2012 EXPLORATION PROGRAM ON THE LITTLE HYLAND PROJECT, YUKON TERRITORY

On Quartz Claims

Grant #	Claim Name
YD29584 – YD29613	RUBUS 9 - 38
YD29622 – YD29625	RUBUS 47 - 50
YD31301 – YD31310	RUBUS 51 – 60
YD31316 – YD31329	RUBUS 61 - 74
YE48037 – YE48059	NT 1 - 23

Report By: Gary Lee, P.Eng Whitehorse, Yukon

Location: 62° 00' N, 128° 30' W NTS: 105I02 Watson Lake Mining District December, 2012

SUMMARY

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is within the Little Hyland River Valley in the Watson Lake Mining District, in southeast Yukon. The property consists of 81 quartz mining claims that are variably owned by Mr. Gary Lee, and Mr. Robert Scott.

The property is primarily a precious metals target with gold and lesser silver, in quartz veins. It also contains arsenopyrite-pyrite, +/-chalcopyrite, +/- galena+/-sphalerite mineralization.

Between July 7 and August 3, 2012 plus September 5 and September 11, 2012, Gary Lee conducted an exploration program with a focus on precious metal mineralization along government airbourne magnetic trends. The 2012 program consisted of the collection of 7 rock samples, 150 soil samples and 7 stream sediment samples. As well, 2,360 m of grid was established for soil sampling.

Work on the Culvert claims in 2009 identified gold in the phyllites which was postulated to represent a mesothermal gold-quartz vein style occurrence. Also known as shearhosted gold, this deposit type occurs in any of a variety of greenschist-grade rocks, and occurs in proximity to steep faults or sutures of ancient continental margin collision zones. Gold, pyrite, and arsenopyrite are essential minerals of this deposit type occurring chiefly in quartz veins deposited within faults and joint systems. In the process of vein emplacement, wallrock is silicified, pyritized and/or sericitized inside a broad halo of carbonitization.

Detailed work in 2012, on the Rubus and NT claims continued to yield anomalous gold values. These anomalous values continued to occur on or near the government airbourne mag. (first derivative) contacts east of both the Little Hyland River and the March Fault. Any future prospecting should continue north of the 2012 project area centered along these high-low magnetic contacts. This trend is verified by the northern most stream sediment sample on the Rubus 74 claim which yielded 85 ppb gold, 61 ppm arsenic, 111 ppm copper, 6650 ppm manganese, 598 ppm zinc and 263 ppm nickel. Also, anomalous values in cobalt, nickel, zinc, manganese and arsenic began showing up 3 Km. to the south of the 2012 project area in stream seds (2010 report). This indicates, the geology is changing and should be investigated.

A follow-up program should consist of geologic mapping followed with backhoe trenching and/or blast trenching.

TABLE OF CONTENTS

Summary	
1.0 Introduction	1
2.0 Property Location and Access	2
3.0 Claim Information	
4.0 Physiography, Vegetation and Climate	4
5.0 Exploration History	4
6.0 Geological Setting	
6.1 Regional Geological Setting	
6.2 Property Geology and Mineralization	10
7.0 2012 Exploration Program	
8.0 Geochemical Analytical Procedure	
9.0 Results Rubus & NT Claims	12
10.0 Conclusions and Recommendations	13
11.0 Statement of Expenditure	21
12.0 References	

LIST OF FIGURES

1 Property Location Map	3
2 Claim Map plus Work Area Index Map	
3 Regional Geology Map	
4 Rubus & NT Gold Geochem	
5 Rubus & NT – Arsenic Geochem	15
6 Rubus & NT – Gold Geochem	16
7 Rubus & NT – Arsenic Geochem	17
8 Rubus & NT - Gold Geochem	
9 Rubus & NT Arsenic Geochem	19
10 Aerial Magnetic Map	20
-	

TABLES

1 Claim Information	۱	2	2
---------------------	---	---	---

APPENDICES

Appendix I Statement of Qualifications Appendix II 2012 Rock, Soil and Stream Sediment Sample Descriptions Appendix III Geochemical Analytical Certificates Appendix IV Crew Log

1.0 INTRODUCTION

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is within the Little Hyland River Valley in the Watson Lake Mining District, in southeast Yukon.

The property consists of quartz mining claims that are variably owned by Mr. Gary Lee and Mr. Robert Scott, all of Whitehorse, Yukon. The property is primarily a precious metals target with gold and lesser silver, in quartz veins. It also contains arsenopyrite-pyrite, +/-chalcopyrite, +/- galena+/- sphalerite mineralization and numerous gold and arsenic anomalies mainly in soils. Mineralization consisting of gold, arsenic, lead and copper occurs in quartz veins and enveloping country rock. The quartz veins are hosted in grey-green phyllites, presumed to be of the Vampire Group volcano-sedimentary package of rocks. Quartz pebble conglomerate float has also been encountered.

Exploration work in 2009 focused on the Culvert Claims, while work in 2010 and 2011 focused primarily on the Rubus, Sheer, LH and Swag claims. Between July 7 and August 3, 2012, plus September 5 and September 11, 2012, Gary Lee conducted a reconnaissance exploration program on the north end of the Rubus and NT claims with a focus on precious metal mineralization and precious metals bearing structures. The 2012 program consisted of the collection of 7 rock samples, 150 soil samples and 7 stream sediment samples. As well as, 2,360 m of grid for soil sampling. The 2012 program focused on sampling along the magnetic contacts found on the government first derivative airbourne magnetic survey.

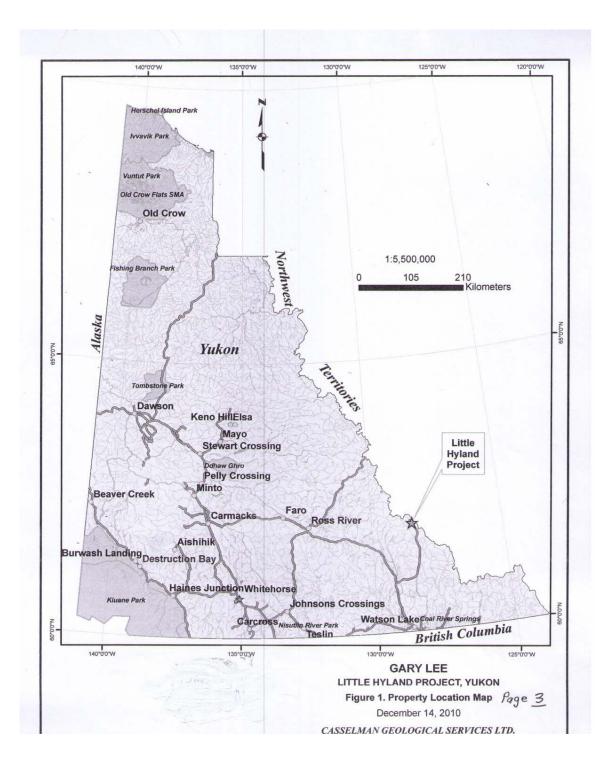
Anomalous gold values have been found over the past two seasons on or near these contacts. This occurs on the east side of both the Little Hyland River and the March Fault.

This assessment report summarizes the known geology, mineralization, and exploration potential for a contiguous set of mineral claims known as the Little Hyland Project. All information was supplied by Mr. Lee. Original analytical certificates used in the report were provided by ALS Labs. Other information used in the preparation of the report includes government publications and assessment reports in the public domain. The author of this report, Gary Lee, is either a co-owner or owner of these claims.

2.0 PROPERTY LOCATION and ACCESS

The Little Hyland Project is located approximately 205 kilometres north of the community of Watson Lake (Figure 1) and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. The property is centered at 62° 00' N latitude and 128° 30' W longitude on NTS map sheets 105H15, 16, 105I01 and 02 in the Little Hyland River valley.

The property is most easily accessed via the all-season, gravel surface, Nahanni Range Road from kilometre 110 of the Robert Campbell Highway. The property straddles the Nahanni Range Road, and at kilometre 175, an ATV trail leaves the road to gain access to the northern portion of the property. The Howards' Pass winter trail runs along the southwestern margin of the Rubus claims and provides ATV access in this region. A temporary exploration camp was situated in a gravel pit west of Km. 175.


The nearest community is Watson Lake, which has a population of approximately 1,200 people and lies on Highway 1 (Alaska Highway). Watson Lake is the main supply centre for the region.

3.0 CLAIM INFORMATION

The property consists of unsurveyed quartz claims staked in accordance with the Yukon Quartz Mining Act in the Watson Lake Mining District. Claim ownership is variable and as listed in Table 2. Claim details are listed in the Table 1, below, and are shown in Figure 2.

Table 1: Claim Information

Grant #	Claim Name	Claim Ownership
YD29584 – YD29613	Rubus 9 – 38	Gary Lee 50%, Robert Scott 50%
YD29622 – YD29625	Rubus 47 – 50	Gary Lee 50%, Robert Scott 50%
YD31301 – YD31310	Rubus 51 – 60	Gary Lee 50%, Robert Scott 50%
YD31316 – YD31329	Rubus 61 - 74	Gary Lee 50%, Robert Scott 50%
YE48037 – YE48059	NT 1 - 23	Gary Lee 100%

4.0 PHYSIOGRAPHY, VEGETATION and CLIMATE

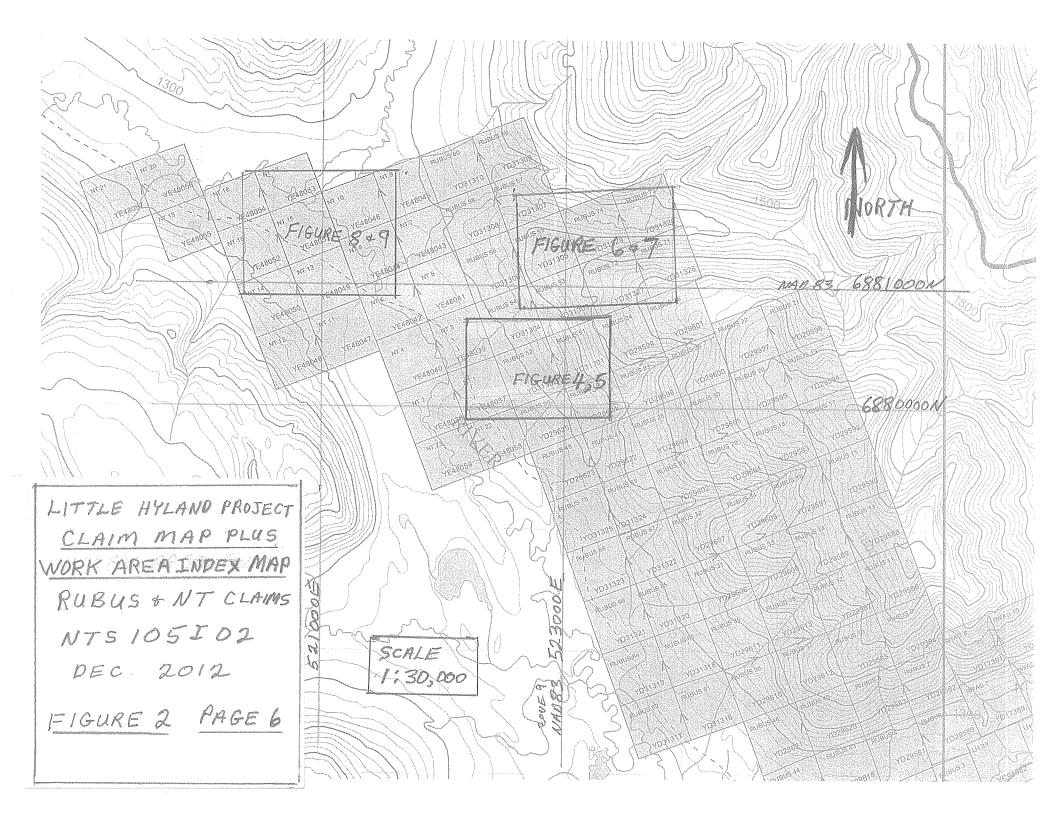
The property is located in the Logan Mountains of the eastern Yukon. The topography in the area is broad, U-shaped valleys between steep mountains. Elevations on the property range from 1200 to 1750 metres above sea level. The lower elevations are covered with spruce and pine forests grading upwards to willows, dwarf birch, grasses, moss and lichens. Steeper slopes are covered by talus and felsenmeer.

The area receives generally high annual precipitation (approximately 450 millimetres) as compared to the Yukon average. Snow generally begins accumulating in alpine areas in late September, while the snow pack starts to recede in late April to early May, allowing fieldwork to commence at lower elevations in mid-May. Temperatures range from $+30_{\circ}$, in the summer months, to -50_{\circ} Celsius, in the winter months.

5.0 EXPLORATION HISTORY

The region has a long history of exploration beginning with the discovery of the Tungsten Mine in 1954 and the initiation of production in 1962. The Little Hyland Project Area, however, does not have a considerable documented history of exploration, prior to the activities of Mr. Lee and Mr. Scott.

The Yukon Minfile (DIAND, 2002) lists one mineral occurrence within 5 km of the property; the Ricardo Showing. It occurs approximately 3 km south of the project area and is described as an unmineralized ferricrete gossan occurring within an area underlain by Cretaceous granodiorite that intrudes Cambrian slates and phyllites. The gossan was originally staked by Canada Tungsten Mining Corporation Ltd in 1961. There is no record of Canada Tungsten doing any additional work on the property and it was later allowed to lapse.


The Ricardo Showing was later re-staked by Mr. A. Black, in 1980, as the Kay claims, then in 1981 as the Lynx claims by Mr. E. Broadhagen. In each case there is no record of work being performed on the property and the claims were allowed to lapse.

The most significant exploration activity in the area has been at the Tuna property, located 12 km southeast of the project area. It was originally staked in 1981 by Union Carbide Exploration Ltd and has been explored for placer gold, skarn-type tungsten, and lode gold. The property is underlain by a Cretaceous granodiorite stock that intrudes Cambrian slates, phyllites and siltstones of the Hyland Formation. Union Carbide performed stream sediment sampling, rock and soil sampling, geological mapping and prospecting on the property in 1982. This work identified numerous scheelite, molybdenite and chalcopyrite mineralized occurrences, often associated with quartz-tourmaline veins. However, Union Carbide later allowed the claims to lapse.

Page 4

In 1989, Noranda Exploration Canada subsequently staked by Kokanee Explorations Ltd in 1991. Kokanee conducted a program of prospecting, mapping and sampling in 1992. The company changed its' name to Consolidated Ramrod Gold Corporation later that year. In 1993, Consolidated Ramrod performed a limited amount of lithogeochemical and stream sediment sampling, which returned weak to moderately anomalous gold results. Northern Tiger's 3 Ace property, 30 to 40 km south has also yielded high gold values.

Gold was first discovered by Robert Scott while panning in the creek at the culvert on the Nahanni Range road in 1984. The first Golden Culvert claims were staked in September of 2005 and added on to in 2006, 2008, 2009 and 2010. In 2006, 2007, 2008, 2009, 2010, 2011 and 2012 Mr. Lee conducted exploration programs predominantly on the Culvert, Rubus, LH, Zanzibar Red Bluff and NT claims consisting of prospecting, stream sediment, soil and rock sampling. This work returned anomalous gold and arsenic values.

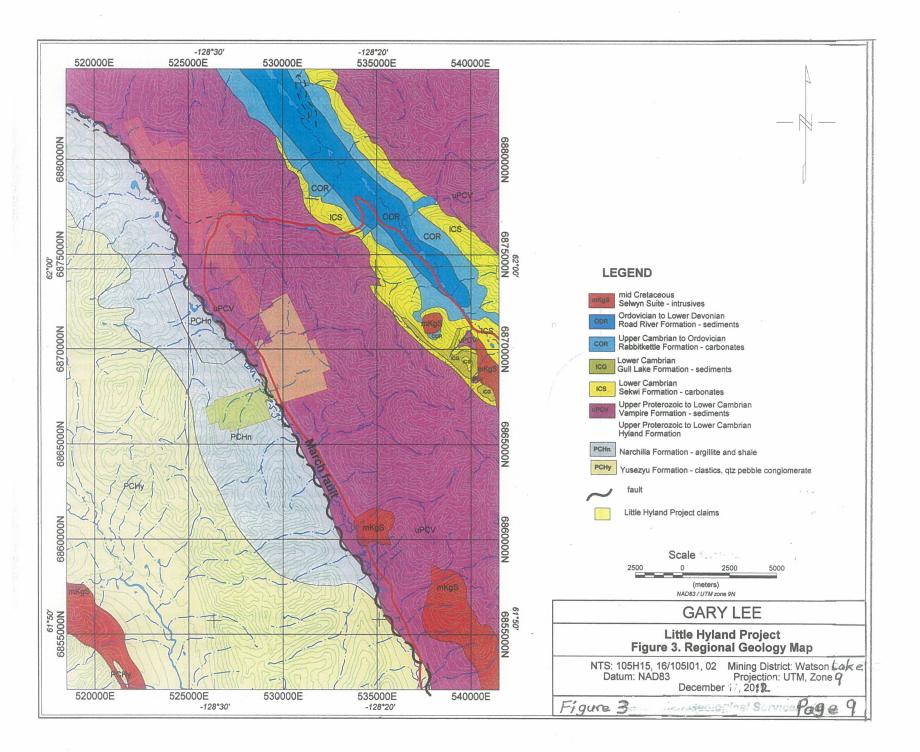
6.0 GEOLOGICAL SETTING

The following text is reprinted from Casselman, 2010. The description of the property geology reports on the limited number of hand samples submitted to the author for evaluation and offers possible deposit types for the occurrence of gold on the property.

