Prospecting
And
Geochemical Sampling Report
On The
Silt Project

Silt 1-24 Quartz Claims YD05655 to YD05678

Work Period June 25th to September 28th, 2010

Located In
Dawson Mining District
On
NTS 115-O-05
63° 25' Latitude, 139° 46' Longitude

By Bernie Kreft

January 19th, 2011

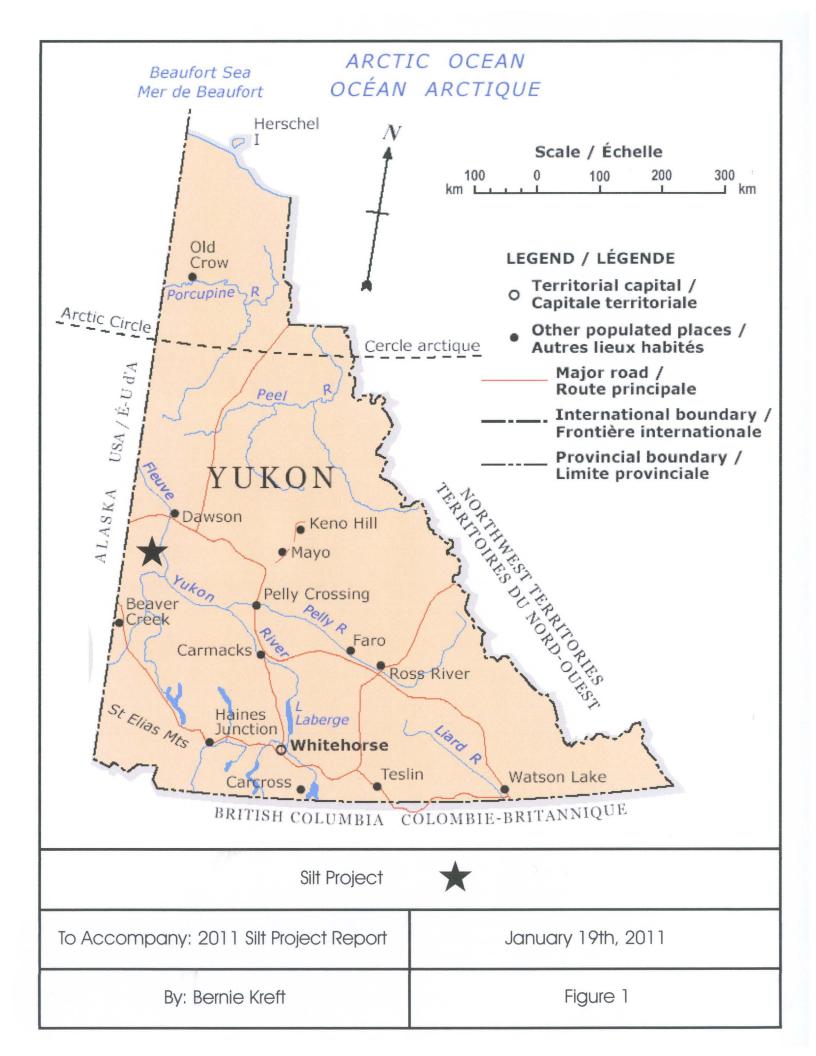
Table Of Contents

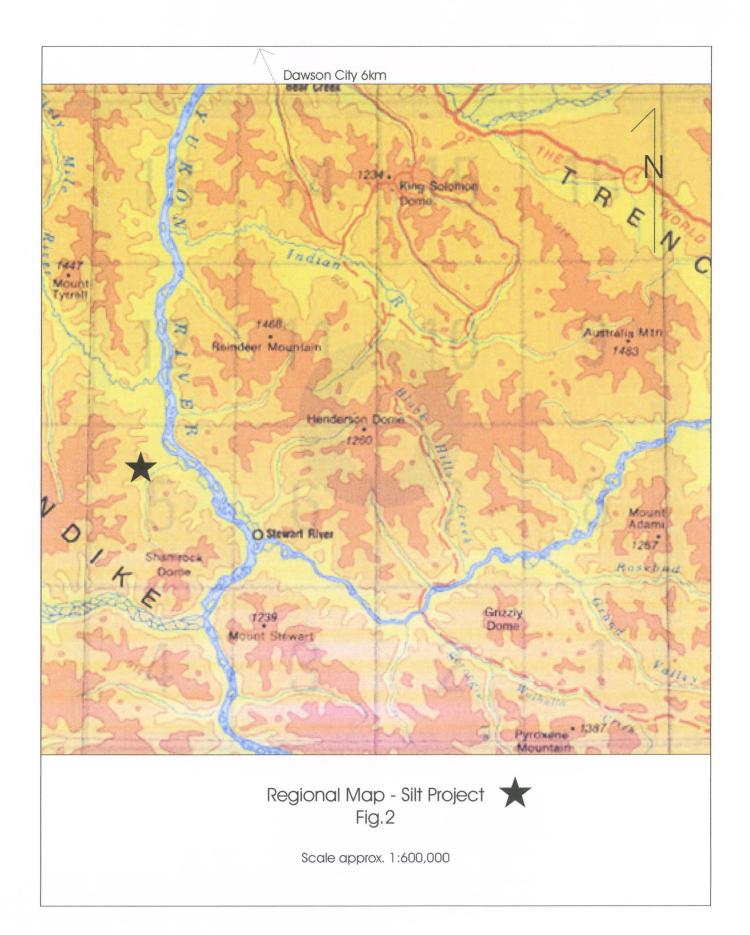
Location	Page 1
Claim Status Table	Page 1
Access	Page 1
Topography And Vegetation	Page 1
History And Mineralization	Page 1
Yukon Map (figure 1)	Page 2
Regional Map (figure 2)	Page 3
Geology And Geophysics	Page 4
Geology Map	Page 5
Geology Legend	Page 6
Current Work And Results	Page 7
Sample Location Map (figure 4)	Page 8
Conclusions	Page 9
Recommendations	Page 9
Qualifications	Page 10
Statement Of Costs	Page 11
Sample Table	At Back
Assay Sheets	At Back

Location – The Silt Project is located in the Dawson Mining District on NTS mapsheet 115-O-05 at approximately 63° 25' north and 139° 46' west. The area evaluated consisted of the Silt-1 to 24 quartz claims located along a left limit tributary to lower Excelsior Creek.

