Geochemical Report On The Gulf Regional Project

Work Period June 1st to September 30th, 2010

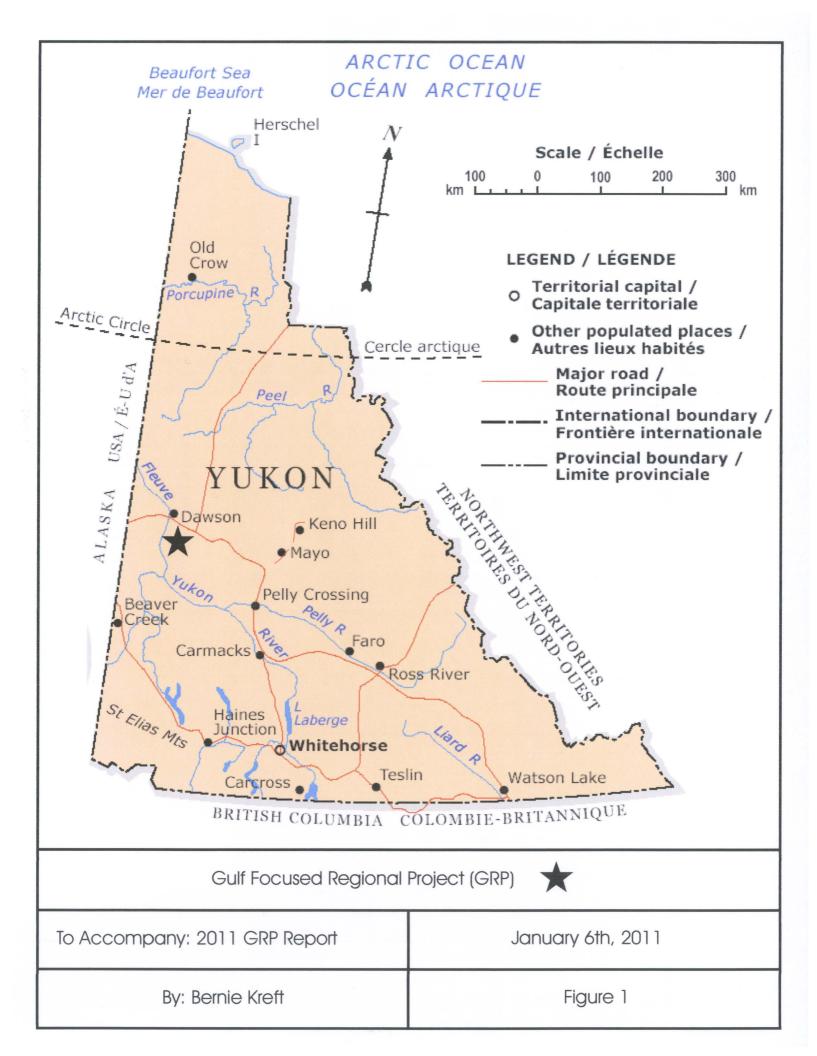
Located In
Dawson Mining District
On
NTS 115-O-10
63° 37' Latitude, 138° 42' Longitude

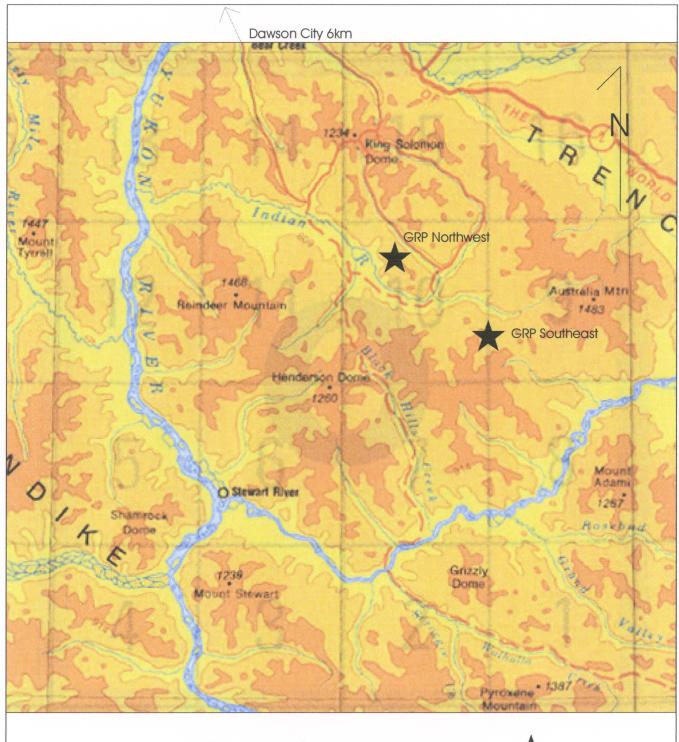
By Bernie Kreft

January 1st, 2011

Table Of Contents

Location	Page 1
Claim Status Table	Page 1
Access	Page 1
Topography And Vegetation	Page 1
History And Previous Work	Page 1
Yukon Map (figure 1)	Page 2
Regional Map (figure 2)	Page 3
Geology And Geophysics	Page 4
Current Work And Results	Page 5
Northwest Compilation Map	Page 6
Southeast Compilation Map	Page 7
Conclusions	Page 8
Recommendations	Page 8
Qualifications	Page 9
Statement Of Costs	Page 10
Sample Table	At Back
Assay Sheets	At Back


Location – The Gulf Regional Project ("GRP") is located in the Dawson Mining District on NTS mapsheet 115-O-10 at approximately 63° 37' north and 138° 42' west. The area evaluated is on the ridge between lower Sulphur Creek and the Indian River (northwest area), as well as the area south of the upper portion of Australia Creek and north of the headwaters of Wounded Moose Creek (southeast area).


Access – Access was achieved by helicopter from Dawson City, a total distance of about 50 kilometres to the northwest area with a one-way flying time of about 20 minutes, and about 70 kilometres to the southeast area with a one-way flying time of about 25 minutes.

