2011 EXPLORATION PROGRAM on the LITTLE HYLAND PROJECT, TUNGSTEN AREA, YUKON TERRITORY

Grant #	Claim Name
YD29584 - YD29613	Rubus 9 - 38
YD29642 – YD29655	Rubus 47 - 60
YE48003 – YE48008	Zanzibar 7 - 12
YC92593 – YC93596	RED BLUFF 1 - 4

On Quartz Claims

Report By:

Gary Lee, P.Eng

Whitehorse, Yukon

Location: 62° 00' N, 128° 30' W NTS: 105H15, 16, 105I01, 02 Mining District: Watson Lake, Yukon Date: January, 2012

SUMMARY

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is within the Little Hyland River Valley in the Watson Lake Mining District, in southeast Yukon. The property consists of 54 quartz mining claims that are variably co-owned by Mr. Gary Lee, Mr. Robert Scott, and Mr Ron Stack.

The property is primarily a precious metals target with gold and lesser silver, in quartz veins. It also contains arsenopyrite-pyrite, +/-chalcopyrite, +/- galena+/- sphalerite mineralization.

Between August 3 and August 24, 2011, Gary Lee conducted an exploration program with a focus on precious metal mineralization and precious metals bearing structures. The 2011 program consisted of the collection of 8 rock samples, 98 soil samples and 5 stream sediment samples. As well, 2,660 m of grid was established and surveyed for VLF-EM.

The 2011 work resulted in the identification of a region with significant arsenic and gold values at the north end of the Rubus claim block.

Work on the Culvert claims in 2009 identified gold in the phyllites which was postulated to represent a mesothermal gold-quartz vein style occurrence. Also known as shear-hosted gold, this deposit type occurs in any of a variety of greenschist-grade rocks, and occurs in proximity to steep faults or sutures of ancient continental margin collision zones. Gold, pyrite, and arsenopyrite are essential minerals of this deposit type occurring chiefly in quartz veins deposited within faults and joint systems. In the process of vein emplacement, wallrock is silicified, pyritized and/or sericitized inside a broad halo of carbonitization.

Detailed work in 2011 on the Rubus claims returned significant gold values associated with massive arsenopyrite and quartz-pyrite-arsenopyrite veining. In 2010, work on the Rubus area returned abundant arsenic-in stream sediment anomalies far to the northern end of the property. This extends the mineralized trend from the southern edge of the Culvert claims through the property to the northern part of the Rubus claims, a distance of 15 kilometres. An aerial magnetic survey indicates this trend extends further north and west.

The arsenic and gold stream sediment anomalies and mineralization in rock samples is, in general proximal to the March Fault and/or proximal to the contact between the Vampire Formation and Narchilla Formation of the Hyland Group.

A follow-up program consisting of geologic mapping, prospecting, soil sampling, infilling and expanding on VLF-EM and magnetic surveys and trenching is recommended. This would be followed by diamond drilling should the results warrant.

TABLE OF CONTENTS

	c,	ummary	
10			4
1.0		troduction	
2.0		roperty Location and Access	
3.0	C	laim Information	2
4.0		hysiography, Vegetation and Climate	
5.0	E	xploration History	4
6.0	G	eological Setting	7
	6.1	Regional Geological Setting	7
	6.2	Property Geology and Mineralization	10
7.0	20	009 Exploration Program	
8.0	G	eochemical Analytical Procedure	12
9.0	R	esults	12
	9.1	Rubus Claims – Exploration Results	12
	9.2	Zanzibar Claims – Exploration Results	
	9.3	Red Bluff Claims – Exploration Results	
10.0	C	onclusions and Recommendations	
11.0	St	atement of Expenditures	25
12.0	R	eferences	26

LIST OF FIGURES

1	Property Location Map	3
2	Claim Map plus Work Area Index Map	6
3	Regional Geology Map	9
4	Rubus – Gold Geochem	14
5	Rubus – Arsenic Geochem	
6	Rubus - Geophysics	16
7	Zanzibar – Gold Geochem	17
8	Zanzibar – Arsenic Geochem	
9	Zanzibar – Geophysics	
10	Red Bluff – Gold Geochem	
11	Red Bluff - Arsenic Geochem	21
12	Aerial Magnetic Map	
13	Rubus – Future Exploration Targets	

TABLES

1 Claim Information	2	2
---------------------	---	---

APPENDICES

Appendix I	Statement of Qualifications
Appendix II	2011 Rock, Soil and Stream Sediment Sample Descriptions nad VLF-EM Data
Appendix III	Geochemical Analytical Certificates
Annendiy IV	Crew Log

Appendix IV Crew Log

1.0 INTRODUCTION

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is within the Little Hyland River Valley in the Watson Lake Mining District, in southeast Yukon.

The property consists of quartz mining claims that are variably co-owned by Mr. Gary Lee, Mr. Robert Scott, and Mr Ron Stack (Zanzibar and Red Bluff claims), all of Whitehorse, Yukon. The property is primarily a precious metals target with gold and lesser silver, in quartz veins. It also contains arsenopyrite-pyrite, +/-chalcopyrite, +/-galena+/- sphalerite mineralization and numerous gold and arsenic anomalies mainly in soils. Mineralization consisting of gold, arsenic, lead and copper occurs in quartz veins and enveloping country rock. The quartz veins are hosted in grey-green phyllites, presumed to be of the Vampire Group volcano-sedimentary package of rocks. Quartz pebble conglomerate float has also been encountered.

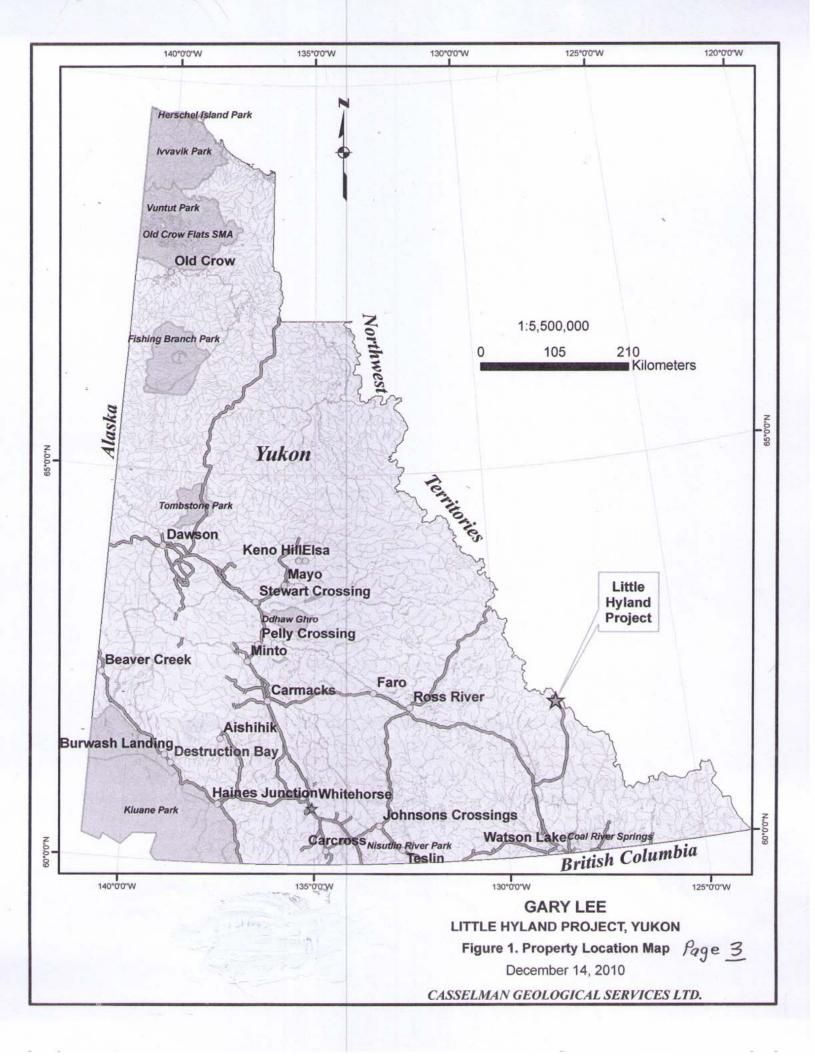
Exploration work in 2009 focused on the Culvert Claims, while work in 2010 focused primarily on the Rubus, Sheer, LH and Swag claims. Between August 3 and August 24, 2011, Gary Lee conducted a reconnaissance exploration program on the north end of the Rubus claims and on the Zanzibar and Red Bluff claims with a focus on precious metal mineralization and precious metals bearing structures. The 2011 program consisted of the collection of 8 rock samples, 98 soil samples and 5 stream sediment samples. As well, 2,660 m of grid was established and surveyed for VLF-EM.

This assessment report summarizes the known geology, mineralization, and exploration potential for a contiguous set of mineral claims known as the Little Hyland Project. All information was supplied by Mr. Lee. Original analytical certificates used in the report were provided by ALS Chemex. Other information used in the preparation of the report includes government publications and assessment reports in the public domain. The author of this report, Gary Lee, is a co-owner of the claims.

2.0 **PROPERTY LOCATION and ACCESS**

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake (Figure 1) and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is centred at 62° 00' N latitude and 128° 30' W longitude on NTS map sheets 105H15, 16, 105I01 and 02 in the Little Hyland River valley.

The property is most easily accessed via the all-season, gravel surface, Nahanni Range Road from kilometre 110 of the Robert Campbell Highway. The property straddles the Nahanni Range Road, and at kilometre 165, an ATV trail leaves the road to gain access to the southeastern portion of the property. The Howards' Pass winter trail runs along the southwestern margin of the Rubus claims and provides ATV access in this region. A temporary exploration camp was situated in the central part of the property on the LH 37 claim.


The nearest community is Watson Lake, which has a population of approximately 1,200 people and lies on Highway 3 (Alaska Highway). Watson Lake is the main supply centre for the region.

3.0 CLAIM INFORMATION

The property consists of unsurveyed quartz claims staked in accordance with the Yukon Quartz Mining Act in the Watson Lake Mining District. Claim ownership is variable and as listed in Table 2. Claim details are listed in the Table 1, below, and are shown in Figure 2.

Grant #	Claim Name	Claim Ownership	ExpiryDate
YD29584 - YD29613	Rubus 9 - 38	Gary Lee - 50%, Robert R. Scott - 50%	10/05/2014
YD29642 - YD29655	Rubus 47 - 60	Gary Lee - 50%, Robert R. Scott - 50%	10/05/2014
YE48003 - YE48008	Zanzibar 7 - 12	Ron Stack – 33.33%, Gary Lee – 33.33%, Robert R. Scott – 33.33%	26/04/2012
YC93593 – YC93596	Red Bluff 1 - 4	Ron Stack – 33.33%, Gary Lee – 33.33%, Robert R. Scott – 33.33%	28/03/2016

Table 1: Claim Information

4.0 PHYSIOGRAPHY, VEGETATION and CLIMATE

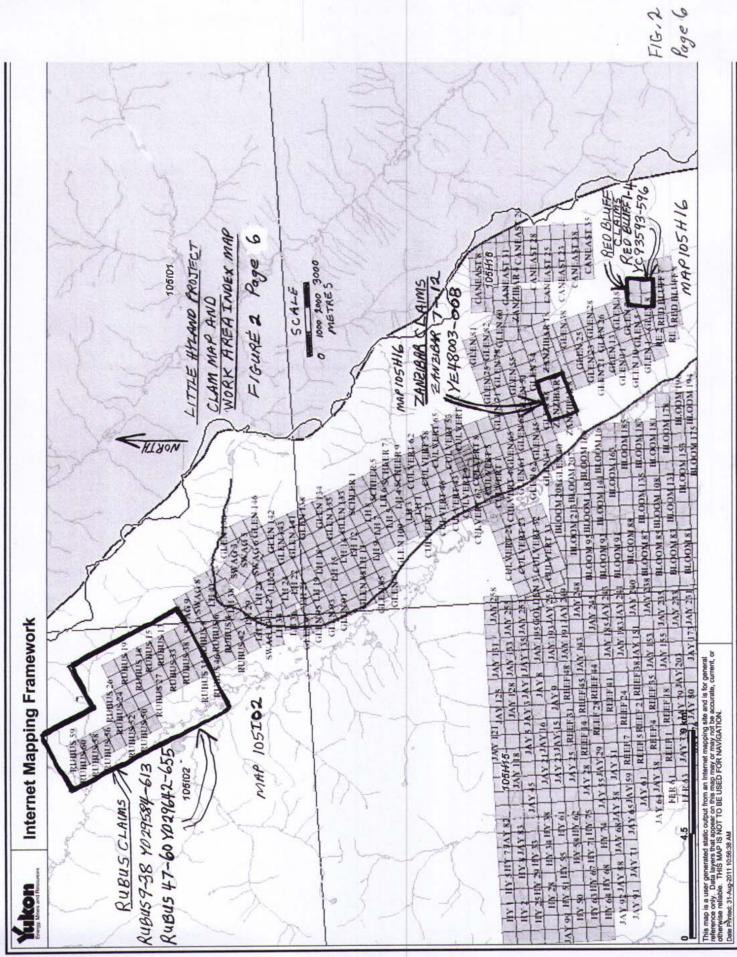
The property is located in the Logan Mountains of the eastern Yukon. The topography in the area is broad, U-shaped valleys between steep mountains. Elevations on the property range from 1200 to 1750 metres above sea level. The lower elevations are covered with spruce and pine forests grading upwards to willows, dwarf birch, grasses, moss and lichens. Steeper slopes are covered by talus and felsenmeer.

The area receives generally high annual precipitation (approximately 450 millimetres) as compared to the Yukon average. Snow generally begins accumulating in alpine areas in late September, while the snow pack starts to recede in late April to early May, allowing fieldwork to commence at lower elevations in mid-May. Temperatures range from $+30^{\circ}$, in the summer months, to -50° Celsius, in the winter months.

5.0 EXPLORATION HISTORY

The region has a long history of exploration beginning with the discovery of the Tungsten Mine in 1954 and the initiation of production in 1962. The Little Hyland Project Area, however, does not have a considerable documented history of exploration, prior to the activities of Mr. Lee and Mr. Scott.

The Yukon Minfile (DIAND, 2002) lists one mineral occurrence within 5 km of the property; the Ricardo Showing. It occurs approximately 3 km south of the project area and is described as an unmineralized ferricrete gossan occurring within an area underlain by Cretaceous granodiorite that intrudes Cambrian slates and phyllites. The gossan was originally staked by Canada Tungsten Mining Corporation Ltd in 1961. There is no record of Canada Tungsten doing any additional work on the property and it was later allowed to lapse.


The Ricardo Showing was later re-staked by Mr. A. Black, in 1980, as the Kay claims, then in 1981 as the Lynx claims by Mr. E. Broadhagen. In each case there is no record of work being performed on the property and the claims were allowed to lapse.

The most significant exploration activity in the area has been at the Tuna property, located 12 km southeast of the project area. It was originally staked in 1981 by Union Carbide Exploration Ltd and has been explored for placer gold, skarn-type tungsten, and lode gold. The property is underlain by a Cretaceous granodiorite stock that intrudes Cambrian slates, phyllites and siltstones of the Hyland Formation. Union Carbide performed stream sediment sampling, rock and soil sampling, geological mapping and prospecting on the property in 1982. This work identified numerous scheelite, molybdenite and chalcopyrite mineralized occurrences, often associated with quartz-tourmaline veins. However, Union Carbide later allowed the claims to lapse.

In 1989, Noranda Exploration Canada Limited re-staked the Tuna property but did not perform any work. These claims were also allowed to lapse. The property was

subsequently staked by Kokanee Explorations Ltd in 1991. Kokanee conducted a program of prospecting, mapping and sampling in 1992. The company changed its' name to Consolidated Ramrod Gold Corporation later that year. In 1993, Consolidated Ramrod performed a limited amount of lithogeochemical and stream sediment sampling, which returned weak to moderately anomalous gold results. Northern Tiger's 3 Ace property, 30 to 40 km south has also yielded high gold values.

