2010 EXPLORATION PROGRAM on the LITTLE HYLAND PROJECT, TUNGSTEN AREA, YUKON TERRITORY

On Quartz Claims

Grant #	Claim Name
YC29100	CULVERT 1
YC31957	CULVERT 2
YC31958 - YC31960	CULVERT 4 - 6
YC31961 - YC31964	CULVERT 9 - 12
YC71979	CULVERT 3
YC71980 - YC71981	CULVERT 7 - 8
YC71982 - YC71985	CULVERT 13 - 16
YC73332 - YC73334	GOLDEN 1 - 3
YC73335 - YC73375	CULVERT 17 - 57
YC73422 - YC73434	CULVERT 58 - 70

Grant #	Claim Name
YC73863	CULVERT 71
YC93581 - YC93590	SCHEER 1 - 10
YC94943 - YC94979	LH 1 - 37
YC94980	CULVERT 72
YC94981 - YC94984	LH 38 - 41
YD17372 - YD17374	CULVERT 73 - 75
YD17377 - YD17380	SWAG 11 - 14
YD17383 - YD17392	SWAG 1 - 10
YD29576 - YD29625	RUBUS 1 - 50
YD31301 - YD31310	RUBUS 51 - 60

Report By:

Scott Casselman B.Sc., P. Geo. CASSELMAN GEOLOGICAL SERVICES Ltd. 33 Firth Road, Whitehorse, Yukon Y1A 4R5

For:

Gary Lee and Robert Scott Whitehorse, Yukon

Location: 62° 00' N, 128° 30' W NTS: 105H15, 16, 105I01, 02 Mining District: Watson Lake, Yukon Date: December, 2010

SUMMARY

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is within the Little Hyland River Valley in the Watson Lake Mining District, in southeast Yukon. The property consists of 203 contiguous quartz mining claims that are variably co-owned by Mr. Gary Lee, Mr. Robert Scott, and Mr Ron Stack.

The property is primarily a precious metals target with gold and lesser silver, in quartz veins. It also contains arsenopyrite-pyrite, +/-chalcopyrite, +/- galena+/- sphalerite mineralization.

Between July 23 and September 2, 2010, Gary Lee and Bob Scott conducted an exploration program with a focus on precious metal mineralization and precious metals bearing structures. The 2010 program consisted of the collection of 23 rock samples, 46 soil samples and 40 stream sediment samples. As well, 760 m of grid was established and surveyed for magnetics and VLF-EM.

The 2010 work resulted in the identification of a region with significant arsenic enrichment as defined by stream sediment anomalies. This region is also anomalous in gold.

Work on the Culvert claims in 2009 identified gold in the phyllites which was postulated to represent a mesothermal gold-quartz vein style occurrence. Also known as shear-hosted gold, this deposit type occurs in any of a variety of greenschist-grade rocks, and occurs in proximity to steep faults or sutures of ancient continental margin collision zones. Gold, pyrite, and arsenopyrite are essential minerals of this deposit type occurring chiefly in quartz veins deposited within faults and joint systems. In the process of vein emplacement, wallrock is silicified, pyritized and/or sericitized inside a broad halo of carbonitization.

Detailed work at the Road Showing returned significant gold values associated with massive arsenopyrite and quartz-pyrite-arsenopyrite veining. The Rubus area returned abundant arsenic-in stream sediment anomalies far to the northern end of the property. This extends the mineralized trend from the southern edge of the Culvert claims through the property to the northern part of the Rubus claims, a distance of 15 kilometres.

The arsenic and gold stream sediment anomalies and mineralization in rock samples is, in general proximal to the March Fault and/or proximal to the contact between the Vampire Formation and Narchilla Formation of the Hyland Group.

A follow-up program consisting of geologic mapping, prospecting, soil sampling, infilling and expanding on VLF-EM and magnetic surveys and trenching is recommended. This would be followed by diamond drilling should the results warrant.

TABLE OF CONTENTS

	Sı	ummary	
1.0	In	troduction	1
2.0	Pi	operty Location and Access	2
3.0	CI	aim Information	4
4.0	Pł	nysiography, Vegetation and Climate	5
5.0	Ex	ploration History	5
6.0	G	eological Setting	7
	6.1	Regional Geological Setting	7
	6.2	Property Geology and Mineralization	10
7.0	20	009 Exploration Program	11
8.0	G	eochemical Analytical Procedure	13
9.0	Re	esults	13
	9.1	Regional Stream Sediment Sampling Results	13
	9.2	Rubus Area Results	16
	9.3	Road Showing Results	16
	9.4	Culvert Road Area Results	
	9.5	Culvert East Area Results	25
	9.6	RE Claims Results	29
10.0	C	onclusions and Recommendations	29
11.0	St	atement of Expenditures	31
12.0	Re	eferences	32

LIST OF FIGURES

1	Property Location Map	3
2	Claim Map	
3	Regional Geology Map	9
4	Work Area Index Map	12
5	Regional Stream Sediment Sample Geochemistry - Gold	14
6	Regional Stream Sediment Sample Geochemistry - Arsenic	15
7	Rubus Area - Sample Location Map	17
8	Rubus Area – Stream Sediment Geochemistry – Gold	
9	Rubus Area - Stream Sediment Geochemistry – Arsenic	19
10	Road Showing - Sample Location Map	
11	Road Showing - Soil Sample Geochemistry - Gold	
12	Road Showing - Soil Sample Geochemistry - Arsenic	
13	Road Showing – Magnetic Field Survey	
14	Road Showing – VLF-EM Survey	
15	Culvert Road Area – Sample Location Map	
16	Culvert East Area – Sample Location Map	
17	RE Claims Area – Sample Location Map	

TABLES

APPENDICES

- Appendix I Statement of Qualifications
- Appendix II 2009 and 2010 Rock, Soil and Stream Sediment Sample Descriptions
- Appendix III Geochemical Analytical Certificates
- Appendix IV Crew Log

Little Hyland Project – 2010 Exploration Program

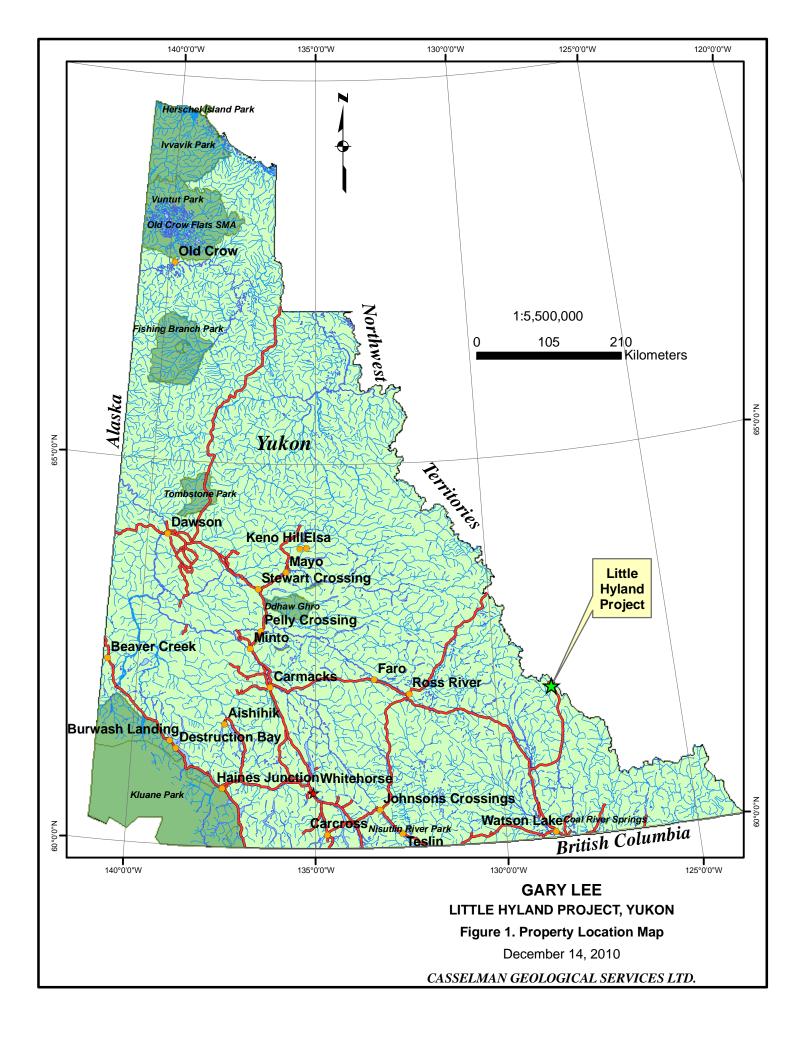
1.0 INTRODUCTION

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is within the Little Hyland River Valley in the Watson Lake Mining District, in southeast Yukon.

The property consists of 203 contiguous quartz mining claims that are variably coowned by Mr. Gary Lee, Mr. Robert Scott, and Mr Ron Stack, all of Whitehorse, Yukon. The property is primarily a precious metals target with gold and lesser silver, in quartz veins. It also contains arsenopyrite-pyrite, +/-chalcopyrite, +/- galena+/- sphalerite mineralization, as well as placer gold occurrences and numerous gold and arsenic anomalies in stream sediments and soils. Mineralization consisting of gold, arsenic and copper occurs in quartz veins and enveloping country rock. The quartz veins are hosted in grey-green phyllites, presumed to be of the Vampire Group volcanosedimentary package of rocks.

Exploration work in 2009 focused on the Culvert Claims, while work in 2010 focused primarily on the Rubus, Sheer, LH and Swag claims. Between July 23 and September 2, 2010, Gary Lee and Bob Scott conducted a reconnaissance exploration program throughout the claim area with a focus on precious metal mineralization and precious metals bearing structures. The 2010 program consisted of the collection of 23 rock samples, 46 soil samples and 40 stream sediment samples. As well, 760 m of grid was established and surveyed for magnetics and VLF-EM.

This assessment report summarizes the known geology, mineralization, and exploration potential for a contiguous set of mineral claims known as the Little Hyland Project. All information was supplied by Mr. Lee. Original analytical certificates used in the report were provided by ALS Chemex. Other information used in the preparation of the report includes government publications and assessment reports in the public domain. The author, Scott G. Casselman, P.Geo., of Casselman Geological Services Ltd. of Whitehorse, was retained to complete this report. The author has not visited the property.


While reasonable care has been taken in the preparation of this report, the author cannot guarantee the accuracy or completeness of all supporting documentation. The interpretation, conclusions, and recommendations expressed herein are those of the author and may or may not reflect the views of Mr. Lee or Mr. Scott. It is believed that the information contained in this document is reliable under the conditions and subject to the limitations of this document.

2.0 PROPERTY LOCATION and ACCESS

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake (Figure 1) and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is centred at 62° 00' N latitude and 128° 30' W longitude on NTS map sheets 105H15, 16, 105I01 and 02 in the Little Hyland River valley.

The property is most easily accessed via the all-season, gravel surface, Nahanni Range Road from kilometre 110 of the Robert Campbell Highway. The property straddles the Nahanni Range Road, and at kilometre 165, an ATV trail leaves the road to gain access to the southeastern portion of the property. The Howards' Pass winter trail runs along the southwestern margin of the Rubus claims and provides ATV access in this region. A temporary exploration camp was situated in the central part of the property on the LH 37 claim.

The nearest community is Watson Lake, which has a population of approximately 1,200 people and lies on Highway 3 (Alaska Highway). Watson Lake is the main supply centre for the region.

3.0 CLAIM INFORMATION

The Golden Culvert property consists of 203 unsurveyed quartz claims staked in accordance with the Yukon Quartz Mining Act in the Watson Lake Mining District. Claim ownership is variable and as listed in Table 2. Claim details are listed in the Table 1, below, and are shown in Figure 2.

Grant #	Claim Name	Claim Ownership	ExpiryDate
YC29100	CULVERT 1	Gary Lee - 50%, Robert R. Scott - 50%	22/07/2021
YC31957	CULVERT 2	Gary Lee - 50%, Robert R. Scott - 50%	11/09/2020
YC31958 - YC31960	CULVERT 4 - 6	Gary Lee - 50%, Robert R. Scott - 50%	11/09/2020
YC31961-YC31964	CULVERT 9 - 12	Gary Lee - 50%, Robert R. Scott - 50%	11/09/2020
YC71979	CULVERT 3	Gary Lee - 50%, Robert R. Scott - 50%	17/09/2021
YC71980-YC71981	CULVERT 7 - 8	Gary Lee - 50%, Robert R. Scott - 50%	17/09/2021
YC71982 - YC71985	CULVERT 13 - 16	Gary Lee - 50%, Robert R. Scott - 50%	17/09/2021
YC73332 - YC73334	GOLDEN 1 - 3	Gary Lee - 66.64%, Robert R. Scott - 33.36%	16/12/2017
YC73335 - YC73375	CULVERT 17 - 57	Gary Lee - 50%, Robert R. Scott - 50%	16/12/2017
YC73422 - YC73434	CULVERT 58 - 70	Gary Lee - 50%, Robert R. Scott - 50%	16/12/2017
YC73863	CULVERT 71	Gary Lee - 50%, Robert R. Scott - 50%	22/09/2018
YC93581 - YC93590	SCHEER 1 - 10	Ronald Stack - 33.32%, Gary Lee - 33.32%, Robert R. Scott - 33.36%	28/09/2011
YC94943 - YC94966	LH 1 - 24	Ronald Stack - 33.33%, Gary Lee - 33.34%, Robert R. Scott - 33.33%	22/07/2015
YC94967 - YC94979	LH 25 - 37	Ronald Stack - 33.33%, Gary Lee - 33.34%, Robert R. Scott - 33.33%	19/08/2015
YC94980	CULVERT 72	Gary Lee - 50%, Robert R. Scott - 50%	19/08/2015
YC94981 - YC94984	LH 38 - 41	Ronald Stack - 33.33%, Gary Lee - 33.34%, Robert R. Scott - 33.33%	19/08/2015
YD17372 - YD17374	CULVERT 73 - 75	Gary Lee - 50%, Robert R. Scott - 50%	28/09/2011
YD17377 - YD17378	SWAG 11 - 12	Ronald Stack - 33.33%, Gary Lee - 33.33%, Robert R. Scott - 33.33%	10/08/2011
YD17379 - YD17380	SWAG 13 - 14	Ronald Stack - 33.33%, Gary Lee - 33.33%, Robert R. Scott - 33.33%	01/09/2011
YD17383 - YD17392	SWAG 1 - 10	Ronald Stack - 33.32%, Gary Lee - 33.32%, Robert R. Scott - 33.36%	28/09/2011
YD29576 - YD31310	RUBUS 1 - 60	Gary Lee - 100%	10/08/2011

Table 1: Claim Information

The land in which the mineral claims are situated is Crown Land and falls under the jurisdiction of the Yukon Government.

Mssrs' Lee, Stack and Scott are also joint owners of the Red Bluff 1-4 claims, the Zanzibar 1-4 claims and the RE 1 and 2 claims located south of the Little Hyland Project area. These claims are not contiguous with the Little Hyland Project claims. No work was done on the Red Bluff or Zanzibar claims in 2010. The RE claims were staked in 2010 and subsequently 2 rock samples were collected. A map showing the locations of the seven samples is included in this report, although this work has not been filed for assessment work as of the date of writing.

4.0 PHYSIOGRAPHY, VEGETATION and CLIMATE

The property is located in the Logan Mountains of the eastern Yukon. The topography in the area is broad, U-shaped valleys between steep mountains. Elevations on the property range from 1200 to 1750 metres above sea level. The lower elevations are covered with spruce and pine forests grading upwards to willows, dwarf birch, grasses, moss and lichens. Steeper slopes are covered by talus and felsenmeer.

The area receives generally high annual precipitation (approximately 450 millimetres) as compared to the Yukon average. Snow generally begins accumulating in alpine areas in late September, while the snow pack starts to recede in late April to early May, allowing fieldwork to commence at lower elevations in mid-May. Temperatures range from $+30^{\circ}$, in the summer months, to -50° Celsius, in the winter months.

5.0 EXPLORATION HISTORY

The region has a long history of exploration beginning with the discovery of the Tungsten Mine in 1954 and the initiation of production in 1962. The Little Hyland Project Area, however, does not have a considerable documented history of exploration, prior to the activities of Mr. Lee and Mr. Scott.

The Yukon Minfile (DIAND, 2002) lists one mineral occurrence within 5 km of the property; the Ricardo Showing. It occurs approximately 3 km south of the project area and is described as an unmineralized ferricrete gossan occurring within an area underlain by Cretaceous granodiorite that intrudes Cambrian slates and phyllites. The gossan was originally staked by Canada Tungsten Mining Corporation Ltd in 1961. There is no record of Canada Tungsten doing any additional work on the property and it was later allowed to lapse.

The Ricardo Showing was later re-staked by Mr. A. Black, in 1980, as the Kay claims, then in 1981 as the Lynx claims by Mr. E. Broadhagen. In each case there is no record of work being performed on the property and the claims were allowed to lapse.

The most significant exploration activity in the area has been at the Tuna property, located 12 km southeast of the project area. It was originally staked in 1981 by Union Carbide Exploration Ltd and has been explored for placer gold, skarn-type tungsten, and lode gold. The property is underlain by a Cretaceous granodiorite stock that intrudes Cambrian slates, phyllites and siltstones of the Hyland Formation. Union Carbide performed stream sediment sampling, rock and soil sampling, geological mapping and prospecting on the property in 1982. This work identified numerous scheelite, molybdenite and chalcopyrite mineralized occurrences, often associated with quartz-tourmaline veins. However, Union Carbide later allowed the claims to lapse.

In 1989, Noranda Exploration Canada Limited re-staked the Tuna property but did not perform any work. These claims were also allowed to lapse. The property was subsequently staked by Kokanee Explorations Ltd in 1991. Kokanee conducted a program of prospecting, mapping and sampling in 1992. The company changed its' name to Consolidated Ramrod Gold Corporation later that year. In 1993, Consolidated Ramrod performed a limited amount of lithogeochemical and stream sediment sampling, which returned weak to moderately anomalous gold results.

Gold was first discovered by Robert Scott while panning in the creek at the culvert on the Nahanni Range road in 1984. The first Golden Culvert claims were staked in September of 2005 and added on to in 2006, 2008, 2009 and 2010. In 2006, 2007, 2008 and 2009 Mr. Lee conducted exploration programs predominantly on the Culvert claims consisting of prospecting, stream sediment, soil and rock sampling. This work returned anomalous gold and arsenic values.

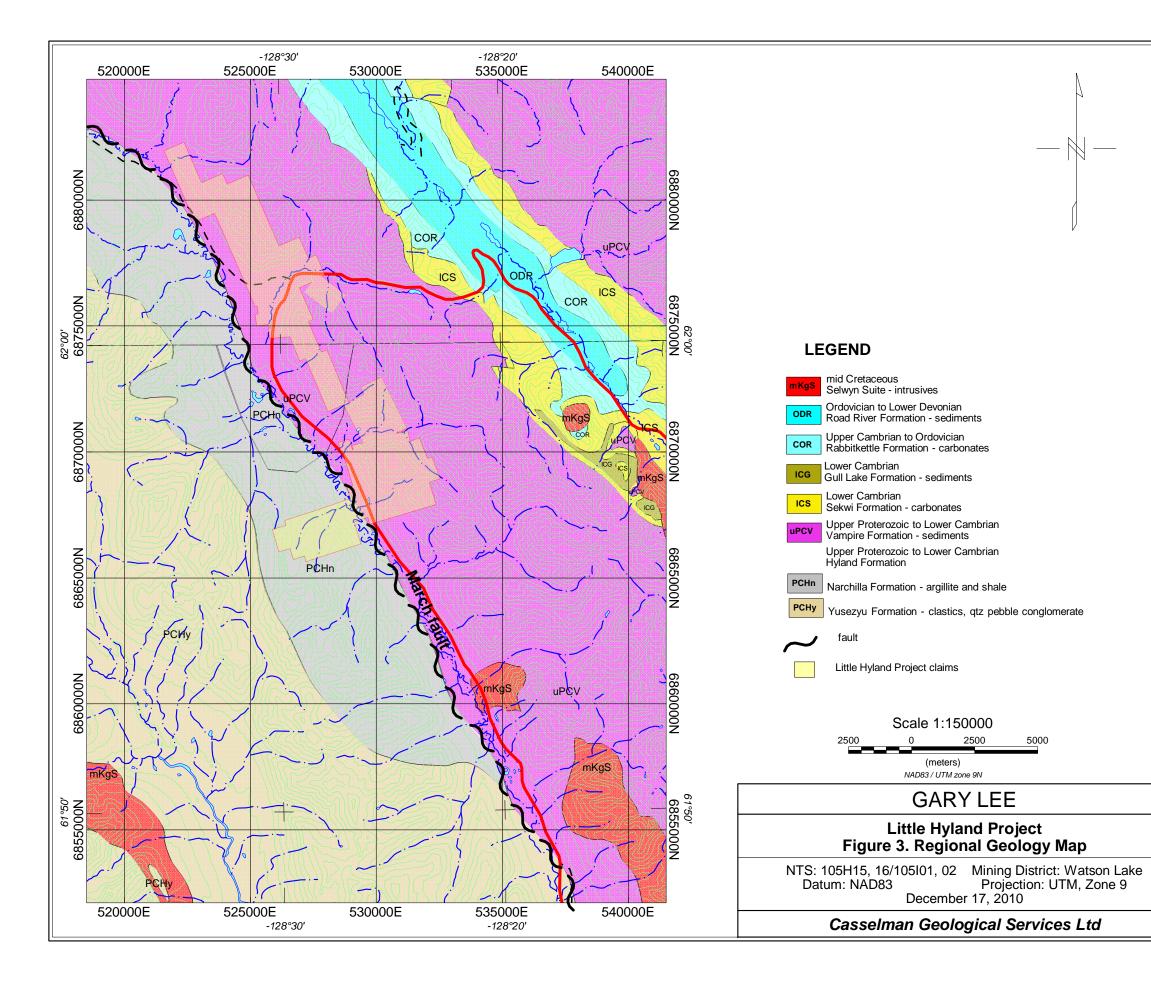
6.0 GEOLOGICAL SETTING

The following text is reprinted from recent assessment reports on the property, originally sourced from regional geological maps by Gordey et al, 2000 and descriptions by Heon, 2007, and Hart and Lewis, 2005. The description of the property geology reports on the limited number of hand samples submitted to the author for evaluation and offers possible deposit types for the occurrence of gold on the property.

