2013 GEOCHEMICAL ASSESSMENT REPORT ON THE SILVER CITY PROJECT

Klondike Gold Corp.

Claims:

STEPH 1 – 100 YE71601 – YE71700

Dawson Mining District NTS Map Sheet 116B/05

Coordinates of the centre of the claim group are: 555000 E, 7133000 N UTM NAD 83 zone 7N YMIP PROJECT 13- 076 Focused Regional – Hard Rock

Work performed July 10 - 16, & September 13 - 16, 2013

Claim Owner: Klondike Gold Corp.

By: W.D. MANN, M.Sc., P.GEO.

TABLE OF CONTENTS

1.0	Executive Summary	3
2.0	Introduction	3
3.0	Property Description and Location	4
4.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography	6
5.0	History	7
6.0	Geological Setting and Mineralization	10
Yu	kon-Tanana Terrane	10
Ge	ology	10
Str	uctural Geology	10
Mi	neralization	11
Qu	aternary Geology	11
Pro	pperty geology	11
7.0	Deposit Types	13
8.0	Exploration	13
Jul	y 2013 Soil and Rock Sampling	13
Sep	otember 2013 Soil and Rock Sampling	14
9.0	Drilling	19
10.0	Sample Preparation, Analyses and Security	19
11.0	Data Verification	19
12.0	Environmental Studies, Permitting and Social or Community Impact	19
13.0	Adjacent Properties	20
14.0	Interpretation and Conclusions	20
15.0	Recommendations	21
16.0	References	22
LIST	OF FIGURES	
1.	LOCATION MAP & YUKON GEOLOGICAL TERRANES	5
2.	PROPERTY PHYSIOGRAPHY (photograph)	7

3.	SOIL & ROCK LOCATION MAP WITH O	CLAIMS	(1:25,000)	15
4.	SILVER GEOCHEMISTRY MAP	(1:25,000)		16
5.	GOLD GEOCHEMISTRY MAP	(1:25,000)		17
LIST	OF TABLES			
1.	CLAIM SUMMARY			4
2.	ROCK DESCRIPTIONS AND ANOMALY	Y FOLLOWUP	RESULTS	18
LIST	OF APPENDICES			
I	STATEMENT OF QUALIFICATIONS			
II	STATEMENTS OF EXPENDITURE			
III	SOIL ANALYTICAL CERTIFICATES			
IV	ROCK ANALYTICAL CERTIFICATES			

1.0 EXECUTIVE SUMMARY

The author was engaged as a consultant by Klondike Gold Corp. to conduct and supervise a gold and silver exploration program in 2013 at the Silver City claim group on the Yukon river, northwest of Dawson City, Yukon. The one hundred claim project surrounds a block of nine claims owned by a competitor, and covers an area roughly 6 by 4km.

The presence of high grade silver-lead vein material in float has been known in the area since 1895, and considerable effort has been expended in a small area centered on the competitor's claims with the driving of several adits and hydraulic monitoring of loose material on the steep slopes nearby. There are no well documented vein showings in the area, and very little modern exploration has been conducted.

The 2013 work program was conducted in two phases, and was focused on soil and rock geochemistry with some anomaly followup. Gold and silver in soil and rock anomalies were identified, including some multiple adjacent anomalous samples. The anomaly followup work did not produce encouraging results.

The claim block warrants further examination including detailed geological mapping on the south and west sides of the claims (where outcrop and subcrop is present) and grid soil geochemistry in the southwestern part of the claims where favourable geology and geochemistry has been demonstrated.

2.0 Introduction

Exploration during 2013 was conducted in two short phases. The first phase in July returned 155 soils, 2 silts and 2 rock samples. The second phase in September returned 74 soils and 18 rock samples. Many of the rock samples were collected from the sites of or in the vicinity of anomalous soils collected in previous phases of exploration.

Most of the 2013 work consisted of ridge and spur auger soil samples, generally collected at about 50m intervals. The work was conducted to meet assessment requirements on the STEPH claims, and was filed to meet the July 26th claim anniversary deadline. The second phase of work will be applied to 2014 assessment.

This report is to cover the two 2013 assessment filings for the group of claims, a contiguous block of 100 claims that extends along the northern shore of the Yukon river, south and west of the Fifteenmile river.

The author, working as a consultant directed the work program on the claims and participated in the second phase.

3.0 PROPERTY DESCRIPTION AND LOCATION

The Silver City Project consists of a block of 100 claims that extends along the northern shore of the Yukon river about 35km downstream from Dawson City, just downstream of the mouth of the Fifteenmile river.

The claims lie on NTS map sheet 116B/05 within the Dawson mining district. Locations on the property are located by handheld GPS, using NAD 83 UTM coordinates. Property location is shown in figure 1.

The 2013 phase 2 camp was located on the ridge crest at UTM 553620, 7132710.

The property consists of the following claims:

TABLE 1.

Silver City Project C	laim Summary	NTS 116B/05	
Claim Names	Owner	Grant Numbers	Expiry Date
Steph 1 - 18	Klondike Gold Corp.	YE71601 - YE71618	2015-07-26
Steph 19 - 24	Klondike Gold Corp.	YE71619 - YE71624	2014-07-26
Steph 25 - 30	Klondike Gold Corp.	YE71625 - YE71630	2015-07-26
Steph 31 - 34	Klondike Gold Corp.	YE71631 - YE71634	2014-07-26
Steph 35 - 40	Klondike Gold Corp.	YE71635 - YE71640	2015-07-26
Steph 41 - 48	Klondike Gold Corp.	YE71641 - YE71648	2014-07-26
Steph 49 - 56	Klondike Gold Corp.	YE71649 - YE71656	2015-07-26
Steph 57 - 62	Klondike Gold Corp.	YE71657 - YE71662	2014-07-26
Steph 63 - 80	Klondike Gold Corp.	YE71663 - YE71680	2015-07-26
Steph 81 - 100	Klondike Gold Corp.	YE71681 - YE71700	2014-07-26

The expiry dates listed above are contingent on acceptance of this assessment report.