Topography And Vegetation – The property lies within the un-glaciated Klondike Plateau, which is characterized by low rolling hills dissected by deeply incised stream valleys. This region experienced strong surficial weathering during the early to mid-Tertiary; as a result, natural bedrock exposures are rare, and generally restricted to steep slopes, with the effects of surface weathering extending to depths of as much as 80 metres or more. Overburden and regolithic material appears to average approximately 1.0 metre in thickness, but is certainly deeper in some spots. South facing slopes are generally snow free from early May, with frost leaving the ground by the middle to end of May. North facing slopes are generally free of snow by mid to end of May, with permafrost often remaining year-round. The property is below tree line, with vegetative cover consisting of variable amounts of spruce, poplar, alder and brush, with brush and stunted spruce trees predominating on north facing slopes, higher elevations and in areas of permafrost or poor drainage, while south facing slopes are generally covered by more mature stands of spruce.

History And Previous Work – Exploration for the source of the placer gold in the Klondike region has been of an ebb and flow nature since 1898. Although historical prospecting efforts resulted in several interesting discoveries such as Lone Star and King Solomons Dome, many more discoveries (Underworld, Ten Mile, Coffee) have occurred since the development and subsequent improvement of exploration methods such as soil sampling, trace element geochemistry and geophysics. The "oldtimers" were often unsuccessful likely due to poorly understood geology and controls on mineralization, thick overburden, abundant vegetative cover and a variable thickness of regolithic material all conspiring to make historical methods of prospecting of limited use and effect. Modern discoveries have come about through the usage of soil geochemistry combined with mechanized trenching. These discoveries span a variety of deposit types including thrust fault related quartz veins and associated auriferous alteration haloes, areas of brecciation and silicification related to intrusives or faults, and intrusive hosted gold; providing a much broader spectrum of target types than the simple quartz veins historically thought to be the source of the Klondike gold.

Although hard-rock exploration in the vicinity of the GRP has likely been conducted since 1898, the only pertinent and recorded work consists of a soil sampling program conducted by Arbor Resources in 1992. This work, detailed in AR 093026 (Gulf claims), consisted of a limited soil sampling and mapping program with results of up to 110 ppb Au in soil along the left limit of the lower portion of Scribner Creek in an area described by Arbor geologists as being underlain by metamorphosed quartz feldspar porphyry and quartzite. Follow up work by the author during 2009 and 2010 has returned soil values of up to 965 ppb gold and rock sample values of up to 51.2 ppm gold. Trace element geochemistry is generally flat apart from a few weakly anomalous values in

Regional Map - Gulf Focused Regional Project Fig.2

Scale approx. 1:600,000

silver, arsenic, cobalt, iron, lanthanum, manganese and phosphorous from the gold anomalous rock samples. Metallic screen assays on gold anomalous rock samples failed to detect the presence of any gold greater than 80 mesh in size, which can be considered an anomaly given that typical gold bearing vein and alteration haloes in the Klondike district invariably contain at least a small coarse gold component readily detected by metallic screen assays.

Placer exploration and mining has been conducted on numerous creeks in the immediate area of the GRP. Australia Creek, Wounded Moose Creek and Scribner Creek have all been subjected to placer exploration efforts including drilling, trenching and bulk sampling. Dominion Creek and Sulphur Creek have long and significant mining histories. The area of the GRP covers a significant amount of area within the drainage basins of the aforementioned creeks. Several repeatable gold in silt anomalies within creeks tributary to Australia Creek (3) and Wounded Moose Creek (1) (southeast area of GRP) may indicate potential source areas for the placer gold reported within these creeks.

Geology And Geophysics – The project is situated on the southwest side of the Tintina Fault, within the Tintina Gold Belt (TGB), a geological and geochemical environment favorable for locating economic gold deposits associated with mid-Cretaceous granitic intrusions. Significant discoveries within the TGB include Donlin Creek, Pogo and Fort Knox, while significant Yukon occurrences include Brewery Creek, Dublin Gulch, Coffee, Rau and Underworld. Mineralization at these deposits covers a wide spectrum of high-grade mesothermal veins, intrusion hosted sheeted veins, large-tonnage and low-grade disseminations and stockworks, skarns and mantos, with the majority of mineralization intrusion related and often having a strong structural control. A recent significant surge in local exploration activity has occurred since the discovery by Underworld Resources of the Golden Saddle and Arc deposits at the White Gold Project. This "rush" is ongoing as of the date of writing and, due to more recent discoveries by Kaminak at Coffee and Atac at Rau, shows no sign of slowing.

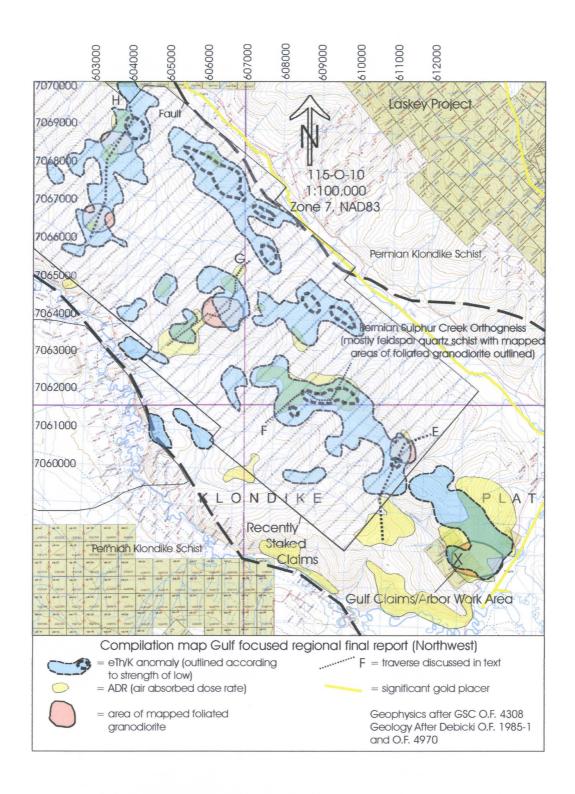
Detailed mapping by Debicki (GSC Open File 1985-1) coupled with recent age-dating results and "broad-brush" mapping (GSC Open File 4970) shows the northwest portion of the GRP being underlain by orthogneiss derived from Permian felsic plutonic rocks consisting of foliated coarse-grained granodiorite to quartz monzonite and blocky weathering grey to pink feldspar quartz schist. The southeast portion has only been broadly mapped and is described as being underlain by a similar aged (Permian) K-feldspar augen orthogneiss. The orthogneiss units are bound by foliated muscovite feldspar chlorite quartz "Klondike" schist in the northwest, gradational to quartz mica schist in the southeast. A few outcrops of Cretaceous aged volcanics and lesser conglomerate occur along the west side of the orthogneiss unit within the Klondike schist.

