2010 DIAMOND DRILLING REPORT

on the

CANYON GOLD KM. 410 ANOMALY

Whitehorse Mining District
N.T.S. $105 \mathrm{~K} / 03$
Latitude $\mathbf{6 2}^{\boldsymbol{\circ}} \mathbf{0 9}$, Longitude $\mathbf{1 3 3}^{\boldsymbol{\circ}} \mathbf{0 9}{ }^{\mathbf{\prime}}$

KAOLIN CLAIMS

(June 02 to August 27, 2010)
PAGE
INTRODUCTION 1
PROGRAM 2010 1
HISTORY 1-10
DISCUSSION OF DRILL HOLE PLACEMENTS (OBSERVATIONS) 11-13
CONCLUSIONS RECOMMENDATIONS 13-14
LIST OF FIGURES

1. LOCATION MAP.
2. ORTHOPHOTO: Grid and drill locations @ 1:10,000.
3. COMPIIATION MAP @ 1:2500 (attached)
APPENDICES
4. DRILL HOLE DESCRIPTIVE LOGS (PHOTOS)
5. DIAMOND DRILL HOLE CROSS SECTIONS
6. ANALYTICAL RESULTS
7. LIST OF CLAIMS
8. STATEMENT OF QUALIFICATIONS

INTRODUCTION

The Canyon Gold Km 410 Anomaly comprises a target within the greater "Grew Creek" exploration area, which currently encompasses 351 quartz claims. Following is a detail of work performed in 2010 with the aid of an incentive program contribution by the territorial government.

PROGRAM

During the summer my sons and I successfully completed 4 diamond drill holes totalling 754.5 ft . in order to test a portion of a 2008 Enzyme Leach geochemical program, under which several anomalous sectors were determined. The geology underlying the above effort is ill-defined, due to recessive weathering and shallow till cover. The drill program therefore had two objectives: to determine geology and secondly hopefully to explain the geochemical zones determined from previous geochem sampling.

HISTORY

For a number of reasons, interest in Km 410 has persisted to the present, consisting generally in a hit-and-run type of approach until the summer of 2008, when we performed a comprehensive grid based geochem program. A ground magnetometer survey was performed the same year, followed by a 4 hole diamond drilling test in 2009. Evidence gleaned from those surveys suggested a progression to a new model type for this particular target. A synthesis of earlier and more recent work is offered in the following references:

1) Exploration proposal for the Km 410 target. Feb. 25, 2008 - A. Carlos.
2) Interpretation of Enzyme Leach data from the Canyon Gold - Km 410 survey. Mar. 10, 2009 - Gregory T. Hill.
3) Exploration proposal for the Km 410 target. Feb. 15, 2010 - A. Carlos.
4) 2009 Diamond Drilling Report on the Canyon Gold Grew Creek project. Mar. 10, 2010 - Shane Carlos.

MINFLEE: 105K 009
PAGE NO: 1 of 7
UPDATED: $10-\mathrm{Nov}-09$

IUKON MINFILE YUKON GEOLOGICAL SURVEY WHITEHORSE

MINFILE \# 105K 009
NAME: GREW CREEK
DEPOSIT TYPE: EPITHERMAL AU-AG: LOW SULPHIDATION STATUS: DEPOSIT

TECTONIC ELEMENT: POST-AMALGAMATION PLUTONIC ROCKS
OTHER NAME(S): MAIN ZONE
MAJOR COMMODITIES: GOLD, SILVER
MINOR COMMODITIES:
TRACE COMMODITEES: ARSENIC, MERCURY

CLAIMS (PREVIOUS \& CURRENT)
CAN, CANYON, CARLIN, ERN, GREW, HELL, RAN, TAR

WORK FISTORY

The original claims were staked as Grew ol 1-48 (94550) between Nov/65 and Feb/66 by.General Enterprises . Ltd and optioned to Gaylord Mines Ltd in 1967, which carried out magnetometer, EM and IP surveying later in the year. Three drill holes reportedly planned in 1968.were apparently never drilled. The nearby Carlin cl 1-32 (Y5762) were staked in May 66 by S. Young. and examined briefly by Scope Mining and Exploration Consultants later that year.
A. Carlos, unaware of any previous staking became interested in the area following reports of Faro residents hand mining and recovering placer gold fiom Grew Creek. Prospecting the area, Carlos noted the presence of Tertiary volcanics and sirong structural features furthering his interest. In May/83 Carlos discovered gold mineralization in outcrop and restaked the occurrence area within Canyon cl 1-40 (YA75717) in Jun/83. Carlos carried out geological mapping and geochemical sampling later in the year. The Canyon group was optioned late in 1983 by Mincan joint venture (Hudson Bay Exploration and Development Company Ltd and Minorco Canada Ltd); which staked more claims and carried out geological mapping, VLF-EM and magnetometer surveying and geochemical sampling in 1984 and 1985; trenching and drilled 13 holes (1732 m) in 1984; drilled 19 percussion holes (1660 m) in 1985; and geochemical sampling, EM and magnetometer surveying in 1986, before dropping the option.

The Ren cl 1-2 (YA75799), Tar cl 1-8 (YA75786), Hell cl 1-8 (YA75778) and Ern cl 1-8 (YA75749) were staked contigiously with the southem comer of the original Canyon claims in Jul/83 by Ezee Golds Ltd, which carried out trenching in 1983, 1984 and 1986. In 1987 Ezee Golds drilled one hole (51.3 m) for assessment on the Em etc claims; carried out trenching, road work and additional drilling in 1989 and 1990; and trenching and road work in 1992. In Oct/93, Ezee Golds performed trenching on the Ern, Hell, Tar, and Ren, claims and on fractional Vac, JSC and TMP claims.

The Canyon claims were roptioned in 1987 by a joint venture between Noranda Exploration Company Ltd, Golden Nevada Resources Inc̣ and Brenda Mines Ltd, which carried out property wide geochemical sampling, ground magnetometer, airborne geophysical surveying and drilled 17 holes (2972 m) 500 m west of Grew Creek on Canyon cl 3 and 4 (Main Zone) in 1987; geophysical surveying, geochemical sampling and drilled 30 core holes (13 156.5 m) in the Main Zone, 10 core holes (3045 m) in the Tam Zone. (east of Grew Creek) and 12 rotary lioles $(1448 \mathrm{~m})$ between the two zones in 1988; and drilled 10 holes (1165 m) in 1989. Golden Nevada Resources Inc changed its name to Goldnev Resources Inc in Jun/89 and excavated 1.8 backhoe trenches and 4 pits in 1991 before
dropping its option later in the year.
Noranda Exploration Company Ltd tied on Can cl 1-168 (YB7880) to the northwest in Sep/87 and optioned them to Mintel International Development Corporation, which carried out geochemical sampling later in the year. Mintel staked the Ran cl 1-1 040 (YB08978) adjacent to and northwest of the Can claims in 1987. Mintel changed its uame to Golden Trump Resources Ltd in Apr/89 and transferred the Ran claims to Prime Equities Inc in Nov/91. The Can claims were ransferred to Prime Equities International Corporation in Dec/91. Both the Can and Ran claim groups were later transferred to A. Carlos in Apr/92.

In 1992, Wheaton River Minerals signed a letter of agreement to acquire the Grew Creek deposit but the terms of the option agreement were not fulfilled and the core claims reverted to Carlos. By the end of 1992, all of the Canyon and Grand claims previously optioned by other companies were also retumed to Carlos.

In Feb/93 YGC Resources Ltd optioned the Grew Creek property (Minfile Occurrences \#105K 008, 093, I13, this occurrence and 105F 047) and later in the year drilled 17 holes (1944 m) on the Canyon claims and carried out trenching on the Ran claims.

In Apr/94 YGC purchased the Ketza River property (Minfle Occurrence \#105F 019) including a 400 metric tonnes per day mill from Wheaton Rivers Minerals Ltd. The sale was paid for with YGC shares and resulted in Wheaton River becoming controlling shareholder in YGC. YGC planned to truck Grew Creek ore to the Ketza River mill for processing, starting in 1995. Projected production was expected to be $30000 \mathrm{oz}(930000 \mathrm{gm})$ Au per year for 3 years, with a 93% recovery. The plan never proceeded.

Diring the 1994 exploration season YGC drilled 14 holes (1307 m) in the Soutth and Main Zones. Nine holes were drilled in the South Zone to identify and sample the mineralization along the zone. The remaining 5 holes were drilled to fill in, test continuity and determine the upper level of bedrock mineralization at the eastern end of the Main Zone. In Oct/94 Carlos transferred the Grand, Ran, Can and Canyon claim groups to YGC.

In 1995 YGC drilled 14 diamond drill holes (1530 m) on the Grew Creek property. Twelve of the holes were drilled to test various targets in and adjoining the Main Zone. One hole was drilled at the Main West Zone located 2 km to the west on Canyon cl 48 (YA81167). The remaining hole was drilled on Canyon cl 221 (YA81340) located approximately 16 km to the west (Minfile.Occurreice \#105K 113).

In the spring of 1996 YGC drilled 17 diamond drill holes (1560.7 m) to systematically drill test the continuity of the Main Zone mineralization on interne the program, the company carried out a compilation study which included surveying the location of all known drill holes and calculating an updated resources estimate for the Main Zone. At the end of 1996 : YGC elected not to complete the final year of the option agreement and returned the various claim groups to Carlos.

Carlos staked Canon cl 1-6 (YC08793) in May/98 and Canon cl $7-14$ (YC08939) in Jul/98, 2.5 km north of this occurrence location and contiguous with the existing Grew Creek claim block. Later that year Carlos carried out VLF-EM and magenetometer surveying, prospecting, soil sampling and trenching on the Canon claims.

In 2000 Carlos carried out an enzyme leach sampling program on a grid located between this occurrence location and the Robert Campbell Highway (located to the nord). In 2001 and 2002 Carlos drilled 4 holes (191.1 m) and 6 holes (416.7 m), respectively, to test one of the anomalies (E) which is located immediately east of the occurrence location. Carlos also collected additional enzyme leach samples to increase his sampling density. In 2003 Carlos collared 3 diamond drill holes (150.9 m) on anomaly E and 4 diamond drill holes on the Maverick prospect's anomaly B (Minfile Occurrence \#105K 093) located approximately 10 km to the northwest. In 2004, before Carlos optioned the Grew Creek property, Carlos drilled 5 additional diamond drill holes (219.80 m) on anomaly B.

In Jul/2004 Carlos optioned the entire Grew Creek property to Freegold Ventures Ltd which drilled 12 diamond drill holes (633.4 m) on the Main zone. In 2005 Freegold Ventures carried out IP surveys on the Maverick prospect (Minfile Occurrence \#105K 093), the Main zone, and the Rat Creek and Tarn zones (they adjoin the Main zone on the southeast side). The company followed up by drilling 6 diamond drill holes (960 m) on the Tarn and Rat Creek zones; 5 holes targeted the Tarn zone and 1 hole targeted the Rat Creek zone. Two of the Tarn zone drill holes were collared in overburden. The diamond drilling was conducted in two parts; mid to late March and November to midDecember.

In 2006 the company drilled 5 diamond drill holes (798 m) on the Tam zone to test various IP chargeability targets. In the third quarter of 2007 Freegold Ventures dropped its option and returned the Grew Creek property to

MINFILE: 105K 009
PAGE NO: 3 of 7
UPDATED: $10-\mathrm{Nov}-09$
Carlos.
In Jan/2008 Carlos optioned the Grew Creek property to Emerick Resources Corporation which completed a compilation report in May/2008. Carlos carried out additional enzyme leach sampling in 2008.

In 2009, Emerick completed nine diamond drillholes on the Sleeper, RAT and Barium zones for a total of 1600 m . These holes tested enzyme leach soil anomalies distal to the historic gold resource at Grew Creek. No significant drill results were achieved.

GEOLOGY

The Grew Creek epithernal gold deposit is hosted by Eocene Ross Assemblage volcanic and sedimentary rocks deposited in a pull-apart basin within the Tintina Fault zone. The gold occurs in stockwork quartz veins and hydrotherimal breccias cutting hydrothermally altered rhyolite. In Dec/89 Goldnev Resources Ltd reported that the Main Zone contained drill indicated reserves of 773020 tonnes grading $8.92 \mathrm{~g} / \mathrm{tgold}$ and $33.6 \mathrm{~g} / \mathrm{t}$ silver. Within this deposit Goldnev identified a high grade core containing a drill indicated reserve of 184950 tonnes grading $12.14 \mathrm{~g} / \mathrm{t}$ gold. Metallurgical testing by Noranda in 1988 indicated that recoveries of $92-94 \%$ are possible using simple cyanide processing.

In the Main Zone, rhyolitic tuffs are juxtaposed against a cyclic sequence of Carboniferous and Permian aged fluvial sediments along the northwest-southeast trending Grew Creek fault. The faulted contact is partly introded by a quartz-feldspar porphyry dyke. The pyroclastic rocks, dyke, hult and sediments all dip steeply to the north. The volcanic rocks are hydrothermally altered to illite-quartz and illite-quartz-adularia assemblages, with an outer propylitic halo.

Mineralization consists of pyrite, marcasite, arsenopyrite, chalcopyrite, argentite, electrum, silver selenides, galena and sphalerite. Fluorite is also present in the Tarn zone, 2 knz southeast of the Main zone. Gangue minerals include quartz; adularia, carbonates, and quartz pseudomorphs after calcite. In the main zone, gold and silver occur as micron-size grains in chalcedony stringer stockworks and adjacent silicified tuffs. There is a good correlation between gold and silver assays, with a gold: silver ratio of about $1: 4$ for ore-grade mineralization, which occurs in an elongated zone trending west-northwest. The mineralization is strongly anomalous in arsenic and mercury, but mercury shows only a weak correlation with gold and silver. Most high mercury values lie along the fault, above the gold-silver zone.

Initial drilling on the Main Zone returned a best intersection of $11.7 \mathrm{~g} / \mathrm{t}$ gold and $150.9 \mathrm{~g} / \mathrm{t}$ silver across 31.4 m , while the best section exposed in a trench assayed $3.6 \mathrm{~g} / \mathrm{t}$ gold and $15.3 \mathrm{~g} / \mathrm{t}$ silver across 13 m . The 1989 drilling focused on the Main Zone, with the best intersection returning $10.5 \mathrm{~g} / \mathrm{t}$ gold over 13 m .