Claim Name	Grant Numbers	Registered Owner	Expiry Date
Silt 1-24	YD05655-YD05678	Bernard Kreft	2013\09\18*

^{*} pending acceptance of this report by the Dawson Mining Recorder

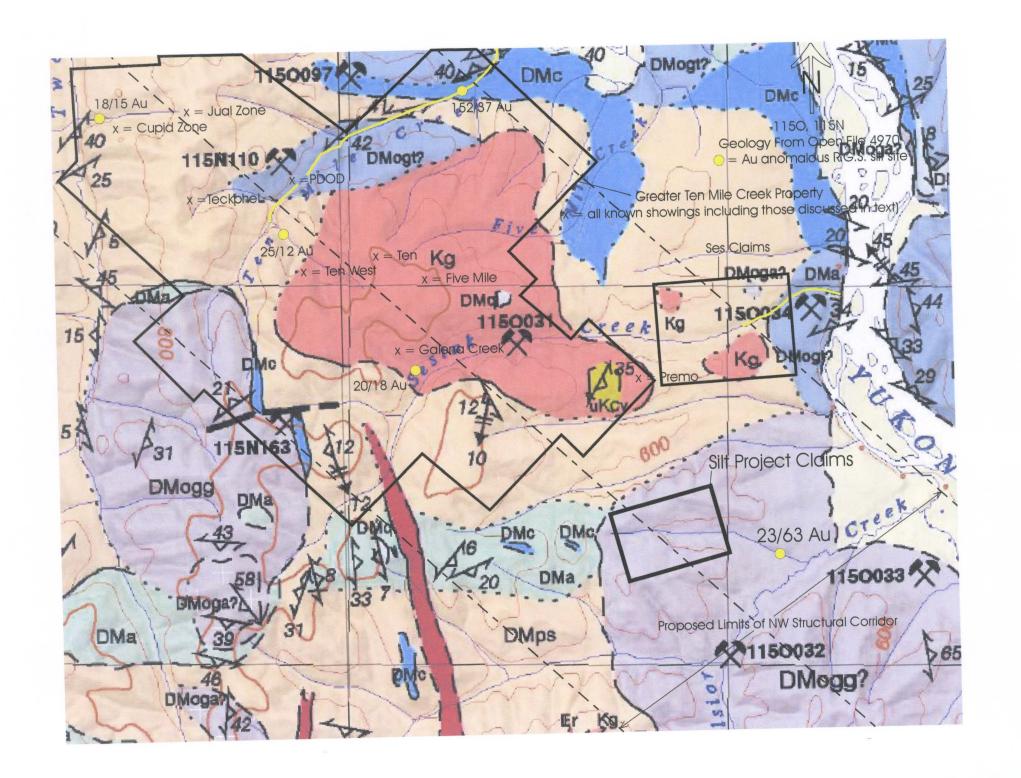

Access – Access was achieved by helicopter from Dawson City with a one way distance and flight time of approximately 70 kilometres and 0.5 hours respectively.


Topography And Vegetation – The property lies within the un-glaciated Klondike Plateau, which is characterized by low rolling hills dissected by deeply incised stream valleys. This region experienced strong surficial weathering during the early to mid-Tertiary; as a result, natural bedrock exposures are rare, and generally restricted to steep slopes, with the effects of surface weathering extending to depths of as much as 80 metres or more. Overburden and regolithic material appears to average approximately 1.0 metre in thickness, but is certainly deeper in some spots. South facing slopes are generally snow free from early May, with frost leaving the ground by the middle to end of May. North facing slopes are generally free of snow by mid to end of May, with permafrost often remaining year-round. The property is below tree line, with vegetative cover consisting of variable amounts of spruce, poplar, alder and brush, with brush and stunted spruce trees predominating on north facing slopes, higher elevations and in areas of permafrost or poor drainage, while south facing slopes are generally covered by more mature stands of spruce or poplar. Several recent forest fires have swept through the area, leaving large areas devoid of moss and vegetative cover resulting in more rock exposure and better soil sampling conditions due to at least partial destruction of permafrost in these areas, but also resulting in extremely difficult ground traversing due to large amounts of wind-fall.

History and Mineralization – The Silt prospect is located approximately 11 kilometres south-east of the core of the Ten Mile Property which is currently being explored by Solomon Resources under option from Radius Gold. The Ten Mile property was initially discovered by geologist Jean Pautler while completing regional exploration for Teck Corp.

At Ten Mile, limited exploration encountered a series of mineralized showings with values of up to 1.6 g/t Au over 25.0 metres and 11.1 g/t Au over 3.0 metres at the Jual Zone and a kilometric scale +50 ppb Au in soil anomaly at the Ten Zone. Auriferous mineralization is commonly found within zones of brecciation, silicification and bleaching (albitization?) within potassic zones (eTh/K low) generally coinciding with cretaceous intrusive bodies. A total of 9 mineralized showings or significant soil anomalies have been located, all of which are aligned along a broad northwest trend directly on strike of the Silt Project. A significant work program, including drilling, was conducted at the Ten Mile project during the 2010 field season, with further drilling planned for the 2011 field season.

