JAVA PLACER PROJECT - INDIAN RIVER

Yukon Territory, Canada Map Sheet NTS 115 - O - 14c

FINAL REPORT – YMIP 12-042

TARGET EVALUATION

La Tierra Resources Ltd. D.R. (Bud) Davis

Information and Data Base Sources;

Yukon Mining Recorder, Dawson Yukon Geological Survey La Tierra Resources Ltd. Dark Side Drilling; (a division of; Kryotek Arctic Innovation Inc.) ALS Minerals Arctic Geophysics Inc.

TABLE OF CONTENTS

(Sections)

<u>Tab</u>

- 1. YMIP Final Submission Form Final Expense Claim Form
- 2. Indian River Java Project Final Report
 - Location, Access and Permitting
 - Recent History (Java location) Maps (a) General Project Location (b) Placer Mining Claims
 - Claim Status Report
 - Field Exploration Work Report
 - 2012 Exploration Summary
 - ALS Mineral Analytical Certificates

3. Maps

- a) Resistivity Profiles, with borehole and section stratigraphy.
 - Survey Line # 2
 - Survey Line # 3
- b) Drill Collar Locations
- c) Test Pit Locations
- d) Surficial Geology
- 4. Drill Logs (as submitted to the Recorders Office)
- 5. 2D Resistivity and Induced Polarization Survey (2011) survey by: Arctic Geophysics Inc.

ł

. .

YMIP FINAL SUBMISSION FORM

		· · ·	Date submitted:	OCTOBER	12,2012
submit by Ja	inuary 31st to:	YMIP- EMR/ YTG			
		Street address: 102-300	Main Street	YMIP@gov.yk.c	<u>a</u>
(winter place	er projects may	Mailing address: Box 270	93, K-102	phone: 867-456	
submit at pr	e-approved date)	Whitehorse, Yt, Y1A 2C6		fax: 867-667-31	.98
CONTACT IN	IFO BUD DAV	15	PROJECT INFO		
Name:	LA TIERRA RES	SOURCES LTD.	YMIP no:	12-04	
Address:	Box 304-211		Project name:	JAVA PLAQ	er project
<u></u>		YUKON YIAZAI	Project type:	PLACER	
email	BND. LATIERRA	@ GMAIL, COM	Project module:	TARGET EN	ALLIATION
Phone:	867 334 56	,41	-	· · ·	
Is the final r	eport enclosed?	<u> </u>	_hard copy		
		no	_pdf copy		
	·		_digital spreadshe	et of station loca	ation data
Comment:	, 				
PROJECT SU	IMMARY				
	t expenditures:	\$ 53,350.	.78		
	new claims since March				-
Has an optic	on resulted since March	•••••• · · · · · · · · · · · · · · · ·	X no	in nego	tiation
Number of a	alendar field days:	52			
Number of p	person-days of employm	ent: 71 paid	· 404	-days of unpaid	work
Total no. of	samples: 150 +	tothe PANNED silles	GRAVEL	days of unpaid f soils R f R f R	Z other
Total length	/volume of trenching/ sl	nafting: 660 Cu	BIC METRES	FOR AN	HALYSIS
Total numbe	er of line-km of geophysi				
Total meter	s drilled	/ diamond drill	117m RC drill	AND auger/	percussion drill
Other produ	icts (provide details):				
		not an expense claim form			enses, please
FINANCIAL S			e detailed expense	-	
	ield allowance	7,100,00	Total contractor	, -	9,312,50
Total field a (helicopter/	ir transportation costs	-0-	Total excavating/ equipment costs	~ ` ` `	9,200.00
		707 60	1	<u> </u>	
	mileage costs	707.60 A	Total assay/analy		7 ATTOL
Total wages	hain	ALTIS. 0- 4	-Total reclamation	-	
Total light e	quipment rental costs	2,190.00	Total report writi	ng cost	1200.00
Other (pleas	se specify) CAMP Fu	z 388.49	_Total staking cost	ts .	~
Other (pleas	se specify) WCB	278,91 DIESE	2 283.60		

(see reverse)

Your feedback on any	aspect of the program:
----------------------	------------------------

YMIP PROGRAMS WELL MANAGED.

The Department of Energy, Mines and Resources may verify all statements related to and made on this form, in

any previously submitted reports, interim claims and in the Summary or Technical Report which accompanies it.

I certify that;

1. I am the person, or the representative of the company or partnership, named in the Application for Funding and in the Contribution Agreement under the Yukon Mining Incentives Program.

2. I am a person who is nineteen years of age or older, and I have complied with all the requirements of the said program.

3. I hereby apply for the final payment of a contribution under the Yukon Mining Incentives Program (YMIP) and declare the information contained within the Summary or Technical Report and this form to be true and accurate.

Date	Oct. 12, 2012
Signature of Applicant	- Alas
Name (print)	D.R. (BUD) DAVIS / LA TIERRA RESOURCES LTD.

YMIP Expense Claim Form - Client copy (FINAL)

YMIP no:	12-042 MH	project ZA name: IN	VA PLACE DIAN RIVI	Applicant name LA TIERRA RESOURCES LTD			
Expense Claim no:	3 FINAL	program 🕌 type:	walreesk PL	ACER	module: 7	ARGET EVALLIATION	
date submitted		phone: 8	57 334-	5641	BLID.LAT/E email:	ERRA @ GMAJL. Com	
address I	30×304	1-211 E4	LIOTT ST	WHITE HO	PSE YU	KON YIAZAI	
Start/ end o this claim:	dates of fiel	dwork for	ALIB-9	AJG. 29	no of field days/ this claim:	8	
eligible expenses item	Please refe	er to rate guide	lines. Provide (photocopy of receip unit/days		xclude GST total (no GST)	
daily field expenses	no person		8 DAYS	8	\$100/day	800. 30	
		Prospin Statemer	nt of qualificat SPECTOR	ions)	350/D	800. 29 2,800. 99	
Personnel	······································						
equipment (rental)	1		private or commercial	unit/days	rate	total	
······	······································	······································	private				
			private				
			private				
	ter 14 anno —	<u></u>	private				
· ·	A		private				
			private private			· ·	
			private	I · · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	private			.`	
			private				
	·····	<u>.</u>	private	· · ·			
other			please provi	de details			
DE-MOB	JAVA TO	WHITEH	BE	580 Km 50	0.61/Km	353.80	
ALS N	1INERAL	25	SAMPLE	ANALYSIS		214.67	
	REPORT		_			1,200.00	
AFD-	EXCAN	ATOR D	ESEL	FUEL		283.60	
at go ganga ganati ma		angen generation and and	San tanàna amin'ny tanàna mandritry dia kaominina dia			dim i an	
				Grand to	tal this claim:	\$ 5,652.07	

(C)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LA TIERRA RESOURCES LTD. BOX 304-211 ELLIOTT ST WHITEHORSE YT Y1A 2A1

INVOICE NUMBER 2720415

		ANALYSED FOR			UNIT		
В	BILLING INFORMATION		QUANTITY	CODE -	DESCRIPTION	PRICE	TOTAL
Certificate: Sample Type: Account: Date: Project: P.O. No.: Quote: Terms:	WH12213669 RAB Drill Chip LATIRE 25-SEP-2012 Java Project Due on Receipt	СЗ	QUANTITY 1 7 7 15.06 7	ECODE - BAT-01 Au-AA23 PUL-32 BAG-01 SPL-21 SPL-21	Administration Fee Au 30g FA-AA finish Pulverize 1000g to 85% < 75 um Bulk Master for Storage Weight Charge (kg) - Split sample - riffle splitter Split sample - riffle splitter	31.50 16.05 6.20 1.20 0.38 1.90	31.50 112.35 43.40 8.40 5.72 13.30
Comments:							
					SUBTOTAL (CA)\$	214.67
To: LA	A TIERRA RESOURCES LTD.				R100938885 G	ST \$	10.73
AT BC	TTN: D.R. (BUD) DAVIS OX 304-211 ELLIOTT ST /HITEHORSE YT Y1A 2A1				TOTAL PAYABLE (CAI) \$	225.40
			P	ayment may be	made by: Cheque or Bank Transfer		

Beneficiary Name: ALS Canada Ltd. Royal Bank of Canada ROYCCAT2 Bank: SWIFT: Address: Vancouver, BC, CAN 003-00010-1001098 Account: Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To :

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Invoice #2012 - 03

Date: August 30, 2012

- To: La Tierra Resources Ltd. Box 304 – 211 Elliott street Whitehorse, Yukon Y1A 2A1
- From: D.R. (Bud) Davis, Prospector Box 304 – 211 Elliott Street Whitehorse, Yukon Y1A 2A1
- Re: Indian River, Java Placer Exploration Project 2012 Dawson Mining District
- Description: Sample Collection & Processing, Trenching & Stripping and Equipment Operator.
- Period: August 9, 2012 through August 29, 2012 8 days at \$ 350 per day Total \$ 2,800.00

la=

D.R. (Bud) Davis

			AFD Pe	etroleum Ltd	Invo	ice Number		IN056955
	/		44 MacDor	ald Road	Pag	e .		1
QUALITY FUELS			Whitehorse Canada	e, YT Y1A 4L2	1 -	ice Date	Sep	05, 2012
& LUBRICANTS	J		Phone: Fax:	(867) 667-6211 (867) 668-3621	L	Inv	oice	
			GST Numb	er: 129183166RT		Customer Nur		8029
ald Tax				Chin To:		Due Date		Sep 5, 201
old To:				Ship To:				
LA TIERRA RESOUF Box 304 211 ELLIOTT ST. Whitehorse, Yukon Y Canada				Box 304 211 ELLIC	A RESOURCES DTT ST. se, Yukon Y1A 2			
Site Site Name	Date	Time	Odomete	r Reference	ltem	Quantit	/ Unit Price	Ext Price
Card130602		<u>.</u>	ESOURCE					
C032 Dawson City	8/16/2012	. 1			Reg Unl Gas (Cardlo 105.7	0 1.1428	120.80
C032 Dawson City	8/21/2012	12:21p			Reg Uni Gas (57.05
C032 Dawson City	8/25/2012	4:34p			Diesel Clear (25.79
C032 Dawson City	8/25/2012	4:40p			Reg Unl Gas (59.44
032 Dawson City	8/30/2012	7:59p			Reg Unl Gas (54.42
		-	Paar	Bata		277.5	ō —	317.50
\ <i>_</i>			Base		Tax	Total Taxe	s	61.92
YTFET			22.00		0.88 25.55	Card Subtota		379.42
YTFET YTPFT			255.50 255.50		25.55 15.84			515.42
YTPFT			255.50	•	15.64			
YTGST			22.00	0.0720	18.07			
							<u>a. 663. 6740 (000-000-000-000-000-000-000</u>	
				ء.	DIESEL	25.79		
-								
	•							

2.14

317.50 Comments: Tax summary: Subtotal before taxes 43.85 Total non sales tax YTFET 26.43 18.07 YTPFT 17.42 Total sales tax YTGST 18.07 379.42 Total amount

-

Box 30 211 EL	RRA RESOURCES LTD)4 .LIOTT ST. horse, Yukon Y1A 2A1	сс		44 MacDor Whitehorse Canada Phone: Fax:	e, YT Y1A 4L2 (867) 667-6211 (867) 668-3621 er: 129183166RT Ship To: LA TIERF Box 304 211 ELLIO		Due	ite Invo stomer Num Date	Aug DiCE ber	IN055757 1 3 20, 2012 80291 ug 20, 2012
Site	Site Name	Date	Time	Odomete	r Reference	ltem		Quantity	Unit Price	Ext Price
	rd - 130602	•		RESOURCE				quantity		
C032 C032 C032 C032 C032 C032		8/3/2012 8/3/2012 8/10/2012 8/10/2012 8/13/2012	2:08p 2:14p 2:31p 2:37p 7:00a	Base	Rate	Diesel C Diesel C Reg Unl	Gas (Cardio lear (Cardioc lear (Cardioc Gas (Cardio Gas (Cardio	79.40 75.80 71.30 54.00 40.70 321.20	1.1804 1.1738 1.1428 1.1428	91.27 89.47 83.70 61.71 46.52 372.67
	YTFET			147.10	0.0400	5.88		Total Taxes		65.54
	YTFET YTPFT YTPFT YTGST			174.10 174.10 147.10	0.1000 0.0620 0.0720	17.41 10.79 10.59 20.87	C	ard Subtotal		438.21
							D.	IESEL	173.1;	7

Comments: Tax summary: 372.67 Subtotal before taxes 44.67 Total non sales tax YTFET 23.29 YTPFT 21.38 20.87 Total sales tax 20.87 YTGST 438.21 Total amount

.

Sold To: LA TIERRA RESOURCES LTD Box 304 211 ELLIOTT ST. Whitehorse, Yukon Y1A 2A1 Canada	-CC	44 MacDonald Whitehorse, Y Canada Phone: (84 Fax: (84	/T Y1A 4L2 67) 667-6211 67) 668-3621 : 129183166RT Ship To:	TT ST.	Customer Nu Due Date JRCES LTDCC	OiCe ·	IN054416 1 g 16, 2012 80291 aug 16, 2012
Site Site Name	Date Time		Reference	ltem	Quanti	ty Unit Price	Ext Price
Card - 130602 C032 Dawson City C032 Dawson City C032 Dawson City C032 Dawson City C032 Dawson City C032 Dawson City YTFET YTFET YTFFT YTPFT YTPFT YTGST	Desc - LA TIERRA 7/4/2012 11:45 7/7/2012 2:54 7/9/2012 10:51 7/9/2012 11:15 7/15/2012 1:14	a p p p	Rate 0.0400 0.1000 0.0620 0.0720	Diesel C Reg Uni Reg Uni Reg Uni	I Gas (Cardlo 127. Clear (Cardloc 71. I Gas (Cardlo 45.0 Gas (Cardlo 79. I Gas (Cardlo 106.0 Gas (Cardlo 42.0 471.0 Total Taxi Card Subto	70 1.1804 00 1.1494 10 1.1494 60 1.1494 00 1.1494 60 1.1494 60 es tal	84.64 51.72 90.92 122.53
Overdue accounts will be sub Comments:	oject to an interest o		voice date at the Tax summary:	Г	% per month. Subtotal before taxes	5	544.29

29.95

30.85

Total sales tax

Total amount

YTPFT

YTGST

.

×

۰.,

30.85 647.95

/

JAVA PLACER PROJECT

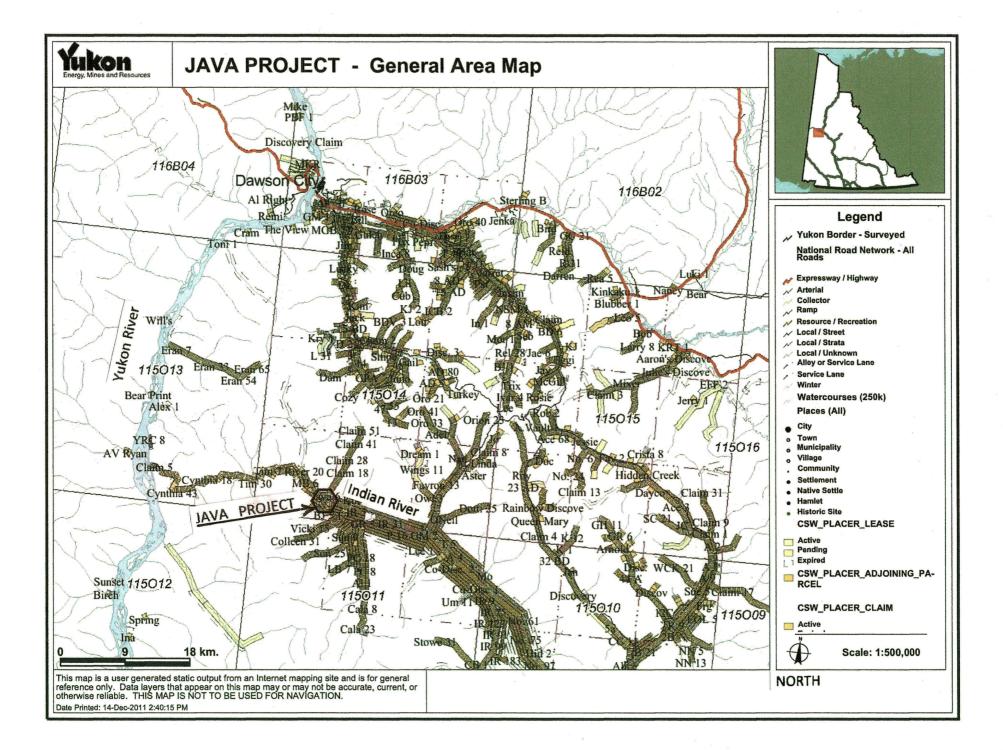
LOCATION & ACCESS

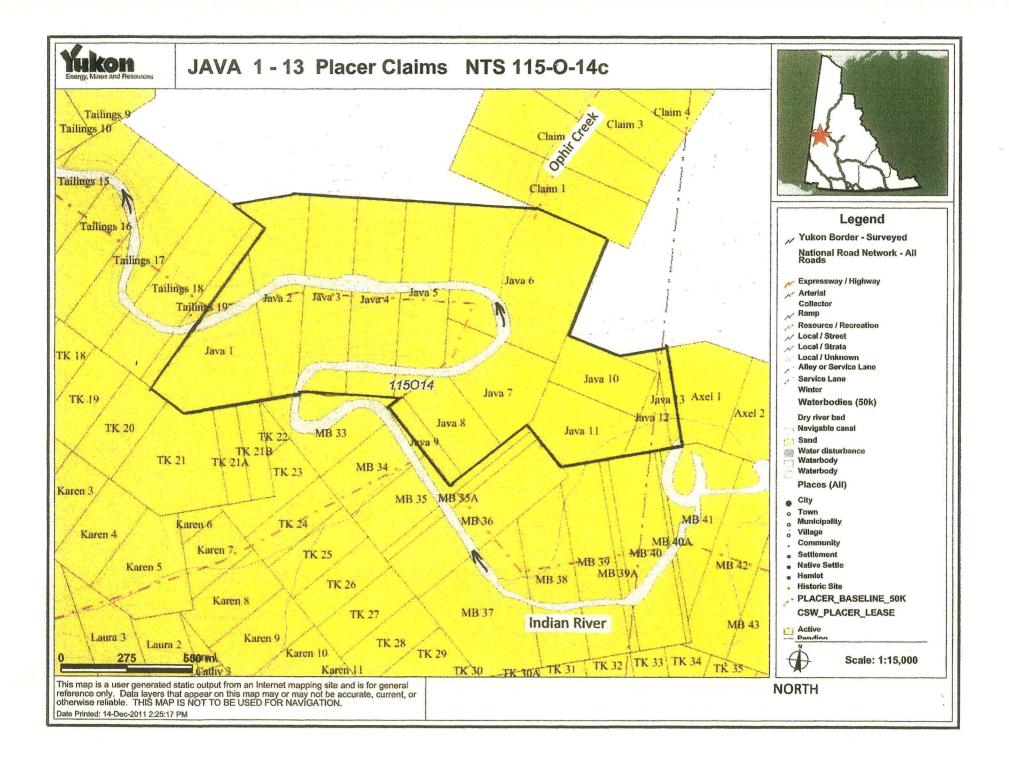
The Java 1 - 13 claims are located on the Indian River, a right limit tributary of the Yukon River. Dawson Mining District, placer claim map sheet NTS 115-O-14c.