6.1 Regional Geological Setting

The Little Hyland Project area is located in the Selwyn Basin in the eastern Yukon. The Selwyn Basin is part of the cordilleran miogeocline and is characterized by thick accumulations of clastic sediments, with a significant component of deepwater black shales and cherts (Heon, 2007). These basinal rocks interfinger with and are bound by shallower-water platformal carbonates (Figure 3). The Selwyn Basin is bound to the north by the Dawson Fault, grades into platformal facies to the east (Mackenzie Platform) and southwest (Cassiar Platform), may be bound by a Mesozoic thrust fault separating it from Yukon-Tanana Terrane in the Anvil district, and is offset to the southwest by the Tintina Fault. The sediments range in age from Precambrian to Jurassic (Heon, 2007) and lie within the Omineca Belt of the Northern Cordillera (Hart, 2002).

The eastern part of the Little Hyland Project area is underlain by Upper Proterozoic to Lower Cambrian dark brown, fine-grained and thinly-bedded, argillaceous sandstone and siltstone with minor, interbedded, medium- to coarse grained, white to light grey orthoquartzite, phyllite, slate and argillite of the Vampire Formation (uPCV). The western part of the property is underlain by thinly to thickly bedded brown to pale green shales, fine- to coarse-grained quartz-rich sandstones, quartz-pebble conglomerates, minor argillaceous limestones, phyllites, quartzo-feldspathic and micaceous psammites, gritty psammites, and minor marbles of the Upper Proterozoic to Lower Cambrian Narchilla Formation of the Hyland Group (PCHn) (Gordey, et. al., 2000).


Northeast of the property, in the area of the Tungsten Mine, younger sedimentary rocks of the Lower Cambrian Sekwi Formation (ICS), the Lower Cambrian Gull Lake Formation (ICG), the Upper Cambrian to Ordovician Rabbitkettle Formation (COR) and the Ordovician to Lower Devonian Road River Formation (ODR) occur. The Sekwi Formation consists of limestone conglomerates, massive grey dolostones, medium- to thickly-bedded quartz sandstones, purple siltstones with bright orange weathering, and finely-crystalline dolostones. The Gull Lake Formation consists of shales, siltstones and mudstones; minor quartz sandstones; rare green-grey cherts; local basal limestone and limestone conglomerates; and phyllites to quartz-muscovite-biotite schists. These units are overlain by thinly-bedded, wavy, banded, silty limestones and grey lustrous calcareous phyllites; limestone; intraclast breccias and conglomerates; massive to laminated, grey quartzose siltstones and cherts; rare black slates; and local mafic flows, breccias, and tuffs of the Rabbitkettle Formation.

The Rabbitkettle Formation is, in turn, overlain by black-, gun-blue-, or silverywhite-weathering of black graptolitic shales and cherts; resistant grey weathering of medium to thinly-bedded, light grey to black, greenish grey, or turquoise cherts; and minor argillaceous limestones of the Road River Formation.

This package of sedimentary rocks is intruded by resistant, blocky, fine to coarse grained, equigranular to K-feldspar porphyritic, biotite-quartz monzonite and granodiorite; minor quartz diorite; minor leuco-quartz monzonite; and syenite of the mid- Cretaceous Selwyn Plutonic Suite. It is often contended that these intrusions have driven gold-bearing mineralizing fluids to the area of the Little Hyland Project but the intrusions have not been discovered in the immediate are of the property to date. However, the northwest-trending thrust faults that dominate the structural pattern in the region contain sutures that may play host to gold mineralization under a Mesozoic gold model. The March Fault is a thrust fault that runs along the western part of the Little Hyland Project area and may be form a structural control for precious metals mineralization.

The most significant mineralization in the area are the ore bodies of the Tungsten Mine. The ore was formed in carbonate-bearing sedimentary rocks by tungstenbearing fluids of mid-Cretaceous Selwyn Suite intrusions. The result was tungsten-rich, pyrrhotite skarns along the margins of the intrusions. The original, pre-production resource at the Tungsten Mine was 9 Mt with a grade of 1.42% WO₃.

At the Tuna property, molybdenite, scheelite, arsenopyrite, bismuthinite, chalcopyrite, chalcocite, pyrrhotite, gold and silver occur in quartz and quartz-tourmaline veins and in small skarn alteration zones along the margins of the Hyland Intrusion (Doherty and vanRanden, 1994).

6.2 Property Geology and Mineralization

The Little Hyland Project area has not been geologically mapped in any detail. According to the regional geology of the area it is underlain predominantly by sedimentary rocks of the Vampire Formation (uPCV) to the east and Narchilla Formation (PCHn) rocks to the west. Regional airborne magnetic survey maps show moderately-strong, northwest-trending magnetic features that transect the property; the cause of the features are postulated to be either from a buried intrusion, a regional structure, a lithologic change, or broad alteration assemblages. Any of these causes, or a combination of these causes could be factors in mineralizing events in the area.

Rock types reported to exist on the property are phyllitic to schistose argillite and siltstone. Quartz pebble conglomerate float has also been found on the Rubus and LH claims. Historically, significant gold mineralization was noted to occur primarily in quartz veins within these rocks.

Hand samples from the Culvert and LH claims of sericite-phyllite contained as much as 5% combined pyrite and arsenopyrite, both occurring in the host rock as well as in veins. Typically, pyrite is medium- to coarse-grained and euhedral, suggesting it is late in the paragenetic sequence. However, in one instance pyrite was overgrown by arsenopyrite. The mode of occurrence of arsenopyrite ranges from semi-massive (sample RS-14) (see report on 2009 field work), fine-grained fracture fillings and medium-grained disseminations within quartz veins (sample RS-44) (see report on 2009 field work), to locally-clustered masses of euhedral needles and coarser grains within the host. Although no chalcopyrite was seen in hand-sample, malachite staining is reported to exist on the property.

Most quartz veins were seen to be sub-parallel to phyllite foliation but had clearly experienced early ductile folding and boudinaging prior to late-stage brittle offset. At least two crosscutting vein sets orthogonal to schistocity, exhibited in sample RS-53 (see report on 2009 field work), as well as a strongly-lineated structure shown in sample RS-55 (see report on 2009 field work), imply a poly deformational history to these rocks. A relatively undeformed, late tension vein, lacking sulphides is the latest veining event noted. A deeper understanding the structural history of these rocks, as it relates to vein mineralization, should be a focus of future exploration at the site.

Alteration in these rocks was noted as predominantly sericitic. Fine-grained muscovite is formed in phyllic alteration, along with minor quartz, chlorite, and pyrite. Calcite and iron-carbonate was also noted in veins, indicating carbonitization as a minor alteration assemblage.

Geologists from Rimfire Minerals Ltd. visited the Main Showing on the Culvert claims and collected two samples, G071512 and G071513, which assayed 22.8 g/t and 8.91 g/t gold (respectively). These samples were described as:

G071512

A well developed, 1 metre thick, (strike 252, dip 78), white sugary to granular (recrystallized) quartz vein with sharp margins, discordant to cleavage. Arsenopyrite as medium, crystalline to fine-grained bands. Pyrite is disseminated in cubes and local crystal aggregates.

G071513

White quartz vein (60 centimetres thick, strike 112, dip vertical) with very finegrained arsenopyrite bands, scorodite developed, possible sericite alteration of siltstone, and trace arsenopyrite needles in siltstone. Some quartz is sugary (recrystallized).

Rimfire also noted slightly-discordant stringers, ranging from 3 millimetres to 2 centimetres, in the acute angle formed by the veins sampled.

Although the highest gold assays have historically originated from samples taken from quartz veins, country rock on the property has been shown to be mineralized. Sample RS-57, collected in 2009 on the Culvert Claims, from immediately southeast of the main showing assayed 1.285 g/t gold from an almost 2.5 metre chip sample of host rock material adjacent to a mineralized vein.

7.0 2012 EXPLORATION PROGRAM

Between July 7 and August 3 and September 5 to September 11 of 2012, Gary Lee conducted an exploration program on the Little Hyland Project claims. The 2012 program consisted of prospecting and the collection of 7 rock samples, 150 soil samples and 7 stream sediment samples. As well, 2,360 m of grid was established for soil sampling.

8.0 GEOCHEMICAL ANALYTICAL PROCEDURE

Samples from the 2012 program were sent to ALS Labs. The soil and stream sediment samples were handled in the same manner. The samples were sieved in a 180 um sieve then analysed for 48 elements by four acid digestion with Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) according to the ME-ICP41 procedure. As well, each sample was analysed for gold by fire assay with atomic absorption finish according to the Au-ICP21 procedure.

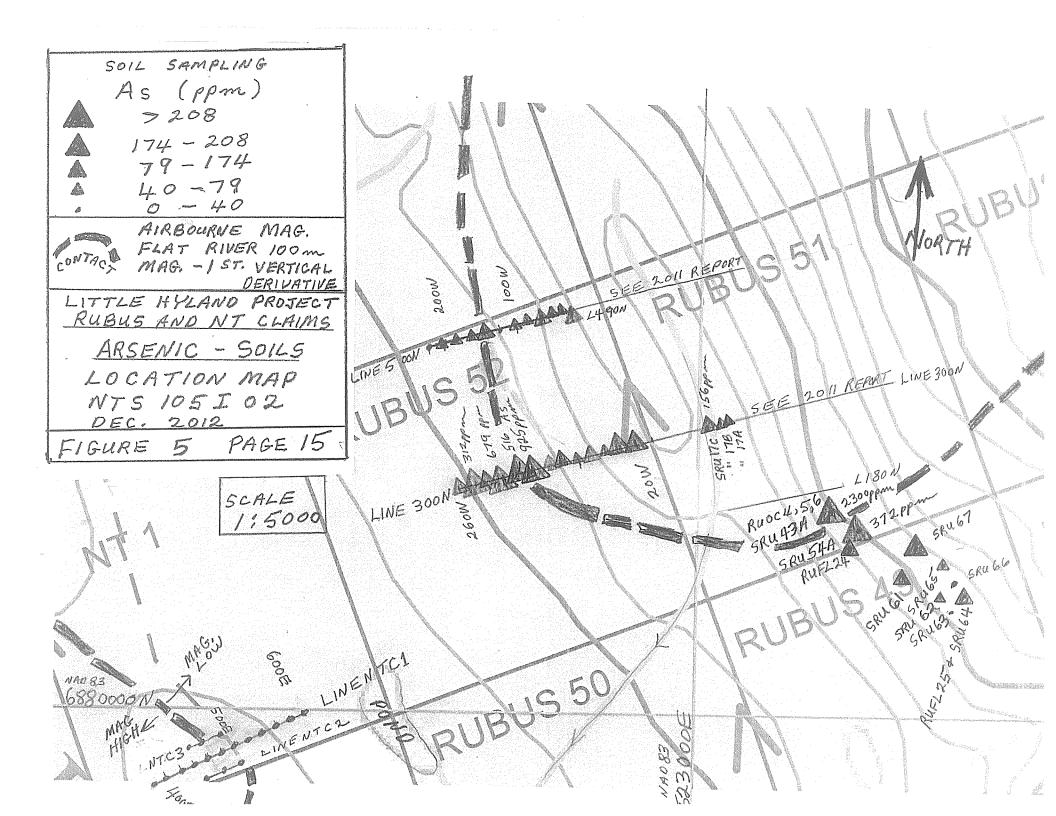
Rock samples were processed by crushing to 70% < 2 mm and pulverizing 200 grams of the < 2 mm material to 85% < 75 um according to the Prep 21 lab procedure. The pulverized material was then analysed by ME-ICP41 for 48 elements and for gold by Au-ICP21 as for the soil and stream sediments. Analytical certificates are included in Appendix III and plots of sample locations, gold and arsenic results are plotted in Figures 4, 5, 6, 7, 8, & 9.

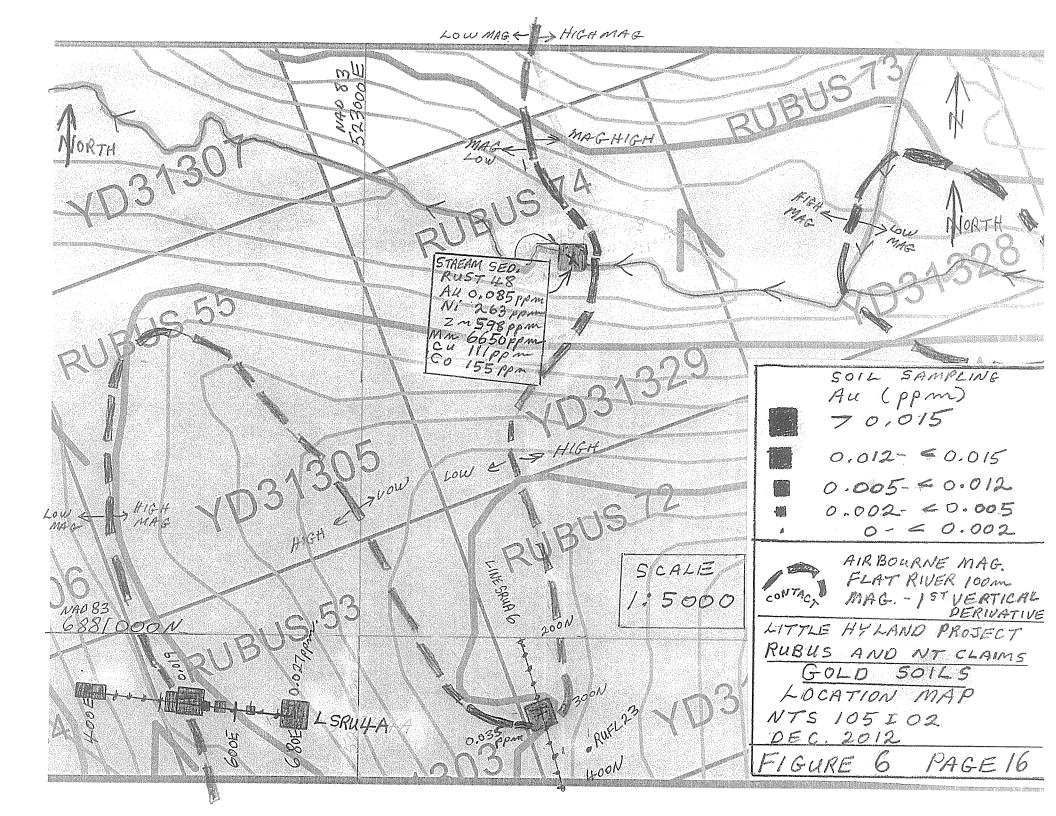
9.0 RESULTS

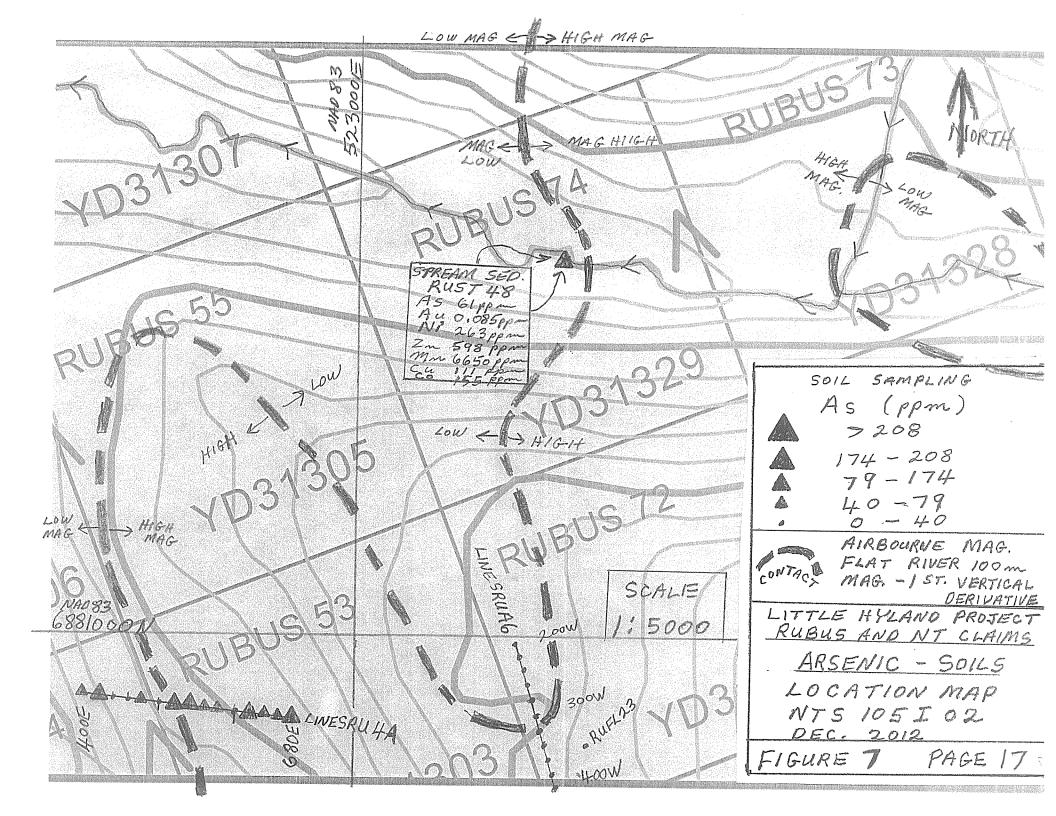
Rubus and NT Claims Exploration Results (Figures 4 to 9)