Staking of the Silt Claims was initiated on the basis of the area being potentially within the same structural corridor that appears to be a significant controlling factor for mineralization at the Ten Mile Project, as well as to cover the source of a strong and repeatable R.G.S. silt geochemical



anomaly grading 23 and 63 ppb gold. This silt anomaly is significantly stronger than that from the creek draining the Jual Zone (18 and 15 ppb gold) and the Ten Zone (25 and 12 ppb gold), and in fact it is the strongest gold in silt anomaly in the entire area apart from a sample (152 and 37 ppb gold), taken in the placer mined portion of Ten Mile Creek, and that is not directly comparable to values from silt samples taken in un-disturbed areas.

Exploration for bedrock gold occurrences in the Klondike region has been of an ebb and flow nature since 1898. Although historical prospecting efforts resulted in several significant discoveries such as Lone Star, many more discoveries (Underworld, Ten Mile, Laskey) have occurred since the development and subsequent improvement of exploration methods such as soil sampling, trace element geochemistry and geophysics. The "oldtimers" were often unsuccessful likely due to poorly understood geology and controls on mineralization, thick overburden, abundant vegetative cover and a variable thickness of regolithic material all conspiring to make historical methods of prospecting of limited use and effect. Discoveries since 1999 within the Klondike Region (Dysle, Veronika, Gay Gulch, Hunker Dome, Laskey, Underworld, Ten Mile) have come about through the usage of soil geochemistry in combination with mechanized trenching. These discoveries span a variety of deposit types including thrust fault related quartz veins and associated auriferous alteration haloes, areas of intrusive related brecciation and silicification and intrusive hosted gold; providing a much broader spectrum of target types than the simple quartz veins historically thought to be the source of the Klondike gold.

Although hard-rock exploration in the vicinity of the Silt Project has likely been conducted since 1898, efforts have been minimal and there is little properly documented work available within the public domain, with none referring to the exact area of the Silt Claims. Early exploration resulted in the discovery of the Excelsior and Gold Dike showings on the south side of lower Excelsior Creek (note: the actual location of old showings is commonly as much as 1.6 kilometres from their plotted location). These claims were probably staked on barren quartz veins, although early newspaper reports were quite promotional. Recent efforts include work in 1981 by Atlantic Energy Ltd who assessed Excelsior Creek for placer potential and encountered several weakly anomalous values of arsenic to 25 ppm and a single strongly anomalous gold value of 1445 ppb from hybrid silt-pan concentrate samples taken on the main stem of Excelsior in the vicinity of the anomalous R.G.S. silt sample site (AR 120017). Work by Prospector International Resources Inc in 1989 (AR 094071) covered the area immediately west of the Silt Claims in an effort to locate a source for the gold anomalous R.G.S. silt site. Their work failed to return any anomalous gold values, but did encounter several weakly anomalous values of arsenic, lead and antimony in soil. This work seems to suggest potential for a Tintina Gold Belt style mineralizing system in the area, and that any potential source for the R.G.S. gold in silt anomaly would be away from their work area, and consequently be likely sourced from within the area of the Silt Claims.

Geology And Geophysics – The project is situated on the southwest side of the Tintina Fault, within the Tintina Gold Belt (TGB), a geological and geochemical environment favorable for locating economic gold deposits associated with mid-Cretaceous granitic intrusive activity. Significant discoveries within the TGB include Donlin Creek, Pogo and Fort Knox, while significant Yukon occurrences include Brewery Creek, Dublin Gulch, Coffee, Rau and Underworld. Mineralization at these deposits covers a wide spectrum of high-grade mesothermal veins, intrusion

CENOZOIC

TERTIARY EOCENE

PORPHYRY: Smokey quartz and K-feldspar phyric rhyolite to rhyodacite stocks and dykes, and possible rare flows

MID?-CRETACEOUS

GRANITE/GRANODIORITE: Kg, pink to grey, locally porphyritic syenogranite to monzogranite plutons and dykes; Kgd, biotite-hornblende bearing granodiorite, locally foliated

DEVONIAN TO MISSISSIPPIAN

NASINA ASSEMBLAGE: DMNq, fine-grained, dark-grey to black carbonaceous quartzite and metapelite; DMNI, marble

DMogt

ORTHOGNEISS (OLDER, 363-343 Ma): DMog, undivided orthogneiss; DMogg, pink to orange K-feldspar rich, granitic orthogneiss, commonly with biotite, banded to layered, commonly includes or associated with DMoga; DMoga, mainly K-feldspar augen orthogneiss, commonly includes or associated with DMogg; DMogt, mainly tonalitic or intermediate to mafic orthogneiss, generally grey, banded to layered, commonly veined; commonly interlayered with amphibolite schist and gneiss, biotite and/or hornblende bearing; ?-age assignment probable, ??-age assignment assumed (alternatively could be part of Pog)

DMogta

Undivided DMogt (ORTHOGNEISS (OLDER)) and DMa (AMPHIBOLITE)