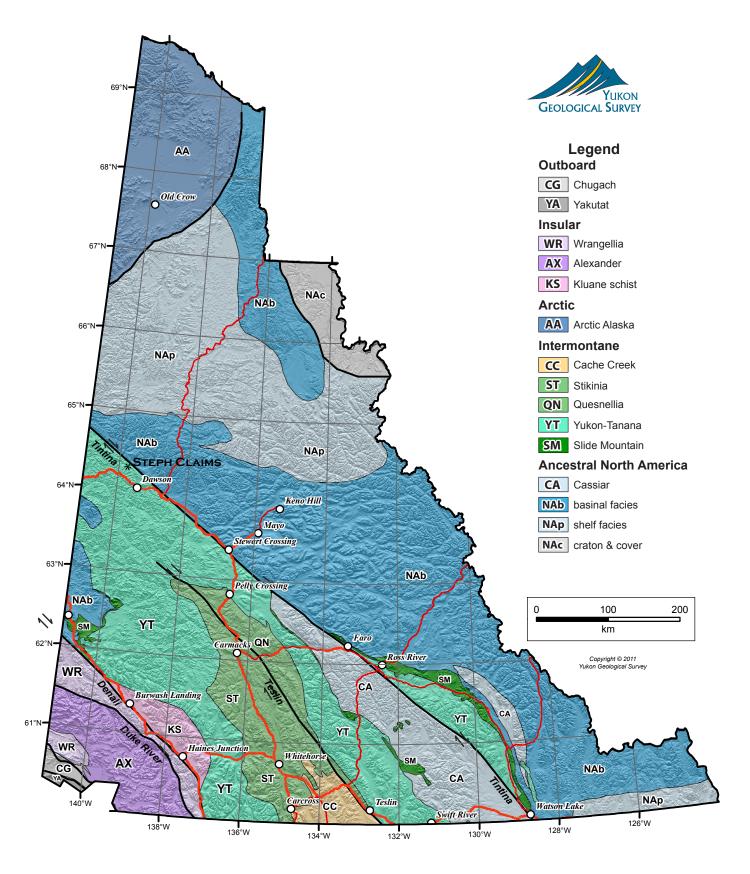


Figure 1. Location - Silver City Project - Steph Claims

4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Silver City project area consists of rugged topography of rounded hills and V-section valleys, and lies at the contact between glaciated and non-glaciated terrane. Cliffs are prominent and common along the Yukon River valley, and this is the dominant land form on the south side of the property. The north slope of the property is gentle and mostly covered by black spruce forest with buckbrush (Fig. 2). Weathering of the region has had a lengthy history, resulting in few natural fresh rock exposures. The Silver City project is situated on the boundary between the Yukon Plateau- North and the Klondike Plateau ecoregions, both part of the Boreal Cordillera ecozone (Smith et al, 2004).

Dawson City is on the Yukon River at 1050' (320m). Elevation on the claims ranges from about 1000' (300m) at river level to about 3000' (1000m) on the ridge above the river. The region surrounding the claims is covered by spruce, poplar, birch and alder.

Dawson City is approximately 480 km from Whitehorse along the Klondike Highway which is a completely sealed two-lane road. A 5000'x100' gravel surface lighted Yukon Government airfield at 1214' (370m) elevation is located in the Klondike River valley. Dawson is served by a scheduled service of twin-engined turboprop aircraft from Whitehorse and by highway there is a regular freight service. Dawson City offers normal town facilities such as hotels, restaurants, grocery, clothing and hardware stores, engineering supplies and two bulk fuel depots.

The claim block is easily accessed by river boat or helicopter, lying about 35km downstream from Dawson City. A winter trail bulldozed from Dawson to the claims in 1973 is mostly overgrown, but could theoretically be used again in the future (with permits).

The property is within Central Yukon Basin climatic zone, characterized by a sub-arctic climate, with normally low annual precipitation (less than 400mm total precipitation). The workable exploration season extends from late May until October, by which time nightly temperatures are below freezing and there may be a few centimeters of snow on the ground. Winter temperatures may drop to at least -40°C for up to six weeks in January and February. Summer rainfall is highly variable and unpredictable.

The first phase of exploration in 2013 was conducted by boat from Dawson, with a tent camp across the river from the property. The camp site used was more level than any available on the property, and was located near a creek with fresh water. The second phase of exploration was conducted with helicopter access and a camp located in the west-central part of the claim block, near the highest point on the claims.

Figure 2. Project physiography – black spruce forest on gentle north slope.

5.0 HISTORY

Much of the work described below occurs on the competitors claims (Allos & SC) which are surrounded by the STEPH claims of Klondike Gold Corp's Silver City project. The Silver City occurrence is identified in the Yukon Minfile as occurrence 116B 037. Minfile occurrences 116B 074 WINAGE and 116B 075 HEALY are located on the western edge of the property, or just off the claims but on the same side of the river.

The Silver City adits are thought to be located just west of the boundary between the Steph 41 and Allos 2 claims, however there are no accurate maps of the adit locations with respect to the current claims. Most of the work was either poorly documented or the documentation is not available to the author. Most work in recent decades consists of brief field examinations with little exploration work conducted. There are references to silver-lead float having been found to the northeast, perhaps near the Fifteenmile river, however no documentation is available.

- 1895 Silver-lead float discovered on the river bank by William Ogilvie.
- 1899 Staked as Carbonate cl (315) location of Silver City minfile occurrence (116B 037).
- 1902 Restaked as Yukon Beauty & Australia Girl cl (5723). Strong rumours persist that a 9.1 tonne shipment was made about 1902.
- 1905- 1906 Restaked as Jeanerette group (Yukon Maid, Camp Bird & Yukon Chief) cl (7254) by Jeremiah O'Neill and partners, who drove a 198 m adit and a 15 m raise near the river bank. Highest assay: 800 oz/t Ag, 75% Pb, \$12 Au per ton.
- 1926 The property was restaked as the Lava, Beaver, etc cl (15082) around the Jeanerette groups by J. Lawrence and P. Rost, which triggered a small staking rush. Rost later shipped 4.5 tonnes of hand-cobbed float from surface to the Tacoma Smelter.
- 1927 property examined by the GSC (Cockfield, 1927).
- 1927 Black Mike Winage staked the White Owl claim that is the basis of the Winage minfile occurrence (116B 074) to the west of Silver City.
- 1927 Four claims were staked from the western river bank to the ridge by W.H. Taylor at the HEALY minfile occurrence (116B 075).
- 1929 J. Risco optioned the property and drove a 39.6 m adit 130 m above the river.
- 1942 H. Wadcock restaked as Macbeth cl (4230).
- 1952 Risco restaked as Eureka cl (57764).
- 1953 report written by J.F.V. Millar, Mining Engineer for Y.C.G.C. (not available).
- 1958 Risco restaked as Silver King, etc cl (78604). Attempted to reopen his adit.
- 1962 Risco optioned his claims to L. Patnode and W. Kaufman, who drove a 84m adit 91 m above the river and performed hydraulic monitor trenching in 1962 and 1963. The first 28m of the adit was in overburden, and after that point in crumpled schist.
- 1964 Silver City ML was formed and it continued hydraulicking in 1964-65. The 1964 hydraulic cut exposed Risco's 1929 adit and two older adits (Mineral Industry Report 1971-72). The hydraulic cuts totalled 75,000 cubic yards. The hydraulic cut closest to the river, below the 1963 adit exposed some galena-bearing talus.
- 1963 report written by Ken Rose for Newmont Mining Corporation (not available).
- 1963 report written by C. J. Brown for White Pass and Yukon Route (not available).
- 1964 report written by Dr. W.V. Smitheringale, for Silver City ML (not available).
- 1964 report written by Ace R. Parker, for Silver City ML (not available).
- 1961 1964 Mapping and geological investigations by the Geological Survey of Canada (GSC maps 13-1962 and 1284a- 1972).
- 1965 Silver City ML drove a 56 m adit (38 m east of the 1929 adit and also 130m above the river) at North 4°E, and drilled two underground holes (61.0 m).
- 1965 prospectus report written by Ace R. Parker, for Silver City ML (not available).
- 1965 report written by A.W. Poole, for Silver City ML (not available).