The Tam Zone, located 2 km to the east, consists of quartz-fluorite-chalcedony stockworks and localized silicification within a $900 \times 100 \mathrm{~m}$ zone of sericitized rhyolite dykes and tuff. The best assays were 150 ppb gold across 2.0 m in a trench and 520 ppb gold over 1.5 m in a drill hole.

Prospecting in the area is difficult due to a thick cover of glacial till. Plouffe (1989) showed that gold is concentrated in the silt and clay size fraction down-ice from the Grew Creek deposit, but the common pathfinder elements silver, antimony, arsenic and mercury show little correlation with the gold distribution.

On the Erri claims,.Ezee's 1987 drill hole cut silicified, argillized crystal-lithic felsic tuff stained with limonite, but returned only trace gold.

YGC's 1993 diamond drilling intersected strongly altered volcanic rocks beneath a zone of hydrothermal alteration exposed in a surface trench. The 1.994 drilling showed that mineralization in the South Zone consists of an extensive quartz-adularia stringer stockwork of low grade gold-silver values. The best inteisections were 2.33 g / t gold and $4.1 \mathrm{~g} / \mathrm{t}$ silver over 10.4 m . The South Zone mineralization appears to be connected with the Main Zone mineralization, but further drilling in between the two zones needs to be carried out to confirin this theory. The drilling in the Main Zone confimmed earlier reported grades. The best intersection was $1.69 \mathrm{~g} / \mathrm{t}$ gold and $3.0 \mathrm{~g} / \mathrm{t}$. silver over 24 m . In Oct/ 94. YGC calculated an open pit mineable reserve for the Main zone of 173000 tommes grading $12 \mathrm{~g} / \mathrm{t}$ gold and $32.3 \mathrm{~g} / \mathrm{t}$.silver.

The best results recorded in 1995 were returned from the Main Zone, where hole \#181 intersected ore grade gold-silver bearing quartz-adularia vein stockwork mineralization. The hole drilled near the eastern end of the zone
returned 15.0 m assaying $7.63 \mathrm{~g} / \mathrm{t}$ gold and $8.6 \mathrm{~g} / \mathrm{t}$ silver. Other holes drilled on the Rat Creek Grid, Knoll Zone and in the contact area of a pyroclastic tuff and rhyolite flow dome located imnsediately eastof Rat Creek returned anomalous gold values up to 633 ppb gold.

Twelve of the 1996 drill holes intersected significant gold mineralization in the Main Zone. The best result was recorded in hole GC-94-196 which returned $28.55 \mathrm{~g} / \mathrm{t}$ gold over 17.0 m including 4.5 m grading $41.3 \mathrm{~g} / \mathrm{t}$ and 6.59 m grading $41.95 \mathrm{~g} / \mathrm{t}$. The hole intersected thick barided quartz vein mineralization at the 795 m elevation which YGC believed represented a central core or feeder zone of the Main Zone deposit. The mineralization occurs within the phyllic alteration zone and is directly related to strong quartz-adularia alteration.

At the end of the 1996 drilling program YGC completed an updated resource estimate for the Main Zone. Employing a $1 \mathrm{~g} / \mathrm{t}$ gold cutoff grade, a block model estimation calculated a total resource of 527360 tomes grading $5.27 \mathrm{~g} / \mathrm{t}$ gold to the 710 metre level. Within this total resource the company estimated an open pit resource of 382 000 tomes grading $5.08 \mathrm{~g} / \mathrm{t}$ gold above the 750 metre elevation.

Samples from the 2000 sainpling program were analyzed using Enzyme Leach technology, revealing several anomalous zones just south of and parallel to the Danger Creek Fault and although no report of this work was ever filed for assessment purposes geochemical anomaly maps produced from this sampling accompanied subsequent reports on the 2001 and 2002 drill programs. Drilling intersected altered and brecciated quartz feldspar porphyry, mixed sedimentary and volcanic lithologies and basalt. Samples of core from both years were submitted for analysis and generally returned values for gold below the detection limit. of the analytical techniques employed, the highest reported value was 109 ppb gold over $0: 6 \mathrm{~m}$ from sericitically altered quartz feldspar porphyry near the bottom of Hole \#CGGC-8.

The 2003 and 2004 drilling of the Maverick enzyme leach anomaly B intersected mafic volcanic complex rocle but did not detect any significant gold values. The 2004 drilling program completed by Freegold Ventures indicated that the dominant vein trend is north.

Four diamond drill holes were collared on the Tarn zone in mid Mar/2005 before the IP survey was undertaken. The holes intersected intense phyllitic alteration associated with anomalous values in gold, silver, mercury and arsenic. The holes also intersected local fine quartz-adularia zones to 40 m in length that yielded anomalous values up to $0.174 \mathrm{~g} / \mathrm{t}$ gold and $2.3 \mathrm{~g} / \mathrm{t}$ silver. (news release $10 \mathrm{May} / 2005$). The second phase of drilling collared 1 diamond drill hole on the Tam zone and 1 hole on the Rat Creek zone. Two other holes were abandoned in overburden.

The 2006 diamond drill holes were completed between January and early Mar/2006 and were an extension of the second phase of the 2005 drill program. The 2006 drill holes targeted IP anomalies on the Tam zone. The single hole collared on the Tarn zone in late 2005 and the five 2006 drill holes all intersected favorable alteration and displayed evidence of hydrothermal activity similar to that found at the Main zone but did not intersect any economic intervals.

REFERENCES

ARCHER, CATHRO A.ND ASSOCIATES (1981) LTD, Nov/93. . Assessment Report \#093153 by R.W. Stroshein. ARCHER; CATHRO AND ASSOCIATES (1981) LTD, Dec/93. Assessment Report \#093154 by R.W. Stroshein. ARGO DEVELOPMENT CORPORATION, May/88. Assessment Report \#062293 by J.P. Sorbara.

CARLOS, A., Nov/92. Assessment Report \#093055 by A. Carlos.
CARLOS, A., Jan/99. Assessment Report \#093915 by A. Carlos.
CARLOS, A., Apr/2002. Assessment Report \#094332 by A. Carlos.
CARLOS, A.;Feb/2003. Assessment Report \#094321. by A. Carlos.

CARLOS, A., Feb/2003. Assessment Report $\$ 094380$ by A. Carlos and G.T. Hill.
CARLOS, A., Jan/2004. Assessment Report \#094453 by A. Carlos.
CARLOS, A., Jan/2004. Assessment Report \#094454 volume 1 by A. Carlos
CARLOS, A., $\mathrm{yan} / 2004$. Assessment Report $\# 094454$ volume 2 by G.T. Hill.
CHRISTIE, A.R., DUKE, J. AND RUSHTON, R., 1989. Grew Creek Gold Deposit, Tintina Trenck, Yukon. Poster presented at Whitehorse Geoscience Forum, 1989.

CHRISTIE, A.R., 1992. Grew Creek epithennal gold-silver deposit, Tintina Trench, Yukon. In: Yukon Geology, Vol. 3, p. 223-259.

DUKE, J.L., 1989. The Grew Creek Au-Ag Deposit in South-Central Yukon. In: The Gangue, Geological Association of Canada Newsletter No. 27, May/89.

DUKE, J.L., 1990. The Grew Creek Gold-Silver Deposit in South-Central Yukon Territory. In: Mineral Deposits of the Northern Canadian Cordillera, Yukon-Northeastern British Columbia, J.G. Abbott and R.J.W. Turner (eds), 8th IAGOD Symposium Field Trip No. 14 Guidebook, Geological Survey of Canada Open File 2169, p. 309-313.

EMERICK RESOURCES CORPORATION, 15 May/2008. Summary Geological Report on the Grew Creek Property, Yukon Territory, Canada. By R.Stroshein. (available on SEDAR).

EMERICK RESOURCES CORPORATION, News Release, 16 Jay/2008; 10 Nov/2009,
EZEE GOLDS LTD, Aug/87. Assessment Report \#091733 by S.B. Cheeseman.
FREEGOLD VENTURES LTD, Jun/2006. Assessment Report \#094694 Volune 1 by R. Stroshein.
FREEGOLD. VENTURES LTD, Jun/2006. Assessment Report \#094694 Volune 2 by P.Walcott.
FREEGOLD VENTURES LTD, Jan2007. Assessment Report \#094749 by R. Stroshein.

FREEGOLD VENTURES LTD, News Release, 14 Jul/2004, 10 May/2005, 27 Sep/2005, 3 Nov/2005, 11 May/2006, 10 Apri/2007, 13 Nov/2007 (Consolidated Financial Statements).

GAYLORD MINES ITT, Feb/68. Assessment Report \#017738 by P.E. Walcott.
GAYLORD MINES LTD, Nov/68. Assessment Report \#018960 by P.E. Walcott.
GEOLOGICAL SURVEY OF CANADA, Memoir 208.
GEORGE CROSS NEWSLETTER, 8 Jan, 14 Apr, 26 May/88; 30 May, 4 Jul, 26.Sep, 7 Dec/89; 18 Feb/93; 14 Dec/93, 10 May/96, 11 Juin/96, 21 Jan/97.

GOLDNEV RESOURCES LTD, Nov/91. Assessment Report \#092988 by L.R. Haynes.
GORDEY, S.P. and IRWIN, S.E.B., 1987. Geology, Sheldon Lake and Tay River map areas, Yukon Territory,
scale 1:250 000. Geological Survey of Canada, Map 19-1987.
GORDEY, S.P., 1990. Geology of Tenas Creek (105K/1), Swim Lakes (105K/2) and Faro ($105 \mathrm{~K} / 3$ map areas, Yukon Territory, scale 1:50.000. Energy Mines and Resources Canada, Geological Survey of Canada Open File 2249.

GORDEY, S.P. and MAKEPEACE, A.J., 2003. Yukon Digital Geology, version 2.0, S.P Gordey and A.J. Makepeace (comp); Geological Survey of Canada, Open File 1749 and Yukon Geological Survey, Open File 20039(D).

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Jun/84. Assessment Report \#091543 by R. Stroshein.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Dec/84. Assessment Report \#0915 87 by R. Stroshein.

HÚDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Feb/85. Assessment Report \#091611 by R. Stroshein.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Jan/86. Assessment Report \#091727 by T: Garagan.

HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY LTD, Nov/86. Assessment Report \#091885 by R. Stroshein.

NORANDA EXPLORATION COMPANY LTD, Jan/88. Assessment Report \#092002 by H. Copland. NORANDA EXPLORATION COMPANY LTD, Feb/88. Assessment Report \#092099 by H. Copland. NORANDA EXPLORATTION COMPANY LTD, Feb/88. Assessment Report \#092106 by H. Copland. NORANDA EXPLORATION COMPANY LTD; Jai/89. Assessment Report \#092634 by J. Duke.

NORTHERN MINER, 18 Jan/88; 24 Feb/92, 20 May/96, 17 Jun/96.
ORCAN MINERAL ASSOCIATES LTD, Apr/92. Mining Resources of the Grew Creek Deposit. (Available in EMR Library, Whitehorse, Yukon).

PLOUFFE, A., 1989. Drift prospecting and till geochemistry in Tintina Trench, southeastem Yukon. Unpublished M.Sc. thesis, Carleton University, Ottawa, Ontario.

PRIDE, M.J., 1988. Bimodal volcanism along the Tintina Trench near Faro and Ross River: in Yukon Geology, 'Vol. 2; Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 69-80.

WHEATON RIVER MINERALS LIMITED, Jun/92. Advanced Exploration Program Grew Creek Project. (Available in EMR Library, Whitehorse, Yukon).

YGC RESOURCES LTD, Dec/93. Assessment Report \#093154 by R. Stroshein.
YGC RESOURCES LTD, Mar/95. Assessment Report \#092239 by R. Stroshein.

YGC RESOURCES LTD, Jan/96. Assessment Report \#093416 by R. Stroshein.
YGC RESOURCES LTD, Mar/97. Assessment Report \#093627 by R. Stroshein.
YUKON EXPLORATION 1984, p. 109-111; 1985-86, p. 251-252; 1987, p. 182-183; 1988, p. 110-113.

YUKON EXPLORATION AND GEOLOGY 1983, p. 193; 1993, p. 7; 8; 1994, p. 5, 10, 12; 1995, p. 16, 18; 1996, p. 28, 30, 32; 2000, p. 22, 25; 2001, p. 18-19, 24, 25; 2002, p. 12-13,24, 26; 2003, p. 24-25; 2004, p. 14, 30, 33; 2005, p. 33, 38, 40.

DISCUSSION OF DRILL HOLE PLACEMENTS (OBSERVATIONS)

A brief overview of reasons for targeting this specific area is warranted at this point.

A multi-element geochem anomaly trending along line $22+700 \mathrm{~W}$ occurs north of an arcing magnetic feature, suggesting a magnetic heat and/or fluid source centered to the south (Fig.3). Interpretation of geophysical and geochemical data suggests a focus of fault intersections correlative with the geochemical center. The Grew Creek fault is well defined (airborne resistivity). Another important feature is the combined multi-element geochemical and electromagnetic trend along the extent of the Robert Campbell Highway, most likely reflecting another key structural zone. A shear-hosted, banded quartz vein within Permian chert units strikes in a direction crossing the southern portion of the multi-element geochemical anomaly. It may be of interest to note that Gregory Hill made the determination of this lineament in his interpretation of the Enzyme Leach survey without prior knowledge of our vein discovery and its determined strike (Fig.3). Finally, two local till concentrate locations returned anomalous gold and arsenic values upon assay (Fig.2). Gregory has agreed to discuss results of our geochemical survey with those interested, including the relevance of the Ti depletion as noted in Fig.3.

Reasons for drill hole determination and brief summary of results follow:

Hole No. 1

* A V.L.F. E.M. anomaly center (Fig.3).
* E.M. trend coincident with a "central low" interpreted trend by G.T. Hill in 2001 based upon a close-spaced B-horizon soil sampling test (see attached 2001 map @ 1:2500.