Gold was first discovered by Robert Scott while panning in the creek at the culvert on the Nahanni Range road in 1984. The first Golden Culvert claims were staked in September of 2005 and added on to in 2006, 2008, 2009 and 2010. In 2006, 2007, 2008, 2009, 2010 and 2011 Mr. Lee conducted exploration programs predominantly on the Culvert, Rubus, LH, Zanzibar and Red Bluff claims consisting of prospecting, stream sediment, soil and rock sampling. This work returned anomalous gold and arsenic values.

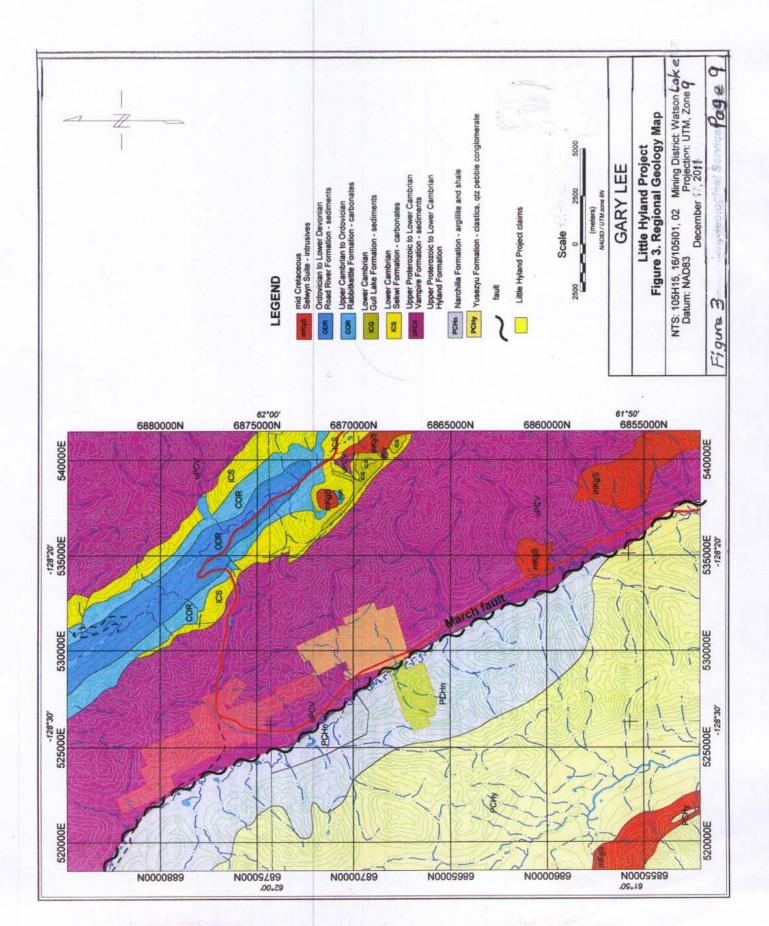
6.0 GEOLOGICAL SETTING

The following text is reprinted from Casselman, 2010. The description of the property geology reports on the limited number of hand samples submitted to the author for evaluation and offers possible deposit types for the occurrence of gold on the property.

6.1 Regional Geological Setting

The Little Hyland Project area is located in the Selwyn Basin in the eastern Yukon. The Selwyn Basin is part of the cordilleran miogeocline and is characterized by thick accumulations of clastic sediments, with a significant component of deepwater black shales and cherts (Heon, 2007). These basinal rocks interfinger with and are bound by shallower-water platformal carbonates (Figure 3). The Selwyn Basin is bound to the north by the Dawson Fault, grades into platformal facies to the east (Mackenzie Platform) and southwest (Cassiar Platform), may be bound by a Mesozoic thrust fault separating it from Yukon-Tanana Terrane in the Anvil district, and is offset to the southwest by the Tintina Fault. The sediments range in age from Precambrian to Jurassic (Heon, 2007) and lie within the Omineca Belt of the Northern Cordillera (Hart, 2002).

The eastern part of the Little Hyland Project area is underlain by Upper Proterozoic to Lower Cambrian dark brown, fine-grained and thinly-bedded, argillaceous sandstone and siltstone with minor, interbedded, medium- to coarse grained, white to light grey orthoquartzite, phyllite, slate and argillite of the Vampire Formation (uPCV). The western part of the property is underlain by thinly to thickly bedded brown to pale green shales, fine- to coarse-grained quartz-rich sandstones, quartz-pebble conglomerates, minor argillaceous limestones, phyllites, quartzo-feldspathic and micaceous psammites, gritty psammites, and minor marbles of the Upper Proterozoic to Lower Cambrian Narchilla Formation of the Hyland Group (PCHn) (Gordey, et. al., 2000).


Northeast of the property, in the area of the Tungsten Mine, younger sedimentary rocks of the Lower Cambrian Sekwi Formation (ICS), the Lower Cambrian Gull Lake Formation (ICG), the Upper Cambrian to Ordovician Rabbitkettle Formation (COR) and the Ordovician to Lower Devonian Road River Formation (ODR) occur. The Sekwi Formation consists of limestone conglomerates, massive grey dolostones, medium- to thickly-bedded quartz sandstones, purple siltstones with bright orange weathering, and finely-crystalline dolostones. The Gull Lake Formation consists of shales, siltstones and mudstones; minor quartz sandstones; rare green-grey cherts; local basal limestone and limestone conglomerates; and phyllites to quartz-muscovite-biotite schists. These units are overlain by thinly-bedded, wavy, banded, silty limestones and grey lustrous calcareous phyllites; limestone; intraclast breccias and conglomerates; massive to laminated, grey quartzose siltstones and cherts; rare black slates; and local mafic flows, breccias, and tuffs of the Rabbitkettle Formation. The Rabbitkettle Formation is, in turn, overlain by black-, gun-blue-, or silvery-white-weathering of black graptolitic shales and cherts; resistant grey weathering of medium to thinly-bedded, light grey to black,

greenish grey, or turquoise cherts; and minor argillaceous limestones of the Road River Formation.

This package of sedimentary rocks is intruded by resistant, blocky, fine to coarse grained, equigranular to K-feldspar porphyritic, biotite-quartz monzonite and granodiorite; minor quartz diorite; minor leuco-quartz monzonite; and syenite of the mid-Cretaceous Selwyn Plutonic Suite. It is often contended that these intrusions have driven gold-bearing mineralizing fluids to the area of the Little Hyland Project but the intrusions have not been discovered in the immediate are of the property to date. However, the northwest-trending thrust faults that dominate the structural pattern in the region contain sutures that may play host to gold mineralization under a Mesozoic gold model. The March Fault is a thrust fault that runs along the western part of the Little Hyland Project area and may be form a structural control for precious metals mineralization.

The most significant mineralization in the area are the ore bodies of the Tungsten Mine. The ore was formed in carbonate-bearing sedimentary rocks by tungsten-bearing fluids of mid-Cretaceous Selwyn Suite intrusions. The result was tungsten-rich, pyrrhotite skarns along the margins of the intrusions. The original, pre-production resource at the Tungsten Mine was 9 Mt with a grade of 1.42% WO₃.

At the Tuna property, molybdenite, scheelite, arsenopyrite, bismuthinite, chalcopyrite, chalcocite, pyrrhotite, gold and silver occur in quartz and quartz-tourmaline veins and in small skarn alteration zones along the margins of the Hyland Intrusion (Doherty and vanRanden, 1994).

6.2 **Property Geology and Mineralization**

The Little Hyland Project area has not been geologically mapped in any detail. According to the regional geology of the area it is underlain predominantly by sedimentary rocks of the Vampire Formation (uPCV) to the east and Narchilla Formation (PCHn) rocks to the west. Regional airborne magnetic survey maps show moderately-strong, northwest-trending magnetic features that transect the property; the cause of the features are postulated to be either from a buried intrusion, a regional structure, a lithologic change, or broad alteration assemblages. Any of these causes, or a combination of these causes could be factors in mineralizing events in the area.

Rock types reported to exist on the property are phyllitic to schistose argillite and siltstone. Quartz pebble conglomerate float has also been found on the RUbus and LH claims. Historically, significant gold mineralization was noted to occur primarily in quartz veins within these rocks.

Hand samples from the Culvert and LH claims of sericite-phyllite contained as much as 5% combined pyrite and arsenopyrite, both occurring in the host rock as well as in veins. Typically, pyrite is medium- to coarse-grained and euhedral, suggesting it is late in the paragenetic sequence. However, in one instance pyrite was overgrown by arsenopyrite. The mode of occurrence of arsenopyrite ranges from semi-massive (sample RS-14) (see report on 2009 field work), fine-grained fracture fillings and medium-grained disseminations within quartz veins (sample RS-44) (see report on 2009 field work), to locally-clustered masses of euhedral needles and coarser grains within the host. Although no chalcopyrite was seen in hand-sample, malachite staining is reported to exist on the property.

Most quartz veins were seen to be sub-parallel to phyllite foliation but had clearly experienced early ductile folding and boudinaging prior to late-stage brittle offset. At least two crosscutting vein sets orthogonal to schistocity, exhibited in sample RS-53 (see report on 2009 field work), as well as a strongly-lineated structure shown in sample RS-55 (see report on 2009 field work), imply a poly-deformational history to these rocks. A relatively undeformed, late tension vein, lacking sulphides is the latest veining event noted. A deeper understanding the structural history of these rocks, as it relates to vein mineralization, should be a focus of future exploration at the site.

Alteration in these rocks was noted as predominantly sericitic. Fine-grained muscovite is formed in phyllic alteration, along with minor quartz, chlorite, and pyrite. Calcite and iron-carbonate was also noted in veins, indicating carbonitization as a minor alteration assemblage.

Geologists from Rimfire Minerals Ltd. visited the Main Showing on the Culvert claims and collected two samples, G071512 and G071513, which assayed 22.8 g/t and 8.91 g/t gold (respectively). These samples were described as:

G071512

A well developed, 1 metre thick, (strike 252, dip 78), white sugary to granular (recrystallized) quartz vein with sharp margins, discordant to cleavage. Arsenopyrite as medium, crystalline to fine-grained bands. Pyrite is disseminated in cubes and local crystal aggregates.

G071513

White quartz vein (60 centimetres thick, strike 112, dip vertical) with very finegrained arsenopyrite bands, scorodite developed, possible sericite alteration of siltstone, and trace arsenopyrite needles in siltstone. Some quartz is sugary (recrystallized).

Rimfire also noted slightly-discordant stringers, ranging from 3 millimetres to 2 centimetres, in the acute angle formed by the veins sampled.

Although the highest gold assays have historically originated from samples take from quartz veins, country rock on the property has been shown to be mineralized. Sample RS-57, collected in 2009 on the Culvert Claims, from immediately southeast of the main showing assayed 1.285 g/t gold from an almost 2.5 metre chip sample of host rock material adjacent to a mineralized vein.

7.0 2011 EXPLORATION PROGRAM

Between August 3 and August 24 of 2011, Gary Lee conducted an exploration program on the Little Hyland Project claims. The 2011 program consisted of prospecting and the collection of 8 rock samples, 98 soil samples and 5 stream sediment samples. As well, 2,660 m of grid was established and surveyed for VLF-EM.

8.0 GEOCHEMICAL ANALYTICAL PROCEDURE

Samples from the 2011 program were sent to ALS Chemex Labs. The soil and stream sediment samples were handled in the same manner. The samples were sieved in a 180 um sieve then analysed for 48 elements by four acid digestion with Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) according to the ME-ICP41 procedure. As well, each sample was analysed for gold by fire assay with atomic absorption finish according to the Au-ICP21 procedure.

Rock samples were processed by crushing to 70% < 2 mm and pulverizing 200 grams of the < 2 mm material to 85% < 75 um according to the Prep 21 lab procedure. The pulverized material was then analysed by ME-ICP41 for 48 elements and for gold by Au-ICP21 as for the soil and stream sediments.

Analytical certificates are included in Appendix III and plots of sample locations, gold and arsenic results are plotted in Figures 4, 5, 7, 8, 10 and 11.

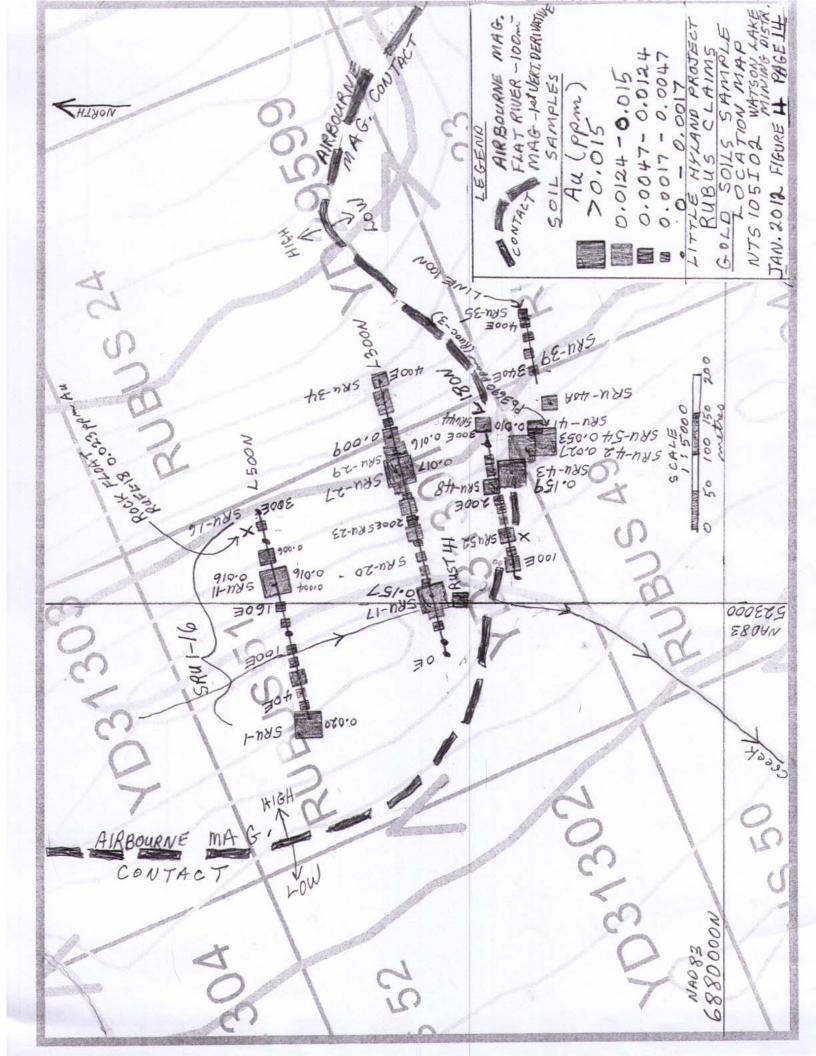
9.0 RESULTS

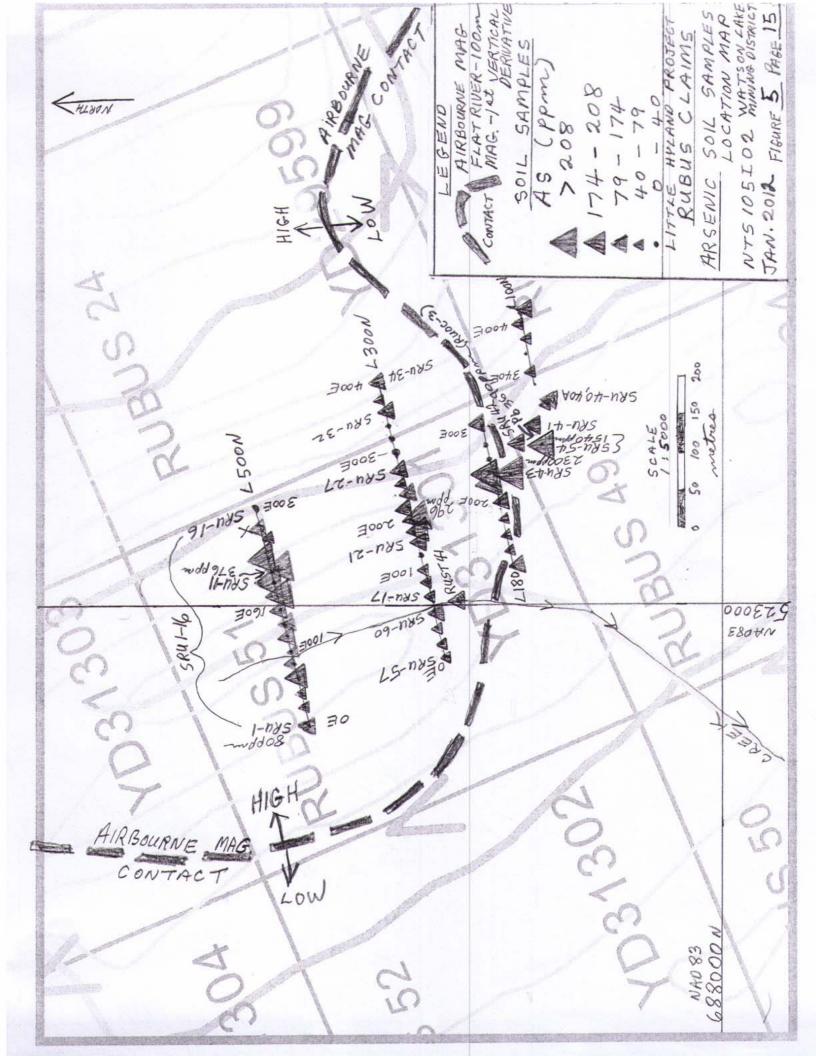
9.1 Rubus Claims Exploration Results (Figures 4, 5 and 6)

