YEIP 2010 -006

# **2010 DIAMOND DRILLING REPORT**

on the

# **CANYON GOLD KM. 410 ANOMALY**

Whitehorse Mining District

N.T.S. 105 K/03

Latitude 62° 09', Longitude 133° 09'

# **KAOLIN CLAIMS**

(June 02 to August 27, 2010)

By: A. Carlos (owner of claims) October 31, 2010

File Number: 10-006/Target Evaluation

# CORE PHOTOS KM. 410 - 2010

# **2010 DIAMOND DRILLING REPORT**

on the

# **CANYON GOLD KM. 410 ANOMALY**

Whitehorse Mining District

N.T.S. 105 K/03

Latitude 62° 09', Longitude 133° 09'

# **KAOLIN CLAIMS**

(June 02 to August 27, 2010)

By: A. Carlos (owner of claims) October 31, 2010

File Number: 10-006/Target Evaluation

# **TABLE OF CONTENTS**

| INTRODUCTION                                       | 1     |
|----------------------------------------------------|-------|
| PROGRAM 2010                                       | 1     |
| HISTORY                                            | 1-10  |
| DISCUSSION OF DRILL HOLE PLACEMENTS (OBSERVATIONS) | 11-13 |
| CONCLUSIONS RECOMMENDATIONS                        | 13-14 |

# **LIST OF FIGURES**

| 1. | LOCATION | MA | P. |
|----|----------|----|----|
|    |          |    | -  |

- 2. ORTHOPHOTO: Grid and drill locations @ 1:10,000.
- 3. COMPIIATION MAP @ 1:2500 (attached)

# **APPENDICES**

- **1. DRILL HOLE DESCRIPTIVE LOGS (PHOTOS)**
- 2. DIAMOND DRILL HOLE CROSS SECTIONS
- 3. ANALYTICAL RESULTS

#### 4. LIST OF CLAIMS

5. STATEMENT OF QUALIFICATIONS

## **INTRODUCTION**

The Canyon Gold Km 410 Anomaly comprises a target within the greater "Grew Creek" exploration area, which currently encompasses 351 quartz claims. Following is a detail of work performed in 2010 with the aid of an incentive program contribution by the territorial government.

#### PROGRAM

During the summer my sons and I successfully completed 4 diamond drill holes totalling 754.5 ft. in order to test a portion of a 2008 Enzyme Leach geochemical program, under which several anomalous sectors were determined. The geology underlying the above effort is ill-defined, due to recessive weathering and shallow till cover. The drill program therefore had two objectives: to determine geology and secondly hopefully to explain the geochemical zones determined from previous geochem sampling.

# HISTORY

For a number of reasons, interest in Km 410 has persisted to the present, consisting generally in a hit-and-run type of approach until the summer of 2008, when we performed a comprehensive grid based geochem program. A ground magnetometer survey was performed the same year, followed by a 4 hole diamond drilling test in 2009. Evidence gleaned from those surveys suggested a progression to a new model type for this particular target. A synthesis of earlier and more recent work is offered in the following references:

- 1) Exploration proposal for the Km 410 target. Feb. 25, 2008 A. Carlos.
- Interpretation of Enzyme Leach data from the Canyon Gold Km 410 survey. Mar. 10, 2009 - Gregory T. Hill.
- 3) Exploration proposal for the Km 410 target. Feb. 15, 2010 A. Carlos.
- 2009 Diamond Drilling Report on the Canyon Gold Grew Creek project. Mar. 10,
   2010 Shane Carlos.





MINFILE: 105K 009 PAGE NO: 1 of 7 UPDATED: 10-Nov-09

#### YUKON MINFILE YUKON GEOLOGICAL SURVEY WHITEHORSE

MINFILE # 105K 009NTNAME: GREW CREEKLADEPOSIT TYPE: EPITHERMAL AU-AG: LOW SULPHIDATIONLOSTATUS: DEPOSITTECTONIC ELEMENT: POST-AMALGAMATION PLUTONIC ROCKS

**NTS MAP SHEET:** 105K\2 **LATITUDE:** 62° 2' 47" N **LONGITUDE:** 132° 51' 15" W

OTHER NAME(S): MAIN ZONE MAJOR COMMODITIES: GOLD, SILVER MINOR COMMODITIES: TRACE COMMODITIES: ARSENIC, MERCURY

#### **CLAIMS (PREVIOUS & CURRENT)**

CAN, CANYON, CARLIN, ERN, GREW, HELL, RAN, TAR

#### WORK HISTORY

The original claims were staked as Grew cl 1-48 (94550) between Nov/65 and Feb/66 by General Enterprises Ltd and optioned to Gaylord Mines Ltd in 1967, which carried out magnetometer, EM and IP surveying later in the year. Three drill holes reportedly planned in 1968 were apparently never drilled. The nearby Carlin cl 1-32 (Y5762) were staked in May 66 by S. Young and examined briefly by Scope Mining and Exploration Consultants later that year.

A. Carlos, unaware of any previous staking became interested in the area following reports of Faro residents hand mining and recovering placer gold from Grew Creek. Prospecting the area, Carlos noted the presence of Tertiary volcanics and strong structural features furthering his interest. In May/83 Carlos discovered gold mineralization in outcrop and restaked the occurrence area within Canyon cl 1-40 (YA75717) in Jun/83. Carlos carried out geological mapping and geochemical sampling later in the year. The Canyon group was optioned late in 1983 by Mincan joint venture (Hudson Bay Exploration and Development Company Ltd and Minorco Canada Ltd), which staked more claims and carried out geological mapping, VLF-EM and magnetometer surveying and geochemical sampling in 1984 and 1985; trenching and drilled 13 holes (1732 m) in 1984; drilled 19 percussion holes (1660 m) in 1985; and geochemical sampling, EM and magnetometer surveying in 1986, before dropping the option.

The Ren cl 1-2 (YA75799), Tar cl 1-8 (YA75786), Hell cl 1-8 (YA75778) and Ern cl 1-8 (YA75749) were staked contiguously with the southern corner of the original Canyon claims in Jul/83 by Ezee Golds Ltd, which carried out trenching in 1983, 1984 and 1986. In 1987 Ezee Golds drilled one hole (51.3 m) for assessment on the Ern etc claims; carried out trenching, road work and additional drilling in 1989 and 1990; and trenching and road work in 1992. In Oct/93, Ezee Golds performed trenching on the Ern, Hell, Tar, and Ren, claims and on fractional Vac, JSC and TMP claims.

The Canyon claims were reoptioned in 1987 by a joint venture between Noranda Exploration Company Ltd, Golden Nevada Resources Inc and Brenda Mines Ltd, which carried out property wide geochemical sampling, ground magnetometer, airborne geophysical surveying and drilled 17 holes (2972 m) 500 m west of Grew Creek on Canyon cl 3 and 4 (Main Zone) in 1987; geophysical surveying, geochemical sampling and drilled 30 core holes (13 156.5 m) in the Main Zone, 10 core holes (3045 m) in the Tarn Zone (east of Grew Creek) and 12 rotary holes (1448 m) between the two zones in 1988; and drilled 10 holes (1165 m) in 1989. Golden Nevada Resources Inc changed its name to Goldnev Resources Inc in Jun/89 and excavated 18 backhoe trenches and 4 pits in 1991 before

MINFILE: 105K 009 PAGE NO: 2 of 7 UPDATED: 10-Nov-09

dropping its option later in the year.

Noranda Exploration Company Ltd tied on Can cl 1-168 (YB7880) to the northwest in Sep/87 and optioned them to Mintel International Development Corporation, which carried out geochemical sampling later in the year. Mintel staked the Ran cl 1-1 040 (YB08978) adjacent to and northwest of the Can claims in 1987. Mintel changed its name to Golden Trump Resources Ltd in Apr/89 and transferred the Ran claims to Prime Equities Inc in Nov/91. The Can claims were transferred to Prime Equities International Corporation in Dec/91. Both the Can and Ran claim groups were later transferred to A. Carlos in Apr/92.

In 1992, Wheaton River Minerals signed a letter of agreement to acquire the Grew Creek deposit but the terms of the option agreement were not fulfilled and the core claims reverted to Carlos. By the end of 1992, all of the Canyon and Grand claims previously optioned by other companies were also returned to Carlos.

In Feb/93 YGC Resources Ltd optioned the Grew Creek property (Minfile Occurrences #105K 008, 093, 113, this occurrence and 105F 047) and later in the year drilled 17 holes (1944 m) on the Canyon claims and carried out trenching on the Ran claims.

In Apr/94 YGC purchased the Ketza River property (Minfile Occurrence #105F 019) including a 400 metric tonnes per day mill from Wheaton Rivers Minerals Ltd. The sale was paid for with YGC shares and resulted in Wheaton River becoming controlling shareholder in YGC. YGC planned to truck Grew Creek ore to the Ketza River mill for processing, starting in 1995. Projected production was expected to be 30 000 oz (930 000 gm) Au per year for 3 years, with a 93% recovery. The plan never proceeded.

During the 1994 exploration season YGC drilled 14 holes (1307 m) in the South and Main Zones. Nine holes were drilled in the South Zone to identify and sample the mineralization along the zone. The remaining 5 holes were drilled to fill in, test continuity and determine the upper level of bedrock mineralization at the eastern end of the Main Zone. In Oct/94 Carlos transferred the Grand, Ran, Can and Canyon claim groups to YGC.

In 1995 YGC drilled 14 diamond drill holes (1530 m) on the Grew Creek property. Twelve of the holes were drilled to test various targets in and adjoining the Main Zone. One hole was drilled at the Main West Zone located 2 km to the west on Canyon cl 48 (YA81167). The remaining hole was drilled on Canyon cl 221 (YA81340) located approximately 16 km to the west (Minfile Occurrence #105K 113).

In the spring of 1996 YGC drilled 17 diamond drill holes (1560.7 m) to systematically drill test the continuity of the Main Zone mineralization on intermediate sections between 10+175E and 10+287.5E. Following completion of the program, the company carried out a compilation study which included surveying the location of all known drill holes and calculating an updated resources estimate for the Main Zone. At the end of 1996 YGC elected not to complete the final year of the option agreement and returned the various claim groups to Carlos.

Carlos staked Canon cl 1-6 (YC08793) in May/98 and Canon cl 7-14 (YC08939) in Jul/98, 2.5 km north of this occurrence location and contiguous with the existing Grew Creek claim block. Later that year Carlos carried out VLF-EM and magenetometer surveying, prospecting, soil sampling and trenching on the Canon claims.

In 2000 Carlos carried out an enzyme leach sampling program on a grid located between this occurrence location and the Robert Campbell Highway (located to the north). In 2001 and 2002 Carlos drilled 4 holes (191.1 m) and 6 holes (416.7 m), respectively, to test one of the anomalies (E) which is located immediately east of the occurrence location. Carlos also collected additional enzyme leach samples to increase his sampling density. In 2003 Carlos collared 3 diamond drill holes (150.9 m) on anomaly E and 4 diamond drill holes on the Maverick prospect's anomaly B (Minfile Occurrence #105K 093) located approximately 10 km to the northwest. In 2004, before Carlos optioned the Grew Creek property, Carlos drilled 5 additional diamond drill holes (219.80 m) on anomaly B.

In Jul/2004 Carlos optioned the entire Grew Creek property to Freegold Ventures Ltd which drilled 12 diamond drill holes (633.4 m) on the Main zone. In 2005 Freegold Ventures carried out IP surveys on the Maverick prospect (Minfile Occurrence #105K 093), the Main zone, and the Rat Creek and Tarn zones (they adjoin the Main zone on the southeast side). The company followed up by drilling 6 diamond drill holes (960 m) on the Tarn and Rat Creek zones; 5 holes targeted the Tarn zone and 1 hole targeted the Rat Creek zone. Two of the Tarn zone drill holes were collared in overburden. The diamond drilling was conducted in two parts; mid to late March and November to mid-December.

In 2006 the company drilled 5 diamond drill holes (798 m) on the Tarn zone to test various IP chargeability targets. In the third quarter of 2007 Freegold Ventures dropped its option and returned the Grew Creek property to

MINFILE: 105K 009 PAGE NO: 3 of 7 UPDATED: 10-Nov-09

#### Carlos.

In Jan/2008 Carlos optioned the Grew Creek property to Emerick Resources Corporation which completed a compilation report in May/2008. Carlos carried out additional enzyme leach sampling in 2008.

In 2009, Emerick completed nine diamond drillholes on the Sleeper, RAT and Barium zones for a total of 1600 m. These holes tested enzyme leach soil anomalies distal to the historic gold resource at Grew Creek. No significant drill results were achieved.

#### GEOLOGY

The Grew Creek epithermal gold deposit is hosted by Eocene Ross Assemblage volcanic and sedimentary rocks deposited in a pull-apart basin within the Tintina Fault zone. The gold occurs in stockwork quartz veins and hydrothermal breccias cutting hydrothermally altered rhyolite. In Dec/89 Goldnev Resources Ltd reported that the Main Zone contained drill indicated reserves of 773 020 tonnes grading 8.92 g/t gold and 33.6 g/t silver. Within this deposit Goldnev identified a high grade core containing a drill indicated reserve of 184 950 tonnes grading 12.14 g/t gold. Metallurgical testing by Noranda in 1988 indicated that recoveries of 92-94% are possible using simple cyanide processing.

In the Main Zone, rhyolitic tuffs are juxtaposed against a cyclic sequence of Carboniferous and Permian aged fluvial sediments along the northwest-southeast trending Grew Creek fault. The faulted contact is partly intruded by a quartz-feldspar porphyry dyke. The pyroclastic rocks, dyke, fault and sediments all dip steeply to the north. The volcanic rocks are hydrothermally altered to illite-quartz and illite-quartz-adularia assemblages, with an outer propylitic halo.

Mineralization consists of pyrite, marcasite, arsenopyrite, chalcopyrite, argentite, electrum, silver selenides, galena and sphalerite. Fluorite is also present in the Tarn zone, 2 km southeast of the Main zone. Gangue minerals include quartz, adularia, carbonates, and quartz pseudomorphs after calcite. In the main zone, gold and silver occur as micron-size grains in chalcedony stringer stockworks and adjacent silicified tuffs. There is a good correlation between gold and silver assays, with a gold: silver ratio of about 1:4 for ore-grade mineralization, which occurs in an elongated zone trending west-northwest. The mineralization is strongly anomalous in arsenic and mercury, but mercury shows only a weak correlation with gold and silver. Most high mercury values lie along the fault, above the gold-silver zone.

Initial drilling on the Main Zone returned a best intersection of 11.7 g/t gold and 150.9 g/t silver across 31.4 m, while the best section exposed in a trench assayed 3.6 g/t gold and 15.3 g/t silver across 13 m. The 1989 drilling focused on the Main Zone, with the best intersection returning 10.5 g/t gold over 13 m.

The Tarn Zone, located 2 km to the east, consists of quartz-fluorite-chalcedony stockworks and localized silicification within a 900 x 100 m zone of sericitized rhyolite dykes and tuff. The best assays were 150 ppb gold across 2.0 m in a trench and 520 ppb gold over 1.5 m in a drill hole.

Prospecting in the area is difficult due to a thick cover of glacial till. Plouffe (1989) showed that gold is concentrated in the silt and clay size fraction down-ice from the Grew Creek deposit, but the common pathfinder elements silver, antimony, arsenic and mercury show little correlation with the gold distribution.

On the Ern claims, Ezee's 1987 drill hole cut silicified, argillized crystal-lithic felsic tuff stained with limonite, but returned only trace gold.

YGC's 1993 diamond drilling intersected strongly altered volcanic rocks beneath a zone of hydrothermal alteration exposed in a surface trench. The 1994 drilling showed that mineralization in the South Zone consists of an extensive quartz-adularia stringer stockwork of low grade gold-silver values. The best intersections were 2.33 g/t gold and 4.1 g/t silver over 10.4 m. The South Zone mineralization appears to be connected with the Main Zone mineralization, but further drilling in between the two zones needs to be carried out to confirm this theory. The drilling in the Main Zone confirmed earlier reported grades. The best intersection was 1.69 g/t gold and 3.0 g/t silver over 24 m. In Oct/94 YGC calculated an open pit mineable reserve for the Main zone of 173 000 tonnes grading 12 g/t gold and 32.3 g/t silver.

The best results recorded in 1995 were returned from the Main Zone, where hole #181 intersected ore grade gold-silver bearing quartz-adularia vein stockwork mineralization. The hole drilled near the eastern end of the zone

MINFILE: 105K 009 PAGE NO: 4 of 7 UPDATED: 10-Nov-09

returned 15.0 m assaying 7.63 g/t gold and 8.6 g/t silver. Other holes drilled on the Rat Creek Grid, Knoll Zone and in the contact area of a pyroclastic tuff and rhyolite flow dome located immediately east of Rat Creek returned anomalous gold values up to 633 ppb gold.

Twelve of the 1996 drill holes intersected significant gold mineralization in the Main Zone. The best result was recorded in hole GC-94-196 which returned 28.55 g/t gold over 17.0 m including 4.5 m grading 41.3 g/t and 6.59 m grading 41.95 g/t. The hole intersected thick banded quartz vein mineralization at the 795 m elevation which YGC believed represented a central core or feeder zone of the Main Zone deposit. The mineralization occurs within the phyllic alteration zone and is directly related to strong quartz-adularia alteration.

At the end of the 1996 drilling program YGC completed an updated resource estimate for the Main Zone. Employing a 1 g/t gold cutoff grade, a block model estimation calculated a total resource of 527 360 tonnes grading 5.27 g/t gold to the 710 metre level. Within this total resource the company estimated an open pit resource of 382 000 tonnes grading 5.08 g/t gold above the 750 metre elevation.

Samples from the 2000 sampling program were analyzed using Enzyme Leach technology, revealing several anomalous zones just south of and parallel to the Danger Creek Fault and although no report of this work was ever filed for assessment purposes geochemical anomaly maps produced from this sampling accompanied subsequent reports on the 2001 and 2002 drill programs. Drilling intersected altered and brecciated quartz feldspar porphyry, mixed sedimentary and volcanic lithologies and basalt. Samples of core from both years were submitted for analysis and generally returned values for gold below the detection limit of the analytical techniques employed, the highest reported value was 109 ppb gold over 0.6 m from sericitically altered quartz feldspar porphyry near the bottom of Hole #CGGC-8.

The 2003 and 2004 drilling of the Maverick enzyme leach anomaly B intersected mafic volcanic complex rocks but did not detect any significant gold values. The 2004 drilling program completed by Freegold Ventures indicated that the dominant vein trend is north.

Four diamond drill holes were collared on the Tarn zone in mid Mar/2005 before the IP survey was undertaken. The holes intersected intense phyllitic alteration associated with anomalous values in gold, silver, mercury and arsenic. The holes also intersected local fine quartz-adularia zones up to 40 m in length that yielded anomalous values up to 0.174 g/t gold and 2.3 g/t silver. (news release 10 May/2005). The second phase of drilling collared 1 diamond drill hole on the Tarn zone and 1 hole on the Rat Creek zone. Two other holes were abandoned in overburden.

The 2006 diamond drill holes were completed between January and early Mar/2006 and were an extension of the second phase of the 2005 drill program. The 2006 drill holes targeted IP anomalies on the Tarn zone. The single hole collared on the Tarn zone in late 2005 and the five 2006 drill holes all intersected favorable alteration and displayed evidence of hydrothermal activity similar to that found at the Main zone but did not intersect any economic intervals.

#### REFERENCES

ARCHER, CATHRO AND ASSOCIATES (1981) LTD, Nov/93. Assessment Report #093153 by R.W. Stroshein.

ARCHER, CATHRO AND ASSOCIATES (1981) LTD, Dec/93. Assessment Report #093154 by R.W. Stroshein.

ARGO DEVELOPMENT CORPORATION, May/88. Assessment Report #062293 by J.P. Sorbara.

CARLOS, A., Nov/92. Assessment Report #093055 by A. Carlos.

CARLOS, A., Jan/99. Assessment Report #093915 by A. Carlos.

CARLOS, A., Apr/2002. Assessment Report #094332 by A. Carlos.

CARLOS, A., Feb/2003. Assessment Report #094321 by A. Carlos.

MINFILE: 105K 009 PAGE NO: 5 of 7 UPDATED: 10-Nov-09

CARLOS, A., Feb/2003. Assessment Report #094380 by A. Carlos and G.T. Hill.

CARLOS, A., Jan/2004. Assessment Report #094453 by A. Carlos.

CARLOS, A., Jan/2004. Assessment Report #094454 volume 1 by A. Carlos

CARLOS, A., Jan/2004. Assessment Report #094454 volume 2 by G.T. Hill.

CHRISTIE, A.R., DUKE, J. AND RUSHTON, R., 1989. Grew Creek Gold Deposit, Tintina Trench, Yukon. Poster presented at Whitehorse Geoscience Forum, 1989.

CHRISTIE, A.R., 1992. Grew Creek epithermal gold-silver deposit, Tintina Trench, Yukon. In: Yukon Geology, Vol. 3, p. 223-259.

DUKE, J.L., 1989. The Grew Creek Au-Ag Deposit in South-Central Yukon. In: The Gangue, Geological Association of Canada Newsletter No. 27, May/89.

DUKE, J.L., 1990. The Grew Creek Gold-Silver Deposit in South-Central Yukon Territory. In: Mineral Deposits of the Northern Canadian Cordillera, Yukon-Northeastern British Columbia, J.G. Abbott and R.J.W. Turner (eds), 8th IAGOD Symposium Field Trip No. 14 Guidebook, Geological Survey of Canada Open File 2169, p. 309-313.

EMERICK RESOURCES CORPORATION, 15 May/2008. Summary Geological Report on the Grew Creek Property, Yukon Territory, Canada. By R.Stroshein. (available on SEDAR).

EMERICK RESOURCES CORPORATION, News Release, 16 Jan/2008; 10 Nov/2009.

EZEE GOLDS LTD, Aug/87. Assessment Report #091733 by S.B. Cheeseman.

FREEGOLD VENTURES LTD, Jun/2006. Assessment Report #094694 Volune 1 by R. Stroshein.

FREEGOLD VENTURES LTD, Jun/2006. Assessment Report #094694 Volune 2 by P.Walcott.

FREEGOLD VENTURES LTD, Jan2007. Assessment Report #094749 by R. Stroshein.

FREEGOLD VENTURES LTD, News Release, 14 Jul/2004, 10 May/2005, 27 Sep/2005, 3 Nov/2005, 11 May/2006, 10 Apr/2007, 13 Nov/2007 (Consolidated Financial Statements).

GAYLORD MINES LTD, Feb/68. Assessment Report #017738 by P.E. Walcott.

GAYLORD MINES LTD, Nov/68. Assessment Report #018960 by P.E. Walcott.

GEOLOGICAL SURVEY OF CANADA, Memoir 208.

GEORGE CROSS NEWSLETTER, 8 Jan, 14 Apr, 26 May/88; 30 May, 4 Jul, 26 Sep, 7 Dec/89; 18 Feb/93; 14 Dec/93, 10 May/96, 11 Jun/96, 21 Jan/97.

GOLDNEV RESOURCES LTD, Nov/91. Assessment Report #092988 by L.R. Haynes.

GORDEY, S.P. and IRWIN, S.E.B., 1987. Geology, Sheldon Lake and Tay River map areas, Yukon Territory,

MINFILE: 105K 009 PAGE NO: 6 of 7 UPDATED: 10-Nov-09

scale 1:250 000. Geological Survey of Canada, Map 19-1987.

GORDEY, S.P., 1990. Geology of Tenas Creek (105K/1), Swim Lakes (105K/2) and Faro (105K/3 map areas, Yukon Territory, scale 1:50 000. Energy Mines and Resources Canada, Geological Survey of Canada Open File 2249.

GORDEY, S.P. and MAKEPEACE, A.J., 2003. Yukon Digital Geology, version 2.0, S.P Gordey and A.J. Makepeace (comp); Geological Survey of Canada, Open File 1749 and Yukon Geological Survey, Open File 2003-9(D).

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Jun/84. Assessment Report #091543 by R. Stroshein.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Dec/84. Assessment Report #091587 by R. Stroshein.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Feb/85. Assessment Report #091611 by R. Stroshein.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Jan/86. Assessment Report #091727 by T. Garagan.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Nov/86. Assessment Report #091885 by R. Stroshein.

NORANDA EXPLORATION COMPANY LTD, Jan/88. Assessment Report #092002 by H. Copland.

NORANDA EXPLORATION COMPANY LTD, Feb/88. Assessment Report #092099 by H. Copland.

NORANDA EXPLORATION COMPANY LTD, Feb/88. Assessment Report #092106 by H. Copland.

NORANDA EXPLORATION COMPANY LTD, Jan/89. Assessment Report #092634 by J. Duke.

NORTHERN MINER, 18 Jan/88; 24 Feb/92, 20 May/96, 17 Jun/96.

ORCAN MINERAL ASSOCIATES LTD, Apr/92. Mining Resources of the Grew Creek Deposit. (Available in EMR Library, Whitehorse, Yukon).

PLOUFFE, A., 1989. Drift prospecting and till geochemistry in Tintina Trench, southeastern Yukon. Unpublished M.Sc. thesis, Carleton University, Ottawa, Ontario.

PRIDE, M.J., 1988. Bimodal volcanism along the Tintina Trench near Faro and Ross River: in Yukon Geology, Vol. 2; Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 69-80.

WHEATON RIVER MINERALS LIMITED, Jun/92. Advanced Exploration Program Grew Creek Project. (Available in EMR Library, Whitehorse, Yukon).

YGC RESOURCES LTD, Dec/93. Assessment Report #093154 by R. Stroshein.

YGC RESOURCES LTD, Mar/95. Assessment Report #092239 by R. Stroshein.

 MINFILE:
 105K 009

 PAGE NO:
 7 of 7.

 UPDATED:
 10-Nov-09

YGC RESOURCES LTD, Jan/96. Assessment Report #093416 by R. Stroshein.

YGC RESOURCES LTD, Mar/97. Assessment Report #093627 by R. Stroshein.

YUKON EXPLORATION 1984, p. 109-111; 1985-86, p. 251-252; 1987, p. 182-183; 1988, p. 110-113.

YUKON EXPLORATION AND GEOLOGY 1983, p. 193; 1993, p. 7, 8; 1994, p. 5, 10, 12; 1995, p. 16, 18; 1996, p. 28, 30, 32; 2000, p. 22, 25; 2001, p. 18-19, 24, 25; 2002, p. 12-13,24, 26; 2003, p. 24-25; 2004, p. 14, 30, 33; 2005, p. 33, 38, 40.

#### DISCUSSION OF DRILL HOLE PLACEMENTS (OBSERVATIONS)

A brief overview of reasons for targeting this specific area is warranted at this point.

A multi-element geochem anomaly trending along line 22+700W occurs north of an arcing magnetic feature, suggesting a magnetic heat and/or fluid source centered to the south (Fig.3). Interpretation of geophysical and geochemical data suggests a focus of fault intersections correlative with the geochemical center. The Grew Creek fault is well defined (airborne resistivity). Another important feature is the combined multi-element geochemical and electromagnetic trend along the extent of the Robert Campbell Highway, most likely reflecting another key structural zone. A shear-hosted, banded quartz vein within Permian chert units strikes in a direction crossing the southern portion of the multi-element geochemical anomaly. It may be of interest to note that Gregory Hill made the determination of this lineament in his interpretation of the Enzyme Leach survey without prior knowledge of our vein discovery and its determined strike (Fig.3). Finally, two local till concentrate locations returned anomalous gold and arsenic values upon assay (Fig.2). Gregory has agreed to discuss results of our geochemical survey with those interested, including the relevance of the Ti depletion as noted in Fig.3.

Reasons for drill hole determination and brief summary of results follow:

#### Hole No.1

- ★ A V.L.F. E.M. anomaly center (Fig.3).
- E.M. trend coincident with a "central low" interpreted trend by G.T. Hill in 2001 based upon a close-spaced B-horizon soil sampling test (see attached 2001 map @ 1:2500.