I quote from an Enzyme Leach text by J . Robert Clark, a co-founder of this partial leach geochemistry: "Frequently, one or more elements will very tightly bracket a central low, and that central low will be directly over the reduced body in the subsurface". If this is the case here, the gold plot as per the 2001 survey (attached) is behaving as a bracketing element, or in other words, as a halo to the deposit (see summary map of 2001 survey plus Fig.3). In 2009, two drill holes tested below the plotted Au anomaly, with negative results.

* This E.M. anomaly underlies the general multi-element anomaly determined in the 2008 survey, together with it being essentially coincident with the geochemical feature trending along the highway.
* This coincident E.M.-geochemical anomaly is situated proximal to the Grew Creek fault and only several hundred metres from the magnetic arc.
* The vein fault trend as depicted in Fig. 3 intersects this E.M. target.

Hole No. 1 is an extremely brecciated section of graben sediments intruded by several occurrences of equivalently altered and brecciated rhyolitic material. Clay alteration is ubiquitous. Eighty percent of assay sections host detectable Au, with a high of 50 ppb . Assay values for Ag and Sb are also elevated compared to remaining drill holes. Mercury values throughout the area are relatively high, to 730 ppb except hole no. 4 - where it is depleted by a factor of 10 . f the 4 holes drilled, only no. 1 hosted numerous pyritic clasts that appeared to have been transported within the breccia. The entire hole is strongly carbonaceous, with a good section of pyrobitumens near bottom.

Hole No. 2

* Drilled to test below highway - along which numerous elements trend in a somewhat arcing fashion (see tungsten plot in G.T. Hill report). Eatter section of hole is carbonaceous and brecciated as hole no. 1, whereas the upper section is free of carbon. Hg is the only element with elevated values.

Hole No. 3

* Drilled to test a center of Sr depletion (Barry W. Smee - consultant).
* Located at perimeter of geochemical anomaly.

Hole consists of a carbon-free quartz breccia, often coloured by hematite banding. Very clay-altered, causing severe sanding. Hg only element with elevated values.

Hole No. 4

Hole was centered on a local mercury spike within the broader geochemical anomaly. Nearby was a pit from which a till concentrate was garnered and assayed previously, returning a high Au value (Fig. 2 and 3). Section is essentially a carbonaceous quartz breccia with intermittent tuffaceous material. The gravel sized quartz fragments at times appear to be the result of crushed (brecciated) vein material - strung out along an apparent flow pattern. Intact quartz veining is also noted. Ironically, though drilled in part because of a localized Hg spike, mercury values throughout the hole averaged lower than other holes by a factor of 10 , averaging approx. 30 ppb .

CONCLUSIONS AND RECOMMENDATIONS

Though disappointed by assay results, one must remember that these shallow holes were hampered by extreme clay alteration of a brecciated quartz unit, resulting in severe sanding problems. Not yet explained are the multi-element geochem centers, together with 2 separate till concentrates assaying high in Au and As. Concentrate from the pit near hole no. 4 was tested for Au only.

Locally within the broader area, I believe the electromagnetic feature targeted in hole no. 1 deserves further attention. Perhaps one drill hole midpoint along its strike, where the "vein fault" lineament intersects, and a second, further westerly nearby the Ag spike. A larger drill is required to deal with the ground conditions.

Note: Core is in safe keeping at 275 Alsek Road, Whitehorse. It is $1.39^{\prime \prime}$ in diameter, similar to the more common BQ wireline size of 1.43".

Also: Larger attached map sheets regarding this report have been expanded to a scale of 1:2500.

APPENDIX 1

DRILL HOLE DESCRIPTIVE LOGS

SELECT CORE PHOTOS

DESCRIPTIONS

$\mathbf{0}^{\prime}$	$\mathbf{1 1}^{\prime}$	$\underline{O V B N}$
$\mathbf{1 1}^{\prime}$	$\mathbf{5 5}^{\prime}$	VARIABLY CARBONACEOUS CLAY RICH BRECCIA

Section is hosted most likely within an altered graben shale-siltstone sequence: Brecciated throughout in varying intensity, resulting in a fine to coarse grained quartz breccia comprised of sub-rounded to angular quartz fragments together with similar clasts composed of pyrite and/or of a unit not identified, most likely sedimentary.
$11^{\prime}-231 / 2^{\prime}: 25 \%$ core recovery. A clay rich, black-gray sand sized quartz material with occasional to 5 cm . clasts of granitoid. At 16^{\prime}-scattered accumulation of pyrite with subangular forms to those with crystal faces which may have grown in place. Quartz grains become coarser near end of this section.
231/2'-29': Somewhat less carbonaceous, coarser clast material comprising sub-rounded quartz and black-gray fragments to 1 cm . At 29 '-fining of clasts occurs together with observable fluid-flow features. Sulphide growth rims are common around clast grains and sulphide accumulations as apparent clasts also occur.
$29^{\prime}-311 / 2^{\prime}$: Prominent fluid flow features comprised of angular quartz fragments.
$311 / 2^{\prime}-38^{\prime}$: Variably carbonaceous angular to sub-rounded clasts within a matrix of sand size quartz.
38'-39': Sections of fine, granular pyrite clasts.
$39^{\prime}-45^{\prime}$: A gray - fine grained quarte breccia.
$45^{\prime}-471 / 2^{\prime}$: Very carbonaceous, clay rich sandy breccia within which occur angular to $1 / 2 \mathrm{~cm}$. pyrite clasts. At $461 / 2^{\prime}$ occurs approx. a $1 / 2 \mathrm{~mm}$. hexagonal, yellow transparent crystal. Very distinct under a glass. Perhaps a Beryl. They have been noted occasionally throughout the length of this drill hole.
$471 / 2^{\prime}-50^{\prime}$: Clast supported, well rounded quartz fragments.
$50^{\prime}-53^{\prime}$: Gray, fine grained quartz crackle breccia.

FROM
55'
941/2'
STRONGLY CARBONACEOUS CLAY RICH BRECCIA

A higher degree of carbonaceous matter relative to section previous, together with abundant, well rounded larger clasts, varying from $1 / 2-10 \mathrm{~cm}$; All within a carbonaceous sandy quartz-clay mud. Three separate 1 foot sections of fine pyrite within breccia matrix noted.
61^{\prime} : Pyrite grains prominent within rounded clay balls.
74'-76': Volcanic tuff: Dense black matrix with gray-tan, ragged edged pyroclasts. Core angle with breccia $=40^{\circ}$.
$79^{\prime}-80^{\prime}$: As above. These 2 sections are very likely larger clast material within the breccia zone.

991/2' 104' BRECCIATED OUARTZEYE RHYOLITE PORPHYRY
Grounded up to $<1 \mathrm{~mm}$. quartz grains within a clay matrix. To 1 cm . rounded porphyry clasts throughout.
$104^{\prime} \quad 108 \mathbf{1}^{\prime} \quad$ CARBONACEOUS CLAY RICH BRECCIA (FAULT)?
As above.
$10 \mathbf{1}^{\mathbf{1}} \mathbf{2}^{\prime} \quad 11 \mathbf{1}^{\mathbf{1}} \mathbf{2}^{\mathbf{\prime}} \quad$ BRECCIATEDPORPHYRY
As $99{ }^{1} / 2^{\prime}-104^{\prime}$.
$112 \mathbf{1 ²}^{\prime} 1 \mathbf{1 6}^{\prime} \quad$ OUARTZSAND BRECCIA (HYDROCARBONS)?
Section photo included conveying evidence for hydrocarbon invasion. Quartz sand breccia is probably the result of greater attrition of feldspar pphy. Evidence here may support my belief that there occurred a general "introduction of hydrocarbon" event.

116 ${ }^{\prime} \quad 123 \mathbf{1}^{\prime} \mathbf{2}^{\prime} \quad$ CALCAREOUSSILTSTONE?
45° fracture plane to core angle. Randomly oriented thin calcite veinlets throughout.

123 ${ }^{\prime} / \mathbf{2}^{\prime}$ 204 \quad STRONGLY CARBONACEOUS BRECCLA

Generally as $55^{\prime}-991 / 2^{\prime}$. The major difference involves the presence of identifiable pyrobitumen from $135^{\prime}-156^{\prime}$, becoming very concentrated from $154^{\prime}-156^{\prime}$.
158'-159': Several fine grained, rounded pyrite clasts. Some of these clasts have been disrupted and strung out as grains of pyrite. The core is in places swollen to $11 / 2$ times its original diameter (expanding clay).
$1831 / 2^{\prime}-1931 / 2^{\prime}: 60 \%$ core recovery.
206 ${ }^{\prime}$ 213' CLAY ALTERED RHYOLITE
Very clay altered. When wet it has a gray-green alteration tint. Upon drying, mud cracks develop.
E.O.H.

HOLE Km 410-01 ASSAY INTERVAL NUMBERS

FROM TO

$11^{\prime} \quad 15^{\prime} \quad 479176$
15' $20^{\prime} \quad 479177$
$20^{\prime} \quad 25^{\prime} \quad 479178$
$25^{\prime} \quad 29^{\prime} \quad 479179$
$29^{\prime} \quad 3111^{\prime} \quad 479180$
$31^{1 / 2^{\prime}} \quad 36^{\prime} \quad 479181$
$36^{\prime} \quad 391^{\prime} 2^{\prime} \quad 479182$
$39{ }^{1} 2^{\prime} \quad 44{ }^{\prime} \mathbf{1}^{\prime} \quad 479183$
$44{ }^{1} 2^{\prime} \quad 49{ }^{\prime}{ }^{\prime} 2^{\prime} \quad 479184$
$49{ }^{1 / 2^{\prime}} \quad 541 / 2^{\prime} \quad 479185$

FROM	TO	
541/2'	591/2"	479186
591/2'	641/2'	479187
641/2'	$691 / 2^{\prime}$	479188
691/2'	$741 / 2^{\prime}$	479189
$741 / 2^{\prime}$	$791 / 2^{\prime}$	479190
791/2'	$841 / 2^{\prime}$	479191
841/2'	$891 / 2^{\prime}$	479192
891/2'	$941 / 2^{\prime}$	479193
941/2'	991/2'	479194
991/2'	104'	479195
104'	1081/2'	479196
1081/2'	$112^{1 / 2^{\prime}}$	479197
$1121 / 2^{\prime}$	$1161 / 2^{\prime}$	479198
$1161 / 2^{\prime}$	123'	479199
123'	128^{\prime}	479200
128^{\prime}	133'	479201
133'	138^{\prime}	479202
138^{\prime}	143'	479203
$143{ }^{\prime}$	148^{\prime}	479204
148^{\prime}	153'	479205

FROM	TO	
153^{\prime}	158^{\prime}	479206
158^{\prime}	163^{\prime}	479207
163^{\prime}	168^{\prime}	479208
168^{\prime}	173^{\prime}	479209
173^{\prime}	178^{\prime}	479210
178^{\prime}	183^{\prime}	479211
183^{\prime}	188^{\prime}	479212
188^{\prime}	193^{\prime}	479213
193^{\prime}	198^{\prime}	479214
198^{\prime}	204^{\prime}	479215
204^{\prime}	209^{\prime}	479216
209^{\prime}	213^{\prime}	479217

GRID: $22+600 \mathrm{~W}$
BEARING: 210°
HOLE: N- 2
ANGLE: $-50^{\circ} \quad$ DEPTH: 146.5 FEET

FROM TO

$\mathbf{0}^{\prime}$	$\mathbf{3 0}^{\prime}$	$\underline{\text { OVBN }}$
$\mathbf{3 0}^{\prime}$	$\mathbf{3 2}^{\prime}$	MIXED ZONE

DESCRIPTIONS

Till and bedrock mix zone. Black carbonaceous clay cementing till pebbles-sand, mixed with green and earthy red clay plus granular quartz.

32' 1461/2' VARLABLYCARBONACEOUS BRECCLA ZONE
General features: 1 . Carbon rich $=69 \%$ of section.
2. Clast size varies from 3 mm quartz granules to larger clasts of quartz and other material, often of a sub-rounded nature.
3. Variable clay content of the finer matrix.
4. Identifiable sections of fluid flow.
5. Carbon appears to have been introduced.

32'-411/2': OUARTZ BRECCIA (NON CARBONACEOUS)
56% core recovery. Consists of green-gray to reddish hue, very often colour banded along the length of core, comprised of white, grey to green granular quartz fragments (3 mm) fining down to less than 1 mm . Much of the granular quartz displays abraded crystal forms, a feature prevalent through remainder of the hole. Occasional larger white quartz clasts varying to 3 mm .make up the breccia. Estimate 80% quartz and 20% clay.
$41^{\prime}-41 \frac{1}{1 / 2}$ ': A less brecciated portion of the unit; A greenish hue with clay alteration, feldspars, quartz and earthy orange material. Mildy calcareous throughout, with better response from the reddish flow band features. Unique pyrite to 1% through section: A smeared and ragged look, lighter of colour than usual.

41 ¹/2' 56' QUARTZ BRECCLA (60% OF SECTION CARBONACEOUS)

43.5': Distinct fluid flow feature.
$44^{\prime}-45^{\prime}$: Green hued, silicified, quartz veined fragment. Altered volcanic? Approximately 1.5\% pyrite.

49': 6 cm . white quartz fragment with green chlorite wisps. Thin fractures of hematite. A short interval of carbonaceous breccia.

Logged by: A M Carlos
Hole Number: 02
Sheet Number: 1

$54^{\prime}-55^{\prime}$: Gray-green to earthy red granular quartz flow bands. Similar as $32^{\prime}-411 / 2^{\prime}$.

56': Fluid flow feature: varying width, mm. to cm . green quartz/clay within carbonaceous clay quartz breccia.

56' 63¹/2' CARBONACEOUS OUARTZ BRECCIA
Brecciated throughout in varying intensity, resulting in a fine to coarser grained quartz breccia composed of sub-rounded to angular quartz fragments, together with similar clasts composed of sulphides and/or of a unit not identifiable, most likely of sedimentary origin. Overall more carbonized than above.
57': $2^{\prime \prime}$ rounded white quartz clast.
$601 / 2^{\prime}$: White quartz clast.
631/2' $\mathbf{2 0}^{\prime} \quad$ OUARTZ BRECCIA (NON CARBONACEOUS)
$631 / 2^{\prime}-70^{\prime}: 65 \%$ core recovery. Green hue to a granular quartz breccia. Short sections more competent due to increased quartz matrix. Clay rich sections have a distinct greasy feel, suggesting the presence of talc.