6.1 Regional Geological Setting

The Little Hyland Project area is located in the Selwyn Basin in the eastern Yukon. The Selwyn Basin is part of the cordilleran miogeocline and is characterized by thick accumulations of clastic sediments, with a significant component of deepwater black shales and cherts (Heon, 2007). These basinal rocks interfinger with and are bound by shallower-water platformal carbonates (Figure 3). The Selwyn Basin is bound to the north by the Dawson Fault, grades into platformal facies to the east (Mackenzie Platform) and southwest (Cassiar Platform), may be bound by a Mesozoic thrust fault separating it from Yukon-Tanana Terrane in the Anvil district, and is offset to the southwest by the Tintina Fault. The sediments range in age from Precambrian to Jurassic (Heon, 2007) and lie within the Omineca Belt of the Northern Cordillera (Hart, 2002).

The eastern part of the Little Hyland Project area is underlain by Upper Proterozoic to Lower Cambrian dark brown, fine-grained and thinly-bedded, argillaceous sandstone and siltstone with minor, interbedded, medium- to coarse grained, white to light grey orthoquartzite, phyllite, slate and argillite of the Vampire Formation (uPCV). The western part of the property is underlain by thinly to thickly bedded brown to pale green shales, fine- to coarse-grained quartz-rich sandstones, quartz-pebble conglomerates, minor argillaceous limestones, phyllites, quartzo-feldspathic and micaceous psammites, gritty psammites, and minor marbles of the Upper Proterozoic to Lower Cambrian Narchilla Formation of the Hyland Group (PCHn) (Gordey, et. al., 2000).


Northeast of the property, in the area of the Tungsten Mine, younger sedimentary rocks of the Lower Cambrian Sekwi Formation (ICS), the Lower Cambrian Gull Lake Formation (ICG), the Upper Cambrian to Ordovician Rabbitkettle Formation (COR) and the Ordovician to Lower Devonian Road River Formation (ODR) occur. The Sekwi Formation consists of limestone conglomerates, massive grey dolostones, medium- to thickly-bedded quartz sandstones, purple siltstones with bright orange weathering, and finely-crystalline dolostones. The Gull Lake Formation consists of shales, siltstones and mudstones; minor quartz sandstones; rare green-grey cherts; local basal limestone and limestone conglomerates; and phyllites to quartz-muscovite-biotite schists. These units are overlain by thinly-bedded, wavy, banded, silty limestones and grey lustrous calcareous phyllites; limestone; intraclast breccias and conglomerates; massive to laminated, grey quartzose siltstones and cherts; rare black slates; and local mafic flows, breccias, and tuffs of the Rabbitkettle Formation. The Rabbitkettle Formation is, in turn, overlain by black-, gun-blue-, or silvery-white-weathering of black graptolitic shales and

cherts; resistant grey weathering of medium to thinly-bedded, light grey to black, greenish grey, or turquoise cherts; and minor argillaceous limestones of the Road River Formation.

This package of sedimentary rocks is intruded by resistant, blocky, fine to coarse grained, equigranular to K-feldspar porphyritic, biotite-quartz monzonite and granodiorite; minor quartz diorite; minor leuco-quartz monzonite; and syenite of the mid-Cretaceous Selwyn Plutonic Suite. It is often contended that these intrusions have driven gold-bearing mineralizing fluids to the area of the Little Hyland Project but the intrusions have not been discovered in the immediate are of the property to date. However, the northwest-trending thrust faults that dominate the structural pattern in the region contain sutures that may play host to gold mineralization under a Mesozoic gold model. The March Fault is a thrust fault that runs along the western part of the Little Hyland Project area and may be form a structural control for precious metals mineralization.

The most significant mineralization in the area are the ore bodies of the Tungsten Mine. The ore was formed in carbonate-bearing sedimentary rocks by tungsten-bearing fluids of mid-Cretaceous Selwyn Suite intrusions. The result was tungsten-rich, pyrrhotite skarns along the margins of the intrusions. The original, pre-production resource at the Tungsten Mine was 9 Mt with a grade of 1.42% WO₃.

At the Tuna property, molybdenite, scheelite, arsenopyrite, bismuthinite, chalcopyrite, chalcocite, pyrrhotite, gold and silver occur in quartz and quartz-tourmaline veins and in small skarn alteration zones along the margins of the Hyland Intrusion (Doherty and vanRanden, 1994).

6.2 **Property Geology and Mineralization**

The Little Hyland Project area has not been geologically mapped in any detail. According to the regional geology of the area it is underlain predominantly by sedimentary rocks of the Vampire Formation (uPCV) to the east and Narchilla Formation (PCHn) rocks to the west. Regional airborne magnetic survey maps show moderately-strong, northwest-trending magnetic features that transect the property; the cause of the features are postulated to be either from a buried intrusion, a regional structure, a lithologic change, or broad alteration assemblages. Any of these causes, or a combination of these causes could be factors in mineralizing events in the area.

Rock types reported to exist on the property are phyllitic to schistose argillite and siltstone. Historically, significant gold mineralization was noted to occur primarily in quartz veins within these rocks. Representative rock samples collected during the 2009 and 2010 exploration program have been provided by Mr. Lee for examination.

Hand samples of sericite-phyllite contained as much as 5% combined pyrite and arsenopyrite, both occurring in the host rock as well as in veins. Typically, pyrite is medium- to coarse-grained and euhedral, suggesting it is late in the paragenetic sequence. However, in one instance pyrite was overgrown by arsenopyrite. The mode of occurrence of arsenopyrite ranges from semi-massive (sample RS-14), fine-grained fracture fillings and medium-grained disseminations within quartz veins (sample RS-44), to locally-clustered masses of euhedral needles and coarser grains within the host. Although no chalcopyrite was seen in hand-sample, malachite staining is reported to exist on the property.

Most quartz veins were seen to be sub-parallel to phyllite foliation but had clearly experienced early ductile folding and boudinaging prior to late-stage brittle offset. At least two crosscutting vein sets orthogonal to schistocity, exhibited in sample RS-53, as well as a strongly-lineated structure shown in sample RS-55, imply a poly-deformational history to these rocks. A relatively undeformed, late tension vein, lacking sulphides is the latest veining event noted. A deeper understanding the structural history of these rocks, as it relates to vein mineralization, should be a focus of future exploration at the site.

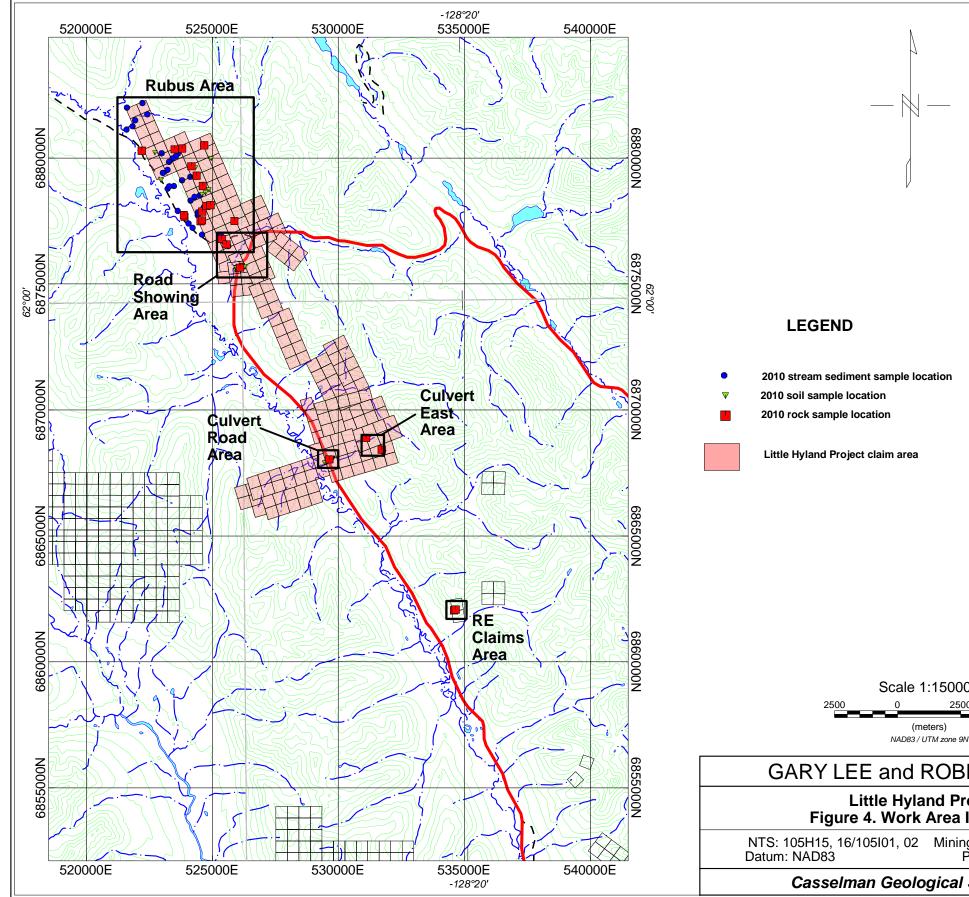
Alteration in these rocks was noted as predominantly sericitic. Fine-grained muscovite is formed in phyllic alteration, along with minor quartz, chlorite, and pyrite. Calcite and iron-carbonate was also noted in veins, indicating carbonitization as a minor alteration assemblage.

Geologists from Rimfire Minerals Ltd. visited the Main Showing on the Culvert claims and collected two samples, G071512 and G071513, which assayed 22.8 g/t and 8.91 g/t gold (respectively). These samples were described as:

G071512

A well developed, 1 metre thick, (strike 252, dip 78), white sugary to granular (recrystallized) quartz vein with sharp margins, discordant to cleavage. Arsenopyrite as medium, crystalline to fine-grained bands. Pyrite is disseminated in cubes and local crystal aggregates.

G071513


White quartz vein (60 centimetres thick, strike 112, dip vertical) with very finegrained arsenopyrite bands, scorodite developed, possible sericite alteration of siltstone, and trace arsenopyrite needles in siltstone. Some quartz is sugary (recrystallized).

Rimfire also noted slightly-discordant stringers, ranging from 3 millimetres to 2 centimetres, in the acute angle formed by the veins sampled.

Although the highest gold assays have historically originated from samples take from quartz veins, country rock on the property has been shown to be mineralized. Sample RS-57, collected in 2009 on the Culvert Claims, from immediately southeast of the main showing assayed 1.285 g/t gold from an almost 2.5 metre chip sample of host rock material adjacent to a mineralized vein.

7.0 2009 EXPLORATION PROGRAM

Between July 23 and September 2 of 2010, Gary Lee and Bob Scott conducted an exploration program on the Little Hyland Project claims. The 2010 program consisted of prospecting and the collection of 23 rock samples, 46 soil samples and 40 stream sediment samples. As well, 760 m of grid was established and surveyed for magnetics and VLF-EM. The program covered a large area, which is shown on the Work Index Map, Figure 4.

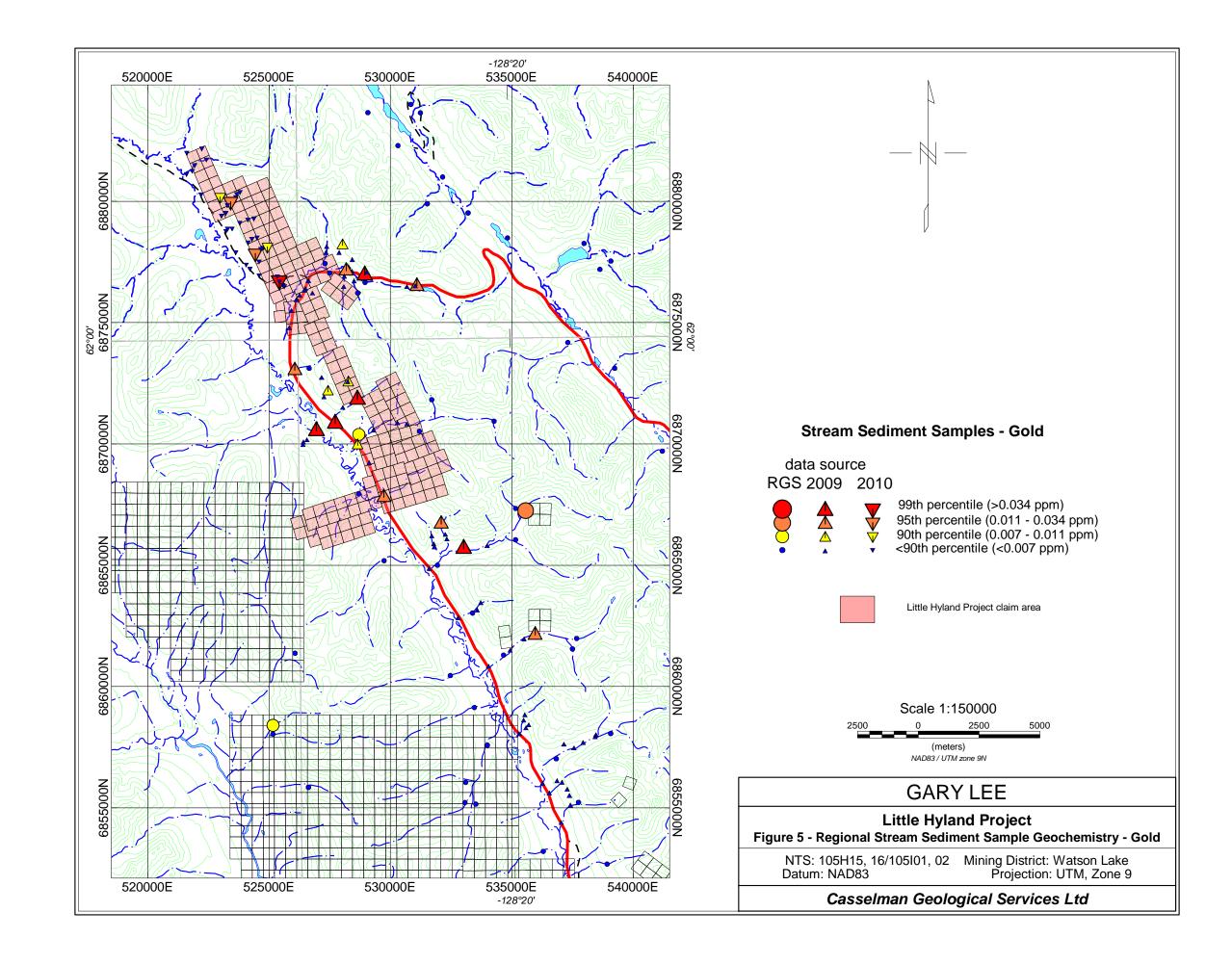
00
00 5000
N
ERT SCOTT
roject Index Map
ng District: Watson Lake Projection: UTM, Zone 9
Services Ltd

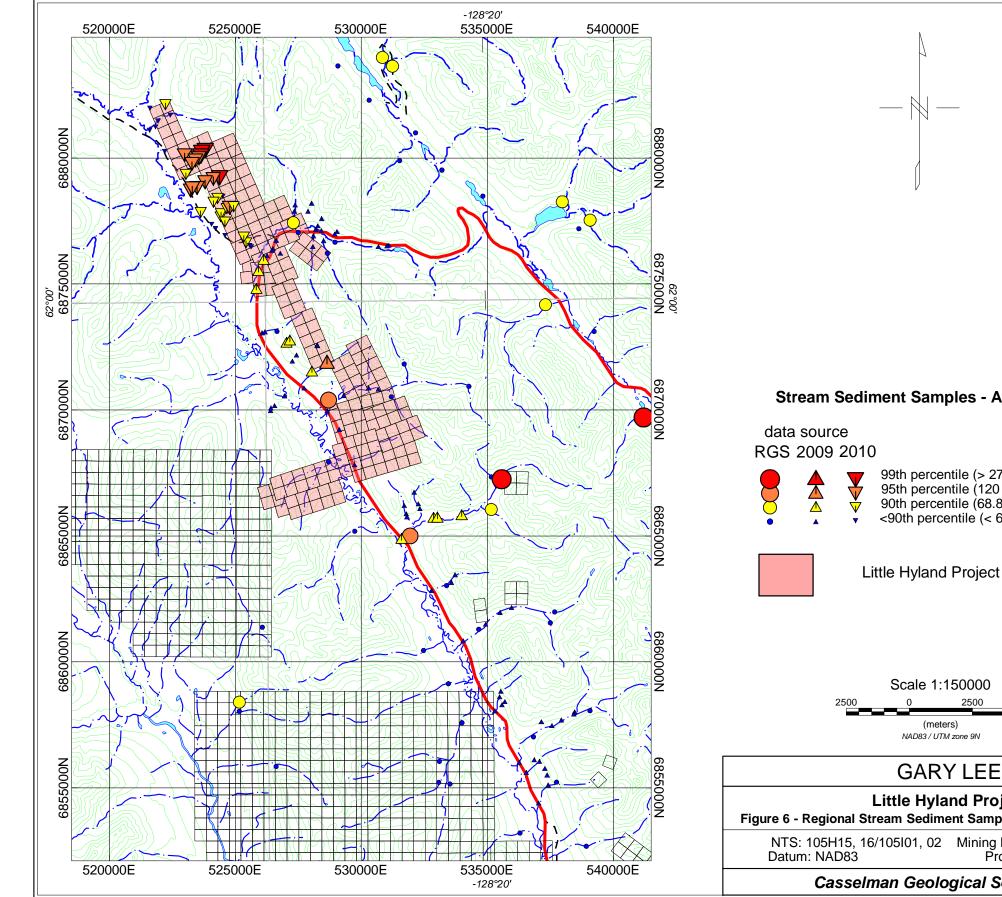
8.0 GEOCHEMICAL ANALYTICAL PROCEDURE

Samples from the 2010 program were sent to ALS Chemex Labs in North Vancouver. The soil and stream sediment samples were handled in the same manner. The samples were sieved in a 180 um sieve then analysed for 48 elements by four acid digestion with Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) according to the ME-ICP41 procedure. As well, each sample was analysed for gold by fire assay with atomic absorption finish according to the Au-ICP21 procedure.

Rock samples were processed by crushing to 70% < 2 mm and pulverizing 200 grams of the < 2 mm material to 85% < 75 um according to the Prep 21 lab procedure. The pulverized material was then analysed by ME-ICP41 for 48 elements and for gold by Au-ICP21 as for the soil and stream sediments.

Analytical certificates are included in Appendix III and plots of sample locations, gold and arsenic results are included with samples collected from previous years in Figures 4 through 12 and Figures 15 through 17.


9.0 RESULTS


9.1 Regional Stream Sediment Sampling Results (Figures 5 and 6)

Figures 5 and 6 show project wide stream sediment sampling results and plot samples collected in 2009 and 2010 along with samples collected by the Regional Geochemical Survey (RGS) samples collected by the Geological Survey of Canada. The statistics were calculated using all the 2009 and 2010 values plus the RGS values in the immediate Selwyn Basin area for NTS sheets 105H and 105I. The population of the data set was 662 samples. All samples were plotted using the same percentile ranges as shown on the map. The data for gold and arsenic was plotted with the values below the 90th percentile being considered not anomalous; values between the 90th and 95th percentile are considered mildly anomalous; and values greater than the 99th percentile are considered highly anomalous.

The plot for gold, Figure 5, illustrates that anomalous gold occurs in stream sediments samples along the length of the property, with a few anomalous samples south of the property, in the area of the Red Bluff, Zanzibar and RE claims. The RGS samples collected from outside of the project area help to illustrate the significance of the gold anomalies on and around the claims area.

