Geochemical Report On The

Tjop Project

Tjop-17 to 28 and Tjop-33 to 44 YD07017-024, YF38739-740, YE69095-096, YF38723-734

And

Astos-11 to 22, 35, 37, 39, 41-48, 51, 53 YF38751-762, 775, 777, 779, 781-788, 791, 793 Quartz Claims

Work Period June 1st to October 15th, 2012

Located In
Dawson Mining District
On
NTS 116-C-08
64° 24' Latitude, 140° 15' Longitude

By Bernie Kreft

January 10th, 2013

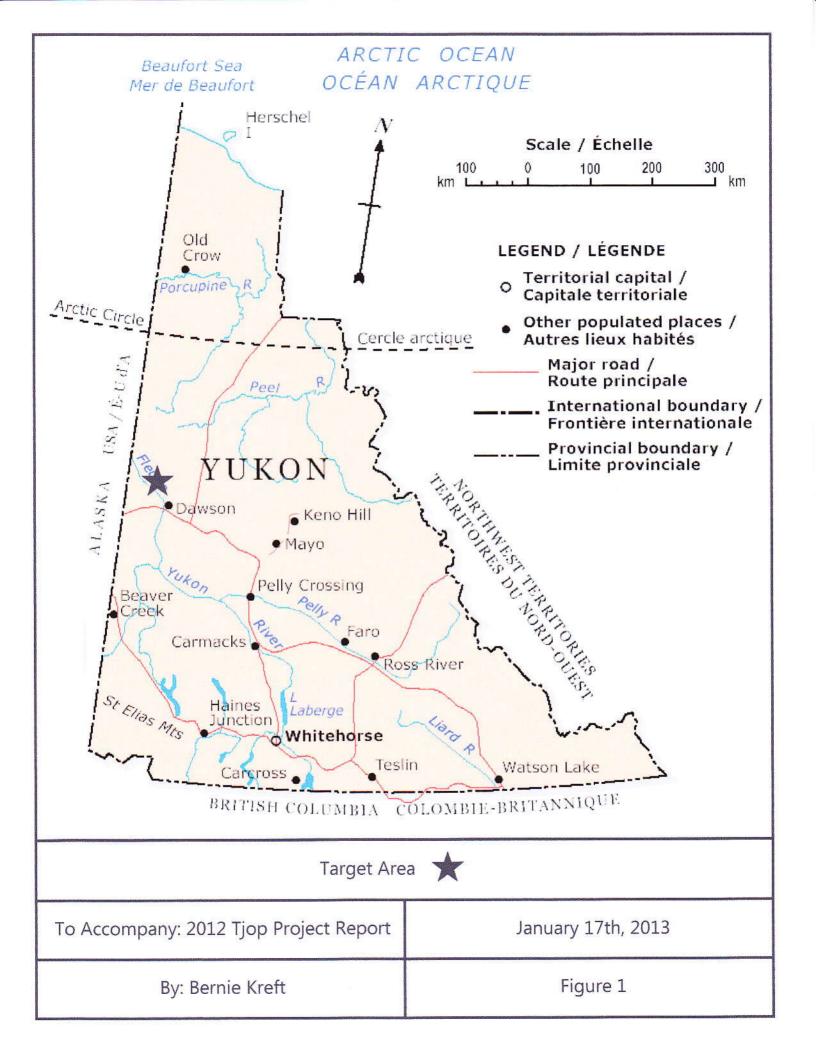
Table Of Contents

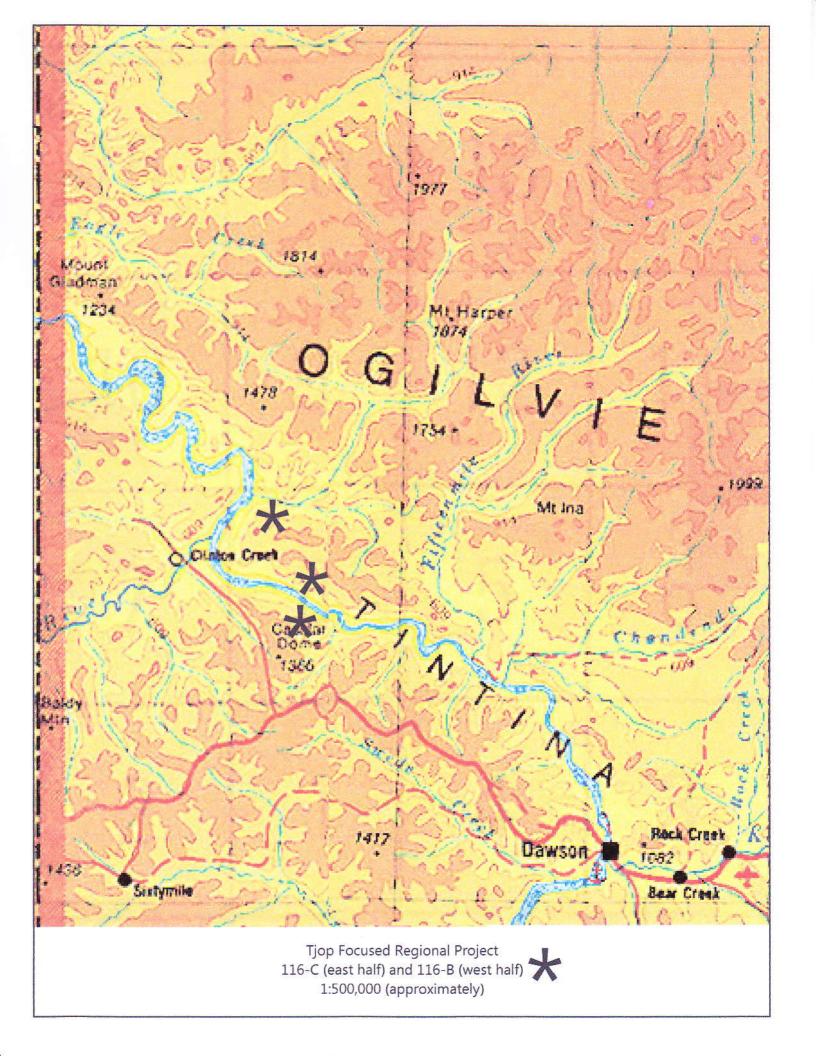
Location	Page 1
Access	Page 1
Claims And Land Status	Page 1
Topography And Vegetation	Page 1
History And Previous Work	Page 1
Yukon Map (figure 1)	Page 2
Regional Map (figure 2)	Page 3
Geology And Mineralization	Page 5
Tjop Project Overview (figure 3)	Page 6
Current Work And Results	Page 7
Conclusions	Page 9
Recommendations	Page 9
Caley Sample Map (figure 4)	Page 10
Caley Gold Map (figure 5)	Page 11
Tjop Sample Map (figure 6)	Page 12
Tjop Gold Map (figure 7)	Page 13
Tjop Recce Sample Map (figure 8)	Page 14
Tjop Recce Gold Map (figure 9)	Page 15
Statement of Qualifications	Page 16
Statement Of Costs	Page 17
Assay Spreadsheets	At Back
Assay Certificates	At Back

Location – The Liberty Project is located in the Dawson Mining District on NTS mapsheet 116-C-08 centered at approximately 64° 24' north and 140° 15' east. The area evaluated is located approximately 50-60 kilometres northwest of Dawson City in the general vicinity of the Yukon River, covering an area of approximately 400 square kilometres.

Three main work areas comprise the project: Caley (Astos Claims) located just south of the Yukon River, Tjop (Tjop Claims) located just north of the Yukon River and Tjop Recce (no claims staked) located just south of the Coal River.

Access – Access was achieved by helicopter from Dawson, with the total flight distance from Dawson to the most distant portion of the project about 65.0 kilometres with a one-way flight time of about 25 minutes. With some de-bushing the road to an abandoned open pit asbestos mine may provide access to the general vicinity of the Caley portion of the project (Astos Claims).


Claims And Land Status – Within the project area there are two claim groups totalling 98 quartz claims held by the author: Tjop-1 to 42 and Astos-1 to 56. Upon acceptance of this report by the Dawson Mining Recorder a select portion of both groups will be renewed until December 21st 2014.


Competitor claims within the project area include the Track Claims (8) held by Archer Cathro and staked to cover a W-Au skarn target, the Goddess Claims (16) held by Shawn Ryan and staked to cover a Molybdenum porphyry target and the Aces Claims (62) held by Goldstrike Exploration which possibly cover a base metal target.

Land claims blocks belonging to the Trondek Hwichin first nation lie to the east of the Tjop Recce area as well as to the south of the Tjop Claims. The authors experience is that the Trondek are a reasonable and progressive group generally pro-development in nature.

Topography And Vegetation – The project lies within the un-glaciated Klondike Plateau, which is characterized by low rolling hills dissected by deeply incised stream valleys. This region experienced strong surficial weathering during the early to mid-Tertiary; as a result natural bedrock exposures are rare, and generally restricted to steep slopes, with the effects of surficial weathering extending to depths of as much as 80 metres or more. Overburden and eluvial-regolithic material appears to average approximately 1.0 metre in thickness, but is certainly deeper in some spots. South facing slopes are generally snow free from early May, with frost leaving the ground by the end of May. North facing slopes are generally free of snow by mid to end of May, with permafrost often remaining year-round. The project is below tree line, with vegetative cover consisting of variable amounts of spruce, poplar, alder and brush, with brush and stunted spruce trees predominating on north facing slopes, higher elevations and in areas of permafrost or poor drainage, while south facing slopes are generally covered by more mature stands of spruce. Several recent forest fires have swept through the area including the Tjop Claims, leaving large areas devoid of moss and vegetative cover resulting in more rock exposure and better soil sampling conditions due to at least partial destruction of permafrost in these areas, but also resulting in increased difficulties for ground traversing due to wind-fall.

History and Previous Work – Exploration for the source of the placer gold in the Klondike region has been of an ebb and flow nature since 1898. Although historical prospecting efforts resulted in several interesting discoveries such as Lone Star and King Solomons Dome, many more discoveries (Underworld, Ten Mile, Coffee) have occurred since the development and subsequent improvement of exploration methods such as soil sampling, trace element geochemistry and geophysics. The "oldtimers" were often unsuccessful likely due to poorly understood geology and controls on mineralization, thick overburden, abundant vegetative cover and a variable thickness of regolithic material all conspiring to make historical methods of prospecting

of limited use and effect. Modern discoveries have come about through the usage of soil geochemistry in combination with mechanized trenching. These discoveries span a variety of deposit types including structurally related quartz veins and associated auriferous alteration haloes, areas of brecciation and silicification related to intrusives or faults, and intrusive hosted gold; providing a much broader spectrum of target types than the simple quartz veins historically thought to be the source of the Klondike gold.

The area of the Tjop Project has a varied exploration history, with the bulk of these efforts directed towards:

- 1) Track Claims A W skarn and Au-Bi-W vein showing associated with a late cretaceous intrusive to Nasina Series sedimentary strata located between the Tjop Claims and the Tjop Recce area.
- 2) Goddess Claims A Mo-W ppy associated with a late cretaceous to early tertiary intrusive activity located to the northwest of the Astos claims Caley Area
- 3) Asbestos potential associated with serpentinized Slide Mountain ultramafics at the Tjop Claims and just to the NE of the Astos Claims

The Klondike Plateau, including areas such as the Tjop Project, escaped recent glaciation and is covered by extensive overburden in valley bottoms and widespread regolithic-cluvial material on slopes. Geochemical results from silt sampling in areas with surficial geology such as this generally exhibit significantly lower thresholds when defining "anomalies" than thresholds used in glaciated or topographically steeper areas where erosion is more prevalent. The following table compares values from RGS silt samples taken immediately downstream of significant targets within the Klondike Plateau, to RGS silt samples from the Tjop Project area. This data highlights the possible significance of the Tjop Project Regional Geochemical Survey silt anomalies.

