101.68	0.49 0.73				
101.68	102.74	1.06	MS	Black thin bedded/laminated metasediments as before, locally incipient brecciation, few deformed quartz veins	Sil, Carb	dPo 2-3%, frPy 0.5%	md-bx	WT3-18	101.68	102.74	1.06			
102.74	104.00	1.26	fBX	Dark gray fluidization breccia of metasedimets/metaturbidites, locally quartz/calcite veinlets		d/blPo 2- 3%, Py 2%, tr Ga, Rh	bx	WT3-20	102.74	104.02	1.28			
104.00	105 40	1.40	MS	Black thin bedded/laminated metasediments as before, locally incipient brecciation, few deformed quartz/calcite and rhodochrosite veins	Sıl, Carb	dPo 2-4%, dPy 1%, Rh	md-bx	WT3-21	104.02	105.40	1.38			
105.40	106.05	0.65	MS	Black thin bedded/laminated metasediments, folded bedding at 25-65deg, some thin dykelets/gashes filled with fine-grained fluidization breccia	Sil, Carb	dPo, Py	md-st							
106.05	106.51	3.82	fBX	Dark gray, medium/fine-grained fluidization breccia (locally only in situ brecciation), lower contact sharp at 40deg		dPo, Py	bx			1				
106.51	109.87	5.79	cMS	Dark gray, thin bedded, calcareous meta-turbidites and fine-grained metasediments, localized deformation and incipient brecciation; folded bedding at 30-55deg; few deformed/folded quartz veins	Sıl, Carb	d/blPo 1- 3%, frPy 1%	wk-(bx)							
109.87	112.30	2.74	fBX	Dark gray fluidization breccia composed of frags of fine-grained metasediments/metaturbidites, quartz, and less common frags of biotite/sericite(?) schists/fyllites (the latter components include more abundant blebs of pyrrhotite and pyrite)		bl/dPo 2- 5%, d/frPy 1- 3%	bx	WT3-22	111.10	112.30	1.20			
112.30	112.61	0.31	VQC	Vein of massive whitish quartz, contacts at 55-60deg, fractures filled with dark gray graphite/pyrite(?) mixture; pyrite along the contacts	Sil-st	frPy	md	WT3-23	112.30	112.61	0.31			
112.61	115.00	2.39	fBX	Dark gray, relatively fine-grained breccia, similar as above, numerous blebs of pyrite and pyrrhotite scattered thrughout fragments and matrix; trace of chalcopyrite in fragments of quartz veins		bl/dPo/Py 2- 5%, tr Sph, Cpy	bx	WT3-24 WT3-25	112.61 113.74	113.74 115.00	1.13 1.26			
,115.00 ,	116.51	1.51	MS	Dark gray to almost black, fine-grained, thin bedded metasediments, partly sideritic, with numerous zones of incipient brecciation along fractures/cleavage	Sıd?	d Po 1-3%, frPy 0.5%	md-bx	WT3-26	115.00	116.51	1.51			
116.51	117.65	1.14	BX	Dark gray fluidization/tectonic/intrusive(?) breccia; lower contact at 55deg; concentration of pyrite increases from 1 to 3% downhole		Ру 1-3%	bx	WT3-27	116.51	117.65	1.14			
117.65	117.94	0.29	FZ/t BX	Dark gray, coarse-grained tectonic breccia to deformational package (rather tectonic deformation than slump feature); some discontinuous laminae of massive pyrite; sharp lower contact at 50deg		Ру 3-10%	flt?	WT3-28	117.65	118.09	0.44			
117.94	118.05	0.11	VRD	Vein of pinkish rhodochrosite-pyrite and calcite; semimassive pyrite (35- 45%), minor galena and sphalerite; sharp contacts at 50deg	Carb- Sulph	Py 35-45%, Ga 5-7%, tr Sph, Rh	vein							

t

•

1

Κ.	Masta	alerz	
Kı	lldeer	Minerals	Inc.

Wildcat 2009 Project Assessment Report 2010

.

.

Appendix 2 Drill Hole Logs

										pag	e <u>16</u>
118.05	118.64	0.59	QFP	Medium grayish QFP; numerous fractures form an incipient stockwork	(Carb-	Py 5-8%, tr	st	WT3-29	118.09	118.64	0.55
				pattern; fractures are partly filled/accompanied by pyrite, rhodochrosite, and	Sulph), Cl	Ga, Sph;					
				minor galena and sphalerite		Rh					
118.64	123.80	5.16	QFP	Light creamy-grayish, medium/fine grained QFP, massive with few fractures	Cl-md, Sıl	Py 1-4%, tr	md	WT3-30	118.64	120.40	1.76
1				partly filled with rhodochrosite and sulphides, common veins are sub-	wk	Ga, Sph;		WT3-31	120.40	121.92	1.52
				parallel to core axis		Rh		WT3-32	121.92	123.44	1.52
123 80	126.30	2.50	QFP	Light creamy QFP	Cl-wk/md	tr Py	(wk)				
126.30	127.62	1.32	QFP	Light creamy QFP; fractures followed by advanced clay alteration; lower	Cl-md/st		md	WT3-33	127.04	127.57	0.53
				contact at 30deg							
127 62	127.72	0.10	cl	Clayey gouge with few fragments of strongly silicified QFP	Cl-st						
127.72	128.47	0.75	QFP	Moderately gray, cloudy, QFP with irregular spotty silicification; admixture	Sil-md-st,	Py 1-3%	wk	WT3-34	127.57	128.47	0.90
				of graphitic(?) material or fine sulphides	CI						
128.47	132.70	4.23	QFP	Light creamy QFP, moderately-to-strongly fractured, fractures followed by	Cl-st	tr Py	_	WT3-35	128.47	129.30	0.83
				advanced clay alteration, broken core					\		
132 70	133.01	0.31	cl	Dark gray, strongly clay-altered and locally sulicified QFP; gradational	Cl, Sil	blPy	st	WT3-36	132.70	133.01	0.31
		_		boundaries at approx 45-50deg							
133.01	134.00	0.99	QFP	Light creamy QFP; clay alteration along fractures	Cl-md-st		md				
134.00	142.07	8.07	QFP	Light creamy, medium-grained QFP; sharp lower contact at 50deg with fine	Cl-wk/md	d/cPy-tr					
				grained QFP					1		
142.07	152.40	10.33	QFP	Light-creamy, fine-to-medium-grained QFP	Cl-wk/md	d/cPy-tr					
152.40	152 90	0.50	QFP	Light-creamy, fine-to-medium-grained QFP, strong clay alteration; broken	Cl-st		st?				
L				core - probably strongly fractured		l	L				
152.90	154.02	1.12	QFP	Light-creamy, medium/fine-grained QFP	Cl-wk/md						
154.02	154.33	0.31	QFP	Light-creamy, fine-to-medium-grained QFP, strong clay alteration, contacts	Cl-st		st?	WT3-37	154.02	154.60	0.58
				at 10-25deg, broken core							
154.33	154.53	0 20	VQC	Dark gray zone (composite vein) of strong silicification in QFP with	Sil-st	smPy 25-					
	1			semimassive pyrite, some sphalerite and minor galena; relatively sharp		35%, Sph 1-					
				contacts at 30deg		2%, tr Ga					
					,						
154.53	159.60	5.07	QFP	Light-creamy QFP, few thin stringers at 35deg and 10deg contaning	Cl-wk/md	d/vPy 1-2%,	wk				
		;	ł	sulphides		tr Ga, Sph					
			r								
159.60	159.82	0.22	QFP	Zone of strong clay alteration in QFP with a few thin (2 cm is the thickest)	Cl-st	Py 3-5%,	?	WT3-38	159.55	159.86	0.31
			Į	stringers/veins containing sulphide mineralization; contacts/veins at 25-		Ga+Sph					
		1	-	30deg		0.5%					
159.82	161.20	1.38	QFP	Light-creamy QFP, few thin vents of rhodochrosite with sulphides; lower	Cl-md/wk	Py 1%, tr	wk	WT3-40	159.86	161.15	1.29
				contact irregular, intrusive at approx 40-45deg	(Sil)	Ga, Sph;				ند ن	
			1			Rh				1	
161.20	161.25	0.05	fBX	Dark-gray fluidization breccia (frags of metasediments and white quartz);	1	Py 5-10%, tr					0.00
				contacts at 45deg		Ga				l l	
161.25	161.47	0.22	MS	Slightly brownish-gray fine-grained metasediments, locally slickensided at	1	banded Py	wk	WT3-41	161.15	161.47	0.32
				43deg; numerous laminae of nyrite		10-20%		يستعين محملت			
K. N Kill	Mastaler deer Mi	z nerals II	nc.	Wildcat 2009 Project Assessment Report 2010					Dri	Append Il Hole I pag	lix 2 .ogs e 17
--------------	---------------------	----------------	-----	--	-------------------------	--------------	-----	-----------	--------	----------------------------	-----------------------
161 47	162.55	1.08	VQC	Irregular veins/nods (boudinage) of whitish coarse-grained quartz, separated by greenish chlorite-talcose(?) metamorphic rock	Sil-st; Chl, Talc(?)	bl Py, Po	,	WT3-42	161.47	162.55	1.08
162 55	163 25	0 70	FYL	Greenish-gray talcose(?) fyllites, folded and slickensided, foliation at 30deg	Ser, Chi	bl Po	wk	WT3-43	162.55	163.25	0.70
163 25	163 50	0.25	VQC	Set of thin, irregular (boudinaged and folded) veins of white quartz	Sıl-v			WT3-44	163.25	163.50	0.25
163 50	164 30	0.80	FYL	Greyish fyllites with numerous thin irregular quartz veins	Ser, Chl	tr d/blPo/Py	wk	WT3-45	163.50	164.59	1.09
164 30	167 10	2.80	FYL	Grayish fyllites with distinct foliation developed at 40-50deg, locally incipient goufrage related to development of a fracture cleavage; locally incipient brecciation	Ser, Chl	tr d/blPo/Py	wk				
167 10	167 45	0.35	VQC	Set of irregular quartz veins and nods in fyllites	Sil						
167 45	169 25	1.80	FYL	Grayish fyllites as above; upper part is characterized by distinct very thin parallel bedding/lamination at 65-75deg, in lower part of the interval folded	Ser, Chl	tr d/blPo/Py	wk	× · · · ·			
169 25	169.75	0 50	FYL	A few thin, irregular quartz veins and nods in a zone of strong deformation/folding of fyllites	Sıl	blPo	wk				
169.75	170.70	0.95	FYL	Tightly folded gray fyllites, strong development of fracture cleavage at 40- 45deg, fold axes sub-parallel to cleavage	Ser, Chl	blPo	wk		-		
170.70	171.40	0.70	tBX	Zone of incipient tectonic brecciation of fyllites, locally detached fragments of quartz veins/nods	Ser, Chl, Sıl	blPo	tbx				
171.40	176.78	5.38	FYL	Gray fyllites as above, locally siderific and calcareous, few thin quartz veins (sub-parallel to fracture cleavage/foliation); fracture cleavage at 65deg, foliation at 40-60deg	Ser, Chl	blPo	wk				, ,
176.78	180.50	3.72	MS	Dark gray, thinly bedded, calcareous shales/fyllites; bedding/foliation at 70-		blPo	wk				
180.50	181.15	0.65	MS	Dark gray metamorphic shale/fyllites with numerous thin, irregular quartz veins	Ser, Chl	blPo	wk	WT3-46	180.50	181.25	0.75
181 15	185.13	3.98	MS	Dark-gray calcareous, metamorphic shale/fyllites, locally sideritic; locally folded; bedding in lower part at approx 65deg, fracture cleavage at 80deg	Ser, Chl	blPo	wk	WT3-47	181 25	182.88	1.63
185.13	185.50	0.37	MS	Same rock but with numerous thin quartz veins	Ser, Chl	blPo	wk		1		
185.50	186.70	1.20	MS	Dark-gray calcareous, metamorphic folded shale/fyllites, locally sideritic; fracture cleavage at 70-75deg; some carbonate veins	Ser, Chl; Carb-v	blPo	wk			'	
186.70	186 90	0.20	VQC	Solid concentration of quartz/quartz vein	Sil						
186 90	189.00	2.10	MS	Dark-gray calcareous, metamorphic folded shale/fyllites, locally sideritic; fracture cleavage at 70-75deg; some quartz-carbonate veins and nods	Ser, Chl; Carb-v	blPo	wk			·	
189 00	189 25	0.25	MS	Same rock but with several thin irregular quartz veins	Ser, Chl	blPo	wk	WT3-48	188.98	189.28	0.30

K. Kil	Mastaler Ideer Mu	z nerals I	nc.	Wildcat 2009 Project Assessment Report 2010					, Dri	Append	1x 2
									2	nage	e 18
189.25	190.10	0.85	MS	Same rock but cut by younger undeformed quartz-calcite-(minor carbonates) veins: younger veins cut through the older quartz veins; disseminated	Ser, Chl	bl/dPo, dPy 1-2%, tr- 0 5% Apy	md	WT3-49	189.28	190.25	0.97
190.10	192.55	2.45	MS	Dark-gray calcareous, metamorphic shale/fyllites, locally sideritic, bedding sub-parallel to core axis, fracture cleavage at 75-80deg	Ser, Chl; Carb-v	blPo	md				
192.55	193.05	0 50	MS	Same rock cut by 2-4 cm thick carbonate-rhodochrosite veins at 10-15deg	Ser, Chl	dPy 2-4%, Apy 0.5%	md	WT3-50	192.47	193.05	0.58
193.05	195.15	2.10	MS	Dark-gray calcareous, metamorphic shale/fyllites, contain biotite; fracture cleavage at 75deg	Ser, Chl, B10t	blPo	wk				
195.15	195 75	0.60	MS	Same rock but with several thin irregular folded quartz veins; locally greenish (epidote?) color, strong biotite-siderite alteration around quartz veins	Ser, Chl, B10t	blPo	md	WT3-51	195.15	195.75	0 60
195.75	204.58	8.83	MS	Dark gray fine-grained; thin bedded meta-sediments (fyllitic), locally folded but bedding commonly at 75-85deg, fracture cleavage at 45-55deg	Ser, Chl	blPo	wk				
204.58	204.99	0.41	VQC	Same rock with numerous deformed (older) quartz veins with abundant pyrrhotite and some greenish epidote(?)	Sıl	blPo 3-5%		WT3-52	204.58	204.99	0.41
204.99	209.60	4.61	MS	Dark gray commonly graphitic, fine-grained metasediments; few carbonate stringers, bedding and fracture cleavage at 80deg	Ser, Chl	blPo 3-5%	wk				0.00
209.60	212.65	3.05	MV L	Medium-gray meta-tuff or metavolcanic rock, foliation at 20deg deformed; locally concetrations of pyrrhotite; at 210.35m irregular quartz vein with abundant galena, pyrite and minor sphalerite; lower contact gradational	Chl	blPo; loc Py, Ga, Sph	md	WT3-53	210.10	210.55	0.45
212.65	217.10	4.45	cMS	Dark gray fine-grained, thin bedded metasediments/distal metaturbidites, locally sideritic and/or with admixture of volcaniclastic material, bedding at 70deg, locally folded, few quartz and carbonate veins with common pyrrhotite	Ser, Chl	blPo	md				
217.10	218.01	0.91	tBX	Tectonic breccia (minor role of fluidization?) with swarms of thin carbonate/quartz veins with some epidote, locally abundant pyrrhotite (3- 7%)	Ser, Chi	blPo 1-7%	md	WT3-54	217.10	218.01	0.91
218.01	218.90	0.89	cMS	Dark gray fine-grained, thin bedded metasediments/distal metaturbidites similar as above; bedding approx at 80deg	Ser, Chl	blPo	md ,				, ,
218.90	219.46	0.56	VQC	Set of irregular thick veins of quartz with some epidote; contacts at 45deg	Sil, Ser, Chl	blPo		WT3-57	218.90	219.46	0.56
219.46	226.95	7.49	cMS	Dark gray fine-grained, thin bedded metasediments/distal metaturbidites similar as above; bedding at approx 75-80deg; locally thin quartz veins and incipient brecciation	Ser, Chl	blPo, Py	md-bx				
226.95	227.50	0.55	MV L	Medium-gray sideritic(?) metavolcanics (fragmental?), layering at 75-80deg	Chl	blPo, Py	md	1			
227.50	228.20	0.70	VQC	Thick irregular quartz vein/nodule	Sil-v	blPo, Py tr- 1%, tr Ga		WT3-56	227.50	228.20	0.70

 المتعادية والمتعاد

		,				ı					•
K. Kil	K. Mastalerz Killdeer Minerals Inc.			Wildcat 2009 Project Assessment Report 2010					Dri	Append Il Hole L	ıx-2 .ogs e. 19
228.20	228.55	0.35	cMS	Dark-gray to gray, slightly sideritic, thin bedded metasediments, folded bedding	Ser, Chl	blPo	md-bx				
228.55	230.65	2.10	MS/ VQC	Dark-gray metasediments with numerou deformed (locally brecciated) quartz veins	Ser, Chl, Sil	blPo, Py	md-bx	WT3-58	229 30	230.65	1.35
230.65	231.43	0.78	cMS	Dark gray fine-grained, thin bedded metasediments/distal metaturbidites, folded bedding	Ser, Chl	blPo, Py	md-bx		1		1
231.43	231.88	0.45	MS/ VQC	Dark-gray metasediments with numerou deformed (locally brecciated) quartz veins	Ser, Chl, Sıl	blPo, Py	md-bx				
231.88	234.70	2.82	cMS	Dark gray fine-grained, thin bedded metasediments/distal metaturbidites, commonly graphitic, folded bedding but usually at approx 75-80deg, fracture cleavage at 65-70deg, few quartz veinlets	Ser, Chl	bl/frPo 2%	md-bx	WT3-59	234.00	234.70	0.70
				EOH @ 234.70 m (770 ft)	 Other sam	ples		WT3-10	BLK	GNT	

WT3-19 STD
 wT3-39
 STD

 WT3-39
 STD

 WT3-55
 BLK
 QFP2

 WT3-25A
 DPK

 WT3-31A
 DPK

For abbreviations: see drill hole log WT-1

K. Mastalerz

Killdeer Minerals Ltd.

.

Killdeer Minerals Inc.