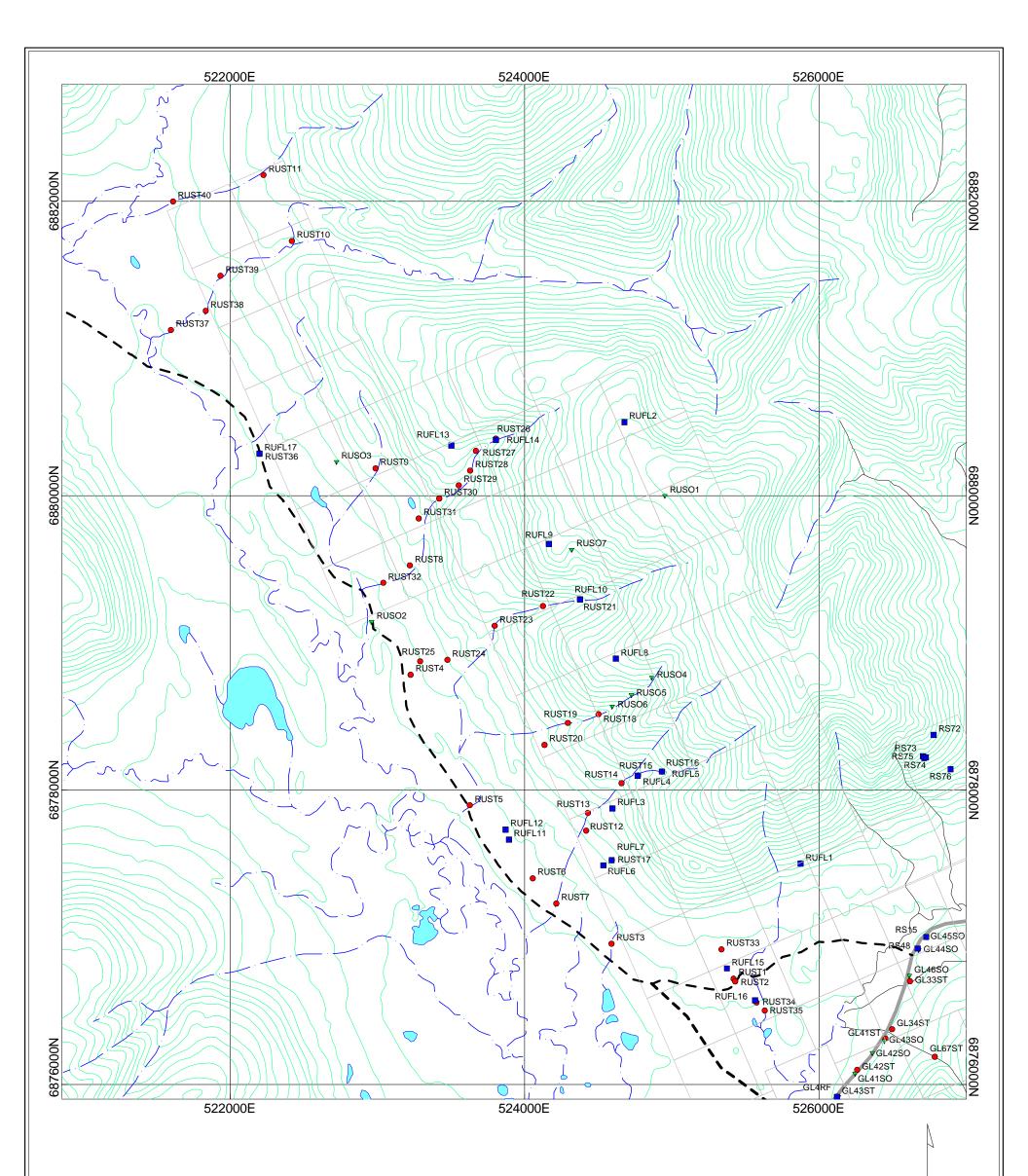
The plot for arsenic, Figure 6, illustrates a similar pattern to the gold plot, but it shows particularly consistent anomalous results in the northern part of the claim block on the Rubus claims and strong arsenic anomalies south of the claims.

	_
	1
Arsenic	
278 ppm)	
20 - 278 ppm	
278 ppm) 20 - 278 ppm) 3.8 - 120 ppm)	
(68.8 ppm)	
ct claim area	
)	
5000	
F	ĺ
E	I
ojoct	1
oject pple Geochemistry - Arsenic	
	l
g District: Watson Lake Projection: UTM, Zone 9	
Services Ltd	ĺ
	l

9.2 Rubus Area Results

Figures 7, 8 and 9 are detailed sample maps of the Rubus Area. Figure 7 shows the distribution of rock, soil and stream sediment samples. Figures 8 and 9 show, in detail the stream sediment dot plots for gold and arsenic, respectively. Also listed on these maps is the one rock sample that was anomalous for arsenic (5060 ppm) and gold (315 ppb). The soil samples collected in the Rubus Area (5 samples) did not return any anomalous values.

The Rubus Area stands out as being significantly anomalous for arsenic (Figure 9). Of the 40 stream sediment samples collected in the Rubus Area, 17 were anomalous. Of these, two streams in the central part of the claim block were anomalous for significant stretches of the stream. This would indicate that there is a significant source of arsenic (arsenopyrite?) in the central portion of the Rubus claim block.

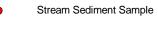

Gold values from stream sediments in the Rubus Area returned a few scattered anomalous along the trend. The anomalous gold values are weakly correlatable with arsenic, however, there is not a strong direct correlation.

9.3 Road Showing Results

The work conducted on the Road Showing was a follow-up to work conducted there in 2009. In 2009, a number of samples were collected in a pit bank along the side of the road. They include massive arsenopyrite float (sample RS14); pyrite-arsenopyrite-quartz vein float (sample RS-44); and quartz-pyrite-galena float (sample RS-43). These samples returned 0.365 ppm gold, 0.442 ppm gold, and 0.748 ppm gold, respectively. Another float sample from 2009 (sample RS23) returned 4.03% lead with 24.4 g/t silver and sample RS43 returned 0.95% lead, 0.78% zinc and 20.2 g/t silver. Also of potential significance, sample RS44 was of a quartz pebble conglomerate. Regionally this rock type is attributed to the Yusezyu Formation of the Hyland Group. This unit has been reported to be significant at gold occurrences in the region, such as at the 3 Ace Property of Northern Tiger Resources.

The 2010 program attempted to locate the bedrock source of these anomalous samples. Two parallel lines of soil samples were established. These were spaced 75 metres apart and oriented across the regional strike of major structures. As well, a VLF-EM electromagnetic survey and Field Magnetic Survey were performed on these lines.

Figure 10 shows the location of 2009 and 2010 stream sediment, soil and rock samples from the Road Showing area and shows the location of the geophysical survey lines. Figures 11 and 12 are dot plots of the gold and arsenic in soil samples, respectively. Figure 13 is a plot of the magnetic survey results and Figure 14 shows the VLF-EM survey data.

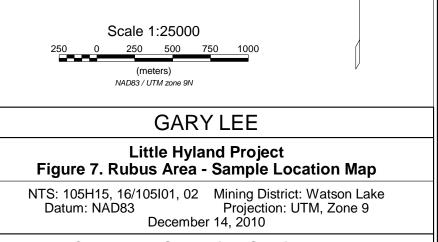

Au (ppm)

315

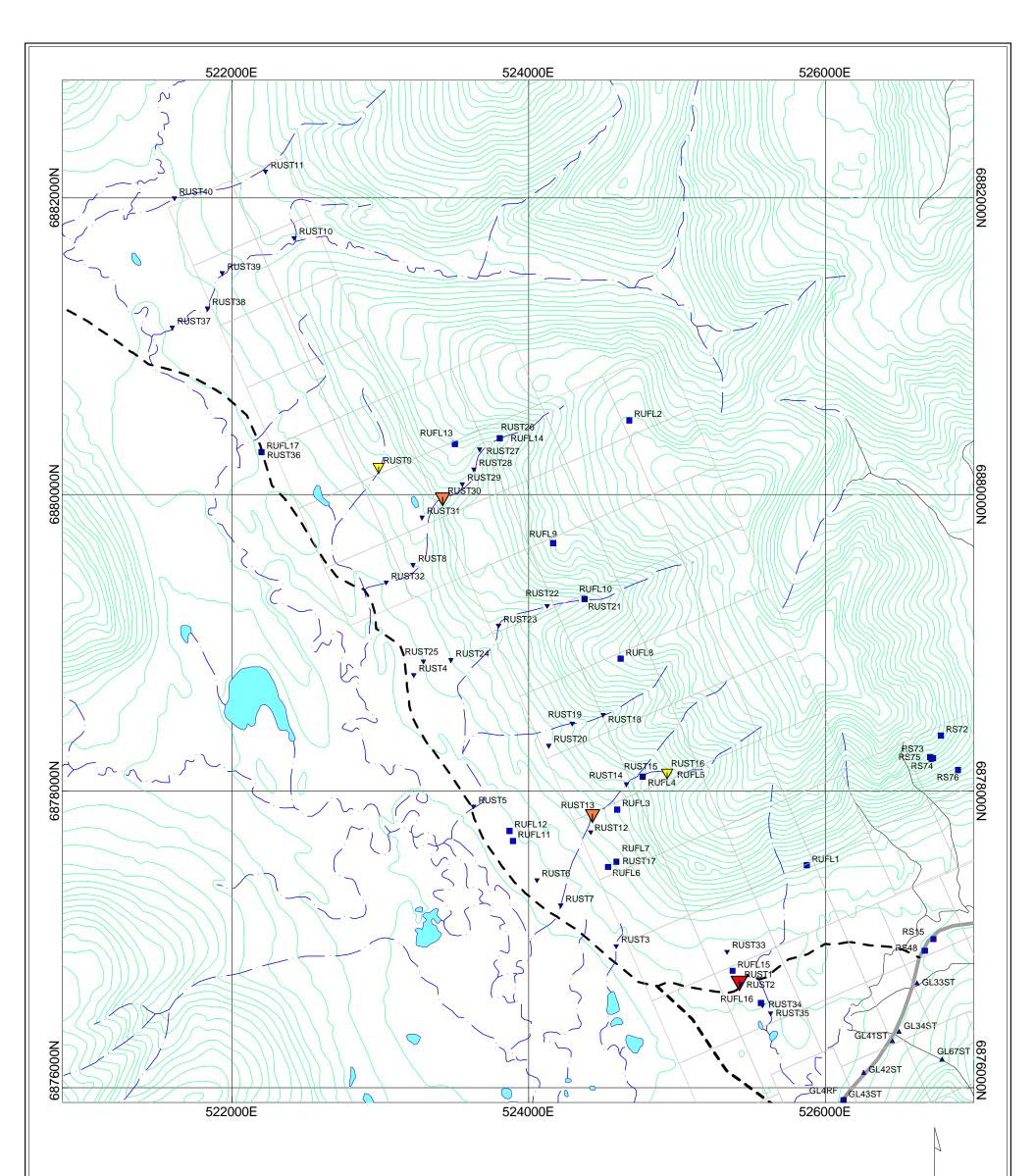
Ag (ppm) As (ppm)

5060

0.4


Soil Sample

Anomalous Rock Samples

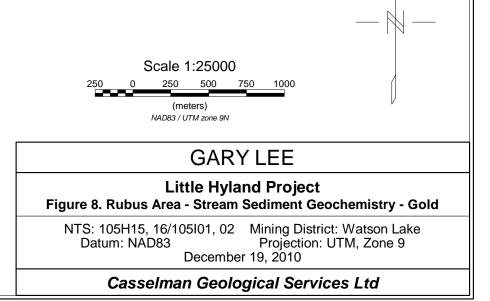

SAMPLE

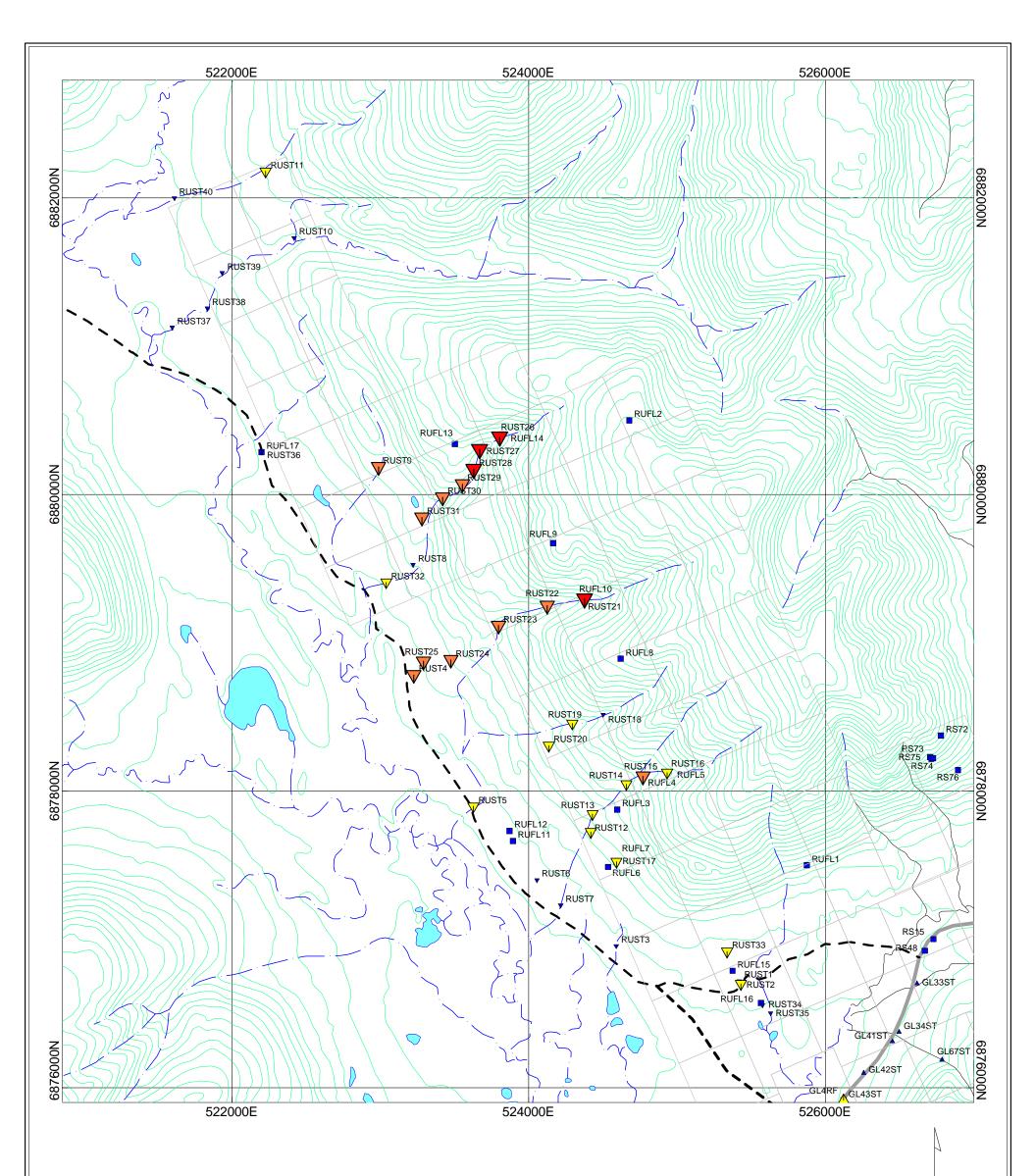
RUFL8

Rock Sample

Casselman Geological Services Ltd

Rock Sample


Stream Sediment Samples - Gold


data source RGS 2009 2010

▲
 ▲
 ♦ 99th percentile (>0.034 ppm)
 95th percentile (0.011 - 0.034 ppm)
 90th percentile (0.007 - 0.011 ppm)
 <90th percentile (<0.007 ppm)

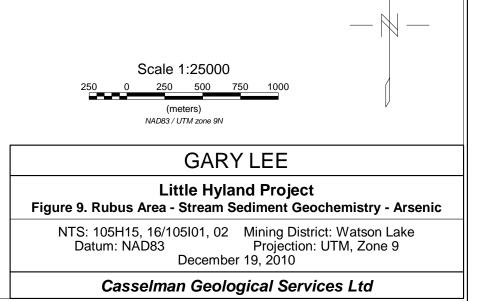
Anomalous Rock Samples

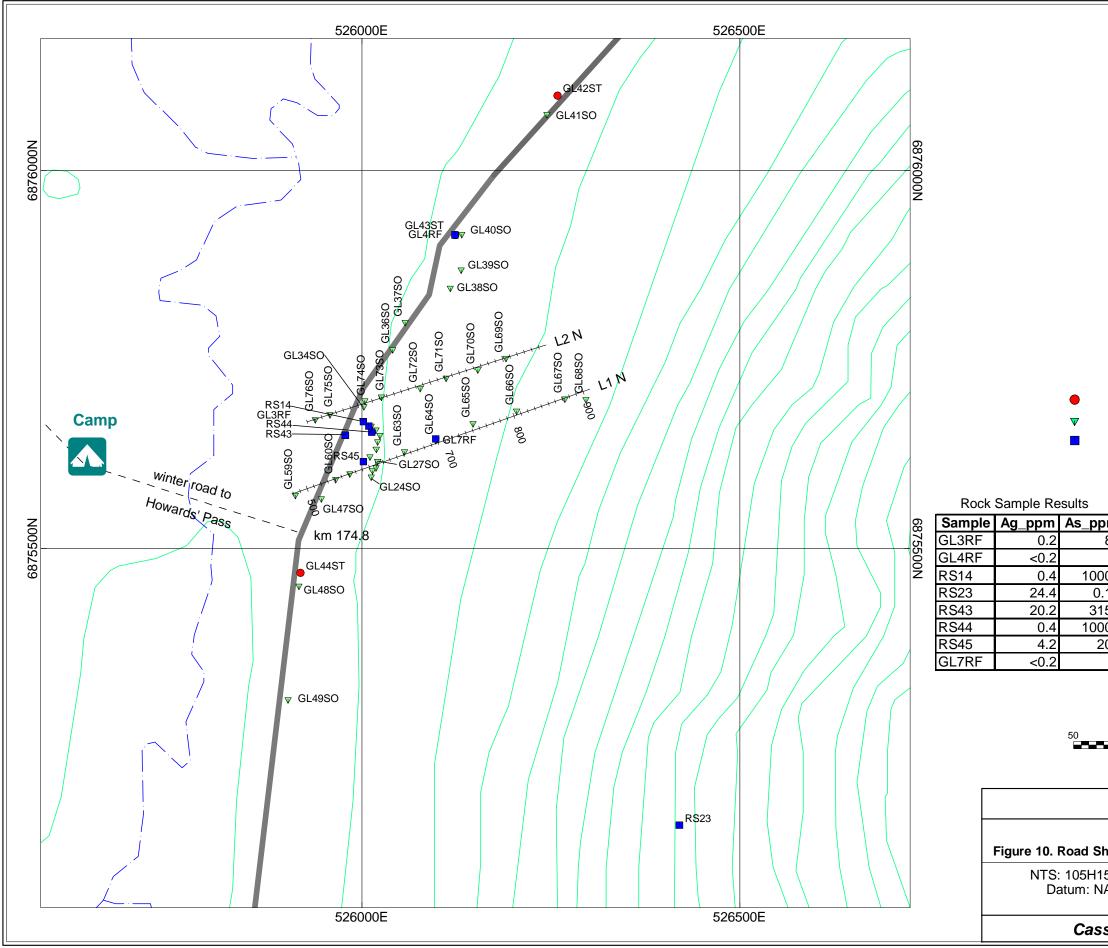
SAMPLE	Au (ppm)	Ag (ppm)	As (ppm)
RUFL8	315	0.4	5060

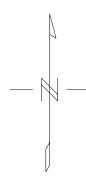
Rock Sample

Stream Sediment Samples - Arsenic

data source RGS 2009 2010

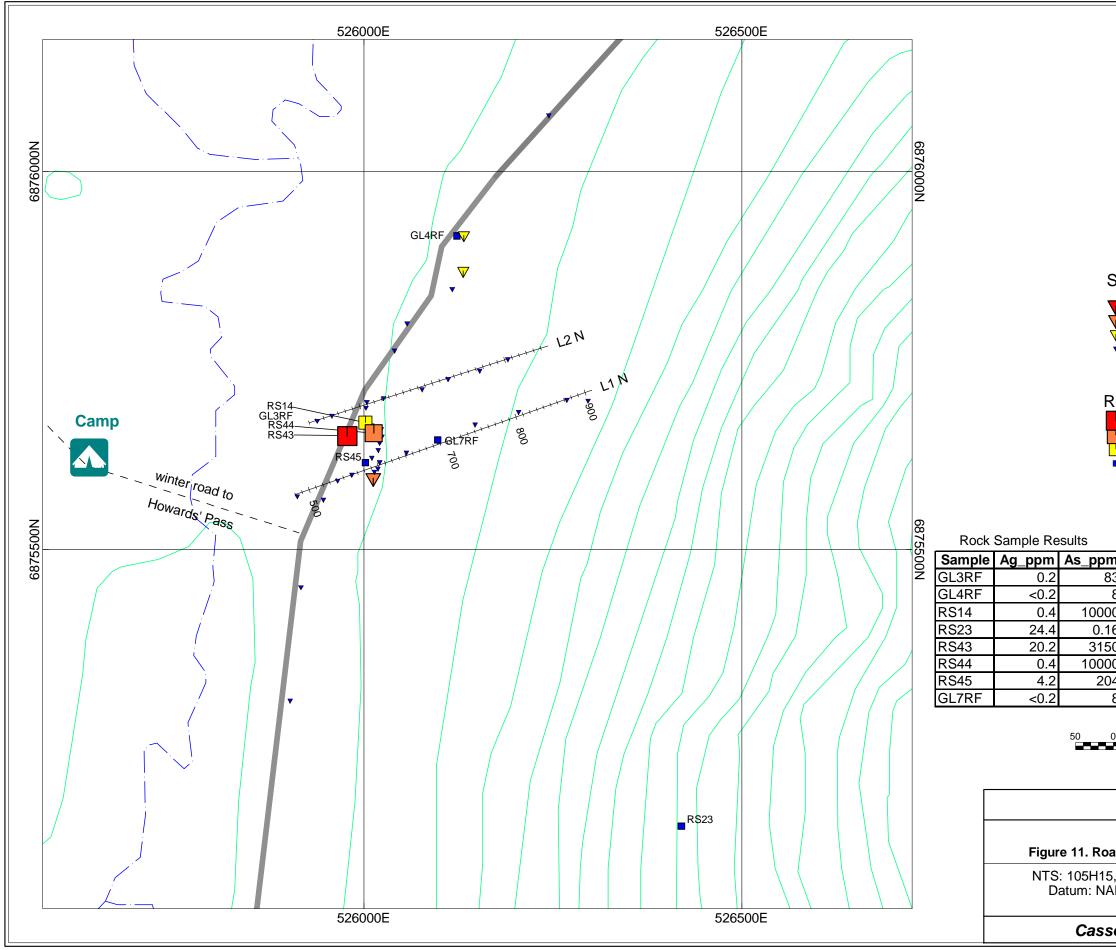

99th percentile (>278 ppm) 95th percentile (120 - 278 ppm) 90th percentile (68.8 - 120 ppm) <90th percentile (<68.8 ppm)