Project	Target	Au-INA	Au-Fire	Au-Fire repeat	As	Sb
Underworld	Golden Saddle	-	12	42	16	1.4
Underworld		-	9	-	7	1.1
Coffee	Supremo	-	12	16	9	1.7
Coffee	Latte	-	10	-	8	0.9
Tjop Project	Tjop Recce Area	9	-	-	33	4.6
Tjop Project	Astos Area	9	_	-	46	3.4

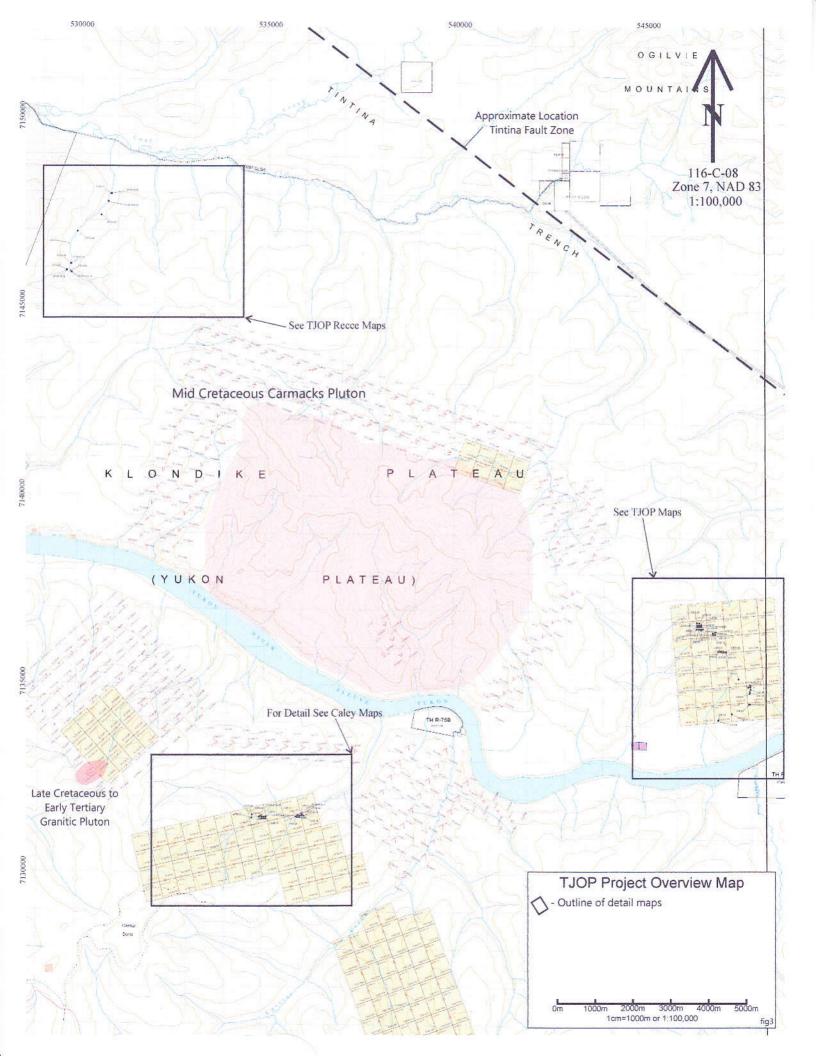
The geological trends and rock units within the project area are part of a belt of rocks extending across much of the area northwest of Dawson and into adjacent sections of Alaska. Given that geology, and by default the associated potential for mineralization, does not stop at borders, research on targets within the portion of Alaska immediately adjacent to the Tjop Project was conducted, yielding the following data (Alaska Resource Data File) pertaining to auriferous showings in this area:

At the South Liberty Prospect (ARDF; EA072 and EA073) gold in soil values of up to 7,517 ppb have been found in an area underlain by greenstone and quartz muscovite schist cut by iron-stained quartz carbonate veins. Best gold values are associated with highly anomalous arsenic and antimony, with the mineralization bearing numerous similarities to Motherlode type gold targets.

Dome Creek (ARDF; EA078 and EA079) is a significant large-scale placer gold deposit, concentrates from which contain pyrite, galena and cinnabar. Bedrock within the placer pits consists of Nasina Series rocks and serpentinized greenstone, both of which are cut by numerous quartz veins and shears containing pyrite, galena and arsenopyrite.

Nugget Gulch (ARDF: EA081) consists of gold in silt anomalies of up to 1,081 ppb within an area underlain

by Nasina series sediments and ultramafic units intruded by Mesozoic granitic rocks. Areas of silicification, quartz carbonate alteration and pyritic quartz veins have been noted. Potential for Motherlode style gold mineralization was said to exist.


Geology And Mineralization – The project is situated on the southwest side of the Tintina Fault, within the Tintina Gold Belt (TGB), a geological and geochemical environment favorable for locating economic gold deposits. Significant discoveries within the TGB include Donlin Creek, Pogo and Fort Knox, while significant Yukon occurrences include Brewery Creek, Dublin Gulch, Coffee, Rau and Underworld. Mineralization at these deposits covers a wide spectrum of high-grade mesothermal veins, intrusion hosted sheeted veins, large-tonnage and low-grade disseminations and stockworks, skarns and mantos, with much of the mineralization intrusion related or having a strong structural control. A recent significant surge in local exploration activity has occurred since the discovery by Underworld Resources of the Golden Saddle and Arc deposits at the White Gold Project. This "rush" is ongoing as of the date of writing and, due to more recent discoveries by Kaminak at Coffee and Atac at Rau, shows no sign of slowing.

At Golden Saddle, intrusion-related gold mineralization is preferentially hosted within metamorphosed felsic intrusive units, as well as felsic and mafic metavolcanic rocks, with the principal host rock a granitoid that has been metamorphosed to augen gneiss. Gold is associated with quartz veins, stockwork and breccia zones, as well as pyrite veinlets and disseminations, with better-grade mineralization found in proximity to ultramafic units. The alteration assemblage includes pervasive albite, carbonate, sericite and silicification. The main mineralized zone strikes to the northeast, with a gentle to moderate dip to the northwest. The generally lower grade and smaller Arc Deposit is hosted by metasedimentary rocks (quartzite), and is typified by hydrothermal breccias and silicification, with mineralization associated with arsenic and antimony, which is distinct to the Golden Saddle deposit which contains only limited amounts of sulphides. At Coffee, gold mineralization has been found within schist and gneiss units as well as granitic intrusives. Gold values are associated with zones of shearing, brecciation, silicification, clay a/o sericite alteration mineralized with variable amounts of fresh to fully oxidized sulphides occurring within micro-fracture networks, veins and in the matrix of breccias. A correlation between gold values and several pathfinder elements, including arsenic, antimony, molybdenum, mercury and barium has been noted. Structure is reportedly the key control on mineralization at Coffee.

The geological environment of the Tjop Project is permissible for the development of ophiolite hosted or related (Motherlode) bulk-tonnage and high-grade gold targets. Well known examples of this style of mineralization are found within the Cassiar, Atlin, Wells-Barkerville, Bralorne and California Goldfields. Potential also exists for gold targets related to late cretaceous intrusive activity.

At Cassiar, gold-quartz veins and related auriferous wallrock alteration haloes are hosted by a gently dipping thrust zone, 300 to 400 metres thick, which immediately underlies Late Triassic sedimentary rocks. This thrust zone comprises a sequence of narrow imbricated metabasaltic slices, roughly 100 metres thick, separated by thinner, discontinuous tectonic slivers of variably listwanite (silica-carbonate) altered ultramafic rocks. Significant amounts of auriferous mineralization have been outlined in the Taurus-88 Hill area where an estimated resource of about 3,900,000 ounces of gold occurs within a pyritic quartz vein swarm which caused extensive pyritization and ankeritization/carbonate alteration of the host basalt and associated volcanic rocks. Auriferous zones are commonly associated with anomalous values of arsenic and silver, lesser antimony and copper along with potassium enrichment and sodium depletion. The nearby Cusac-Table Mountain-Erickson Mines have reported sporadic production totalling approximately 300,000 ounces of gold from a series of high-grade, discontinuous, quartz vein deposits averaging between 10 to 30 g/t gold.

Bedrock underlying the Tjop Project consists of Nasina (Devonian-Mississippian) series micaceous quartzite,

quartz-mica schist, graphitic or carbonaceous schist and limestone, as well as Slide Mountain Terrane (Permian) greenstone, quartz-chlorite-muscovite schist and scattered occurrences of ultramafic rocks. Intrusive to these units are late Cretaceous (85ma to 64.9ma) granodiorite to quartz diorite stocks. A large intrusive body occurs roughly equidistant between the three areas comprising this project while a small 64.9 ma stock is located at the Goddess claims just to the east of the Astos Claims (Caley). Given the amount of cover it is likely that Cretaceous intrusive bodies are more widespread than currently mapped.

The ultramafic bodies are invariably at least moderately serpentinized and range from massive to highly sheared. Further altering the serpentinized ultramafics is a silica-carbonate (listwanite) assemblage consisting of varying amounts of quartz, chalcedony and magnesite with lesser ankerite, dolomite and mariposite. Some small serpentinite bodies are completely altered while larger bodies are generally only altered in sheared areas.

Current Work And Results – Work consisted of prospecting as well as rock, silt and soil sampling, concentrated within three distinct areas. A total of 52 soil samples weighing an average of 0.31kg were taken at an average 50 metre interval on randomly selected lines. Sampled material was taken from the C horizon, found at an average depth of 30-80 centimetres, using hand held augers. Soil sampling conditions were good, apart from the north facing slopes at Caley-Astos where the presence of permafrost significantly slowed progress. A total of 32 rock samples weighing an average of 0.48kg were collected from rare outcrops or from stream float and talus occurrences. A total of 22 silt samples, weighing an average of 0.51kg, were taken from active stream channels varying in size from small steep side-hill seeps to regular stream channels; care was taken to standardize silt sample sites based on medium (medium gravel to very fine sand: 16mm to 62.5um) and location (as close to center of the stream channel as possible). All sample sites were marked in the field using flagging inscribed with the sample code, with the sample placed in industry standard soil sample envelopes for soils, or poly rock bags for rocks and silts. Samples were analyzed by Chemex using their Au-AA23 (30g fire assay) and their ME-ICP41 (35 element aqua regia) packages.

The 2012 fieldwork was concentrated in three areas: Caley-Astos Claims, Tjop-Tjop Claims and Tjop Recceno claims, each of which will be described individually below:

<u>Caley-Astos</u> – Geology consists of Nasina Series sediments with several northwest trending fingers or slices of serpentinized ultramafics approximately 4.0 kilometres southwest of the 105-112 ma Carmacks pluton and approximately 4 kilometres southeast of a small late cretaceous to early tertiary intrusive body. Regional aero-magnetic data (residual total field) suggests that the late cretaceous body is somewhat larger than mapped and that much of the property lies within its thermal aureole. Publically available exploration data shows some staking dating from the 1920's on a silver-lead vein showing named Jolly. Recent work, 1967-82, has revolved around exploration of the "Tiza" asbestos occurrence where previous workers had identified several serpentinized ultramafic bodies exhibiting variable amounts of shearing and quartz-carbonate alteration along with un-economic amounts of asbestos fibre. Government sponsored regional geochemical stream sediment sampling data identified the stream draining the core of this property as being weakly to strongly anomalous in As-Au-Pb-Sb, with this elemental signature thought by the author to be suggestive of precious metal potential.

Exploration work in 2012 consisted of the collection of 19 soil samples, 10 silt samples and 13 rock samples. Soil sampling conditions were hindered by the widespread presence of permafrost which significantly slowed sampler productivity. Sampling was concentrated in two areas where alteration and mineralization was noted within the stream banks or in angular locally derived stream bed material.

The western-most area was centred around a sample of weakly hornfelsed limonitic beige sedimentary rock

with bleached vugs and minor disseminated black metallic sulphide, a sample of which returned 0.279 ppm Au, 52 ppm Ag, 552 ppm Bi and 3310 ppm Pb. The presence of weak hornfelsing, crystalline quartz veining, brecciation plus fracturing as well as highly anomalous bismuth, suggests this mineralization is likely intrusive related. Nine soil samples were taken (CAD-01 to 05 and 07-10) in the general vicinity of this occurrence, with samples 4-5-7-8 returning highly anomalous values in Ag-Bi-Pb +/- Au. This soil anomaly is located approximately 100 metres to the west of the anomalous rock sample site, remains open to the west and south and likely represents a significant new area of mineralization similar in nature to the discovery sample. Soil samples taken in the immediate vicinity of the discovery rock sample are only weakly anomalous in Ag-Bi-Pb.