70' 771⁄2' CARBONACEOUS QUARTZ BRECCIA
As $56{ }^{\prime}-631 / 2^{\prime}$.
75': Hematite rich breccia clast.
771/2' $\mathbf{2}^{\prime} \quad$ QUARTZ BRECCLA (NON CARBONACEOUS)
Generally as $631 / 2^{\prime}-70^{\prime}$.
Distinct flow feature @, 81', 45\% to core angle.
82' $14 \mathbf{1 4 ¹}^{\prime} \mathbf{2}^{\prime}$ CARBONACEOUS OUARTZ BRECCIA
As described in $56^{\prime}-631 / 2^{\prime}$. Interval is most carbonaceous in hole. Clasta of quartz vary to 10 cm . along core axis.
$1381 / 2^{\prime}$: A nice example of fluid flow feature depicted in attached photo.
E.O.H.

FROM	TO	
32^{\prime}	$41^{1 / 2} 2^{\prime}$	479151
411/2'	433/4 ${ }^{\prime}$	479152
433/4 ${ }^{\prime}$	443/4 4^{\prime}	479153
443/4'	50^{\prime}	479154
50^{\prime}	$511 / 3^{\prime}$	479155
511/3'	$531 / 3^{\prime}$	479156
$531 / 3^{\prime}$	55^{\prime}	479157
55^{\prime}	63^{\prime}	479158
63^{\prime}	69^{\prime}	479159
69^{\prime}	74	479160
74^{\prime}	773/4 ${ }^{\prime}$	479161
$773 / 4^{\prime}$	813/4 ${ }^{\prime}$	479162
$81^{3 / 4^{\prime}}$	87'	479163
87^{\prime}	92^{\prime}	479164
92^{\prime}	$97{ }^{\prime}$	479165
97^{\prime}	$102{ }^{\prime}$	479166
$102{ }^{\prime}$	$107{ }^{\prime}$	479167
107'	112^{\prime}	479168
112^{\prime}	117'	479169

FROM		TO	
117^{\prime}		122^{\prime}	479170
122^{\prime}		127^{\prime}	479171
127^{\prime}	132^{\prime}	479172	
132^{\prime}	137^{\prime}	479173	
137^{\prime}	142^{\prime}	479174	
142^{\prime}	146^{\prime}	479175	

DEPTH: 165 FEET

FROM TO

DESCRIPTIONS

$\begin{array}{lll}0^{\prime} & \mathbf{2 7}^{\prime} & \underline{O V B N}\end{array}$
27 $\mathbf{1 5 6}^{\prime}$ QUARTZBRECCLA
Overall colour is the result of a granular 1 mm . or greater green, brecciated quarte. Prominent intervals of $1 / 2 \mathrm{~cm}$. or wider red hued bands occur that accentuate the foliation prevalent. These features consist of 80% granular green-white quartz, aligned within a fine matrix of clay-sericite. A flaky red clay mineral defines the foliation within the colour bands. Although the flow banding is made up of visibly crushed and abraded material, silicification is evident by some of the quartz forms. Pyrite is noted throughout the core but, in particular, larger clasts may carry $3-4 \%$ as stringers and disseminations. Minor calcite is present but most noted in one of a number of clasts making up the breccia. Clay alteration is general, but occasional intervals intensely so, resulting in sections of wet core with a flexible, spaghetti like consistency. Severe sanding, due to clay alteration made it difficult to continue further. There is no magnetic response. $771 / 2^{\prime}-90^{\prime}$: The only portion of this core with carbonaceous material, occurring as alternating short, dark clay sections.

DESCRIPTIONS: RANK BY ABUNDANCE OF LARGE CLAST MATERIAL

1) 7 cm . example @ $98^{\prime}:$ Massive white quartz with calcite intergrowths. Dark greenblack chlorite bands to $1 / 4 \mathrm{~cm}$. Minor sericite.

2a) 12 cm . example @ $1081 / 2^{\prime}$: Siliceous, green quartz sericite? Fine, wavy foliation with thin alternating bands of quartz and sericite. Calcareous (minor).

2b) 14 cm . example @146': Similar to 2a but quartz flooding accompanied by hairline, gray sulphide fractures.
3) 25 cm . example @ $1241 / 2^{\prime}$: Competent (silicified) red breccia with patchy green tints. 1 cm . clasts and smaller of white quartz with crackle features hosting thin bands of red clay. Some vein breccia features noted within the clay. Calcareous (minor).
4) 10 cm . example @ $123 \frac{1}{2} 2^{\prime}$: A faintly foliated, thinly veined quartz-calcite unit hosting $<1 / 2 \mathrm{~cm}$. bands of fine matrix supported crushed quartz; by hydraulic fracture?

FLOW BAND CORE ANGLES:

$33^{\prime}=45^{\circ}$	$100^{\prime}=10^{\circ}$
$41^{\prime}=35^{\circ}$	$104^{\prime}=0^{\circ}$
$46^{\prime}=10^{\circ}$	$105^{\prime}=20^{\circ}$
$58^{\prime}=30^{\circ}$	$108^{\prime}=30^{\circ}-45^{\circ}$
$74^{\prime}=30^{\circ}$	$114^{\prime}=0^{\circ}$
$76^{\prime}=29^{\circ}$	$124^{\prime}=0^{\circ}$
$82^{\prime}=10^{\circ}$	$128^{\prime}=30^{\circ}$
$84^{\prime}=0^{\circ}$	$144^{\prime}=40^{\circ}$
$90^{\prime}=40^{\circ}$	

HOLE Km 410-03 ASSAY INTERVAL NUMBERS

FROM	TO	
27^{\prime}	32^{\prime}	479218
32^{\prime}	37^{\prime}	479219
37^{\prime}	42^{\prime}	479220
42^{\prime}	47^{\prime}	479221
47^{\prime}	52^{\prime}	479222
52^{\prime}	57^{\prime}	479223
57^{\prime}	62^{\prime}	479224
62^{\prime}	65^{\prime}	479225
65^{\prime}	70^{\prime}	479226
70^{\prime}	75^{\prime}	479227
75^{\prime}	79^{\prime}	479228
79^{\prime}	86^{\prime}	479229

FROM	TO	
86^{\prime}	91^{\prime}	479230
91^{\prime}	$96{ }^{\prime}$	479231
96^{\prime}	101^{\prime}	479232
101'	106^{\prime}	479233
106^{\prime}	111^{\prime}	479234
111'	116^{\prime}	479235
116^{\prime}	121^{\prime}	479236
121^{\prime}	126^{\prime}	479237
126^{\prime}	131^{\prime}	479238
131'	$136{ }^{\prime}$	479239
$136{ }^{\prime}$	141^{\prime}	479240
141'	$146{ }^{\prime}$	479241
$146{ }^{\prime}$	151'	479242
151^{\prime}	156^{\prime}	479243
$156{ }^{\prime}$	161^{\prime}	479244
161'	165^{\prime}	479245

FROM TO
 DESCRIPTIONS

$\mathbf{0}^{\prime}$ 61' ${ }^{\prime}$ OVBN

Approximately $40^{\prime}-61^{\prime}$: Dark gray to black - very carbonaceous.
61' 69' FINE TO COARSE QUARTZ BRECCLA
$61^{\prime}-62^{\prime}$: Clay altered fine sand matrix with darker sections. Disseminated pyrite to $1 / 2 \%$. $62^{\prime}-63^{1 / 4} 4^{\prime}$: Silicified sandy, gray-black breccia clast with pyrite flooding as $1 \mathrm{~cm} \times 4 \mathrm{~cm}$. irregular edged replacements. Clasts are of sub-angular to rounded quartz and unidentified fine black-banded fragments. Also within this section is noted a 6 inch fragment of silicified black silty material with green chlorite fractures.
66^{\prime} : A 10 cm . section of medium to coarse grained quartz breccia, with $1 / 2 \mathrm{~cm}$. and less sub-angular fragments of white quartz, unidentified black clasts and approximatelt 40% by volume of light coloured tuffaceous volcanics. Minor quartz calcite veinlets plus fine pyrite replacement within selective clasts also within this section.
66'-69': Carbonaceous, clay rich sandy material.
69' $74^{\prime} \quad \underline{T U F F ?}$
Very clay rich, only 3% recovery. Fine grained gray sandy matrix with thin approximately 2 mm . acicular crystals throughout. The crystals have ragged looking ends.Are these crystal shards resulting from air fall?

74' 76' EOUIGRANULAR CLASTIC OUARTZ
Clasts are generally $1-2 \mathrm{~mm}$. and well crystallized together, having the appearance of an igneous intrusive at first glance. Lath like black clasts have a preferred orientation in places.

76 ${ }^{\prime} \quad$ 81' \quad TUFF?
Identified as 69'-74'.
Observations: a) Scattered 1 mm . spherical amygdules.
b) Brittle core - breaks into small sections in removal from core tube.
c) Fine pyrite throughout.
d) Rare pyrite, biotite-chlorite masses.

As 74'-76': Silicified.
83' $\mathbf{~ 9 0}^{\prime} \quad \underline{T U F F} ?$

As Above.
84': Scattered quartz-calcite veinlets and silicification.
$85^{\prime}-90^{\prime}$: Occasional parallel lineaments varying from $1-10 \mathrm{~cm}$. of fine fragmented quartz.

90' $\mathbf{1 0 8}^{\prime}$ COARSE TO FINE GRAINED QUARTZ BRECCIA
Sub-angular to rounded clast supported material varying from $<1 \mathrm{~cm} .-6 \mathrm{~cm}$. Fragments consist of 50% white quartz, 40% dark, finely banded and 5% of a green hue. Generally, contacts between the coarse and more sandy breccia are abrupt, often separated by shearing.
$1001 / 2^{\prime}$: section of fine cubic pyrite.
$108^{\prime} \quad 112^{1 / 2^{\prime}} \quad$ CARBONACEOUS (SILTSTONE)?
Perhaps a result of attrition due to shearing and focused fluid flow.
$112 \mathbf{1 2}^{\prime} \mathbf{2 1}^{\prime} \quad$ COARSE OUARTZ BRECCLA (CLAST SUPPORTED)
60% sub angular to rounded white quartz.
10% rounded green-micaceous quartz.
30% siliceous, elongate, finely banded and cabonaceous.
122': A minor, fragmented discontinuous quartz veinlet.
129' 131' TUFF?
As above.
129': Short section of massive fine pyrite. Uncommon core angle contact with preceeding unit at 90°. Abundant fractures in section consist of a greasy white clay.
131^{\prime} : Contact at 131^{\prime} is 90° to core angle, with quartz fragments incorporated from the underlying unit.

Similar to $90^{\prime}-108^{\prime}$: Silicified.
140^{\prime} : Carbonaceous shear zone @ 17° to core angle. Transition between the separate breccias is often gradational, but there are also abrupt changes.

149 $\mathbf{1}^{\prime} \mathbf{2}^{\prime} \quad 15 \mathbf{1 ¹}^{\prime} \mathbf{2}^{\prime} \quad$ CARBONACEOUS VOLCANICLASTIC
Carbonaceous fine grain clay matrix incorporating $1-3 \mathrm{~mm}$. quartz and tuffaceous apearing volcanics.
150^{\prime} : Shear @ 17° to c.a.
151': Shear@ 30° to c.a.
$1521^{\prime} \mathbf{2}^{\prime} \quad 1551^{\prime} \mathbf{2}^{\prime} \quad$ COARSE OUARTZ BRECCIA (CLAST SUPPORTED)
As $1121 / 2^{\prime}-129^{\prime}$.
$155 \mathbf{1}^{\prime} \mathbf{2}^{\prime} \quad 158 \mathbf{1}^{\prime} \mathbf{2}^{\prime} \quad$ BANDEDSEDIMENT?
Alternating $1 / 2-1 / 4 \mathrm{~cm}$. bands of carbonaceous and fine brown sandy material, ending in a 16 cm . segment of well indurated sand.

1581/2' $\mathbf{2}^{\prime} \mathbf{1 7 6}^{\prime} \quad$ CARBONACEOUS FAULT ZONE
$1581 / 2^{\prime}: 40^{\circ}$ shearing core angle.
$1581^{1 / 2}-165^{\prime}$: Carbonaceous, highly crushed clay rich matrix incorporating clasts of a fine gray quartz. approximately 10% of these clasts are finely stockwork veined. Total pyrite at approximately $1 / 2 \%$ throughout section, occuring both as pyrite clasts or replacing the fine quartz clasts noted.

Gravel like white-gray to green quartz fragments comprise 90% of section. Clay accounts for 20%. Brecciated short vein section forms are often strung out in an irregular banded manner, at times bound by thin carbonaceous clay layers. Much of this section has been healed by subsequent quartz flooding.
$1791 / 2^{\prime}: 80 \%$ to c.a. black clay seam bound by fine cubic pyrite.
$190^{\prime}-1921^{1 / 2^{\prime}}$: Fault zone. Quartz fragment size decreases from $190^{\prime}-192{ }^{1} / 2^{\prime}$, most likely due to greater attrition. Carbon presence also increases.

192 ${ }^{1} \mathbf{2}^{\prime}$ 201' CARBONACEOUSMUDSTONE
20° to c.a. fracture pattern.
5% of section features thin vein stockworks.
194': Chlorite bearing features over 10 cm . - minor veinlets.

201' 208' COARSE SANDSTONE
40° fracture planes. Abundant sericite throughout. Minor quartz-calcite stockwork. 204': 7cm. of intense brecciation hosting 3cm. quartz-calcite veined clasts. Minor silicification.

208 ${ }^{\prime}$ 211' CARBONACEOUS FINE MATRLX BRECCIA
Fault: Large 6 cm . angular to semi-rounded white quartz, clasts occur scattered within a fine, carbonaceous silica-clay matrix. Silicification is general. Shearing appears at approximately 40° to c.a.