1

Wildcat 2009 Project Assessment Report 2010

Appendix 2 Drill Hole Logs page 20

1

Diamond Drill Log - ddh WT-4

Dnt Hole CoreWT4Easting: Edition:423963 4239780Contractor. Stated 0Kance 29-Sep-08 29-Sep-08Dpt letst. MethodDpt letst. 0MethodDpt letst. 0Compus0225255ClaimV187612 V18Azaruuft:235 29-Sep-08Logged by 29-Sep-08K. MasterzImpt letst.Impt letst. 20-Sep-08Impt letst. 29-Sep-08Impt letst.FromToLength CodeLathology and StructureAlteratureNorFractureImpt letst. 29-Sep-08ToLength CodeLathology and StructureAlteratureOrcFractureSampleFromTo0007.257.25BXBrownish-orange, fine/medium gramed, matrix-rich/matrix-supported breccan 2 dolomitte limetsone frags; collapse (karst) or fluidizationOx-stLim/GoeWT4-014.881.887.2510.263.01DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractureOx-stLim/GoeWT4-047.238.471.2410.445.741.29DLSLight grayish-to-yellowish/rusty dolomitic limestone, very strongly fractureOx-stLim/GoewT4-0610.2611.651.3914.451.5741.580.07BXRusty-brownish fine-grained limestone, very strongly fractureOx-stLim/GoewtWT4-0710.2610.261.671.831.9914.451.5741.29DLSLight grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured O	Project		Wildca	t2009			Datum NAD83 Zone 9					(•	
Core (135) NTW (135) Northing: 6657980 Started (27.58p-68) Zinded (29.58p-68) Method (29.58p-68)	Drill Hol	e	WT-4		Easting:	423963		Contractor.	Kluane		Dip tests.			
TD (4) 57 (1) 12 59 m Elevation: 14/5 method Promotor 228-59-08 method Computer Comp	Core		NTW		Northing:	6657980		Started	27-Sep-08		Method	Depth	Azı	Dıp
ChamYB876324 165 B/1Azimuti: Dip"285 -55.5Label logged Date loggedK Masslerz 29-Sep-67Image 20-Sep-67FromToLengthCodeLithology and StructureAlterationOreFractureSampleFromToLengthmmmmMineralsDensityLabelmmmmm0.007.257.25BXBrownish-orange, fine/medum grained, matrix-rich/matrix-supported breccard?, clayey-ferrugineous matrixOx-sitLim/Goe- vabbxWT4-013.004.881.880.007.2510.263.01DLSLight grayish-to-yellowish/rasty dolomitic limestone, very strongly fractured to breccard? in lime to the costs of fractures filled with limenate- goethiteOx-sitLim/GoestWT4-044.884.6401.5210.2610.25Light grayish dolomitic limestone, fracture density varies, usually moderate but locally some zones of breccardion at 60-65degOx-sitLim/Goend (bx)WT4-0710.2611.651.3914.4515.741.29DLSLight grayish-rusty dolomitic limestone, very strongly fractured OX-sitOx-sitLim/GoestWT4-0115.871.4215.8118.352.56DLSLight grayish-rusty dolomitic limestone, open fractures filled with limonite- moderate but some zones display incipient breccards on the context strong moderate but some zones display incipient breccardsOx-sitLim/GoestWT4-1015.871.42<	TD	(435 ft) 1	32 59 m		Elevation:	1465		Finished	29-Sep-08	;	Compass	0	285	-55 5
NTS IDS B/I Dip: -55.5 Date logged 29-Sep-07	Claim	Y	B876324		Azımuth:	285		Logged by	K Mastalerz	:				
To Length Code Lithology and Structure Alteration Ore Fracture Sample From To Length 0 7.25 7.25 RX Brownish-orange, fine/medum graned, matrix-rich/matrix-supported Ox-st Lim/Goe bx WT4-01 3.00 4.88 1.88 0 0.07 7.25 RX Brownish-orange, fine/medum graned, matrix-rich/matrix-supported Ox-st Lim/Goe bx WT4-02 4.88 6.40 1.52 10.26 10.26 S.01 DLS Light grayish-ov-pellowish/maty dolomitic limestone, very strongly fnature Ox-st Lim/Goe st WT4-04 7.23 0.83 10.26 14.45 15.74 1.9D DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fnature Ox-st Lim/Goe md WT4-04 7.23 0.26 1.45 1.57 1.29 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fnature Ox-st Lim/Goe md WT4-09 14.45 15.87 1.426 15.74 15.81	NTS		105 B/I		Dıp [.]	-55.5		Date logged	29-Sep-09	,				
FromToLengthCodeLuthology and StructureAlterationOreFremetureSampleFromToLengthmmm<									30-Sep-07	1				
mmmMmeralsDensityLabelnmm0 007.257.25BXBrownish-orange, fine/meduum gramed, matrix-rich/matrix-supported breccia of dolomutic limetsone frags; collapse (karst) or fluidization breccia?, clayey-ferrugineous matrixOx-stLim/Goe- twabWT4-024.886.407.230.837.2510.263.01DLSLight grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured operhetOx-stLim/Goe- twabWT4-046.407.230.837.2510.263.01DLSLight grayish dolomitic limestone, fracture density varies, usually moderate but locally some zones of breccataon at 60-65dcgOx-stLim/Goemd (bx)WT4-0710.2611.651.3914.451.29DLSLight grayish-to-yellowish/rusty dolomitic limestone, ery strongly fractured Ox-stLim/Goemd wt4-0615.871.6.760.8815.810.07BXRusty-brownish fine-grained limestone breccia, matrix-rich; contacts at 40- ogeothiteOx-stLim/Goemd/stWT4-1015.8716.760.8815.8118.3519.8214.71DLSLight grayish-to-ust dolomitic limestone, fracture density varies from weak to moderate but some zones diaplay uncejnet horeccataonOx-skLim/Goek/md/mdWT4-1116.7618.351.5915.8118.8319.8214.71DLSLight grayish-to-ust dolomitic limestone; moderate but some zones diaplay uncejnet horeccataonOx-skLim/Goek/md/md	From	То	Length	Code		Lithology and Struct	ure	Alteration	Ore	Fracture	Sample	From	То	Length
0.00 7.25 7.25 BX Brownish-orange, fine/medum gramed, matrix-rich/matrix-supported Ox-st Lim/Goe- vab VT4-01 3.00 4.88 1.6.8 7.25 10.26 3.01 DLS Light grayish-to-yellowish/tusty dolomitic limestone, very strongly fnatured to breccuard to instu (crackle breccuar), open fractures filled with limonte- sochite VT4-04 7.23 8.47 1.2.4 10.26 14.45 1.4.19 DLS Light grayish-to-yellowish/tusty dolomitic limestone, very strongly fnatured obreccuard in stu (crackle breccuar) open fractures dnasty varies, usually moderate Ox-st Lim/Goe st WT4-01 8.47 9.50 10.26 0.7.6 10.26 14.45 15.74 1.29 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st Lim/Goe st WT4-01 15.87 1.42 15.74 15.80 0.07 BX Rusty-brownish fine-grained limestone breccia, matrix-rich; contacts at 40- yab Ox-st Lim/Goe bx WT4-11 15.87 1.42 15.81 18.35 19.82 1.47 DLS Light grayish-nusty dolomitic limestone, open fractures filled with limonte- wab Ox-st Lim/Goe wk/md, WT4-11 16.76 0.89	m	m	m						Minerals	Density	Label	m	m	<u>m</u>
breccia of dolomute limestone frags; collapse (karst) or fluidization vab WT4-02 4.88 6.40 1.52 7.25 10.26 3.01 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st to brecciated in stu (crackle breccia); open fractures filled with limonite- goethite Lim/Goe st WT4-03 8.47 9.50 10.26 10.26 14.45 4.19 DLS Light grayish-to-yellowish/rusty dolomitic limestone, rery strongly fractured Ox-st but locally some zones of breccation at 60-65deg Lim/Goe md, (bx) WT4-03 8.47 1.26 14.45 15.74 1.29 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st Lim/Goe st WT4-09 14.45 15.87 1.42 15.74 1.58 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st Lim/Goe wT4-10 15.87 1.42 15.81 15.74 1.58 DLS Light grayish-nusty dolomitic limestone, provide at 40- Ox-st Lim/Goe wT4-11 16.76 18.35 1.59 goethite goethite moderate but some	0 00	7.25	7.25	BX	Brownish-	-orange, fine/medium grained, matrix	-rich/matrix-supported	Ox-st	Lim/Goe-	bx	WT4-01	3.00	4.88	1.88
Image: constraint of the second sec					breccia of	dolomitic limetsone frags; collapse (karst) or fluidization		vab		WT4-02	4.88	6.40	1 52
7.25 10.26 3.01 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st to breccated in situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and the dole and the insestone, pen fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and situ (crackle brecca); open fractures filled with limonte-genetic to breccate and the dole dole dole to breccate and the dole dole dole to breccate and to breccecate and the dole dole dole to breccate and					breccia?, c	clayey-ferrugineous matrix					WT4-03	6.40	7.23	0.83
it b breccated in situ (crackle breccia); open fractures filled with limonite- goethute WT4-05 8.47 9.50 10.26 0.76 10.26 14.45 4.19 DLS Light grayish dolomitic limestone, fracture density varies, usually moderate but locally some zones of brecciation at 60-65deg Ox-wk Lim/Goe md, (bx) WT4-07 10.26 11.65 14.45 15.74 1.29 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st Lim/Goe wtT4-09 14.45 15.87 1.42 15.74 15.81 0.07 BX Rusty-brownish fine-grained limestone breccia, matrix-rich; contacts at 40- yob Ox-st Lim/Goe wtT4-10 15.87 16.76 0.89 15.81 18.35 2.54 DLS Light grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciation Ox-wk Lim/Goe wt/md, WT4-12 18.35 19.81 1.46 19.82 20.08 0.26 DLS Light grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg Ox-st Lim/Goe st WT4-13 19.81 20.94 1.13 20.09 24.00 3.06 DLS Light grayish-creamy dolomitic limest	7.25	10.26	3.01	DLS	Light gray	vish-to-yellowish/rusty dolomitic lime	estone, very strongly fractured	Ox-st	Lim/Goe	st	WT4-04	7.23	8.47	1.24
Image: construct construct construct and construct the construct and construct and construct the construct and ner and construct and construct and construct and construct and					to brecciat	ted in situ (crackle breccia); open fra-	ctures filled with limonite-				WT4-05	8.47	9.50	1.03
10.26 14.45 4.19 DLS Light grayish dolomitic limestone, fracture density varies, usually moderate of the control of the contr			,		goethite						WT4-06	9.50	10.26	0.76
Image: bit locally some zones of brecciation at 60-65deg Image: bit locally some zones of brecciation at 60-65deg 14.45 15.74 1.29 DLS Light grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-st Lim/Goe st WT4-09 14.45 15.87 1.42 15.74 15.81 0.07 BX Rusty-brownish fine-grained limestone breccia, matrix-rich; contacts at 40- 45deg Ox-st Lim/Goe bx WT4-10 15.87 16.76 0.89 15.81 18.35 2.54 DLS Light grayish-rusty dolomitic limestone, fractures filled with limonte- goethite Ox-wk Lim/Goe wd/st WT4-11 16.76 18.35 1.59 18.35 19.82 1.47 DLS Light grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient breccuation Ox-wk Lim/Goe wd/md, (bx) WT4-13 19.81 20.94 1.83 20.08 0.26 DLS Light grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg Ox-st Lim/Goe at t Im/Goe at t 10.83 19.81 20.94 24.00	10.26	14.45	4.19	DLS	Light gray	vish dolomitic limestone, fracture der	sity varies, usually moderate	Ox-wk	Lım/Goe	md, (bx)	WT4-07	10.26	11.65	1.39
14.4515.741.29DLSLight grayish-to-yellowish/rusty dolomitic limestone, very strongly fractured Ox-stLim/GoestWT4-0914.4515.871.4215.7415.810.07BXRusty-brownish fine-grained limestone breccia, matrix-rich; contacts at 40- 45degOx-stLim/Goe- vabbxWT4-1015.8716.760.8915.8118.352.54DLSLight grayish-rusty dolomitic limestone, open fractures filled with limonite- goethiteOx-wkLim/Goemd/stWT4-1116.7618.351.5918.3519.821.47DLSLight grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciationOx-wkLim/Goewk/md, (tx)WT4-1218.3519.811.4619.8220.080.26DLSLight rusty-brownish strongly fractured dolomitic limestoneOx-stLim/GoestWT4-1319.8120.941.1320.080.26DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wk20.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wk/md24.850.85DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena?Ox-wk/stLim-GoestWT4-1728.6227.741.1224.850.85DLS					but locally	y some zones of brecciation at 60-65c	eg							
15.7415.810.07BXRusty-brownish fine-grained limestone breccia, matrix-rich; contacts at 40- 45degOx-stLim/Goe- vabbxWT4-1015.8716.760.8915.8118.352.54DLSLight grayish-rusty dolomitic limestone, open fractures filled with limonite- goethiteOx-wkLim/Goemd/stWT4-1116.7618.351.5918.3519.821.47DLSLight grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciationOx-wkLim/Goewk/md, (bx)WT4-1218.3519.811.4619.8220.080.26DLSLight rusty-brownish strongly fractured dolomitic limestoneOx-stLim/Goe stWT4-1319.8120.941.1320.080.26DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50degOx-stLim/Goe stWT4-1319.8120.941.1320.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wk/md24.0024.850.85DLSLight grayish-creamy dolomitic limestoneOx-wk/stLim-Goest-(bx)WT4-1525.9127.351.4429.504.65DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena?Ox-stLim-Goetim-GoewT4-1728.6229.741.1229.720.22VQCWhitish mass	14.45	15.74	, 1.29	DLS	Light gray	ish-to-yellowish/rusty dolomitic lime	estone, very strongly fractured	Ox-st	Lim/Goe	st	WT4-09	14.45	15.87	1.42
45deg vab vab 15.81 18.35 2.54 DLS Light grayish-rusty dolomitic limestone, open fractures filled with limonite- goethite Ox-wk Lim/Goe md/st WT4-11 16.76 18.35 1.59 18.35 19.82 1.47 DLS Light grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciation Ox-wk Lim/Goe wk/md, WT4-12 18.35 19.81 1.46 19.82 20.08 0.26 DLS Light rusty-brownish strongly fractured dolomitic limestone Ox-st Lim/Goe st WT4-13 19.81 20.94 1.13 20.08 0.26 DLS Light rusty-brownish strongly fractured dolomitic limestone Ox-st Lim/Goe st WT4-13 19.81 20.94 1.13 20.08 0.26 DLS Light grayish-creamy dolomitic limestone, crude indistict bedding at 50deg (Ox) (Lim) wk 24.00 24.65 DLS Light grayish-creamy dolomitic limestone, crude indistict bedding at 50deg (Ox) (Lim) wk/md 24.40 24.65 DLS Grayish to light	15.74	15.81	0.07	BX	Rusty-brov	whish fine-grained limestone breccia	matrix-rich: contacts at 40-	Ox-st	Lim/Goe-	bх	WT4-10	15.87	16.76	0.89
15.8118.352.54DLSLight grayish-rusty dolomitic limestone, open fractures filled with limonite- goethiteOx-wkLim/Goemd/stWT4-1116.7618.351.5918.3519.821.47DLSLight grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciationOx-wkLim/Goemd/stWT4-1116.7618.351.5919.8220.080.26DLSLight grayish dolomitic limestone, fracture dolomitic limestoneOx-wkLim/Goewk/md, (bx)WT4-1319.8120.941.1320.080.26DLSLight rusty-brownish strongly fractured dolomitic limestone, content; locally goethite pseudomorphs after pyrite/galena?Ox-stLim/Goe-abstWT4-1319.8120.941.1320.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg to all the secudomorphs after pyrite/galena?(Ox)(Lim)wk/md24.0024.850.85DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg to cally goethite pseudomorphs after pyrite/galena?(Ox)(Lim)wk/md24.8529.504.65DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; to cally goethite pseudomorphs after pyrite/galena?Ox-wk/stLim-GoestWT4-1525.9127.351.4429.5029.720.22VQCWhitish massive calcite vein; locally goethite pseudomorphs			1		45deg		•		vab					
goethite goethite 18.35 19.82 1.47 DLS Light grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciation Ox-wk Lim/Goe wk/md, (bx) WT4-12 18.35 19.81 1.46 19.82 20.08 0.26 DLS Light rusty-brownish strongly fractured dolomitic limestone Ox-st Lim/Goe st WT4-13 19.81 20.94 1.13 20.08 0.26 DLS Light rusty-brownish strongly fractured dolomitic limestone Ox-st Lim/Goe st WT4-13 19.81 20.94 1.13 20.08 0.294 0.86 BX Brownish limestone breccia with variable matrix content; locally goethite Ox-st Lim/Goe ast Uim/Goe ast WT4-13 19.81 20.94 20.94 24.00 3.06 DLS Light grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg (Ox) (Lim) wk <td>15.81</td> <td>18.35</td> <td>2.54</td> <td>DLS</td> <td>Light gray</td> <td>vish-rusty dolomitic limestone, open '</td> <td>ractures filled with limonite-</td> <td>Ox-wk</td> <td>Lim/Goe</td> <td>md/st</td> <td>WT4-11</td> <td>16.76</td> <td>18.35</td> <td>1.59</td>	15.81	18.35	2.54	DLS	Light gray	vish-rusty dolomitic limestone, open '	ractures filled with limonite-	Ox-wk	Lim/Goe	md/st	WT4-11	16.76	18.35	1.59
18.35 19.82 1.47 DLS Light grayish dolomitic limestone, fracture density varies from weak to moderate but some zones display incipient brecciation Ox-wk Lim/Goe wk/md, (bx) WT4-12 18.35 19.81 1.46 19.82 20.08 0.26 DLS Light rusty-brownish strongly fractured dolomitic limestone Ox-st Lim/Goe st WT4-13 19.81 20.94 1.13 20.08 0.26 DLS Light rusty-brownish imestone breccia with variable matrix content; locally goethite pseudomorphs after pyrite/galena? Ox-st Lim/Goe-ab st WT4-13 19.81 20.94 20.94 24.00 3.06 DLS Light grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg (Ox) (Lim) wk 24.00 24.85 0.85 DLS Light grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg (Ox) (Lim) wk/md			1		goethite	•			,					
moderate but some zones display incipient brecciation(bx)19.8220.080.26 DLSLight rusty-brownish strongly fractured dolomitic limestoneOx-stLim/GoestWT4-1319.8120.941.1320.0820.940.86BXBrownish limestone breccia with variable matrix content; locally goethite pseudomorphs after pyrite/galena?Ox-stLim/Goe-abst20.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg (Ox)(Ox)(Lim)wk </td <td>18.35</td> <td>19.82</td> <td>1.47</td> <td>DLS</td> <td>Light gray</td> <td>vish dolomitic limestone, fracture der</td> <td>sity varies from weak to</td> <td>Ox-wk</td> <td>Lim/Goe</td> <td>wk/md,</td> <td>WT4-12</td> <td>18.35</td> <td>19.81</td> <td>1.46</td>	18.35	19.82	1.47	DLS	Light gray	vish dolomitic limestone, fracture der	sity varies from weak to	Ox-wk	Lim/Goe	wk/md,	WT4-12	18.35	19.81	1.46
19.8220.080.26DLSLight rusty-brownish strongly fractured dolomitic limestoneOx-stLim/GoestWT4-1319.8120.941.1320.0820.940.86BXBrownish limestone breccia with variable matrix content; locally goethite pseudomorphs after pyrite/galena?Ox-stLim/Goe-abstIim/Goe-abst20.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wkIim/Goe-abst24.0024.850.85DLSLight grayish-creamy dolomitic limestoneweak-to-moderately fractured(Ox)(Lim)wk/mdIim/Goest24.8529.504.65DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena?Ox-wk/stLim-Goest-(bx)WT4-1525.9127.351.4429.5029.720.22VQCWhitish massive calcite vein; locally goethite pseudomorphs; contacts at 55- 60deg(Ox)Lim-GoeveinWT4-1728.6229.741.1229.7231.701.98BXRusty-brown fine-grained breccia of dolomitic limestone; common goethiteOx-stLim-Goe-abstWT4-1829.7431.001.2631.7032.901.20DLSGrayish-rusty, strongly fractured dolomitic limestone; common goethiteOx-stLim-Goe-abstWT4-1931.0032.001.00				,	moderate l	but some zones display incipient bree	ciation			(bx)	•			
20.0820.940.86BX pseudomorphs after pyrite/galena?Ox-stLim/Goe-abst20.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wk24.0024.850.85DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wk24.850.85DLSLight grayish-creamy dolomitic limestone, erude indistinct bedding at 50deg(Ox)(Lim)wk/md24.850.85DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena?Ox-wk/stLim-Goest-(bx)WT4-1525.9127.351.4429.5029.720.22VQCWhitish massive calcite vein; locally goethite pseudomorphs; contacts at 55- 60deg(Ox)Lim-GoeveinWT4-1728.6229.741.1229.7231.701.98BXRusty-brown fine-grained breccia of dolomitic limestone; common goethiteOx-stLim-Goe- vabbxWT4-1829.7431.001.2631.7032.901.20DLSGrayish-rusty, strongly fractured dolomitic limestone; common goethiteOx-stLim-Goe-abstWT4-1931.0032.001.00	19.82	20.08	0.26	DLS	Light rusty	y-brownish strongly fractured dolom	tic limestone	Ox-st	Lim/Goe	st	WT4-13	19.81	20.94	1.13
pseudomorphs after pyrite/galena?vik20.9424.003.06DLSLight grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg(Ox)(Lim)wk24.0024.850.85DLSLight grayish-creamy dolomitic limestoneweak-to-moderately fractured(Ox)(Lim)wk/md24.8529.504.65DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena?Ox-wk/stLim-Goest-(bx)WT4-1525.9127.351.4429.5029.720.22VQCWhitish massive calcite vein; locally goethite pseudomorphs; contacts at 55- 60deg(Ox)Lim-GoeveinWT4-1728.6229.741.1229.7231.701.98BXRusty-brown fine-grained breccia of dolomitic limestone; common goethiteOx-stLim-Goe- vabbxWT4-1829.7431.001.2631.7032.901.20DLSGrayish-rusty, strongly fractured dolomitic limestone; common goethiteOx-stLim-Goe-abstWT4-1931.0032.001.00	20.08	20:94	0.86	BX	Brownish	limestone breccia with variable matr	ix content; locally goethite	Ox-st	Lim/Goe-ab	st				
20.94 24.00 3.06 DLS Light grayish-creamy dolomitic limestone, crude indistinct bedding at 50deg (Ox) (Lim) wk	1				pseudomo	orphs after pyrite/galena?			· .					
24.0024.850.85DLSLight grayish-creamy dolomitic limestoneweak-to-moderately fractured(Ox)(Lim)wk/md24.8529.504.65DLSGrayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena?Ox-wk/stLim-Goest-(bx)WT4-1525.9127.351.4429.5029.720.22VQCWhitish massive calcite vein; locally goethite pseudomorphs; contacts at 55- 60deg(Ox)Lim-GoeveinWT4-1728.6229.741.1229.7231.701.98BXRusty-brown fine-grained breccia of dolomitic limestone; ormmon goethiteOx-stLim-Goe- vabbxWT4-1829.7431.001.2631.7032.901.20DLSGrayish-rusty, strongly fractured dolomitic limestone; common goethiteOx-stLim-Goe-abstWT4-1931.0032.001.00	20.94	24.00	3.06	DLS	Light gray	vish-creamy dolomitic limestone, crue	le indistunct bedding at 50deg	(Ox)	(Lim)	wk		1		
24.85 29.50 4.65 DLS Grayish to light rusty-brownish, strongly fractured dolomitic limestone; locally goethite pseudomorphs after pyrite/galena? Ox-wk/st Lim-Goe st-(bx) WT4-15 25.91 27.35 1.44 29.50 29.72 0.22 VQC Whitish massive calcite vein; locally goethite pseudomorphs; contacts at 55- 60deg (Ox) Lim-Goe vein WT4-17 28.62 29.74 1.12 29.72 31.70 1.98 BX Rusty-brown fine-grained breccia of dolomitic limestone; common goethite Ox-st Lim-Goe- vab bx WT4-18 29.74 31.00 1.26 31.70 32.90 1.20 DLS Grayish-rusty, strongly fractured dolomitic limestone; common goethite Ox-st Lim-Goe-ab st WT4-19 31.00 32.00 1.00	24.00	24.85	0.85	DLS	Light gray	vish-creamy dolomitic limestoneweal	-to-moderately fractured	(Ox)	(Lim)	wk/md	·	1		
29.50 4.05 DLS Grayish to fight fully brownish, strongly fractured doronitic finitestone, of the strong stro	24.85	20.50	4 65	DIS	Gravish to	light rusty_brownish_strongly fract	red dolomitic limestone:	Ov-wk/st	Lim-Goe	et_(by)	WT4-15	25.01	27 35	1 44
29.50 29.72 0.22 VQC Whitish massive calcite vein; locally goethite pseudomorphs; contacts at 55- 60deg (Ox) Lim-Goe vein WT4-17 28.62 29.74 1.12 29.72 31.70 1.98 BX Rusty-brown fine-grained breccia of dolomitic limestone, abundant muddy- ferugineous matrix Ox-st Lim-Goe- vab bx WT4-18 29.74 31.00 1.26 31.70 32.90 1.20 DLS Gravish-rusty, strongly fractured dolomitic limestone; common goethite Ox-st Lim-Goe-ab st WT4-19 31.00 32.00 1.00	24.05	27.50	4.05			ethite nseudomornhs after nyrite/gale	ng?	UN-WIN31	Emi-000	31-(UA)	WT4-16	27 35	27.55	1.77
29.72 31.70 1.98 BX Rusty-brown fine-grained breccia of dolomitic limestone, abundant muddy- ferugineous matrix Ox-st Lim-Goe- vab bx WT4-18 29.74 31.00 1.26 31.70 32.90 1.20 DLS Grayish-rusty, strongly fractured dolomitic limestone; common goethite Ox-st Lim-Goe-ab st WT4-19 31.00 32.00 1.00	29.50	29.72	0.22	VOC	Whitish m	enne pseudomorphs aren pyric/gale	seudomorphs: contacts at 55-		Lim-Goe	vein	WT4-17	27.55	20.02	1.27
29.72 31.70 1.98 BX Rusty-brown fine-grained breccia of dolomitic limestone, abundant muddy- ferugineous matrix Ox-st Lim-Goe- vab bx WT4-18 29.74 31.00 1.26 31.70 32.90 1.20 DLS Gravish-rusty, strongly fractured dolomitic limestone; common goethite Ox-st Lim-Goe-ab st WT4-19 31.00 32.00 1.00	27.50	27.12	0.22		60den	assive calence veni, locarly goedine p	seudomorphs, contacts at 55-		Bini-Goc	VOIII	** 1 -1 1 /	20.02	27.14	1,12
23.72 31.70 1.30 DX W14-13 23.74 31.00 1.20 31.70 32.90 1.20 DLS Gravish-rusty, strongly fractured dolomitic limestone; common goethite Ox-st Lim-Goe-ab st WT4-19 31.00 32.00 1.00	20 72	31 70	1 98	BY	Rusty-hro	um fine-grained breccia of dolomitic	limestone abundant muddy-	Ox-st I	Lim-Goe-	hy	WT4_18	20 74	31:00	1 26
31.70 32.90 1.20 DLS Gravish-rusty, strongly fractured dolomitic limestone; common goethite Ox-st Lim-Goe-ab st WT4-19 31.00 32.00 1.00		51.70	1.70	DA	feritgineou	is matrix	missione, acundant maday-		vab		TT A T-10	22.14	54.00	1.20
	31 70	32.90	1 20	DIS	Gravish-r	usty strongly fractured dolomitic lur	estone: common goethite	Ox-st	Lim-Goe-ah	st	WT4-19	31.00	32:00	
		52.90			and one	make	control gouinte					51.00	52.00	

K. 1	Mastaler	Z		Wildcat 2009 Project						Append	ix 2
Kill	deer M1	nerals I	nc.	Assessment Report 2010					, Dril	l Hole L	ogs
				•			·			page	21
32.90	33.65	0.75	DLS	Grayish-rusty, moderately/weakly fractured dolomitic limestone	Ox	Lim-Goe	md/wk	WT4-20	32.00	33.35	1.35
33.65	35.30	1.65	DLS	Grayish-rusty, strongly fractured dolomitic limestone; numerous goethite	Ox-st	Lim-Goe-ab	st	WT4-21	34.00	35.10	1.10
				pseudomorphs, locally broken core					i i		
35.30	38.70	3.40	DLS	Gray crystalline (dolomitic) limestone, moderately fractured (oxidation	Ox-st	Lim-Goe	md, (bx)	WT4-22	35.10	36.40	1.30
				follows fractures); locally incipient brecciation; lower boundary marked by							
				the oxidation front					1		
38.70	39 20	0.50	DLS	Dark gray coarse crystalline dolomitic limestone, locally brecciated;	(Ox)	(Lim)	md, (bx)				
				distinctly lower degree of oxidation	Ì, Ì						
39.20	40.75	1.55	DLS	Gravish-rusty fine crystalline dolomitic limestone; relics of	Ox	Lim-Goe	md				
				banding/stratification at 45-50deg, locally blebs/pseudomorphs of goethite;			l I				
				lower contact sharp, discordant							
40.75	41.15	0.40	BX	Dark grayish-rusty limestone breccia, probably tectonic origin;	(Ox)	(Lim)	bx	WT4-23	40.70	41.95	1.25
				superimposed younger fractures	Ì	l` ´					
41.15	41.99	0.84	DLS	Light-creamy-grayish fine-crystalline dolomitic limestone, locally blebs of	Ox	Lim, Goe	md/wk				
				goethite							
41.99	42.08	0.09	VQC	Carbonate vein accompanied by strongly oxidized zone with abundant	Ox-st	Lim/Goe-ab	vein,	WT4-24	41.95	42.55	0.60
				goethite, sharp contacts at 40deg (5 cm true width)	,		bx?				
42.08	42 20	0.12	DLS	Dark gray coarse-crystalline dolomitic limestone	(Ox)	(Lim)					
42.20	42.55	0.35	VQC	Calcite veins and cement in dolomitic breccia, white, slightly rusty; goethite	Ox	Lim, Goe	bx/vein				
, I				along some fractures; younger, tight fractures are superimposed on the					1 1		
				breccia							
42.55	45 00	2.45	LST	Dark gray, spotty, coarse-crystalline marbly limestone, locally brecciated;	(Ox)	(Lim)	wk-(bx)	WT4-25	42.55	43.40	0.85
				indistinct layering at 50-55deg							
45.00	45.42	0.42	DLS	Yellowish-tan, locally light gray, fine-crystalline dolomitic limestone	Ox-st	Lim-Goe	st-(bx)				
45.42	45.50	0.08	VQC	Calcite vein/breccia cementation; contacts at 45deg	Ox	Lim-Goe	st-(bx)				
									·		
45.50	47.50	2.00	LST	Yellowish-tan to dark gray, coarse-crystalline, spotty limestone; weak	Ox	Lim-Goe	md/wk-				
]				fracturing superimposed on the older fluidization breccias!; bedding at			(bx)		1		
				50deg; fracturing and brecciation commonly developed perpendicullar to							
				bedding and at 40deg (calcite veining); goethite pseudomorphs							
47.50	47.65	0.15	FBX	Fluidization breccia of limestone fragments	Ox	Lim-Goe	bx	WT4-26	47.47	48.67	1.20
47.65	51.63	3.98	LST	Medium-gray to yellowish-tan, coarse-grained, strongly fractured (incipient	Ox	Lim-Goe	md/st-	WT4-27	48.67	50.00	1.33
				brecciation locally) marbly limestone; some calcite veins at 10deg; relics of			bx	WT 4-28	50.00	51.63	1.63
				bedding at approximately 70deg					· ·		
51.63	54.00	2.37	LST	Medium-gray to rusty, coarse-crystalline, crudely layered marbly limestone;	Ox	Lim-Goe	md		1 1		
				layering at 50deg							
54.00	56 25	2.25	DLS	Grayish-to-rusty-brownish, strongly fractured dolomitic limestone; fractures	Ox-st	Lim/Goe-ab	st	WT4-30	54.00	55.27	1.27
				are commonly filled with goethite				WT4-31	55.27	56.25	0.98
56.25	56 75	0.50	DLS	Light gray fine-crystalline banded dolomitic limestone, bedding at 55-60deg	Ox	Lim-Goe	md				
				h h	L						
56.75	58.05	1.30	LST	Medium-gray to rusty, medium-crystalline, spotty, crudely layered marbly	Ox	Lim-Goe	md				
				limestone: lavering at 40-70deg					1 1		