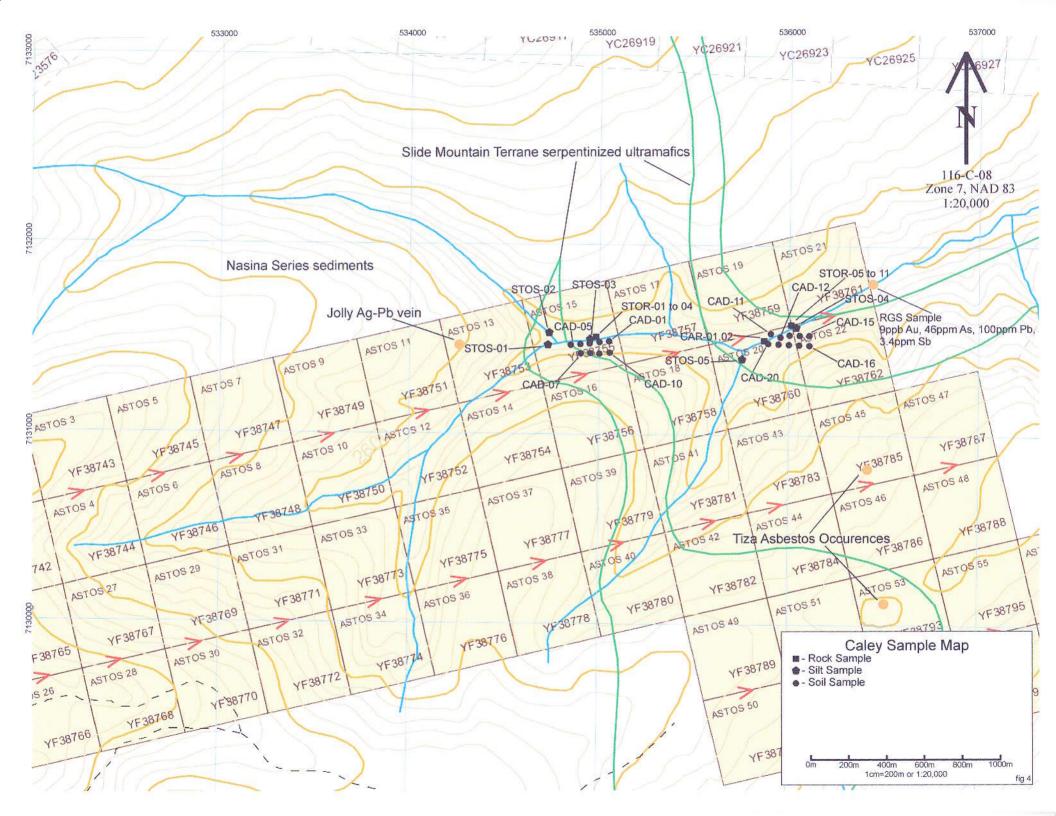
The eastern-most work area was centred around a proximally derived float boulder of heavily quartz carbonate altered and silicified rock mineralized with mariposite and cut by numerous quartz veins containing minor disseminated black metallic sulphide, an assay of which returned 0.128 ppm Au along with anomalous chromium and nickel. This alteration and mineralization is thought to be indicative of a motherlode style system. Ten soil samples (CAD-11 to 20) were taken in the general vicinity of this occurrence, with samples 15-16-17 highly anomalous in Au-As-Cr +/- Ag. This soil anomaly is located approximately 100 metres to the east and uphill of the anomalous rock sample site, remains open to the east and south, and possibly represents the source of the float sample.

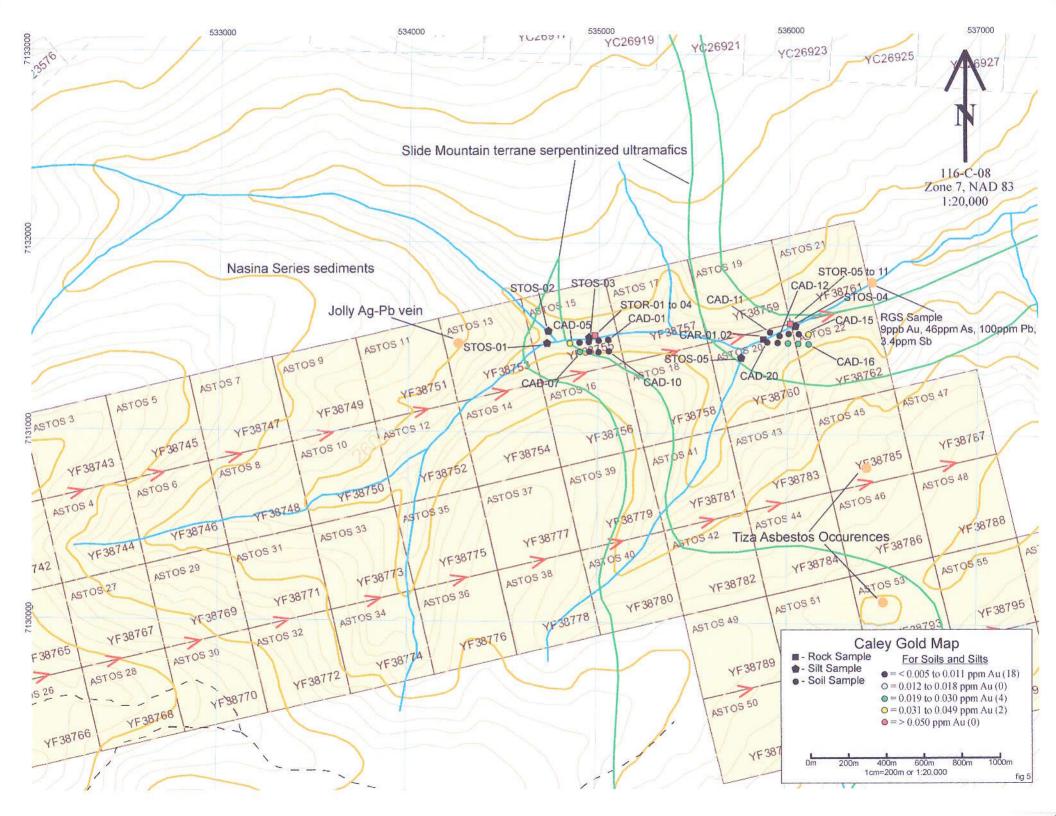
<u>Tjop Claims</u> – Geology consists of a large fault bounded block of serpentinized ultramafics surrounded by Nasina Series sediments near the outer edge of the thermal aureole of the 105-112 ma Carmacks pluton. Publically available exploration data shows exploration work dating from 1927, and 1964-1970 completed on what is reported as a silver-lead-copper-tungsten skarn showing called Roal located near the shore of the Yukon River just to the southeast of the claim block. During the period 1964-81, significant work was completed on the "Tjop" asbestos occurrence. This work identified several serpentinized ultramafic bodies exhibiting variable amounts of shearing and quartz or iron-carbonate alteration but only un-economic amounts of asbestos fibre.

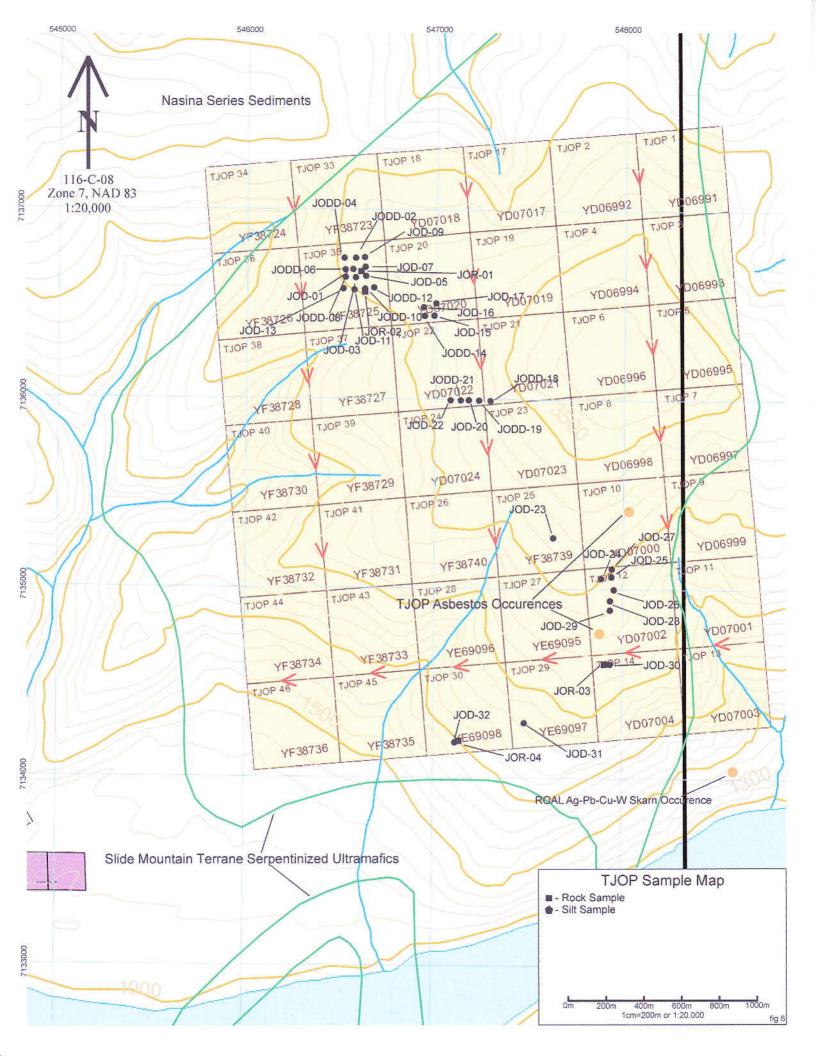
Exploration work in 2012 consisted of the collection of 32 soil samples and 4 rock samples. Soil sampling conditions were generally good due to a recent forest fire having destroyed much of the moss and vegetation throughout the claims area thereby allowing the permafrost to melt, but making ground traversing conditions difficult due to widespread windfall. Sampling was spread throughout the claim block in areas where iron-carbonate alteration had previously been reported by workers in search of asbestos.

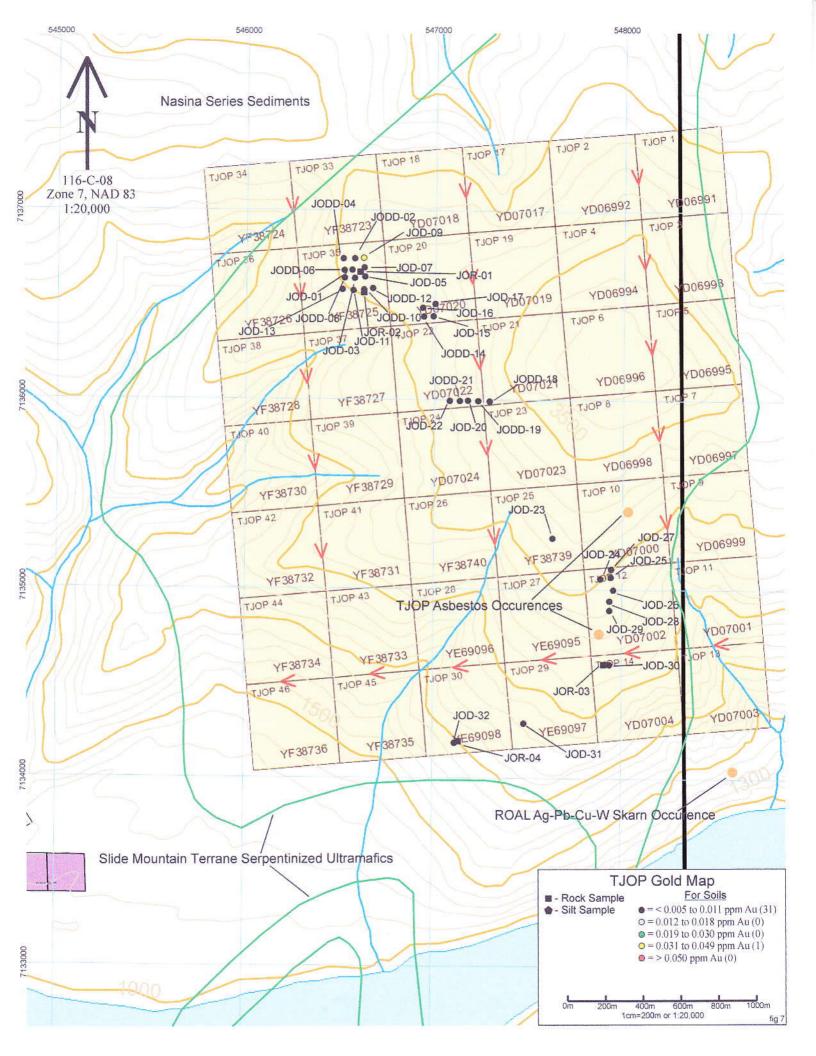
Samples returned background amounts for all elements except for soil sample JOD-09 which returned a moderately anomalous value of 0.033 ppm Au. This sample is located on the northeast corner of a small grid set up over heavily iron-carbonate altered bedrock exposed in an old trench. Further work is necessary to define the importance of this sample.