211' 230' CARBONACEOUS OUARTZBRECCIA
Brecciated throughout in varying intensity, resulting in a fine to coarse grained quartz breccia, primarily composed of sub-rounded to angular gravelly quartz. Dispersed throughout are visibly crushed white quartz masses that have been strung out to some degree. Between 211'-214', one of these features continues for 10 cm ., associated with fine pyrite to 4%.
$223^{\prime}-224^{\prime}$: Brecciated quartz veining with clay alteration enveloping the fragments. $2251^{1 / 2}-229^{\prime}$: To 4 cm . quartz veined clasts in a gritty clay matrix. $229^{\prime}-230^{\prime}$: A rapid fining of quartz fragments within the clay matrix.
The nature of the core and associated alteration created unmanageable sanding problems. We do not have the ability to case to this depth, or reduce.

HOLE Km 410-04 ASSAY INTERVAL NUMBERS

FROM	TO	
61^{\prime}	63^{\prime}	053501
631/2'	69^{\prime}	053502
69'	74^{\prime}	053503
74^{\prime}	79^{\prime}	053504
79^{\prime}	84^{\prime}	053505
84^{\prime}	90^{\prime}	053506
90^{\prime}	95^{\prime}	053507
95^{\prime}	100^{\prime}	053508
100^{\prime}	105'	053509
105^{\prime}	108^{\prime}	053510
108^{\prime}	113'	053511
113^{\prime}	118'	053512
118^{\prime}	123'	053513
123^{\prime}	$129{ }^{\prime}$	053514
129^{\prime}	1311/3'	053515
$1311 / 3^{\prime}$	1361/3'	053516
1361/3 ${ }^{\prime}$	$1411 / 2^{\prime}$	053517
$1411 / 3^{\prime}$	1461/3'	053518

FROM TO

1461/3'	1511/3'	053519
1511/3'	156^{\prime}	053520
$156{ }^{\prime}$	161^{\prime}	053521
161^{\prime}	166^{\prime}	053522
166^{\prime}	171^{\prime}	053523
$171{ }^{\prime}$	$176{ }^{\prime}$	053524
$176{ }^{\prime}$	181'	053525
181'	$186{ }^{\prime}$	053526
186'	191^{\prime}	053527
191'	196'	053528
196'	$201{ }^{\prime}$	053529
$201{ }^{\prime}$	208^{\prime}	053530
208'	210^{\prime}	053531
210^{\prime}	$2111 / 2^{\prime}$	053532
$2111 / 2^{\prime}$	$214{ }^{\prime}$	053533
$214{ }^{\prime}$	221^{\prime}	053534
221^{\prime}	225'	053535
225^{\prime}	230^{\prime}	053536

Hole \#3-47½

Hole \#3-59'

Hole \#3-72½ 2^{\prime}

Hole \#3-125'

Hole \#2-45'

n-	
anter	
-	
-	
antortata	
-	

APPENDIX 2

DIAMOND DRILL HOLE CROSS SECTIONS

SCALE: I:500

APPENDIX 3

ANALYTICAL RESULTS

Total \# rages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010

Account: TFi

minerals

Project: Canyon Gold

ALS Canada Ltd.

Project: Canyon Cold
minerals
CERTIFICATE OF ANALYSIS WH10112967

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{Hg}-\mathrm{CV} 41 \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { in } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Li } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mo } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Nb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { P } \\ \text { ppm } \\ 10 \end{gathered}$
479176		19.85	0.20	3.8	0.50	0.071	2.37	48.6	78.4	0.95	506	2.63	0.20	23.6	40.3	1020
479177		15.90	0.17	2.6	0.45	0.059	2.55	38.1	96.1	1.90	671	0.84	0.18	15.1	33.6	820
479178		4.48	0.07	0.7	0.12	0.011	1.00	14.0	58.1	4.26	277	0.40	0.05	3.1	8.7	580
479179		3.69	0.05	0.6	0.09	0.008	0.71	12.1	88.0	4.41	186	0.35	0.04	2.3	6.6	520
479180		5.29	0.06	0.8	0.16	0.008	1.44	14.8	62.4	1.44	150	0.44	0.06	3.5	11.4	110
479181		18.65	0.16	3.4	0.29	0.063	2.43	42.1	97.4	1.46	623	1.56	0.36	23.7	36.0	1170
479182		23.8	0.20	4.2	0.41	0.087	2.94	53.8	55.7	0.99	539	4.11	0.37	24.3	46.3	1160
479183		22.8	0.21	8.1	0.24	0.107	2.18	89.3	66.6	0.53	445	5.54	0.34	39.8	17.2	390
479184		17.05	0.17	3.9	0.19	0.060	1.92	44.8	68.5	0.86	482	2.48	0.24	19.5	29.7	1390
479185		16.45	0.19	2.9	0.44	0.054	1.99	38.4	93.1	0.88	574	1.04	0.43	19.0	35.8	930
479186		20.8	0.18	3.4	0.50	0.069	2.68	43.8	73.8	0.86	506	1.52	0.41	21.2	43.4	970
479187		20.8	0.19	3.3	0.38	0.073	2.88	45.4	78.1	0.86	499	1.46	0.34	18.9	44.9	700
479188		22.1	0.21	3.4	0.50	0.074	2.45	46.7	85.3	1.50	748	2.96	0.55	22.2	54.3	1120
479189		20.1	0.19	3.4	0.39	0.076	2.14	42.4	60.9	1.74	857	2.60	0.86	29.8	60.2	1430
479190		19.95	0.21	3.6	0.57	0.077	2.15	45.2	118.5	1.90	902	3.28	0.98	33.5	57.5	1500
479191		21.3	0.19	3.3	0.44	0.074	2.17	44.7	91.8	1.30	668	2.69	0.66	23.8	55.4	1020
479192		20.2	0.19	2.9	0.30	0.069	1.98	42.6	69.0	1.09	566	2.84	0.69	20.2	59.6	930
479193		22.9	0.21	3.6	0.43	0.079	2.40	47.5	88.8	1.03	572	2.45	0.67	23.7	55.8	910
479194		21.1	0.20	3.2	0.40	0.073	2.42	45.1	61.7	1.21	641	2.78	0.60	22.9	52.6	1010
479195		26.3	0.25	8.3	0.23	0.117	3.18	109.0	42.2	0.18	299	2.39	0.14	43.9	3.4	140
479196		22.6	0.23	3.7	0.36	0.076	2.49	49.6	60.7	1.04	570	4.69	0.63	22.9	49.3	890

AlS Canada Ltd
2103 Doilarton Hwy
CARLOS，ALLEN
275 ALSEK RD
WHITEHORSE YT Y1A 4T1

Project：Canyon Cold
CERTIFICATE OF ANALYSIS WH10112967

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Re } \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ti} \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{T} \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ U \\ \text { ppm } \\ 0.1 \end{gathered}$
479176		19.6	184.5	＜0．002	0.10	6.70	12.2	3	3.7	157.5	1.61	＜0．05	13.8	0.488	0.97	4.1
479177		16.1	185.0	＜0．002	0.18	4.16	11.2	2	2.6	230	1.06	＜0．05	11.0	0.400	1.02	3.2
479178		5.1	57.0	＜0．002	0.14	4.63	2.3	2	0.7	487	0.24	＜0．05	3.1	0.071	0.52	0.9
479179		4.7	47.9	＜0．002	0.17	4.82	2.0	3	0.6	473	0.18	＜0．05	2.5	0.052	0.48	0.8
479180		6.4	84.6	＜0．002	0.21	6.23	2.3	2	0.8	296	0.26	＜0．05	3.3	0.081	0.96	0.9
479181		14.9	181.5	＜0．002	0.14	5.33	12.0	3	2.8	202	1.58	＜0．05	11.5	0.537	1.02	3.4
479182		24.7	248	＜0．002	0.42	12.15	15.2	3	4.0	144.0	1.68	0.06	16.1	0.547	1.42	4.7
479183		32.7	152.0	0.002	0.09	4.23	6.7	3	7.9	150.0	2.77	＜0．05	28.1	0.272	0.86	8.1
479184		21.0	148.0	＜0．002	0.13	3.70	9.8	3	3.5	120.0	1.38	＜0．05	13.8	0.351	0.84	4.2
479185		16.5	155.5	＜0．002	0.14	4.51	11.6	2	2.5	117.0	1.29	＜0．05	10.9	0.443	0.92	3.3
479186		20.5	212	0.002	0.17	5.12	14.3	3	3.2	126.5	1.47	0.05	13.7	0.495	1.28	4.2
479187		20.4	223	0.002	0.16	4.43	14.5	3	3.3	125.5	1.34	＜0．05	14.1	0.475	1.31	4.2
479188		20.2	181.5	0.002	0.19	5.91	16.3	3	3.4	193.5	1.52	＜0．05	13.9	0.540	1.06	4.1
479189		15.2	132.5	＜0．002	0.13	4.85	15.3	3	2.8	260	1.97	0.05	11.1	0.704	0.85	3.3
479190		13.7	140.0	＜0．002	0.22	5.79	15.0	3	2.7	312	2.16	＜0．05	10.7	0.774	0.85	3.1
479191		19.3	146.5	＜0．002	0.13	4.75	15.9	3	3.1	216	1.63	0.06	13.0	0.576	0.92	3.9
479192		22.0	139.5	＜0．002	0.12	4.99	14.7	3	3.1	161.5	1.36	0.06	12.3	0.487	0.91	3.7
479193		24.7	173.0	0.002	0.18	4.48	15.9	3	3.5	163.5	1.66	0.05	14.6	0.561	1.06	5.1
479194		18.1	164.5	＜0．002	0.14	4.34	15.4	3	3.0	188.5	1.57	0.05	12.8	0.556	1.01	3.6
479195		37.9	187.5	0.002	0.16	2.29	3.2	3	6.5	48.1	2.76	＜0．05	27.0	0.146	0.99	5.5
479196		20.0	184.5	0.002	0.13	3.81	15.3	3	3.6	142.0	1.54	0.06	14.3	0.486	1.04	4.1

275 ALSEK RD

WHITEHORSE YT Y1A 4T1

Total \# Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TF

CERTIFICATE OF ANALYSIS WH10112967

**** See Appendix Page for comments regarding this certificate *****

CERTIFICATE OF ANALYSIS WH10112969

-**** See Appendix Page for comments regarding this certificate *****

Page: $2-\mathrm{C}$
Total \# Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2010 Account: TFI

Project: Canyon Gold
CERTIFICATE OF ANALYSIS WH10112969

ample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{P} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \operatorname{Re} \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { pPm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ T \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { TI } \\ \text { Ppm } \\ 0.02 \end{gathered}$
479197		160	31.0	197.5	<0.002	0.04	1.69	3.9	3	6.8	62.2	2.86	<0.05	24.2	0.166	0.95
479198		770	23.9	214	<0.002	0.29	4.51	13.8	3	4.3	153.5	1.91	0.05	15.3	0.446	1.09
479199		260	9.3	83.1	<0.002	0.09	2.52	7.8	3	1.8	137.0	0.77	<0.05	6.6	0.280	0.50
479200		1160	23.7	209	<0.002	0.15	3.59	13.1	3	4.5	129.0	2.05	0.05	15.9	0.454	1.03
479201		600	21.4	175.5	<0.002	0.12	3.15	12.6	3	5.1	128.5	2.20	0.06	17.2	0.398	0.93
479202		900	22.3	169.0	<0.002	0.16	5.88	16.6	3	3.8	142.0	1.58	0.05	14.2	0.511	1.08
479203		800	23.0	189.5	<0.002	0.13	4.78	16.5	3	3.7	128.0	1.46	0.05	14.1	0.483	1.19
479204		950	21.2	155.5	<0.002	0.14	4.11	13.8	3	3.4	115.5	1.39	<0.05	12.9	0.391	0.99
479205		2300	28.4	170.5	<0.002	0.35	5.37	19.1	5	4.2	148.5	1.68	0.06	16.5	0.508	1.32
479206		600	26.1	181.5	<0.002	0.13	4.13	16.3	4	4.0	120.5	1.52	0.05	15.6	0.480	1.10
479207		730	19.9	153.5	<0.002	0.13	3.16	15.1	3	3.1	128.0	1.24	0.05	12.0	0.431	0.91
479208		730	19.3	121.0	<0.002	0.10	2.90	14.0	3	2.9	142.5	1.20	0.05	11.0	0.406	0.77
479209		950	23.4	152.0	<0.002	0.20	3.87	16.2	4	3.6	159.0	1.46	<0.05	12.7	0.506	0.88
479210		990	20.6	151.5	<0.002	0.11	3.23	15.7	3	3.5	144.0	1.45	<0.05	12.8	0.466	0.87
479211		1050	20.7	144.0	0.002	0.10	3.54	16.5	3	3.6	184.0	1.58	0.05	13.5	0.564	0.88
479212		1140	20.1	142.5	0.002	0.12	3.10	15.7	3	3.4	164.5	1.44	0.05	13.6	0.522	0.89
479213		950	19.9	116.0	0.002	0.11	2.52	13.7	2	3.5	222	1.34	0.05	12.1	0.447	0.75
479214		1220	17.6	143.5	0.002	0.16	3.30	12.2	2	3.0	201	1.16	<0.05	11.0	0.407	0.88
479215		910	20.6	146.5	0.002	0.11	3.01	15.1	2	3.6	146.0	1.32	0.05	13.1	0.472	0.87
479216		320	26.1	106.0	0.002	0.01	0.73	5.3	2	7.1	293	2.47	<0.05	22.8	0.244	0.57
479217		240	28.3	127.0	0.002	0.01	0.75	5.8	2	8.1	199.0	2.75	<0.05	25.5	0.277	0.64