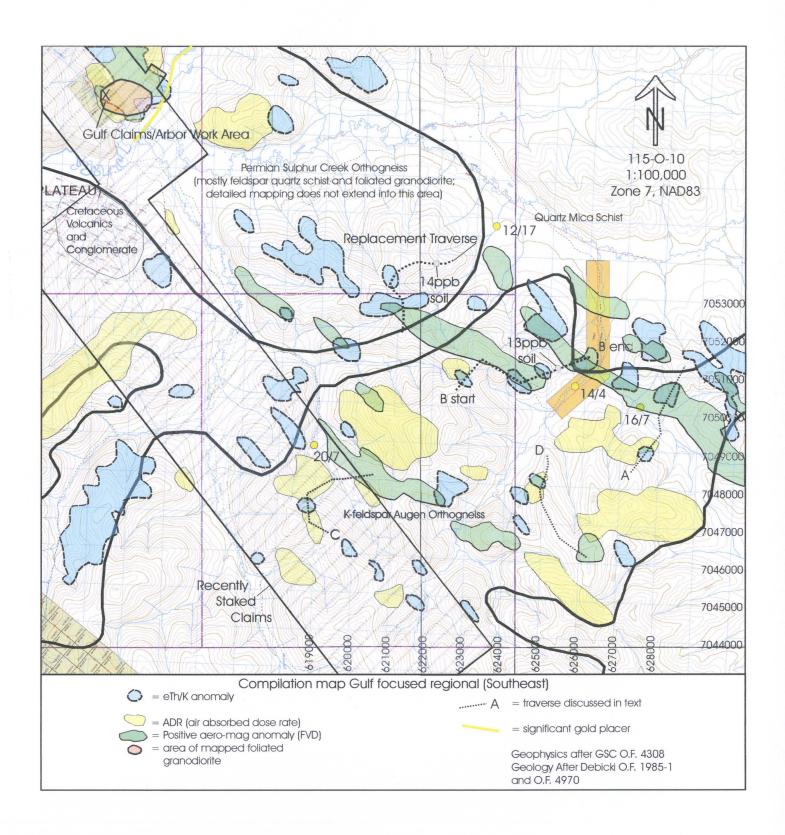
During 2002 the GSC sponsored a multi-disciplinary airborne geophysical survey (GSC Open File 4310 and 4308) which covered a large area south and west of Dawson, including the area of the GRP. Geophysical results place the Scribner Creek showings within an eTh/K low possibly indicative of potassic alteration, and an ADR high likely indicating the actual extent of the intrusive that hosts the showings (possible potassic altered intrusive). Numerous areas with a similar geophysical signature occur to the northwest, and to a lesser extent the southeast, of the showings. A somewhat more common geophysical feature in the southeast is the association of eTh/K lows

and linear magnetic anomalies possibly representating potassic alteration within areas potentially underlain by mafic intrusives a/o dykes.

Current Work And Results – A total of 4 traverses were conducted, with the work that was completed on two of the traverses negated by recently staked but not recorded quartz claims. This staking activity covered all of the proposed Northwest traverses, and several of the planned Southeast traverses resulting in a significant reduction in the amount of area available to be explored.

Exploration work completed during the 2010 field season consisted of helicopter supported reconnaissance style soil sampling resulting in a total of 202 samples of which 71 were not analysed due to having been collected on what was subsequently found to be recently staked ground. Samples were taken at 50 to 100 metre intervals along regionally spaced lines located 20-30 metres downhill from ridge crests. Soil sample material was taken from the C horizon, found at an average depth of 65 centimetres, using hand held augers. Sampling conditions were good. Sample sites were marked in the field using flagging inscribed with the sample code, with sample medium placed in industry standard soil sample envelopes. Samples were analyzed by Chemex using their Au-AA23 (30g fire assay) package with select samples analyzed by ME-ICP41 (35 element aqua regia).


Traverse A – Southeast Area, designed to test a combined ADR high and eTh/K low and a separate eTh/K low within a positive linear magnetic anomaly, both of which are possible sources for a moderate and repeatable gold in silt anomaly. This planned traverse was not attempted due to reported recent claim staking in the area.


Traverse B – Southeast Area, designed to test a combined ADR high and eTh/K low and two separate areas of combined eTh/K lows and positive linear magnetic anomalies, all of which are possible sources for a moderate and repeatable gold in silt anomaly. This traverse was completed in its entirety. Results were generally flat with a maximum value of 13 ppb gold returned from a sample taken in an area not defined as being geophysically anomalous in my compilation.

Traverse C – Southeast Area, designed to test a combined eTh/K low and ADR high as well as a linear magnetic anomaly, both of which are possible sources for a moderate and repeatable gold in silt anomaly. This planned traverse was not attempted due to reported recent claim staking in the area.

Traverse D – Southeast Area, designed to test a combined eTh/K low and ADR high as well as a linear magnetic anomaly, both of which are possible sources for a moderate and repeatable gold in silt anomaly. This planned traverse was not attempted due to reported recent claim staking in the area.