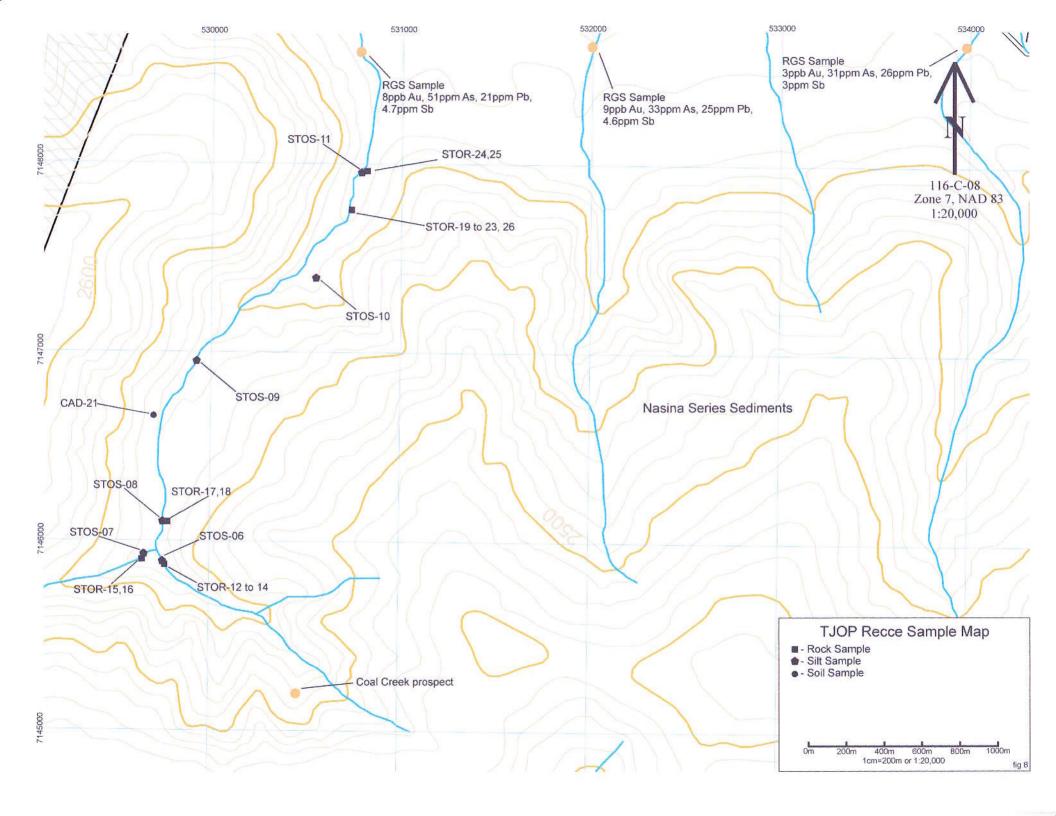
<u>Tjop Recce</u> – Geology consists of Nasina series metasediments and thin felsic meta-tuff horizons located just south of the Tintina Fault Zone. Although not shown on regional mapping of the area, the presence of thin slices of serpentinized ultramafics is inferred based on pieces of lithologically similar float in locally derived stream wash. Publically available exploration data pertaining to the area shows Cominco (1996 Coal Property) having completed reconnaissance style sampling and mapping as well as geophysical surveys directed towards examining the areas volcanic hosted massive sulphide "VHMS" base metal potential inferred from several low-order base metal regional geochemical sediment samples detected by an earlier inhouse program. Although several electro-magnetic anomalies were located, soil sampling and prospecting efforts failed to outline any significant anomalies and the property was allowed to lapse with no further work.

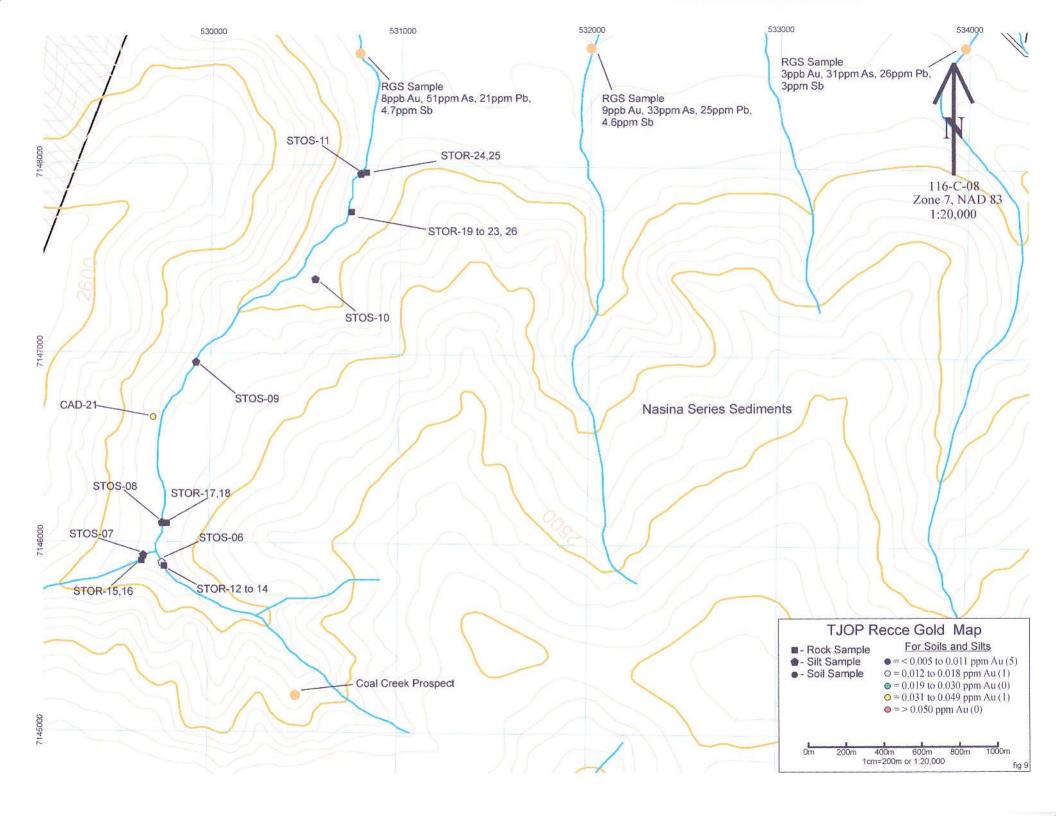

Exploration work in 2012 consisted of the collection of 1 soil sample, 15 rock samples and 12 stream sediment samples. Rock sampling was restricted to samples of stream float due to widespread overburden cover masking bedrock. Silt sampling conditions were excellent apart from the presence of ice which needed to be chipped away to allow for sample collection.


Samples returned generally background values except for silt sample STOS-6/11 which returned a weakly to moderately anomalous value of 0.027 ppm Au, repeat 0.009 ppm Au along with 128 ppm arsenic. Rock samples of stream float from this site exhibit iron and/or quartz carbonate alteration, quartz veining as well as mariposite but unfortunately they were not anomalous in gold. Soil sample CAD-21 (the only soil taken) returned moderately anomalous values of 0.043 ppm Au, 2.4 ppm Ag, 289 ppm As, 149 pm Pb and 378 ppm Zn. Although individually these elemental values are not outstanding, they are certainly moderately anomalous and together they comprise a very strong multi-element anomaly worthy of follow up sampling. Potential sources include a base metal VHMS target similar to what Cominco was pursuing, or an auriferous quartz-sulphide vein system related to a motherlode style system. Ultimately, more work will be needed to quantify the source and importance of this sample.


Conclusions — A total of 5 brand new anomalies or showings justifying further work were encountered over the course of this 3 day low-cost program. Due to the reconnaissance nature of this program, significant grassroots potential remains at each of these sites. The Caley/Astos claims hold potential for intrusive related as well as motherlode style gold mineralization. The Tjop claims hold potential for Motherlode style gold mineralization. The Tjop Recce area holds potential for VHMS targets as well as Motherlode style gold mineralization. Each of these potential deposit types represent a target of significant size, therefore these anomalies or showings represent low-cost high-reward exploration targets which should be explored further.


Recommendations – Further work is recommended, with first phase consisting of:


- Caley-Astos requires an expanded soil sampling program to help further define the two showings located in 2012. This work should be conducted late in the season to allow for maximum melt of permafrost. A 4-man team for one day should be sufficient to complete this work.
- 2) Tjop Claims require an expanded soil sampling program to help further define the soil sample site anomalous in gold. A 4-man team for one day should be sufficient to complete this work which can be completed anytime from mid-June onwards.
- 3) Tjop Recce requires further prospecting and silt sampling to follow up the anomalous silt sample site. A 2-man team for one day should be sufficient to complete this work which can be completed anytime from mid-June onwards. Follow up work is also required at the anomalous soil sample site, with a 2-man team for one day likely sufficient to complete this work which can be completed anytime from mid-June onwards.



Statement Of Qualifications

I, Bernie Kreft, directed and participated in the exploration work described herein.

I have over 24 years prospecting experience in the Yukon.

This report is based on fieldwork directed or conducted by the author, and includes information from various publicly available assessment reports.

This report is based on fieldwork completed during the 2012 field season.

This report is based on fieldwork completed in the Yukon Plateau area northwest of Dawson City.

Respectfully Submitted,

Bernie Kreft

Statement Of Costs Astos Claims Truck Travel (1/3 round trip to Dawson 1,024km x \$0.60/km)		\$204.80
Chemex (assaying 19 soils, 10 silts and 13 rocks)		\$1,295.41
Report Writing and Duplication		\$500.00
Wages Kyle Eide (1 day x \$210/day)		\$210.00
Wages Jarret Kreft (1 day x \$230/day)		\$230.00
Wages Bernie Kreft (1 day x \$300/day)		\$300.00
Helicopter: TNTA		\$2,190.91
Food And Camp Supplies (3 man days x \$100/day)		\$300.00
	Total	\$5,231.12
Tjop Claims Truck Travel (1/3 round trip to Dawson 1,024km x \$0.60/km) Chemex (assaying 32 soils, 4 rocks) Report Writing and Duplication Wages Kyle Eide (1 day x \$210/day) Wages Jarret Kreft (1 day x \$230/day) Wages Bernie Kreft (1 day x \$300/day) Helicopter: TNTA Food And Camp Supplies (3 man days x \$100/day)	Total	\$204.80 \$1,054.97 \$500.00 \$210.00 \$230.00 \$300.00 \$2,190.91 \$300.00 \$4,990.68
Tjop Recce Area		
Truck Travel (1/3 round trip to Dawson 1,024km x \$0.60/km)		\$204.80
Chemex (assaying 1 soils, 12 silts and 15 rocks)		\$908.40
Wages Kyle Eide (1 day x \$210/day)		\$210.00
Wages Jarret Kreft (1 day x \$230/day)		\$230.00
Wages Bernie Kreft (1 day x \$300/day)		\$300.00
Helicopter: TNTA		\$1,675.40
Food And Comm Cymplics (2 mon days y \$100/day)		\$200 OO

Food And Camp Supplies (3 man days x \$100/day)