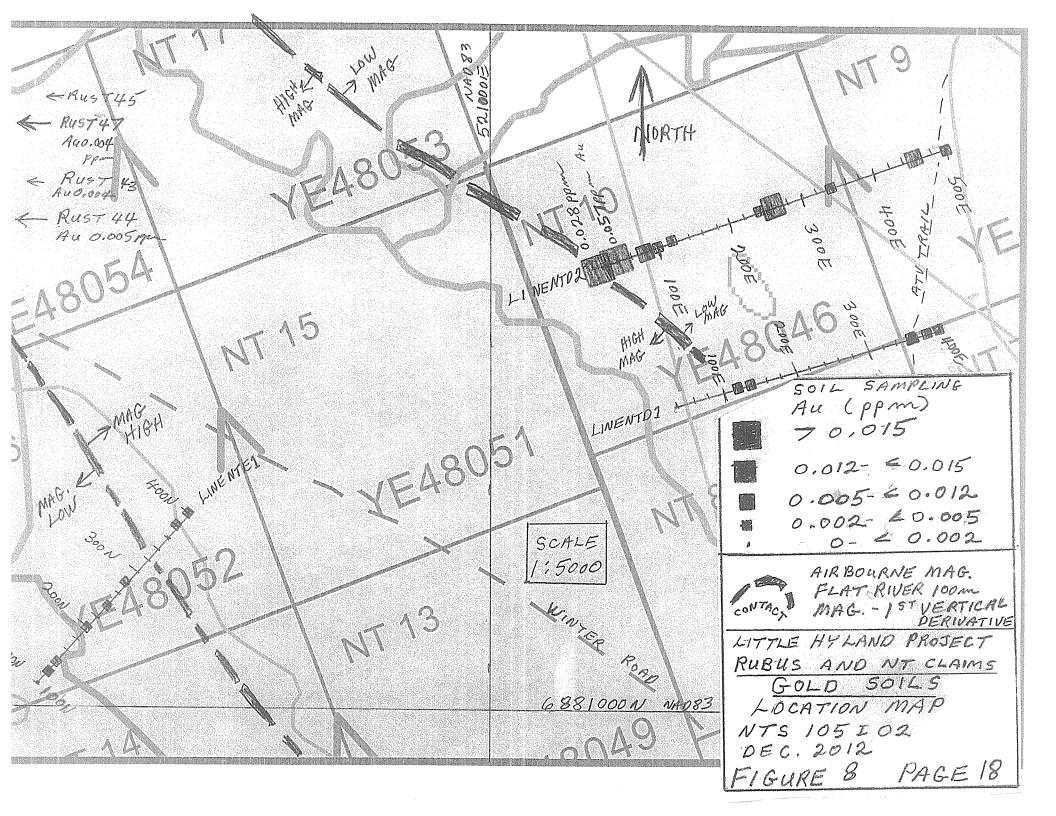
Figures 4 to 9 show the sampling results and float samples collected during the 2012 field season on the northwest area of the Rubus and NT claims. The statistics from Commander Resources Ltd regional survey conducted in the area were used for the cut-off thresholds. For gold, these were greater than 0.015, 0.0124 - 0.015, 0.0047 - 0.0124, 0.0017 - 0.0047, and 0.0017 ppm. For arsenic, these were greater than 208, 174 - 208, 79 - 174, 40 - 79 and 0 - 40 ppm. Total population was 1,369 samples. Percentile range were greater than 98th, 95th, 68th, 50th, and to detection limit.

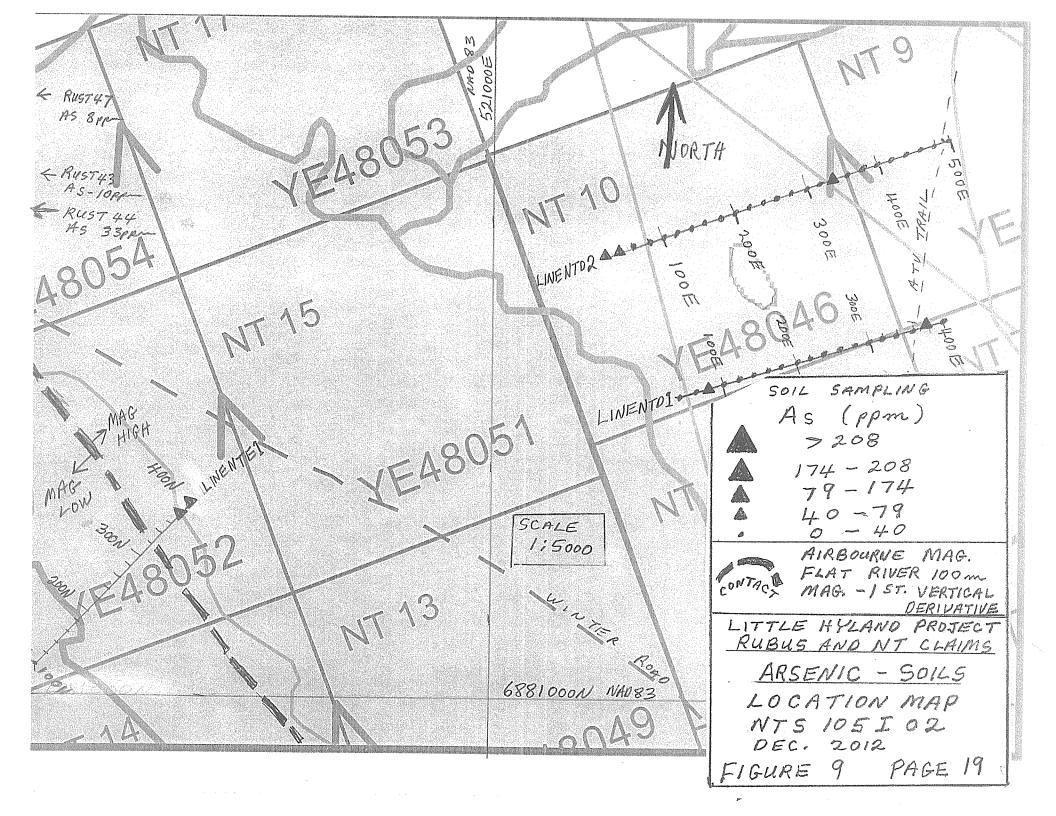
The three highest (of a total of 150) gold values (0.130, 0.073 and 0.057 ppm), soil samples for the 2012 season were encountered on or close to the airborne mag contact as shown on Figure 4 and 8. This is more than a coincidence! These contacts (lineaments) as shown in more detail on Figures 4 to 9 should be used for future prospecting and mapping targets. This trend is verified by the northern most stream sediment sample (Rust 48) on the Rubus 74 claim which yielded 85 ppb gold, 61 ppm arsenic, 111 ppm copper, 6650 ppm manganese, 598 ppm zinc and 263 ppm nickel. Figure 10 shows the regional trend of this contact extending some 15 Km. south east to the Golden Culvert Property. Commander Resources announced (Oct. 17, 2012) an anomalous (gold) zone measuring 2 Km. by 1.5 Km., 7 Km. to the south from the 2012 project area on this magnetic contact. They also reported rock samples assaying up to 4.5 grams per ton gold here.

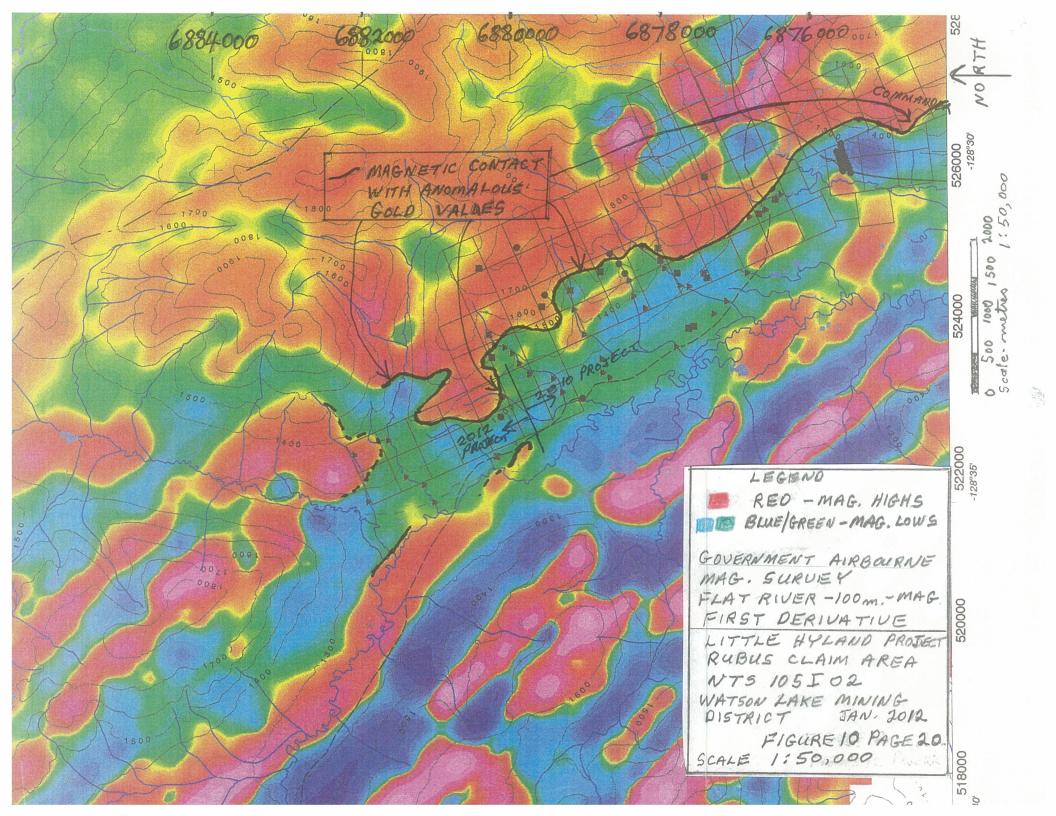

Three seasons (2010, 2011 and 2012) has extended this favourable horizon (contact) approximately 7 Km. to the north of Commander's anomalous gold zone. Also anomalous values in cobalt, nickel, manganese and arsenic in stream sediments (2010 report) began showing up 3 Km. south of the 2012 survey area.


Page 12


10.0 CONCLUSIONS and RECOMMENDATIONS


As demonstrated in section 9, (Results), there is now 7 Km. of favourable strike length that needs geological mapping, sampling and trenching. This extends from Commander Resources discoveries to the south, north to the area surveyed in this 2012 report. This mapping should be centered on the regional magnetic contact as shown on figure 10. It should be followed with a trenching program.


SOIL SAMPLING Au (ppm) 70,015 0.012 = \$0.015 0.005- < 0.012 0.002- 40.005 -0 = < 0.002 A mag MAG NORTH 44 AIR BOURNE MAG. n n FLAT RIVER 100m SEE 2011 REPORT CONTACT 6 MAG. - 1ST VERTICAL DERIVATIVE Waa LITTLE HYLAND PROJECT LIGON RUBUS AND NT CLAIMS More LINE 500N UBUS 5 1001 GOLD SOILS LINE 300N LOCATION MAP Dans E 2011 RECORT NTS 105 102 HIGH N SH DEC. 2012 ALL ALL PAGE 14 FIGURE 10 Y BOR SRU176 Sales Not AINE 300N M L 1801 SCALE RUGC RUOC 415 SRU43A 2.60W 58467 1:5000 SRUGUA RUFL 24 MAS LOW SRub6 sRu 61 5 'n y. LINEWTCL MAGZ HIGH BUS 50 6880000 Nm LINE NTO 2 Y LINENTC 31 200 8083 FDO



11.0 STATEMENT OF EXPENDITURES

Labour – Gary Lee	24 days @ \$ 350.00 / day	\$ 8,400.00
- Helper	4 days @ \$ 275.00 / day	\$ 1,100.00
Truck (4X4)	2016 km @ \$ 0.595 / km	\$ 1,199.52
ATV rental	28 days @ \$ 40.00 / day	\$ 1,120.00
ATV transport trailer	4 days @ \$ 16.00 / day	\$ 64.00
Room, board & daily field	28 days @ \$ 100.00 / day	\$ 2,800.00
expenses (incl. Satellite		
phone, flagging, gas, etc.)		
Assaying charges		\$ 5,401.59
WCB expenses	Pro rated	\$ 126.03
Report writing &		\$ 875.00
reproduction		
Total Qualifying For Asse	essment Work	\$ 21,806.14
Additional Expenditures (\$ 3,355.76	
TOTAL EXPENDITURES	\$ 24,441.90	

12.0 REFERENCES

Casselman, S. G., 2007. 2006/2007 Soil and Stream Sediment Sampling Program on the Culvert Property, Tungsten Area, Yukon Territory. Private Report.

Casselman, S. G., 2008. 2008 Prospecting and Sampling Program on the Golden Culvert Property, Tungsten Area, Yukon Territory. Yukon Territorial Government assessment report # 093175.

Casselman, S. G., and Halle, J., 2010. Little Hyland Regional Project, 2009 YMIP Focused Regional Program, Yukon Territory. Private report.

Casselman, S. G., 2010 Exploration Program on the Little Hyland Project, Tungsten Area, Yukon Territory. Private Report.

DIAND, 2002. Yukon Minfile, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.

Doherty, R. A. and vanRanden, J. A., 1994. Report on the 1993 Geological and Geochemical Assessment Work on the Tuna Property. Yukon Territorial Government assessment report # 093175.

Geological Survey of Canada, Flat River – 100 m – Airborne Magnetics – 1st Vertical Derivative.

Gordey, S.P., Makepeace, A.J., (compilers), 2000. Yukon Digital Geology, Geological Survey of Canada, Open File D3826.

Hart, C., 2002. The geological framework of the Yukon Territory. Yukon Geological survey. <u>http://www.geology.gov.yk.ca/</u>

Hart, C. J. R. and Lewis, L. L., 2005. Gold Mineralization in the Upper Hyland River Area: A Non-magmatic origin. Yukon Exploration and Geology, 2205. PP 109-125.

Heon, D, 2007. Selwyn Basin Metallogeny. Yukon Geological Survey Website, www.geology.gov.yk.ca/metallogeny/selwyn.

LEE, G, 2011 Exploration Program On The Little Hyland River Project, Tungsten Area, Yukon Territory.

APPENDIX I

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Gary Lee, of Whitehorse, Yukon Territory, certify that:

1) I am a professional engineer and prospector residing in Whitehorse, Yukon Territory.

2) I graduated from the University of Toronto, Ontario with a Bachelor of Applied Science Degree in 1975 and have worked in mineral exploration since that time

3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.

4) I am responsible for preparation of this report and am part owner of this property.

Respectfully Submitted: Gary Lee, P.Eng.