- 1966 J.E.M. horizontal loop EM survey conducted by Exploration Geophysics (Yukon) Ltd.
- 1967 summary report written for Silver City ML prospectus (Sevensma, 1967a).
- 1967 a grid soil survey was conducted to the east of the Fifteenmile river at the Fitch minfile occurrence (Sevensma, 1967b).
- 1968-1969 an attempt to reopen the lower adit.
- 1971 Restaked as Plata cl (Y65002) by L. Patnode, who carried out geochem, mag and VLF-EM surveys later that year (Ogilvy & Presunka, 1971). Four EM conductors were identified.
- 1973 L. Patnode built a 62.8 km winter road and bulldozer trenched.
- 1974 L. Patnode drilled 5 holes (164.6 m) in 1974.
- 1975-1976 L. Patnode drilled 2 short holes at the Winage occurrence.
- 1976 L. Patnode hand trenched.
- 1977 Regional Geochemical survey of the area (Goodfellow & Lynch, 1978). The creeks on the property were not sampled.
- 1978 L. Patnode restaked as Allos cl (YA31737).
- 1979 S. Kormendy added DSN & DSS cl (YA47092) to the west. L. Patnode performed bulldozer trenching. A dozer road extends from the river bank to the upper adit, with a couple of switchbacks.
- 1984, 1986 and 1988 Patnode performed hand trenching.
- 1985 Noranda partially restaked DSN group as SC cl (YA87471).
- 1986 property examination by United Keno Hill Mines (Stubens & Patnode).
- 1988 Noranda staked Kelly cl (YB4934) to the east.
- 1988 geological mapping at 1:250,000 scale, southwest of the Tintina fault (Mortensen).
- 1989 The Allos and SC claims were transferred to K. Potter, who holds these claims to date.
- 1989 R. Wondga performed rotary drilling on the Kelly claims (east of the adits). No documentation of this work is available.
- 1994 Phase I Environmental Assessment of the Silver City Abandoned Mine Site.
- 1996 Surficial geological mapping by Geological Survey of Canada (Duk-Rodkin).
- 1997 Phase II Environmental Assessment of the Silver City Abandoned Mine Site.
- 2011 STEPH claims staked.
- 2012 Ridge and spur soil geochemistry and prospecting over a large part of the property (Mann).

6.0 GEOLOGICAL SETTING AND MINERALIZATION

The Silver City project area has seen little modern geological investigation. The 1:250,000 scale geology was originally mapped in the 1960s (Green & Roddick, 1962) and more recently in the 1980s (Mortensen, 1988). The airborne magnetics data is from the 1960s, and is therefore of poor accuracy and resolution. No property scale geological mapping is available.

YUKON-TANANA TERRANE

The project is underlain by the Yukon-Tanana terrane which extends from Alaska to the southern Yukon and B.C. (Fig. 1.) The terrane is now considered to be those Devonian-Mississippian strata of continental affinity which are overlain by volcanic arc successions that include backarc and island arc tectonic settings (Colpron, 2006). These units are polydeformed and, over a regional scale, show a range of metamorphic grade from lower greenschist to amphibolite facies. Structural styles are consistent with deformation during east to northeastward directed accretion and crustal shortening.

GEOLOGY

The area is underlain by upper Devonian to lower Mississippian rocks of the Finlayson Assemblage (formerly Nasina Assemblage) of the Yukon Tanana Terrane: mafic to felsic metavolcanic rocks of arc and back-arc affinities; carbonaceous pelite, metachert, minor quartzite; metavolcaniclastic rocks; marble (Colpron, 2006). The metamorphic rocks are greenschist to lower amphibolite grade.

Late Cretaceous Carmacks volcanics (basalt & agglomerate) occur about 3km to the east of the property. This unit coincides with a prominent magnetic high in the regional airborne magnetic survey.

Mid Cretaceous granitic rocks occur as a stock along the Yukon river about 20km northwest of the property (the Mt. Carmacks pluton). A smaller stock occurs a few kilometers to the southeast at the mouth of Fresno creek.

STRUCTURAL GEOLOGY

The project lies about 3km southwest of the Tintina fault. The metamorphic rocks have undergone at least four distinct phases of deformation, including abundant low angle thrust faults (Mortensen, 1988).

An east- west trending anticline lies central to the property, with gently dipping layers of quartzite, greenstone and schist that are bound by two or three thrust faults. Serpentinized ultramafic lenses are present within the thrusts. An east-west trending, steeply dipping zone of fault gouge is reported in one of the adits.

MINERALIZATION

A variety of styles of mineralization occur within the region, including stratiform, porphyry and skarn base metal occurrences and gold &/or silver bearing mesothermal and epithermal veins. Asbestos occurs in serpentinite lenses, notably the Woodchopper occurrence located across the river to the southwest.

QUATERNARY GEOLOGY

The Silver City project lies at the contact between unglaciated terrane and the edge of pre-Reid and Reid aged glaciated terrane at the western margin of the Cordilleran ice sheet limits. The Fifteenmile river valley along the northern edge of the claims was affected by glaciation, as well as the westernmost ridge top, while the upland area in the centre of the claims and the west and south-facing slopes were not glaciated (Duk-Rodkin, 1996).