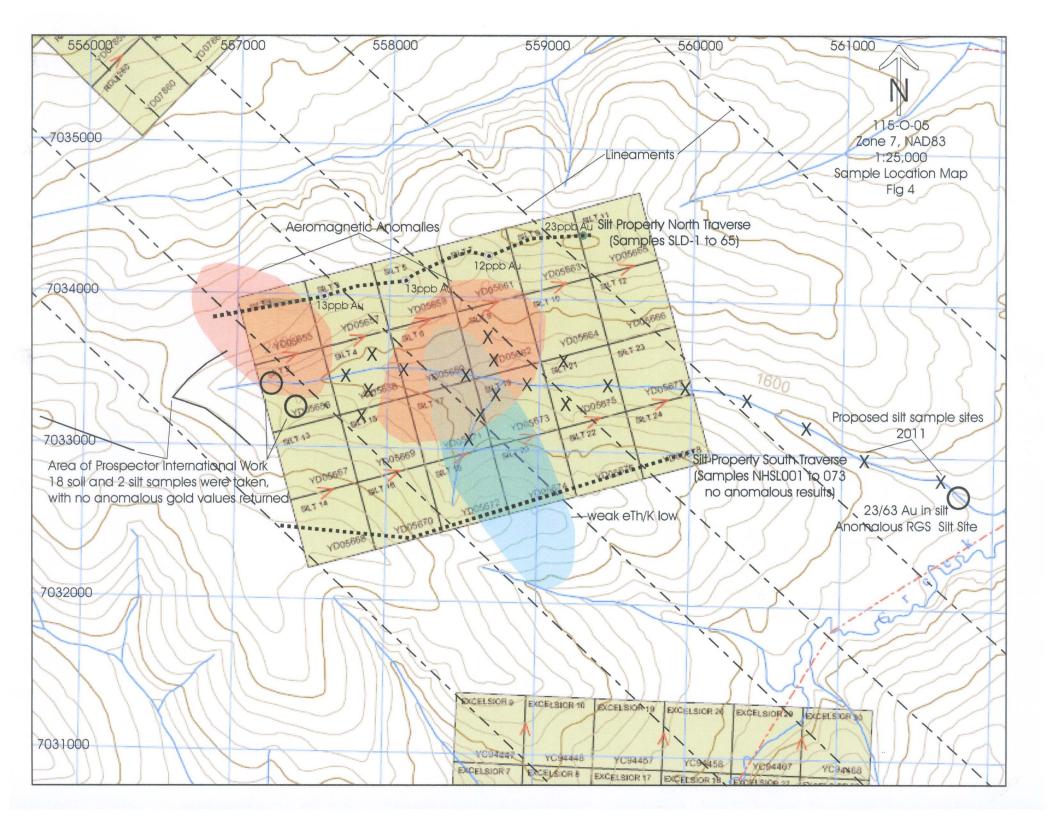
AMPHIBOLITE: amphibolite schist and gneiss; metabasite; probably derived from mafic to intermediate volcanic or volcaniclastic rocks; locally associated with psammite or interlayered with orthogneiss

MAFIC SCHIST: biotite-hornblende+/-plagioclase+/-quartz metabasite?; generally associated with amphibolite; main locality on Thistle Mountain

MARBLE: marble (metacarbonate) derived from pure to impure limestone; associated calc-silicate schist derived from calcareous metapelite

DMps

QUARTZ-MICA SCHIST: undivided metasedimentary rocks dominated by metapsammite, semipelite and metapelite; commonly quartz-garnet-biotite-muscovite schist possibly derived from siliceous siltstone; commonly finely interlayered with garnet metapelite; commonly contains members of micaceous quartzite; rare conglomerate; grades locally to paragneiss


hosted sheeted veins, large-tonnage and low-grade disseminations and stockworks, skarns and mantos, with the majority of mineralization intrusion related and often having a strong structural control. A recent significant surge in local exploration activity has occurred since the discovery by Underworld Resources of the Golden Saddle and Arc deposits at the White Gold Project. This "rush" is ongoing as of the date of writing and, due to more recent discoveries by Kaminak at Coffee and Atac at Rau, shows no sign of slowing.

At Golden Saddle, intrusion-related gold mineralization is preferentially hosted within metamorphosed felsic intrusive units, as well as felsic and mafic metavolcanic rocks, with the principal host rock a granitoid that has been metamorphosed to augen gneiss. Gold is associated with quartz veins, stockwork and breccia zones, as well as pyrite veinlets and disseminations, with better-grade mineralization found in proximity to ultramafic units. The alteration assemblage includes pervasive albite, carbonate, sericite and silicification. The main mineralized zone strikes to the northeast, with a gentle to moderate dip to the northwest. The generally lower grade and smaller Arc Deposit is hosted by metasedimentary rocks (quartzite), and is typified by hydrothermal breccias and silicification, with mineralization associated with arsenic and antimony, which is distinct to the Golden Saddle deposit which contains only limited amounts of sulphides. At Coffee, gold mineralization has been found within schist and gneiss units as well as granitic intrusives. Gold values are associated with zones of shearing, brecciation, silicification, clay a/o sericite alteration mineralized with variable amounts of fresh to fully oxidized sulphides occurring within microfracture networks, veins and in the matrix of breccias. A correlation between gold values and several pathfinder elements, including arsenic, antimony, molybdenum, mercury and barjum has been noted. Structure is the key control on mineralization at Coffee.

Recent mapping (GSC Open File 4970) suggests that the Silt Project is underlain by banded to layered pink to orange K-feldspar rich granitic orthogneiss commonly with biotite. Although no faults have been mapped in the immediate area, at least four pronounced northwest trending lineaments visible on air photos and topographical maps dissect the project. These lineaments extend directly towards the Ten Mile Project (SRB:TSX JV RDU:TSX).