GRAND TOTAL = \$14,050.40

Total \$3,828.60

\$300.00

Name	Туре	Interval	Description	Easting	Northing	Project	Weight	Au	Ag	As	Bi	Cr	Pb
CAR-01	Rock	grab	Leached and heavily limonitic rx cut by narrow qtz vn (rounded float)	535829	7131486	Caley	0.56	<0.005	0.3	67	<2	17	29
CAR-02	Rock	grab	Po rich skarned rx (rep kept)	535829	7131486	Caley	0.58	<0.005	0.6	<2	<2	67	25
JOR-01	Rock	grab	iron-carb altered rx cut by occasional qtz veins	546524	7136692	TJOP	0.68	<0.005	0.2	32	<2	16	<2
JOR-02	Rock	grab	on rd aprox 60m SE of JOR-01 as above	546544	7136672	TJOP	0.62	<0.005	0.3	25	<2	<1	<2
JOR-03	Rock	grab	Qtz calcite veining	547905	7134603	TJOP	0.64	<0.005	0.3	7	<2	8	13
JOR-04	Rock	grab	Qtz iron-carb altered brx zone/vn in sed rx	547085	7134181	TJOP	0.5	<0.005	0.2	3	<2	100	2
STOR-01	Rock	grab	Weakly frac banded sed with discontinous crystalline QV or frac fill	534940	7131510	Caley	0.56	<0.005	0.4	10	<2	23	22
STOR-02	Rock	grab	Limonitic beige sed with minor bleached vugs	534940	7131510	Caley	0.94	0.279	51.8	92	552	9	3310
STOR-03	Rock	grab	15cm wide Qtz vein with nice crystals mafic host	534940	7131510	Caley	0.48	<0.005	<0.2	2	3	6	9
STOR-04	Rock	grab	Banded sed limonite, Po and minor vugs along bedding, hornfelsed	534940	7131510	Caley	0.52	<0.005	2.1	2	10	195	184
STOR-05	Rock	grab	Po rich silic Qtz carb rx	534996	7131518	Caley	0.32	0.017	0.7	1760	<2	1300	96
STOR-06	Rock	grab	Dense silic Qtz carb rx with mariposite (trace) minor qtz carb veins	536005	7131574	Caley	0.58	0.067	<0.2	24	<2	584	3
STOR-07	Rock	grab	3mm wide qtz vein cutting iron-carb altered sed	536005	7131574	Caley	0.3	<0.005	0.2	10	<2	24	20
STOR-08	Rock	grab	limonitic carb altered sed with trace mariposite and mariposite in patches	536005	7131574	Caley	0.52	<0.005	0.7	266	<2	218	72
STOR-09	Rock	grab	Limonitic banded? Sed rx with trace mariposite and hairline qtz carb veins	536005	7131574	Caley	0.42	<0.005	0.3	126	<2	487	37
STOR-10	Rock	grab	Crenulated qtzt or thick bedded schist pyrite in nose of fold py to 0.5%	536005	7131574	Caley	0.36	<0.005	0.4	12	<2	19	8
STOR-11	Rock	grab	float in creek? rx rep kept just on other side of from LOCR-08	536005	7131574	Caley	0.42	0.128	<0.2	2	<2	473	<2
STOR-12	Rock	grab	Limestone with discontinous Qtz veins and frac fillings	529817	7145956	TJOP Rec	0.3	<0.005	0.2	4	<2	13	4
STOR-13	Rock	grab	Fe-carb altered rx with mariposite and cut by several Qtz-carb stringers	529817	7145956	TJOP Rec	0.28	<0.005	0.3	3	<2	447	<2
STOR-14	Rock	grab	Brx Qtz carb rx with mariposite	529817	7145956	TJOP Rec	0.42	<0.005	0.2	282	<2	186	3
STOR-15	Rock	grab	Qtz vein cutting iron-carb altered rx	529652	7145936	TJOP Rec	0.18	<0.005	0.2	13	<2	14	3
STOR-16	Rock	grab	Rusty schist with minor qtz vein	529652	7145936	TJOP Rec	0.14	<0.005	0.4	29	<2	31	5
STOR-17	Rock	grab	Listwanite altered frac sed rx poss trace py qtz-carb veins on fracs	529800	7146118	TJOP Rec	0.52	<0.005	0.4	144	<2	966	2
STOR-18	Rock	grab	Qtz -carb altered? rx with abund mariposite numerous qtz-carb veinlets	529800	7146118	TJOP Rec	0.46	<0.005	0.3	851	<2	459	3
STOR-19	Rock	grab	Pale yellow altered schist cut by sheeted veins trace py	530776	7147750	TJOP Rec	0.32	<0.005	0.4	15	<2	8	26
STOR-20	Rock	grab	Sugary sed rx heavy Fe-Co3, alt cut by qtz-carb vein trace mariposite	530776	7147750	TJOP Rec	0.6	<0.005	0.2	29	<2	134	2
STOR-21	Rock	grab	Heavy qtz-carb alt with mzariposite	530776	7147750	TJOP Rec	0.38	<0.005	0.2	26	<2	362	<2
STOR-22	Rock	grab	As above	530776	7147750	TJOP Rec	0.5	<0.005	0.4	25	<2	353	4
STOR-23	Rock	grab	PY 0.58 in iron-carb altered qtz schist	530776	7147750	TJOP Rec	0.2	<0.005	0.5	16	<2	1535	2
STOR-24	Rock	grab	Yellowy altered schist brx and fracture with Qtz along fracs and as fillings	530819	7147955	TJOP Rec	0.42	<0.005	0.4	20	<2	24	25
STOR-25	Rock	grab	heavily qtz-carb altered rx, qtz as veins and frac fillings, trace py in rx	530819	7147955	TJOP Rec	0.56	<0.005	0.2	3	<2	11	20
STOR-26	Rock	grab	Heavily qtz-carb altered rx with py to 0.5% as patches and diss mariposite	530776	7147750	TJOP Rec	1.12	0.015	0.7	582	<2	215	4
STOS-01	Silt			534786	7131502	Caley	0.46	<0.005	0.2	45	<2	51	57
STOS-02	Silt			534778	7131560	Caley	0.34	0.007	0.2	27	<2	64	45
STOS-03	Silt			534973	7131515	Caley	0.48	0.013	0.3	39	<2	43	44
STOS-04	Silt			536009	7131574	Caley	0.6	<0.005	0.2	35	2	45	39
STOS-05	Silt			535790	7131441	Caley	0.54	0.012	0.3	30	<2	135	104
STOS-06	Silt			529817	7145956	TJOP Rec	0.54	0.027	0.5	119	<2	24	27
STOS-07	Silt			529652	7145936	TJOP Rec	0.52	0.005	0.2	47	<2	36	8
STOS-08	Silt			529800	7146118	TJOP Rec	0.7	0.012	<0.2	88	<2	46	20
STOS-09	Silt			529927	7146951	TJOP Rec	0.66	0.007	0.2	99	<2	38	21
STOS-10	Silt			530559	7147400	TJOP Rec	0.44	<0.005	<0.2	22	<2	37	13
STOS-11	Silt			530819	7147955	TJOP Rec	0.6	0.009	0.2	51	2	34	16
STOS-12	Silt		Duplicate of STOS-01	534786	7131502	Caley	0.42	<0.005	<0.2	42	<2	52	45
STOS-13	Silt	i i i i i i i i i i i i i i i i i i i	Duplicate of STOS-02	534778	7131560	Caley	0.42	<0.005	<0.2	29	<2	68	48

Name	Туре	Interval	Description	Easting	Northing	Project	Weight	Au	Ag	As	Bi	Cr	Pb
STOS-14	Silt		Duplicate of STOS-03	534973	7131515	Caley	0.3	<0.005	0.3	40	<2	53	50
STOS-15	Silt		Duplicate of STOS-04	536009	7131574	Caley	0.52	0.01	<0.2	39	<2	47	41
STOS-16	Silt		Duplicate of STOS-05	535790	7131441	Caley	0.5	<0.005	0.2	32	<2	147	50
STOS-17	Silt		Duplicate of STOS-06	529817	7145956	TJOP Rec	0.48	0.009	0.4	128	<2	28	27
STOS-18	Silt		Duplicate of STOS-07	529652	7145936	TJOP Rec	0.56	0.01	<0.2	52	<2	39	17
STOS-19	Silt		Duplicate of STOS-08	529800	7146118	TJOP Rec	0.56	0.007	0.2	100	<2	48	19
STOS-20	Silt		Duplicate of STOS-09	529927	7146951	TJOP Rec	0.5	<0.005	0.2	108	<2	44	25
STOS-21	Silt	***********	Duplicate of STOS-10	530559	7147400	TJOP Rec	0.38	<0.005	0.2	18	<2	36	12
STOS-22	Silt		Duplicate of STOS-11	530819	7147955	TJOP Rec	0.56	0.007	0.3	46	<2	33	23
CAD-01	Soil			535050	7131498	Caley	0.32	<0.005	1	59	2	97	90
CAD-02	Soil			535000	7131500	Caley	0.28	<0.005	1.6	30	4	130	111
CAD-03	Soil			534950	7131500	Caley	0.32	< 0.005	3.7	108	7	70	209
CAD-04	Soil		(n n = 5) 5) 10 10 10 10 10 10 10 1	534900	7131500	Caley	0.36	<0.005	3.6	33	15	66	427
CAD-05	Soil			534848	7131498	Caley	0.38	0.039	6.8	50	52	42	321
CAD-06	Soil		frozen, no sample	534850	7131450	Caley			5.5				
CAD-07	Soil			534901	7131450	Caley	0.36	0.025	4.6	37	22	45	215
CAD-08	Soil			534950	7131450	Caley	0.26	0.005	4.3	106	10	57	217
CAD-09	Soil			534998	7131447	Caley	0.26	<0.005	0.7	45	3	128	122
CAD-10	Soil			535050	7131450	Caley	0.32	<0.005	1	55	2	98	76
CAD-11	Soil			535900	7131550	Caley	0.4	<0.005	<0.2	37	<2	54	20
CAD-12	Soil			535951	7131531	Caley	0.28	<0.005	1.2	66	<2	28	367
CAD-13	Soil			536000	7131550	Caley	0.34	0.007	0.9	51	<2	37	207
CAD-14	Soil			536049	7131548	Caley	0.28	0.006	4.5	76	<2	123	1165
CAD-15	Soil			536100	7131550	Caley	0.3	0.031	12.5	202	<2	114	1775
CAD-16	Soil			536101	7131497	Caley	0.24	0.024	5.8	157	<2	131	1010
CAD-17	Soil			536050	7131500	Caley	0.36	0.02	1.5	107	2	120	381
CAD-18	Soil			536002	7131498	Caley	0.24	0.019	3	138	2	29	554
CAD-19	Soil			535950	7131500	Caley	0.32	<0.005	0.7	49	<2	47	133
CAD-20	Soil			535901	7131488	Caley	0.26	<0.005	<0.2	46	<2	38	22
CAD-21	Soil			529737	7146623	TJOP Rec	0.22	0.043	2.4	289	<2	30	149
JOD-01	Soil			546524	7136699	TJOP	0.34	<0.005	<0.2	27	<2	81	7
JOD-03	Soil			546524	7136652	TJOP	0.38	0.005	<0.2	10	<2	44	6
JOD-05	Soil			546576	7136654	TJOP	0.36	<0.005	<0.2	7	<2	47	5
JOD-07	Soil			546575	7136701	TJOP	0.4	<0.005	<0.2	11	<2	36	7
JOD-09	Soil			546574	7136752	TJOP	0.36	0.033	<0.2	9	<2	51	5
JOD-11	Soil			546524	7136600	TJOP	0.34	<0.005	<0.2	13	<2	39	8
JOD-13	Soil			546475	7136600	TJOP	0.26	<0.005	<0.2	5	<2	1790	3
JOD-15	Soil			546951	7136452	TJOP	0.38	<0.005	<0.2	12	<2	53	11
JOD-17	Soil			546952	7136503	TJOP	0.26	<0.005	<0.2	10	<2	85	7
JOD-19	Soil			547198	7135999	TJOP	0.36	<0.005	<0.2	15	<2	162	7
JOD-20	Soil			547153	7136000	TJOP	0.24	<0.005	<0.2	6	<2	104	5
JOD-22	Soil			547054	7135999	TJOP	0.26	0.008	<0.2	14	<2	72	9
JOD-23	Soil			547589	7135273	TJOP	0.3	<0.005	<0.2	14	<2	207	5
JOD-24	Soil		**************************************	547846	7135063	TJOP	0.24	<0.005	<0.2	26	<2	116	4
JOD-25	Soil			547895	7135065	TJOP	0.28	<0.005	<0.2	19	<2	81	4