K. N Kill	Mastaler deer Mi	z nerals I	nc	Wildcat 2009 Project Assessment Report 2010					Dril	Append I Hole L	ix 2 .ogs e 22
58.05	60.05	2.00	BX	Rusty-brown crackle breccia (in situ, incipient) of dolomitic limestone, local fluidization, strong oxidation, locally goethite	Ox-st	Lım/Goe-ab	bx/st	WT4-32	58.05	59.44	1.39
60.05	66.58	6.53	DLS	Grayish-to-rusty, spotty limestone/dolomitic limestone, moderately fractured but locally incipient brecciation	Ox	Lim-Goe	md, (bx)	WT4-33	65.17	66 58	1 41
66.58	67.17	0 59	DLS	Rusty-brown, strongly fractured to locally brecciated dolomitic limestone, strong oxidation; lower contact sharp at 60-65deg, concentration of goethite near the lower contact at approx 70deg	Ox-st	Lım/Goe-ab	st-bx	WT4-34	66.58	67.17	0.59
67 17	70.10	2 93	tBX	Coarse tectonic breccia composed predominantly of thinly bedded calcareous turbidites and fine-grained metasedimens, minor limestone - only in the topmost part, numerou clayey gouges became less frequent downhole, irregular calcite veins	Ox: st-wk	(Lim/Goe)	tbx	WT4-35	67.17	68.58	1.41
70.10	70.70	0.60	LTt	Dark gray, thin-to-medium bedded limestone and calcareous turbidites, bedding at 35-40deg, locally calcite veinlets	Ox	Lım	md				
70 70	72.54	1 84	tBX	Tectonic breccia of thin/medium bedded limestone and calcareous turbidites; ferrugineous matrix, broken core	Ox-st	Lim	tbx	WT4-36	70.32	72.54	2.22
72.54	72.80	0.26	VQC	Carbonate vein, broken core	Ох	Lım	vein				
72.80	75.40	2.60	LST	Grayish, spotty, medium-crystalline limestone (dolomitic?), massive, calcite veins	(Ox)	(Lim)	wk				
75.40	75.59	0 19	cl	Yellowish-gray clayey fault(?) gouge	Cl-st (Ox)	(Lim)	flt?				
75.59	78.95	3.36	LTt	Gray, thin/medium bedded limestone and calcareous turbidites, folded bedding; some of the tight fold axes are cut by thin calcite veins, locally stronger fracturing-to-incipient brecciation	Ох	Lim-Goe	wk-(bx)	WT4-38	75.59	76.76	1.17
78.95	79.80	0 85	tBX	tectonic breccia/tectonic deformational package of light-creamy to gray limestone, medium bedded	Ох	Lim-Goe	tbx	WT4-39	78.95	79.81	0.86
79.80	84.45	4.65	Lta	Medium to coarse-grained, redeposited fragmental (allodapic) limestone; almost exclusively angular fragments of white limestone and dark gray/black calcareous shale, the latter are usually bigger, elongated (intraclast character); locally well preserved bedding at 50-55deg; succession probably originated due to repeated redeposition (earthquacke induced - fluxoturbidites, or tempestites?) of moderately consolidated calcareous	(Ox)	(Lim-Goe)	wk	WT4-40	83.18	84.45	1.27
				material; common fractes perpendicullar to bedding; lower contact at 55- 60deg							
84.45	85.95	1.50	DLS	Yellowish-rusty to light-gray, strongly fractured, medium-crystalline dolomitic limestone, locally incipient brecciation; lower contact sharp, faulted/slickensided at 25deg	Ox-st/md [*]	Lim/Goe-ab	md-(bx)	WT4-41	84.45	85.95	1.50
85.95	86.25	0.30	FZ	Deformational, fault-related package of dark gray thin bedded calcareous turbidites/shale	Ox .	Lim	flt	WT4-42	85.95	86.50	0.55

· · ·

•

i e

K. I Kill	Mastaler Ideer Mi	z nerals I	nc	Wildcat 2009 Project Assessment Report 2010					Dri	Append 11 Hole L page	lix 2 .ogs e 23
86.25	94.20	7.95	сMS	Gray, fine-grained to sandy, thin-to-medium bedded, calcareous turbidites, bedding at 70-80deg, stratigraphic younging up-hole (load casts, sole marks, bioturbation), locally sideritic, common thin calcite veins; at 90.35-92.45 isolated bioturbation structures (horizontal canals, sub-vertical shafts and irregular burrows); lower contact slickensided/faulted at 35deg	(Ox)	(Lim)	wk				-
94.20	94.92	0.72	LTa	Medium-to-coarse-grained, redeposited (allodapic) limestone, bedding at 70	(Ox)	(Lim)	wk				
94.92	96 00	1.08	cMS ?FL T	Gray calcareous meta-turbidites, strongly folded (deformational package) or slump-related (topmost part - deformation dying-out) deformation; some carbonate-minor quartz nods	(Ox)	(Lim)	fit??				
96.00	101.43	5.43	cMS	Gray calcareous, thin-bedded, meta-turbidites and shales, gently folded with bedding from 40deg to 85deg; thick to thin calcite veins perpendicullar and parallel to bedding; lowermost part - tectonic bending of layering to 30deg rca	Carb	(Lim)	md				
101.43	101.53	0.10	tBX	Fine-grained breccia, both contacts discordant (almost perpendicullar to bedding in CMS) at 35deg rca; partly calcite cemetation	Carb, Ox	(Lim)	bx			1	
101.53	104.33	2.80	cMS	Gray calcareous, thin-bedded, meta-turbidites and shales, bedding at 75- 80deg; thick to thin calcite veins, lower contact sharp	Carb	(Lim)	md				
104.33	106.57	2.24	BX	Coarse/medium-grained limestone/calcareous shale breccia; locally thin deformational(?) packages and gentle folding; sedimentary breccia?	Carb-v, Ox	Lim, Goe, tr Ga	bx	WT4-43	105.75	106.57	0.82
106.57	107.32	0.75	cMS	Gray calcareous, thin-bedded, meta-turbidites and shales, bedding at 75- 80deg, locally (e.g. at 107.25m) bioturbation - horizontal tunnels	Carb-v, (Ox)	(Lim)	md	WT4-44	106.57	108.13	1 56
107.32	108.13	0.81	tBX	Predominantly intervals of tectonic(?) breccia of thin bedded limestones with accompanied calcite veins; minor intact thin-bedded limestone; common goethite pseudomorphs	Ox, Carb- v	Lim-Goe	tbx?		 		
108.13	112.45	4.32	cMS	Gray calcareous, thin- (minor medium-) bedded, fine-grained meta- turbidites and shales, bedding at 75-90deg, stratigraphic younging up-hole (graded bedding, load casts, flame structures); locally rare bioturbation and burrows, common thin calcite veins and thin fluidization dyklets; pyrrhotite is predominantly syn/diagenetic (deformed wisps), but pyrite was partly introduced along fractures/veins and breccias together with trace of galena; lower contact gradational	Carb-v	Po 1%, Py 1%, tr Ga	wk	WT4-45	108.75	109.80	1.05
112.45	115.53	3.08	cMS	Gray calcareous, medium- (minor thick-) bedded, sandy turbidites, sandstones and shales, bedding at 75-90deg, few irregular calcite veins	Carb-v	Po 1%, Py 1%	wk				
115.53	115.78	0.25	fBX	Fine-grained fluidization(?) breccia composed of frags of thin-bedded metasediments, sharp contacts at 70deg		dPy 0.5%, tr Po	bx	1	1		
115.78	117.85	2.07	cMS	Gray, medium-to-thin-bedded calcareous metasediments, bedding at 65- 80deg; locally carbonate veins	Carb-v		wk		,	:	

.

•

Kill	Killdeer Minerals Inc.			Assessment Report 2010					Dri	ll Hole L	ogs
										page	24
117.85	118.25	0.40	tBX	Coarse-grained, tectonic breccia/deformational package of metasediments,	Carb-v	dPo 1%, tr-	tbx				
				numerous irregular carbonate veins (partly brecciated)		0.5% Py					
118 25	119.98	1.73	cMS	Gray, thin- (subordinately medium-) bedded, calcareous metasediments,	Carb-v	blPo 2%	wk				
1				bedding at 85deg; locally carbonate veins		[1			
119.98	120.30	0.32	fBX	Poorly sorted fluidization(?) breccia composed of frags of thin-bedded		Py 2%, Po	bx				
				metasediments; sharp contacts at 35deg		1%					
120.30	124.30	4.00	cMS	Gray, thin-to-medium-bedded, calcareous metasediments, bedding at 70-	Carb-v	d/blPo 1-	wk				
				75deg, stratigraphic top - up-hole; locally thin carbonate veins and incipient		2%, Py 1-			1		
				brecciation; pyrite growths over older pyrrhotite grains		1.5%					
124.30 124	124.95	0.65	tBX	Zone of incipient brecciation of calcareous metasedimenta and numerou	Carb-v	Py 2-3%, Po	bx	WT4-46	124.30	124.95	0.65
				calcite veins		1%, Cpy 1-					
						4%					
124.95	126.68	1.73	cMS	Gray, thin-to-medium-bedded, calcareous metasediments, bedding at 70-	Carb-v	d/blPo 1-2%	wk				
				75deg, stratigraphic top - up-hole, bedding attitude varies (folding/faulting)							
126.68	127.97	1.29	BX	Breccia/deformational package of calcareous metasediments,	Carb-v	dPo, Py	(bx)	WT4-47	126.68	127 95	1.23
				syndepositional/diagenetic(?), weak oxidation				1			
127 97	132.59	4.62	cMS	Gray, thin-to-medium-bedded, calcareous metasediments, bedding at 55-	Carb-v	d/blPo 1%,	wk	WT4-48	131.07	132.59	1.52
				70deg, stratigraphic top - up-hole, locally thin deformed(?) calcite veins		Py 0.5-1%,					
						tr Cpy					
···				EOH @ 132.59 m (435 ft)							

Wildcat 2009 Project

Other samples

For abbreviations: see drill hole log WT-1

K. Mastalerz

 WT4-08
 STD

 WT4-14
 BLK
 LST3

 WT4-37
 STD

 WT4-27A
 DPK

 WT4-34A
 DPK

 WT4-41A
 DPK

Appendix 2

K. Kil	K. Mastalerz Killdeer Minerals Inc.				<i>.</i>	Wildcat 2009 Project Assessment Report 2010					Dril	Append l Hole I pag	lix 2 Logs e 25
Killdee	er Mine	rals Ltd								Diamond	l Drill L	og - ddł	WT-5
Project		Wildca	12009	г.	101(00	Datum NAD83 Zone 9	-			D			
Drill Hol	e	WT-5		Easting:	424638		Contractor.	Kluane	•	Dip tests:			
Core		NTW		Northing:	005/5/3		Started	29-Sep-08		Method	Depth	Azı	Dıp
TD	(500 ft)	152.60		Elevation:	1404		Finished:	l-Oct-08		Compass	0	296	-60 5
Claim	1	Y B62266		Azimuth:	290		Logged by	K Mastalerz	<u>.</u>				
NIS		105 B/1		Dip:	-00.5		Date logged	30-Sep-07					
From	To	I ength	Code		Lithology	and Structure	Alteration	2-00-07	Fracture	Sample	From	То	Length
m	 	Lengui m	Coue				Alleration	Minerals	Density	Label	m	m	m
	3 96	3 96	oh	Overburde	n with boulders of gray o	rystalline limestone		Winciais	Density	Laber		111	
3 96	5.95	1 99	LST	Rusty-brow	vn to light-grav medum-	crystalline limestone probably	Ox-st	Lim-Goe	st	WT5-01	3.96	5.95	1 99
5.70	5.75	1.55	LUI	cavernous	(now filled with clavey-f	errugineous mixture`	-	Lini Goo			5.70	5.75	1.55
5.95	11.65	5.70	LST	Dark-gray	crystalline limestone wit	h numerous white calcite yeans, trend of	(Ox). Calc	Lim	md	WT5-02	5.95	7.50	1.55
				bedding at	60deg: veins at 0-30deg	······································	v			WT5-03	9.50	10.52	1.02
11.65	16.60	4.95	LST	Dark-gray,	, crudely thick-bedded cry	stalline limestone, bedding at 60-70deg,	(Calc-v)						
			-	locally reli	cs of small intraclasts and	d pellets; few thin calcite veins; locally	Ň Ź						
				bioturbatio	ons(?)								
16.60	17.45	0.85	LST	Dark-gray/	brownish, sideritic(?) cry	stalline limestone, boudinaged, trend of		Lim			-		
				bedding at	65deg		Ox		md		"		
17.45	20.98	3.53	LST	Dark-gray,	, crudely thick-bedded cry	stalline limestone, bedding at 65deg,	(Calc-v)						
				locally reli	cs of intraclasts and pelle	ts, few thin calcite veins; locally						r .	
			_	bedding bli	urred due to bioturbation	(?)							
20.98	31.05	10.07	LSS	Dark-gray	crystalline limestone with	h thin, frequently irregular, sideritic-	(Ox), Calc-	(Lim)	wk	WT5-04	26.84	27.60	0.76
				(cherty) ba	inds (diagenetic, epigenet	ic?), bedding at 55-60deg; locally	v						
				bioturbatio	n and soft sediment defor	rmations; few calcite veins	l		l				
31.05	32.17	1.12	FZ	Strongly bi	roken core: fragments of	crystalline limestone as above and	(Ox), Cl	(Lim)	flt?	WT5-05	31.05	32.17	1.12
				numerous o	clayey gouges	<u> </u>							
32.17	33.99	1.82	LSS	Dark-gray	crystalline limestone with	h thin, frequently irregular, sideritic-	(Ox), Calc	(Lim)	wk	Į	1		
				(cherty) ba	nds, more regular beddin	g at 65deg	v		ļ				
33.99	44.35	10.36	RIF	Brown RIF	; locally still well preser	ved relics of primary sedimentary	Ox-st	Lim, Goe	wk	WT5-06	35.25	36.75	1.50
				structures ((load casts, horizontal but	rrows) of marly(''), probably slightly				WT5-07	36.75	38.10	1.35
				cavernous,	dark-gray limestone; par	tial dissolution and in situ replacement				WT5-08	38.10	39.85	1.75
				by iron oxi	ides, drusy calcite nodule	s; bedding at 65-70deg; sharp lower							
1				boundary a	it 90deg; locally pseudom	norphs after pyrite and galena?							
44.25	16 70	2.25	1.66	Dark amor	thin/modium haddad and	retaling limestone with brownish sidestic	(0x) Cala	l'	md	WTS 10	45.00	46 70	<u> </u>
44.55	40.70	2.33	LSS	Dark-gray,	, unit/inequuin-bedded Cry	statue ninestone with brownish sideritie	(Ox), Calc		ina	w13-10	43.80	40.70	0.90
46 70	18 25	1 55	DIE	Brown DIE	Fuel, common calcue ver	aray crystalling limestone as showed	Ov-et	Lim Goe	md	WT5_11	46 70	18 25	1.55
40.70	70.23	1.55	лг	deformed *	nrimary stratification cal	eite vens	UA-31		inu	W13-11	+0.70	70.2J	1.55
1	·			uorornied l	<u>ninary sciatification, Cal</u>		I		I	I	L		

۱. ۱.

K. N	Mastaler	z		Wildcat 2009 Project						Appendi	ix 2
Kıll	deer Mi	inerals I	nc	Assessment Report 2010					Dril	l Hole L page	ogs 26
48.25	48.69	0.44	LST	Block (tectonic?/relic) of dark-gray crystalline limestone with numerous calcitc/carbonate veins; deformed bedding	(Ox)	(Lım)	st	WT5-12	48.25	48.69	0.44
48.69	50.29	1.60	RIF	Rusty-brown, loose mixture of clayey-ferrugineous minerals; relics of bedding(?) at 90deg	Ox/Clst	Lim, Goe		WT5-13	48.69	50.29	1.60
50.29	52.45	2.16	RIF?	Dark chocolate-brown mixture of loose clayey-ferrugineous minerals	Ox/Cl-st	Lım, Goe		WT5-14	50.29	52.45	2.16
52.45	53 34	0 89	LSS	Dark-gray, thin-bedded crystaline limestone with thin, brownish sideritic layers at 70-75deg; common clayey gouges; poor recovery	Ox, (Calc)	Lım, Goe	md	WT5-15	52.45	53.34	0 89
53.34	54.80	1.46	RIF?	Rusty-brown, loose mixture of clayey-ferrugineous minerals; broken core, poor recovery	Ox/Cl-st,	Lim, Goe		WT5-16	53.34	55.17	1.83
54.80	55.17	0.37	LSS	Gray, thin/medium-bedded crystaline limestone with brownish sideritic layers, numerous calcite veins	Ox, (Calc)	Lım, Goe	md				
55.17	56.11	0 94	BX	Rusty-gray karstic collapse(?) breccia of partly substituted gray crystalline limestone, numerous calcite veins, locally goethite pseudomorphs	Ox, Carb- v	Lım, Goe	bx	WT5-17	55.17	56.11	0.94
56.11	57.25	1.14	BX/ RIF	Rusty-brown clayey-ferrugineous gouge, few block of gray limestone; loose material	Ox-st, Cl- st	Lım/Goe-ab	bx?	WT5-18	56.11	57.25	1.14
57.25	62.54	5.29	LSS	Gray, thin bedded sideritic limestone as before, bedding at 85-90deg, thin calcite veins cut through sideritic layers, calcite veins are cut by younger fractures	(Ox)	(Lım)	wk/md	WT5-19	57.25	58.17	0.92
62.54	63.00	0.46	FZ	Brownish-rusty clayey gouge, faulzt zone(?); poor recovery	Ox-st, Cl- st	Lim/Goe	flt?				
63.00	65.11	2.11	LSS	Gray, thin bedded sideritic limestone as before, locally silicified	(Ox), Sil	(Lim)	wk/md				
65.11	65.40	0.29	FZ	Brownish-rusty clayey gouge, faulzt zone(?); poor recovery	Ox/Cl-st	Lım/Goe	flt?				
65.40	66.30	0.90	LST	Rusty to dark gray crystalline limestone, strongly replaced by ferrugineous- clayey minerals, relics of bedding at 55deg, partly silicified (sideritic layers)	Ox, Sil	Lim/Goe	md	WT5-21	65.40	66.30	0.90
66.30	68.35	2 05	LSS	Gray, thin bedded (deformed bedding - locally incipient brecciation) crystalline limestone, rarely scattered thin sideritic layers, locally silicified; common goethite encrustations and pseudomorphs, locally guartzyeins/siliceous zones	(Ox), Sil	Lim-Goe	md-bx	WT5-22	66.30	67.80	1.50
68.35	83.05	14.70	LSS	Gray to dark-gray, medium-to-thin bedded crystalline limestone with thin sideritic-siliceous layers/bands, bedding at 75-85deg, distinct silicification; irregular thin calcite/carbonate veins; rarely goethite	(Ox), Sil	(Lim, Goe)	wk-md	WT5-23	82.93	83.72	0.79
83.05	83.60	0.55	BX	Light gray to whitish limestone breccia, strong carbonate-quartz veining/precipitation, strong silicification, few blebs and pseudomorphs of goethite	Sil/Carb- v, (Ox)	(Goe)	bx				
83.60	83.86	0.26	LST	Gray coarse/medium grained limestone (pellets and intraclasts very common), silicified	Sil		wk				

....

÷

.

.

٦

K. N Kill	Mastaler: deer Mi	z nerals I	nc.	Wildcat 2009 Project Assessment Report 2010					Dril	Appendi I Hole L	ix 2 ogs 27
83.86	. 89.06	5.20	IIF	Brownish-rusty to, locally, gray, fine-grained (detrital) limestone/marl, locally calcareous siltstone (calcareous meta-sediments), <u>strongly replaced</u> <u>by clay-ferrugineous mixture</u> , sideritic bands; probably admixed volcaniclastic (greenish) material, locally probably bioclasts; bedding at 80- 90deg, locally graded bedding (stratigraphit top up-hole), some beds are probably of turbiditic origin; rerely goethite pseudomorphs	Carb, Sil, Ox-st	Lim-Goe	wk				. 21
89.06	89.10	0.04	FZ	Clayey fault/slickenside zone	Ox-st, Cl- st	Lim-Goe	flt				
89.10	90.24	1.14	cMS	Grayish-rusty, detrital limestone/marl; admixed volcaniclastic material (locally greenish color of the rock); bioturbation in the lowermost part of the interval	Ox	Lım-Goe	wk				
90 24	104.80	14.56	VCL	Light greenish to rusty yellowish, fine-grained, slightly calcareous meta- volcaniclastics(?), slightly schistose, limonite-goethite penetrates along the fractures but also common blebs of goethite in the lower part of the interval, locally pyritiferous concretionary forms, bedding at 70-80deg, stratigraphic top up-hole (load casts); locally slickensided	Ox	Lim, Goe, Py	md	WT5-24 WT5-25 WT5-26	91.10 100.33 103.64	92.55 102.00 105.04	1.45 1.67 1.40
04.80	105.04	0.24	FZ	Fault/slickesided zone at 35-50deg	Ox, Cl-md	Lim	flt	,			
05.04	109.65	4.61	SCL	Light brownish-greenish, strongly siliceous, metasediments (siltstones and minor sandstones), bedding at 70deg; locally wispy laminations, silty-muddy repetitions of laminations and bioturbations (the latter ones at 107 40- 107.70 m); probably admixture of tuffaceous material; some parts of the interval show features characteristic of siliciclastic nearshore environments	Sil-st, Ox	Lim, Goe	wk/md				
09.65	112.44	2.79	VCL	Yellowish, fine-grained volcaniclastics, thin bedding to lamination at 80deg	Ox, Cl-wk	Py, Lim, Goe	wk/md	WT5-27	110.35	111.25	0.90
12.44	112.55	0.11	tBX	Yellowish breccia, contacts at 40deg	Cl-st, Ox	Lim	tbx				
12.55	113.30	0.75	VCL	Yellowish, fine-grained volcaniclastics, thin bedding to lamination at 80deg	Ox, Cl-wk	Py, Lim, Goe	wk/md				
13.30	114.80	1.50	SCL	Silty to fine-sandy, medium-to-thin bedded siliciclastics, common bioturbation, bedding at 60deg	Sıl _					¥	
14.80	116.30	1.50	SCL	Grayish-green, thinly bedded siltstones, bedding/lamination at 60deg; probably admixture of tuffaceous material	Sil						
16.30	119.35	3.05	SCL	Brownish-green, strongly fractured siliciclastic rock (siltstone) to silty volcaniclastic; locally incipient brecciation, carbonate veins at 15-20deg; strongly broken core	Sil, Ox	Lim	st	WT5-28	118.26	119.35	1.09
19.35	120.00	0.65	FZ	Complex fault zone: blocks of grayish siliciclastic rocks and clayey gouges	Ox, Cl-st		flt				```
20.00	124.00	4.00	SCL	Yellowish-gray-to rusty, silty-to-fine sandy siliciclastics with admixture of volcaniclastic material, thin/medium bedded at 85-90deg; thin zones of incident brecciation at approx 10deg	Ox		wk), I		

К.	Mastaler	Z		Wildcat 2009 Project						Appendi	x 2
Kil	ldeer Mi	nerals I	nc.	Assessment Report 2010					Dri	ll Hole L	ogs
				· · ·						page	28
124.00	126.00	2.00	SCL	Light-to-dark gray, fine sandstones and siltstones, medium to thin bedded,	(Ox), Sil		wk				
				rhythmic, tidal-boundle type (including diurnal couplets) stratifications;							
				siltstones commonly burrowed/bioturbated							
126.00	127.65	1.65	SCL	Yellowish-green siltstone, rhythmic laminations, strongly siliceous, locally	(Ox), Sil		wk/md				
<u> </u>	L			bioturbated, bedding at 90deg							
127 65	128.12	0.47	FZ	Fault clayey gouge to breccia, light gray, contacts at 45deg	Cl-st		flt	ļ			
128.12	129.85	1.73	SCL	Yellowish-green siliceous silistone as above the fault zone, bedding at	(Ox), Sil		wk/md	1			
L				90deg			ļ				
129.85	130.20	0.35	FZ	Clayey fault gouge at 55-60deg	Cl-st		flt				
130.20	130.80	0.60	BX	Greenish-gray tectonic(?) breccia of silicified volcanogenic(?) rock, few thir	Sil, Cl	Py, tr Cpy	bx	WT5-29	130 20	130.80	0.60
				clay gouges, incipient stockwork of pyrite-chalcopyrite veinlets		1					
							<u> </u>				
130.80	132.28	1.48	tBX	Fault breccia, few clay gouges, pyrite stringers at 25deg	(Sil, Cl)	Ру	tbx	<u>WT5-30</u>	130.8	132.3	1.48
132.28	135.75	3 47	SCL	Greenish-gray, strongly fractured siltstones, probably admixed tuffaceous	(Sil, Cl)		st				
				material, slightly siliceous, bedding at 50-60deg, numerous thin clay gouges						1	
126.75	120.00	2.05		at 30-45deg		. 15	<u> </u>			┝───╋	
135.75	139.00	3.25		Fine/medium-grained tectonic breccia of siltstone as above, strongly	Sil, Cl	tr dPy	tDX				
120.00		1 (0	F 7	desintegrated core material - almost loose	C1 -+	4	G 4	NUTE 21	120.00	140.50	1.50
139.00	140.00	1.00	ГД	raun zone, partiy complex clayey gouge, magments of sustone as above	CI-st	tr aPy	m	w15-31	139.00	140.50	1.50
140.60	141.40	0.80	tBX	Tectonic breccia, probably almost in situ, of siltstone as before	Sıl, Cl	tr dPy	tbx	WT5-32	140.50	142.00	1.50
141 40	142.00	0.60	FZ	Clayey fault gouge, lower contact at 50deg apparently concordant with the	Cl-st						
				fining-up top of the underlying conglomerate							
142.00	146.65	4.65	CGL	Gray polymictic conglomerate (predominant component - siltstone),	(Cl)	dPy 1.5-	md	WT5-34	143.93	144.76	0.83
				common are subangular fragments, disseminated/blebs of pyrite	r í	2.5% (4%),		WT5-35	144.76	146.65	1.89
		l				frPy1-2%				1 1	
146.65	148.70	2.05	FZ	Gray clayey gouge to breccia (admixed conglomerate/breccia material), 1-2	Cl-st	dPy	flt	WT5-36	146.65	147.83	1.18
				cm thick pyrite-rich seam at 12-13deg				WT5-37	147.83	148.70	0.87
148.70	152.40	3.70	tBX	Gray fault breccia (in situ?) of siltstone and conglomerate material, locally	Sil	dPy	tbx	WT5-38	148.70	150.57	1.87
				tectonic fabric at 25-35deg' some pebbles contain chalcedony veinlets with				WT5-39	150.57	152.40	1.83
	,			disseminated pyrite; numerous frags are subangular							·
152.40	152.60	0.20		No core - rubble from higher intervals				1			
				EOH @ 152.60 m (502 ft) - drill hole terminated due to technical problems							
			,	(swelling clays in a fault zone)	Ì						
١					Other sam	ples		WT5-09	BLK	QFP-14	
								WT5-20	STD		
For abl	previatio	ns: see	drill h	ole log WT-1			1	WT5-33	STD		
					WT5-40A	STD		WT5-40	BLK	GRD	
					WT5-41A	BLK	LST-7	WT5-14A	DPK		
					WT5-42A	BLK	QFP-15	WT5-25A	DPK		
								WT5-35A	DPK		

k.