I quote from an Enzyme Leach text by J. Robert Clark, a co-founder of this partial leach geochemistry: "Frequently, one or more elements will very tightly bracket a central low," and that central low will be directly over the reduced body in the subsurface". If this is the case here, the gold plot as per the 2001 survey (attached) is behaving as a bracketing element, or in other words, as a halo to the deposit (see summary map of 2001 survey plus Fig.3). In 2009, two drill holes tested below the plotted Au anomaly, with negative results.

- This E.M. anomaly underlies the general multi-element anomaly determined in the 2008 survey, together with it being essentially coincident with the geochemical feature trending along the highway.
- This coincident E.M.-geochemical anomaly is situated proximal to the Grew Creek fault and only several hundred metres from the magnetic arc.
- \* The vein fault trend as depicted in Fig.3 intersects this E.M. target.

Hole No. 1 is an extremely brecciated section of graben sediments intruded by several occurrences of equivalently altered and brecciated rhyolitic material. Clay alteration is ubiquitous. Eighty percent of assay sections host detectable Au, with a high of 50 ppb. Assay values for Ag and Sb are also elevated compared to remaining drill holes. Mercury values throughout the area are relatively high, to 730 ppb except hole no. 4 - where it is depleted by a factor of 10. Of the 4 holes drilled, only no. 1 hosted numerous pyritic clasts that appeared to have been transported within the breccia. The entire hole is strongly carbonaceous, with a good section of pyrobitumens near bottom.

#### Hole No.2

Drilled to test below highway - along which numerous elements trend in a somewhat arcing fashion (see tungsten plot in G.T. Hill report). Latter section of hole is carbonaceous and brecciated as hole no. 1, whereas the upper section is free of carbon. Hg is the only element with elevated values.

(12)

#### Hole No.3

- ★ Drilled to test a center of Sr depletion (Barry W. Smee consultant).
- ★ Located at perimeter of geochemical anomaly.

Hole consists of a carbon-free quartz breccia, often coloured by hematite banding. Very clay-altered, causing severe sanding. Hg only element with elevated values.

## Hole No.4

Hole was centered on a local mercury spike within the broader geochemical anomaly. Nearby was a pit from which a till concentrate was garnered and assayed previously, returning a high Au value (Fig. 2 and 3). Section is essentially a carbonaceous quartz breccia with intermittent tuffaceous material. The gravel sized quartz fragments at times appear to be the result of crushed (brecciated) vein material - strung out along an apparent flow pattern. Intact quartz veining is also noted. Ironically, though drilled in part because of a localized Hg spike, mercury values throughout the hole averaged lower than other holes by a factor of 10, averaging approx. 30 ppb.

#### CONCLUSIONS AND RECOMMENDATIONS

Though disappointed by assay results, one must remember that these shallow holes were hampered by extreme clay alteration of a brecciated quartz unit, resulting in severe sanding problems. Not yet explained are the multi-element geochem centers, together with 2 separate till concentrates assaying high in Au and As. Concentrate from the pit near hole no. 4 was tested for Au only.

Locally within the broader area, I believe the electromagnetic feature targeted in hole no. 1 deserves further attention. Perhaps one drill hole midpoint along its strike, where the "vein fault" lineament intersects, and a second, further westerly nearby the Ag spike. A larger drill is required to deal with the ground conditions. Note: Core is in safe keeping at 275 Alsek Road, Whitehorse. It is 1.39" in diameter, similar to the more common BQ wireline size of 1.43".

Also: Larger attached map sheets regarding this report have been expanded to a scale of 1:2500.



CIII) x 774.0 748.0 ICE FLOW DIRECTION WL 776.5 8. L. 120° Az FIG. 2 KM. 410 -- Canyon Gold Property (ENZYME LEACH SURVEY GRID) D.D.H. 2009= . D.D.H. 2010= - Carlos Till Conc. : Au= 9320 ppb (1992) - Plouffe Till Conc.: Au= 4790 ppb / As= 289 ppm (1988) Altered Silicic Volc.: Au To 325 ppb South Bounding Graben Fault: Tertiary igneous + sed. units north Permian chert south of fault 🗠 Aerodat Int. Faults SCALE : 1:10,000

# **APPENDIX 1**

# **DRILL HOLE DESCRIPTIVE LOGS**

# **SELECT CORE PHOTOS**

| <u>GRID</u> : 22+600W | <u>HOLE</u> : NO 1  | COORDINATES: 10+120N    |
|-----------------------|---------------------|-------------------------|
| BEARING: 210°         | <u>ANGLE</u> : -80° | <u>DEPTH</u> : 213 FEET |

| FROM | <u>T0</u> | DESCRIPTIONS                           |
|------|-----------|----------------------------------------|
| 0′   | 11′       | <u>OVBN</u>                            |
| 11′  | 55'       | VARIABLY CARBONACEOUS CLAY RICH BRECCL |

Section is hosted most likely within an altered graben shale-siltstone sequence: Brecciated throughout in varying intensity, resulting in a fine to coarse grained quartz breccia comprised of sub-rounded to angular quartz fragments together with similar clasts composed of pyrite and/or of a unit not identified, most likely sedimentary.

 $11' -23\frac{1}{2}$ : 25% core recovery. A clay rich, black-gray sand sized quartz material with occasional to 5cm. clasts of granitoid. At 16'-scattered accumulation of pyrite with sub-angular forms to those with crystal faces which may have grown in place. Quartz grains become coarser near end of this section.

 $23\frac{1}{2}-29$ : Somewhat less carbonaceous, coarser clast material comprising sub-rounded quartz and black-gray fragments to 1cm. At 29'-fining of clasts occurs together with observable fluid-flow features. Sulphide growth rims are common around clast grains and sulphide accumulations as apparent clasts also occur.

29'-31<sup>1</sup>/2': Prominent fluid flow features comprised of angular quartz fragments.

 $31\frac{1}{2}$  - 38': Variably carbonaceous angular to sub-rounded clasts within a matrix of sand size quartz.

38'-39': Sections of fine, granular pyrite clasts.

39'-45': A gray - fine grained quartz breccia.

 $45'-47\frac{1}{2}'$ : Very carbonaceous, clay rich sandy breccia within which occur angular to  $\frac{1}{2}$ cm. pyrite clasts. At  $46\frac{1}{2}'$  occurs approx. a  $\frac{1}{2}$ mm. hexagonal, yellow transparent crystal. Very distinct under a glass. Perhaps a Beryl. They have been noted occasionally throughout the length of this drill hole.

 $47\frac{1}{2}$  - 50': Clast supported, well rounded quartz fragments.

50'-53': Gray, fine grained quartz crackle breccia.



#### **DESCRIPTIONS**

## 55' 94<sup>1</sup>/2' STRONGLY CARBONACEOUS CLAY RICH BRECCIA

A higher degree of carbonaceous matter relative to section previous, together with abundant, well rounded larger clasts, varying from  $\frac{1}{2}$ -10cm; All within a carbonaceous sandy quartz-clay mud. Three separate 1 foot sections of fine pyrite within breccia matrix noted.

61': Pyrite grains prominent within rounded clay balls.

74'-76': Volcanic tuff: Dense black matrix with gray-tan, ragged edged pyroclasts. Core angle with breccia =  $40^{\circ}$ .

79'-80': As above. These 2 sections are very likely larger clast material within the breccia zone.

# 991/2' 104' <u>BRECCIATED QUARTZ EYE RHYOLITE PORPHYRY</u>

Grounded up to < 1mm. quartz grains within a clay matrix. To 1cm. rounded porphyry clasts throughout.

**104' 108<sup>1</sup>/2'** <u>CARBONACEOUS CLAY RICH BRECCIA (FAULT)?</u>

As above.

**108<sup>1</sup>/2' 112<sup>1</sup>/2'** BRECCIATED PORPHYRY

As 991/2'-104'.

#### 112<sup>1</sup>/<sub>2</sub>' 116' *QUARTZ SAND BRECCIA (HYDROCARBONS)?*

Section photo included conveying evidence for hydrocarbon invasion. Quartz sand breccia is probably the result of greater attrition of feldspar pphy. Evidence here may support my belief that there occurred a general "introduction of hydrocarbon" event.

#### **116'123'/2'CALCAREOUS SILTSTONE?**

45° fracture plane to core angle. Randomly oriented thin calcite veinlets throughout.

Logged by: A M Carlos

Hole Number: 01

#### 123<sup>1</sup>/2' 204' STRONGLY CARBONACEOUS BRECCIA

Generally as 55'-991/2'. The major difference involves the presence of identifiable pyrobitumen from 135'-156', becoming very concentrated from 154'-156'.

158'-159': Several fine grained, rounded pyrite clasts. Some of these clasts have been disrupted and strung out as grains of pyrite. The core is in places swollen to  $1\frac{1}{2}$  times its original diameter (expanding clay).

183<sup>1</sup>/2'-193<sup>1</sup>/2': 60% core recovery.

#### **206' 213'** <u>CLAY ALTERED RHYOLITE</u>

Very clay altered. When wet it has a gray-green alteration tint. Upon drying, mud cracks develop.

E.O.H.

## HOLE Km 410- 01 ASSAY INTERVAL NUMBERS

| <b>FROM</b> | <u>TO</u> |        |
|-------------|-----------|--------|
| 11′         | 15'       | 479176 |
| 15'         | 20'       | 479177 |
| 20'         | 25'       | 479178 |
| 25'         | 29'       | 479179 |
| 29'         | 311⁄2′    | 479180 |
| 311⁄2′      | 36'       | 479181 |
| 36'         | 391/2'    | 479182 |
| 391/2'      | 441⁄2′    | 479183 |
| 441⁄2′      | 491/2'    | 479184 |
| 491/2'      | 541/2'    | 479185 |

Logged by: A M Carlos

Hole Number: 01

| FROM    | <u>T0</u> |        |
|---------|-----------|--------|
| 541⁄2′  | 591/2"    | 479186 |
| 591/2′  | 641⁄2′    | 479187 |
| 641⁄2′  | 691/2′    | 479188 |
| 691⁄2′  | 741⁄2′    | 479189 |
| 741⁄2′  | 791⁄2′    | 479190 |
| 791⁄2′  | 841⁄2′    | 479191 |
| 841⁄2′  | 891/2′    | 479192 |
| 891⁄2′  | 941⁄2′    | 479193 |
| 941⁄2′  | 991/2'    | 479194 |
| 991⁄2′  | 104′      | 479195 |
| 104′    | 1081⁄2′   | 479196 |
| 1081⁄2′ | 1121⁄2′   | 479197 |
| 1121⁄2′ | 1161⁄2′   | 479198 |
| 1161⁄2′ | 123'      | 479199 |
| 123'    | 128'      | 479200 |
| 128′    | 133'      | 479201 |
| 133'    | 138'      | 479202 |
| 138'    | 143'      | 479203 |
| 143'    | 148'      | 479204 |
| 148'    | 153'      | 479205 |

Logged by: A M Carlos

Hole Number: 01

| <b>FROM</b> | <u>TO</u> |        |
|-------------|-----------|--------|
| 153'        | 158'      | 479206 |
| 158'        | 163'      | 479207 |
| 163'        | 168'      | 479208 |
| 168′        | 173'      | 479209 |
| 173'        | 178′      | 479210 |
| 178′        | 183'      | 479211 |
| 183'        | 188′      | 479212 |
| 188′        | 193'      | 479213 |
| 193'        | 198′      | 479214 |
| 198′        | 204′      | 479215 |
| 204′        | 209'      | 479216 |
| 209′        | 213'      | 479217 |

Hole Number: 01

| <u>GRID</u> : 22+600W | <u>HOLE</u> : NO 2  | COORDINATES: 10+212.5N    |
|-----------------------|---------------------|---------------------------|
| BEARING: 210°         | <u>ANGLE</u> : -50° | <u>DEPTH</u> : 146.5 FEET |

| <b>FROM</b> | <u>T0</u> |             | <b>DESCRIPTIONS</b> |
|-------------|-----------|-------------|---------------------|
| 0'          | 30'       | <u>OVBN</u> |                     |
| 30'         | 32'       | MIXED ZONE  |                     |

Till and bedrock mix zone. Black carbonaceous clay cementing till pebbles-sand, mixed with green and earthy red clay plus granular quartz.

# 32' 146<sup>1</sup>/2' <u>VARIABLY CARBONACEOUS BRECCIA ZONE</u>

General features: 1. Carbon rich = 69% of section.

- 2. Clast size varies from 3mm quartz granules to larger clasts of quartz and other material, often of a sub-rounded nature.
- 3. Variable clay content of the finer matrix.
- 4. Identifiable sections of fluid flow.
- 5. Carbon appears to have been introduced.

# 32'-41<sup>1</sup>/2': <u>QUARTZ BRECCIA (NON CARBONACEOUS)</u>

56% core recovery. Consists of green-gray to reddish hue, very often colour banded along the length of core, comprised of white, grey to green granular quartz fragments (3mm) fining down to less than 1mm. Much of the granular quartz displays abraded crystal forms, a feature prevalent through remainder of the hole. Occasional larger white quartz clasts varying to 3mm.make up the breccia. Estimate 80% quartz and 20% clay.

41'-41<sup>1</sup>/<sub>2</sub>': A less brecciated portion of the unit; A greenish hue with clay alteration, feldspars, quartz and earthy orange material. Mildy calcareous throughout, with better response from the reddish flow band features. Unique pyrite to 1% through section: A smeared and ragged look, lighter of colour than usual.

# 41<sup>1</sup>/<sub>2</sub>' 56' <u>QUARTZ BRECCIA (60% OF SECTION CARBONACEOUS)</u>

43.5': Distinct fluid flow feature.

44'-45': Green hued, silicified, quartz veined fragment. Altered volcanic? Approximately 1.5% pyrite.

49': 6cm. white quartz fragment with green chlorite wisps. Thin fractures of hematite. A short interval of carbonaceous breccia.

Logged by: A M Carlos Hole Number: 02 Sheet Number: 1

51<sup>1</sup>/2'-54': Carbonaceous quartz breccia, minor larger clasts.

54'-55': Gray-green to earthy red granular quartz flow bands. Similar as 32'-411/2'.

56': Fluid flow feature: varying width, mm. to cm. green quartz/clay within carbonaceous clay quartz breccia.

# 56' 63<sup>1</sup>/2' <u>CARBONACEOUS QUARTZ BRECCIA</u>

Brecciated throughout in varying intensity, resulting in a fine to coarser grained quartz breccia composed of sub-rounded to angular quartz fragments, together with similar clasts composed of sulphides and/or of a unit not identifiable, most likely of sedimentary origin. Overall more carbonized than above.

57': 2" rounded white quartz clast.

 $60\frac{1}{2}$ : White quartz clast.

# 63<sup>1</sup>/2' 70' *QUARTZ BRECCIA (NON CARBONACEOUS)*

 $63\frac{1}{2}$ . 70': 65% core recovery. Green hue to a granular quartz breccia. Short sections more competent due to increased quartz matrix. Clay rich sections have a distinct greasy feel, suggesting the presence of talc.

# 70' 77<sup>1</sup>/2' <u>CARBONACEOUS QUARTZ BRECCIA</u>

As 56'-63<sup>1</sup>/<sub>2</sub>'. 75': Hematite rich breccia clast.

# 77<sup>1</sup>/2' 82' QUARTZ BRECCIA (NON CARBONACEOUS)

Generally as  $63\frac{1}{2}$ '-70'. Distinct flow feature @ 81', 45% to core angle.

# 82' 146<sup>1</sup>/2' <u>CARBONACEOUS QUARTZ BRECCIA</u>

As described in  $56'-63\frac{1}{2}'$ . Interval is most carbonaceous in hole. Clasta of quartz vary to 10cm. along core axis.

138<sup>1</sup>/<sub>2</sub>': A nice example of fluid flow feature depicted in attached photo.

# E.O.H.

Logged by: A M Carlos

Hole Number: 02

# HOLE Km 410- 02 ASSAY INTERVAL NUMBERS

| FROM          | <u>TO</u>     |        |
|---------------|---------------|--------|
| 32'           | 411⁄2′        | 479151 |
| 41 <b>½</b> ′ | 43 <b>¾</b> ′ | 479152 |
| 43¾′          | 44 <b>¾</b> ′ | 479153 |
| 44 <b>¾</b> ′ | 50'           | 479154 |
| 50'           | 511/3'        | 479155 |
| 511/3'        | 531/3'        | 479156 |
| 531/3'        | 55'           | 479157 |
| 55'           | 63'           | 479158 |
| 63'           | 69'           | 479159 |
| 69'           | 74'           | 479160 |
| 74'           | 773⁄4′        | 479161 |
| 77¾′          | 813⁄4′        | 479162 |
| 81¾′          | 87'           | 479163 |
| 87'           | 92'           | 479164 |
| 92'           | 97'           | 479165 |
| 97'           | 102'          | 479166 |
| 102'          | 107'          | 479167 |
| 107′          | 112'          | 479168 |
| 112'          | 117′          | 479169 |

Logged by: A M Carlos Hole Number: 02 Sheet Number: 3

| <u>FROM</u> | <u>T0</u> |        |
|-------------|-----------|--------|
| 117′        | 122'      | 479170 |
| 122'        | 127'      | 479171 |
| 127′        | 132'      | 479172 |
| 132'        | 137'      | 479173 |
| 137'        | 142'      | 479174 |
| 142'        | 146′      | 479175 |

Hole Number: 02

| <u>GRID</u> : 22+6 | 500W      | HOLE: NO 3     | COORDINATES: 10+212.5N  |
|--------------------|-----------|----------------|-------------------------|
| <u>ANGLE</u> : -9  | 0°        |                | <u>DEPTH</u> : 165 FEET |
| <b>FROM</b>        | <u>TO</u> |                | DESCRIPTIONS            |
| 0′                 | 27'       | <u>OVBN</u>    |                         |
| 27'                | 156'      | OUARTZ BRECCIA |                         |

Overall colour is the result of a granular 1mm. or greater green, brecciated quartz. Prominent intervals of  $\frac{1}{2}$  cm. or wider red hued bands occur that accentuate the foliation prevalent. These features consist of 80% granular green-white quartz, aligned within a fine matrix of clay-sericite. A flaky red clay mineral defines the foliation within the colour bands. Although the flow banding is made up of visibly crushed and abraded material, silicification is evident by some of the quartz forms. Pyrite is noted throughout the core but, in particular, larger clasts may carry 3-4% as stringers and disseminations. Minor calcite is present but most noted in one of a number of clasts making up the breccia. Clay alteration is general, but occasional intervals intensely so, resulting in sections of wet core with a flexible, spaghetti like consistency. Severe sanding, due to clay alteration made it difficult to continue further. There is no magnetic response. 77 $\frac{1}{2}$ -90': The only portion of this core with carbonaceous material, occurring as alternating short, dark clay sections.

# DESCRIPTIONS: RANK BY ABUNDANCE OF LARGE CLAST MATERIAL

1) 7cm. example @ 98': Massive white quartz with calcite intergrowths. Dark greenblack chlorite bands to ¼cm. Minor sericite.

2a) 12cm. example @  $108\frac{1}{2}$ : Siliceous, green quartz sericite? Fine, wavy foliation with thin alternating bands of quartz and sericite. Calcareous (minor).

2b) 14cm. example @146': Similar to 2a but quartz flooding accompanied by hairline, gray sulphide fractures.

3) 25cm. example @ 1241/2': Competent (silicified) red breccia with patchy green tints. 1cm. clasts and smaller of white quartz with crackle features hosting thin bands of red clay. Some vein breccia features noted within the clay. Calcareous (minor).

4) 10cm. example @ 123<sup>1</sup>/2': A faintly foliated, thinly veined quartz-calcite unit hosting <<sup>1</sup>/2cm. bands of fine matrix supported crushed quartz; by hydraulic fracture?

Logged by: A M Carlos

Hole Number: 03

# FLOW BAND CORE ANGLES:

| 33′ = 45°         | $100' = 10^{\circ}$            |
|-------------------|--------------------------------|
| 41′ = 35°         | $104' = 0^{\circ}$             |
| 46′ = 10°         | 105′ = 20°                     |
| 58′ = 30°         | $108' = 30^{\circ}-45^{\circ}$ |
| 74′ = 30°         | $114' = 0^{\circ}$             |
| 76′ = 29°         | $124' = 0^{\circ}$             |
| 82′ = 10°         | 128′ = 30°                     |
| $84' = 0^{\circ}$ | $144' = 40^{\circ}$            |
| 90' = 40°         |                                |

# HOLE Km 410- 03 ASSAY INTERVAL NUMBERS

| <b>FROM</b> | <u>TO</u> |        |
|-------------|-----------|--------|
| 27′         | 32'       | 479218 |
| 32'         | 37'       | 479219 |
| 37'         | 42'       | 479220 |
| 42'         | 47'       | 479221 |
| 47′         | 52'       | 479222 |
| 52'         | 57'       | 479223 |
| 57'         | 62'       | 479224 |
| 62'         | 65'       | 479225 |
| 65'         | 70'       | 479226 |
| 70′         | 75'       | 479227 |
| 75'         | 79'       | 479228 |
| 79′         | 86′       | 479229 |

Logged by: A M Carlos

Hole Number: 03 Sheet Number: 2

| <b>FROM</b> | <u>TO</u> |        |
|-------------|-----------|--------|
| 86'         | 91′       | 479230 |
| 91′         | 96′       | 479231 |
| 96'         | 101′      | 479232 |
| 101′        | 106′      | 479233 |
| 106′        | 111′      | 479234 |
| 111′        | 116′      | 479235 |
| 116′        | 121′      | 479236 |
| 121′        | 126'      | 479237 |
| 126′        | 131'      | 479238 |
| 131'        | 136′      | 479239 |
| 136'        | 141′      | 479240 |
| 141′        | 146′      | 479241 |
| 146′        | 151'      | 479242 |
| 151'        | 156'      | 479243 |
| 156'        | 161′      | 479244 |
| 161'        | 165'      | 479245 |

Hole Number: 03

**<u>GRID</u>**: 22+700W

<u>HOLE</u>: NO 4

COORDINATES: 10+230N

<u>ANGLE: -90°</u>

## **<u>DEPTH</u>**: 230 FEET

FROM TO

## DESCRIPTIONS

**0' 61'** <u>*OVBN*</u> Approximately 40'-61': Dark gray to black - very carbonaceous.

# 61' 69' <u>FINE TO COARSE QUARTZ BRECCIA</u>

61'-62': Clay altered fine sand matrix with darker sections. Disseminated pyrite to ½%. 62'-63¼': Silicified sandy, gray-black breccia clast with pyrite flooding as 1cm x 4cm. irregular edged replacements. Clasts are of sub-angular to rounded quartz and unidentified fine black-banded fragments. Also within this section is noted a 6 inch fragment of silicified black silty material with green chlorite fractures. 66': A 10cm. section of medium to coarse grained quartz breccia, with ½cm. and less sub-angular fragments of white quartz, unidentified black clasts and approximatelt 40% by volume of light coloured tuffaceous volcanics. Minor quartz calcite veinlets plus fine pyrite replacement within selective clasts also within this section. 66'-69': Carbonaceous, clay rich sandy material.

#### **69' 74'** <u>*TUFF*?</u>

Very clay rich, only 3% recovery. Fine grained gray sandy matrix with thin approximately 2mm. acicular crystals throughout. The crystals have ragged looking ends. Are these crystal shards resulting from air fall?

## 74' 76' <u>EQUIGRANULAR CLASTIC QUARTZ</u>

Clasts are generally 1-2mm. and well crystallized together, having the appearance of an igneous intrusive at first glance. Lath like black clasts have a preferred orientation in places.

76' 81' <u>*TUFF*</u>?

Identified as 69'-74'.

Observations: a) Scattered 1mm. spherical amygdules.

b) Brittle core - breaks into small sections in removal from core tube.

c) Fine pyrite throughout.

d) Rare pyrite, biotite-chlorite masses.

Logged by: A M Carlos

Hole Number: 04

# 81' 83' <u>EQUIGRANULAR CLASTIC QUARTZ</u>

As 74'-76': Silicified.

**83' 90'** <u>*TUFF*?</u>

As Above.

84': Scattered quartz-calcite veinlets and silicification.

85'-90': Occasional parallel lineaments varying from 1-10cm. of fine fragmented quartz.

# 90' 108' <u>COARSE TO FINE GRAINED QUARTZ BRECCIA</u>

Sub-angular to rounded clast supported material varying from < 1cm.-6cm. Fragments consist of 50% white quartz, 40% dark, finely banded and 5% of a green hue. Generally, contacts between the coarse and more sandy breccia are abrupt, often separated by shearing.

 $100\frac{1}{2}$ : section of fine cubic pyrite.

# 108' 112<sup>1</sup>/<sub>2</sub>' <u>CARBONACEOUS (SILTSTONE)?</u>

Perhaps a result of attrition due to shearing and focused fluid flow.

# 112<sup>1</sup>/<sub>2</sub>' 129' <u>COARSE QUARTZ BRECCIA (CLAST SUPPORTED)</u>

60% sub angular to rounded white quartz.
10% rounded green-micaceous quartz.
30% siliceous, elongate, finely banded and cabonaceous.
122': A minor, fragmented discontinuous quartz veinlet.

# **129' 131'** <u>*TUFF*?</u>

As above.

129': Short section of massive fine pyrite. Uncommon core angle contact with preceeding unit at 90°. Abundant fractures in section consist of a greasy white clay.

131': Contact at 131' is 90° to core angle, with quartz fragments incorporated from the underlying unit.

Hole Number: 04

# 131' 149<sup>1</sup>/2' <u>COARSE TO FINE GRAINED QUARTZ BRECCIA</u>

Similar to 90'-108': Silicified.

140': Carbonaceous shear zone @ 17° to core angle. Transition between the separate breccias is often gradational, but there are also abrupt changes.

# 149<sup>1</sup>/2' 152<sup>1</sup>/2' <u>CARBONACEOUS VOLCANICLASTIC</u>

Carbonaceous fine grain clay matrix incorporating 1-3mm. quartz and tuffaceous apearing volcanics.

150': Shear @ 17° to c.a. 151': Shear @ 30° to c.a.

# **152<sup>1</sup>/2' 155<sup>1</sup>/2' COARSE QUARTZ BRECCIA (CLAST SUPPORTED)**

As 1121/2'-129'.

# **155<sup>1</sup>/2' 158<sup>1</sup>/2' BANDED SEDIMENT**?

Alternating <sup>1</sup>/2-<sup>1</sup>/4 cm. bands of carbonaceous and fine brown sandy material, ending in a 16cm. segment of well inducated sand.

# 158<sup>1</sup>/2' 176' <u>CARBONACEOUS FAULT ZONE</u>

158<sup>1</sup>/<sub>2</sub>': 40° shearing core angle.

158 $\frac{1}{2}$ -165': Carbonaceous, highly crushed clay rich matrix incorporating clasts of a fine gray quartz. approximately 10% of these clasts are finely stockwork veined. Total pyrite at approximately  $\frac{1}{2}$ % throughout section, occuring both as pyrite clasts or replacing the fine quartz clasts noted.

Hole Number: 04
## 176' 192<sup>1</sup>/2' <u>CARBONACEOUS CLAY RICH QUARTZ BRECCIA</u>

Gravel like white-gray to green quartz fragments comprise 90% of section. Clay accounts for 20%. Brecciated short vein section forms are often strung out in an irregular banded manner, at times bound by thin carbonaceous clay layers. Much of this section has been healed by subsequent quartz flooding.

 $179\frac{1}{2}$ : 80% to c.a. black clay seam bound by fine cubic pyrite.

190'-192 $\frac{1}{2}$ ': Fault zone. Quartz fragment size decreases from 190'-192 $\frac{1}{2}$ ', most likely due to greater attrition. Carbon presence also increases.

## 192<sup>1</sup>/2' 201' <u>CARBONACEOUS MUDSTONE</u>

20° to c.a. fracture pattern.

5% of section features thin vein stockworks.

194': Chlorite bearing features over 10cm. - minor veinlets.

### **201' 208'** <u>COARSE SANDSTONE</u>

40° fracture planes. Abundant sericite throughout. Minor quartz-calcite stockwork. 204': 7cm. of intense brecciation hosting 3cm. quartz-calcite veined clasts. Minor silicification.