2103 Dollarton Hwy
CARLOS, ALLEN
275 ALSEK RD
WHITEHORSE YT Y1A 4T1

Project: Canyon Gold
nimerals
CERTIFICATE OF ANALYSIS WH10112969

:\#\#** See Appendix Paqe for comments reqarding this certificate *****

ample Description	Method Analyte Units LOR	$\begin{gathered} \text { WE1-21 } \\ \text { Recvd Wt. } \\ \text { kg } \\ 0.02 \end{gathered}$	$\begin{gathered} A u-A A 24 \\ \text { Au } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { pPm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { As } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Bi } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { Ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cs } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
479151		1.66	<0.005	0.11	6.54	5.3	550	0.99	0.06	2.00	0.06	33.9	7.2	15	3.51	21.1
479152		0.92	<0.005	0.18	7.06	16.6	930	1.72	0.18	2.68	0.26	67.6	12.1	57	5.65	26.6
479153		0.35	<0.005	0.04	3.41	6.7	860	0.56	0.16	2.98	0.05	47.3	2.6	12	0.58	10.0
479154		1.49	<0.005	0.19	6.97	18.7	980	1.77	0.19	2.27	0.20	74.5	11.3	59	6.14	25.7
479155		0.52	<0.005	0.12	6.35	4.8	810	1.02	0.03	1.61	0.03	39.4	5.2	4	4.25	5.4
479156		0.63	<0.005	0.17	7.26	13.3	1140	1.69	0.17	2.46	0.34	73.3	12.0	55	5.68	26.9
479157		0.47	<0.005	0.05	6.55	4.5	830	1.11	0.06	2.27	0.05	41.8	6.8	14	4.52	10.5
479158		2.77	<0.005	0.15	6.86	14.9	1070	1.99	0.22	2.05	0.33	76.9	11.7	62	5.45	23.5
479159		1.84	<0.005	0.13	6.41	4.9	760	1.58	0.19	2.10	0.09	61.1	11.7	70	2.69	21.4
479160		1.16	<0.005	0.20	7.27	11.1	1020	2.41	0.23	2.24	0.33	81.0	13.8	81	10.75	27.0
479161		1.25	<0.005	0.18	6.71	11.4	1110	1.97	0.20	2.41	0.30	73.7	14.2	75	6.51	26.7
479162		1.18	<0.005	0.16	6.56	3.9	770	1.30	0.11	2.81	0.10	52.2	15.8	129	2.48	28.2
479163		1.75	0.005	0.18	6.91	9.2	1040	2.31	0.24	1.90	0.25	94.1	10.9	64	5.70	22.5
479164		1.26	<0.005	0.17	6.57	12.8	970	2.04	0.19	2.32	0.27	76.6	13.0	69	5.39	26.3
479165		1.71	<0.005	0.17	6.33	11.7	850	1.94	0.17	2.24	0.26	68.9	12.8	66	5.38	25.8
479166		1.23	<0.005	0.52	6.76	9.4	1120	2.14	0.26	2.26	0.22	74.5	13.1	80	5.43	25.2
479167		0.87	<0.005	0.20	7.01	7.8	1150	2.69	0.36	1.34	0.23	115.0	11.6	56	6.63	24.3
479168		1.70	<0.005	0.16	7.37	14.0	1120	2.64	0.23	2.33	0.26	86.7	17.0	72	7.28	25.0
479169		1.38	<0.005	0.15	7.10	16.0	1280	2.44	0.21	2.55	0.25	80.0	14.9	69	6.44	24.8
479170		1.60	<0.005	0.24	7.39	12.4	1120	2.55	0.24	2.18	0.28	91.8	14.0	71	6.32	23.8
479171		1.49	0.005	0.24	7.38	12.3	1040	2.22	0.19	2.44	0.27	74.9	15.7	82	6.75	25.1
479172		1.78	<0.005	0.22	7.42	13.2	1050	2.19	0.22	2.40	0.30	73.8	15.2	82	6.48	27.0
479173		1.38	<0.005	0.29	7.56	8.8	980	1.83	0.16	3.68	0.25	71.2	17.7	85	7.28	26.0
479174		1.70	<0.005	0.26	7.40	15.1	1090	2.00	0.21	2.70	0.30	71.5	17.6	94	6.05	27.5
479175		1.32	<0.005	0.22	7.39	22.7	1260	2.13	0.21	2.78	0.29	76.5	15.6	80	6.03	27.9

minerals

Project: Canyon Gold
CERTIFICATE OF ANALYSIS WH10112966

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{Hg}-\mathrm{CV} 41 \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { in } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { K } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { LI } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mo } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Nb } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$
479151		2.65	14.75	0.13	1.0	0.73	0.040	1.60	15.7	30.1	0.77	523	0.72	0.98	7.7	6.3
479152		3.43	17.20	0.19	2.1	0.59	0.052	2.01	33.6	30.9	1.31	724	1.45	1.03	11.8	28.7
479153		1.14	7.06	0.12	1.4	0.16	0.010	1.63	23.4	14.6	0.31	463	0.22	1.01	4.0	5.1
479154		3.37	17.20	0.21	2.2	0.29	0.049	1.98	37.4	29.9	1.34	707	1.55	0.95	11.5	29.0
479155		2.25	14.90	0.16	0.9	0.60	0.039	1.81	18.7	23.4	0.56	428	0.45	1.07	7.7	4.0
479156		3.61	17.65	0.21	2.3	0.70	0.055	2.25	35.7	29.0	1.25	760	1.65	1.06	12.3	27.8
479157		2.61	14.85	0.19	0.9	0.45	0.036	1.60	20.7	22.0	0.68	562	0.42	1.49	7.8	7.1
479158		3.47	17.65	0.22	2.7	0.21	0.059	2.11	37.6	30.5	1.18	596	1.36	1.04	14.0	31.8
479159		3.00	16.50	0.18	2.4	0.14	0.047	2.29	28.4	23.1	1.52	556	0.71	1.56	11.8	23.1
479160		3.97	18.50	0.22	3.4	0.29	0.067	2.06	39.7	36.9	1.45	677	1.87	0.95	16.3	46.0
479161		3.59	17.00	0.22	3.0	0.15	0.060	1.93	36.3	32.6	1.34	652	1.71	0.86	13.2	43.1
479162		3.58	15.10	0.18	1.7	0.13	0.041	1.81	25.4	26.2	2.10	644	0.73	1.59	7.8	39.5
479163		3.21	17.85	0.23	3.7	0.16	0.072	2.12	46.7	32.1	1.22	586	1.63	1.24	18.4	35.1
479164		3.51	16.70	0.22	2.9	0.19	0.058	1.94	38.2	32.6	1.34	691	1.62	0.91	14.8	38.6
479165		3.49	15.45	0.20	2.8	0.13	0.054	1.75	33.9	33.1	1.34	663	1.73	0.86	14.7	37.4
479166		3.32	17.35	0.21	2.9	0.23	0.064	2.07	36.7	33.5	1.26	582	1.28	1.08	14.9	43.6
479167		2.92	21.9	0.19	3.8	0.18	0.084	2.66	62.1	39.0	1.11	437	1.86	1.18	24.8	36.7
479168		3.89	22.3	0.21	3.0	0.15	0.078	2.19	42.9	41.9	1.39	685	1.93	1.07	20.7	42.6
479169		3.60	20.3	0.20	2.8	0.22	0.071	2.11	39.7	40.0	1.35	727	1.64	1.03	18.6	38.8
479170		3.71	19.50	0.16	3.6	0.14	0.070	2.24	49.4	39.6	1.37	693	2.19	1.05	18.9	41.1
479171		4.09	17.90	0.17	3.2	0.13	0.060	1.98	40.5	40.9	1.52	698	1.94	1.02	18.2	43.7
479172		4.15	18.25	0.17	3.1	0.12	0.065	2.03	38.8	41.0	1.54	734	1.90	1.01	16.7	44.2
479173		5.01	17.00	0.15	3.0	0.11	0.066	1.86	38.2	40.5	2.08	1020	1.92	1.33	24.3	44.1
479174		4.31	17.90	0.17	3.1	0.12	0.061	1.92	38.3	41.5	1.72	756	2.09	1.12	18.8	46.4
479175		4.08	18.10	0.19	3.0	0.19	0.063	1.94	41.4	41.5	1.55	810	2.03	1.04	17.8	41.7

minerals

Project: Canyon Gold
CERTIFICATE OF ANALYSIS WH10112966

ample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \mathbf{P} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Re } \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ 5 \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Sc } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { pPm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ T i \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Tl } \\ \text { ppm } \\ 0.02 \end{gathered}$
479151		280	6.2	55.9	<0.002	0.14	4.47	13.4	1	1.1	188.5	0.60	<0.05	5.9	0.213	0.34
479152		600	16.8	91.3	0.002	0.22	2.82	12.8	2	2.2	227	0.84	<0.05	11.6	0.321	0.50
479153		90	13.9	50.7	<0.002	0.16	0.84	2.9	1	0.8	208	0.34	<0.05	10.7	0.101	0.29
479154		590	18.8	97.0	0.002	0.21	2.56	11.8	1	2.2	211	0.83	<0.05	12.9	0.294	0.53
479155		230	6.3	76.0	<0.002	0.14	3.01	11.2	1	1.1	186.0	0.61	<0.05	6.9	0.169	0.39
479156		800	21.2	95.5	0.002	0.27	2.49	12.9	2	2.3	222	0.86	<0.05	12.3	0.335	0.62
479157		290	6.9	72.7	0.002	0.12	3.11	11.8	1	1.2	210	0.58	<0.05	7.3	0.206	0.35
479158		650	25.8	99.9	0.002	0.16	1.67	12.4	2	2.4	217	0.96	<0.05	11.6	0.341	0.57
479159		460	16.2	96.7	0.002	0.18	0.51	11.6	1	2.1	153.0	0.85	<0.05	10.8	0.266	0.55
479160		890	18.5	107.0	0.002	0.19	1.84	13.5	2	2.9	251	1.13	<0.05	11.3	0.434	0.62
479161		810	17.3	98.7	0.003	0.18	1.55	12.6	2	2.4	251	0.90	<0.05	10.6	0.392	0.58
479162		560	13.8	78.9	<0.002	0.12	0.49	15.5	1	1.7	242	0.57	<0.05	8.9	0.287	0.40
479163		650	17.5	98.6	0.003	0.16	1.38	11.1	2	3.4	219	1.22	<0.05	12.8	0.336	0.64
479164		750	15.9	95.4	0.002	0.16	1.43	11.9	2	2.5	241	1.02	<0.05	11.0	0.383	0.55
479165		800	13.8	86.7	0.002	0.16	1.36	11.6	2	2.2	240	1.02	<0.05	9.8	0.398	0.52
479166		630	20.0	98.1	0.003	0.13	1.37	12.3	2	3.0	257	1.08	<0.05	11.3	0.360	0.56
479167		500	26.1	121.5	<0.002	0.11	1.37	11.7	2	4.1	185.5	1.61	<0.05	17.1	0.305	0.65
479168		870	19.7	114.5	0.002	0.16	1.61	15.2	3	3.2	276	1.27	<0.05	12.4	0.427	0.62
479169		760	18.2	104.5	<0.002	0.17	1.57	14.0	2	2.9	273	1.15	<0.05	11.7	0.398	0.59
479170		790	20.4	104.0	0.002	0.17	1.68	12.6	2	3.2	250	1.30	<0.05	14.2	0.411	0.68
479171		990	17.2	90.9	0.002	0.17	1.59	12.9	3	2.5	285	1.25	<0.05	12.0	0.482	0.61
479172		1000	17.6	91.4	0.002	0.18	1.61	13.2	2	2.6	267	1.15	<0.05	12.1	0.465	0.61
479173		1330	13.6	75.2	<0.002	0.17	1.43	13.1	2	2.3	379	1.61	<0.05	9.8	0.624	0.50
479174		1050	16.0	87.3	0.002	0.18	1.70	13.4	2	2.5	290	1.33	<0.05	11.4	0.497	0.56
479175		940	18.9	93.6	0.002	0.24	2.08	13.6	2	2.6	295	1.23	<0.05	12.6	0.450	0.65

ample Description	Method Analyte Units LOR	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 w ppm 0.1	$\begin{gathered} \text { ME-MS61 } \\ Y \\ \text { ppm } \\ 0.1 \\ \hline \end{gathered}$	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5
479151		1.5	54	2.0	15.9	44	22.1
479152		3.2	84	2.0	17.6	77	69.7
479153		1.4	18	0.6	8.4	15	43.5
479154		3.0	79	2.1	17.0	78	70.3
479155		1.2	33	1.9	17.3	42	18.4
479156		3.6	88	2.0	18.2	93	79.0
479157		1.5	45	1.2	16.3	46	23.9
479158		3.1	82	2.1	21.6	121	91.3
479159		2.2	71	1.5	16.1	61	71.0
479160		3.3	100	2.5	25.4	96	117.0
479161		2.9	97	2.1	22.1	87	108.0
479162		1.8	96	1.4	13.0	60	47.3
479163		3.3	75	2.3	26.3	88	121.5
479164		2.9	86	2.1	22.1	88	101.5
479165		2.6	88	1.9	20.8	81	98.4
479166		3.1	84	4.5	24.5	77	98.0
479167		4.3	69	2.5	34.4	89	127.0
479168		3.1	95	2.4	26.9	93	121.5
479169		3.0	88	2.4	24.7	90	110.5
479170		3.8	90	2.4	28.5	92	113.0
479171		3.2	105	2.3	24.5	89	104.0
479172		3.3	108	2.3	24.1	95	102.5
479173		2.7	119	1.9	23.6	87	103.5
479174		3.1	111	2.4	23.2	95	97.0
479175		3.3	103	2.4	24.0	91	99.8

Total \# Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 10-SEP-2010
Account: TFI
Project: Canyon Gold
CERTIFICATE OF ANALYSIS WH10112968