A replacement traverse was conducted on ground to the northwest of traverse B where no reported claim staking was taking place. This new traverse was designed to test a combined eTh/K low and positive linear magnetic anomaly as well as the likely source area for a moderate repeatable gold in silt anomaly. Results were generally flat with a maximum value of 14 ppb gold returned from a sample taken in an area not defined as being geophysically anomalous in my compilation.

Traverse E – Northwest Area, designed to test a mapped intrusive body associated with an eTh/K anomaly and a small ADR high. An attempt to sample this area was started but not completed due to locating recently staked claims soon after landing.

Traverse F – Northwest Area, designed to test an eTh/K low that is strongly coincident with an ADR high. This planned traverse was not attempted due to reported recent claim staking in the area.

Traverse G – Northwest Area, designed to test two areas with coincident ADR high and eTh/K low as well as an area of mapped intrusive associated with an eTh/K low. This planned traverse was not attempted due to reported recent claim staking in the area.

Traverse H – Northwest Area, designed to test two areas of mapped intrusive associated with ADR anomalies and a large encompassing eTh/K low. This traverse was fully sampled but the samples were not analyzed due to the sampling having been conducted on recently staked claims.

Conclusions – Recent claim staking by third parties almost totally engulfed the project with 5 of 8 planned traverses pre-empted by this staking work and two other traverses not completed due to reported activity in the area. Only two weakly anomalous gold in soil values (13 ppb Au and 14 ppb Au) were returned from the two soil traverses completed. These weak anomalies were found in areas not defined as being geophysically anomalous in my compilation. Soil sampling traverses were unable to define a source for the previously defined RGS gold in silt anomalies. Geophysical anomalies, as defined by the compilation map, were not found to be associated with any anomalous gold values.

Recommendations – Further work is required to define a source for the weak to moderate RGS gold in silt anomalies within the southeast area of the GRP. Initial work should consist of a detailed stream sediment sampling program focusing initially on the drainages upstream of silt value 12/17 ppb gold and silt value 16/7 ppb gold. Should this work encounter significantly anomalous values, subsequent work should consist of further detailed silt sampling within nearby drainage basins, as well as ridge and spur soil sampling covering the area of the anomalous drainage basin(s).

Statement Of Qualifications

I, Bernie Kreft, directed and participated in the exploration work described herein.

I have over 23 years prospecting experience in the Yukon.

This report is based on fieldwork conducted or directed by myself, and includes information from various publicly available assessment reports.

This report is based on fieldwork completed during the 2010 field season.

This report is based on fieldwork completed on the Gulf Regional Program.

Respectfully Submitted,

Bernie	Kreft	

Project Costs

Daily living allowance 1 person x 2 days x \$100/day		\$200.00
Truck 1 round trip to Dawson 1024 km x \$0.595/km		\$609.28
Fireweed Helicopter 3.2 hours x \$1100/hour	=	\$4193.95
Assaying 131 soil (30g Au fire + select for ICP)	==	\$2366.14
Wages B.Kreft 2 days x \$350/day	=	\$700.00
C.J.Greig and Associates (collect 170 soils x \$28/soil)	=	\$4760.00
Report Preparation	=	<u>\$500.00</u>
Total	= 5	\$13329.37

Sample	Type	NAD83/E	NAD83/N	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
				Recvd Wt.	Au	Ag	As	Cu	Fe	Mn	Zn
				kg	ppm	ppm	ppm	ppm	%	ppm	ppm
				0.02	0.005	0.2	2	1	0.01	5	2
RBD01	Soil	622613	7050442	0.36	<0.005			•			
RBD02	Soil	622646	7050470	0.38	<0.005						
RBD03	Soil	622673	7050512	0.54	<0.005						
RBD04	Soil	622698	7050566	0.34	<0.005						
RBD05	Soil	622737	7050611	0.44	<0.005						
RBD06	Soil	622767	7050655	0.4	0.006						
RBD07	Soil	622787	7050705	0.34	<0.005						
RBD08	Soil	622813	7050754	0.44	0.006						
RBD09	Soil	622839	7050801	0.46	<0.005						
RBD10	Soil	622874	7050840	0.4	<0.005						
RBD11	Soil	622905	7050885	0.42	0.009						
RBD12	Soil	622945	7050922	0.42	0.005						
RBD13	Soil	622986	7050962	0.48	<0.005	1					
RBD14	Soil	623037	7050996	0.46	<0.005						
RBD16	Soil	623084	7051029	0.5	<0.005						
RBD17	Soil	623122	7051066	0.38	<0.005						
RBD18	Soil	623150	7051110	0.38	<0.005						
RBD19	Soil	623171	7051159	0.38	0.008						
RBD20	Soil	623207	7051202	0.4	<0.005						
RBD21	Soil	623246	7051247	0.6	<0.005	1					
RBD22	Soil	623346	7051227	0.46	<0.005	-					
RBD23	Soil	623441	7051185	0.52	<0.005	-					
RBD24	Soil	623534	7051146	0.44	<0.005						
RBD25	Soil	623627	7051099	0.46	<0.005	}					
RBD26	Soil	623732	7051096	0.34	<0.005						
RBD27	Soil	623839	7051068	0.5	<0.005	-					
RBD28 RBD29	Soil Soil	623939	7051032	0.44 0.52	<0.005 <0.005	-					
RBD31	Soil	624037	7050980	0.32	<0.005						
RBD32	Soil	624109 624211	7050882 7050846	0.38	<0.005						
RBD33	Soil	624319	7050846	0.48	<0.005	-					
RBD34	Soil	624365	7050828	0.48	<0.005	1					
RBD35	Soil	624416	7050871	0.44	0.006						
RBD36	Soil	624472	7050885	0.5	<0.005	1					
RBD37	Soil	624525	7050900	0.44	0.006	1					
RBD38	Soil	624574	7050911	0.5	0.005	1					
RBD39	Soil	624623	7050928	0.3	<0.005	1					
RBD40	Soil	624676	7050947	0.36	<0.005	1					
RBD41	Soil	624725	7050966	0.58	<0.005	1					
RBD42	Soil	624770	7050994	0.38	0.007	1					
RBD43	Soil	624828	7051007	0.46	<0.005	1					
RBD44	Soil	624881	7051029	0.58	<0.005	1					
RBD46	Soil	624935	7051047	0.5	<0.005	1					