## 208' 211' <u>CARBONACEOUS FINE MATRIX BRECCIA</u>

Fault: Large 6cm. angular to semi-rounded white quartz, clasts occur scattered within a fine, carbonaceous silica-clay matrix. Silicification is general. Shearing appears at approximately 40° to c.a.

## 211' 230' CARBONACEOUS QUARTZ BRECCIA

Brecciated throughout in varying intensity, resulting in a fine to coarse grained quartz breccia, primarily composed of sub-rounded to angular gravelly quartz. Dispersed throughout are visibly crushed white quartz masses that have been strung out to some degree. Between 211'-214', one of these features continues for 10cm., associated with fine pyrite to 4%.

223'-224': Brecciated quartz veining with clay alteration enveloping the fragments. 2251/2'-229': To 4cm. quartz veined clasts in a gritty clay matrix.

229'-230': A rapid fining of quartz fragments within the clay matrix.

The nature of the core and associated alteration created unmanageable sanding problems. We do not have the ability to case to this depth, or reduce.

| Logged by: A M Carlos Hole Number: 04 Sheet Num | nber: | 4 |
|-------------------------------------------------|-------|---|
|-------------------------------------------------|-------|---|

## HOLE Km 410- 04 ASSAY INTERVAL NUMBERS

| <u>FROM</u> | <u>TO</u> |        |
|-------------|-----------|--------|
| 61'         | 63'       | 053501 |
| 631⁄2′      | 69'       | 053502 |
| 69'         | 74'       | 053503 |
| 74'         | 79'       | 053504 |
| 79'         | 84'       | 053505 |
| 84'         | 90′       | 053506 |
| 90′         | 95'       | 053507 |
| 95'         | 100′      | 053508 |
| 100′        | 105'      | 053509 |
| 105'        | 108′      | 053510 |
| 108′        | 113'      | 053511 |
| 113′        | 118′      | 053512 |
| 118′        | 123'      | 053513 |
| 123'        | 129'      | 053514 |
| 129'        | 1311/3'   | 053515 |
| 1311/3'     | 1361/3'   | 053516 |
| 1361/3'     | 1411⁄2′   | 053517 |
| 1411/3'     | 1461/3'   | 053518 |

| <u>FROM</u> | <u>TO</u> |        |
|-------------|-----------|--------|
| 1461/3'     | 1511/3'   | 053519 |
| 1511/3'     | 156'      | 053520 |
| 156'        | 161'      | 053521 |
| 161′        | 166′      | 053522 |
| 166′        | 171′      | 053523 |
| 171'        | 176′      | 053524 |
| 176′        | 181'      | 053525 |
| 181′        | 186′      | 053526 |
| 186′        | 191′      | 053527 |
| 191'        | 196′      | 053528 |
| 196'        | 201'      | 053529 |
| 201'        | 208′      | 053530 |
| 208'        | 210'      | 053531 |
| 210'        | 2111/2'   | 053532 |
| 2111/2'     | 214′      | 053533 |
| 214′        | 221'      | 053534 |
| 221'        | 225'      | 053535 |
| 225'        | 230'      | 053536 |

Sheet Number: 6





CG-KM-410 2010-Hole 3-Box 1 Y AND 1 AS A NOR E ST KM-410-2010 - Hok - 1. TOP 1223 1 47 JI and to P CG-KM-410-2010-Hole 3-B 1 Tert CONSTRACT ON n to kall REAL AND 1 . Terrer " the second second 15000 Really 1 J. Stall CG-KM-410-2010-Hole 3- Box 4 1 3 3 4 5 Tude to Sales The H Proder NP. A DO ANY KM-410-2010-Hole 3- Box 5 IHE IN THE TE T -191 Contraction of the de an ingic 1 and the state of the 18 Provide 1 31 100 212 A stall 12 -100 CG-KM-410-2010-Hole 3- Box 7 A CARLAND Section 20 the star details 10 Long withing the second - General 11 - Reiner E. A.M Frank and The sale to be 1 dia 1 La Part 614 Provide a second a bar Va andes in the Si ne

## CANYON GOLD HOLE 3/2010

CG-KM-410-2010-Hok4-Box2 4. Carton Martin Colores No PT Trans CG-KM-410-2010-Hole 4-Box 3 CARE BARE AND THE Print and a second of the seco 199 mander and in such a line ...... CG-KM-410-2010-Hole 4 - Box 4 and the second an and accession applications forces and the same of the same of the the to imply the to the second of -KM-410-2010-Hok 4- Bex 5 100 Construction of Construction of Construction HI STATE SALES 1 Marines Francis STREET, STREET and selection . CG-KM-410-2010-Hole 4-Box 6 and the set of the set -With the low of the second 4 39 3 161 Carlos and 4 (A) 11 20 20 11 -The Advertision productions CG - KM-410-2010 - Hole 4- Box 7 Ser A in 8 And the second second 1 48 - 186 State State CG-KM-410-2010-Hak-4-Box 8 . - mail man and and and a set 2004 1. FR: 00 -Service Management And the second s CG-KM-410-2010 Hok 4- 1 Box 9 2 cane The the second states A Page St ----Cartina allana carta \* ----· 17. Pires States and The sta 1. C. C. S. ... -

CANYON GOLD HOLE 4/2010

## **APPENDIX 2**

# **DIAMOND DRILL HOLE CROSS SECTIONS**





## **APPENDIX 3**

# ANALYTICAL RESULTS



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - A Total # Fages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                                       | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | ME-MS61<br>Ag<br>ppm<br>0.01         | ME-MS61<br>Al<br>%<br>0.01           | ME-MS61<br>As<br>ppm<br>0.2          | ME-MS61<br>Ba<br>ppm<br>10        | ME-MS61<br>Be<br>ppm<br>0.05         | ME-MS61<br>Bi<br>ppm<br>0.01         | ME-MS61<br>Ca<br>%<br>0.01           | ME-MS61<br>Cd<br>ppm<br>0.02         | ME-MS61<br>Ce<br>ppm<br>0.01           | ME-MS61<br>Co<br>ppm<br>0.1          | ME-MS61<br>Cr<br>ppm<br>1     | ME-MS61<br>Cs<br>ppm<br>0.05           | ME-MS61<br>Cu<br>ppm<br>0.2          | ME-MS61<br>Fe<br>%<br>0.01           |
|----------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|-------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| 479176<br>479177<br>479178<br>479179<br>479179           |                                   | 0.46<br>0.73<br>0.56<br>1.25<br>1.09 | 0.41<br>0.46<br>0.31<br>0.31<br>0.39 | 7.21<br>6.44<br>2.02<br>1.57<br>2.25 | 46.4<br>36.6<br>41.8<br>59.5<br>76.3 | 930<br>1030<br>490<br>400<br>860  | 7.53<br>6.19<br>2.67<br>2.79<br>2.31 | 0.21<br>0.13<br>0.02<br>0.02<br>0.02 | 1.01<br>2.33<br>8.13<br>8.11<br>2.72 | 0.61<br>0.80<br>0.15<br>0.14<br>0.17 | 91.7<br>70.0<br>26.4<br>22.3<br>27.3   | 14.1<br>12.6<br>5.5<br>2.8<br>4.6    | 73<br>68<br>15<br>13<br>19    | 30.2<br>16.55<br>2.89<br>1.88<br>3.25  | 24.5<br>16.9<br>2.6<br>1.7<br>3.0    | 3.53<br>3.30<br>1.09<br>0.80<br>0.80 |
| 479181<br>479182<br>479183<br>479184<br>479184<br>479185 |                                   | 1.47<br>0.78<br>1.59<br>1.24<br>1.33 | 0.37<br>0.50<br>0.31<br>1.48<br>0.37 | 7.27<br>8.41<br>6.70<br>6.07<br>6.32 | 32.9<br>65.6<br>25.4<br>35.4<br>28.2 | 920<br>950<br>810<br>630<br>770   | 5.80<br>7.99<br>5.55<br>4.69<br>4.72 | 0.17<br>0.25<br>0.33<br>0.19<br>0.14 | 2.37<br>0.73<br>1.09<br>1.33<br>1.23 | 0.54<br>0.80<br>0.33<br>0.44<br>0.55 | 77.5<br>100.0<br>171.0<br>85.8<br>70.7 | 13.7<br>18.1<br>6.2<br>10.3<br>12.7  | 73<br>91<br>25<br>54<br>67    | 23.1<br>34.8<br>9.45<br>14.65<br>16.25 | 21.9<br>28.5<br>11.6<br>19.5<br>18.4 | 3.82<br>4.34<br>2.29<br>2.80<br>3.09 |
| 479186<br>479187<br>479188<br>479188<br>479189<br>479190 |                                   | 1.04<br>1.47<br>1.32<br>1.39<br>1.65 | 0.44<br>0.37<br>0.46<br>0.39<br>0.44 | 7.78<br>7.84<br>8.48<br>8.16<br>8.26 | 28.3<br>21.6<br>35.0<br>22.0<br>33.4 | 1000<br>1120<br>990<br>810<br>740 | 6.36<br>6.39<br>6.03<br>4.92<br>5.61 | 0.21<br>0.20<br>0.24<br>0.19<br>0.16 | 0.74<br>0.62<br>1.46<br>2.12<br>2.55 | 0.92<br>1.05<br>0.67<br>0.55<br>0.49 | 82.3<br>83.0<br>86.8<br>79.7<br>83.5   | 14.2<br>14.7<br>18.5<br>21.9<br>21.9 | 87<br>91<br>102<br>107<br>101 | 25.3<br>25.0<br>27.8<br>20.6<br>18.40  | 26.9<br>26.3<br>35.0<br>33.9<br>32.6 | 3.45<br>3.56<br>4.52<br>5.14<br>5.59 |
| 479191<br>479192<br>479193<br>479194<br>479194           |                                   | 1.33<br>1.46<br>1.36<br>1.51<br>1.57 | 0.37<br>0.44<br>0.39<br>0.38<br>0.79 | 8.41<br>7.73<br>8.50<br>8.18<br>6.48 | 24.5<br>30.5<br>20.2<br>22.5<br>29.6 | 860<br>930<br>1030<br>1010<br>620 | 5.22<br>4.59<br>6.03<br>5.63<br>3.93 | 0.23<br>0.21<br>0.26<br>0.21<br>0.06 | 1.48<br>1.10<br>0.89<br>1.28<br>0.20 | 0.60<br>0.53<br>0.76<br>0.70<br>0.25 | 82.1<br>78.3<br>88.1<br>83.6<br>202    | 19.1<br>19.1<br>18.1<br>18.3<br>1.2  | 99<br>94<br>96<br>95<br>1     | 20.7<br>18.90<br>23.9<br>22.2<br>8.87  | 34.0<br>31.7<br>32.3<br>34.1<br>5.3  | 4.40<br>3.97<br>3.95<br>4.22<br>1.95 |
| 479196                                                   |                                   | 1.40                                 | 0.36                                 | 8.04                                 | 23.7                                 | 900                               | 7.25                                 | 0.23                                 | 0.92                                 | 0.66                                 | 93.2                                   | 17.1                                 | 90                            | 25.1                                   | 31.8                                 | 3.91                                 |
|                                                          |                                   |                                      |                                      |                                      |                                      |                                   |                                      |                                      |                                      |                                      |                                        |                                      |                               |                                        |                                      |                                      |
|                                                          |                                   |                                      |                                      |                                      |                                      |                                   |                                      |                                      |                                      |                                      |                                        |                                      |                               |                                        |                                      |                                      |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - B Total # Fages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                                       | Method  | ME-MS61                               | ME-MS61                              | ME-MS61                         | Hg-CV41                              | ME-MS61                                   | ME-MS61                              | ME-MS61                               | ME-MS61                               | ME-MS61                              | ME-MS61                         | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                            |
|----------------------------------------------------------|---------|---------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|
|                                                          | Analyte | Ga                                    | Ge                                   | Hf                              | Hg                                   | In                                        | K                                    | La                                    | Li                                    | Mg                                   | Mn                              | Mo                                   | Na                                   | Nb                                   | Ni                                   | P                                  |
|                                                          | Units   | ppm                                   | ppm                                  | ppm                             | ppm                                  | ppm                                       | %                                    | ppm                                   | ppm                                   | %                                    | ppm                             | ppm                                  | %                                    | ppm                                  | ppm                                  | ppm                                |
|                                                          | LOR     | 0.05                                  | 0.05                                 | 0.1                             | 0.01                                 | 0.005                                     | 0.01                                 | 0.5                                   | 0.2                                   | 0.01                                 | 5                               | 0.05                                 | 0.01                                 | 0.1                                  | 0.2                                  | 10                                 |
| 479176                                                   |         | 19.85                                 | 0.20                                 | 3.8                             | 0.50                                 | 0.071                                     | 2.37                                 | 48.6                                  | 78.4                                  | 0.95                                 | 506                             | 2.63                                 | 0.20                                 | 23.6                                 | 40.3                                 | 1020                               |
| 479177                                                   |         | 15.90                                 | 0.17                                 | 2.6                             | 0.45                                 | 0.059                                     | 2.55                                 | 38.1                                  | 96.1                                  | 1.90                                 | 671                             | 0.84                                 | 0.18                                 | 15.1                                 | 33.6                                 | 820                                |
| 479178                                                   |         | 4.48                                  | 0.07                                 | 0.7                             | 0.12                                 | 0.011                                     | 1.00                                 | 14.0                                  | 58.1                                  | 4.26                                 | 277                             | 0.40                                 | 0.05                                 | 3.1                                  | 8.7                                  | 580                                |
| 479179                                                   |         | 3.69                                  | 0.05                                 | 0.6                             | 0.09                                 | 0.008                                     | 0.71                                 | 12.1                                  | 88.0                                  | 4.41                                 | 186                             | 0.35                                 | 0.04                                 | 2.3                                  | 6.6                                  | 520                                |
| 479180                                                   |         | 5.29                                  | 0.06                                 | 0.8                             | 0.16                                 | 0.008                                     | 1.44                                 | 14.8                                  | 62.4                                  | 1.44                                 | 150                             | 0.44                                 | 0.06                                 | 3.5                                  | 11.4                                 | 110                                |
| 479181                                                   |         | 18.65                                 | 0.16                                 | 3.4                             | 0.29                                 | 0.063                                     | 2.43                                 | 42.1                                  | 97.4                                  | 1.46                                 | 623                             | 1.56                                 | 0.36                                 | 23.7                                 | 36.0                                 | 1170                               |
| 479182                                                   |         | 23.8                                  | 0.20                                 | 4.2                             | 0.41                                 | 0.087                                     | 2.94                                 | 53.8                                  | 55.7                                  | 0.99                                 | 539                             | 4.11                                 | 0.37                                 | 24.3                                 | 46.3                                 | 1160                               |
| 479183                                                   |         | 22.8                                  | 0.21                                 | 8.1                             | 0.24                                 | 0.107                                     | 2.18                                 | 89.3                                  | 66.6                                  | 0.53                                 | 445                             | 5.54                                 | 0.34                                 | 39.8                                 | 17.2                                 | 390                                |
| 479184                                                   |         | 17.05                                 | 0.17                                 | 3.9                             | 0.19                                 | 0.060                                     | 1.92                                 | 44.8                                  | 68.5                                  | 0.86                                 | 482                             | 2.48                                 | 0.24                                 | 19.5                                 | 29.7                                 | 1390                               |
| 479185                                                   |         | 16.45                                 | 0.19                                 | 2.9                             | 0.44                                 | 0.054                                     | 1.99                                 | 38.4                                  | 93.1                                  | 0.88                                 | 574                             | 1.04                                 | 0.43                                 | 19.0                                 | 35.8                                 | 930                                |
| 479186<br>479187<br>479188<br>479188<br>479189<br>479190 |         | 20.8<br>20.8<br>22.1<br>20.1<br>19.95 | 0.18<br>0.19<br>0.21<br>0.19<br>0.21 | 3.4<br>3.3<br>3.4<br>3.4<br>3.6 | 0.50<br>0.38<br>0.50<br>0.39<br>0.57 | 0.069<br>0.073<br>0.074<br>0.076<br>0.077 | 2.68<br>2.88<br>2.45<br>2.14<br>2.15 | 43.8<br>45.4<br>46.7<br>42.4<br>45.2  | 73.8<br>78.1<br>85.3<br>60.9<br>118.5 | 0.86<br>0.86<br>1.50<br>1.74<br>1.90 | 506<br>499<br>748<br>857<br>902 | 1.52<br>1.46<br>2.96<br>2.60<br>3.28 | 0.41<br>0.34<br>0.55<br>0.86<br>0.98 | 21.2<br>18.9<br>22.2<br>29.8<br>33.5 | 43.4<br>44.9<br>54.3<br>60.2<br>57.5 | 970<br>700<br>1120<br>1430<br>1500 |
| 479191<br>479192<br>479193<br>479193<br>479194<br>479195 |         | 21.3<br>20.2<br>22.9<br>21.1<br>26.3  | 0.19<br>0.19<br>0.21<br>0.20<br>0.25 | 3.3<br>2.9<br>3.6<br>3.2<br>8.3 | 0.44<br>0.30<br>0.43<br>0.40<br>0.23 | 0.074<br>0.069<br>0.079<br>0.073<br>0.117 | 2.17<br>1.98<br>2.40<br>2.42<br>3.18 | 44.7<br>42.6<br>47.5<br>45.1<br>109.0 | 91.8<br>69.0<br>68.8<br>61.7<br>42.2  | 1.30<br>1.09<br>1.03<br>1.21<br>0.18 | 668<br>566<br>572<br>641<br>299 | 2.69<br>2.84<br>2.45<br>2.78<br>2.39 | 0.66<br>0.69<br>0.67<br>0.60<br>0.14 | 23.8<br>20.2<br>23.7<br>22.9<br>43.9 | 55.4<br>59.6<br>55.8<br>52.6<br>3.4  | 1020<br>930<br>910<br>1010<br>140  |
| 479196                                                   |         | 22.6                                  | 0.23                                 | 3.7                             | 0.36                                 | 0.076                                     | 2.49                                 | 49.6                                  | 60.7                                  | 1.04                                 | 570                             | 4.69                                 | 0.63                                 | 22.9                                 | 49.3                                 | 890                                |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| ample Description | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>Pb<br>ppm<br>0.5 | ME-MS61<br>Rb<br>ppm<br>0.1 | ME-MS61<br>Re<br>ppm<br>0.002 | ME-MS61<br>S<br>%<br>0.01 | ME-MS61<br>Sb<br>ppm<br>0.05 | MEMS61<br>Sc<br>ppm<br>0.1 | ME-MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2 | ME-MS61<br>Sr<br>ppm<br>0.2 | ME-MS61<br>Ta<br>ppm<br>0.05 | ME-MS61<br>Te<br>ppm<br>0.05 | ME-MS61<br>Th<br>ppm<br>0.2 | ME-MS61<br>Ti<br>%<br>0.005 | ME-MS61<br>Tl<br>ppm<br>0.02 | ME-MS61<br>U<br>ppm<br>0.1 |
|-------------------|-----------------------------------|-----------------------------|-----------------------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|----------------------------|
| 479176            |                                   | 19.6                        | 184.5                       | <0.002                        | 0.10                      | 6.70                         | 12.2                       | 3                         | 3.7                         | 157.5                       | 1.61                         | <0.05                        | 13.8                        | 0.488                       | 0.97                         | 4.1                        |
| 479177            |                                   | 16.1                        | 185.0                       | <0.002                        | 0.18                      | 4.16                         | 11.2                       | 2                         | 2.6                         | 230                         | 1.06                         | <0.05                        | 11.0                        | 0.400                       | 1.02                         | 3.2                        |
| 479178            |                                   | 5.1                         | 57.0                        | <0.002                        | 0.14                      | 4.63                         | 2.3                        | 2                         | 0.7                         | 487                         | 0.24                         | <0.05                        | 3.1                         | 0.071                       | 0.52                         | 0.9                        |
| 479179            |                                   | 4.7                         | 47.9                        | <0.002                        | 0.17                      | 4.82                         | 2.0                        | 3                         | 0.6                         | 473                         | 0.18                         | <0.05                        | 2.5                         | 0.052                       | 0.48                         | 0.8                        |
| 479180            |                                   | 6.4                         | 84.6                        | <0.002                        | 0.21                      | 6.23                         | 2.3                        | 2                         | 0.8                         | 296                         | 0.26                         | <0.05                        | 3.3                         | 0.081                       | 0.96                         | 0.9                        |
| 479181            |                                   | 14.9                        | 181.5                       | <0.002                        | 0.14                      | 5.33                         | 12.0                       | 3                         | 2.8                         | 202                         | 1.58                         | <0.05                        | 11.5                        | 0.537                       | 1.02                         | 3.4                        |
| 479182            |                                   | 24.7                        | 248                         | <0.002                        | 0.42                      | 12.15                        | 15.2                       | 3                         | 4.0                         | 144.0                       | 1.68                         | 0.06                         | 16.1                        | 0.547                       | 1.42                         | 4.7                        |
| 479183            |                                   | 32.7                        | 152.0                       | 0.002                         | 0.09                      | 4.23                         | 6.7                        | 3                         | 7.9                         | 150.0                       | 2.77                         | <0.05                        | 28.1                        | 0.272                       | 0.86                         | 8.1                        |
| 479184            |                                   | 21.0                        | 148.0                       | <0.002                        | 0.13                      | 3.70                         | 9.8                        | 3                         | 3.5                         | 120.0                       | 1.38                         | <0.05                        | 13.8                        | 0.351                       | 0.84                         | 4.2                        |
| 479185            |                                   | 16.5                        | 155.5                       | <0.002                        | 0.14                      | 4.51                         | 11.6                       | 2                         | 2.5                         | 117.0                       | 1.29                         | <0.05                        | 10.9                        | 0.443                       | 0.92                         | 3.3                        |
| 479186            |                                   | 20.5                        | 212                         | 0.002                         | 0.17                      | 5.12                         | 14.3                       | 3                         | 3.2                         | 126.5                       | 1.47                         | 0.05                         | 13.7                        | 0.495                       | 1.28                         | 4.2                        |
| 479187            |                                   | 20.4                        | 223                         | 0.002                         | 0.16                      | 4.43                         | 14.5                       | 3                         | 3.3                         | 125.5                       | 1.34                         | <0.05                        | 14.1                        | 0.475                       | 1.31                         | 4.2                        |
| 479188            |                                   | 20.2                        | 181.5                       | 0.002                         | 0.19                      | 5.91                         | 16.3                       | 3                         | 3.4                         | 193.5                       | 1.52                         | <0.05                        | 13.9                        | 0.540                       | 1.06                         | 4.1                        |
| 479189            |                                   | 15.2                        | 132.5                       | < 0.002                       | 0.13                      | 4.85                         | 15.3                       | 3                         | 2.8                         | 260                         | 1.97                         | 0.05                         | 11.1                        | 0.704                       | 0.85                         | 3.3                        |
| 479190            |                                   | 13.7                        | 140.0                       | <0.002                        | 0.22                      | 5.79                         | 15.0                       | 3                         | 2.7                         | 312                         | 2.16                         | <0.05                        | 10.7                        | 0.774                       | 0.85                         | 3.1                        |
| 479191            |                                   | 19.3                        | 146.5                       | <0.002                        | 0.13                      | 4.75                         | 15.9                       | 3                         | 3.1                         | 216                         | 1.63                         | 0.06                         | 13.0                        | 0.576                       | 0.92                         | 3.9                        |
| 479192            |                                   | 22.0                        | 139.5                       | <0.002                        | 0.12                      | 4.99                         | 14.7                       | 3                         | 3.1                         | 161.5                       | 1.36                         | 0.06                         | 12.3                        | 0.487                       | 0.91                         | 3.7                        |
| 479193            |                                   | 24.7                        | 173.0                       | 0.002                         | 0.18                      | 4.48                         | 15.9                       | 3                         | 3.5                         | 163.5                       | 1.66                         | 0.05                         | 14.6                        | 0.561                       | 1.06                         | 5.1                        |
| 479194            |                                   | 18.1                        | 164.5                       | < 0.002                       | 0.14                      | 4.34                         | 15.4                       | 3                         | 3.0                         | 188.5                       | 1.57                         | 0.05                         | 12.8                        | 0.556                       | 1.01                         | 3.6                        |
| 479195            |                                   | 37.9                        | 187.5                       | 0.002                         | 0.16                      | 2.29                         | 3.2                        | 3                         | 6.5                         | 48.1                        | 2.76                         | <0.05                        | 27.0                        | 0.146                       | 0.99                         | 5.5                        |
| 479196            |                                   | 20.0                        | 184.5                       | 0.002                         | 0.13                      | 3.81                         | 15.3                       | 3                         | 3.6                         | 142.0                       | 1.54                         | 0.06                         | 14.3                        | 0.486                       | 1.04                         | 4.1                        |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1 Page: 2 - D Total # Fages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| ample Description                                        | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>V<br>ppm<br>1        | ME-MS61<br>W<br>ppm<br>0.1      | ME-MS61<br>Y<br>ppm<br>0.1           | ME-MS61<br>Zn<br>ppm<br>2       | ME-MS61<br>Zr<br>ppm<br>0.5               | Au-AA24<br>Au<br>ppm<br>0.005             |  |
|----------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|--|
| 479176<br>479177                                         |                                   | 118<br>107                      | 5.7<br>5.4                      | 31.4<br>23.3                         | 121<br>118                      | 120.0<br>81.6                             | 0.008<br>0.006                            |  |
| 479178<br>479179<br>479180                               |                                   | 34<br>32<br>32                  | 1.4<br>1.2<br>1.7               | 9.4<br>7.6<br>6.6                    | 27<br>17<br>24                  | 20.8<br>16.6<br>22.1                      | 0.005<br><0.005<br>0.050                  |  |
| 479181<br>479182<br>479183<br>479183<br>479184<br>479185 |                                   | 124<br>151<br>45<br>91<br>111   | 4.5<br>6.4<br>2.7<br>8.4<br>3.6 | 26.0<br>31.5<br>72.3<br>37.7<br>23.3 | 97<br>142<br>111<br>93<br>99    | 114.5<br>130.0<br>245<br>115.5<br>93.6    | 0.010<br>0.017<br>0.005<br>0.007<br>0.006 |  |
| 479186<br>479187<br>479188<br>479188<br>479189<br>479190 |                                   | 142<br>143<br>155<br>152<br>153 | 4.0<br>3.9<br>5.0<br>4.1<br>4.5 | 26.9<br>24.7<br>28.0<br>26.1<br>27.2 | 136<br>150<br>129<br>116<br>110 | 108.0<br>103.5<br>107.0<br>113.5<br>124.5 | 0.009<br>0.005<br>0.011<br>0.008<br>0.010 |  |
| 479191<br>479192<br>479193<br>479193<br>479194<br>479195 |                                   | 154<br>134<br>150<br>148<br>4   | 4.1<br>3.7<br>4.1<br>4.0<br>7.3 | 26.2<br>23.6<br>27.6<br>25.8<br>58.5 | 126<br>114<br>132<br>137<br>89  | 108.5<br>93.5<br>115.5<br>103.0<br>252    | 0.007<br>0.009<br>0.008<br>0.008<br>0.008 |  |
| 479196                                                   |                                   | 137                             | 4.3                             | 29.8                                 | 139                             | 114.5                                     | 0.016                                     |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                                       | Method<br>Analyte<br>Units<br>LOR | WEI–21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA24<br>Au<br>ppm<br>0.005              | ME-MS61<br>Ag<br>ppm<br>0.01         | ME-MS61<br>Al<br>%<br>0.01           | ME-MS61<br>As<br>ppm<br>0.2          | ME-MS61<br>Ba<br>ppm<br>10          | ME-MS61<br>Be<br>ppm<br>0.05         | ME-MS61<br>Bi<br>ppm<br>0.01         | ME-MS61<br>Ca<br>%<br>0.01           | ME-MS61<br>Cd<br>ppm<br>0.02         | ME-MS61<br>Ce<br>ppm<br>0.01           | ME-MS61<br>Co<br>ppm<br>0.1          | ME-MS61<br>Cr<br>ppm<br>1   | ME-MS61<br>Cs<br>ppm<br>0.05             | ME-MS61<br>Cu<br>ppm<br>0.2          |
|----------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|-----------------------------|------------------------------------------|--------------------------------------|
| 479197<br>479198<br>479199<br>479200<br>479201           |                                   | 1.28<br>1.19<br>2.07<br>1.74<br>0.63 | <0.005<br>0.019<br>0.014<br>0.013<br>0.006 | 0.17<br>0.47<br>0.27<br>0.35<br>0.61 | 6.50<br>8.06<br>4.37<br>7.70<br>7.44 | 4.5<br>29.5<br>17.7<br>25.5<br>11.5  | 730<br>1020<br>630<br>760<br>710    | 4.46<br>7.92<br>3.21<br>7.46<br>6.46 | 0.18<br>0.23<br>0.07<br>0.25<br>0.24 | 0.34<br>1.02<br>1.36<br>0.97<br>0.84 | 0.30<br>0.54<br>0.35<br>0.46<br>0.43 | 205<br>112.0<br>43.0<br>114.5<br>129.0 | 1.6<br>12.5<br>7.5<br>13.8<br>14.2   | 4<br>77<br>45<br>66<br>64   | 8.85<br>20.1<br>3.38<br>21.5<br>20.0     | 4.9<br>37.9<br>7.7<br>27.3<br>28.5   |
| 479202<br>479203<br>479204<br>479205<br>479205           |                                   | 1.36<br>1.56<br>1.71<br>1.13<br>1.26 | 0.007<br>0.009<br>0.006<br>0.009<br>0.005  | 0.31<br>0.36<br>0.31<br>0.43<br>0.37 | 8.41<br>8.42<br>7.32<br>9.36<br>8.96 | 22.5<br>21.6<br>19.2<br>45.8<br>13.4 | 1000<br>1030<br>920<br>1180<br>1260 | 6.10<br>5.69<br>4.88<br>4.52<br>4.46 | 0.25<br>0.25<br>0.20<br>0.31<br>0.27 | 0.78<br>0.47<br>0.52<br>0.76<br>0.27 | 0.82<br>0.93<br>0.75<br>1.33<br>1.20 | 88.5<br>85.4<br>84.8<br>100.5<br>96.9  | 16.2<br>15.3<br>14.2<br>16.0<br>15.1 | 91<br>90<br>76<br>100<br>96 | 25.7<br>26.0<br>19.35<br>21.1<br>19.80   | 31.1<br>30.2<br>25.4<br>37.1<br>29.7 |
| 479207<br>479208<br>479209<br>479210<br>479211           |                                   | 1.60<br>1.78<br>1.18<br>1.05<br>1.64 | 0.007<br>0.008<br>0.009<br>0.008<br>0.008  | 0.32<br>0.24<br>0.30<br>0.29<br>0.36 | 7.56<br>7.39<br>8.12<br>7.95<br>8.68 | 14.2<br>17.8<br>28.3<br>16.8<br>17.0 | 1050<br>920<br>900<br>900<br>890    | 4.10<br>3.18<br>3.90<br>3.89<br>3.25 | 0.26<br>0.20<br>0.22<br>0.22<br>0.22 | 0.69<br>1.21<br>0.92<br>0.78<br>1.15 | 0.75<br>0.60<br>0.76<br>0.70<br>0.79 | 77.0<br>72.4<br>83.7<br>83.0<br>92.3   | 15.3<br>14.6<br>17.2<br>15.9<br>16.3 | 77<br>76<br>87<br>87<br>94  | 15.40<br>13.50<br>19.90<br>20.5<br>19.50 | 27.6<br>26.2<br>29.8<br>30.0<br>36.3 |
| 479212<br>479213<br>479214<br>479215<br>479215<br>479216 |                                   | 0.76<br>0.72<br>1.63<br>1.49<br>1.72 | 0.008<br>0.006<br>0.012<br>0.005<br><0.005 | 0.34<br>0.35<br>0.30<br>0.29<br>0.16 | 8.36<br>7.76<br>6.93<br>8.04<br>5.95 | 18.0<br>16.6<br>29.1<br>17.3<br>3.5  | 940<br>850<br>860<br>1010<br>530    | 3.27<br>2.96<br>3.32<br>3.13<br>2.99 | 0.25<br>0.24<br>0.19<br>0.24<br>0.27 | 1.05<br>2.66<br>2.40<br>0.89<br>3.10 | 0.70<br>0.55<br>0.58<br>0.87<br>0.18 | 88.9<br>85.0<br>74.8<br>87.1<br>166.0  | 15.3<br>13.6<br>12.2<br>15.0<br>5.1  | 91<br>89<br>70<br>88<br>14  | 18.05<br>14.00<br>17.85<br>17.75<br>3.11 | 33.3<br>30.6<br>25.0<br>31.4<br>8.3  |
| 479217                                                   |                                   | 1.27                                 | <0.005                                     | 0.10                                 | 6.60                                 | 2.8                                  | 520                                 | 3.68                                 | 0.31                                 | 1.55                                 | 0.11                                 | 183.0                                  | 4.1                                  | 14                          | 3.05                                     | 8.0                                  |
|                                                          |                                   |                                      |                                            |                                      |                                      |                                      |                                     |                                      |                                      |                                      |                                      |                                        |                                      |                             |                                          |                                      |
|                                                          |                                   |                                      |                                            |                                      |                                      |                                      |                                     |                                      |                                      |                                      |                                      |                                        |                                      |                             |                                          |                                      |
|                                                          |                                   |                                      |                                            |                                      |                                      |                                      |                                     |                                      |                                      |                                      |                                      |                                        |                                      |                             |                                          |                                      |
|                                                          |                                   |                                      |                                            |                                      |                                      |                                      |                                     |                                      |                                      |                                      |                                      |                                        |                                      |                             |                                          |                                      |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| ample Description | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>Fe<br>%<br>0.01 | ME-MS61<br>Ga<br>ppm<br>0.05 | ME-MS61<br>Ge<br>ppm<br>0.05 | ME-MS61<br>Hf<br>ppm<br>0.1 | Hg-CV41<br>Hg<br>ppm<br>0.01 | ME-MS61<br>In<br>ppm<br>0.005 | ME-MS61<br>K<br>%<br>0.01 | ME-MS61<br>La<br>ppm<br>0.5 | ME-MS61<br>Li<br>ppm<br>0.2 | ME-MS61<br>Mg<br>%<br>0.01 | ME-MS61<br>Mn<br>ppm<br>5 | ME-MS61<br>Mo<br>ppm<br>0.05 | ME-MS61<br>Na<br>%<br>0.01 | ME-MS61<br>Nb<br>ppm<br>0.1 | ME-MS61<br>Ni<br>ppm<br>0.2 |
|-------------------|-----------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|-------------------------------|---------------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|------------------------------|----------------------------|-----------------------------|-----------------------------|
| 479197            |                                   | 1.94                       | 25.7                         | 0.24                         | 8.1                         | 0.24                         | 0.122                         | 3.35                      | 93.6                        | 38.7                        | 0.23                       | 336                       | 1.46                         | 0.19                       | 47.9                        | 5.4                         |
| 479198            |                                   | 3.20                       | 22.6                         | 0.20                         | 4.4                         | 0.44                         | 0.086                         | 2.97                      | 52.5                        | 46.3                        | 0.78                       | 404                       | 2.01                         | 0.91                       | 28.6                        | 39.9                        |
| 479199            |                                   | 1.26                       | 9.16                         | 0.14                         | 2.0                         | 0.31                         | 0.027                         | 1.31                      | 21.4                        | 73.1                        | 0.31                       | 180                       | 0.25                         | 1.08                       | 11.2                        | 23.3                        |
| 479200            |                                   | 4.08                       | 21.5                         | 0.23                         | 4.6                         | 0.25                         | 0.086                         | 2.70                      | 53.3                        | 46.8                        | 0.79                       | 831                       | 3.14                         | 0.87                       | 30.6                        | 40.8                        |
| 479201            |                                   | 4.10                       | 24.4                         | 0.24                         | 4.8                         | 0.22                         | 0.090                         | 2.46                      | 60.1                        | 47.3                        | 0.79                       | 785                       | 5.55                         | 0.51                       | 33.9                        | 39.3                        |
| 479202            |                                   | 4.15                       | 22.2                         | 0.15                         | 3.6                         | 0.35                         | 0.077                         | 2.31                      | 42.2                        | 99.2                        | 0.97                       | 595                       | 2.73                         | 0.43                       | 22.2                        | 51.8                        |
| 479203            |                                   | 3.45                       | 22.7                         | 0.19                         | 3.7                         | 0.30                         | 0.075                         | 2.50                      | 40.3                        | 99.6                        | 0.77                       | 448                       | 2.18                         | 0.36                       | 20.2                        | 50.7                        |
| 479204            |                                   | 3.27                       | 20.2                         | 0.19                         | 3.4                         | 0.20                         | 0.064                         | 2.10                      | 40.1                        | 130.0                       | 0.68                       | 401                       | 2.21                         | 0.37                       | 19.2                        | 44.7                        |
| 479205            |                                   | 3.25                       | 26.0                         | 0.21                         | 4.2                         | 0.30                         | 0.083                         | 2.37                      | 47.3                        | 124.5                       | 0.73                       | 389                       | 3.51                         | 0.37                       | 22.9                        | 58.6                        |
| 479206            |                                   | 2.69                       | 24.4                         | 0.19                         | 3.9                         | 0.22                         | 0.077                         | 2.55                      | 45.7                        | 112.0                       | 0.60                       | 340                       | 2.30                         | 0.33                       | 20.8                        | 50.5                        |
| 479207            |                                   | 3.36                       | 19.95                        | 0.20                         | 3.1                         | 0.19                         | 0.063                         | 2.26                      | 36.8                        | 73.3                        | 0.80                       | 471                       | 1.67                         | 0.56                       | 17.8                        | 46.3                        |
| 479208            |                                   | 3.59                       | 18.80                        | 0.19                         | 2.9                         | 0.20                         | 0.059                         | 1.87                      | 34.6                        | 55.4                        | 0.96                       | 676                       | 2.39                         | 0.60                       | 17.3                        | 44.8                        |
| 479209            |                                   | 4.07                       | 21.2                         | 0.21                         | 3.6                         | 0.31                         | 0.073                         | 2.10                      | 39.2                        | 57.1                        | 1.05                       | 601                       | 2.21                         | 0.56                       | 21.1                        | 49.3                        |
| 479210            |                                   | 3.85                       | 21.1                         | 0.19                         | 3.5                         | 0.28                         | 0.073                         | 2.11                      | 39.2                        | 55.0                        | 0.95                       | 579                       | 2.45                         | 0.53                       | 20.6                        | 48.9                        |
| 479211            |                                   | 4.53                       | 24.0                         | 0.21                         | 4.0                         | 0.26                         | 0.083                         | 2.17                      | 45.5                        | 59.0                        | 1.15                       | 694                       | 2.14                         | 0.69                       | 22.8                        | 56.8                        |
| 479212            |                                   | 4.35                       | 22.8                         | 0.23                         | 3.8                         | 0.25                         | 0.078                         | 2.16                      | 43.9                        | 73.4                        | 1.02                       | 654                       | 2.04                         | 0.56                       | 20.9                        | 54.7                        |
| 479213            |                                   | 4.32                       | 20.6                         | 0.21                         | 3.7                         | 0.27                         | 0.076                         | 2.03                      | 40.8                        | 50.9                        | 1.31                       | 759                       | 3.07                         | 0.59                       | 19.4                        | 48.6                        |
| 479214            |                                   | 3.57                       | 18.35                        | 0.19                         | 3.1                         | 0.28                         | 0.066                         | 2.17                      | 37.1                        | 43.1                        | 1.38                       | 602                       | 1.48                         | 0.39                       | 16.3                        | 41.2                        |
| 479215            |                                   | 4.13                       | 22.7                         | 0.23                         | 3.6                         | 0.25                         | 0.080                         | 2.16                      | 43.1                        | 55.8                        | 0.96                       | 668                       | 1.98                         | 0.52                       | 19.3                        | 51.7                        |
| 479216            |                                   | 2.87                       | 21.2                         | 0.27                         | 7.4                         | 0.07                         | 0.098                         | 1.78                      | 79.7                        | 40.1                        | 0.45                       | 856                       | 1.45                         | 0.64                       | 35.8                        | 9.8                         |
| 479217            |                                   | 2.36                       | 23.7                         | 0.28                         | 8.5                         | 0.06                         | 0.109                         | 2.02                      | 88.0                        | 37.9                        | 0.42                       | 499                       | 1.55                         | 0.78                       | 39.9                        | 7.9                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| ample Description                              | Method  | ME-MS61                           | ME-MS61                              | ME-MS61                                   | ME-MS61                                   | ME-MS61                              | ME-MS61                              | ME-MS61                             | ME-MS61                    | ME-MS61                         | ME-MS61                             | ME-MS61                              | ME-MS61                                | ME-MS61                              | ME-MS61                                   | ME-MS61                              |
|------------------------------------------------|---------|-----------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|
|                                                | Analyte | P                                 | Pb                                   | Rb                                        | Re                                        | S                                    | Sb                                   | Sc                                  | Se                         | Sn                              | Sr                                  | Ta                                   | Te                                     | Th                                   | Ti                                        | TI                                   |
|                                                | Units   | ppm                               | ppm                                  | ppm                                       | ppm                                       | %                                    | ppm                                  | ppm                                 | ppm                        | ppm                             | ppm                                 | ppm                                  | ppm                                    | ppm                                  | %                                         | ppm                                  |
|                                                | LOR     | 10                                | 0.5                                  | 0.1                                       | 0.002                                     | 0.01                                 | 0.05                                 | 0.1                                 | 1                          | 0.2                             | 0.2                                 | 0.05                                 | 0.05                                   | 0.2                                  | 0.005                                     | 0.02                                 |
| 479197                                         |         | 160                               | 31.0                                 | 197.5                                     | <0.002                                    | 0.04                                 | 1.69                                 | 3.9                                 | 3                          | 6.8                             | 62.2                                | 2.86                                 | <0.05                                  | 24.2                                 | 0.166                                     | 0.95                                 |
| 479198                                         |         | 770                               | 23.9                                 | 214                                       | <0.002                                    | 0.29                                 | 4.51                                 | 13.8                                | 3                          | 4.3                             | 153.5                               | 1.91                                 | 0.05                                   | 15.3                                 | 0.446                                     | 1.09                                 |
| 479199                                         |         | 260                               | 9.3                                  | 83.1                                      | <0.002                                    | 0.09                                 | 2.52                                 | 7.8                                 | 3                          | 1.8                             | 137.0                               | 0.77                                 | <0.05                                  | 6.6                                  | 0.280                                     | 0.50                                 |
| 479200                                         |         | 1160                              | 23.7                                 | 209                                       | <0.002                                    | 0.15                                 | 3.59                                 | 13.1                                | 3                          | 4.5                             | 129.0                               | 2.05                                 | 0.05                                   | 15.9                                 | 0.454                                     | 1.03                                 |
| 479201                                         |         | 600                               | 21.4                                 | 175.5                                     | <0.002                                    | 0.12                                 | 3.15                                 | 12.6                                | 3                          | 5.1                             | 128.5                               | 2.20                                 | 0.06                                   | 17.2                                 | 0.398                                     | 0.93                                 |
| 479202                                         |         | 900                               | 22.3                                 | 169.0                                     | <0.002                                    | 0.16                                 | 5.88                                 | 16.6                                | 3                          | 3.8                             | 142.0                               | 1.58                                 | 0.05                                   | 14.2                                 | 0.511                                     | 1.08                                 |
| 479203                                         |         | 800                               | 23.0                                 | 189.5                                     | <0.002                                    | 0.13                                 | 4.78                                 | 16.5                                | 3                          | 3.7                             | 128.0                               | 1.46                                 | 0.05                                   | 14.1                                 | 0.483                                     | 1.19                                 |
| 479204                                         |         | 950                               | 21.2                                 | 155.5                                     | <0.002                                    | 0.14                                 | 4.11                                 | 13.8                                | 3                          | 3.4                             | 115.5                               | 1.39                                 | <0.05                                  | 12.9                                 | 0.391                                     | 0.99                                 |
| 479205                                         |         | 2300                              | 28.4                                 | 170.5                                     | <0.002                                    | 0.35                                 | 5.37                                 | 19.1                                | 5                          | 4.2                             | 148.5                               | 1.68                                 | 0.06                                   | 16.5                                 | 0.508                                     | 1.32                                 |
| 479206                                         |         | 600                               | 26.1                                 | 181.5                                     | <0.002                                    | 0.13                                 | 4.13                                 | 16.3                                | 4                          | 4.0                             | 120.5                               | 1.52                                 | 0.05                                   | 15.6                                 | 0.480                                     | 1.10                                 |
| 479207                                         |         | 730                               | 19.9                                 | 153.5                                     | <0.002                                    | 0.13                                 | 3.16                                 | 15.1                                | 3                          | 3.1                             | 128.0                               | 1.24                                 | 0.05                                   | 12.0                                 | 0.431                                     | 0.91                                 |
| 479208                                         |         | 730                               | 19.3                                 | 121.0                                     | <0.002                                    | 0.10                                 | 2.90                                 | 14.0                                | 3                          | 2.9                             | 142.5                               | 1.20                                 | 0.05                                   | 11.0                                 | 0.406                                     | 0.77                                 |
| 479209                                         |         | 950                               | 23.4                                 | 152.0                                     | <0.002                                    | 0.20                                 | 3.87                                 | 16.2                                | 4                          | 3.6                             | 159.0                               | 1.46                                 | <0.05                                  | 12.7                                 | 0.506                                     | 0.88                                 |
| 479210                                         |         | 990                               | 20.6                                 | 151.5                                     | <0.002                                    | 0.11                                 | 3.23                                 | 15.7                                | 3                          | 3.5                             | 144.0                               | 1.45                                 | <0.05                                  | 12.8                                 | 0.466                                     | 0.87                                 |
| 479211                                         |         | 1050                              | 20.7                                 | 144.0                                     | 0.002                                     | 0.10                                 | 3.54                                 | 16.5                                | 3                          | 3.6                             | 184.0                               | 1.58                                 | 0.05                                   | 13.5                                 | 0.564                                     | 0.88                                 |
| 479212<br>479213<br>479214<br>479215<br>479216 |         | 1140<br>950<br>1220<br>910<br>320 | 20.1<br>19.9<br>17.6<br>20.6<br>26.1 | 142.5<br>116.0<br>143.5<br>146.5<br>106.0 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002 | 0.12<br>0.11<br>0.16<br>0.11<br>0.01 | 3.10<br>2.52<br>3.30<br>3.01<br>0.73 | 15.7<br>13.7<br>12.2<br>15.1<br>5.3 | 3<br>2<br>2<br>2<br>2<br>2 | 3.4<br>3.5<br>3.0<br>3.6<br>7.1 | 164.5<br>222<br>201<br>146.0<br>293 | 1.44<br>1.34<br>1.16<br>1.32<br>2.47 | 0.05<br>0.05<br><0.05<br>0.05<br><0.05 | 13.6<br>12.1<br>11.0<br>13.1<br>22.8 | 0.522<br>0.447<br>0.407<br>0.472<br>0.244 | 0.89<br>0.75<br>0.88<br>0.87<br>0.57 |
| 479217                                         |         | 240                               | 28.3                                 | 127.0                                     | 0.002                                     | 0.01                                 | 0.75                                 | 5.8                                 | 2                          | 8.1                             | 199.0                               | 2.75                                 | <0.05                                  | 25.5                                 | 0.277                                     | 0.64                                 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold

| ample Description                              | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>U<br>ppm<br>0.1      | ME-MS61<br>V<br>ppm<br>1        | ME-MS61<br>W<br>ppm<br>0.1      | ME-MS61<br>Y<br>ppm<br>0.1           | ME-MS61<br>Zn<br>ppm<br>2       | ME-MS61<br>Zr<br>ppm<br>0.5               |  |
|------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|--|
| 479197<br>479198<br>479199                     |                                   | 4.3<br>3.9<br>2.0               | 8<br>115<br>53                  | 2.7<br>4.1<br>2.5               | 56.7<br>33.0<br>12.7                 | 113<br>117<br>65                | 259<br>149.5<br>65.0                      |  |
| 479200<br>479201                               |                                   | 4.2<br>4.1                      | 107<br>91                       | 4.8<br>7.1                      | 34.5<br>35.4                         | 109<br>101                      | 152.5<br>156.5                            |  |
| 479202<br>479203<br>479204<br>479205<br>479206 |                                   | 4.3<br>4.3<br>3.9<br>5.3<br>4.8 | 157<br>156<br>130<br>184<br>164 | 5.0<br>4.4<br>3.6<br>4.0<br>3.8 | 26.3<br>25.2<br>25.5<br>34.2<br>24.3 | 129<br>147<br>119<br>169<br>162 | 122.0<br>120.5<br>113.0<br>141.0<br>129.5 |  |
| 479207<br>479208<br>479209<br>479210<br>479211 |                                   | 3.5<br>3.2<br>3.8<br>3.9<br>4.1 | 128<br>118<br>142<br>138<br>153 | 3.1<br>2.9<br>3.5<br>3.5<br>3.6 | 22.4<br>23.5<br>26.5<br>26.8<br>29.3 | 134<br>110<br>135<br>130<br>162 | 110.5<br>101.0<br>122.5<br>119.5<br>128.0 |  |
| 479212<br>479213<br>479214<br>479215<br>479216 |                                   | 4.1<br>3.6<br>3.4<br>4.0<br>7.2 | 148<br>124<br>121<br>141<br>29  | 3.9<br>5.3<br>3.4<br>3.8<br>1.5 | 28.5<br>28.8<br>25.8<br>27.0<br>65.5 | 134<br>121<br>114<br>149<br>104 | 118.5<br>115.0<br>95.2<br>112.5<br>217    |  |
| 479217                                         |                                   | 7.8                             | 31                              | 1.8                             | 72.8                                 | 90                              | 245                                       |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 9-SEP-2010 Account: TFI

| Ninoca                                                   |         |                                      | to.                                           | 1 4 -                                |                                      |                                     |                                     | Proje                                | ect: Canyo                           | on Gold                              |                                      |                                      |                                      |                            |                                      |                                      |
|----------------------------------------------------------|---------|--------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|--------------------------------------|--------------------------------------|
| IIIIEIa                                                  |         |                                      | 50                                            | ills a                               |                                      |                                     |                                     |                                      | C                                    | ERTIFIC                              | CATE O                               | F ANAL                               | YSIS                                 | WH10                       | 112966                               | <b>;</b>                             |
| ample Description                                        | Method  | WEI-21                               | Au-AA24                                       | ME-MS61                              | ME-MS61                              | ME-MS61                             | ME-MS61                             | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                    | ME-MS61                              | ME-MS61                              |
|                                                          | Analyte | Recvd Wt.                            | Au                                            | Ag                                   | AI                                   | As                                  | Ba                                  | Be                                   | Bi                                   | Ca                                   | Cd                                   | Ce                                   | Co                                   | Cr                         | Cs                                   | Cu                                   |
|                                                          | Units   | kg                                   | ppm                                           | ppm                                  | %                                    | ppm                                 | ppm                                 | ppm                                  | ppm                                  | %                                    | ppm                                  | ppm                                  | ppm                                  | ppm                        | ppm                                  | ppm                                  |
|                                                          | LOR     | 0.02                                 | 0.005                                         | 0.01                                 | 0.01                                 | 0.2                                 | 10                                  | 0.05                                 | 0.01                                 | 0.01                                 | 0.02                                 | 0.01                                 | 0.1                                  | 1                          | 0.05                                 | 0.2                                  |
| 479151                                                   |         | 1.66                                 | <0.005                                        | 0.11                                 | 6.54                                 | 5.3                                 | 550                                 | 0.99                                 | 0.06                                 | 2.00                                 | 0.06                                 | 33.9                                 | 7.2                                  | 15                         | 3.51                                 | 21.1                                 |
| 479152                                                   |         | 0.92                                 | <0.005                                        | 0.18                                 | 7.06                                 | 16.6                                | 930                                 | 1.72                                 | 0.18                                 | 2.68                                 | 0.26                                 | 67.6                                 | 12.1                                 | 57                         | 5.65                                 | 26.6                                 |
| 479153                                                   |         | 0.35                                 | <0.005                                        | 0.04                                 | 3.41                                 | 6.7                                 | 860                                 | 0.56                                 | 0.16                                 | 2.98                                 | 0.05                                 | 47.3                                 | 2.6                                  | 12                         | 0.58                                 | 10.0                                 |
| 479154                                                   |         | 1.49                                 | <0.005                                        | 0.19                                 | 6.97                                 | 18.7                                | 980                                 | 1.77                                 | 0.19                                 | 2.27                                 | 0.20                                 | 74.5                                 | 11.3                                 | 59                         | 6.14                                 | 25.7                                 |
| 479155                                                   |         | 0.52                                 | <0.005                                        | 0.12                                 | 6.35                                 | 4.8                                 | 810                                 | 1.02                                 | 0.03                                 | 1.61                                 | 0.03                                 | 39.4                                 | 5.2                                  | 4                          | 4.25                                 | 5.4                                  |
| 479156                                                   |         | 0.63                                 | <0.005                                        | 0.17                                 | 7.26                                 | 13.3                                | 1140                                | 1.69                                 | 0.17                                 | 2.46                                 | 0.34                                 | 73.3                                 | 12.0                                 | 55                         | 5.68                                 | 26.9                                 |
| 479157                                                   |         | 0.47                                 | <0.005                                        | 0.05                                 | 6.55                                 | 4.5                                 | 830                                 | 1.11                                 | 0.06                                 | 2.27                                 | 0.05                                 | 41.8                                 | 6.8                                  | 14                         | 4.52                                 | 10.5                                 |
| 479158                                                   |         | 2.77                                 | <0.005                                        | 0.15                                 | 6.86                                 | 14.9                                | 1070                                | 1.99                                 | 0.22                                 | 2.05                                 | 0.33                                 | 76.9                                 | 11.7                                 | 62                         | 5.45                                 | 23.5                                 |
| 479159                                                   |         | 1.84                                 | <0.005                                        | 0.13                                 | 6.41                                 | 4.9                                 | 760                                 | 1.58                                 | 0.19                                 | 2.10                                 | 0.09                                 | 61.1                                 | 11.7                                 | 70                         | 2.69                                 | 21.4                                 |
| 479160                                                   |         | 1.16                                 | <0.005                                        | 0.20                                 | 7.27                                 | 11.1                                | 1020                                | 2.41                                 | 0.23                                 | 2.24                                 | 0.33                                 | 81.0                                 | 13.8                                 | 81                         | 10.75                                | 27.0                                 |
| 479161                                                   |         | 1.25                                 | <0.005                                        | 0.18                                 | 6.71                                 | 11.4                                | 1110                                | 1.97                                 | 0.20                                 | 2.41                                 | 0.30                                 | 73.7                                 | 14.2                                 | 75                         | 6.51                                 | 26.7                                 |
| 479162                                                   |         | 1.18                                 | <0.005                                        | 0.16                                 | 6.56                                 | 3.9                                 | 770                                 | 1.30                                 | 0.11                                 | 2.81                                 | 0.10                                 | 52.2                                 | 15.8                                 | 129                        | 2.48                                 | 28.2                                 |
| 479163                                                   |         | 1.75                                 | 0.005                                         | 0.18                                 | 6.91                                 | 9.2                                 | 1040                                | 2.31                                 | 0.24                                 | 1.90                                 | 0.25                                 | 94.1                                 | 10.9                                 | 64                         | 5.70                                 | 22.5                                 |
| 479164                                                   |         | 1.26                                 | <0.005                                        | 0.17                                 | 6.57                                 | 12.8                                | 970                                 | 2.04                                 | 0.19                                 | 2.32                                 | 0.27                                 | 76.6                                 | 13.0                                 | 69                         | 5.39                                 | 26.3                                 |
| 479165                                                   |         | 1.71                                 | <0.005                                        | 0.17                                 | 6.33                                 | 11.7                                | 850                                 | 1.94                                 | 0.17                                 | 2.24                                 | 0.26                                 | 68.9                                 | 12.8                                 | 66                         | 5.38                                 | 25.8                                 |
| 479166                                                   |         | 1.23                                 | <0.005                                        | 0.52                                 | 6.76                                 | 9.4                                 | 1120                                | 2.14                                 | 0.26                                 | 2.26                                 | 0.22                                 | 74.5                                 | 13.1                                 | 80                         | 5.43                                 | 25.2                                 |
| 479167                                                   |         | 0.87                                 | <0.005                                        | 0.20                                 | 7.01                                 | 7.8                                 | 1150                                | 2.69                                 | 0.36                                 | 1.34                                 | 0.23                                 | 115.0                                | 11.6                                 | 56                         | 6.63                                 | 24.3                                 |
| 479168                                                   |         | 1.70                                 | <0.005                                        | 0.16                                 | 7.37                                 | 14.0                                | 1120                                | 2.64                                 | 0.23                                 | 2.33                                 | 0.26                                 | 86.7                                 | 17.0                                 | 72                         | 7.28                                 | 25.0                                 |
| 479169                                                   |         | 1.38                                 | <0.005                                        | 0.15                                 | 7.10                                 | 16.0                                | 1280                                | 2.44                                 | 0.21                                 | 2.55                                 | 0.25                                 | 80.0                                 | 14.9                                 | 69                         | 6.44                                 | 24.8                                 |
| 479170                                                   |         | 1.60                                 | <0.005                                        | 0.24                                 | 7.39                                 | 12.4                                | 1120                                | 2.55                                 | 0.24                                 | 2.18                                 | 0.28                                 | 91.8                                 | 14.0                                 | 71                         | 6.32                                 | 23.8                                 |
| 479171<br>479172<br>479173<br>479173<br>479174<br>479175 |         | 1.49<br>1.78<br>1.38<br>1.70<br>1.32 | 0.005<br><0.005<br><0.005<br><0.005<br><0.005 | 0.24<br>0.22<br>0.29<br>0.26<br>0.22 | 7.38<br>7.42<br>7.56<br>7.40<br>7.39 | 12.3<br>13.2<br>8.8<br>15.1<br>22.7 | 1040<br>1050<br>980<br>1090<br>1260 | 2.22<br>2.19<br>1.83<br>2.00<br>2.13 | 0.19<br>0.22<br>0.16<br>0.21<br>0.21 | 2.44<br>2.40<br>3.68<br>2.70<br>2.78 | 0.27<br>0.30<br>0.25<br>0.30<br>0.29 | 74.9<br>73.8<br>71.2<br>71.5<br>76.5 | 15.7<br>15.2<br>17.7<br>17.6<br>15.6 | 82<br>82<br>85<br>94<br>80 | 6.75<br>6.48<br>7.28<br>6.05<br>6.03 | 25.1<br>27.0<br>26.0<br>27.5<br>27.9 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### Co: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Project: Canyon Gold