.

۰.

APPENDICES

APPENDIX 1 – Rock Sample Locations and Descriptions

APPENDIX 2 – Drill Hole Logs

APPENDIX 3 – Assay and Analyses Certificates

APPENDIX 4 – Quality Assurance/Control Program

.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd¹

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 1 Finalized Date: 30-OCT-2009 This copy reported on 15-MAR-2010 Account: KILMIN

AAS

AAS

AAS

ICP-MS

CE	RTIFICATE VA09116091			SAMPLE PREPARATIO	N
			ALS CODE	DESCRIPTION	
Project [.] WT-09 P O No [.] This report is for 18 Drill Core 16-OCT-2009 The following have access MIKE ELSON	samples submitted to our lab in Vancouver, BC, Canac to data associated with this certificate:	a on	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31 LOG-24	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um Pulp Login - Rcd w/o Barcode	-
				ANALYTICAL PROCEDU	RES
			ALS CODE	DESCRIPTION	INSTRUMENT
			Ag-AA62	Ore grade Ag - four acid /AAS	AAS

Zn-AA62

Pb-AA62

Cu-AA62

Au-TL42

ME-MS41

Ore grade Zn - four acid / AAS

Ore grade Pb - four acid / AAS

Ore grade Cu - four acid / AAS

Trace Level Au - 15 g AR

51 anal, agua regia ICPMS

To KILLDEER MINERALS INC. ATTN: KRZYSZTOF MASTALERZ 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

This is the Final Report and supersedes any preliminary report with this certificate number Results apply to samples as submitted All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS'Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex.com

To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-OCT-2009 Account: KILMIN

Project[.] WT-09

CERTIFICATE OF ANALYSIS VA09116091

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0 02	Au-TL42 Au ppm 0 001	ME-MS41 Ag ppm 0 01	ME-MS41 Al % 0 01	ME-MS41 As ppm 0 1	ME-MS41 Au ppm 0 2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0 05	ME-MS41 Bi ppm 0 01	ME-MS41 Ca % 0 01	ME-MS41 Cd ppm 0 01	ME-MS41 Ce ppm 0 02	ME-MS41 Co ppm 0 1	ME-MS41 Cr ppm 1
WT1-09A WT1-39A WT1-59A WT2-09A WT2-17A		1 68 2 16 2 30 1 78 1 16	0 010 0 001 0 001 0 003 0 059	6 87 1 40 0 58 0 91 14 20	1 95 0 60 1 97 0 36 0 20	3150 4 6 13 116 5 >10000	<0 2 <0 2 <0 2 <0 2 <0 2 <0 2	<10 10 <10 <10 <10	20 20 10 10 10	2 63 3 35 1 41 0 67 0 33	7 09 4 65 1 64 1 28 323	0.35 3 65 10 15 0 78 1 06	79 7 2 07 5 73 2 27 575	26 8 107.0 67 7 44 6 3 72	49 8 15 7 11 5 0 4 47 6	230 7 38 4 36
WT2-21A WT2-23A WT3-25A WT3-31A WT4-27A	_	3 26 2 14 2 36 3 22 2 42	0 004 0 005 0 001 0 011 0 002	1 65 42 7 0 29 39 6 3 00	0 21 1 07 2 87 0 88 0 04	163 4680 8 1 490 460	<0 2 <0 2 <0 2 <0 2 <0 2 <0 2	<10 <10 10 30 <10	<10 10 60 10 <10	0 46 1 64 0 99 2 34 0.16	0 19 96 9 1 48 3 75 2 70	>25 0 7 86 6 21 1 55 19 70	67 4 41 7 0 09 5 72 12 85	18 50 57 1 49 8 21 9 5 12	31 55 164 04 09	4 20 50 6 1
WT4-34A WT4-41A WT5-14A WT5-25A WT5-35A		1 06 2 04 1 56 2 76 3 82	0 002 0 001 0 004 0 001 0 021	2 40 0 74 1 64 0 14 0 32	0.06 0 17 0 68 0 48 0 42	441 216 283 39 0 374	<0 2 <0 2 <0 2 <0 2 <0 2 <0 2	<10 <10 <10 <10 <10	10 10 350 20 40	0 33 0 94 3 34 0 41 0 52	2 48 0 17 0 37 0 29 0 13	21 9 21 7 4.54 2 01 5 60	6 65 1.64 15 60 0 27 1 61	7 41 24 5 94 2 60 8 16 35	16 48 724 109 108	1 3 6 4 8
WT5-40A WT5-41A WT5-42A		0 08 0 60 0 94	0 318 0 002 0 010	>100 0 10 0 67	0 27 0 04 1 17	9170 41 99	04 <02 <0.2	<10 <10 10	10 <10 10	0 63 0 11 1 33	0 32 0 02 2 40	1.99 >25 0 0 82	270 0 94 0 09	12 45 2 05 41 0	16 9 1 0 0 3	13 <1 5

.

1

1 •

ommente gard status cert

,

-

.

ALS Canada Ltd

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

4

To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - B Total # Pages: 2 (A - D) **Plus Appendix Pages** Finalized Date: 30-OCT-2009 Account: KILMIN

Project⁻ WT-09

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	, ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Lı	Mg	Mn	Mo	Na
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%
	LOR	0 05	0 2	0 01	0 05	0 05	0 02	0 01	0 005	0 01	0 2	0 1	0 01	5	0 05	0 01
WT1-09A		7 31	647	12 55	8 42	0 23	0 11	0 02	0 695	0 24	12 1	22 2	0 72	835	0 82	<0 01
WT1-39A		18 95	131 5	4 56	2 28	0 11	0 12	<0 01	0 116	0 31	55 0	8 7	1 01	589	0 37	0 01
WT1-59A		10 85	61 6	3 26	7 12	0 13	0 11	<0 01	0 107	0 28	37 8	39 0	1 41	647	0 28	<0 01
WT2-09A		5 15	8 1	0 44	1 75	0 09	2 19	0 01	0 021	0 22	14 2	4 6	0 25	158	0 73	<0 01
WT2-17A WT2-21A WT2-23A WT3-25A WT3-31A WT4-27A		0 23 0 39 6 34 30 1 12 55 0 20	5790 12 3 572 46 5 16 9 23 5	39 1 1 40 16 30 3 85 0 78 2 11	2 86 0 58 3 86 8 72 4 35 0 21	0 86 <0 05 0 29 0 13 0 07 0 05	0 04 0 06 0.22 0 08 3 36 0 03	0 21 0 01 0 12 <0 01 0 03 0 01	0 031 1 715 0 037 0 153 0 166	0 03 0 02 0 32 0 46 0 41 0 01	10 3 23 8 26 3 7 8 1 5	93 103 1370 122 13	0 11 1 50 0 22 1 42 0 10 9 59	10 864 1670 675 4640 1280	0 08 0 64 0 24 0 75 0 11	<0 01 <0 01 0 01 0 08 <0 01 0 01
WT4-34A		0 17	27 7	2 05	0 31	0 05	0 04	0 02	0 081	0 01	2.8	14	8 41	1350	0 11	0 01
WT4-41A		0 28	10 6	2 09	0 60	0 07	0 16	0 01	0 040	0 04	10 7	33	8 31	1680	0 41	<0 01
WT5-14A		1 49	56 7	7 23	1 83	0 25	0 28	0 06	0 085	0 18	47 3	63	0 18	10500	1 31	0 01
WT5-25A		0 92	12 8	1 48	1 32	0 09	0 21	<0 01	0 019	0 35	29 2	29	0 06	424	0 60	<0 01
WT5-35A		2 42	13 5	2 40	1 17	0 06	0 09	0 01	0 019	0 26	7 4	20	1 ¹ 91	599	0 57	<0 01
WT5-40A	-	2 78	1000	11 40	1 87	0 41	0 07	1 86	0 656	0 15	57	29	0 09	1880	11 10	0 01
WT5-41A		0 10	2 7	0 13	0 10	<0 05	0 02	0 01	<0 005	<0 01	09	03	0 10	78	0 05	<0 01
WT5-42A		6 12	2 1	0 34	5 76	0.09	4 80	0 01	0 019	0 50	134	363	0 04	55	0 44	<0 01

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Cenada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex.com

To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-OCT-2009 Account: KILMIN

Project: WT-09

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0 05	0 2	10	0 2	0 1	0 001	0 01	0 05	0 1	0 2	0 2	0 2	0 01	0 01	02
WT1-09A WT1-39A WT1-59A WT2-09A		0 23 0 06 0 10 4 99	257 35 3 34 1 0 7	730 350 360 20	76 2 46 5 30 4 163 0	45 1 53 2 31 7 59 5	<0 001 <0 001 <0 001 0 001	0 05 2 43 1 16 0 08	36 7 2 06 2 43 1 77	12 2 5 3 4 5 2 9	24 08 07 08	59 5 4 7 6 5 8 4	32 4 192 5 531 12 1	0 01 0 01 0 01 0 13 0 01	0 03 <0 01 0 01 <0 01	20 169 110 99
WT2-21A WT2-23A WT3-25A WT3-31A WT4-27A		0 09 0 29 0 38 8 14 0 17	3 8 21 0 38 2 1 5 1 7	160 550 320 20 90	293 6050 29 2 598 1150	2 7 38 8 51 0 104 5 1 0	<pre><0 001 <0 001 0 001 0 001 0 001 <0 001</pre>	<pre><0 03 <0 01 0 06 0 55 0 64 <0 01</pre>	3 43 17 05 0 93 174 0 3 07	19 60 51 28 04	07 21 06 09 04	07 646 10 646 16	27 3 251 68 4 349 51 7 79 1	<0.01 <0.03 0.01 0.10 <0.01 <0.01	0 04 0 01 0 03 0 01 0 01 0 01	2 1 9 7 13 1 9 2 0 2
WT4-34A		0 20	3 4	110	816	13	<0 001	0 01	3 79	05	05	19	99 8	0 01	0 01	04
WT4-41A		0 34	10 0	190	498	23	<0 001	<0 01	5 06	18	05	27	125 5	0 01	0 02	23
WT5-14A		0 16	451	1610	2410	79	0 001	0 01	31 3	80	15	05	79 6	0 02	0 07	105
WT5-25A		0 05	16 2	960	15 1	115	<0 001	<0 01	5 44	19	03	<02	7 8	<0 01	0 01	118
WT5-35A		0 08	23 1	670	147 5	129	<0 001	1 77	5 72	34	04	02	108 0	<0 01	0 02	61
WT5-40A		0 14	28 4	370	>10000	13 8	0 015	>10 0	186 5	11	49 3	78	113 0	<0 01	0 03	1 7
WT5-41A		0 13	2 4	80	6 6	0 4	<0 001	0 02	0 46	03	0.3	<02	3240	<0 01	0 02	0 2
WT5-42A		15 60	1 5	20	33 3	89 3	0 001	0 01	0 40	24	0 9	71	16 6	0 05	<0 01	10 4

EXCELLENCE IN ANALYTICAL CHEMISTRY
ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-OCT-2009 Account: KILMIN