Sample	Туре	NAD83/E	NAD83/N	WEI-21	Au-AA23
RBD47	Soil	624984	7051067	0.58	<0.005
RBD48	Soil	625038	7051083	0.44	0.006
RBD49	Soil	625085	7051105	0.48	<0.005
RBD50	Soil	625138	7051117	0.42	<0.005
RBD51	Soil	625188	7051137	0.5	0.005
RBD52	Soil	625246	7051150	0.54	0.013
RBD53	Soil	625298	7051167	0.5	0.008
RBD54	Soil	625354	7051182	0.48	0.009
RBD55	Soil	625405	7051195	0.48	<0.005
RBD56	Soil	625455	7051219	0.46	<0.005
RBD57	Soil	625508	7051222	0.46	<0.005
RBD58	Soil	625569	7051236	0.52	<0.005
RBD59	Soil	625621	7051228	0.56	<0.005
RBD61	Soil	625669	7051255	0.42	<0.005
RBD62	Soil	625732	7051301	0.52	<0.005
RBD63	Soil	625789	7051312	0.42	<0.005
RBD64	Soil	625843	7051336	0.54	0.012
RBD65	Soil	625878	7051373	0.42	<0.005
RBD66	Soil	625925	7051392	0.46	<0.005
RBD67	Soil	625983	7051416	0.48	<0.005
RBD68	Soil	626037	7051403	0.5	<0.005
RBD69	Soil	626087	7051425	0.48	0.009
RBD70	Soil	626125	7051456	0.58	0.005
GAD-01	Soil	621093	7051890	0.38	0.007
GAD-02	Soil	621081	7051938	0.32	<0.005
GAD-03	Soil	621069	7051986	0.22	0.005
GAD-04	Soil	621065	7052034	0.42	<0.005
GAD-05	Soil	621062	7052082	0.24	0.007
GAD-06	Soil	621053	7052133	0.34	<0.005
GAD-07	Soil	621045	7052184	0.3	<0.005
GAD-08	Soil	621036	7052236	0.34	<0.005
GAD-09	Soil	621024	7052280	0.3	<0.005
GAD-10	Soil	621017	7052333	0.44	<0.005
GAD-11	Soil	621014	7052374	0.28	0.006
GAD-12	Soil	621013	7052435	0.38	<0.005
GAD-13	Soil	621026	7052473	0.36	0.009
GAD-14	Soil	621022	7052526	0.42	0.006
GAD-15	Soil	621020	7052568	0.3	0.008
GAD-16	Soil	621015	7052618	0.36	0.006
GAD-17	Soil	621001	7052669	0.34	<0.005
GAD-18	Soil	620979	7052722	0.44	<0.005
GAD-19	Soil	620973	7052765	0.32	<0.005
GAD-20	Soil	620968	7052812	0.32	<0.005
GAD-21	Soil	620974	7052862	0.3	<0.005
GAD-22	Soil	620957	7052907	0.4	0.005
GAD-23	Soil	620954	7052954	0.24	<0.005

Ag

<0.2

<0.2

<0.2

<0.2

As

4

6

<2

6

Cu

48

66

1

47

Fe

4.31

5.08

1.53

2.53

Mn

289

784

219

266

Zn

95

147

<2

80

Sample	Туре	NAD83/E	NAD83/N	WEI-21	Au-AA23
GAD-24	Soil	620929	7053000	0.5	<0.005
GAD-25	Soil	620901	7053041	0.34	<0.005
GAD-26	Soil	620875	7053085	0.46	0.005
GAD-27	Soil	620859	7053118	0.24	<0.005
GAD-28	Soil	620853	7053171	0.36	<0.005
GAD-29	Soil	620847	7053222	0.3	<0.005
GAD-30	Soil	620860	7053270	0.5	<0.005
GAD-31	Soil	620874	7053318	0.32	<0.005
GAD-32	Soil	620892	7053373	0.44	0.009
GAD-33	Soil	620909	7053409	0.38	<0.005
GAD-34	Soil	620900	7053463	0.46	<0.005
GAD-35	Soil	620943	7053488	0.22	0.005
GAD-36	Soil	620986	7053512	0.42	<0.005
GAD-37	Soil	621036	7053527	0.3	<0.005
GAD-38	Soil	621088	7053562	0.36	<0.005
GAD-39	Soil	621133	7053576	0.34	<0.005
GAD-40	Soil	621177	7053608	0.38	<0.005
GAD-41	Soil	621214	7053625	0.22	<0.005
GAD-42	Soil	621267	7053672	0.38	<0.005
GAD-43	Soil	621306	7053678	0.3	0.006
GAD-44	Soil	621348	7053728	0.3	<0.005
GAD-45	Soil	621375	7053765	0.3	<0.005
GAD-46	Soil	621407	7053807	0.3	<0.005
GAD-47	Soil	621463	7053779	0.32	0.005
GAD-48	Soil	621514	7053773	0.46	0.006
GAD-49	Soil	621550	7053745	0.26	<0.005
GAD-50	Soil	621603	7053726	0.38	<0.005
GAD-51	Soil	621655	7053709	0.34	0.008
GAD-52	Soil	621708	7053692	0.36	<0.005
GAD-53	Soil	621751	7053674	0.34	<0.005
GAD-54	Soil	621810	7053676	0.42	<0.005
GAD-55	Soil	621856	7053697	0.28	<0.005
GAD-56	Soil	621899	7053718	0.34	<0.005
GAD-57	Soil	621946	7053739	0.34	<0.005
GAD-58	Soil	621993	7053760	0.34	0.014
GAD-59	Soil	622040	7053771	0.34	<0.005
GAD-60	Soil	622086	7053765	0.4	<0.005
GAD-61	Soil	622137	7053773	0.34	<0.005
GAD-62	Soil	622198	7053780	0.4	<0.005
GAD-63	Soil	622238	7053796	0.28	<0.005
GAD-64	Soil	622278	7053812	0.36	<0.005
GAD-65	Soil	622318	7053830	0.44	<0.005
RGD01	Soil	603001	7065995	Not	Analysed
RGD02	Soil	603027	7066040	Not	Analysed
RGD03	Soil	603040	7066089	Not	Analysed
RGD04	Soil	603052	7066140	Not	Analysed

