YMIP Technical Report

on the

Outer Znk Project Watson Lake Mining District Mapsheets 105J16 Center of Work: Latitude 62°53'57" N, Longitude 130°9'53" W

> Prepared for: Eagle Plains Resources Ltd. Suite 200, 16-11th Ave S. Cranbrook, BC, V1C 2P1

> > By

Aaron Higgs, B.Sc. (Geol) Bootleg Exploration Inc.

> Date March 16, 2010

SUMMARY

The target was identified due to its potential to host Intrusion related gold mineralization and polymetallic veining. There are anomalous silt samples in Au-Ag-Cu-As-Pb that are derived from both the pluton and the surrounding sediments. Most of these anomalous values are concentrated in the SE zone of the pluton. There are numerous glaciers within the target which have likely receded and could reveal undiscovered mineralization.

The Outer Znk target is located within the Watson Lake mining district, 40 km south-southwest of MacMillan Pass and 150 km northeast of Ross River. The only claims in the area are the Znk claims, held by Eagle Plains Resources Ltd. These claims cover a number of SEDEX style mineralization occurrences.

Three and a half days were spent on the project area between the dates of July 27 and August 1, 2009. A fly camp was set up on a lake in a valley on the SE edge of the intrusive stock, at 439977E, 6974051N. Work in the area included prospecting, mapping and historical assessment. The work focused on the margins of the pluton in contact with the Road River sediments, the areas around the receding glaciers and the historic work on the Costin showing and expired Wilson Claims.

A total of 12 rock samples were taken during the exploration program. Of these samples, the best result came from a sample of a boulder of the granodiorite at the toe of the glacier just north of camp that contained cpy-gn-py-po+/-mo in quartz and sulphide veins as well 8-10% sulphides within the instrusive (AHOZR001). This sample returned values of 959 ppm Cu, 0.65% Pb, 0.13% Zn, 69 ppm Ag and 220ppb Au. A sample of a sedimentary unit with abundant pyrite taken near the historic Costin showing returned valued of 242 ppm Cu, 0.47% Pb, 364 ppm Zn, 36.2 ppm Ag and 30 ppb Au (NTOZR002). The historic Wilson claims, the next bowl to the north from the sample NTOZR002, contained a small plug of intrusive containing 3-20 cm bull qtz veins. These were mostly barren, save for a few which had coarse grained molybdenite books. A grab sample of the molybdenite bearing quartz veins returned 0.42% Mo (LJOZR004). No other samples returned significant values for the elements of interest.

The exploration program did result in some interesting discoveries including a highly mineralized intrusive float boulder that returned anomalous values for Au, Ag, Pb, Cu and Zn. This sample could not be followed up due to the glacier and difficult terrain surrounding it. There was minor quartz veining discovered in the bowl east of camp but the extent of the veining was limited and the mineralization was limited to pyrite and rare molybdenite. There wasn't any visible alteration assemblages within the sedimentary units surrounding the intrusive that would indicate a large mineralizing system. No further work is recommended on the target area. One would have to wait until the glaciers recede more significantly (which may happen sooner than later judging by how much melting was observed). This would make working in the area much more accessible and could reveal the mineralization we were seeking.

Total YMIP applicable expenditures for the program were \$27,597.85.

Table of Contents

Introduction	1
Location and Access	1
Geological	3
Regional Geology Description	3
Exploration Program	6
Introduction	6
Program Description	6
Exploration Results	6
Geological Mapping	6
Geochemistry	7
Pictures	11
Conclusions	13
Recommendations	13

List of Figures

Figure 1 – Property Location map	2
Figure 2a – Regional Geology Map	4
Figure 2b – Regional Geology Map Legend	5
Figure 3 – Geological Mapping and Sample Location Map	8
Figure 4 – Sample Geochemistry – XRF (Cu, Mo, Pb)	9
Figure 5 – Sample Geochemistry – Lab (Au, Ag)	.10

LIST OF APPENDICES

Appendix I – Statement of Qualifications Appendix II – Statement of Expenditures Appendix III – Sampling Techniques Appendix IV – Sample Descriptions and Locations Appendix V – Analytical Certificates Appendix VI – Bedrock Geological Mapping Appendix VII – XRF

INTRODUCTION

Location and Access

The Outer Znk target is located within the Watson Lake mining district, 40 km south-southwest of MacMillan Pass and 150 km northeast of Ross River. It is found in the NTS map sheet 105J16 with a centre lat and long point of 62°53'N, 130°16'W. The only claims in the area are the Znk claims, held by Eagle Plains Resources Ltd. These claims cover a number of SEDEX style mineralization occurrences.

Access to the target area was by helicopter. The crew drove to a staging area on the Canol Road, located just ~15 km to the northwest from the centre of the target area and flew into and out of the fly camp from there. The terrain in the project area is very steep and includes many active glaciers. Rock exposure is very high.

Bootleg Exploration Inc.

GEOLOGICAL

Regional Geology Description

Most of the target is underlain by basinal sediments of the Road River group, black shale and chert with minor silty limestone, along with Earn Group basinal units, mostly black shale with minor carbonate units. These sediments are intruded by the Itsi pluton, a mid-Cretaceous quartz monzonite stock.

Geology Legend * After S.P. Gordey and A.J. Makepeace, 1999 ~~~ Fault - Defined ~ Fault - Approximate Fault - Extrapolated **Contact - Assumed** Contact - Observed **Contact - Inferred** Q: QUATERNARY: Quaternary unconsolidated glacial, glaciofluvial and glaciolacustrine Q deposits; fluviatile silt, sand, and gravel, and local volcanic ash, in part with cover of soil and organic deposits mKgS: SELWYN SUITE: resistant, blocky, fine to coarse grained equigranular to porphyritic (K-feldspasr) biotite mKgS quartz monzonite and granodiorite and minor quartz diorite; minor leuco-quartz monzonite and syenite (Selwyn Suite) CPMC: MOUNT CHRISTIE: Carboniferous to Permian burrowed, interbedded greenish grey cherty shale and green shale; thin to medium bedded, light grey-green to CPMC black chert; black siliceous slate and siltstone; minor quartzite. limestone and dolostone: locally abundant. large grey barite nodules DME2: EARN: silvery blue weathering black shale, argillite, cherty argillite and thin bedded chert; nodular and bedded barite; DME2 rare limestone (Earn Gp., Portrait Lake and Prevost ; may locally include beds as old as Early Devonian) ODR: ROAD RIVER - SELWYN: black shale and chert (1) overlain by orange siltstone (2) or buff platy limestone (3); locally contains beds as old as Middle Cambrian (4); correlations ODR with basinal strata in Richardson Mountains include: ODR1 with CDR2 (upper part) and ODR2 with CDR4 (Road River Gp.)

EXPLORATION PROGRAM

Introduction

The target hosts coincident anomalous silt signatures in the elements Au, Ag, Cu, Pb, Sb and As. There are many anomalous values coming from both the Itsi pluton as well as sediments on the margins of the pluton. There are a number of glaciers over the Itsi pluton which recently have likely receded significantly, and thus might have revealed previously hidden mineralization. The Costin historic mineral showing, located in the eastern part of the target, is an occurrence of polymetallic veining that was briefly investigated in the 1980. Although the small program didn't return extremely encouraging results, there remains the potential for further mineralization of this type.

Program Description

Five days were spent on the project area between the dates of July 27 and August 1, 2009. A fly camp was set up on a lake in a valley on the SE edge of the intrusive stock, at 439977E, 6974051N. Work in the area included prospecting, mapping and historical assessment. The work focused on the margins of the pluton in contact with the Road River sediments, the areas around the receding glaciers and the historic work on the Costin showing and expired Wilson Claims.

A total of 12 rock samples were taken during the exploration program. These samples were analyzed using the Niton XRF analyzer as well as sent to Stewart Group analytical laboratories in Kamloops for analysis using the analytical packages BICP-11 as well as BAUFG-32 and BAGFG-40.

Total YMIP applicable expenditures for the program were \$27,597.85.

EXPLORATION RESULTS

Geological Mapping

The geological mapping program was successful in better defining the contact between the Itsi pluton and the Road River sediments. The extents of the glaciers were also noted and described, adjusting the previous mapped extents.

The Itsi pluton in the area consists of an equigranular medium grained quartz monzonite-granodiorite with \sim 8-10% mafics consisting of biotite and 60/40 split of plagioclase feldspar and quartz. There was little to no K-feldspar in the rocks. The sediments in the area consist of black chert, black shale and siltstone with minor grey silty limestone beds. The black shale and siltsone units were fine grained , bedded and hornsfelsed, more intensely closer to the granodiorite, containing common 2-5% pyrite, and locally 2-3% pyrrhotite. There were rare occurrences of conglomerate units and felsic dykes intruding the sedimentary units. Alteration was limited to the mineralized boulder found in the intrusives and minor contact metamorphism on the margins of the pluton.

