Trenching and Sampling Report On The GR 1-44 Quartz Claims

Work Period July $3^{\text {rd }}$ to September $5^{\text {th }}, 2009$

Located In
Dawson Mining District On
NTS 115-O-10
$63^{\circ} 44^{\prime}$ Latitude, $138^{\circ} 44^{\prime}$ Longitude
By
Bernie Kreft
January $30^{\text {th }}, 2010$

Table Of Contents
Location And Access Page 1
Topography And Vegetation Page 1
History And Previous Work Page 1
Yukon Map (figure 1) Page 2
Regional Map (figure 2) Page 3
Claim Map (figure 3) Page 4
Geology Page 6
Geology Map (figure 4) Page 7
Geology Legend Page 8
Current Work And Results Page 9
Doron Zone Detail (figure 5) Page 11
Kentucky West Detail (figure 6) Page 12
Doron NW Zone (figure 7) Page 13
Doron Zone Trench Detail Page 15
Reproducibility Page 16
Reclamation Page 17
Conclusions Page 17
Recommendations Page 18
Statement Of Qualifications Page 19
Statement Of Costs Page 20
Rock Sample Descriptions At Back
Assay Sheets At Back

Location And Access

The GR claims are located in the Dawson Mining District, on NTS map sheet 115-O-10, west of Gold Run Creek between right limit tributaries Laskey Creek/Gulch and 71 Pup. A well-developed network of gravel roads provides excellent access from Dawson City to the numerous placer mines located along Gold Run Creek. The roads are usually easily passable from May $15^{\text {th }}$ to October $15^{\text {th }}$. Total distance from Dawson City via the Upper Bonanza Creek road and Sulphur Creek road is about 75 kilometres (65 min); via Hunker Creek road and Dominion Creek road is about 85 kilometres (65 min). Access from the Gold Run creek road to the Doron Zone trench sites ($+/-$ 1.0 km) is currently best achieved by foot, with ATV access possible, along the de-bushed excavator access path.

Claim Status Table

Claim Name	Claim Number	Expiry Date
GR-1 to 14	YC60638 to YC60651	2013 April 4
GR-15 to 26	YC62966 to YC62977	2012 August 31
GR-27 to 44	YC93792 to YC93809	2010 August 14

Topography And Vegetation

The property lies within the un-glaciated Klondike Plateau, which is characterized by low rolling hills dissected by deeply incised stream valleys. This region experienced strong surface weathering during the early and mid-Tertiary, as a result, bedrock exposure is extremely limited with the effects of surface weathering extending to depths of as much as 80 metres or more. Overburden and regolithic material in the vicinity of the Doron Zone averages 2-3 metres in thickness, necessitating the use of mechanized trenching to expose bedrock. Permafrost is widespread on north facing slopes and to a lesser extent on east facing slopes, and sporadically occurs in other areas. Although snow cover is mostly gone by mid May, frost does not leave the ground sufficiently for exploration purposes until about mid June. The property is below tree line, higher elevations are covered by mixed spruce, birch, poplar and brush, with tree cover generally increasing at lower elevations and on south facing slopes, with brush and stunted trees predominating on north facing slopes and in areas of permafrost or poor drainage.

History And Previous Work

Exploration for the source of the placer gold in the Klondike has been of an ebb and flow nature since 1897. Although numerous significant discoveries such as Lone Star and Hunker Dome have been made, the source of the majority of the placer gold remains an enigma likely due to thick overburden, abundant vegetative cover and a variable thickness of regolithic material all conspiring to make historical methods of prospecting of limited use and effect. Discoveries since 2004: Dysle, Veronika and Gay Gulch by Klondike Star Minerals and Hunker Dome by the author, have come about mainly through the usage of soil geochemistry with follow-up by mechanized trenching.

Hard-rock exploration in the vicinity of the Laskey Project has been conducted since 1897. The historical focus on this area was undoubtedly due to the fact that the extremely rich portion of the Gold Run placer paystreak begins in the vicinity of Laskey Creek (GSC Mem. 284 pp. 98-99). Placer gold recovered from this area of Gold Run Creek is generally small (20 mesh to 120 mesh) bright and rough with some quartz attached (YPMI 1998-2002 p.112), suggesting a local source. Compositional studies of placer and lode gold during 2005 (YEG 2005, p. 249 Mortenson et.al.) led to the conclusion that "a major gold source existed in this area". Prospects (fig.3) include:

Aime - An adit, shaft and several pits explore several near vertical NW trending veins. A 1.5 metre channel sample across a 1.0 metre wide vein and adjacent pyritized wallrock reportedly returned $20.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, with grab samples reportedly grading up to $9.1 \mathrm{oz} / \mathrm{t} \mathrm{Au}$. Mineralization includes pyrite and rare blebs of galena.

Kentucky Lode - An adit and several shafts explore several NW trending veins up to 2.4 metres wide and grading up to $7.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Mineralization consists of minor pyrite. Wallrock is weakly altered and pyritic. Four grab samples by Wealth Resources of material from the adit dump contained up to 1550 ppb Au . No anomalous values for pathfinder elements were returned.

Kentucky West - A large shaft with headframe and several pits explore a 125° trending quartz vein up to 1.5 metres in width. Although no results have been reported, early newspaper reports were quite promotional and reported the vein as being up to 3.5 metres in width and significantly auriferous over a 300 metre strike length.

Doron - A series of pits and a small shaft. Debicki, who regionally mapped the Klondike in 1984 and 1985, originally named these workings Kentucky Lode. Occurrence consists of rusty quartz veins up to 0.4 metres in width cutting weakly altered wall rock. No results reported.

Teck - Placer mining in 1989 exposed a near vertical 320° trending vein and gouge zone with grades of up to $59.1 \mathrm{~g} / \mathrm{t}$ Au from a grab sample. Mineralization includes pyrite, chalcopyrite, chalcocite and galena.

Lass - An area with 3 shafts that explore several rusty quartz veins. Mineralization consists of pyrite. No results reported.

During the period 1985-1994 Lisle Gatenby, Doron Exploration and Wealth Resources conducted hard-rock exploration programs in the immediate area. This work consisted of soil sampling along with limited mapping and rock sampling, and was concentrated in the area from Kentucky Lode to Kentucky West.

Gatenby's work (AR \#091664) consisted of 92 soil samples taken along claim baselines that were oriented approximately due north and extended through the Kentucky Lode, Lass and Doron occurrences. Results include two spot anomalies of up to 43 ppb Au from Kentucky Lode, a single point of 57 ppb Au at Lass, and a small cluster of anomalous values with up to 124 ppb Au approximately 500 metres north of Kentucky Lode.

Doron's work (AR \#092603) consisted of 800 soil samples (only 400 analyzed) taken at 25 metre intervals on lines 100 metres apart. This work was centered on the ridge top from Kentucky West to Doron. Although the sample lines were oriented NNW or at a slight angle to the strike of mineralization, the work still located 4 significant spot anomalies ($244-858 \mathrm{ppb} \mathrm{Au}$), as well as a 500 metre by 200 metre open-ended cluster of anomalous samples ranging from $20-57 \mathrm{ppb} \mathrm{Au}$ located to the north-east of Kentucky West. Old showings did not report to the grid. Trace element geochemistry showed only occasional minor arsenic associated with the gold values.

Wealth's work (AR \#093219) resulted in 256 soil samples taken from an irregular shaped grid with sample intervals at 50 m on NE-SW lines spaced 250 m apart. This work covered the area from Kentucky Lode to Doron, and defined two narrow NW trending anomalous zones with up to 845 ppb Au extending from Kentucky Lode to the direction of Doron. A spot anomaly of 340 ppb Au was located 300 metres NE of the narrow NW trending zones.

Work completed during the 2007 field season was designed to acquire, locate and define previously reported anomalies, specifically the portion of the Wealth and Doron prospects that were on unstaked ground. It consisted of claim staking, the collection of 94 soil samples, followed by the excavation of 5 trenches and the collection of 57 channel samples and 4 grab samples.