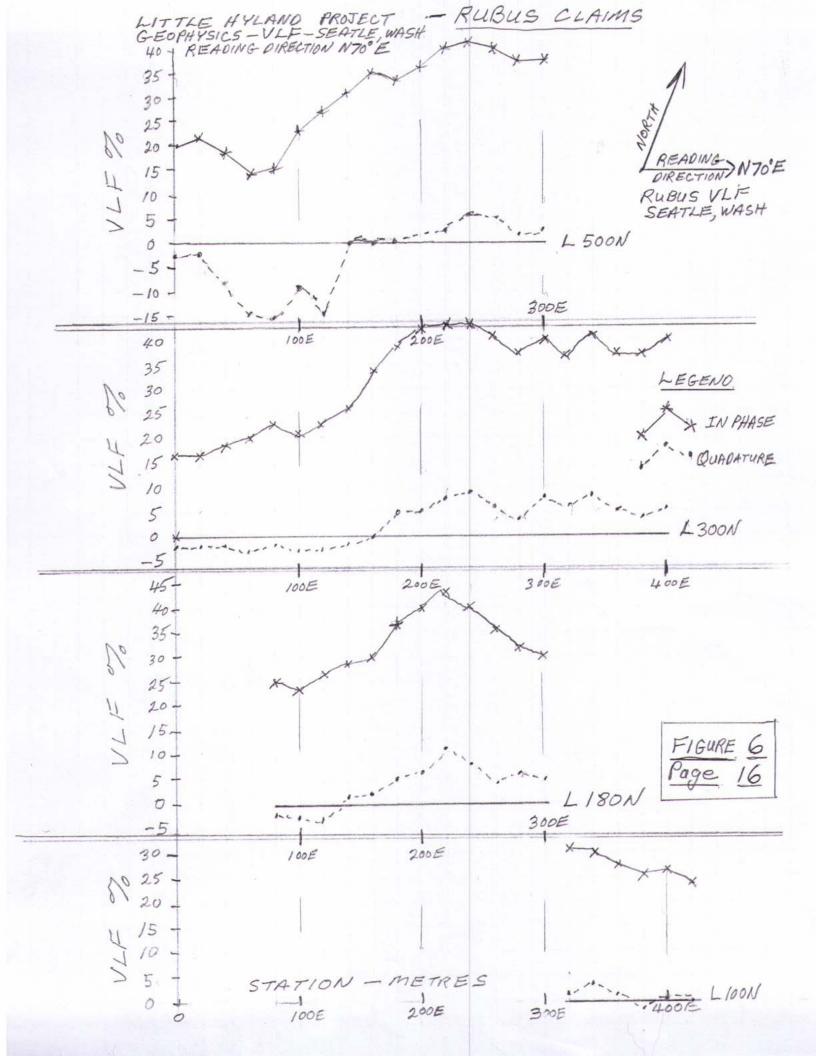
Figures 4 and 5 show the sampling results and float samples collected during the 2011 field season on the northwest area of the Rubus claims. The statistics from Commander Resources Ltd regional survey conducted in the area were used for the cut-off thresholds. For gold, these were greater than 0.015, 0.0124 - 0.015, 0.0047 - 0.0124, 0.0017 - 0.0047, and 0.0017 ppm. For arsenic, these were greater than 208, 174 - 208, 79 - 174, 40 - 79 and 0 - 40 ppm. Total population was 1,369 samples. Percentile range were greater than 98th, 95th, 68th, 50th, and to detection limit.

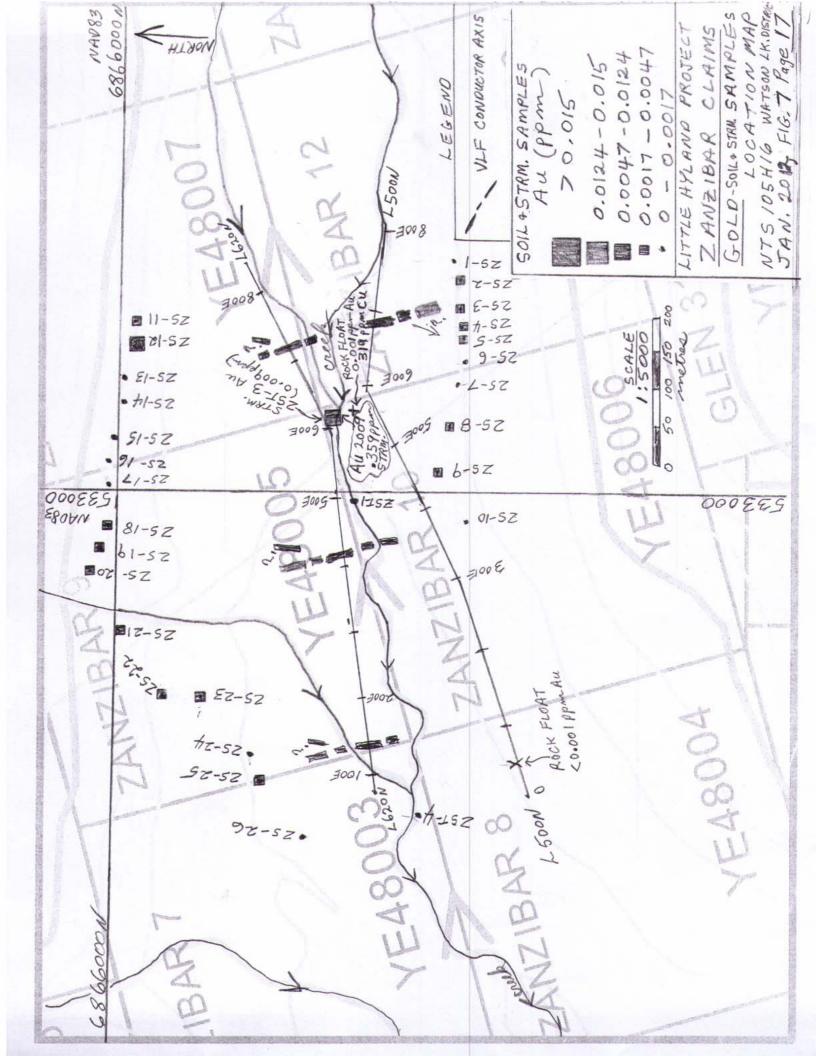
The five highest (of a total of 111) gold values (0.159, 0.157, 0.053, 0.027 and 0.20 ppm) soil samples for the 2011 season were encountered on or close to the airborne mag contact as shown on Figure 4. This is more than a coincidence! These contacts (lineaments) as shown in more detail on Figures 12 and 13 should be used for future prospecting targets. The highest two arsenic (2300 and 1540 ppm – Figure 5) was also located on or near this airborne mag contact. Of further interest a rock outcrop sample (RUOC-3) yielded 3690 ppm lead (pb) near the mag contact. Any outcrops appear to be offset from the mag contact, hence soil sampling should be used as a primary exploration tool.

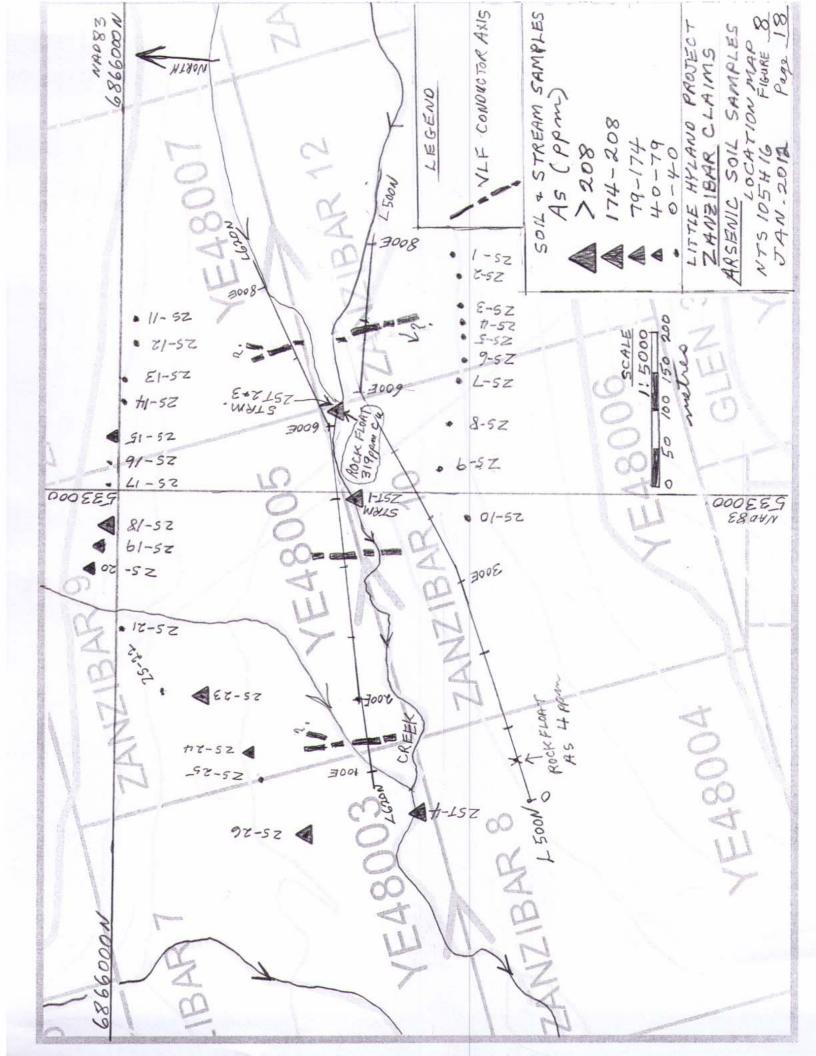
The VLF-EM survey (Figure 6) yielded no anomalies in the area.

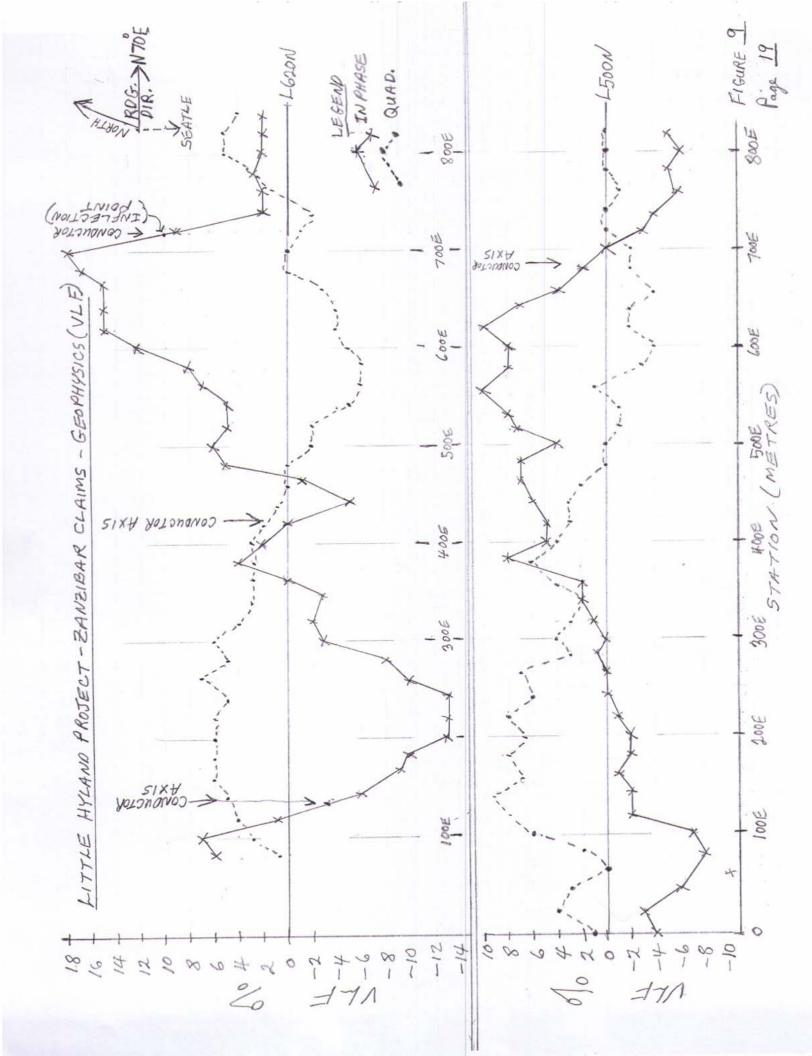

9.2 Zanzibar Claims – Exploration Results (Figures 7, 8 and 9)

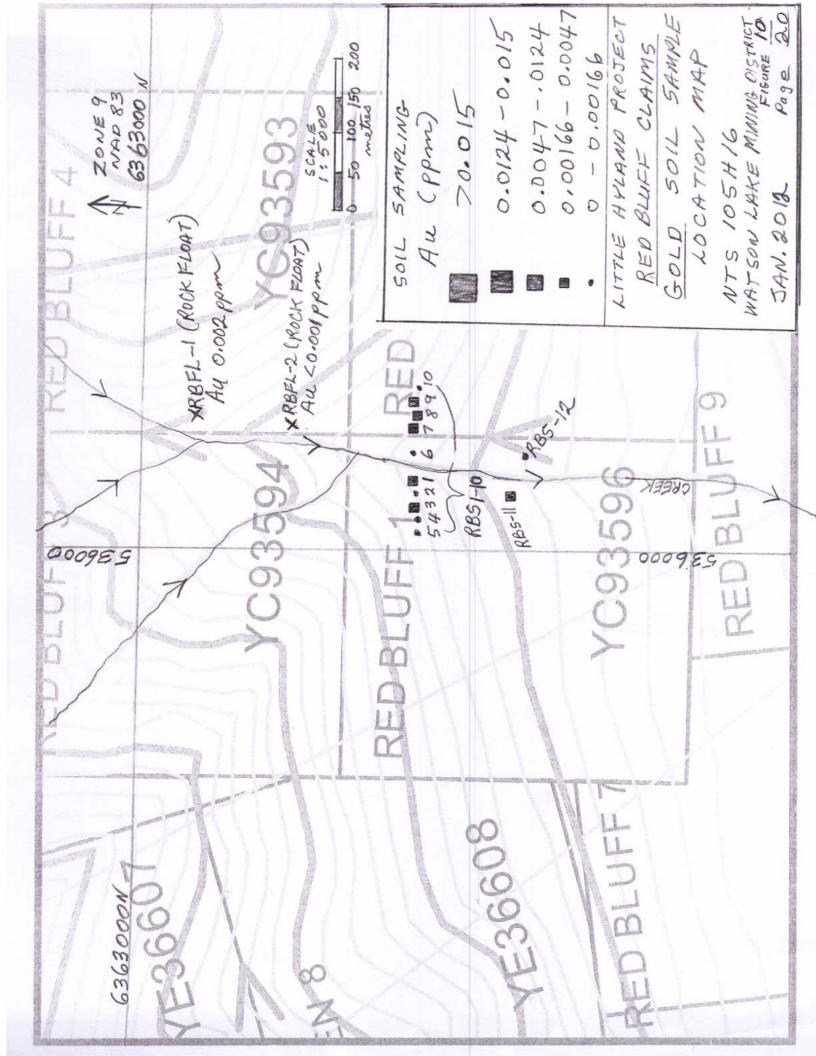

Figures 7 and 8 show the soil sampling results on the Zanzibar claims. The same statistics were used as outlined for the Rubus claims (Section 9.1). The 2011 survey was centred around a stream sediment sample taken in 2009, which yielded a highly anomalous gold value (0.359 ppm). Unfortunately, four stream sediment samples taken in 2011 did not repeat this value. The highest repeat sample was only 0.009 ppm Au. The highest soil sample was only 0.011 ppm Au. Most samples were on or slightly above background as seen on Figure 7. Figure 8 does show a few anomalous (141, 82, 81 and 78 ppm) arsenic samples. Sampling should be extended further up and especially downstream before making any final conclusions on this value.