Project: WT-09

Sample Description	Method Analyte Units LOR	ME-MS41 Ti % 0 005	ME-MS41 TI ppm 0 02	ME-MS41 U ppm 0 05	ME-MS41 V ppm 1	ME-MS41 W ppm 0 05	ME-MS41 Y ppm 0 05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0 5	Ag-AA62 Ag ppm 1	Zn-AA62 Zn % 0 001	Pb-AA62 Pb % 0 001	Cu-AA62 Cu % 0 001			
WT1-09A WT1-39A WT1-59A WT2-09A WT2-17A		0 013 <0 005 <0 005 <0 005 <0 005	0 99 0 91 0 45 0 41 0 17	2 35 1 47 0 77 12 40 6 11	88 6 23 <1 20	2 67 1 05 0 22 2 34 77 8	17 20 38 4 20 7 47 5 11 60	>10000 326 917 330 >10000	26 59 41 218 - 07		2 34	1 725	0 619			
WT2-21A WT2-23A WT3-25A WT3-31A WT4-27A		<0 005 <0 005 0 084 <0 005 <0 005	0 11 1 23 0 60 1 00 0 08	0 42 2 77 0.76 17 75 0 45	3 13 30 <1 <1	2 46 29 2 0 36 10 15 0 33	9 74 27 9 16 85 38 0 4 82	2580 >10000 96 1950 2300	2.3 8 6 1 3 37.0 <0 5		1 890	0 687				
WT4-34A WT4-41A WT5-14A WT5-25A WT5-35A		<0 005 <0 005 0 005 0 005 <0 005 <0 005	0 30 0 31 1 43 0 26 0 21	0 61 1 67 3 85 0 60 0 62	<1 2 14 3 5	0 29 1 02 8 80 0 22 0 27	6 99 19 15 75 1 9 20 8 24	1280 591 2840 30 541	05 64 98 91 35					·····		
WT5-40A WT5-41A WT5-42A		<0 005 <0 005 <0 005	1 11 <0 02 0 70	3 47 0 94 6 34	6 <1 <1	2 45 <0 05 1 88	4 62 1 28 55 5	>10000 122 38	1 5 <0 5 34 4	699	2 51	1 860		, <u>,</u>		
																,
-																
															,	
``````````````````````````````````````							<u></u>									



Т

### ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H·0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

#### To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30-OCT-2009 Account: KILMIN

Project: WT-09

Method	CERTIFICATE COMMENTS
ME-MS41	Interference: Ca>10% on ICP-MS As,ICP-AES results shown
ME-MS41	Gold determinations by this method are semi-quantitative due to the small sample weight used (0 5g).
i i i i i i i i i i i i i i i i i i i	
-	



ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7

#### 

Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

To: KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 1 Finalized Date: 6-NOV-2009 This copy reported on 15-MAR-2010 Account: KILMIN

	CERTIFICATE VA0911609	92		SAMPLE PREPARATIO	N
			ALS CODE	DESCRIPTION	
Project [.] WT-09 P O No.: This report is for 14 Rock 16-OCT-2009 The following have acc	samples submitted to our lab in Vanc	ouver, BC, Canada on ertificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulvenze split to 85% <75 um	
MIKE ELSON	KRZYSZTOF MASTALERZ			ANALYTICAL PROCEDU	RES
		······································	ALS CODE	DESCRIPTION	INSTRUMENT
			Ag-AA62 Zn-AA62 Pb-AA62 Au-TL42 ME_MS41	Ore grade Ag - four acid /AAS Ore grade Zn - four acid / AAS Ore grade Pb - four acid / AAS Trace Level Au - 15 g AR	AAS AAS AAS ICP-MS

To' KILLDEER MINERALS INC. ATTN: KRZYSZTOF MASTALERZ 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager



ee Au

x Pag

comm

egard

ís cer

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

#### To: KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-NOV-2009 Account: KILMIN

#### Project: WT-09

CERTIFICATE OF ANALYSIS VA09116092

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0 02	Au-TL42 Au ppm 0 001	ME-MS41 Ag ppm 0 01	ME-MS41 Al % 0 01	ME-MS41 As ppm 0 1	ME-MS41 Au ppm 0 2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0 05	ME-MS41 Bi ppm 0 01	ME-MS41 Ca % 0 01	ME-MS41 Cd ppm 0 01	ME-MS41 Ce ppm 0 02	ME-MS41 Co ppm 0 1	ME-MS41 Cr ppm 1
KMW09-01 KMW09-02 KMW09-03 KMW09-03A KMW09-03B		0 32 0 70 0 60 0 90 0 48	0 003 0 007 0.008 0 003 0 012	2 43 38 3 94 2 7 89 >100	0 55 0 04 0 12 0 11 0 17	71 796 4620 831 >10000	<0 2 <0 2 <0 2 <0 2 <0 2 <0 2	<10 <10 <10 <10 <10	30 50 10 <10 <10	0 28 0 24 0 40 0 21 0 67	0 18 0 66 11 00 0 32 0 10	10 50 0 26 17 65 22 8 8 55	2 54 75 3 72 2 6 01 97 4	3.85 9 78 14 75 16 15 5 84	85 28 296 27 56	100 4 5 6 6
KMW09-04 KMW09-05 KMW09-06 KMW09-07 KMW09-08		0 60 0 68 0 56 0 66 0 54	0 002 0 008 0 034 0 007 0 084	2 13 3 94 86 5 4 38 13 05	0 14 0 29 0 05 0 15 0 17	773 2800 >10000 2080 1840	<0 2 <0 2 <0 2 <0 2 <0 2 <0 2	<10 <10 <10 <10 <10	10 10 10 20 50	0 39 4 70 2 00 1 18 0 08	5 90 41 1 74 5 16 35 0.20	24 6 20 4 11 35 >25 0 20 4	41 9 442 107 0 41 1 34 3	12 45 14 55 3 23 10 20 8 37	55 23 46 16 29	4 9 <1 4 1
KMW09-09 KMW09-10 KMW09-11 KMW09-12		0 68 0 60 0 52 0 86	0 064 0 028 0 008 0 023	>100 25 5 67 2 76 2	0 05 0.05 0 10 0 07	1820 1060 2890 >10000	<0 2 <0 2 <0 2 <0 2 <0 2	<10 <10 <10 <10	70 130 330 60	0 17 0 13 0 49 0 78	6 82 0 09 0.38 335	1 11 10 85 0 82 1 31	358 5 05 43 2 575	3 18 3 22 2 78 13 60	32 16 09 22	1 <1 <1 2
	•						-									• •
		'							·							:
15 -			-			·								u		
			ı													,f

•



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To: KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-NOV-2009 Account: KILMIN

Project: WT-09

,

**CERTIFICATE OF A** 

NALYSIS	VA091	16092

Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%
	LOR	0 05	0 2	0 01	0 05	0 05	0 02	0 01	0 005	0 01	02	0 1	0 01	5	0 05	0 01
KMW09-01		0 75	4 7	1 09	1 17	<0 05	0 08	0 02	<0 005	0 29	17	36	6 14	674	1 56	0 03
KMW09-02		1 02	71 9	42 9	14 55	1 04	0 04	0 11	3 06	0 03	44	18	0 13	>50000	8 90	0 01
KMW09-03		0 39	1140	18 60	2.96	0 41	0 12	0 06	1 860	0 04	84	32	1 16	2170	1 74	<0 01
KMW09-03A		0 28	38 5	1 37	0 47	<0 05	0 05	0 03	0 027	0 02	76	25	7 13	2900	0 08	0 02
KMW09-03B		0 33	1190	20 9	3 71	0 15	0 04	0 12	2 36	0 02	29	53	3 97	1280	3 11	0 02
KMW09-04 KMW09-05 KMW09-06 KMW09-07 KMW09-08		0 37 0 28 <0 05 0 21 2 72	58 4 241 1660 241 25 5	2 05 13 00 27 7 3 59 13 70	0 61 2 19 3 48 0 93 2 21	<0 05 1 29 0 34 <0 05 0 11	0 05 0 05 <0 02 0 04 <0 02	0 07 0 43 0 13 0 06 0 04	0 426 1 660 1 535 1 070 1 165	0 02 0 01 <0 01 0 01 0 09	81 93 17 56 33	60 34 07 48 12	5 79 2 84 3 65 2 57 0 94	1380 1450 465 1380 45400	0.07 0 45 4 33 0 33 3 45	0 01 0 02 0 02 0 02 0 02 0 01
KMW09-09		0 36	320	28 6	4 59	0 21	<0 02	0 39	3 74	0 01	16	21	0 16	>50000	7 79	0 02
KMW09-10		1 86	8 8	25 4	2 88	0 22	<0 02	0 05	1 530	0 05	14	26	1 64	>50000	5 95	0 03
KMW09-11		21 6	31 4	42 5	4 31	0 57	<0 02	0 15	10 50	0 11	26	19	0 40	>50000	13 40	0 03
KMW09-12		0 23	1640	39 0	7 31	0 40	0 02	0 04	33 7	0 01	60	06	0 10	5190	1 85	0 02



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com

#### To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-NOV-2009 Account: KILMIN

### Project[,] WT-09

CERTIFICATE OF ANALYSIS VA09116092

Sample Description	Method Analyte Units LOR	ME-MS41 Nb ppm 0 05	ME-MS41 Ni ppm 0 2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0 2	ME-MS41 Rb ppm 0 1	ME-MS41 Re ppm 0 001	ME-MS41 S % 0 01	ME-MS41 Sb ppm 0 05	ME-MS41 Sc ppm 0 1	ME-MS41 Se ppm 0 2	ME-MS41 Sn ppm 0 2	ME-MS41 Sr ppm 0 2	ME-MS41 Ta ppm 0 01	ME-MS41 Te ppm 0 01	ME-MS41 Th ppm 0 2
KMW09-01		<0 05	15 9	1830	218	11 4	<0 001	<0 01	0 86	38	03	20	50 8	<0 01	0 03	64
KMW09-02		0 69	14 3	40	>10000	35	0 004	0 02	30 0	26	49	37 2	68 6	0 01	0 06	02
KMW09-03		0 54	26 4	60	>10000	61	0 001	4 73	99 6	44	33	145 0	345	0 01	0 07	23
KMW09-03A		0 07	29	130	1155	36	<0 001	0 03	13 25	18	04	26 9	94 1	<0 01	0 02	17
KMW09-03B		0 11	39	110	>10000	25	<0 001	0 99	242	18	16	74 6	52 0	<0 01	0 02	10
KMW09-04		0 37	73	210	556	35	<0 001	0 01	19 45	14	07	74	816	0 02	0 03	12
KMW09-05		0 20	40	370	5990	19	0 004	<0 01	267	20	13	11 5	59 1	0 01	0 01	10
KMW09-06		0 25	49	100	>10000	04	0 001	0 36	220	12	26	19 5	49 6	0 01	<0 01	02
KMW09-07		0 37	22	190	2700	16	0 001	0 02	31 6	28	08	53	109 0	0 01	0 02	20
KMW09-08		0 10	65	260	593	79	<0 001	0 02	4 59	2 5	09	21 3	111 0	<0 01	0 03	2 1
KMW09-09		0 10	87	160	>10000	14	0 001	0 51	155 5	12	83	109 0	619	<0 01	0.06	04
KMW09-10		0 11	78	460	3000	52	<0 001	<0 01	20 2	25	03	73	174 0	<0 01	0 01	0 2
KMW09-11		0 21	84	370	>10000	14 1	0 001	0 01	23 3	14	14	17 3	85 3	<0 01	0 01	0 2
KMW09-12		0 14	4 7	120	3020	13	<0 001	0 14	80 1	09	2 1	14 3	72 2	<0 01	0 01	03

A Page for community regar

.



EXCELLENCE IN ANALYTICAL CHEMISTRY
ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-NOV-2009 Account: KILMIN

CERTIFICATE OF ANALYSIS VA09116092

#### Project: WT-09

#### ME-MS41 ME-MS41 ME-MS41 ME-MS41 ME-MS41 ME-MS41 ME-MS41 ME-MS41 Ag-AA62 Zn-AA62 Pb-AA62 Method ۷ Pb Ti TI U w Y Zn Zr Zn Analyte Ag % % % Units ppm ppm ppm mqg mqq ppm mqq ppm **Sample Description** LOR 0 005 0 001 0 02 0 05 1 0 05 0 05 2 05 1 0 001 KMW09-01 23 678 <0 005 0 15 2 93 0 37 5.00 67 KMW09-02 <0 005 0 25 6 13 2 0 56 12 60 >10000 19 3 36 3 76 5 09 KMW09-03 <0 005 1 11 1 29 3 2.21 30 1 >10000 28 84 . 1415 KMW09-03A <0 005 0 16 0 29 8 0 96 5 24 975 18 KMW09-03B <0 005 044 3 84 3 1 32 4 44 >10000 129 2 05 14 10 18 KMW09-04 7 29 1 2330 13 <0 005 1 05 0 35 17 25 KMW09-05 <0 005 1 16 13 45 13 370 218 >10000 16 1.420 0 658 KMW09-06 >10000 <0 5 76 <0 005 1 96 30 3 33 2 4 87 2 37 1 940 1 KMW09-07 <0 005 0 56 2 34 4 19 65 14 80 3920 13 KMW09-08 <0 005 0 11 2 16 6 0 83 8 13 >10000 <05 1 220 KMW09-09 <0 005 0 22 4 12 3 2 86 6 64 >10000 05 163 13 10 641 KMW09-10 <0 005 0 05 4 80 7 3 13 2 24 2670 <05 9 KMW09-11 <0 005 0 09 5 66 3 93 6 23 >10000 08 63 1 985 1 420 2 KMW09-12 <0 005 1.01 21 1 1 82 2 95 >10000 23 80 2 75

#### ***** See Appendix Page for comments regarding this certificate *****

1



### ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

### To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6-NOV-2009 Account: KILMIN

· ,'

Project: WT-09

Method	CERTIFICATE COMMENTS
ME-MS41	Interference [,] Ca>10% on ICP-MS As,ICP-AES results shown.
ME-MS41	Gold determinations by this method are semi-quantitative due to the small sample weight used (0 5g).
x	
* *	
÷ 1	
1 1 2	
· · · · · · · · · · · · · · · · · · ·	



EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To: KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 1 Finalized Date: 20-DEC-2009 This copy reported on 15-MAR-2010 Account: KILMIN

#### CERTIFICATE VA09138071 SAMPLE PREPARATION ALS CODE DESCRIPTION **WEI-21 Received Sample Weight** Project WT 09 LOG-22 Sample login - Rcd w/o BarCode P.O No. **CRU-31** Fine crushing - 70% <2mm This report is for 42 Rock samples submitted to our lab in Vancouver, BC, Canada on LOG-24 Pulp Login - Rcd w/o Barcode 3-DEC-2009 CRU-QC **Crushing QC Test** The following have access to data associated with this certificate. PUL-QC **Pulverizing QC Test** MIKE ELSON KRZYSZTOF MASTALERZ SPL-21 Split sample - riffle splitter **PUL-31** Pulverize split to 85% <75 um

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-TL42	Trace Level Au - 15 g AR	ICP-MS
ME-MS41 Ag-AA62	51 anal, aqua regia ICPMS Ore grade Ag - four acid /AAS	AAS
Cu-AA62	Ore grade Cu - four acid / AAS	AAS
Pb-AA62	Ore grade Pb - four acid / AAS	AAS
Zn-AA62	Ore grade Zn - four acid / AAS	AAS
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
ME-MS81	38 element fusion ICP-MS	ICP-MS
TOT-ICP06	Total Calculation for ICP06	ICP-AES

To KILLDEER MINERALS INC. ATTN: KRZYSZTOF MASTALERZ 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

This is the Final Report and supersedes any preliminary report with this certificate number Results apply to samples as submitted All pages of this report have been checked and approved for release

Signature:

Colln Ramshaw, Vancouver Laboratory Manager



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com

#### To: KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - A Total:# Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

#### Project[,] WT 09

CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0 02	ME-MS81 Ag ppm 1	ME-MS81 Ba ppm 0 5	ME-MS81 Ce ppm 0 5	ME-MS81 Co ppm 0 5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0 01	ME-MS81 Cu ppm 5	ME-MS81 Dy ppm 0 05	ME-MS81 Er ppm 0 03	ME-MS81 Eu ppm 0 03	ME-MS81 Ga ppm 0 1	ME-MS81 Gd ppm 0 05	ME-MS81 Hf ppm 0 2	ME-MS81 Ho ppm 0 01
WT1-29 WT1-30 WT1-31 WT1-32 WT1-45		1 30 1 26 1 76 0 78 1 56	1 9 4 31 14	60 7 42 7 41 1 21 2 28 1	42 1 29 4 28 9 20 2 29 8	<05 38 19 69 279	<10 <10 <10 <10 <10	19 35 14 00 13 80 12 35 25 4	14 144 58 757 95	9 42 8 07 8 08 8 68 6 85	5 61 5 06 5 09 5 48 4 14	0 11 0 19 0 17 0 21 0 17	31 6 17 6 19 4 14 3 25 9	8 44 6 87 6 79 6 68 6 30	5 1 4 1 4 0 2 5 4 1	1 87 1 67 1 67 1 81 1 37
WT2-08 WT3-13 WT3-14 WT3-29 WT3-30		1 24 0 60 1 50 0 82 2 44	4 116 2 120 37	12 7 18 6 274 153 5 14 7	61 8 55 0 80 5 26 7 29 6	0 5 <0 5 13 1 <0 5 <0 5	<10 <10 70 <10 <10	23 6 29 6 30 4 33 3 26 7	7 74 19 78 9	10 40 10 45 5 57 8 62 8 96	6 08 6 18 3 30 5.36 5 61	0.05 0 39 1 13 0.30 0 19	43 5 28 3 21 5 29 0 29 8	10 05 10 70 6 83 6 81 6 83	68 46 34 45 48	1 98 2 06 1 17 1 83 1 84
WT3-31 WT3-32 WT4-18 WT5-16 WT1-07		1 46 2 10 2 36 1 26 1 62	28 15 1 <1	22 8 17 3 24 0 185 5	30 3 30 5 3 2 59 0	<0 5 <0 5 0 9 15 5	<10 <10 <10 30	25 8 27 7 0 54 3 91	11 6 28 13	8 47 8 46 0 47 5 31	5 25 5 22 0 34 3 13	0.18 0 15 0 09 1.70	28 5 28 8 1 3 10 3	6 75 6 92 0 52 6 67	46 48 <02 19	1 72 1 69 0 11 1 15
WT1-08 WT1-09 WT1-16 WT1-17 WT1-18		1 34 0 86 1 04 0 98 0.20	,													
WT1-24 WT1-48 WT2-04 WT2-10 'WT2-24		0 82 2 38 0 84 2 10 1 42		-			·····						· · · · · · · · · · · · · · · · · · ·			
WT2-25 WT2-26 WT3-53 WT4-02 WT4-03		0 54 0 76 0 98 2 34 1 30		,	· · ·											
WT4-30 WT4-31 WT4-42 WT4-46 WT5-02		2 36 1 80 1 24 1 36 1 86		,												
WT5-07 WT5-08 WT5-13 WT5-14 WT5-38		2 12 2 08 0 54 0 72 2 84				-										

Comments. low whole rock total confirmed by re-analysis

Pac

e Al

omm

bgaro

s cei



4

1

!.

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - B Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

Project: WT 09

### CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS81 La ppm 05	ME-MS81 Lu ppm 0 01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0 2	ME-MS81 Nd ppm 0 1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0 03	ME-MS81 Rb ppm 0 2	ME-MS81 Sm ppm 0 03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0 1	ME-MS81 Ta ppm 01	ME-MS81 Tb ppm 0 01	ME-MS81 Th ppm 0 05
WT1-29 WT1-30 WT1-31 WT1-32		13 4 9 9 9 6 6 9	1 26 1 09 1 09 1 07	<2 <2 <2 <2 <2	35 3 25 6 27 1 16 0	24 9 17 3 17 2 12 9	<5 <5 <5 <5	296 2110 1310 5030	6 40 4 39 4.36 3 06	562 303 404 230	10 25 7 25 7 31 6 21	108 58 68 41	20 9 39 5 67 4 105 0	24.9 18 8 18 2 9 5	1 63 1 40 1 39 1 45	10 10 8 65 8 09 4 83
WT1-45 WT2-08 WT3-13 WT3-14 WT3-29		10 5 18 2 20 2 41 0 9 3	0 90 1 51 1 27 0 48 1 12	<2 <2 <2 <2 <2 <2	28 1 39 8 42 8 20 5 41 8	17 4 33 4 30 0 35 3 15 7	<5 <5 29 <5	2620 147 1320 394 2120	4 38 8 71 7 79 9 68 3 94	440 736 616 • 467 595	7 06 13 00 12 10 7 08 7 12	39 86 198 34 547	78 7 54 7 22 3 751 29 1	19 2 37 6 19 5 3 5 16 4	1 23 1 93 1 97 1 08 1 47	8 54 13 25 9 65 11 65 9 56
WT3-30 WT3-31 WT3-32 WT4-18 WT5-16 WT5-07		10 6 10 8 10 8 1 6 30 8	1 14 1 05 1 06 0 05 0 38	<2 <2 <2 <2 <2 <2 <2	44 6 40 2 44 1 0 5 6 6	16 8 17 2 17.1 1 8 29 3	<5 <5 <5 <5 103	626 500 236 207 376	4 26 4 46 4 41 0 44 7 62	578 543 510 8 1 60 7	7 24 7 35 7 28 0 43 6 08	194 157 64 2 2	27 7 49 4 74 0 41 4 63 9	17 1 16 1 17 0 0 1 0 5	1 51 1 43 1 45 0 08 1 03	9 76 9 87 9.65 0 25 5 99
WT1-08 WT1-09 WT1-16 WT1-17 WT1-18							, ,	<del></del>								
WT1-24 WT1-48 WT2-04 WT2-10 WT2-24									<u> </u>							
WT2-25 WT2-26 WT3-53 WT4-02 WT4-03		r	,													
WT4-30 WT4-31 WT4-42 WT4-46 WT5-02										-					1	
WT5-07 WT5-08 WT5-13 WT5-14 WT5-38									,							

Comments: low whole rock total confirmed by re-analysis



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy

North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com

ı.

### To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - C Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

#### Project[.] WT 09

CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS81 TI ppm 0 5	ME-MS81 Tm ppm 0 01	ME-MS81 U ppm 0 05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0 5	ME-MS81 Yb ppm 0 03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	ME-ICP06 SiO2 % 0 01	ME-ICP06 Al2O3 % 0 01	ME-ICP06 Fe2O3 % 0 01	ME-ICP06 CaO % 0 01	ME-ICP06 MgO % 0 01	ME-ICP06 Na2O % 0 01
WT1-29 WT1-30 WT1-31 WT1-32 WT1-45		37 32 36 44 38	1 03 0 89 0 91 0 95 0 75	13 20 13 40 9 74 19 90 14 15	<5 <5 <5 <5 <5	7 4 4 5 4	76 8 72 4 71 4 76 3 56 2	8 04 6 82 6 95 7 07 5 74	410 3080 1715 >10000 4270	41 31 36 25 34	76 2 70 1 70 5 40 1 67 5	14 55 11 60 11 20 6 46 11 70	0 81 4 53 2 35 17 10 6 56	0 95 3 21 5 18 8 72 2 58	0 67 0 90 0 86 1 66 0 51	0 06 0 03 0.03 <0 01 0 03
WT2-08 WT3-13 WT3-14 WT3-29 WT3-29		51 45 33 57 52	1 15 1 09 0 48 1 00	3 85 13 90 4 68 21 4 16 10	<5 <5 51 <5	15 8 8 10	90.9 83 8 34 0 67 1 70 8	9 66 8 35 3 19 7 00 7 47	928 1940 430 3740 548	45 41 102 44	67 5 71 6 48 8 75 6 76 0	18 20 13 10 15 50 12 60 13 50	0 93 2 22 5 35 2 53	2 72 1 86 13 10 1 22	0 43 0 77 1 80 0 55	0 05 0 04 0 28 0 04 0 04
WT3-31 WT3-32 WT4-18 WT5-16 WT1-07		4 7 4 2 0 6 1 2	0 94 0 90 0 05 0 40	18 50 15 00 0 36 2 59	<5 <5 <5 39	7 7 23 11	65 1 64 0 5 6 34 6	6 89 6 79 0 32 2 62	1380 413 2450 752	46 44 4 72	76 2 74 7 1 03 19 65	12 50 13 15 0 48 6 67	1 24 1 13 2 51 5 11	1 92 2 66 43 5 34 9	0 37 0 33 8 09 0 69	0 04 0 04 <0 01 0 05
WT1-08 WT1-09 WT1-16 WT1-17 WT1-18															<u> </u>	
WT1-24 WT1-48 WT2-04 WT2-10 WT2-24	u	<b>-</b>								- <u></u>						
WT2-25 WT2-26 WT3-53 WT4-02 WT4-03																
WT4-30 WT4-31 WT4-42 WT4-46 WT5-02				-												
WT5-07 WT5-08 WT5-13 WT5-14 WT5-38				,											, 4	алан (так) Алдения (так) (так)

Comments' low whole rock total confirmed by re-analysis

com

egar

Pa

ee Aj



EXCELL'ENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex.com To: KILLDEER MINERALS INC. 410-890/W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - D Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

Project[.] WT 09

CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-ICP06 K2O % 0 01	ME-ICP06 Cr2O3 % 0 01	ME-1CP06 TrO2 % 0 01	ME-ICP06 MnO % 0 01	ME-ICP06 P2O5 % ' 0 01	ME-ICP06 SrO % 0 01	ME-ICP06 BaO % 0 01	OA-GRA05 LOI % 0 01	TOT-ICP08 Total % 0 01	Au-TL42 Au ppm 0 001	ME-MS41 Ag ppm 0 01	ME-MS41 Al % 0 01	ME-MS41 As ppm 0 1	ME-MS41 Au ppm 0 2	ME-MS41 B ppm 10
WT1-29		3 73	<0 01	<0 01	0 05	0 02	<0 01	0 01	3 24	100 5			•			,
WT1-30		2 32	<0 01	<0 01	0 03	0 01	<0 01	<0 01	6 21	98 9						
WT1-31		2 98	<0 01	<0 01	0 04	0 02	0 01	<0 01	5 67	98 8						
WT1-32		1 49	0 03	<0 01	0 12	<0 01	0 01	<0 01	11 35	87 0						
WT1-45		3 07	<0 01	0 01	_ 0 06	0 01	0 01	<0 01	6 58	98 6						
WT2-08		3 26	<0 01	0 01	0 14	0 03	0.01	<0 01	4 84	98 1						
WT3-13		3 46	<0 01	<0 01	0 80	0 01	<0_01	<0 01	4 57	98 4						
WT3-14		3 84	0 01	0 47	0 23	0 08	0 10	0 03	8 62	98 2						
WT3-29		3 34	<0 01	<0.01	0 38	0 02	<0 01	0 02	3 99	100 5						
W13-30		3 34	<0 01	<0.01	0 53	, 0.03	<0.01	<0 01	3 53	997				-		
WT3-31		3 18	<0.01	<0 01	0 48	0 01	0 01	<0 01	3 62	99 6						
WT3-32		3 27	<0 01	<0 01	0 59	0 01	0 01	<0 01	3 73	99 6						
WT4-18		007	0 01	0 01	0 16	0 05	<0.01	<0 01	436	99.5						
W15-16		184	0.01	0 30	0 39	0 22	0 01	0 02	30 1	100 0	0.000	40.45	4.07	2200	-0.0	-40
W11-07	•										0.006	19 15	107	2280 .	<0.2	<10
WT1-08				`							0 010	0 83	4 74	822	<0 2	<10
WT1-09	,	1									0 007	4 72	2 37	2690	<02	<10
W11-16											0 003	0 15	0.06	31	<0.2	<10
WT1-17											0 0 19	1 44	0.00	//8	<02	<10
WT 1-10											0.002	5 08	0.30	~10000	<u> </u>	<10 
WT1-24		ļ		r							0 002	43 4	0 11	102	<02	<10
WT1-48											0 002	0 89	2 85	101 0	<0 2	30
W12-04		]									0 002	191	0.54	461	<02	<10
W12-10								-			0.003	4 00	0.60	783	<02	<10
W12-24											0.004	2 59	0 42	364	<0 Z	<10
WT2-25	,										0 015	20 7	0 97	9100	<0.2	<10
W12-26											0 003	1 58	1 10	4050	<0 2	<10
W13-53											0.002	2 18	4 25	447	<02	<10
W14-02											0.002	0.67	0 19	171	<02	<10
W14-03								<u> </u>				2 +0	0 13	302	-02	
WT4-30											0 002	3 10	0.03	974	<02	<10
W14-31											0 003	3 02	0.02	630	<0.2	<10
W14-42											0.002	0 34	0 53	389	<02	<10
WT5-02		1									0.007	0 40 0 10 -	0.30	10	<02	<10
											0.000	0.10	0,10	£1	-0.4	-10
WT5-07						,					0 004	0 16	0 13	30	<02	<10
W15-08		1	,								0.005	0 15	0.02	34	<02	<10
WT5 14											0 004	175	0 93	204 205	<∪∠ <02	<10
WT5-39											0.003	0.20	0.61	290 290	<02	<10
VV10-00		·									0.004	028	001	008	NU 2	NU

Comments' low whole rock total confirmed by re-analysis



EXCELLENCE IN ANALYTICAL CHEMISTRY
ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com

#### To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 2 - E Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

CERTIFICATE OF ANALYSIS VA09138071

### Project[.] WT 09

														-		
Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	10	0 05	0 01	0 01	0 01	0 02	0 1	1	0 05	0 2	0 01	0 05	0.05	0 02	0 01
WT1-29 WT1-30 WT1-31 WT1-32 WT1-45																
WT2-08 WT3-13 WT3-14 WT3-29 WT3-30																
WT3-31 WT3-32 WT4-18 WT5-16 WT1-07		10	3 28	19 70	2 10	191 0	20.6	40 1	82	8 65	1405	16 95	3 82	0 17	0.07	0.01
WT1-08 WT1-09 WT1-16 WT1-17 WT1-18		60 10 <10 10 10 <10	2 99 3 74 0 24 1 33 0 85	2 03 6 91 0 24 121 0 163 5	2 09 0 63 >25 0 7 68 6 22	64 6 61 8 0 61 226 746	11 30 22 9 3 23 28 7 6 05	50 7 50 1 1 7 19 3 72 4	334 289 3 70 21	41 0 11 35 0 23 5 69 1 39	207 663 13 9 755 1140	4 78 10 00 0 64 12 00 23 7	16 50 11.65 0 20 2 81 2 42	0 20 0 14 <0 05 0 15 0 32	0 22 0 08 <0 02 0 04 <0 02	0 01 0 02 <0 01 0 03 0 17
WT1-24		<10	0 48	86 3	>25 0	9 74	3 04	18	4	1 21	336	4 12	0 56	0 07	0 02	<0 01
WT1-48		70	15 50	5 52	5 22	1 50	95 8	113	37	50 4	103 0	3 89	9 56	0 20	0 40	0 01
WT2-04		10	1 39	0 24	17 40	7 49	33 0	147	57	9 22	102.5	3.79	1.86	0 09	0 03	0.04
WT2-10		10	2 28	13 55	13 40	15 85	31 3	31	5	5 26	86.0	2 59	3 18	0 11	0 77	0 05
WT2-24		<10	0 56	2 34	22 3	56 3	29 0	23	6	2 38	101 0	2 91	1 05	0 07	0 09	0 02
WT2-25		10	1 64	73 1	1 18	50 5	67 3	32	25	8 01	1080	19 70	4.34	0 22	0 16	0 09
WT2-26		20	2 55	2 08	3 72	52 6	113 5	80	21	7 84	668	8 91	4 27	0 19	0 19	0 15
WT3-53		10	0 42	4 09	9 23	11 00	28 1	514	728	2 00	43 7	6 68	13.00	0 21	0 06	0 01
WT4-02		30	0 92	1 25	21 9	15 70	7 02	08	6	0 60	17 3	0.90	0.87	<0.05	0 07	0 03
WT4-03		50	0 73	1 70	23 1	24 7	13 35	20	3	1 36	36 2	1 25	0.88	<0 05	0 12	0 06
WT4-30		<10	0 13	0 15	17 95	12 05	4 51	08	<1	0 07	27 2	2 25	0 12	<0 05	<0 02	<0 01
WT4-31		<10	0 21	0 03	17 90	11.85	5 49	08	1	0 05	35.1	2 55	0 13	<0 05	<0 02	<0 01
WT4-42		20	1 34	0 45	14 40	0 47	69.6	171	5	1 90	15 7	3 30	1 52	0 11	0 28	0 03
WT4-46		20	0 57	0 20	19 50	0 22	60 1	92	3	1 24	2040	1 14	1 07	0 07	0 10	<0.01
WT5-02		20	0 17	0 03	21 5	0 60	9 44	28	1	0 41	11 2	1 57	0 47	<0.05	0 03	0.01
WT5-07		20	0 14	0 04	22 5	0 17	11 15	50	1	0 21	23 9	1 92	0 36	<0 05	0 05	0 01
WT5-08		30	0 18	0 04	24 6	0 23	11 10	34	2	0 29	6 8	2 33	0 45	<0 05	0 06	0 01
WT5-13		210	2 55	0 33	0 70	10.25	116 5	454	8	2.66	39.3	8 49	2 65	0.18	0 17	0.05
WT5-14		360	3 54	0 31	2 65	18 80	122 0	739	6	1 79	55 2	7.47	2 23	0 18	0 22	0.04
WT5-38		50	0 42	0 12	1 45	0 52	20 5	115	5	2 89	29 5	2 54	1 56	0 06	0 08	0 04

Comments: low whole rock total confirmed by re-analysis

omm

egardi

s cert

Pag

ee Ap



,

1

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - F Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

CERTIFICATE OF ANALYSIS VA09138071

1

#### Project: WT 09

Sample Description	Method Analyte Units LOR	ME-MS41 In ppm 0 005	ME-MS41 K % 0 01	ME-MS41 La ppm 0 2	ME-MS41 Li ppm 0 1	ME-MS41 Mg % 0 01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0 05	ME-MS41 Na % 0 01	ME-MS41 Nb ppm 0 05	ME-MS41 Ni ppm _ 0 2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0 2	ME-MS41 Rb ppm 0 1	ME-MS41 Re ppm 0 001	ME-MS41 S % 0 01
WT1-29 WT1-30 WT1-31 WT1-32 WT1-45										~-						
WT2-08 WT3-13 WT3-14 WT3-29 WT3-30											1					
WT3-31 WT3-32 WT4-18 WT5-16 WT1-07		0 586	0 34	97	15 3	0 33	1050	1 38	<0 01	0 10	183 5	690	3810	66 0	<0 001	0 20
WT1-08 WT1-09 WT1-16 WT1-17 WT1-18		0 227 0 754 0 011 8 90 23 7	1 49 0 22 0 01 0 19 0 04	53 98 13 131 27	106 0 42 8 0 9 15 5 8 9	3 71 1 16 0 55 1 19 1 12	835 858 470 470 598	0 53 0.86 0 15 1 82 4 21	0 11 <0 01 <0 01 <0 01 <0 01	0 20 0 06 0 08 0 08 0 07	335 259 2 5 184 0 64 4	740 760 140 950 140	27 7 79 4 2 7 16 9 40 6	388 51 1 1 7 31 6 9 0	<0 001 <0 001 <0 001 0 001 0 002	0 07 0 05 0 22 >10 0 >10 0
WT1-24 WT1-48 WT2-04 WT2-10 WT2-24		0 294 0 083 0 038 0 173 0 064	0 03 1 15 0 17 0 15 0 19	1 3 51 4 15 3 12 2 14 9	2 0 55 2 20 4 11 1 5 6	1 10 0 95 5 19 2 07 0 12	597 322 1350 1040 719	0 45 0 96 0 53 0 23 0 13	0 01 0 06 0 01 0 01 0 01	0 11 1 12 0 07 1 06 0 08	36 318 752 93 68	120 290 820 190 190	3030 38 6 1435 1680 477	6 5 220 23 4 38 1 27 4	0 001 <0 001 <0 001 <0 001 <0 001 <0 001	4 17 1 70 0 10 0 03 0 08
WT2-25 WT2-26 WT3-53 WT4-02 WT4-03		2 74 0 839 2 08 0 082 0 082	0 28 0 34 0 04 0 02 0 04	25 3 40 7 13 6 3 1 6 2	11 2 21 2 77 4 2 9 4 7	0 13 0 18 3 97 7 89 6 47	856 430 2170 2740 3580	0 80 0 35 0 70 0 06 0 11	<0 01 0 01 0 01 0 01 0 01 0 01	0 11 0 07 0 23 0 19 0 35	197 352 243 28 60	390 520 1050 120 190	7580 2200 311 286 1120	393 379 58 46 77	<0 001 <0 001 <0 001 <0 001 <0 001	0 10 0 02 1 06 0 07 0 07
WT4-30 WT4-31 WT4-42 WT4-46 WT5-02	,	0 102 0 110 0 036 0 285 0 040	<0 01 <0 01 0 26 0.22 0 04	14 17 342 315 42	16 12 57 22 28	10 45 10 30 0 56 0 28 6 23	1180 1150 485 502 892	0 25 0 18 0 59 0 18 0 28	0 02 0 02 0 01 0 02 0 02	0 05 0 06 0 10 0 07 0 16	1'3 1 0 36 5 15 5' 8 6	80 90 500 330 180	2600 1845 66 5 19 7 55 2	06 04 139 145 29	<0 001 <0 001 <0 001 <0 001 <0 001	0 01 <0 01 0 08 0 73 0 01
WT5-07 WT5-08 WT5-13 WT5-14 WT5-38		0 020 0 012 0 114 0 091 0 024	0 05 0.07 0 20 0 24 0 36	5 2 5 4 56 8 55 7 9 1	15 13 102 83 25	5 20 3 08 0 23 0 16 0 52	653 7.78 5710 10800 250	0 60 0 60 1 40 1 35 0 45	0 02 0 02 0 01 0 02 <0 01	0 10 0 12 0 12 0 11 0 05	15 2 10 9 236 457 24.7	270 340 1430 1670 520	13 6 17 2 797 2390 32 7	2 4 3 1 12.9 12 3 19 5	<0 001 <0 001 <0.001 <0 001 <0 001	0 01 0 01 <0 01 0 01 2 20

Comments: low whole rock total confirmed by re-analysis



### ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

ALS Canada Ltd

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - G Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

CERTIFICATE OF ANALYSIS VA09138071

#### Project: WT 09

iample Description	Method Analyte Units LOR	ME-MS41 Sb ppm 0 05	ME-MS41 Sc ppm 0 1	ME-MS41 Se ppm 0 2	ME-MS41 Sn ppm 0 2	ME-MS41 Sr ppm 0 2	ME-MS41 Ta ppm 0 01	ME-MS41 Te ppm 0 01	ME-MS41 Th ppm 0 2	ME-MS41 Ti % 0 005	ME-MS41 TI ppm 0 02	ME-MS41 U ppm 0 05	ME-MS41 V ppm 1	ME-MS41 W ppm 0 05	ME-MS41 Y ppm 0 05	ME-MS41 Zn ppm 2
WT1-29 WT1-30 WT1-31 WT1-32 WT1-45				<u></u>												
WT2-08 WT3-13 WT3-14 WT3-29 WT3-30							<del></del>									
WT3-31 WT3-32 WT4-18 WT4-18 WT1-07		30.8	63		66.7	66.1	0.01	0.02	11	0.010	1 37	2 12	34	3 97	12 50	>10000
WT1-08 WT1-09 WT1-16 WT1-17 WT1-17		1 42 23 3 4 00 58 6 117 5	87 142 07 68	13 21 03 36	22 0 53 1 3 7 21 2 8 1	156 0 40 4 1205 201 117 0	0 01 <0 01 <0 01 <0 01 0 01	<0 02 <0 01 <0 01 0 03 <0 01 <0 01	08 16 02 19	0 305 0 011 <0 005 <0 005 <0 005	5 24 0 99 0 06 2 79	1 39 3 25 1 53 0 89	98 104 2 36 13	1 12 1 76 0 27 2 36 1 19	8 33 14 25 2 91 11 05 4 92	>10000 >10000 >10000 137 >10000 >10000
WT1-24 WT1-48 WT2-04 WT2-10 WT2-24		38 5 2 65 17 05 16 85 1 12	07 76 118 48 33	08 11 05 12 06	38 50 184 170 64	978 538 64 5 62 9 135 5	<0 01 0 01 <0 01 0.26 0.01	0 15 <0 01 <0 01 <0 01 <0 01 <0 01	03 155 22 69 55	<pre>&lt;0 005 &lt;0 005</pre>	0 59 1 95 0 63 0 61 0 39	57 6 2 38 0 88 1 81 0.66	3 31 43 4 5	1 63 1 66 7 34 1 26 1 39	2 15 31 3 7 82 46 5 13 20	1360 255 1760 2140 2590
WT2-25 WT2-26 WT3-53 WT4-02 WT4-03		15 70 17 25 2 69 4 71 11 55	63 70 211 10 11	14 14 06 04 05	21 4 6 0 1 2 2 9 10 0	40 6 30 1 908 88 4 68 2	0.03 0 02 0 02 0 01 0 07	<0 01 <0 01 <0 01 <0 01 <0 01 <0 01	14 1 18 0 3 6 0 8 1 5	<0 005 <0 005 0 022 <0 005 <0 005	1 28 0 87 0 07 0 52 1.15	4 19 2.43 0 99 0.25 0.38	16 21 221 4 3	33 3 89.6 0 63 9 80 23 8	36 3 43 0 11 85 6 58 10 80	>10000 >10000 2360 1960 2180
WT4-30 WT4-31 WT4-42 WT4-46 WT5-02		3 89 5 92 7 88 0 76 1 02	02 02 49 23 08	04 04 09 07 04	23 26 11 33 02	74 5 78 5 152 5 1490 64.6	<0 01 <0.01 0 01 <0 01 <0 01	0.01 0 01 0.03 0.03 0.02	<0 2 0.2 14 4 8 6 0 9	<0 005 <0 005 <0 005 <0 005 <0.005	0 12 0 14 0.31 0 14 0.04	1.39 0 70 4 35 2 54 0.40	1 1 4 2 7	0 20 0 14 0.54 0 22 0 32	3 58 4 00 20 5 19 00 7 22	1820 2260 944 123 198
WT5-07 WT5-08 WT5-13 WT5-14 WT5-38		2.09 2 86 27 5 39 3 3 86	11 15 76 74 41	06 05 13 12 04	<02 <0.2 07 06 03	72 1 52 9 25 2 86 0 49.7	<0 01 <0 01 0.01 0 01 <0 01	0 03 0.02 0 06 0.09 0 04	1 2 1 6 12.7 10 7 9 2	<0 005 <0 005 0.006 <0 005 <0 005	0 03 0 05 1 31 1 39 0 24	0.34 0 42 3 50 3 73 0 90	5 6 19 16 5	0 16 0.22 22 8 8 94 0 37	7.21 7 81 62 4 83 0 5.10	31 37 1910 2760 248

Comments. low whole rock total confirmed by re-analysis

Apr**illin** Page me

gardi certi



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 2 - H Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

Project[.] WT 09

### CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS41 Zr ppm 0 5	Ag-AA62 Ag ppm 1	Cu-AA62 Cu % 0 001	Pb-AA62 Pb % 0 001	Zn-AA62 `Zn % 0 001	۰ د د
WT1-29 WT1-30 WT1-31 WT1-32 WT1-45							
WT2-08 WT3-13 WT3-14 WT3-29 WT3-30							
WT3-31 WT3-32 WT4-18 WT5-16 WT1-07		11				3 04	
WT1-08 WT1-09 WT1-16 WT1-17 WT1-18		45 12 <05 06 06				1 625 2 07 3 10 11 35	
WT1-24 WT1-48 WT2-04 WT2-10 WT2-24		05 115 07 76 33					· · · · · · · · · · · · · · · · · · ·
WT2-25 WT2-26 WT3-53 WT4-02 WT4-03		61 69 10 10 23			0 844	1 840 1 275	
WT4-30 WT4-31 WT4-42 WT4-46 WT5-02	1	<05 <05 173 42 12		1 590			
WT5-07 WT5-08 WT5-13 WT5-14 WT5-38		19 31 75 94 34					

Comments. low whole rock total confirmed by re-analysis



### ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

ALS'Canada Ltd

2103 Dollarton-Hwy

North Vancouver BC V7H 0A7

To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 3 - A Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

### Project: WT 09

### CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method ^a Analyte Units LOR	WEI-21 Recvd Wt kg 0 02	ME-MS81 Ag ppm 1	ME-MS81 Ba ppm 0 5	ME-MS81 Ce ppm 0 5	ME-MS81 Co ppm 0 5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0 01	ME-MS81 Cu ppm 5	ME-MS81 Dy ppm 0 05	ME-MS81 Er ppm 0 03	ME-MS81 Eu ppm 0 03	ME-MS81 Ga ppm 0 1	ME-MS81 Gd ppm 0 05	ME-MS81 Hf ppm 0 2	ME-MS81 Ho ppm 0 01
KMS-02 KMS-03		0 04 0 70				<u> </u>									·	
		-														
		r.														
		and the second se														'n
												ł				
		1														, *
			•		T											
	-														ł	

Comments. low whole rock total confirmed by re-analysis

mme

'age

App

ardin

certifi



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To. KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 3 - B Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

#### Project[.] WT 09

### CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS81 La ppm 0 5	ME-MS81 Lu ppm 0 01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0 2	ME-MS81 Nd ppm 0 1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0 03	ME-MS81 Rb ppm 0 2	ME-MS81 Sm ppm 0 03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0 1	ME-MS81 Ta ppm 0 1	ME-MS81 Tb ppm 0 01	ME-MS81 Th ppm 0 05
KMS-02 KMS-03	, ,															
						·		,				,				-
	١								i.							
								,								
			,								÷			,		
		· · · ·				,					2 -		ı			
	4			1	,	,										

Comments low whole rock total confirmed by re-analysis


11

## **ALS Chemex**

ALS Canada Ltd

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

#### To: KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 3 - C Total # Pages: 3 (A - H) **Plus Appendix Pages** Finalized Date: 20-DEC-2009 Account: KILMIN

#### Project: WT 09

## CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS81 TI ppm 0 5	ME-MS81 Tm ppm 0 01	ME-MS81 U ppm 0 05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0 5	ME-MS81 Yb ppm 0 03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	ME-ICP06 SiO2 [°] % 0 01	ME-ICP06 Al2O3 % 0 01	ME-ICP06 Fe2O3 % 0 01	ME-ICP06 CaO % 0 01	ME-ICP06 MgO % 0 01	ME-ICP06 'Na2O % 0 01
KMS-02 KMS-03									v							
		-				,										
1.																
		- - -	,												-	
		1 1 1														
<ul> <li>A Statement of the statemen</li></ul>																
	1	1				-										
- · ·	1	, ,		. •	-										ر •	
				i												

Comments: low whole rock total confirmed by re-analysis

4



# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

ME-ICP06

Method

ME-ICP06

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

ME-ICP06

ME-ICP06

ME-ICP06

ME-ICP06

To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

TOT-ICP06

Page: 3 - D Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

ME-MS41

ME-MS41

CERTIFICATE OF ANALYSIS VA09138071

ME-MS41

ME-MS41

ME-MS41

Au-TL42

Project: WT 09

OA-GRA05

#### Cr2O3 MnO K2O TIO2 P2O5 SrO BaO LOI Total Au Ag Al As Au В Analyte % % % % % Units % % % % % ppm ppm ppm ppm ppm Sample Description LOR 0 01 0.01 0 01 0 01 0.01 0 01 0.01 0.01 0.01 0 001 0.01 0 01 01 02 10 KMS-02 0 435 >100 0 26 9130 04 <10 **KMS-03** 0 004 0 16 1 60 184 <0 2 <10

ME-ICP06

Comments: low whole rock total confirmed by re-analysis



• '

## ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex.com

#### To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

•

Page: 3 - E Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

#### Project WT 09

## CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS41 Ba ppm 10	ME-MS41 Be `ppm 0 05	ME-MS41 Bi ppm 0 01	ME-MS41 Ca % 0 01	ME-MS41 Cd ppm 0 01	ME-MS41 Ce ppm 0 02	ME-MS41 Co ppm 0 1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm , 0 05	ME-MS41 Cu ppm 0 2	ME-MS41 Fe % · 0 01	ME-MS41 Ga ppm 0 05	ME-MS41 Ge ppm , 0 05	ME-MS41 Hf ppm 0 02	ME-MS41 Hg ppm 0 01
KMS-02 - KMS-03		10 20	0 33 0 16	0 23 0 86	1 93 0 49	266 0 20	12 00 8 95	15 7 69 5	12 3	2 67 0 22	999 9 0	11 10 14 10	1.66 6 14	0 25 0 15	0 05 0 17	1 36 <0 01
		5														
														·		4 1 - -
											,					
																,
															~	
	i															
						ر										
	1 1 1									,						
														,		

Comments. low whole rock total confirmed by re-analysis

omm

egard

s cer

k Pag

ee Ap



## ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 3 - F Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

Project WT 09

## CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS41 In ppm 0 005	ME-MS41 K % 0 01	ME-MS41 La ppm 0 2	ME-MS41 Lı ppm 0 1	ME-MS41 Mg % 0 01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0 05	ME-MS41 Na % 0 01	ME-MS41 Nb ppm 0.05	ME-ŇS41 Ni ppm 0 2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0 2	ME-MS41 Rb ppm 01	ME-MS41 Re ppm 0 001	ME-MS41 S % 0 01
KMS-02 KMS-03		0 656 0 031	0 13 0 10	53 43	2 2 2 8	0 09 1 21	1820 680	11.00 1 71	0 02 0 02	0 05 0 18	27 8 5 5	380 380	>10000 18 1	132 32	0 009 <0 001	>10 0 >10 0
								1							,	
	1															
						ı										,
							J.									

Comments: low whole rock total confirmed by re-analysis



## ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com

#### To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: 3 - G Total # Pages: 3 (A - H) Pius Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

,

#### Project[.] WT 09

### CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS41 Sb ppm 0 05	ME-MS41 Sc ppm 0 1	ME-MS41 Se ppm 0 2	ME-MS41 Sn ppm 0 2	ME-MS41 Sr ppm 0 2	ME-MS41 Ta ppm 0 01	ME-MS41 Te ppm 0 01	ME-MS41 Th ppm 0 2	ME-MS41 Ti % 0 005	ME-MS41 TI ppm 0 02	ME-MS41 U ppm 0 05	ME-MS41 V ppm 1	ME-MS41 W ppm 0 05	ME-MS41 Y ppm 0 05	ME-MS41 Zn ppm 2
KMS-02 KMS-03		190 5 0 32	10 27	816 96	76 03	116 5 26 0	<0 01 <0 01	0 20 1 27	17 07	<0 005 0 026	1 09 0 04	3 47 0.20	5 39	2 01 0 11	4 20 6 00	>10000 78