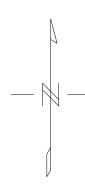

Anomalous Rock Samples


V

 $\overline{\mathbf{v}}$

SAMPLE	Au (ppm)	Ag (ppm)	As (ppm)
RUFL8	315	0.4	5060

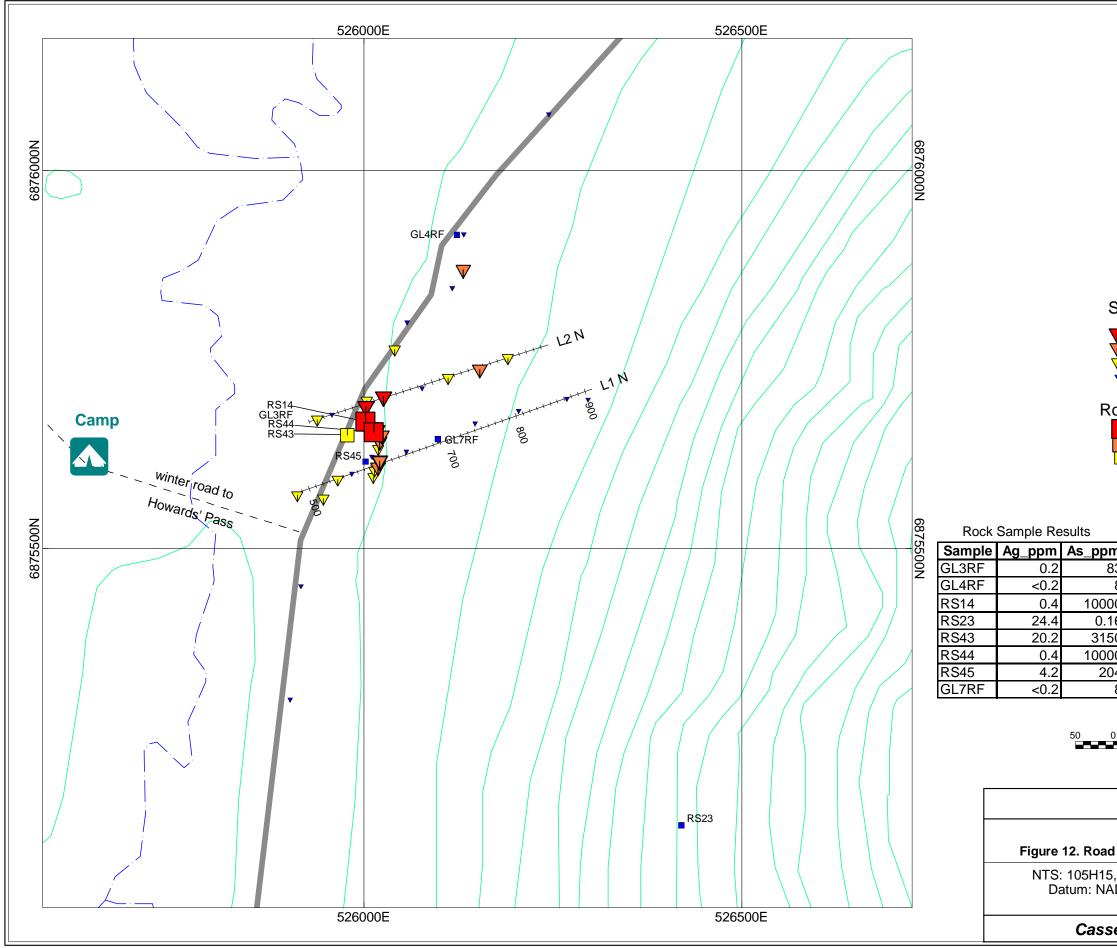

Stream sediment sample Soil sample Rock sample

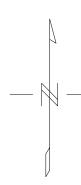

om	Au_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Year
83	0.001	9	8	11	2009
8	0.003	4	9	21	2009
000	0.365	11	46	21	2009
.16	0.005	63	40300	98	2009
50	0.748	277	9540	7850	2009
000	0.442	4	61	18	2009
204	0.025	377	1685	552	2009
8	0.001	7	4	6	2010
	Sca	le 1:5000			
0	50 10		200 250	300	
(meters)					
NAD83 / UTM zone 9N					
	GARY LEE				
	0/ (

Little Hyland Project Figure 10. Road Showing - Sample Location and Geophysical Grid Map

NTS: 105H15, 16/105I01, 02 Datum: NAD83 December 15, 2010 Mining District: Watson Lake Projection: UTM, Zone 9

Casselman Geological Services Ltd




Soil - Au (ppm)

		>	0.030
V	0.018	-	0.030
$\dot{\nabla}$	0.006	-	0.018
•		<	0.006

Rock - Au (ppm)			
		>	0.641
	0.374	-	0.641
Ш	0.107	-	0.374
		<	0.107

m	Au_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Year
83	0.001	9	8	11	2009
8	0.003	4	9	21	2009
00	0.365	11	46	21	2009
16	0.005	63	40300	98	2009
50	0.748	277	9540	7850	2009
00	0.442	4	61	18	2009
04	0.025	377	1685	552	2009
8	0.001	7	4	6	2010
Scale 1:5000					
0		00 150	200 250	300	
(meters)					
(meters) NAD83 / UTM zone 9N					
GARY LEE					
	1:441-011		- :		
Little Hyland Project					
oad Showing - Soil Sample Geochemistry - Gold					
5, 16/105l01, 02 Mining District: Watson Lake AD83 Projection: UTM, Zone 9					
December 15, 2010					
selman Geological Services Ltd					

Soil - As (ppm)

		>	679
$\mathbf{\nabla}$	426	-	679
$\mathbf{\dot{\nabla}}$	173	-	426
▼		<	173

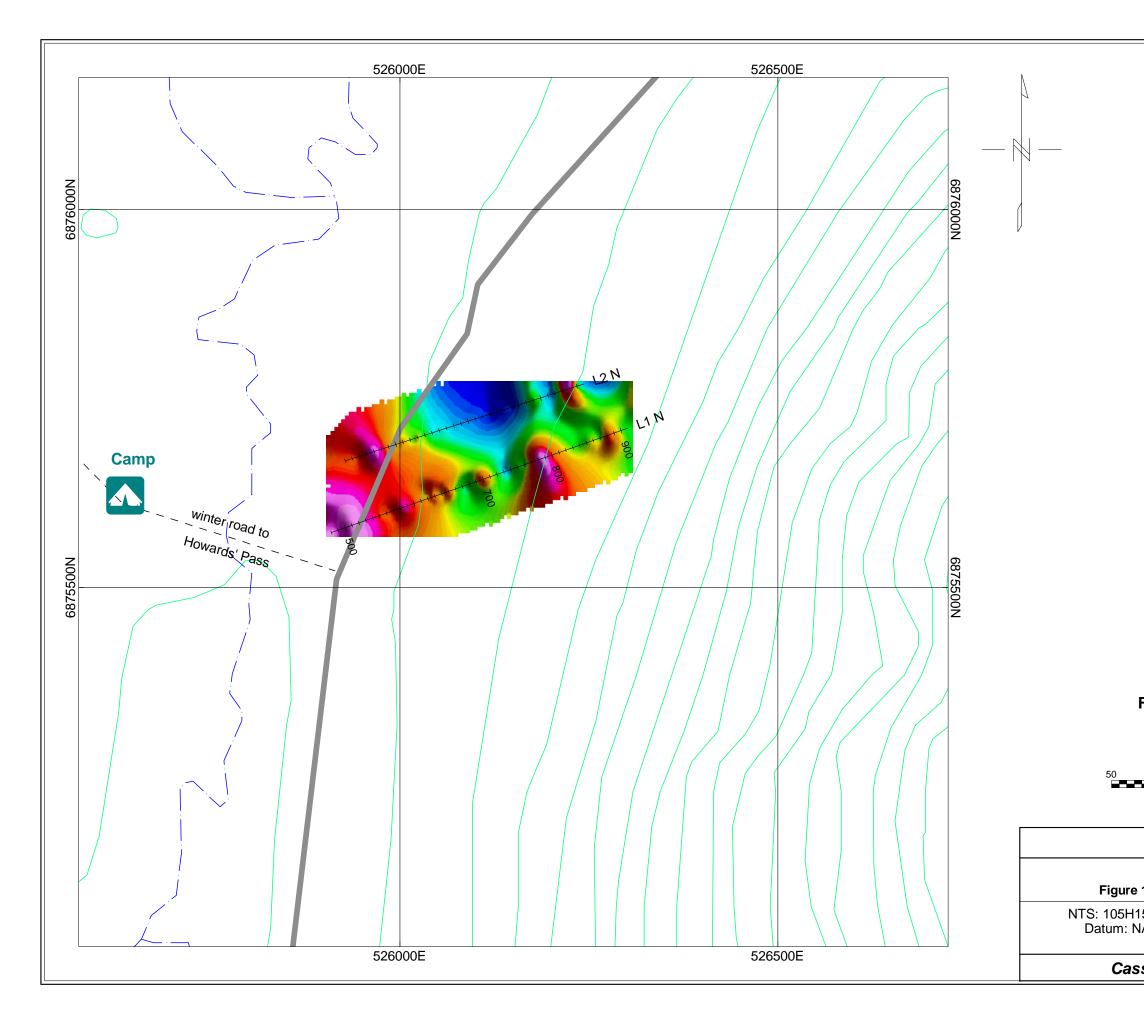
Rock - As (ppm) > 8482 5137 - 8482 1791 - 5137 • 1791

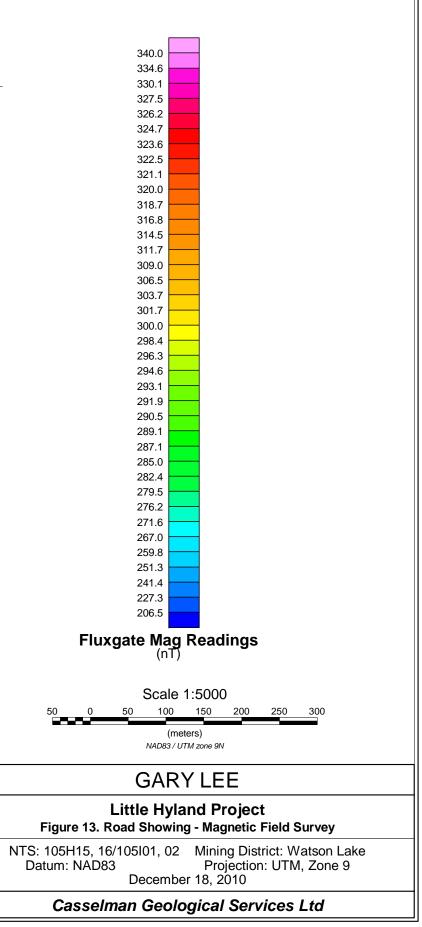
om	Au_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Year
83	0.001	9	8	11	2009
8	0.003	4	9	21	2009
000	0.365	11	46	21	2009
.16	0.005	63	40300	98	2009
50	0.748	277	9540	7850	2009
000	0.442	4	61	18	2009
204	0.025	377	1685	552	2009
8	0.001	7	4	6	2010

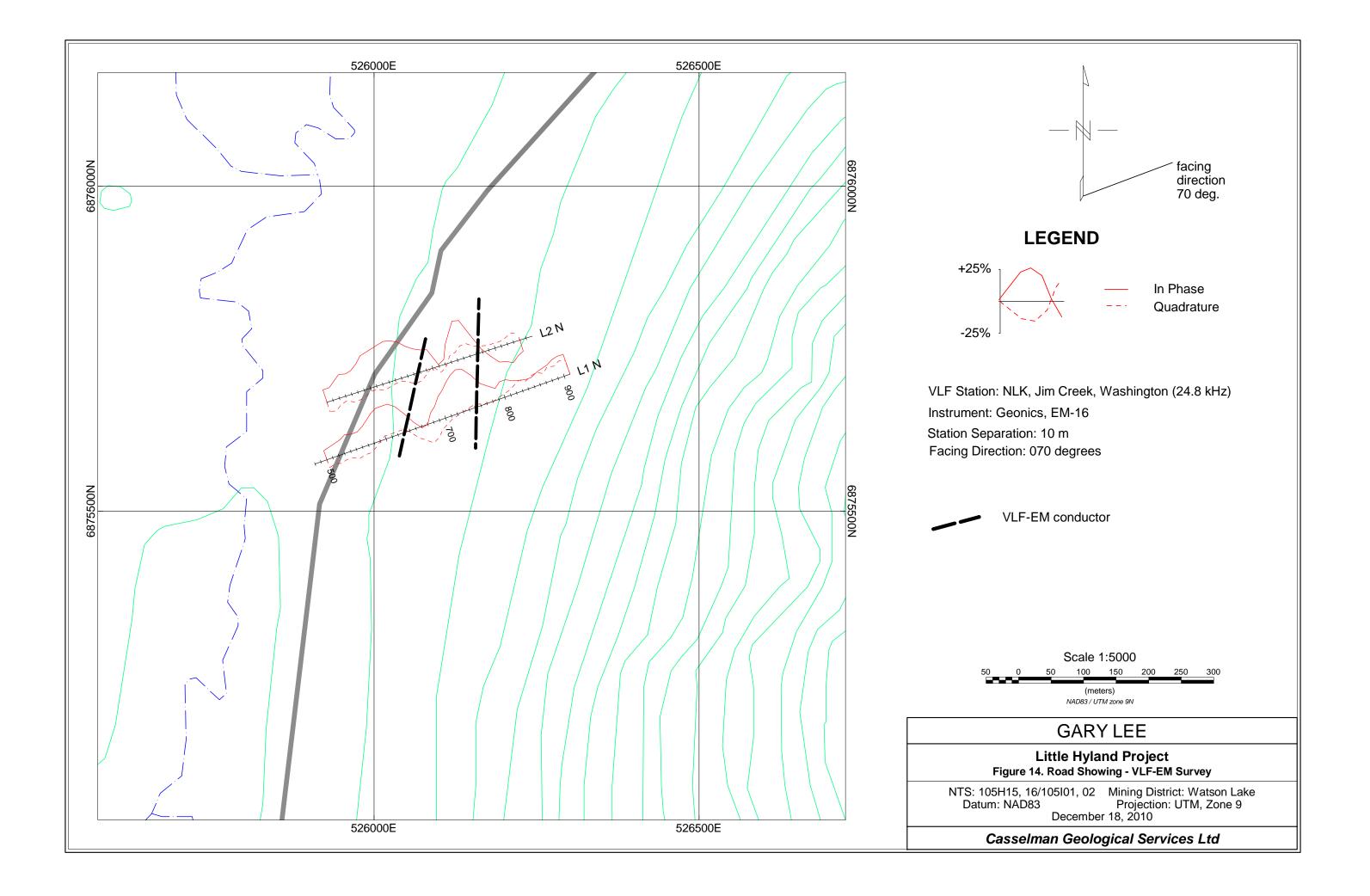
Scale 1:5000

50

100 150 200 250 300


(meters) NAD83 / UTM zone 9N


GARY LEE


Little Hyland Project Figure 12. Road Showing - Soil Sample Geochemistry - Arsenic

NTS: 105H15, 16/105I01, 02 Mining District: Watson Lake Datum: NAD83 Projection: UTM, Zone 9 December 15, 2010

Casselman Geological Services Ltd

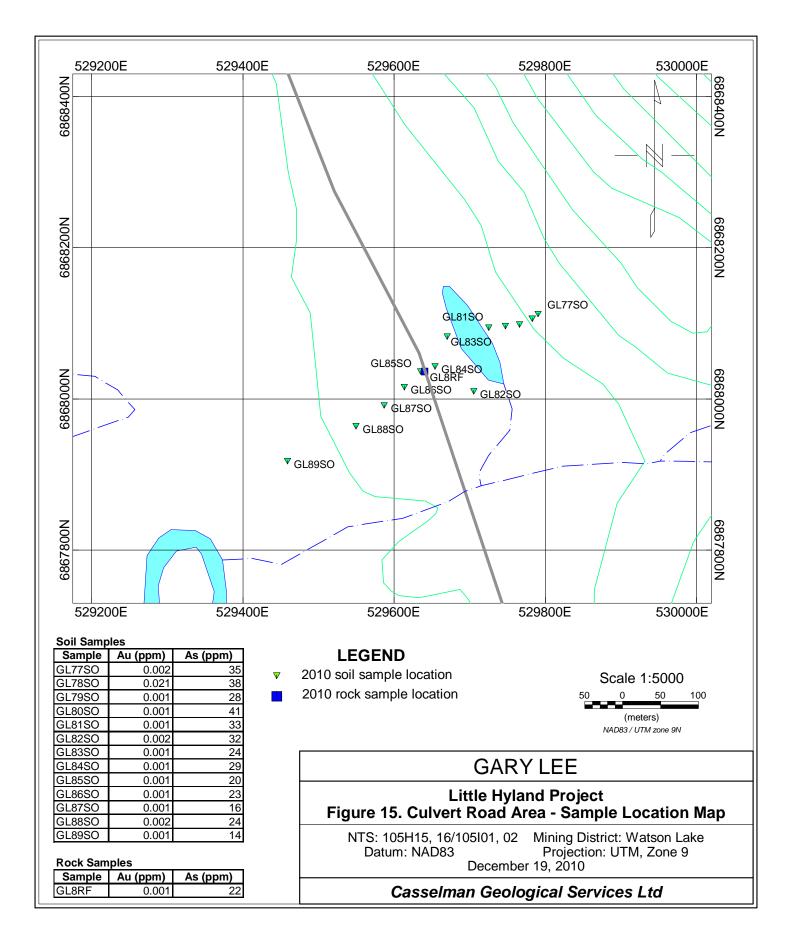
The soil sample results show a distinct strong arsenic anomaly at the western side of the grid. This anomaly is in the same area that the massive sulphide float boulder, RS 14, was discovered. This area is also moderately anomalous for gold.

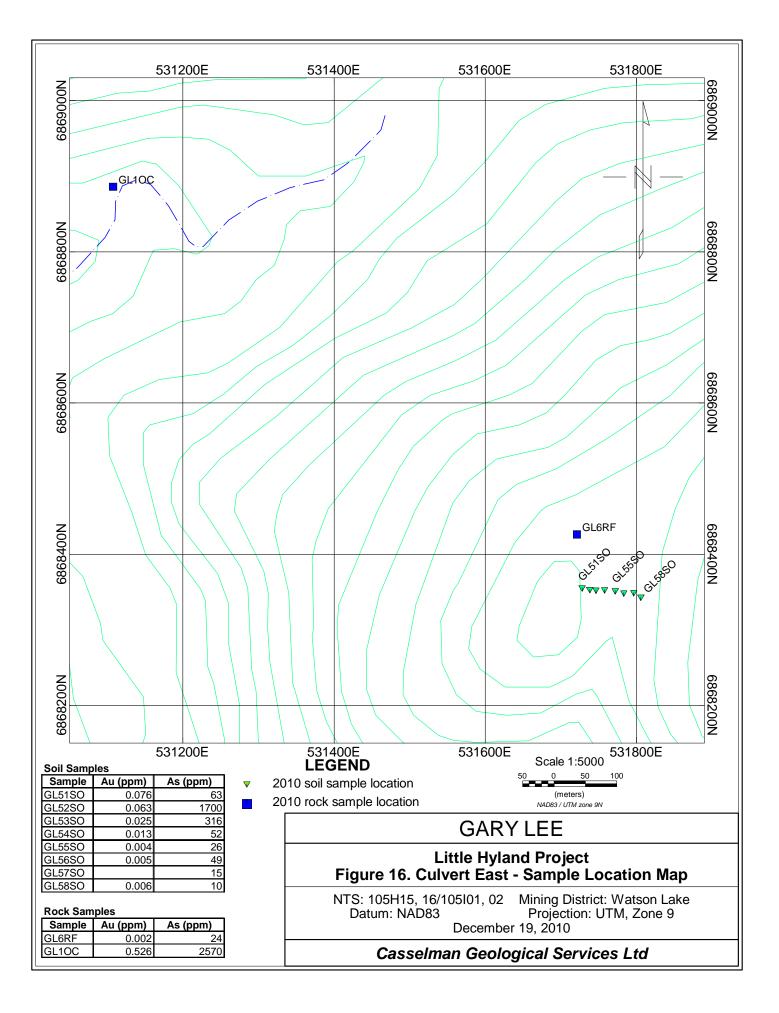
The magnetic field survey was of limited scope, but is does indicate a magnetic gradient perpendicular to the grid line orientation with a break in magnetic field strength at the approximate location of the soil anomalies.

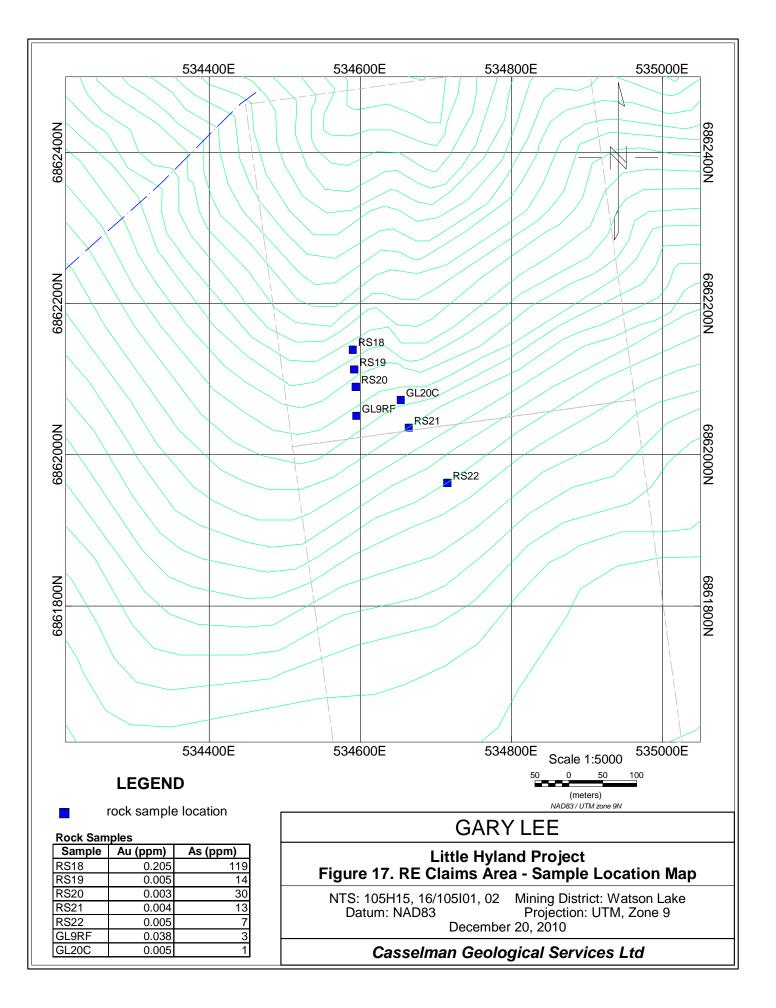
The VLF-EM survey was also limited in scope, but did identify two sub-parallel conductors that are marked by In Phase/Quadrature crossovers on each of the two survey lines. The western-most conductor corresponds well with the area of anomalous gold and arsenic in soil samples and the location of the arsenopyrite float samples.