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 9-SEP-2010 Account: TFI

| IIIIEId                                                  | 12      |                                      |                                          |                                      |                                 |                                      |                                           |                                      | CI                                   | ERTIFIC                              | CATE O                               | FANAL                           | YSIS                                 | WH101                                | 12966                             |                                   |
|----------------------------------------------------------|---------|--------------------------------------|------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|
| Sample Description                                       | Method  | ME-MS61                              | ME-MS61                                  | ME-MS61                              | ME-MS61                         | Hg-CV41                              | ME-MS61                                   | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                         | ME-MS61                              | ME-MS61                              | ME-MS61                           | ME-MS61                           |
|                                                          | Analyte | Fe                                   | Ga                                       | Ge                                   | Hf                              | Hg                                   | In                                        | K                                    | La                                   | Li                                   | Mg                                   | Mn                              | Mo                                   | Na                                   | Nb                                | Ni                                |
|                                                          | Units   | %                                    | ppm                                      | ppm                                  | ppm                             | ppm                                  | ppm                                       | %                                    | ppm                                  | ppm                                  | %                                    | ppm                             | ppm                                  | %                                    | ppm                               | ppm                               |
|                                                          | LOR     | 0.01                                 | 0.05                                     | 0.05                                 | 0.1                             | 0.01                                 | 0.005                                     | 0.01                                 | 0.5                                  | 0.2                                  | 0.01                                 | 5                               | 0.05                                 | 0.01                                 | 0.1                               | 0.2                               |
| 479151<br>479152<br>479153<br>479153<br>479154<br>479155 |         | 2.65<br>3.43<br>1.14<br>3.37<br>2.25 | 14.75<br>17.20<br>7.06<br>17.20<br>14.90 | 0.13<br>0.19<br>0.12<br>0.21<br>0.16 | 1.0<br>2.1<br>1.4<br>2.2<br>0.9 | 0.73<br>0.59<br>0.16<br>0.29<br>0.60 | 0.040<br>0.052<br>0.010<br>0.049<br>0.039 | 1.60<br>2.01<br>1.63<br>1.98<br>1.81 | 15.7<br>33.6<br>23.4<br>37.4<br>18.7 | 30.1<br>30.9<br>14.6<br>29.9<br>23.4 | 0.77<br>1.31<br>0.31<br>1.34<br>0.56 | 523<br>724<br>463<br>707<br>428 | 0.72<br>1.45<br>0.22<br>1.55<br>0.45 | 0.98<br>1.03<br>1.01<br>0.95<br>1.07 | 7.7<br>11.8<br>4.0<br>11.5<br>7.7 | 6.3<br>28.7<br>5.1<br>29.0<br>4.0 |
| 479156                                                   |         | 3.61                                 | 17.65                                    | 0.21                                 | 2.3                             | 0.70                                 | 0.055                                     | 2.25                                 | 35.7                                 | 29.0                                 | 1.25                                 | 760                             | 1.65                                 | 1.06                                 | 12.3                              | 27.8                              |
| 479157                                                   |         | 2.61                                 | 14.85                                    | 0.19                                 | 0.9                             | 0.45                                 | 0.036                                     | 1.60                                 | 20.7                                 | 22.0                                 | 0.68                                 | 562                             | 0.42                                 | 1.49                                 | 7.8                               | 7.1                               |
| 479158                                                   |         | 3.47                                 | 17.65                                    | 0.22                                 | 2.7                             | 0.21                                 | 0.059                                     | 2.11                                 | 37.6                                 | 30.5                                 | 1.18                                 | 596                             | 1.36                                 | 1.04                                 | 14.0                              | 31.8                              |
| 479159                                                   |         | 3.00                                 | 16.50                                    | 0.18                                 | 2.4                             | 0.14                                 | 0.047                                     | 2.29                                 | 28.4                                 | 23.1                                 | 1.52                                 | 556                             | 0.71                                 | 1.56                                 | 11.8                              | 23.1                              |
| 479159                                                   |         | 3.97                                 | 18.50                                    | 0.22                                 | 3.4                             | 0.29                                 | 0.067                                     | 2.06                                 | 39.7                                 | 36.9                                 | 1.45                                 | 677                             | 1.87                                 | 0.95                                 | 16.3                              | 46.0                              |
| 479161                                                   |         | 3.59                                 | 17.00                                    | 0.22                                 | 3.0                             | 0.15                                 | 0.060                                     | 1.93                                 | 36.3                                 | 32.6                                 | 1.34                                 | 652                             | 1.71                                 | 0.86                                 | 13.2                              | 43.1                              |
| 479162                                                   |         | 3.58                                 | 15.10                                    | 0.18                                 | 1.7                             | 0.13                                 | 0.041                                     | 1.81                                 | 25.4                                 | 26.2                                 | 2.10                                 | 644                             | 0.73                                 | 1.59                                 | 7.8                               | 39.5                              |
| 479163                                                   |         | 3.21                                 | 17.85                                    | 0.23                                 | 3.7                             | 0.16                                 | 0.072                                     | 2.12                                 | 46.7                                 | 32.1                                 | 1.22                                 | 586                             | 1.63                                 | 1.24                                 | 18.4                              | 35.1                              |
| 479164                                                   |         | 3.51                                 | 16.70                                    | 0.22                                 | 2.9                             | 0.19                                 | 0.058                                     | 1.94                                 | 38.2                                 | 32.6                                 | 1.34                                 | 691                             | 1.62                                 | 0.91                                 | 14.8                              | 38.6                              |
| 479165                                                   |         | 3.49                                 | 15.45                                    | 0.20                                 | 2.8                             | 0.13                                 | 0.054                                     | 1.75                                 | 33.9                                 | 33.1                                 | 1.34                                 | 663                             | 1.73                                 | 0.86                                 | 14.7                              | 37.4                              |
| 479166                                                   |         | 3.32                                 | 17.35                                    | 0.21                                 | 2.9                             | 0.23                                 | 0.064                                     | 2.07                                 | 36.7                                 | 33.5                                 | 1.26                                 | 582                             | 1.28                                 | 1.08                                 | 14.9                              | 43.6                              |
| 479167                                                   |         | 2.92                                 | 21.9                                     | 0.19                                 | 3.8                             | 0.18                                 | 0.084                                     | 2.66                                 | 62.1                                 | 39.0                                 | 1.11                                 | 437                             | 1.86                                 | 1.18                                 | 24.8                              | 36.7                              |
| 479168                                                   |         | 3.89                                 | 22.3                                     | 0.21                                 | 3.0                             | 0.15                                 | 0.078                                     | 2.19                                 | 42.9                                 | 41.9                                 | 1.39                                 | 685                             | 1.93                                 | 1.07                                 | 20.7                              | 42.6                              |
| 479169                                                   |         | 3.60                                 | 20.3                                     | 0.20                                 | 2.8                             | 0.22                                 | 0.071                                     | 2.11                                 | 39.7                                 | 40.0                                 | 1.35                                 | 727                             | 1.64                                 | 1.03                                 | 18.6                              | 38.8                              |
| 479169                                                   |         | 3.71                                 | 19.50                                    | 0.16                                 | 3.6                             | 0.14                                 | 0.070                                     | 2.24                                 | 49.4                                 | 39.6                                 | 1.37                                 | 693                             | 2.19                                 | 1.05                                 | 18.9                              | 41.1                              |
| 479171                                                   |         | 4.09                                 | 17.90                                    | 0.17                                 | 3.2                             | 0.13                                 | 0.060                                     | 1.98                                 | 40.5                                 | 40.9                                 | 1.52                                 | 698                             | 1.94                                 | 1.02                                 | 18.2                              | 43.7                              |
| 479172                                                   |         | 4.15                                 | 18.25                                    | 0.17                                 | 3.1                             | 0.12                                 | 0.065                                     | 2.03                                 | 38.8                                 | 41.0                                 | 1.54                                 | 734                             | 1.90                                 | 1.01                                 | 16.7                              | 44.2                              |
| 479173                                                   |         | 5.01                                 | 17.00                                    | 0.15                                 | 3.0                             | 0.11                                 | 0.066                                     | 1.86                                 | 38.2                                 | 40.5                                 | 2.08                                 | 1020                            | 1.92                                 | 1.33                                 | 24.3                              | 44.1                              |
| 479174                                                   |         | 4.31                                 | 17.90                                    | 0.17                                 | 3.1                             | 0.12                                 | 0.061                                     | 1.92                                 | 38.3                                 | 41.5                                 | 1.72                                 | 756                             | 2.09                                 | 1.12                                 | 18.8                              | 46.4                              |
| 479175                                                   |         | 4.08                                 | 18.10                                    | 0.19                                 | 3.0                             | 0.19                                 | 0.063                                     | 1.94                                 | 41.4                                 | 41.5                                 | 1.55                                 | 810                             | 2.03                                 | 1.04                                 | 17.8                              | 41.7                              |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### io: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 9-SEP-2010 Account: TFI

Project: Canyon Gold

| ample Description                              | Method  | ME-MS61                            | ME-MS61                              | ME-MS61                               | ME-MS61                                    | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                    | ME-MS61                         | ME-MS61                           | ME-MS61                              | ME-MS61                                            | ME-MS61                             | ME-MS61                                   | ME-MS61                              |
|------------------------------------------------|---------|------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------|
|                                                | Analyte | P                                  | Pb                                   | Rb                                    | Re                                         | S                                    | Sb                                   | Sc                                   | Se                         | Sn                              | Sr                                | Ta                                   | Te                                                 | Th                                  | Ti                                        | TI                                   |
|                                                | Units   | ppm                                | ppm                                  | ppm                                   | ppm                                        | %                                    | ppm                                  | ppm                                  | ppm                        | ppm                             | ppm                               | ppm                                  | ppm                                                | ppm                                 | %                                         | ppm                                  |
|                                                | LOR     | 10                                 | 0.5                                  | 0.1                                   | 0.002                                      | 0.01                                 | 0.05                                 | 0.1                                  | 1                          | 0.2                             | 0.2                               | 0.05                                 | 0.05                                               | 0.2                                 | 0.005                                     | 0.02                                 |
| 479151                                         |         | 280                                | 6.2                                  | 55.9                                  | <0.002                                     | 0.14                                 | 4.47                                 | 13.4                                 | 1                          | 1.1                             | 188.5                             | 0.60                                 | <0.05                                              | 5.9                                 | 0.213                                     | 0.34                                 |
| 479152                                         |         | 600                                | 16.8                                 | 91.3                                  | 0.002                                      | 0.22                                 | 2.82                                 | 12.8                                 | 2                          | 2.2                             | 227                               | 0.84                                 | <0.05                                              | 11.6                                | 0.321                                     | 0.50                                 |
| 479153                                         |         | 90                                 | 13.9                                 | 50.7                                  | <0.002                                     | 0.16                                 | 0.84                                 | 2.9                                  | 1                          | 0.8                             | 208                               | 0.34                                 | <0.05                                              | 10.7                                | 0.101                                     | 0.29                                 |
| 479154                                         |         | 590                                | 18.8                                 | 97.0                                  | 0.002                                      | 0.21                                 | 2.56                                 | 11.8                                 | 1                          | 2.2                             | 211                               | 0.83                                 | <0.05                                              | 12.9                                | 0.294                                     | 0.53                                 |
| 479155                                         |         | 230                                | 6.3                                  | 76.0                                  | <0.002                                     | 0.14                                 | 3.01                                 | 11.2                                 | 1                          | 1.1                             | 186.0                             | 0.61                                 | <0.05                                              | 6.9                                 | 0.169                                     | 0.39                                 |
| 479156<br>479157<br>479158<br>479159<br>479160 |         | 800<br>290<br>650<br>460<br>890    | 21.2<br>6.9<br>25.8<br>16.2<br>18.5  | 95.5<br>72.7<br>99.9<br>96.7<br>107.0 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002  | 0.27<br>0.12<br>0.16<br>0.18<br>0.19 | 2.49<br>3.11<br>1.67<br>0.51<br>1.84 | 12.9<br>11.8<br>12.4<br>11.6<br>13.5 | 2<br>1<br>2<br>1<br>2      | 2.3<br>1.2<br>2.4<br>2.1<br>2.9 | 222<br>210<br>217<br>153.0<br>251 | 0.86<br>0.58<br>0.96<br>0.85<br>1.13 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 12.3<br>7.3<br>11.6<br>10.8<br>11.3 | 0.335<br>0.206<br>0.341<br>0.266<br>0.434 | 0.62<br>0.35<br>0.57<br>0.55<br>0.62 |
| 479161                                         |         | 810                                | 17.3                                 | 98.7                                  | 0.003                                      | 0.18                                 | 1.55                                 | 12.6                                 | 2                          | 2.4                             | 251                               | 0.90                                 | <0.05                                              | 10.6                                | 0.392                                     | 0.58                                 |
| 479162                                         |         | 560                                | 13.8                                 | 78.9                                  | <0.002                                     | 0.12                                 | 0.49                                 | 15.5                                 | 1                          | 1.7                             | 242                               | 0.57                                 | <0.05                                              | 8.9                                 | 0.267                                     | 0.40                                 |
| 479163                                         |         | 650                                | 17.5                                 | 98.6                                  | 0.003                                      | 0.16                                 | 1.38                                 | 11.1                                 | 2                          | 3.4                             | 219                               | 1.22                                 | <0.05                                              | 12.8                                | 0.336                                     | 0.64                                 |
| 479164                                         |         | 750                                | 15.9                                 | 95.4                                  | 0.002                                      | 0.16                                 | 1.43                                 | 11.9                                 | 2                          | 2.5                             | 241                               | 1.02                                 | <0.05                                              | 11.0                                | 0.383                                     | 0.55                                 |
| 479165                                         |         | 800                                | 13.8                                 | 86.7                                  | 0.002                                      | 0.16                                 | 1.36                                 | 11.6                                 | 2                          | 2.2                             | 240                               | 1.02                                 | <0.05                                              | 9.8                                 | 0.398                                     | 0.52                                 |
| 479166                                         |         | 630                                | 20.0                                 | 98.1                                  | 0.003                                      | 0.13                                 | 1.37                                 | 12.3                                 | 2                          | 3.0                             | 257                               | 1.08                                 | <0.05                                              | 11.3                                | 0.360                                     | 0.56                                 |
| 479167                                         |         | 500                                | 26.1                                 | 121.5                                 | <0.002                                     | 0.11                                 | 1.37                                 | 11.7                                 | 2                          | 4.1                             | 185.5                             | 1.61                                 | <0.05                                              | 17.1                                | 0.305                                     | 0.65                                 |
| 479168                                         |         | 870                                | 19.7                                 | 114.5                                 | 0.002                                      | 0.16                                 | 1.61                                 | 15.2                                 | 3                          | 3.2                             | 276                               | 1.27                                 | <0.05                                              | 12.4                                | 0.427                                     | 0.62                                 |
| 479169                                         |         | 760                                | 18.2                                 | 104.5                                 | <0.002                                     | 0.17                                 | 1.57                                 | 14.0                                 | 2                          | 2.9                             | 273                               | 1.15                                 | <0.05                                              | 11.7                                | 0.398                                     | 0.59                                 |
| 479170                                         |         | 790                                | 20.4                                 | 104.0                                 | 0.002                                      | 0.17                                 | 1.68                                 | 12.6                                 | 2                          | 3.2                             | 250                               | 1.30                                 | <0.05                                              | 14.2                                | 0.411                                     | 0.68                                 |
| 479171<br>479172<br>479173<br>479174<br>479175 |         | 990<br>1000<br>1330<br>1050<br>940 | 17.2<br>17.6<br>13.6<br>16.0<br>18.9 | 90.9<br>91.4<br>75.2<br>87.3<br>93.6  | 0.002<br>0.002<br><0.002<br>0.002<br>0.002 | 0.17<br>0.18<br>0.17<br>0.18<br>0.24 | 1.59<br>1.61<br>1.43<br>1.70<br>2.08 | 12.9<br>13.2<br>13.1<br>13.4<br>13.6 | 3<br>2<br>2<br>2<br>2<br>2 | 2.5<br>2.6<br>2.3<br>2.5<br>2.6 | 285<br>267<br>379<br>290<br>295   | 1.25<br>1.15<br>1.61<br>1.33<br>1.23 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05          | 12.0<br>12.1<br>9.8<br>11.4<br>12.6 | 0.482<br>0.465<br>0.624<br>0.497<br>0.450 | 0.61<br>0.61<br>0.50<br>0.56<br>0.65 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### io: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 9-SEP-2010 Account: TFI

Project: Canyon Gold

| 479151       1.5       54       2.0       15.9       44       22.1         479152       3.2       84       2.0       17.6       77       69.7         479153       1.4       18       0.6       8.4       15       43.5         479154       3.0       79       2.1       17.0       78       70.3         479155       1.2       33       1.9       17.3       42       18.4         479156       3.6       88       2.0       18.2       93       79.0         170157       16       16       16       16       16       16       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 479156         3.6         88         2.0         18.2         93         79.0           170157         16         16         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 |  |
| 4/9157       1.5       45       1.2       16.3       46       23.9         479158       3.1       82       2.1       21.6       121       91.3         479159       2.2       71       1.5       16.1       61       71.0         479160       3.3       100       2.5       25.4       96       117.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 479161       2.9       97       2.1       22.1       87       108.0         479162       1.8       96       1.4       13.0       60       47.3         479163       3.3       75       2.3       26.3       88       121.5         479164       2.9       86       2.1       22.1       88       101.5         479165       2.6       88       1.9       20.8       81       98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 479166       3.1       84       4.5       24.5       77       98.0         479167       4.3       69       2.5       34.4       89       127.0         479168       3.1       95       2.4       26.9       93       121.5         479169       3.0       88       2.4       24.7       90       110.5         479170       3.8       90       2.4       28.5       92       113.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 4791713.21052.324.589104.04791723.31082.324.195102.54791732.71191.923.687103.54791743.11112.423.29597.04791753.31032.424.09199.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-SEP-2010 Account: TFI