The results of the geologic mapping are found in Figure 3.

Geochemistry

Of the rock samples taken, the best result came from a sample of a boulder of the granodiorite at the toe of the glacier just north of camp that contained cpy-gn-py-po+/-mo in quartz and sulphide veins as well 8-10% sulphides within the instrusive (AHOZR001). This sample returned values of 959 ppm Cu, 0.65% Pb, 0.13% Zn, 69 ppm Ag and 220 ppb Au. There was some gossans on the cliffside visible but were unreachable due terrain.

In the same bowl but not the same location as the historic Costin showing, mo-cpy-gn veining was found in the intrusive. The mineralization was found in small vnts of larger barren bull veins. A sample of a sediment unit with abundant pyrite taken near this intrusive plug returned valued of 242 ppm Cu, 0.47% Pb, 364 ppm Zn, 36.2 ppm Ag and 30 ppb Au (NTOZR002).

The historic Wilson claims, the next bowl to the north from the sample NTOZR002, contained a small plug of intrusive containing 3-20 cm bull quartz veins. These were mostly barren, save for a few which had coarse grained molybdenite books. A grab sample of the molybdenite bearing quartz veins returned 0.42% Mo (LJOZR004). No other samples returned significant values for the elements of interest.

The locations of the samples can be found in Figure 3 and the geochemical results in Figures 4 and 5.

Outer Znk Technical Report

Pictures

Camp Location, looking SE

Terrain above camp, looking west.

Bootleg Exploration Inc.

Outer Znk Technical Report

Intrusive plug at location of historic Wilson Claims, looking NE

Highly mineralized intrusive boulder, Sample AHOZR001

Conclusions

The target was identified due to its potential to host Intrusion related gold mineralization and polymetallic veining. There are anomalous silt samples in Au-Ag-Cu-As-Pb that are derived from both the pluton and the surrounding sediments. Most of these anomalous values are concentrated in the SE zone of the pluton. The numerous glaciers in the target area have receded compared to the previous mapped extent of them but not by very much. They remain a formidable obstacle to exploration efforts in the area, however beautiful they may be.

The exploration program did result in some interesting discoveries including a highly mineralized intrusive float boulder that returned anomalous values for Au, Ag, Pb, Cu and Zn. This sample could not be followed up due to the glacier and difficult terrain surrounding it. There was minor quartz veining discovered in the bowl east of camp but the extent of the veining was limited and the mineralization was limited to pyrite and rare molybdenite. There wasn't any visible alteration assemblages within the sedimentary units surrounding the intrusive that would indicate a large mineralizing system.

RECOMMENDATIONS

No further work is recommended on the target area. One would have to wait until the glaciers receed more significantly (which may happen sooner than later judging by how much melting was observed). This would make working in the area much more accessible and could reveal the mineralization we were seeking.

Appendix I – Statement of Qualifications

AARON A. HIGGS, B. Sc.

I, Aaron Ashwell Higgs, B.Sc. do hereby certify that:

I am currently employed as a Project Geologist by Bootleg Exploration Inc., with business location of Suite 200, 16-11th Ave S., Cranbrook, BC, V1C 2P1 (Telephone: 250-426-0749, email: <u>aah@eagleplains.com</u>)

I graduated with a B.Sc. degree in Geology from the University of British Columbia in 2005.

I have worked as a Geologist in Western Canada for 4 years since my graduation from university.

I am responsible for the preparation of this Technical Report entitled "YMIP Technical Report on the Outer Znk Project."

Dated at Cranbrook, British Columbia, Canada this16th day of March, 2010.

Respectfully submitted

Aaron A. Higgs

Appendix II - Statement of Expenditures

2009 EX	penaitures	
1	no daily living allowance , accept actual expenses instead	
2		
	Truck Rental	\$500.00
	Truck (478 km @ \$ 0.30 /km)	\$143.40
		\$6,289.00
3	Analyses / Assay Costs	\$479.86
	Other Expenses (groceries, fuel, field consumables, freight)	\$1,241.89
	15% Handling fees	\$343.70
Λ	Equinment Bentale / Sunnline	
•	Niton XRF	\$1.875.00
	Field supplies for crew, GPS, pack, vests, first aid, palm, hammer (5)	\$875.00
	Hand Held Radios (5)	\$250.00
	Computer (2)	\$100.00
	Printer	\$50.00
	Sat, phone (2)	\$150.00
	5-ton encolsed trailer	\$500.00
· -·	Chain Saw	\$50.00
	Small Gas Generator	\$225.00
	Large Gas Generator	\$300.00
	Camp Rental	\$750.00
	Shot Guns (2)	\$100.00
	Digital Cameras (2)	\$100.00
	Satellite Internet	\$50.00
	Wages for field work	
	Aaron Higgs, Project Geologist	\$2,500.00
	Bronwyn Wallace, Senior Geologist	\$2,250.00
	Glen Hendrickson, GIS Technician	\$2,250.00
	Nathan Taylor, Geological Technician	\$1,875.00
	Lewis Jones, Geological Technician	\$1,750.00
13	Report Preparation, data analysis and compilation	
	Aaron Higgs, Project Geologist	\$1,250.00
	Glen Hendrickson, GIS Technician	\$1.350.00

İ.

1

Appendix III – Geochemical Protocol

÷

3.1 Field Sampling Techniques 3.2 Analytical Procedures

Appendix 3.1 Field Sampling Techniques

Rock samples were collected in the field by placing 1-3 kg of material in heavy grade plastic sample bags with the sample number written on both sides in permanent marker. Each sample bag was then sealed with a plastic cable tie and samples were transported back to camp at the end of each day. A representative piece of each sample was often collected and returned to camp for further examination in the event of an interesting or exceptional analytical result.

Soil samples were collected from the B-horizon wherever possible. Silt samples were collected from active creeks whenever possible. Both soil and silt samples were placed and sealed into brown paper kraft bags. Samples were dried in the field daily, weather permitting. Relevant details pertaining to the soil and silt samples such as location parameters, depth, horizon, quality, were recorded by the sampler in the field.

Sample sites were marked in the field with orange or pink arctic-grade flagging and an aluminum tag, both having been marked with the appropriate sample number. Sample locations were determined by hand-held GPS set to report locations in UTM coordinates using the North American datum established in 1983 (NAD 83).

All surface geochemical samples were collected by company geologists or sampling technician employees trained by Bootleg staff geologists. At the end of each day samples were organized, dried and catalogued and then placed in poly woven "rice" bags. The samples were maintained as a single group before undergoing XRF analysis in the case of soils and silts or crushing and pulverizing at the Alex Stewart Group Prep lab in Whitehorse in the case of rocks before undergoing XRF analytis.

3.2 Analytical Procedures

Eco Tech Laboratory Limited 10041 Dallas Drive Kamloops, British Columbia V2C 6T4 Tel + 250 573 5700 Tel + 1 877 573 5755 Fax + 250 573 4557 www.stewartgroupglobal.com

Eco Tech Laboratory Ltd. is registered for ISO 9001:2008 by QMI Quality registrars for the "provision of assay, geochemical and environmental analytical services". Eco Tech also Participates in The Canadian Certified Reference Materials Project (CCRMP) testing program annually.

Samples (minimum sample size 250g) are catalogued and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Soils are prepared by sieving through an 80-mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.

Rock samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

A 30 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (These charges may be adjusted with borax or silica based on the sample). Flux weight per fusion is 120g. Purified Silver Nitrate is used for inquartation. The resultant dore bead is parted and then digested with nitric and hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument). Gold detection limit on AA is 0.03-100 g/t. Any gold samples over 100g/t will be run using a gravimetric analysis protocol.

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment

Samples are digested in an aqua regia solution for 45 minutes. They are bulked with de-ionized water, and an aliquot of this is taken for analysis a Thermo Scientific X series II ICP-MS unit. All synthetic standards are purchased and verified by 3 independent analysts and are used for instrument calibration before each and every ICP-MS run.

A 2-3 point standardization curve is used to check the linearity (high and low). Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift or instrumentation issues occurred during the analysis of the sample(s). Repeat samples (every 10 or less) and re-splits (every 35 or less) are also run to ensure proper weighing and digestion occurred.

Results are collated by computer and are printed along with accompanying quality control data (resplits and standards). Results are printed on a laser printer and are faxed and or mailed to the client.

Detection Limits:

-			
Ag	0.02-100	Мо	0.01-2000
A	0.01-10%	Na	0.001-10%
As	0.1-10000	Ni	0.1-10000
в	1-2000	Ρ	0.001-5%
Ba	0.5-10000	Pb	0.01-10000
Bi	0.02-2000	S	0.02-10%
Ca	0.01-40%	Sb	0.02-2000
Cd	0.01-2000	Sc	0.1-100
Co	0.1-2000	Se	0.1-100
Cr	0.5-10000	Sr	0.5-10000
Cu	0.01-10000	Те	0.02-1000
Fe	0.01-40%	Th	0.1-2000
Ga	0.1-10000	iT	0.001-10%
Hg	5-10000 ppb	TI	0.02-1000
ĸ	0.01-10%	U	0.1-2000
La	0.5-10000	V	2-10000
Mg	0.01-30%	W	0.1-100
Mn	1-10000	Zn	0.1-10000

units are in ppm, unless otherwise stated

A 15 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (These charges may be adjusted with borax or silica based on the sample). Flux weight per fusion is 120g. Purified Silver Nitrate is used for inquartation. The resultant dore bead is parted and then digested with nitric and hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument).