During 2002 the GSC sponsored a multi-disciplinary airborne geophysical survey (GSC Open File 4310) which covered a large area south and west of Dawson, including the area of the Silt Project. Magnetic data for the Silt area places the project claims within rocks of a similar magnetic susceptibility as those occurring at the Ten Mile Project, somewhat supports the presence of northwest trending structures or lineaments, and indicates the presence of several moderate positive circular magnetic features possibly indicative of buried intrusives. Coincident with one of the circular magnetic structures is a weak to moderate eTh/K low possibly indicative of weak to moderate potassic alteration. The association of eTh/Klows and circular magnetic structures is common to many of the mineralized zones or anomalies at Ten Mile.

Current Work And Results – Work consisted of soil sampling, and was conducted as single lines along the ridge crests north and south of the creek hosting the 23/63 ppb gold silt anomaly. A total of 133 soil samples were taken at 50 metre intervals. Sampled material was taken from the C horizon, found at an average depth of 30-80 centimetres, using hand held augers. Soil sampling conditions were good, apart from steep slopes where soil development is limited. All sample sites

were marked in the field using flagging inscribed with the sample code, with sample medium placed in industry standard soil sample envelopes. Samples were analyzed by Chemex using their Au-AA23 (30g fire assay) with several samples analyzed by their ME-ICP41 (35 element aqua regia) packages.

Assay results were generally low, with a maximum value of 23 ppb gold which can be considered weakly anomalous on a regional scale. ICP results from this area are also generally low with a slight increase (as compared to neighbouring samples) in iron, cobalt, copper and potassium suggesting that the gold anomaly may be associated with weakly potassic altered slightly mafic intrusive activity.

Conclusions – A weak RGS gold soil anomaly which is possibly associated with mafic intrusive activity was located during 2010 field exploration. A weak aero-magnetic anomaly possibly due to mafic intrusive activity is located in the valley bottom of the creek hosting a strong gold in silt anomaly. No significant gold in soil anomalies are located on the ridge crests bordering the gold anomalous creek. A source for the significantly anomalous (99th percentile from the region) and repeatable RGS gold in silt anomaly has yet to be defined.

Recommendations – Further work is required to define a source for the strong repeatable (99th percentile on a regional basis) RGS gold in silt anomaly hosted by the creek within the Silt Claims. Initial work should consist of a detailed stream sediment sampling program focusing on the drainage basin at and upstream from the anomalous site. Should this work encounter significantly anomalous values, subsequent work should consist of further detailed silt sampling within nearby drainage basins, as well as continued ridge and spur soil sampling covering possible source areas.

Statement Of Qualifications

I, Bernie Kreft, directed and participated in the exploration work described herein.

I have over 23 years prospecting experience in the Yukon.

This report is based on fieldwork conducted or directed by myself, and includes information from various publicly available assessment reports and publically available government data.

This report is based on fieldwork completed during the 2010 field season.

This report is based on fieldwork completed on the Silt quartz claims.

Respectfully Submitted,
Bernie Kreft

Statement Of Costs

Fireweed Helicopters (1.9 hours) round trip to property		\$2,490.16
Truck Travel (1 round trip to Dawson 1024km x \$0.595/km)		\$609.28 -
Chemex (assaying 133 soils for Au-AA23 and 3 for Me-ICP41)		\$2,399.57
Report Writing and Duplication		\$1,000.00
Wages Bernie Kreft fieldwork and travel (1.5 days x \$350/day)		\$525.00 -
CJGreig And Associates collect 102 samples x \$28/sample		\$2,856.00
Food And Camp Supplies (1 man day x \$100/day)		<u>\$100.00</u> -
	Total	\$9,980.01

Sample	Туре	NAD83/E	NAD83/N	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
				Recvd Wt.	Au	As	Co	Cu	Fe	К
				kg	ppm	ppm	ppm	ppm	%	%
				0.02	0.005	2	1	1	0.01	0.01
NHSLS001	Soil	557328	7032281	0.38	<0.005					
NHSLS002	Soil	557376	7032283	0.52	<0.005					
NHSLS003	Soil	557401	7032297	0.48	<0.005					
NHSLS004	Soil	557447	7032296	0.7	<0.005					
NHSLS005	Soil	557489	7032303	0.54	<0.005					
NHSLS006	Soil	557532	7032307	0.34	<0.005					
NHSLS007	Soil	557566	7032299	0.42	<0.005					
NHSLS008	Soil	557606	7032291	0.42	<0.005					
NHSLS009	Soil	557639	7032282	0.58	<0.005					
NHSLS010	Soil	557679	7032268	0.34	<0.005					
NHSLS011	Soil	557722	7032254	0.46	<0.005					
NHSLS012	Soil	557766	7032244	0.38	<0.005					
NHSLS013	Soil	557798	7032235	0.42	<0.005					
NHSLS014	Soil	557838	7032223	0.4	<0.005					
NHSLS016	Soil	557879	7032213	0.44	<0.005					
NHSLS017	Soil	557910	7032198	0.38	<0.005					
NHSLS018	Soil	557956	7032194	0.48	<0.005					
NHSLS019	Soil	557992	7032174	0.32	<0.005					
NHSLS020	Soil	558026	7032174	0.32	<0.005					
NHSLS021	Soil	558063	7032151	0.42	<0.005					
NHSLS022	Soil	558102	7032151	0.4	<0.005					
NHSLS023	Soil	558142	7032159	0.4	<0.005					
NHSLS024	Soil	558184	7032193	0.44	<0.005					
NHSLS025	Soil	558227	7032205	0.4	<0.005					
NHSLS026	Soil	558266	7032246	0.44	<0.005					
NHSLS027	Soil	558305	7032268	0.46	<0.005					
NHSLS028	Soil	558327	7032298	0.44	<0.005					
NHSLS029	Soil	558371	7032308	0.5	<0.005					
NHSLS031	Soil	558413	7032317	0.62	<0.005					
NHSLS032	Soil	558454	7032331	0.32	<0.005					
NHSLS033	Soil	558492	7032350	0.64	<0.005					
NHSLS034	Soil	558532	7032360	0.4	<0.005					
NHSLS035	Soil	558581	7032376	0.5	<0.005	1				
NHSLS036	Soil	558623	7032387	0.44	<0.005					
NHSLS037	Soil	558663	7032404	0.46	<0.005					
NHSLS038	Soil	558705	7032404	0.4	<0.005					
NHSLS039	Soil	558749	7032414	0.34	0.005					
NHSLS040	Soil	558792	7032428	0.54	<0.005					
NHSLS041	Soil	558834	7032428	0.42	<0.005					
NHSLS042	Soil	558884	7032429	0.48	<0.005					
NHSLS043	Soil	558929	7032439	0.5	0.008					
NHSLS044	Soil	558974	7032452	0.38	<0.005					
NHSLS046	Soil	559016	7032458	0.42	<0.005					