Java claims 1 - 13, The 2012 exploration work program was centred, approximately at the following map coordinates;

North Latitude 63 degrees, 46 minutes, 14.4 seconds West Longitude 139 degrees, 20 minutes, 25.8 seconds

Access is via the Klondike paved highway, then Yukon secondary gravel roads up Hunker Creek and down Quartz Creek to where it joins the Indian River. Then down the Indian River via miner's roads (13 +/- Km), to the Java claims. The distance from Dawson City to the placer claims is about 75 kilometres.


PERMITTING


An amended Type "B" Water Use Licence # PM 11-002 for placer mining and a Class 4 Mining Land Use Permit # AP 11002, was granted on May 9, 2012 by the Yukon Water Board for placer claims Java 1 - 13.

Recent Placer History (Project location)

Java 1-9 placer mining claims were staked on October 5, 2010 and the right limit bench claims Java 10-13 were staked on August 26, 2011. Some areas on placer claims Java 1-13 were previously mined during the 1980's and early 1990's. The right limit bench areas of claims Java 6, 7, 10 and 11 have not been mined. Certain bench areas of Java 11 claim were stripped in preparation for mining some 18 to 20 years ago. This general area of the Indian River valley is a past and currently active placer mining area.

In August of 2011, a geophysical 2D Resistivity and Induced Polarization survey was carried out on the Java claims. Survey lines # 2 and # 3 on claims Java 6, 7, 10 & 11 outlined a 450 metre +/- long paleochannel of the Indian River. The 100 +/- metre wide channel runs parallel to the NW/SE right limit trending mountain slopes. The bottom of the paleochannel is estimated (geophysics) to be vertically located 12 +/- metres above the current day channel bottom of the Indian River.

Claim Status Report

06 September 2012

r (Claim Name and Nbr.	Grant No:	Expiry Date Registered Owner	% Owned Excess NTS #'s
ĸ	Java 1 - 5	P 508115 - P 508119	2012/10/06 La Tierra Resources Ltd.	100.00 2 115O14c
11	Java 6 - 7	P 508120 - P 508121	2012/10/06 La Tierra Resources Ltd.	100.00 3 115O14c
	Java 8 - 9	P 508122 - P 508123	2012/10/06 La Tierra Resources Ltd.	100.00 2 115O14c
	Java 10 - 13	P 508446 - P 508449	2013/10/06 La Tierra Resources Ltd.	100.00 2 115O14c

Criteria(s) used for search:

CLAIM DISTRICT: 1000002 CLAIM NAME: JAVA CLAIM STATUS: ACTIVE & PENDING REGULATION TYPE: PLACER

Left column indicator legend:

R - Indicates the claim is on one or more pending renewal(s).

P - Indicates the claim is pending.

Right column indicator legend:

- L Indicates the Quartz Lease.
- F Indicates Full Quartz fraction (25+ acres)
- P Indicates Partial Quartz fraction (<25 acres)

Page 1 of 1

Total claims selected : 13

- D Indicates Placer Discovery
- C Indicates Placer Codiscovery
- **B** Indicates Placer Fraction

2012 Field Work Report

Pre-Drilling

In May, a temporary exploration camp was established on bench claim Java 7 near the proposed drilling and test pit work sites. The final kilometre of main access road to the camp area had to be extensively brushed and hand cleared of slope fallen rocks. This portion of the access road had not been actively used for 18 plus years. Approximately 280 metres of 4 + metre wide trails were cleared of timber by hand to allow for drilling equipment access. The vegetative mat was left in place on these drill access trails.

Drilling Program

Dark Side Drilling (a division of Kryotek Arctic Innovation Inc.) of Whitehorse was contracted to carry out the auger / hammer drilling program. Drilling commenced on July 13 and was concluded on July 28. A Simco 2400 SK1 drill unit was used. Auger drill sections were 4 inches in diameter and 5 feet in length.

Seven boreholes were drilled for a total footage of 379 feet or 117 metres. Very poor ground conditions were encountered and a few mechanical and equipment issues interrupted the program from time to time. I wish to compliment Jim Coates and his Dark Side drilling crew for their safe working methods and expertise on the job.

The bedrock / gravel contact (profile & depth) calculated by Arctic Geophysics Ltd. turned out to be within or close to the margin of error which is considered to be half the electrode spacing or 1.5 metres. In actuality, bedrock contacts were 1.5 to 2.0 metres shallower than estimated. The stratigraphic section of low resistivity that was thought to possibly contain unfrozen gravels... unfortunately, turned out to be a thick 12 - 13 + 2 - 13 + 2 - 13 metre layer of silt, clay and loess overburden covering various thicknesses of presumed White Channel gravels, which is the gravel type laying on the bench bedrock.

This layer of silt, clay & loess is generally ice poor and little evidence of contained biological matter was observed. The section is frozen, but only by an estimated -0.5 to -1.5 c (Jim Coates). The change in resistivity values dividing this 12 - 13 +/- metre stratigraphic section was caused through changing moisture / ice content and not a change in the type of material. Borehole flooding and slumping caused by quick thawing and simple friction from auger drilling resulted in the loss or abandonment of three boreholes. Jeff Bond of the YGS examined representative samples of the overburden material and comments that they contain a high content of loess.

The drill sample results from hand processing and from ALS Minerals, indicate non-economic gravels underlying the deep overburden covering the paleochannel.

Boreholes on Survey Line # 2 Placer Claim Java 11 (P-508447)

* <u>Hole 2012-1A</u> Collar – N. Latitude 63 46' 14.3" W. Longitude 139 20' 25.3" Survey line # 2 ... Station # 78

Intervals 0.0 – 0.5 vegetative mat ... (metres) 0.5 – 11.0 scl, black, grey, brown. Fine grained with occasional sands & pebbles 11.0 – 13.5 scl – sand/gravel interface. Gravels well rounded, with high quartz content. Minor magnetite & garnet. No Au grains were observed. Gravel content 30 -40%

At 13.5 metres the auger drill was switched to hammer and the compressor subsequently failed (burnt out), by the time a replacement compressor was obtained the hole was lost at 13.5 metres, due to flooding. Scl samples were panned at 3 metre intervals. Bedrock was not reached and was estimated from geophysics to be another 4 m, or at 17.5 metres.

* <u>Hole 2012-1B</u> Collar – 1.5 metres northwest of Hole 2012-1A

Intervals 0.0 - 0.5 vegetative mat (metres) 0.5 - 12 scl, black, grey, brown. Fine grained with occasional sands & pebbles. No Au grains observed.

At 12 metres, the auger drill hole was lost due to borehole side wall closing or slumping. Scl samples were panned at 3 metre intervals. Bedrock was not reached and was estimated from geophysics to be another 5.5 m, or at 17.5 m

* <u>Hole 2012-1C</u> Collar – 4.0 metres west of Hole 2012-1A

Intervals	0.0 – 0.5 vegetative mat
(metres)	0.5 – 12.0 scl, black, grey, brown. Fine grained with occasional
	sands & pebbles
	12.0 - 13.5 scl - sand/gravel interface. Gravels well rounded,
	with high quartz content. Minor magnetite & garnets
	No Au grains were observed. Gravel content 20 -30%

At 13.5 metres the auger drill hole was stopped, due to presumed contact with a boulder field. High silicon wore out the "fist bit" carbide teeth in 3 hours and progress was down to 2 - 3 cm per hour. Scl samples were panned at 3 metre intervals. Bedrock was not reached and was estimated from geophysics to be another 4 m, or at 17.5 metres.

* <u>Hole 2012-2</u> Collar – N. Latitude 63 46' 15.4" W. Longitude 139 20' 24.5" Survey Line # 2 ... Station # 111

Intervals 0.0 - 0.5 vegetative mat
(metres) 0.5 - 12.0 scl, black, grey, brown. Fine grained with occasional sands & pebbles
12.0 - 13.5 scl - sand/gravel interface. Gravels well rounded, with high quartz content. Gravel content 20 -30 %
13.5 - 15.0 chips & fine material from gravels (ALS Minerals)
15.0 - 16.5 chips & fine material from gravels (ALS Minerals)
16.5 - 18.0 chips & fine materials from gravels, panned 5 litre sample (oil contamination) One micro Au grain.
18.0 - 19.5 chips & fine material from gravels, panned 5 litre sample (oil contamination) 25 +/- % quartz, minor garnets, 3 micro Au grains. Bedrock est. at 18.5 m.
19.5 - 21.0 bedrock chips & fines (schist ?) (ALS Minerals)

At 13.5 metres the auger drill was switched to a percussion hammer head. Initial hammer returns were poor and a pvc casing was put in place. Scl samples were panned at 3 metre intervals and no gold grains were observed is this material. Hammer chip and fine grain returns were directly bagged, no cyclone was used. Sample return volumes of 5-8 litres were obtained from each 1.5 metre hammer interval.

Intervals, 16.5 - 18 & 18 - 19.5 were hand processed (panned) and found to have been contaminated with oil from the air lines (burnt out compressor). All air lines were subsequently cleaned and it was decided to send the remaining hammer (chip) samples to ALS Minerals for analysis.

Boreholes on Survey Line # 3 Placer Claim Java 7 (P-508121)

* <u>Hole 2012-3</u> Collar – N. Latitude 63 46' 15.8" W. Longitude 139 20' 30.3" Survey Line # 3 ... Station # 84

Intervals	$0.0 - 0.5 \dots$ vegetative mat
(metres)	$0.5 - 7.5 \dots$ scl, black, grey, brown. Fine grained, with occasional
	sands & pebbles.
	7.5 – 9.0 Sand, pebble layer. High quartz & garnet content,
	minor magnetite. Panned – No Au grains observed.
	9.0 - 13.0 scl, black, grey, brown. Fine grained, with occasional
	sands & pebbles.

13.0 – 14.5 scl – sand/gravel interface. Gravels well rounded, with high quartz content. Gravel content 20 -30 % Panned – minor garnet & magnetite. No Au observed

At 14.5 metres, the auger drill progress was stopped on a presumed boulder field. Scl samples were panned at 3 metre intervals and no Au grains were observed. Compressor over-heating and electrical problems, prevented the use of the percussion hammer. Bedrock was not reached and was estimated from geophysics to be another 2.0 m, or at 16.5 metres.

* Hole 2012-4A Collar – 2.5 metres north of Station # 111 ... on Survey Line # 3

Intervals 0.0 – 0.5 vegetative mat (metres) 0.5 – 17.0 scl, black, grey & brown. Fine grained, with occasional sands & pebbles 17.0 – 17.5 beginning of scl – sand/gravel interface.

At 17.5 metres the auger drill was switched to hammer and 10 metres of pvc casing was placed. Poor sample return was encountered and in raising the drill string, the continuity of the casing was lost which resulted in the hole being abandoned. Scl samples were panned at 3 metre intervals. No gold grains were observed. Bedrock was not reached and was estimated from geophysics to be another 5.5 m, or at 23 metres.

<u>Hole 2012-4B</u> Collar – N. Latitude 63 46' 16.5" W. Longitude 139 20' 29.4" Survey Line # 3 ... Station # 111

Intervals 0-0.5 vegetative mat (metres) 0.5-18.0 ... scl, black, grey & brown. Fine grained, with occasional sands & pebbles

18.0 - 19.5 .. scl /sand/gravel interface. (ALS Minerals)
19.5 - 21.0 .. chips & fine material from gravels (ALS Minerals)
21.0 - 22.5 .. chips & fine material from gravels (ALS Minerals)
22.5 - 24.0 .. chips & fine material from gravels and bedrock materials (ALS Minerals)

At 18.0 metres, the auger drill was switched to hammer and 15 metres of pvc casing was placed. Scl auger samples were panned at 3 metre intervals and no gold grains were observed in the scl material. From 18.0 to 24.0 metres, each 1.5 hammer interval, produced directly bagged samples of 5 - 8 litres. Bedrock was reached at approximately 23 metres.

Test Pit and Sampling Program

A Case CX36B excavator was rented from Mario Ley Contracting to carry out a program of re-sampling previously tested bench areas (2011) and to test a few new areas of the bench. This sampling program was carried out on placer mining claims Java 6, 7 and 11 at various times during July & August by Bud Davis as equipment operator.

The proposed small bulk sampling program could not be carried out due to the bench elevation or a required water lift of 130 feet vertically and 400 + feet horizontally. The pump used, turned out to be unable to provide the proper pressure and water volumes at this elevation and distance.

A total of seven new test pits were dug at various bench locations and one on the left limit of the Indian River. Samples were obtained from various stratigraphic levels and all had processing volumes of approximately three litres. These gravel samples were processed in the field through sieving and panning. The contained gold fraction was estimated by gold grain counts and using comparative methods to the Yukon Placer Gold Scale produced by the Yukon Geological Survey. Estimated gold grades made using this method were made conservatively, considering the Gold Scale is two dimensional and was designed for reference purposes only.

Test Pi	t Location	ns & Depths

<u>Test Pit</u> <u>Number</u>	Longitude & Latitude Coordinates	<u>Claim</u>	Depth (m)
1	W 139 20' 14.4" N 63 46' 13.2"	Java 11	4.0
2	W 139 20' 15.7" N 63 46' 13.6"	Java 11	4.0
3	5 metres north of Java 6 (Post 2)	Java 6	2.5
4	W 139 20' 21.0" N 63 46' 11.1"	Java 11	2.5
5	W 139 20' 22.1" N 63 46' 11.0"	Java 11	3.0
6	W 139 20' 23.5" N 63 46' 11.2"	Java 11	5.0
7	W 139 20' 26.1" N 63 46' 12.1"	Java 11	4.5
8	W 139 20' 33.2" N 63 46' 14.0"	Java 7	4.0

Stratigraphy & Descriptions

<u>Pit # Depth (m) Descriptions</u>

- 1. 0.0 1.5 silt /clay overburden
 - 1.5 4.0 sand, gravels, cobbles & boulders to near 1 metre in diameter.
 sand & gravels less than 60% by volume, not White Channel gravels.
 Bedrock not reached ... estimated to be another 4 +/- metres deeper.
 Panned four, 3 litre volume gravel samples slight garnet & magnetite.
 No Au observed in samples.