Soil sampling helped define numerous anomalies with values of up to 864 ppb Au. These anomalies provided the target for 5 trenches totalling 124 linear metres. Trench channel samples resulted in the definition of 15 distinct anomalous zones with values of up to 2242 ppb Au over 18.2 metres, including 9060 ppb Au over 1.8 metres (Trench \#4). Highly anomalous gold values were found to occur within narrow ($<10 \mathrm{~cm}$) quartz and quartz-carbonate veins (up to 19900 ppb Au over 3 cm Trench \#2) and associated pyritized and iron-carbonate altered wall-rock. Sections with no obvious nearby veining (up to 2210 ppb Au over 0.9 m Trench \#3) were also found to be anomalous. One pin-head sized piece of visible gold was observed within a narrow vein in Trench \#5, this sample returned 674 ppb Au over 8 cm .

Work completed during the 2008 field season consisted of soil sampling in several areas of the property, as well as rock sampling within the existing trenches in an effort to help define the effect of coarse gold on assay results. Rock sampling work suggests that standard fire assay results of quartz vein samples typically return $1 / 2$ to $1 / 3$ of the values that a metallic screen analyses will yield, but that there is no significant variation between results from fire assays and metallic screens on samples of wallrock. Soil sampling helped further define gold anomalies in the area of the Doron Zone trenches as well as indicating the potential for gold mineralization at Kentucky West and Doron NW.

Geology

The property is situated on the southwest side of the Tintina Fault, within Yukon Tanana Terrane strata. The Y.T.T. has proven to be an under-explored, yet highly prospective belt of rocks, as witnessed by the recent world-class discoveries at Underworld, Wolverine, Kudz Ze Kayah and Pogo. The potential for Pogo and Underworld type occurrences (along with other bulk-tonnage gold

LATE CEETAEEOUS TO EARLY TERTIARY

Felsic intrusive and volcanic ratks

Fia light coloured quartz-feldspar rhyolite porphyry and rhyolite
Fib tan caloured tatite and brotitenquartz latite porphyry
Fle lafitic lapilli tuff
It manalithic rhyohte
Fle teterolithic rhyollte breccia
fif layered rityolitsc lapill tuff
intermediate intrusive: and volcanic racks, and associated sedimentary rocks
Ha massive dark grey weathering intrusive anderite
lib massive chocolate brown weathering extrusive andesite
Itic andesitue lapilt tuff
lid siltstone, greywacke, and conglomerate lle tan coloured dacite and amphibolefeldspar latife porphyry

EARLY CRETALEEOUS AND $/$ OR OLDER
Diabase dykes
DD dark brown diabase

TRIASSIC OR OLDER
Facks of varying metamorphic grade and degree and styie of deformafion
Felsic plutanic rocks
FFa foliated equigranular biotite granodiorife
FPb fotiated coarse grained gramodiorits
asa blocky weathering light grey. to pinkish feldspar-quartz schust
ash pink and green banded muscovite-feldsparquartz gnemss
FPr porphyritic quartz monzonste and augen
FPd folisted fine to coarse graned quartz manzonite
tatermediate plufonic rocks
IPa weakly foliated chtorite metadiorite
IPb strongty foliated chtorite metadiarite
Mafic plutanic rocks
MPa weakly Poliared amphibolite
MPb strongly follated amphibolite
Quartzoreldspathle schistose rocks
asb buff to pale graen weathering well fotsoted muscovite-feldispar-quartz schist with quartz and feldspar porphyrociasts. and hthic fragments
a.5c buft weathering well foliated muscovite-fetdspar-quartz schust with quartz parphyroclasts
asd buff weathering welf foliated muscovite-Feldepar-quartz schant
aSe light green weat hering hornblende/muscovite-feldspar-quartz schis \dagger
osf silvary grey weatharing serteite-quartz schist
OSg buff to khaki weathering masslve muscovite-feldspar-quartz catachaxite
QSi white to dark grey weathering wall foliated feldspar-quartz mylonite with or without nuartz porphyroblast\$
Q.S 1 muscovite-quartz schust with more than 5% muscovite-quartz schist with more th
granet and with or without thlorite
ask bratite-quartz senist, with or without ask balcite
asi quartzite
Q.5m kyanite-garnét-muscovite-quartz schist

Cartponacieous roaks

CSa massive to foliated tark grey to black carbonageous quartzite and muscovite-
quartz sinditt -
Sty black carbohaceeus miarbie and carbonaceous muscovíte-quartz-calcite schist
CSe muscorite-feltispar-quartz schist with
E'Sd salty carbonaceaus sehist with mafic tuffareous component

Marble

MBa cream and grey banded marble, with or without minor quartz, muscovita, and garnet
MBb massive eream to ligitt grey marble
MBe marbla with more than 5% garnets
MBd grey to dark grey muscovite-quartz-ralcite schist. With or witheut gernet

Mafic metavolcanic rocks

MVa andesitic tuff to tuff breccia
MVb massive andesitic greenstone
MVE fatiated andestic greenstane
Mafic schistose rocks

> MSa light to madium green and buff weathering MSb dark green weathering chlorite schist

MSe silvery green weathering actinalle-chtarite schist
MSd grey-brown weathering quartz-amphitale schisp
MSe light to medum green and buff weatherung calcareous chlorite=quartz thisth- chtcife may.tes dissemanated. in thun layers, or as small punk blebs
MSf silvery green weathering muscovite-, chlorife-quarty achist with blulsh quartz porphyroclats 5
MSy garnet-feldspar-chiorite schust,
MSh garnet-feldspar-amphibale schist
MSi mottled green and black biotite-epidate schust

Uitramafit rorks
UMa massive dark green serpentinste
UMB foliated dark green serpentinite
UMc foltated weakiy altered serpentinite with or without chrysotile
UMd foltated strongly altered serpentinite; metuding talc schist and lustwanite
UMe coarsely crystallune rusty weathering white marble

SYMBOLS

rock in rubble pulat, falsenmear and soll.
small outcropi ares of outcrop.

Geology by RL Debicki and Li, Batdwin, 1984.
it is recommended that reference to this report be made in the fallowing form

Debicki, R,L 1985 Bedrack gealogy and mineralization of the Klondike Area (east). 1150-9. 10. 11, 14, 15. 16, and $1168-2$, Expioration and Geologicat Services Division Yukon. Indian and Northern Affars Lanadia, Open
File 1 50,000 scale map with marginal notes
targets) has been recognized in the Yukon portion of the Y.T.T., with the area south and west of Dawson receiving considerable attention during 1993-2009 from numerous companies, including Newmont, Teck, Kennecott and Phelps Dodge as well as a host of junior exploration companies. This area is part of the Tintina Gold Belt.

The property is located in the hanging-wall of a south-west dipping thrust fault that roughly parallels Gold Run Creek. The property overlies a mixed sequence of chlorite-quartz $+/$ - sericite $+/-$ muscovite $+/$ - biotite schist with rare coarse grained amphibolite interbeds. Lithological variations occur on a scale of metres to tens of metres and are a product of differences in original rock-type and differences in alteration.

Two main types of quartz veins are common on the property: foliaform and discordant. Foliaform veins are discontinuous along strike, and range up to 0.3 m in thickness. No gold values, visible sulphides or evidence of alteration have been noted in, or associated with, this type of veining. Discordant veins are common within the Laskey Property trenches. These are NW trending, generally vertical, and cross-cut schistosity. They are typically 2 to 10 centimetres in width, thought to be laterally continuous due to apparent continuation between Trenches $07-1$ and $07-2(+/-50 \mathrm{~m})$, and anomalous in gold with values of up to 26.9 ppm Au over 3 centimetres in Trench 07-1. Veins are commonly limonitized and often contain trace amounts of pyrite. A 7 centimetre vein at the north-central portion of Trench 07-3 is cored by an unidentified fine metallic black sulphide, while visible gold was noted in a partially weathered pyrite vug occurring at the margin of a vein located in Trench 07-5 as well as disseminated within sheeted quartz veins in Trench 07-4. Pyritized, carbonatized, silicified and sericitized alteration zones adjacent to these quartz veins are consistently anomalous in gold, with a chip sample of weakly pyritized and iron-carbonate altered schist from Trench 07-3, with no apparent veining, grading 2210 ppb Au over 0.9 m . Weak fuchsite alteration was noted in schist adjacent to a narrow gold bearing vein in Trench 07-4. Iron-carbonate alteration and pyritization is discernible for up to 3.0 metres from the margins of single veins, while in areas where several veins occur together, continuous alteration zones at least 20 metres wide have been noted (Trench 07-4).