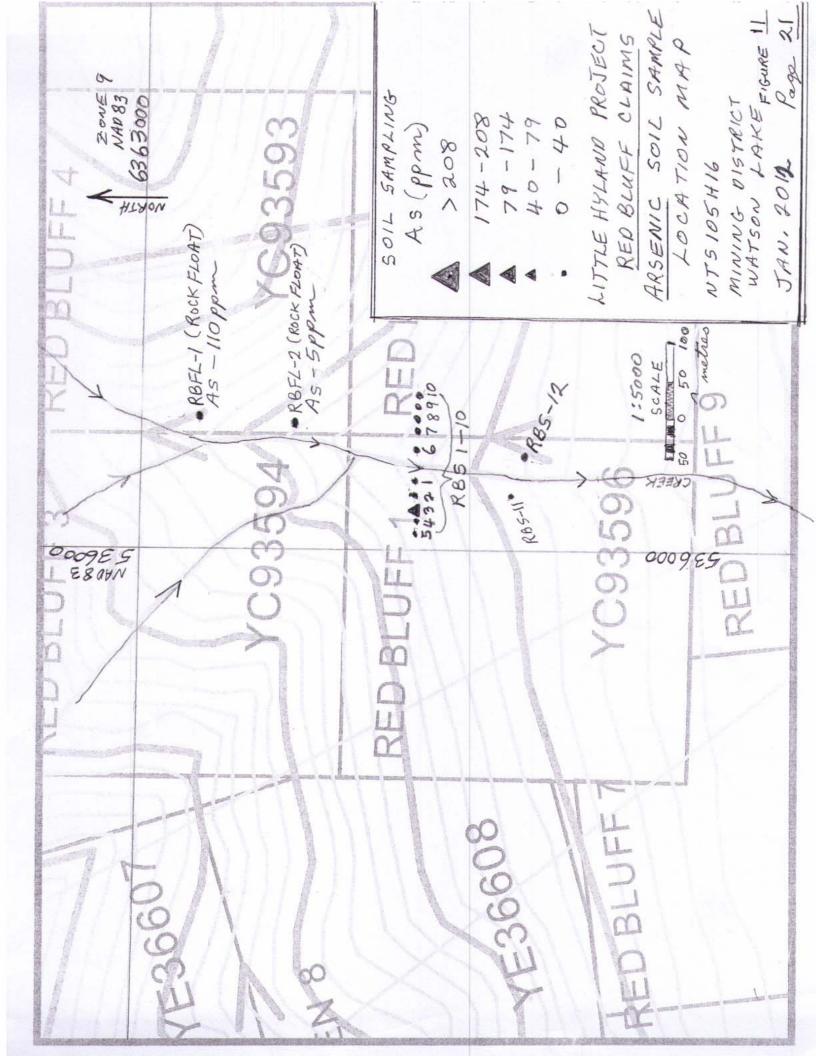

Of further interest Figure 9 shows the location 3 VLF conductors. This probably indicates conductive fault gouge as opposed to massive sulphides??

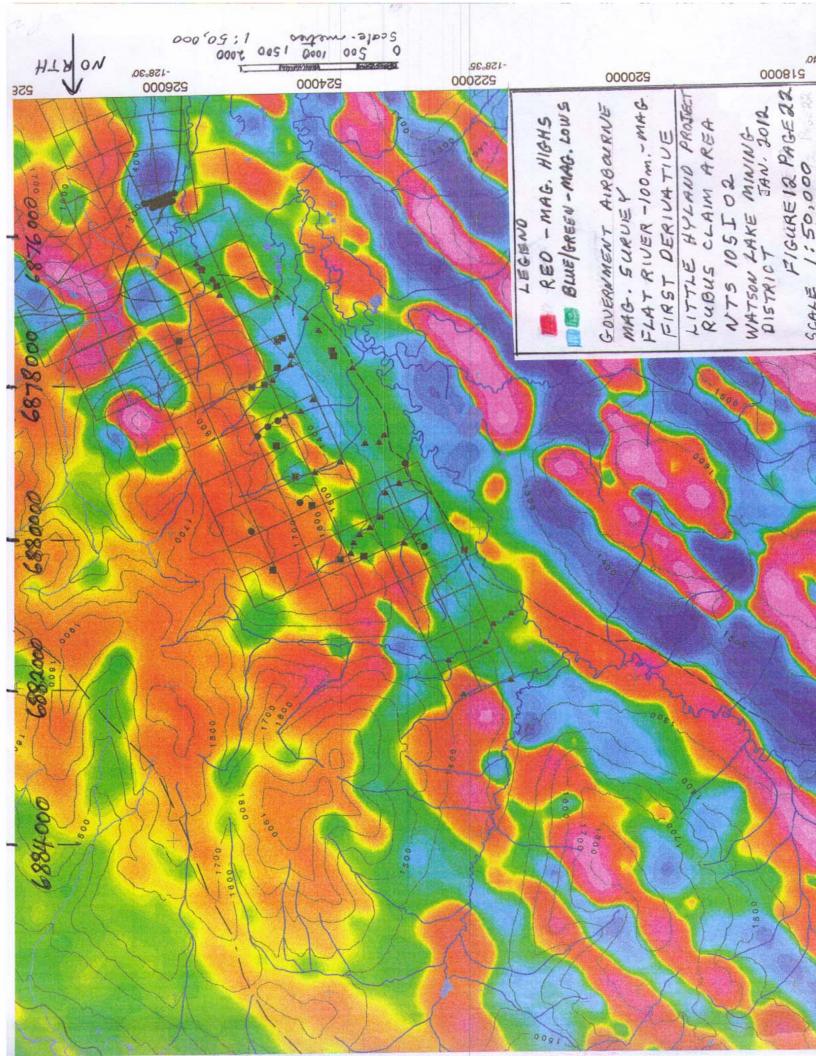

9.3 Red Bluff – Exploration Results (Figures 10 and 11)

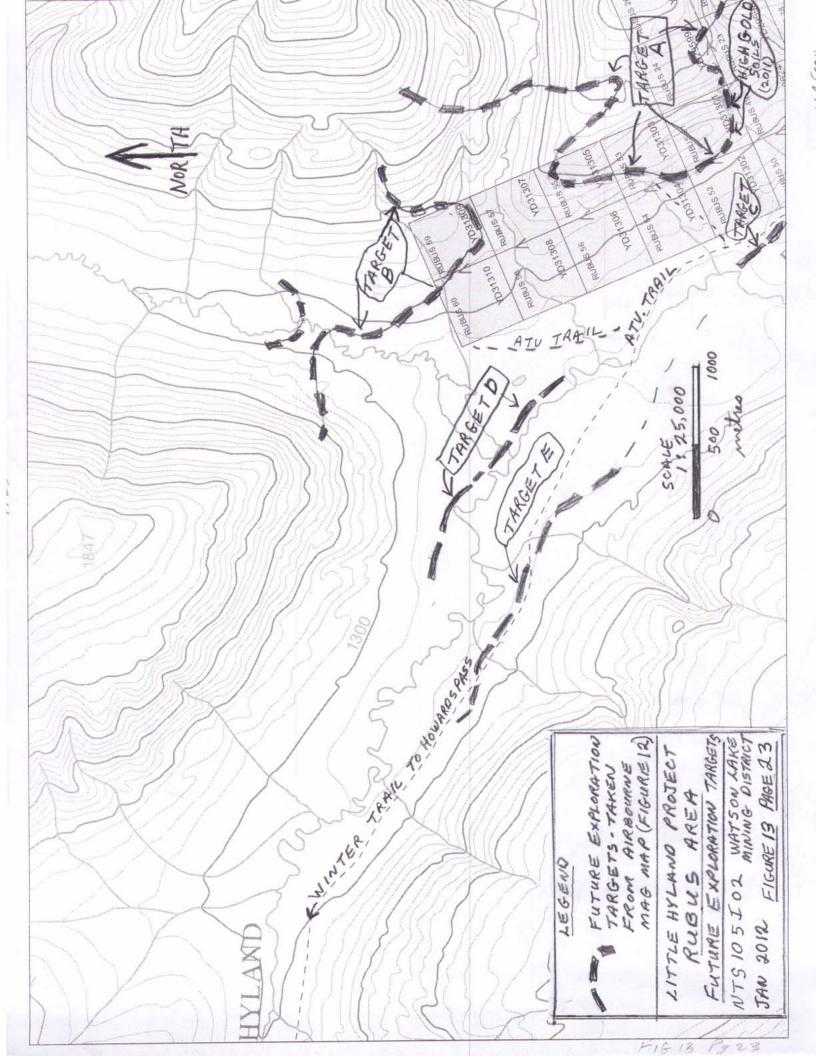

Figure 10 shows the gold results for the narrow valley referred to as Red Bluff. Gold results were low here at or near detection limit. Similarly, Figure 11 shows arsenic levels at quite low. More sampling up and down (east-west) on the main valley would be required before any final conclusions can be drawn.











10.0 CONCLUSIONS and RECOMMENDATIONS

Since the highest gold and arsenic values of the 2011 field season were found on or adjoining the aerial mag contact (lineament) in the Rubus area as shown on Figures 4 and 5 exploration should continue along these lineaments as shown on Figure 13 (mag contacts plotted from Fig 12). In order to define these lineaments more accurately a ground reccon mag survey should be completed at right angles to the aerial contacts at say 200 to 300 metre spacing. This would ensure that sampling would cross and cover at least one hundred metres on each side of the contact. Soil sampling is recommended since rock exposure is expected to be almost non-existent. Any streams that are in the target area should be stream sediment sampled. Samples should be fire assayed for gold and analyzed (ICP) for 48 elements. The above should be completed before drilling or trenching is undertaken.

Since the results were poor for the Zanzibar and Red Bluff areas surveyed, they should receive more prospecting and sampling east and west up and down their respective main valleys. These areas have received very little work. Hence, it is too soon to draw any final conclusions.

11.0 STATEMENT OF EXPENDITURES

Labour - Gary Lee	- 25 days@ \$350.00 / day	\$ 8,750.00
Truck (4X4)	- 1,470 km @ \$ 0.595 / km	874.65
ATV rental	- 17 days @ \$ 40.00 / day	680.00
ATV Transport trailer	- 4 days @ \$ 16.00 / day	64.00
Room, board & daily fi	eld expenses (incl. satellite phone, flagging, ga	as, etc.)
	- 25 days @ \$ 100.00 / day	2,500.00
Geonics EM-16 rental	- 5 days @ \$ 40.00 / day	200.00
Assaying charges		3,548.96
WCB Expenses		351.45
Report Writing and Re	production	<u>1,750.00</u>

Total <u>\$18,719.06</u>

12.0 **REFERENCES**

- Casselman, S. G., 2007. 2006/2007 Soil and Stream Sediment Sampling Program on the Culvert Property, Tungsten Area, Yukon Territory. Private Report.
- Casselman, S. G., 2008. 2008 Prospecting and Sampling Program on the Golden Culvert Property, Tungsten Area, Yukon Territory. Yukon Territorial Government assessment report # 093175.
- Casselman, S. G., and Halle, J., 2010. Little Hyland Regional Project, 2009 YMIP Focused Regional Program, Yukon Territory. Private report.
- Casselman, S. G., 2010 Exploration Program on the Little Hyland Project, Tungsten Area, Yukon Territory. Private Report.
- DIAND, 2002. Yukon Minfile, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.
- Doherty, R. A. and vanRanden, J. A., 1994. Report on the 1993 Geological and Geochemical Assessment Work on the Tuna Property. Yukon Territorial Government assessment report # 093175.
- Geological Survey of Canada, Flat River 100 m Airborne Magnetics 1st Vertical Derivative.
- Gordey, S.P., Makepeace, A.J., (compilers), 2000. Yukon Digital Geology, Geological Survey of Canada, Open File D3826.
- Hart, C., 2002. The geological framework of the Yukon Territory. Yukon Geological survey. http://www.geology.gov.yk.ca/
- Hart, C. J. R. and Lewis, L. L., 2005. Gold Mineralization in the Upper Hyland River Area: A Non-magmatic origin. Yukon Exploration and Geology, 2205. PP 109-125.
- Heon, D, 2007. Selwyn Basin Metallogeny. Yukon Geological Survey Website, www.geology.gov.yk.ca/metallogeny/selwyn.

APPENDIX I

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Gary Lee, of Whitehorse, Yukon Territory, certify that

- 1) I am a professional engineer and prospector residing in Whitehorse, Yukon Territory.
- 2) I graduated from the University of Toronto, Ontario with a Bachelor of Applied Science Degree in 1975 and have worked in mineral exploration since that time
- 3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 4) I am responsible for preparation of this report and am part owner of this property.