As

Ag

Cu

Fe

Mn

Zn

Sample	Type	NAD83/E	NAD83/N	WEI-21	Au-AA23
RGD05	Soil	603067	7066191	Not	Analysed
RGD06	Soil	603080	7066242	Not	Analysed
RGD07	Soil	603074	7066297	Not	Analysed
RGD08	Soil	603091	7066351	Not	Analysed
RGD09	Soil	603102	7066400	Not	Analysed
RGD10	Soil	603136	7066453	Not	Analysed
RGD11	Soil	603151	7066499	Not	Analysed
RGD12	Soil	603181	7066555	Not	Analysed
RGD13	Soil	603198	7066597	Not	Analysed
RGD14	Soil	603227	7066646	Not	Analysed
RGD16	Soil	603246	7066696	Not	Analysed
RGD17	Soil	603273	7066748	Not	Analysed
RGD18	Soil	603307	7066794	Not	Analysed
RGD19	Soil	603299	7066847	Not	Analysed
RGD20	Soil	603282	7066893	Not	Analysed
RGD21	Soil	603303	7066960	Not	Analysed
RGD22	Soil	603307	7067016	Not	Analysed
RGD23	Soil	603314	7067068	Not	Analysed
RGD24	Soil	603313	7067122	Not	Analysed
RGD25	Soil	603314	7067182	Not	Analysed
RGD26	Soil	603316	7067229	Not	Analysed
RGD27	Soil	603331	7067282	Not	Analysed
RGD28	Soil	603340	7067334	Not	Analysed
RGD29	Soil	603362	7067437	Not	Analysed
RGD31	Soil	603362	7067437	Not	Analysed
RGD32	Soil	603349	7067498	Not	Analysed
RGD33	Soil	603318	7067543	Not	Analysed
RGD34	Soil	603871	7069563	Not	Analysed
RGD35	Soil	603888	7069518	Not	Analysed
RGD36	Soil	603899	7069464	Not	Analysed
RGD37	Soil	603911	7069413	Not	Analysed
RGD38	Soil	603932	7069364	Not	Analysed
RGD39	Soil	603944	7069313	Not	Analysed
RGD40	Soil	603963	7069262	Not	Analysed
RGD41	Soil	603986	7069218	Not	Analysed
RGD42	Soil	604005	7069156	Not	Analysed
RGD43	Soil	603986	7069098	Not	Analysed
RGD44	Soil	603963	7069051	Not	Analysed
RGD46	Soil	603932	7068999	Not	Analysed
RGD47	Soil	603899	7068949	Not	Analysed
RGD48	Soil	603867	7068898	Not	Analysed
RGD49	Soil	603842	7068852	Not	Analysed
RGD50	Soil	603816	7068801	Not	Analysed
RGD51	Soil	603794	7068748	Not	Analysed
RGD52	Soil	603772	7068694	Not	Analysed
RGD53	Soil	603731	7068650	Not	Analysed
I GD00	1 3011	1 003/31	1 1000000	INUL	Luaiyseu

Cu

Ag

As

Fe

Mn

Zn

Sample	Туре	NAD83/E	NAD83/N	WEI-21	Au-AA23	Ag	As	Cu	Fe	Mn
RGD54	Soil	603689	7068608	Not	Analysed					
RGD55	Soil	603654	7068570	Not	Analysed					
RGD56	Soil	603622	7068511	Not	Analysed					
RGD57	Soil	603594	7068461	Not	Analysed					
RGD58	Soil	603573	7068408	Not	Analysed					
RGD59	Soil	603548	7068367	Not	Analysed					
RGD61	Soil	603525	7068303	Not	Analysed					
RGD62	Soil	603490	7068257	Not	Analysed					
RGD63	Soil	603469	7068208	Not	Analysed					
RGD64	Soil	603442	7068156	Not	Analysed					
RGD65	Soil	603414	7068107	Not	Analysed					
RGD66	Soil	603370	7068070	Not	Analysed					
RGD67	Soil	603348	7068029	Not	Analysed					
RGD68	Soil	603341	7067967	Not	Analysed					
RGD69	Soil	603342	7067915	Not	Analysed					
RGD70	Soil	603341	7067865	Not	Analysed					
RGD71	Soil	603333	7067804	Not	Analysed					
RGD72	Soil	603333	7067744	Not	Analysed					
RGD73	Soil	603327	7067681	Not	Analysed					
RGD74	Soil	603326	7067619	Not	Analysed					
RGD76	Soil	603227	7067551	Not	Analysed					

Zn

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 5 - A Total # Pages: 7 (A) Finalized Date: 20-AUG-2010