Current Work And Results

The 2009 work program consisted of soil sampling as well as mechanized trenching and channel/chip sampling. The soil sampling was designed to further define and extend anomalous zones located during previous seasons as well as to assess untested areas of the property. Samples were taken at 12.5 metre to 30.0 metre intervals from the top of the C horizon, found at a depth of 40-90 centimetres, using manually operated soil augers. Sample sites were marked in the field using flagging inscribed with the sample code, with material placed in industry standard soil sample envelopes. Soil sampling consisted of 58 samples in the vicinity of the Doron Zone trenches, 27 samples along the northwest edge of the property, and 9 samples at Kentucky West. The majority of trenching was conducted in the vicinity of the 2007 Doron Zone trenches, while single trenches were excavated at Kentucky West and Doron NW. Exposed bedrock was chip, channel or grab sampled as required, with grab samples taken of discordant veins. Sampling was completed in an east to west direction except in the case of grab samples which were taken of quartz veins after the
chip and channel sampling was completed. Trenching efforts were occasionally hampered by the presence of permafrost, which required thawing or extra scraping to ensure that bedrock suitable for sampling was reached. Analysis was completed by Chemex Labs, with all samples subjected to a 30 g fire assay for gold with normal screening and sample prep procedures. Several rock samples from an area of T1-09 were subjected to a multi-element ICP package (ME-ICP41).

Soil sampling in the vicinity of the Doron Zone consisted of two lines designed to test for northwest strike extents to the mineralization encountered by 2007 trenching. Sampling conditions were severely hampered by the presence of widespread frost, which precluded sampling of the target soil horizon at nearly all sample sites. Sampled medium consisted of a melange of generally B horizon material with some A horizon and possibly some \mathbf{C} horizon. Although values encountered during 2009 are reduced in tenor as compared to 2007 and 2008 results, this "muting" of results can easily be explained by the reduction in sample medium quality. Considering sample quality, results appear to indicate that the mineralization encountered by trenches 07-05, 09-01, 09-03, 09-06 and 09-07 remains open to the northwest, that the mineralization encountered by trenches 07-01, 07-02 and 07-03 likely remains open to the northwest, and that mineralization in trenches 07-04 and 09-02 possibly remains open to the northwest.

Soil sampling near the northwest edge of the property consisted of a single line of 27 samples taken at 30 metre intervals, designed to provide a preliminary test of this un-explored area. Sampling conditions were good, with the top of the C-horizon easily reached at all sites. Results indicate the presence of a 131 ppb gold anomaly occurring as a single point near the central portion of the line.

Soil sampling at Kentucky West consisted of a single line of 9 samples taken at 25 metre intervals, designed to provide a cross-cut through the area defined as anomalous by sampling in 2007 and 2008. Sampling conditions were good, with the top of the C-horizon easily reached at all sites. Results indicate no anomalous values, suggesting that either previous anomalous results were a result of lab error, or that previous sampling (which was in B-horizon material) encountered material with an ultimate source farther up-hill than the 2009 sampling which was from well within the C-horizon. Irrespective of sample depth and the effects of downslope dispersion, given the approximate east-west orientation of the line it would appear that potential for north to north-west striking mineralization, which is the predominant trend of mineralization on the property, is limited in this area.

Trench Code	UTM East	UTM North	Length	Target	Samples	Best Result
GRT09-01	613240	7069730	42.1 m	249 ppb soil	39	25.4 ppm Au over 0.04m
GRT09-02	613145	7069730	74.5 m	200 ppb soil	26	14.7 ppm Au over 1.9 m
GRT09-03	613199	7069733	66.0 m	56 ppb soil	28	0.330 ppm over 14.6 m
GRT09-04	611277	7069180	21.8 m	58 ppb soil	16	0.047 ppm over 1.6 m
GRT09-05	612128	7070168	24.5 m	147 ppb soil	15	0.153 ppm over 0.5m
GRT09-06	613163	7069717	7.6 m	join $\mathrm{T} 2, \mathrm{~T} 3$	11	2.87 ppm Au over 1.3 m
GRT09-07	613202	7069711	23.3 m	655 ppb soil	13	0.155 ppm Au over 0.7 m

Trenching was conducted in two phases to allow for receipt of results from first phase and to prestrip ground in areas of permafrost to allow for thawing so that the total required trench length could

be completed to bedrock suitable for sampling. The trenches were designed to explore for the bedrock source(s) of gold in soil anomalies defined by 2008 field-work, and were completed using a 2004 Hitachi ZX200 excavator (21 tonne machine) equipped with a 42 " wide toothed digging bucket.

Trench 2009-01 was designed to test 2008 gold in soil anomalies of up to 249 ppb gold. It encountered at least 3 narrow ($<6 \mathrm{~cm}$) quartz veins grading from 7.12 ppm Au to 12.85 ppm Au within a 5.4 metre wide interval of moderately iron-carbonate altered and pyritized chlorite quartz schist. Although representative grab samples of the veins are highly anomalous, channel samples across the veins and adjacent wallrock ranged from 0.038 ppm Au to 0.798 ppm Au . It is apparent that the high grade veins are not fully represented by wider channel samples that include them. The uphill end of 2009-01, encountered a quartz vein grading 25.4 ppm Au over 0.06 metres while a channel sample across the vein and adjacent pyritized and iron-carbonate altered wallrock returned 0.292 ppm Au over 1.3 metres. Given that 0.06 metres of 25.4 ppm Au extrapolated over 1.3 metres results in a grade of 1.17 ppm Au (with a value of nil ascribed for the remaining 1.24 metres) it again appears that channel sampling across high-grade quartz vein(s) does not accurately represent the presence of the vein(s).

Trench 2009-02 was designed to test a 200 ppb gold in soil anomaly thought to represent the strike extent of mineralization encountered in trench 2007-4 which returned values of 2242 ppb Au over 18.2 metres, including 9060 ppb Au over 1.8 metres. Although no broad widths of mineralization similar to those in the 2007 trench were encountered by the 2009 trench, several intervals of quartz veining and associated pyritized and iron carbonate altered wallrock were encountered with grades of up to 14.7 ppm gold over 1.9 metres. Trenching in this area suggests the presence of a minimum 75 metre long zone grading 9.06-14.7 ppm gold over a 1.85 metres width extending from Trench 2007-04 to Trench 2009-02. The exploration potential of this zone is high, given that there is potential for broad intervals of lower grade supportive material adjacent to this zone, and that it remains open in all directions.

Trench 2009-3 was designed to hopefully provide a frost-free 25.0 metre step-out to the north of the portion of trench 2009-1 that had encountered frost along much of its length and had failed to reach bedrock in several areas. It encountered a 14.6 metres wide zone grading 0.330 ppm gold comprised of several narrow sheeted quartz veins and their associated iron-carbonate altered and variably pyritized wallrock haloes. As per Trench 2009-01, it appears that channel sampling across highgrade quartz vein(s) and the adjacent wall-rock does not accurately represent the presence of the vein(s), and that regular fire-assays of the veins provide erratic results (see table below, samples 093-27, 28), likely due to a high proportion of the gold occurring as small flecks or chunks.