Over-range geochem values (Detection limit 5-1000ppb) for rocks are re-analyzed using gold assay methods (see below).

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment.

A 0.5 gram sample is digested with a 3:1:2 (HCI: HNO_3 : H_2O) solution in a water bath at 95 °C. The sample is then diluted to 10ml with water. All solutions used during the digestion process contain beryllium, which acts as an internal standard for the ICP run. The sample is analyzed on a Thermo IRIS Intrepid II XSP ICP unit. Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift occurred or instrumentation issues occurred during the run procedure. Repeat samples (every batch of 10 or less) and re-splits (every batch of 35 or less) are also run to ensure proper weighing and digestion occurred.

Results are collated by computer and are printed along with accompanying quality control data (repeats, re-splits, and standards). Any of the base metal elements (Ag, Cu, Pb, Zn) that are over limit (>1.0%) are immediately run as an ore grade assay (procedure included in this document).

ICP-AES Detection Limits:

Ag	0.2ppm	Мо	1ppm
Α	0.01%	Na	0.01%
As	5ppm	Ni	1ppm
Ba	5ppm	Р	10ppm
Bi	5ppm	Pb	2ppm
Ca	0.01%	Sb	5ppm
Cd	1ppm	Sn	20ppm
Со	1ppm	Sr	1ppm
Cr	1ppm	Ti	0.01%
Cu	1ppm	U	10ppm
Fe	0.01%	V	1ppm
La	10ppm	W	10ppm
Mg	0.01%	Y	1ppm
Mn	1ppm	Zn	1ppm

SILVER ORE GRADE ASSAY (AQUA REGIA DIGEST) (BAGFA-40)

Samples and standards undergo an oxidizing digestion in 200 ml phosphoric flasks with final solution in aqua regia solution. Appropriate standards and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet.

The digested solutions are made to volume with RO water and allowed to settle. An aliquot of the sample is analyzed on a Perkin Elmer/Thermo S-Series AA instrument. (Detection limit 0.01 % AA)

Instrument calibration is done by verified synthetic standards, which have undergone the same digestion procedure as the samples. Standards used narrowly bracket the absorbance value of the sample for maximum precision.

Results are collated and are printed along with accompanying quality control data (repeats, re-splits, and standards). Results are emailed, faxed or mailed to the clients.

Appendix IV – Sample Locations and Descriptions

-

4.1 Rock Samples

Appendix 4.1 - Rock Sample Locations and Descriptions

Sample Number	Sampler	Date (m/d/y)	UTM - East	UTM - North Channel (m) Channel (Az) Map Unit	Rock Type - Major	Rock Type - Munor	Colour - Fresh	Colour - Weathered	Grain Size	Texture	Metamorphic Inducator Muneralization - Major Minera	lization - Minor	Mineralization Style Min.	% Alteration	Alt. Degree	Rock Description	
AHOZR001	AH	28/07/2009	439060	6974755	granodionte		yerg	rusty	medium				0		0		
BWOZR001	BW	30/07/2009	441.150	6974415	Mudstone		dark	rusty	fine	bedded			0				
BWOZR002	BW	30/07/2009	441366	6973900	Mudstone	• • • •	dark	rusty	fine	bedded			0				
LJOZR001	ų	28/07/2009	439638	6973873	granite					-	ру	сру	Blebby				
LJOZR002	 ພ	28/07/2009	439209	6973334	quartz wacke		blue				ро		Blebby				
LJOZR003	IJ	30/07/2009	441286	6974911	siltstone		blue		fine		Py.		Disseminated				
LJOZR004	L	29/07/2009	441885	6975170	Granodiorite		beige	greyish	fine-medium				0				
LJOZR005	IJ	31/07/2009	439989	6975981	granodionte				medium-coarse		ро						
LJOZR006	IJ	31/07/2009	440183	6976114	granodiorite				coarse								

-

Appendic V – Analytical Certificates

5.1 Rock Samples

.

,

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada T + 1 250 573 5700 E + 1 250 573 4557 T F + 1 877 573 5755

3-Feb-10

CERTIFICATE OF ASSAY AK 2010-0015-2

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 9 Sample Type[.] Rock **Project: OZ Shipment #: OZ09-002** Submitted by: Chris Gallagher

		Mo
ET #.	Tag #	(%)
4	8105-6	0.420
4	8105-6	0.420

QC DATA:

Standard: MP-2

0.281

. .

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw XLS/10 2-Feb-10

Stewart Group ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2010-0015

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

Phone. 250-573-5700 Fax 250-573-4557

> No. of samples received 9 Sample Type Rock Project: OZ Shipment #: OZ09-002 Submitted by Chris Gallagher

Values in ppm unless otherwise reported

Et #.	Tag #	Ag A	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
1	8105-1	>30 (0.27	20	10	110	0 70	35	29	49	959	>10	<10	0.66	833	<1	0.08	7	270	6464	10	<20	64	<0.01	<10	8	10	4	1333
2	8105-2	0.2 (0.04	<5	20	<5	<0.01	<1	<1	236	4	0.28	<10	<0 01	20	504	0 01	6	<10	8	<5	<20	<1	<0.01	<10	3	<10	<1	7
3	8105-4	042	2 62	35	45	<5	0 77	2	82	67	338	6 47	30	1.29	435	14	0.12	188	1070	18	<5	<20	54	0 12	<10	83	<10	6	44
4	8105-6	<02 (0 04	10	30	<5	<0 01	<1	<1	211	4	0 31	<10	0.01	18	4235	<0 01	6	<10	<2	<5	<20	<1	<0 01	<10	4	<10	<1	<1
5	8105-8	<0.2	1.15	<5	60	<5	4 75	<1	4	50	29	2 28	40	0.30	5091	8	0.02	2	590	10	<5	60	91	0 02	<10	12	<10	15	43
6	8105-9	22 (0.32	<5	975	<5	0 03	12	1	141	25	0.61	<10	<0.01	71	2	0 04	11	<10	864	<5	<20	7	<0 01	30	2	<10	9	447
7	8105-10	06 (0.71	5	20	<5	1 28	3	46	45	157	5 66	10	0.24	1809	<1	0.02	108	520	10	<5	<20	70	0.02	<10	8	<10	8	104
8	8105-11	262	2 38	30	10	<5	1 02	5	100	67	352	>10	<10	0.34	80	<1	0 04	316	260	24	10	<20	42	0 04	<10	26	<10	2	27
9	8105-12	>30 (0.14	50	20	45	0 38	15	12	107	242	5 73	<10	0.13	399	4	0.02	64	560	4716	20	240	16	<0.01	<10	9	<10	5	364
<u>QC DATA:</u> Repeat:	i																												
1	8105-1	>30 (0.27	20	10	110	0 71	35	28	48	938	>10	<10	0.65	842	<1	0 07	7	280	6512	10	<20	63	<0.01	<10	8	10	4	1349
Standard:	•																												
Pb129a		118 (0.87	5	65	<5	0 44	56	6	12	1442	1 57	<10	071	347	2	0 03	5	410	6218	15	<20	32	0 03	<10	20	<10	2 9	3 975

Page 1 of 1

ICP: Aqua Regia Digest/ICP AES Finish Ag: Aquia Regia Digest/AA Finish

Man

ECO TECH LABORATORY LTD. Norman Monteith B C. Certified Assayer

NM/nw di/2_12S XLS/10 Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2010-0015

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 9 Sample Type: Rock **Project: OZ** Shipment #: OZ09-002 Submitted by: Chris Gallagher

		Au	Au	Ag	Ag	
ET #.	Tag #	_ (g/t)	oz/t)	(g/t)	oz/t)	
1	8105-1	0.22	0.006	68.9	2.01	
2	8105-2	0.04	0.001	0.2	0.01	
3	8105-4	0.03	0.001	0.4	0.01	
4	8105-6	<0.03	<0.001	<0.2	<0.01	
5	8105-8	0.03	0.001	<0.2	<0.01	
6	8105-9	<0.03	<0.001	2.2	0.06	
7	8105-10	<0.03	<0.001	0.6	0.02	
8	8105-11	0.09	0.003	2.6	0.08	
9	8105-12	0.03	0.001	36.2	1.06	
QC DATA:						
Repeat:						
1	8105-1			68.8	2.01	
2	8105-2	0.03	0.001			
Standard:						
OX167		1.82	0.053			
Pb129				22.9	0.67	
Pb104				106	3.09	