Signature:

Date:

APPENDIX II

2012 ROCK, SOIL AND STREAM SEDIMENT SAMPLE DESCRIPTIONS

Pg. 1 of 4 201	2 SOIL SAMPL	ES – RUBUS &	NT CLAIMS		
Sample Number	NAD 8	3 Zone 9 V		Au	As
	East	North	Details	PPM	PPM
SRU 300- 20W	522910	6880350	Line BRG = N70 East		
			Line 300N, 20W, Tan, rocky	0.007	135
" " - 40 W			Line 300N, 40 W- tan	0.002	91
" " - 60 W			" " 60 W- tan	0.001	77
" " - 80 W			" " 80 W- light tan	0.001	94
" " - 100 W			" " 100 W- tan & grey	<0.001	55
" " - 120 W			" " 120 W- tan	<0.001	90
" " - 140 W			" " 140 W- tan	<0.001	122
" " - 160 W			" " 160 W- grey	0.010	925
" " - 180 W			" " 180 W- grey	0.003	516
" " - 200 W	522767	6880275	Line BRG = N 70 deg. east	0.001	679
			Line 300, 200 W- tanish grey		
" " - 220 W			" " 220 W- grey, thick moss in trees	0.002	163
" " - 240 W			" " 240 W- grey, west side of trees	0.003	312
SRU 300-260 W	522680	6880300	Line 300, 260 W- Brown, top of slide, near RUS 03	0.003	80
SRU 500 – 10W	522850	6880515	Line BRG.= N 70 deg. East	0.017	41
			Line 500, 10W, deep rusty brown on grey		
" " - 20W			Line 500N, 20 W- tan & minor rusty brown	0.073	53
" " - 30W			"" 30 W- tan	0.001	41
" " - 40W			" " 40 W- tan & little grey	0.001	52
" " - 60W			" " 60 W- tan & little yellow	0.001	80
" " - 80W			" " 80 W- rusty	0.002	61
" " -100W			" " 100 W- light tan & grey	0.001	54
" " -120W			" " 120 W- tan	0.002	23
" " -140W			" " 140 W- tan & grey	0.001	120
" " -160W			" " 160 W- grey	0.003	77
" " -180W			" " 180 W- light tan	<0.001	55
SRU 500 - 200W			" " 200 W- light tan	0.001	58
SRU 500 - 220W	522640	6880480	Line 500N, 220 W- light tan	0.002	36
SRU 490 - 0E	L490N15	10 Meters	Line 490N, 0 deg. east	0.001	81
SRU 490 - 10W	South of Li	ne 500 N	Line 490N, 10W- rich rusty brown, grey depth	0.002	52
SRU 490 - 20W			Line 490N, 20W- rusty brown	0.005	51
SRU 490 - 30W			Line 490N, 30W- brown & grey	0.004	67
NTD1- 40E	521256	6881408	Line NTD1, 40E- brown & grey	< 0.001	17
NTD1- 60E			Line NTD1, 60E- rusty brown	< 0.001	17
" - 80E			" " 80E- grey clay, rocky	0.001	48
" - 100E			" " 100E- grey & brown, rocky	0.001	19
" - 120E		1	" " 120E- brown	0.002	20
" - 140E		1	" " 140E- brown, silty	0.003	20
" - 160E			" " 160E- grey & brown layers	< 0.001	6
" - 180E			" " 180E- light rusty brown	< 0.001	21
" - 200E			" " 200E- brown	0.001	19
" - 220E			" " 220E- brown	< 0.001	23
" - 240E			" " 240E- brown	0.001	31
" - 260E			" " 260E- light brown	< 0.001	22
NTD1- 280E		1	" " 280E- light rusty brown	0.001	26

Pg. 2 of 4	2012 SOIL SA	MPLES – RU	IBUS & NT CLAIMS		
-	Nad 83	Zone 9		Au	Au
Sample	East	West	Details	PPM	PPM
Number	Last	West			
NTD1- 300E			Line NTD1, 300E- rusty brown	0.001	15
NTD1- 320E			Line NTD1, 320E- light rusty brown	0.001	19
" - 340E			" " 340E- brown	< 0.001	9
" - 360E (a)			" " 360E- greyish brown, road	0.001	24
" - 360E (b)			" " 360E- greyish brown, road	0.003	17
" - 380E			" " 380E- brown, rocky	0.002	41
NTD1- 400E	521600	6881500	Line NTD1, 400E- brown, rocky	0.002	34
NTD2- 20E	021000	0001000	Line NTD2, 20E- brown, rocky	0.028	77
NTD2- 40E	521174	6881590	Line NTD2, 40E- brown	0.057	63
" - 60E			" " 60E- brown	0.001	31
" - 80E			" " 80E- brown	0.011	10
" - 100E			" " 100E- brown	0.004	19
" - 120E			" " 120E- grey brown	0.002	13
" - 140E			" " 140E- brown	< 0.001	11
" - 160E			" 160E- rusty brown	< 0.001	15
" - 200E			" " 200E- wet, grey, pebbles, end of pond	< 0.001	9
" - 220E			" " 220E	0.001	32
" - 240E			" " 240E	0.003	15
" - 260E			" " 260E	0.012	28
" - 280E			" " 280E	< 0.001	36
" - 300E			" " 300E	< 0.001	4
" - 320E			" " 320E	< 0.001	37
" - 340E			" " 340E	0.002	46
" - 380E			" " 380E	< 0.001	19
" - 400E			" " 400E	<0.001	7
" - 460E			" " 460E	0.010	23
" - 480E			" " 480E	< 0.001	28
NTD2- 500E	521594	6881744	" " 500E	0.003	25
SRU4A- 400E	522650	6880932	Line SRU4A BRG.= N 100 East Line SRU4A, 400E- light brown, slide	0.009	59
SRU4A- 420E			" " 420E- tan, slide, steep	0.005	80
" - 440E			" " 440E- top of ridge	0.001	<2
" - 460E			" " 460E- brown & grey	0.001	13
" - 480E			" " 480E-	0.001	52
" - 500E	522740	6880910	" " 500E- brown, shaley	0.001	32
" - 520E			" " 520E- brown, shaley	0.014	92
" - 540E			" " 540E- " "	0.019	102
" - 560E			" " 560E- " "	< 0.004	68
SRU4A- 580E			" " 580E- brown+yellow-brown, shaley	0.011	43
" - 600E			" " 600E- brown	0.001	37
" - 620E			" " 620E- "	0.004	80
" - 640E			" " 640E- "	0.001	64
" - 660E			" " 660E- "	0.001	66
SRU4A- 680E	522900	6880885	Line SRU4A, 680E- "	0.027	139
SRU 61	523272	6880184	Rusty brown	0.003	115
SRU 62	523321	6880159	Deep brown, hillside east of SRU 61	0.003	76
SRU 63	523334	6880143	Brown, shaley	0.001	36
SRU 64	523357	6880153	Brown	0.005	80
SRU 65	523327	6880200	Deep brown, minor red	0.002	75

Sample	NAD 83	Zone 9V		Au	As
Number	East	Zone 9V West	– Details	PPM	PPM
SRU 66	523340	6880170	Prown shalow	< 0.001	1.1
SRU 67	523292		Brown, shaley	0.002	14
SRU 67 SRU 17A		6880225	Brown		187
	523020	6880362	Line 300N, 85E- 5 meters uphill from SRU 17 - rusty brown	0.002	44
SRU 17B	523015	6880361	Line 300N, 80E- re-sample of SRU 17, rusty brown	0.002	69
SRU 17C	523002	6880360	Line 300N, 70E- bottom of hill, tan & rusty brown	0.005	156
SRU 43A	523181	6880279	Brown, same location as SRU43 & RUOC4	0.130	2300
SRU 54A	523212	6880243	Brown, 5 meters north of SRU 54 (2011)	0.005	372
NTE1-100N	520408	6881040	Line BRG. = N 40 degrees east Line NTE1, 100N- light brown	0.001	16
" -120N			Line NTE1, 120N- "	0.004	20
" -140N			" " 140N- brownish grey	0.003	14
" -160N			" " 160N- light brown with tan streaks	< 0.001	13
" -180N			" " 180N- tan & grey	0.001	10
" -200N			" " 200N- light brownish grey	0.003	13
" -220N			" " 220N- " " "	< 0.001	10
-240N- (a)		" " 240N- light brown	<0.001	25
-240N- (b			" " 240N- " "	0.002	12
-240N-(5)		" " 260N- " "	0.002	14
" -280N			" " 280N- brownish grey	0.003	27
" -300N			" " 300N- brown – gritty	< 0.001	29
" -320N			" " 320N- " "	<0.001	23
" -360N			" " 360N- " "	<0.001	29
-380N			" " 380N- " "	0.003	41
NTE1-400N	520604	6881250	Line NTE1, 400N- "	0.002	53
NTE2-SP	519621	6881770	Grey, rocky	0.002	20
NTC1-380E		0001110	Line NTC1 BRG. = N 67 degrees east Line NTC1, 380E - brownish grey	0.004	21
" - 400E	522306	6879903	Line NTC1, 400E - tan	0.001	15
" - 420E	522325	6879915	" " 420E - tan	0.001	27
" - 440E	022020	00/00/0	" 440E - tan	< 0.001	20
" - 460E			" " 460E - light tan	0.001	20
" - 470E			" " 470E - tan	0.002	16
" - 480E			" " 480E - light tan	0.044	21
" - 481E			" " 481E - tan	0.004	20
" - 490E			" 490E - tan	0.004	19
" - 500E	522400	6879943	" " 500E - light tan	< 0.001	22
" - 510E	022400	0070040	" 510E - tan	0.002	19
" - 520E			" " 520E - light tan	< 0.001	22
" - 540E			" 540E - " "	0.001	25
" - 560E			" 560E - " "	0.002	27
" - 580E			" 580E - " "	0.002	24
NTC1-600E	522485	6879990	Line NTC1, 600E - tan	< 0.001	29
NTC2-460E	022700	307 3000		0.002	20
NTC2-480E	522387	6879918	Line NTC2 BRG. = N 67 degrees east	0.002	20
			Line NTC2 is 20 meters south of line NTC1 Light tan	0.002	20

Pg. 4 of 4	2012 SOIL	SAMPLES -	RUBUS & NT CLAIMS		
Sample	NAD 83	Zone 9 V		Au	As
Number			Details	PPM	PPM
	East	North			
NTC3-460E			Line NTC3 BRG. = N 67 degrees east	0.003	17
			Line NTC3 is 20 meters north of line NTC1		L .
NTC3-480E	522373	6879957	Tan	0.002	14
NTC3-490E			Light tan	0.002	20
NTC3-500E			"	0.003	19
NTC3-510E			"	0.002	20
SRUA6 -200N	523270	6880801	Line SRUA6, BRG.= AZ 340 degrees	0.001	9
			Line SRUA6, 200N - brown		
" -220N			" " 220N - "	<0.001	2
" -240N			" " 240N - light brown	<0.001	6
" -260N			" " 260N - " "	<0.001	14
" -280N			" " 280N - " "	0.001	36
" -300N			" " 300N - BRG. = AZ 340 degrees	0.035	27
			- tan, brown		1
" -320N			" " 320N - brown	0.001	9
" -340N			" " 340N - "	<0.001	21
" -360N			" " 360N - "	<0.001	21
" -380N			" " 380N - deep brown	<0.001	31
SRUA6 -400N	523217	6880989	Line SRUA6, 400N - " "	< 0.001	2

2012 ROCK SAMPLES

RUOC4	523184	6880279	At SRU43 location, sericite + Py, rusty quartz flooded phyllite with green & black bands	0.027	363
RUOC5	523181	6880279	Same location as SRU 43 - Rusty silified sandstone, with red hematite spots + quartz stringers.	0.003	48
RUOC6	523181	6880284	4 meters north of RUOC5 & SRU 43 - rusty quartz, flooded phyillite breccia, Py+qtz stringers	0.002	66
RUFL23	523319	6880850	Rusty, with med. Gr. Py in rusty patches. Quartz float, angular boulder.	0.001	8
RUFL24	523212	6880238	Same location as SRU 54, slide - rusty quartz flooded phyllite	0.005	163
RUFL25	5233357	6880153	Same location as SRU 64 - rusty quartz flooded phyllite, sheared.	0.001	9
NTEFL	519602	6881810	At RUST 46 - rusty quartz pebble conglomerate	0.001	46

2012 STREAM SEDIMENT SAMPLES

1				
521014	6880554	Small stream in buckbrush - moss	0.006	36
519567	6881780	Med. Stream on road - NT 20 claim	0.004	10
519611	6881616	Small stream - NT 21 claim	0.005	33
519570	6881765	Large to medium stream on NT 20 & 21 claims	0.001	8
519650	6881829		0.004	8
523290	6881510	Inside meander bar on stream	0.085	61
Pulp- Au-0.085ppm; As-61ppm; Co-155ppm; Cu-111ppm; Mn-6650ppm; Ni-263ppm;				
Zn-598pp	m.			
Re-assay-	- Co-132ppm	n; Cu-107ppm; Mn-5010ppm; Ni-227ppm; Zn-524ppr	n.	
Rejects	(+80)	Au-0.004ppm; Co-91ppm; Cu-68.3ppm; Mn-2880p	pm;	
	-	Ni-153ppm; Zn-316ppm.		
	519567 519611 519570 519650 523290 Pulp- Au-0 Zn-598pp Re-assay	519567 6881780 519611 6881616 519570 6881765 519650 6881829 523290 6881510 Pulp- Au-0.085ppm; A Zn-598ppm. Re-assay- Co-132ppm	519567 6881780 Med. Stream on road - NT 20 claim 519611 6881616 Small stream - NT 21 claim 519570 6881765 Large to medium stream on NT 20 & 21 claims 519650 6881829 """""""""""""""""""""" 523290 6881510 Inside meander bar on stream Pulp- Au-0.085ppm; As-61ppm; Co-155ppm; Cu-111ppm; Mn-6650ppm; N Zn-598ppm. Re-assay- Co-132ppm; Cu-107ppm; Mn-5010ppm; Ni-227ppm; Zn-524ppr Rejects (+80)	519567 6881780 Med. Stream on road - NT 20 claim 0.004 519611 6881616 Small stream - NT 21 claim 0.005 519570 6881765 Large to medium stream on NT 20 & 21 claims 0.001 519650 6881829 """"""""""""""""""" 0.004 523290 6881510 Inside meander bar on stream 0.085 Pulp- Au-0.085ppm; As-61ppm; Co-155ppm; Cu-111ppm; Mn-6650ppm; Ni-263ppm; Zn-598ppm. Ni-263ppm; Ni-263ppm; Cu-598ppm. Re-assay- Co-132ppm; Cu-107ppm; Mn-5010ppm; Ni-227ppm; Zn-524ppm. Rejects (+80)

APPENDIX III

GEOCHEMICAL ANALYTICAL CERTIFICATES

(ALS) Minerals ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 WWW.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page 1 of 1

INVOICE NUMBER 2686129

6

ann ann ann an Air chrùnh Alaitheathan Bhanasaid Aolaig	BILLING INFORMATION		ANALYSED FOR QUANTITY CODE - DESCRIPTION	UNIT PRICE	TOTAL
Certificate. Sample Type: Account: Date: Project. P.O. No.: Quote: Terms. Comments:	WH12183399 Soil LEEGAR 18- AUG- 2012 Due on Receipt	С3	1BAT- 01Administration Fee127PREP- 41Dry, Sieve (180 um) Soil34.58PREP- 41Weight Charge (kg) - Dry, Sieve (180 um) Soil127Au- ICP21Au 30g FA ICP- AES Finish127ME- ICP4135 Element Aqua Regia ICP- AES	31.50 1.45 2.35 16.70 11.15	31.5 184.1 81.2 2,120.9 1,416.0
	LEE, GARY P.O. BOX 31800 WHITEHORSE YT YTA 6L3		Certificale # > WH12183399 4025.55 SUBTOTAL (WH 12183430 190.81 WH12183431 266.67 WH12215622 729.44 WH12215621 189.12 Total 5,401.59	GST \$	3,833.86 191.69 4,025.55
	Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7		Payment may be made by: Cheque or Bank Transfer Beneficiary Name: ALS Canada Ltd. Bank: Royal Bank of Canada SWIFT: ROYCCAT2 Address: Vancouver, BC, CAN Account: 003-00010-1001098 Please send payment info to accounting.canusa@alsglobal.com		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page 1

INVOICE NUMBER 2690668

В	ILLING INFORMATION	QUANTITY		SED FOR DESCRIPTION	UNIT PRICE	TOTAL
Certificate: sample Type: Account: Date: Project: P.O. No.: Quote: Terms: Comments:	WH12183430 Stream Sediment LEEGAR 20- AUG- 2012 Due on Receipt	6 2.52 6 6	PREP- 41 PREP- 41 Au- ICP21 ME- ICP41	Dry, Sieve (180 um) Soil Weight Charge (kg) - Dry, Sieve (180 um) Soil Au 30g FA ICP- AES Finish 35 Element Aqua Regia ICP- AES	1.45 2.35 16.70 11.15	8.70 5.93 100.20 66.90
P P	EE, GARY .O. BOX 31800 VHIFEHORSE YT YTA 6L3				TAL (CAD) \$ 3885 GST \$ SLE (CAD) \$	181.72 9.09 190.81
	Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7		Beneficiary Name Bank: SWIFT: Address:	made by: Cheque or Bank Transfer e: ALS Canada Ltd. Royal Bank of Canada ROYCCAT2 Vancouver, BC, CAN 003-00010-1001098 ment info to accounting.canusa@alsglobal.com	CC PA	PY

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page

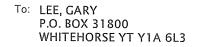
INVOICE NUMBER 2693242

					GED FOR DESCRIPTION		UNIT PRICE	IOTAL
BILLING INFORMATION		QUANTITY				7.45	52.15	
Certificate: Sample Type:	WH12183431 Rock		7 9.82 7	PREP- 31 PREP- 31 Au- ICP21	Crush, Split, Pulverize Weight Charge (kg) - Crush, Spl Au 30g FA ICP- AES Finish 35 Element Aqua Regia ICP- AES		0.70 16.70 11.15	6.87 116.90 78.05
Account: Date:	LEEGAR 21- AUG- 2012		7	ME- ICP41	35 Element Aqua Regia ICI - Aco			
Project P.O. No.: Quote:								
Lerms: Comments:	Due on Receipt	C3						
						SUBTOTAL (C	AD) \$	253.97
						R100938885	GST \$	12.70
Tu:	LEE, GARY P.O. BOX 31800 WHITEHORSE YT YTA 6L3					TOTAL PAYABLE (C	AD) \$	266.67
				Payment may be	made by: Cheque or Bank Transf	er		
	Please Remit Payments To : ALS Canada Ltd.			Beneficiary Name Bank: SWIFT: Address:			OP	Y
	2103 Dollarton Hwy North Vancouver BC V7H 0A7	5 -				PAI	D	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page 1 of 1