Trench 2009-4 was designed to expose bedrock just downhill from a 58 ppb gold in soil anomaly. No anomalous results were returned from the rock sampling completed. Soil samples taken immediately upslope and parallel to the trench were also not anomalous. The possibilities exist that the previous high values are a result of lab error, or that the anomalous gold in soil value is from a source parallel to, and uphill of, the trench. It is apparent that the potential for north to north-west trending (which is the predominant mineralization trend on the property) vein and alteration system is very limited in the area of the trench and associated 2009 soil sampling.

Trench 2009-5 was designed to expose bedrock at the site of a 147 ppb gold in soil anomaly within the Doron NW Zone. Although veining and alteration similar to that which exists at the Doron Zone was encountered in several areas of the trench, the best result was only 0.153 ppm Au over 0.5 metre.

Trench 2009-6 was designed to connect the downhill end of T09-02 with the uphill end of T09-03, through an area previously prepared for trenching, but not completed due to the presence of frost. It encountered a 1.3 metre wide zone grading 2.87 ppm gold comprised of carbonate altered tan-pink schist, near the boundary with several large quartz boudins. Although no discordant quartz veins were noted within the anomalous interval, the alteration and mineralization present is suggestive of their presence.

Trench 2009-7 is a continuation of the uphill end of trench 2009-01 and was excavated in an area that was prepared for trenching but could not be completed due to the presence of permafrost. Although the trench target was the bedrock source of a 655 ppb Au in soil anomaly (the second highest gold in soil value on the property), the best result was only 0.155 ppm Au over 0.7 metre. Even though the area of this trench was pre-stripped to allow for thawing, the presence of permafrost still hindered excavation to bedrock, and much of the material sampled was locally derived regolithic or colluvial material as opposed to true bedrock. Potential exists that more significant gold grades may be present in the bedrock, but remain masked by this frozen "overburden".

Trench 2007-05 was deepened significantly to allow for an accurate strike and dip determination of the previously exposed veins. This work showed that the veins are vertical, to near vertical, with a northwest strike.

Reproducibility

Exploration work has documented the presence of visible gold, often as 1 millimetre in diameter or larger chunks, within the vein and alteration zones of many of the Klondike hard-rock properties. Little systematic work is available in the public domain to document the characteristics of this coarse gold "problem" specifically as it relates to sampling and assaying in the Klondike.

Work by the author during the 2004 field season at the King Solomon Dome/Hunker Dome/JAE property encountered numerous significant variations highlighted by work at the Hunker Dome Trench, where an interval of $40.67 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ over 0.7 metres of schist was re-sampled and returned 660 ppb Au over the same 0.7 metre interval. Similar problems were noted in samples taken from the Sheba East Trench, where Barramundi (1996) had identified a quartz vein grading $32 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, but a subsequent sample of the same vein at the same site (Kreft 2004) returned 280 ppb Au. Similar issues occurred with duplicate splits from the same sample where assay differences of 10 times or more were not uncommon.

Generally, if a sample is altered and/or mineralized, and upon assay contains anomalous gold values (+100 ppb) it will likely need to be subjected to a metallic screen analyses to determine a grade that
can be viewed with confidence. Standard fire assay techniques will screen out (remove) large gold pieces (+80 mesh) from a sample prior to analysis. Erratically disseminated free gold just small enough to pass the mesh size on a standard fire assay is a potential cause of variable results from duplicate splits of the same sample. The greatest sample variations appear to be within samples of veins or samples of wall-rock that contain veins, indicating that the vast majority of free gold is associated with veining. Metallic screen assays completed on samples consisting of, or containing, quartz vein material, have consistently returned higher grades than grades returned from regular fire assaying of the same sample. The table below summarizes select assaying methods completed on various samples from the Laskey Project.

Sample ID	Int.	Initial Assay	Duplicate Split	Interval Re-sample	Metallics Assay	Lithology
$2009-3-28$	0.09 m	4.66 ppm Au	7.24 ppm Au			vein
$2009-3-27$	0.04 m	0.283 ppm Au	0.905 ppm Au			vein
$2007-3-09$	1.90 m	0.704 ppm Au	8.1 ppm Au			vein+wallrock
$2009-1-36$	0.06 m	25.4 ppm Au		15.9 ppm Au		vein
$2007-1-05$	0.06 m	10.4 ppm Au			26.9 ppm Au	vein
$2007-1-01$	0.30 m	7.15 ppm Au	5.95 ppm Au			12.3 ppm Au
$2007-4-01$	0.06 m	3.79 ppm Au			1.32 ppm Au	wallrock
$2007-5-01$	0.08 m	0.674 ppm Au				vein

Reclamation

During 2009 all overburden and vegetative matter excavated from the trenches was piled immediately adjacent to the trench in the order in which it was excavated (i.e. vegetative matter at the bottom of the pile). Most of the trees and other vegetation knocked over in the course of travelling between trenches and accessing the site from the Gold Run Creek road were either flattened to ground by the excavator or cut by chainsaw and scattered. The majority of moss and other overburden matter disturbed along the access trail was put back into place at the conclusion of work for the season.

Disturbances from 2007 were found in a stable manner, and reclamation through natural processes (trench wall slumping, re-vegetation) was well underway. All garbage and other waste generated during the course of the exploration program was removed from the site.

Conclusions

Within the Doron Zone, a total of 19 distinct auriferous vein and alteration zones have been exposed over a width of approximately 350 metres. Individual vein zones have been traced for as much as 75.0 metres along strike, with most zones remaining open in all directions. With values such as 14.7 g / t Au over $1.9 \mathrm{~m}, 9.06 \mathrm{~g} / \mathrm{t}$ Au over 1.8 m and $8.1 \mathrm{~g} / \mathrm{t}$ Au over 1.9 m , several of the individual zones exhibit good potential for developing a narrow high-grade deposit. In areas where several vein zones are found in close proximity, values of up to 2242 ppb Au over 18.0 m have been returned, indicating potential for the development of a bulk-tonnage deposit. Much of the gold exists in the free form and is likely amenable to low-cost gravity concentration. Best surface potential on the property lies with the expansion and further delineation of the northerly strike extent of the various

Doron Zone vein and alteration zones. Further soil sampling, to test for northerly strike extents of the Doron Zone, will be of limited use and effect due to increasing permafrost in that direction.
Further trenching, to test for northerly strike extents of the Doron Zone, will need to be completed in two stages to expose permafrost to allow it to thaw so that bedrock can be reached. Rock sampling within trenches should consist of channel sampling of all veined and altered zones, with grab samples taken of each individual vein. All bedrock samples should initially be subjected to a regular 30 -gram fire assay, with all channel sample intervals that assay greater than 250 ppb Au , or those channel sample intervals (irrespective of grade) that contain a quartz vein grading higher than $1.0 \mathrm{~g} / \mathrm{t}$ gold, subjected to a metallic screen assay.

Recommendations

Further work is recommended for the Laskey Project, specifically the Doron Zone. The initial phase should consist of excavator trenching in an effort to expand the various surface zones that exhibit potential for the development of a narrow high grade deposit. Areas requiring further trenching include the NW and SE strike extents of the following vein zones: T2007-01 to T2007-02, T200703, T2007-04 to T2009-02 and T2009-01. Trenching will also be required on several soil anomalies that remain un-explained by the currently exposed mineralization. Assuming the trenching encounters sufficient bedrock mineralization exhibiting both continuity and grade, a drill test of the Doron Zone will be required to fully assess its economic potential. Given that visible gold is an important component of the gold bearing zones, HQ or larger core, or reverse circulation drilling, should be the preferred method.

Statement Of Qualifications

I, Bernie Kreft, conducted the exploration work described herein.
I have over 22 years prospecting experience in the Yukon.
This report is based on fieldwork conducted or witnessed by myself, and includes information from various publicly available assessment reports.