Account: KREBER

CERTIFICATE OF ANALYSIS VA10108845

	N/I - 4-1 1	WEI-21	Au-AA23		
	Method	Recvd Wt.	Au		
	Analyte Units	kg	ppm		
Sample Description	LOR	0.02	0.005	•	
	LUR	0.02	0,003		
SED-57		0.28	<0.005		
SED-58		0.46	<0.005		
SED-59		0.34	<0.005		
GAD-01		0.38	0.007		
GAD-02		0.32	< 0.005		
GAD-03		0.22	0.005		
GAD-03 GAD-04		0.42	<0.005		
GAD-04 GAD-05		0.42	0.007		
		0.34	<0.007		
GAD-06		0.34	<0.005		
GAD-07					
GAD-08		0.34	<0.005		
GAD-09		0.30	<0.005		
GAD-10		0.44	<0.005		
GAD-11		0.28	0.006		
GAD-12		0.38	<0.005		
GAD-13		0.36	0.009		
GAD-14		0.42	0,006		
GAD-15		0.30	0.008		
GAD-15		0.36	0.006		
GAD-17		0.34	<0.005		
		l			
GAD-18		0.44	<0.005		
GAD-19		0.32	<0.005		
GAD-20		0.32	<0.005		
GAD-21		0.30	<0.005		
GAD-22		0.40	0.005		
GAD-23		0.24	<0.005		
GAD-24		0.50	<0.005		
GAD-25		0.34	<0.005		
GAD-26		0.46	0.005		
GAD-27		0.24	<0.005		
GAD-28		0.36	<0.005		
GAD-28 GAD-29		0.30	<0.005		
		0.50	<0.005		
GAD-30			<0.005		
GAD-31		0.32			
GAD-32		0.44	0.009		
GAD-33		0.38	<0.005		
GAD-34		0.46	<0.005		
GAD-35		0.22	0.005		
GAD-36		0.42	<0.005		
GAD-37		0.30	<0.005		
i		ı			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 6 - A Total # Pages: 7 (A) Finalized Date: 20-AUG-2010

Account: KREBER

CERTIFICATE OF ANALYSIS VA10108845

	Method	WEI-21	Au-AA23	
	Analyte	Recvd Wt.	Au	
	Units	kg	ppm	
mple Description	LOR	0.02	0.005	
AD-38		0.36	<0.005	
GAD-39	1	0.34	<0.005	
GAD-40		0.38	<0.005	
GAD-41	1	0.22	<0.005	
GAD-42		0.38	<0.005	
AD-43		0.30	0.006	
GAD-44	1	0.30	<0.005	
GAD-45	1	0.30	<0.005	
GAD-46	1	0.30	<0.005	
GAD-47		0.32	0.005	
GAD-48		0.46	0.006	
GAD-49	1	0.26	<0.005	
GAD-50	1	0.38	<0.005	
GAD-51		0.34	0.008	
GAD-52		0.36	<0.005	
GAD-53		0.34	<0.005	
GAD-54	1	0.42	<0.005	
GAD-55		0.28	<0.005	
GAD-56		0.34	<0.005	
GAD-57		0.34	<0.005	
GAD-58		0.34	0.014	
GAD-59	1	0.34	<0.005	
GAD-60		0.40	<0.005	
GAD-61	1	0.34	<0.005	
GAD-62		0.40	<0.005	
GAD-64		0.36	<0.005	
GAD-65		0.44	<0.005	
CED-01	1	0.26	0.231	
CED-02		0.30	<0.005	
CED-03		0.26	0.011	
CED-04		0.44	0.007	
CED-05	l	0.18	0.006	
CED-06	1	0.42	0.017	
CED-07		0.20	0.013	
CED-08		0.34	<0.005	
CED-09		0.18	<0.005	
CED-10	ļ	0.56	0.006	
CED-11	I	0.24	<0.005	
CED-12		0.28	<0.005	
CED-13	1	0.30	0.009	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 3 - A Total # Pages: 6 (A) Finalized Date: 20-AUG-2010

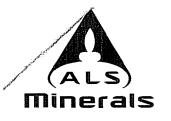
Account: KREBER

unera					CERTIFICATE OF ANALYSIS	VA10108844
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005			
RMD33 RBD01 RBD02 RBD03 RBD04		0.44 0.36 0.38 0.54 0.34	<0.005 <0.005 <0.005 <0.005 <0.005			
RBD05 RBD06 RBD07 RBD08 RBD09		0.44 0.40 0.34 0.44 0.46	<0.005 0.006 <0.005 0.006 <0.005			
RBD10 RBD11 RBD12 RBD13 RBD14		0.40 0.42 0.42 0.48 0.46	<0.005 0.009 0.005 <0.005 <0.005			
RBD15 RBD16 RBD17 RBD18 RBD19		Not Recvd 0.50 0.38 0.38 0.38	<0.005 <0.005 <0.005 0.008			
RBD20 RBD21 RBD22 RBD23 RBD24		0.40 0.60 0.46 0.52 0.44	<0.005 <0.005 <0.005 <0.005 <0.005			
RBD25 RBD26 RBD27 RBD28 RBD29		0.46 0.34 0.50 0.44 0.52	<0.005 <0.005 <0.005 <0.005 <0.005			
RBD30 RBD31 RBD32 RBD33 RBD34		Not Recvd 0.48 0.38 0.48 0.48	<0.005 <0.005 <0.005 <0.005			
RBD35 RBD36 RBD37 RBD38 RBD39		0.44 0.50 0.44 0.50 0.30	0.006 <0.005 0.006 0.005 <0.005	-		

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4



Page: 4 - A Total # Pages: 6 (A) Finalized Date: 20-AUG-2010

Account: KREBER

CERTIFICATE OF ANALYSIS VA10108844	CERTIFIC	ATE OF	212Υ ΙΔΙΊΔ	VA10108844
------------------------------------	----------	--------	------------	------------

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	
RBD40 RBD41 RBD42 RBD43 RBD44	•	0.36 0.58 0.38 0.46 0.58	<0.005 <0.005 0.007 <0.005 <0.005	
RBD45 RBD46 RBD47 RBD48 RBD49		Not Recvd 0.50 0.58 0.44 0.48	<0.005 <0.005 0.006 <0.005	• ,
RBD50 RBD51 RBD52 RBD53 RBD54		0.42 0.50 0.54 0.50 0.48	<0.005 0.005 0.013 0.008 0.009	
RBD55 RBD56 RBD57 RBD58 RBD59		0.48 0.46 0.46 0.52 0.56	<0.005 <0.005 <0.005 <0.005 <0.005	
RBD60 RBD61 RBD62 RBD63 RBD64		Not Recvd 0.42 0.52 0.42 0.54	<0.005 <0.005 <0.005 0.012	
RBD65 RBD66 RBD67 RBD68 RBD69		0.42 0.46 0.48 0.50 0.48	<0.005 <0.005 <0.005 <0.005 0.009	
RBD70 NTD01 NTD02 NTD03 NTD04		0.58 0.52 0.46 0.36 0.42	0.005 <0.005 <0.005 <0.005 <0.005	
NTD05 NTD06 NTD07 NTD08 NTD09		0.56 0.46 0.48 0.32 0.48	<0.005 0.008 <0.005 <0.005 <0.005	-