The project is in the zone of widespread discontinuous permafrost, with permafrost generally present on north and east facing slopes.

Upland soils in the area, dominated by colluvium have been described further south by Bond & Sanborn (2006): "... a thin veneer (<25 cm) of loess is preserved on moderate upland slopes. On slopes with a south-facing aspect the loess forms a distinct unit at the top of the B horizon. A minor component of coarser locally derived colluvium appears to have been incorporated in the loess by slope processes in many places. On north-facing slopes, permafrost is commonly present (or has been present), which enhances the colluviation of the surficial deposits. On these slopes, the loess has been incorporated in the underlying colluvium by cryoturbation."

Some active soil slumping was observed in a steep part of the west facing slope on the property by the author.

PROPERTY GEOLOGY

On the property quartzite and carbonaceous pelite are found in the uppermost layer (Devono-Mississippian Yukon Tanana Terrane), mafic metavolcanics (greenstone) with local serpentinite in the middle layer (Carboniferous to Permian Slide Mountain Terrane) and quartz- mica schist with marble (or dolomite?) layers found in the lowest layer (Triassic Slide Mountain Terrane) (Mortensen, 1988). Some graphite-rich schist layers are reported, and chlorite is locally abundant in the schist. The ultramafic rocks do not show a magnetic anomaly on the regional airborne survey, and are thought therefore to be totally serpentinized.

A felsic dyke was mapped by Mortensen in his field notes, but it is not shown on the final map due to the scale. The dyke cuts stratigraphy in a northeasterly trend from around river level to near the ridgetop. Examination of this trend near the ridgetop did not confirm the presence of the dyke. The unit is mainly recessive and brownish colour, with a couple of rusty brown weathering small knobs. Sevensma described this unit as a rhyolite porphyry, with very large talus blocks. A

few mafic dykes with a north-south trend are shown by Mortensen along the riverbank near the sharp southern bend in the river (on his field map). The presence of these dykes was confirmed in 2012, and some gold and silver mineralization is spatially related to the dykes. The age of these dykes is unknown.

Sporadic outcrop, subcrop and float rock along the ridge crest was prospected and examined by the author during the September program. No graphitic or ultramafic rocks were observed. The felsic dyke shown on the field map of Mortensen was not seen (on Steph 20 & 22 claims), however quartz-feldspar porphyry was observed in outcrop and float further east on the Steph 62 claim, along with minor aphanitic mafic dyke rock. Rocks observed along the ridge also included quartz augen schist, quartzite, laminated quartzite, greenstone and phyllite. Near minfile occurrence 116B 075 there is good outcrop of green-grey phyllite and greenstone with abundant discordant quartz-ankerite-calcite-(pyrite, limonite, hematite) veins.

The following description of mineralization at Silver City is adapted mostly from Yukon Minfile: Mineralized float has been found in the lower 150 m of a 600 m slope in an area of multiple slides caused by erosion along steep faults which strike east-west parallel to the river.

Mapping of the slide material on surface and underground indicates that the lower slope is composed of a quartz-carbonate rock, interbedded with sericite-graphite schist, which is overlain by dioritic rocks, and in turn, quartzite and argillite of probable Paleozoic age.

The quartz-carbonate rock is host to the mineralization, which consists of galena, tetrahedrite, sphalerite, chalcopyrite and siderite. The quartz-carbonate rock is interpreted as a flat-lying altered ultramafic sill that lies above the old workings. Sevensma (1967) notes that "a light-brown weathering quartz-dolomite rock with both mariposite and occasional nickel stain is the most significant member and is the host rock of all the reported mineralized occurrences".

A stibnite showing occurs about 1.6 km to the west (therefore likely close to the felsic dyke). Specimens of silicified andesite containing 1 to 20% stibnite that were taken from the old dump in 1986 assayed 0.07 g/t Au, 1.1% As and 9.5% Sb.

Grab samples of vein float show average silver-lead ratios between 5:1 and 10:1 (oz Ag: %Pb), and silver assays as high as 27,427.8 g/t. The 1929 adit is rumoured to have cut 15.8m of disseminated mineralization before intersecting a 90 cm vein of galena which assayed 20,673 g/t Ag.

Cockfield (1927) describes one- to eight-inch seams of galena and sphalerite, with subordinate chalcopyrite, malachite and azurite in highly faulted lenses of dolomite. The shipment made (ca. 1926) of 5 tons was from material that occurred as float on the beach. Picked samples of this float have yielded 200 to 500 oz of silver per ton. Quartz stringers up to eight inches thick and sparsely mineralized with galena and chalcopyrite were noted east of the beach zone and 700 feet above the river.

7.0 DEPOSIT TYPES

Exploration on the Silver City Property is not sufficiently advanced to assign specific deposit types to the property, however high grade silver-lead veins are known immediately adjacent to the claims on competitors ground. Potential is thought to exist on the property for several other types of deposit, including orogenic gold and intrusion-related gold +/- silver. Stibnite is reported from the area, so antimony is also a potential target.

8.0 EXPLORATION

JULY 2013 SOIL AND ROCK SAMPLING

Geologist Sandro Frizzi and prospector Max Mikhailytchev, and an assistant (Alex) mounted an expedition that spent 5 days on the claims. Access was by river boat to transport the crew, supplies, samples and equipment to and from the claims. 155 soils, 2 silts and 2 rock samples were collected.

The samples were collected mostly on the northern slopes of the property that had not previously been explored, and also the western part of the claims that had returned anomalous values. Soil samples were generally collected at 50m intervals using Dutch augers to penetrate as deep as possible, generally to collect C horizon soil.

Soil sample sites were marked with flagging tape and the location recorded by GPS. Soil and rock sample numbers and locations are presented in figure 3, with silver results presented in figure 4 and gold in figure 5, all at 1:25,000 scale.

The samples of rock and soil were delivered directly to the AcmeLabs laboratory in Whitehorse for aqua regia digestion and 36 element ICP-MS analysis. Soil and Rock sample analytical results are presented in Appendices III and IV respectively. Sample UTM locations and summary geochemical results are presented in Appendix V.

Gold and silver were found in anomalous amounts in several locations. The best (of two) rock samples returned values of 9.0 ppb Au and **1.9 ppm Ag** with highly elevated Cu (7513ppm) & Sb (223ppm).