This report is based on fieldwork completed during the 2009 field season.
This report is based on fieldwork completed on the GR quartz claims.
Respectfully Submitted,

Bernie Kreft

Statement Of Costs

Truck Costs For $1 / 2$ portion 3 Round-Trips, Whse-Dawson ($1536 \mathrm{~km} \times \$ 0.59 \mathrm{~km}$)	\$906.24
Truck Costs For 7 Round-Trips, Dawson-Property (1050km x \$0.59/km)	\$619.50
Trucking Excavator to Laskey Project	\$935.00
Coureur de Bois (staking 18 claims and 27 soil samples)	\$3543.75
Room And Board (28 man-days x \$50/day)	\$1400.00
Chainsaw (4 days x \$35/day)	\$140.00
Sample Analysis on 94 soils (30 g Au) 149 rocks (30 g Au) incl rush and grav	\$5363.12
Wages Bernie Kreft (7 days x \$350/day)	\$2450.00 -
Wages Jarret Kreft (7 days \times \$175/day)	\$1225.00
Wages Justin Kreft (7 days x \$175/day)	\$1225.00
Wages Shari Thompson (7 days x \$200/day)	\$1400.00
ZX200 Hitachi 20t Excavator Wet But No Operator (57.3 hours x \$120/hour)	\$6876.00 -
Report Preparation And Duplication	$=\$ 2000.00$

Sample	Type	AU PPM	Au Che Au Grav	Desc. 1	Desc. 2	Width	Easting	Northing	Location
1001	Soil	0.011		thawed	c-horizon	Line Start	609759	7070721	NW end prop
1002	Soil	0.012		thawed	c-horizon	35 m intervals			NW end prop
1003	Soil	0.013		thawed	c-horizon	35m intervals			NW end prop
1004	Soil	<0005		thawed	c-horizon	35m intervals			NW end prop
1005	Soil	<0.005		thawed	c-horizon	35 m intervals			NW end prop
1006	Soil	<0005		thawed	c-horizon	35 m intervals			NW end prop
1007	Soil	< 0005		thawed	c-horizon	35m intervals			NW end prop
1008	Soil	<0005		thawed	c-horizon	35m intervals			NW end prop
1009	Soll	<0005		thawed	c-horizon	35 m intervals			NW end prop
1010	Soil	0131		thawed	c-horizon	35m intervals			NW end prop
1011	Soil	< 0.005		thawed	c-horizon	35m intervals			NW end prop
1012	Soil	< 0005		thawed	c-horizon	35m intervals			NW end prop
1013	Soil	< 0.005		thawed	c-horizon	35 m intervals			NW end prop
1014	Soil	<0005		thawed	c-horizon	35m intervals			NW end prop
1015	Soll	0.005		thawed	c-horizon	35m intervals			NW end prop
1016	Soll	<0.005		thawed	c-horizon	35m intervals			NW end' prop
1017	Soll	< 0.005		thawed	c-horizon	35m intervals			NW end prop
1018	Soil	<0.005		thawed	c-horizon	35m intervals			NW end prop
1019	Soil	<0005		thawed	c-horizon	35m intervals			NW end prop
1020	Soil	<0005		thawed	c-horizon	35m intervals			NW end prop
1021	Soil	< 0.005		thawed	c-horizon	35 m intervals			NW end prop
1022	Soil	0005		thawed	c-horizon	35m intervals			NW end prop
1023	Soil	<0005		thawed	c-horizon	35m intervals			NW end prop
1024	Soil	<0.005		thawed	c-horizon	35m intervals			NW end prop
1025	Soil	0.007		thawed	c-horizon	35m intervals			NW end prop
1026	Soll	0.005		thawed	c-horizon	35m intervals			NW end prop
1027	Soll	<0.005		thawed	c-horizon	Line Finısh	610465	7071309	NW end prop
BGRD09-01	Soil	0.012		frozen	b-horizon	Line Start	613219	7069819	Doron Zone
BGRD09-02	Soll	0.019		frozen	b-horizon	$12 \mathrm{5m}$ west			Doron Zone
BGRD09-03	Soll	0.023		frozen	b-horizon	25m west			Doron Zone
BGRD09-04	Soil	0.026		frozen	b-horizon	375 m west			Doron Zone
BGRD09-05	Soil	0032		frozen	b-horizon	50 m west			Doron Zone
BGRD09-06	Soil	0039		frozen	b-horizon	625 m west			Doron Zone
BGRD09-07	Soil	0.032		frozen	b-horizon	75 m west			Doron Zone
BGRD09-08	Soil	0.021		frozen	b-horizon	87.5 m west			Doron Zone
BGRD09-09	Soil	0046		frozen	b-horizon	100 m west			Doron Zone
BGRD09-10	Soll	0009		frozen	b-horizon	112.5 m west			Doron Zone
BGRD09-11	Soil	0.021		frozen	b-horizon	125 m west			Doron Zone
BGRD09-12	Soll	0.015		frozen	b-horizon	137.5 m west			Doron Zone
BGRD09-13	Soll	0.012		frozen	b-horizon	150 m west			Doron Zone
BGRD09-14	Soll	0.014		frozen	b-horizon	162.5 m west			Doron Zone

Sample BGRD09-15	Type Soil	Au PPM 0.012	Au Che	Au Grav	Desc. 1 frozen	Desc. 2 b-horizon	Width 175m wast	Easting	Northing	Location Doron Zone
BGRD09-16	Soil	0.011			frozen	b-horizon	187.5 m west	613040	7069755	Doron Zone
BGRD09-17	Soil	0.016			frozen	b-horizon	200m wast			Doron Zone
BGRD09-18	Soil	0.021			frozen	b-horizon	212.5 m west			Doron Zone
BGRD09-19	Soil	0009			frozen	b-horizon	225m west			Doron Zone
BGRD09-20	Soil	0.015			frozen	b-horizon	237.5 m west			Doron Zone
BGRD09-21	Soil	0.012			frozen	b-horizon	250 m west			Doron Zone
BGRD09-22	Soil	0.039			frozen	b-horizon	262.5 m west			Doron Zone
BGRD09-23	Soil	0.024			frozen	b-horizon	275 m west			Doron Zone
BGRD09-24	Soil	0.124			frozen	b-horizon	287.5 m west			Doron Zone
BGRD09-25	Soil	0.01			frozen	b-horizon	300 m west			Doron Zone
BGRD09-26	Soil	0.006			frozen	b-horizon	312.5 m west			Doron Zone
BGRD09-27	Soil	0.043			frozen	b-horizon	325 m west			Doron Zone
BGRD09-28	Soil	<0005			thawed	c-horizon	337.5 m west			Doron Zone
BGRD09-29	Soil	0.01			thawed	c-horizon	350 m west			Doron Zone
BGRD09-30	Soil	0.011			thawed	c-horizon	362.5 m west			Doron Zone
BGRD09-31	Soil	0.007			thawed	c-horizon	375 m west			Doron Zone
BGRD09-32	Soil	0.007			thawed	c-horizon	387.5 m west	612855	7069653	Doron Zone
BGRD09-33	Soil	0.006			thawed	c-horizon	4125 m west			Doron Zone
BGRD09-34	Soil	0.009			thawed	c-horizon	437.5m west	612808	7069643	Doron Zone
BGRD09-35	Soil	0.006			thawed	c-horizon	Line Start	612784	7069690	Doron Zone
BGRD09-36	Soll	0.006			frozen	b-horizon	25m east			Doron Zone
BGRD09-37	Soil	< 0.005			frozen	b-horizon	50 m east			Doron Zone
BGRD09-38	Soll	0.012			frozen	b-horizon	75 m east			Doron Zone
BGRD09-39	Soil	<0.005			frozen	b-horizon	100 m east			Doron Zone
BGRD09-40	Soil	0.016			frozen	b-horizon	125m east			Doron Zone
BGRD09-41	Soil	0.008			frozen	b-horizon	150m east			Doron Zone
BGRD09-42	Soil	0.006			frozen	b-horizon	175 m east			Doron Zone
BGRD09-43	Soll	0.02			frozen	b-horizon	200m east			Doron Zone
BGRD09-44	Soil	0.017			frozen	b-horizon	225m east			Doron Zone
BGRD09-45	Soll	0.021			frozen	b-horizon	250m east			Doron Zone
BGRD09-46	Soil	0.011			frozen	b-horizon	275m east			Doron Zone
BGRD09-47	Soll	0.028			frozen	b-horizon	300m east			Doron Zone
BGRD09-48	Soll	0012			frozen	b-horizon	325m east			Doron Zone
BGRD09-49	Soil	0.033			frozen	b-horizon	Line Finish	613124	7069793	Doron Zone
BGRD09-50	Soil	0.04			frozen	b-horizon	Line Start	613133	7069828	Doron Zone
BGRD09-51	Soll	0.056			frozen	b-horizon	25m east			Doron Zone
BGRD09-52	Soil	0.027			frozen	b-horizon	50 m east			Doron Zone
BGRD09-53	Soll	0.036			frozen	b-horizon	75 m east			Doron Zone
BGRD09-54	Soll	0.01			frozen	b-horizon	Line Finlsh	613232	7069876	Doron Zone
BGRD09-55	Soll	0.023			thawed	c-horizon	Line Start	613444	7069833	Doron Zone