Name	Туре	Interval	Description	Easting	Northing	Project	Weight	Au	Ag	As	Bi	Cr	Pb
JOD-26	Soil			547900	7135000	TJOP	0.26	<0.005	<0.2	19	<2	104	6
JOD-27	Soil			547900	7135100	TJOP	0.3	<0.005	<0.2	19	<2	78	4
JOD-28	Soil			547900	7134950	TJOP	0.28	<0.005	<0.2	24	<2	102	4
JOD-29	Soil			547900	7134900	TJOP	0.32	<0.005	<0.2	34	<2	753	4
JOD-30	Soil			547894	7134602	TJOP	0.36	<0.005	<0.2	14	<2	38	12
JOD-31	Soil			547483	7134291	TJOP	0.26	<0.005	<0.2	92	<2	910	4
JOD-32	Soil			547085	7134181	TJOP	0.36	<0.005	0.2	15	<2	111	8
JODD-02	Soil			546525	7136750	TJOP	0.38	0.005	<0.2	10	<2	44	6
JODD-04	Soil			546475	7136750	TJOP	0.3	<0.005	<0.2	2	<2	1540	<2
JODD-06	Soil			546475	7136700	TJOP	0.3	<0.005	<0.2	<2	<2	1865	<2
JODD-08	Soil			546475	7136650	TJOP	0.34	<0.005	<0.2	<2	<2	1650	<2
JODD-10	Soil			546575	7136600	TJOP	0.36	<0.005	<0.2	11	<2	50	6
JODD-12	Soil			546625	7136600	TJOP	0.32	0.009	<0.2	8	<2	42	6
JODD-14	Soil			546900	7136450	TJOP	0.4	<0.005	<0.2	11	<2	84	8
JODD-16	Soil			546900	7136500	TJOP	0.26	<0.005	<0.2	13	<2	53	1 4
JODD-18	Soil			547250	7136000	TJOP	0.32	<0.005	<0.2	7	<2	56	5
JODD-21	Soil			547100	7136000	TJOP	0.28	<0.005	<0.2	9	<2	59	6

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE **#1 LOCUST PLACE** WHITEHORSE YT Y1A 5C4

Page: 1 Finalized Date: 26-OCT-2012

Account: KREBER

CERTIFICATE VA12236908

Project: P.O. No.:

This report is for 32 Rock samples submitted to our lab in Vancouver, BC, Canada on 10-OCT-2012.

The following have access to data associated with this certificate:

BERNIE KREFT

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% < 2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Astos TJOP

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 26-OCT-2012

CERTIFICATE	OF	ANALYSIS	VA12236908
OF STATES SOLVES		S SI MY ILL I ONO	0/11/2/200000

23 222 9 66 6 5 195 196 1300 76 584 9 24 7 218 45 487 5 19 157	4 08 10 20 2.05 9 61 3.68 2.93 3.60
6 5 195 198 1300 76 584 9 24 7 218 45 487 5	2.05 9.61 3.68 2.93
195 196 1300 76 584 9 24 7 218 45 487 5	9.61 3.68 2.93
1300 76 564 9 24 7 218 45 487 5	3.68 2.93
584 9 24 7 218 45 487 5	2.93
24 7 218 45 487 5	
218 45 487 5	3.60
487 5	
	6.73
19 157	10,70
	1.36
473 24	3.28
13 1	0.41
447 7	4.22
186 1	2.69
14 3	3.11
31 52	3.32
966 19	5.47
459 16	3 57
8 1	0.64
134 7	3.78
362 3	2.98
353 31	4,53
1535 99	4.58
24 1	0.91
11 10	2,60
215 20	3.78
16 130	5.93
<1 21	6.03
8 7	1.39
	4.90
	19.2
6/ 436	10.75
	100 57 17 45 67 436

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 26-OCT-2012

CERTIFICATE	OF	AMALVSIS	VA12236908
CERTIFICATE	VI	MINNEISIS	MILLLOUDU

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
STOR-01		10	<1	0.17	10	0:57	430	<1	0.02	7	290	22	0.11	<2	3	25
STOR-02	9	<10	<1	2.10	<10	0.01	44	1	0.08	<1	290	3310	4.15	<2	2	42
STOR-03		<10	<1	0.02	<10	1.05	1365	<1	< 0.01	7	10	9	0.02	2	3	56
STOR-04		20	<1	0.41	10	2.75	1730	<1	0.07	23	2440	184	1.00	<2	13	66
STOR-05		<10	<1	0.02	<10	5.02	2410	1	0.01	1600	50	96	1,20	8	5	173
STOR-06		<10	<1	0.01	<10	17,00	562	<1	<0.01	967	10	3	0.02	3	3	8
STOR-07		<10	<1	0.05	10	1.58	1540	<1	0.02	20	180	20	0.03	<2	5	196
STOR-08		<10	<1	0.20	10	2.64	3650	<1	0.01	207	1790	72	0.29	2	15	113
STOR-09		10	<1	0.02	10	4.23	2910	1	0.01	288	1380	37	0.01	<2	17	117
STOR-10		<10	<1	0.15	10	0.11	770	<1	0.01	19	950	8	0.08	<2	2	66
STOR-11		<10	<1	0.01	<10	17,15	593	<1	0.01	753	10	<2	0.01	<2	9	3
STOR-12		<10	<1	0.07	<10	0.61	329	<1	0.01	13	1410	4	0.09	2	1	681
STOR-12 STOR-13		<10	<1	0.01	<10	14.00	613	<1	0.01	1325	20	<2	0.07	6	5	475
STOR-14		<10	<1	0.02	<10	8.80	855	<1	0.01	227	10	3	0.03	60	3	1560
STOR-15		<10	<1	0.03	<10	2.78	1040	<1	0.01	15	120	3	0.01	5	3	379
STOR-16		<10	<1	0.17	10	0.76	902	3	0.01	77	1000	5	0.31	3	2	60
STOR-17		<10	<1	0.01	<10	12.85	875	<1	0.01	1955	20	2	0.29	24	4	1150
STOR-17 STOR-18		<10	<1	0.03	<10	9.57	636	<1	0.01	618	20	3	0.04	233	6	1060
STOR-19		<10	<1	0.29	30	0.09	25	1	0.01	7	50	26	0.22	3	<1	31
STOR-20		<10	<1	0.01	<10	7.37	1020	<1	0.01	294	20	2	0.03	3	10	593
STOR-21		<10	<1	0.01	<10	16.20	410	<1	0.01	596	20	<2	0.02	5	4	197
STOR-22		<10	<1	0.04	<10	7.66	1400	1	0.01	204	30	4	0.04	5	24	840
STOR-23		<10	<1	0.01	<10	7.82	1570	<1	0.01	179	30	2	0.86	3	23	470
STOR-24		<10	<1	0.29	10	0.20	56	1	0.01	10	80	25	0.24	<2	<1	30
STOR-25		<10	<1	0.02	10	2.84	1270	<1	0.02	7	280	20	< 0.01	<2	5	483
STOR-26		<10	<1	0.03	<10	9,18	1640	<1	0.01	278	10	4	0.46	18	10	1510
JOR-01		<10	<1	0.04	<10	0.23	894	<1	< 0.01	37	310	<2	< 0.01	3	31	18
JOR-02		<10	<1	0.01	<10	0.24	2090	<1	0.01	4	90	<2	0.01	3	12	18
JOR-02 JOR-03		<10	<1	0.04	10	0.37	642	<1	0.01	10	70	13	0.01	2	2	1760
JOR-04		<10	<1	0.07	<10	6.11	987	<1	0.01	77	800	2	< 0.01	2	10	550
CAR-01		<10	<1	0.08	20	0.37	718	63	0.01	190	4780	29	0.02	<2	2	74
CAR-02		10	<1	0.05	<10	2.85	1860	<1	0.05	162	3190	25	3.08	<2	6	245
						p-1000000										

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 26-OCT-2012

Account: KREBER

CERTIFICATE OF ANALYSIS VA12236908

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
STOP Of	CONTRACTOR OF THE PARTY OF	<20	0.09	<10	<10	25	<10	36	
STOR-01 STOR-02		<20	<0.03	<10	<10	10	<10	12	
STOR-03		<20	0.01	<10	<10	58	20	41	
STOR-04	- 8	<20	0.55	<10	<10	214	<10	131	
STOR-05		<20	0.01	<10	<10	19	<10	85	
STOR-06		<20	<0.01	<10	<10	9	<10	13	
STOR-07		<20	0.02	<10	<10	23	<10	75	
STOR-08	1	<20	0.01	<10	<10	69	<10	944	
STOR-09		<20	0.01	<10	<10	125	<10	578	
STOR-10		<20	0.01	<10	<10	16	<10	52	
STOR-11		<20	<0.01	<10	<10	20	<10	19	
STOR-12		<20	< 0.01	<10	<10	3	<10	21	
STOR-13		<20	< 0.01	<10	<10	12	<10	7	
STOR-14		<20	< 0.01	<10	<10	11	<10	8	
STOR-15		<20	< 0.01	<10	<10	24	<10	24	
STOR-16		<20	< 0.01	<10	<10	39	<10	122	
STOR-17		<20	< 0.01	<10	<10	9	<10	11	
STOR-18		<20	< 0.01	<10	<10	7	<10	14	
STOR-19		<20	< 0.01	<10	<10	1	<10	2	
STOR-20		<20	< 0.01	<10	<10	53	<10	38	
STOR-21		<20	< 0.01	<10	<10	8	<10	10	
STOR-22		<20	< 0.01	<10	<10	102	<10	30	
STOR-23		<20	< 0.01	<10	<10	187	<10	68	
STOR-24		<20	< 0.01	<10	<10	2	<10	5	
STOR-25		<20	< 0.01	<10	<10	19	<10	17	
STOR-26	N-14	<20	<0.01	<10	<10	28	<10	17	
JOR-01		<20	< 0.01	<10	<10	293	<10	36	
JOR-02		<20	< 0.01	<10	<10	242	<10	30	
JOR-03		<20	< 0.01	<10	<10	5	<10	13	
JOR-04		<20	0.01	<10	<10	73	<10	46	
CAR-01		<20	0.01	<10	20	19	<10	1840	
CAR-02		<20	0.30	<10	<10	66	<10	415	
	SANSAN WAR								

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 1 Finalized Date: 19-OCT-2012 Account: KREBER

CERTIFICATE VA12236906

Project:

P.O. No.:

This report is for 22 Silt samples submitted to our lab in Vancouver, BC, Canada on 10-OCT-2012.

The following have access to data associated with this certificate:

BERNIE KREFT

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
SCR-41	Screen to -180um and save both								

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

TO: KREFT, BERNIE
#1 LOCUST PLACE
WHITEHORSE YT Y1A 5C4

Vegos Liel

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 19-OCT-2012

CERTIFICATE	OF ANALYSIS	VA12236906
-------------	-------------	------------

Sample Description	Method	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recyd Wt.	Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
STOS-01		0.46	<0.005	0.2	1,38	45	<10	140	<0.5	<2	0.31	1.1	19	51	52	3.76
STOS-02		0.34	0.007	0.2	1,77	27	<10	380	<0.5	<2	0.49	0.9	26	64	36	3.47
STOS-03		0.48	0.013	0.3	1.28	39	<10	160	<0.5	<2	0.42	1.2	18	43	47	3.29
STOS-04		0.60	<0.005	0.2	1.21	35	<10	150	<0.5	2	0.38	1.0	17	45	43	3.21
STOS-05		0.54	0.012	0.3	1.19	30	<10	170	<0.5	<2	0.50	0.8	19	135	26	2.80
STOS-06		0.54	0.027	0.5	0.68	119	<10	200	<0.5	<2	0.94	1,7	15	24	39	3.17
STOS-07		0.52	0.005	0.2	0.68	47	<10	260	<0.5	<2	0.93	0,5	12	36	23	2.54
STOS-08		0.70	0.012	<0.2	0.70	88	<10	260	<0.5	<2	0.76	0.6	15	46	34	3.25
STOS-09		0.66	0.007	0.2	0.70	99	<10	290	<0.5	<2	0.87	0.5	14	38	27	3.11
STOS-10		0.44	<0.005	<0.2	0.98	22	<10	170	<0.5	<2	0.49	0.5	10	37	31	2.76
STOS-10 STOS-11 STOS-12 STOS-13 STOS-14 STOS-15		0.60 0.42 0.42 0.30 0.52	0.009 <0.005 <0.005 <0.005 0.005	0.2 <0.2 <0.2 <0.2 0.3 <0.2	0.79 1.36 1.84 1.34 1.23	51 42 29 40 39	<10 <10 <10 <10 <10	230 130 370 150 140	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 <2 <2 <2 <2	1.02 0.35 0.51 0.44 0.39	1.2 1.2 1.1 1.5 1.1	12 17 28 19 16	34 52 68 53 47	40 55 41 53 47	2.89 3.85 3.80 3.75 3.39
STOS-16 STOS-17 STOS-18 STOS-19 STOS-20	- Add Allows - Add	0.50 0.48 0.56 0.56 0.50	<0.005 0.009 0.010 0.007 <0.005	0.2 0.4 <0.2 0.2 0.2	1.27 0.67 0.71 0.74 0.75	32 128 52 100 108	<10 <10 <10 <10 <10	170 200 250 240 330	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.61 1.05 1.05 0.78 0.73	1.0 1.5 <0.5 0.7 0.8	21 15 13 17 19	147 28 39 48 44	31 45 27 36 35	3:22 3:36 2:76 3:42 3:39
STOS-21		0.38	<0.005	0.2	0.96	18	<10	160	<0.5	<2	0,49	<0.5	10	36	28	2.63
STOS-22		0.56	0.007	0.3	0.77	46	<10	210	<0.5	<2	0.98	0.8	12	33	43	2.93
		ā														