INVOICE NUMBER 2722594

D

	BILLING INFORMATION				YSED FOR		UNIT	TOTAL
8			QUANTITY		DESCRIPTION		PRICE	TOTAL
Certificate:	WH12215622		23	PREP-41	Dry, Sieve (180 um) Soil		1.45	33.35
Sample Type:			8.85	PREP- 41	Weight Charge (kg) - Dry, Sieve (18		2.35	20.80 384.10
	Soil	supervise of the second	23	Au- ICP21 ME- ICP41	Au 30g FA ICP- AES Finish 35 Element Aqua Regia ICP- AES		16.70 11.15	256.45
Account:	LEEGAR		25	ME-ICF41	55 Element Aqua Regia ICF- ALS		11.12	200-70
Date:	25- SEP- 2012							
Project:	x					· /		
P.O. No.:						E3		
Quote:								
Terms:	Due on Receipt	C3						
Comments:								
							<i></i>	CO4 70
						SUBTOTAL (CAD)	\$	694.70
To:	.EE, GARY					R100938885 GST	\$	34.74
P	P.O. BOX 31800				Т	OTAL PAYABLE (CAD)	\$	729.44
V	WHITEHORSE YT Y1A 6L3							(*************************************
			I	Payment may be	e made by: Cheque or Bank Transfer		No. TRANSPORT	27 9 Million
				Beneficiary Nam	ne: ALS Canada Ltd.		ND	V
				Bank: SWIFT:	Royal Bank of Canada ROYCCAT2	R	I L	, and a starting of the starti
_				Address:	Vancouver, BC, CAN			
	Please Remit Payments To :			Account:	003-00010-1001098	- al agona		
	ALS Canada Ltd.			Please send pay	/ment info to accounting.canusa@alsglo	bai.com		
2	2103 Dollarton Hwy North Vancouver BC V7H 0A7							
8	ADICII A GUICORACI MO ATTI OLA					102		
								**

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 WWW.alsglobal.com

INVOICE NUMBER 2730919

B	ILLING INFORMATION		QUANTIT		SED FOR DESCRIPTION		UNIT	TOTAL
Certificate: Sample Type: Account: Date: Proiect: P.O. No.: Quote:	WH12215621 Sediment LEEGAR 3- OCT- 2012		1 3 1.15 1 1 1 1 2	BAT- 01 PREP- 31 PREP- 31 ME- ICP41 Au- ICP21 PGM- ICP24 Au- ICP22 ME- MS61	Administration Fee Crush, Split, Pulverize Weight Charge (kg) - Crush, Split, Pulverize 35 Element Aqua Regia ICP- AES Au 30g FA ICP- AES Finish Pt, Pd, Au 50g FA ICP Au 50g FA ICP- AES finish 48 element four acid ICP- MS		31.50 7.45 0.70 11.15 16.70 22.05 19.75 27.90	31.50 22.35 0.81 11.15 16.70 22.05 19.75 55.80
Terms: Comments:	Due on Receipt	C3						
					SUI	BTOTAL (CAD)	\$	180.11

R100938885 GST \$ 9.01

TOTAL PAYABLE (CAD) \$ 189.12

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name:	ALS Canada Ltd.
Bank:	Royal Bank of Canada
SWIFT:	ROYCCAT2
Address:	Vancouver, BC, CAN
Account:	003-00010-1001098
Please send payment info t	o accounting.canusa@alsglobal.com

Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

To: LEE, GARY

P.O. BOX 31800

WHITEHORSE YT Y1A 6L3

NTD1-360E-B

NTD1-380E

ALS Canada Ltd.

0.26

0.25

0.003

0.002

<0.2

<0.2

1,42

1.35

17

41

<10

<10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

2.57

4.55

WU12102200

(1)

CEPTIFICATE OF ANALYSIS

											ATE O	- ANAL	.4212	WH121	83399)
	Method Analyte	WEI- 21 Recvd Wt,	Au- ICP21 Au	ME- ICP4 1 Ag	ME- ICP41 Al	ME- ICP4 1 As	ME- ICP41 B	ME- ICP41 Ba	ME- ICP4 1 Be	ME- ICP41 Bi	ME- ICP41 Ca	ME- ICP41 Cd	ME- ICP41 Co	ME- ICP41 Cr	ME- ICP4 1 Cu	ME- ICP41 Fe
Course Description	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	7e %
Sample Description	LOR	0.02	0.001	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
SRU 300-20W		0.16	0.007 🦟	0.8	2.66	135 —	<10	50	0.6	<2	0.04	<0.5	17	28	44	5,39
SRU 300- 40W		0.27	0.002	0.3	2.18	91	<10	50	<0.5	2	0.01	<0.5	18	29	24	4.88
SRU 300- 60W		0.25	0.001	<0.2	2.30	77	<10	50	<0.5	<2	0.02	<0.5	12	31	19	5.16
SRU 300- 80W		0.29	0.001	0.6	2.35	94	<10	50	<0.5	<2	0.01	<0.5	14	31	23	4.62
SRU 300- 100W		0.22	<0.001	0.2	2.59	55	<10	60	<0.5	<2	0.01	<0.5	16	35	19	4.71
SRU 300-120W		0.29	<0.001	0.2	1.92	90	<10	50	<0.5	2	0.01	<0.5	12	24	12	4.15
SRU 300- 140W		0.21	<0.001	0.2	1.90	122	<10	30	<0.5	<2	0.02	<0.5	12	27	35	4.35
SRU 300-160W		0.37	0.010		1.85	925	<10	20	0.8	<2	0.19	<0.5	23	27	59	4.64
SRU 300- 180W		0.34	0.003	<0.2	1.88	516	<10	40	0.7	2	0.20	<0.5	21	25	39	3.72
SRU 300- 200W		0.27	0.001	<0.2	1.88	679	<10	30	<0.5	<2	0.10	<0.5	15	28	23	4.25
SRU 500-20W		0.18	0.073	<0.2	2.05	53	<10	40	<0.5	<2	0.01	<0.5	15	30	16	4.98
SRU 500- 40W		0.25	0.001	<0.2	2.02	52	<10	30	<0.5	<2	0.01	<0.5	9	29	13	4.53
SRU 500- 60W		0.25	0.001	<0.2	2.22	80	<10	40	<0.5	<2	0.01	<0.5	14	32	23	5.15
SRU 500- 80W		0.25	0.002	0.3	1.76	61	<10	30	<0.5	<2	0.02	<0.5	11	24	19	5.14
SRU 500- 100W		0.25	0.001	0.3	2.27	54	<10	60	<0.5	<2	0.01	<0.5	14	33	20	4.75
SRU 500-120W		0.16	0.002	0.2	1.35	23	<10	40	<0.5	<2	0.01	<0.5	6	17	11	3.28
SRU 500-140W		0.24	0.001	0.2	1.94	120	<10	40	<0.5	<2	0.01	<0.5	10	29	17	4.90
SRU 500- 160W SRU 500- 180W		0.27	0.003	<0.2	2.32	77	<10	40	0.5	<2	0.04	<0.5	15	35	32	4.69
SRU 500- 180W		0.16 0.24	< 0.001	<0.2 <0.2	1.66	55	<10	60	<0.5	<2	0.01	<0.5	8	22	18	3.46
			0.001		2.13	58	<10	40	<0.5	<2	0.01	<0.5	10	31	28	4.25
SRU 500-220W		0.26	0.002	0.2	1.89	36	<10	30	<0.5	2	0.01	<0.5	9	28	20	3.73
NTD1-40E		0.32	< 0.001	< 0.2	0.92	17	<10	20	<0.5	<2	0.02	<0.5	5	14	9	2.32
NTD1-60E NTD1-80E		0.29	< 0.001	<0.2	1.44	17	<10	30	<0.5	<2	0.02	<0.5	6	17	16	3.95
NTD1-100E		0.38 0.37	0.001 0.001	<0.2 <0.2	2.30 1.10	48 19	<10 <10	40 30	0.6 <0.5	<2 2	0.04 0.01	<0.5 <0.5	22 5	35	39	4.76
														15	12	3.76
NTD1-120E		0.43	0.002	<0.2	1.43	20	<10	30	<0.5	<2	0.01	<0.5	6	21	16	4.85
NTD1-140E		0.29	0.003	<0.2	1.65	20	<10	30	<0.5	<2	0.01	<0.5	9	25	17	4.49
NTD1-160E NTD1-180E		0.18 0.29	<0.001	<0.2	0.51	6	<10	10	<0.5	<2	0.01	<0.5	1	8	4	0.76
NTD1-200E		0.29	<0.001 0.001	<0.2 <0.2	1.74 1.29	21 19	<10 <10	30 40	<0.5	<2	0.02	<0.5	8	24	17	4.53
									<0.5	<2	0.02	<0.5	6	21	15	3.37
NTD1-220E		0.28	<0.001	<0.2	1.46	23	<10	30	<0.5	<2	0.01	<0.5	8	21	15	4.03
NTD1-240E		0.25	0.001	<0.2	1.63	31	<10	40	<0.5	<2	0.01	<0.5	9	27	17	4.17
NTD1-260E NTD1-280E		0.25 0.32	<0.001 0.001	<0.2	1.33	22 26	<10 <10	40	<0.5	<2	0.01	<0.5	5	19	13	3.06
NTD1-280E NTD1-300E		0.32	0.001	0.2 <0.2	1.39 1.20	26 15	<10 <10	30 30	<0.5 <0.5	3 <2	0.01 0.03	<0.5 <0.5	5 5	20	15	4.94
														20	14	3.95
NTD1-320E		0.28	0.001	<0.2	1.41	19	<10	30	<0.5	2	0.02	<0.5	7	19	15	3.69
NTD1-340E		0.20	<0.001	<0.2	0.96	9	<10	20	<0.5	<2	0.02	<0.5	3	10	9	1.86
NTD1-360E-A		0.22	0.001	<0.2	1.95	24	<10	40	<0.5	<2	0.02	< 0.5	12	26	21	3.71

50165 1 of 4 set

<0.5

<0.5

2

<2

40

30

<0.5

<0.5

5

6

18

20

14

17

0.02

0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

2,

									CE	ERTIFIC	ATE O	F ANAL	YSIS	WH121	83399	
Sample Description	Method Analyte Units LOR	ME- ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1	ME- ICP4 1 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP4 1 Sr ppm 1
SRU 300- 20W SRU 300- 40W		10 10	<1 <1	0.03 0.04	20 30	0.40 0.53	650 981	1 <1	0.02 0.01	25 23	940 1060	100	~ 0.03 0.02	<2 <2	1	11 7
SRU 300- 60W SRU 300- 80W SRU 300- 100W		10 10 10	<1 <1 <1	0.03 0.04 0.06	20 20 30	0.64	776 541	<1 <1	0.01 0.01	21 24	1330 370	23 33	0.02 0.02	<2 <2	1 2	7 6
SRU 300- 120W SRU 300- 140W		10 10 10	<1 <1 <1	0.03	20	0.74	488	<1	0.01	26 12	320 580	20	0.01	<2	2	5 7
SRU 300- 160W SRU 300- 180W		10 10 <10	<1 <1	0.03 0.03	20 20 10	0.62 0.73 0.64	471 631 432	<1 <1 <1	0.01 0.02 0.01	24 47 39	790 540 640	29 45 32	0.02 0.03 0.03	<2 2 <2	1 1 1	8 23 28
SRU 300- 200W SRU 500- 20W		10 10	<1	0.04	20	0.68	470 852	<1 <1	<0.01	28	440	36	0.02	<2	1	15
SRU 500- 40W SRU 500- 60W SRU 500- 80W		10 10 10	<1 <1 <1	0.03 0.03 0.03	30 30 20	0.59 0.65 0.41	520 450 384	<1 <1 <1	<0.01 <0.01 0.01	18 25 16	440 680 2310	17 21 22	0.01 0.01 0.02	<2 <2 <2	1 2 1	5 5 5
SRU 500- 100W SRU 500- 120W		10	<1	0.05	30	0.66	570	<1	<0.01	24	560 960	20	0.02	<2 <2 <2	2	5 5
SRU 500- 140W SRU 500- 160W		10 10	<1 <1	0.04 0.05	30 30	0.59 0.87	478 607	<1 <1	<0.01 0.01	19 32	880 320	20 21	0.01 0.01	<2 <2	1	4 7
SRU 500- 180W SRU 500- 200W		10 10	<1 <1	0.06 0.07	20 30	0.43 0.71	291 447	<1 <1	0.01 0.01	17 26	630 450	16 19	0.01	<2 <2	1 2	5 5
SRU 500- 220W NTD1- 40E NTD1- 60E NTD1- 80E		10 <10 10	<1 <1 <1	0.04 0.03 0.02	20 10 20	0.66 0.27 0.20	396 201 285	<1 <1 <1	0.01 0.01 0.01	22 11 9	500 630 920	16 8 18	0.01 0.02 0.03	<2 <2 <2	1 <1 1	3 5 6
NTD1- 100E		10 10 10	<1 <1 <1	0.05 0.02 0.02	40 20 20	0.84 0.22 0.34	724 293 330	<1 <1 <1	0.01 0.01 0.01	38 9 14	430 1150 980	29 15	0.01	<2 <2	2 <1	8 5
NTD1-140E NTD1-160E NTD1-180E NTD1-200E		10 10 <10 10 10	<1 <1 <1 <1	0.02 0.02 0.03 0.03	20 20 10 10 20	0.34 0.41 0.09 0.35 0.26	538 55 628 226	<1 <1 <1 1	0.01 0.01 0.02 0.01 0.01	14 15 3 14 13	980 680 470 1000 490	15 19 7 17 22	0.02 0.03 0.04 0.04 0.02	<2 <2 <2 <2 <2 <2	1 <1 <1 1	6 5 4 6 8
NTD1 - 220E NTD1 - 240E		10 10	<1 <1	0.03 0.03	20 20	0.36 0.40	382 332	<1 <1	0.01 0.01	15 17	640 890	15 26	0.03 0.03	<2 <2	1 1	6 6
NTD1 - 260E NTD1 - 280E NTD1 - 300E		10 10 10	<1 <1 <1	0.03 0.02 0.02	20 20 10	0.29 0.27 0.27	179 357 449	<1 <1 <1	0.01 0.01 0.01	13 11 12	440 1040 1030	19 17 15	0.02 0.02 0.04	<2 <2 <2	1 1 <1	7 5 9
NTD1 - 320E NTD1 - 340E NTD1 - 360E- A NTD1 - 360E- B		10 <10 10 10	<1 <1 <1 1	0.02 0.02 0.04 0.03	10 10 20 10	0.26 0.11 0.60 0.26	381 144 566 210	<1 <1 <1 <1	0.01 0.02 0.01 0.01	12 6 25	710 490 560 710	16 8 19	0.03 0.03 0.02	<2 <2 <2 <2	<1 <1 1	6 5 6 7
NTD1-380E		10	۱ <1	0.03	20	0.26	323	<1 1	0.01 0.01	10 13	710 950	16 19	0.04 0.03	<2 <2	<1 1	7 6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