- 2. 0.0-4.0 silt, clay & loess no gravels or bedrock reached.
- 3. 0.0 1.5 vegetative mat and duff
- 1.5-2.5sandy multi coloured gravels quartz poor & cobbles to 10cm
significant garnet with minor magnetite. Bedrock not reached.
Panned two, 3 litre volume samples.
Sample 1 1.5m 3 Au grainsInterval 1.5 2.5 = 1.5 metres
Sample 2 2.5m 4 Au grainsEstimated grade 0.3 gm / m3
- 4. 0.0 1.0 vegetative mat and duff

1.0 - 2.5	grey/white, quartz rich gravels, w/garnets & magnetite.						
	Bedrock at 2.5 metres – graphitic	schist					
	Panned three, 3 litre volume samp	ples.					
	Sample 1 – 1.5m – 6 Au grains						
	Sample $2 - 2.5m - 5$ Au grains	Interval $1.0 - 2.5 = 1.5$ metres					
	Sample $3 - 2.5m - 5$ Au grains	Estimated grade -0.5 gm / m3					

- 5. 0.0 1.0 vegetative mat and duff
 - 1.0-1.5 sand, gravels mix of reddish & grey/white, quartz rich
 - 1.5-3.0grey/white, White Channel gravels, w/garnets & magnetite.
Bedrock at 3 metres graphitic schist. Larger garnets to 2mm
Panned two, 3 litre volume samples.
Sample 1-1.5m-12 Au grainsInterval 1.0-3.0 = 2.0 metres
Sample 2-3.0m-4 Au grainsLarger garnets to 2mm
Estimated grade -0.8 gm / m3
- 6. 0.0 0.5 vegetative mat
 - 0.5 3.0 reddish / grey gravel mix, cobbles to 10+cm
- 7. 0.0 1.0 vegetative mat and duff
 - 1.0 2.5 reddish / grey / white gravels, w/garnet & magnetite
 - 2.5 3.5 grey / white, White Channel gravels, w/garnets & magnetite.
 - 3.5 4.5 grey / white, White Channel gravels, w/garnets & magnetite. Bedrock not reached.
 - Panned three, 3 litre volume samples.
 - Sample 1 2.5m 4 Au grains
 - Sample 2 3.5m 4 Au grains Interval 1.0 4.5 = 3.5 metres
 - Sample 3 4.5m 6 Au grains Estimated grade 0.5 gm / m3

- 8. 0.0 0.5 vegetative mat
 - 0.5 2.0 reddish / grey gravel mix, sandy, quartz rich, minor garnet & magnetite
 - 2.0-3.0 grey / white, White Channel gravels, w/garnets & magnetite
 - 3.0 4.0 grey / white, White Channel gravels, w/garnets & magnetite Bedrock not reached.
 - Panned three, 3 litre volume samples.
 - Sample 1 2.0m 3 Au grains
 - Sample 1 = 2.0 1 = 3 Au gram
 - Sample 2 3.0m 3 Au grainsInterval 2.0 4.0 = 2.0 metresSample 3 4.0m 5 Au grainsEstimated grade 0.4 gm / m3

The estimated gold grades of the White Channel gravels encountered on the bench claims tested from 0.3 gm to 0.8 gm per cubic metre. Fineness is not known. Gold grains were 95% < 1mm and generally very flat with a few wire type grains. The largest flat grain was estimated at 1.5 mm across. The heavily fractured schist bedrock was not tested due, to the small size of the excavator used, however the first fractured 0.5 +/- metre should return recoverable placer gold values. All test pit areas were reclaimed.

The 2011 higher grade sample results from the bench ... are believed to have been compromised by being run over the large gold table of Handle River Resources. This table is also used to clean up production grade gold concentrates from other miners. In spite of observing and participating in the table cleaning ... the only conclusion, is that some degree of cross contamination did occur.

2012 Exploration Summary

The auger / hammer drill program was considered only a partial success in that only 2 of the 7 boreholes reached their planned depth. The other holes were stopped short for various geological and technical reasons. The drilling confirmed the existence of a paleochannel of the Indian River, its depth and gravel / bedrock contact profile.

However, the gravel samples returned through this hammer drilling program did not return economic values. Further exploration of the paleochannel area may be carried out through excavation of its southeastern end, where there has been some erosion of the thick overburden layer.

The verification test pits dug and sampled on placer claims Java 6, 7 and 11 indicate an economic area for future placer mining. The gold grades of these White Channel gravels on the bench tested between 0.3 to 0.8 grams gold per cubic metre. The reddish, quartz rich gravels overlying the White Channel gravels on the bench contain gold values, where tested. These values are generally less than 0.3 grams per cubic metre, however in many areas may be economically recoverable during any future mining.

D.R. (Bud) Davis La Tierra Resources Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LA TIERRA RESOURCES LTD. BOX 304-211 ELLIOTT ST WHITEHORSE YT Y1A 2A1

Page: 1 Finalized Date: 25-SEP-2012 This copy reported on 3-OCT-2012 Account: LATIRE

CERTIFICATE WH12213669

Project: Java Project

P.O. No.:

This report is for 7 RAB Drill Chip samples submitted to our lab in Whitehorse, YT, Canada on 10-SEP-2012.

The following have access to data associated with this certificate:

D.R. (BUD) DA

WEI-21 Received Sample Weight SPL-21 Split sample - riffle splitter PUL-32 Pulverize 1000g to 85% < 75 um PAC_01 Bulk Master for Storage	ALS CODE DESCRIPTION						
PUL-32 Pulverize 1000g to 85% < 75 um	WEI-21	Received Sample Weight					
5	SPL-21	Split sample - riffle splitter					
PAC 01 Pulk Master for Storage	PUL-32 Pulverize 1000g to 85% < 75 um						
BAG-01 Buik Master for storage	BAG-01	Bulk Master for Storage					
PUL-QC Pulverizing QC Test	PUL-QC	Pulverizing QC Test					
		ANALYTICAL PROCEDURES					

	OURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS

To: LA TIERRA RESOURCES LTD. ATTN: D.R. (BUD) DAVIS BOX 304-211 ELLIOTT ST WHITEHORSE YT Y1A 2A1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LA TIERRA RESOURCES LTD. BOX 304-211 ELLIOTT ST WHITEHORSE YT Y1A 2A1

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 25-SEP-2012 Account: LATIRE

Project: Java Project

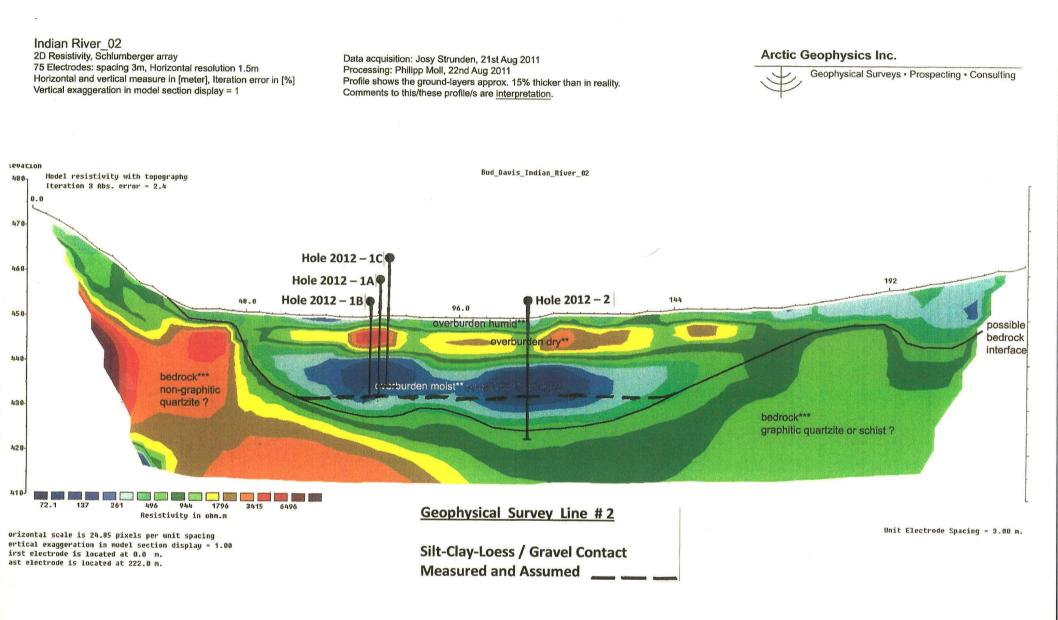
QC CERTIFICATE OF ANALYSIS WH12213669

Method Analyte Units Sample Description LOR	Au-AA23 Au ppm 0.005
	STANDARDS
CDN-GS-1P5 Target Range - Lower Bound Upper Bound OXN92 Target Range - Lower Bound Upper Bound	1.550 1425 1.615 7.89 7.18 8.11
Opper Bound	BLANKS
BLANK Target Range - Lower Bound Upper Bound	<0.005 <0.005 0.010
	DUPLICATES
ORIGINAL DUP Target Range - Lower Bound Upper Bound	2.63 2.76 2.56 2.83
4B 22.5-24 DUP Target Range - Lower Bound Upper Bound	<0.005 <0.005 <0.005 0.010

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LA TIERRA RESOURCES LTD. BOX 304-211 ELLIOTT ST WHITEHORSE YT Y1A 2A1

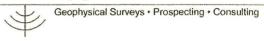
Page: 2 - A Total # Pages: 2 (A) Finalized Date: 25-SEP-2012 Account: LATIRE

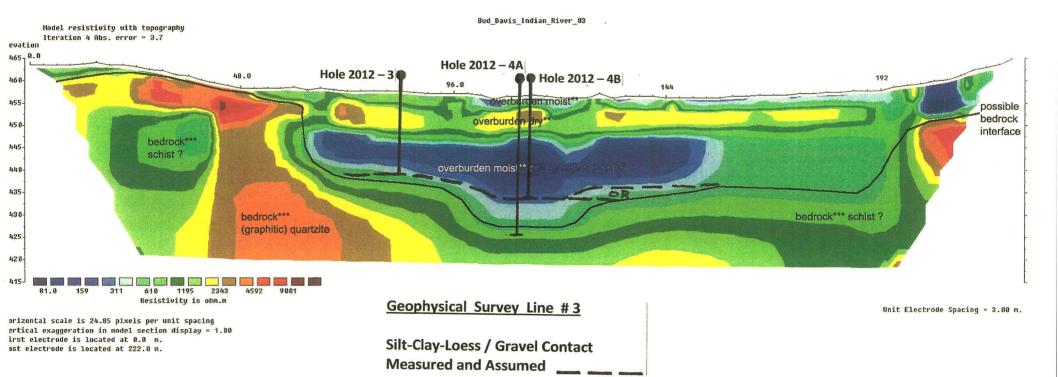

Project: Java Project

CERTIFICATE OF ANALYSIS WH12213669

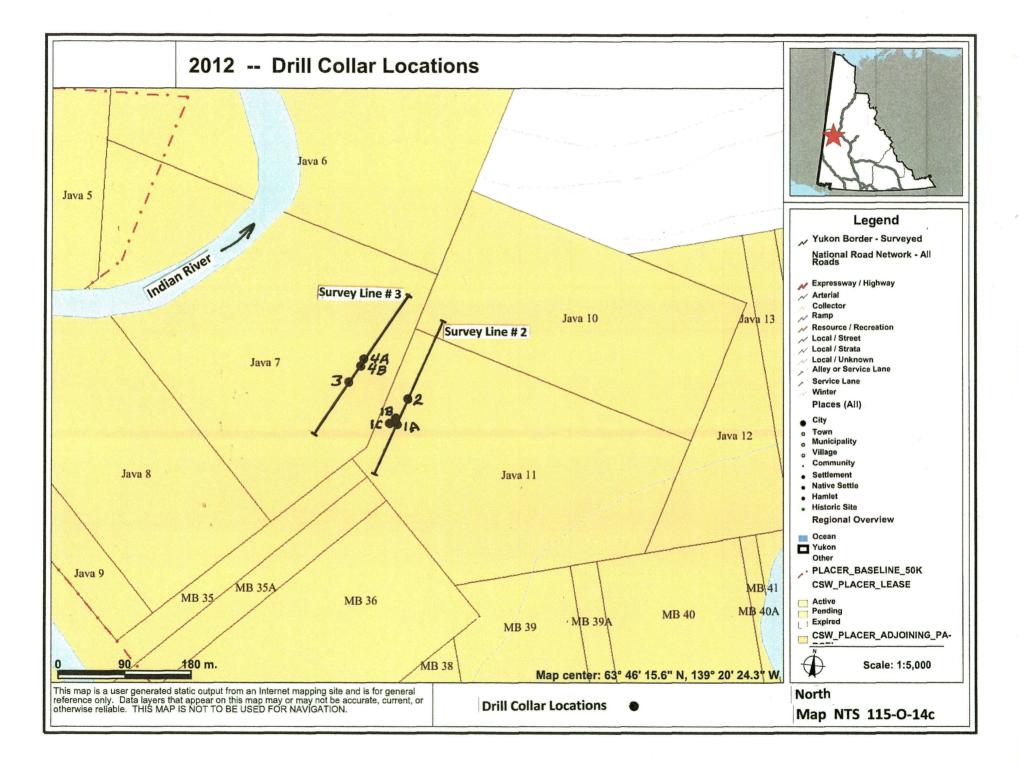
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005		 	 		
H2 13.5-15 H2 15-16.5 H2 19.5-21 4B 18-19.5 4B 19.5-21		2.25 2.69 2.04 2.05 1.85	<0.005 <0.005 <0.005 <0.005 <0.005				 	
4B 21-22.5 4B 22.5-24	<u></u>	2.28 1.90	<0.005 <0.005					

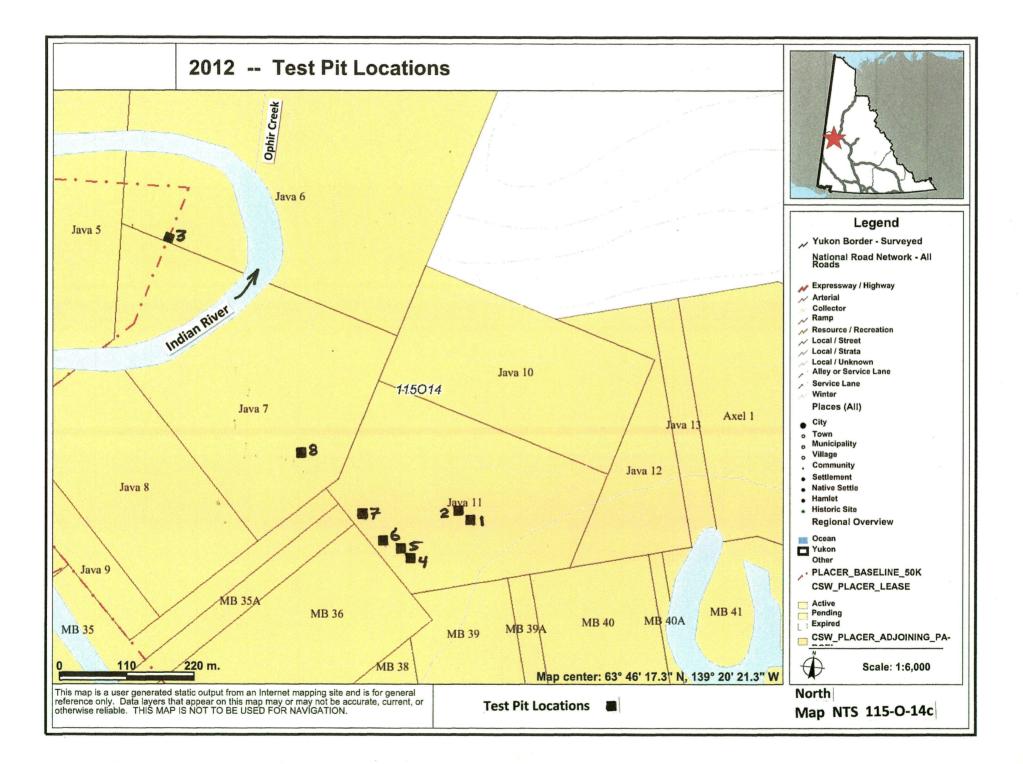
. .

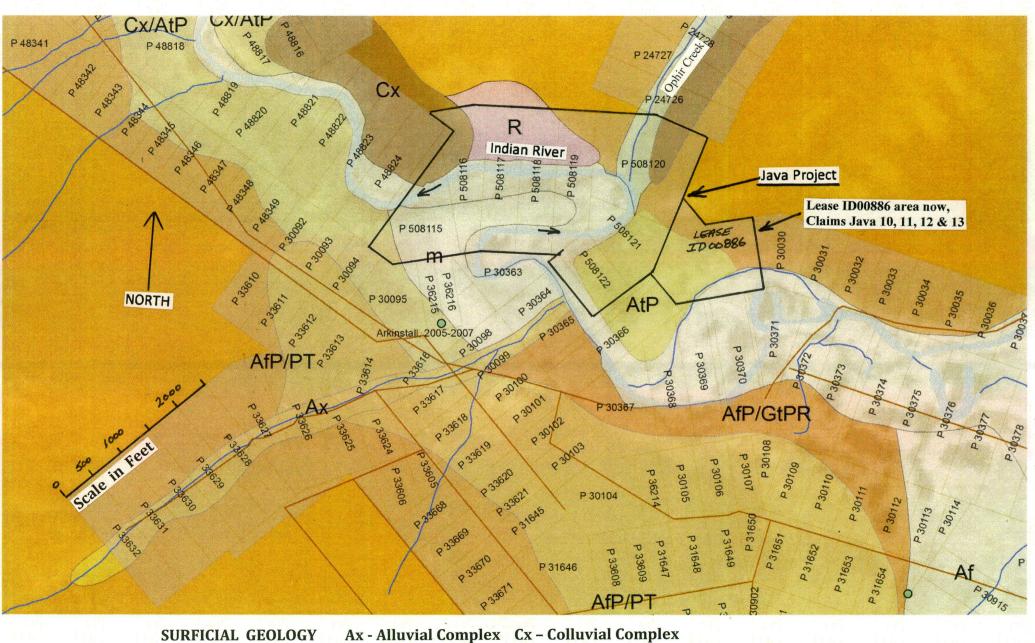

3



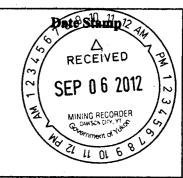
Indian River_03 2D Resistivity, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1


Data acquisition: Josy Strunden, 21nd Aug 2011 Processing: Philipp Moll, 22rd Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.


Arctic Geophysics Inc.



16


INDIAN RIVER AREA Af - Alluvial Fan, Pleistocene AfP/GtPR - Alluvial Fan, Pleistocene, overlying Glaciofluvial Terrace, Pre-Reid

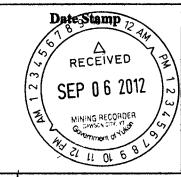
.