Respectfully Submitted:

Gary Lee

APPENDIX II

2011 ROCK, SOIL and STREAM SEDIMENT SAMPLE DESCRIPTIONS and VLF-EM DATA

V	LF (GE	UNICO	EN1-101	READING DIRECT		I /U UC	2. 1. 1. 70	ucg. 10	SEATLE
Line	STA.	In Phase	Quad	Notes	Line	Sta.	In Phase	Quad	Notes
500	0	- 4	1	532598, 6865455N	500N	760E	- 6	- 1	
500N	20	- 3	4	GPS	500N	780	- 5	0	
	40	- 6	3	NAD 83	500N	800E	- 6	0	
	60	- 10	0		500N	820E	- 5	0	
	80	- 8	2		620N	80	6	1	
	100E	- 7	6		620N	100E	7	3	
	120	- 2	8			120	1	4	*conductor axis
	140	- 2	9			140	- 6	5	
	160	- 1	7			160	- 9	6	
	180	- 2	8			180	- 10	6	
	200E	- 2	7			200E	- 13	6	532727, 6865692N
	220	- 1	8			220	- 13	6	
	240	0	6			240	- 13	5	
	260	0	7			260	- 10	7	
	280	1	3			280	- 8	5	
	300E	0	4			300E	- 3	6	
	320	1	3			320	- 2	4	
	340	2	2			340	- 3	3	
	360	8	4			360	0	3	
	380	5	6	GPS	-	380	4	3	
	400E	5	4	532954, 6865585N		400E	2	3	* 1
	420	5	3			420	0	2	*conductor axis
	440	6	3			440	- 5	1	
	460	7	2			460	- 1	0	
	480	7	0			480	5	0	
	500E	4	0		-	500E	6	- 2	
	520	7	- 1			520	5	- 2	
	540	8	- 1			540	5	- 5	
	560	10	- 1	GPS		560	7	- 6 - 6	GPS
	580 600E	8	- 3	533130, 6865699N		580 600E	12	- 0	533086, 6865816N
	600E	10	- 4	555150, 0005099N		600E	12	- 5	555080, 08058101
	640	7	-2			640	15	- 4	
	660	4	- 4			660	15	- 3	
	680	2	- 2			680	17	0	
		0		*aanductor ovic		700E		0	(conductor)
50031	700E		- 2	*conductor axis	620N		18		(conductor)
500N	720	- 3	0		020N	720	9	- 1	*Inflection point
500N	740	- 4	0			740	2	- 2	
						760	2	2	
						780	3	3	
						800E	2	5	
						820	2	5	
						840	2	4	

2011 SOIL SAMPLES - RUBUS CLAIMS

Sample	NA	D 83	DESCRIPTION		Au	As
Number	East	North			PPM	PPM
SRU - 1	522859	6880518	Light rusty brown - on glacial depos	sit, L500, 0 E	0.020	81
SRU - 2	522877	6880523	Light rusty brown - on glacial depos		0.002	72
SRU-3	522896	6880532	Light rusty brown - on glacial depos		0.002	49
SRU-4	522914	6880538	Light rusty brown - on glacial depos		0.005	180
SRU-5	522929	6880547	Light rusty brown - on glacial depos		0.002	49
SRU - 6	522949	6880553	Brown/grey - toe of hill,	L500, 100 E	0.002	71
SRU - 7	522967	6880563	Brown - rocky - side of hill,	L500, 120 E	0.001	103
SRU-8	522982	6880572	Brown – rocky – side of hill,	L500, 140 E	0.002	79
SRU - 9	522999	6880577	Brown - rocky - side of hill,	L500, 160 E	0.003	109
SRU - 10	523016	6880591	Brown - rocky - side of hill,	L500, 180 E	0.004	253
SRU - 11	523028	6880587	Brown – rocky – side of hill,	L500, 200 E	0.016	376
SRU - 12	523049	6880589	Brown - very rocky - side of hill,	L500, 220 E	0.002	260
SRU - 13	523065	6880598	Brown - very rocky - side of hill,	L500, 240 E	0.006	235
SRU - 14	523080	6880601	Rusty brown, rocky – side of hill,	L500, 260 E	0.001	73
SRU - 15	523096	6880612	Brown, on game trail	L500, 280 E	0.003	87
SRU - 16	523112	6880612	Brown, very rocky and clay	L500, 300 E	0.001	3
SRU - 17	523015	6880361	Rusty brown, toe of hill near gulch	L300, 80 E	0.157	50
SRU - 18	523032	6880367	Tan – side of hill	L300, 100 E	0.004	43
SRU - 19	523047	6880376	Brown – side of hill	L300, 120 E	0.003	55
SRU - 20	523061	6880378	Grey brown, on bench	L 300, 140 E	0.003	34
SRU - 21	523085	6880387	Grey and brown – toe of hill	L 300, 160 E	0.003	104
SRU - 22	523092	6880392	Brown – side of hill	L 300, 180 E	0.005	208
SRU - 23	523111	6880396	Yellow brown - side of hill	L 300, 200 E	0.004	296
SRU - 24	523124	6880398	Rusty brown – side of hill	L 300, 220 E	0.008	101
SRU - 25	523137	6880407	Grey, rocky – side of hill	L 300, 240 E	0.002	81
SRU - 26	523156	6880418	Grey, brown – side of hill	L 300, 260 E	0.004	69
SRU - 27	523170	6880421	Brown, rocky – top of ridge	L 300, 280 E	0.017	114
SRU - 28	523153	6880421	Brown, mini slide – side of hill	off line	0.005	105
SRU - 29	523187	6880423		L 300N. 300 E	0.016	24
SRU - 30	523202	6880429		L 300N. 320 E	0.009	17
SRU - 31	523218	6880434		L 300, 340 E	0.004	2
SRU - 32	523240	6880431		L 300, 360 E	0.006	80
SRU - 33	523254	6880433		L 300, 380 E	0.005	53
SRU - 34	523269	6880453		L 300, 400 E	0.006	89
SRU - 35	523371	6880262		L 100N, 420 E	0.004	83
SRU - 36	523351	6880359		L 100N, 400 E	0.003	69
SRU - 37	523335	6880257		L 100N, 380 E	0.004	62
SRU - 38	523321	6880256		L100N, 360 E	0.002	3
SRU - 39	523301	6880247		L100, 340 E	0.003	47
SRU - 40	523259	6880237	Brown	off line	0.003	47
SRU-40A	523259	6880237	Brown	off line	0.006	132

Sample	NA	D 83			Au	As
Number East		North	DESCRIPTION		PPM	PPM
SRU - 41	523236	6880247	Brown, steep	off line	0.010	119
SRU - 42	523214	6880255	Brown	off line	0.027	97
SRU - 43	523181	6880279	Rusty brown	off line	0.159	2,300
SRU - 44	523233	6880309	Tan – side of hill	L180N, 305E	0.005	92
SRU - 45	523212	6880305	Light rusty brown - side of hill	L180, 280E	0.001	16
SRU - 46	523197	6880302	Brown – side of hill	L180, 260E	0.002	14
SRU - 47	523183	6880298	Brown – side of hill	L180, 240E	0.004	219
SRU - 48	523172	6880287	Brown – side of hill	L180, 220E	0.008	313
SRU - 49	523149	6880288	Brown – side of hill	L180, 200E	0.003	93
SRU - 50	523135	6880288	Brown – side of hill	L180, 180E	0.003	74
SRU - 51	523117	6880283	Brown – side of hill	L180, 160E	0.003	47
SRU - 52	523095	6880276	Brown – side of hill	L180, 140E	0.009	44
SRU - 53	523081	6880273	Tan – glacial	L180, 120E	0.002	82
SRU - 54	523212	6880238	Tan and yellowish, slide near	off line	0.053	1540
			quartz outcrop			
SRU - 55	523064	6880274	Brown and grey	L180N, 100E	0.006	83
SRU - 56	523050	6880272	Brown	L180, 80E	0.001	32
SRU - 57	522938	6880343	Yellowish rusty brown, glacial	L300, 0E	0.001	63
SRU - 58	522955	6880345	Rusty brown, glacial	L300, 20E	< 0.001	41
SRU - 59	522976	6880347	Yellowish brown, glacial	L300, 40E	0.002	61
SRU - 60	522994	6880354	Brown	L300, 60E	0.007	102
		2011 R	OCK SAMPLES - RUBUS CL	AIMS		
RUFL - 18	523097	6880615	Rusty quartz float, Py, As on game SRU - 15	e trail near	0.023	415
RUFL - 19	???	???	Rusty quartz float veins, grey/gree	en skarn	0.001	13
RUFL - 20	523098	6880280	Rusty quartz float		0.001	20
RUFL - 21	523181	6880279	???		0.002	128
RUFL - 22	523015	6880361	Rusty quartz float		< 0.001	30
RUOC - 1	523176	6880297	Rusty quarz outcrop, light yellow	stain	< 0.001	5
RUOC - 2	523219	6880235	Rusty yellow brown, grey banded		0.002	10
RUOC - 3	523224	6880233	Grey outcrop with quartz bands, re		0.003	5
	20	11 STREAM	A SEDIMENTS - RUBUS CLA	IMS		
RUST - 41	523006	6880345	Beginning of small stream in gully	/	0.006	92
KU31 - 41	323000		beginning of small stream in guny		0.000	

Sample	NAD 83	DESCRIPTION	Au	As	
Number	East	North	-	PPM	PPM
ZS - 1	533305	6865573	Brown - in buck brush	0.001	23
ZS - 2	533279	6865560	Brown - in buck brush	0.002	39
ZS - 3	533242	6865560	Grey muck, moss - in stunted spruce	0.002	13
ZS - 4	533218	6865559	Grey muck, moss - in stunted spruce	0.002	21
ZS - 5	533207	6865556	Tan – on game trail	0.002	23
ZS - 6	533166	6865553	Tan and grey - on game trail	< 0.001	20
ZS - 7	533143	6865559	Tan and grey	0.001	17
ZS - 8	533082	6865576	Grey	0.002	18
ZS - 9	533027	6865586	Light brown	0.003	18
ZS - 10	532962	6865555	Light brown	0.001	38
ZS - 11	533220	6865982	Brown, rocky - base of hill	0.003	16
ZS - 12	533191	6865978	Brown, rocky	0.011	9
ZS - 13	533148	6865978	Brown, very rocky	0.001	23
ZS - 14	533110	6865993	Brown, very rocky	0.001	<2
ZS - 15	533062	6866003	Brown, very rocky	0.001	53
ZS - 16	533032	6866022	Brownish grey - bottom of gulch	< 0.001	27
ZS - 17	533008	6866023	Brownish grey – rocky	0.001	29
ZS - 18	532961	6866023	Brown	0.002	81
ZS - 19	532928	6866035	Brownish grey	0.003	40
ZS - 20	532916	6866038	Tan	0.003	78
ZS - 21	532823	6865995	Brownish grey	0.003	36
ZS - 22	532736	6865942	Dark grey plus organics	0.003	28
ZS - 23	532730	6865890	Dark tan	0.003	82
ZS - 24	532666	6865821	Brown	0.001	47
ZS - 25	532633	6865811	Deep rusty brown	0.002	18
ZS - 26	532552	6865750	Brown	0.001	141

2011 STREAM SEDIMENTS - ZANZIBAR CLAIMS

ZST - 1	532985	6865682	Bar north side of creek, opposite L500,590 E	0.001	131.0
ZST - 2	533105	6865702	Bar north side of creek, opposite L 500,590 E	< 0.001	91.0
ZST - 3	533103	6865702	Bar south side of creek	0.009	102.0
ZST - 4	532581	6865591	Bar – opposite L 500 N, 20 E	0.001	114.0

2011 ROCK SAMPLES - ZANZIBAR CLAIMS

				Cu		
ZFL - 1	533108	6865697	Serpentine, quartz, Py, calcopy malachite – float	319.0	0.001	42.0
ZFL - 2	532654	6865478	Quartz and phyllite breccia with silver crystals – near L 500 N, 57 E.	16.0	< 0.001	4.0

Sample	NA	D 83	DESCRIPTION	Au	As
Number	East	North		PPM	PPM
RBS - 1	536091	6862650	Brown rocky - west side of valley	0.002	27.0
RBS - 2	536075	6862653	Grey rocky - west side of valley	< 0.001	23.0
RBS - 3	536061	6862647	Brown and grey - west side of valley	0.002	43.0
RBS - 4	536038	6862647	Brown and grey - west side of valley	0.001	25.0
RBS - 5	536021	6862654	Blackish brown, rocky near top of ridge	< 0.001	3.0
RBS - 6	536131	6862651	Yellow and brown east side of valley	0.001	26.0
RBS - 7	536151	6862652	Brown, little grey east side of valley	0.002	24.0
RBS - 8	536166	6862664	Rusty brown, east side of valley	0.002	28.0
RBS - 9	536186	6862663	Rusty brown, in large valley	0.002	6.0
RBS - 10	536200	6862668	Yellowish brown, in large valley	< 0.001	10.0
RBS - 11	536074	6862523	Brown, 15 m. south of GL850 (2009)	0.002	23.0
RBS - 12	5360123	6862492	Brown and light grey	0.001	19.0

2011 ROCK SAMPLES - RED BLUFF CLAIMS

Sample	NA	D 83	DESCRIPTION	Pb	Au	As
Number	East	North		PPM	PPM	PPM
RBFL - 1	536137	6862937	Massive sulpyides with quartz banding plus Py, Ag, and galena - float	51	0.002	110.0
RBFL - 2	536125	6862844	Yellow rusty crumbly quartz - float	21	< 0.001	5.0

Line	STA.	In	Quad		NG DIRECTI Notes	Line	Sta.	In	Quad	Notes
Line	STI.	Phase	Anna					Phase		
500	0E	20	-3	522	859, 6880518N	180N	80E	25	-2	523050, 68802721
500N	20	22	-3		GPS		100	24	-3	
	40	18	-8		NAD 83		120	26	-3	
	60	14	-15				140	28	1	
	80	15	-16			-	160	30	2	
	100E	23	-9				180	37	5	
	120	27	-15				200E	40	6	
	140	31	0		GPS		220	44	11	
	160	35	0	522	999, 6880577N		240	40	8	
_	180	34	0				260	35	4	
	200E	36	1				280	32	6	523212, 6880305
	220	40	2			180N	300E	30	5	
	240	42	6			100N	320	31	2	
	260	40	5	_			340	30	4	523301, 688024
_	280	37	2		GPS		360	27	2	
	300E	37	3	523	112, 6880612N		380	25	-1	
300N	0	16	-2	522	938, 6880343N		400E	26	0	
300N	20	17	-2			100N	420E	24	0	523371, 6880262
300N	40	18	-2							
	60	20	-3							
	80	23	-2							
	100E	22	-3							
	120	23	-3							
	140	26	-2							
	160	34	0							
	180	38	5	500						
	200E	42	5	523	111, 6880396N					
	220	43	7							
	240	43	8							
	260	41	6							
	280	37 40	4							
	300E 320	37	6						-	
	340			_			_			
		41	8							
	360	37	5							
	380	37	4							
300N	400E	40	5	5232	269, 6880453N					

APPENDIX III

GEOCHEMICAL ANALYTICAL CERTIFICATES

	N
I	
9	
	Ê

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 021 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page 1 of 1

BILLING INFORMATION		QUANTITY CODE		ANALYSED FOR - DESCRIPTION	U R	UNIT	TOTAL
Certificate: WH11175462 Sample Type: Soil Account: Soil Date: 27-OCT-2011 Prolect: P.O. No.: Quote: Due on Receipt Comments:	Ü	1 105 30.84 104 105 105	BAT-01 PREP-41 PREP-41 Au-ICP21 ME-ICP41 GEO-AR01	Administration Fee Dry, Sieve (180 um) Soil Weight Charge (kg) – Dry, Sieve (180 um) Soil Au 30g FA ICP-AES Finish 35 Element Aqua Regia ICP-AES Aqua regia digestion	30 15 15 3 3 3	30.00 1.40 2.25 7.10 3.50 3.50	30.00 147.00 69.39 1,653.60 745.50 367.50
				SUBTOT	SUBTOTAL (CAD) \$		3,012.99
To: LEE, GARY				R100938	R100938885 GST \$		150.65

LEE, GARY
 P.O. BOX 31800
 WHITEHORSE YT Y1A 6L3

Payment may be made by: Cheque or Bank Transfer Beneficiary Name: ALS Canada Ltd. Bank: Royal Bank of Canada SWIFT: Royal Bank of Canada SWIFT: Vancouver, BC, CAN Address: 003-00010-1001098 Account: 003-00010-1001098 Please send payment info to accounting.canusa@alsglobal.com

3,163.64

5

TOTAL PAYABLE (CAD)

Please Remit Payments To : ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

	ALC Canac
P. P.	ALJ Callar
	2103 Do
	North Va
	Phone: 6
(ALS)	
Minerals	

Fax: 604 984 0218 www.alsglobal.com illarton Hwy Incouver BC V7H 0A7 04 984 0221 da Ltd.

WHITEHORSE YT Y1A 6L3 To: LEE, GARY P.O. BOX 31800

Page: 1 Finalized Date: 27-OCT-2011 Account: LEEGAR

- 1	
	2
	9
1	546
	10
	~
	-
	[11]
1	T
1	-
1	NH
1	2
1	-
1	
1	ш
	5
1	A
1	TIFICATE
1	-
1	ш.
1	-
T	ERT
Т	~
1	ш
T	$\overline{0}$
1	-
1	
1	
1	

	•	:	
-			
6		•	
0	1		

Project:

This report is for 105 Soil samples submitted to our lab in Whitehorse, YT, Canada on 2-SEP-2011.