|                                      |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 | the second se                                                                                                                                                                                                                                            | and a strategy of the second strategy of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                    |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       | CI                                                                                                                                                                                                               | ERTIFIC                                                                                                                                                                                                                                  | CATE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F ANAL                                                                                                                                                                                                                                                                          | YSIS                                                                                                                                                                                                                                                                                                                                                       | WH101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d WEI-21                             | Au-AA24                                                                                                                                                                                                                                       | ME-MS61                                                                                                             | ME-MS61                                                                                                                                                           | ME-MS61                                                                                                                                                                              | ME-MS61                                                                                                                                                                                                                   | ME-MS61                                                                                                                                                                                                                                                                               | ME-MS61                                                                                                                                                                                                          | ME-MS61                                                                                                                                                                                                                                  | ME-MS61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ME-MS61                                                                                                                                                                                                                                                                         | ME-MS61                                                                                                                                                                                                                                                                                                                                                    | ME-MS61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ME-MS61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ME-MS61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Recvd Wi                             | . Au                                                                                                                                                                                                                                          | Ag                                                                                                                  | Al                                                                                                                                                                | As                                                                                                                                                                                   | Ba                                                                                                                                                                                                                        | Be                                                                                                                                                                                                                                                                                    | Bi                                                                                                                                                                                                               | Ca                                                                                                                                                                                                                                       | Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ce                                                                                                                                                                                                                                                                              | Co                                                                                                                                                                                                                                                                                                                                                         | Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| kg                                   | ppm                                                                                                                                                                                                                                           | ppm                                                                                                                 | %                                                                                                                                                                 | ppm                                                                                                                                                                                  | ppm                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                                                                   | ppm                                                                                                                                                                                                              | %                                                                                                                                                                                                                                        | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppm                                                                                                                                                                                                                                                                             | ppm                                                                                                                                                                                                                                                                                                                                                        | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.02                                 | 0.005                                                                                                                                                                                                                                         | 0.01                                                                                                                | 0.01                                                                                                                                                              | 0.2                                                                                                                                                                                  | 10                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.56                                 | <0.005                                                                                                                                                                                                                                        | 0.16                                                                                                                | 6.91                                                                                                                                                              | 10.9                                                                                                                                                                                 | 870                                                                                                                                                                                                                       | 2.01                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                             | 2.01                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82.6                                                                                                                                                                                                                                                                            | 13.0                                                                                                                                                                                                                                                                                                                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.01                                 | <0.005                                                                                                                                                                                                                                        | 0.12                                                                                                                | 6.76                                                                                                                                                              | 8.0                                                                                                                                                                                  | 870                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                  | 0.26                                                                                                                                                                                                             | 1.71                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82.2                                                                                                                                                                                                                                                                            | 11.9                                                                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.57                                 | 0.005                                                                                                                                                                                                                                         | 0.14                                                                                                                | 7.09                                                                                                                                                              | 7.7                                                                                                                                                                                  | 820                                                                                                                                                                                                                       | 2.02                                                                                                                                                                                                                                                                                  | 0.25                                                                                                                                                                                                             | 2.04                                                                                                                                                                                                                                     | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.4                                                                                                                                                                                                                                                                            | 11.6                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.52                                 | <0.005                                                                                                                                                                                                                                        | 0.10                                                                                                                | 6.51                                                                                                                                                              | 6.5                                                                                                                                                                                  | 820                                                                                                                                                                                                                       | 1.60                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                                                                                                             | 2.37                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.3                                                                                                                                                                                                                                                                            | 9.0                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.25                                 | <0.005                                                                                                                                                                                                                                        | 0.11                                                                                                                | 6.90                                                                                                                                                              | 9.4                                                                                                                                                                                  | 830                                                                                                                                                                                                                       | 1.91                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                             | 1.77                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.5                                                                                                                                                                                                                                                                            | 11.7                                                                                                                                                                                                                                                                                                                                                       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.97                                 | <0.005                                                                                                                                                                                                                                        | 0.10                                                                                                                | 7.28                                                                                                                                                              | 4.3                                                                                                                                                                                  | 720                                                                                                                                                                                                                       | 1.69                                                                                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                             | 2.64                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.7                                                                                                                                                                                                                                                                            | 14.1                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.45                                 | 0.006                                                                                                                                                                                                                                         | 0.09                                                                                                                | 6.79                                                                                                                                                              | 10.2                                                                                                                                                                                 | 820                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                             | 2.23                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.7                                                                                                                                                                                                                                                                            | 12.8                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.95                                 | 0.006                                                                                                                                                                                                                                         | 0.10                                                                                                                | 6.92                                                                                                                                                              | 5.4                                                                                                                                                                                  | 810                                                                                                                                                                                                                       | 1.96                                                                                                                                                                                                                                                                                  | 0.35                                                                                                                                                                                                             | 2.49                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67.4                                                                                                                                                                                                                                                                            | 11.8                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.34                                 | <0.005                                                                                                                                                                                                                                        | 0.07                                                                                                                | 7.15                                                                                                                                                              | 5.9                                                                                                                                                                                  | 800                                                                                                                                                                                                                       | 1.87                                                                                                                                                                                                                                                                                  | 0.19                                                                                                                                                                                                             | 1.89                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.3                                                                                                                                                                                                                                                                            | 11.4                                                                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.48                                 | <0.005                                                                                                                                                                                                                                        | 0.10                                                                                                                | 7.46                                                                                                                                                              | 8.3                                                                                                                                                                                  | 880                                                                                                                                                                                                                       | 2.14                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                             | 1.74                                                                                                                                                                                                                                     | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.3                                                                                                                                                                                                                                                                            | 11.2                                                                                                                                                                                                                                                                                                                                                       | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.16                                 | 0.008                                                                                                                                                                                                                                         | 0.11                                                                                                                | 6.97                                                                                                                                                              | 8.2                                                                                                                                                                                  | 910                                                                                                                                                                                                                       | 2.46                                                                                                                                                                                                                                                                                  | 0.31                                                                                                                                                                                                             | 2.20                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.8                                                                                                                                                                                                                                                                            | 11.1                                                                                                                                                                                                                                                                                                                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.18                                 | 0.013                                                                                                                                                                                                                                         | 0.19                                                                                                                | 7.21                                                                                                                                                              | 5.5                                                                                                                                                                                  | 1170                                                                                                                                                                                                                      | 3.14                                                                                                                                                                                                                                                                                  | 1.22                                                                                                                                                                                                             | 2.21                                                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.1                                                                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                       | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.51                                 | 0.008                                                                                                                                                                                                                                         | 0.15                                                                                                                | 6.96                                                                                                                                                              | 8.9                                                                                                                                                                                  | 1130                                                                                                                                                                                                                      | 2.77                                                                                                                                                                                                                                                                                  | 0.61                                                                                                                                                                                                             | 2.32                                                                                                                                                                                                                                     | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.9                                                                                                                                                                                                                                                                            | 9.8                                                                                                                                                                                                                                                                                                                                                        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.58                                 | 0.009                                                                                                                                                                                                                                         | 0.16                                                                                                                | 6.78                                                                                                                                                              | 4.7                                                                                                                                                                                  | 1140                                                                                                                                                                                                                      | 2.92                                                                                                                                                                                                                                                                                  | 0.84                                                                                                                                                                                                             | 2.68                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.3                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.60                                 | 0.013                                                                                                                                                                                                                                         | 0.12                                                                                                                | 6.75                                                                                                                                                              | 4.3                                                                                                                                                                                  | 1030                                                                                                                                                                                                                      | 2.67                                                                                                                                                                                                                                                                                  | 1.32                                                                                                                                                                                                             | 2.47                                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.5                                                                                                                                                                                                                                                                            | 12.0                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.54<br>1.34<br>1.10<br>1.70<br>1.27 | 0.009<br>0.005<br>0.007<br><0.005<br><0.005                                                                                                                                                                                                   | 0.27<br>0.10<br>0.10<br>0.10<br>0.10<br>0.07                                                                        | 7.24<br>6.82<br>6.97<br>7.12<br>6.96                                                                                                                              | 3.2<br>4.4<br>3.0<br>4.7<br>4.7                                                                                                                                                      | 1000<br>1030<br>920<br>820<br>900                                                                                                                                                                                         | 3.28<br>2.13<br>1.95<br>1.85<br>1.60                                                                                                                                                                                                                                                  | 1.54<br>0.33<br>0.32<br>0.22<br>0.16                                                                                                                                                                             | 2.44<br>2.67<br>2.78<br>3.03<br>2.79                                                                                                                                                                                                     | 0.07<br>0.09<br>0.08<br>0.12<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.8<br>67.3<br>59.4<br>69.4<br>54.5                                                                                                                                                                                                                                            | 10.5<br>10.9<br>11.7<br>13.2<br>12.6                                                                                                                                                                                                                                                                                                                       | 28<br>35<br>36<br>40<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.69<br>4.38<br>4.22<br>4.67<br>4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.2<br>20.7<br>26.3<br>26.2<br>22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.29                                 | <0.005                                                                                                                                                                                                                                        | 0.08                                                                                                                | 7.15                                                                                                                                                              | 6.1                                                                                                                                                                                  | 970                                                                                                                                                                                                                       | 1.56                                                                                                                                                                                                                                                                                  | 0.14                                                                                                                                                                                                             | 2.94                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.1                                                                                                                                                                                                                                                                            | 13.5                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.48                                 | 0.005                                                                                                                                                                                                                                         | 0.07                                                                                                                | 6.77                                                                                                                                                              | 6.2                                                                                                                                                                                  | 940                                                                                                                                                                                                                       | 1.98                                                                                                                                                                                                                                                                                  | 0.26                                                                                                                                                                                                             | 2.47                                                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.4                                                                                                                                                                                                                                                                            | 11.0                                                                                                                                                                                                                                                                                                                                                       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.40                                 | <0.005                                                                                                                                                                                                                                        | 0.08                                                                                                                | 7.06                                                                                                                                                              | 5.8                                                                                                                                                                                  | 820                                                                                                                                                                                                                       | 1.99                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                                                                                                             | 2.17                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.0                                                                                                                                                                                                                                                                            | 11.1                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.36                                 | <0.005                                                                                                                                                                                                                                        | 0.08                                                                                                                | 7.08                                                                                                                                                              | 6.2                                                                                                                                                                                  | 780                                                                                                                                                                                                                       | 2.09                                                                                                                                                                                                                                                                                  | 0.23                                                                                                                                                                                                             | 2.66                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.8                                                                                                                                                                                                                                                                            | 11.8                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.39                                 | <0.005                                                                                                                                                                                                                                        | 0.10                                                                                                                | 6.86                                                                                                                                                              | 10.1                                                                                                                                                                                 | 660                                                                                                                                                                                                                       | 1.98                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                             | 2.76                                                                                                                                                                                                                                     | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.3                                                                                                                                                                                                                                                                            | 14.3                                                                                                                                                                                                                                                                                                                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.15                                 | <0.005                                                                                                                                                                                                                                        | 0.11                                                                                                                | 6.94                                                                                                                                                              | 13.7                                                                                                                                                                                 | 920                                                                                                                                                                                                                       | 2.13                                                                                                                                                                                                                                                                                  | 0.23                                                                                                                                                                                                             | 2.57                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.4                                                                                                                                                                                                                                                                            | 12.9                                                                                                                                                                                                                                                                                                                                                       | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.51                                 | 0.009                                                                                                                                                                                                                                         | 0.09                                                                                                                | 6.90                                                                                                                                                              | 7.6                                                                                                                                                                                  | 950                                                                                                                                                                                                                       | 2.16                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                             | 2.34                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.0                                                                                                                                                                                                                                                                            | 11.4                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.27                                 | 0.009                                                                                                                                                                                                                                         | 0.15                                                                                                                | 7.22                                                                                                                                                              | 5.9                                                                                                                                                                                  | 980                                                                                                                                                                                                                       | 2.68                                                                                                                                                                                                                                                                                  | 0.47                                                                                                                                                                                                             | 2.35                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.3                                                                                                                                                                                                                                                                            | 11.9                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | te Recva wi<br>s 0.02<br>1.56<br>1.01<br>1.57<br>0.52<br>1.25<br>0.97<br>1.45<br>0.95<br>1.34<br>1.48<br>1.16<br>2.18<br>1.51<br>1.58<br>1.60<br>1.54<br>1.34<br>1.10<br>1.70<br>1.27<br>1.29<br>1.48<br>1.40<br>1.36<br>1.39<br>1.15<br>1.27 | te         Recva wt.         Au           kg         ppm           0.02         0.005           1.56         <0.005 | te         Recvd wt.         Au         Ag           s         kg         ppm         ppm           0.02         0.005         0.01           1.56         <0.005 | te         RecVd Wt.         Au         Ag         Ai           s         kg         ppm         ppm $\%$ 0.02         0.005         0.01         0.01           1.56         <0.005 | te         Recvd wt.         Au         Ag         AI         As           s         kg         ppm         ppm $\%$ ppm           0.02         0.005         0.01         0.01         0.2           1.56         <0.005 | te         Necvod Wt.         Au         Ag         AI         As         Ba           s         kg         ppm         ppm         ppm         %         ppm         ppm           0.02         0.005         0.01         0.01         0.2         10           1.56         <0.005 | tec         Necvo Wt.         Au         Ag         Ai         As         Ba         Be           0.02         0.005         0.01         0.01         0.2         10         0.05           1.56         <0.005 | tet         Revol Wt.         Au         Ag         Al         As         Ba         Be         Bi           0.02         0.005         0.01         0.01         0.2         10         0.05         0.01           1.56         <0.005 | tete         Recovery         Au         Ag         AI         As         Ba         Be         Bit         Ca           0.02         0.005         0.01         0.01         0.2         10         0.05         0.01         0.01           1.56         0.005         0.01         0.01         0.2         10         0.05         0.01         0.01           1.56         0.005         0.16         6.91         10.9         870         2.01         0.22         2.02           1.57         0.005         0.14         7.09         7.7         820         2.02         0.25         2.04           0.52         <0.005 | tete         Recovery         Au         Ag         As         Ba         Be         BI         C.a         C.a           0.02         0.005         0.01         0.01         0.2         10         0.05         0.01         0.01         0.02           1.56         <0.005 | teg         Recovery         Au         Ag         Ai         As         Bit         Bit         Ca         Ca         Ca         Ca         Ca           0.02         0.005         0.01         0.01         0.01         0.02         0.01         0.01         0.02         0.01         0.01         0.02         0.01           1.161         <0.005 | tet         No.         Ag         Ai         As         Ba         Be         Bi         Ca         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tep         Hered with:         Au         Ag         Ai         As         tex         Bit         Ca         Ca <thca< th=""> <thca< th=""> <thca< th=""></thca<></thca<></thca<> | tep         Net         Au         Ag         As         bas         bas         bas         Ca         Ca <t< td=""></t<> |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 – B Total # ۲میوes: 2 (A – D) Plus Appendix Pages Finalized Date: 10-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description | Method  | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61 | Hg-CV41 | ME-MS61 |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                    | Analyte | Fe      | Ga      | Ge      | Hf      | Hg      | In      | K       | La      | Li      | Mg      | Mn      | Mo      | Na      | Nb      | Ni      |
|                    | Units   | %       | ppm     | ppm     | ppm     | ppm     | ppm     | %       | ppm     | ppm     | %       | ppm     | ppm     | %       | ppm     | ppm     |
|                    | LOR     | 0.01    | 0.05    | 0.05    | 0.1     | 0.01    | 0.005   | 0.01    | 0.5     | 0.2     | 0.01    | 5       | 0.05    | 0.01    | 0.1     | 0.2     |
| 479218             |         | 3.40    | 18.25   | 0.19    | 2.3     | 0.24    | 0.046   | 2.43    | 43.7    | 22.6    | 1.05    | 559     | 0.39    | 1.02    | 12.2    | 22.5    |
| 479219             |         | 3.25    | 18.60   | 0.19    | 2.7     | 0.41    | 0.048   | 2.52    | 42.7    | 22.2    | 0.98    | 486     | 0.40    | 0.96    | 12.9    | 22.2    |
| 479220             |         | 3.34    | 18.95   | 0.19    | 2.3     | 0.39    | 0.048   | 2.41    | 42.5    | 21.9    | 0.99    | 544     | 0.52    | 1.27    | 13.0    | 23.0    |
| 479221             |         | 2.83    | 16.70   | 0.16    | 2.0     | 0.27    | 0.042   | 2.03    | 37.1    | 22.0    | 0.77    | 536     | 0.41    | 1.38    | 10.4    | 17.5    |
| 479222             |         | 3.31    | 18.30   | 0.17    | 2.2     | 0.26    | 0.050   | 2.43    | 38.6    | 22.1    | 0.96    | 549     | 0.40    | 1.13    | 11.9    | 19.4    |
| 479223             |         | 4.03    | 18.40   | 0.15    | 1.4     | 0.17    | 0.050   | 2.06    | 24.8    | 21.5    | 1.18    | 649     | 0.60    | 1.71    | 11.0    | 13.5    |
| 479224             |         | 3.38    | 17.00   | 0.16    | 1.9     | 0.23    | 0.048   | 2.26    | 31.8    | 21.6    | 1.10    | 554     | 0.62    | 1.36    | 13.0    | 17.3    |
| 479225             |         | 3.61    | 17.15   | 0.17    | 1.9     | 0.27    | 0.049   | 2.34    | 31.6    | 22.7    | 1.11    | 632     | 0.65    | 1.34    | 13.1    | 15.7    |
| 479226             |         | 3.44    | 18.35   | 0.20    | 2.1     | 0.23    | 0.049   | 2.36    | 39.0    | 21.3    | 1.02    | 536     | 0.43    | 1.28    | 13.6    | 20.9    |
| 479227             |         | 3.40    | 19.50   | 0.19    | 2.4     | 0.26    | 0.052   | 2.60    | 46.9    | 22.2    | 1.00    | 498     | 0.39    | 1.12    | 13.5    | 23.5    |
| 479228             |         | 3.33    | 17.75   | 0.16    | 2.6     | 0.22    | 0.050   | 2.61    | 39.4    | 22.2    | 1.05    | 601     | 0.97    | 1.31    | 15.5    | 23.2    |
| 479229             |         | 3.51    | 17.70   | 0.19    | 3.0     | 0.45    | 0.040   | 3.46    | 47.5    | 18.6    | 1.05    | 667     | 1.44    | 1.35    | 23.5    | 15.0    |
| 479230             |         | 3.28    | 17.05   | 0.18    | 2.4     | 0.39    | 0.044   | 2.98    | 41.3    | 21.8    | 1.04    | 643     | 1.07    | 1.26    | 18.4    | 18.4    |
| 479231             |         | 3.31    | 16.25   | 0.18    | 2.8     | 0.44    | 0.035   | 3.09    | 48.5    | 16.4    | 1.03    | 725     | 1.33    | 1.48    | 21.6    | 12.3    |
| 479232             |         | 3.59    | 16.95   | 0.13    | 2.4     | 0.28    | 0.046   | 2.79    | 33.1    | 18.9    | 1.21    | 708     | 1.12    | 1.44    | 18.3    | 14.7    |
| 479233             |         | 3.61    | 17.50   | 0.18    | 2.9     | 0.36    | 0.042   | 3.35    | 42.5    | 17.3    | 1.09    | 700     | 1.70    | 1.63    | 24.6    | 11.4    |
| 479234             |         | 3.43    | 16.40   | 0.14    | 1.9     | 0.25    | 0.045   | 2.30    | 31.4    | 21.1    | 1.08    | 641     | 0.71    | 1.51    | 14.1    | 14.0    |
| 479235             |         | 3.80    | 16.15   | 0.14    | 1.8     | 0.19    | 0.049   | 2.45    | 28.0    | 19.1    | 1.29    | 757     | 0.81    | 1.58    | 13.9    | 13.3    |
| 479236             |         | 3.79    | 16.95   | 0.17    | 1.8     | 0.26    | 0.051   | 2.20    | 32.7    | 22.4    | 1.29    | 720     | 0.57    | 1.46    | 12.3    | 16.9    |
| 479237             |         | 3.63    | 16.45   | 0.13    | 1.5     | 0.15    | 0.044   | 2.08    | 24.7    | 21.3    | 1.19    | 634     | 0.54    | 1.72    | 11.4    | 16.2    |
| 479238             |         | 3.67    | 16.75   | 0.15    | 1.6     | 0.20    | 0.050   | 2.03    | 28.8    | 21.2    | 1.20    | 661     | 0.50    | 1.56    | 10.6    | 16.2    |
| 479239             |         | 3.32    | 17.55   | 0.17    | 2.0     | 0.26    | 0.048   | 2.26    | 31.7    | 21.2    | 1.05    | 612     | 0.50    | 1.31    | 13.1    | 16.9    |
| 479240             |         | 3.37    | 17.60   | 0.16    | 1.9     | 0.21    | 0.047   | 2.34    | 35.2    | 20.4    | 1.08    | 581     | 0.45    | 1.28    | 12.6    | 17.1    |
| 479241             |         | 3.66    | 18.20   | 0.16    | 1.8     | 0.17    | 0.051   | 2.26    | 33.0    | 23.0    | 1.13    | 641     | 0.48    | 1.63    | 11.7    | 16.0    |
| 479242             |         | 3.34    | 17.80   | 0.15    | 1.8     | 0.50    | 0.049   | 2.18    | 33.6    | 21.6    | 1.02    | 595     | 0.60    | 1.26    | 11.4    | 22.7    |
| 479243             |         | 3.38    | 19.50   | 0.19    | 2.6     | 0.18    | 0.051   | 2.40    | 39.3    | 24.6    | 1.03    | 660     | 0.38    | 1.21    | 14.1    | 22.0    |
| 479244             |         | 3.48    | 18.45   | 0.16    | 2.1     | 0.20    | 0.051   | 2.46    | 30.2    | 22.6    | 1.07    | 593     | 0.48    | 1.33    | 14.4    | 18.7    |
| 479245             |         | 3.60    | 19.30   | 0.16    | 2.6     | 0.37    | 0.049   | 2.99    | 40.0    | 21.9    | 1.09    | 664     | 0.94    | 1.37    | 21.0    | 22.1    |
|                    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|                    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|                    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### Fo: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - C Total # rages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                                       | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>P<br>ppm<br>10       | ME-MS61<br>Pb<br>ppm<br>0.5          | ME-MS61<br>Rb<br>ppm<br>0.1               | ME-MS61<br>Re<br>ppm<br>0.002                            | ME-MS61<br>S<br>%<br>0.01            | ME-MS61<br>Sb<br>ppm<br>0.05         | ME-MS61<br>Sc<br>ppm<br>0.1          | ME-MS61<br>Se<br>ppm<br>1  | ME-MS61<br>Sn<br>ppm<br>0.2     | ME-MS61<br>Sr<br>ppm<br>0.2           | ME-MS61<br>Ta<br>ppm<br>0.05         | ME-MS61<br>Te<br>ppm<br>0.05              | ME-MS61<br>Th<br>ppm<br>0.2          | ME-MS61<br>Ti<br>%<br>0.005               | ME-MS61<br>Tl<br>ppm<br>0.02         |
|----------------------------------------------------------|-----------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|---------------------------------|---------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|
| 479218<br>479219<br>479220<br>479221<br>479222           |                                   | 450<br>410<br>420<br>340<br>410 | 22.8<br>26.4<br>29.4<br>18.8<br>20.4 | 121.0<br>123.0<br>120.5<br>98.7<br>112.5  | <0.002<br><0.002<br><0.002<br><0.002<br><0.002           | 0.28<br>0.27<br>0.30<br>0.16<br>0.22 | 0.93<br>0.78<br>1.00<br>1.05<br>0.84 | 12.3<br>10.8<br>12.4<br>10.9<br>12.2 | 2<br>2<br>2<br>2<br>2      | 2.2<br>2.4<br>2.3<br>1.9<br>2.2 | 192.0<br>176.0<br>209<br>231<br>181.0 | 0.93<br>1.01<br>1.02<br>0.81<br>0.93 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 17.6<br>18.1<br>18.4<br>15.3<br>16.0 | 0.280<br>0.285<br>0.277<br>0.234<br>0.281 | 0.64<br>0.65<br>0.64<br>0.48<br>0.61 |
| 479223<br>479224<br>479225<br>479226<br>479227           |                                   | 490<br>430<br>450<br>430<br>450 | 12.2<br>19.0<br>19.3<br>19.4<br>24.7 | 84.0<br>105.0<br>112.5<br>120.0<br>137.0  | <0.002<br><0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.13<br>0.20<br>0.17<br>0.23<br>0.26 | 1.58<br>1.71<br>1.89<br>1.23<br>1.09 | 16.7<br>13.6<br>13.9<br>12.4<br>11.7 | 2<br>2<br>2<br>2<br>2<br>2 | 1.9<br>2.3<br>2.5<br>2.3<br>2.7 | 228<br>212<br>235<br>201<br>196.0     | 0.81<br>0.98<br>0.99<br>1.04<br>1.07 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 10.9<br>15.8<br>16.0<br>16.5<br>18.5 | 0.300<br>0.266<br>0.272<br>0.290<br>0.291 | 0.54<br>0.62<br>0.68<br>0.63<br>0.68 |
| 479228<br>479229<br>479230<br>479231<br>479232           |                                   | 500<br>580<br>540<br>510<br>510 | 24.0<br>35.1<br>31.8<br>40.3<br>25.7 | 124.0<br>152.5<br>131.0<br>141.0<br>120.5 | <0.002<br><0.002<br><0.002<br><0.002<br><0.002           | 0.26<br>0.23<br>0.27<br>0.23<br>0.23 | 1.70<br>2.47<br>2.53<br>2.69<br>2.49 | 10.8<br>8.9<br>9.3<br>8.4<br>12.0    | 2<br>2<br>2<br>3<br>2      | 3.0<br>4.1<br>3.3<br>3.9<br>3.3 | 219<br>223<br>228<br>242<br>229       | 1.18<br>1.82<br>1.43<br>1.76<br>1.40 | <0.05<br>0.10<br>0.07<br>0.07<br>0.07     | 20.3<br>35.1<br>24.2<br>33.5<br>22.7 | 0.270<br>0.269<br>0.277<br>0.241<br>0.258 | 0.74<br>0.89<br>0.79<br>0.81<br>0.77 |
| 479233<br>479234<br>479235<br>479236<br>479236<br>479237 |                                   | 570<br>410<br>470<br>430<br>410 | 69.7<br>20.9<br>14.3<br>19.6<br>14.1 | 148.5<br>105.5<br>100.0<br>103.5<br>85.3  | <0.002<br><0.002<br><0.002<br><0.002<br><0.002           | 0.20<br>0.19<br>0.14<br>0.20<br>0.15 | 2.58<br>2.16<br>2.01<br>1.80<br>1.71 | 10.0<br>12.9<br>14.3<br>15.2<br>15.0 | 2<br>2<br>2<br>2<br>2      | 4.2<br>2.5<br>2.5<br>2.2<br>2.0 | 232<br>244<br>234<br>244<br>239       | 1.95<br>1.12<br>1.08<br>0.95<br>0.89 | 0.19<br><0.05<br><0.05<br><0.05<br><0.05  | 35.2<br>18.3<br>16.0<br>16.1<br>11.5 | 0.276<br>0.267<br>0.274<br>0.281<br>0.270 | 0.93<br>0.64<br>0.61<br>0.58<br>0.54 |
| 479238<br>479239<br>479240<br>479241<br>479242           |                                   | 400<br>410<br>420<br>410<br>430 | 14.5<br>19.3<br>19.8<br>25.3<br>52.9 | 102.0<br>109.0<br>113.0<br>104.0<br>105.0 | <0.002<br><0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.17<br>0.20<br>0.21<br>0.20<br>0.26 | 1.65<br>1.71<br>1.69<br>1.23<br>1.33 | 16.1<br>12.7<br>13.2<br>16.2<br>13.6 | 3<br>2<br>2<br>1<br>2      | 1.8<br>2.3<br>2.2<br>1.9<br>2.1 | 241<br>221<br>196.5<br>214<br>236     | 0.79<br>0.98<br>0.97<br>0.88<br>0.89 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 12.0<br>14.5<br>15.2<br>14.6<br>14.1 | 0.271<br>0.283<br>0.278<br>0.294<br>0.281 | 0.52<br>0.59<br>0.59<br>0.56<br>0.59 |
| 479243<br>479244<br>479245                               |                                   | 420<br>460<br>600               | 24.8<br>22.9<br>27.4                 | 116.0<br>99.3<br>129.5                    | <0.002<br><0.002<br><0.002                               | 0.22<br>0.21<br>0.25                 | 1.24<br>1.60<br>2.62                 | 13.5<br>12.4<br>10.8                 | 2<br>2<br>2                | 2.5<br>2.5<br>3.5               | 219<br>225<br>232                     | 1.07<br>1.12<br>1.56                 | <0.05<br><0.05<br>0.06                    | 17.1<br>14.2<br>23.7                 | 0.287<br>0.298<br>0.314                   | 0.68<br>0.65<br>0.80                 |
|                                                          |                                   |                                 |                                      |                                           |                                                          |                                      |                                      |                                      |                            |                                 |                                       |                                      |                                           |                                      |                                           |                                      |
|                                                          |                                   |                                 |                                      |                                           |                                                          |                                      |                                      |                                      |                            |                                 |                                       |                                      |                                           |                                      |                                           |                                      |



5]