NM/nw XLS/10

____ ~ ~ ~

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request Registered Office Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Capada 1 of 1

19-Jan-10

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupgiobal.com

CERTIFICATE OF ANALYSIS AK 2010-0078

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 67 Sample Type: Pulps Shipment #: YIMP10-001 Submitted by: Chris Gallagher

		Au	
ET #.	Tag #	ppb	
1	8087-1	5	
2	8087-2	<5	
3	8087-3	25	
4	8087-4	5	
5	8087-6	<5	
6	8087-7	<5	
7	8087-8	<5	
8	8087-10	<5	
9	8087-11	5	
10	8087-12	5	
11	8087-13	<5	
12	8087-14	10	
13	8087-15	10	
14	8087-16	15	
15	8087-17	80	
16	8088-1	20	
17	8088-2	>1000	
18	8088-3	20	
19	8088-4	15	
20	8088-5	10	
21	8088-6	65	
22	8088-7	5	
23	8088-10	35	
24	8088-12	10	
25	8088-14	<5	
26	8088-15	5	
27	8088-16	30	
28	8088-17	5	
29	8088-18	5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office Eco Tech Laboratory Ltd 2953 Shuswap Road, Kamloops, BC V2H 159 Canada Page 1 of 3

3-Feb-10

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toli Free + 1 877 573 5755 www.stewartgroupglobal.com

BOOTLEG	EXPLORATION INC.	NK10-0078	3-Feb-10
ET #	Tog #	Au	
<u> </u>	1 ay #	рро	
30	8088-19	<5	
32	8088-21	15	
33	2020-21	15	
34	0000-22	<5	
34	8088-23	65	
35	8088-24	15	
30	8088-25	5	
37	8088-26	<5	
38	8088-28	<5	
39	8088-29	<5	
40	8101-1	5	
41	8101-4	<5	
42	8101-7	45	
43	8101-11	<5	
44	8104-1	<5	
45	8104-2	5	
46	8104-3	5	
47	8104-4	5	
48	8104-5	<5	
49	8104-7	10	
50	8104-8	<5	
51	8104-12	5	
52	8104-14	<5	
53	8104-17	<5	
54	8104-19	20	
55	8105-3	10	
56	8105-5	10	
57	8105-7	5	
58	8106-1	5	
5 9	8106-2	10	
60	8106-3	<5	
61	8106-4	<5	
62	8106-5	10	
63	8106-6	<5	
64	8106-7	5	
65	8106-8	<5	
66	8106-10	5	
67	8106-11	<5	
QC DATA: Repeat:			
1	8087-1	<5	
10	8087-12	5	
15	8087-17	60	
20	8088-5	5	
2.V	0000-0	J	

All business is undertaken subject to the Company's General Conditions of Business which are available on request Registered Office Eco Tech Laboratory Ltd 2953 Shuswap Road, Kamloops, BC V2H 159 Canada Page 2 of 3

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 159 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

BOOTLEG EXPLORATION INC. AK10-0078

3-Feb-10

		Au	
ET #.	Tag #	ppb	
21	8088-6	70	сан на на селото и се странице и селото на <u>селото на селото на селото на селото на селото на селото на селото</u> на Селото на селото на се
28	8088-17	<5	
34	8088-23	70	
40	8101-1	5	
45	8104-2	10	
54	8104-19	15	
63	8106-6	<5	
Standard:			
OXE74		635	
OXE74		630	

FA Geochem/AA Finish

NM/nw XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

- - - - - - -

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tei + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2010-0078

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 4-Feb-10

No. of samples received: 67 Sample Type: Pulps **Shipment #: YIMP10-001** Submitted by: Chris Gallagher

ET #.	Tag #	Au (g/t)	Au oz/t)	
17	8088-2	1.16	0.034	
QC DATA: Repeat: 17	8088-2	1.08	0.031	
Standard: OXI67		1.84	0.054	

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw XLS/10 4-Feb-10

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2010-0078

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

Phone: 250-573-5700 Fax : 250-573-4557

> No of samples received: 67 Sample Type. Pulps Shipment #: YIMP10-001 Submitted by. Chris Gallagher