Gold in soil was generally low, with only 12 of 157 samples above 10 ppb gold. However, there was one sample that returned **295.2 ppb Au**, collected in the southwestern part of the property. This highlight sample gives encouragement for further work on the west side of the claims. Silver in soils returned a maximum value of **1.6 ppm**. Silver values were generally low, with 72 of 157 samples below the detection limit of 0.1 ppm Ag.

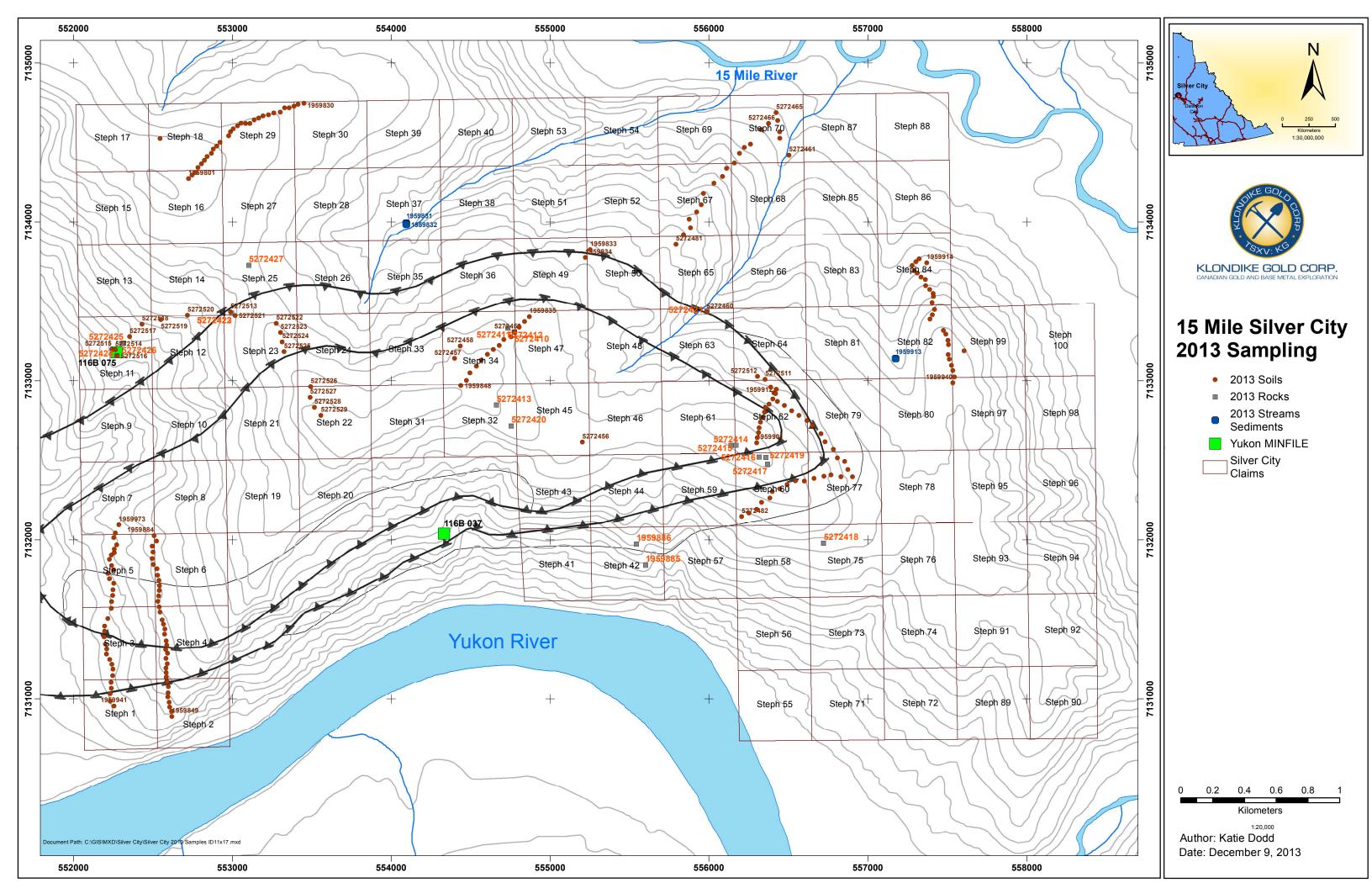
Silver is associated with locally elevated Mo, Cu, Pb, Zn, Cd, Bi, Cu, Mo, Sb, Hg & Se, while gold is sporadically associated with arsenic and silver.