ł

·

Date:	July 13, 2012	
	Drill: Simco 2400 SKI	
Locatio	630 461 14.3" n: <u>139° 20' 25.3</u> "	

Driller: <u>KRYOTEK PRCTIC INNOVATION INC.</u> Inside Diameter of Drill: <u>4</u>[°] ALGER


Lease or Grant Numbers: JAVA 11 PSD8447

Drill Nur	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Total Footage	Breakdown in feet	Materials Encountered	Remarks: Samples/Results
2012	1-A	44" (13,5m)	0-1	VEGETATIVE MAT	
·		-	1-36	SILT/CLAY	
			36 - 44	BILT/CLAY SAND/GRAVE	L HOLE LOS TO FLOODING
				· · · · · · · · · · · · · · · · · · ·	SILTS/CLAY PANNED
				NOT TO BEDROCK	EACH 10
		· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·
					······································

Placer Drill Log

Date: Flucest 29, 2012 Signature (Driller or Representative):


							22 11 01 6 8
Date:	<u>-201</u>	y 23,	, 2012	Drille	" KRYOTEK ARCTIC INI	DOVIATION	INC
Туре о	f Drill:	Simce	5 2400 SK	/ Inside	Diameter of Drill: 4 AL	GER	
Locatio	1.5 on: <u>639</u> 139	meti 9 46' 0 20'	ees west 14.3" 25.3"	OF Lease	or Grant Numbers: <u>JAVA</u>	1 P 568	<u>44</u> 7
10120120120	Hole mber	Tot	al Footage	Breakdown in feet	Materials Encountered	Remarks	: Samples/Results
2012	1-B	39'	(12m)	0-1'	VEGETATIVE MAT		
			·	1-39'	SILT/CLAY	HOLE L	OST DUE TO
							AY (THAWED)
						CLOSING	SLUMPING HOLE
					NOT TO BEDROCK	SILTS /	LAS PANNED
						EACH	101
-							
				· .			

Placer Drill Log

Date:

AVENT 29, ZOIZ Signature (Driller or Representative):

Placer Drill Log

Date: <u>5</u> J	WY 29 2012	Driller	KRYOTEK ARCTIC INNO	VATION INC
	51mco 2400 SK	(Inside	: <u>KRYOTEK ARCTIC INNO</u> Diameter of Drill: <u>H</u> ALGE	< <u> 7</u>
4.0 Location: <u>63</u> 139	METRES WEST O 6 46' 14.3" 6 20' 25.3"	Lease	or Grant Numbers: JAVA 11	
Drill Hole Number	Total Footage	Breakdown in feet	Materials Encountered	Remarks: Samples/Results
2012 I-C	44' (13.5m)	0-1	VEGETATIVE MAT	
	<u> </u>	1-38	SILT/CLAY	FROZEN BT - O.Sc
		38'-44'	SITT/CLAY TRANSITION	
			TO SANDY GRAVELS	MATERIALS PANNED
			,	EACH 10'
			NOT TO BEBROCK	
			STOPPED IN ASSUMED	
		N	9TZ BOULDER FIELD	

Date: 416 29 2012

Signature (Driller or Representative):

ILC.

Placer Drill Log

Date:	July 24, 2012	
Type of	Drill: 51mco 2400 5K1	
Location	630 46' 15.4" 1: 139° 20' 24.5"	
	<u>131_av</u>	

Driller: KRYOTEK A	RETIC INNOVATION INC.
/ Inside Diameter of Drill:	
Lease or Grant Numbers:	JAVA 11 P508447

Drill Hole Number	Total Footage	Breakdown in feet	Materials Encountered	Remarks: Samples/Results
2012-2	68 (21m)	0-1'	VEGETATIVE MAT	
		1-39'	SINT/CLAY	SILT / CLAY 5 PANNED
		39-44'	SILT/CHAY SOND/GRAVEL	ETACH 10
			TRANSITION ZONE	
		44 - 68'	SAND / GRAVE L	GRANEL EACH 5
			LAST 2 EST IN BEDROCH	- SCHIST.
			-	
		· ·		
		· ·		
				· · · · · · · · · · · · · · · · · · ·

Date: AUG 29, 2012

Signature (Driller or Representative):

UNC.

Placer Drill Log

Date: $\underline{JULY 28, 20(2)}$ Type of Drill: $\underline{S(MCO 2400 5K1)}$ $\underline{63^{\circ} 46' 15.8''}$ Location: $\underline{139^{\circ} 20' 30.3''}$

Driller: <u>KRYOTEK ARCTIC INNOVATION INC</u> Inside Diameter of Drill: <u>4" ALGER</u> Lease or Grant Numbers: <u>JANA</u> 7 PS08121

Drill Hole Number	Total Footage	Breakdown in feet	Materials Encountered	Remarks: Samples/Results
2012-3	48' (15m)	0-1	VEGETATIVE MAT	
		1-43	SILT/CLAY	SILT/CLAY PANNED EACH 10
		43 - 48	SILT/CLAY TRANSITION	,
			TO SAND/GRAVELS	-PANNED SAMPLE
	······································		MOLE STOPPED AT 48	
			ASSUME LARGE GTZ BOULD	HER.
			· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
			×	

Date:

AV6 29, 2012

Signature (Driller or Representative):

Energy, Mines and Resources Date: July 24	6 ,2012		cer Drill Log : <u>KRYOTEK APCTIC INNO</u>	Date Stamp Date Stamp B 9 10 11 12 14 RECEIVED SEP 0 6 2012 MINING RECORDER Comment of Water Comment Comment of Wat
Type of Drill: Sime			Diameter of Drill: 4" Aulo	CER.
2.5 METR Location: 63 4 139 2	2ES NOPTH 6 16' 16:5" 0' 29:4"	Lease	or Grant Numbers: <u>SAVA</u> 7	PS08121
Drill Hole To Number	otal Footage	Breakdown in feet	Materials Encountered	Remarks: Samples/Results .
2012-4A 58	?' (18m)	0-1'	VEGETATIVE MAT	
	·····	1-58'	SILT/CLAY	PANNED RACH 10
			BEGINNING SAND/ GRAVE	
			KATE .	HOLE LOST AT 58
· · · · · · · · · · · · · · · · · · ·		•		DUE TO SLUMPING.
				OR CLOSING AFTER
				DRILL EQUIPMENT
				BREAKDOWN.
		· · · · · · · · · · · · · · · · · · ·		
)	
: :		· · · · · · · · · · · · · · · · · · ·		

Date: <u>AUGUST 29 2012</u> Signature (Driller or Representative):

Ph

Date Stamp Date Stamp P 8 9 10 11 12 74 RECEIVED SEP 0 6 2012 MINING RECORDER C DATE OF OF C DATE OF OF C DATE Stamp

Date: _	JULY 28, 2012	_
Type of	Drill: SIMCO 2400 SKI	
Locatio	63° 461 16.5". n: 139° 20' 29.4 "	

Driller: KRYOTER ARCTIC INNOVATION INC

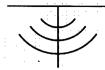
Inside Diameter of Drill: <u>H"ANGER</u>

Lease or Grant Numbers: <u>JAVA 7 P508121</u>

Deill Hole Number	Total Footage	Breakdown in feet	Materials Encountered	Rematks: Samples/Results
2012 - 4	78 (24m)	0-1'	VEGETATIVE MAT	
4B	,	1-58	SILT/CLAY	SILT/CLAY PANNED EACH 10
		58-63	SILT/CLAY TRANSITION TO	
			SAND/GRAVELS	
		63'-78'	SAND/GRAVELS, WITH	PANNE EACH 5
·····		·	LAST 2 TO 3 FRET EST.	4-5'INTERVILES SENT
			IN BEDROCK SCHIST.	TO ALS LABORATORYS.
				,
·				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Placer Drill Log

Date:


ANG 29, 2012

Signature (Driller or Representative):

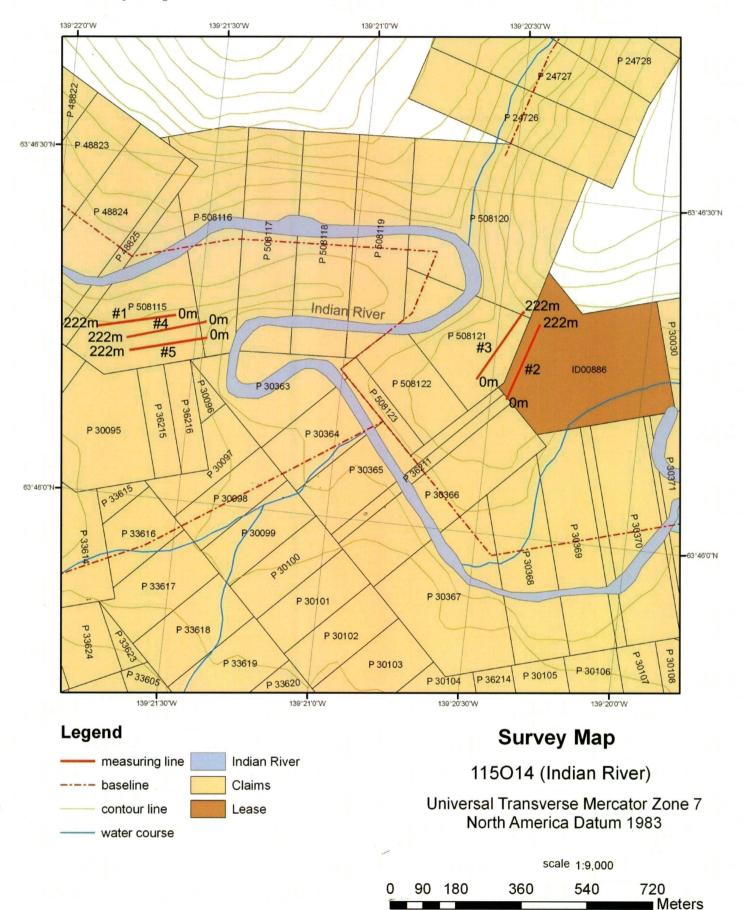
5

.

Arctic Geophysics Inc.

Geophysical Surveys • Prospecting • Consulting

Geophysical Survey with 2D Resistivity Indian River, Yukon

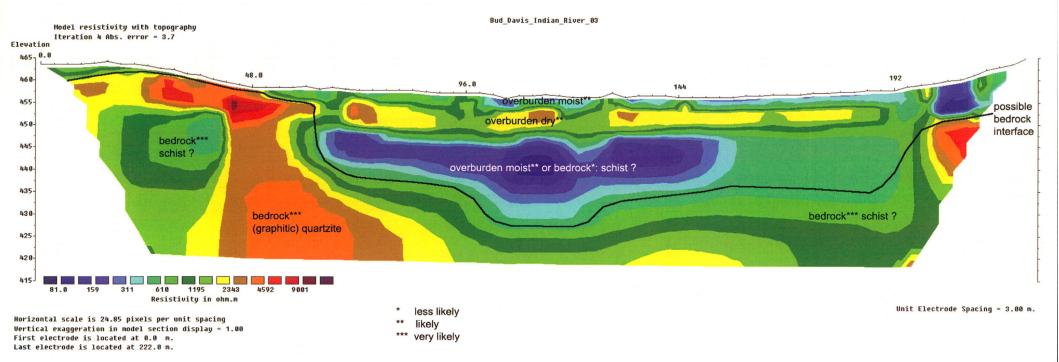

FOR La Tierra Resources Ltd. Box 304-211 Elliott St Whitehorse, YT, Y1A2A1

> AUTHORS Stefan Ostermaier

WORK PERFORMED August 21th – 23th 2011

DATE OF REPORT January 19th 2012

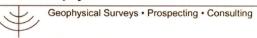
9. Survey Map

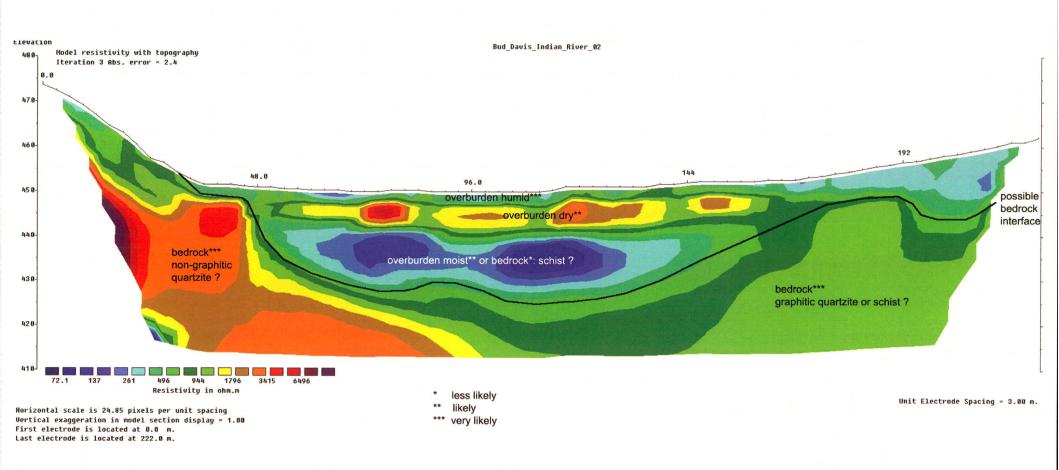

Indian River 03

2D Resistivity, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 21nd Aug 2011 Processing: Philipp Moll, 22rd Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.




Indian River 02

2D Resistivity, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 21st Aug 2011 Processing: Philipp Moll, 22nd Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.

Table of Contents				
1. Introduction 2. Claims	······································	••••••••••••••••••••••••••••••••••••••		
3. Location				
4. Access				
5. Geophysical Method				
6. Use of Geophysical Methods		 		4
6.1. Instrumentation		· · · · · · · · · · · · · · · · · · ·		4
6.2. Data Acquisition	·····			
6.3. Processing				
6.4. Interpretation				
7. Profile image			and the second	
8. Line Arrangement				
9. Survey Map				
10. Profiles: Interpretation 11. Qualifications				
Appendix				
Literature	· · · · · · · · · · · · · · · · · · ·			
Geophysical Data Table		·····		
Costs				
GPS-Data				29

1. Introduction

This geophysical investigation was done for La Tierra Resources Ltd..

The survey, using 2D Resistivity /IP, was conducted to prospect the ground for placer - and mineral mining interests.

The ground was tested with one 222m-measuring line, depth 35m, in September 2010. And 4 additional lines, each with a length of 222m, were added in August 2011.

Grant Number	Claim Name	#	Owner	
P 508115	Java	1	La Tierra Resources Ltd.	· · · · · · · · · · · · · · · · · · ·
P 508116	Java	2	La Tierra Resources Ltd.	
P 508120	Java	6	La Tierra Resources Ltd.	
P 508121	Java	7	La Tierra Resources Ltd.	
P 508446 ¹	Java	10	La Tierra Resources Ltd.	· · · · · · · · · · · · · · · · · · ·
P 508447 ²	Java	11	La Tierra Resources Ltd.	
P 508448 ³	Java	12	La Tierra Resources Ltd.	· · · · · · · · · · · · · · · · · · ·

2. Claims

3. Location

The survey area is located on both sides of Indian River, close to the confluence with Ophir Creek.

4. Access

The survey area was accessed by way of a mining road nearby. However the last part of the way to the prospecting lease had to be hiked due to a wash out in the mining road about 1km below the survey site.

5. Geophysical Method

Resistivity is not a time domain geophysical method such as Ground Penetrating Radar or Seismic. Resistivity measures a material property. In the Resistivity model the different

3

¹ Formerly Prospecting Lease ID00886

² Ditto

Ditto

underground zones are material-dependently differentiated according to their electrical conductivity. Thus, Resistivity promises good chances in respect of measuring the kind and character of the subsurface materials as well as the groundwater distribution, which would be of interest for placer mining. The equipment used (see below) allows for measuring of layer interfaces in depths from 0.5m to 100m by varying the electrode spacing. – Therefore, this prospecting concept is based on the use of 2D Resistivity.

Induced Polarization (IP): IP data are simultaneously taken when measuring Resistivity, with the same equipment and line staking. So these data are automatically at hand when using Resistivity. The IP model serves as the basis for the interpretation of the mineral and petrologic conditions in hardrock. Thus, IP is an industry proven standard method for the detection of primary mineral deposits. However, the IP model can also support the interpretation of the Resistivity profiles done for placer prospecting.

Figure 1: 2D Resistivity measurement, Stefan Ostermaier, Arctic Geophysics Inc., Yukon 2009

6. Use of Geophysical Methods

6.1. Instrumentation

For this survey a lightweight, custom-built 2D RESISTIVITY and INDUCED POLARIZATION (IP) imaging system with rapid data acquisition was used. The system includes:

- "4 POINT LIGHT" EARTH RESISTIVITY METER⁴
- 100 ELECTRODE CONTROL MODULES⁵
- 100 STAINLESS STEEL ELECTRODES⁶
- 500m MULTICORE CABLE: CONNECTOR SPACING: 5m⁷

This system weighs approximately 120 kg which is about one third of regular standard equipment. It can be run with a 12V lead battery. The equipment facilitates high mobility and rapid data acquisition with a small crew.