Values in ppm unless otherwise reported

Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Ρ	Pb	Sb	Sn	Sr	Ti %	U	V	W	<u>Y</u>	Zn
8087-1	0.2 2.42	<5	190	<5	1.15	<1	20	107	110	3.18	<10	2 15	424	1	0.13	46	1430	10	<5	<20	138	0.20	<10	109	<10	7	78
8087-2	<02177	<5	70	<5	1.59	<1	12	96	9	2.39	<10	1 19	630	1	0.12	19	690	6	<5	<20	83	0 15	<10	81	<10	3	46
8087-3	11.4 0.34	10	15	1245	0.69	<1	2	180	17	0.57	<10	0.03	51	<1	0 01	11	10	48	5	<20	436	<0.01	<10	3	<10	<1	4
8087-4	03 1.80	<5	20	<5	1.13	<1	44	190	443	4.71	<10	1 08	198	1	0.21	205	1240	8	<5	<20	93	0 14	<10	59	<10	4	24
8087-6	<02173	<5	40	<5	3.44	<1	38	441	85	2.63	<10	3 90	408	<1	0.01	557	810	2	5	<20	345	0.02	<10	46	<10	2	20
8087-7	<02 1.15	<5	15	<5	2 58	<1	12	54	17	2 45	<10	071	427	2	0.07	6	2320	4	<5	<20	42	0.14	<10	57	<10	10	51
8087-8	<0.2 4.23	<5	45	<5	4.27	<1	23	80	123	2.95	<10	1.32	387	2	0.04	19	400	10	<5	<20	65	0.11	<10	118	<10	2	31
8087-10	<0.2 3.72	<5	295	<5	2.12	<1	18	285	25	2.94	<10	4 80	557	2	0.18	240	890	10	5	<20	139	0.18	<10	95	<10	5	72
8087-11	03 2.35	<5	25	<5	1 28	5	32	182	135	4.59	<10	2 08	1018	1	0.20	100	1650	8	<5	<20	87	0.17	<10	115	<10	6	720
8087-12	<0.2 1 46	20	70	<5	0.67	6	108	84	87	3.71	<10	1.01	1282	1	0.09	47	910	10	<5	<20	67	0.11	<10	56	<10	4	288
8087-13	<0.2 2 83	<5	40	<5	2.15	<1	39	185	93	3.88	<10	2 95	502	2	0.20	116	1550	6	<5	<20	109	0.15	<10	116	<10	5	53
8087-14	<0.2 0.88	75	25	<5	2.48	<1	13	222	7	1 00	<10	1.47	384	<1	0.02	120	400	<2	<5	<20	80	0.07	<10	41	<10	3	23
8087-15	<02 4 25	<5	30	<5	3 03	<1	26	63	33	3 46	<10	2 40	559	2	0 14	27	510	10	<5	<20	95	0.11	<10	80	<10	2	45
8087-16	<0.2 2.84	<5	55	<5	1.37	<1	20	48	310	3 41	<10	1.73	292	2	0.34	39	1750	8	<5	<20	110	0 13	<10	96	<10	4	29
8087-17	8.0 0.08	15	15	135	0.13	<1	4	218	6	0.40	<10	0 07	70	<1	0 01	46	10	14	5	<20	74	<0.01	<10	6	<10	<1	6
8088-1	35017	<5	15	5	0.08	1	4	164	38	1 09	<10	0 02	1383	9	0 01	5	150	182	<5	<20	9	<0 01	<10	4	<10	3	190
8088-2	1.6 1.03	130	80	<5	0 69	<1	5	58	159	3.32	20	0.29	267	6	0.05	2	720	152	5	<20	26	<0 01	<10	18	<10	13	133
8088-3	02 1.60	<5	60	<5	0.48	<1	4	56	15	2 17	<10	0.48	504	3	0 14	4	580	16	<5	<20	72	0 02	<10	23	<10	4	104
8088-4	<0.2 2.41	15	60	<5	1.03	<1	5	67	15	1.93	<10	0.41	343	8	0.16	5	580	14	<5	<20	71	<0 01	<10	15	<10	3	87
8088-5	0.6 1 62	20	10	<5	1.94	<1	28	89	84	5.90	<10	2 05	1347	<1	0.06	47	20	6	10	<20	51	0.27	<10	211	<10	4	27
8088-6	0.2 1 19	35	70	<5	0.20	<1	<1	65	17	2.14	<10	0.44	107	1	0.04	4	680	12	10	<20	44	<0.01	<10	8	<10	2	30
8088-7	<0.2 0.74	45	<5	<5	6.81	<1	16	98	40	3.84	<10	1.35	662	<1	0.02	19	40	4	<5	<20	63	0.13	<10	127	<10	4	27
8088-10	0.3 2.21	<5	65	<5	1.38	<1	4	62	61	1.70	10	0.23	301	2	0.25	3	620	18	<5	<20	147	0.04	<10	22	<10	4	45
8088-12	<0.2 1.24	55	10	<5	>10	<1	23	140	14	5.47	<10	1.80	1091	2	0.02	26	50	6	<5	<20	91	0.13	<10	159	<10	5	62
8088-14	<0.2 0 52	70	<5	<5	5.62	<1	17	144	4	4.59	<10	0.67	536	<1	0.02	31	30	<2	<5	<20	70	0.09	<10	121	<10	3	15
	Tag # 8087-1 8087-2 8087-3 8087-6 8087-6 8087-7 8087-8 8087-10 8087-11 8087-12 8087-13 8087-14 8087-15 8087-16 8087-17 8088-1 8088-2 8088-3 8088-5 8088-6 8088-10 8088-12 8088-14	Tag # Ag Al % 8087-1 0.2 2.42 8087-2 <0.2	Tag #Ag Al %As $8087-1$ 0.2 2.42 <5 $8087-2$ <02 177 <5 $8087-3$ 11.4 0.34 10 $8087-3$ 11.4 0.34 10 $8087-6$ 02 173 <5 $8087-6$ <02 173 <5 $8087-7$ <02 1.15 <5 $8087-8$ <0.2 4.23 <5 $8087-10$ <0.2 3.72 <5 $8087-11$ 03 2.35 <5 $8087-12$ <0.2 1.46 20 $8087-13$ <0.2 2.83 <5 $8087-14$ <0.2 0.88 75 $8087-15$ <0.2 2.84 <5 $8087-16$ <0.2 2.84 <5 $8087-17$ 8.0 0.08 15 $8088-1$ 3.5 0.17 <5 $8088-2$ 1.6 1.03 130 $8088-3$ 0.2 1.19 35 $8088-4$ <0.2 2.41 15 $8088-5$ 0.6 1.62 20 $8088-6$ 0.2 1.19 35 $8088-7$ <0.2 0.2 1.24 $5088-10$ 0.3 2.21 <5 $8088-10$ 0.3 2.21 <5 $8088-14$ <0.2 0.52 70	Tag #Ag Al %AsBa $8087-1$ 0.22.42<5	Tag #Ag Al %AsBaBi $8087-1$ 0.2 2.42 <5 190 <5 $8087-2$ <0.2 177 <5 70 <5 $8087-3$ 11.4 0.34 10 15 1245 $8087-4$ 0.3 1.80 <5 20 <5 $8087-6$ <0.2 1.73 <5 40 <5 $8087-7$ <0.2 1.73 <5 40 <5 $8087-7$ <0.2 1.15 <5 15 <5 $8087-8$ <0.2 4.23 <5 45 <5 $8087-10$ <0.2 3.72 <5 295 <5 $8087-11$ 0.3 2.35 <5 25 <5 $8087-12$ <0.2 1.46 20 70 <5 $8087-13$ <0.2 2.83 <5 40 <5 $8087-14$ <0.2 0.88 75 25 <5 $8087-15$ <0.2 2.84 <5 55 <5 $8087-17$ 8.0 0.08 15 15 135 $8087-18$ <0.2 2.84 <5 55 <5 $8087-17$ 8.0 0.08 15 15 15 $8088-1$ 35 0.17 <5 15 5 $8088-3$ 0.2 1.60 <5 60 <5 $8088-6$ 0.2 1.9 35 70 <5 $8088-6$ 0.2 1.9 35 <	Tag #Ag Al %AsBaBiCa % $8087-1$ 0.2 2.42 <5 190 <5 1.15 $8087-2$ <02 177 <5 70 <5 1.59 $8087-3$ 11.4 0.34 10 15 1245 0.69 $8087-4$ 03 1.80 <5 20 <5 1.13 $8087-6$ <02 1.73 <5 40 <5 3.44 $8087-7$ <02 1.15 <5 15 <5 2.58 $8087-8$ <0.2 4.23 <5 45 <5 4.27 $8087-10$ <0.2 3.72 <5 295 <5 2.12 $8087-11$ 03 2.35 <5 25 <5 1.28 $8087-12$ <0.2 1.46 20 70 <5 0.67 $8087-13$ <0.2 2.83 <5 40 <5 2.15 $8087-14$ <0.2 0.88 75 25 <5 2.48 $8087-15$ <0.2 2.84 <5 55 <5 1.37 $8087-16$ <0.2 2.84 <5 55 <5 1.37 $8087-17$ 8.0 0.08 15 15 135 0.13 $8088-1$ 35 0.17 <5 15 5 0.08 $8088-1$ 35 0.17 <5 15 5 0.20 $8088-3$ 0.2 1.60 <5 0.6 <5	Tag #Ag Al %AsBaBiCa %Cd $8087-1$ $0.2 2.42$ <5	Tag #Ag Al %AsBaBiCa %CdCo $8087-1$ 0.2 2.42 <5 190 <5 1.15 <1 20 $8087-2$ <02 177 <5 70 <5 1.59 <1 12 $8087-3$ 11.4 0.34 10 15 1245 0.69 <1 2 $8087-3$ 03 1.80 <5 20 <5 1.13 <1 44 $8087-6$ <02 1.73 <5 40 <5 3.44 <1 38 $8087-7$ <02 1.15 <5 15 <5 2.58 <1 12 $8087-8$ <0.2 4.23 <5 45 <5 4.27 <1 23 $8087-10$ <0.2 3.72 <5 295 <5 2.12 <1 18 $8087-13$ <0.2 2.83 <5 40 <5 2.15 <1 39 $8087-13$ <0.2 2.83 <5 40 <5 2.15 <1 39 $8087-14$ <0.2 0.88 75 25 <5 2.48 <1 13 $8087-16$ <0.2 2.84 <5 55 <5 1.37 <1 20 $8087-17$ 8.0 0.08 15 15 50.08 1 4 $8088-1$ 35 0.17 <5 15 5 0.69 <1 5 $8088-1$ 35 0.17	Tag #Ag Al %AsBaBi Ca %CdCoCr $8087-1$ $0.2 2.42$ <5 190 <5 1.15 <1 20 107 $8087-2$ <02 177 <5 70 <5 1.59 <1 12 96 $8087-3$ 11.4 0.34 10 15 1245 0.69 <1 2 180 $8087-4$ 0.3 1.80 <5 20 <5 1.13 <1 44 190 $8087-6$ <02 1.73 <5 40 <5 3.44 <1 38 441 $8087-6$ <02 1.73 <5 45 <5 2.58 <1 12 54 $8087-8$ <0.2 4.23 <5 45 <5 2.12 <1 18 285 $8087-10$ <0.2 3.72 <5 295 <5 2.12 <1 18 285 $8087-12$ <0.2 1.46 20 70 <5 0.67 6 108 84 $8087-13$ <0.2 2.83 <5 40 <5 2.15 <1 39 185 $8087-14$ <0.2 0.88 75 25 <5 2.48 <1 13 222 $8087-16$ <0.2 2.84 <5 55 <5 1.37 <1 20 48 $8087-17$ 8.0 0.88 15 15 5 0.08 1 4 218 </td <td>Tag #Ag Al %AsBaBiCa %CdCoCrCu8087-10.22.42<5</td> 190<5	Tag #Ag Al %AsBaBiCa %CdCoCrCu8087-10.22.42<5	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe % $8087-1$ 0.2 2.42 <5 190 <5 1.15 <1 20 107 110 3.18 $8087-2$ <0.2 177 <5 70 <5 1.59 <1 12 96 9 2.39 $8087-3$ 11.4 0.34 10 15 1245 0.69 <1 2 180 17 0.57 $8087-4$ 0.3 1.80 <5 20 <5 1.13 <1 44 190 443 4.71 $8087-6$ <0.2 1.73 <5 40 <5 3.44 <1 38 441 85 2.63 $8087-7$ <0.2 1.15 <5 15 <5 2.58 <1 12 54 17 2.45 $8087-8$ <0.2 4.23 <5 45 <5 2.12 <1 18 285 2.94 $8087-10$ <0.2 3.72 <5 295 <5 2.12 <1 18 285 2.94 $8087-12$ <0.2 1.46 20 70 <5 0.67 6 108 84 87 3.71 $8087-13$ <0.2 2.83 <5 40 <5 2.15 <1 39 185 93 3.88 $8087-14$ <0.2 2.83 <5 <5 2.167 <1 303.3	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe %La $8087-1$ 0.2 2.42 <5	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe %LaMg % $8087-1$ 0.22.42<5	Tag # Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn 8087-1 0.2 2.42 <5	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe %La Mg %MnMo 8087^{-1} 0.22.42<5	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe %La Mg %MnMoNa %8087-10.22.42<5	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe %LaMg %MnMoNa %Ni8087-10.22.42<5	Tag #Ag Al %AsBaBiCa %CdCoCrCuFe %La Mg %MnMoNa %NiP8087-1 0.2 2.42<5	Tag # Ag A1% As Ba Bi Ca % Cd Co Cr Cu Fe% La Mg % Mn Mo Na % Ni P Pb 8087-1 0.2 2.42 -5 190 -5 1.15 -1 20 107 110 3.18 -10 215 424 1 0.13 46 1430 10 8087-2 0.21 177 -5 70 -5 1.59 <1	Tag #Ag A1%AsBaBiCa %CdCoCrCuFe %La Mg %MnMoNa %NiPPbSb8087-10.22.42<5	Tag # Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn 8087-1 0.2 2.42 <5	Tag # Ag Al% As Ba Bi Ca Cd Co Cr Cu Fe% La Mg % Mn Mo Na% Ni P Pb Sb Sn Sr 8007-1 0.2 2.42 <5	Tag # Ag A!% As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % NI P Pb Sb Sn Sr Ti % 8087-1 0.2 2.42 <5	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tag # Ag 14% As Ba Bi Ca Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Sb Sn Sr Ti% U V V 8007-1 0.2 242 <5	Tag # Ag A!% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% NI P Pb Sb Sn Sr Ti% U V W 8087-1 0.2 242 <5	Teg # Ag Al% As Ba Bi Ca Co Cr Cu Fe La Mg% Mi No Ni P Pb Sb Sn Sr Ti% U V W Y 8087-1 0.2 2.42 <5