Sample	Type	Au PPM	Au Che	Au Grav	Desc. 1	Desc. 2	Width	Easting	Northing	Location	
BGRD09-56	Soll	0044			thawed	c-horizon	25m east			Doron Zone	
BGRD09-57	Soil	0013			thawed	c-horizon	50 m east			Doron Zone	
BGRD09-58	Soll	0.011			thawed	c-horizon	Line Finish	613515	7069852	Doron Zone	
GRD09-201	Soil	< 0.005			thawed	c-horizon	Line Start	611205	7069170	Kentucky West	
GRD09-202	Soil	<0005			thawed	c-horizon	25m east	611227	7069176	Kentucky West	
GRD09-203	Soil	< 0.005			thawed	c-horizon	50 m east	611250	7069182	Kentucky West	
GRD09-204	Soll	<0005			thawed	c-horizon	75 m east	611273	7069189	Kentucky West	
GRD09-205	Soil	<0.005			thawed	c-horizon	100 m east	611295	7069196	Kentucky West	
GRD09-206	Soll	< 0.005			thawed	c-horizon	125 m east	611319	7069209	Kentucky West	
GRD09-207	Soil	< 0.005			thawed	c-horizon	150 m east	611339	7069225	Kentucky West	
GRD09-208	Soll	<0.005			thawed	c-horizon	175m east	611361	7069240	Kentucky West	
GRD09-209	Soil	<0005			thawed	c-horizon	Line Finish	611375	7069260	Kentucky West	
GRT091-01	Rock	0005			schist	biotite chlorite	19 m	613256	7069741	Doron Zone	start trench 09-01
GRT091-02	Rock	0.012			schist	biotte chlorite	06 m			Daron Zone	
GRT091-03	Rock	0005			schist	biotite chlorte	1.0 m			Doron Zone	
GRT091-04	Rock	0005			schist	biotite chlorite	14 m			Doron Zone	
GRT091-05	Rock	0007			schist	biotite chlorite	0.7 m			Doron Zone	
GRT091-06	Rock	0.102			schist	iron-carb and py	0.4 m			Doron Zone	
GKIU91-07	Hock	006			schist	chiorite quartz	09 m			Doron Zone	
GKIU91-08	Rock	20.005			schist	chlonte quartz	1.7 m			Doron Zone	
GKIU91-09	Rock	0005			schist	iron-carb and py	1.3 m			Doron Zone	
GRT091-10	Rock	< 0.005			schist	uron-carb and py	1.7 m			Doron Zone	
GRT091-11	Rock	0798			schist	iron-carb and py	12 m			Doron Zone	
GRT091-12	Rock	0066			schist	iron-carb and py	09 m			Doron Zone	
GRT091-13	Rock	0038			schist	iron-carb and py	16 m			Doron Zone	
GRT091-14	Rock	0103			schist	rron-carb and py	1.7 m			Doron Zone	
GRT091-15	Rock	0005			schist	blotite chlorite	0.8m			Doron Zone	
GRT091-16	Rock	0.007			schist	biotite chlorite	16 m			Doron Zone	
GRT091-17	Rock	<0005			schist	brotite chlorite	2.1 m			Doron Zone	
GRT091-18	Rock	0005			schist	biotte chlorite	1.4m			Doron Zone	
GRT091-19	Rock	0018			schist	biotte chlorite	1.1 m			Doron Zone	
GKIU91-20	Rock	0.005			schist	biotite chlorte	2.3 m			Doron Zone	
GK1091-21	Rock	0.045			schist	iron-carb and py	1.1 m			Doron Zone	
GRT091-22	Rock	0.218			schist	iron-carb and py	16 m			Doron Zone	
GRT091-23	Rock	0.156			schist	iron-carb and py	1.8m			Daron Zone	
GRT091-24	Rock	0.005			schist	chlonte biotite	14 m			Doron Zone	
GRT091-25	Rock	0.016			schist	chlorite biotite	21 m			Doron Zone	
GRT091-26	Rock	0.011			schist	chlorite biotite	1.3m			Doron Zone	
GRT091-27	Rock	< 0.005			schist	chlorite biotite	07 m			Doron Zone	
GRT091-28	Rock	0008			schist	chlorite blotite	15 m			Doron Zone	
GRT091-29	Rock	<0005			schist	chlorite blotite	17 m			Doron Zone	

Sample	Type	Au PPM	Au Che	Au Grav	Desc. 1	Desc. 2	Width	Easting	Northing	Location	
GRT091-30	Rock	0011			schist	iron-carb and py	1.3m			Doron Zone	
GRT091-31	Rock	0292			schist	iron-carb and py	13 m	613224	7069719	Doron Zone	end trench 09-01
GRT091-32	Rock	0039			quariz boudin	trace chalco	010 m			Doron Zone	within sample T1-17
GRT091-33	Rock	712			quartz vein	trace pyrite	0.06m			Doron Zone	within sample T1-11
GRT091-34	Rock	9.08			quartz vein	trace pyrite	0.06m			Doron Zone	within sample T1-11
GRT091-35	Rock	>10.0		12.85	quartz vein	trace pyrite	006 m			Doron Zone	within sample T1-13
GRT091-36	Rock	>10.0		25.4	quartz vein	trace pyrite	006 m			Doron Zone	within sample T1-31
GRT091-37	Rock	0023			colluvium	rusty schist	10 m			Doron Zone	T1 trench rubble
GRT091-38	Rock	0028			colluvium	rusty schist	10 m			Doron Zone	T1 trench rubble
GRT091-39	Rock	0054			colluvium	rusty schist	1.0 m			Doron Zone	T1 trench rubble
GRT092-01	Rock	0039			schist	chlorte biotite	10 m	613171	7069705	Doron Zone	start trench 09-02
GRT092-02	Rock	0009			schist	chlorte biotite	1.1 m			Doron Zone	
GRT092-03	Rock	0015			schist	iron-carb and py	09 m			Doron Zone	
GRT092-04	Rock	0018			schist	iron-carb and py	0.9m			Doron Zone	
GRT092-05	Rock	0.009			schist	iron-carb and py	09 m			Doron Zone	
GRT092-06	Rock	0345			schist	ıron-carb and py	1.3m			Doron Zone	
GRT092-07	Rock	199			quartz vein	trace pyrite	0.05m			Doron Zone	within sample T2-06
GRT092-08	Rock	0029			schist	iron-carb and py	12 m			Doron Zone	
GRT092-09	Rock	0016			schlst	iron-carb and py	20 m			Doron Zone	
GRT092-10	Rock	0622			schist	Iron-carb and py	07 m			Doron Zone	
GRT092-11	Rock	0.008			schist	iron-carb and py	1.0 m			Doron Zone	
GRT092-12	Rock	188			schist	iron-carb and py	13 m			Doron Zone	
GRT092-13	Rock	0014			schist	iron-carb and py	13 m			Doron Zone	
GRT092-14	Rock	> 10.0		147	schist	iron-carb and py	1.9 m			Doron Zone	
GRT092-15	Rock	0.064			schist	iron-carb and py	12 m			Doron Zone	
GRT092-16	Rock	0.08			schist	iron-carb and py	17 m			Doron Zone	
GRT092-17	Rock	0231			schist	iron-carb and py	1.2 m			Doron Zone	
GRT092-18	Rock	0014			schist	tron-carb and py	10 m			Doron Zone	
GRT092-19	Rock	<0005			schist	iron-carb and py	1.0 m			Doron Zone	
GRT092-20	Rock	0.017			schist	iron-carb and py	2.1 m			Doron Zone	
GRT092-21	Rock	0.005			schist	iron-carb and py	0.9m			Doron Zone	
GRT092-22	Rock	0.016			schlst	iron-carb and py	0.9m			Doron Zone	
GRT092-23	Rock	0.024			schist	iron-carb and py	1.1m	613118	7069645	Doron Zone	end trench 09-02
GRT092-24	Rock	< 0.005			quartz boudin		0.06 m			Doron Zone	within sample T2-21
GRT092-25	Rock	< 0.005			quartz boudin		0.06m			Doron Zone	within sample T2-21
GRT092-26	Rock	2.69			quartz vein	trace pyrite	006 m			Doron Zone	within sample T2-17
GRT093-01	Rock	0006			schist	brotite chlorite	grab	613225	7089751	Doron Zone	start trench 09-03
GRT093-02	Rock	0.113			schist	iron-carb and py	0.6 m			Doron Zone	
GRT093-03	Rock	0.009			schist	Iron-carb and py	09 m			Doron Zone	
GRT093-04	Rock	2.04			quartz vein	trace pyrite	0.04m			Doron Zone	within sample T3-02
GRT093-05	Rock	0903			schist	yellow gouge	0.4 m			Doron Zone	