Sample	Туре	NAD83/E	NAD83/N	WEI-21	Au	As
NHSLS047	Soil	559058	7032460	0.54	<0.005	
NHSLS048	Soil	559101	7032462	0.32	<0.005	
NHSLS049	Soil	559137	7032476	0.46	<0.005	
NHSLS050	Soil	559174	7032491	0.42	<0.005	
NHSLS051	Soil	559222	7032503	0.4	<0.005	l
NHSLS052	Soil	559263	7032526	0.4	<0.005	
NHSLS053	Soil	559302	7032538	0.46	<0.005	
NHSLS054	Soil	559339	7032559	0.44	0.006	
NHSLS055	Soil	559376	7032580	0.46	<0.005	
NHSLS056	Soil	559418	7032600	0.42	<0.005	
NHSLS057	Soil	559460	7032623	0.58	<0.005	
NHSLS058	Soil	559503	7032629	0.46	0.006	
NHSLS059	Soil	559542	7032623	0.52	<0.005	
NHSLS061	Soil	559579	7032630	0.42	<0.005	
NHSLS062	Soil	559618	7032640	0.32	0.009	
NHSLS063	Soil	559652	7032672	0.46	0.006	
NHSLS064	Soil	559690	7032691	0.4	<0.005	
NHSLS065	Soil	559727	7032718	0.52	<0.005	
NHSLS066	Soil	559754	7032746	0.44	<0.005	
NHSLS067	Soil	559780	7032754	0.38	<0.005	
NHSLS068	Soil	559822	7032756	0.42	<0.005	
NHSLS069	Soil	559861	7032762	0.42	<0.005	
NHSLS070	Soil	559902	7032761	0.48	0.007	
NHSLS071	Soil	559940	7032768	0.4	0.008	
NHSLS072	Soil	559985	7032774	0.54	<0.005	
NHSLS073	Soil	560027	7032764	0.44	<0.005	
SLD-01	Soil	556839	7033804	0.42	<0.005	
SLD-02	Soil	556879	7033818	0.42	0.006	
SLD-03	Soil	556939	7033835	0.38	<0.005	
SLD-04	Soil	557039	7033832	0.42	0.005	
SLD-05	Soil	557082	7033862	0.36	<0.005	
SLD-06	Soil	557109	7033870	0.3	0.006	
SLD-07	Soil	557153	7033884	0.24	0.007	
SLD-08	Soil	557198	7033898	0.4	0.007	
SLD-09	Soil	557233	7033916	0.22	<0.005	
SLD-10	Soil	557278	7033907	0.38	<0.005	
SLD-11	Soil	557319	7033929	0.28	<0.005	
SLD-12	Soil	557373	7033937	0.38	0.008	
SLD-13	Soil	557405	7033961	0.36	<0.005	i
SLD-14	Soil	557447	7033957	0.44	0.007	
SLD-15	Soil	557490	7033970	0.36	0.01	
SLD-16	Soil	557530	7033978	0.34	0.005	
SLD-17	Soil	557563	7033988	0.38	0.013	
SLD-18	Soil	557601	7033982	0.48	0.007	
SLD-19	Soil	557649	7034012	0.28	0.007	
SLD-20	Soil	557702	7034018	0.38	0.005	