**Minerals** 

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                   | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>U<br>ppm<br>0.1 | ME-MS61<br>V<br>ppm<br>1 | ME-MS61<br>W<br>ppm<br>0.1 | ME-MS61<br>Y<br>ppm<br>0.1   | ME-MS61<br>Zn<br>ppm<br>2   | ME-MS61<br>Zr<br>ppm<br>0.5   |  |
|--------------------------------------|-----------------------------------|----------------------------|--------------------------|----------------------------|------------------------------|-----------------------------|-------------------------------|--|
| 479218<br>479219<br>479220<br>479221 | nanta sike 34 jaga an gara ay     | 3.3<br>3.5<br>3.3<br>2.6   | 66<br>61<br>63<br>48     | 2.9<br>1.9<br>1.9<br>2.1   | 15.6<br>15.0<br>16.8<br>16.1 | 70<br>95<br>76<br>56        | 70.3<br>81.5<br>66.3<br>56.2  |  |
| 479222<br>479223<br>479224<br>479225 |                                   | 2.7<br>2.5<br>3.6<br>3.1   | 66<br>98<br>72<br>78     | 1.7<br>2.0<br>2.4<br>2.8   | 15.4<br>15.0<br>14.7<br>14.4 | 67<br>67<br>67<br>70        | 67.7<br>39.0<br>60.1<br>62.8  |  |
| 479226<br>479227<br>479228<br>479229 |                                   | 3.1<br>3.4<br>4.5<br>9.5   | 67<br>62<br>63<br>55     | 2.1<br>2.0<br>3.1<br>5.9   | 15.8<br>16.5<br>15.7<br>14.9 | 72<br>75<br>73<br>78        | 67.3<br>80.1<br>86.0<br>109.5 |  |
| 479230<br>479231<br>479232<br>479233 |                                   | 6.6<br>8.4<br>6.2<br>9.7   | 61<br>49<br>71<br>65     | 4.1<br>5.1<br>4.4<br>7.1   | 15.3<br>14.8<br>13.2<br>14.9 | 85<br>70<br>79<br><b>78</b> | 84.4<br>97.1<br>87.5<br>100.5 |  |
| 479234<br>479235<br>479236<br>479237 |                                   | 4.6<br>3.8<br>4.3<br>2.9   | 74<br>84<br>89<br>87     | 3.2<br>3.4<br>2.4<br>3.5   | 13.8<br>13.5<br>14.5<br>13.2 | 67<br>68<br>72<br>65        | 63.2<br>56.7<br>60.1<br>47.7  |  |
| 479238<br>479239<br>479240<br>479241 |                                   | 2.6<br>3.1<br>3.9<br>3.4   | 87<br>68<br>69<br>77     | 7.3<br>2.2<br>3.0<br>2.0   | 15.2<br>14.9<br>14.4<br>15.6 | 70<br>66<br>68<br>78        | 48.3<br>65.1<br>61.4<br>55.0  |  |
| 479242<br>479243<br>479244<br>479245 |                                   | 3.1<br>3.7<br>3.1<br>5.4   | 68<br>71<br>67           | 1.9<br>1.8<br>2.2<br>4.2   | 15.1<br>15.8<br>13.8<br>15.2 | 64<br>71<br>78              | 85.4<br>71.2<br>91.4          |  |
|                                      |                                   |                            |                          |                            |                              |                             |                               |  |
|                                      |                                   |                            |                          |                            |                              |                             |                               |  |
|                                      |                                   |                            |                          |                            |                              |                             |                               |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### D: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description | Method  | WEI-21    | Au-AA24 | ME-MS61 |
|--------------------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                    | Analyte | Recvd Wt. | Au      | Ag      | Al      | As      | Ba      | Be      | Bi      | Ca      | Cd      | Ce      | Co      | Cr      | Cs      | Cu      |
|                    | Units   | kg        | ppm     | ppm     | %       | ppm     | ppm     | ppm     | ppm     | %       | ppm     | ppm     | ppm     | ppm     | ppm     | ppm     |
|                    | LOR     | 0.02      | 0.005   | 0.01    | 0.01    | 0.2     | 10      | 0.05    | 0.01    | 0.01    | 0.02    | 0.01    | 0.1     | 1       | 0.05    | 0.2     |
| 053501             |         | 0.78      | 0.008   | 0.39    | 8.17    | 75.2    | 1350    | 2.78    | 0.31    | 0.51    | 0.43    | 81.8    | 16.4    | 85      | 8.52    | 34.2    |
| 053502             |         | 1.99      | 0.007   | 0.22    | 9.12    | 15.1    | 1610    | 3.38    | 0.32    | 0.54    | 0.59    | 99.0    | 17.8    | 97      | 10.25   | 39.7    |
| 053503             |         | 0.12      | <0.005  | 0.14    | 8.90    | 14.3    | 1420    | 2.85    | 0.29    | 1.65    | 0.46    | 92.1    | 23.8    | 93      | 8.15    | 38.7    |
| 053504             |         | 1.40      | <0.005  | 0.06    | 6.49    | 10.4    | 640     | 1.46    | 0.07    | 3.71    | 0.19    | 60.6    | 26.0    | 106     | 2.03    | 50.3    |
| 053505             |         | 1.67      | <0.005  | 0.07    | 6.60    | 11.4    | 690     | 1.61    | 0.06    | 3.68    | 0.18    | 62.2    | 23.7    | 105     | 1.56    | 44.5    |
| 053506             |         | 1.50      | <0.005  | 0.08    | 7.23    | 9.1     | 870     | 2.20    | 0.07    | 3.06    | 0.19    | 68.0    | 26.8    | 112     | 2.42    | 58.2    |
| 053507             |         | 1.76      | 0.005   | 0.13    | 4.50    | 12.4    | 670     | 1.19    | 0.14    | 1.52    | 0.21    | 42.6    | 10.6    | 59      | 2.27    | 31.2    |
| 053508             |         | 1.98      | <0.005  | 0.12    | 4.41    | 8.0     | 670     | 1.01    | 0.13    | 1.57    | 0.27    | 36.6    | 8.6     | 69      | 2.43    | 22.6    |
| 053509             |         | 1.50      | <0.005  | 0.12    | 4.45    | 5.8     | 730     | 1.09    | 0.12    | 1.05    | 0.19    | 39.1    | 6.8     | 50      | 2.77    | 18.5    |
| 053510             |         | 0.89      | <0.005  | 0.13    | 5.07    | 5.7     | 770     | 1.29    | 0.17    | 0.96    | 0.25    | 47.9    | 9.2     | 59      | 3.51    | 22.8    |
| 053511             |         | 1.61      | <0.005  | 0.19    | 8.86    | 7.6     | 1310    | 2.47    | 0.22    | 0.72    | 0.52    | 84.4    | 15.4    | 114     | 8.27    | 38.2    |
| 053512             |         | 1.80      | <0.005  | 0.14    | 4.90    | 5.3     | 670     | 1.30    | 0.14    | 1.05    | 0.34    | 44.7    | 9.7     | 62      | 3.56    | 31.4    |
| 053513             |         | 1.87      | <0.005  | 0.17    | 4.83    | 9.6     | 650     | 1.25    | 0.21    | 1.89    | 0.39    | 41.9    | 11.0    | 71      | 3.15    | 36.8    |
| 053514             |         | 2.01      | <0.005  | 0.14    | 4.87    | 9.5     | 670     | 1.23    | 0.16    | 1.72    | 0.39    | 47.5    | 10.4    | 64      | 3.02    | 32.6    |
| 053515             |         | 0.71      | <0.005  | 0.12    | 7.85    | 7.7     | 830     | 1.69    | 0.06    | 4.92    | 0.21    | 69.6    | 34.0    | 126     | 1.92    | 52.9    |
| 053516             |         | 1.72      | <0.005  | 0.14    | 4.49    | 6.2     | 630     | 1.09    | 0.17    | 1.60    | 0.32    | 40.9    | 8.5     | 55      | 2.84    | 31.2    |
| 053517             |         | 1.73      | <0.005  | 0.11    | 5.01    | 6.8     | 740     | 1.22    | 0.13    | 1.14    | 0.23    | 44.3    | 8.5     | 55      | 2.80    | 23.2    |
| 053518             |         | 1.78      | <0.005  | 0.10    | 4.53    | 10.1    | 700     | 0.87    | 0.09    | 1.21    | 0.14    | 34.9    | 5.3     | 57      | 1.76    | 13.5    |
|                    |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description | Method  | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61 | Hg-CV41 | ME-MS61 |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                    | Analyte | Fe      | Ga      | Ge      | Hf      | Hg      | In      | K       | La      | Li      | Mg      | Mn      | Mo      | Na      | Nb      | Ni      |
|                    | Units   | %       | ppm     | ppm     | ppm     | ppm     | ppm     | %       | ppm     | ppm     | %       | ppm     | ppm     | %       | ppm     | ppm     |
|                    | LOR     | 0.01    | 0.05    | 0.05    | 0.1     | 0.01    | 0.005   | 0.01    | 0.5     | 0.2     | 0.01    | 5       | 0.05    | 0.01    | 0.1     | 0.2     |
| 053501             |         | 8.92    | 21.9    | 0.25    | 3.2     | 0.08    | 0.088   | 1.78    | 40.1    | 42.0    | 0.96    | 3200    | 5.25    | 0.77    | 15.4    | 56.3    |
| 053502             |         | 4.75    | 25.1    | 0.26    | 3.9     | 0.02    | 0.103   | 2.18    | 50.0    | 37.4    | 0.93    | 1530    | 2.46    | 0.91    | 19.7    | 59.2    |
| 053503             |         | 6.21    | 23.6    | 0.27    | 3.5     | 0.02    | 0.101   | 1.81    | 47.0    | 36.3    | 1.49    | 2690    | 2.86    | 1.53    | 28.4    | 55.0    |
| 053504             |         | 5.56    | 15.70   | 0.20    | 2.4     | 0.03    | 0.063   | 0.78    | 31.5    | 48.2    | 2.39    | 984     | 2.70    | 2.20    | 39.9    | 75.7    |
| 053505             |         | 5.07    | 16.15   | 0.22    | 2.5     | 0.03    | 0.063   | 0.92    | 32.7    | 47.4    | 2.15    | 926     | 2.64    | 2.12    | 39.3    | 74.6    |
| 053506             |         | 5.51    | 17.65   | 0.23    | 3.0     | 0.02    | 0.075   | 1.10    | 35.0    | 62.4    | 2.27    | 986     | 2.73    | 2.01    | 39.1    | 87.2    |
| 053507             |         | 2.87    | 11.75   | 0.16    | 1.1     | 0.01    | 0.044   | 1.19    | 21.9    | 28.0    | 0.88    | 527     | 1.47    | 0.81    | 8.4     | 36.6    |
| 053508             |         | 2.89    | 10.60   | 0.16    | 1.0     | 0.01    | 0.040   | 1.15    | 18.8    | 20.3    | 0.90    | 688     | 1.08    | 0.78    | 6.7     | 39.1    |
| 053509             |         | 2.29    | 10.95   | 0.15    | 1.2     | 0.01    | 0.038   | 1.14    | 20.3    | 20.3    | 0.64    | 482     | 0.84    | 0.84    | 6.9     | 23.0    |
| 053510             |         | 2.77    | 12.95   | 0.15    | 1.4     | 0.01    | 0.045   | 1.32    | 24.6    | 24.6    | 0.81    | 489     | 1.23    | 0.79    | 8.2     | 34.5    |
| 053511             |         | 4.71    | 21.1    | 0.22    | 2.1     | 0.01    | 0.083   | 2.54    | 43.6    | 31.8    | 1.48    | 655     | 2.44    | 0.99    | 10.5    | 56.8    |
| 053512             |         | 2.83    | 13.05   | 0.16    | 1.3     | 0.01    | 0.050   | 1.29    | 22.8    | 24.5    | 0.86    | 500     | 1.10    | 0.59    | 7.5     | 35.1    |
| 053513             |         | 3.01    | 12.55   | 0.17    | 1.2     | 0.01    | 0.047   | 1.25    | 21.2    | 24.8    | 0.90    | 656     | 1.34    | 0.61    | 7.0     | 44.2    |
| 053514             |         | 2.97    | 12.75   | 0.16    | 1.4     | 0.01    | 0.050   | 1.21    | 23.7    | 21.6    | 0.87    | 593     | 1.30    | 0.83    | 8.6     | 36.5    |
| 053515             |         | 6.88    | 16.10   | 0.23    | 3.2     | 0.04    | 0.073   | 0.70    | 35.9    | 68.5    | 2.90    | 1280    | 3.41    | 2.82    | 55.0    | 79.7    |
| 053516             |         | 2.58    | 11.80   | 0.15    | 1.3     | <0.01   | 0.041   | 1.11    | 20.8    | 21.8    | 0.79    | 545     | 1.20    | 0.76    | 7.7     | 30.2    |
| 053517             |         | 2.42    | 12.50   | 0.15    | 1.5     | <0.01   | 0.039   | 1.26    | 22.4    | 19.2    | 0.70    | 445     | 1.28    | 1.02    | 8.5     | 30.3    |
| 053518             |         | 2.28    | 9.04    | 0.12    | 1.3     | <0.01   | 0.030   | 1.09    | 18.1    | 13.6    | 0.65    | 492     | 0.83    | 1.05    | 7.1     | 22.4    |
|                    |         |         |         |         |         |         |         |         |         |         |         |         |         | e.      |         |         |
|                    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|                    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

## CERTIFICATE OF ANALYSIS WH10121226

.

| Sample Description                                       | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>P<br>ppm<br>10            | ME-MS61<br>Pb<br>ppm<br>0.5          | ME-MS61<br>Rb<br>ppm<br>0.1             | ME-MS61<br>Re<br>ppm<br>0.002                           | ME-MS61<br>S<br>%<br>0.01                    | ME-MS61<br>Sb<br>ppm<br>0.05         | ME-MS61<br>Sc<br>ppm<br>0.1          | ME-MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2     | ME-MS61<br>Sr<br>ppm<br>0.2             | ME-MS61<br>Ta<br>ppm<br>0.05         | ME-MS61<br>Te<br>ppm<br>0.05            | ME-MS61<br>Th<br>ppm<br>0.2        | ME-MS61<br>Ti<br>%<br>0.005               | ME-MS61<br>Tl<br>ppm<br>0.02         |
|----------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|---------------------------|---------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------|-------------------------------------------|--------------------------------------|
| 053501<br>053502<br>053503<br>053504<br>053505           |                                   | 1260<br>1150<br>1640<br>1930<br>1820 | 34.7<br>28.4<br>22.2<br>7.9<br>8 2   | 101.0<br>116.5<br>112.5<br>45.3<br>50.1 | 0.003<br><0.002<br><0.002<br>0.002<br><0.002            | 0.89<br>0.08<br>0.17<br>0.22<br>0.25         | 4.71<br>1.68<br>1.49<br>1.03<br>1.20 | 14.7<br>16.9<br>17.2<br>13.7<br>13.5 | 3<br>3<br>2<br>2          | 3.3<br>4.0<br>3.3<br>1.5<br>1.7 | 140.5<br>178.5<br>428<br>545<br>544     | 1.03<br>1.32<br>1.84<br>2.49<br>2.40 | 0.09<br>0.07<br>0.09<br>0.05<br><0.05   | 11.4<br>15.3<br>11.7<br>4.3<br>4.8 | 0.334<br>0.433<br>0.667<br>0.871<br>0.812 | 1.11<br>0.98<br>0.82<br>0.23<br>0.27 |
| 053505<br>053506<br>053507<br>053508<br>053509<br>053510 |                                   | 1760<br>620<br>560<br>660<br>600     | 10.6<br>11.2<br>12.6<br>11.1<br>12.6 | 60.5<br>75.7<br>71.1<br>71.3<br>85.6    | 0.002<br>0.002<br><0.002<br><0.002<br><0.002<br><0.002  | 0.24<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05 | 1.30<br>0.47<br>0.45<br>0.50<br>0.53 | 15.4<br>8.2<br>7.5<br>6.6<br>8.6     | 2<br>2<br>2<br>1          | 2.4<br>1.4<br>1.2<br>1.3<br>1.6 | 476<br>171.5<br>144.0<br>137.0<br>126.5 | 2.37<br>0.52<br>0.43<br>0.43<br>0.52 | <0.05<br>0.05<br>0.05<br><0.05<br><0.05 | 7.1<br>5.8<br>4.9<br>5.5<br>6.3    | 0.827<br>0.205<br>0.206<br>0.173<br>0.243 | 0.31<br>0.42<br>0.39<br>0.41<br>0.48 |
| 053510<br>053511<br>053512<br>053513<br>053514<br>053515 |                                   | 1070<br>580<br>590<br>600<br>2690    | 17.1<br>13.6<br>15.4<br>13.4<br>7.7  | 112.5<br>90.8<br>87.1<br>82.5<br>30.8   | 0.003<br><0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.09<br>0.06<br>0.08<br>0.08<br>0.08<br>0.51 | 0.58<br>0.41<br>0.43<br>0.48<br>1.87 | 17.0<br>9.2<br>8.9<br>9.0<br>16.5    | 2<br>1<br>2<br>1<br>2     | 2.6<br>1.5<br>1.5<br>1.6<br>1.6 | 114.5<br>110.0<br>158.5<br>169.0<br>732 | 0.68<br>0.48<br>0.44<br>0.55<br>3.36 | 0.06<br><0.05<br>0.06<br><0.05<br><0.05 | 12.3<br>6.4<br>6.0<br>6.4<br>4.0   | 0.367<br>0.226<br>0.208<br>0.229<br>1.235 | 0.89<br>0.50<br>0.49<br>0.47<br>0.17 |
| 053516<br>053517<br>053518                               |                                   | 580<br>510<br>520                    | 12.9<br>14.2<br>11.6                 | 76.6<br>80.7<br>55.1                    | 0.002<br><0.002<br><0.002                               | 0.05<br>0.04<br>0.05                         | 0.45<br>0.66<br>0.63                 | 7.9<br>7.1<br>4.9                    | 2<br>1<br>1               | 1.5<br>1.7<br>1.1               | 166.0<br>159.0<br>161.0                 | 0.49<br>0.55<br>0.43                 | <0.05<br><0.05<br><0.05                 | 5.6<br>6.3<br>4.8                  | 0.201<br>0.205<br>0.178                   | 0.44<br>0.48<br>0.35                 |
|                                                          |                                   |                                      |                                      |                                         |                                                         |                                              |                                      |                                      |                           |                                 |                                         |                                      |                                         |                                    |                                           |                                      |
|                                                          |                                   |                                      |                                      |                                         |                                                         |                                              |                                      |                                      |                           |                                 |                                         |                                      |                                         |                                    |                                           |                                      |
|                                                          |                                   |                                      |                                      |                                         |                                                         |                                              |                                      |                                      |                           |                                 |                                         |                                      |                                         |                                    |                                           |                                      |
|                                                          |                                   |                                      |                                      |                                         |                                                         |                                              |                                      |                                      |                           |                                 |                                         |                                      |                                         |                                    |                                           |                                      |
|                                                          |                                   |                                      |                                      |                                         |                                                         |                                              |                                      |                                      |                           |                                 |                                         |                                      |                                         |                                    |                                           |                                      |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                                       | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>U<br>ppm<br>0.1      | ME-MS61<br>V<br>ppm<br>1        | ME-MS61<br>W<br>ppm<br>0.1      | ME-MS61<br>Y<br>ppm<br>0.1           | ME-MS61<br>Zn<br>ppm<br>2     | ME-MS61<br>Zr<br>ppm<br>0.5             |  |
|----------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------------------|-----------------------------------------|--|
| 053501<br>053502<br>053503<br>053504<br>053505           |                                   | 3.7<br>5.1<br>3.8<br>1.3<br>1.5 | 115<br>135<br>147<br>136<br>127 | 5.0<br>5.8<br>5.1<br>5.4<br>2.3 | 26.7<br>29.8<br>29.0<br>18.7<br>19.5 | 126<br>144<br>131<br>66<br>65 | 107.5<br>125.5<br>117.5<br>94.8<br>93.9 |  |
| 053506<br>053507<br>053508<br>053509<br>053510           |                                   | 2.2<br>1.6<br>1.4<br>1.7        | 140<br>70<br>68<br>65           | 3.7<br>4.8<br>1.3<br>1.1        | 21.6<br>11.1<br>10.1<br>10.6<br>11.2 | 79<br>56<br>54<br>49          | 112.0<br>37.1<br>33.7<br>41.7           |  |
| 053510<br>053511<br>053512<br>053513<br>053514<br>053514 |                                   | 3.3<br>1.6<br>1.6<br>1.7        | 153<br>75<br>76<br>76<br>170    | 2.4<br>1.5<br>1.3<br>1.4        | 15.9<br>9.6<br>9.9<br>11.3<br>22.5   | 122<br>65<br>64<br>61<br>74   | 69.0<br>42.7<br>39.8<br>44.6            |  |
| 053515<br>053516<br>053517<br>053518                     |                                   | 1.6<br>1.9<br>1.4               | 68<br>65<br>61                  | 1.3<br>1.4<br>1.0               | 11.2<br>11.1<br>9.2                  | 56<br>55<br>46                | 41.7<br>46.2<br>40.3                    |  |
|                                                          |                                   |                                 |                                 |                                 |                                      |                               |                                         |  |
|                                                          |                                   |                                 |                                 |                                 |                                      |                               |                                         |  |
|                                                          |                                   |                                 |                                 |                                 |                                      |                               |                                         |  |
|                                                          |                                   |                                 |                                 |                                 |                                      |                               |                                         |  |
|                                                          |                                   |                                 |                                 |                                 |                                      |                               |                                         |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Imple Description                                        | Method  | WEI-21                               | Au-AA24                                        | ME-MS61                              | ME-MS61                              | ME-MS61                           | ME-MS61                             | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                                      | ME-MS61                              | ME-MS61                             | MEMS61                     | ME-MS61                              | ME-MS61                              |
|----------------------------------------------------------|---------|--------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|--------------------------------------|
|                                                          | Analyte | Recvd Wt.                            | Au                                             | Ag                                   | Al                                   | As                                | Ba                                  | Be                                   | Bi                                   | Ca                                   | Cd                                           | Ce                                   | Co                                  | Cr                         | Cs                                   | Cu                                   |
|                                                          | Units   | kg                                   | ppm                                            | ppm                                  | %                                    | ppm                               | ppm                                 | ppm                                  | ppm                                  | %                                    | ppm                                          | ppm                                  | ppm                                 | ppm                        | ppm                                  | ppm                                  |
|                                                          | LOR     | 0.02                                 | 0.005                                          | 0.01                                 | 0.01                                 | 0.2                               | 10                                  | 0.05                                 | 0.01                                 | 0.01                                 | 0.02                                         | 0.01                                 | 0.1                                 | 1                          | 0.05                                 | 0.2                                  |
| )53519<br>)53520<br>)53521<br>)53522<br>)53522<br>)53523 |         | 1.58<br>1.47<br>2.02<br>1.51<br>1.99 | <0.005<br><0.005<br><0.005<br><0.005<br><0.005 | 0.08<br>0.12<br>0.10<br>0.18<br>0.21 | 5.69<br>5.56<br>6.55<br>5.80<br>7.00 | 9.4<br>9.6<br>6.7<br>18.7<br>14.3 | 960<br>1090<br>1190<br>1060<br>1290 | 2.04<br>1.88<br>2.70<br>1.78<br>2.35 | 0.18<br>0.18<br>0.23<br>0.18<br>0.24 | 0.96<br>0.99<br>0.80<br>0.89<br>0.91 | 0.22<br>0.32<br>0.32<br>0.32<br>0.32<br>0.52 | 46.4<br>53.4<br>62.6<br>57.2<br>74.1 | 7.6<br>10.0<br>10.2<br>10.1<br>15.4 | 55<br>72<br>77<br>70<br>87 | 4.61<br>5.17<br>6.61<br>6.22<br>8.88 | 19.4<br>25.2<br>25.1<br>26.1<br>39.1 |
| 253524                                                   |         | 1.82                                 | <0.005                                         | 0.24                                 | 9.10                                 | 20.0                              | 1760                                | 3.46                                 | 0.36                                 | 0.62                                 | 0.67                                         | 98.6                                 | 19.0                                | 110                        | 13.10                                | 48.3                                 |
| 253525                                                   |         | 1.36                                 | <0.005                                         | 0.15                                 | 4.76                                 | 16.8                              | 810                                 | 1.35                                 | 0.15                                 | 1.08                                 | 0.22                                         | 41.2                                 | 8.4                                 | 49                         | 4.20                                 | 20.8                                 |
| 253526                                                   |         | 1.28                                 | <0.005                                         | 0.16                                 | 3.83                                 | 13.1                              | 630                                 | 1.05                                 | 0.18                                 | 1.42                                 | 0.20                                         | 30.9                                 | 6.2                                 | 45                         | 3.50                                 | 17.9                                 |
| 253527                                                   |         | 0.87                                 | <0.005                                         | 0.15                                 | 5.31                                 | 16.2                              | 930                                 | 1.57                                 | 0.18                                 | 0.84                                 | 0.29                                         | 42.5                                 | 8.3                                 | 62                         | 6.52                                 | 22.5                                 |
| 053528                                                   |         | 1.95                                 | <0.005                                         | 0.22                                 | 8.52                                 | 14.2                              | 1780                                | 2.68                                 | 0.28                                 | 0.94                                 | 0.54                                         | 84.3                                 | 18.8                                | 108                        | 8.90                                 | 39.4                                 |
| 053529                                                   |         | 1.67                                 | <0.005                                         | 0.27                                 | 9.19                                 | 16.5                              | 1890                                | 2.92                                 | 0.30                                 | 0.64                                 | 0.53                                         | 93.4                                 | 21.9                                | 119                        | 8.90                                 | 42.2                                 |
| 053530                                                   |         | 1.99                                 | <0.005                                         | 0.09                                 | 7.31                                 | 10.1                              | 1340                                | 2.42                                 | 0.19                                 | 0.73                                 | 0.20                                         | 52.0                                 | 12.9                                | 49                         | 4.86                                 | 17.6                                 |
| 053531                                                   |         | 0.60                                 | <0.005                                         | 0.16                                 | 8.93                                 | 9.0                               | 1480                                | 2.69                                 | 0.29                                 | 0.80                                 | 0.47                                         | 78.6                                 | 14.4                                | 97                         | 9.27                                 | 37.3                                 |
| 053532                                                   |         | 0.64                                 | <0.005                                         | 0.10                                 | 4.87                                 | 13.9                              | 880                                 | 1.25                                 | 0.10                                 | 1.29                                 | 0.15                                         | 38.7                                 | 7.1                                 | 45                         | 3.08                                 | 12.1                                 |
| 053533                                                   |         | 0.91                                 | <0.005                                         | 0.23                                 | 8.33                                 | 13.6                              | 1520                                | 2.91                                 | 0.27                                 | 0.69                                 | 0.43                                         | 76.8                                 | 14.5                                | 85                         | 9.61                                 | 32.8                                 |
| 053534                                                   |         | 1.54                                 | <0.005                                         | 0.17                                 | 5.29                                 | 14.2                              | 890                                 | 1.72                                 | 0.14                                 | 1.20                                 | 0.26                                         | 48.7                                 | 8.7                                 | 62                         | 4.86                                 | 20.7                                 |
| 053535                                                   |         | 1.29                                 | 0.005                                          | 0.25                                 | 7.49                                 | 18.5                              | 1270                                | 2.43                                 | 0.23                                 | 0.80                                 | 0.47                                         | 69.8                                 | 15.7                                | 80                         | 8.78                                 | 33.5                                 |
| 053536                                                   |         | 1.29                                 | <0.005                                         | 0.22                                 | 6.88                                 | 18.0                              | 1140                                | 2.50                                 | 0.21                                 | 0.63                                 | 0.43                                         | 65.3                                 | 15.1                                | 73                         | 9.15                                 | 31.8                                 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description                                       | Method  | ME-MS61                              | ME-MS61                                   | ME-MS61                              | ME-MS61                         | Hg-CV41                              | ME-MS61                                   | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                         | ME-MS61                              | ME-MS61                              | ME-MS61                              | ME-MS61                              |
|----------------------------------------------------------|---------|--------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                                          | Analyte | Fe                                   | Ga                                        | Ge                                   | Hf                              | Hg                                   | In                                        | K                                    | La                                   | Li                                   | Mg                                   | Mn                              | Mo                                   | Na                                   | Nb                                   | Ni                                   |
|                                                          | Units   | %                                    | ppm                                       | ppm                                  | ppm                             | ppm                                  | ppm                                       | %                                    | ppm                                  | ppm                                  | %                                    | ppm                             | ppm                                  | %                                    | ppm                                  | ppm                                  |
|                                                          | LOR     | 0.01                                 | 0.05                                      | 0.05                                 | 0.1                             | 0.01                                 | 0.005                                     | 0.01                                 | 0.5                                  | 0.2                                  | 0.01                                 | 5                               | 0.05                                 | 0.01                                 | 0.1                                  | 0.2                                  |
| 053519<br>053520<br>053521<br>053522<br>053522<br>053523 |         | 2.26<br>3.25<br>3.15<br>3.20<br>4.29 | 14.30<br>14.60<br>17.70<br>15.05<br>19.00 | 0.16<br>0.20<br>0.23<br>0.21<br>0.25 | 2.0<br>2.1<br>3.0<br>2.0<br>2.3 | 0.02<br>0.01<br>0.01<br>0.01<br>0.02 | 0.056<br>0.059<br>0.078<br>0.057<br>0.070 | 1.63<br>1.61<br>1.95<br>1.64<br>1.94 | 23.4<br>26.2<br>30.5<br>28.0<br>36.9 | 18.6<br>23.7<br>25.2<br>27.8<br>34.5 | 0.69<br>0.85<br>0.87<br>0.77<br>1.07 | 455<br>704<br>663<br>598<br>789 | 1.16<br>1.74<br>1.51<br>2.03<br>2.56 | 0.98<br>0.92<br>1.00<br>0.74<br>0.82 | 12.0<br>12.3<br>18.6<br>11.3<br>13.8 | 28.7<br>42.8<br>41.1<br>37.5<br>55.0 |
| 053524                                                   |         | 4.73                                 | 26.6                                      | 0.30                                 | 3.8                             | 0.02                                 | 0.115                                     | 2.66                                 | 49.2                                 | 39.6                                 | 1.18                                 | 764                             | 3.56                                 | 0.80                                 | 21.6                                 | 71.4                                 |
| 053525                                                   |         | 2.46                                 | 12.00                                     | 0.13                                 | 1.4                             | 0.01                                 | 0.038                                     | 1.13                                 | 20.3                                 | 46.1                                 | 0.62                                 | 463                             | 1.48                                 | 0.52                                 | 7.8                                  | 26.5                                 |
| 053526                                                   |         | 2.00                                 | 8.95                                      | 0.14                                 | 1.1                             | <0.01                                | 0.027                                     | 0.88                                 | 14.9                                 | 41.2                                 | 0.54                                 | 459                             | 0.97                                 | 0.43                                 | 5.9                                  | 23.7                                 |
| 053527                                                   |         | 2.52                                 | 12.75                                     | 0.15                                 | 1.5                             | <0.01                                | 0.041                                     | 1.28                                 | 20.2                                 | 43.8                                 | 0.68                                 | 408                             | 1.50                                 | 0.54                                 | 8.3                                  | 31.6                                 |
| 053528                                                   |         | 4.54                                 | 22.3                                      | 0.26                                 | 2.6                             | 0.01                                 | 0.084                                     | 2.26                                 | 43.7                                 | 45.6                                 | 1.12                                 | 1090                            | 2.27                                 | 0.76                                 | 14.8                                 | 68.3                                 |
| 053529                                                   |         | 5.32                                 | 24.5                                      | 0.26                                 | 3.0                             | 0.02                                 | 0.084                                     | 2.34                                 | 46.0                                 | 63.0                                 | 1.22                                 | 1120                            | 2.30                                 | 0.83                                 | 17.9                                 | 76.5                                 |
| 053530                                                   |         | 3.05                                 | 18.35                                     | 0.21                                 | 2.4                             | 0.04                                 | 0.061                                     | 1.74                                 | 29.4                                 | 53.5                                 | 0.67                                 | 598                             | 1.08                                 | 0.94                                 | 18.1                                 | 25.9                                 |
| 053531                                                   |         | 5.71                                 | 24.3                                      | 0.27                                 | 3.3                             | 0.02                                 | 0.086                                     | 2.21                                 | 37.2                                 | 109.0                                | 1.13                                 | 1220                            | 3.12                                 | 0.63                                 | 21.6                                 | 55.4                                 |
| 053532                                                   |         | 2.61.                                | 11.45                                     | 0.16                                 | 1.5                             | 0.01                                 | 0.033                                     | 1.09                                 | 19.4                                 | 34.2                                 | 0.62                                 | 514                             | 0.99                                 | 0.74                                 | 8.0                                  | 21.9                                 |
| 053533                                                   |         | 3.85                                 | 23.3                                      | 0.25                                 | 3.1                             | 0.02                                 | 0.085                                     | 2.18                                 | 37.6                                 | 52.7                                 | 0.88                                 | 598                             | 3.16                                 | 0.70                                 | 20.1                                 | 50.6                                 |
| 053534                                                   |         | 2.99                                 | 13.35                                     | 0.16                                 | 1.9                             | 0.02                                 | 0.045                                     | 1.32                                 | 26.8                                 | 37.7                                 | 0.74                                 | 643                             | 1.74                                 | 0.68                                 | 8.9                                  | 37.8                                 |
| 053535                                                   |         | 3.78                                 | 18.90                                     | 0.25                                 | 2.2                             | 0.03                                 | 0.065                                     | 2.11                                 | 36.2                                 | 71.7                                 | 0.93                                 | 727                             | 2.15                                 | 0.70                                 | 14.6                                 | 49.0                                 |
| 053536                                                   |         | 3.48                                 | 16.75                                     | 0.20                                 | 2.2                             | 0.03                                 | 0.058                                     | 1.76                                 | 34.5                                 | 79.3                                 | 0.80                                 | 626                             | 2.71                                 | 0.72                                 | 13.4                                 | 46.5                                 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### o: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description | Method  | ME-MS61 |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                    | Analyte | P       | Pb      | Rb      | Re      | S       | Sb      | Sc      | Se      | Sn      | Sr      | Ta      | Te      | Th      | Ti      | Tl      |
|                    | Units   | ppm     | ppm     | ppm     | ppm     | %       | ppm     | %       | ppm     |
|                    | LOR     | 10      | 0.5     | 0.1     | 0.002   | 0.01    | 0.05    | 0.1     | 1       | 0.2     | 0.2     | 0.05    | 0.05    | 0.2     | 0.005   | 0.02    |
| 053519             |         | 470     | 14.0    | 95.7    | <0.002  | 0.05    | 0.80    | 8.1     | 1       | 2.9     | 164.0   | 0.84    | 0.05    | 8.2     | 0.228   | 0.56    |
| 053520             |         | 680     | 17.6    | 98.2    | <0.002  | 0.06    | 0.95    | 9.2     | 2       | 2.8     | 164.0   | 0.86    | <0.05   | 8.7     | 0.226   | 0.55    |
| 053521             |         | 720     | 22.3    | 108.5   | <0.002  | 0.05    | 0.93    | 10.0    | 2       | 4.7     | 154.5   | 1.35    | <0.05   | 13.6    | 0.272   | 0.66    |
| 053522             |         | 670     | 17.6    | 97.6    | 0.002   | 0.12    | 1.24    | 9.9     | 2       | 2.3     | 146.5   | 0.75    | <0.05   | 8.9     | 0.257   | 0.62    |
| 053523             |         | 820     | 22.8    | 112.0   | <0.002  | 0.14    | 1.54    | 13.9    | 3       | 2.6     | 155.5   | 0.87    | 0.05    | 10.7    | 0.326   | 0.82    |
| 053524             |         | 1570    | 31.3    | 141.0   | 0.002   | 0.22    | 2.37    | 18.8    | 4       | 4.6     | 146.5   | 1.48    | 0.10    | 16.6    | 0.405   | 1.17    |
| 053525             |         | 630     | 16.7    | 60.6    | 0.002   | 0.18    | 1.07    | 9.1     | 2       | 1.4     | 129.0   | 0.49    | 0.05    | 7.0     | 0.194   | 0.40    |
| 053526             |         | 580     | 19.4    | 50.1    | <0.002  | 0.08    | 1.05    | 7.3     | 2       | 1.1     | 145.0   | 0.38    | <0.05   | 5.6     | 0.148   | 0.35    |
| 053527             |         | 580     | 17.1    | 71.6    | <0.002  | 0.06    | 1.18    | 10.0    | 2       | 1.7     | 108.5   | 0.55    | <0.05   | 8.2     | 0.215   | 0.54    |
| 053528             |         | 2090    | 23.4    | 127.0   | 0.002   | 0.07    | 1.22    | 18.8    | 3       | 3.0     | 163.5   | 0.99    | 0.07    | 14.0    | 0.356   | 0.94    |
| 053529             |         | 1460    | 28.3    | 134.0   | 0.002   | 0.14    | 1.59    | 19.0    | 3       | 3.2     | 143.0   | 1.17    | 0.06    | 14.9    | 0.416   | 0.97    |
| 053530             |         | 590     | 27.0    | 94.4    | <0.002  | 0.04    | 0.78    | 10.2    | 2       | 4.0     | 163.0   | 1.20    | <0.05   | 11.4    | 0.316   | 0.65    |
| 053531             |         | 1360    | 34.6    | 131.0   | 0.002   | 0.12    | 1.50    | 18.0    | 3       | 4.2     | 148.0   | 1.62    | <0.05   | 18.5    | 0.340   | 0.91    |
| 053532             |         | 780     | 12.6    | 59.2    | <0.002  | 0.05    | 1.14    | 8.4     | 2       | 1.3     | 169.5   | 0.48    | <0.05   | 6.9     | 0.213   | 0.44    |
| 053533             |         | 820     | 30.2    | 130.0   | 0.002   | 0.18    | 1.74    | 15.2    | 3       | 3.8     | 142.0   | 1.50    | 0.05    | 17.0    | 0.328   | 0.95    |
| 053534             |         | 810     | 13.4    | 74.0    | <0.002  | 0.06    | 1.12    | 9.8     | 2       | 1.7     | 156.5   | 0.60    | <0.05   | 7.3     | 0.225   | 0.47    |
| 053535             |         | 750     | 27.2    | 114.5   | 0.002   | 0.21    | 1.74    | 14.1    | 3       | 2.7     | 148.5   | 0.97    | 0.05    | 12.8    | 0.336   | 0.78    |
| 053536             |         | 770     | 23.9    | 101.0   | <0.002  | 0.20    | 1.76    | 13.0    | 3       | 2.4     | 134.0   | 0.91    | <0.05   | 11.3    | 0.309   | 0.67    |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### Co: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Gold