6.2. Data Acquisition Resistivity/IP

The data acquisition is carried out by the automatic activation of 4-point-electrodes. Thus several thousand measurements are taken, one every 1-2 seconds. The AC transmitter current of 0.26 to 30 Hz is amplified by the electrode control modules, up to a maximum of 100mA and 400V peak to peak. The voltage measured at the receiver electrodes (M, N) is also amplified. In this geoelectrical survey the **Schlumberger-array** was used. This array is appropriate to image horizontally running layers as is needed for placer prospecting.

The 2D Resistivity imaging system, used for this survey, allows measurements with a depth of up to 100m. With a depth to bedrock of more than 6m, an electrode spacing of 5m can be used for placer surveys. This allows the measuring of large profile lengths in short time with a horizontal measuring resolution of 2.5m. This quantification has proven itself to be reliable in the determination of the bedrock topography and sedimentary arrangement for placer investigation at the most environmental conditions.

The IP data is getting noisy below approx. 50m depth because the sender current is limited to a 100 m Amp. The noise of the IP data in greater depth can significantly be decreased by using an IP-specific data acquisition mode that is much more time consuming.⁸ Since this survey is focused on the detection of placer-geological aspects, the data acquisition was not optimized for IP.

The Schlumberger array, used in this geoelectrical survey, is appropriate to measure subsurface conditions predominantly showing a horizontal zoning of the ground materials.

- ⁴ Constructed and produced by LGM (Germany)
- ⁵ Ditto
- ⁶ Constructed and produced by GEOANALYSIS.DE (Germany)
- ' Ditto

⁸ 1) Transition Resistivity between electrodes and ground lower than 1 Kilo Ohm; 2) More single 4point measurements to calculate the average of each data point etc.

6.3. Processing Resistivity/IP

The measured Resistivity data were processed with the **RES2DINV** inversion program⁹.

6.4. Interpretation

The resistivity profile is the basic source for the interpretation of placer-related subsurface aspects of overburden and bedrock. The IP model supports the interpretation of the resistivity profile.

The interpretation of the data should be verified by physical prospecting methods such as drilling, trenching, or digging test holes since this information about the subsurface cannot be guaranteed.

6

⁹ Produced by GEOTOMO SOFTWARE (Malaysia)

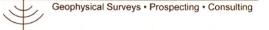
7. Profile image

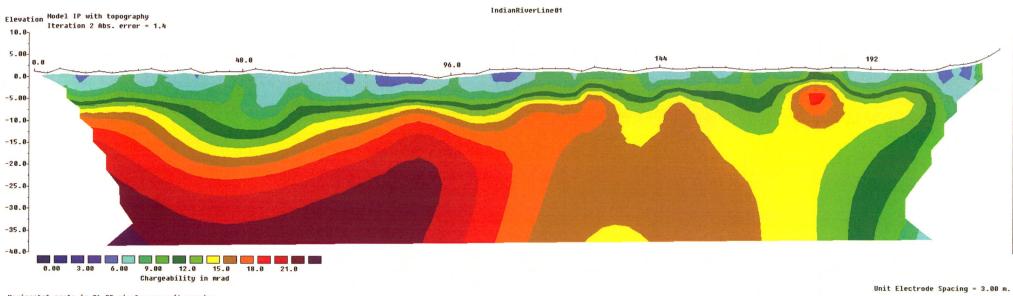
In the **Resistivity profile** the interpreted layer interfaces are marked with a black line. The profiles show ground-layers approximately 15% thicker than they are in reality. The thickening of the model layers is caused by the inversion software. The **correction factor** of 0.85 for the determination of the true layer thickness has been established by the Arctic Geophysics Inc. team on the basis of numerous geoelectrical profiles verified by drilling, trenching, and mining done by our customers.¹⁰

The **graphical markings** showing the interpreted layer interfaces in the profiles (using a black line) are done according to the data structure in the profile itself. This means: the layers there will also show up approximately 15% thicker than they are expected in reality. At the measuring sticks in the profile image as well as in the interpretation text, the layer thicknesses and depths have been recalculated to the expected real values.

8. Line Arrangement

The **line locations** were discussed and decided upon by Stefan Ostermaier from Arctic Geophysics Inc. and Bud Davis. The goal of the survey was to establish the extent of the mining that took place and to see if there was any chance of channels at higher elevations that might have been missed by previous operators.

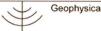

¹⁰ Program settings in RES2DINV for modifying the layer thickness do frequently not work well for our use and could falsify the profile. That's why this mode was not used.


10. Profiles: Interpretation

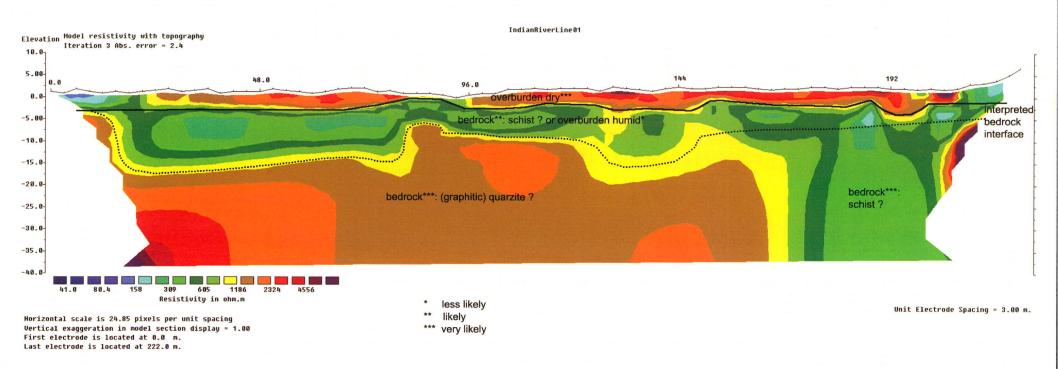
Indian River_01 IP, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Stefan Ostermaier, 27th Sept 2010 Processing: Philipp Moll, 24th Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.



Horizontal scale is 24.85 pixels per unit spacing Vertical exaggeration in model section display = 1.00 First electrode is located at 0.0 m. Last electrode is located at 222.0 m.


Indian River_01

2D Resistivity, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1 Data acquisition: Stefan Ostermaier, 27th Sept 2010 Processing: Philipp Moll, 24th Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.

Geophysical Surveys • Prospecting • Consulting

Interpretation

The overburden in this resistivity profile appears to be quite thin showing a thickness of only 0.5-5m. An alternative interpretation would put two layers of overburden on top of bedrock with a thickness of 5-15m.

The overburden seems to be 0.5m to max. 5m thick with high resistivity values (app. 50000hm*m) which suggests some dry gravel-dominated sediment. There seems to be a small paleo-channel at 190m with 5m depth, and a shallow depression at 138m with a depth of 3-4m.

Alternatively there could be a second layer of overburden (green data zone) consisting of more humid gravel sitting in two distinctive channels: one at 10-80m with a depth of up to 15m, and another at 125-147m with a depth of up to 14m. However it is more likely that this layer is comprised of some different kind of bedrock namely some kind of schist.¹¹

The underlying bedrock could be interpreted as quartzite rich in graphite¹², and/or other minerals. The IP model would support the interpretation of mineral-rich quartzite as the bedrock shows increased chargeability.

The IP model indicates a higher concentration of IP-active minerals in the bedrock all along the profile. In the Klondike Mining District a common reason for that would be pyrite in the schist. Alternatively the

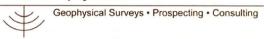
¹¹ This bedrock type fits with the Bedrock Geology Map.

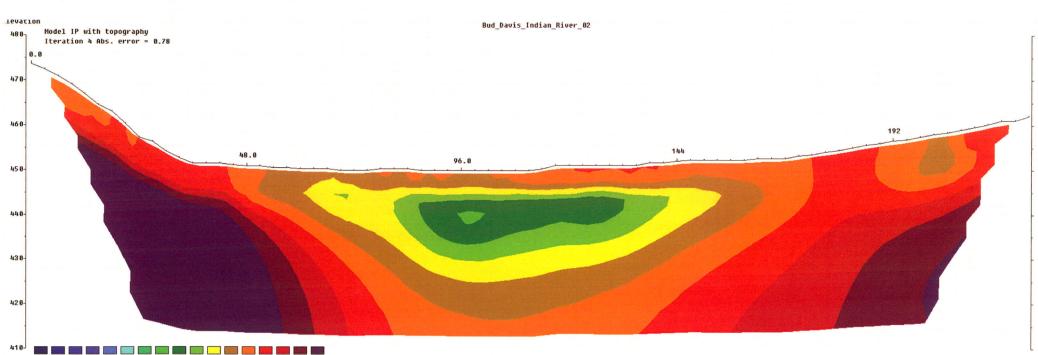
¹² This bedrock type fits with the Bedrock Geology Map. The graphite reduces the resistivity of quartzite which usually shows higher data.

Bedrock Geology Map refers to graphite in the quartzite, which also would produce strong IP signals.¹³

It is recommended that the profile is drilled to verify the actual layering at this location.

¹³ IP signals in solid rock are mostly produced by sulfide accessory minerals, graphite, and copper all indicating a large range of possible ore types. For an in depth interpretation of IP-data more geological background information would be needed.


¹¹


Indian River_02

IP, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 21nd Aug 2011 Processing: Philipp Moll, 22rd Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.

0.0249 0.0596 0.143 0.342 0.819 1.96 4.70 11.3 Chargeability in mrad

Horizontal scale is 24.85 pixels per unit spacing Vertical exaggeration in model section display = 1.00 First electrode is located at 0.0 m. Last electrode is located at 222.0 m. Unit Electrode Spacing = 3.00 m.

Interpretation

The overburden in the resistivity profile appears to be in several layers with an overall depth of 2-20m. The bedrock interface seems to form one massive channel in the center of the resistivity profile and one smaller channel on the right side of the model. The IP profile shows relatively high values for the bedrock and lower values for the sediments.

From 30-48m in the profile the overburden appears to be very shallow with a depth of only 2-3m.

From 48-177m the bedrock seems to form a channel that is up to 20m deep with two distinct depressions at 75m and at 180m. The IP profile is consistent with the resistivity results and seems to confirm the channel.

The overburden in the main channel is layered: there is a surface layer that is 2-3m thick and most likely humid and/or contains humous fine material. This material has high IP values compared to typical sediments and could indicate that it alternatively consists mostly of clastic sediments originated from the bedrock; this material could be deposited during a different geological period than the deeper layers.

The second layer that is 4-7m thick is most probably composed of dry gravels that due to their low conductivity show up as a red-orange-brownyellow band in the resistivity profile; less likely this layer could be permafrost that has partly melted and is only left over in a shallow layer. The third layer is apparently 5-12m thick and has very low resistivity values, which could indicate either, more likely, ground water saturation or a material, likely gravel associated with a high content in clay or silt.

From 195m to the end of the profile there seems to be an additional channel. This channel seems to be 12m deep and it appears to be filled with

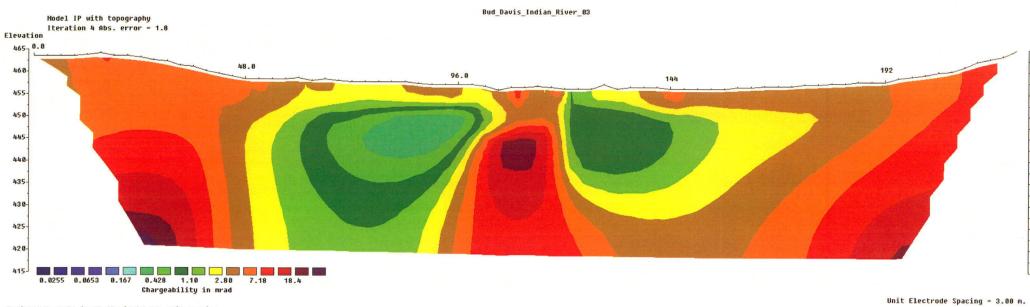
some very homogeneous overburden material that could be slide-rock (colluvium) since it shows IP values that are similar to the bedrock.

Over the length of the profile the resistivity of the bedrock changes from high resistivity values, 3000-7000 Ohm*m, to moderate values around 1000 Ohm*m. This indicates that the bedrock changes in composition, most likely from quartzite to a schist or to quartzite with a high graphite content. However the IP profile shows no indication of this change which suggests that no IP-active minerals are involved.

It is recommended, that the main channel in the center of the profile is drilled to confirm the layering of the overburden and the viability of the placer ground.

The possible channel on the right side can probably be confirmed by trenching into the slope.

Both interpreted channels represent promising targets for advanced placer investigation.


Indian River_03 IP, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 21nd Aug 2011 Processing: Philipp Moll, 22rd Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.

Geophysical Surveys • Prospecting • Consulting

Horizontal scale is 24.05 pixels per unit spacing Vertical exaggeration in model section display = 1.00 First electrode is located at 0.0 m. Last electrode is located at 222.0 m.

Interpretation

Again we see a massive, up to 24m deep channel filled with layered overburden. This channel is the continuation of the channel interpreted in the center of profile 02. The bedrock in profile 03 seems to be heterogeneous with areas of high and moderate resistivity values – same as in profile 02.

Between 0m and 60m in the resistivity profile the overburden seems to be very thin to almost non-existent with a depth of max. 3m.

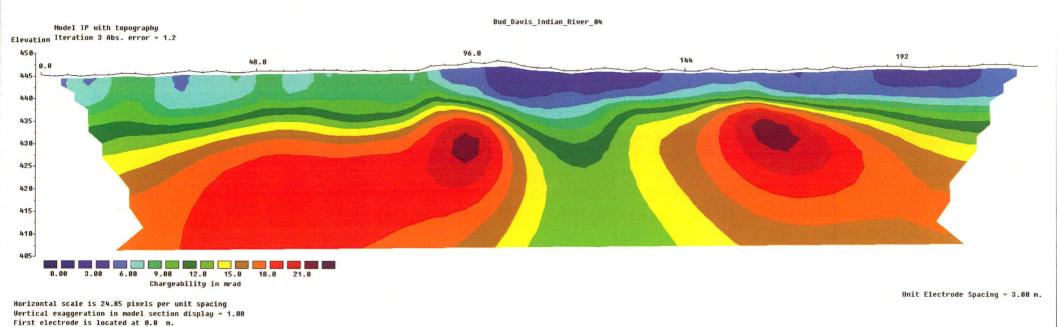
From 60m to 200m there appears to be again the massive channel with a depression at 114m having a depth of 24m. The overburden has the same three layers that were seen in profile02, and the material composition should be identical: A 2-3m thick layer with low resistivity values indicating possibly humous fine material or clastic sediment consisting of bedrock particles. Then a 4-6m thick layer with poor conductivity interpreted as dry and/or frozen gravels. And last a 8-17m thick layer with low resistivity values referring to water saturated material, likely being gravel associated with a higher content in clay or silt. This third layer appears to have a very level interface to the gravel on top of it, this would suggest that the third layer is representing the ground water table.

The IP profile shows a large anomaly in the center of the channel; this is most likely a false anomaly, however, a massive concentration of IP active, heavy minerals could produce such an anomaly and indicate a potential placer target.¹⁴

¹⁴ Placer gold deposits are mostly associated with heavy minerals frequently being IP-active. The bedrock shows a high heterogeneity in the resistivity values, this would suggest a rapid change in bedrock especially at 40m in the profile. However, the IP profile is (with the exception of the anomaly in the channel) very homogeneous.

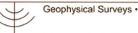
It is recommended to drill the main channel in the center, to confirm its existence, layering, viability and depth.

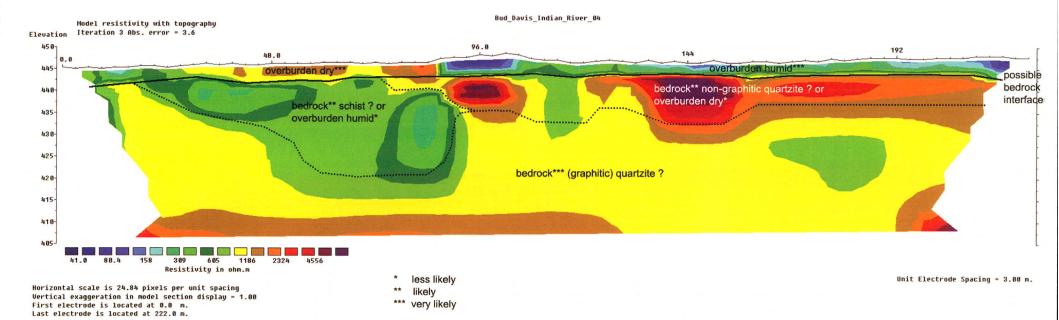
Indian River 04


Last electrode is located at 222.0 m.

IP, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1 Data acquisition: Josy Strunden, 22th Aug 2011 Processing: Philipp Moll, 23th Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.


Geophysical Surveys • Prospecting • Consulting


Indian River_04 2D Resistivity, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 22th Aug 2011 Processing: Philipp Moll, 23th Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.

Interpretation

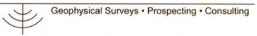
The bedrock seems to be covered with a thin layer of overburden that is only 3-4m thick.