Со

Cu

Fe

K

Sample	Type	NAD83/E	NAD83/N	WEI-21	Au	As	Co	Cu	Fe	<u> </u>
SLD-21	Soil	557738	7034035	0.26	<0.005					
SLD-22	Soil	557785	7034023	0.4	0.008					
SLD-23	Soil	557868	7034049	0.36	0.006					
SLD-24	Soil	557952	7034076	0.38	<0.005					
SLD-25	Soil	557919	7034066	0.34	<0.005					
SLD-26	Soil	557954	7034080	0.42	0.008					
SLD-27	Soil	557996	7034084	0.28	<0.005	-				
SLD-28	Soil	558038	7034089	0.48	0.005					
SLD-29	Soil	558086	7034100	0.36	0.013					
SLD-30	Soil	558110	7034133	0.4	<0.005					
SLD-31	Soil	558140	7034159	0.3	<0.005	,				
SLD-32	Soil	558170	7034184	0.24	<0.005					
SLD-33	Soil	558214	7034187	0.34	<0.005					
SLD-34	Soil	558258	7034190	0.4	0.005					
SLD-35	Soil	558292	7034197	0.28	0.008					
SLD-36	Soil	558338	7034219	0.38	0.009					
SLD-37	Soil	558382	7034227	0.42	0.006					
SLD-38	Soil	558425	7034240	0.38	0.005					
SLD-39	Soil	558451	7034243	0.46	0.007					
SLD-40	Soil	558489	7034249	0.46	0.007					
SLD-41	Soil	558527	7034255	0.4	0.008					
SLD-42	Soil	558564	7034261	0.46	0.005					
SLD-43	Soil	558601	7034268	0.38	<0.005					
SLD-44	Soil	558639	7034274	0.5	0.012					
SLD-45	Soil	558678	7034268	0.46	<0.005					
SLD-46	Soil	558715	7034264	Not Recvd						
SLD-47	Soil	558750	7034275	0.38	<0.005					
SLD-48	Soil	558787	7034278	0.44	<0.005					
SLD-49	Soil	558823	7034271	0.38	0.005					
SLD-50	Soil	558860	7034276	0.42	<0.005					
SLD-51	Soil	558897	7034282	0.26	0.007					
SLD-52	Soil	558934	7034287	0.34	0.006					
SLD-53	Soil	558971	7034292	0.32	0.005					
SLD-54	Soil	558963	7034365	0.56	0.006					
SLD-55	Soil	558982	7034400	0.26	<0.005					
SLD-56	Soil	558994	7034418	0.42	<0.005					
SLD-57	Soil	559014	7034462	0.34	0.005					
SLD-58	Soil	559069	7034457	0.32	<0.005					
SLD-59	Soil	559098	7034442	0.28	0.005					
SLD-60	Soil	559140	7034446	0.48	0.006					
SLD-61	Soil	559162	7034461	0.34	<0.005					
SLD-62	Soil	559209	7034457	0.46	<0.005					
SLD-63	Soil	559241	7034443	0.32	<0.005	7	8	17	2.55	0.1
SLD-64	Soil	559371	7034007	0.36	0.023	3	15	25	3.38	0.7
		559322	7034435	0.24	<0.005	5	6	10	2.02	0.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - A Total # Pages: 7 (A) Finalized Date: 20-AUG-2010

Account: KREBER

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	
SLD-01	AF 100 PM	0.42	<0.005	
SLD-02		0.42	0.006	
SLD-03		0.38	<0.005	
SLD-04		0.42	0.005	
SLD-05		0.36	<0.005	
SLD-06		0.30	0.006	
SLD-07		0.24	0.007	
SLD-08		0.40	0.007	
SLD-09	Í	0.22	<0.005	
SLD-10		0.38	<0.005	
SLD-11		0.28	<0.005	
SLD-12		0.38	0.008	
SLD-13	ı	0.36	<0.005	
SLD-14		0.44	0.007	
SLD-15		0.36	0.010	
SLD-16		0.34	0.005	
SLD-17		0.38	0.013	
SLD-18		0.48	0.007	
SLD-19		0.28	0.007	
SLD-20		0.38	0.005	
SLD-21		0.26	<0.005	
SLD-22		0.40	0.008	
SLD-23		0.36	0.006	
SLD-24		0.38	<0.005	
SLD-25		0.34	<0.005	
SLD-26		0.42	0.008	
SLD-27		0.28	<0.005	
SLD-28		0.48	0.005	
SLD-29		0.36	0.013	
SLD-30		0.40	<0.005	
SLD-31		0.30	<0.005	
SLD-32		0.24	<0.005	
SLD-33		0.34	<0.005	
SLD-34		0.40	0.005	
SLD-35		0.28	0.008	
SLD-36		0.38	0.009	
SLD-37		0.42	0.006	
SLD-38		0.38	0.005	
SLD-39		0.46	0.007	
SLD-40		0.46	0.007	

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 3 - A Total # Pages: 7 (A) Finalized Date: 20-AUG-2010

Account: KREBER

	Method	WEI-21	Au-AA23	
	Analyte	Recvd Wt.	Au	
	Units	kg	ppm	
Sample Description	LOR	0.02	0.005	
CI D. 44	***************************************	0.40	0.000	
SLD-41		0.40 0.46	0.008 0.005	
SLD-42				
SLD-43		0.38	<0.005	
SLD-44		0.50	0.012	
SLD-45		0.46	<0.005	
SLD-46		Not Recvd		
SLD-47		0.38	<0.005	
SLD-48		0.44	<0.005	
SLD-49		0.38	0.005	
SLD-50		0.42	<0.005	
SLD-51		0.26	0.007	
SLD-52		0.34	0.006	
SLD-53		0.32	0.005	
SLD-54		0.56	0.006	
SLD-55		0.26	<0.005	
		1		
SLD-56		0.42	<0.005	
SLD-57		0.34	0.005	
SLD-58		0.32	<0.005	
SLD-59		0.28	0,005	
SLD-60		0.48	0.006	
SLD-61		0.34	<0.005	
SLD-62		0.46	<0.005	
SLD-63		0.32	<0.005	
SLD-64		0.36	0.023	
SED-01		0.42	0.007	
SED-02		0.46	0.009	
SED-03		0.36	0.006	
SED-04		0.44	0.006	
SED-05		0.36	<0.005	
		0.38	0.005	
SED-06				
SED-07		0.32	800,0	
SED-08		0.34	0,006	
SED-09		0.30	<0.005	
SED-10		0.46	0.006	
SED-11		0.36	0.005	
SED-12		0.34	<0.005	
SED-13		0.34	<0.005	
SED-14		0.44	<0.005	
SED-15		0.22	<0.005	
SED-16		0.36	0.005	
3LD - 10		0.00	0.000	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE **#1 LOCUST PLACE** WHITEHORSE YT Y1A 5C4 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 29-OCT-2010