Sample	Type	AU PPM	Au Che	Au Grav	Desc. 1	Desc. 2	Width	Easting	Northing	Location	
GRT093-06	Rock	< 0005			schist	biotite chlorite	grab			Doron Zone	
GRT093-07	Rock	0008			schist	mult-colour gouge	23 m			Doron Zone	
GRT093-08	Rock	0.219			schist	iron-carb and py	0.5 m			Doron Zone	
GRT093-09	Rock	0.03			schist	blotite chlorite	1.8m			Doron Zone	
GRT093-10	Rock	0.064			schist	mult-colour gouge	1.1m			Doron Zone	
GRT093-11	Rock	0028			schist	biotite chlorite	1.3m			Doron Zone	
GRT093-12	Rock	0.366			schist	Iron-carb and py	1.8m			Doron Zone	
GRT093-13	Rock	0024			schist	iron-carb and py	1.1m			Doron Zone	
GRT093-14	Rock	0.166			schist	iron-carb and py	2.4 m			Doron Zone	
GRT093-15	Rock	0.425			schist	iron-carb and py	2 m			Doron Zone	
GRT093-16	Rock	1265			schist	iron-carb and py	1.0 m			Doron Zone	
GRT093-17	Rock	0.331			schist	iron-carb and py	1.8 m			Doron Zone	
GRT093-18	Rock	004			schist	iron-carb and py	15 m			Doron Zone	
GRT093-19	Rock	0303			schist	iron-carb and py	14 m			Doron Zone	
GRT093-20	Rock	0.758			schist	iron-carb and py	15 m			Doron Zone	
GRT093-21	Rock	0044			schist	iron-carb and py	12 m			Doran Zone	
GRT093-22	Rock	0.011			schist	chlorite quartz	1.3 m			Doron Zone	
GRT093-23	Rock	0.007			schist	chlorite biotite	17 m			Doron Zone	
GRT093-24	Rock	0014			schist	iron-carb and py	0.5m			Doron Zone	
GRT093-25	Rock	0009			schist	iron-carb and py	1.6 m			Doron Zone	
GRT093-26	Rock	0.007	0.006		quartz boudins		2.2m	613173	7069715	Doron Zone	end trench 09-03
GRT093-27	Rock	0.283	0905		quartz vein	trace pyrite	0.04m			Doron Zone	within sample T3-22
GRT093-28	Rock	4.66	7.24		quartz vein	trace pyrite	0.05m			Doron Zone	within sample T3-15
GRT094-01	Rock	0.013			schist	gouge	0.8m	611286	7069182	Kentucky West	start trench 09-04
GRT094-02	Rock	0.026			schist	quartz chlorite	1.5 m			Kentucky West	
GRT094-03	Rock	0.007			schist	quartz chlorite	1.0 m			Kentucky West	
GRT094-04	Rock	0.01			schist	quartz chiorite	0.9 m			Kentucky West	
GRT094-05	Rock	0.024			schist	quartz chlorite	1.6 m			Kentucky West	
GRT094-06	Rock	< 0005			schist	quartz chlorite	0.8m			Kentucky West	
GRT094-07	Rock	0042			schist	quartz chlorte	0.9m			Kentucky West	
GRT094-08	Rock	0.005			schist	quartz chlorite	11 m			Kentucky West	
GRT094-09	Rock	< 0.005			schist	quartz chlorite	2.3 m			Kentucky West	
GRT094-10	Rock	< 0.005			schist	quartz chlorite	1.1 m			Kentucky West	
GRT094-11	Rock	< 0.005			schist	quartz chlorite	1.2 m			Kentucky West	
GRT094-12	Rock	0.007			schist	sheared qiz chlorite	0.9 m			Kentucky West	
GRT094-13	Rock	< 0.005			schist	sheared qtz chlorite	0.3m			Kentucky West	
GRT094-14	Rock	< 0.005			schist	quartz chlorite	2.2 m			Kentucky West	
GRT094-15	Rock	< 0.005			schist	quartz chlorite	1.4 m			Kentucky West	
GRT094-16	Rock	< 0.005			schist	quartz chlorite	2.8 m	611268	7069177	Kentucky West	end trench 09-04
GRT094-17	Rock	0.017			schist	sheared qtz chlorite	0.10 m			Kentucky West	within sample T4-03
GRT095-01	Rock	<0005			schist	chlorite	2.3m	612154	7070182	Doron NW	start trench 09-05