																,
1																
														i.		
												,				
		1			ť						~					
										•					,	
		u -			,						t					
, <i>r</i>											-			4 х		
												-				
													,	;		
v				۲			,		•							,
}				•			,									

Comments low whole rock total confirmed by re-analysis





EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www alschemex com To: KILLDEER MINERALS INC. 410- 890 W. PENDER STREET VANCOUVER BC V6C 1J9 Page: 3 - H Total # Pages: 3 (A - H) Plus Appendix Pages Finalized Date: 20-DEC-2009 Account: KILMIN

Project[.] WT 09

### CERTIFICATE OF ANALYSIS VA09138071

Sample Description	Method Analyte Units LOR	ME-MS41 Zr ppm 0 5	Ag-AA62 Ag ppm 1	Cu-AA62 Cu % 0 001	Pb-AA62 Pb % 0 001	Zn-AA62 Zn % 0 001	
KMS-02 KMS-03		16 43	710		1 855	2.51	
		-					

Comments' low whole rock total confirmed by re-analysis



### ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

#### To KILLDEER MINERALS INC. 410-890 W. PENDER STREET VANCOUVER BC V6C 1J9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20-DEC-2009 Account: KILMIN

Project: WT 09

CERTIFICATE OF ANALYSIS VA09138071

Method	
ME-MS41	Interference [.] Ca>10% on ICP-MS As,ICP-AES results shown
ME-MS41	Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g)

PIONEER I		<del></del>	-	#103-	2691	VISCO	UNTW	ÂY	RICH	IOND	BC	CANA	DĂ	V6V 2	R5		-				<b>.</b>	TELE	PHO	NE (	604) 231	-8165				
KILLDEER I Project Sample Type	Since         Project         Sample Type Cores         ELEMENT       Ag         Al       As         Bandre Type       Ag         All As       B							OC Muiti-e to 10 and lin	H E element ml with nited fo	M [°] IC iCP An water r Na, K	<b>A L</b> alysis - This lea and Al	A 0 500 g ach is pa *Au Ai ed by A	NA Jram sa artial fo nalysis- A or gr	LY mple is r B, Ba 20 gra	SIS a digestr a, Cr, I am sam	d with 3 ed with 3 e, Mg, ple is dig	ER 3 ml of Mn, gested	<b>R T I</b> I faqua re Na, P, I with aq	FIC egia, di S, Sn, ua regi	<b>ATE</b> luted , Ti la,	:	-			A R C	nalyst eport ate N	No 20	09244 ber 1	47 0, 2009	
									BAIJACIE		IS 11/11/51		Aurgi	арпца	luinace	~~ 														
SAMPLE	Ag pom	AI %	As ppm	B	Ba pom	Bi pom	Ca %	Cd ppm	CO maa	Cr	DU DDM	Fe %	K %	Mg %	Mn maa	Mo maa,	Na %	NI DOM	Р %	Pb ppm	S %	Sb ppm i	Sn	Sr DDM I	Te maa	Ti % t	TI amaa	V pm	Zn maa	Au*
														,																
WT1-01	12.4	10	11525	<5	31	78	>10	243	7	14	406	10 99	01	8 50	1445	2	02	4	04	21	02	16	<2	65	22	01	<5	10 :	>10000	29
WT1-07	21 9	qq	2688	-0	10	13	2 84	161	44	123	1251	15 32	24	43	1124	1	01	207	08	4478	18	14	<2	75	37	01	<5	8 3	>10000	14
WT1-16	1	02	2000	<5	2	<10	>10	<1	1	5	10	63	01	64	443	1	02	1	01	2	25	4	<2	1090	<5	01	<5	10	51	31
WT1-17	15	36	1178	<5	7	136	7 80	280	18	73	674	12 05	11	1 16	468	3.	02	161	10	12	>10	30	~2	204	32	01	<5	13	>10000	34
WT1 19	27	12	85056	~5	4	166	1 05	702	67	25	060	22 60	01	1 09	562	7	02	52	01	24	>10	12	~2	204	75	.01	~5	10 1	>10000	47
WII-10	31	12	00000	<b>~</b> 0		100	4 40	702	07	30	900	23 00	01	100	<b>302</b>	'	03	52	01	34	210	12	~2	05	15	01	<b>\</b> 0	10 /	-10000	47
WT1-19	1	03	824	<5	2	<10	>10	4	1	5	22	45	02	41	428	1	02	2	01	2	23	3	<2	1522	<5	01	<5	9	687	5
WT1-20	2	04	49	<5	1	<10	>10	<1	1	3	2	07	01	19	61	1	.01	1	01	3	02	<2	<2	2708	<5	01	<5	8	86	2
WT1-21	<b>1</b>	4 26	115	<5	51	<10	7 34	1	37	450	50	6 09	1 13	4 43	562	2	12	242	11	12	1 29	<2	<2	447	<5	15	<5 1	165	197	11
WT1-22	3	4 67	37	<5	134	<10	7 66	2	34	473	44	6 56	1 43	4 74	638	1	19	262	10	6	1 24	<2	<2	605	9	19	<5	169	96	2
WT1-23	1	04	26	<5	4	<10	>10	<1	1	4	4	27	01	89	469	1	02	1	01	2	01	<2	<2	1147	<5	01	<5	10	54	23
WT1-24	27 9	42	623	8	14	<10	4 21	12	12	32	176	6 75	23	90	9811	1	02	25	03	8648	6 92	237	206	78	<5	01	<5	9	4436	97
WT1-25	1	08	35	<5	4	<10	>10	<1	1	4	3	25	01	82	310	3	03	1	01	4	01	4	<2	1179	<5	01	<5	8	71	15
WT1-26	2	83	123	<5	10	<10	>10	1	6	53	16	2 07	16	1 07	751	1	02	36	05	18	27	15	<2	902	<5	01	<5	23	140	3
WT1-27	1	1 33	239	<5	14	<10	>10	1	7	57	17	2 02	38	1 49	1441	1	02	25	04	11	84	9	<2	462	<5	01	<5	22	80	9
WT1-28	32	12	74	<5	4	<10	>10	<1	1	5	16	44	03	1 93	942	1	02	3	02	27	07	<2	<2	696	<5	01	<5	10	59	3
WT1-20	19	22	335	~5	, 5	~10	82	2	1	55	15	32	12	24	129	2	01	4	01	276	06	. 2	~	12	~5	01	-5	0	415	4
WT1-2.5	12.5	20	2000	~5	7	12	1 65	20	2	46	100	2 10	10	27	155	2	02	2	01	2406	2 01	40	~2	24	~5	01	~5	0	2007	່າດໍ
WT1-30	70	40	2009	~5	, E	-10	4 40	20	1	40	117	4 40	40	32	220	2	02	3	01	3400	4 00	40 27	~2	24	~0	01	~5	40	4024	30
WT1 22	20 5	19	20741	<0	5	447	4 49	10	і е	40	1007	149	12	20	220	2	02	1	02	2407	>100	120	~2	115	40	01	<0 ~E	10	1031	45
VV T 1-32	395	20	2432	<0 7	5	117	0 30	141	0	30	1087	11 89	08	99	883	0	02	2	01	8438	>10	120	<2	115	10	01	<0	11 3	>10000	45
WT1-33	8	103	5	1	18	<10	50	<1	1	80	, 9	37	33	08	23	2	02	2	01		07	<2	<2	34	<5	.01	<5	12	102	5
WT1-34	11	43	6	6	23	<10	3 25	3	12	31	163	4 49	20	1 11	421	1	03	40	05	58	2 68	3	<2	155	<5	01	<5	10	392	2
WT1-35	10	44	12	7	24	<10	4 97	1	15	35	57	4 53	19	70	599	1	02	41	04	36	271	4	<2	150	<5	01	<5	9	93	1
WT1-36	2	36	33	6	21	<10	5 84	2	18	28	36	4 50	17	60	450	2	02	44	05	27	2 41	2	<2	243	<5	01	<5	13	54	2
WT1-37	1	41	20	5	25	<10	4 75	1	14	28	34	4 03	20	72	442	1	02	42	04	32	2 00	3	<2	215	<5	01	<5	9	109	1
WT1-38	3	39	8	6	29	<10	4 81	1	15	24	60	4 49	19	84	403	1	03	39	05	46	2 25	<2	<2	263	6	01	<5	10	102	3
				-				_								_						_								
WT1-39	14	54	28	5	21	<10	3 70	2	13	23	135	4 52	20	1 29	718	3	02	37	03	69	2 01	6	<2	150	9	01	<5	9	118	1
WT1-40	39	69	5	7	19	<10	27	8	18	36	190	4 82	18	18	30	1	02	53	06	263	3 25	9	<2	56	8	01	<5	8	1039	2
WT1-41	30	89	6	7	23	<10	36	7	17	36	171	4 05	25	25	6 36	1	02	50	06	220	2 55	4	<2	57	6	01	<5	13	985	6
WT1-42	7	71	33	6	24	<10	37	1	18	50	123	2 94	24	17	33	1	02	47	07	97	1 97	3	<2	53	<5	01	<5	11	126	2
WT1-43	14	63	5	5	13	<10	1 50	3	11	69	82	3 37	16	32	243	2	01	40	04	93	1 88	<2	<2	76	<5	01	<5	10	379	1
WT1-44	78	62	686	7	14	<10	2 86	36	17	27	228	6 45	21	97	1168	1	02	46	03	835	5.07	٩	<2	148	10	- 01	<5	۵`	4902	5
WT1-45	17.3	25	43802	<5	5	65	1 65	45	39	49	157	5 72	14	05	230	2	02	3	01	4561	4 87	36	<2	63	7	01	<5	10	5906	220
WT1_46	27 5	25	0785	-5	6	<10	1 00	257	13	18	871	12/12	12	10	1017	é	02	22	06	>1000	>10	136	~2	00	ó	01	~5	10 Q 1	10000	200
WT1_47	210	1 1 2 3	202	-J 16	6	<10	1 30	201	10	67	69	1 20	26	01	131/ E1	2	02	24	00	1/0	1 44	130	~~	- 	-F	01	~0 ~E	0	175	400
WT1 49	7	2 24	200	10	62	~10	6 27	2	10	50	115	4 22	00	02	225	4	03	24	04	140	2 07	4	~2	401	~5	01	<u>∽0</u>	3	170	ວ ເ
·····	(	2.21	242	10	00	-10	0 31	2	10	50	119	4 23	00	91	333	1	00	34	04	00	201	4,	~2	431	~0	03	<b>~</b> 0	23	90	0

2

*;*/

1

													;																	
ELEMENT	Ag	Al	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Mo	Na	Nı	Р	Pb	S	Sb	Sn	Sr	Te	Tï	TI	V.	Zn	Au*
SAMPLE	ppm	%	_ppm	_ppm_	ppm	ppm	%	ppm	ppm	ppm	ppm	%	<u>%</u>	%	ppm	_ppm	%	ppm	%	ppm	%	ppm	ppm	ppm p	opm '	<u>%</u> p	opm p	pm	ppm	ppb
																, _						,	_		_		_			
WT1-49	1	2 53	29	15	60	<10	5 84	1	11	58	- 90	3 80	91	96	342	3	10	31	05	33	171	4	<2	453	<5	03	<5	27	54	8
WT1-50	2	92	6	8	13	<10	2 64	<1	14	26	125	4 14	23	39	218	1	02	34	05	25	2 31	<2	<2	211	<5	01	<5	9	35	13
W11-51	1	81	1	<5	10	<10	>10	1	8	21	56	3 54	19	50	774	1	02	18	04	5	2 28	2	<2	349	<5	01	<5	13	59	3
WT1-52	3	1 15	6	7	19	<10	>10	2	10	41	86	3.24	40	81	618	2	03	20	03	8	1 80	5	<2	345	<5	01	<5	11	199	20
WT1-53	1	1 05	16	9	18	<10	7 63	1	9	32	123	3 66	25	70	464	1	02	24	.04	22	2 07	<2	<2	447	<5	01	<5	10	125	32
WT1-54	1	2 48	5	6	20	<10	>10	1	12	69	40	3 32	18	1 23	459	2	14	32	05	20	1 43	7	<2	564	<5	01	<5	24	84	15
W11-55	4	168	19	<5	13	<10	>10	<1	10	68	39	3.08	15	1 35	5/9	1	05	31	04	23	1 04	<2	<2	569	<5	01	<5	19	4/	41
W11-56	3	3 02	30	<5	29	<10	/ 11	2	13	101	56	4 01	16	2 35	555	1	12	45	05	24	1 12	<2	<2	450	<5	06	<5	38	282	18
W11-5/	1	2 87	32	<5	33	<10	4 59	4	17	106	85	4 64	15	2 26	466	2	11	53	05	32	1 62	4	<2	318	<5	07	<5	42	638	27
W11-58	1	2 08	58	<5	17	<10	9 47	5	14	108	70	3 62	13	1 73	572	1	06	57	04	38	1 26	3	<2	430	<5	04	<5	36	810	3
WT1-59	3	1 67	7	6	9	<10	9 40	5	11	68	77	3 60	22	1 39	576	1	02	39	06	25	1 4 1	<2	<2	425	<5	01	<5	20	631	2
WT1-60	50	2 19	48	7	13	<10	6 35	24	18	115	168	6 69	24	1 58	479	1	03	65	07	165	3 43	5	<2	385	10	01	<5	32	3684	1
WT1-61	18	2 14	5	5	27	<10	6 19	11	10	61	78	4 24	32	1 46	487	3	06	32	05	85	1 51	<2	<2	359	<5	05	<5	23	1696	18
WT1-62	1	2 25	14	<5	10	<10	7 77	5	14	79	58	4 26	18	1 80	664	1	05	38	04	39	1 50	5	<2	367	<5	05	<5	28	779	6
WT1-63	1	2 96	27	<5	18	<10	9 01	1	17	130	40	4 14	10	2 49	714	1	09	65	06	38	1 11	6	<2	510	<5	07	<5	52	141	4
WT1-64	4	3 34	33	<5	41	<10	8 49	2	22	164	43	5 33	13	2 48	716	2	08	86	07	30	1 83	3	<2	, 795	<5	09	<5	58	149	3
WT2-02	1	21	51	<5	9	<10	>10	3	1	32	4	63	05	8 55	460	1	02	8	05	65	01	3	<2	49	<5	01	<5	9	522	8
WT2-09	18	29	129	<5	5	<10	8 52	<1	1	12	23	84	07	371	800	1	03	10	01	272	02	9	<2	24	<5	01	<5	10	376	4
WT2-15	3	11	101	<5	13	<10	>10	3	2	6	10	2 81	01	5 97	1218	2	02	9	02	204	01	4	<2	80	<5	01	<5	8	547	11
WT2-23	27 7	73	2877	<5	10	45	>10	46	4	19	372	12 08	15	22	1426	3	02	16	07	3984	03	9	<2	73	13	01	<5	10	>10000	2
WT2-31	1	52	19	<5	13	<10	>10	<1	9	23	18	1 96	14	18	387	1	01	23	04	15	01	4	<2	173	<5	01	<5	13	122	3
WT2-32	28	33	40	<5	20	<10	1 48	<1	1	47	4	39	17	04	1240	2	02	2	01	77	02	4	<2	103	<5	01	<5	9	144	3
WT2-33	9	27	48	<5	50	<10	58	1	1	29	3	33	14	03	2212	1	02	1	02	221	01	<2	<2	51	<5	01	<5	8	156	2
WT2-34	1	1 19	58	<5	30	<10	>10	1	10	43	14	2 67	23	51	373	1	03	21	03	16	02	<2	<2	439	<5	01	<5	11	66	6
WT2-35	4	1 38	9	<5	27	<10	>10	<1	9	40	13	2 65	15	60	276	1	02	22	04	3	01	5	<2	467	<5	01	<5	10	52	5
WT2-36	3	96	63	<5	20	<10	>10	<1	7	28	11	2 37	10	41	328	3	02	16	03	6	03	4	<2	434	<5	01	<5	9	39	4
WT3-01	1	1 04	58	<5	17	<10	9 95	1	10	27	13	2 70	12	60	461	1	03	21	04	5	02	2	<2	493	<5	01	<5	12	66	2
WT3-02	4	40	61	<5	13	<10	4 94	<1	5	36	11	1 50	16	12	615	1	02	13	02	126	17	3	<2	478	<5	01	<5	11	292	. 3
WT3-03	1	39	206	<5	34	<10	9 71	<1	9	17	15	2 51	14	19	2619	1	02	22	04	28	05	3	<2	470	<5	01	<5	10	166	8
WT3-04	1	1 1ุ5	10	<5	17	<10	>10	1	8	25	13	2 42	10	75	437	1	02	20	03	7	23	3	<2	1217	<5	01	<5	9	45	3
WT3-05	3	99	28	<5	16	<10	>10	1	6	29	12	2 03	11	57	578	2	01	17	02	61	06	<2	<2	1049	<5	01	<5	, <b>8</b>	98	2
WT3-06	· 1	1 04	14	5	18	<10	>10	<1	7	30	10	2 26	12	69	728	1	02	18	03	11	40	<2	<2	1286	<5 [,]	01	<5	9	126	22
WT3-07	4	2 42	1321	43	95	<10	>10	<1	9	48	20	2 17	71	54	949	1	17	16	03	56	64	5	<2	1076	<5	01	<5	10	35	5
WT3-08	1	1 07	64	5	23	<10	>10	1	7	52	12	2 05	21	60	1000	2	03	17	02	15	14	3	<2	721	<5	01	<5	8	137	37
WT3-09	3	21	28	<5	8	<10	4 66	1	2	84	5	82	07	42	616	1	02	6	01	7	09	<2	<2	341	<5	01	<5	10	92	2
WT3-10	1	80	<5	<5	150	<10	21	<1	3	91 ₉	3	1 52	50	47	245	2	, 06	×5	.07	5	.01	<2	<2	10	<5	12	<5	38	56	
WT3-11	3	79	28	<5	18	<10	>10	<1	7	22	10	2 10	14	63	607	1	02	19	04	3	34	<2,	<2	1295	<5	01	<5	12	39	11
WT3-12	24	89	37	16	27	<10	>10	<1	7	26	18	2 49	36	42	1522	1	02	19	04	195	1 66	<2	<2	1181	<5	01 [.]	<5	11 [,]	93	5
WT3-13	25 1	42	939	10	4	<10	1 10	6	1	69	÷ 107'	2 06	22	27	4634	2	03	1	01	2873	2 19	28	78	19	<5	01	6	10	2945	85
WT3-14	6	1.09	52	6	15	<10	8 90	2	12	30	14	3 37	20	71	1446	1	.02	26	04	84	1 01	5	<2	588	<5	01	<5	12	300	5
	t																·•								· · ·					

Pag

٠

.

ł

No[,] 2

	Ag	AI %	As	B	Ba	Bi	Ca %	Cd	Co	Cr	Ĉu	Fe %	K %	Mg %	Mn	Mo ppm	Na %	Ni	P %	Pb	S %	Sb	Sn	Sr ppm i	Te	T1 %	Ti a	V mag	_ Zn	Au*
0/ 1/11 22	ppin	·····			ppin			PPIL		PP												<u>PE</u>					. <u>.</u>	<u></u>		
	•												,																	
WT3-15	1	95	32	5	14	<10	6 84	1	14	25	16	3 28	16	78	4714	1	02	29	03	15	1 25	4	<2	452	<5	.01	7	11	108	12
WT3-16	1	60	25	7	16	<10	8 59	<1	12	22	14	2 59	19	70	2010	2	02	26	.04	8	84	3	<2	580	<5	01	<5	10	55	10
WT3-17	1.0	.75	25	5	17	<10	8 77	1	10	36	13	4 20	15	1 04	2332	1	02	27	05	7	2 68	20	<2	496	<5	01	<5	9	38	3
WT3-18	1	1 19	22	<5	15	<10	>10	<1	9	30	16	2 79	12	78	733	1	01	21	04	11	50	3	<2	938	<5	01	<5	8	40	6
WT3-19	27 9	24	9790	<5	4	<10	1 84	247	13	17	897	12 58	11	09	1916	8	02	18	-05	>10000	>10	131	<2	95	9	01	<5	10 >	10000	450
WT3-20	1	1 36	39	<5	19	<10	>10	1	9	37	17	3 07	17	98	4181	1	02	21	04	47	62	3	<2	893	<5	01	<5	7	203	9
WT3-21	1	1 27	37	6	17	<10	>10	<1	10	32	17	2 78	16	[.] 1 11	3408	1	02	20	04	20	57	4	<2	851	<5	01	<5	9	122	5
WT3-22	1	2 21	8	8	47	<10	9 34	<1,	13	73	33	3 34	35	1 47	666	1	05	28	03	10	44	5	<2	470	<5	.02	<5	23	58	3
WT3-23	2	1 08	6	29	17	<10	7 07	1	7	90	42	2 63	11	99	646	3	02	11	06	2	66	<2	<2	247	<5	01	<5	8	38	2
WT3-24	1	2 02	24	6	44	<10	8 62	1	12	72	64	3 37	36	1 36	673	1	05	31	05	18	61	4	<2	406	<5	02	<5	23	98	3
WT3-25	2	2 46	5	8	45	<10	6 22	<1	15	102	37	3 82	33	1 47	633	1	07	38	06	27	65	<2	<2	271	<5	04	<5	26	66 ,	5
WT3-26	1	2 13	11	7	40	<10	5 26	1	14	52	25	3 70	34	1 10	727	2	<b>`</b> 05	28	04	17	47	<2	<2	233	<5	01	<5	20	68	2
WT3-27	1	99	14	<5	23	<10	5 16	<1	13	31	19	2 95	28	67	2530	1	02	29	03	28	1 14	14	<2	180	<5	01	<5	8	62	3
WT3-28	41 5	08	40	<5	3	89	>10	6	1	9	261	4 4 1	02	1 18	559	1	02	2	02	3990	3 39	33	<2	745	<5	01	<5	10	800	13
WT3-29	32 6	51	798	16	4	<10	94	12	1	48	46	1 30	25	.24	2465	2	01	1	01	2873	1 39	72	173	18	<5	01	6	9	3852	25
WT3-30	37 6	61	380	16	5	<10	81	2	1	77	28	69	27	12	4331	8	02	4	01	748	59	29	40	24	<5	01	<5	8	846	12
WT3-31	31 6	70	466	27	4	<10	1 41	4	1	59	14	59	31	10	3647	3	02	2	02	701	53	132	29	41	<5	01	<5	9	1469	10
WT3-32	16 7	73	273	22	7	·<10	1 77	1	1	72	9	63	30	05	3602	3	03	5	01	246	58	71	<2	65	<5	01	<5	7	451	6
WT3-33	38	84	12	21	6	<10	33	<1	1	82	4	44	38	03	733	2	02	3	01	146	37	5	3	28	<5	01	9	10	153	49
WT3-34	10 8	76	129	8	5	<10	32	1	1	47	13	58	19	07	172	1	02	2	02	331	50	26	11	42	<5.	01	<5	11	391	26
WT3-35	18 6	1 44	76	19	6	<10	85	3	1	63	30	89	43	06	315	2	02	1	01	1338	86	25	46	58	<5	01	<5	10	819	14
WT3-36	26 7	1 80	1370	41	8	11	1 80	4	1	77	28	91	48	13	175	3	03	2	03	1288	90	98	17	37	<5	01	<5	7	1209	75
WT3-37	39 3	1 09	2682	23	7	<10	2 42	83	1	64	243	672	40	06	578	2	02	1	01	>10000	7 71	94	<2	56	11	01	<5	11 >	10000	85
WT3-38	22.8	1 26	1220	25	6	<10	1 14	76	1	74	173	4 08	53	07	314	3	02	2	01	9074	4 83	47	<2	16	14	01	<5	10 >	10000	37
W13-39	27 7	26	9749	<5	/	<10	1 84	249	13	16	879	12 62	13	10	1928	9	02	18	05	>10000	>10	142	<2	109	/	01	<5	10 >	10000	445
WT3-40	22	89	111	20	5	<10	1 14	<1	1	64	6	57	37	24	1296	2	02	5	01	274	30	8	<2	22	<5	01	<5	11	187	6
WT3-41	9	1 04	72	12	20	<10	4 15	1	34	97	15	5 05	43	1 29	3470	1	02	79	10	43	4 31	78	<2	252	<5	01	<5	57	130	9
WT3-42	1	1 05	52	<5	28	<10	381	1	18	82	25	3 85	21	1 16	1872	2	01	43	04	14	1 70	11	<2	129	<5	01	<5	24	71	2
WT3-43	1	1 30	55	<5	18	<10	168	2	22	45	34	4 15	17	83	896	1	02	37	03	46	1 44	<2	<2	65	<5	01	<5	17	89	3
WT3-44	2	1 99	9	<5	16	<10	1 62	1	14	73	21	4 35	15	1 40	747	1	03	34	04	17	1 06	8	<2	67	<5	01	<5	27	59	2
WT3-45	3	3 80	51	<5	9	<10	5 84	2	41	265	28	6 13	06	4 09	1788	2	02	79	11	9	60	<2	<2	408	<5	01	<5 2	246	101	23
WT3-46	1	1 80	32	<5	71	<10	9 89	<1	10	59	16	2 93	61	1 09	618	1	05	23	04	8	39	3	<2	527	<5	04	<5	23	46	2
WT3-47	1	1 78	15	<5	67	<10	>10	<1	11	45	19	3 27	59	1 02	724	1	04	25	03	36	58	<2	<2	596	<5	04	<5	19	59	3
WT3-48	2	3 23	15	<5	145	<10	6 84	2	18	168	20	4.61	1 04	2 15	706	1	07	42	09	26	39	4	<2	445	<5	08	<5 [·]	105	126	2
WT3-49	3	1 25	60	7	22	<10	>10	3	14	124	22	3`19	17	1 10	1043	1	02	41	04	15	72	8	<2	614	<5	01	<5	23	827	3
WT3-50	1	44	1554	<5	16	<10	8 58	1	12	24	18	3 26	11	1 36	1083	3	03	26	03	11	1 01	20	<2	651	<5	01	<5	12	150	11
WT3-51	1	3 12	58	<5	128	<10	9 74	1	37	547	45	4.20	.91	2 39	717	1	05	127	11	68	50	<2	<2	801	<5	11	<5 ´	138	76	29
WT3-52	2	2.29	6	<5	94	<10	2 04	<1	16	129	25	3 87	63	1 31	335	2	06	37	05	12	74	<2	<2	156	<5	09	<5	26	60	9
WT3-53	32	3 46	427	<5	5	<10	9 02	11	42	753	43	6 39	02	3 50	2100	1	02	209	14	565	1 55	5	<2	703	<5	01	<5 2	200	2711	2
WT3-54	1	2 22	51	<5	15	<10	6 97	3	13	67	22	3 80	13	1 37	815	1	03	28	04	23	21	7	<2	348	<5	01	<5	26	483	1

\$

.

÷

.

۰.

.

.

,

••

e								•		,				,													,			
ELEMENT	Ag	AI	As	В	Ba	Bı	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Мо	Na	Ni	Р	Pb	, S	Sb	Sn	Sr	Te	Tı	TI V	1	Zn	Au*
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%_	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm p	ppm	ppm p	pm	% pp	om ppn	n p	<u>m</u>	ppb
															•															
WT3-55	17	97	6	19	5	<10	1 39	<1	1	76	3	19	42	03	53	3	02	2	01	155	07	<2	<2	23	<5	01 ·	<5 1	1 1	64	2
WT3-56	1	80	26	<5	11	<10	>10	<1	8	68	13	1 98	11	55	712	1	02	17	02	10	30	2	<2	701	<5	01 ·	<5	8	52	19
WT3-57	.1	2 39	103	<5	74	<10	8 73	3	17	150	15	3 29	55	1 87	806	1	06	40	05	22	31	3	<2	583	<5	03 ·	<5 5	0 4	08	10
WT3-58	14	2 19	35	<5	65	<10	5 63	1	15	93	21	3 69	41	1 41	714	1	05	34	04	37	57	<2	<2	370	<5	02	<5 3	5	82	2
WT3-59	1	2 40	27	<5	56	<10	1 85	2	17	74	28	4 51	35	1 45	516	2	80	36	03	36	72	3	<2	130	<5	02 ·	<5 3	2 1	60	1
WT4-02	1	.08	178	<5	38	<10	>10	12	1	3	17	85	01	7 51	2689	1	02	2	02	407	01	<2	<2	60	<5	01	<5 1	0 20	46	3
WT4-06	2	04	110	<5	13	<10	>10	2	1	4	7.	77	01	10 53	928	1	03	3	02	143	03	3	<2	46	<5	01	<5	9 3	29	1
WT4-11	1	06	179	<5	10	<10	>10	5	1	3	9	78	02	9 02	929	2	02	3	03	226	01	4	<2	38	<5	01	<5	8 10	01	9
WT4-17	3	<0.01	20	<5	6	<10	>10	4	1	2	1	01	01	2 38	293	1	01	4	01	2	02	<2	<2	35	<5	01	<5	9 3	05	1
WT4-27	29	05	406	<5	4	<10	>10	13	1	4	19	1 88	03	9 25	1046	3	02	5	01	1112	01	4	<2	72	<5	01	<5	8 18	14	6
14/74 00			447		40	-40			-	~	~	04	00		070		00	•		50	00		-0	520	-5	04	.F		67	40
W14-38	1	09	117	<5	10	<10	>10	1	5	37	0	91	00	20	3/3	1	02	9	03	00	02	4	<2	330	<0 <5	01	<0 <5	/ 4 E 4	.07 .40	12
WT4-39	1	37	89	<5	9	<10	>10	1	4	40	8	1 04	04	021	4000	2	02	~ ~	04	700	01	~2	~2	222	<0 <5	01	<5 <5 1	0 7	49	10
W14-40	10	29	332	<5	10	<10	>10	3	8	12	45	279	03	2 88	1032		02	20	05	/09	02	12	~2	91	<5 -5	01	50 II -E 1		43	17
W14-41	41	08	221	<0 ~5	4	<10	>10	2	3	97	1/	205	40	8/3	1404	1	03	20	02	1144	01	40	<2	83	<0 ~E	01	≤0 1. ∠5 1.	2 3	00	40
W14-42	1	27	471	<5	12	<10	>10	1	17		10	367	12	55	400	2	02	38	08	64	09	10	<2	80	<0	01	<0 I	1 5	197	49
WT4-43	1	23	270	<5	18	<10	>10	1	10	13	9	1 68	13	23	547	1	02	20	04	88	08	11	<2	558	<5	01	<5	9 3	98	9