Account: KREBER

CERTIF	ICATE	OF AN	ALYSIS	VA10155621

					<u> </u>	<u> </u>	EKIIFI	AILU	T ANA	- 4212	VAIU	155621	
ple Description	hod ME-ICP41 ME-IC	As ppm p	E-ICP41 ME-ICP41 B Ba ppm ppm 10 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
1-63 1-64 1-65	0.2 1.7 <0.2 2.0 <0.2 1.4	1 3	<10 350 <10 540 <10 330	<0.5 <0.5 <0.5	<2 <2 <2	0.32 0.32 0.21	<0.5 <0.5 <0.5	8 15 6	28 31 21	17 25 10	2.55 3.38 2.02	10 10 <10	<1 <1 <1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE **#1 LOCUST PLACE** WHITEHORSE YT Y1A 5C4 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 29-OCT-2010

Account: KREBER

CERTIFICATE	OF ANALYSIS	VA10155621

									OLIVIII IOATE OF AWALISTS V			VATOTOGOLT				
Sample Description	Method Analyte Units LOR	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01
SLD-63 SLD-64 SLD-65		0.12 0.78 0.08	10 10 10	0.50 1.45 0.41	382 318 294	1 <1 <1	0.01 0.03 0.01	17 19 13	450 320 360	9 4 6	<0.01 <0.01 0.01	<2 <2 <2 <2	3 9 3	23 13 16	<20 <20 <20	0,08 0.20 0.06

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 29-OCT-2010

Account: KREBER

							OLIVIII IOATE OF AIGALISIS VATO 133021
	Method Analyte Units LOR	ME-ICP41 TI ppm	ME-ICP41 U ppm	ME-ICP41 V ppm	ME-ICP41 W ppm	ME-ICP41 Zn ppm	
Sample Description	LOR	10	10	1	10	ppm 2	
SLD-63		<10	<10	60	<10		
SLD-64		<10	<10	131	<10	95 47 84	
SLD-65		<10	<10	47	<10 <10	84	
	1						
	i						
	1						
							•
	1						

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - A Total # Pages: 7 (A) Finalized Date: 20-AUG-2010

Account: KREBER

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005		
NHSLS001 NHSLS002 NHSLS003 NHSLS004 NHSLS005		0.38 0.52 0.48 0.70 0.54	<0.005 <0.005 <0.005 <0.005 <0.005	getive Control of the	
NHSLS006 NHSLS007 NHSLS008 NHSLS009 NHSLS010		0.34 0.42 0.42 0.58 0.34	<0.005 <0.005 <0.005 <0.005 <0.005		
NHSLS011 NHSLS012 NHSLS013 NHSLS014 NHSLS015		0.46 0.38 0.42 0.40 Not Recvd	<0.005 <0.005 <0.005 <0.005		
NHSLS016 NHSLS017 NHSLS018 NHSLS019 NHSLS020		0.44 0.38 0.48 0.32 0.32	<0.005 <0.005 <0.005 <0.005 <0.005		
NHSLS021 NHSLS022 NHSLS023 NHSLS024 NHSLS025		0.42 0.40 0.40 0.44 0.40	<0.005 <0.005 <0.005 <0.005 <0.005		
NHSLS026 NHSLS027 NHSLS028 NHSLS029 NHSLS030		0.44 0.46 0.44 0.50 Not Recvd	<0.005 <0.005 <0.005 <0.005		
NHSLS031 NHSLS032 NHSLS033 NHSLS034 NHSLS035		0.62 0.32 0.64 0.40 0.50	<0.005 <0.005 <0.005 <0.005 <0.005		
NHSLS036 NHSLS037 NHSLS038 NHSLS039 NHSLS040		0.44 0.46 0.40 0.34 0.54	<0.005 <0.005 <0.005 0.005 <0.005		

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE **#1 LOCUST PLACE** WHITEHORSE YT Y1A 5C4

Page: 3 - A Total # Pages: 7 (A) Finalized Date: 20-AUG-2010

Account: KREBER

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005				,
NHSLS041 NHSLS042 NHSLS043 NHSLS044 NHSLS045		0.42 0.48 0.50 0.38 Not Recvd	<0.005 <0.005 0.008 <0.005				
NHSLS046 NHSLS047 NHSLS048 NHSLS049 NHSLS050		0.42 0.54 0.32 0.46 0.42	<0.005 <0.005 <0.005 <0.005 <0.005				
NHSLSO51 NHSLSO52 NHSLSO53 NHSLSO54 NHSLSO55		0.40 0.40 0.46 0.44 0.46	<0.005 <0.005 <0.005 0.006 <0.005				
NHSLS056 NHSLS057 NHSLS058 NHSLS059 NHSLS060		0.42 0.58 0.46 0.52 Not Recvd	<0.005 <0.005 0.006 <0.005				
NHSLS061 NHSLS062 NHSLS063 NHSLS064 NHSLS065		0.42 0.32 0.46 0.40 0.52	<0.005 0.009 0.006 <0.005 <0.005				
NHSLS066 NHSLS067 NHSLS068 NHSLS069 NHSLS070		0.44 0.38 0.42 0.42 0.48	<0.005 <0.005 <0.005 <0.005 0.007				
NHSLS071 NHSLS072 NHSLS073 RKD001 RKD002	:	0.40 0.54 0.44 0.40 0.44	0.008 <0.005 <0.005 <0.005 <0.005				
RKD003 RKD004 RKD005 RKD006 RKD007		0.52 0.52 0.62 0.56 0.46	<0.005 0.005 <0.005 0.007 0.009				