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE **#1 LOCUST PLACE** WHITEHORSE YT Y1A 5C4 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 19-OCT-2012

CERTIFICATE	OF ANALYSIS	VA12236906
-------------	-------------	------------

									C	ERTIFIC	VA122	/A12236906				
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 p ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
STOS-01	***************************************	<10	<1	0.04	20	0,91	678	6	<0.01	68	960	57	0.03	2	3	27
STOS-02	3	10	<1	0.09	10	1.03	1270	<1	0.01	55	1040	45	0.01	<2	4	31
STOS-03		<10	<1	0.04	10	0.78	817	4	< 0.01	59	870	44	0.03	<2	3	30
STOS-04		<10	<1	0.04	10	0.77	623	4	< 0.01	57	890	39	0.02	<2	3	29
STOS-05		<10	<1	0.03	10	1.45	768	<1	<0.01	108	900	104	0,01	<2	4	39
STOS-06		<10	<1	0.05	20	0.44	1035	3	<0.01	61	1260	27	0.04	6	3	73
STOS-07		<10	<1	0.04	10	0.65	420	1	0,01	43	850	8	0.03	4	3	44
STOS-08		<10	<1	0.04	10	0.66	1035	3	0.01	61	1150	20	0.03	5	3	49
STOS-09		<10	<1	0.04	10	0.64	1170	2	0.01	51	1110	21	0.07	4	3	47
STOS-10		<10	<1	0.05	10	0.80	395	4	0.01	41	920	13	0.01	2	3	33
STOS-11		<10	<1	0.05	10	0.75	602	5	0.01	52	940	16	0.12	4	3	56
STOS-17		<10	<1	0.04	10	0.98	773	8	0.01	72	940	45	0.03	5	3	28
STOS-12		10	<1	0.10	10	1.17	1475	1	0.01	66	1020	48	0.02	<2	5	31
STOS-13		<10	<1	0.05	10	0.91	988	7	0.01	72	980	50	0.03	3	3	32
STOS-14		<10	<1	0.04	10	0.86	723	6	0.01	63	900	41	0.03	4	3	29
STOS-16		<10	<1	0.03	10	1.74	1000	1	0.01	133	940	50	0.01	<2	4	43
STOS-10		<10	<1	0.05	20	0.47	1140	4	0.01	70	1300	27	0.05	6	3	77
STOS-17		<10	<1	0.04	10	0.73	484	2	0.01	51	880	17	0.03	6	3	47
STOS-19		<10	<1	0.05	10	0.69	1190	3	0.01	65	1140	19	0.03	6	3	51
STOS-20		<10	<1	0,05	10	0.71	1970	3	0.01	73	980	25	0.04	7	3	47
STOS-21		<10	<1	0.05	10	0.78	371	4	0.01	39	890	12	0.01	<2	3	33
STOS-21		<10	<1	0.05	10	0.74	599	6	0.01	49	930	23	0.17	3	3	54

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 19-OCT-2012

CERTIFICATE OF ANALYS	SIS VA12236906
-----------------------	----------------

								<u> </u>	CERTIFICATE OF AWALTSIS VATZESOSOO
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
STOS-01 STOS-02 STOS-03 STOS-04 STOS-05		<20 <20 <20 <20 <20	0.02 0.05 0.02 0.02 0.03	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	45 60 41 40 40	<10 <10 <10 <10 <10	232 229 229 198 139	
STOS-05 STOS-06 STOS-07 STOS-08 STOS-09 STOS-10		<20 <20 <20 <20 <20 <20	0.01 0.04 0.03 0.04 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	25 44 41 47 30	<10 <10 <10 <10 <10	158 79 125 118 118	
STOS-11 STOS-12 STOS-13 STOS-14 STOS-15		<20 <20 <20 <20 <20	0.03 0.02 0.05 0.02 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	35 44 61 43 40	<10 <10 <10 <10 <10	160 233 236 246 206	
STOS-16 STOS-17 STOS-18 STOS-19 STOS-20		<20 <20 <20 <20 <20 <20	0.03 0.01 0.04 0.02 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	44 26 43 37 35	<10 <10 <10 <10 <10	166 166 90 131 153	
STOS-21 STOS-22		<20 <20	0.02 0.03	<10 <10	<10 <10	30 35	<10 <10	110 137	

Coley, Tiop

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 1 Finalized Date: 17-OCT-2012 Account: KREBER

CERTIFICATE VA12236907

Project:

P.O. No.:

This report is for 52 Soil samples submitted to our lab in Vancouver, BC, Canada on 10-OCT-2012.

The following have access to data associated with this certificate:

BERNIE KREFT

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
SCR-41	Screen to -180um and save both								

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
Au-AA23 ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

A5805 TJOP

TO: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2012

Account: KREBER

CERTIFICATE OF ANALYSIS VA12236907

Sample Description	Method Analyte Units LOR	WEI-21 Recyd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
IODD-02		0.38	0.005	<0.2	1.57	10	<10	260	<0.5	<2	0.27	<0.5	16	44	39	3.46
JODD-02 JODD-04		0.30	< 0.005	< 0.2	0.81	2	20	60	< 0.5	<2	0.12	<0,5	98	1540	15	2.87
IODD-04		0.30	< 0.005	< 0.2	0.49	<2	30	110	< 0.5	<2	0.04	< 0.5	104	1865	9	3.75
IODD-08		0.34	< 0.005	< 0.2	1.10	<2	10	60	< 0.5	<2	0.05	< 0.5	82	1650	9	3.29
IODD-08 IODD-10		0.36	< 0.005	<0.2	2.06	11	<10	370	<0.5	<2	0.27	< 0.5	18	50	116	3.76
IODD-12		0.32	0.009	<0.2	2.17	8	<10	350	0.5	<2	0.29	< 0.5	16	42	56	3.74
IODD-14	1	0.40	< 0.005	< 0.2	2.03	11	<10	290	< 0.5	<2	0.13	< 0.5	9	84	23	3.41
IODD-16		0.26	< 0.005	< 0.2	2.18	13	<10	340	< 0.5	<2	0.13	< 0.5	8	53	21	3.34
IODD-18		0.32	< 0.005	< 0.2	1.53	7	<10	250	< 0.5	<2	0.36	< 0.5	11	56	35	2.67
IODD-10		0.28	< 0.005	< 0.2	1.57	9	<10	350	< 0.5	<2	0.40	<0.5	10	59	31	2.66
IOD-01		0.34	< 0.005	<0.2	2.15	27	<10	570	0,5	<2	0.28	<0.5	33	81	120	6.76
IOD-03		0.30	< 0.005	< 0.2	1.85	22	<10	340	0.7	2	0.25	< 0.5	37	72	82	7.21
IOD-05		0.36	< 0.005	< 0.2	2.30	7	<10	420	0.5	<2	0.30	< 0.5	19	47	56	3.99
IOD-03		0.40	< 0.005	< 0.2	1.70	11	<10	380	0.5	<2	0.32	< 0.5	13	36	40	2.99
IOD-09		0.36	0.033	< 0.2	1.95	9	<10	350	< 0.5	<2	0.35	<0.5	19	51	72	4.08
OD-11		0.34	< 0.005	<0.2	2.00	13	<10	300	<0.5	<2	0.18	<0.5	10	39	40	3,21
IOD-13		0.26	< 0.005	< 0.2	0.78	5	50	80	<0.5	<2	0.05	< 0.5	72	1790	12	3.14
IOD-15		0.38	< 0.005	< 0.2	2.09	12	<10	530	< 0.5	<2	0.26	<0.5	15	53	48	3.27
JOD-17		0.26	< 0.005	< 0.2	2.06	10	<10	370	< 0.5	<2	0.20	<0.5	17	85	37	3.81
JOD-19		0.36	< 0.005	< 0.2	1,95	15	<10	290	< 0.5	<2	0.45	<0.5	19	162	58	3 24
JOD-20		0.24	< 0.005	<0.2	1.84	6	<10	280	<0.5	<2	0.47	<0.5	18	104	46	3.08
JOD-22		0.26	0.008	< 0.2	1.61	14	<10	220	< 0.5	<2	0.18	< 0.5	16	72	39	2.87
JOD-23		0.30	< 0.005	< 0.2	2.05	14	<10	340	0.6	<2	0.23	<0.5	21	207	27	3.77
JOD-24		0.24	< 0.005	< 0.2	2.48	26	<10	300	0.6	<2	0.22	<0.5	23	116	89	5.45
JOD-25		0.28	<0.005	< 0.2	2,32	19	<10	270	0.5	<2	0.21	<0.5	18	81	86	4.29
IOD-26		0.26	<0.005	<0.2	2.33	19	<10	330	0,5	<2	0.28	<0.5	19	104	81	4.14
IOD-27		0.30	< 0.005	< 0.2	2.19	19	<10	190	<0.5	<2	0.15	<0.5	19	78	66	3.99
JOD-28		0.28	< 0.005	< 0.2	2,90	24	<10	220	0.5	<2	0.22	< 0.5	19	102	77	4.79
JOD-29		0.32	< 0.005	< 0.2	3.56	34	<10	390	0.6	<2	0.48	<0.5	45	753	38	5.95
JOD-30		0.36	< 0.005	< 0.2	1.93	14	<10	120	0.6	<2	2.17	< 0.5	15	38	26	3.76
IOD-31		0.26	< 0.005	<0.2	1.01	92	<10	150	<0.5	<2	1.07	< 0.5	80	910	32	4.21
IOD-32		0.36	< 0.005	0.2	1.57	15	<10	540	0.6	<2	0.71	<0.5	15	111	41	3.24
CAD-01		0.32	< 0.005	1.0	2.59	59	<10	660	0.7	2	0.54	1.2	32	97	54	4.54
CAD-02		0.28	< 0.005	1.6	2.67	30	<10	170	0.7	4	0.67	1.7	44	130	90	4.62
CAD-03		0.32	< 0.005	3.7	2.74	108	<10	720	8.0	7	0.85	1.5	34	70	103	5.63
CAD-04		0.36	< 0.005	3.6	1,69	33	<10	390	0.6	15	0.53	1.7	80	66	270	7.38
CAD-05		0.38	0.039	6.8	1.45	50	<10	190	<0.5	52	0.38	1.4	15	42	55	3.64
CAD-07		0.36	0.025	4.6	2.34	37	<10	380	0.7	22	0.35	1.7	44	45	161	4.90
CAD-08		0.26	0.005	4.3	2.23	106	<10	720	0.6	10	1.04	1.4	27	57	110	5.16
CAD-09		0.26	< 0.005	0.7	3.52	45	<10	120	0.9	3	0.27	0.7	65	128	58	5.86