Page 1 of 3

ECO TECH LABORATORY LTD.

BOOTLEG EXPLORATION INC.

<u>Et #.</u>	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	<u></u>	<u>Y</u>	Zn
26	8088-15	0.2 2.19	40	125	<5	1.09	1	14	64	97	1.74	<10	0.28	103	28	0 18	51	1010	10	<5	<20	324	< 0.01	<10	16	<10	5	192
27	8088-16	07 0.38	15	45	<5	0.80	<1	3	87	3	1.94	30	0.06	1441	8	0.04	3	610	16	<5	<20	37	<0.01	<10	9	<10	17	55
28	8088-17	0.2 088	<5	60	<5	0.13	<1	4	57	48	1.89	<10	0.55	295	25	0.06	3	520	6	<5	<20	38	0 12	<10	34	<10	3	52
29	8088-18	<02 3.98	25	75	<5	2.57	<1	8	52	60	2.09	<10	0 43	341	3	0.10	38	970	10	<5	<20	504	0.07	<10	34	<10	8	50
30	8088-19	<0.2 2 77	5	60	<5	1.32	<1	5	72	54	2 36	<10	0.42	345	4	0.23	5	590	14	<5	<20	111	0.02	<10	19	<10	3	65
			•	•••			•••	•		• ·			••••=	•••	•	0.20	•	••••	••								-	
31	8088-20	<0.2 5.92	45	50	<5	3 32	3	4	81	16	1.08	<10	0.20	195	9	0.41	13	700	46	<5	<20	199	0.04	<10	33	<10	5	246
32	8088-21	0.2 2.21	10	65	<5	0.86	<1	14	88	118	2.78	<10	0.42	136	33	0.13	61	1280	8	5	<20	97	0.02	<10	86	<10	6	53
33	8088-22	<02 646	-5	85	-5	3.25	1	7	56	41	2 61	~10	0.04	181	5	0.10	7	720	28	-5	-20	308	0.07	~10	43	<10	Ă	28
34	8088-23	02 281	10	35	~5	0.20	2	, A	77	40	2 16	~10	0.81	276	12	0.13	6	500	28	~5	~20	73	0.03	~10	20	<10	3	209
35	8088-24	04 161	~5	10	~J 5	0.00	-1	25	59	162	~10	~10	0.01	460	2	0 14	46	350	20	~5	~20	74	0.05	~10	100	30	ă	46
	0000 24	0.4 1.01	~~	10		0.00	~1	00	50	102	210	10	0.25	403	J	0.15	40	000	02	~0	~60	77	0.00	~10	100		Ŭ	
36	8088-25	1.0 1 26	5	60	<5	0.95	4	6	62	75	2 06	10	0.58	507	2	0 11	4	630	24	<5	<20	42	0.02	<10	27	<10	6	119
37	8088-26	02 094	10	75	<5	0.20	-1	2	36	, ŭ R	1 75	~10	0 47	165	4	0.02	2	590	8	~5	<20	22	<0.01	~10	4	<10	3	22
38	8088-28	10 086	-5	90	~5	0.12	-1	2	40	11	2 12	~10	0.20	221	2	0.02	2	580	16	~5	~20	7	<0.01	~10	-, В	~10	ă	70
30	8088-20	~0.2.2.27	5	65	~5	012	~1	0	43	20	2.12	~10	0 29	221	5	0.00	2	500	10	~5	~20	70	~0 01	<10	20	~10	5	73
40	9101 1	<02 2.27	-5	140	<0 .E	1 00	< I .4	10	147	101	2.01	<10	1 10	070	2	0 22	10	390	12	<0 .c	-00	14	0.00	<10	60	-10	6	70
40	0101-1	<0.2 1.01	<0	140	<0	120	<1	12	147	101	2.34	30	1.12	2/9	3	0.10	15	900	22	<5	<20	47	0.17	<10	av	<10	Q	20
41	8101-4	04 163	-5	20	-5	1 22	.1	10	66	1 4 1	2 00	10	0 10	25	٨	0.14	00	1650	20	~5	~20	70	0.10	-10	22	~10	â	25
40	9101-7	0.4 1.03	<0	-5	10	1.00	< I .4	10	00	141	0.00	-10	010	50	- 4	0 14	20	000	20	<0 -E	<20	/0 EE	-0.01	-10	22	-10	4	55
42	0101-7	-0.2 0.00	<0	<0	10	0.02	<1	9	20	204	0.04	<10	0.11	53/	<1	0.02	0	830	4	<0	<20	50	<0.01	<10	ა ი	<10	10	15
40	0101-11	<0.2 0.60	5	20	<0	0.05	<1	2	104	10	0.01	20	0.03	30	1	0.05	8	210	12	<0	<20	43	0.03	<10	9	<10	10	CI 60
44	0104-1	0.4 3.90	<5	30	<5	2 19	<1	37	151	240	5.37	<10	1.52	218	2	0.10	38	290	40	<5	<20	/3	0.06	<10	33	<10	3	00
45	8104-2	<0.2 2.83	<5	25	<5	5.20	<1	32	57	157	5.42	<10	2.36	792	2	0 04	42	1410	8	<5	<20	65	0.34	<10	103	<10	5	70
46	8104.3	~0.2 0.22	~5	15	-5	7 6 9	-1	0	01	12	1 90	~10	5.04	605	-1	0.02	11	120	~2	~5	~20	76	-0.01	~10	10	~10	2	7
40	8104-0	~02 022	~5	15	~5	2.00	-1	45	91	20	2 10	~10	0.79	250	2	0.02	20	720	~2	~5	~20	250	0.06	~10	10	~10	2	20
47	9104 5	<0.2 1.3/	100	10	<0	1 60	< I .4	10	200	02	2.12	<10	5.20	350	ے د	0.01	400	1060	2	10	~20	116	0.20	<10	202	<10	4	05
40	0104-5	<0.2 0 04	105	200	<0	1 07	<1	09	309	470	0.50	<10	0.00	350	5	0 10	109	1900	24	10	<20	110	0.24	<10	202	<10		20
49	0104-7	<0.2 1.30	<0	50	<0	1.27	<1	28	37	1/9	2.19	<10	0.36	00	2	010	50	1400	30	<0	<20	30	0.22	<10	044	<10	0	20
50	0104-0	<02 /91	<0	60	<0	2.82	<1	108	9	407	8.19	<10	3.47	108	D	018	24	2670	20	<0	<20	04	0 18	<10	244	IV	0	01
51	8104-12	<02 0 17	<5	30	<5	2 67	ء1	2	137	36	0.86	<10	0 19	310	-1	0.01	7	30	-2	<5	<20	44	<0.01	<10	7	<10	1	2
52	8104-14	<02 7 85	<5	220	-5	3 54	-1	16	08	78	2 52	~10	1 28	143	4	0.58	36	450	38	~5	~20	300	0.09	<10	50	<10	2	55
53	8104-17	<02 5 00	~5	40	~5	2 01	-1	41	73	210	4 11	~10	1.20	194	5	0.00	20	1360	10	5	~20	114	0.28	~10	86	~10	5	18
54	8104-19	03456	10	45	~5	3.67	-1	37	1//	202	5.04	~10	2 35	241	2	0.27	20	1600	18	~5	~20	117	0.20	~10	80	~10	6	80
55	8105-3	<0.2 2.26	-5	355	~5	0.78	-1	11	044	102	2.04	10	2.00 A 99	204	2	0.17	00	770	12	~5	~20	50	0.13	<10	60	~10	12	64
•••	0.000			000	~~	0.70	~!		0-1	10	212	-0	0.00	004	2	0.17	0	110	12.	-0	~20	55	020	10	00			~
56	8105-5	02 3.07	5	15	<5	1.92	<1	24	72	40	8.10	10	0.23	181	2	0.04	34	1410	18	5	<20	104	0 12	<10	22	10	4	14
57	8105-7	<02 1.43	<5	110	<5	0 55	<1	11	82	90	4.07	60	0.58	485	6	0.10	3	930	10	<5	<20	46	0 16	<10	20	<10	24	44
58	8106-1	<0.2 0.47	<5	15	<5	0.04	<1	3	158	4	1 78	<10	0.17	556	<1	0.02	10	190	20	<5	<20	9	<0.01	<10	3	<10	2	23
59	8106-2	<0.2 0.03	<5	10	<5	>10	-1	-1		2	0.13	~10	0.36	34	-1	0.01	2	100	-2	~5	~20	2023	<0.01	~10	2	~10	1	-3
60	8106-3	<0.2 0.23	185	5	-5	0.00	-1	2	150	10	2 70	~10	~0.01	120	21	0.01	0	110	~2	~5	~20	2020	<0.01	~10	6	~10	1	10
•••	0.000	401 010		0	~0	0.03	~1	2	155	10	2.13	~10	<0.01	120	~ 1	0.01	0	110	~2	~0	~ £U	'	~0.01	\$10	Ŭ	~10	•	13
61	8106-4	<0.2 0.27	15	5	<5	0 07	<1	6	212	58	2.88	<10	0.07	94	<1	0.03	13	100	<2	<5	<20	10	<0 01	<10	5	<10	1	6
62	8106-5	<02 024	4250	20	<5	0 04	8	10	141	19	2.65	<10	0 02	98	<1	0.01	13	80	<2	5	<20	5	<0.01	<10	7	<10	1	9
63	8106-6	<0.2 0.09	<5	<5	<5	0 02	<1	2	235	156	0.68	<10	<0.01	108	<1	<0.01	10	50	<2	<5	<20	3	<0.01	<10	3	<10	<1	14
64	8106-7	<0 2 0.68	<5	15	<5	4.03	<1	3	95	12	1.84	<10	0.39	490	<1	0.02	14	130	16	<5	<20	283	<0.01	<10	4	<10	5	44
65	8106-8	<0.2 0 23	<5	25	<5	8.10	<1	5	62	26	1.50	<10	0.20	694	3	0.02	11	100	18	<5	<20	809	<0.01	<10	2	<10	7	50
							••	5	~~				0.20	007	J	O.VE				~0			-0.01	-10	-		•	50
66	8106-10	<02214	15	40	<5	0.17	<1	19	53	31	5.01	<10	0.98	173	2	0.02	42	240	68	<5	<20	28	<0.01	<10	14	<10	3	87
67	8106-11	<0.2 0.29	<5	20	<5	0.07	<1	6	116	45	3.45	<10	0.02	202	<1	0.01	16	90	2	<5	<20	5	<0.01	<10	7	<10	2	21
			-					-					Do		- 1	2.01			-		-20		-4141		•			
			_	-			_		_			_	rade	∠ ପାଧ_					_									