CERTIFICATE OF ANALYSIS WH10112968

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{Hg}-\mathrm{CV} 41 \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { in } \\ \text { pPm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { K } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Li } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Mo } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Nb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$
479218		3.40	18.25	0.19	2.3	0.24	0.046	2.43	43.7	22.6	1.05	559	0.39	1.02	12.2	22.5
479219		3.25	18.80	0.19	2.7	0.41	0.048	2.52	42.7	22.2	0.98	486	0.40	0.96	12.9	22.2
479220		3.34	18.95	0.19	2.3	0.39	0.048	2.41	42.5	21.9	0.99	544	0.52	1.27	13.0	23.0
479221		2.83	16.70	0.16	2.0	0.27	0.042	2.03	37.1	22.0	0.77	536	0.41	1.38	10.4	17.5
479222		3.31	18.30	0.17	2.2	0.26	0.050	2.43	38.6	22.1	0.96	549	0.40	1.13	11.9	19.4
479223		4.03	18.40	0.15	1.4	0.17	0.050	2.06	24.8	21.5	1.18	649	0.60	1.71	11.0	13.5
479224		3.38	17.00	0.16	1.9	0.23	0.048	2.26	31.8	21.6	1.10	554	0.62	1.36	13.0	17.3
479225		3.61	17.15	0.17	1.9	0.27	0.049	2.34	31.6	22.7	1.11	632	0.65	1.34	13.1	15.7
479226		3.44	18.35	0.20	2.1	0.23	0.049	2.38	39.0	21.3	1.02	536	0.43	1.28	13.6	20.9
479227		3.40	19.50	0.19	2.4	0.26	0.052	2.60	48.9	22.2	1.00	498	0.39	1.12	13.5	23.5
479228		3.33	17.75	0.16	2.6	0.22	0.050	2.81	39.4	22.2	1.05	601	0.97	1.31	15.5	23.2
479229		3.51	17.70	0.19	3.0	0.45	0.040	3.46	47.5	18.6	1.05	667	1.44	1.35	23.5	15.0
479230		3.28	17.05	0.18	2.4	0.39	0.044	2.98	41.3	21.8	1.04	643	1.07	1.26	18.4	18.4
479231		3.31	16.25	0.18	2.8	0.44	0.035	3.09	48.5	16.4	1.03	725	1.33	1.48	21.6	12.3
479232		3.59	16.95	0.13	2.4	0.28	0.048	2.79	33.1	18.9	1.21	708	1.12	1.44	18.3	14.7
479233		3.61	17.50	0.18	2.9	0.36	0.042	3.35	42.5	17.3	1.09	700	1.70	1.63	24.6	11.4
479234		3.43	16.40	0.14	1.9	0.25	0.045	2.30	31.4	21.1	1.08	641	0.71	1.51	14.1	14.0
479235		3.80	16.15	0.14	1.8	0.19	0.049	2.45	28.0	19.1	1.29	757	0.81	1.58	13.9	13.3
479236		3.79	16.95	0.17	1.8	0.26	0.051	2.20	32.7	22.4	1.29	720	0.57	1.46	12.3	16.9
479237		3.63	16.45	0.13	1.5	0.15	0.044	2.08	24.7	21.3	1.19	634	0.54	1.72	11.4	16.2
479238		3.67	16.75	0.15	1.6	0.20	0.050	2.03	28.8	21.2	1.20	661	0.50	1.56	10.6	16.2
479239		3.32	17.55	0.17	2.0	0.28	0.048	2.26	31.7	21.2	1.05	612	0.50	1.31	13.1	16.9
479240		3.37	17.60	0.16	1.9	0.21	0.047	2.34	35.2	20.4	1.08	581	0.45	1.28	12.6	17.1
479241		3.66	18.20	0.16	1.8	0.17	0.051	2.28	33.0	23.0	1.13	841	0.48	1.63	11.7	16.0
479242		3.34	17.80	0.15	1.8	0.50	0.049	2.18	33.6	21.6	1.02	595	0.60	1.26	11.4	22.7
479243		3.38	19.50	0.19	2.6	0.18	0.051	2.40	39.3	24.6	1.03	660	0.38	1.21	14.1	22.0
479244		3.48	18.45	0.16	2.1	0.20	0.051	2.46	30.2	22.6	1.07	593	0.48	1.33	14.4	18.7
479245		3.60	19.30	0.16	2.6	0.37	0.049	2.99	40.0	21.9	1.09	664	0.94	1.37	21.0	22.1

Project: Canyon Cold

minerals
CERTIFICATE OF ANALYSIS WH10112968

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ p \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { PPm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS6I } \\ \operatorname{Re} \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ 5 \\ \mathscr{\%} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { pPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { PPm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ T \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Tl} \\ \text { ppm } \\ 0.02 \end{gathered}$
479218		450	22.8	121.0	<0.002	0.28	0.93	12.3	2	2.2	192.0	0.93	<0.05	17.6	0.280	0.64
479219		410	26.4	123.0	<0.002	0.27	0.78	10.8	2	2.4	176.0	1.01	<0.05	18.1	0.285	0.65
479220		420	29.4	120.5	<0.002	0.30	1.00	12.4	2	2.3	209	1.02	<0.05	18.4	0.277	0.64
479221		340	18.8	98.7	<0.002	0.16	1.05	10.9	2	1.9	231	0.81	<0.05	15.3	0.234	0.48
479222		410	20.4	112.5	<0.002	0.22	0.84	12.2	2	2.2	181.0	0.93	<0.05	16.0	0.281	0.61
479223		490	12.2	84.0	<0.002	0.13	1.58	16.7	2	1.9	228	0.81	4.05	10.9	0.300	0.54
479224		430	19.0	105.0	<0.002	0.20	1.71	13.6	2	2.3	212	0.98	<0.05	15.8	0.266	0.62
479225		450	19.3	112.5	<0.002	0.17	1.89	13.9	2	2.5	235	0.99	<0.05	16.0	0.272	0.68
479226		430	19.4	120.0	<0.002	0.23	1.23	12.4	2	2.3	201	1.04	<0.05	16.5	0.290	0.63
479227		450	24.7	137.0	<0.002	0.26	1.09	11.7	2	2.7	196.0	1.07	<0.05	18.5	0.291	0.68
479228		500	24.0	124.0	<0.002	0.26	1.70	10.8	2	3.0	219	1.18	40.05	20.3	0.270	0.74
479229		580	35.1	152.5	<0.002	0.23	2.47	8.9	2	4.1	223	1.82	0.10	35.1	0.269	0.89
479230		540	31.8	131.0	<0.002	0.27	2.53	9.3	2	3.3	228	1.43	0.07	24.2	0.277	0.79
479231		510	40.3	141.0	<0.002	0.23	2.69	8.4	3	3.9	242	1.76	0.07	33.5	0.241	0.81
479232		510	25.7	120.5	<0.002	0.23	2.49	12.0	2	3.3	229	1.40	0.07	22.7	0.258	0.77
479233		570	69.7	148.5	<0.002	0.20	2.58	10.0	2	4.2	232	1.95	0.19	35.2	0.276	0.93
479234		410	20.9	105.5	<0.002	0.19	2.16	12.9	2	2.5	244	1.12	<0.05	18.3	0.267	0.64
479235		470	14.3	100.0	<0.002	0.14	2.01	14.3	2	2.5	234	1.08	<0.05	16.0	0.274	0.61
479236		430	19.6	103.5	<0.002	0.20	1.80	15.2	2	2.2	244	0.95	<0.05	16.1	0.281	0.58
479237		410	14.1	85.3	<0.002	0.15	1.71	15.0	2	2.0	239	0.89	<0.05	11.5	0.270	0.54
479238		400	14.5	102.0	<0.002	0.17	1.65	16.1	3	1.8	241	0.79	<0.05	12.0	0.271	0.52
479239		410	19.3	109.0	<0.002	0.20	1.71	12.7	2	2.3	221	0.98	<0.05	14.5	0.283	0.59
479240		420	19.8	113.0	<0.002	0.21	1.69	13.2	2	2.2	196.5	0.97	<0.05	15.2	0.278	0.59
479241		410	25.3	104.0	<0.002	0.20	1.23	16.2	1	1.9	214	0.88	<0.05	14.6	0.294	0.56
479242		430	52.9	105.0	<0.002	0.26	1.33	13.6	2	2.1	236	0.89	<0.05	14.1	0.281	0.59
479243		420	24.8	116.0	<0.002	0.22	1.24	13.5	2	2.5	219	1.07	<0.05	17.1	0.287	0.68
479244		460	22.9	99.3	<0.002	0.21	1.60	12.4	2	2.5	225	1.12	<0.05	14.2	0.298	0.65
479245		600	27.4	129.5	<0.002	0.25	2.62	10.8	2	3.5	232	1.56	0.06	23.7	0.314	0.80

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com
To: CARLOS, ALLEN
275 ALSEK RD
WHITEHORSE YT Y1A 4T1
Page: 2 - D
Total \# Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-SEP-2010

Account: TFI
Project: Canyon Gold
CERTIFICATE OF ANALYSIS WH10112968

\& See Appendix Page for comments regarding this certificate *****

Project: Canyon Cold
CERTIFICATE OF ANALYSIS WH10121226

ample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	$\begin{gathered} A u-A A 24 \\ \text { Au } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { AI } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { AS } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Ba } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Bi } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Ce } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cr } \\ \text { ppm } \\ I \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cs } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
053501		0.78	0.008	0.39	8.17	75.2	1350	2.78	0.31	0.51	0.43	81.8	16.4	85	8.52	34.2
053502		1.99	0.007	0.22	9.12	15.1	1610	3.38	0.32	0.54	0.59	99.0	17.8	97	10.25	39.7
053503		0.12	<0.005	0.14	8.90	14.3	1420	2.85	0.29	1.65	0.46	92.1	23.8	93	8.15	38.7
053504		1.40	<0.005	0.06	6.49	10.4	640	1.46	0.07	3.71	0.19	60.6	26.0	106	2.03	50.3
053505		1.67	<0.005	0.07	6.60	11.4	690	1.61	0.06	3.68	0.18	62.2	23.7	105	1.56	44.5
053506		1.50	<0.005	0.08	7.23	9.1	870	2.20	0.07	3.06	0.19	68.0	26.8	112	2.42	58.2
053507		1.76	0.005	0.13	4.50	12.4	670	1.19	0.14	1.52	0.21	42.6	10.6	59	2.27	31.2
053508		1.98	<0.005	0.12	4.41	8.0	670	1.01	0.13	1.57	0.27	36.6	8.6	69	2.43	22.6
053509		1.50	<0.005	0.12	4.45	5.8	730	1.09	0.12	1.05	0.19	39.1	6.8	50	2.77	18.5
053510		0.89	<0.005	0.13	5.07	5.7	770	1.29	0.17	0.96	0.25	47.9	9.2	59	3.51	22.8
053511		1.61	<0.005	0.19	8.86	7.6	1310	2.47	0.22	0.72	0.52	84.4	15.4	114	8.27	38.2
053512		1.80	<0.005	0.14	4.90	5.3	670	1.30	0.14	1.05	0.34	44.7	9.7	62	3.56	31.4
053513		1.87	<0.005	0.17	4.83	9.6	650	1.25	0.21	1.89	0.39	41.9	11.0	71	3.15	36.8
053514		2.01	<0.005	0.14	4.87	9.5	670	1.23	0.16	1.72	0.39	47.5	10.4	64	3.02	32.6
053515		0.71	<0.005	0.12	7.85	7.7	830	1.69	0.06	4.92	0.21	69.6	34.0	126	1.92	52.9
053516		1.72	<0.005	0.14	4.49	6.2	630	1.09	0.17	1.60	0.32	40.9	8.5	55	2.84	31.2
053517		1.73	<0.005	0.11	5.01	6.8	740	1.22	0.13	1.14	0.23	44.3	8.5	55	2.80	23.2
053518		1.78	<0.005	0.10	4.53	10.1	700	0.87	0.09	1.21	0.14	34.9	5.3	57	1.76	13.5

Project: Canyon Gold
CERTIFICATE OF ANALYSIS WH10121226

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{p} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \operatorname{Re} \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Ta } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ T i \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Tl } \\ \text { pPm } \\ 0.02 \end{gathered}$
053501		1260	34.7	101.0	0.003	0.89	4.71	14.7	3	3.3	140.5	1.03	0.09	11.4	0.334	1.11
053502		1150	28.4	116.5	<0.002	0.08	1.68	16.9	3	4.0	178.5	1.32	0.07	15.3	0.433	0.98
053503		1640	22.2	112.5	<0.002	0.17	1.49	17.2	3	3.3	428	1.84	0.09	11.7	0.667	0.82
053504		1930	7.9	45.3	0.002	0.22	1.03	13.7	2	1.5	545	2.49	0.05	4.3	0.871	0.23
053505		1820	8.2	50.1	<0.002	0.25	1.20	13.5	2	1.7	544	2.40	<0.05	4.8	0.812	0.27
053506		1760	10.6	60.5	0.002	0.24	1.30	15.4	2	2.4	476	2.37	<0.05	7.1	0.827	0.31
053507		620	11.2	75.7	0.002	0.04	0.47	8.2	2	1.4	171.5	0.52	0.05	5.8	0.205	0.42
053508		560	12.6	71.1	<0.002	0.04	0.45	7.5	2	1.2	144.0	0.43	0.05	4.9	0.206	0.39
053509		660	11.1	71.3	<0.002	0.04	0.50	6.6	1	1.3	137.0	0.43	<0.05	5.5	0.173	0.41
053510		600	12.6	85.6	<0.002	0.05	0.53	8.6	1	1.6	126.5	0.52	<0.05	6.3	0.243	0.48
053511		1070	17.1	112.5	0.003	0.09	0.58	17.0	2	2.6	114.5	0.68	0.06	12.3	0.367	0.89
053512		580	13.6	90.8	<0.002	0.06	0.41	9.2	1	1.5	110.0	0.48	<0.05	6.4	0.226	0.50
053513		590	15.4	87.1	<0.002	0.08	0.43	8.9	2	1.5	158.5	0.44	0.06	6.0	0.208	0.49
053514		600	13.4	82.5	<0.002	0.08	0.48	9.0	1	1.6	169.0	0.55	<0.05	6.4	0.229	0.47
053515		2690	7.7	30.8	<0.002	0.51	1.87	16.5	2	1.6	732	3.36	<0.05	4.0	1.235	0.17
053516		580	12.9	76.6	0.002	0.05	0.45	7.9	2	1.5	166.0	0.49	<0.05	5.6	0.201	0.44
053517		510	14.2	80.7	<0.002	0.04	0.66	7.1	1	1.7	159.0	0.55	<0.05	6.3	0.205	0.48
053518		520	11.6	55.1	<0.002	0.05	0.63	4.9	1	1.1	161.0	0.43	<0.05	4.8	0.178	0.35

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 6049840221 Fax: 6049840218 uww.alsglobal.com

CARLOS, ALLEN
275 ALSEK RD
WHITEHORSE VT Y1A 4T1

Page: 2 - D
Total \# Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-SEP-2010 Account: TFI