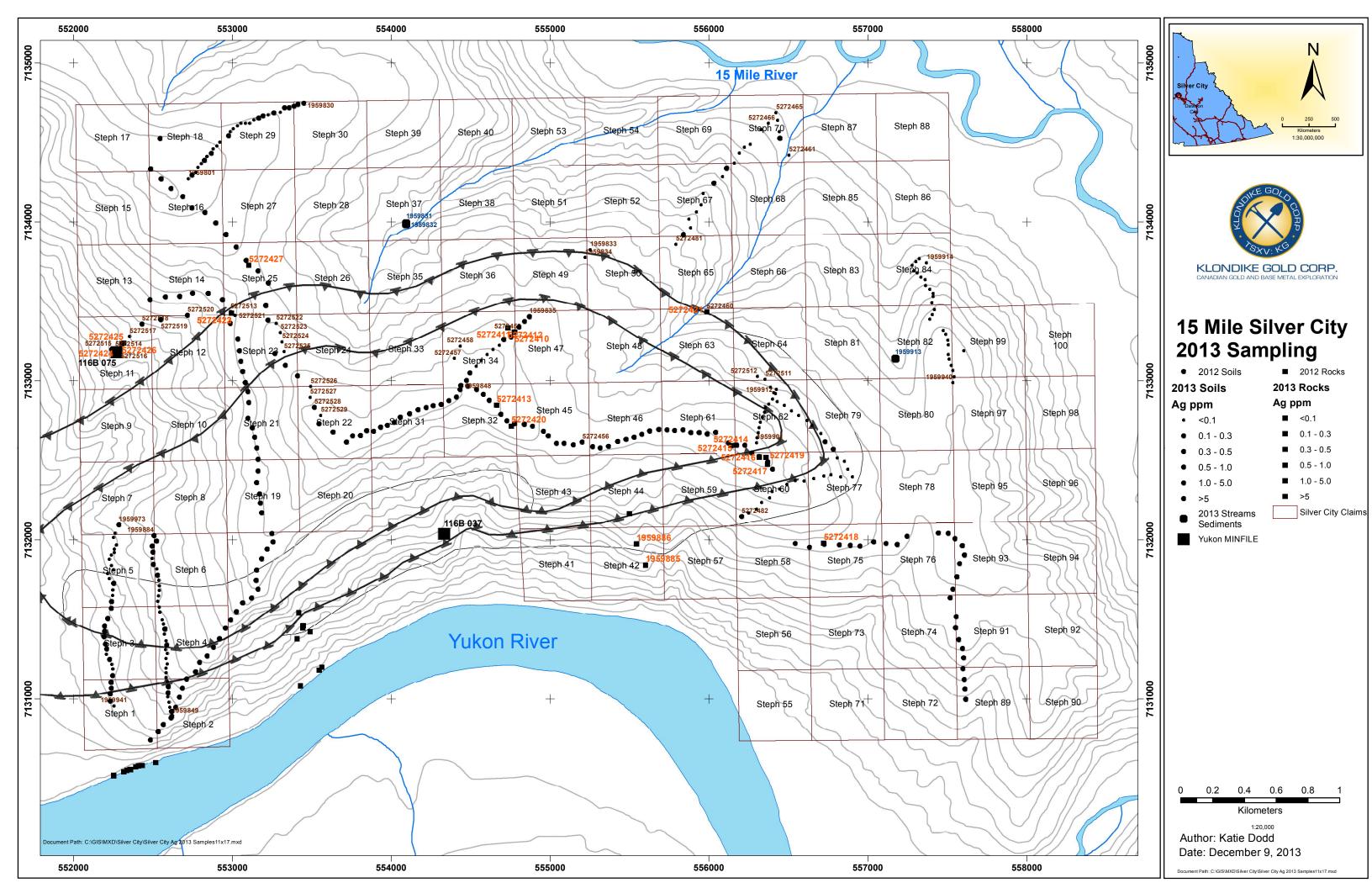
Another prospecting day trip was made to the property on July 23, however this work was not documented or claimed for assessment.

SEPTEMBER 2013 SOIL AND ROCK SAMPLING

The author and prospector Max Mikhailytchev spent four days on the claims in September. Access was by helicopter to the ridge crest, where a camp was established at UTM 553620, 7132710. 74 soil and 18 rock samples were collected.

Work during this phase was focused on anomaly followup, soils from the far northern area of the claims, and soils overlying a presumed favourable lithology. Minfile occurrence 116B 075 on the Steph 11 claim near the western edge of the claim block was also examined.


The results of followup on soil geochemical anomalies are summarized in Table 2 below. Hand pits were dug at the anomalous soil sites, with rock samples collected for analysis and duplicate soil samples in some cases. The results are generally disappointing, with only low levels of gold, silver and other metals returned from rocks and soils at the anomalous sites.


A new soil line was sampled at the far northern part of the property on the Steph 67 & 70 claims (samples 5272461- 5272481). This area had not previously been tested, and results were negative.

A contour soil line was sampled to follow the map trace of a lithology thought to be favourable for mineralization on the Steph 60, 62, 64, 77 & 79 claims (samples 5272482- 5272512). The unit is carbonate-rich and is the host rock for silver-rich veining at the Silver City occurrence to the west. It is mapped extending around the ridge on the Steph claims, however no outcrops were observed in this area. The soil analyses from this area were not significantly anomalous in gold, silver or pathfinder elements.

Followup sampling at the site of 2012 sample 1418707, which returned 780ppb Au returned negative results from both rocks and soil. The original sample had only background levels of pathfinder and base metals, therefore the negative results in 2013 are not surprising.

Rock and soil analyses from the area of Yukon Minfile occurrence 116B 075 on the Steph 11 claim were not significantly anomalous in gold or silver, but were elevated in Mo, Cu, Zn & Pb. The prominently outcropping rocks observed were green-grey phyllite and greenstone with abundant quartz-ankerite-calcite-(pyrite, limonite, hematite) veins discordant to foliation. This occurrence is now considered to have low economic potential.