WT4-44	4	14	465	<5	7	<10	>10	<1	9	9	8	1 28	10	25	455	1	02	17	02	498	05	7	<2	682	<5	01	<5 1	0 3	67	6
WT4-45	3	13	141	<5	8	<10	>10	1	7	5	6	85	11	26	384	3	03	9	03	672	40	4	<2	1232	<5	01	<5	8	98	11
WT4-46	20	19	15	<5	11	<10	>10	<1	8	8	1167	1 11	12	35	511	1	02	14	04	16	60	3	<2	1164	<5	01	<5	7	75	10
WT4-47	1	18	26	<5	12	<10	>10	<1	9	5	20	96	11	28	389	1	02	15	03	15	47	3	<2	1123	<5	01	<5	9	14	3
WTA 49	2	44	E	~5	7	~10	~10			2	10	70	07	15	217	4	02	0	02	12	20	2	~?	079	~5	01	~5 1	^	10	10
W14-40	2	06	2	<b>~</b> 5	22	<10	>10	-1	4	3	12	1 66	01	0.27	1054	1	02	0 E	03	50	01	~2	~2	670	~5	01	~0 I ~6	0	41	10
WT5-01	2	11	20	~5	22	<10	>10	1	4	7	2	1 62	07	601	929	2	03	0	07	112	07	~2	~2	20	~5	01	~5	7 4	41	2
WT5 02	4	06	22	~5	20	<10	>10	-1	4	ĥ	3	1 55	02	10 / 2	962	4	02	4	02	10	02	~2	~2	70	~5	01	~5 ~5	ι Ο	52	2
WT5-03	1	00	12	<0 <5	4	<10	>10	-1	4	4	2	100	01	1 20	003	1	02	2	01	10	01	2	~2	220	~5 ∠5	01	-0 0 1	9	40	14
W10-04		υz	10	-0	4	510	-10	~1		4	3	21	01	1.30	30	•	05	3	01	2	01	4	~2	520	-5		0 1	U	10	1-4
WT5-05	2	09	18	<5	13	<10	>10	1	2	5	4	57	02	55	241	2	02	7	02	24	02	<2	<2	508	<5	01	51	1	52	13
WT5-06	3	06	76	<5	23	<10	>10	<1	6	4	9	2 36	01	6 00	705	1	02	17	04	14	01	4	<2	43	<5	01	<5	9	21	17
WT5-07	1	08	36	<5	24	<10	>10	1	4	3	6	1 95	02	5 68	605	1	03	14	03	10	02	4	<2	41	<5	01	<5	8	22	39
WT5-08	1	12	54	<5	33	<10	>10	<1	2	4	7	2 31	03	3 45	758	3	02	9	05	25	01	4	<2	34	<5	01	<5	7	48	12
WT5-09	4	1 17	5	23	6	<10	1 15	<1	1	80	4	12	49	07	34	3	02	1	01	46	01	<2	<2	14	<5	01	<5	9	28	4
WT5-10	1	05	35	<5	16	<10	>10	1	1	٨	3	1:58	02	7 42	753	1	02	6	02	4	02	6	<2	126	<5	01	<5 1	2	63	3
WT5-11	1	07	38	<5	17.	<10	>10	<1	3	5	4	1 82	03	5 90	567	1	02	11	02	7	01	<2	<2	50	<5	01	<5 1	1	12	2
WT5-12	2	07	20	~5	27	<10	>10	1	2	4		1 24	05	1 60	544	2	00	10	02	, 8	01	-2	~2	148	~5	01	~5 1	0	26	~
WT5-12	2	89	270	~5	263	~10	-10	12	40	63	41	0.77	17	103	6223	2	02	236	22	1122	02	20	~2	10	~5	01	~5 1	ບ ດ່າ	20	+
WT5-14	14	69	368	<5,	463	<10	2 01	19	80	20	58	8 45	15	14	12190	2	03	463	25	3380	02	34	<2	63	-5	01	6 1	5 3 ⁴	42	3
1.4 (We way 4	-			_				_	_	•	_		<i></i>									-	F		-		_	_		_
WT5-15	1	18	40	<5	48	<10	>10	2	7	8	8	181	08	21	859	1	02	34	10	126	01	5	<2	113	<5	01	<51	0 2	78	8
WT5-16	.1	35	139	<5	144	<10	>10	6	181	13	18	4 09	09	17	3448	1	02	118	17	613	02	14	<2	47	<5	01	<5	7 9	98	3
WT5-17	2	05	43	<5	12	<10	>10	<1	2	5	3	1 58	02	7 75	539	2	03	5	02	13	01	5	<2	77	<5	01	<5	8	15	2
WT5-18	3	20	78	<5	50	<10	>10	2	7	9	8	2 01	06	1 24	951	1	02	33	07	139	01	6	<2	118	<5	01 ·	<5	9 2	86	23
WT5-19	1	11	8	<5	ຸ 30	<10	>10	<1	3	4	4	94	05	32	397	1	02	10	06	24	02	4	<2	195	<5	01 ·	<5 1	0	77	14
										•		•									٠	,								
																		,	đ		1.0									
				1																							1			
•						•	ı			,										1										
										-															,					

ن ب

Pag

-

No 2

ELEMENT	Ag	Ar	As	-	Ba	ы	Ca	Ca	C	Cr		Fe	K	Mg	- Wh	Mo	Na		P			Sb	Sn	Sr		TI		-	Zn	Au
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm (	ppm	%	opm p	pm	ppm	ppb
WT5-20	28 2	27	<b>9770</b> ,	<5	5	<10	1 83	250	15	16	881	12 65	12	10	1908	11	03	21	05	>10000	>10	139	<2	118	15	01	<5	8	>10000	450
WT5-21	1	09	30	<5	22	<10	>10	<1	1	7	3	1 04	06	3 16	439	1	02	3	04	42	01	3	<2	89	<5	01	<5	7	49	12
WT5-22	1	05	59	<5	28	<10	>10	<1	1	15	2	1 93	02	7 82	1198	1	03	5	07	14	02	2	<2	61	<5	.01	<5	9	30	7
WT5-23	2	06	16	<5	5	<10	>10	1	2	11	1	1 29	04	6 44	518	2	02	4	06	5	01	4	<2	159	<5	01	<5	8	10	2
WT5-24	1	35	104	<5	25	<10	1 58	1	18	31	6	2 31	26	13	573	1	03	24	19	9	02	<2	<2	7	<5	01	<5	7	27	19
WT5-25	3	37	51	<5	16	<10	1 87	<1	12	28	14	1 55	26	07	421	1	02	14	16	8	.01	7	<2	6	<5	01	<5	10	39	4
WT5-26	1	35	81	<5	11	<10	2 04	<1	8	29	21	1 47	21	06	451	3	01	13	14	33	03	3	<2	9	<5	01	<5	9	42	12
WT5-27	1	37	125	<5	27	<10	88	1	11	20	33	1 68	33	06	222	3	02	15	13	34	05	5	<2	7	<5	01	<5	12	59	15
WT5-28	2	32	36	<5	16	<10	2 21	1	5	56	2	60	22	05	318	2	02	6	12	2	01	<2	<2	11	<5	01	6	11	34	6΄
WT5-29	1	27	53	<5	15	<10	3 03	<1	5	73	3	1 14	15	1 06	724	2	02	7	05	7	.06	<2	<2	42	<5	01	<5	12	26	2
WT5-30	2	32	68	<5	11	<10	3 27	<1	4	48	2	1 30	12	1 14	542	1	01	6	06	3	04	<2	<2	48	<5	01	<5	9	18	8
WT5-31	1	37	120	<5	24	<10	1 93	1	11	45	11	1 49	23	40	276	1	02	14	10	14	79	6	<2	' 28	<5	01	<5	10	25	5
WT5-32	1	35	89	່ <5	28	<10	2 21	<1	12	37	14	1 45	25	56	402	2	02	13	11	7	78	5	<2	31	<5	01	<5	11	30	10
WT5-33	28 4	27	9694	<5	4	<10	1 89	255	14	16	879	12 45	13	10	1893	9	03	20	05	>10000	>10	138	<2	108	11	01	<5	9	>10000	460
WT5-34	1	26	751	<5	25	<10	5 10	2	10	52	12	2 58	17	2 07	530	2	02	19	09	261	2 07	10	<2	76	<5	01	<5	7	615	47
WT5-35	1	28	494	<5	29	<10	5 35	1	9	55	11	2 27	16	1 89	465	1	02	16	08	153	1 79	9	<2	88	<5	01	<5	8	443	39
WT5-36	3	34	881	<5	35	<10	1 88	2	14	60	27	2 70	22	74	255	3	02	25	11	169	2 64	10	<2	40	<5	01	<5	10	487	60
WT5-37	7	37	801	<5	32	<10	1 05	1	12	65	23	2 58	21	41	172	2	02	22	10	176	2 63	10	<2	21	<5	01	<5	12	662	80
WT5-38	1	35	1060	<5	33	<10	1 20	<1	11	59	34	2 64	22	46	187	2	03	24	07	34	2 50	3	<2	34	<5	01	<5	9	290	130
WT5-39	2	34	899	<5 -	36	<10	1 39	1	14	41	12	3 38	21	51	196	1	02	23	11	73	3 34	8	<2	42	<5 `	01	<5	7	254	65
WT5-40	1	84	167	<5	158	<10	22	3	4	88	7	1 71	56	50	267	1	06	4	08	[,] <2	07	<2	<2	10	<5	14	<5	39	445	2

,

PIONEER LABORATORIES INC.

.

and limited for Na, K and Al

#### #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5



#### KILLDEER MINERALS INC.

GEOCHEMICAL ANALYSIS CERTIFICATE

Project Sample Type Cores Multi-element ICP Analysis - 0 500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water This leach is partial for B, Ba, Cr, Fe, Mg, Mn, Na, P, S, Sn, Ti

Analyst Report No 2092448 Date' November 10, 2009

														•															
ELEMENT	Ag	, Al	As	В	Ва	Bı	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	TI	V	Zn
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm_	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	opm	%	pm	ppm	ppm
WT1-02	2 1	68	1601	<5	20	<10	>10	62	34	93	121	3 90	08	6 09	1045	2	02	168	09	63	01	24	<2	88	<5	01	<5	34	2812
WT1-03	1	05	258	<5	5	<10	>10	6	2	7	18	1 70	01	11 25	1162	1	03	7 '	.03	11	02	3	<2	96	<5	03	<5	10	187
WT1-04	4	25	425	<5	11	<10	>10	-2	36	49	100	3 43	09	.83	865	1	02	181	08	32	01	21	<2	583	<5	02	<5	24	984
NT1-05	37	47	1256	<5	13	<10	9 79	13	• 40	93	235	3.56	13	19	1232	2	01	186	15	466	02	64	9	199	<5	01	<5	37	1893
WT1-06	1	03	94	<5	3	<10	>10	18	4	6	19	41	01	40	301	1	02	5	01	35	01	<2	<2	1453	<5	01	<5	10	1931
WT1-08	5	4 91	1176	<5	76	<10	2 12	67	52	429	235	5 61	1 45	4 10	868	2	12	311	10	36	10	<2	<2	166	<5	12	<5	99	>10000
WT1-09	43	2 34	3866	<5	13	<10	76	60	55	378	601	11 93	20	1 38	857	1	02	270	11	83	05	16	<2	61	11	01	<5	110	>10000
WT1-10	1	Ý03	3436	<5	12	<10	>10	90	29	3	259	3 54	01	11 17	1531	1	03	9	01	3	01	5	<2	79	5	01	<5	9	>10000
WT1-11	2	08	370	<5	4	<10	>10	8	3	21	14	2 06	01	9 75	874	2	02	11	02	4	01	8	<2	107	<5	02	<5	10	690
WT1-12	1	03	37	<5	3	<10	>10	<1	1	4	5	1 32	02	11 <b>40</b>	679	1	03	3	01	1	01	1	<2	106	<5	01	<5	8	26
WT1-13	1	02	32	<5	4	<10	>10	1	1	6	4	1 07	01	11 70	572	2	02	2	.01	2	.01	2	<2	125	<5	01	<5	11	29
NT1-14	2	03	60	<5	3	<10	>10	<1	2	• 4	7	1 06	01	11 80	474	1	03	4	02	3	05	<2	<2	117	<5	02	<5	9	101
NT1-15	26 2	28	9753	<5	5	<10	1 81	246	13	16	861	12 45	12	12	1919	10	02	18	05	>10000	>10	143	<2	112	8	01	<5	10	>10000
NT2-01	21	.04	376	<5	9	<10	>10	9	1	5	52	1 44	01	9 53	2167	1	01	1	02	2328	01	31	<2	53	<5	02	<5	8	1456
WT2-03	14	03	177	<5	1	<10	>10	3	1	6	23	80	01	12 71	752	3	02	2	01	522	01	3	<2	63	<5	01	<5	9	503
NT2-04	7	36	510	<5	7	<10	>10	4	12	49	79	3 60	08	5 70	1101	1	01	54	12	1053	02	17	<2	65	<5	02	<5	34	1349
NT2-05	1	23	171	<5	20	<10	>10	2	5	46	24	1 30	04.	7 02	1426	2	02	21	13	302	01	7	<2	82	<5	01	<5	25	627
NT2-06	27 7	25	9985	<5	5	<10	1 83	246	14	16	871	12 43	10	12	1930	10	03	19	05	>10000	>10	146	<2	114	10	01	<5	10	>10000
NT2-07	1	05	131	<5	17	<10	>10	5	1	6	9	1 18	01	10 80	1652	2	02	1	09	183	01	3	<2	75	<5	02	<5	10	776
NT2-08	4	41	66	<5	5	<10	1 84	3	1	32	7	51	14	06	402	1	01	2	01	144	01	5	<2	58	<5	01	<5	8	1140
NT2-10	26	35	1015	<5	9	<10	>10	12	3	12	83	2 99	07	2 43	1041	1	01	7	03	1388	02	18	<2	67	<5	01	<5	9	2085
NT2-11	1	45	265	<5	8	<10	>10	1	8	13	14	1 79	11	26	347	3	02	15	05	11	01	6	<2	401	<5	02	6	8	452
NT2-12	1	04	5	<5	3	<10	>10	<1	1	3	1	10	02	28	93	1	01	1	02	2	03	2	<2	3014	<5	01	<5	10	19
NT2-13	5	98	92	<5	7	<10	>10	1	7	100	10	1.44	06	2 08	419	2	01	27	05	68	02	3	<2	466	<5	01	<5	37	370
NT2-14	.1	31	258	<5	6	<10	>10	3	14	12	11	1 31	09	18	484	1	02	18	06	177	01	7	<2	397	<5	02	<5	9	563
NT2-16	1	08	268	<5	7	<10	>10	2	2	6	8	1 30	01	77	678	1	01	3	05	156	01	2	<2	355	<5	01	<5	7	694
NT2-17	15 3	20	35352	5	9	320	1.08	516	51	46	5189	40 26	02	15	<1	3	02	1	06	>10000	03	49	<2	36	<5	01	<5	39	>10000
NT2-18	1	05	107	<5	4	<10	>10	17	. 1	4	9	34	01	39	420	1	02	1	01	175	02	<2	<2	793	<5	02	<5	10	670
NT2-19	3	33	380	<5	13	<10	>10	90	3	10	19	1 22	06	15	756	1	01	7	04	628	01	8	<2	341	<5	01	<5	1.1	5433
NT2-20	14	32	269	<5	12	<10	>10	107	5	7	18	1 00	05	18	826	2	02	8	05	451	01	6	<2	378	<5	01	5	8	7755
WT2-21	2	23	243	<5	16	<10	>10	55	4	10	17	1 55	02	1 65	923	, 1	02	6	04	333	02	. 7	<2	253	<5	03	<5	٩	<b>4107</b>
NT2-22	15	45	851	<5	12	<10	>10	45	5	16	93	3 20	11	21	1521	2	01	16	06	1196	01	10	<2	378	<5	02	<5	10	3852
NT2-24	23	33	852	<5	3	<10	>10	51	3	12	119	3 58	13	12	795	1	.02	7	03	583	01	3	<2	135	<5	01	<5	<u>a</u>	2884
NT2-25	334	77	12311	<5	ğ	95	95	50	ž	35	1057	22 57	14	10	628	3	01	13	05	7680	00	Я	<2	50	~5 ~5	02	<5	30	>1000
NT2-26	9	80	4603	<5	15	<10	3 31	37	8	26	531	946	15	10	532	2	02	30	07	1075	Δ1	22	~2	32	7	02	25	25	>10000
112-20	3	00	7000	-0	15	-10	551	- 07	5	20	001	0-0	10	10	002	2	02	50	07	1910	01	20	~2	52	'	05	~0	20	~10000

ELEMENT	Âg	AI	As	В	Ba	Bı	Ca	Cd	Co	Cr	Cu	Fe	к	Mg	Min	Мо	Na	Ni	P	Pb	S	Sb	Sn	Sr	Те	Ti	TI	V	Zn
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm j	opm	%	opm r	opm	ppm
<u></u>				- F F																							<u> </u>		
																									_		_		
WT2-27	1	29	405	<5	19	<10	>10	10	9	13	16	2 69	07	14	355	1	02	14	04	55	01	6	<2	224	<5	01	<5	8	555
WT2-28	1	45	181	<5	19	<10	>10	2	4	72	6	1 94	10	26	246	2	02	9	03	13	01	6	<2	978	<5	01	<5	8	240
WT2-29	1	52	277	<5	26	<10	>10	3	13	19	18	196	12	22	576	1	01	22	05	41	01	7	<2	434	<5	02	<5	7	502
WT2-30	3	1 03	5	21	6	<10	1 33	<1	1	72	2	12	45	.01	30	2	02	1	01	59	02	<2	<2	19	<5	01	<5	10	45
WT4-01	1	07	173	<5	15	<10	>10	7	1	4	10	85	01	7 14	1230	1	02	2	02	158	02	11	<2	58	<5	02	5	12	1166
WT4-03	18	14	410	<5	68	<10	>10	19	2	5	46	1 37	02	6 55	3806	1	01	5	03	1208	01	12	<2	51	<5	01	6	13	2693
WT4-04	1	02	216	<5	12	<10	>10	2	1	4	14	1 27	01	10 10	1150	2	01	1	01	174	01	5	<2	55	<5	02	<5	12	413
WT4-05	1	30	785	<5	32	<10	>10	25	4	7	58	2 72	04	5 52	2274	3	02	9	04	1618	02	20	<2	34	<5	01	<5	8	3289
WT4-07	2	02	32	<5	2	<10	>10	1	1	3	7	58	01	11 97	862	1	03	2	01	169	01	2	<2	53	<5	01	<5	10	167
WT4-08	27 8	23	9887	<5	7	<10	1 88	252	15	15	876	12 51	11	11	1892	9	02	19	05	>10000	>10	143	<2	119	<5	02	<5	11	>10000
WT4-09	1	04	159	<5	6	<10	>10	6	1	4	7	61	01	10 77	769	1	02	1	02	183	01	3	<2	43	<5	01	<5	10	735
WT4-10	1	05	170	<5	7	<10	>10	16	1	3	13	59	01	9 02	844	1	03	2	01	360	01	7	<2	44	<5	02	<5	12	1064
WT4-12	2	02	136	<5	5	<10	>10	2	1	4	4	52	02	11 07	576	2	02	1	02	104	02	<2	<2	40	<5	01	<5	11	293
WT4-13	1	01	164	<5	13	<10	>10	3	1	3	12	87	01	10 03	1040	1	02	1	01	164	01	4	<2	42	<5	01	<5	10	848
WT4-14	1	03	5	<5	1	<10	>10	<1	1	4	2	13	01	22	79	3	03	2	01	2	09	3	<2	2748	<5	02	7	9	49
WT4-15	2	04	148	<5	6	<10	>10	6	1	3	7	58	02	10 51	681	2	01	3	02	122	01	<2	<2	41	<5	03	<5	11	615
WT4-16	1	02	123	<5	6	<10	>10	4	1	4	15	71	01	11 01	832	1	02	1	01	93	01	5	<2	45	<5	01	<5	8	824
WT4-18	1	08	455	<5	22	<10	>10	22	1	3	29	1 59	02	4 54	1117	2	01	1	02	358	02	29	<2	34	<5	02	<5	12	2460
WT4-19	2	04	364	<5	26	<10	>10	7	1	2	18	1 57	01	8 53	1192	1	01	2	01	76	01	22	<2	46	<5	01	<5	13	1538
WT4-20	1	01	249	<5	4	<10	>10	12	1	3	18	1 37	02	11 23	934	2	02	2	01	40	01	6	<2	59	<5	01	<5	12	1323
WT4-21	11	02	522	<5	3	<10	>10	17	1	4	34	1 73	01	10 56	980	1	01	3	02	66	01	5	<2	55	<5	02	<5	11	2141
WT4-22	10	01	786	<5	5	<10	>10	24	1	2	44	1 75	01	11 13	1178	2	01	2	01	111	02	3	<2	53	<5	03	<5	12	2609
WT4-23	1	02	237	<5	1	<10	>10	1	1	3	9	1 02	02	11 17	1174	1	02	1	03	28	03	<2	<2	58	<5	01	<5	11	302
WT4-24	1	01	303	<5	3	<10	>10	6	1	4	17	98	01	8 64	1257	1	01	1	02	42	01	5	<2	118	<5	01	<5	10	829
WT4-25	2	02	215	<5	4	<10	>10	4	1	3	9	1 06	01	10 80	1413	3	03	2	01	51	01	<2	<2	61	<5	02	<5	11	635
WT4-26	20	01	371	<5	2	<10	>10	6	1	2	18	1 75	02	10 64	1064	1	02	1	01	737	02	3	<2	58	<5	01	6	12	1043
WT4-28	1	02	338	<5	5	<10	>10	3	1	3	9	1 56	01	11 46	1187	1	01	2	02	250	03	<2	<2	67	<5	02	<5	11	774
WT4-29	5	1 04	22	21	7	<10	1 78	1	1	57	2	12	46	09	85	2	02	1	01	98	01	<2	<2	21	<5	03	<5	10	127
WT4-30	29	04	1523	<5	2	<10	>10	12	1	3	30	2 18	01	10 66	1125	1	03	1	01	3345	01	<2	<2	72	<5	01	<5	8	1981
WT4-31	39	01	1043	<5	15	<10	>10	13	1	4	51	2 94	01	11 07	1134	3	02	1	.01	2371	02	10	<2	54	<5	01	<5	9	2500
WT4-32	5	02	378	<5	2	<10	>10	6	1	3	26	1 75	02	10 48	883	2	03	3	.02	951	01	<2	<2	59	<5	02	<5	8	1075
WT4-33	1	04	153	<5	2	<10	>10	3	1	4	12	1 36	01	11 23	785	1	02	1	01	226	.03	<2	<2	67	<5	01	<5	10	363
WT4-34	18	05	532	<5	6	<10	>10	6	1	3	24	1 89	02	8 91	1161	2	01	3	02	795	02	7	<2	82	<5	01	<5	11	1067
WT4-35	6	28	843	<5	15	<10	>10	2	9	11	Ŕ	1 67	11	28	707	3	02	9	05	298	01	11	<2	208	<5	02	<5	7	1369
WT4-36	1	13	363	<5	8	<10	>10	<1	3	7	4	97	05	38	444	2	01	5	04	35	01	8	<2	298	<5	01	<5	8	224
WT4-37	28 1	25	9760	<5	5	<10	1 94	256	15	15	919	11 50	11	11	1848	10	03	18	06	>10000	>10	142	<2	90	7	01	<5	15	>10000

____

#### PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Ag, Pb, Zn Analysis - 1 000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and finished by AA.

.

١

KILLDEER MINERALS INC Project Report No. 2092501 Sample Type: Pulps Date: November 27, 2009

	Aa	Ph	Zn	
SAMPLE	a/mt	%	%	
	grint	70	70	
WT1-01	10 4	Ļ .	- 1.55	;
WT1-07	19 8	3 0.42	2 30	)
WT1-08			- 1.64	Ļ
WT1-09			- 245	5
WT1-10			- 249	)
WT1-17			- 364	Ļ
WT1-18	3.9	0 0 0 2	. 587	,
WT1-24	789	) D [`] 91	0 50	)
WT1-32	63 7	096 0	5 201	1
WT1-45	17 9	0.42	2 0 64	ļ
WT2-17	15 6	<b>i</b> 1.03	3 245	;
WT2-23	28 5	5 0.38	3 1.50	)
WT2-25	32.9	0.75	5 188	3
WT2-26	1.5	5 019	123	5
WT3-13	256	6 0 3 1	0.31	
WT3-28	59.8	3 040	) 0.09	)
WT3-29	192	2 0.32	2 0.39	)
WT3-30	51 8	<b>;</b> .		-
WT3-31	35.1	-	- ·	-
WT3-36	31.3	<b>3</b> 0.13	B 0 12	2
WT3-37	39.5	5 1.43	3 1.83	3
WT3-38	21.3	0.92	2 1.80	)
WT4-03	2.5	5 014	0.29	)
WT4-06	3 0	3 0.02	2 0.03	3
WT4-31	4.6	6 0.25	i 026	5
WT5-13	3 2	2 0.11	0.21	
WT5-14	28	8 0.35	i 0.31	

Wildcat 2009 Program Assessment report 2010

#### Wildcat 2009 Project - Quality Control/Assurance Data

The quality control/assurance procedure was conducted on a set of core samples from the drill program. A comercially available standard sample has been applied to verify results of the laboratory analyses. The standards were inserted randomly into the core sample sequence analysed by ICP method. The standards are characterized by the following certified values (assay values):

Au [g/t]	Ag [g/t]	Cu [%]	Pb [%]	Zn [%]
0.48	712	0.097	1.92	2.65
(+/-0.034)	(+/- 57)	(+/-0.005)	(+/-0 09)	(+/-0.20)

The ICP analyses by Lab 1 show relatively little scatter, although the concentrations of silver (Ag) are significantly lower than the values suggested by the standard sample (analysed by assay method). The assay results from the sample WT5-40A by Lab 2 show no significant differences from the values recommended for standard. The following table lists the results of analyses of the standard samples:

ELEMENT	Ag	Cu	Pb	Zn	Au*	Laboratory
SAMPLE	ррт	ppm	ppm	ppm	ppb	
WT1-15	26 2	861	>10000	>10000	na	Lab 1 ICP
WT1-46	27.5	871	>10000	>10000	460	· Lab 1 ICP
WT2-06	27.7	871	>10000	>10000	na	Lab 1 ICP
WT3-19	27.9	897	>10000	>10000	450	Lab 1 ICP
WT3-39	27 7	879	>10000	>10000	445	Lab 1 ICP
WT4-08	27.8	876	>10000	>10000	na	Lab 1 ICP
WT4-37	28.1	919	>10000	>10000	na	Lab 1 ICP
WT5-20	28 2	881	>10000	>10000	450	Lab 1 ICP
WT5-33	28 4	879	>10000	>10000	460	Lab 1 ICP
WT5-40A	699		1 86%	2.51%	na	Lab 2 Assay
WT5-40A	>100	1000	>10000	>10000	0.318 ppm	Lab 2 ICP

* - geochemical analysis, na - not analysed

Field-collected samples of megascopically blank material from the Cassiar granite, quartz-feldspar porphyry and Rosella limestone were also inserted into the core sample sequence for ICP analysis by both labs. All the blank samples returned very low values of gold, silver, copper and zinc. Background concentrations of lead are significantly elevated in quartz-feldspar porphyry (samples WT542A through WT5-09 in the table below). The following table lists the results of selected elements of the blank samples:

ELEMENT	Ag	Cu	Pb	Zn	Au	
SAMPLE	ppm	ppm	ppm	ppm	ppb	Laboratory
WT5-41A	0.1	2.7	6.6	122	2	Lab 2
WT1-20	.2	2	3	86	2	Lab 1
WT2-12	.1	1	2	19		Lab 1
WT4-14	.1	2	2	49		Lab 1
WT5-42A	0.67	2.1	33.3	38	10	Lab 2
WT2-30	.3	2	59	45		Lab 1
WT4-29	.5	2	98	127		Lab 1
WT5-09	.4	4	46	28	4	Lab 1
WT3-10	.1	3	5	56	_	Lab 1
WT5-40	.1	7	<2	445	2	Lab 1

Selected core samples were split and analysed by two independent laboratories. The analytical results (ICP) from both laboratories do not show significant differences. The following table lists the results of silver and lead analyses of the split samples:

	Ag	ppm]		
SAMPLE	Lab 2	Lab 1		
WT1-09A	6.87	4.3		
WT1-39A	1.4	14		
WT1-59A	0 58	0.3		
WT2-09A	0 91	1.8		
WT2-17A	14.2	15.3		
WT2-21A	1.65	0.2		
WT2-23A	42.7	27.7		
WT3-25A	0.29	0.2		
WT3-31A	39.6	31.6		
WT4-27A	3	2.9		
WT4-34A	2.4	18		
WT4-41A	0.74	4 1		
WT5-14A	1 64	1.4		
WT5-25A	0.14	0.3		
WT5-35A	0.32	0.1		

	Pb [p	opm]		
SAMPLE	Lab 2	Lab 1		
WT1-09A	76.2	83		
WT1-39A	46.5	69		
WT1-59A	30.4	25		
WT2-09A	163	272		
WT2-17A	>10000	>10000		
WT2-21A	293	333		
WT2-23A	6050	3984		
WT3-25A	29.2	27		
WT3-31A	598	701		
WT4-27A	1150	1112		
WT4-34A	816	795		
WT4-41A	498	1144		
WT5-14A	2410	3380		
WT5-25A	15.1	8		
WT5-35A	147.5	153		