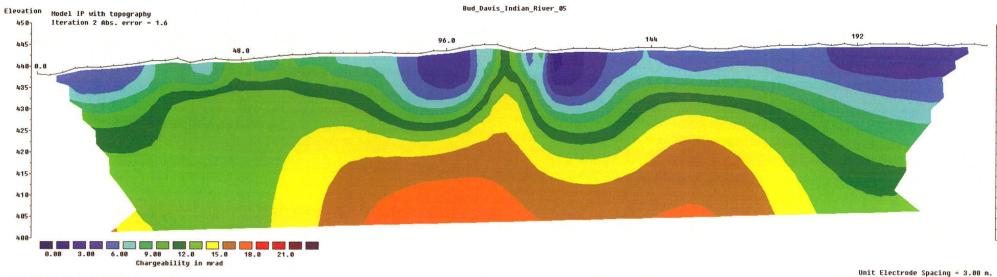
Throughout the resistivity profile there is a 3-4m thick top layer. From 0-87m this layer is a poor conductor probably due to dry ground conditions; for the rest of the profile the layer is a good conductor, especially around 96m, which could be due to higher water content in the overburden. However, the IP model suggests a mineral change in the topmost layer at 96m since the model shows a change in the chargeability there. It is most likely that this topmost layer represents the entirety of the overburden.

As a less likely, alternative interpretation: From 18-90m there could be a channel with a depth of up to 21m filled with moderately well conducting gravel (green data zone). The resistivity pattern of this data zone seems not to be layered which would argue against a paleochannel filled with gravel: The green resistivity zone is more likely indicating some well conducting bedrock on top of low conducting bedrock: possibly some schist on top of quartzite. From 90m to the end of the profile, at the red-violet-orange resistivity zone (second layer) there could be a layer of poorly conducting gravel that could be deposited in two shallow channels at 114m and at 144m both 11m deep.

The IP profile is not clear on which resistivity bedrock interface is correct. Since the interfaces in IP models are usually not as sharply defined, both interpreted interfaces could be correct; however, in the IP profile there is no indication of the channel, which is the reason why the channel theory is categorized as less likely.

The IP model shows generally high IP data for the bedrock, which could be explained by graphite-rich quartzite. Around 120m in the model a low

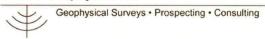

chargeability anomaly (green data zone) was created; this anomaly seems to be false.

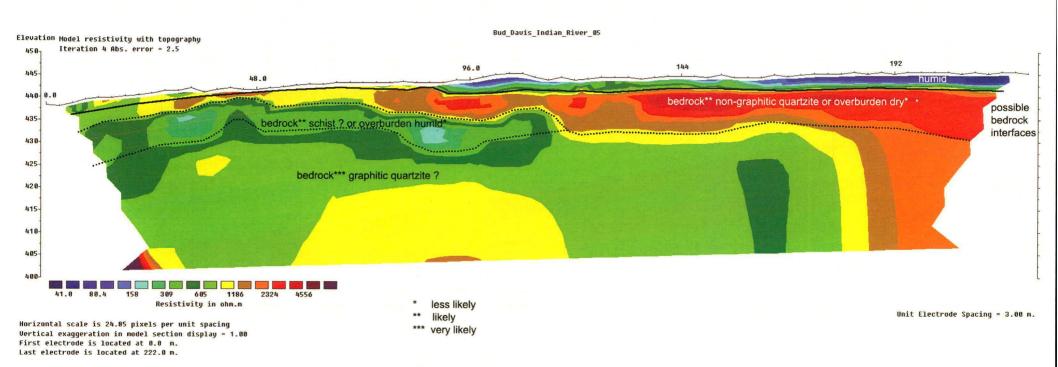

20

Despite the contra arguments, it is recommended that the probable channels are drilled to confirm their existence and possible economical viability. Indian River_05 IP, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 23th Aug 2011 Processing: Philipp Moll, 24th Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.





Horizontal scale is 24.84 pixels per unit spacing Vertical exaggeration in model section display = 1.00 First electrode is located at 0.0 m. Last electrode is located at 222.0 m. Indian River_05 2D Resistivity, Schlumberger array 75 Electrodes: spacing 3m, Horizontal resolution 1.5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display = 1

Data acquisition: Josy Strunden, 23th Aug 2011 Processing: Philipp Moll, 24th Aug 2011 Profile shows the ground-layers approx. 15% thicker than in reality. Comments to this/these profile/s are interpretation.

Arctic Geophysics Inc.

Interpretation

The bedrock appears to be covered with a thin, max. 3m thick layer of overburden. Alternatively the bedrock could be covered by three layers of overburden with an overall thickness of up to 12m.

As in profiles 01 and 04 the topmost layer appears to be very thin with only 0.5-3m thickness. In this topmost layer there is a significant change in resistivity at 90m, here the moderate or poor conductivity changes to well conducting material.

Alternatively there could be a second gravel layer of 3-9m thickness (red orange brown) overlaying the bedrock. This alternative bedrock interface could have two shallow channels at 96m and at 140m, with a depth of 7m and 10m respectively. It is however more likely that this alternative bedrock interface defines the boundaries of two different kinds of bedrock, namely quartzite and schist.

A second alternative interpretation would put a third overburden layer underneath the hypothetic gravel layer number two (red orange brown). This third layer would have a thickness of 3-6m in the area at 0-117m. There could be a channel in this alternative bedrock interface at 90m, with a depth of 13m. More likely would be a change in bedrock to some kind of schist.

The IP profile is inconclusive. The most likely interpretation from this perspective would be that the first alternative bedrock interface is the actual one, this is however only a tentative conclusion.

23

It is recommended that the profile is getting drilled to confirm the actual overburden layering.

11. Qualifications

Stefan Ostermaier

- Study of geology, University of Tübingen, Germany
- Visit of geophysical field courses, University of Karlsruhe and University of Stuttgart, Germany
- Geological prospecting for precious metals and minerals in the Yukon and Alaska since 2001
- Geophysical Surveying for Mining Exploration in the Yukon since 2005
- Study of computer science, University of Stuttgart, Germany

Stefn Ute

Stefan Ostermaier

Appendix Literature

1

Chesterman W. Ch. and Lowe K.E. Field Guide to Rocks and Minerals - North America, Chanticleer Press Inc. New York 2007

Evans A.M. Erzlagerstättenkunde, Ferdinand Enke Verlag Stuttgart (1992)

Griffiths, D.H., Turnbull, J. and Olayinka, A.I. Two dimensional resistivity mapping with a computer-controlled array, First Break 8: 121-129 (1990)

Griffiths, D.H. and Barker, R.D. Two-dimensional resistivity imaging and modeling in areas of complex geology. Journal of Applied Geophysics 29 : 211 - 226. (1993)

Keller, G.V.and Frischknecht, F.C. Electrical methods in geophysical prospecting. Oxford: Pergamon Press Inc. (1966)

Loke M.H. and Barker R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44: 131-152 (1996)

Ostensoe Eric A. "Report on the Gladstone Creek, Placer Gold Property, Kluane Area" (Feb 1984), for: CATEAR RESOURCES LTD.

Press F., Siever R., Grotzinger J., Thomas H.J. Understanding Earth, W.H. Freeman and Company, New York (2004)

Robb L. Introducing to Ore-Forming Processes, Backwell Science Ltd., 2005

Maps

http://www.yukonminingrecorder.ca/PDFs: 1150/14

Gordey, S.P. and Makepeace, A.J. (comp.) 1999: Yukon bedrock geology in Yukon digital geology, S.P. Gordey and A.J. Makepeace (comp.); Geological Survey of Canada Open File D3826 and Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1999-1(D)

Geophysical Data Table

Rock type	Resistivity range (Ωm)
Granite porphyry	4.5×10^3 (wet) - 1.3 $\times 10^6$ (dry)
Feldspar porphyry	4×10^3 (wet) $10^2 - 10^6$
Syenite	$10^2 - 10^6$
Diorite porphyry	1.9×10^3 (wet) -2.8×10^4 (dry)
Porphyrite	$10-5 \times 10^4$ (wet) -3.3×10^3 (dr
Carbonatized	
porphyry	2.5×10^3 (wet) - 6 $\times 10^4$ (dry)
Quartz diorite	$2 \times 10^4 - 2 \times 10^6$ (wet)
•	-1.8×10^{5} (dry)
Porphyry (various)	60 - 10 ⁴
Dacite	2 × 10 ⁴ (wet)
Andesite	4.5×10^4 (wet) - 1.7 × 10 ² (dry)
Diabase (various)	$20-5 \times 10^{7}$
Lavas	$10^2 - 5 \times 10^4$
Gabbro	$10^3 - 10^6$
Basalt	$10 - 1.3 \times 10^7$ (dry)
Olivine norite	$10^3 - 6 \times 10^4$ (wet)
Peridotite	3×10^3 (wet) - 6.5 × 10 ³ (dry)
Hornfels	8×10^3 (wel) - 6 x 10 ⁷ (dry)
Schists	
(calcareous	
and mica)	20 - 104
Tuffs	2×10^3 (wet) - 10^5 (dry)
Graphite schist	$10 - 10^2$
Slates (various)	$6 \times 10^{2} - 4 \times 10^{7}$
Gneiss (various)	68×10^4 (wet) = 3×10^6 (drv)
Marble	$10^2 - 2.5 \times 10^8$ (dry)
Skarn	2.5×10^2 (wet) - 2.5 $\times 10^8$ (dry)
Quartzites	
(various)	10-2 × 10 ⁸
Consolidated	
shales	$20 - 2 \times 10^3$
Argillites	$10 - 8 \times 10^2$
Conglomerates	$2 \times 10^3 - 10^4$
Sandstones	$1-6.4 \times 10^{8}$
Limestones	50 - 107
Dolomite	$3.5 \times 10^2 - 5 \times 10^3$
Unconsolidated	
wet clay	20
Marls	3 - 70
Clays	1-100
	· · · · · · · · · · · · · · · · · · ·

26 ·

· · ·

Costs

Arctic Geophysics Inc.

Geophysical Surveys • Prospecting • Consulting

D.R. Bud Davis La Terra Resources LTD. Box 304-211, Elliot St. Whitehorse, Yukon Y1A 2A1, Canada (867) 334 5641 Bud.Latierra@gmail.com Arctic Geophysics Inc. Box 747 Dawson City, Yukon YOB-1GO, Canada Phone: 867-993-3671 (Cell) info@arctic-geophysics.com www.arctic-geophysics.com

Survey Location: Indian River, Placer Claim P 508115

Invoice # 201108232

Services provided:

Date: August 23rd, 2011

Quantity	Description		Amount \$CAN
Transportation		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
2 days	Vehicle \$ 50 / day		100
135 Km	\$ 0.45 / km		60.75
Geophysical Survey			
2 day	Geoelectrical 2D-Resistivity Survey, run and one field assistant	by one operator	1 820
: [.]	\$ 910 / day		
2 day	Writing report \$ 300 / day		600
	Printing/Binding/Shipping		50

	·		NET Amount	\$ 2 630.75
GST Number 8	346363216RT0001		G.S.T. (5%)	\$ 131.53
Total Due		· · · ·		\$ 2 762.28

Arctic Geophysics Inc.

D.R. Bud Davis La Terra Resources LTD. Box 304-211, Elliot St. Whitehorse, Yukon Y1A 2A1, Canada (867) 334 5641 Bud.Latierra@gmail.com Arctic Geophysics Inc. Box 747 Dawson City, Yukon YOB-1GO, Canada Phone: 867-993-3671 (Cell) info@arctic-geophysics.com www.arctic-geophysics.com

Survey Location: Indian River, prospecting lease ID00886

Invoice # 201108231

Services provided:

Date: August 23rd, 2011

Quantity	Description		Amount	\$CAN
Transportation	ter and the second s			-
1 ¼ days	Vehicle \$ 50 / day			62.50
100 Km	\$ 0.45 / km			45
¼ day	Driving \$ 450 / day, operator + assistant		· .	112.50
Geophysical Survey				
1 day	Geoelectrical 2D-Resistivity Survey, run by o and one field assistant	ne operator		910
, · ·	\$ 910 / day			
1 day	Data processing, literature work, interpretat first Documentation \$ 300 / day	tion,		300

Geophysical Surveys • Prospecting • Consulting

			NET Amount \$ 1 430
GST Number 846363216	RT0001	:	G.S.T. (5%) \$ 71.50
Total Due	· · ·	· · · ·	\$ 1 501.50
		······································	

GPS-Data

Indian River_01 (2010)

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]
1	0	N63 46 16.2 W139 21 34.4	3	*
2	3	N63 46 16.2 W139 21 34.6	3	÷
3	6	N63 46 16.2 W139 21 34.8	3	
4	9	N63 46 16.2 W139 21 35.0	3	
5	12	N63 46 16.1 W139 21 35.3	3	
6	15	N63 46 16 1 W139 21 35.4	3	
7	18	N63 46 16.1 W139 21 35.6	3	
8	21	N63 46 16.1 W139 21 35.9	3	
9	24	N63 46 16 1 W139 21 36 1	3	
10	27	N63 46 16.0 W139 21 36.3	3	
11	30	N63 46 16.0 W139 21 36.5	3	
12	33	N63 46 16.0 W139 21 36.7	3	
13	36	N63 46 16.0 W139 21 36.9	3	
14	39	N63 46 16.0 W139 21 37.1	3	
15	42	N63 46 15.9 W139 21 37.3	3	
16	45	N63 46 15.9 W139 21 37.6	3	
17	48	N63 46 15.9 W139 21 37.7	3	
18	51	N63 46 15.9 W139 21 38.0	3	
19	54	N63 46 15.9 W139 21 38.2	3	
20	57	N63 46 15.8 W139 21 38.4	3	
21	60	N63 46 15.8 W139 21 38.6	3	
22	63	N63 46 15.8 W139 21 38.8	3	
23	66	N63 46 15.8 W139 21 39.0	3	
24	69	N63 46 15.8 W139 21 39.2	3	
25	72	N63 46 15.7 W139 21 39.4	3	*

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
26	75	N63 46 15.7 W139 21 39.6	3
27	78	N63 46 15.7 W139 21 39.8	3
28	81	N63 46 15.7 W139 21 40.1	3
29	84	N63 46 15.7 W139 21 40.3	3
30	87	N63 46 15.6 W139 21 40.5	3
31	90	N63 46 15.6 W139 21 40.7	3
32	93	N63 46 15.6 W139 21 40.8	3
33	96	N63 46 15.6 W139 21 41 1	3
34	99	N63 46 15.5 W139 21 41.2	3
35	102	N63 46 15.5 W139 21 41.4	3
36	105	N63 46 15.5 W139 21 41.7	3
37	108	N63 46 15.5 W139 21 41.8	3
38	111	N63 46 15.4 W139 21 42.1	3
39	114	N63 46 15.4 W139 21 42.2	3
40	117	N63 46 15.4 W139 21 42.5	3
41	120	N63 46 15.4 W139 21 42.7	3
42	123	N63 46 15.3 W139 21 42.9	3
43	126	N63 46 15.3 W139 21 43.1	3
44	129	N63 46 15.3 W139 21 43.4	3
45	132	N63 46 15.2 W139 21 43.6	3
46	135	N63 46 15.2 W139 21 43.7	3
47	138	N63 46 15.2 W139 21 43.9 N63 46 15.2	3
48	141	W139 21 44.1 N63 46 15.2	3
49	144	W139 21 44.3 N63 46 15.2	3
50	147	W139 21 44.5	3 *

	Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]
	51	150	N63 46 15.1 W139 21 44.7	3	
· · · · · ·	52	153	N63 46 15.1 W139 21 45.0	3	
: ::::	53	156	N63 46 15.1 W139 21 45.2	3	
·	54	159	N63 46 15.1 W139 21 45.4	3	
· · .	55	162	N63 46 15.0 W139 21 45.6	3	:
	56	165	N63 46 15.0 W139 21 45.8	3	
· : ·	57	168	N63 46 15.0 W139 21 46.0	3	
	58	171	N63 46 15.0 W139 21 46.2	3	
	59	174	N63 46 14.9 W139 21 46.5	3	
	60	177	N63 46 14.9 W139 21 46.7	3	
	61	180	N63 46 14.9 W139 21 46.9	3	
	62	183	N63 46 14.9 W139 21 47.1	3	
	63	186	N63 46 14.9 W139 21 47.4	3	

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]
64	189	N63 46 14.9 W139 21 47 5	3	
65	192	N63 46 14.8 W139 21 47.8	3	
66	195	N63 46 14.8 W139 21 48.0	3	
67	198	N63 46 14.8 W139 21 48.3	3 :	
68	201	N63 46 14.7 W139 21 48.5	3	
69	204	N63 46 14.7 W139 21 48.7	3	
70	207	N63 46 14 7 W139 21 48 9	3	: :
71	210	N63 46 14.7 W139 21 49.2	3	
72	213	N63 46 14.6 W139 21 49.3	3	
73	216	N63 46 14.6 W139 21 49.5	3	
74	219	N63 46 14.5 W139 21 49.8	3	: : :
75	222	N63 46 14.5 W139 21 50.0	3	*
	·			

Indian River_02

÷ :,

		Ś	i i	
Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]
1	0	N63 46 12.0 W139 20 26.8	5	*
2	3	N63 46 12.1 W139 20 26.7	5	
3	6	N63 46 12.2 W139 20 26.7	5	
4	9	N63 46 12.3 W139 20 26.6	5	
5	12	N63 46 12.3 W139 20 26.6	5	
6	15	N63 46 12.5 W139 20 26.5	5	in constant
7	18	N63 46 12.5 W139 20 26.5	5	
8	21	N63 46 12.6 W139 20 26.4	5	
9	24	N63 46 12.7 W139 20 26.3	5	
10	27	N63 46 12.8 W139 20 26.3	5	
11	30	N63 46 12.9 W139 20 26.2	5	
12	33	N63 46 13.0 W139 20 26.1	5	
13	36	N63 46 13.1 W139 20 26.1	5	
14	39	N63 46 13.2 W139 20 26.0	5	
15	42	N63 46 13.3 W139 20 26.0	5	
16	45	N63 46 13.3 W139 20 26.0	5	
17	48	N63 46 13.4 W139 20 25.9	5	
18	51	N63 46 13.5 W139 20 25.8	5	
19	54	N63 46 13.6 W139 20 25.8	5	
20	57	N63 46 13.6 W139 20 25.7	5	•
21	60	N63 46 13.8 W139 20 25.7	5	-
22	63	N63 46 13.9 W139 20 25.6	5	
23	66	N63 46 14.0 W139 20 25.5	5	
24	69	N63 46 14.1 W139 20 25.5	5	.:
- 25	72	N63 46 14.1 W139 20 25.5	5	
26	75	N63 46 14.2	5	