Project: Canyon Cold
CERTIFICATE OF ANALYSIS WH10121227

Imple Description	Method Analyte Units LOR	WEI-21 Recud Wt. kg 0.02	$\begin{gathered} \text { Au-AA24 } \\ \text { Au } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { Ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { As } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { PPm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Bl } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Cs } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
353519		1.58	<0.005	0.08	5.69	9.4	960	2.04	0.18	0.96	0.22	46.4	7.6	55	4.61	19.4
353520		1.47	<0.005	0.12	5.56	9.6	1090	1.88	0.18	0.99	0.32	53.4	10.0	72	5.17	25.2
J53521		2.02	<0.005	0.10	6.55	6.7	1190	2.70	0.23	0.80	0.32	62.6	10.2	77	6.61	25.1
J53522		1.51	<0.005	0.18	5.80	18.7	1060	1.78	0.18	0.89	0.32	57.2	10.1	70	6.22	26.1
353523		1.99	<0.005	0.21	7.00	14.3	1290	2.35	0.24	0.91	0.52	74.1	15.4	87	8.88	39.1
353524		1.82	<0.005	0.24	9.10	20.0	1760	3.46	0.36	0.62	0.67	98.6	19.0	110	13.10	48.3
353525		1.36	<0.005	0.15	4.76	16.8	810	1.35	0.15	1.08	0.22	41.2	8.4	49	4.20	20.8
J53526		1.28	<0.005	0.16	3.83	13.1	630	1.05	0.18	1.42	0.20	30.9	6.2	45	3.50	17.9
053527		0.87	<0.005	0.15	5.31	16.2	930	1.57	0.18	0.84	0.29	42.5	8.3	62	6.52	22.5
053528		1.95	<0.005	0.22	8.52	14.2	1780	2.68	0.28	0.94	0.54	84.3	18.8	108	8.90	39.4
053529		1.67	<0.005	0.27	9.19	16.5	1890	2.92	0.30	0.64	0.53	93.4	21.9	119	8.90	42.2
053530		1.99	<0.005	0.09	7.31	10.1	1340	2.42	0.19	0.73	0.20	52.0	12.9	49	4.86	17.6
053531		0.60	<0.005	0.16	8.93	9.0	1480	2.69	0.29	0.80	0.47	78.6	14.4	97	9.27	37.3
053532		0.64	<0.005	0.10	4.87	13.9	880	1.25	0.10	1.29	0.15	38.7	7.1	45	3.08	12.1
053533		0.91	<0.005	0.23	8.33	13.6	1520	2.91	0.27	0.69	0.43	76.8	14.5	85	9.61	32.8
053534		1.54	<0.005	0.17	5.29	14.2	890	1.72	0.14	1.20	0.26	48.7	8.7	62	4.86	20.7
053535		1.29	0.005	0.25	7.49	18.5	1270	2.43	0.23	0.80	0.47	69.8	15.7	80	8.78	33.5
053536		1.29	<0.005	0.22	6.88	18.0	1140	2.50	0.21	0.63	0.43	65.3	15.1	73	9.15	31.8

ALS Canada Led.
2103 Dollarton Hwy BC V7H OA
o: CARLOS, ALLEN
275 ALSEK RD
WHITEHORSE YT Y1A 4T1

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{P} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { PPm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \operatorname{Re} \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ S \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { pPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS6I } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { TI } \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { TI } \\ \text { ppm } \\ 0.02 \end{gathered}$
053519		470	14.0	95.7	<0.002	0.05	0.80	8.1	1	2.9	164.0	0.84	0.05	8.2	0.228	0.56
053520		680	17.6	98.2	<0.002	0.06	0.95	9.2	2	2.8	164.0	0.86	<0.05	8.7	0.226	0.55
053521		720	22.3	108.5	<0.002	0.05	0.93	10.0	2	4.7	154.5	1.35	<0.05	13.6	0.272	0.66
053522		670	17.6	97.6	0.002	0.12	1.24	9.9	2	2.3	146.5	0.75	<0.05	8.9	0.257	0.62
053523		820	22.8	112.0	<0.002	0.14	1.54	13.9	3	2.6	155.5	0.87	0.05	10.7	0.326	0.82
053524		1570	31.3	141.0	0.002	0.22	2.37	18.8	4	4.6	146.5	1.48	0.10	16.6	0.405	1.17
053525		630	16.7	60.6	0.002	0.18	1.07	9.1	2	1.4	129.0	0.49	0.05	7.0	0.194	0.40
053526		580	19.4	50.1	<0.002	0.08	1.05	7.3	2	1.1	145.0	0.38	<0.05	5.6	0.148	0.35
053527		580	17.1	71.6	<0.002	0.06	1.18	10.0	2	1.7	108.5	0.55	<0.05	8.2	0.215	0.54
053528		2090	23.4	127.0	0.002	0.07	1.22	18.8	3	3.0	163.5	0.99	0.07	14.0	0.356	0.94
053529		1460	28.3	134.0	0.002	0.14	1.59	19.0	3	3.2	143.0	1.17	0.06	14.9	0.416	0.97
053530		590	27.0	94.4	<0.002	0.04	0.78	10.2	2	4.0	163.0	1.20	<0.05	11.4	0.316	0.65
053531		1360	34.6	131.0	0.002	0.12	1.50	18.0	3	4.2	148.0	1.62	<0.05	18.5	0.340	0.91
053532		780	12.6	59.2	<0.002	0.05	1.14	8.4	2	1.3	169.5	0.48	<0.05	6.9	0.213	0.44
053533		820	30.2	130.0	0.002	0.18	1.74	15.2	3	3.8	142.0	1.50	0.05	17.0	0.328	0.95
053534		810	13.4	74.0	<0.002	0.06	1.12	9.8	2	1.7	156.5	0.60	<0.05	7.3	0.225	0.47
053535		750	27.2	114.5	0.002	0.21	1.74	14.1	3	2.7	148.5	0.97	0.05	12.8	0.336	0.78
053536		770	23.9	101.0	<0.002	0.20	1.76	13.0	3	2.4	134.0	0.91	<0.05	11.3	0.309	0.67

2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com
o: CARLOS, ALLEN
275 ALSEK RD
WHITEHORSE YT Y1A 4TI

Page: 2 - D
Total \# Pages: 2 (A - D)
Plus Appendix Pages Finalized Date: 19-SEP-2010

Project: Canyon Gold

***** See Aooendix Page for comments reaardina this certificate *****

APPENDIX 4

LIST OF CLAIMS

Claim Status Report
21 October 2009

R	CANON 1-4	YC08793- YC08796	2024/12/27 A.M. Carlos	100.00	105 K 02
R	CANON 5-6	YC08797-YC08798	2028/12/27 A.M. Carlos	100.00	105K02
R	CANON 7-14	YC08939 - YC08946	2024/12/27 A.M. Carlos	100.00	105K02
R	CANON 15-24	YC30113-YC30122	2017/12/27 A.M. Carlos	100.00	105K02
R	CANYON 1-16	YA75717-YA75732	2035/12/27 A.M. Carlos	100.00	105K02
R	CANYON 17-26	YA75733-YA75742	2033/12/27 A.M. Carlos	100.00	105K02
R	CANYON 27-32	YA75743-YA75748	2035/12/27 A.M. Carlos	100.00	105K02
R	CANYON 33-40	YA75753-YA75760	2035/12/27 A.M. Carlos	100.00	105K02
R	CANYON 41-50	YA81160-YA81169	2035/12/27 A.M. Carlos	100.00	105K02
R	CANYON 51-56	YA81170-YA81175	2036/12/27 A.M. Carlos	100.00	105K02
R	CANYON 57-60	YA81176-YA81179	2032/12/27 A.M. Carlos	100.00	105K02
R	CANYON 61-62	YA81180-YA81181	2031/12/27 A.M. Carlos	100.00	105K02
R	CANYON 63-66	YA81182 - YA81185	2027/12/27 A.M. Carlos	100.00	105K02
R	CANYON 73-78	YA81192-YA81197	2035/12/27 A.M. Carlos	100.00	105K02
R	CANYON 79-84	YA81198-YA81203	2036/12/27 A.M. Carlos	100.00	105K02
R	CANYON 85-88	YA81204-YA81207	2032/12/27 A.M. Carlos	100.00	105K02
	CANYON 89	YA81208	2027/12/27 A.M. Carlos	100.00	105K02
	CANYON 90	YA81209	2031/12/27 A.M. Carlos	100.00	105K02
	CANYON 91-92	YA81210-YA81211	2027/12/27 A.M. Carlos	100.00	105K02
R	CANYON 93-94	YA81212-YA81213	2026/12/27 A.M. Carlos	100.00	105K02
R	CANYON 293-300	YA85398-YA85405	2030/12/27 A.M. Carlos	100.00	105K02
R	DOZER 1-14	YC18135-YC18148	2013/12/27 A.M. Carlos	100.00	105K03
R	GRAND 91	YA85326	2024/12/27 A.M. Carlos	100.00	105K02
R	GRAND 92	YA85327	2025/12/27 A.M. Carlos	100.00	105K02
R	GRAND 93-98	YA85328-YA85333	2028/12/27 A.M. Carlos	100.00	105K02
R	GRAND 141	YA85376	2025/12/27 A.M. Carlos	100.00	105K02
R	GRAND 142	YA85377	2024/12/27 A.M. Carlos	100.00	105K02
R	GRAND 143-148	YA85378-- YA85383	2028/12/27 A.M. Carlos	100.00	105K02
R	GRAND 159	YA85394	2024/12/27 A.M. Carlos	100.00	105K02
R	GRAN 160-162	YA85395-YA85397	2028/12/27 A.M. Carlos	100.00	105K02
R	KAOLIN 1-3	YC18762-YC18764	2017/12/27 A.M. Carlos	100.00	105K03
R	KAOLIN 4-10	YC19300-YC19306	2016/12/27 A.M. Carlos	100.00	105K03
R	KAOLIN 11-12	YC19374-YC19375	2016/12/27 A.M. Carlos	100.00	105K03
R	MAVERICK 1-12	YC19362-YC19373	2022/12/27 A.M. Carlos	100.00	105K02
R	MAVERICK 13-16	YC26055 - YC26058	2018/12/27 A.M. Carlos	100.00	105K02
R	MAVERICK 17-23	YC26059 - YC26065	2019/12/27 A.M. Carlos	100.00	105K02
	MAVERICK 24	YC26066	2018/12/27 A.M. Carlos	100.00	105K02
(iext cuumn indicator legend:				Total claims selected : 351	
			Right column indicator legend:		
R - Indicates the claim is on one or more pending renewal(s). P. Indicates the claim is pending.			L- Indicates the Quartz Lease. F - Indicates Full Quartz fraction (25+ acres)	D - Indicates Placer Discovery C - Indicates Placer Codiscovery B - Indicates Placer Fraction	
			P- Indicates Partial Quartz fraction (<25 acres)		

Page 1 of 2

Claim Status Report

	Clam Name arid Nl	Grant No.	Expiry Date Registere	Own	NTS
R	MAVERICK 25-28	YC26067 - YC26070	2019/12/27 A.M. Carlos	100.00	105 K 02
R	MAVERICK 29	YC26071	2018/12/27 A.M. Carlos	100.00	105K02
R	MAVERICK 30-36	YC26072-YC26078	2019/12/27 A.M. Carlos	100.00	105K02
R	MAVERICK 37-42	YC30101 - YC30106	2017/12/27 A.M. Carlos	100.00	105K02
R	MAVERICK 43-48	YC30107-YC30112	2016/12/27 A.M. Carlos	100.00	$\begin{aligned} & \text { 105K02, } \\ & 105 \mathrm{~K} 03 \end{aligned}$
R	RAIL, 51-54	YC37856 - YC37859	2018/12/27 A.M. Carlos	100.00	105K02
R	RAII. 56	YC37861	2018/12/27 A.M. Carlos	100.00	105K02
R	RAIL 58	YC37863	2018/12/27 A.M. Carlos	100.00	105K02
R	RAIL 61-70	YC37866-YC37875	2018/12/27 A.M. Carlos	100.00	105K02
R	RAIL, 73-74	YC37878-YC37879	2018/12/27 A.M. Carlos	100.00	105K02
R	RAIL 75-115	YC37880 - YC37920	2014/12/27 A.M. Carlos	100.00	105K03
R	SLEEPER 1-10	YC29987 - YC29996	2019/12/27 A.M. Carlos	100.00	105 Fl 5
R	SLEEPER 11-24	YC53920- YC53933	2015/12/27 A.M. Carlos	100.00	105F15
R	TINTINA 1-54	YC94562 - YC94615	2013/12/27 A.M. Carlos	100.00	105K03

Criteria(s) used for search:

IIM STATUS: ACTIVE \& PENDING OWNER(S): CARLOS A.M. REGULATION TYPE: QUARTZ
(. olumn indicator legend:
R - Indicates the claim is on one or more pending renewal(s).
P - Indicates the claim is pending.

Right column indicator legend:
L- Indicates the Quartz Lease.

[^0]F - Indicates Full Quartz fraction (25+ acres) C - Indicates Placer Codiscovery
P - Indicates Partial Quartz fraction (<25 acres) B - Indicates Placer Fraction

APPENDIX 5

STATEMENT OF QUAL FICATIONS

STATEMENT OF QUALIFICATIONS

ALLEN M. CARLOS, PROSPECTOR

I, Allen M. Carlos of Whitehorse, Yukon Territory, hereby certify that:

1. I have been actively engaged as a mineral prospector in Western Canada for 35 years, initially for a major company, then as an independent.
2. I studied 3 years at the University of Saskatchewan:

One year of Engineering followed by 2 years Arts and Science (Geology).
3. I worked one year in northern Saskatchewan as a student assistant for the Department of Mineral Resources.
4. I have for the last 18 years spent much time researching papers regarding Volcanic Hosted Epithermal type deposits.
5. In 1983 I was responsible for discovering the Grew Creek precious metal deposit, the first epithermal deposit of this type along the Tinting Trench in Yukon.
6. I planned and with the aid of my sons, carried out the current program.

Signed,

Allen M. Carlos, PROSPECTOR

[^0]: D - Indicates Placer Discovery