The coincidence of the gold and arsenic in soil, the magnetic anomaly and VLF-EM conductors indicate that the source of the massive arsenopyrite float boulders may be local.

9.4 Culvert Road Area Results


A series of 13 soil samples and one rock sample were collected on the Culvert claims near the road (Figure 15). This line of samples was collected to test the area where the March Fault is projected to occur and where there is a break in the magnetic field. One soil sample returned a moderately anomalous value of 0.021 ppm gold. But all other values were less than 0.003 ppm gold. Arsenic values were all quite low. The rock sample was not anomalous for gold or arsenic.


This area is in the valley bottom and is underlain by significant valley fill. Thus soil sampling in this area may be hampered by significant accumulations of culluvium.


9.5 Culvert East Area Results

A series of 8 soil samples an two rock samples were collected in the Culvert East area (Figure 16). The soil sampling program returned a number of samples anomalous for gold (0.025 to 0.076 ppm) and arsenic (63 to 1700 ppm) at the western edge of the line. Rock sample GL1OC returned 0.526 ppm gold and 2570 ppm arsenic. For the limited amount of work in this area these results are significant.

The soil anomaly is open to the west and should be followed up with an expansion of the grid westward and with parallel lines to the north and south. Additional prospecting and mapping in the area may help to locate the source of the gold mineralization.

9.6 **RE Claims Results**

Seven rock samples were collected in the area of the RE 1 and 2 claims in 2009 (5 samples) and 2010 (2 samples). The most significant result was 0.205 ppm gold with 119 ppm arsenic from 2009 sample RS18. This result is weak and would be classified as a low priority target for follow-up work.

10.0 CONCLUSIONS and RECOMMENDATIONS

Work conducted during the 2010 field season resulted in the identification of a region with significant arsenic enrichment as defined by stream sediment results. This region is also anomalous in gold.

Work on the Culvert claims in 2009 identified gold in the phyllites which was postulated to represent a mesothermal gold-quartz vein style occurence. Also known as shear-hosted gold, this deposit type occurs in any of a variety of greenschist-grade rocks, and occurs in proximity to steep faults or sutures of ancient continental margin collision zones. Gold, pyrite, and arsenopyrite are essential minerals of this deposit type occurring chiefly in quartz veins deposited within faults and joint systems. In the process of vein emplacement, wallrock is silicified, pyritized and/or sericitized inside a broad halo of carbonitization.

The more detailed work at the Road Showing returned results that confirm the presence of anomalous gold associated with massive arsenopyrite and quartz-pyrite-arsenopyrite veining. The Rubus area returned abundant arsenic-in stream sediment anomalies far to the northern end of the property. This extends the mineralized trend from the southern edge of the Culvert claims through the property to the northern part of the Rubus claims, a distance of 15 kilometres.

The arsenic and gold stream sediment anomalies and mineralization in rock samples is, in general proximal to the March Fault and/or proximal to the contact between the Vampire Formation and Narchilla Formation of the Hyland Group. This relationship is believed to be important. Also important may be the proximity of Cretaceous Intrusions, however this has not been observed by direct relationships on the property to date.

Arsenic is a significant path finder element for Mesothermal Gold deposits and is significantly more mobile than gold. For this reason, all arsenic anomalies are significant and should be followed-up, regardless of whether there is gold associated with any individual sample. Also the mineralized structures that form the hosts for this style of mineralization will be variably mineralized with arsenic, gold and other pathfinder minerals. One can expect that certain areas will be weaker, while other a stronger in metal concentration. For this reason, explorers must remain encouraged and follow-up any concentrations of precious metals or pathfinder elements along the mineralized trend.

Recommendations for future work on the property include:

- i) Follow up the significant arsenic and gold stream sediment sample results from throughout the area and expand the stream sediment sampling pattern northwards.
- ii) Expand the survey grid at the Road Showing with more soil samples and more VLF-Em and Magnetic Surveying.
- iii) Trenching at the Road Showing to look for the source of the massive arsenopyrite, the arsenopyrite-pyrite quartz veins and the lead-zinc-silver mineralization.
- iv) Prospecting has proven effective at locating gold-bearing quartz veins at high elevations, where overburden is thinner and should be continued.
- v) Property-wide geologic and alteration mapping, focussing on detailed structural measurements and interpretation, which may be helpful in locating vein sets and predicting mineralization.
- vi) Induced Polarization geophysics to delineate chargeable sulphide-bearing and clay altered zones and to delineate resistive silica-flooded zones.
- vii) If results from this work continue to be encouraging a diamond drill program would be warranted.

Respectfully Submitted,

Scott Casselman, B. Sc, P. Geo

11.0 STATEMENT OF EXPENDITURES

July 23 to August 8, 2010

Labour - Gary Lee - 11 days@ \$350.00 / day			
- Bob Scott	- 5 days @ \$350.00 / day	1,750.00	
Truck (4X4)	- 9 days @ \$ 75.00 / day	675.00	
ATV's (2)	- 14 days @ \$ 50.00 / day	700.00	
ATV Transport traile	er - 16 days @ \$ 16.00 / day	256.00	
Room, board & daily field expenses (incl. satellite phone, flagging, gas, etc.)			
	- 16 days @ \$ 100.00 / day	1,600.00	
Assaying charges		578.68	
Explosives		584.66	
Mob (705 km) + supply trip to Watson (285 km) @ \$0.595			
Report	- drafting (44% of total)	69.30	
	- writing (44% of total)	1,386.00	
	 map reproduction (44% of total) 	55.44	

Sub total <u>\$ 12,094.13</u>

August 13 to September 2, 2010

Labour - Gary Lee - 18 days @	\$ 350.00 / day	\$ 6,300.00
- Bob Scott - 2 days @		700.00
5	\$ 75.00 / day	1,200.00
	\$ 50.00 / day	700.00
ATV transport trailer - 20 days @		320.00
Magnetometer & VLF-	•	400.00
Room, board & daily field expens	es (incl. satellite phone, flagging, gas,	etc.)
- 20 days @	\$ 100.00 / day	2,000.00
Assaying charges		2,860.41
Explosives		400.00
Demob - (705 km) + return suppl	trip Watson (285 km) @ \$0.595	589.05
Report - drafting (5	i% of total)	88.20
- writing (56	% of total)	1,764.00
- map repro	luction (56% of total)	70.56
	Cub total	¢ 47 000 00
	Sub total	<u>\$ 17,392.22</u>
		• · · · · · ·

Total <u>\$ 29,486.35</u>

12.0 REFERENCES

- Casselman, S. G., 2007. 2006/2007 Soil and Stream Sediment Sampling Program on the Culvert Property, Tungsten Area, Yukon Territory. Private Report.
- Casselman, S. G., 2008. 2008 Prospecting and Sampling Program on the Golden Culvert Property, Tungsten Area, Yukon Territory. Yukon Territorial Government assessment report # 093175.
- Casselman, S. G., and Halle, J., 2010. Little Hyland Regional Project, 2009 YMIP Focused Regional Program, Yukon Territory. Private report.
- DIAND, 2002. Yukon Minfile, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.
- Doherty, R. A. and vanRanden, J. A., 1994. Report on the 1993 Geological and Geochemical Assessment Work on the Tuna Property. Yukon Territorial Government assessment report # 093175.
- Gordey, S.P., Makepeace, A.J., (compilers), 2000. Yukon Digital Geology, Geological Survey of Canada, Open File D3826.
- Hart, C., 2002. The geological framework of the Yukon Territory. Yukon Geological survey. http://www.geology.gov.yk.ca/
- Hart, C. J. R. and Lewis, L. L., 2005. Gold Mineralization in the Upper Hyland River Area: A Non-magmatic origin. Yukon Exploration and Geology, 2205. PP 109-125.
- Heon, D, 2007. Selwyn Basin Metallogeny. Yukon Geological Survey Website, www.geology.gov.yk.ca/metallogeny/selwyn.

CASSELMAN GEOLOGICAL SERVICES LTD.

APPENDIX I

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Scott Casselman, of 33 Firth Road, Whitehorse, Yukon Territory, certify that

- 1) I am a geologist employed by Casselman Geological Services Ltd. of Whitehorse, Yukon Territory.
- I graduated from Carleton University in Ottawa, Ontario with a Bachelor of Science Degree in Geology in 1985 and have worked as a geologist since that time
- 3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia, Registration No. 20032.
- 4) I am responsible for preparation of this report based on information provided to me by Mr. Gary Lee and on original analytical certificates provided by ALS Chemex laboratories Ltd.
- 5) I have not visited the Little Hyland Project area.

Respectfully Submitted:

Dated 23th of December, 2010.

Scott Casselman, P.Geo.

CASSELMAN GEOLOGICAL SERVICES LTD.

APPENDIX II

2009 and 2010 ROCK, SOIL and STREAM SEDIMENT SAMPLE DESCRIPTIONS

2010 Rock Sample Descriptions

Sample	NAD 83		Туре	Description	Au
Number	East	North	Type	Description	(ppm)
RUFL 1	525874		Floot	Dhullite with purite and quartz vaining	0.001
RUFL 2	525674	<u>6877501</u> 6880500		Phyllite with pyrite and quartz veining Rusty quartz with pyrite	< 0.001
RUFL 2	524577	6877877		Grey, rusty fine grained rock with	<0.001
RUFL 3	524596	6677677	Fioal	quartz veins and pyrite	<0.001
RUFL 4	524766	6878098	Float	Rusty quartz boulder on south creek	20.001
	524700	0070030	ribat	bank	0.006
RUFL 5	524931	6878127	Float	Rusty quartz and pyrite in grey	0.000
	021001	0010121	i lout	boulder from creek	0.001
RUFL 6	524533	6877489	Float	Rusty quartz and pyrite in grey	
				boulder from creek	0.001
RUFL 7	524590	6877525	Float	Rusty quartz banding in grey fine	
				grained rock	<0.001
RUFL 8	524618	6878893	Float	Rusty fine grained grey rock with	
				pyrite, minor quartz and yellowish	
				green scordite stain in mini slide	0.315
RUFL 9	524163	6879673	Float	Brown & yellowish rusty quartz in	
				vuggy shaley phyllite	0.002
RUFL 10	524375	6879296		Rusty brown quartz vuggy from creek	0.002
RUFL 11	523892	6877664	Float	Large quartz exposure, rusty brown	
				patches plus green specs @ base of	
				esker	0.001
RUFL 12	523869	6877732	Float	4 ft.x 5 ft. mafic black boulder, rusty,	0.004
	500504			brownish black, may be ultra mafic	<0.001
RUFL 13	523501	6880342	Float	Rusty quartz (5 inch diameter)	-0.001
	500000	<u></u>			<0.001
RUFL 14	523803	6880380	Float	Rusty quartz from creek	<0.001
RUFL 15	525373	6876789	Float	Rusty grey quartz boulder (2 ft x 3 ft)	<0.001
NOTE 15	525575	0010103	Tioat	with pyrite	0.004
RUFL 16	525565	6876573	Float	Rusty quartz boulder (8 inch	
	020000	0010010		diameter)	<0.001
RUFL 17	522197	6880287	Float	Rusty folded quartz bands	0.002
GL6RF	531720	6868427		Rusty quartz – Golden culvert (73)	0.002
GL7RF	526097	6875646	Float	Rusty quartz conglomerate (line 1	
				geophysics)	0.001
GL8RF	529639	6868037	Float	Rusty quartz with large pyrite crystals	
				on west side of road (km 166)	
				opposite picket L17+00W, 5 + 50 N	
					0.001
GL9RF	534593	6862052	Float	Rusty & yellow partially decomposed	
				quartz occurrence with 1 inch black	
				bands on RE 2 claim opposite km	0.000
01.000	50 40 50			158 Nahanni Range Road (NRR)	0.038
GL20C	534652	6862073	Outcrop	Red stained rock (red bluffs) with	
				yellow, grey, black and quartz bands	
				on RE 2 claim opposite km 158	0.005
	E21400	6060007	Outoron	NRR.	0.005
GL10C	531106	6868887	Outcrop	Green phyllite with arsenopyrite	
				needles beside creek near main	
				golden culvert showing. 2 metres	0.526
			av report as G	from main guartz outcrop in phyllitic	0.520

Note: GL10C was mislabeled on assay report as G210C

2009 Rock Sample Descriptions

Sample	East	North	Туре	Description	Au (ppm)
GL1RF			float	Orangish tan, porous rock with quartz pebbles and	0.001
	533832	6862737		boulders to 50cm.	
GL2RF	531657	6865596	float	Quartzite grit, fine grain pyrite and quartz, minor rust.	0.001
GL3RF			float	Quartz pebble conglomerate - float from Borrow Pit, east	0.001
	526009	6875662		of hwy.	
GL4RF	526123	6875915		Rusty quartz pebble conglomerate. Hard.	0.003
GL5RF	535160	6859792		Quartz float below quartz vein that can be seen from	0.001
RS1	531145	6876657		Quartz vein. Rusty, cooked, brecciated with fine grain	0.005
RS2	529014	6877572		Rusty quartz vein in shale.	0.001
RS3	529112	6877189		Rusty quartz vein (2ft wide) in black shale.	0.006
RS4	528212	6878269		Rusty quartz vein.	0.001
RS5	527042	6872442	outcrop	Quartz pebble conglomerate - rusty, bedded in phyllites	0.001
RS6			outcrop	Quartz/calcite lens in pale green phyllite. Chalcopyrite &	0.003
	527625	6872702		hematite.	
RS7	527951	6873184	outcrop	Quartz vein, 2ft wide, rusty.	0.001
RS8A	528074	6872961	outcrop	Quartz vein (1m wide) with broken-up, scattered	0.027
RS8B	528074	6872961	outcrop	Pale green, intrusive dyke.	0.001
RS9			outcrop	Sheared quartz vein, altered phyllite, Cu staining	0.005
	528808	6871621	-	(malachite) + chalcopyrite.	
RS10A	529316	6871803	float	Quartz + arsenopyrite float in 20ft shear	0.139
RS10B	529316	6871803	outcrop	Arsenopyrite in altered phyllite.	0.004
RS11	534212	6864096		Rusty quartz vein (1m wide, 6m long?), strike 340 deg.	0.005
RS12			outcrop	Rusty quartz vein, 2 inches wide, in green green phyllite	0.008
	532734	6866960	•	+ arsenopyrite	
RS13	532734	6866958		Sheared green phyllite in quartz vein.	0.086
RS14			float	Massive arsenopyrite float with quartz in Borrow Pit east	0.365
	526002	6875668		of road.	0.000
RS15	526729	6877002	float	Massive pyrrhotite boulder with quartz.	0.107
RS16	527353	6877163		Quartz stringers in black shale cutting across bedding.	0.003
RS17	534333	6864493		Quartz veins in sheared green slate 1-2 inches wide, 40ft	0.001
RS18	534590	6862139		Brittle quartz vein with yellow staining, 30 ft from contact.	0.205
RS19	534592	6862113		Small, dense, black vein (0.5 inch) in altered intrusive.	0.005
RS20	534594	6862090		Rusty quartz float with minor pyrite. Dense.	0.003
RS21	534664	6862036	outcrop	Contact between phyllite and intrusives. Rusty red and	0.004
RS22	534715	6861963	outcrop	Quartz vein - 20ft wide by 150ft long.	0.005
RS23			float	Quartz float in gray slate talus (8ft wide). Galena and	0.005
	526420	6875134		minor pyrite.	
RS24	527004	6875185	outcrop	Chip across 2ft quartz vein in gray phyllite.	0.002
RS25	526942	6875226		Quartz float, rusty, arsenopyrite.	0.067
RS26	536729	6858502		Pyrite, pyrrhotite skarn in phyllite (8 inches by 40 inches)	0.001
RS27	536856	6858796		Rusty shale, dense (30ft thick).	0.002
RS28	536607	6858444		Rusty quartz vein (1-3ft wide, 60ft long)	0.001
RS29			outcrop	Quartz flooded knob (120x50ft) with cross-cutting veins	0.001
	536546	6858343		(1-3ft). Quartz breccia?	
RS30			outcrop	Quartz stringers in gray mudstone. Dense, 2ft wide in	0.001
	536360	6859394		gully near intrusive.	
RS31	536349	6859369		Dense, fine grained black rock in quartz vein (REE?)	0.001
RS32	536322	6859384		Chip sample across 4ft quartz vein in intrusive. Rusty	0.001
RS33	000022	000004	outcrop	Altered intrusive with veins of tourmaline or black tin	0.002
	538075	6855953		(cassiterite?) in slide rock. Tuna Stock.	0.001
RS34	526411	6869457		Quartz boulder with green phyllite fragments (3ft).	0.001

RS35	527108	6875352	float	Arsenopyrite in quartz float downhill in talus for 120m. Sample of quartz in angular boulder (2ft). Arsenopyrite +	0.924
RS36	527324	6875253	outcrop	1ft chip across shear in green slate, clay gouge + quartz veinlets + pyrite.	1.485
RS43	525978	6875650	float	Qtz-Py-Galena float, rusty. Conglomerate zone near Hwy.	0.748
RS44	526013	6875654	outcrop	Quartz pebble conglomerate, 1/8 inch vein with galena + pyrite float. Conglomerate zone near Hwy.	0.442
RS45	526002	6875615	float	Quartz float, 6 inch, angular quartz with arsenopyrite. Conglomerate zone near Hwy.	0.025
RS48	526670	6876924		1.5m chip on rusty quartz vein in black shale + silicified wall rock.	0.001
RS49	527274	6877126		Angular gabbro boulders - Cu stained and fine grain. Chalcopyrite - 45m NE Ron's plug (Intrusive at bend in Cantung road 50m from road. Gabbro? Pyroxenite?	0.001
RS51	507505	070004	float	Net texture sulphides in rusty Gabbro. Pyrrhotite, Cu, magnetite in boulder field above little round lake.	0.001
RS52	527505 527441	6876664 6876473		Plack chart with find grain cale	0.001
RS61A			outcrop	Black chert with fine grain calc 4 quartz veins in folded phyllite, 10inches to 2ft wide. Altered wall rock has As. Total width of ABCD is apx	0.43
	529461	6871970		35ft.	
RS61B	529461	6871970	outcrop	4 quartz veins in folded phyllite, 10inches to 2ft wide. Altered wall rock has As. Total width of ABCD is apx 35ft.	0.265
RS61C	529461	6871970	outcrop	4 quartz veins in folded phyllite, 10inches to 2ft wide. Altered wall rock has As. Total width of ABCD is apx 35ft.	0.266
RS61D	529461	6871970	outcrop	4 quartz veins in folded phyllite, 10inches to 2ft wide. Altered wall rock has As. Total width of ABCD is apx 35ft.	0.083
RS62	529966	6872606	float	Intrusive - Rusty pyrite, pyrrhotite float near quartz knob.	0.011
RS63	529494	6872051	float	Quartz boulder 2ft x 3ft, angular + phyllite, arsenopyrite + pyrite	
RS70	527870	6875967		Rusty, intrusive. Quartz + Pyrite + Chalcopyrite??	0.033
RS72	500770	0070075	outcrop	Black intrusive/volcanics? Rock- soft. Cpy - fine grained. 6ft dyke? Sill? In granite. Strike 213 deg, dip 90 deg.	0.004
0070	526779	6878375	outorer	Quartz vain (15 inchas wide) with accritical Oraci	0.005
RS73	526706	6878230	outcrop	Quartz vein (15 inches wide) with azurite + Cpy + Tetrahedrite. Strike 44 deg.	0.005
RS74	526714	6878218	outcrop	Quartz vein in shear on NW side of intrusion on contact with shale vein 2ft wide, dipping NW. Chip across 2ft. Patchy Cpy + Azurite (selective sample).	0.009
RS75	526725	6878222	float	Black mafic volcanic or pyroxenite float. Sulphides disseminated (source from cliff face 30m up).	0.001
RS76	526894	6878142	float		0.001