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- GPS- Accuracy [m] Post
27	78	N63 46 14.3 W139 20 25.3	5
28	81	N63 46 14.4 W139 20 25.3	5
29	84	N63 46 14.5 W139 20 25.3	5
30	87	N63 46 14.6 W139 20 25.1	5
31	90	N63 46 14.7 W139 20 25.0	5
32	93	N63 46 14.8 W139 20 24.9	5
33	96	N63 46 14.9 W139 20 24.9	5
34	99	N63 46 15.0 W139 20 24.8	5
35	102	N63 46 15.1 W139 20 24.8	5
36	105	N63 46 15.2 W139 20 24.6	5
37	108	N63 46 15.3 W139 20 24.6	5
38	111	N63 46 15.4 W139 20 24.5 N63 46 15.7	5 *
39	114	W139 20 24.6 N63 46 15.8	5
40	117	W139 20 24 5 N63 46 15.8	5
41	120	W139 20 24.4 N63 46 15.9	5
42	123	W139 20 24 3 N63 46 15.9	5
43	126	W139 20 24.2 N63 46 16.0	5
44	129	W139 20 24.2 N63 46 16.0	5
45	132	W139 20 24.0 N63 46 16.1	5
46 47	135 138	W139 20 24.0 N63 46 16.2	5
47	. 141	W139 20 23.9 N63 46 16.3	5
49	144	W139 20 23.8 N63 46 16.4	5
50	147	W139 20 23.8 N63 46 16.5	5
51	,150	W139 20 23 7 N63 46 16.5 W139 20 23.6	5
52	153	N63 46 16.6 W139 20 23.5	5

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post
53	156	N63 46 16.7 W139 20 23.5	5
54	159	N63 46 16.8 W139 20 23.4	5
55	162	N63 46 16.9 W139 20 23.3	5
56	165	N63 46 17.0 W139 20 23.3	5
57	168	N63 46 17.1 W139 20 23.2	5
58	171	N63 46 17.2 W139 20 23.1	5
59	174	N63 46 17.3 W139 20 23.0	5
60	177	N63 46 17.3 W139 20 22.9	5
61	180	N63 46 17.5 W139 20 22.8	5
62	183	N63 46 17.6 W139 20 22.8	5
63	186	N63 46 17.7 W139 20 22.7	5
64	189	N63 46 17.8 W139 20 22.6	5
65	192	N63 46 17.9 W139 20 22.6	5

		····		
Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]
66	195	N63 46 17.9 W139 20 22.4	5	··· ·
67	198	N63 46 18.0 W139 20 22.3	5	
68	201	N63 46 18.1 W139 20 22.2	5	
69	204	N63 46 18.2 W139 20 22.2	5 · : .	•
70	207	N63 46 18.3 W139 20 22.1	5	
71	210	N63 46 18.5 W139 20 22.1	5 · ,.	
72	213	N63 46 18.7 W139 20 22.1	5	
73	216	N63 46 18.8 W139 20 22.1	5	
74	219	N63 46 18.8 W139 20 22.0	5	······································
75	222	N63 46 18.8 W139 20 21.8	5	*
				· · · · .

Indian River_03

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]	
1	0	N63 46 13.5 W139 20 33.2	4	*	
2	3	N63 46 13 5 W139 20 33 1	4	· · · ·	
3	6	N63 46 13.6 W139 20 32.9	4		
4	.9	N63 46 13.6 W139 20 32.8	4		
5	12	N63 46 13.7 W139 20 32.7	4		
6	15	N63 46 13.8 W139 20 32.7	4		
7	18	N63 46 13.9 W139 20 32.6	4		
8	21	N63 46 14.0 W139 20 32.4	4		
9	24	N63 46 14.1 W139 20 32.3	4		
10	27	N63 46 14.2 W139 20 32.2	4		:
11	30	N63 46 14.3 W139 20 32.1	4		
12	33	N63 46 14.3 W139 20 32.1	4		. :.
13	36	N63 46 14.4 W139 20 32.0	4		
14	39	N63 46 14.5 W139 20 31.9	4		
15	42	N63 46 14.6 W139 20 31.8	4		
16	45	N63 46 14.7 W139 20 31.7	4		
17	48	N63 46 14.8 W139 20 31.6	4		
18	51	N63 46 14.8 W139 20 31.5	4		
19	54	N63 46 14.9 W139 20 31.4	4		
20	57	N63 46 15.0 W139 20 31.3	4		
21	60	N63 46 15.0 W139 20 31.2	4		· · · ·
22	63	N63 46 15.1 W139 20 31.1	4	· ·	
23	66	N63 46 15.2 W139 20 31.0	4		
24	69	N63 46 15.3 W139 20 30.9	4		
25	72	N63 46 15.4 W139 20 30.8	4		
26	75	N63 46 15.4 W139 20 30.7	4		

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
27	78	N63 46 15.5 W139 20 30.6	4
28	81	N63 46 15.6 W139 20 30.5	4
29	84	N63 46 15.8 W139 20 30.3	4
30	87	N63 46 15.8 W139 20 30.2	4
31	90	N63 46 16.0 W139 20 30.1	4
32	93	N63 46 16.1 W139 20 30.0	4
33	96	N63 46 16.1 W139 20 29.9	4
34	99	N63 46 16.2 W139 20 29.8	. 4
35	102	N63 46 16.3 W139 20 29.7	4
36	105	N63 46 16.4 W139 20 29.6	. 4
37	108	N63 46 16.5 W139 20 29.5	4
38	111	N63 46 16.5 W139 20 29.4	4 *
39	114	N63 46 16.7 W139 20 29.1	4
40	117	N63 46 16.7 W139 20 29.0	4
41	120	N63 46 16.8 W139 20 28.9	4
42	123	N63 46 16.9 W139 20 28.8	4
43	126	N63 46 17.0 W139 20 28.7	4
44	129	N63 46 17.1 W139 20 28.6	4
45	132	N63 46 17.2 W139 20 28.5	4
46	135	N63 46 17.2 W139 20 28.4	4
47	138	N63 46 17.3 W139 20 28.4	4
48	141	N63 46 17.4 W139 20 28.3	4
49	144	N63 46 17.5 W139 20 28.2	4
50	147	N63 46 17.5 W139 20 28.1	4
51	150	N63 46 17.6 	4
52	153	N63 46 17.7 W139 20 27.9	4

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
53	156	N63 46 17.8 W139 20 27.8	4
54	159	N63 46 17.9 W139 20 27 7	4
55	162	N63 46 17.9 W139 20 27.6	4
56	165	N63 46 18.0 W139 20 27.4	4
57	168	N63 46 18 1 W139 20 27 4	4
58	171	N63 46 18.2 W139 20 27.3	4
59	174	N63 46 18.3 W139 20 27.2	4
60	177	N63 46 18.3 W139 20 27.1	4
61	180	N63 46 18.4 W139 20 27.0	4
62	183	N63 46 18.5 W139 20 26.8	4
63	186	N63 46 18.6 W139 20 26.7	4
64	189	N63 46 18.7 W139 20 26.6	4
65	192	N63 46 18.8 W139 20 26.5	4
	· · · · · ·		

_	<u>.</u> :			
Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- GPS- Accuracy [m] Post [*]	
66	195	N63 46 18.9 W139 20 26.3	4	
67	198	N63 46 19.0 W139 20 26.3	4	
68	201	N63 46 19.0 W139 20 26.2	4	
69	204	N63 46 19 1 W139 20 26 1	4	
70	207	N63 46 19.2 W139 20 26.0	4	
71	210	N63 46 19.3 W139 20 25.9	4	
72	213	N63 46 19.3 W139 20 25.7	4	
73	216	N63 46 19.4 W139 20 25.7	.4	
74	219	N63 46 19.5 W139 20 25.6	4	
75	222	N63 46 19.7 W139 20 25.5	4 *	

Indian River_04

ndian	River_0	·····	1
Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- GPS- Accuracy [m] Post [*]
1	0	N63 46 15.9 W139 21 28.4	3 *
2	3	N63 46 15.9 W139 21 28.5	3
3	6	N63 46 15.9 W139 21 28.8	3
4	9	N63 46 15.8 W139 21 29.0	3
5	12	N63 46 15.8 W139 21 29.2	3
6	15	N63 46 15.8 W139 21 29.4	3
7	18	N63 46 15.7 W139 21 29.6	3
8	21	N63 46 15.7 W139 21 29.8	3
9	24	N63 46 15.7 W139 21 30.1	3
10	27	N63 46 15.6 W139 21 30.3	3
11	30	N63 46 15.6 W139 21 30.5	3
12	33	N63 46 15.6 W139 21 30.7	3
13	36	N63 46 15 5 W139 21 30.9	3
14	39	N63 46 15.5 W139 21 31 1	3
15	42	N63 46 15.5 W139 21 31.3	3
16	45	N63 46 15.4 W139 21 31.6	3
17	48	N63 46 15.4 W139 21 31.8	3
18	51	N63 46 15.4 W139 21 31.9	3
19	54	N63 46 15.4 W139 21 32.2	3
20	57	N63 46 15.3 W139 21 32.4	3
21	60	N63 46 15.3 W139 21 32.6	3
22	63	N63 46 15.3 W139 21 32.8	3
23	66	N63 46 15.2 W139 21 33.0	3
24	69	N63 46 15.2 W139 21 33.3	3
25	72	N63 46 15.2 W139 21 33.4	3
26	75	N63 46 15.1 W139 21 33.6	3