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

rage: 2 - A Total # Pages: 2 (A - C) Finalized Date: 26-AUG-2010

Account: KREBER

CERTIFICATE OF ANALYSIS VA10116148

Sample Description	Method Analyte Units LOR	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
NFS01		<0.2	1.37	6	<10	190	0.5	<2	0.42	<0.5	17	85	38	2.61	<10	<1
NFS02		<0.2	1.58	3	<10	220	0.6	<2	0.52	<0.5	16	63	35	3.37	<10	<1
NFS03	1	<0.2	1.01	12	<10	200	<0.5	<2	0.64	<0.5	12	40	25	2.34	<10	<1
NFS04	1	<0.2	1.07	16	<10	210	<0.5	<2	0.65	<0.5	14	50	28	2.78	<10	<1
NFS05		<0.2	1.63	42	<10	250	0.5	<2	0.88	<0.5	18	78	41	3.73	<10	<1
NFS06		<0.2	1.79	39	<10	230	0.5	<2	0.76	<0.5	18	102	41	3.67	<10	<1
NFS07	1	<0.2	1.39	7	<10	210	<0.5	<2	0.52	<0.5	17	58	40	2.97	<10	<1
NFS08	1	<0.2	1.42	4	<10	180	<0.5	<2	0.62	<0.5	13	46	34	2.74	<10	<1
RBD51	1	<0.2	2.52	4	<10	360	<0.5	<2	0.11	<0.5	7	33	48	4.31	10	<1
RBD52	1	<0.2	1.62	6	<10	200	<0.5	<2	0.19	<0.5	15	12	66	5.08	<10	<1
RBD53		<0.2	0.51	<2	<10	80	<0.5	<2	0.06	<0.5	<1	<1	1	1.53	10	<1
RBD54	1	<0.2	1.64	6	<10	230	<0.5	<2	0.15	<0.5	6	24	47	2.53	<10	<1
NTD64	1	<0.2	1.28	8	<10	200	<0.5	<2	0.40	<0.5	9	29	18	2.44	<10	<1
NTD65		<0.2	1.31	9	<10	340	0.5	<2	0.63	<0.5	10	27	38	2.53	<10	<1
NTD66		<0.2	1.16	6	<10	120	1.0	<2	0.23	<0.5	17	41	40	1.88	<10	<1
NTD67		<0.2	0.93	7	<10	160	0.5	<2	0.66	<0.5	14	37	43	1.49	<10	<1
NTD68	Į.	<0.2	1.31	5	<10	210	0.5	<2	1.28	<0.5	10	28	34	2.30	<10	<1

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 26-AUG-2010 Account: KREBER

NFSOI NFSOI NFSOI NFSOI NFSOI NA NA NA NA NA NA NA N	Minera	IS						-		С	ERTIFIC	CATE O	F ANAI	LYSIS	VA101	116148	}
NFSO2	Sample Description	Analyte Units	К %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	\$ %	Sb ppm	Sc ppm	Sr ppm	Th ppm	
NFS06	NFS02 NFS03 NFS04		0.36 0.11 0.10	20 20 20	0.84 0.59 0.67	435 838 1020	<1 <1 <1	<0.01 <0.01 0.01	65 37 46	1190 650 750	8 9 9	0.02 0.03 0.02	<2 <2 <2	4 3 4	30 25 26	<20 <20 <20	
RBD54 0.11 10 0.72 266 <1 <0.01 15 250 8 0.01 <2 3 12 <20 0.07 NTD64 0.09 10 0.51 302 <1 0.01 19 440 6 <0.01 <2 5 30 <20 0.08 NTD65 0.05 10 0.56 535 <1 0.03 29 560 5 <0.01 <2 5 38 <20 0.08 NTD66 0.12 10 0.32 355 <1 <0.01 24 140 4 <0.01 <2 6 24 <20 0.08 NTD67 0.16 <10 0.36 185 <1 <0.01 25 340 2 <0.01 <2 3 32 <20 0.11	NFS07 NFS08 RBD51		0.19 0.18 0.53	20 10 10	0.86 0.82 1.27	822 811 289	<1 <1 <1	0.01 0.02 0.01	43 40 13	720 910 660	5 4 3	0.01 0.02 0.22	<2 <2 <2	5 4 6	17 20 30	<20 <20 <20	0.08 0.07 0.10
	RBD54 NTD64 NTD65		0.11 0.09 0.05	10 10 10	0.72 0.51 0.56	266 302 535	<1 <1 <1	<0.01 0.01 0.03	15 19 29	250 440 560	8 6 5	0.01 <0.01 <0.01	<2 <2 <2	3 5 5	12 30 38	<20 <20 <20	80.0 80.0
														_			0.11 0.09

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 26-AUG-2010 Account: KREBER

CERTIFICATE OF	ANALYSIS	VA10116148
----------------	----------	------------

						CERTIFICATE OF ANALYSIS VATULI6148
Method Analyte Units LOR	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
	<10	<10	59	<10	79	
1	<10		53	<10	89	
1	<10	<10		<10	76	
- 1	<10	<10	34	<10	78	
1	<10	<10	58	<10	96	
	<10	<10	59	<10	104	
					72	
					65	
l			61		95	
					<2	
					80	
					52 46	
			69		83	
	<10		50		55	
١	Analyte Units	Analyte	Analyte Units LOR 10 10 10 10 10 10 10 10 10 10 10 10 10	Analyte Units LOR 10 10 10 1 1	Analyte Units LOR 10 10 10 1 10	Analyte Units LOR 10 10 10 1 10 2 2 10 10 2 10 10 10 1 10 2 10 10 10 1 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10