The following have access to data associated with this certificate:

GARY LEE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21 LOG-22 SCR-41	Received Sample Weight Sample login - Rcd w/o BarCode Screen to -180um and save both	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21 ME-ICP41	Au 30g FA ICP-AES Finish 35 Element Aqua Regia ICP-AES	ICP-AES ICP-AES

LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 To:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

(SIA)		North Vancouver BC V Phone: 604 984 0221	North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax	1 0A7 Fax: 604 984 0218		www.alsglobal.com	bal.com	LIHM	EHORSE	WHITEHORSE YT Y1A 6L3	5L3		E	Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR	Plus Appendix Pages red Date: 27-OCT-2011 Account: LEEGAR	dix Pages CT-2011 :: LEEGAR
	2								U	CERTIFICATE	ATE OF	ANALYSIS	YSIS	WH111	WH11175462	
	Method Analyte	WEI-21 Recvd Wt.	Au-ICP21 Au	ME-ICP41 Ag	ME-ICP41 AI	ME-ICP41 As	ME-ICP41 B	ME-ICP41 Ba	ME-ICP41	ME-ICP41 Bi	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
Sample Description	Units LOR	kg 0.02	ppm 0.001	ppm 0.2	% 0.01	ppm 2	ррт 10	ppm 10	ppm 0.5	ppm 2	% % 0.01	ppm 0.5	ppm 1	b m d	b md	Fe % 0.01
SRU-1		0.32	0.020	<0.2	2.21	81	<10	20	<0.5	~	0.01	<0.5	a	30	•	000
SRU-2		0.42	0.002	0.2	2.81	72	<10	30	<0.5	10	0.01	<0.5	0 00	34	17	5.44
SRU-4		0.56	0.005	<0.2	2.03	49	<10	40	<0.5	00	0.01	<0.5 20.5	ω ;	29	14	4.62
SRU-5		0.32	0.002	<0.2	1.83	49	<10	9	<0.5	101	0.01	<0.5	5 თ	28	22	4.95
SRU-6 SBU-7		0.20	0.002	<0.2	2.08	11	<10	20	<0.5	3	0.02	<0.5	13	27	24	4.50
SRU-8		0.30	0.001	0.0 0	2.13	103	<10	50	0.5	2	0.02	<0.5	13	31	25	5.51
SRU-9		0.28	0.003	0.3	1.80	109	<10	20	<0.5	2 0	0.02	<0.5	32	31	19	5.35
SRU-10		0.38	0.004	<0.2	2.19	253	<10	20	<0.5	5	0.03	<0.5	14	36	27	6.36
SRU-11		0.40	0.016	<0.2	1.74	376	<10	20	<0.5	2	0.02	<0.5	15	28	26	6.00
SRU-12 SRU-13		0.28	0.002	0.4	2.24	260	<10	40	<0.5	2	0.02	<0.5	15	39	25	9.06
SRU-14		0.32	0.001	0.5	1.29	73	410	30	40.5 V0.5	ლ ი	0.05	<0.5	. 00	23	22	5.65
SRU-15		0.40	0.003	<0.2	2.01	87	<10	20	<0.5	10	0.01	<0.5	12	32	24	5.56
SRU-16		0.18	0.001	<0.2	0.53	3	<10	10	<0.5	2	0.02	<0.5	-	6	4	0.49
SRII-18		0.40	0.157	40.2	1.55	50	<10	40	<0.5	2	0.03	<0.5	10	26	22	4.60
SRU-19		0.24	0.003	2.02	2.18	43	<10 10	20	<0.5	2 0	0.01	<0.5	13	30	22	4.66
SRU-20		0.34	0.003	<0.2	1.89	34	410	2 0	<0.5	2 2	0.06	<0.5	11	29	20	5.20
SRU-21		0.28	0.003	<0.2	2.08	104	<10	30	<0.5	0	0.01	<0.5	ę	24	0.0	E DE
SRU-22		0.30	0.005	<0.2	2.45	208	<10	20	<0.5	2	0.01	<0.5	12	35	24	5.42
SRU-24		0.24	0.004	<0.2	2.34	296	<10	30	<0.5	2	0.01	<0.5	12	33	25	5.35
SRU-25		0.16	0.002	0.3	1.17	81	10	30	<0.5	0 0	0.02	<0.5	22	34	21	5.20
SRU-26		0.18	0.004	<0.2	4 57	go	140	00	0.00	v .	00.0	C.U>	38	24	21	5.03
SRU-27		0.26	0.017	0.3	2.09	114	<10	10	0.7	n e	0.06	40.5 V0.5	40	20	31	3.26
SRU-28		0.34	0.005	0.2	2.21	105	<10	20	0.6	0 00	0.02	<0.5 60.5	31	30	64	5 14
SKU-29		0.18	0.016	0.2	1.08	24	<10	30	<0.5	0	0.07	<0.5	5 40	20	22	4 79
3KU-3U		0.14	0.009	0.2	0.87	17	<10	10	<0.5	2	0.01	<0.5	4	12	13	2.47
SRU-31 SRU-32		0.14	0.004	<0.2	0.36	2	<10	<10	<0.5	2	0.03	<0.5	1	3	2	0.48
SRU-33		0.22	0,005	2.02	2.29	80	<10	10	1.1	4	0.01	<0.5	06	30	69	6.60
SRU-34		0.28	0.006	<0.2	1.43	68	<10	00	0.5	N 6	10.0	40.5 10.5	1	33	60	6.23
SRU-35		0.36	0.004	0.3	2.27	83	<10	30	0.6	, Q	0.02	<0.5	25	33	31	5.45
SRU-36 SRU-37		0.30	0.003	0.2	1.59	69	<10	40	<0.5	2	0.05	<0.5	10	29	17	4.80
SRU-38		0.28	0.004	0.2	1.67	62	<10	50	<0.5	2	0.03	<0.5	12	35	17	5.82
SRU-39		0.36	0.003	2.02	61 6	3	<10	20	<0.5	ς,	0.03	<0.5	-	3	3	0.47
SRU-40		0.30	0.003	0.4	2.14	47	<10	30	8.0 T	2 5	0.04	<0.5	50	30	47	5.21
	-	120257					211	20	21	2		A 11	10.01			4

Method Method			Phone: 604 984 0221	Phone: 604 984 0221 Fax	1 0A7 Fax: 604 984 0218		www.alsglobal.com	bal.com	НМ	rehorse	WHITEHORSE YT Y1A 6L3	6L3		H	Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR	Plus Appendix Pages Date: 27-OCT-2011 Account: LEEGAR	Plus Appendix Pages zed Date: 27-OCT-2011 Account: LEEGAR
		2			-					U	RTIFIC		ANAL	YSIS	WH113	175462	
Deterprior Units 10 prof 1 S		Method	ME-ICP41 Ga	ME-ICP41 Hd	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ample Description	Units	mqq 10	mdd	2 % C	bpm 10	бж ж	mdd	mdd	sa %	mdd	d mdd	hpm	s x	Sb ppm	Sc ppm	Sr ppm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2		TOTO	107	10.0	^	-	10.0	-	10	2	0.01	2	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RU-2		6 6	7 1	0.04	30	0.58	554		0.01	18	1330	19	0.02	2	2	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RU-3		10	7 7	0.04	30	0.35	491		0.01	1 8	520	21	0.02	5	2	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RU-4		10	2	0.03	30	0.68	507	5	0.01	22	730	132	0.04	2 2	4	0 80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C-UX		10	v	0.03	20	0.56	404	2	<0.01	23	690	20	0.02	3	-	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3U-6		10	5	0.03	30	0.65	414	-	0.01	24	550	46	0.02	<2	-	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SU-8		0		0.06	30	0.46	455	~ ~	0.01	25	750	35	0.02	<2	-	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6-01		10	V	0.04	30	0.48	427	v +	0.01	22	1110	28	0.02	8 (- •	00 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tU-10		10	4	0.04	30	0.63	617	-	<0.01	28	1750	33	0.02	2 4	- 2	0 1-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11-11		10	4	0.04	30	0.49	908	2	0.01	23	2420	36	0.02	\$	-	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21-13		10	7	0.06	30	0.47	1055	-	0.01	21	3900	42	0.03	8	-	. თ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-14		0 0	v v	0.04	30	0.31	426	~ ~	40.01	18	2330	28	0.02	<2	-	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-15		10	2	0.02	30	0.59	957	4 -	<0.01	22	1050	26	0.02	2 5		თ დ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U-16		<10	4	0.02	<10	0.03	27	-	0.02	2	400		0.00	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U-17		10	₽ V	0.05	20	0.17	650	3	0.01	13	2450	27	0.05	2	v	- თ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0-10		10	5	0.04	40	0.71	378	-	<0.01	27	390	20	<0.01	\$	-	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	U-20		2 0	7 5	0.02	30	0.55	288		0.01	21	690	18	0.01	~5	-	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12-11		10		10.0	-	010	607	-	10.0	30	06/	21	0.01	<2	1	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U-22		2 0	~ ~	\$0.0	40	0.53	498		0.01	21	1240	24	0.01	2	-	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-23		10	7	0.04	40	0.72	510		10.0	87	490	27	0.02	99	2 0	- 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-24		10	4	0.04	30	0.52	678	-	<0.01	24	740	80	0.02	2 5	N +	- 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-25		10	4	0.05	30	0.22	2570	-	0.01	18	3780	37	0.02	2 4		0 00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-26		<10	4	0.05	20	0.40	1350	-	0.01	33	500	32	0.02	0	-	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-27		9 9	2	0.04	30	0.45	875	2	<0.01	42	1210	45	0.04	4 4		10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07-10			5 1	0.04	40	0.65	1190	-	<0.01	38	540	40	0.02	<2	1	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-30		10	7	0.04	20	0.20	582		0.01	11	1530	25	0.07	5	4	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101			-	20.02	01	21.0	122	1	0.01	8	470	12	0.03	<2	V	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U-32		10	5 1	0.02	<10	0.02	19	- 1	0.03	-	410	2	0.03	2	4	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-33		<10	7 1	0.02	30	0.60	2140	N	<0.01	52	1180	11	0.02	2	2	5
10 <1 0.03 40 0.74 644 1	U-34		10	2	0.03	20	0.34	422	- 0	<0.01	15	1990	64	0.02	0 0	5	4 0
10 <1 0.05 30 0.44 544 1 <0.01 19 2650 22 0.01 <22 10 <1	U-35		10	4	0.03	40	0.74	644	-	<0.01	33	710	31	<0.01	25	2	0 0
10 <1 0.03 30 0.41 558 1 <0.01 21 1110 23 0.01 <22 <10	U-36		10	2	0.05	30	0.44	544	-	<0.01	19	2650	22	0.01	0	-	11
10 <1 0.04 30 0.05 51 <1 0.01 2 340 3 <0.01 <2 10 0.02 <2 10 0.01 <2 10 0.01 <2 10 0.01 <2 10 0.01 <2 10 0.01 58 1400 48 0.02 <2	U-3/ U-38		10	۲ ک	0.03	30	0.41	558	-	<0.01	21	1110	23	0.01	5	-	9
	U-39		10	7 5	20.0	012	0.02	51	، ۲	0.01	2	340	0	<0.01	\$	v	7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U-40		<10	V	0.03	30	0.65	6100		<0.01	58	1400	48	0.02	8	-	7

		North Vanco Phone: 604	North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax	H 0A7 Fax: 604 984 0218		www.alsglobal.com	bal.com	WHITE	P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Finalized	Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR
;	als								CERTIFICATE OF ANALYSIS WH1	WH11175462
	Method	ME-ICP41 Th	ME-ICP41 Ti	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41		
Completion of the	Units	bpm	: %	maa	mad	A maa	Mun	UZ UZ		
sample Description	LOR	20	0.01	10	10	1	10	2		
SRU-1		<20	0.02	<10	<10	34	<10	74		
SRU-2		<20	0.01	<10	<10	23	<10	70		
SRU-3		<20	0.01	<10	<10	30	<10	52		
SKU-4		<20	0.01	<10	<10	19	<10	06		
C-UNC		<20	<0.01	<10	<10	21	<10	83		
SRU-6		<20	0.01	<10	<10	15	<10	83		
		<20	0.01	<10	<10	25	<10	17		
SRU-8		<20	0.02	<10	<10	31	<10	76		
SPIL-10		<20	0.01	<10	<10	26	<10	73		
DT-DVC		<20	0.02	<10	<10	28	<10	104		
SRU-11 SBU 13		<20	0.01	<10	<10	27	<10	86		
21-UXC		<20	0.02	<10	<10	38	<10	87		
SKU-13		<20	0.02	<10	<10	30	<10	80		
SRIL-15		<20	0.02	<10	<10	31	<10	53		
CT_015		620	10.0	<10	<10	22	<10	85		
SKU-16 SRIL-17		<20	0.01	<10	<10	9	<10	5		
SRIL-18		075	10.0	<10	<10	35	<10	53		
SRU-19		075	10.0	410	<10 10	19	<10	84		
SRU-20		<20	10.0	10		27	410	73		
CDIL 31				012		11	<10	86		
		<20	0.01	<10	<10	23	<10	86		
SPIL-22		<20	<0.01	<10	<10	19	<10	66		
SRU-24		022	10.0		10	20	<10	110		
SRU-25		<20	0.01	<10 <10	<10	25	<10 <10	10/ 136		
SRU-26		<20	0.01	<10	<10	12	140	00		
SRU-27		<20	<0.01	<10	410	17	012	105		
SRU-28		<20	0.01	<10	<10	17	<10	101		
SRU-29		<20	0.01	<10	<10	22	<10	62		
SRU-30		<20	0.01	<10	<10	14	<10	43		
SRU-31		<20	0.01	<10	<10	9	<10	16		
SRU-32		<20	<0.01	<10	<10	16	<10	130		
SRU-33		<20	0.01	<10	<10	16	<10	141		
SRU-34		<20	0.01	<10	<10	22	<10	71		
2KU-35		<20	0.01	<10	<10	20	<10	100		
SRU-36		<20	0.01	<10	<10	26	<10	104		
SKU-3/		<20	0.01	<10	<10	28	<10	85		
5KU-38		<20	0.01	<10	<10	7	<10	12		
SKU-39		<20	<0.01	<10	<10	15	<10	127		
04-0VC		<20	<0.01	<10	<10	15	<10	129		

	ALS Canada L
	2103 Dollar North Vance
	Phone: 604
(ALS)	
Minerals	

vLS Canada Ltd. 103 Dollarton Hwy Jorth Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR

									U	CERTIFICATE	ATE OF	ANALYSIS	YSIS	WH11	WH11175462	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI %	ME-ICP41 As ppm 2	ME-ICP41 B ppm	ME-ICP41 Ba ppm	ME-ICP41 Be ppm	ME-ICP41 Bi ppm	ME-ICP41 Ca %	ME-ICP41 Cd ppm	ME-ICP41 Co ppm	ME-ICP41 Cr ppm	ME-ICP41 Cu ppm	ME-ICP41 Fe
SRII-40A		000	0000	-	10.0		DT	T	C.U	7	0.01	0.5	-	-	1	0.01
SRU-41		0.26	0.006	0.3	2.22	132	<10	20	1.3	5	0.04	<0.5	70	23	82	6.66
SRU-42		92.0	2000	2.0	1.03	RLL	012	30	0.6	2	0.05	<0.5	22	28	30	5.34
SRU-43		0.30	0.150	0.0	1.05	16	10	40	<0.5	5	0.03	<0.5	12	21	33	4.83
SRU-44		0.26	0.005	0.2	2 24	69	10	30	8.0	81	0.05	<0.5	50	14	42	5.25
SRU-45		0.20	0.001	< U 2	000	40		00	0.0	7	10.0	<0.0>	14	33	26	5.45
SRU-46		0.12	0002	<0.7	08.0	2		00	50.0 2	7	0.03	<0.5	4	11	12	2.74
SRU-47		0.28	0.004	20	1 42	210		20	40.5 10.1	8 6	0.08	<0.5	თ	4	80	0.83
SRU-48		0.26	0.008	0.2	2.16	313	<10 <10		2.02	2 5	20.0	<0.5	11	21	17	4.61
SRU-49		0:30	0.003	<0.2	1.39	93	<10	30	<0.5	2	0.02	<0.5 0.5	90	54	38	18.4
SRU-50		0.20	0.003	0.8	1.63	74	<10	30	<0.5	62	0.05	-DE			2	1.7.1
SRU-51		0.28	0.003	0.3	1.51	47	<10	50	<0.5	10	000	2.02	σα	23	11	4.82
SRU-52		0.24	0.009	0.5	1.78	44	<10	60	<0.5	4 0	0.03	505	οα	20	2 0	14.0
SRU-53		0.26	0.002	0.2	2.56	82	<10	30	<0.5	5	0.01	<0.5 A	0 1	37	10	4./1 5.45
SRU-54		0.26	0.053	0.3	1.49	1540	<10	20	0.8	5	0.03	<0.5	39	19	43	6 60
SRU-55		0.26	0.006	0.2	2.47	83	<10	30	<0.5	<2	0.01	<0.5	18	37	34	100
SRU-56		0.22	0.001	0.3	1.39	32	<10	40	<0.5	2	0.06	<0.5	2 α	10	5	0.4
SRU-57		0.28	0.001	0.2	2.54	63	<10	50	<0.5	4	0.01	<0.5	0 თ	33	15	202
0C-D10		0.22	<0.001	0.2	1.46	41	<10	40	<0.5	<2	0.02	<0.5	5	21	12	4.21
66-0		0.22	0.002	0.2	2.20	61	<10	50	<0.5	25	0.02	<0.5	9	29	12	4.80
SRU-60		0.24	0.007	0.2	2.03	102	<10	30	<0.5	<2	0.01	<0.5	7	20	18	A DR
L-C2		0.26	0.001	<0.2	2.10	23	<10	40	0.6	<2	0.02	<0.5	. 80	28	28	4 90
2-57		0.24	0.002	<0.2	2.14	39	<10	40	0.7	<2	0.02	<0.5	12	32	33	5.08
5-57		07.0	0.002	0.2	1.84	13	<10	30	<0.5	2	0.06	<0.5	80	27	23	3.40
		0.40	200.0	7.0	2.26	21	<10	30	0.5	8	0.08	<0.5	15	35	28	4.51
C-C7		0.38	0.002	<0.2	2.51	23	<10	40	0.6	25	0.06	<0.5	13	36	32	4 82
75-7		0.34	<0.001	0.2	2.29	20	<10	20	<0.5	<2	0.06	<0.5	15	35	23	4.61
75-8		87.0	0.00	<0.2	2.36	17	<10	40	<0.5	22	0.07	<0.5	11	36	22	4.60
25-9		0.00	200.0	2.05	2.33	18	<10	20	0.5	5	0.08	<0.5	14	36	26	4.72
~		77.0	0.000	0.3	1.83	16	<10	50	0.5	2	0.03	<0.5	8	24	24	3.22
01-67		0.36	0.001	0.2	2.20	38	<10	40	0.5	<2	0.06	<0.5	11	34	30	4 90
11-07		0.18	0.003	0.3	0.48	16	<10	20	<0.5	2	0.02	<0.5	2	7	6	1 07
21-52		0.18	0.011	0.2	0.83	6	<10	20	<0.5	5	0.02	<0.5	0	10	16	177
CT_C7		0.18	0.001	0.4	1.27	23	<10	40	<0.5	2	0.02	<0.5	10	19	19	4 88
		0.14	0.001	0.4	0.50	<2	<10	20	<0.5	22	0.03	<0.5	-	6	0	0.44
Z5-15		0.34	0.001	0.5	1.83	53	<10	40	0.8	<2	0.06	<0.5	23	28	30	4 43
01-07		0.24	<0.001	0.3	1.29	27	<10	40	0.7	<2	0.17	<0.5	10	18	42	264
11-07		0.32	0.001	0.3	1.91	29	<10	40	<0.5	<2	0.05	<0.5	14	28	12	3.80
01-52		0.36	0.002	0.5	1.98	81	<10	40	0.6	\$	000	3 0 1		5		
										4	20.04	0.01	4	11	00	Re 4

ALS	V	Phone: 604	Phone: 604 984 0221 Fax	Fax: 604 984 0218		www.alsglobal.com	obal.com			ATT IT	613		E	Finalized Date: 27-OCT-2011 Account: LEEGAR	Plus Appendix Pages Date: 27-OCT-2011 Account: LEEGAR	lix Page CT-201 : LEEGA
	2								U	RTIFIC	ATE O	CERTIFICATE OF ANALYSIS	YSIS	WH11175462	75462	
	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	MF-ICP41	MF-ICP41	MELICDAT	ME-ICDA1	ME ICDAT
	Analyte	Ga	Hg	×	La	Mg	Mn	Mo	Na	īZ	d	Pb Pb	S	Sb	Sc Sc	Sr Sr
Sample Description	LOR	10	ppm 1	%	ppm 10	%	bpm	mqq	* 0	mqq	mdd	mdd	*	mdd	mdd	mdd
CDI1-40A							,	•	10.0	-	10	2	0.01	2	1	1
SRU-41		10	- 5	0.03	30	0.59	1840		<0.01	75	1210	63	0.01	2	3	21
SRU-42		2 0	7	0.03	00	0.10	736	- 0	×0.01	29	1830	36	0.02	2	-	12
SRU-43		<10	2	0.03	10	0.36	1630	v 1	<0.01	39	1150	32	0.01	ς,	V 0	5
SRU-44		10	4	0.04	30	0.59	495	-	<0.01	27	011	28	0.01	2	N -	7
SRU-45		<10	2	0.02	10	0.15	308	4	<0.01	7	1250	14	<0.01	0	2	a
SKU-45 SBIL 47		<10	ک .	0.02	<10	0.03	626	4	0.01	6	880	5	0.02	27	7 7	0 0
SRU-48		0	v -	0.03	30	0.37	1305		<0.01	19	1390	24	<0.01	<2	-	7
SRU-49		10	- 7	0.03	00	0.0	015		<0.01	37	960	47	0.01	25	-	8
SRI1-50		40		000	77	0.13	010	-	<0.01	11	1210	24	<0.01	<2	-	9
SRU-51		2 0	- 5	0.03	30	0.25	662	V 1	<0.01	£ :	1040	40	0.01	2	-	2
SRU-52		10	V	0.03	30	80.0	611	v •	<0.01	10	3140	19	<0.01	5 2	-	9
SRU-53		10	v	0.04	40	0.87	626	- 1	<0.01	34	1080	24	<0.01	5	- 1	6
SRU-54		<10	Ł	0.03	40	0.22	948	-	<0.01	28	920	55	<0.01	6 6	CN 6	9
SRU-55		10	1	0.04	40	0.80	644	-	<0.01	24	640		10.00	7		4
SRU-56		<10	۲.	0.03	10	0.24	570	· 7	<0.01	10	270	15	10.02	2 5	N +	90
SKU-5K		9	2	0.03	30	0.66	528	-	<0.01	20	670	15	<0.01	2		n un
SRIL-59		0	5	0.03	30	0.20	290	1	<0.01	10	980	24	<0.01	5	• •-	~
00 000		2	5	0.03	30	0.47	355	4	<0.01	15	550	18	<0.01	2	-	7
75-1		ę ;	v 1	0.03	30	0.55	502	Ł	<0.01	15	860	36	<0.01	<2	+	7
ZS-2		2 6	7	0.04	40	0.52	352	- 1	<0.01	22	750	26	0.01	2	-	27
ZS-3		10	v	0.04	30	0.00	438	N	<0.01	29	760	30	<0.01	<2	2	29
ZS-4		10	2	0.04	40	0.82	554	, -	<0.02	24	590	17	0.01	2		20
ZS-5		10	5	0.07	40	0.85	503	1	10.01		000	2	10.02	75	7	24
ZS-6		10	۲	0.04	30	0.88	585	7 5	<0.02	33	040	21	<0.01	ç, ç	2	19
ZS-7		10	5	0.05	40	0.83	544		<0.01	30	210	0	10.05	2 9	N	15
Z5-8		10	5	0.04	40	0.89	591	۴	<0.01	27	570	18	10.02	2 4	ч с	207
6-07		<10	<1×	0.04	30	0.51	285	۲	<0.01	19	560	21	0.01	2	4 +-	21
Z5-10 Z5 11		9	v	0.04	30	0.78	477	1	<0.01	28	550	34	0.01	\$	6	47
11-07		<10	5	0.02	<10	0.08	107	V	<0.01	9	560	5	<0.01	10	1	2 00
72-12		012	V 1	0.02	10	0.13	228	-	<0.01	6	640	12	0.01	5	V	2
ZS-14		410	7 5	0.03	20	0.26	995	- 1	<0.01	13	1920	17	0.01	<2	-	6
75-15		40		100		70.0	80	1	10.0	2	340	9	<0.01	<2	4	7
ZS-16		1012	7 7	GU.U	30	0.57	1015		<0.01	27	750	29	<0.01	2	-	10
ZS-17		10	V	0.04	20	0.60	462		<0.01	21	660	20	0.02	~5	-	16
ZS-18		10	4	0.04	30	0.56	524		10.01	07	ORS	15	<0.01	5	-	7
					E E		1.30				1170	10	10 01	4		

ALS .		2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax	on Hwy Jver BC V7 84 0221	H 0A7 Fax: 604 984 0218		www.alsglobal.com	bal.com	P.O. BOX 3 WHITEHOR	P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Finalized Date: 27-OCT-2011 Account: LEEGAR
Minera	als							L	CERTIFICATE OF ANALYSIS WH11175462
	Method Analyte	ME-ICP41 Th	ME-ICP41 TI	ME-ICP41 TI	ME-ICP41 U	ME-ICP41 V	ME-ICP41 W	ME-ICP41 Zn	
Sample Description	Units	mdd	*	mdd	mdd	mdd	mdd	mdd	
	LON .	70	10.0	10	10	-	10	2	
SRU-40A		<20	<0.01	<10	<10	12	<10	152	
CP 142		<20	0.01	<10	<10	19	<10	103	
SRII-43		022	10.01	<10	410	25	<10	91	
SRU-44		<20	0.01	10	<10	21	<10 <10	117 86	
SRU-45		<20	0.02	<10	10	45	140	1	
SRU-46		<20	0.01	<10	10	2 0		14	
SRU-47		<20	0.01	<10	<10	21	<10	73	
SRU-48		<20	0.01	<10	<10	17	<10	109	
SRU-49		<20	0.02	<10	<10	29	<10	48	
SRU-50		<20	0.01	<10	<10	23	<10	17	
SRU-51		<20	0.02	<10	<10	33	<10	66	
SRU-52		<20	0.02	<10	<10	31	<10	65	
SRIJ-54		022	0.01	×10	<10	19	<10	107	
		175	-0.01	01>	<10	14	<10	144	
SRU-55		<20	0.01	<10	<10	19	<10	102	
SRU-57		022	0.02	410	×10	14	<10	48	
SRU-58		<20	0.02	10	012	23	10	83	
SRU-59		<20	0.01	<10	<10	25	410	57	
SRU-60		<20	0.01	<10	<10	24	<10	70	
ZS-1		<20	0.01	<10	<10	23	<10	62	
ZS-2		<20	0.01	<10	<10	22	<10	89	
ZS-4		022	10.0	410	<10	15	<10	80	
76.5		03	10.0		210	R	01>	66	
ZS-6		025	0.01	<10	×10	22	<10	106	
ZS-7		<20	0.01	410	<10	20	410	98	
ZS-8		<20	0.01	<10	<10	19	<10	101	
ZS-9		<20	0.01	<10	<10	15	<10	66	
ZS-10		<20	0.01	<10	<10	20	<10	93	
ZS-11		<20	0.02	<10	<10	12	<10	40	
Z2-12		<20	0.02	<10	<10	13	<10	46	
22-13		<20	0.01	<10	<10	33	<10	103	
+T-C7		<20	0.02	<10	<10	7	<10	21	
ZS-15 75-16		<20	0.01	<10	<10	22	<10	133	
21-22		072	0.01	<10	<10	12	<10	82	
ZS-18		022	10.0	<10 10	V10	16	<10	124	
ZS-19		<20	0.01	<10 <10		17	012	16	
		1		2		-		70	

(ALS) Minerals		North Vancouver BC V Phone: 604 984 0221	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax	H 0A7 Fax: 604 984 0218		www.alsglobal.com	bal.com	WHITEHORSE Y	rehorse	WHITEHORSE YT Y1A 6L3	r r		E	Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR	Plus Appendix Pages Date: 27-OCT-2011 Account: LEEGAR	CT-201 :: LEEGA
	0								G	CERTIFICATE	ATE OF	- ANALYSIS	YSIS	WH11175462	75462	
2.	Method	WEI-21	Au-ICP21	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	kecvd Wt.	Au	Ag	A 9	As	8	Ba	Be	8	Ca	Cd	c	IJ	Cu	Fe
Sample Description	LOR	0.02	0.001	0.2	0.01	ррш 2	10	ppm 10	ppm 0.5	2 2	% 0.01	0.5	ppm 1	ppm 1	ppm 1	% 0.01
ZS-20		0.26	0.003	0.4	1.75	78	<10	40	0.7	\$	0.11	<0.5	16	26	36	0.00
ZS-21		0.32	0.003	0.2	2.10	36	<10	20	0.8	\$	0.02	<0.5	27	29	41	5.45
75-22		0.18	0.003	0.5	1.21	28	<10	60	<0.5	2	0.45	<0.5	7	15	31	2.10
ZS-24		0.30	0.003	0.3	2.35	82	<10	50	0.6	99	0.01	<0.5	1	35	40	5.13
22-25		0.47	0000	4.0	00.1	Ŧ		00	c:n	75	60.0	<0.0>	12	24	19	4.23
ZS-26		0.32	0.001	0.2	1.88	141	10	20	<0.5	91	0.02	<0.5	~ 1	32	26	7.43
ZST-1	ľ	0.36	0.001	0.2	2.28	131	<10	10	1.3	90	0.06	505	0 00	34	38	C2. V
ZST-2		0.56	<0.001	0.2	2.34	91	<10	10	1.8	5	0.06	<0.5	109	30	54	4.49
251-3		0.42	0,009	0.2	2.40	102	<10	10	2.0	2	0.05	<0.5	85	29	54	4.37
ZST-4		0.58	0.001	0.3	2.42	114	<10	10	2.0	<2	0.05	<0.5	115	28	58	4.38
BRS-1		0.18	NSS	0.2	2.11	119	<10	20	1.2	25	0.07	<0.5	78	29	47	4.45
RBS-2		0.38	200.0	5.0	1.85	27	<10	30	0.5	5	0.03	<0.5	6	33	19	6.17
RBS-3		0.30	0.002	0.2	2.25	43	410	40	0.0	20	0.03	<0.5	0 0	35	29	4.69
RBS-4		0.32	<0.001	03	1 67	36	110	40	00	4 9		0.02	2	10	07	544
RBS-5		0.18	<0.001	0.2	0.70	3 00	<10	20	<0.0 <0.5	2 6	0.00	50.5	, α	26	18	4.97
RBS-6		0.34	0.001	0.3	1.99	26	<10	20	<0.5	5	0.01	<0.5	4	31	15	5.73
KBS-7		0.30	0.002	<0.2	2.50	24	<10	40	0.5	<2	0.03	<0.5	6	34	22	5.25
0-00		0.42	0.002	0.3	2.44	28	<10	30	0.5	\$2	0.03	<0.5	6	35	22	5.57
RBS-9		0.26	0.002	<0.2	1.18	9	<10	20	<0.5	2	0.02	<0.5	4	21	13	4.42
RRS-11		0.34	100.0>	0.3	1.21	10	<10	40	<0.5	~2	0.03	<0.5	4	22	17	5.23
RBS-12		0.38	0.001	0.2	2.05	23	<10 10	40	0.5	8	0.02	<0.5	2	32	21	5.13
RUST 41		0.50	0.006	0.3	1.36	92	410	20	C.U>	2 0	0.01	<0.5	б	36	21	4.91
		2012	~~~~	2.2	00.1	78	AIV.	20	<0.0>	7>	0.35	<0.5	11	25	19	2.78