2010 Soil Samples

Sample		D 83	DESCRIPTION	AS	AU
Number		North		(ppm)	(ppm)
GL51SO	531727		South east end golden culvert property	63	0.076
GL52SO	531737		South east end golden culvert property	1700	0.063
GL53SO	531745		South east end golden culvert property	316	0.005
GL54S0	531757		South east end golden culvert property	52	0.023
GL5430 GL55SO	531771		South east end golden culvert property	26	0.013
GL55SO GL56SO	531782		South east end golden culvert property	49	0.004
GL5030 GL57SO	531782		South east end golden culvert property	15	
GL57SO GL58SO	531804		South east end golden culvert property	10	0.006
GL58SO GL59SO	525910		Grey wet soil among boulders	219	0.000
GL5930 GL60SO				219	
	525964			167	0.003
GL61SO	525982		Greyish brown, dry L1 560E		0.002
GL62SO	526020		Greyish brown, dry L1 600E	587	0.002
GL63SO	526055		Brownish grey, dry L1 643E	67	0.001
GL64SO	526097		Brownish grey, dry L1 684E	40	< 0.001
GL65SO	526146		Greyish brown, dry L1 740E	38	< 0.001
GL66SO	526204		Brownish grey, dry L1 805E	99	0.002
GL67SO	526267		Grey – dry L1 873E	85	0.006
GL68SO	526295		Grey – brown – 3 feet L1 907E	23	0.001
GL69SO	526189		Tan colour, gritty L2 805E	260	0.001
GL70SO	526152		Brown, sandy L2 765E	519	<0.001
GL71SO	526110		Tan, grey - pebbly L2 720E	192	0.002
GL72SO	526076		Brown – pebbly L2 680E	141	0.001
GL73SO	526025		Brown – pebbly – wet L2 630E	703	0.006
GL74SO	526002		Brown – wet L2 605E	751	0.003
GL75SO	525956		Tan to brown – rocky L2 560E	93	<0.001
GL76SO	525937		Tan to brown – rocky L2 540E	383	0.001
GL77SO	529789		Tan colour	35	0.002
GL78SO	529782		Tan colour	38	0.021
GL79SO	529764		Tan colour	28	<0.001
GL80SO	529746	6868098	Tan colour	41	0.001
GL81SO	529724	6868096	Tan colour	33	0.001
GL82SO	529704	6868012	Tan colour	32	0.002
GL83SO	529669	6868084	Tan colour	24	0.001
GL84SO	529653	6868045	Tan colour	29	<0.001
GL85SO	529634	6868038	Tan colour	20	< 0.001
GL86SO	529612	6868018	Tan colour	23	0.001
GL87SO	529585	6867993	Tan colour	16	0.001
GL88SO	529548	6867966	Tan – sandy	24	0.002
GL89SO	529458	6867919	Wet clay near swamp	14	0.001
RUSO1	524952		Rusty brown soil	< 2	0.003
RUSO2	522959		Rusty brown soil – esker	54	0.003
RUSO3	522720		Rust coloured soil – esker	51	0.003
RUSO4	524862		Tan, dry – bottom of gulch	29	0.001
RUSO5	524724		Tan, dry – bottom of gulch	41	0.006
RUSO6	524594		Brown, dry – bottom of gulch	52	0.003
RUSO7	524318		Brown, from bank of gulch	126	0.013

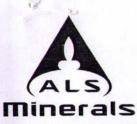
2009 Soil Sample Descriptions

Sample	East	North	Description	Au (ppm)	As (ppm)
GL1SO	529717		Brown Dirt, shaly rock.	0.003	AS (ppill) 19
GL130 GL2SO	533772		Dry - tan dirt north of gulch	0.005	34
GL230 GL3SO	533832		Dry - greyish tan dirt at the bottom of gulch	0.003	24
GL330 GL4SO	533999		Tan dirt in dry gulch	0.003	13
GL430 GL5SO	532522		Tan dirt in depression	0.003	7
GL530 GL6SO	533982		Dirt in wooded area below ravine	0.001	5
GL030 GL7SO	534209		Greyish tan dirt in wooded area	0.004	46
GL730 GL8SO	536081		Greyish tan soil west of depression gulch	0.002	293
GL830 GL9SO	536102		Greyish tan soil east of depression guich	0.019	164
	535427		Greyish tan soil east side of gulch		
GL10SO GL11SO	535427			0.002	15 10
			Greyish tan soil west side of gulch	0.002	
GL12SO	536600		Greyish tan soil, bottom of dry gulch	0.001	26
GL13SO	537120		Blackish tan soil in dry depression	0.002	26
GL14SO	535160		Brown. Slide below quartz vein that can be seen	0.001	35
GL15SO	535024		Brown dirt below dry slide	0.001	7
GL16SO	532533		Brown soil (good B horizon) in evergreen trees.	0.001	25
GL17SO	529785		Brown soil at (perma?) frost, north side of	0.002	2
GL18SO	529854		Brown soil in rocks (north-side of Culvert	0.003	69
GL19SO	529946		Brown soil in rocks (north-side of Culvert	0.02	32
GL20SO	530056		Brown soil in small wash (north-side of Culvert	0.017	540
GL21SO	530334		Tan soil in small side-cut (north side of Culvert	0.014	213
GL22SO	530487		Grayish tan soil below boulder (north side of	0.046	105
GL23SO	530582		Tan soil (north side of Culvert Mountain)	0.009	132
GL24SO	526012	6875595		0.029	376
GL25SO	526014		Brown/Tan	0.002	262
GL26SO	526019		Brown/Tan	0.001	444
GL27SO	526021	6875616		0.004	1050
GL28SO	526011		Tan/Gray	0.001	137
GL29SO	526019	6875632		0.003	421
GL30SO	526021		Tan/Gray	0.005	445
GL31SO	526024	6875650		0.005	568
GL32SO	526018	6875657		0.015	507
GL33SO	526012		Tan - 5ft from As	0.001	212
GL34SO	526001		Red/Brown	0.002	276
GL35SO	526004	6875696		0.002	397
GL36SO	526041		Brown/Tan	0.002	298
GL37SO	526057		North of conglomerate zone	0.003	137
GL38SO	526117		North of conglomerate zone	0.004	95
GL39SO	526131		North of conglomerate zone	0.017	556
GL40SO	526132	6875916	North of conglomerate zone	0.007	122
GL41SO	526245	6876075	North of conglomerate zone	0.001	63
GL42SO	526362	6876214	North of conglomerate zone	0.001	64
GL43SO	526443	6876297	North of conglomerate zone	0.002	60
GL44SO	526678	6876914	Gravel Bank E. of Rd, south of massive sulphide	0.001	31
GL45SO	526732		Above RS15 (massive sulphide)	0.001	46
GL46SO	526614		Red scum in ditch	0.002	102
GL47SO	525946	6875566	South of conglomerate zone (ditch bank?)	0.001	219
GL48SO	525917		South of conglomerate zone (ditch bank?)	0.002	88
GL49SO	525902		South of conglomerate zone (ditch bank?)	0.001	93
GL50SO	525829		South of conglomerate zone (ditch bank?)	0.001	61

2010 Stream Sediment Sample Description

Sample	NAD 8	3	DESCRIPTION	As	Au
Number	East	North		(ppm)	(ppm)
RUST 1	525418	6876720	Surfacing of underground (U/G) stream, slow flowing	68	0.056
RUST 2	525429		Same as above – 20 metres downstream	101	<0.001
RUST 3	524589	6876957	Organics + silt – slow flowing over vegetation	21	<0.001
RUST 4	523223		Organics + silt from pool over vegetation	214	<0.001
RUST 5	523625	6877898	Organics + silt – slow flowing over vegetation	99	<0.001
RUST 6	524054	6877401	Organics + silt – slow flowing over vegetation	42	<0.001
RUST 7	524214	6877230	Organics + silt – slow flowing over vegetation	36	<0.001
RUST 8	523219	6879528	Organics + silt – slow flowing over moss	134	0.008
RUST 9	522986	6880187	Organics + silt – slow flowing over dirty moss	39	0.004
RUST 10	522417	6881732	Sand & gravel – fast flowing	37	0.003
RUST 11	522224	6882180	Sand & silt under water in flowing creek	71	0.004
RUST 12	524417	6877725	Sediments under water – fast flowing	108	0.002
RUST 13	524429	6877846	Sand & gravel – flowing creek	82	0.012
RUST 14	524657	6878048	Sand and gravel + moss – flowing creek	100	0.006
RUST 15	524770	6878100	Underwater gravel – flowing creek	153	0.004
RUST 16	524932	6878126	Underwater gravel + moss – flowing creek	117	0.011
RUST 17	524590	6877525	On moss – mini stream near source	109	<0.001
RUST 18	524500	6878517	Sand & gravel bar – wide spot in creek	53	0.002
RUST 19	524293		Sand & gravel where creek flows through trees	92	0.001
RUST 20	524134	6878308	Sand & silt – smaller part of creek (partially U/G)	106	0.002
RUST 21	524375	6879297	Sand & silt – creek	551	0.003
RUST 22	524123	6879251	Sand & slit – creek in trees	238	0.003
RUST 23	523795	6879118	Sand & silt – creek in trees	161	0.002
RUST 24	523474	6878886	Gravel bar – creek in trees	153	0.004
RUST 25	523289	6878876	Organics & silt in thick willows	146	0.002
RUST 26	523802	6880389	Sand & silt – good water flow	351	0.005
RUST 27	523667	6880306	Sand & silt – good water flow	333	0.007
RUST 28	523628	6880172	Sand & silt – good water flow	326	0.006
RUST 29	523551	6880071	Sand & silt – good water flow	225	0.004
RUST 30	523418	6879982	Sand & slit – good water flow	180	0.013
RUST 31	523279	6879847	Sand & silt – good water flow	154	0.004
RUST 32	523038	6879409	Silt – in willows	108	0.002
RUST 33	525336	6876919	Organics & silt near creek source (U/G)	70	<0.001
RUST 34	525574	6876558	Organics & silt just before creek returns U/G	67	<0.001
RUST 35	525630	6876503	Wet gravel flats approx. 5m x 30m	4	<0.001
RUST 36	522197		Wet slew in willows	43	<0.001
RUST 37	521595	6881127	Large fast flowing creek	29	<0.001
RUST 38	521831		Large fast flowing creek	31	<0.001
RUST 39	521932		Large fast flowing creek	41	0.002
RUST 40	521609		Slow moving water in flat willow slew	30	<0.001

2009 Stream Sediment Sample Descriptions


Sample	East	North	Description	Au (nnm)	As (ppm)
GL1STM			In tight valley with no glacial debris, north of Tungsten Rd. (-14 MESH)	0.015	29 AS
GL2STM			In tight valley with no glacial debris, north of Tungsten Rd. (-14 MESH)		
			In tight valley with no glacial debris, north of Tungsten Rd. (-14 MESH)	0.006	50
GL3STM GL4STM			In tight valley with no glacial debris, north of Tungsten Rd. (-14 MESH)	0.003	29
				0.045	37
GL5STM			In tight valley with no glacial debris, north of Tungsten Rd. (-14 MESH)	0.005	34
GL6STM			Drainages north of Tungsten Rd. Creek has jumped out of original	0.002	44
GL7STM			Drainages north of Tungsten Rd. On upper part of fan - reflects	0.002	38
GL8STM			Drainages north of Tungsten Rd. In steep-walled valley.	0.009	52
GL9STM			Drainages north of Tungsten Rd. Side channel gravel and sand	0.006	51
GL10ST			Drainages north of Tungsten Rd. On big drainage-side channel	0.005	59
GL11ST			Drainages north of Tungsten Rd. Placer gravel behind big boulder	0.005	61
GL12ST			Drainage east of Tungsten Rd. Washed gravel/sand out of moss - creek	NSS	80
GL13ST	527164	6872709	Drainage east of Tungsten Rd. Upstream of above in gravel.	0.004	88
GL14ST			Drainage east of Tungsten Rd. Creek gravel where creek narrows.	0.002	21
GL15ST	527425	6872152	Drainage east of Tungsten Rd. Creek gravel at gentle bend.	0.01	45
GL16ST	528264	6872528	Drainage east of Tungsten Rd. Creek gravel below fork.	0.008	19
GL17ST	528238	6872539	Drainage east of Tungsten Rd. Creek gravel - underground stream	0.005	16
GL18ST			Drainage east of Tungsten Rd. Creek gravel above junction of	0.05	128
GL19ST			Drainage east of Tungsten Rd. Creek gravel.	0.006	74
GL20ST			Drainage east of Tungsten Rd. Creek gravel above culvert.	0.085	64
GL21A ST			Large Creek. Active sand bar 6 inches underwater, inside	0.001	13
GL21B ST			Creek gravel.	0.003	12
GL22ST			Creek bottom, rocky, sieved -14 sand from bottom of creek pool.	0.002	36
GL23ST			Creek gravel/sand from bottom of pool. Panned minor black	0.003	27
GL24ST			Creek gravel east of hwy.	0.001	21
GL25ST			Creek gravel + moss (-12). Panned Au (10x).	0.001	11
GL26ST			Creek gravel (-12). Panned Au (10x).	0.002	12
GL2001 GL27ST			Creek gravel and moss at bend (march trend).	0.001	
GL27ST GL28ST			Creek gravel (underground stream 4.70m) -12.	0.001	40 16
GL28ST GL29ST			Creek gravel.	0.001	
GL2951 GL30ST			Moss and mud in trees.	0.004	20 10
GL31ST			Little Hyland River 30m north of culvert. Creek gravel - bar.	0.007	20
GL32ST			Creek gravel north of culvert. Panned minor black sand + 2 Au	0.016	35
GL33ST			Small creek, gravel east of road.	0.001	28
GL34ST			Same as above - main creek.	0.002	24
GL35ST			Creek gravel/sand in big creek from east.	0.005	86
GL36ST			Creek sand bar (Big creek from east).	0.359	93
GL37ST			Creek gravel - big creek from east.	0.003	
GL38ST			Point bar, big creek, rusty rocks,	0.013	20
GL39ST			Creek gravel, large creek, panned black sand.	0.002	21
GL40ST			Creek gravel, large creek, panned black sand.	0.001	23
GL41ST			Water flowing into east side of Rd (ditch). Mo-W Hill.	0.003	
GL42ST			Stream gravel in ditch at culvert. Mo-W Hill.	0.004	54
GL43ST			Stream gravel in ditch at culvert. Pan Au? 10x.	0.006	70
GL44ST			Stream in ditch at culvert.	0.003	88
GL45ST	537146	6857599	Black muck and gravel Willows.	0.003	25
GL46ST	538467	6857987	Rusty creek gravel, buckbrush, willows.	0.002	18
GL47ST			Sand among boulders, large creek.	0.002	22
GL48ST			Coarse gravel, fe fines, large creek.	0.007	22
GL49ST			Sand bar above water, large creek.	0.006	
GL50ST			Creek gravel among moss covered boulders.	0.001	22
GL51ST			Washed, submerged moss, grit	0.002	41

GL52ST	535696	6858394	Creek gravel.	0.002	16
GL53ST			Creek gravel between large boulders.	0.001	15
GL54ST			Creek gravel, large stream.	0.001	19
GL55ST	537376	6855481	Sand from ground seep.	0.003	16
GL56ST	537284	6855740	Creek gravel, uncharted creek.	0.002	16
GL57ST	537069	6856025	Creek gravel.	0.001	13
GL58ST	536863	6856093	Sand and gravel, dry creek bed	0.001	8
GL59ST	537037	6854370	Gravel below west of culvert.	0.002	13
GL60ST	536545	6855585	Creek gravel above east of culvert.	0.001	24
GL61ST	536265	6855989	Creek gravel below west of culvert.	0.003	20
GL62ST	535306	6858031	Creek gravel above east of culvert.	0.001	17
GL63ST	526399	6869949	Creek gravel, south tributary, small creek, black sand.	0.001	5
GL64ST			Creek gravel in north tributary, small creek, black sand.	0.002	-2
GL65ST	526556	6870144	Creek gravel downstream of above, black sand.	0.002	4
GL66ST	526952	6870534	Creek gravel, big trib to Little Hyland from west, black sand.	0.048	23
GL67ST	526787	6876188	Creek gravel below west bowl, no black sand.	0.005	65
GL68ST	528100	6876880	Creek gravel, minor black sand, fair sample.	0.003	43
GL69ST	528073	6876454	Creek gravel, minor black sand, good sample.	0.002	52
GL70ST	528502	6876691	Creek gravel, opposite side of road on Little Hyland Rd.	0.001	18
GL71ST	525836	6874759	Creek gravel east (above) culvert.	0.002	84
GL72ST	526173	6873073	Sandy moss, under water.	0.002	23
GL73ST	526063	6873034	Creek gravel above east of culvert.	0.031	35
GL74ST	528646	6869937	Creek gravel, point bar, east of culvert, camp.	0.009	13
GL75ST	529126	6869198	Creek gravel below high arsenic, east of culvert.	0.007	48
GL76ST	529735	6867796	Creek gravel east of culvert, culvert creek.	0.034	50
GL77ST			Creek gravel, culvert west side on big creek.	0.003	75
GL78ST	534044	6860811	Creek gravel, east side of culvert, big creek.	0.001	28
GL79ST	530675	6870792	Creek gravel + flood sand, big creek.	0.001	13
GL80ST	530290	6870843	Creek gravel + flood sand, big creek.	0.005	13

CASSELMAN GEOLOGICAL SERVICES LTD.

APPENDIX III

GEOCHEMICAL ANALYTICAL CERTIFICATES

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 19-AUG-2010 This copy reported on 23-AUG-2010 Account: LEEGAR

CERTIFICATE WH10107987

Project:

P.O. No .:

This report is for 3 Rock samples submitted to our lab in Whitehorse, YT, Canada on 6-AUG-2010.

The following have access to data associated with this certificate:

GARY LEE

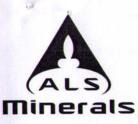
BOB SCOTT

	SAMPLE PREPARATIO	N
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	14 1 C 20 2 C 20
LOG-22	Sample login - Rcd w/o BarCode	
CRU-QC	Crushing QC Test	
CRU-31	Fine crushing - 70% <2inm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
1.55	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

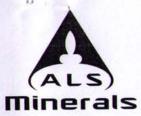

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 19-AUG-2010 Account: LEEGAR

Minera	linerals										CERTIFICATE OF ANALYSIS WH10107987						
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 [°] Às ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	
RUFL1 RUFL2 GL6RF		1.07 0.56 0.95	0.001 <0.001 0.002	<0.2 <0.2 <0.2	1.78 1.67 2.15	7 13 24	<10 <10 <10	10 10 10	<0.5 <0.5 <0.5	<2 <2 <2	0.23 0.04 0.08	<0.5 0.6 <0.5	8 5 22	33 23 31	11 61 76	3.78 3.78 4.37	



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 19-AUG-2010 Account: LEEGAR

Ninera	IS								CERTIFICATE OF ANALYSIS WH10107987							
ample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 [™] La ppm 10	ME-ICP41 'Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Nii ppm 1	ME-ICP41 ? ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
RUFL1 RUFL2 GL6RF		10 <10 10	1 <1 1	0.03 0.05 0.02	10 10 10	0.70 0.52 0.84	224 465 1525	<1 <1 <1	<0.01 0.01 0.03	" 19 10 37	1010 370 290	17 52 15	0.15 0.21 0.09	<2 <2 <2	1 2 4	15 7 4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 19-AUG-2010 Account: LEEGAR

Nineral	13								CERTIFICATE OF ANALYSIS	WH10107987
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 Tl ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
RUFL1 RUFL2 GL6RF		<20 <20 <20	<0.01 <0.01 <0.01	<10 <10 <10	<10 <10 <10	10 12 19	<10 <10 <10	65 85 216		
				-						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 22-AUG-2010 This copy reported on 23-AUG-2010 Account: LEEGAR

CERTIFICATE WH10109004

Project:

P.O. No.:

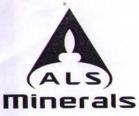
This report is for 7 Stream Sediment samples submitted to our lab in Whitehorse, YT, Canada on 6-AUG-2010.

The following have access to data associated with this certificate:

GARY LEE

BOB SCOTT

24	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
SCR-41	Screen to -180um and save both


ANALYTICAL PROCEDURES								
DESCRIPTION	INSTRUMENT							
Au 30g FA ICP-AES Finish	ICP-AES							
35 Element Aqua Regia ICP-AES	ICP-AES							
	DESCRIPTION Au 30g FA ICP-AES Finish							

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 22-AUG-2010 Account: LEEGAR

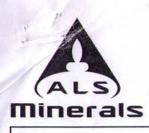
Innera	15						CERTIFICATE OF ANALYSIS WH1010						109004	9004		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
RUST 1 RUST 2 RUST 3 RUST 4 RUST 5		0.34 0.40 0.24 0.52 0.56	0.056 <0.001 <0.001 <0.001 <0.001	0.2 0.3 <0.2 0.3 0.5	1.74 1.13 1.73 2.07 2.33	68 101 21 214 99	<10 <10 <10 <10 <10	20 20 20 40 50	0.5 0.5 <0.5 1.9 0.9	- 2 <2 <2 2 <2	0.57 0.37 0.64 0.39 0.41	<0.5 <0.5 <0.5 <0.5 <0.5	14 24 13 79 30	27 17 26 30 34	46 43 22 67 59	4.63 5.16 3.91 4.43 4.36
RUST 6 RUST 7		0.46 0.36	<0.001 <0.001	<0.2 <0.2	1.83 1.96	42 36	<10 <10	10 20	<0.5 <0.5	<2 2	0.14 0.16	<0.5 <0.5	12 15	32 34	28 24	4.16 4.50

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 22-AUG-2010 Account: LEEGAR

Minera	IS						CERTIFICATE OF ANALYSIS WH10109004									
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
RUST 1 RUST 2 RUST 3 RUST 4 RUST 5		10 <10 10 <10 10	<1 1 1 <1 1	0.02 0.02 0.04 0.06 0.06	20 10 20 20 30	0.62 0.36 0.63 0.62 0.70	635 521 304 1480 942	<1 <1 <1 <1 <1	0.03 0.02 0.03 0.03 0.03	49 52 25 214 70	680 460 660 1190 960	27 47 25 30 36	0.06 0.04 0.05 0.09 0.06	<2 <2 <2 <2 <2 <2 <2	2 3 2 1 2	33 23 35 26 28
RUST 6 RUST 7		<10 10	1 1	0.02 0.03	20 30	0.80 0.81	505 599	<1 <1	0.02 0.03	30 32	400 400	14 20	0.01 0.01	<2 <2	1 2	8 10


ALS) Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 22-AUG-2010 Account: LEEGAR

Ninera	IS								CERTIFICATE OF ANALYSIS WH10109004
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
RUST 1 RUST 2 RUST 3 RUST 4 RUST 5		<20 <20 <20 <20 <20	0.01 <0.01 0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	19 11 15 16 17	<10 <10 <10 <10 <10	102 87 99 395 212	
RUST 6 RUST 7		<20 <20	0.01 0.01	<10 <10	<10 <10	18 21	<10 <10	97 97	
					<u> </u>			<u>.</u>	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 23-AUG-2010 This copy reported on 24-AUG-2010 Account: LEEGAR

CERTIFICATE WH10109005 ν

Project:

P.O. No.:

This report is for 9 Soil samples submitted to our lab in Whitehorse, YT, Canada on 6-AUG-2010.