2778N63 46 15.1 W139 21 33.932881N63 46 15.1 W139 21 34.132984N63 46 15.0 W139 21 34.533087N63 46 15.0 W139 21 34.533190N63 46 15.0 W139 21 34.633293N63 46 15.0 W139 21 34.633396N63 46 14.9 W139 21 35.133499N63 46 14.9 W139 21 35.5335102N63 46 14.9 W139 21 35.5336105N63 46 14.8 W139 21 35.7337108N63 46 14.8 W139 21 35.7338111N63 46 14.8 W139 21 35.7339114N63 46 14.8 W139 21 35.733491N63 46 14.8 W139 21 35.7337108N63 46 14.8 W139 21 36.1339114N63 46 14.8 W139 21 36.3340117N63 46 14.7 W139 21 36.7341120N63 46 14.7 W139 21 37.0343126N63 46 14.7 W139 21 37.0344129N63 46 14.7 W139 21 37.4345132N63 46 14.6 W139 21 37.4346135N63 46 14.6 W139 21 37.8347138N63 46 14.6 W139 21 38.0348141N63 46 14.6 W139 21 38.6349144N63 46 14.6 W139 21 38.6350147N63 46 14.6 W139 21 38.83 </th <th>Electrode No.</th> <th>Location in Profile [m]</th> <th>GPS- Coordinates Latitude/ Longitude</th> <th>GPS- Accuracy [m] Post</th>	Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post
2881N63 46 15.1 W139 21 34.132984N63 46 15.1 W139 21 34.333087N63 46 15.0 W139 21 34.633190N63 46 15.0 W139 21 34.633293N63 46 14.9 W139 21 34.833396N63 46 14.9 W139 21 35.133499N63 46 14.9 W139 21 35.5335102N63 46 14.9 W139 21 35.5336105N63 46 14.8 W139 21 35.7337108N63 46 14.8 W139 21 35.9338111N63 46 14.8 W139 21 35.9339114N63 46 14.8 W139 21 36.1340117N63 46 14.7 W139 21 36.7341120N63 46 14.7 W139 21 36.7342123N63 46 14.7 W139 21 37.0344129N63 46 14.7 W139 21 37.6345132N63 46 14.6 W139 21 37.6346135N63 46 14.6 W139 21 37.6347138N63 46 14.6 W139 21 37.6348141W139 21 37.6 W139 21 37.6349144N63 46 14.6 W139 21 38.3349144N63 46 14.6 W139 21 38.6350147N63 46 14.6 W139 21 38.8351150N63 46 14.4 W139 21 38.8352153N63 46 14.4 W139 21 38.83	27	78		3
29 64 W139 21 34.3 3 30 87 N63 46 15.0 W139 21 34.6 3 31 90 N63 46 15.0 W139 21 34.6 3 32 93 N63 46 14.9 W139 21 35.1 3 33 96 W139 21 35.1 3 34 99 N63 46 14.9 W139 21 35.5 3 35 102 N63 46 14.9 W139 21 35.5 3 36 105 N63 46 14.8 W139 21 35.9 3 37 108 N63 46 14.8 W139 21 35.9 3 38 111 N63 46 14.8 W139 21 36.1 3 39 114 N63 46 14.8 W139 21 36.3 3 40 117 N63 46 14.7 W139 21 36.7 3 41 120 N63 46 14.7 W139 21 37.0 3 42 123 N63 46 14.7 W139 21 37.6 3 44 129 N63 46 14.7 W139 21 37.6 3 44 129 N63 46 14.6 W139 21 37.6 3 45 132 N63 46 14.6 W139 21 37.6 3	28	81	N63 46 15.1	3
30 87 $W139 \ 21 \ 34.5$ 3 31 90 $N63 \ 46 \ 15.0$ 3 32 93 $N63 \ 46 \ 15.0$ 3 33 96 $N63 \ 46 \ 14.9$ 3 33 96 $N63 \ 46 \ 14.9$ 3 34 99 $N63 \ 46 \ 14.9$ 3 35 102 $N63 \ 46 \ 14.9$ 3 36 105 $N63 \ 46 \ 14.9$ 3 37 108 $N63 \ 46 \ 14.9$ 3 37 108 $N63 \ 46 \ 14.8$ 3 38 111 $N63 \ 46 \ 14.8$ 3 39 114 $N63 \ 46 \ 14.8$ 3 40 117 $N63 \ 46 \ 14.8$ 3 41 120 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.7$ 3 45 132 $N63 \ 46 \ 14.7$ 3 46 135 $N63 \ 46 \ 14.6$ 3 47 138 $N63 \ 46 \ 14.6$ 3 48 141 $N63 \ 46 \ 14.6$ 3 49 144 $N63 \ 46 \ 14.6$ 3 49 144 $N63 \ 46 \ 14.6$ 3 50 147 $N63 \ 46 \ 14.5$ 3 51 150 $N63 \ 46 \ 14.5$ 3 52 153 $N63 \ 46 \ 14.4$ 3	29	84		3
31 90 $W139 \ 21 \ 34.6$ 3 32 93 $N63 \ 46 \ 15.0$ $W139 \ 21 \ 34.8$ 3 33 96 $N63 \ 46 \ 14.9$ $W139 \ 21 \ 35.1$ 3 34 99 $N63 \ 46 \ 14.9$ $W139 \ 21 \ 35.5$ 3 35 102 $N63 \ 46 \ 14.9$ $W139 \ 21 \ 35.5$ 3 36 105 $N63 \ 46 \ 14.9$ $W139 \ 21 \ 35.7$ 3 37 108 $N63 \ 46 \ 14.8$ $W139 \ 21 \ 35.9$ 3 38 111 $N63 \ 46 \ 14.8$ $W139 \ 21 \ 36.1$ 3 40 117 $N63 \ 46 \ 14.8$ $W139 \ 21 \ 36.7$ 3 40 117 $N63 \ 46 \ 14.7$ $W139 \ 21 \ 36.7$ 3 41 120 $N63 \ 46 \ 14.7$ $W139 \ 21 \ 37.0$ 3 42 123 $N63 \ 46 \ 14.7$ $W139 \ 21 \ 37.6$ 3 44 129 $N63 \ 46 \ 14.6$ $W139 \ 21 \ 37.6$ 3 44 129 $N63 \ 46 \ 14.6$ $W139 \ 21 \ 37.6$ 3 45 132 $N63 \ 46 \ 14.6$ $W139 \ 21 \ 37.6$ 3 46 135 $N63 \ 46 \ 14.6$ $W139 \ 21 \ 38.6$ 3 47 138 $N63 \ 46 \ 14.6$ $W139 \ 21 \ 38.6$ 3 49 144 $N63 \ 46 \ 14.5$ $W139 \ 21 \ 38.6$ 3 50 147 $N63 \ 46 \ 14.5$ $W139 \ 21 \ 38.6$ 3 51 150 $N63 \ 46 \ 14.5$ $W139 \ 21 \ 38.8$ 3	30	87	W139 21 34.5	3
32 93 $W139 \ 21 \ 34.8$ 3 33 96 $N63 \ 46 \ 14.9$ 3 34 99 $N63 \ 46 \ 14.9$ 3 35 102 $N63 \ 46 \ 14.9$ 3 35 102 $W139 \ 21 \ 35.5$ 3 36 105 $N63 \ 46 \ 14.9$ 3 37 108 $N63 \ 46 \ 14.8$ 3 37 108 $N63 \ 46 \ 14.8$ 3 38 111 $N63 \ 46 \ 14.8$ 3 39 114 $N63 \ 46 \ 14.8$ 3 40 117 $N63 \ 46 \ 14.8$ 3 41 120 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.6$ 3 44 129 $N63 \ 46 \ 14.6$ 3 45 132 $N63 \ 46 \ 14.6$ 3 <td< td=""><td>31</td><td>90</td><td></td><td>.3</td></td<>	31	90		.3
3396 $W139 \ 21 \ 35.1$ 33499N63 46 14.9335102N63 46 14.9336105N63 46 14.9337108N63 46 14.8338111N63 46 14.8339114N63 46 14.8340117N63 46 14.8341120N63 46 14.7342123N63 46 14.7343126N63 46 14.7344129N63 46 14.7345132N63 46 14.6346135N63 46 14.6347138N63 46 14.6348141N63 46 14.6349144N63 46 14.6349144N63 46 14.5350147N63 46 14.5351150N63 46 14.5352153N63 46 14.43	32	93	W139 21 34.8	3
34 99 $W139 \ 21 \ 35.2$ 3 35 102 $N63 \ 46 \ 14.9$ 3 36 105 $N63 \ 46 \ 14.9$ 3 37 108 $N63 \ 46 \ 14.8$ 3 37 108 $N63 \ 46 \ 14.8$ 3 38 111 $N63 \ 46 \ 14.8$ 3 39 114 $N63 \ 46 \ 14.8$ 3 40 117 $N63 \ 46 \ 14.8$ 3 40 117 $N63 \ 46 \ 14.7$ 3 41 120 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 43 126 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.7$ 3 45 132 $N63 \ 46 \ 14.6$ 3 46 135 $N63 \ 46 \ 14.6$ 3 47 138 $N63 \ 46 \ 14.6$ 3 48 141 $N63 \ 46 \ 14.6$ 3 49 144 $N63 \ 46 \ 14.6$ 3 49 144 $N63 \ 46 \ 14.6$ 3 50 147 $N63 \ 46 \ 14.5$ 3 51 150 $N63 \ 46 \ 14.5$ 3 52 153 $N63 \ 46 \ 14.4$ 3	33	96	W139 21 35.1	3
35 102 $W139 \ 21 \ 35.5$ 336 105 N63 46 14.9337 108 N63 46 14.8338 111 N63 46 14.8339 114 N63 46 14.8340 117 N63 46 14.8341 120 N63 46 14.7342 123 N63 46 14.7343 126 N63 46 14.7344 129 N63 46 14.7345 132 N63 46 14.6346 135 N63 46 14.6347 138 N63 46 14.6348 141 N63 46 14.6349 144 N63 46 14.6349 144 N63 46 14.5350 147 N63 46 14.5351 150 N63 46 14.5352 153 N63 46 14.43	34	99	W139 21 35.2	3
36 105 $W139 \ 21 \ 35.7$ 3 37 108 $N63 \ 46 \ 14.8$ 3 38 111 $N63 \ 46 \ 14.8$ 3 39 114 $N63 \ 46 \ 14.8$ 3 40 117 $N63 \ 46 \ 14.8$ 3 40 117 $N63 \ 46 \ 14.8$ 3 41 120 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 42 123 $N63 \ 46 \ 14.7$ 3 43 126 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.7$ 3 44 129 $N63 \ 46 \ 14.7$ 3 45 132 $N63 \ 46 \ 14.6$ 3 46 135 $N63 \ 46 \ 14.6$ 3 47 138 $N63 \ 46 \ 14.6$ 3 48 141 $N63 \ 46 \ 14.6$ 3 49 144 $N63 \ 46 \ 14.6$ 3 49 144 $N63 \ 46 \ 14.6$ 3 50 147 $N63 \ 46 \ 14.5$ 3 51 150 $N63 \ 46 \ 14.5$ 3 52 153 $N63 \ 46 \ 14.4$ 3	35	102		3
37 108 $W139 \ 21 \ 35.9$ 3 38 111 $N63 \ 46 \ 14.8$ 3 * 39 114 $N63 \ 46 \ 14.8$ 3 * 40 117 $N63 \ 46 \ 14.8$ 3 * 40 117 $N63 \ 46 \ 14.8$ 3 * 41 120 $N63 \ 46 \ 14.7$ 3 * 41 120 $N63 \ 46 \ 14.7$ 3 * 42 123 $N63 \ 46 \ 14.7$ 3 * 43 126 $N63 \ 46 \ 14.7$ 3 * 44 129 $N63 \ 46 \ 14.7$ 3 * 44 129 $N63 \ 46 \ 14.7$ 3 * 45 132 $N63 \ 46 \ 14.6$ 3 * 46 135 $N63 \ 46 \ 14.6$ 3 * 47 138 $N63 \ 46 \ 14.6$ 3 * 48 141 $N63 \ 46 \ 14.6$ 3 * 49 144 $N63 \ 46 \ 14.6$ 3 *<	36	105	W139 21 35.7	3
38 111 W139 21 36.1 3 39 114 N63 46 14.8 W139 21 36.3 3 40 117 N63 46 14.8 W139 21 36.7 3 41 120 N63 46 14.7 W139 21 36.8 3 42 123 N63 46 14.7 W139 21 37.0 3 43 126 N63 46 14.7 W139 21 37.0 3 44 129 N63 46 14.7 W139 21 37.4 3 45 132 N63 46 14.6 W139 21 37.6 3 46 135 N63 46 14.6 W139 21 37.8 3 47 138 N63 46 14.6 W139 21 37.8 3 47 138 N63 46 14.6 W139 21 38.0 3 48 141 N63 46 14.6 W139 21 38.3 3 49 144 N63 46 14.6 W139 21 38.4 3 50 147 N63 46 14.5 W139 21 38.6 3 51 150 N63 46 14.5 W139 21 38.8 3 52 153 N63 46 14.4 3	37	108		3
39 114 W139 21 36.3 3 40 117 N63 46 14.8 W139 21 36.7 3 41 120 N63 46 14.7 W139 21 36.8 3 42 123 N63 46 14.7 W139 21 37.0 3 43 126 N63 46 14.7 W139 21 37.0 3 44 129 N63 46 14.7 W139 21 37.2 3 44 129 N63 46 14.7 W139 21 37.4 3 45 132 N63 46 14.6 W139 21 37.6 3 46 135 N63 46 14.6 W139 21 37.8 3 47 138 N63 46 14.6 W139 21 38.0 3 48 141 N63 46 14.6 W139 21 38.3 3 49 144 N63 46 14.6 W139 21 38.4 3 50 147 N63 46 14.5 W139 21 38.6 3 51 150 N63 46 14.5 W139 21 38.8 3 52 153 N63 46 14.4 3	38	111	W139 21 36.1	3 *
40 117 W139 21 36.7 3 41 120 N63 46 14.7 3 42 123 N63 46 14.7 3 43 126 N63 46 14.7 3 44 129 N63 46 14.7 3 44 129 N63 46 14.7 3 44 129 N63 46 14.7 3 45 132 N63 46 14.6 3 45 132 N63 46 14.6 3 46 135 N63 46 14.6 3 47 138 N63 46 14.6 3 48 141 N63 46 14.6 3 49 144 N63 46 14.6 3 50 147 N63 46 14.5 3 51 150 N63 46 14.5 3 51 150 N63 46 14.5 3 52 153 N63 46 14.4 3	39	114	W139 21 36.3	3
41 120 W139 21 36.8 3 42 123 N63 46 14.7 3 43 126 N63 46 14.7 3 43 126 N63 46 14.7 3 44 129 N63 46 14.7 3 44 129 N63 46 14.7 3 45 132 N63 46 14.6 3 46 135 N63 46 14.6 3 47 138 N63 46 14.6 3 48 141 N63 46 14.6 3 49 144 N63 46 14.6 3 50 147 N63 46 14.5 3 51 150 N63 46 14.5 3 52 153 N63 46 14.4 3	40	117	W139 21 36.7	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	120		3
43 120 W139 21 37.2 3 44 129 N63 46 14.7 W139 21 37.4 3 45 132 N63 46 14.6 W139 21 37.6 3 46 135 N63 46 14.6 W139 21 37.8 3 47 138 N63 46 14.6 W139 21 38.0 3 48 141 N63 46 14.6 W139 21 38.3 3 49 144 N63 46 14.6 W139 21 38.4 3 50 147 N63 46 14.5 W139 21 38.6 3 51 150 N63 46 14.5 W139 21 38.8 3 52 153 N63 46 14.4 3	42	123		3
44 129 W139 21 37.4 3 45 132 N63 46 14.6 W139 21 37.6 3 46 135 N63 46 14.6 W139 21 37.8 3 47 138 N63 46 14.6 W139 21 38.0 3 48 141 N63 46 14.6 W139 21 38.3 3 49 144 N63 46 14.6 W139 21 38.4 3 50 147 N63 46 14.5 W139 21 38.6 3 51 150 N63 46 14.5 W139 21 38.8 3 52 153 N63 46 14.4 3	43	126		3
45 132 W139 21 37.6 3 46 135 N63 46 14.6 3 47 138 N63 46 14.6 3 47 138 N63 46 14.6 3 48 141 N63 46 14.6 3 49 144 N63 46 14.6 3 50 147 N63 46 14.5 3 51 150 N63 46 14.5 3 52 153 N63 46 14.4 3	44	129		3
46 135 W139 21 37.8 3 47 138 N63 46 14.6 W139 21 38.0 3 48 141 N63 46 14.6 W139 21 38.3 3 49 144 N63 46 14.6 W139 21 38.4 3 50 147 N63 46 14.5 W139 21 38.6 3 51 150 N63 46 14.5 W139 21 38.8 3 52 153 N63 46 14.4 3	45	132	W139 21 37.6	3
47 138 W139 21 38.0 3 48 141 N63 46 14.6 3 49 144 N63 46 14.6 3 49 144 N63 46 14.6 3 50 147 N63 46 14.5 3 51 150 N63 46 14.5 3 52 153 N63 46 14.4 3	46	135	W139 21 37.8	3
48 141 N63 46 14.6 W139 21 38.3 3 49 144 N63 46 14.6 W139 21 38.4 3 50 147 N63 46 14.5 W139 21 38.6 3 51 150 N63 46 14.5 W139 21 38.8 3 52 153 N63 46 14.4 3	47			.3
49 144 W139 21 38.4 3 50 147 N63 46 14.5 3 51 150 N63 46 14.5 3 52 153 N63 46 14.4 3	48		N63 46 14.6	3
50 147 W139 21 38.6 3 51 150 N63 46 14.5 3 52 153 N63 46 14.4 3	49	144		3
51 150 W139 21 38.8 3 52 153 N63 46 14.4 3	50	147	N63 46 14.5	3
52 153 N63 46 14.4 3	51	150	N63 46 14.5	3
VV139 21 39.0	52	153		3

•

.35

		· .		· · ·
	Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
	53	156	N63 46 14.4 W139 21 39.2	3
	54	159	N63 46 14.4 W139 21 39.5	3
	55	162	N63 46 14.4 W139 21 39.6	3
	56	165	N63 46 14.3 W139 21 39.8	3
	57	168	N63 46 14.3 W139 21 40.1	3
:	58	171	N63 46 14.3 W139 21 40.2	3
	59	174	N63 46 14.3 W139 21 40.4	3
	60	177	N63 46 14.2 W139 21 40.6	· · · · · · · · · · · · · · · · · · ·
: 	61	180	N63 46 14.2 W139 21 40.8	3
	62	183	N63 46 14.2 W139 21 40.9	3
• •	63	186	N63 46 14.1 W139 21 41.2	3
	64	189	N63 46 14 1 W139 21 41 4	3
	65	192	N63 46 14.1 W139 21 41.6	3

	•••	<u> </u>
Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
195	N63 46 14.1 W139 21 41.8	3
198	N63 46 14.0 W139 21 42.0	3
201	N63 46 14.0 W139 21 42.2	3
204	N63 46 14.0 W139 21 42.4	3
207	W139 21 42.6	3
210	W139 21 42.9	3
213	N63 46 13.9 W139 21 43.1	3
216	W139 21 43.4	3
219	N63 46 13.8 W139 21 43.5	3
222	N63 46 13.8 W139 21 43.8	3 *
	195 198 201 204 207 210 213 216 219	195 N63 46 14.1 W139 21 41.8 198 N63 46 14.0 W139 21 42.0 201 N63 46 14.0 W139 21 42.2 204 N63 46 14.0 W139 21 42.4 207 N63 46 14.0 W139 21 42.4 207 N63 46 14.0 W139 21 42.4 210 N63 46 13.9 W139 21 42.9 213 N63 46 13.9 W139 21 43.1 216 N63 46 13.9 W139 21 43.4 219 N63 46 13.8 W139 21 43.5 222 N63 46 13.8

Indian River_05

Indian	River_0	5	
Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
1	0	N63 46 14.5 W139 21 27.9	3 *
2	3	N63 46 14.5 W139 21 28.0	3
3	6	N63 46 14.5 W139 21 28.1	3
4	9	N63 46 14.5 W139 21 28.3	3
5	12	N63 46 14.5 W139 21 28.5	3
6	15	N63 46 14.5 W139 21 28.6	3
7	18	N63 46 14,5 W139 21 28,8	3
8	21	N63 46 14 5 W139 21 29.0	3
9	24	N63 46 14.4 W139 21 29.2	3
10	27	N63 46 14.4 W139 21 29.5	3
11	30	N63 46 14.4 W139 21 29.6	3
12	33	N63 46 14.3 W139 21 29.8	3
13	36	N63 46 14.3 W139 21 30.1	3
14	39	N63 46 14.3 W139 21 30.3	3
15	42	N63 46 14.3 W139 21 30.5	3
16	45	N63 46 14.3 W139 21 30.7	3
17	48	N63 46 14.2 W139 21 30.9	3
18	51	N63 46 14.2 W139 21 31.1	3
19	54	N63 46 14.2 W139 21 31.3	3
20	57	N63 46 14.1 W139 21 31.6	. 3
21	60	N63 46 14.1 W139 21 31.7	3
22	63	N63 46 14.1 W139 21 31.9	3
23	66	N63 46 14 1 W139 21 32 2	3
24	69	N63 46 14.0 W139 21 32.4	3
25	72	N63 46 14.0 W139 21 32.6	3
26	75	N63 46 14.0 W139 21 32.8	3

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m]	Post [*]
27	78	N63 46 14.0 W139 21 33.0	3	
28	81	N63 46 13.9 W139 21 33.3	3	
29	84	N63 46 13.9 W139 21 33.5	3	
30	87	N63 46 13.9 W139 21 33.7	3	
31	90	N63 46 13.9 W139 21 33.9	3	
32	93	N63 46 13.8 W139 21 34.1	3	
33	96	N63 46 13.8 W139 21 34.3	3	
34	99	N63 46 13.8 W139 21 34.5	3	
35	102	N63 46 13.8 W139 21 34.7	3	
36	105	N63 46 13.7 W139 21 35.0	3	
37	108	N63 46 13.7 W139 21 35.2	3	
38	111	N63 46 13.7 W139 21 35.4	3	*
39	114	N63 46 13.7 W139 21 35.6	3	
40	117	N63 46 13.6 W139 21 35.7	3	
41	120	N63 46 13.6 W139 21 35.9	3	
42	123	N63 46 13.6 W139 21 36.1	3	
43	126	N63 46 13.6 W139 21 36.3	3	
44	129	N63 46 13.5 W139 21 36.5	3	
45	132	N63 46 13 5 W139 21 36 7	3	
46	135	N63 46 13.5 W139 21 36.8	3	
47	138	N63 46 13.5 W139 21 37.0	.3	
48	141	N63 46 13.5 W139 21 37.2	3	
49	144	N63 46 13.5 W139 21 37.3	3	
50	147	N63 46 13.5 W139 21 37.5	3	
51	150	N63 46 13 4 W139 21 37 7	3	•
52	153	N63 46 13.4 W139 21 37.9	3	

		: · · .	·
Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
53	156	N63 46 13.4 W139 21 38.1	3
54	159	N63 46 13.4 W139 21 38.3	3
55	162	N63 46 13.4 W139 21 38.5	3
56	165	N63 46 13.3 W139 21 38.7	3
57	168	N63 46 13.3 W139 21 39.0	3
58	171	N63 46 13.3 W139 21 39.2	3
59	174	N63 46 13.3 W139 21 39.5	3
60	177	N63 46 13.2 W139 21 39.6	3
61	180	N63 46 13.2 W139 21 39.8	3
62	183	N63 46 13.1 W139 21 40.1	3
63	186	N63 46 13.1 W139 21 40.2	3
64	189	N63 46 13.1 W139 21 40.5	3
65	192	N63 46 13.0 W139 21 40.7	3

Electrode No.	Location in Profile [m]	GPS- Coordinates Latitude/ Longitude	GPS- Accuracy [m] Post [*]
66	195	N63 46 13.0 W139 21 40.9	3
67	198	N63 46 13.0 W139 21 41.2	3
68	201	N63 46 12.9 W139 21 41.4	3
69	204	N63 46 12.9 W139 21 41.6	3
70	207	N63 46 12.9 W139 21 41.8	3
71	210	N63 46 12.8 W139 21 42.2	3
72	213	N63 46 12.8 W139 21 42.4	3
73	216	N63 46 12.8 W139 21 42.6	3
74	219	N63 46 12.7 W139 21 42.8	3
75	222	N63 46 12.7 W139 21 43.0	3 *