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2012

Account: KREBER

CERTIFICATE OF ANALYSIS VA12236907

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
JODD-02		<10	<1	0.04	10	0.64	561	<1	0.01	37	300	6	<0.01	2	11	15
JODD-04		<10	<1	< 0.01	10	19.75	740	<1	< 0.01	2040	160	<2	0.01	<2	7	10
JODD-06	I	<10	<1	0.01	<10	21.8	1160	<1	< 0.01	1760	180	<2	0.01	<2	6	4
JODD-08		<10	<1	0.01	<10	18.70	699	<1	< 0.01	1695	130	<2	< 0.01	<2	14	4
JODD-10		10	<1	0.03	10	0.93	516	<1	0.01	36	230	6	< 0.01	2	14	22
JODD-12		10	<1	0.04	10	0.79	548	<1	0.01	31	250	6	<0.01	<2	13	24
JODD-14		10	< 1	0.04	10	0.66	287	<1	0.01	35	280	8	< 0.01	<2	7	12
JODD-16		10	<1	0.04	10	0.63	290	<1	0.01	23	300	14	0.01	2	6	12
JODD-18		<10	<1	0.03	10	0.76	370	<1	0.01	34	380	5	0.01	<2	5	19
JODD-21		<10	<1	0.04	10	0.73	359	<1	0.01	39	610	6	<0.01	<2	5	26
IOD-01		<10	<1	0.04	10	1,10	1255	<1	0.01	60	320	7	< 0.01	3	34	14
JOD-03		<10	<1	0.04	10	0.86	1240	<1	0.01	58	530	6	< 0.01	3	33	13
JOD-05		10	<1	0.04	10	0.88	680	<1	0.01	33	230	5	< 0.01	<2	15	23
JOD-07		<10	<1	0.04	10	0.69	511	<1	0.01	31	400	7	< 0.01	2	9	23
JOD-09		10	<1	0.04	10	0.87	656	<1	0.01	35	370	5	< 0.01	<2	13	24
JOD-11		<10	<1	0.04	10	0.57	293	<1	0.01	26	270	8	<0.01	<2	5	16
JOD-13		<10	1	0.01	<10	18.85	651	<1	0.01	1650	180	3	0.01	<2	5	5
IOD-15		<10	1	0.03	10	0.99	525	<1	0.01	36	220	11	0.01	2	11	18
JOD-17		10	1	0.03	10	0,85	596	<1	0.01	42	290	7	< 0.01	<2	11	16
JOD-19		<10	1	0.04	10	1.36	495	<1	0.02	130	470	7	0.01	<2	7	19
JOD-20		<10	<1	0.03	10	1.14	556	<1	0.01	75	520	5	0.02	2	5	22
JOD-22		<10	<1	0.03	10	0.82	509	<1	0.02	48	340	9	0.02	<2	5	13
JOD-23		10	<1	0.03	10	1.26	458	1	0.03	93	200	5	0.02	<2	8	15
JOD-24		10	<1	0.03	10	1.39	635	<1	0.02	66	190	4	0.02	4	27	14
JOD-25		10	<1	0.03	10	1.16	477	<1	0.02	47	140	4	0.02	<2	18	16
JOD-26		10	<1	0.04	10	1.24	603	1	0.02	58	210	6	0.02	<2	16	19
JOD-27		<10	<1	0.03	10	1.07	413	<1	0.02	43	140	4	0.02	<2	14	12
JOD-28		10	<1	0.02	10	1.58	412	<1	0.02	50	150	4	0.02	<2	15	13
JOD-29		10	<1	0.03	10	2.66	1090	<1	0.02	157	300	4	0.02	<2	76	14
JOD-30		<10	<1	0.04	40	0.70	457	1	0.02	38	320	12	0.03	<2	5	118
JOD-31		<10	<1	0.04	10	4.48	632	<1	0.02	749	310	4	0.03	26	11	40
JOD-32		10	<1	0.05	10	1.31	354	<1	0.03	104	640	-8	0.03	3	6	47
CAD-01		10	<1	0.21	20	1.31	1200	1	0.03	67	1040	90	0.04	<2	7	29
CAD-02		10	1	0.26	20	1.33	1200	1	0.03	85	1150	111	0.09	<2	6	41
CAD-03		10	<1	0.24	20	1.16	1510	2	0.04	65	1040	209	0.10	<2	8	40
CAD-04		10	<1	0.20	10	0,71	1790	1	0.04	95	1400	427	0.27	<2	6	50
CAD-05		10	<1	0.10	10	0.65	402	1	0.03	36	920	321	0.06	<2	4	26
CAD-07		10	<1	0.14	20	0.58	1320	1	0.03	58	910	215	0.13	<2	5	33
CAD-08		10	<1	0.13	20	0.86	1200	2	0.03	49	920	217	0.12	<2	6	48
CAD-09		10	<1	0.23	10	1.68	2010	1	0.04	68	620	122	0.08	<2	7	30

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2012

Account: KREBER

CERTIFICATE OF ANALYSIS VA12236907

	Master	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	
	Method Analyte	Th	Ti	TI	U	٧	W	Zn	
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOR	20	0.01	10	10	1	10	2	
IODD 03	LINE DE LA CONTRACTION DE LA C	<20	0.05	<10	<10	83	<10	52	
JODD-02		<20	0.03	<10	<10	16	<10	17	
JODD-04		<20	0.01	<10	<10	16	<10	20	
JODD-06			0.01	<10	<10	52	<10	24	
JODD-08		<20 <20	0.02	<10	<10	111	<10	48	
JODD-10									
JODD-12		<20	0.05	<10	<10	96	<10	54	
JODD-14		<20	0.06	<10	<10	80	<10	59	
JODD-16		<20	0.07	<10	<10	82	<10	59	
JODD-18		<20	0.07	<10	<10	62	<10	50	
JODD-21		<20	0.07	<10	<10	57	<10	48	
IOD-01		<20	0.02	<10	<10	142	<10	73	
JOD-03		<20	0.01	<10	<10	156	<10	76	
JOD-05		<20	0.07	<10	<10	107	<10	53	
JOD-07		<20	0.07	<10	<10	63	<10	61	
JOD-09		<20	0.06	<10	<10	111	<10	57	
JOD-11		<20	0.06	<10	<10	75	<10	48	
JOD-13		<20	0.02	<10	<10	23	<10	16	
JOD-15		<20	0.05	<10	<10	83	<10	61	
JOD-17		<20	0.06	<10	<10	95	<10	61	
JOD-19		<20	0.08	<10	<10	75	<10	56	
JOD-20		<20	0.07	<10	<10	70	<10	49	
JOD-22		<20	0.07	<10	<10	55	<10	53	
JOD-23		<20	0.07	<10	<10	67	<10	64	
JOD-24		<20	0.02	<10	<10	115	<10	60	
JOD-25		<20	0.05	<10	<10	97	<10	54	
JOD-26		<20	0.05	<10	<10	93	<10	106	
JOD-27		<20	0.04	<10	<10	88	<10	51	
JOD-28		<20	0.03	<10	<10	116	<10	52	
JOD-29		<20	0.01	<10	<10	164	<10	57	
JOD-30		<20	0.02	<10	<10	31	<10	69	
JOD-31		<20	0.02	<10	<10	51	<10	29	
JOD-32		<20	0.06	<10	<10	55	<10	60	
CAD-01		<20	0.10	<10	<10	83	<10	246	
CAD-02		<20	0.10	<10	<10	64	<10	332	
CAD-03		<20	0.08	<10	<10	97	<10	485	
CAD-04		<20	0.14	<10	<10	68	<10	501	
CAD-05		<20	0.07	<10	< 10	52	<10	420	
CAD-07		<20	0.05	<10	<10	49	<10	348	
CAD-07		<20	0.05	<10	<10	77	<10	416	
CAD-08		<20	0.16	10	<10	91	<10	263	
0AD-03									

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2012

	Is								CI	ERTIFIC	ATE O	F ANAL	YSIS	VA122	36907	
Sample Description	Method	WEI-21	Au-AA23	ME-ICP41												
	Analyte	Recyd Wt.	Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Γe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
CAD-10		0.32	<0.005	1.0	2.56	55	<10	720	0.7	2	0.82	1.1	32	98	61	4.38
CAD-11		0.40	<0.005	<0.2	1.78	37	<10	200	<0.5	<2	0.98	<0.5	16	54	52	4.06
CAD-12		0.28	<0.005	1.2	1.19	66	<10	150	<0.5	<2	1.53	3.1	23	28	46	3.39
CAD-13		0.34	0.007	0.9	1.36	51	<10	170	<0.5	<2	0.69	1.6	22	37	72	3.56
CAD-14		0.28	0.006	4.5	1.30	76	<10	390	<0.5	<2	0.96	4.3	26	123	68	3.20
CAD-15		0.30	0.031	12.5	1.78	202	<10	620	0.5	<2	0.76	5.6	29	114	96	4.70
CAD-16		0.24	0.024	5.8	1.73	157	<10	520	0.5	<2	0.63	5.9	31	131	85	4.20
CAD-17		0.36	0.020	1.5	1.17	107	<10	360	<0.5	2	0.91	4.8	26	120	85	3.91
CAD-18		0.24	0.019	3.0	1.31	138	<10	210	0.5	2	0.48	4.7	26	29	127	4.69
CAD-19		0.32	<0.005	0.7	1.85	49	<10	140	<0.5	<2	1.64	1.2	34	47	72	4.21
CAD-20		0.26	<0.005	<0.2	1.22	46	<10	100	<0.5	<2	5.02	<0.5	27	38	63	3.65
CAD-21		0.22	0.043	2.4	0.62	289	<10	270	<0.5	<2	0.33	2.9	16	30	89	4.04

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2012

Minera	IS								CI	ERTIFIC	ATE O	FANAL	YSIS	VA122	36907	
Sample Description	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
CAD-10 CAD-11 CAD-12 CAD-13 CAD-14		10 10 <10 <10 <10	<1 <1 1 <1 <1	0.24 0.05 0.05 0.05 0.05 0.07	20 20 20 30 20	1.25 0.90 0.64 0.75 1.37	1400 735 1290 896 1280	<1 <1 1 1 <1	0.04 0.02 0.02 0.02 0.03	72 61 37 63 137	1130 1240 980 790 840	76 20 367 207 1165	0.06 0.04 0.09 0.06 0.08	<2 3 3 3 6	7 5 3 4 4	37 58 89 48 56
CAD-15		<10	<1	0,08	20	1.26	1590	1	0.03	121	970	1775	0.06	12	7	56
CAD-16		<10	<1	0,09	20	1.41	1700	1	0.03	159	860	1010	0.08	10	7	51
CAD-17		<10	<1	0,05	20	1.24	1660	1	0.02	165	970	381	0.06	8	6	45
CAD-18		<10	<1	0,06	30	0.62	1270	2	0.02	68	960	554	0.08	7	4	49
CAD-19		10	<1	0,05	20	1.03	1480	1	0.02	65	1050	133	0.08	4	6	102
CAD-20	and the second seco	<10	<1	0.02	20	0.78	1100	1	0.02	64	1650	22	0.12	<2	4	312
CAD-21		<10	<1	0.06	10	0.17	685	6	0.02	65	790	149	0.06	38	3	39

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

W. W.

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2012

CERTIFICATE OF ANALYSIS V	A	11	122	23	6	9	0	17	7
---------------------------	---	----	-----	----	---	---	---	----	---

								been measured	CENTILICATE OF AMALISIS	VALIEROOG
with the second	Method Analyte Units	ME-ICP41 Th ppm	ME-ICP41 Ti %	ME-ICP41 TI ppm	ME-ICP41 U ppm	ME-ICP41 V ppm	ME-ICP41 W ppm	ME-ICP41 Zn ppm		
ample Description	LOR	20	0.01	10	10	1	10	2		AND THE PERSON OF THE PERSON O
AD~10	No Assessment	<20	0.10	<10	<10	86	<10	238		
CAD-11		<20	0.02	<10	<10	40	<10	102		
CAD-12		<20	0.01	<10	<10	22	<10	306		
CAD-13		<20	0.02	<10	<10	33	<10	258		
CAD-14		<20	0.02	<10	<10	35	<10	618		
CAD-15		<20	0.02	<10	<10	53	<10	1570		
CAD-16		<20	0.03	<10	<10	54 27	<10 <10	930 761		
CAD-17		<20	0.01	<10 <10	<10 <10	37 26	<10	606		
CAD-18		20 <20	0.01 0.01	<10	<10	41	<10	196		
CAD-19		S		<10	<10	33	<10	60		
CAD-20		<20 <20	0.01 0.01	<10	<10	30	<10	378		
CAD-21		<20	0.01	~10	- 10	-00				