3

Minerals

									CERTIFICATE OF ANALYSIS	WH12183399
Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME- ICP41 V ppm 1	ME-ICP41 W ppm 10	ME- ICP41 Zn ppm 2		
SRU 300- 20W		<20	0.02	<10	<10	26	<10	98		
SRU 300- 40W		<20	0.01	<10	<10	23	<10	87		
SRU 300- 60W		<20	0.01	<10	<10	21	<10	87		
SRU 300- 80W		<20	0.01	<10	<10	23	<10	85		
SRU 300- 100W		<20	0.01	<10	<10	20	<10	89		
SRU 300- 120W		<20	0.01	<10	<10	26	<10	60		
SRU 300- 140W		<20	<0.01	<10	<10	17	<10	83		
SRU 300-160W		<20	<0.01	<10	<10	13	<10	167		
SRU 300-180W		<20	0.01	<10	<10	14	<10	123		
SRU 300- 200W		<20	<0.01	<10	<10	16	<10	118		
SRU 500- 20W		<20	0.01	<10	<10	25	<10	80		
SRU 500- 40W		<20	0.01	<10	<10	23	<10	67		
SRU 500- 60W		<20	0.01	<10	<10	22	<10	78		
SRU 500- 80W		<20	0.01	<10	<10	28	<10	59		
SRU 500- 100W		<20	0.01	<10	<10	22	<10	87		
SRU 500-120W		<20	0.01	<10	<10	24	<10	40		
SRU 500-140W		<20	0.01	<10	<10	22	<10	73		
SRU 500-160W		<20	0.01	<10	<10	20	<10	95		
SRU 500-180W		<20	0.01	<10	<10	18	<10	54		
SRU 500- 200W		<20	0.01	<10	<10	20	<10	79		
SRU 500- 220W		<20	0.01	<10	<10	17	<10	69		
NTD1-40E		<20	0.01	<10	<10	14	<10	35		
NTD1-60E		<20	0.02	<10	<10	25	<10	36		
NTD1-80E		<20	0.01	<10	<10	18	<10	96		
NTD1-100E		<20	0.02	<10	<10	27	<10	37		
NTD1-120E		<20	0.03	<10	<10	30	<10	50		
NTD1-140E		<20	0.02	<10	<10	25	<10	57		
NTD1-160E		<20	0.01	<10	<10	7	<10	12		
NTD1-180E NTD1-200E		<20 <20	0.02 0.03	<10 <10	<10 <10	24 37	<10 <10	61 50		
NTD1-220E		<20	0.02	<10	<10	24	<10	53		
NTD1-240E		<20	0.02	<10 <10	<10	24	<10	62		
NTD1-260E		<20	0.01	<10	<10	23 17	<10	45		
NTD1-280E		<20	0.02	<10	<10	32	<10	46		
NTD1-300E		<20	0.01	<10	<10	25	<10	39		
NTD1-320E		<20	0.02	<10	<10	25	<10	40		
NTD1-340E		<20	0.02	<10	<10	17	<10	21		
NTD1-360E-A		<20	0.01	<10	<10	19	<10	72		
NTD1-360E-B		<20	0.01	<10	<10	25	<10	38		
NTD1-380E		<20	0.02	<10	<10	28	<10	45		
l										

, Generation Heaterstand

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

Ð

										CE	ERTIFIC	ATE OI	F ANAL	YSIS	WH121	83399	
r	Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP4 I Cr ppm 1	ME- ICP4 I Cu ppm 1	ME- ICP41 Fe % 0.01
	NTD1 - 400E NTD2 - 20E NTD2 - 40E NTD2 - 60E NTD2 - 80E NTD2 - 100E		0.26 0.30 0.27 0.30 0.37 0.26	0.002 0.028 0.057 0.001 0.011 0.004	- <0.2 <0.2 <0.2 <0.2 <0.2	1.20 1.52 1.11 1.69 1.21 1.24	34 77 63 31 10 19	<10 <10 <10 <10 <10 <10	40 20 30 10 30 30	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2 <2 <2	0.04 0.02 0.01 0.07 0.02 0.01	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6 10 5 13 6 6	17 24 14 23 18 18	14 13 10 20 16 20	3.13 4.81 2.88 3.63 3.71 3.81
	NTD2-120E NTD2-140E NTD2-160E NTD2-200E NTD2-220E		0.35 0.27 0.34 0.30 0.31	0.002 <0.001 <0.001 <0.001 0.001	<0.2 <0.2 <0.2 0.2 <0.2	1.54 1.24 0.91 1.89 2.09	13 11 15 9 32	<10 <10 <10 <10 <10	30 20 20 60 70	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.03 0.02 0.02 0.10 0.07	<0.5 <0.5 <0.5 <0.5 <0.5	11 8 6 8 14	21 14 16 24 28	18 12 11 14 25	3.64 2.26 3.86 3.29 4.21
	NTD2- 240E NTD2- 260E NTD2- 280E NTD2- 300E NTD2- 320E		0.29 0.33 0.32 0.28 0.18	0.003 0.012	<0.2 <0.2 <0.2 0.2 0.3	1.19 1.66 1.37 0.88 1.94	15 28 — 36 4 37	<10 <10 <10 <10 <10	40 30 20 60 80	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 <2 <2 <2	0.05 0.02 0.02 0.13 0.05	<0.5 <0.5 <0.5 <0.5 <0.5	6 9 7 4 14	17 20 24 8 25	12 16 13 7 21	3.61 3.59 5.84 1.34 3.82
	NTD2- 340E NTD2- 380E NTD2- 400E NTD2- 460E NTD2- 480E		0.25 0.25 0.23 0.33 0.32	0.002 <0.001 <0.001 0.010 <0.001	0.2 <0.2 <0.2 - <0.2 - <0.2 <0.2	2.03 1.35 0.92 1.19 1.66	46 19 7 23 28	<10 <10 <10 <10 <10	60 50 30 30 20	0.7 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 2 2	0.12 0.13 0.22 0.05	<0.5 <0.5 <0.5 <0.5 <0.5	13 8 4 8 8	21 16 7 20 25	29 13 8 14 14	3.41 2.55 1.03 4.97 5.70
nesser.	NTD2- 500E SRU 4A- 400E SRU 4A- 420E SRU 4A- 440E		0.26 0.23 0.29 0.14	0.003 0.009	<0.2 0.3 <0.2 0.3	1.41 1.47 2.29 0.19	25 59 — 80 — <2	<10 <10 <10 <10	30 40 30 10	<0.5 0.5 0.5 <0.5	<2 <2 <2 <2 <2	0.03 0.03 0.01 0.03	<0.5 <0.5 <0.5 <0.5	8 39 20 1	21 20 30 1	17 36 31 1	4.48 3.81 5.06 0.19
	SRU 4A- 460E SRU 4A- 480E SRU 4A- 500E SRU 4A- 520E SRU 4A- 540E		0.29 0.46 0.33 0.22 0.28	0.001 0.001 0.001 0.014	0.2 0.2 <0.2 <0.2 0.2	0.60 2.74 1.14 1.26 1.37	13 52 32 92 102	<10 <10 <10 <10 <10 <10	10 30 30 30 40	<0.5 0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.02 0.01 0.02 0.02 0.02	<0.5 <0.5 <0.5 <0.5 <0.5	3 24 5 11 5	7 36 16 15 19	6 40 13 18 30	1.78 5.34 3.86 3.17 3.94
	SRU 4A- 560E SRU 4A- 580E SRU 61 SRU 62 SRU 63		0.23 0.23 0.27 0.28 0.30	0.004 0.011 0.003 0.003 0.001	<0.2 0.2 0.2 <0.2 0.5	1.10 0.79 2.17 2.22 1.05	68 43 115 76 36	<10 <10 <10 <10 <10	30 50 50 30 30	<0.5 <0.5 <0.5 0.5 <0.5	2 <2 <2 2 <2	0.02 0.05 0.02 0.01 0.02	<0.5 <0.5 <0.5 <0.5 <0.5	7 3 19 12 16	23 14 27 29 11	15 12 20 32 24	7.40 4.25 4.83 7.08 2.33
4	SRU 64 SRU 65 SRU 66 SRU 67 SRU 17A		0.24 0.41 0.20 0.43 0.39	0.005 0.002 <0.001 0.002 0.002	0.3 0.2 0.2 0.2 0.4	1.16 0.82 0.60 1.33 1.37	80 75 14 187 — 44	<10 <10 <10 <10 <10	50 40 20 20 20	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 2 <2	0.04 0.03 0.03 0.10 0.01	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	15 7 4 17 8	14 10 3 20 23	25 19 5 32 15	3.57 3.28 0.92 5.58 4.85

SOILS 2 of 4 sets

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH12183399

3

Sample Description	Method Analyte Units LOR	ME- ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP41 Sr ppm 1
NTD1-400E		10	<1	0.02	10	0.25	298	<1	0.01	13	640	13	0.04	<2	<1	8
NTD2-20E		10	<1	0.02	20	0.50	445	<1	0.01	18	700	16	0.02	<2	1	5
NTD2-40E		10	<1	0.02	10	0.20	258	<1	0.02	9	650	12	0.03	<2	<1	4
NTD2-60E		10	<1	0.02	20	0.64	471	<1	0.01	23	580	15	0.01	<2	1	6
NTD2-80E		10	<1	0.02	20	0.26	242	2	0.01	15	740	14	0.02	<2	1	7
NTD2-100E		10	<1	0.02	20	0.23	330	2	0.01	11	730	14	0.02	<2	1	7
NTD2-120E		10	<1	0.02	20	0.45	451	2	0.01	17	650	14	0.01	<2	1	8
NTD2-140E		<10	<1	0.03	10	0.25	282	1	0.02	11	520	12	0.02	<2	<1	6
NTD2-160E		10	<1	0.02	20	0.18	261	1	0.01	9	720	10	0,01	<2	<1	6
NTD2-200E		10	<1	0.03	20	0.55	292	1	0.01	17	620	15	0.02	<2	1	14
NTD2-220E		10	<1	0.05	20	0.65	515	1	0.01	27	530	22	0.02	<2	1	11
NTD2-240E		10	<1	0.02	10	0.18	468	1	0.01	8	1020	9	0.04	<2	<1	10
NTD2-260E		10	<1	0.03	20	0.34	386	2	0.01	14	640	19	0.03	<2	1	6
NTD2-280E		10	<1	0.02	20	0.35	501	2	0.01	13	2150	18	0.02	<2	1	6
NTD2- 300E		<10	<1	0.02	10	0.09	507	1	0.03	5	990	8	0.07	<2	<1	13
NTD2-320E		10	<1	0.06	20	0.39	816	2	0.01	17	1450	44	0.07	<2	1	10
NTD2-340E		<10	<1	0.05	10	0.43	496	1	0.02	23	960	35	0.05	<2	1	14
NTD2-380E		<10	<1	0.03	10	0.31	443	1	0.02	12	1030	23	0.05	<2	<1	14
NTD2- 400E		<10	<1	0.03	10	0.13	121	1	0.03	5	750	6	0.04	<2	<1	14
NTD2-460E		10	<1	0.03	10	0.25	499	2	0.02	10	850	15	0.04	<2	1	8
NTD2-480E		10	<1	0.03	10	0.37	481	1	0.01	14	1090	16	0.02	<2	1	7
NTD2- 500E		10	<1	0.03	10	0.31	495	2	0.01	13	980	28	0.03	<2	1	7
SRU 4A- 400E		<10	<1	0.03	10	0.32	2110	2	0.01	27	1360	29	0.05	<2	1	7
SRU 4A- 420E		10	<1	0.03	30	0.71	1045	1	0.01	36	440	23	0.01	<2	2	6
SRU 4A- 440E		<10	<1	0.02	<10	0.01	10	1	0.03	1	390	<2	0.01	<2	<1	7
SRU 4A- 460E		<10	<1	0.02	<10	0.07	79	1	0.02	3	640	11	0.02	<2	<1	5
SRU 4A- 480E		10	<1	0.03	30	0.82	641	1	0.01	40	530	45	0.02	<2	2	6
SRU 4A- 500E		10	<1	0.02	30	0.18	304	2	0.01	10	1670	24	0.02	<2	1	6
SRU 4A- 520E		<10	<1	0.02	10	0.18	445	1	0.02	10	810	29	0.03	<2	<1	6
SRU 4A- 540E		10	<1	0.02	20	0.19	303	2	0.01	10	1040	47	0.04	<2	1	8
SRU 4A- 560E		10	<1	0.03	20	0.19	708	2	0.01	8	5270	30	0.03	<2	1	6
SRU 4A- 580E		10	<1	0.03	20	0.12	426	2	0.01	6	2020	16	0.03	<2	<1	9
SRU 61		10	<1	0.03	20	0.37	964	2	0.01	18	950	21	0.03	<2	1	7
SRU 62		10	<1	0.03	30	0.50	768	1	0.01	19	1770	52	0.03	<2	1	12
SRU 63		<10	<1	0.02	10	0.18	804	2	0.02	12	910	27	0.02	<2	<1	6
SRU 64		10	<1	0.03	20	0.18	830	1	0.02	14	860	26	0.02	<2	<1	10
SRU 65		10	<1	0.03	30	0.09	267	2	0.01	10	1020	16	0.02	<2	<1	7
SRU 66		<10	<1	0.02	<10	0.04	244	1	0.02	2	720	6	0.03	<2	<1	6
SRU 67		10	<1	0.05	20	0.33	595	1	0.01	31	1980	30	0.05	<2	1	12
SRU 17A		10	<1	0.05	20	0.30	345	1	0.01	12	2250	20	0.02	<2	1	6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

G,

	4 -amil								CERTIFICATE OF ANALYSIS	WH12183399
Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 Tl ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2		
NTD1-400E		<20	0.02	<10	<10	22	<10	47		
NTD2-20E		<20	0.02	<10	<10	25	<10	59		
NTD2- 40E		<20	0.02	<10	<10	24	<10	33		
NTD2-60E		<20	0.01	<10	<10	15	<10	72		
NTD2- 80E		<20	0.02	<10	<10	26	<10	49		
NTD2-100E		<20	0.02	<10	<10	26	<10	47		
NTD2-120E		<20	0.01	<10	<10	17	<10	70		
NTD2-140E		<20	0.01	<10	<10	13	<10	40		
NTD2-160E		<20	0.02	<10	<10	27	<10	36		
NTD2-200E		<20	0.01	<10	<10	16	<10	64		
NTD2-220E		<20	0.01	<10	<10	19	<10	84		****
NTD2-240E		<20	0.01	<10	<10	23	<10	44		
NTD2-260E		<20	0.01	<10	<10	21	<10	60		
NTD2-280E		<20	0.02	<10	<10	38	<10	55		
NTD2- 300E		<20	<0.01	<10	<10	12	<10	27		
NTD2-320E		<20	<0.01	<10	<10	21	<10	68		
NTD2-340E		<20	0.01	<10	<10	14	<10	67		
NTD2-380E		<20	0.01	<10	<10	17	<10	42		
NTD2-400E		<20	0.01	<10	<10	10	<10	16		
NTD2-460E		<20	0.03	<10	<10	28	<10	53		
NTD2-480E		<20	0.03	<10	<10	24	<10	55		
NTD2- 500E		<20	0.02	<10	<10	43	<10	62		
SRU 4A- 400E		<20	0.01	<10	<10	18	<10	81		
SRU 4A- 420E		<20	<0.01	<10	<10	18	<10	99		
SRU 4A- 440E		<20	<0.01	<10	<10	4	<10	5		
SRU 4A- 460E		<20	0.02	<10	<10	15	<10	17		
SRU 4A- 480E		<20	0.01	<10	<10	19	<10	109		
SRU 4A- 500E SRU 4A- 520E		<20 <20	0.03 0.01	<10	<10	36	<10	45		
SRU 4A- 540E		<20	0.01	<10 <10	<10 <10	17 28	<10 <10	43 45		
SRU 4A- 560E		<20	0.02	<10	<10	42	<10			
SRU 4A- 580E		<20 <20	0.02	<10	<10	42 29	<10 <10	61 47		
SRU 61		<20	0.01	<10	<10	29	<10	108		
SRU 62		<20	0.01	<10	<10	26	<10	102		
SRU 63		<20	0.01	<10	<10	13	<10	46		
SRU 64		<20	0.01	<10	<10	21	<10	71		
SRU 65		<20	0.01	<10	<10	26	<10	54		
SRU 66		<20	0.01	<10	<10	9	<10	12		
SRU 67		<20	0.01	<10	<10	19	<10	79		
SRU 17A		<20	0.02	<10	<10	27	<10	52		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