ECO TECI	CO TECH LABORATORY LTD.								ERTI	FICAT	EOF	ANAL	ysis /	AK 20	10-00	78						BOO .	rleg e	EXPLO	RATI	ON INC	C .	
Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
QC DATA							<u></u>		_																			
1	8087-1	0.2 2.49	<5	195	<5	1.19	<1	20	109	113	3.25	<10	2 16	435	1	0.14	47	1450	8	<5	<20	148	0.21	<10	111	<10	7	74
10	8087-12	<0.2 1.51	20	70	<5	0.66	6	106	81	88	3.53	<10	1.04	1254	1	0.09	46	920	10	<5	<20	69	0.11	<10	55	<10	4	277
19	8088-4	<0.2 2.40	15	5 5	<5	1.04	<1	5	69	15	1.96	<10	0.41	352	8	0.16	5	580	14	<5	<20	71	<0.01	<10	15	<10	3	88
28	8088-17	0.2 0.90	<5	60	<5	0.14	<1	4	62	48	2.00	<10	0.55	311	25	0.06	3	530	6	<5	<20	39	0 13	<10	35	<10	3	54
36	8088-25	0.8 1.26	5	60	<5	0.93	4	6	63	74	2.09	10	0:57	516	2	0.11	4	630	24	<5	<20	43	0.02	<10	27	<10	6	117
45	8104-2	<02 2.87	<5	25	<5	5.18	<1	32	57	159	5.42	<10	2 39	793	2	0.04	42	1430	8	<5	<20	66	0.36	<10	104	<10	6	70
54	8104-19	03 4.50	15	50	<5	3.71	<1	39	141	198	5.13	<10	2 31	341	4	0.07	89	1680	18	<5	<20	118	0.15	<10	90	<10	6	81
Standard:																												
Pb129a		11 3 0.82	5	50	<5	0 44	54	5	10	1422	1 50	<10	0 67	334	3	0.03	5	410	6178	15	<20	25	0.04	<10	14	<10	2	9936
Pb129a		11.8 0.83	5	55	<5	0 46	59	5	10	1439	1 50	<10	071	334	3	0.03	5	440	6158	15	<20	27	0 04	<10	14	<10	2	9923

ICP: Aqua Regia Digest/ICP AES Finish Ag: Aquia Regia Digest/AA Finish

ECO TECH-LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw df/2_78s XLS/10

Page 3 of 3

Sample #	Lab Analysis #
AHOZR001	8105-1
AHOZR002	8105-2
BWOZR001	8105-9
BWOZR002	8105-10
LJOZR001	8105-3
LJOZR002	8105-4
LJOZR003	8105-5
LJOZR004	8105-6
LJOZR005	8105-7
LJOZR006	8105-8
NTOZR001	8105-11
NTOZR002	8105-12

ι.

Appendix VI – Bedrock Geologic Mapping

6.1 Station Locations 6.2 Lithology 6.3 Structure

Appendix 6.1 - 2006 Field Mapping Stations

Station Number	Date (dd/mm/yyyy)	Туре	Elevation (m)	Easting (m)	Northing (m)	Location Method	GPS Accuracy (m)	Comments
AHOZG001	28/07/2009	FLOAT		439060	6974755	GPS	15	boulder at toe of glacter, diss and veins of py-po-gn+/- cpy, strong on fracture surfaces
AHOZG002	29/07 <i>/</i> 2009	OUTCROP		440498	6974854	GPS	7	Just past contact btw pluton and shale seds, intensly folded silty limestone bed, with calcute and qtz veining with blebby py
AHOZG003	30/07/2009	OUTCROP		441337	6974743	GPS	7	very small plug of gd, fg bt, could be associated with nearby dykes
AHOZG004	30/07/2009	OUTCROP	_	441312	6975025	GPS	13	felsic dyke, minor barren cg qtz veins, avg 3cm
AHOZG005	30/07/2009	OUTCROP		441773	6975149	GPS	7	1 5 m dyke, trending 040, cross cut with other dykes, no alteration on dyke contact zones, station is 30 S of small plug
AHOZG006	30/07/2009	OUTCROP		441874	6975183	GPS	30	75 m wide and 150 m long intrsive pluf with common bull qtz veining, 2-20 cm with rare 2% mo
AHOZG007	31/07/2009	OUTCROP		439927	6976210	GPS	7	332 deg to toe of long glacter
AHOZG008	31/07/2009	OUTCROP		440782	6975061	GPS	10	contact btw gd and seds, dykes above contact
BWOZG001	28/07/2009	outcrop		439094	6974589	GPS	12	toe of glacier
BWOZG002	29/07/2009	outcrop		440468	6974851	GPS	7	monzonite/shale contact, shale is bedded and very fine grained
BWOZG003	29/07/2009	outcrop		440596	6974630	GPS	8	monzonite/sediment contact, seds have qtz veins up to 1 m thick which follow bedding
BWOZG004	30/07/2009	outcrop		441150	6974415	GPS	12	10 x 150 m outcrops of mudstone with 30 cm sulcified veins that both follow and crosscut bedding, veins are mostly mm size qiz grans in sulca matnx with some cm size euhedral prismatic crystals, min in fractures in the vein and some disseminated
BWOZG005	30/07/2009	outcrop		441491	6974288	GPS	10	grante sill 2 - 10 m thick, smaller (m size) dykes have minor galena and pyrite
BWOZG006	30/07/2009	outcrop		441569	6973923	GPS	13	granitoid body in bowl, very coarse grained, sharp contact with the sediments
BWOZG007	30/07/2009	float		441366	6973900	GPS	7	float from cliff above
BWOZG008	31/07/2009	outcrop		438903	6975058	GPS	8	monzonite along side of glacier
BWOZG009	31/07/2009	subcrop		440241	69 73107	GPS	7	down valley no min has been seen, pluton margins seem better for mineralization
LJOZG001	30/07/2009	outcrop		440933	6974435	GPS	6	
LJOZG002	29/07/2009	outcrop	1730	441885	6975170	GPS	2	