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>U<br>ppm<br>0.1 | ME-MS61<br>V<br>ppm<br>1 | ME-MS61<br>W<br>ppm<br>0.1 | ME-MS61<br>Y<br>ppm<br>0.1 | ME-MS61<br>Zn<br>ppm<br>2 | ME-MS61<br>Zr<br>ppm<br>0.5 |  |
|--------------------|-----------------------------------|----------------------------|--------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|--|
| 053519             |                                   | 2.6                        | 70                       | 1.7                        | 14.0                       | 64                        | 57.7                        |  |
| 053520             |                                   | 2.9                        | 74                       | 3.6                        | 19.1                       | 78                        | 61.1                        |  |
| 053521             |                                   | 4.6                        | 85                       | 3.0                        | 22.1                       | 93                        | 82.6                        |  |
| 053522             |                                   | 2.8                        | 86                       | 3.0                        | 15.8                       | 78                        | 61.5                        |  |
| 053523             |                                   | 3.4                        | 117                      | 3.4                        | 19.7                       | 110                       | 76.6                        |  |
| 053524             |                                   | 5.4                        | 151                      | 5.5                        | 32.7                       | 148                       | 115.5                       |  |
| 053525             |                                   | 1.9                        | 69                       | 2.4                        | 11.8                       | 66                        | 47.1                        |  |
| 053526             |                                   | 1.5                        | 56                       | 9.1                        | 9.5                        | 48                        | 36.7                        |  |
| 053527             |                                   | 2.3                        | 81                       | 3.8                        | 10.8                       | 69                        | 51.1                        |  |
| 053528             |                                   | 4.1                        | 130                      | 3.8                        | 21.7                       | 130                       | 89.8                        |  |
| 053529             |                                   | 4.6                        | 143                      | 5.0                        | 24.7                       | 139                       | 104.0                       |  |
| 053530             |                                   | 3.6                        | 92                       | 2.6                        | 17.5                       | 90                        | 77.1                        |  |
| 053531             |                                   | 5.3                        | 128                      | 5.7                        | 24.3                       | 140                       | 98.9                        |  |
| 053532             |                                   | 1.9                        | 76                       | 2.0                        | 12.8                       | 57                        | 54.9                        |  |
| 053533             |                                   | 4.8                        | 123                      | 4.9                        | 22.2                       | 125                       | 94.5                        |  |
| 053534             |                                   | 2.4                        | 73                       | 2.3                        | 18.2                       | 70                        | 58.7                        |  |
| 053535             |                                   | 3.6                        | 109                      | 10.2                       | 17.1                       | 117                       | 74.7                        |  |
| 053536             |                                   | 3.3                        | 99                       | 8.8                        | 16.4                       | 106                       | 72.7                        |  |
|                    |                                   |                            |                          |                            |                            |                           |                             |  |

## **APPENDIX 4**

# LIST OF CLAIMS


**Claim Status Report** 

21 October 2009

|   | Claim Name and Nbr. | Grant No.         | Expiry Date Registered Owner | % Owned | NTS #'s |
|---|---------------------|-------------------|------------------------------|---------|---------|
| R | CANON 1 - 4         | YC08793 - YC08796 | 2024/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANON 5 - 6         | YC08797 - YC08798 | 2028/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANON 7 - 14        | YC08939 - YC08946 | 2024/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANON 15 - 24       | YC30113 - YC30122 | 2017/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 1 - 16       | YA75717 - YA75732 | 2035/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 17 - 26      | YA75733 - YA75742 | 2033/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 27 - 32      | YA75743 - YA75748 | 2035/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 33 - 40      | YA75753 - YA75760 | 2035/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 41 - 50      | YA81160 - YA81169 | 2035/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 51 - 56      | YA81170 - YA81175 | 2036/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 57 - 60      | YA81176 - YA81179 | 2032/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 61 - 62      | YA81180 - YA81181 | 2031/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 63 - 66      | YA81182 - YA81185 | 2027/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 73 - 78      | YA81192 - YA81197 | 2035/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 79 - 84      | YA81198 - YA81203 | 2036/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 85 - 88      | YA81204 - YA81207 | 2032/12/27 A.M. Carlos       | 100.00  | 105K02  |
|   | CANYON 89           | YA81208           | 2027/12/27 A.M. Carlos       | 100.00  | 105K02  |
|   | CANYON 90           | YA81209           | 2031/12/27 A.M. Carlos       | 100.00  | 105K02  |
|   | CANYON 91 - 92      | YA81210 - YA81211 | 2027/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 93 - 94      | YA81212 - YA81213 | 2026/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | CANYON 293 - 300    | YA85398 - YA85405 | 2030/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | DOZER 1 - 14        | YC18135 - YC18148 | 2013/12/27 A.M. Carlos       | 100.00  | 105K03  |
| R | GRAND 91            | YA85326           | 2024/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 92            | YA85327           | 2025/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 93 - 98       | YA85328 - YA85333 | 2028/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 141           | YA85376           | 2025/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 142           | YA85377           | 2024/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 143 - 148     | YA85378 - YA85383 | 2028/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 159           | YA85394           | 2024/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | GRAND 160 - 162     | YA85395 - YA85397 | 2028/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | KAOLIN 1 - 3        | YC18762 - YC18764 | 2017/12/27 A.M. Carlos       | 100.00  | 105K03  |
| R | KAOLIN 4 - 10       | YC19300 - YC19306 | 2016/12/27 A.M. Carlos       | 100.00  | 105K03  |
| R | KAOLIN 11 - 12      | YC19374 - YC19375 | 2016/12/27 A.M. Carlos       | 100.00  | 105K03  |
| R | MAVERICK 1 - 12     | YC19362 - YC19373 | 2022/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | MAVERICK 13 - 16    | YC26055 - YC26058 | 2018/12/27 A.M. Carlos       | 100.00  | 105K02  |
| R | MAVERICK 17 - 23    | YC26059 - YC26065 | 2019/12/27 A.M. Carlos       | 100.00  | 105K02  |
| σ | MAVERICK 24         | YC26066           | 2018/12/27 A.M. Carlos       | 100.00  | 105K02  |

Lett column indicator legend:

R - Indicates the claim is on one or more pending renewal(s).

P - Indicates the claim is pending.

Right column indicator legend:

L - Indicates the Quartz Lease.

F - Indicates Full Quartz fraction (25+ acres)

P - Indicates Partial Quartz fraction (<25 acres)

Total claims selected : 351

D - Indicates Placer Discovery

C - Indicates Placer Codiscovery

B - Indicates Placer Fraction



**Claim Status Report** 

21 October 2009

|   | Claim Name and Nbr. | Grant No.         | Expiry Date Registered Owner | % Owned | NTS #'s           |
|---|---------------------|-------------------|------------------------------|---------|-------------------|
| R | MAVERICK 25 - 28    | YC26067 - YC26070 | 2019/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | MAVERICK 29         | YC26071           | 2018/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | MAVERICK 30 - 36    | YC26072 - YC26078 | 2019/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | MAVERICK 37 - 42    | YC30101 - YC30106 | 2017/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | MAVERICK 43 - 48    | YC30107 - YC30112 | 2016/12/27 A.M. Carlos       | 100.00  | 105K02,<br>105K03 |
| R | RAIL 51 - 54        | YC37856 - YC37859 | 2018/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | RAIL 56             | YC37861           | 2018/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | RAIL 58             | YC37863           | 2018/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | RAIL 61 - 70        | YC37866 - YC37875 | 2018/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | RAIL 73 - 74        | YC37878 - YC37879 | 2018/12/27 A.M. Carlos       | 100.00  | 105K02            |
| R | RAIL 75 - 115       | YC37880 - YC37920 | 2014/12/27 A.M. Carlos       | 100.00  | 105K03            |
| R | SLEEPER 1 - 10      | YC29987 - YC29996 | 2019/12/27 A.M. Carlos       | 100.00  | 105F15            |
| R | SLEEPER 11 - 24     | YC53920 - YC53933 | 2015/12/27 A.M. Carlos       | 100.00  | 105F15            |
| R | TINTINA 1 - 54      | YC94562 - YC94615 | 2013/12/27 A.M. Carlos       | 100.00  | 105K03            |

### **Criteria**(s) used for search:

'IM STATUS: ACTIVE & PENDING OWNER(S): CARLOS A.M. REGULATION TYPE: QUARTZ

Loculumn indicator legend:

- R Indicates the claim is on one or more pending renewal(s).
- P Indicates the claim is pending.

Right column indicator legend:

- L Indicates the Quartz Lease.
- F Indicates Full Quartz fraction (25+ acres)
- P Indicates Partial Quartz fraction (<25 acres)

Total claims selected : 351

- D Indicates Placer Discovery
- C Indicates Placer Codiscovery
- B Indicates Placer Fraction



### **APPENDIX 5**

STATEMENT OF QUALIFICATIONS

### STATEMENT OF QUALIFICATIONS

### **ALLEN M. CARLOS, PROSPECTOR**

I, Allen M. Carlos of Whitehorse, Yukon Territory, hereby certify that:

- 1. I have been actively engaged as a mineral prospector in Western Canada for 35 years, initially for a major company, then as an independent.
- 2. I studied 3 years at the University of Saskatchewan: One year of Engineering followed by 2 years Arts and Science (Geology).
- 3. I worked one year in northern Saskatchewan as a student assistant for the Department of Mineral Resources.
- 4. I have for the last 18 years spent much time researching papers regarding Volcanic Hosted Epithermal type deposits.
- 5. In 1983 I was responsible for discovering the Grew Creek precious metal deposit, the first epithermal deposit of this type along the Tintina Trench in Yukon.
- 6. I planned and with the aid of my sons, carried out the current program.

Signed,

Allen M. Carlos, PROSPECTOR



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

| BILLING INFORMATION                                                                                                                                 | QUANTITY                                     | ANALY<br>CODE -                                                                 | YSED FOR<br>DESCRIPTION                                                                                                                                                                                                                                                                  | UNIT<br>PRICE                                                  | TOTAL                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| Certificate:WH10121226Sample Type:Drill CoreAccount:TFIDate:19-SEP-2010Proiect:Canvon GoldP.O. No.:Baq #1Ouote:Terms:Terms:Net 30 DaysC3Comments:C3 | 18<br>18<br>18<br>26.82<br>18<br>26.82<br>18 | ME-MS61m<br>Au-AA24<br>LOG-22<br>PUL-31<br>CRU-31<br>CRU-31<br>SPL-21<br>SPL-21 | ME-MS61 plus Hg by CV-AA<br>Au S0g FA AA finish<br>Sample login - Rcd w/o BarCode<br>Pulverize split to 85% <75 um<br>Weight Charge (kg) - Fine crushing - 70% <2mm<br>Fine crushing - 70% <2mm<br>Weight Charge (kg) - Split sample - riffle splitter<br>Split sample - riffle splitter | 34.25<br>17.35<br>0.87<br>2.84<br>0.36<br>1.82<br>0.29<br>1.22 | 616.50<br>312.30<br>15.66<br>51.12<br>9.66<br>32.76<br>7.78<br>21.96 |
|                                                                                                                                                     | L                                            |                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                |                                                                      |

To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

- SUBTOTAL (CAD) \$ 1,067.74
- R100938885 GST \$ 53.39
- TOTAL PAYABLE (CAD) \$ 1,121.13

### Payment may be made by: Cheque or Bank Transfer

| Beneficiary Name: | ALS Canada Ltd.      |
|-------------------|----------------------|
| Bank:             | Royal Bank of Canada |
| SWIFT:            | ROYCCAT2             |
| Address:          | Vancouver, BC, CAN   |
| Account:          | 003-00010-1001098    |

Please Remit Payments To : ALS Canada Ltd.



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

| В                                                                                    | ILLING INFORMATION                                                     |    | QUANTIT                      | ANALY<br>Y CODE –                                   | SED FOR<br>DESCRIPTION                                                                                                                           | UNIT<br>PRICE                           | TOTAL                                        |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|----|------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|
| Certificate:<br>Sample Type:<br>Account:<br>Date:<br>Proiect:<br>P.O. No.:<br>Ouote: | WH10112966<br>Drill Core<br>TFI<br>9-SEP-2010<br>Canvon Gold<br>Bag #1 |    | 1<br>25<br>25<br>33.41<br>25 | BAT-01<br>PREP-31<br>ME-MS61m<br>PREP-31<br>Au-AA24 | Administration Fee<br>Crush, Split, Pulverize<br>ME-MS61 plus Hg by CV-AA<br>Weight Charge (kg) – Crush, Split, Pulverize<br>Au 50g FA AA finish | 30.00<br>6.75<br>34.25<br>0.65<br>17.35 | 30.00<br>168.75<br>856.25<br>21.72<br>433.75 |
| Terms:<br>Comments:                                                                  | Net 30 Days                                                            | C3 |                              |                                                     |                                                                                                                                                  |                                         |                                              |

- SUBTOTAL (CAD) \$ 1,510.47
- R100938885 GST \$ 75.52

TOTAL PAYABLE (CAD) \$ 1,585.99

To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Payment may be made by: Cheque or Bank Transfer

| Beneficiary Name: | ALS Canada Ltd.      |
|-------------------|----------------------|
| Bank:             | Royal Bank of Canada |
| SWIFT:            | ROYCCAT2             |
| Address:          | Vancouver, BC, CAN   |
| Account:          | 003-00010-1001098    |
|                   |                      |

Please Remit Payments To : ALS Canada Ltd.



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

### INVOICE NUMBER 2126557

. >

2

| BILLING INFORMATION |                       |    | ANALYSED FOR                |          |                                            |                                                                                                                | UNIT  |          |
|---------------------|-----------------------|----|-----------------------------|----------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|----------|
|                     |                       |    | QUANTITY CODE - DESCRIPTION |          |                                            | PRICE                                                                                                          |       | TOTAL    |
| Cortificato         | WU101120C0            |    | 21                          | PREP-31  | Crush, Split, Pulverize                    |                                                                                                                | 6.75  | 141.75   |
| Certificate.        | WH10112969            |    | 21                          | ME-MS61m | ME-MS61 plus Hg by CV-AA                   |                                                                                                                | 34.25 | 719.25   |
| Sample Type:        | Drill Core            |    | 28.77                       | PREP-31  | Weight Charge (kg) – Crush, Split, Pulveri | ze                                                                                                             | 0.65  | 18.70    |
| Account:            | TFI                   |    | 21                          | Au-AA24  | Au 50g FA AA finish                        |                                                                                                                | 17.35 | 364.35   |
| Date:               | 6-SEP-2010            |    |                             |          |                                            |                                                                                                                |       |          |
| Proiect:            | Canvon Gold           |    |                             |          |                                            |                                                                                                                |       |          |
| P.O. No.:           | Baq #3                |    |                             |          |                                            |                                                                                                                |       |          |
| Quote:              |                       |    |                             |          |                                            |                                                                                                                |       |          |
| Terms:              | Net 30 Davs           | C3 |                             |          |                                            |                                                                                                                |       |          |
| Comments:           |                       | 25 |                             |          |                                            |                                                                                                                |       |          |
| connentor           |                       |    |                             |          |                                            |                                                                                                                |       |          |
|                     |                       |    |                             |          |                                            |                                                                                                                |       |          |
|                     |                       |    |                             |          |                                            |                                                                                                                |       |          |
|                     |                       |    |                             |          |                                            |                                                                                                                |       |          |
|                     |                       |    |                             |          |                                            |                                                                                                                |       |          |
|                     |                       |    |                             |          |                                            | SUBTOTAL (CAD)                                                                                                 | \$    | 1,244.05 |
| To:                 | CARLOS, ALLEN         |    |                             |          | F                                          | 100938885 GST                                                                                                  | \$    | 62.20    |
|                     | 275 ALSEK RD          |    |                             |          | ΤΟΤΑΙ                                      | PAYABLE (CAD)                                                                                                  | \$    | 1,306.25 |
|                     | WHITEHORSE YT Y1A 4T1 |    |                             |          |                                            | and a second | -     |          |
|                     |                       |    |                             |          |                                            |                                                                                                                |       |          |

### Payment may be made by: Cheque or Bank Transfer

| Beneficiary Name: | ALS Canada Ltd.      |
|-------------------|----------------------|
| Bank:             | Royal Bank of Canada |
| SWIFT:            | ROYCCAT2             |
| Address:          | Vancouver, BC, CAN   |
| Account:          | 003-00010-1001098    |
|                   |                      |

Please Remit Payments To : **ALS Canada Ltd.** 

2103 Dollarton Hwy North Vancouver BC V7H 0A7 ,



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

| В                                                                                    | ILLING INFORMATION                                                     |    | QUANTITY                | ANALY<br>CODE –                           | SED FOR<br>DESCRIPTION                                                                                                     | UNIT<br>PRICE                  | TOTAL                               |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|----|-------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Certificate:<br>Sample Type:<br>Account:<br>Date:<br>Proiect:<br>P.O. No.:<br>Ouote: | WH10112967<br>Drill Core<br>TFI<br>6-SEP-2010<br>Canvon Gold<br>Baq #2 |    | 21<br>21<br>26.00<br>21 | PREP-31<br>ME-MS61m<br>PREP-31<br>Au-AA24 | Crush, Split, Pulverize<br>ME-MS61 plus Hg by CV-AA<br>Weight Charge (kg) – Crush, Split, Pulverize<br>Au 50g FA AA finish | 6.75<br>34.25<br>0.65<br>17.35 | 141.75<br>719.25<br>16.90<br>364.35 |
| Terms:<br>Comments:                                                                  | Net 30 Days                                                            | C3 | 7                       |                                           |                                                                                                                            |                                |                                     |

- SUBTOTAL (CAD) \$ 1,242.25
- R100938885 GST \$ 62.11
- TOTAL PAYABLE (CAD) \$ 1,304.36

To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Payment may be made by: Cheque or Bank Transfer

| Beneficiary Name: | ALS Canada Ltd.      |
|-------------------|----------------------|
| Bank:             | Royal Bank of Canada |
| SWIFT:            | ROYCCAT2             |
| Address:          | Vancouver, BC, CAN   |
| Account:          | 003-00010-1001098    |
|                   |                      |

Please Remit Payments To : ALS Canada Ltd.



+

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

### **INVOICE NUMBER 2137088**

| BILLING INFORMATION                                                                                                                                                                                | QUANTITY                                                                | ANALY<br>CODE -                                                                                    | SED FOR<br>DESCRIPTION                                                                                                                                                                                                                                                                   | UNIT<br>PRICE                                                                   | TOTAL                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| BILLING INFORMATION   Certificate: WH10121227   Sample Type: Drill Core   Account: TFI   Date: 19–SEP–2010   Proiect: Canvon Gold   P.O. No.: Baq #2   Ouote: Terms: Net 30 Days C3   Comments: C3 | QUANTITY<br>18<br>18<br>18<br>25.78<br>18<br>25.78<br>18<br>25.78<br>18 | ANALY<br>CODE –<br>ME-MS61m<br>Au-AA24<br>LOG-22<br>PUL-31<br>CRU-31<br>CRU-31<br>SPL-21<br>SPL-21 | ME-MS61 plus Hg by CV-AA<br>Au 50g FA AA finish<br>Sample login - Rcd w/o BarCode<br>Pulverize split to 85% <75 um<br>Weight Charge (kg) - Fine crushing - 70% <2mm<br>Fine crushing - 70% <2mm<br>Weight Charge (kg) - Split sample - riffle splitter<br>Split sample - riffle splitter | ONIT<br>PRICE<br>34.25<br>17.35<br>0.87<br>2.84<br>0.36<br>1.82<br>0.29<br>1.22 | TOTAL<br>616.50<br>312.30<br>15.66<br>51.12<br>9.28<br>32.76<br>7.48<br>21.96 |
|                                                                                                                                                                                                    |                                                                         |                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                               |

- SUBTOTAL (CAD) \$ 1,067.06
- R100938885 GST \$ 53.35
- TOTAL PAYABLE (CAD) \$ 1,120.41

To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

Payment may be made by: Cheque or Bank Transfer

| Beneficiary Name: | ALS Canada Ltd.      |
|-------------------|----------------------|
| Bank:             | Royal Bank of Canada |
| SWIFT:            | ROYCCAT2             |
| Address:          | Vancouver, BC, CAN   |
| Account:          | 003-00010-1001098    |
|                   |                      |

Please Remit Payments To : ALS Canada Ltd.



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

### To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

### INVOICE NUMBER 2126563

| BILLING INFORMATION |             |          | ANALYSED FOR |             |                                          |                | UNIT  |          |
|---------------------|-------------|----------|--------------|-------------|------------------------------------------|----------------|-------|----------|
|                     |             | QUANTITY | CODE –       | DESCRIPTION | 1                                        | PRICE          | TOTAL |          |
| Cortificato         | WU101120C9  |          | 28           | PREP-31     | Crush, Split, Pulverize                  |                | 6.75  | 189.00   |
| Certificate.        | WH10112968  |          | 28           | ME-MS61m    | ME-MS61 plus Hg by CV-AA                 |                | 34.25 | 959.00   |
| Sample Type:        | Drill Core  |          | 37.93        | PREP-31     | Weight Charge (kg) – Crush, Split, Pulve | rize           | 0.65  | 24.65    |
| Account:            | TFI         |          | 28           | Au-AA24     | Au 50g FA AA finish                      |                | 17.35 | 485.80   |
| Date:               | 10-SEP-2010 |          |              |             |                                          |                |       |          |
| Proiect:            | Canvon Gold |          |              |             |                                          |                |       |          |
| P.O. No.:           | Baq #4      |          |              |             |                                          |                |       |          |
| Quote:              |             |          |              |             |                                          |                |       |          |
| Terms:              | Net 30 Days | C3       |              |             |                                          |                |       |          |
| Comments:           |             |          |              |             |                                          |                |       |          |
|                     |             |          |              |             |                                          |                |       |          |
|                     |             |          |              |             |                                          |                |       |          |
|                     |             |          |              |             |                                          |                |       |          |
|                     |             |          |              |             |                                          |                |       |          |
|                     |             |          | L            |             |                                          |                |       |          |
|                     |             |          |              |             |                                          | SUBTOTAL (CAD) | \$    | 1,658.45 |

To: CARLOS, ALLEN 275 ALSEK RD WHITEHORSE YT Y1A 4T1

- R100938885 GST \$ 82.92
- TOTAL PAYABLE (CAD) \$ 1,741.37

Payment may be made by: Cheque or Bank Transfer

| Beneficiary Name:<br>Bank:<br>SWIET: | ALS Canada Ltd.<br>Royal Bank of Canada |
|--------------------------------------|-----------------------------------------|
| Address:                             | Vancouver, BC, CAN                      |
| Account:                             | 003-00010-1001098                       |

Please Remit Payments To :

ALS Canada Ltd.











Date: March 19, 2001

Eu Mn, Co Cs, Rb

data from 20875rpt



## 10300N

### 10200N

## 10100N

## 10000N

٠



# Km. 410 Prospect - Canyon Gold Property

# Enzyme Leach<sup>s</sup>data

## Element: Gold

Date: January 15, 2001

- 0.5 - 0.48 - 0.46 - 0.44 - 0.42 - 0.4 - 0.38 - 0.36 - 0.34 -0.32-0.3 -0.28-0.26- 0.24 -0.22 - 0.2 - 0.18 - 0.16 -0.14 -0.1 - 0.08 - 0.06 - 0.04 -0.02

Stear Difference of the second

10.0

ppb