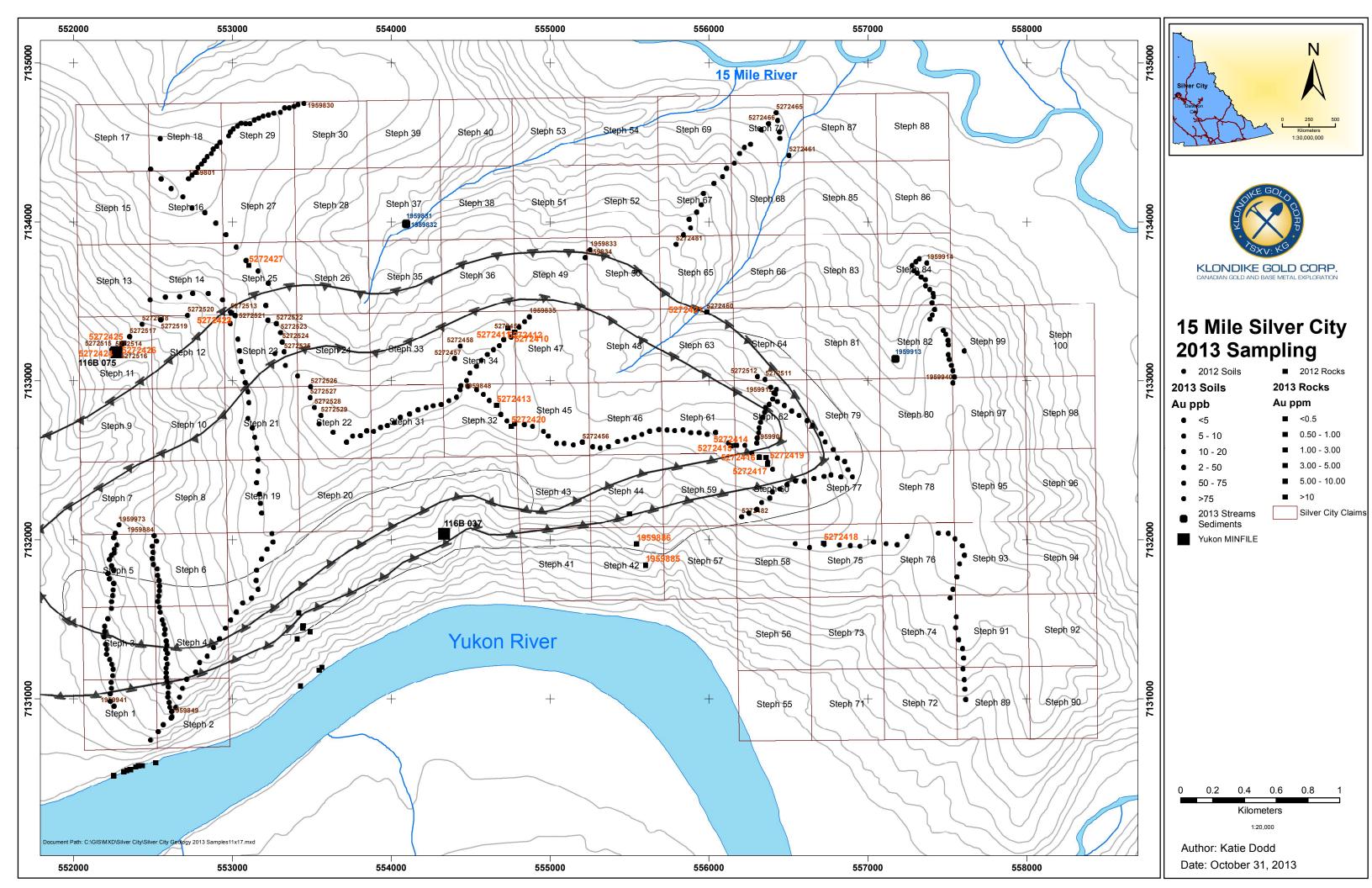


TABLE 2.

Silver City	2012 Por	rk Descrin	tions and Anomaly Follo	owun Pacults	Au	Ag
Sample	<u> 2013 NOC</u> E	N	Location	Description Description		д _Б
Sample			Location	Cobbles from hand pit. Foliated green meta-quartzite with limonite & MnOx on	ppo	PP
				fractures. Soil returned multi-element anomaly (Au, Ag, As, Cu, Hg, Mo, Pb, Zn etc).		
5272410	554776	7133308	1959838 soil site	Followup soil was also anomalous (5272459).	<2	<0.1
5272411			1959838 soil site	Pebbles from hand pit. Limonitic stained rock with white quartz veins.	4.0	0.1
				<u> </u>		
5272412	554735	7133332	on trail	30cm boulder. Silicified (?) quartzite w/ irregular white Q veinlets & rusty pits.	<2	<0.1
				Cobbles from hand pit. Dark grey phyllite, possibly graphitic. No mineralization		
5272413	554664	7132846	1418541 soil site	note. Soil returned anomalous Au (6.3ppb), Ag (1.8ppm), Mo.	13.0	0.5
				Light green meta-quartzite w/ dark green flecks. Sl. Calcareous. Limonite & MnOx		
5272414	556138	7132593	outcrop in forest	on fractures.	<2	<0.1
5272415	556170	7132594	1418570 soil site	Cobbles & pebbles from hand pit. Green metaquartzite. Soil returned 10ppb Au	<2	<0.1
				Boulder, cobbles, pebbles from hand pit. Altered QFP dyke, glassy Q eyes, pale fspar		
				in dk. Grey silicified (?) matrix, local vugs w/ limonite & MnOx. Soil returned 33ppb	_	
5272416	556317	7132519	1418573 soil site	Au.	<2	<0.1
		7400476		2m x 1m subcrop of mafic dyke. Dark grey, vfg, cherty looking but not as hard as	_	0.4
5272417			subcrop in forest	quartz, weakly magnetic, no foliation.	<2	<0.1
5272418	556/23	/1319/8	1418776 soil site	Cobbles from hand pit. White vein quartz with abundant orange limonite.	<2	0.2
F272410	FF6260	7122510	subgrap at ridge crest	2m v 1m subgran Quartz foldsnar narnhym duka Dark gray anhanitis matriy	-2	<0.1
5272419	330300	/132518	subcrop at ridge crest	2m x 1m subcrop. Quartz-feldspar porphyry dyke. Dark grey aphanitic matrix. Grey-green quartzite boulders cut by numerous white quartz veinlets (1 to 5mm	<2	<0.1
5272420	554756	712271/	top of south slope	wide), local crystalline vugs.	<2	<0.1
3272420	334730	/132/14	top of south slope	Cobble of Quartz Porphyry dyke. Light green, rusty weathering with ~0.5% pyrite,		<u> </u>
5272421	555987	7133434	creek bed (Max)	glassy sub-round quartz eyes, aphanitic matrix.	<2	0.1
32,2421	333307	7133131	Creek bed (Wax)	20 pebbles from hand pit. Some white QV, limonite noted. Soil returned 780ppb Au		0.1
				with no anomalous pathfinders. 2013 followup soil (5272513) returned only 5.6ppb		
5272422	552996	7133426	1418707 soil site	Au.	<2	<0.1
5272122	332330	7133120	1110707 3011 3110	Cobbles from hand pit. Green quartz-muscovite-chlorite schist/ gneiss, slightly		10.1
5272423	552996	7133426	1418707 soil site	rusty, some MnOx.	<2	<0.1
				Abundant outcrop and scree. Assorted vein rock from 3m x 3m area. White Qtz-		
5272424	552274	7133158	minfile 116B 075 site	(calcite, ankerite, limonite, hematite) veins. Grey-green phyllite host.	<2	<0.1
112			1 12 11 11 11 11	Boulders at cliff base. Q- ankerite- cc- pyrite veining. Trace cubic pyrite. Greenstone		
5272425	552316	7133237	minfile 116B 075 site	host, weak cleavage.	<2	<0.1
5272426			minfile 116B 075 site	Chips from subcrop discordant Q- ankerite veins in phyllite host.	<2	0.2
5272427	553104	7133727	ridge crest	Large boulders of white "bull" quartz. Only rocks in area, on ridge crest.	2.0	<0.1

9.0 Drilling

No drilling was conducted on the claim group in 2013. Previous drilling known on (or adjacent to) the claims includes 2 holes from underground in 1965, 5 holes in 1974, 2 holes at the Winage occurrence in 1975- 1976 and rotary drilling in 1989. No documentation of any of this drilling is available.

10.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

Soil samples were delivered in batches by company personnel directly to the AcmeLabs preparatory facility in Whitehorse. Samples were dried in a 60°C oven, then sieved to -80 mesh. The sieved sample was sent to the AcmeLab laboratory in Vancouver. A 15g subsample was leached in aqua regia at 95°C. Analysis was by ICP-MS for 36 elements (method 1DX2). Gold was analyzed with a 0.5ppb detection limit.