The following have access to data associated with this certificate:

GARY	LEE

BOB SCOTT

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	12.24
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT

ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

-----Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 23-AUG-2010 Account: LEEGAR

mnerai	interais									CERTIFICATE OF ANALYSIS WH10109005							
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	
$\begin{array}{l} \text{GL51SO} \\ \text{GL52SO} \\ \text{GL53SO} \\ \text{GL53SO} \\ \text{GL54SO} \\ \text{GL55SO} \end{array} \xrightarrow{\mathcal{S}} \mathcal{O} = \mathcal{G}$	501L	0.30 0.32 0.30 0.26 0.30	0.076 0.063 0.025 0.013 0.004	<0.2 0.2 0.3 <0.2 <0.2	2.02 1.72 2.06 1.85 2.47	63 1700 316 52 26	<10 <10 <10 <10 <10 <10	20 30 20 40 20	<0.5 1.0 0.5 0.5 1.2	<2 2 3 2 <2	0.03 0.02 0.03 0.04 0.05	<0.5 <0.5 <0.5 <0.5 <0.5	21 28 26 10 24	29 27 30 30 34	61 148 77 49 36	4.64 5.40 5.08 4.37 5.03	
CLS6SO GL57SO GL58SO RUSO1 ~ SO=S	5012	0.28 0.26 0.36 0.16	0.005 NSS 0.006 0.003	0.3 0.2 <0.2 0.3	1.90 1.48 1.54 0.55	49 15 10 <2	<10 <10 <10 <10	50 20 20 10	1.2 <0.5 <0.5 <0.5	<2 2 3 <2	0.02 0.02 0.02 0.06	<0.5 <0.5 <0.5 <0.5	14 7 7 1	23 21 18 1	67 21 25 5	3.83 3.58 2.98 0.27	

<10

<1

0.01

<10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

Minerals

RUSO1

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

400

Page: 2 - B Total # Pages: 2 (A - C) **Plus Appendix Pages** Finalized Date: 23-AUG-2010 Account: LEEGAR

Minera	IS								С	ERTIFIC	CATE O	F ANAL	YSIS	WH10	109005	5
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
GL51SO		10	1	0.03	20	0.81	1225	1	< 0.01	25	970	149	0.05	<2	1	4
		10	<1	0.03	40	0.41	1675	1	< 0.01	47	410	45	< 0.01	<2	4	28
GL52SO		10	1	0.02	20	0.73	1570	1	< 0.01	35	820	106	0.03	2	2	6
GL53SO		10	1	0.02	20	0.44	785	1	< 0.01	19	1740	67	0.06	2	1	7
GL54SO GL55SO		10	<1	0.03	30	0.85	1340	<1	< 0.01	44	480	17	<0.01	<2	3	5
		10	<1	0.05	20	0.49	560	<1	< 0.01	27	1200	50	0.04	<2	1	8
GL56SO	1.1.1		-1	0.03	10	0.42	449	<1	< 0.01	15	1390	19	0.06	<2	1	3
GL5750 /50	- Sol1	10	1	0.03	10	0.44	425	<1	< 0.01	14	810	19	0.03	2	1	4
GL58SO	COL	10		0.02	-10	0.02	17	<1	<0.01	1	400	<2	0.01	<2	<1	4

<1

17

0.02

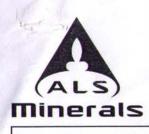
< 0.01

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

(ALS) Minerals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 23-AUG-2010 Account: LEEGAR


Ninerals								CERTIFICATE OF ANALYSIS WH10109005
Meth Analy Sample Description LOF	tel Th	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
GL5150 GL5250 GL5350 GL5450 GL5550 GL5550 GL5550 GL5550	<20 <20 <20 <20 <20	0.01 <0.01 0.01 0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	23 22 22 28 23	<10 <10 <10 <10 <10	87 170 121 69 140	
GL56SO GL57SO GL58SO RUSO1	<20 <20 <20 <20	0.01 0.01 0.01 0.01	<10 <10 <10 <10	<10 <10 <10 <10	19 18 17 4	<10 <10 <10 <10	93 61 61 12	
						7		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 23-AUG-2010 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH10109005

Method	CERTIFICATE COMMENTS
ALL METHODS	NSS is non-sufficient sample.
1.1.1.1.1	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 1-SEP-2010 This copy reported on 3-SEP-2010 Account: LEEGAR

CERTIFICATE WH10114720

Project:

P.O. No.:

This report is for 6 Soil samples submitted to our lab in Whitehorse, YT, Canada on 18-AUG-2010.

The following have access to data associated with this certificate:

GARY LEE

SAMPLE PREPARATION ALS CODE DESCRIPTION WEI-21 **Received Sample Weight** LOG-22 Sample login - Rcd w/o BarCode SCR-41 Screen to -180um and save both ANALYTICAL PROCEDURES DESCRIPTION INSTRUMENT ALS CODE Au-ICP21 **ICP-AES** Au 30g FA ICP-AES Finish ME-ICP41 **ICP-AES** 35 Element Aqua Regia ICP-AES

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

They' Signature:

Colin Ramshaw, Vancouver Laboratory Manager



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 1-SEP-2010 Account: LEEGAR

Mineral	-								C	ERTIFIC	CATE O	F ANAL	YSIS	WH101	14720)
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppb 1	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP4 Fe % 0.01
RUS 02 RUS 03 RUST 8 RUST 9 RUST 10	are .	0.26 0.28 0.36 0.16 0.34	3 3 8 ,004ppm 3	<0.2	1.85 2.13 2.17 0.65 2.47	54 51 134 39 37	<10 <10 <10 <10 <10	30 40 30 20 20	<0.5 <0.5 1.1 0.6 1.7	<2 <2 <2 <2 <2 <2 <2 <2	0.06 0.04 0.30 1.88 0.14	<0.5 <0.5 <0.5 0.6 <0.5	6 9 23 23 91	30 36 38 18 57	18 26 35 38 72	7.08 5.37 4.65 0.96 5.14
RUST 11		0.40	4	0.5	2.41	71	<10	60	1.0	<2	0.26	<0.5	49	42	47	4.97

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 1-SEP-2010 Account: LEEGAR

Ninera	IS								C	ERTIFIC	CATE O	F ANAL	YSIS	WH10	114720)
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
$ \begin{array}{c} \text{RUS } 02 \\ \text{RUS } 03 \\ \text{RUST } 8 \\ \text{RUST } 9 \\ \text{RUST } 10 \\ \text{RUST } 11 \end{array} $	SOIL	10 10 10 <10 10 10	<1 <1 <1 <1 <1 <1	0.03 0.04 0.03 0.09 0.02 0.05	20 20 20 <10 30 20	0.24 0.47 0.77 0.26 0.83 0.69	387 520 913 586 4160 1460	<1 1 1 <1 1 1	0.03 0.01 0.01 0.02 <0.01 0.01	10 27 126 132 185 59	2320 1070 860 2550 730 1110	25 28 27 13 34 34	0.03 0.03 0.29 0.01 0.03	<2 <2 <2 <2 <2 <2 <2 <2	1 2 <1 2 2	6 7 21 82 13 18
									6		1		14			-

orals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 1-SEP-2010 Account: LEEGAR

Mineral	S								CERTIFICATE OF ANALYSIS	WH10114720
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
RUS 02 RUS 03 > SO = S RUST 8 RUST 9 RUST 10	OIL	<20 <20 <20 <20 <20	0.02 0.03 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 10 <10	38 35 17 6 18	<10 <10 <10 <10 <10	54 86 203 126 392		
RUST 11		<20	0.01	<10	<10	21	<10	183		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 2-SEP-2010 This copy reported on 3-SEP-2010 Account: LEEGAR

CERTIFICATE WH10114721

Project:

P.O. No.:

This report is for 1 Rock sample submitted to our lab in Whitehorse, YT, Canada on 18-AUG-2010.

The following have access to data associated with this certificate:

GARY LEE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login – Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize split to 85% <75 um
CRU-QC	Crushing QC Test

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

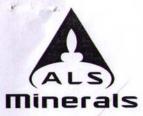
Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 2-SEP-2010 Account: LEEGAR


Mineral	IS								C	ERTIFIC	CATE O	F ANAL	YSIS	WH10	114721	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppb 1	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP4 Fe % 0.01
$G^{210C} \rightarrow lyp$ $G^{L} OC$ J $OC = 00$	0	2.12	526	<0.2	2.92	2570	<10	60	0.8	<2	0.10	0.9	15	33	21	5.70

(ALS) Minerals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 2-SEP-2010 Account: LEEGAR

Mineral	IS								C	ERTIFIC	CATE O	F ANAL	YSIS	WH10	114721	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
G210C - type LGL 2 C out	o c J trop	10	1	0.21	20	1.24	1230	<1	0.03	35	300	41	0.20	2	3	12

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 2-SEP-2010 Account: LEEGAR

mileia	3								CERTIFICATE OF ANALYSIS	WH10114721
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
GL2 OC		20	<0.01	<10	<10	20	<10	1185		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 20-SEP-2010 Account: LEEGAR

CERTIFICATE	WH10123928	V

Project:

P.O. No.:

This report is for 64 Sediment samples submitted to our lab in Whitehorse, YT, Canada on 3-SEP-2010.

The following have access to data associated with this certificate:

GARY LEE

BOB SCOTT

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login – Rcd w/o BarCode						
SCR-41	Screen to -180um and save both						

ANALYTICAL PROCEDUR	ES
DESCRIPTION	INSTRUMENT
Au 30g FA ICP-AES Finish	ICP-AES
35 Element Aqua Regia ICP-AES	ICP-AES
	DESCRIPTION Au 30g FA ICP-AES Finish

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 20-SEP-2010 Account: LEEGAR

Ninerals							CERTIFICATE OF ANALYSIS WH10123928									
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP4 Fe % 0.01
RUST 12		0.24	0.002	<0.2	2.19	108	<10	20	0.6	<2	0.28	<0.5	21	- 34	35	4.66
RUST 13		0.38	0.012	0.2	2.25	82	<10	10	0.6	<2	0.23	<0.5	21	34	43	4.85
RUST 14		0.30	0.006	0.3	2.17	100	<10	10	0.9	<2	0.28	<0.5	25	32	50	4.85
RUST 15		0.30	0.004	0.3	2.03	153	<10	10	1.1	<2	0.31	< 0.5	25	31	55	4.54
RUST 16		0.28	0.011	<0.2	1.99	117	<10	10	1.1	<2	0.19	<0.5	25	32	46	4.52
RUST 17	-	0.20	< 0.001	<0.2	2.28	109	<10	30	0.6	<2	0.93	<0.5	22	35	62	4.86
		0.30	0.002	<0.2	2.16	53	<10	20	1.2	<2	0.24	<0.5	25	30	51	4.74
RUST 18 RUST 19		0.48	0.001	<0.2	2.30	92	<10	10	0.6	<2	0.12	<0.5	20	34	38	5.07
RUST 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20	0.002	<0.2	2.36	106	<10	10	0.5	<2	0.10	<0.5	21	35	36	5.22
RUST 21	() () () () () () () () () ()	0.34	0.003	0.5	5.94	551	<10	20	11.6	<2	0.06	0.6	442	36	477	5.27
Representation of the second				0.2	3.25	238	<10	20	3.3	<2	0.08	0.5	237	39	179	5.63
RUST 22		0.34	0.003	<0.2	2.57	161	<10	20	1.9	<2	0.14	< 0.5	129	36	90	5.18
RUST 23	10.000	0.40	0.002	<0.2	2.61	153	<10	20	2.5	<2	0.18	<0.5	130	38	85	5.18
RUST 24		0.38	0.004	<0.2	2.55	146	<10	20	2.7	<2	0.23	<0.5	120	36	86	5.03
RUST 25	a contra	0.42	0.002	0.2	4.25	351	<10	50	17.2	<2	0.09	1.9	287	29	88	4.96
RUST 26			NET CORPORT		19763	02-1410			10.3	<2	0.12	1.9	290	31	66	5.10
RUST 27		0.30	0.007	0.2	3.30	333	<10	40		<2	0.12	1.5	233	30	60	4.84
RUST 28	2.00	0.32	0.006	<0.2	3.09	326	<10	40	8.6	<2	0.15	0.7	110	36	45	5.18
RUST 29		0.34	0.004	0.3	2.61	225	<10	30	3.6	<2	0.15	<0.5	32	34	36	4.90
RUST 30	CO Divisio	0.38	0.013	<0.2	2.31	180	<10	20 20	1.6 1.7	<2	0.25	<0.5	34	35	32	4.88
RUST 31		0.44	0.004	<0.2	2.35	154	<10		910		200 10 21		1987 -	1000		
RUST 32		0.34	0.002	<0.2	2.24	108	<10	20	0.7	<2	0.16	<0.5	15	34	23	4.63
RUST 33	S 185.22	0.46	< 0.001	<0.2	1.79	70	<10	10	<0.5	<2	0.20	<0.5	10	27	45	4.38
RUST 34	2000	0.12	< 0.001	0.3	1.67	67	<10	20	<0.5	<2	0.51	<0.5	13	24	49	3.93
RUST 35	2012	0.40	< 0.001	<0.2	2.22	4	<10	20	<0.5	<2	0.27	<0.5	6	37	16	4.03
RUST 36		0.20	< 0.001	<0.2	2.23	43	<10	20	<0.5	<2	0.10	<0.5	10	33	8	4.45
RUST 37		0.50	0.001	<0.2	2.18	29	<10	20	1.2	<2	0.11	0.5	51	41	40	4.73
RUST 38		0.38	< 0.001	<0.2	2.34	31	<10	30	1.8	<2	0.12	0.8	77	38	54	4.83
RUST 39		0.42	0.002	<0.2	2.54	41	<10	30	1.9	<2	0.13	0.9	96	41	65	5.04
		0.38	< 0.001	<0.2	2.38	30	<10	30	<0.5	<2	0.18	<0.5	12	36	20	4.50
GL5950 74	po	0.42	0.002	<0.2	2.40	, 219	<10	30	<0.5	<2	0.40	<0.5	16	44	32	4.42
CI COLO	1	0.32	0.003	0.2	2.24	200	<10	50	0.5	<2	0.85	< 0.5	14	36	46	3.45
GL6050	Tra	0.32	0.003	0.2	2.24	167	<10	60	0.5	<2	0.87	<0.5	14	38	42	3.80
GL6150) NO	T 50	0.24	0.002	0.3	1.67	587	<10	40	<0.5	<2	0.42	<0.5	18	33	37	5.24
GL6250	01	0.32	0.002	0.2	2.31	67	<10	30	<0.5	<2	0.20	<0.5	15	54	32	4.32
GL6350 C Sho	uld	0.40	< 0.001	<0.2	2.29	40	<10	40	<0.5	<2	0.19	<0.5	16	44	31	4.65
SECTOC 1	0	202222		<0.2	2.27	38	<10	40	<0.5	<2	0.37	<0.5	15	53	33	3.99
GL6550 Sn-	SOIL	0.26	< 0.001		1.32	99	<10	40	<0.5	<2	0.63	<0.5	9	20	19	2.03
GLOODO	JUIL	0.34	0.002	< 0.2	2.31	85	<10	50	<0.5	<2	0.41	<0.5	15	38	21	4.25
GL6750		0.24	0.006	<0.2 <0.2	1.95	23	<10	50	0.5	<2	1.08	<0.5	15	30	31	3.64
_GL6850		0.30	0.001	<0.2	2.43	260	<10	20	0.5	<2	0.33	<0.5	24	58	47	5.53
GL6950		0.30	0.001	-0.2	2.45	200	-10	20	0.0	-	5.00					

(ALS) Minerals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 20-SEP-2010 Account: LEEGAR

Minerals								CERTIFICATE OF ANALYSIS WH101239						123928	28	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
RUST 12		<10	<1	0.03	20	0.79	666	<1	0.01	58	690	27	0.03	<2	2	17
RUST 13		10	1	0.02	20	0.83	611	<1	0.01	58	630	28	0.01	<2	2	16
RUST 14		<10	<1	0.02	20	0.79	746	<1	0.01	83	800	33	0.02	<2	2	20
RUST 15		<10	<1	0.02	20	0.71	882	<1	0.01	96	880	31	0.03	<2	1	19
RUST 16		<10	<1	0.02	20	0.70	911	<1	0.01	67	810	32	0.01	<2	1	14
RUST 17		<10	<1	0.01	20	0.98	1635	<1	0.01	46	840	37	0.07	<2	3	46
RUST 18		10	<1	0.02	10	0.69	795	<1	0.01	95	1060	39	0.02	<2	2	18
RUST 19	1 K	10	<1	0.02	20	0.81	749	<1	0.01	53	620	32	< 0.01	<2	2	12
RUST 20		10	<1	0.02	30	0.83	720	<1	0.01	47	570	31	< 0.01	<2	2	10
RUST 21	- 0×11	<10	<1	0.02	20	0.72	5310	<1	0.01	229	1490	41	0.28	<2	2	8
			Distant for			0.85	3460	<1	0.01	201	1030	36	0.04	3	2	11
RUST 22		<10	<1	0.02	30		1870	<1	0.01	132	800	39	0.04	<2	2	15
RUST 23	1.1.1.1.1.1.1	10	<1	0.02	30	0.80	1675	<1	0.01	191	750	35	0.01	2	2	17
RUST 24	100	10	<1	0.02	30	0.85		2472	and the second second	191	820	Contraction of the second	0.01	2	2	18
RUST 25		10	<1	0.02	20	0.82	1405	<1	0.01	779	A state of the second se	35 36	0.02	<2	2	14
RUST 26		<10	<1	0.02	20	0.70	10250	<1	0.01	111101	1030	1.				
RUST 27	The second	<10	<1	0.02	20	0.77	9500	<1	0.01	849	830	33	0.04	<2	2	14
RUST 28	1.00	<10	<1	0.02	20	0.72	7560	<1	0.01	762	950	33	0.04	<2	2	16
RUST 29	No.	<10	<1	0.02	30	0.80	3730	<1	0.01	430	780	29	0.01	<2	2	15
RUST 30	16-72-14	10	<1	0.02	20	0.79	1000	<1	0.01	189	800	31	0.02	<2	2	21
RUST 31		<10	<1	0.02	20	0.81	1135	<1	0.01	176	660	26	0.01	<2	2	15
RUST 32	-	<10	<1	0.02	20	0.82	562	<1	0.01	66	510	23	< 0.01	<2	2	15
RUST 33	1201	<10	<1	0.01	20	0.66	457	<1	0.01	47	520	42	< 0.01	<2	2	10
RUST 34	C EIN N	<10	<1	0.02	10	0.55	752	<1	0.01	46	660	39	0.07	<2	2	26
RUST 35		<10	<1	0.01	20	0.92	409	<1	0.01	24	440	14	0.07	<2	2	16
RUST 36	form participation	<10	<1	0.01	20	0.89	512	<1	< 0.01	24	350	15	< 0.01	<2	2	7
RUST 37		<10	<1	0.02	20	0.78	2240	<1	0.01	145	520	24	< 0.01	<2	2	11
RUST 38		<10	<1	0.02	20	0.77	3880	<1	0.01	232	570	26	0.01	<2	2	13
RUST 39	1.00	<10	<1	0.02	20	0.80	4800	<1	0.01	261	660	32	0.02	<2	2	15
RUST 40 T.A	~	<10	<1	0.03	20	0.85	543	<1	0.01	33	470	21	0.01	<2	2	12
RUST 40 typ	V	<10	<1	0.03	20	0.89	475	<1	0.01	39	680	25	0.02	<2	2	44
		1			197.5		11022	-1	0.02	34	810	27	0.12	<2	2	74
GL6050	t50 Idbe	10	<1	0.05	20	0.66	400 541	<1 <1	0.02	34	920	27	0.12	<2	2	86
GL6150	50	10	<1	0.05	10	0.70	717	1	0.01	33	510	98	0.09	3	2	54
GL6250		10	<1	0.04	20	0.56	461	<1	0.01	34 46	470	23	<0.01	<2	2	34
GL6350 000	2000	10	<1	0.04	30 30	1212	532	<1	0.01	39	650	23	0.01	<2	2	18
GL6450 AMOU	rave	10	<1	0.04		0.86										V
GL6550		10	1	0.04	20	0.87	373	<1	0.01	40	520	15	0.02	<2	2	39
GL6650	SOIL	<10	<1	0.03	10	0.35	450	<1	0.02	16	460	10	0.04	<2	1	54
GL6750 50-	3010	10	<1	0.04	30	0.81	590	<1	0.01	28	580	21	0.01	<2	2	27
GL6850		10	1	0.04	20	0.60	506	<1	0.02	29	630	21	0.03	<2	2	66
GL6950		10	1	0.04	20	0.98	629	<1	0.01	50	560	34	0.01	3	3	40

S)

AL

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 20-SEP-2010 Account: LEEGAR

Minera	IS								CERTIFICATE OF ANALYSIS	WH10123928
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		15
RUST 12 RUST 13 RUST 14 RUST 15		<20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 10	16 17 16 16	<10 <10 <10 <10	157 168 197 198		J.K.
RUST 16 RUST 17 RUST 18 RUST 19		<20 <20 <20 <20	0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	10 <10 <10 <10	16 20 15 17	<10 <10 <10 <10	153 135 227 156	P.	
RUST 20 RUST 21 RUST 22		<20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 <10	18 16 18 18	<10 <10 <10 <10	152 715 484 330		
RUST 23 RUST 24 RUST 25 RUST 26		<20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 <10	18 18 18 15	<10 <10 <10 <10	459 466 1260		Ser Property.
RUST 27 RUST 28 RUST 29 RUST 30		<20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 <10	16 15 18 17 17	<10 <10 <10 <10 <10	1060 960 501 268 271		
RUST 31 RUST 32 RUST 33 RUST 34 RUST 35		<20 <20 <20 <20 <20 <20	<0.01 <0.01 <0.01 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	17 15 16 18	<10 <10 <10 <10	160 136 168 89		
RUST 36 RUST 37 RUST 38 RUST 39 RUST 40 GL5950	20	<20 <20 <20 <20 <20 <20 <20	0.01 <0.01 <0.01 <0.01 0.01 0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	19 17 17 18 19 18	<10 <10 <10 <10 <10 <10 <10	83 308 458 498 109 130		
000000	50 Idbe	<pre><20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	0.01 <0.01 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	16 21 23 21 22	<10 <10 <10 <10 <10 <10	114 111 116 90 103		
GL6550	SOIL	<20 <20 <20 <20 <20 <20	0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	25 12 20 16 27	<10 <10 <10 <10 <10	92 50 89 81 112		

orals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 20-SEP-2010 Account: LEEGAR