										CI	ERTIFIC	ΑΤΕ ΟΙ	ANAL	YSIS	WH121	83399	
	Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
S	SRU 43A SRU 54A NTEI - 100N NTEI - 120N NTEI - 140N NTEI - 160N NTEI - 180N NTEI - 200N		0.30 0.33 0.24 0.23 0.33 0.32 0.37 0.22	0.130	0.5 0.2 <0.2 0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.13 1.37 2.02 2.07 2.00 1.66 1.78 1.56	2300 372 16 20 14 13 14 13	<10 <10 <10 <10 <10 <10 <10 <10 <10	40 20 40 30 40 30 30 30 30	1.1 0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2 2 <2 2 <2 2 2 2 2 2 2 2 2 2 2 2	0.04 0.03 0.06 0.05 0.04 0.09 0.04 0.04	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	61 21 14 17 17 13 12 10	15 17 32 32 30 25 26 24	50 41 25 32 36 21 23 18	5.79 6.90 4.24 4.37 4.34 3.92 3.88 3.41
	NTE1 - 220N NTE1 - 240N- A NTE1 - 240N- B NTE1 - 260N NTE1 - 280N NTE1 - 300N NTE1 - 320N		0.30 0.21 0.30 0.29 0.22 0.25 0.24 Not Recvd	<0.001 <0.001 0.002 0.001 0.003 <0.001 <0.001	<0.2 0.3 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1.86 2.15 1.74 1.95 2.40 2.30 2.40	12 25 12 14 27 29 27	<10 <10 <10 <10 <10 <10 <10 <10	30 50 30 30 30 30 50	<0.5 0.5 <0.5 <0.5 0.5 <0.5 0.5 0.5	<2 2 <2 <2 <2 <2 <2 2 2	0.08 0.11 0.04 0.09 0.06 0.07 0.04	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	13 23 10 15 29 33 28	29 30 26 30 35 34 35	25 39 17 33 60 54 57	4.07 4.04 3.64 4.27 4.91 4.76 4.77
	NTE1 - 360N NTE1 - 380N NTE1 - 400N NTE2 SP NTC1 - 380E		0.22 0.18 0.17 0.29 0.34	<0.001 0.003 0.002 0.002 0.004	<0.2 <0.2 0.2 <0.2 <0.2	2.15 1.85 1.57 1.92 1.89	29 41 53 20 21	<10 <10 <10 <10 <10	50 50 40 30 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 2 2	0.09 0.07 0.06 0.16 0.05	<0.5 <0.5 <0.5 <0.5 <0.5	17 13 12 17 18	30 28 23 30 27	46 35 29 25 40	4.34 4.04 3.30 4.20 4.42
	NTC1 - 400E NTC1 - 420E NTC1 - 440E NTC1 - 460E NTC1 - 480E		0.28 0.27 0.31 0.25 0.31	0.001 0.001 <0.001 0.001 0.044	<0.2 <0.2 <0.2 <0.2 <0.2	1.43 2.13 1.70 2.28 2.01	15 27 20 20 20 21 —	<10 <10 <10 <10 <10	30 50 50 50 50	<0.5 0.6 <0.5 <0.5 <0.5	<2 <2 2 <2 <2 <2	0.01 0.02 0.01 0.02 0.04	<0.5 <0.5 <0.5 <0.5 <0.5	8 18 11 14 	18 29 22 32 29	11 44 15 29 38	3.27 4.56 3.68 4.55 4.46
	NTC1 - 500E NTC1 - 520E NTC1 - 540E NTC1 - 560E NTC1 - 580E		0.27 0.25 0.24 0.26 0.25	<0.001 <0.001 0.002 0.001	<0.2 <0.2 <0.2 <0.2 <0.2	2.15 2.06 2.09 2.25 2.24	22 22 25 27 24	<10 <10 <10 <10 <10	40 40 40 40 30	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 <2 <2 <2 <2	0.04 0.05 0.04 0.05	<0.5 <0.5 <0.5 <0.5 <0.5	16 15 13 12 10	32 32 32 34 32	32 29 25 22 20	4.54 4.35 4.33 4.55 4.43
	NTC1 - 600E SRUA6- 200N SRUA6- 220N SRUA6- 240N SRUA6- 260N		0.26 0.20 0.17 0.23	<0.001 0.001 <0.001 <0.001	<0.2 <0.2 <0.2 <0.2 <0.2	2.38 0.91 0.57 0.60	20 9 2 6	<10 <10 <10 <10 <10	50 20 10 20	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.02 0.03 0.04 0.02	<0.5 <0.5 <0.5 <0.5 <0.5	12 2 1 2	34 9 2 4	21 12 4 6	4.52 1.62 0.35 0.68
	SRUA6- 260N SRUA6- 280N SRUA6- 300N SRUA6- 320N SRUA6- 340N		0.27 0.41 0.26 0.19 0.28	<0.001 0.001 0.035 0.001 <0.001	0.2 <0.2 <0.2 <0.2 0.2	0.96 1.73 1.25 0.43 1.26	14 36 27 ~~~~ 9 21	<10 <10 <10 <10 <10	40 20 30 20 30	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 <2 4	0.04 0.05 0.03 0.03 0.02	<0.5 <0.5 <0.5 <0.5 <0.5	3 15 10 8 6	16 24 19 6 23	17 35 26 10 18	1.98 4.27 2.89 0.96 4.80

3 of 4 sets

Gast.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

CERTIFICATE OF ANALYSIS

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

WH12183399

ME- ICP41 Method

Sample Description	Method Analyte Units LOR	ME- ICP41 Ga ppm 10	ME- ICP4 I Hg ppm I	ME- ICP4 1 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm S	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP4 1 Sc ppm 1	ME- ICP4 I Sr ppm 1
SRU 43A		10	<1	0.03	10	0.42	1610	<1	0.01	43	1110	70	0.05	2	3	13
SRU 54A		10	<1	0.03	30	0.16	445	1	0.01	41	1070	51	0.03	<2	1	9
NTE1-100N		10	<1	0.03	30	0.84	535	<1	0.01	32	520	15	0.01	2	2	5
NTE1-120N		10	<1	0.02	20	0.84	691	<1	<0.01	33	570	20	0.01	<2	1	5
NTE1-140N		10	1	0.04	30	0.83	664	<1	0.01	32	360	18	0.01	<2	2	5
NTE1-160N		10	<1	0.02	30	0.58	445	<1	0.01	23	670	14	0.01	<2	1	8
NTE1-180N		10	<1	0.03	20	0.69	465	<1	0.01	26	350	11	0.01	<2	1	4
NTE1-200N		10	<1	0.03	20	0.59	391	<1	0.01	22	400	11	0.01	<2	1	5
NTE1-220N		10	<1	0.02	30	0.78	541	<1	<0.01	30	540	13	0.01	<2	2	6
NTE1-240N-A		10	<1	0.03	30	0.80	903	1	0.02	31	500	51	0.04	<2	1	11
NTE1-240N-B		10	<1	0.03	30	0.66	393	<1	0.01	23	520	10	0.01	<2	1	4
NTE1-260N		10	<1	0.03	30	0.77	544	<1	0.01	31	660	15	0.01	<2	2	8
NTE1-280N		10	<1	0.02	40	0.97	1055	<1	0.01	39	560	50	0.02	<2	2	7
NTE1-300N		10	<1	0.02	30	0,93	1170	1	0.01	38	590	48	0.02	<2	2	7
NTE1-320N		10	<1	0.04	30	0,93	1045	1	0.01	36	540	48	0.03	<2	2	7
NTE1-340N																
NTE1-360N		10	<1	0.03	30	0.82	726	<1	0.01	38	510	30	0.02	<2	2	10
NTE1-380N		10	<1	0.03	20	0.67	591	1	0.01	27	760	32	0.03	<2	1	10
NTE1-400N		10	<1	0.04	20	0.53	567	1	0.01	20	740	19	0.05	<2	1	9
NTE2 SP		10	<1	0.03	30	0.82	676	<1	0.01	31	580	14	0.03	<2	1	13
NTC1-380E	Î	10	<1	0.03	40	0.79	675	<1	0.01	32	420	22	0.01	<2	2	6
NTC1-400E		10	<1	0.03	30	0.38	251	<1	0.01	15	230	13	0.01	<2	1	5
NTC1-420E		10	<1	0.04	40	0.79	590	<1	0.01	35	340	27	0.01	<2	2	4
NTC1-440E		10	<1	0.03	20	0.49	332	<1	0.01	20	260	17	0.01	<2	1	5
NTC1-460E		10	<1	0.05	40	0.82	546	<1	0.01	31	270	19	0.01	<2	2	5
NTC1-480E	Ì	10	<1	0.04	40	0.79	603	<1	0.01	32	390	20	0.01	<2	2	5
NTC1-500E		10	<1	0.04	40	0.84	588	<1	0.01	33	400	19	0.01	<2	2	6
NTC1-520E		10	<1	0.03	30	0.79	561	<1	0.01	32	460	18	0.01	<2	2	5
NTC1 - 540E		10	<1	0.04	30	0.79	516	<1	0.01	30	430	16	0.01	<2	2	5
NTC1-560E		10	<1	0.04	40	0.83	542	<1	0.01	29	440	16	0.01	2	2	7
NTC1-580E		10	<1	0.05	40	0.82	500	<1	0.01	26	360	14	0.01	<2	2	5
NTC1-600E		10	<1	0.06	40	0.86	549	<1	0.01	29	330	15	0.01	<2	2	6
SRUA6-200N		<10	<1	0.02	10	0.14	63	<1	0.02	5	590	8	0.04	<2	<1	5
SRUA6- 220N		<10	<1	0.02	<10	0.02	15	<1	0.03	<1	300	<2	0.03	<2	<1	6
SRUA6- 240N		<10	<1	0.02	<10	0.04	42	<1	0.03	2	350	4	0.03	<2	<1	5
SRUA6- 260N		<10	<1	0.02	10	0.15	145	<1	0.02	8	930	9	0.05	<2	<1	7
SRUA6- 280N		10	<1	0.03	20	0.58	327	<1	0.01	21	840	26	0.03	<2	1	7
SRUA6- 300N		<10	<1	0.03	10	0.28	341	1	0.01	27	660	23	0.04	<2	<1	5
SRUA6- 320N		<10	<1	0.02	<10	0.04	417	<1	0.02	8	460	7	0.03	<2	<1	5
SRUA6- 340N	1	10	1	0.03	20	0.27	350	1	0.01	11	1630	20	0.03	<2	1	6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

9

									CERTIFICATE OF ANALYSIS	WH12183399
Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP4 1 V ppm 1	ME-ICP41 W ppm 10	ME- ICP41 Zn ppm 2		
SRU 43A	anidarındar ona oluşanınının	<20	<0.01	<10	<10	11	<10	122	<u></u>	
SRU 54A		<20	0.01	<10	<10	16	<10	122		
NTE1-100N		<20	0.01	<10	<10	21	<10	86		
NTE1-120N		<20	0.01	<10	<10	20	<10	89		
NTE1-140N		<20	0.02	<10	<10	22	<10	89		
NTE1-160N		<20	0.01	<10	<10	21	<10	64		
NTE1-180N		<20	0.01	<10	<10	20	<10	73		
NTE1-200N		<20	0.01	<10	<10	19	<10	63		
NTE1-220N		<20	0.02	<10	<10	20	<10	83		
NTE1-240N-A		<20	0.01	<10	<10	18	<10	91		
NTE1 - 240N- B		<20	0.01	<10	<10	19	<10	69		
NTE1-260N		<20	0.01	<10	<10	19	<10	83		
NTE1-280N		20	0.01	<10	<10	19	<10	105		
NTE1- 300N		20	0.01	<10	<10	19	<10	101		
NTE1-320N		<20	0.01	<10	<10	19	<10	102		
NTE1-340N										
NTE1-360N		<20	0.01	<10	<10	19	<10	96		
NTE1-380N		<20	0.01	<10	<10	21	<10	81		
NTE1-400N NTE2 SP		<20 <20	0.01 0.01	<10 <10	<10 <10	17 21	<10 <10	70 103		
NTC1-380E										
NTC1- 400E		<20 <20	0.02 0.01	<10 <10	<10 <10	18	<10	85		
NTC1-420E		<20	0.01	<10	<10	18 19	<10 <10	44		
NTC1-440E		<20	0.01	<10	<10	19	<10	82 52		
NTC1-460E		<20	0.01	<10	<10	19	<10	52 79		
NTC1-480E		<20	0.01	<10	<10	19	<10	84		
NTC1- 500E		<20	0.01	<10	<10	19	<10	85		
NTC1-520E		<20	0.01	<10	<10	19	<10	80		
NTC1-540E		<20	0.01	<10	<10	19	<10	79		
NTC1 - 560E		<20	0.01	<10	<10	19	<10	81		
NTC1-580E		<20	0.01	<10	<10	18	<10	79		
NTC1-600E		<20	0.01	<10	<10	19	<10	86		
SRUA6- 200N		<20	0.01	<10	<10	12	<10	22		
SRUA6- 220N		<20	0.02	<10	<10	8	<10	8		
SRUA6- 240N		<20	0.01	<10	<10	8	<10	8		
SRUA6- 260N		<20	0.01	<10	<10	17	<10	25		
SRUA6- 280N		<20	0.02	<10	<10	21	<10	73		
SRUA6- 300N		<20	0.01	<10	<10	18	<10	54		
SRUA6- 320N		<20	0.01	<10	<10	12	<10	21		
SRUA6- 340N		<20	0.01	10	<10	25	<10	53		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

									CE	ERTIFIC	CATE O	F ANAL	YSIS	WH121	83399	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP4 1 As ppm 2	ME-ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
SRUA6- 360N		0.21	<0.001	0.2	1.37	21	<10	20	<0.5	3	0.01	<0.5	3	29	19	8.15
SRUA6- 380N		0.28	<0.001	0.2	1.41	31	<10	20	<0.5	4	0.01	<0.5	4	30	48	7.93
SRUA6- 400N		0.17	<0.001	<0.2	0.34	2	<10	10	<0.5	<2	0.05	<0.5	<1	3	86	0.51
SRU4A- 600E		0.23	0.001	0.2	0.76	37	<10	20	<0.5	<2	0.02	<0.5	5	10	38	2.27
SRU4A- 620E		0.38	0.004	0.5	2.39	80	<10	40	<0.5	2	0.01	<0.5	11	32	28	5.49
SRU4A- 640E		0.28	0.001	0.4	1.53	64	<10	40	<0,5	2	0.04	<0.5	10	18	19	3,90
SRU4A- 660E		0.31	0.001	<0.2	1.67	66	<10	30	<0.5	<2	0.01	<0.5	11	26	16	4.51
SRU4A- 680E		0.23	0.027	0.2	0.95	139 —	- <10	20	<0.5	2	0.01	<0.5	5	14	15	4.19

50165 4 of 4 sets

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH12183399 ME- ICP41 Method ME- ICP41 ME- ICP41 ME- ICP41 ME- ICP41 ME- ICP41 ME- ICP41 Ga Analyte Hg к La Mg Mn Mo Na Ni Ρ Pb S Sb Sc Sr Units ppm % % ppm ppm ppm ppm % ppm ppm ppm % ppm Sample Description ppm ppm LOR 10 0.01 1 10 0.01 5 1 0.01 10 1 0.01 2 2 1 1 SRUA6- 360N 10 1 0.03 20 0.24 246 <1 <0.01 11 2250 27 0.05 5 <2 1 SRUA6- 380N 10 <1 0.02 20 0.34 286 <1 < 0.01 11 2450 22 0.03 <2 1 5 SRUA6- 400N <10 <1 0.01 <10 0.03 34 <1 0.02 2 320 2 0.01 <2 <1 5 SRU4A- 600E <10 <1 0.02 10 0.14 303 <1 0.01 7 960 16 0.02 <2 <1 4 SRU4A- 620E 10 <1 0.03 30 0.72 464 <1 < 0.01 26 420 20 0.01 <2 2 4 SRU4A- 640E 10 <1 0.02 10 0.23 1465 <1 0.01 13 2190 23 0.02 <2 <1 8 SRU4A- 660E 10 <1 0.03 40 0.43 695 <1 <0.01 17 25 740 0.01 <2 1 5 SRU4A- 680E 10 <1 0.03 20 0.18 277 <1 0.01 12 860 21 0.02 <2 <1 5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 18- AUG- 2012 Account: LEEGAR

iiiiiiiei a	12								CERTIFICATE OF ANALYSIS WH12183399
Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP4 I V ppm 1	ME- ICP41 W ppm 10	ME- ICP4 I Zn ppm 2	
SRUA6- 360N		<20	0.02	<10	<10	36	<10	64	
SRUA6-380N		<20	0.02	<10	<10	39	<10	61	
SRUA6- 400N		<20	0.01	<10	<10	8	<10	13	
SRU4A- 600E		<20	0.01	<10	<10	15	<10	35	
SRU4A- 620E		<20	0.01	<10	<10	19	<10	92	
SRU4A- 640E		<20	0.01	<10	<10	21	<10	72	
SRU4A- 660E		<20	0.01	<10	<10	20	<10	69	
SRU4A- 680E		<20	0.01	<10	<10	26	<10	49	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 25- SEP- 2012 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH12215622