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 021

18 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR

														704C/TTTUM	JOLO I	
	Method Analyte	Z	ME-ICP41 Hg	ME-ICP41 K	ME-ICP41 La	ME-ICP41 Mg	ME-ICP41 Mn	ME-ICP41 Mo	ME-ICP41 Na	ME-ICP41 Ni	ME-ICP41	ME-ICP41 Pb	ME-ICP41 S	ME-ICP41 Sb	ME-ICP41 Sc	ME-ICP41 Sr
Sample Description	LOR	10 10	1 1	% 0.01	ppm 10	% 0.01	ppm S	ppm 1	% 0.01	ppm	ppm 10	bpm	%	bpm	hpm	mqq
ZS-20		10	2	0.05	30	0.66	640	,	10.01				10.0			•
ZS-21		2	7	000	00	00.0	210	- 1	<0.01	23	730	48	<0.01	<2	-	17
75-27			7 3	40.0	40	7.1.0	980	V	<0.01	30	820	48	<0.01	5	2	14
75-23				0.03	30	0.31	232	V	<0.01	15	550	24	0.02	<2	۲	29
VC-22		2 9	v .	0.08	30	0.82	474	-	<0.01	22	690	43	0.01	<2	2	80
+7-C		01	V	0.03	30	0.48	616	+	<0.01	22	620	20	<0.01	<2	1	12
ZS-25		10	2	0.02	20	0.38	470	-	<0.01	17	1920	18	0.01	2	+	5
07-57		10	v	0.03	30	0.44	313	+	<0.01	11	1700	17	0.03	5		17
1-107		10	-	0.02	50	0.80	1235	F	<0.01	71	630	41	0.04	5	. 0	13
2-162		<10	2	0.02	60	0.78	1325	۲,	<0.01	88	620	37	0.03	2	0	1
0-10		<10	<1	0.02	60	0.77	1165	1	<0.01	73	640	37	0.02	2	2	12
ZST-4		10	٢	0.02	60	0.77	1415	4	<0.01	85	610	42	0.04	<2	2	12
SPILL		10	V	0.02	40	0.72	1075	4	<0.01	62	640	38	0.03	5	-	12
1-000		10	د .	0.03	30	0.52	366	2	<0.01	15	2450	26	0.01	2	F	18
2-000		10	V	0.06	30	0.88	376	ţ,	<0.01	21	550	25	<0.01	5	2	15
62-3		10	<1	0.04	20	0.77	477	4	<0.01	25	1250	31	<0.01	2	2	13
RBS-4		10	ţ	0.03	20	0.39	493	1	<0.01	16	1610	26	0.01	0	-	23
KBS-5		<10	¥	0.02	<10	0.04	91	41	0.01	2	770	5	0.02	2	. 12	13
0-CBN		10	v	0.02	20	0.55	307	۲	<0.01	12	830	23	<0.01	2	1	1
ND2-1		10	L>	0.03	20	0.69	363	V	<0.01	19	560	26	<0.01	\$	2	14
0-00		10	41	0.02	20	0.62	343	F	<0.01	21	730	24	0.01	2	2	15
RBS-9		10	Ł	0.03	10	0.17	294	1	<0.01	8	1320	19	0.02	<2	<1	12
01-004		10	۲.	0.03	20	0.22	255	-	<0.01	8	1230	23	0.02	25	-	23
RBS-12		0	5	60.03	20	0.61	362	V	<0.01	17	1040	28	<0.01	25	1	16
LV LSIID		2	₽.	0.04	20	0.83	360	4	<0.01	20	470	21	<0.01	<2	2	10
T+ 100		<10	4	0.02	10	0.40	807	r.	<0.01	28	1490	16	0.06	2	1	20

ALS		ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax	I. on Hwy iver BC V7 84 0221	H 0A7 Fax: 604 984 0218	84 0218	www.alsglobal.com	bal.com	10: LEE, GAKY P.O. BOX 3 WHITEHOF	1800 SE YT YIA 6L3	Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 27-OCT-2011 Account: LEEGAR
Minerals	N								CERTIFICATE OF ANALYSIS W	WH11175462
Sample Description	Method Analyte Units LOR	ME-ICP41 Th Ppm 20	ME-ICP41 T1 % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U 10 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
ZS-20 ZS-21 ZS-22 ZS-23 ZS-24	1	 20 20 20 20 	0.01 <0.01 0.01 0.01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$	16 21 26	€ € € € €	101 114 87 97		
25-25 25-26 257-1 257-2 257-3		20 20 20 20 20	0.02 0.01 0.01 0.01	65 05 05 05 06 05 05 05	6 6 6 6 6	30 30 15	€ 6 6 6 6	75 95 244 283 261		
ZST-4 SPILL RBS-1 RBS-2 RBS-3		<20 <20 <20 <20 <20	0.01 0.01 0.03 0.01 0.02	010 010 010 010 010 010 010 010 010	\$ \$ \$ \$ \$ \$ \$	15 17 18 24 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	286 230 75 82 104		
RBS-4 RBS-5 RBS-6 RBS-7 RBS-7 RBS-8 RBS-8 RBS-10 RBS-11 RBS-12 RBS-12		 20 2	0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.01	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	30 25 32 25 25 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 25 80 80 85 55 55 55 55 55 55 55 55 55 55 55 55		
RUST 41		<20	0.0	6	<10	17	40	83.2		

Als Canada Itd. 2103 Bollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com	To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3	Finalized L	Finalized Date: 22- OCT- 2011 This copy reported on 4-JAN-2012 Account: LEEGAR
CERTIFICATE WH11175463		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: P.O. No.: This report is for 14 Rock samples submitted to our lab in Whitehorse, YT, Canada on 2-SEP-2011.	WEI- 21 LOG- 22 CRU- QC SPL- 22Y	Received Sample Weight Sample login - Rcd w/o BarCode Crushing QC Test Split Sample - Boyd Rotary Splitter	
The following have access to data associated with this certificate:	PUL-QC CRU-31 SPL-21	Pulverizing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter	
		Pulverize split to 85% <75 um ANALYTICAL PROCEDURES	
	ALS CODE	DESCRIPTION	INSTRUMENT
	ME-ICP41 Au-ICP21 Au-GRA21	35 Element Aqua Regia ICP- AES Au 30g FA ICP- AES Finish Au 30g FA- GRAV finish	ICP- AES ICP- AES WST- SIM

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager N

A CO CO		141			
Page: 2 - A s: 2 (A - C) OCT- 2011 Int: LEEGAR		ME-ICP41 Cu ppm	5 20 13 6	9 101 9 19 30 319 4 4	
Pages: ate: 22- (Accour	75463	ME-ICP41 Cr ppm	11 13	21 22 14 15 15 27 23 23 20	
Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 22- OCT- 2011 Account: LEEGAR	WH11175463	ME-ICP41 Co ppm	12 12 1	- 1 255 2 2 3 3 8 5 5	
Ē	SIS	ME-ICP41 Cd ppm	0.5 0.5 0.5	<pre><0.5 0.5 1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	
	OF ANALYSIS	ME-ICP41 Ca % 0.01	0.14 0.15 0.11 0.06	0.14 0.12 0.54 1.13 0.03 0.51 0.51 0.32 0.32	
B	ATE OF	ME- ICP41 Bi ppm 2		0 ო <u>წ</u> 0 4 ოოღი	
LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3	CERTIFICATE	ME-ICP41 Be ppm 0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 	 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 	
LEE, GARY P.O. BOX 31800 WHITEHORSE Y1	G	ME-ICP41 Ba ppm 10	40 20 10	10 10 20 20 20 20 20 20	
To: LEE, GARY P.O. BOX 3 WHITEHOI		ME-ICP41 8 ppm 10	6 6 6 6 6	40 40 40 40 40 40 40 40 40 40 40 40 40 4	
bal.com		ME-ICP41 As ppm 2	415 13 20 128 30	5 5 110 13 4 4 4 1170	
www.alsglobal.com		ME- ICP41 AI % 0.01	1.21 1.87 1.39 0.47 0.71	1.62 1.72 2.64 0.55 0.49 1.78 3.55 0.60 0.29	
		ME-ICP41 Ag ppm 0.2	<0.2 <0.2 <0.2 <0.2 <0.2	 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.3 <0.3 <0.3 <0.3 	
4 0A7 Fax: 604 984 0218		Au- GRA21 Au ppm 0.05		20.4	
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax		Au-ICP21 Au ppm 0.001	0.023 0.001 0.001 0.002 <0.001	 <0.001 0.002 0.003 0.003 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 	
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V Phone: 604 984 0221		WEI- 21 Recvd Wt. kg 0.02	0.25 0.99 0.99 0.99 2.29	1.02 1.12 1.12 1.14 1.14 4.66 3.51 2.64	
	N	Method Analyte Units LOR			
ALS	Inneral	Sample Description	RUFL- 18 RUFL- 19 RUFL- 20 RUFL- 21 RUFL- 22	RUOC-1 RUOC- 2 RUOC- 3 RBFL- 1 RBFL- 2 FFL- 1 ZFL- 1 ZFL- 2 NT	

	_				
- Pages: 2 (A - C) :e: 22- OCT- 2011 Account: LEEGAR		ME-ICP41 Sc ppm	0005-		α ₽ − Σ
# Pages: 2 tte: 22- 00 Account	75463	ME-ICP41 Sb ppm 2	26 11 6	22222	Q Q Q N
Total # Pages: 2 (A - C) Finalized Date: 22- OCT- 2011 Account: LEEGAR	WH11175463	ME-ICP41 5 % 0.01	0.06 0.09 0.01 0.01	0.01 0.05 0.53 0.18 0.02	0.21 0.13 0.02
Ξ		ME-ICP41 Pb ppm 2	4 22 18	4 24 3690 51 21	4 e e 4 45
	ANAL	ME-ICP41 P ppm 10	460 680 530 280 370	730 670 590 200	590 330 70
£	CERTIFICATE OF ANALYSIS	ME-ICP41 Ni ppm 1	8 23 4	15 34 39 39 39	3 2 2 3 2
й Y1A 6	TIFIC	ME-ICP41 Na % 0.01	0.03 0.02 0.02 0.02	0.01 0.02 0.08 0.04 0.04	0.03 0.03 0.01
WHITEHORSE YT Y1A 6L3	CEF	ME- ICP41 Mo ppm 1	<u>,</u> 		√ - ~ - √
WHITI		ME-ICP41 Mn ppm 5	96 295 152 101 236	189 361 1970 1180 173 660	959 279 84
oal.com		ME- ICP41 Mg % 0.01	0.31 0.67 0.39 0.10 0.18	0.57 0.55 0.98 0.23 0.09	0.05
www.alsglobal.com		ME-ICP41 La Ppm 10	0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9	5 5 6 5
		ME-ICP41 K % 0.01	0.09 0.05 0.05 0.08 0.06	0.05 0.13 0.10 0.05 0.07 0.19	0.13
10A7 Fax: 604 984 0218		ME-ICP41 Hg ppm 1	<u>२ - २ २ २</u>		7 7 7 7
984 0221		ME-ICP41 Ga ppm 10	8 8 8 8 8	6 6 6 6 6 6	ç e ç ç
North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax		ME-ICP41 Fe % 0.01	3.02 3.99 2.71 1.22 1.78	3.50 3.97 4.52 2.24 1.22 5.09	5.03 1.18 1.18
	n	Method Analyte Units LOR			
		Sample Description	RUFL- 18 RUFL- 19 RUFL- 20 RUFL- 21 RUFL- 22	RUOC-1 RUOC-2 RUOC-3 RBFL-1 RBFL-2 CFL-1	NT - 2 2 2 1 1

Page: 2 - C Total # Pages: 2 - C Finalized Date: 22- OCT- 2011 Account: LEEGAR	CATE OF ANALYSIS WH11175463					
To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3	CERTIFICATE	ME-ICP41 ME-ICP41 W Zn ppm ppm 10 2			 <10 <10 <10 <10 31 <10 39 <10 39 	
		ME-ICP41 ME- V Ppm p	e 0 v v 4		2 2 2	
www.alsglobal.com		ME-ICP41 M U Ppm 10	€ € 6 6 6	6 6 6 6 6	6 6 6 6	
		ME-ICP41 TI ppm 10	6 6 6 6 6	00 00 00 00 00 00 00 00 00	40 40 40 40 40 40 40	
H 0A7 Fax: 604 984 0218		ME-ICP41 Ti % 0.01	 <0.01 <0.01 <0.01 <0.01 <0.01 	 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 	0.01 0.01 60.01 60.01	
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax		ME-ICP41 Th ppm 20	<pre><20 <20 <20 <20 <20</pre>	20 20 20 20 20 20	<20 <20 <20 <20 <20	
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V Phone: 604 984 0221		ME-ICP41 Sr ppm 1	7 10 8 7 7	18 31 24 30	22 16 5	
l		Method Analyte Units LOR				
		Sample Description	RUFL- 18 RUFL- 19 RUFL- 20 RUFL- 21 RUFL- 22	Ruoc- 1 Ruoc- 2 Ruoc- 3 RBFL- 1 RBFL- 2	CFL- 1 ZFL- 1 ZFL- 2 NT	

CREW LOG

APPENDIX IV

ck and trailer and ATV to Watson Lake lies, finish mob to km 175 Nahanni Range Road set up – dig cooler pits ir ATV trail to target area trail to first target area ag geophysical and soil lines g Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sample Rubus claims tibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims g and prospect Red Bluff anomally	Days 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lies, finish mob to km 175 Nahanni Range Road set up – dig cooler pits ir ATV trail to target area trail to first target area ag geophysical and soil lines g Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sample Rubus claims cibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
set up – dig cooler pits ir ATV trail to target area trail to first target area ag geophysical and soil lines g Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims cibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ir ATV trail to target area trail to first target area ag geophysical and soil lines g Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims cibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rail to first target area ag geophysical and soil lines g Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims cibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ng geophysical and soil lines g Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims ribar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1
soil sample Rubus claims soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims zibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1
soil sample Rubus claims soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims cibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1 1 1
soil sample Rubus claims sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims cibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1 1 1
sics (VLF) and soil sample Rubus claims sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims zibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1 1
sics (VLF) and soil sample Rubus claims nd read VLF and soil sampling Rubus claims tibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1 1 1
nd read VLF and soil sampling Rubus claims zibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1 1 1
zibar – start flagging ATV trail to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1 1
to Zanzibar and work on ATV trail ag line 500 N and finish ATV trail on Zanzibar claims	1 1 1
ag line 500 N and finish ATV trail on Zanzibar claims	1
ag and prospect Red Bluff anomally	1
g and prospect feet Dian anomany	1
ag line, read VLF on Zanzibar claims	1
ag line 620 N, read VLF on Zanzibar claims	1
on north of creek valley on Zanzibar claims	1
rek Torgerson (YMIP) – stream sediments on Zanzibar	1
th of Golden Culvert (Helicopter)	1
nent sample, Zanzibar claims plus break camp	1
atson Lake and Mining Recorder	1
g, sorting and shipping samples	1
x, trailer, ATV to Whitehorse	1
TOTALS	25 Days
	g, sorting and shipping samples c, trailer, ATV to Whitehorse