						16	C	ERTIFIC	CATE O	F ANAL	YSIS	WH10	123928	3
WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
0.34 0.38 0.46 0.44 0.48 0.22	<0.001 0.002 0.001 0.006 0.003 <0.001	<0.2 0.3 <0.2 <0.2 <0.2 <0.2	0.74 1.75 2.28 1.46 1.30 0.77	519 192 141 703 751 93 283	<10 <10 <10 <10 <10 <10	20 40 40 20 10 20	<0.5 <0.5 0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.43 0.38 0.20 0.62 0.24 0.42 0.39	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	14 16 20 18 14 3 7	14 30 45 27 23 4 15	24 46 42 46 32 11 29	4.02 4.41 4.73 5.37 4.93 0.78 2.52
0.34 0.38 0.42	0.002 0.021 <0.001	<0.2 <0.2 <0.2	2.40 2.48 1.89	35 38 28	<10 <10 <10	40 40 60	<0.5 0.5 <0.5	<2 <2 <2	0.02 0.02 0.02 0.02	<0.5 <0.5 <0.5 <0.5	17 16 14 17	34 34 26 30	30 35 28 39	4.89 4.94 3.79 4.63
0.34 0.32 0.36 0.40 0.34	0.001 0.002 0.001 <0.001	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.10 2.30 2.53 2.44 2.47	33 32 24 29	<10 <10 <10 <10 <10	50 40 30 40	0.5 0.5 <0.5 0.5	<2 <2 <2 <2 <2	0.03 0.01 0.01 0.02	<0.5 <0.5 <0.5 <0.5	17 16 13 17	34 36 36 36	33 40 29 37	4.67 4.93 4.95 4.95
0.36 0.36 0.24 0.36	<0.001 0.001 <0.001 0.002 0.001	<0.2 <0.2 <0.2 <0.2 <0.2	2.08 2.40 1.34 2.33 1.98	20 23 16 24 14	<10 <10 <10 <10 <10	40 40 20	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2	0.02 0.02 0.02	<0.5 <0.5 <0.5	11 14 6 16 14	30 34 22 34 27	23 28 18 19 17	4.05 4.71 2.71 4.65 3.49
0.32 0.28 0.30 0.36	0.001 0.006 0.003 0.013	<0.2 <0.2 <0.2 0.2 <0.2 <0.2	1.93 1.75 2.03 2.13	29 41 52 126	<10 <10 <10 <10	20 30 20 20	<0.5 <0.5 0.6 0.6		0.01 0.01 0.18 0.02	<0.5 <0.5 <0.5 <0.5	11 14 31 16	30 26 29 34	24 27 38 38	4.62 4.80 4.87 5.91
	Recvd Wt. kg 0.02 0.34 0.38 0.46 0.44 0.48 0.22 0.44 0.34 0.34 0.34 0.32 0.36 0.40 0.34 0.36 0.24 0.36 0.22 0.36 0.24 0.36 0.22 0.36 0.24 0.36 0.22 0.36 0.24 0.36 0.22 0.36 0.24 0.36 0.22 0.36 0.32 0.36 0.22 0.34 0.32 0.32 0.36 0.22 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.34 0.32 0.34 0.34 0.32 0.34 0.32 0.36 0.22 0.32 0.32 0.32 0.32 0.32 0.30 0.32 0.30 0.32 0.30 0.30 0.32 0.32 0.30 0.30 0.32 0.32 0.30 0.30 0.30 0.32 0.32 0.30 0.30 0.30 0.32 0.30 0.30 0.30 0.32 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.32 0.30 0.3	Recvd Wt. Au kg ppm 0.02 0.001 0.34 <0.001	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Recvd Wt.AuAgAlAsBBakgppmppmppm%ppmppmppm0.020.0010.20.01210100.34<0.001	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

(ALS) Minerals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 20-SEP-2010 Account: LEEGAR

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} \mbox{CL}{350} \\ \mbox{CL}{350} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
10 11 0.02 20 0.61 577 <1 0.01 21 1120 23 0.02 <2 1	10 11 002 20 061 577 <1 001 21 1120 23 0.02 <2 1 5

AL

S)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 20-SEP-2010 Account: LEEGAR

Ninerals								CERTIFICATE OF ANALYSIS W	H10123928
Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
GL7050 GL7150 GL7250 GL7350 GL7450 mot 50	<20 <20 <20 <20 <20 <20	<0.01 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	10 15 20 15 15	<10 <10 <10 <10 <10	72 143 105 81 62		X
GL7550 GL7650 GL7750 GL7850 GL7950 GL7950 GL7950 GL7950 GL7950 GL7950 GL7950 GL7950 GL7950 GL7550 GL7550 GL7550 GL7550 GL7600 GL7600 GL7600 GL	<20	0.02 0.02 0.01 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	6 12 22 22 18	<10 <10 <10 <10 <10	26 55 92 97 70		
GL8050 GL8150 GL8250 GL8350 GL8450	<20 <20 <20 <20 <20 20	0.01 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	23 22 21 22 21 22 21	<10 <10 <10 <10 <10	80 91 96 91 96		
GL8550 GL8650 GL8750 GL8850 GL8950	<20 <20 <20 <20 <20 <20	0.01 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	19 21 17 21 17	<10 <10 <10 <10 <10	76 89 46 83 73		
RUS04 RUS05 RUS06 RUS07	<20 <20 <20 <20	0.01 0.01 <0.01 0.01	<10 <10 <10 <10	<10 <10 <10 <10	18 17 17 23	<10 <10 <10 <10	83 90 108 96		
	N.								

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 1 Finalized Date: 26-SEP-2010 This copy reported on 27-SEP-2010 Account: LEEGAR

CERTIFICATE WH10123929

Project:

P.O. No.:

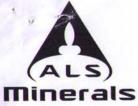
This report is for 19 Rock samples submitted to our lab in Whitehorse, YT, Canada on 3-SEP-2010.

The following have access to data associated with this certificate:

-	
GARY LE	E

BOB SCOTT

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing – 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test


1	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	38 element fusion ICP-MS	ICP-MS
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - E) Finalized Date: 26-SEP-2010 Account: LEEGAR

Minera	IS								С	ERTIFIC	CATE O	YSIS	WH10	123929)	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppb 1	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
RUFL3		0.93	<1	<0.2	2.20	13	<10	20	<0.5	<2	0.07	<0.5	29	35	14	4.10
RUFL4		0.86	6	0.2	0.49	48	<10	20	<0.5	<2	0.02	<0.5	53	17	19	1.34
RUFL5		1.87	1	<0.2	0.76	13	<10	10	<0.5	<2	0.22	<0.5	4	19	8	1.97
RUFL6		0.97	1	<0.2	0.18	7	<10	10	<0.5	<2	0.04	<0.5	3	16	2	1.10
RUFL7		0.48	<1	0.2	0.20	26	<10	40	<0.5	<2	0.09	<0.5	18	14	7	1.51
RUFL8		1.16	315	0.4	1.36	5060	<10	30	<0.5	<2	0.13	<0.5	6	19	16	3.94
RUFL9	1.1	1.04	2	<0.2	0.58	39	<10	10	<0.5	<2	0.02	<0.5	19	19	10	1.80
RUFL10		1.13	2	<0.2	0.41	73	<10	10	<0.5	<2	0.03	<0.5	24	17	41	1.60
RUFL11		1.35	1	<0.2	1.25	25	<10	10	<0.5	<2	0.06	<0.5	15	20	1	1.97
RUFL12		2.41	<1	<0.2	3.29	<2	<10	610	0.6	<2	2.01	<0.5	37	1	72	9.07
RUFL13		0.72	<1	<0.2	0.04	<2	<10	10	<0.5	<2	0.04	<0.5	2	13	1	0.51
RUFL14		1.17	<1	0.2	0.12	3	<10	10	< 0.5	<2	0.02	<0.5	2	15	9	0.63
RUFL15		2.09	4	<0.2	0.16	33	<10	30	<0.5	<2	5.64	<0.5	5	9	4	2.81
RUFL16	1.2.2	2.05	<1	<0.2	0.26	4	<10	20	<0.5	<2	0.04	<0.5	5	15	1	1.00
RUFL17	1.5	1.71	2	0.3	0.13	56	<10	20	<0.5	103	7.0	<0.5	6	2	6	0.62
GL7RF		2.35	1	<0.2	0.13	8	<10	20	<0.5	<2	5.31	<0.5	3	11	7	2.36
GL8RF	2.000	1.13	1	0.2	0.76	22	<10	20	<0.5	<2	0.07	<0.5	2	19	17	2.78
GL9RF		1.28	38	3.4	0.27	3	<10	20	<0.5	66	0.04	<0.5	<1	11	3	0.71
GL20C		1.57	5	1.4	0.28	<2	<10	20	<0.5	4	0.02	<0.5	<1	13	<1	0.77
1																

400-outerop

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

ALS) Minerals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 2 (A - E) Finalized Date: 26-SEP-2010 Account: LEEGAR

Minera	IS								CERTIFICATE OF ANALYSIS WH10123929)
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
RUFL3		10	<1	0.04	20	0.81	1045	<1	0.04	40	370	28	0.02	<2	3	5
RUFL4		<10	<1	0.04	<10	0.13	1620	<1	0.01	45	90	10	< 0.01	<2	1	5
RUFL5		<10	<1	0.03	<10	0.22	326	<1	0.01	14	430	18	0.11	<2	1	9
RUFL6		<10	<1	0.01	<10	0.06	470	<1	0.01	10	250	7	< 0.01	<2	<1	4
RUFL7		<10	<1	0.01	10	0.02	2600	<1	0.06	29	470	90	< 0.01	<2	2	7
RUFL8		<10	<1	0.17	10	0.37	121	<1	0.04	16	830	14	1.67	<2	2	14
RUFL9		<10	<1	0.04	<10	0.18	859	<1	0.01	16	220	52	0.01	<2	1	3
RUFL10		<10	<1	0.05	<10	0.09	523	<1	0.02	18	190	35	0.06	<2	1	5
RUFL11	1.1	<10	<1	0.04	<10	0.83	595	1	0.01	17	310	3	< 0.01	<2	1	2
RUFL12		20	<1	0.23	10	1.96	1585	2	0.06	15	1580	<2	0.06	<2	7	46
RUFL13		<10	<1	0.01	<10	0.01	130	<1	< 0.01	1	160	6	< 0.01	<2	<1	2
RUFL14		<10	<1	0.01	<10	0.01	89	<1	0.01	10	130	11	< 0.01	<2	<1	3
RUFL15	1.15.11	<10	<1	0.05	10	0.78	896	<1	0.02	6	230	20	0.02	<2	1	236
RUFL16	1000	<10	<1	0.02	<10	0.09	928	<1	0.01	7	80	5	< 0.01	<2	<1	7
RUFL17		<10	<1	0.03	<10	1.58	777	7	0.01	<1	70	13	0.01	<2	<1	24
GL7RF		<10	<1	0.07	10	2.12	778	<1	0.02	1	920	4	0.03	<2	1	187
GL8RF	1000	<10	<1	0.03	<10	0.27	193	<1	0.01	4	190	28	0.56	<2	1	6
GL9RF	1.1.1.1.1.1	<10	<1	0.22	10	0.02	49	7	0.04	<1	110	64	0.09	<2	<1	17
GL20C		<10	<1	0.15	<10	0.01	21	1	<0.01	<1	20	15	0.21	<2	<1	4
1		-														

4 OC- OUTERO P

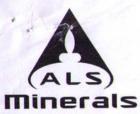
2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

(ALS) Minerals

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - E) Finalized Date: 26-SEP-2010 Account: LEEGAR

Mineral	15			- 72					C	ERTIFIC	CATE O	F ANAL	YSIS	WH10	123929)
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	ME-MS81 Ag ppm 1	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.5	ME-MS81 Co ppm 0.5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Cu ppm 5	ME-MS8 Dy ppm 0.05
RUFL3 RUFL4 RUFL5 RUFL6 RUFL7		<20 <20 <20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	28 3 4 2 2	<10 <10 <10 <10 <10	96 155 46 19 88							62	
RUFL8 RUFL9 RUFL10 RUFL11 RUFL12	X	<pre> 20 <20 <20 <20 <20 <20 <20 <20</pre>	<0.01 <0.01 <0.01 <0.01 <0.01 0.64	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	8 4 3 8 301	<10 <10 <10 <10 <10 <10	35 44 61 83 132								
RUFL13 RUFL14 RUFL15 RUFL16 RUFL17		<20 <20 <20 <20 <20 <20	0.01 <0.01 0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	3 1 5 2 1	<10 <10 <10 <10 20	4 10 19 17 33								
GL7RF GL8RF GL9RF GL20C		<20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 <10	3 6 1 1	<10 <10 <10 <10	6 42 <2 <2	2 1	320 124.0	32.0 6.2) 2.4 0.5	30 20	12.00 14.35	5 <5	2.52 1.71
L> OC- OUT	CROP															


2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - D Total # Pages: 2 (A - E) Finalized Date: 26-SEP-2010 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH10123929

Method Analyte Units LOR	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2
		9												2	
2															
												, Li			2.05
	1.58 1.17	0.37 0.17	18.9 14.6	2.49 0.96	2.3 1.2	0.53 0.39	16.6	0.23 0.18) 7 <2	7.2 4.7	13.2 2.6) 12 <5	186 47	3.78 0.71) 242 91.3
)													
	ø														
	Analyte Units	Analyte Units ppm LOR 0.03	Analyte Units Er Eu LOR 0.03 0.03 1 0.03 0.03 1 0.17 0.17	Method Analyte Units Er Eu Ga Units ppm ppm ppm LOR 0.03 0.03 0.1	Method Analyte Units Er Eu Ga Gd Units ppm ppm ppm ppm LOR 0.03 0.03 0.1 0.05 Image: Second Se	Manalyte Units Er Eu Ga Gd Hf JOR 0.03 0.03 0.1 0.05 0.2 IOR 0.03 0.03 0.1 0.05 0.2	Method Analyte Units LOR Er Eu Ga Gd Hf Ho Units LOR 0.03 0.03 0.1 0.05 0.2 0.01 IOR 0.03 0.03 0.1 0.05 0.2 0.01 IOR 0.03 0.03 0.1 0.05 0.2 0.01	Method Analyte Units LOR Er Eu Ga Gd Hf Ho La Units LOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 Ior 1.58 0.37 18.9 2.49 2.3 0.53 16.6 1.17 0.17 14.6 0.96 1.2 0.39 3.1	Method Analyte Units Er Eu Ga Gd Hf Ho La Lu Units ppm ppm <t< td=""><td>Method Analyte Units LOR Eu Ga Gd Hf Ho La Lu Mo Units ppm ppm</td><td>Method Units UR Eu Ga Gd Hf Ho La Lu Mo Nb UR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR IO</td><td>Method Units Er Eu Ga Gd Hf Ho La Lu Mo Nb Nd Units ppm isso isso<td>Method units Eu Ga Gd Hf Ho La Lu Mo Nb Nd Ni Units ppm ppm</td><td>Method pm Eu Ga Ga Ga H Ho La Lu Mo Nb Nd Ni Pp Units pm ppm ppm</td><td>Method prin Eu Ga Gd HI Ho La Lu Mo Nb Nd Ni Pb P Units prin <td< td=""></td<></td></td></t<>	Method Analyte Units LOR Eu Ga Gd Hf Ho La Lu Mo Units ppm ppm	Method Units UR Eu Ga Gd Hf Ho La Lu Mo Nb UR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 IOR IO	Method Units Er Eu Ga Gd Hf Ho La Lu Mo Nb Nd Units ppm isso isso <td>Method units Eu Ga Gd Hf Ho La Lu Mo Nb Nd Ni Units ppm ppm</td> <td>Method pm Eu Ga Ga Ga H Ho La Lu Mo Nb Nd Ni Pp Units pm ppm ppm</td> <td>Method prin Eu Ga Gd HI Ho La Lu Mo Nb Nd Ni Pb P Units prin <td< td=""></td<></td>	Method units Eu Ga Gd Hf Ho La Lu Mo Nb Nd Ni Units ppm ppm	Method pm Eu Ga Ga Ga H Ho La Lu Mo Nb Nd Ni Pp Units pm ppm ppm	Method prin Eu Ga Gd HI Ho La Lu Mo Nb Nd Ni Pb P Units prin prin <td< td=""></td<>

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Page: 2 - E Total # Pages: 2 (A - E) Finalized Date: 26-SEP-2010 Account: LEEGAR

WH10123929 **CERTIFICATE OF ANALYSIS** ME-MS81 Method Zr U V W Y Yb Zn TI Sn Sr Та Tb Th Tm Sm Analyte ppm Units ppm ppm **Sample Description** 0.05 5 1 0.5 0.03 5 2 0.05 0.5 0.01 0.1 0.01 LOR 0.03 1 0.1 RUFL3 RUFL4 RUFL5 RUFL6 RUFL7 RUFL8 RUFL9 RUFL10 RUFL11 RUFL12 RUFL13 RUFL14 RUFL15 RUFL16 RUFL17 GL7RF GL8RF 39 70 1.68 0.39 6.90 1.1 0.25 2.35 31 8 16.1 5 89.5 1.5 2.83 GL9RF 3 12.9 1.35 10 23 0.21 1.40 6 1.55 1.3 6 28.8 1.6 0.21 0.82 GL20C

APPENDIX IV

CREW LOG

Crew	Log
------	-----

	Activity	No. of person days				
Date		Gary Lee	Bob Scott			
July 23	Expedite, load gear, mob; Whitehorse to Watson Lake	1	0			
July 24	Finish Mob; pick up gear; drive to km 175 Nahanni Range Road – set up camp	1	0			
July 25	Stake 2 quartz claims; Phil (Equity) arrived	0	0			
July 26	Soil & rock sample south boundary of culvert claims	1	0			
July 27	Recon Howard's Pass winter trail for ATV access and					
-	staked 2 quartz claims	0	0			
July 28	Prepare for helicopter staking – write up & affix tags					
	on 60 posts plus enter drop co-ordinates in GPS	0	0			
July 29	Helicopter arrival cancelled due to forest fires; repaired					
	creek crossing for access; plus set up tent for helper	1	0			
July 30	No helicopter – staked 4 quartz claims	0	0			
July 31	Stream sediment sampled plus prospected and rock					
	sampled	1	0			
Aug. 1	Blasted large boulders for access	1	1			
Aug. 2	Stream sediment sampled and staked 4 quartz claims	0.5	0			
Aug. 3	Helicopter arrived – staked 30 quartz claims plus rock and					
	soil sampled	0	0			
Aug. 4	Stream sediment sampled plus completed staking above	0.5	0			
Aug. 5	Extended ATV access trail on Howards Pass winter trail –					
U U	chain saw cut new trail past flooded areas	1	1			
Aug. 6	Stream sediment sampled plus blasted new ATV trail past swamp	1	1			
Aug. 7	Stream sediment and soil sampled plus new trail around swamp	1	1			
Aug. 8	Stream sediment sampled plus staked 6 claims plus repaired mud hole on ATV trail	1	1			
Aug. 9	Staked 2 quartz claims plus drive to Watson Lake for supplies and record claims (285 km)	0	0			
Aug. 10	Pick up supplies in Watson Lake plus record claims and drive back to camp (285 km)	0	0			
Aug. 11	Placer testing	0	0			
Aug. 12	Placer testing	0	0			
Aug. 13	Blasted extension of main gold showing and sampled for					
	assay	1	1			
Aug. 14	Placer testing and Bob demob to Whitehorse in afternoon	0	1			
Aug. 15	Stream sediment and rock sampled & prospected	1	0			
Aug. 16	Stream sediment, rock & soil sampled & prospected	1	0			
Aug. 17	Stream sediment, rock & soil sampled & prospected	1	0			

Aug. 18	Stream sediment sampled; pick up firewood; plot up		
	sample locations	1	0
Aug. 19	Prospected and rock sampled	1	0
Aug. 20	Chain and flag line (L1) over high arsenic anomaly @ km		
	175 Nahanni Range Road plus experimented with VLF		
	(for strike)	1	0
Aug. 21	Stream sediment and rock sampled	1	0
Aug. 22	Read VLF on L1 (km 175) & camp duties	1	0
Aug. 23	Soil sampled L1 (km 175) & finished VLF L1	1	0
Aug. 24	Stream sediment and rock sampling	1	0
Aug. 25	Stream sediment and rock sampling far north end	1	0
Aug. 26	Chain and flag L2 (km 175); soil sampling; read VLF	1	0
Aug. 27	Read mag. on L1 and L2 (km 175)	1	0
Aug. 28	Soil sampling at km 166 (high mag. and VLF)	1	0
Aug. 29	Take down extra tent & stake 2 quartz claims	0	0
Aug. 30	Prospected base of hill above old trail to Howard's Pass		
_	plus moved camp 17 km south	1	0
Aug. 31	Prospected, rock sampling and stake RE 1 & 2	0	0
Sept. 1	Demob to Watson Lake, record work on claims – Watson		
	Lake Mining Recorder	1	0
Sept. 2	Sorted samples, demob to Whitehorse	1	0
		29	7
	Total Person Days	36 days	