Appendix 6.2 - Lithology

Station Number	User	Date (dd/mm/yyyy)	Station Type	Map Unit Rock Type	Colour	Colour Weathered	Grain size	Texture	Mineralization	Mineralization Minor	Min. Style	Min. %	Alteration	Alt. Degree
AHOZG001	AH	28/07/2009	FLOAT	granodionite	grey	rusty	mechum					0		0
AHOZG002	AH	29/07/2009	OUTCROP	Limsetone	grey	grey						0		0
AHOZG003	AH	30/07/2009	OUTCROP	granodiorite	grey	grey	medium					0		0
AHOZG004	AH	30/07/2009	OUTCROP	felsıc dyke	grey	grey	fine	_				0		0
AHOZG005	AH	30/07/2009	OUTCROP	granodionte	grey	grey	medium					0	•	0
AHOZG006	AH	30/07/2009	OUTCROP	granodionte	grey	grey	medium					0		0
AHOZG007	AH	31/07/2009	OUTCROP	granodionte	grey	grey	medium					0		0
AHOZG008	AH	31/07/2009	OUTCROP	siltstone	black	brownish	fine					0	- -	0
AHOZG008	AH	31/07/2009	OUTCROP	contact								0		0
AHOZG008	AH	31/07/2009	OUTCROP	granodionte	grey	grey	medium					0		0
BWOZG001	BW	28/07/2009	outcrop	Monzodionie	white	white	coarse	equigranular				0		
BWOZG002	BW	29/07/2009	outcrop	Contact - Lithologi	c dark	rusty	fine	bedded				0		
BWOZG003	BW	29/07/2009	outcrop	Contact - Lithologi	c white	white	coarse	equigranular				0		
BWOZG004	BW	30/07/2009	outcrop	Mudstone	dark	rusty	fine	bedded				0		
BWOZG005	BW	30/07/2009	outcrop	Monzonite	white	white	medium	equigranular				0		
BWOZG006	BW	30/07/2009	outcrop	Monzonte	white	white	coarse	equigranular				0		
BWOZG007	BW	30/07/2009	float	Mudstone	dark	rusty	fine	bedded				0		
BWOZG008	BW	31/07/2009	outcrop	Monzonite	white	white	coarse	equigranular				0		
BWOZG009	BW	31/07/2009	subcrop	Granodionte	salt and pepper	grey	coarse	equigranular				0		
LJOZG001	IJ	30/07/2009	outcrop	Siltstone	bluish	rusty	fine					0		
LJOZG001	ដ	30/07/2009	outcrop	Contact - Lthology	c							0		
LJOZG001	ц	30/07/2009	outcrop	Granodiorite	beige	yellowish	fine-medium					0		
LJOZG002	ដ	29/07/2009	outcrop	Granodionte	beige	greyish	fine-mechum					0		

.

Appendix 6.3 - Structure

Station Number	Structure Name	Quality	Azimuth	Dip / Plunge	Comments	_
BWOZG002	bedding	GOOD	326	27		
BWOZG004	bedding	GOOD	358	34		

Appendix VII – XRF

7.1 XRF Techniques 7.2 XRF Geochemical Results – Rocks

Appendix 7.1 – XRF Techniques

Sample Preparation

The soil and silt samples were first completely dried while in the original soil bags. The samples were then sieved to less than $250\mu m$ size; a minimum of 1 teaspoon of this fine fraction was placed in a labelled thin plastic bag (e.g. Ziplock bag). Rock Samples were taken to Stewart Group Prep Lab in Whitehorse where the rocks were crushed and pulverized. The pulps and rejects were then shipped to Bootleg Exploration Inc. in Cranbrook, BC where they were analyzed by the same method as the silts and soils.

XRF Analysis

Soil, silt and rock samples were analyzed using a Niton XLp 522K handheld x-ray fluorescence (XRF) analyzer. The ziplock bags were shaken to compact the sample in a bottom corner of the bag and this was then positioned under the XRF analyzer window. Samples were analyzed for a total of 90 seconds using 2 filters for 45 seconds each. Results were downloaded to the Bootleg database at the end of each day and quality assurance and quality control procedures were conducted.

Quality Control Quality Assurance

The integrity of the XRF analyzer was tested daily by verifying calibration of the analyzer, as well as analyses of blank samples and standards. As an internal QAQC function, the Niton XLp 522K will not function if the calibration fails. Blanks and standards are compared to assure they are within the accepted range of values provided by the standard supplier. Duplicate samples were analyzed approximately every 25 samples and results were compared nightly.

Appendix 7.2 Rock Sample XRF Geochemical Results

Appendix	1.2 NUCK Ja	inple Anti Ge	ochemical ne	30113																					
Sam	ile.	An	Was		Cin		21		N.	ିତ୍ର	Mn	FO		9	િંહોન્ટ	S.			• 67	Be	- K.			Te	- ED -
Aumber	Medium	Peice .		9207-5	<u>een</u>	Don .		99 1	1.0	Dou!	1991m	96.	Politi	PON			220	96	2:00		76		2011	DDU	
AHOZR001	ROCK	15/10/2009	BULK	0	936.58	6449.3	1624	73.31	0	0	1257	15.581	0	147	65.32	59.26		0.409	0	516	0.26	0	0	186.6	89.41
AHOZR001	ROCK	15/10/2009	INDBULK	0	981.12	6068.1	1427	55.88	0	0	1159	13.264	0	81	40.07	0	102.6	0.979	148	132	0.57	0			63.43
AHOZR002	ROCK	15/10/2009	BULK	407.68	0	0	0	0	0	0	0	0.1443	0	4	0	28.09	-	0	286	175	0.11	0	0	71.16	23.43
BWOZR001	ROCK	15/10/2009	BULK	0	0	877.76	425	0	0	0	0	0.4132	0	65	21.38	27.05	-	0.03	179	5457	2.87	0	0	103.1	34.43
BWOZR002	ROCK	15/10/2009	BULK	0	176.83	0	213	0	209	0	30758	9.2431	0	204	0	78.91		4.993	0	1472	0.25	0	0	254.2	77.15
BWOZR002	ROCK	15/10/2009	INDBULK	0	108.8	0	217	0	119.7	0	30068	9.3255	0	105	0	0	0	9.684	137	1016	0.49	0			0
LJOZR001	ROCK	15/10/2009	BULK	0	0	31.82	72	0	0	0	419	2.4945	0	312	0	32.06		1.557	109	1022	2.74	0	0	95.48	24.22
LJOZR002	ROCK	15/10/2009	BŪLK	11.81	347.78	25.47	9 5	0	162.1	0	1237	9.1807	33.03	363	27.31	53		1.683	0	1706	1.08	0	0	196.2	73.15
LJOZR002	ROCK	15/10/2009	INDBULK	0	296.76	24.53	94	0	160.7	0	1235	9.464	0	187	0	0	0	3.024	189	1354	1.96	0	í		0
LJOZR003	ROCK	15/10/2009	BULK	0	0	0	0	0	0	0	547	8.3358	17.6	180	0	48.17		1.973	89.8	3194	1.07	0	0	204.9	43.41
LJOZR003	ROCK	15/10/2009	INDBULK	0	0	0	33	0	0	0	574	9.1488	0	99	0	0	0	3.391	278	3156	2.04	0			0
LJOZR004	ROCK	15/10/2009	BULK	3558.1	0	0	0	0	0	0	0	0.1852	0	0	0	0		0	229	201	0.25	0	0	129.1	0
LJOZR005	ROCK	15/10/2009	BULK	0	85.41	37.32	65	0	0	0	399	3.335	0	345	0	31.97		1.456	104	815	1.99	0	0	134.1	54.91
LJOZR006	ROCK	15/10/2009	BULK	0	0	0	125	13.15	0	0	11900	4.1481	0	160	17.69	69.61		6.541	0	1061	2.3	0	0	205.2	218.2
NTOZR001	ROCK	15/10/2009	BULK	0	303.02	0	73	. 0	297.6	0	0	24.166	23.23	· 81	0	66.71		0.726	- 0	1501	0.46	0	· 0	209	59.15
NTOZR001	ROCK	15/10/2009	INDBULK	0	341.15	0	0	0	243.9	726.2	0	18.929	21.38	41	0	0	0	1.824	101	1217	1.49	0			0
NTOZR002	ROCK	15/10/2009	BULK	0	186.43	4677.3	405	37.53	0	0	558	6.3262	0	170	44.94	62.06		0.338	129	531	0.25	0	<u>_</u> 0	158.6	1135
NTOZR002	ROCK	15/10/2009	INDBULK	18.54	265.79	4944.5	405	26.37	0	0	440	7.2552	0	93	23.46	0	0	0.54	292	141	0.51	0			2067

,

.