Sample	Type	Au PPM	Au Che	Au Grav	Desc. 1	Desc. 2		Easting	Northing		
GRT095-02	Rock	0006			schist	chlorite quartz	1.0m			Doron NW	qiz boudin present
GRT095-03	Rock	< 0.005			schist	chlorite quartz	1.6 m			Doron NW	
GRT095-04	Rock	<0005			schist	chlorite quartz	1.2 m			Doron NW	qiz boudin present
GRT095-05	Rock	< 0.005			schist	chlorite quartz	2 m			Doron NW	qiz boudin present
GRT095-06	Rock	0.006			schist	chlorite quartz	2.1 m			Doron NW	
GRT095-07	Rock	0.153			schist	Iron-carb and py	0.5 m			Doron NW	
GRT095-08	Rock	<0005			schist	chlorite quartz	2 m			Doron NW	
GRT095-09	Rock	<0005			schist	chlorite quartz	1.3 m			Doron NW	
GRT095-10	Rock	<0005			schist	chlorite quartz	1.2 m			Doron NW	
GRT095-11	Rock	< 0.005			schist	chlorite quartz	2.1 m			Doron NW	
GRT095-12	Rock	< 0.005			schist	chlorite quartz	2.2m			Doron NW	
GRT095-13	Rock	< 0.005			schist	chlorite quartz	13 m			Doron NW	
GRT095-14	Rock	<0005			schist	chlorite quartz	1.8 m			Doron NW	
GRT095-15	Rock	<0005			schist	chlorite quartz	15 m	612101	7070155	Doron NW	end trench 09-05
GRT096-01	Rock	< 0.005			schist	chlorite sencite	0 6m	613166	7069721	Doron Zone	start trench 09-06
GRT096-02	Rock	0006			schist	iron-carb and py	1.1 m			Doron Zone	
GRT096-03	Rock	<0.005			schist	chlorite sericite	04 m			Doron Zone	
GRT096-04	Rock	0058			schist	chlorite sericite	1.6 m			Doron Zone	
GRT096-05	Rock	< 0.005			schist	chlorite sericte	10 m			Doron Zone	
GRT096-06	Rock	<0.005			quartz boudin		14 m			Doron Zone	
GRT096-07	Rock	287			schist	iron-carb and py	13 m			Doron Zone	opposite of T6-09
GRT096-08	Rock	0017			schist	chlorite	2.6m			Doron Zone	
GRT096-09	Rock	0399			schist	ıron-carb and py	1.3m			Doron Zone	opposite of T6-07
GRT096-10	Rock	0248			quartz vein		002 m			Doron Zone	within sample T6-04
GRT096-11	Rock	<0005			quartz vein		005 m	613161	7069712	Doron Zone	end trench 09-06
GRT097-01	Rock	0006			schist	ıron-carb and py	0.8m	613213	7069718	Doron Zone	start trench
GRT097-02	Rock	0155			schist	iron-carb and py	07 m			Doron Zone	
GRT097-03	Rock	0.005			schist	blotite chlorite	1.4m			Doron Zone	
GRT097-04	Rock	0005			schist	blotite chlorite	0.9m			Doron Zone	
GRT097-05	Rock	0037			schist	biotite chlorite	16 m			Doron Zone	
GRT097-06	Rock	<0.005			schist	biotite chlorite	1.4 m			Doron Zone	
GRT097-07	Rock	0.005			schist	botite chlonte	2.0 m			Doron Zone	
GK1097-08	Hock	0.021			schist	buotite chlorite	08 m			Doron Zone	
GK1097-09	Rock	700		15.9	quartz vein	trace pyrite	0.06m			Doron Zone	previously sampled as T1-36
GRT097-10	Rock	0019			schist	botite chlorite	0.8m			Doron Zone	
GRT097-11	Rock	0.011			schist	biotite chlorite	1.6 m			Doron Zone	
GRT097-12	Rock	0087			schist	biotite chlorite	18 m			Doron Zone	
GRT097-13	Rock	< 0.005			schist	blotite chlorite	21 m	613190	7069704	Doron Zone	end trench

Sample Description	Method Analyte Units LOR	WEl-21 Recve Wt kg 002	$\begin{gathered} \text { All-AA23 } \\ \text { Au } \\ \text { ppm } \\ 0005 \end{gathered}$
BGRD09-25		044	0010
BGRD09-26		040	0006
BGRD09-27		048	0043
BGRD09-28		034	<0005
BGRD09-29		028	0010
BGRD09-30		046	0011
BGRD09-31		056	0.007
BGRD09-32		040	0007
BGRD09-33		054	0006
BGRD09-34		052	0.009
BGRD09-35		050	0008
BGRD09-36		026	0006
BGRD09-37		030	<0005
BGRD09-38		042	0012
BGRD09-39		036	<0005
BGRD09-40		088	0.016
BGRD09-41		038	0008
BGRD09-42		042	0006
BGRD09-43		064	0020
BGRD09-44		032	0017
BGRD09-45		038	0021
BGRD09-46		056	0011
BGRD09-47		0.50	0028
BGRD09-48		030	0012
BGRD09-49		074	0033
BGRD09-50		044	0040
BGRD09-51		072	0058
BGRD09-52		066	0027
BGRD09-53		048	0038
BGRD09-54		030	0010
BGRD09-55		046	0023
BGRD09-56		058	0044
BGRD09-57		032	0013
BGRD09-58		0.50	0011
S		028	
S		042	
s		022	,
S		028	'
S		036	
5		026	- ,

$$
\operatorname{yb}^{i s} \mathrm{C}^{i}
$$

ALS Chemex
To: KREFT, BERNIE \#1 LOCUST PLACE

EXCELLENCE IN ANAL YTIGAL CHEMISTRY

 WHITEHORSE YT Y1A 5C4Total \# Pages: 4 (A)
Finalized Date: 28-AUG-2009 Account: KREBER

2103 Dollarton Hw
North Vancouver BC V7H OA7
Phone 6049840221 Fax 6049840218 www alschemex.com
CERTIFICATE OF ANALYSIS VA09086494

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { WEl-21 } \\ \text { Recyd } \mathbf{W} \\ \text { kg } \\ 002 \end{gathered}$	$\begin{gathered} \text { Au-AQ23 } \\ \text { Au } \\ \text { ppm } \\ 0005 \end{gathered}$	Alu-AA23 Au Check ppm 0005	$\begin{gathered} \text { Au-GRA21 } \\ \text { Au } \\ \text { ppm } \\ 005 \end{gathered}$
GRT092-05		104	0009		
GRT092-06		164	0345		
GRT092-07		148	1980		
GRT092-08		150	0029		
GRT092-13		174	0014		
GRT092-14		266	>100		1470
GRT082-15		150	0.064		
GRT092-16		190	0.080		
GRT092-47		164	0231		
GRT092-18		116	0014		
GRT092-19		132	<0005		
GRT092-20		236	0017		
GRT092-21		160	0005		
GRT092-22		100	0016		
GRT092-23		094	0024		
GRT092-24		048	<0005		
GRT092-25		088	<0005		
GRT092-26		214	2.69		
GRT083-01		198	0006		
GRT093-02		130	0113		
GRT093-03		118	0.009		
GRT093-04		128	204		
GRT093-05		090	0803		
GRT093-06		052	<0005		
GRT083-07		194	0008		
GRT093-08		084	0219		
GRT093-09		144	0030		
GRT093-10		108	0064		
GRT093-11		162	0028		
GRT093-12		1.12	0366		
GRT093-13		100	0024		
GRT093-14		126	0166		
GRT093-15		206	0425		
GRT093-18		130	0040		
GRT093-21		162	0044		
GRT093-22		1.40	0011		
GRT093-23		210	0007		
GRT093-24		080	0014		
GRT093-25		126	0009		
GRT093-28		288	0007	0006	

Sample Description	Method Analyte Units LOR	WEI-21 Recvd W kg 002	$\begin{gathered} \text { Au-AA23 } \\ \text { Au } \\ \text { ppm } \\ 0005 \end{gathered}$	Au-GRA21 Aus ppm 005
GRT094-01		086	0013	
GRT094-02		162	0026	
GRT094-03		120	0007	
GRT094-04		080	0010	
GRT094-05		110	0024	
GRT094-06		086	<0005	
GRT094-07		114	0042	
GRT094-08		146	0005	
GRT094-09		120	<0005	
GRT094-10		140	<0 005	
GRT094-11		134	<0005	
GRT094-12		166	0007	
GRT094-13		192	<0005	
GRT094-14		200	<0005	
GRT094-15		160	<0005	
GRT094-16		190	<0005	
GRT094-17		038	0017	
GRT095-01		114	<0005	
GRT095-02		092	0006	
GRT095-03		184	<0005	
GRT095-04		120	<0005	
GRT095-05		146	<0005	
GRT095-06		146	0006	
GRT095-07		076	0153	
GRT095-08		120	<0005	
GRT095-09		098	<0005	
GRT095-10		150	<0005	
GRT095-11		204	<0005	
GRT095-12		226	<0005	
GRT095-13		180	<0005	
GRT095-14		218	<0005	
GRT095-15		246	<0005	
GRT096-01		098	<0005	
GRT096-02		122	0006	
GRT096-03		084	<0005	
GRT096-04		142	0058	
GRT096-05		192	<0005	
GRT096-06		154	<0005	
GRT096-07		258	287	
GRT096-08		264	0017	

North Vancouver BC V7H OA7
Phone 6049840221 Fax 6049840218 www alschemex com