NTC1 - 470E 0.44 0.002 -0.2 1.82 16 <10	Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP2 1 Au ppm 0.001	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME- ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP4 I Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
NTC1 - 490E 0.51 0.004 <0.2 2.11 19 <10 40 <0.5 <22 0.04 <0.5 14 32 30 4.34 NTC1 - 510E 0.43 0.002 <0.2																	
NTC2 - 460E 0.43 0.002 <0.2 2.13 20 <10 50 0.5 2 0.05 40.5 10 50 40.5 NTC2 - 480E 0.40 0.002 <0.2								<10	40	<0.5	<2	0.04	<0.5	14			
NTC2 - 480E 0.40 0.002 <0.2 2.23 22 <10 50 co.5 c2 0.13 co.5 c2 0.13 co.5 c2 0.13 co.5 c2 0.03 co.5 c3 33 4 4.51 NTC2 - 500E 0.38 0.002 <0.2												0.05	<0.5	12	31	25	4.07
NTC2 - 500E 0.38 0.002 <0.2 2.04 20 <10 40 <0.5 2 0.03 <0.5 13 30 28 4.17 NTC3 - 460E 0.34 0.003 <0.2			0.43	0.002	<0.2	2.13	20	<10	50	0.5	2	0.05	<0.5	19	30	49	4.63
NTC3 - 460E 0.34 0.003 <0.2 2.12 17 <10 40 0.5 3 0.04 <0.5 15 30 38 4.31 NTC3 - 480E 0.31 0.002 <0.2								<10	50	<0.5	<2	0.03	<0.5	15	33	34	4.51
NTC3 - 480E 0.31 0.002 <0.2 1.83 14 <10 50 <0.5 2 0.04 <0.5 11 24 26 3.47 NTC3 - 490E 0.29 0.002 <0.2																28	4.17
NTC3 - 490E 0.29 0.002 <0.2 1.99 20 <10 40 <0.5 <2 0.06 <0.5 14 30 38 4.20 NTC3 - 500E 0.37 0.003 <0.2																	
NTC3 - 500E 0.37 0.003 <0.2 1.91 19 <10 40 <0.5 2 0.06 <0.5 14 29 25 3.99 NTC3 - 510E 0.29 0.002 <0.2																	
NTC3 - 510E 0.29 0.002 <0.2 2.01 20 <10 40 <0.5 <2 0.03 <0.5 11 30 25 3.97 SRU17B 0.43 0.002 0.2 1.88 69 <10				0.002	<0.2	1.99	20	<10	40	<0.5	<2	0.06	<0.5	14	30	38	4.20
SRU17B 0.43 0.002 0.2 1.88 69 <10 50 0.5 2 0.06 <0.5 13 28 23 4.69 SRU17C 0.40 0.005 0.5 2.45 156 <10									40		2	0.06	<0.5	14	29	25	3.99
SRU17C 0.40 0.005 0.5 2.45 156 <10 30 0.5 2 0.02 <0.5 14 34 31 5.70 SRU300 - 220W 0.34 0.002 <0.2 2.19 163 <10 30 0.5 2 0.18 <0.5 20 35 33 4.44 SRU300 - 240W 0.27 0.003 <0.2 2.03 312 <10 60 <0.5 2 0.11 <0.5 15 30 22 3.74 SRU300 - 240W 0.27 0.003 <0.3 2.38 80 <10 30 0.6 <2 0.11 <0.5 15 30 22 3.74 SRU490 - 0E 0.45 0.001 0.2 2.13 81 <10 40 <0.5 2 0.01 <0.5 7 29 16 4.53 SRU490 - 10W 0.37 0.002 0.2 2.01 51 <10 40 <0.5 2 0.01 <0.5 11 32 20 4.71 31 31 3														11	30	25	3.97
SRU300 - 220W 0.34 0.002 <0.2 2.19 163 <10 30 0.5 2 0.18 <0.5 20 35 33 4.44 SRU300 - 240W 0.27 0.003 <0.2																	4.69
SRU300 - 240W 0.27 0.003 <0.2 2.03 312 <10 60 <0.5 2 0.11 <0.5 15 30 22 3.74 SRU300 - 260W 0.47 0.003 0.3 2.38 80 <10																	
SRU300 - 260W 0.47 0.003 0.3 2.38 80 <10 30 0.6 <2 0.06 <0.5 39 32 38 4.87 SRU490 - OE 0.45 0.001 0.2 2.13 81 <10	SRU300 - 220W		0.34	0.002	<0.2	2.19	163	<10	30	0.5	2	0.18	<0.5	20	35	33	4.44
SRU490 - OE 0.45 0.001 0.2 2.13 81 <10 40 <0.5 2 0.01 <0.5 7 29 16 4.53 SRU490 - 10W 0.37 0.002 0.2 2.68 52 <10			0.27	0.003	<0.2	2.03	312	<10	60	<0.5	2	0.11	<0.5	15	30	22	3.74
SRU490 - 10W 0.37 0.002 0.2 2.68 52 <10 50 <0.5 2 0.01 <0.5 11 32 20 4.71 SRU490 - 20W 0.35 0.005 0.2 2.01 51 <10					0.3	2.38	80	<10	30	0.6	<2	0.06	<0.5	39	32	38	4.87
SRU490 - 20W 0.35 0.005 0.2 2.01 51 <10 40 <0.5 2 0.02 <0.5 17 27 24 4.99 SRU490 - 30W 0.42 0.004 <0.2												0.01	<0.5	7	29	16	4,53
SRU490 - 30W 0.42 0.004 <0.2 2.83 67 <10 50 <0.5 2 0.01 <0.5 15 37 25 4.92 SRU500 - 10W 0.31 0.017 0.3 1.89 41 <10												0.01				20	4.71
SRU500 - 10W 0.31 0.017 0.3 1.89 41 <10	SRU490 - 20W		0.35	0.005	0.2	2.01	51	<10	40	<0.5	2	0.02	<0.5	17	27	24	4.99
SRU500 - 30W 0.38 0.001 0.2 1.67 41 <10 30 <0.5 <2 0.01 <0.5 6 24 13 3.56			0.42	0.004	<0.2	2.83	67	<10	50	<0.5	2	0.01	<0,5	15	37	25	4.92
											2	0.02	<0.5	8	23	15	3.68
5014	SRU500 - 30W		0.38	0.001	0.2	1.67	41	<10	30	<0.5	<2	0.01	<0.5	6	24	13	3.56
							50	1									
							0.0										

Minerals

2103 Dollarton Hwy North Vancouver BĆ V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 25- SEP- 2012 Account: LEEGAR

									CE	ERTIFIC	CATE O	F ANAL	YSIS	WH122	215622	***************************************
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME- ICP4 1 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP4 I Sc ppm 1	ME- ICP41 Sr ppm 1
Sample Description NTC1 - 470E NTC1 - 481E NTC1 - 510E NTC2 - 460E NTC2 - 460E NTC2 - 480E NTC3 - 460E NTC3 - 460E NTC3 - 460E NTC3 - 500E SRU17C SRU300 - 220W SRU300 - 240W SRU300 - 260W SRU490 - 0E SRU490 - 10W SRU490 - 20W SRU500 - 10W SRU500 - 10W SRU500 - 30W SRU500 - 30W																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 25- SEP- 2012 Account: LEEGAR

(ALS) Minerals

CERTIFICATE OF ANALYSIS WH12215622

Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME- ICP4 1 V ppm 1	ME-ICP41 W ppm 10	ME- ICP41 Zn ppm 2	
NTC1 - 470E NTC1 - 481E NTC1 - 490E NTC1 - 510E NTC2 - 460E		<20 <20 <20 <20 20	0.01 0.01 0.01 0.01 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	18 20 20 20 20	<10 <10 <10 <10 <10	70 80 86 76 91	
NTC2 - 480E NTC2 - 500E NTC3 - 460E NTC3 - 480E NTC3 - 490E		<20 <20 <20 <20 <20 <20	0.01 0.01 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	21 20 20 18 19	<10 <10 <10 <10 <10 <10	91 81 86 64 88	
NTC3 - 500E NTC3 - 510E SRU17B SRU17C SRU300 - 220W		<20 <20 <20 <20 <20 <20	0.01 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	18 19 32 18 19	<10 <10 <10 <10 <10 <10	79 74 69 96 102	
SRU300 - 240W SRU300 - 260W SRU490 - OE SRU490 - 10W SRU490 - 20W		<20 <20 <20 <20 <20 <20	<0.01 0.01 0.01 0.01 0.02	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	18 21 23 24 30	<10 <10 <10 <10 <10 <10	93 118 64 70 71	
SRU490 - 30W SRU500 - 10W SRU500 - 30W		<20 <20 <20	0.01 0.02 0.02	<10 <10 <10	<10 <10 <10	20 32 24	<10 <10 <10	96 53 53	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 21- AUG- 2012 Account: LEEGAR

								L	C	ERTIFIC	CATE O	<u>F ANAL</u>	YSIS	WH12	183431	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP4 1 As ppm 2	ME- ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
RUOC4		1.13	0.027	- 0.4	0.71	363	<10	10	<0.5	<2	0.12	<0.5	Δ	26	Δ	1.85
RUOCS		1.67	0.003	<0.2	0.76	48	<10	20	<0.5	<2	0.90	<0.5	6	21	5	2.19
RUOC6		1.98	0.002	<0.2	0.58	66	<10	20	<0.5	<2	0.11	<0.5	5	16	5	1.52
RUFL23		1.59	0.001	<0.2	0.60	8	<10	20	<0.5	<2	0.05	<0.5	2	20	10	1.78
RUFL24		1.05	0.005 -	<0.2	0.46	163	<10	10	<0.5	<2	0.05	<0.5	7	16	4	1.58
RUFL25		1,83	0.001	<0.2	1.70	9	<10	20	<0.5	<2	0.05	<0.5	9	28	10	3.61
NTEFL		0.57	0.001	<0.2	0.22	46	<10	40	<0.5	<2	0.04	<0.5	6	8	5	1.39

Rocks

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 21- AUG- 2012 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH12183431

Sample Description	Method Analyte Units LOR	ME- ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP4 1 Sc ppm 1	ME- ICP41 Sr ppm 1
RUOC4		<10	<1	0.02	10	0.23	240	<1	0.03	10	380	87	0.03	<2	1	11
RUOC5		<10	<1	0.05	10	0.26	725	<1	0.05	15	690	12	0.06	<2	2	23
RUOC6		<10	<1	0.04	10	0.14	400	<1	0.04	14	480	5	0.02	<2	1	10
RUFL23		<10	<1	0.03	<10	0.22	207	<1	0.01	7	210	41	0.01	<2	1	6
RUFL24		<10	<1	0.02	<10	0.13	501	<1	0.02	19	130	24	0.01	<2	1	5
RUFL25		<10	<1	0.07	10	0.54	272	<1	0.02	21	250	11	0.04	<2	1	8
NTEFL		<10	<1	0.08	20	0.03	877	<1	0.02	6	200	3	0.01	<2	<1	8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 21-AUG-2012 Account: LEEGAR

									CERTIFICATE OF ANALYSIS WH12183431	1
Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP4 I V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2		Ti Wildow gan taan ny gaarta
RUOC4 RUOC5 RUOC6 RUFL23 RUFL24		<20 <20 <20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	5 5 3 4 2	<10 <10 <10 <10 <10 <10	38 43 24 28 32		99999999999999999999999999999999999999
RUFL25 NTEFL		<20 <20	<0.01 <0.01	<10 <10	<10 <10	9 2	<10 <10	63 8		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 20- AUG- 2012 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH12183430

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
RUST42 RUST43 RUST44 RUST45 RUST47	ATTALCE UNITED TO THE	0.34 0.42 0.29 0.38 0.47	0.006 0.004 0.005 0.001 0.004	0.3 0.2 0.2 <0.2 <0.2 <0.2	1.75 2.03 1.86 1.99 2.09	36 10 33 8 8	<10 <10 <10 <10 <10 <10	80 30 40 30 20	3.6 0.6 <0.5 0.6 0.5	2 2 <2 <2 <2 <2	0.74 0.22 0.54 0.27 0.15	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	12 35 13 28 29	22 28 22 28 30	333 46 34 43 36	2.57 4.45 3.37 4.10 4.64
RUST48		0.62	0.085 *****		2.74 m		<10 - Le	30 edir	2.5	2	0.10	0.6	155 Colah	35	111	5.65

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 20- AUG- 2012 Account: LEEGAR

	U 2>								CI	ERTIFIC	CATE O	F ANAL	YSIS	WH12	183430)
Sample Description	Method Analyte Units LOR	ME- ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm S	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP4 I Sc ppm I	ME- ICP41 Sr ppm 1
RUST42 RUST43 RUST44 RUST45 RUST47		<10 10 <10 <10 10	1 1 <1 <1 <1 <1	0.07 0.02 0.04 0.02 0.02	240 90 40 80 60	0.43 0.84 0.64 0.81 0.89	645 1105 424 878 958	2 <1 <1 <1 <1 <1	<0.01 <0.01 <0.01 <0.01 <0.01	30 57 34 56 50	1530 540 560 540 470	31 21 14 19 16	0.10 0.02 0.05 0.03 0.01	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2	63 15 35 17 10
RUST48		10	, 1	0.02	20	0.80	6650	<1	<0.01	263	630	33	0.10	<2	2	12

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 20- AUG- 2012 Account: LEEGAR

CERTIFICATE OF ANALYSIS WH12183430 ME- ICP41 Method Th Ti ΤI U ٧ Analyte W Zn ppm % Units ppm ppm ppm ppm ppm Sample Description LOR 20 0.01 10 10 1 10 2 RUST42 20 0.01 <10 <10 13 <10 80 RUST43 20 0.01 <10 <10 20 <10 130 RUST44 <20 0.01 <10 <10 14 <10 101 RUST45 20 0.01 <10 <10 19 <10 118 RUST47 20 0.01 <10 <10 123 21 <10 RUST48 <20 < 0.01 <10 <10 17 <10 598 _____

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - C Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 3- OCT- 2012 Account: LEEGAR

									CI	ERTIFIC	CATE OI	F ANAL	YSIS	WH122	215621	
Sample Description	Method Analyte Units LOR	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Au- ICP2 1 Au ppm 0.001	PGM- ICP24 Au ppm 0.001	PGM- ICP24 Pt ppm 0.005	PGM- ICP24 Pd ppm 0.001	Au- ICP22 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10
Sample Description Rust 49 Rust 48- Pulp Rust 48- Reject					1	10 ~10	2 138 reject 7	0.001 	0.001	0.005 NSS <0.005		0.001 NSS 0.004	0.06 <0.01	9.30 10.35		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - D Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 3- OCT- 2012 Account: LEEGAR

Minera									CI	ERTIFIC	ATE O	F ANAL	.YSIS	WH122	15621	
Sample Description	Method Analyte Units LOR	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01
Rust 49 Rust 48- Pulp Rust 48- Reject		4.56 3.64	0.51 0.41	0.10 . 0.10	0.75 0.37	109.0 123.5	132.0 91.9	83 87	8.26 7.87	107.0 68.3	5.37 5.31	28.4 32.7	0.28 0.22	3.0 3.3	0.078 0.083	2.60 3.08
										Си	1900 Normaliy					
										~ 00						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - E Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 3- OCT- 2012 Account: LEEGAR

Minera	12								CERTIFICATE OF ANALYSIS WH12215621							
Sample Description	Method Analyte Units LOR	ME- MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0,1	ME- MS61 Ni ppm 0,2	ME- MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1
Rust 49 Rust 49 Rust 48- Pulp Rust 48- Reject	LOR	0.5		0.83						10 640 550						0.1 17.0 19.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LEE, GARY P.O. BOX 31800 WHITEHORSE YT Y1A 6L3

Page: 2 - F Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 3- OCT- 2012 Account: LEEGAR

Minera		ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.2		CERTIFICATE OF ANALYSIS WH12215621						215621
Sample Description	Method Analyte Units LOR							ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1	ME-MSG1 W ppm 0.1	ME-MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5
Rust 49 Ruŝt 48- Pulp Rust 48- Reject		3 3	2.7 3.3	117.0 127.0	1.00 1.22	<0.05 0.05	16.4 19.2	0.340 0.400	0.72 0.89	4.9 4.1	86 97	1.7 1.7	45.8 29.6	524 316	94.8 111.0
														Zn	

APPENDIX IV

CREW LOG

Garry Lee	Wages - Day		
2012	ACTIVITY	Gary	Helpe
Date		Lee	-
July 8	MOB to km. 174.6 (Tungsten Rd.) from Whitehorse	1	
July 9	Finish camp set up; stake Rubus 61 & 62 claims	1	
July 10	Staked Rubus 63, 64, 65, 66 quartz claims	1	
July 11	Cut ATV trail with chain saw around mud hole	1	
July 12	Staked Rubus 67, 68, 69, 70 quartz claims	1	
July 13	Prospect & sample area A & stake Rubus 71, 72 quartz claims	1	
July 14	Locate & flag ATV trail into high country	1	
July 15	Stake NT 1-10 quartz claims	1	1
July 16	Sample (stream sediments) + stake NT 11-16 quartz claims	1	
July 17	Sample (stream seds.) + stake NT 17-21 quartz claims	1	
July 18	AM cut ATV trail with chainsaw + drive to Watson Lake	1	
July 19	Pick up supplies + record claims – return to camp	0	
July 20	Compass, chain & flag line C1 + read mag	1	
July 21	Compass, chain & flag line D1 + D2 – start soils	1	
July 22	Compass, chain & flag line 500N (area A) + soils	1	
July 23	Compass, chain & flag line 300N (area A) + soils	1	
July 24	Prospect & sample area A + soil sample area C	1	
July 25	Compass, chain & flag area E + soil & stream seds.	1	1
July 26	Stream seds. + stake Rubus 75, 76 quartz claims	1	1
July 27	Take soils & prospect area A6 + take rock samples	1	1
July 29	Soil sampled line SRUA4 + prospecting	1	
July 30	Soil sampled line NTLD1 + NTLD2	1	
July 31	Prospect & soil sample area A + take rock samples	1	1
Aug. 2	Pack up camp & DEMOB to Watson Lake	1	
Aug. 3	Record claims plus DEMOB to Whitehorse	1	
Sept. 5	MOB to Little Hyland	1	
Sept. 6	Follow up soil sampling, gridding & prospecting NTC1	1	
Sept. 7	Staked NT 22, 23, soil sample NTC3 + prospecting	1	
Sept. 8	Soil sampling SRU17, extended L300 + soil sampling	1	
Sept. 9	Soils sampling NTC1 + prospecting & rock sampling	1	
Sept. 10	DEMOB to Watson Lake then Whitehorse	1	
·	Subtotal	30	4
	Minus Claims Staking (6 days)	-6	1
	TOTAL DAYS QUALIFYING FOR ASSESSMENT WORK	24	4