Rock samples were delivered by company personnel in batches directly to the AcmeLabs preparatory facility in Whitehorse. Samples were dried, crushed to 80% passing 10 mesh, then a 250g split was pulverized to 85% passing 200 mesh. The pulverized sample was sent to the AcmeLab laboratory in Vancouver for analytical package 3B. 30g was tested by fire assay fusion for gold, with finish by ICP-ES. The detection limit for gold is 2ppb.

A 0.5g subsample was leached in aqua regia at 95°C. Analysis was by ICP-MS for 36 elements (method 1DX).

11.0 DATA VERIFICATION

No standard or blank samples were inserted into the sample stream by the company, as it was not considered to be necessary for a small program of early stage work. AcmeLabs presents it's internal quality control results for each sample batch, including standards, blanks and pulp and reject duplicates. This data was reviewed for major discrepancies.

12.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

The claims of the Silver City group are at an early stage of exploration, and therefore there have been no environmental studies done to date. No Social or Community Impact studies have been undertaken directly related to the Silver City group of claims.

13.0 ADJACENT PROPERTIES

The property partially surrounds 9 SC & Allos claims held by a competitor. These claims have silver vein mineral occurrences, but no known significant deposits.

A few other competitor properties are located within 5km of the Silver City property, however they are at an early stage of exploration. Nearby minfile occurrences include:

116B 036 ROAL – Pb-Zn skarn with adit driven in 1927, to the northwest.

116B 038 FITCH – geochem anomaly coincident with an airomag low, to the east.

116B 044 WOODCHOPPER – asbestos showing across river to the southwest.

116B 073 RISCO – unknown occurrence across river to the south.

14.0 Interpretation and Conclusions

The Silver City project has reasonable potential to host high grade (over 20,000 g/t Ag) silver deposits, antimony deposits and orogenic, epithermal or intrusion-related gold deposits. The presence of numerous soil and rock geochemical anomalies in several locations on the property gives some encouragement, as does the complex geological setting.

The presence of thrust faults containing lenses of serpentinized ultramafics is considered to be favourable for orogenic gold. Dykes appears to be spatially associated with silver-gold anomalous rocks and soils near the riverbank, and with antimony mineralization higher on the slope.

Although the property has a long history of exploration, almost all of the known work was focused on silver-lead veins near the adits, while no modern exploration had been conducted prior to 2012. Exploration has targeted high grade silver veins, while there may be reasonable untested potential for gold based on favourable structures, lithologies and anomalous samples collected in 2012 and 2013

The easternmost soil samples were collected from an area of morrainal veneer and gravel terrace (as mapped by Duk-Rodkin, 1996), and therefore these samples are not likely to reflect bedrock. The samples from this area (2012 samples 1418751 – 1418768 and 2013 samples 1959914-1959940) are all at or below detection limit for silver, have generally low metal values, and have a best gold value of 18ppb. This area would be better sampled at about mid slope on the east facing slope above Fifteenmile river where thin colluvium is present above bedrock.

With the completion of two phases of work in 2013 the entire property has now been covered by ridge and spur soil sampling. Gold and silver anomalies over most of the property are generally weak and sporadic, with the exception of the southwest part of the property. Minfile occurrence 116B 075 appears to have very low potential. Potential for the property to host large deposits of precious metals seems to be limited, except for on the Steph 1- 6 claims in the southwest.

15.0 RECOMMENDATIONS

Open ground to the west and southwest of the Silver City claim group should be staked to cover showings on the riverbank discovered in 2012 and to cover favourable ground near minfile occurrence 116B 074. Ten to twenty additional claims should be adequate for this purpose.

Prospecting to follow up on anomalies in the southwest is recommended. Specifically, prospecting should be conducted around sample sites 1959942- 1959945 which returned gold and multi-element anomalies. Sample 1959942 returned **295.2 ppb Au**, which is the highlight sample of the 2013 exploration program.

Minfile occurrence Winage (116B 074) on the slope just west of the property has little documentation and may yield showings if prospected thoroughly. This occurrence which was the subject of drilling in 1975 & 1976.

Geological mapping at a scale of 1:10,000 is recommended to help focus exploration. Outcrop, subcrop and float is almost exclusively found on the steep south and west facing slopes, with almost no rock at all present at surface on the north slope. It might be possible to trace the favourable host quartz-carbonate altered ultramafic to the east and north on the property. The dykes and adjacent altered rocks should also be mapped and sampled. The location of the adits, access road, hydraulic pipe, competitor claim posts and any drill hole collars should be mapped with GPS to determine if any of these features lie on the project claims.

Soil geochemistry is an effective exploration tool for much of the property. The deep auger method with conventional -80 mesh soil analysis is recommended. A detailed grid should be laid out in the southwest corner of the claims, uphill from the mineralization exposed on the riverbank. The talus slide on the southern slope is not suitable for soil sampling, nor is the glaciated part of the upland area on the west side of the property.

The overall geochemical database should be evaluated for more subtle elemental patterns in addition to gold and silver distribution. This might assist in identifying polymetallic mineralization.

An airborne geophysical survey (magnetics +/- radiometrics or EM) would be beneficial for further exploration.

16.0 References

Bond, J.D. and Sanborn, P.T., 2006. Morphology and geochemistry of soils formed on colluviated weathered bedrock: Case studies from unglaciated upland slopes in west-central Yukon. YGS Open File 2006-19.

Cockfield, W.E., 1927. Silver-Lead Deposits of Fifteenmile creek. Sum. Rept., 1927, pt A, pp l-13.

Colpron, M. (compiler), 2006. Tectonic assemblage map of Yukon-Tanana and related terranes in Yukon and northern British Columbia (1:1,000,000 scale). Yukon Geological Survey, Open File 2006-1.

DIAND Technical Services, 1994. Assessment Report 116-B-05-1 Silver City. Environmental Assessment.

Duk-Rodkin, A., 1996. Surficial Geology, Dawson, Yukon Territory. Geological Survey of Canada Open File 3288, scale 1:250,000.

Goodfellow, W.D. & Lynch, J.J., 1978. National geochemical reconnaissance release NGR 31-1977, regional stream sediment and water geochemical reconnaissance data, central Yukon Territory. Geological Survey of Canada, Open File, 520.

Green, L. H. & Roddick, J.A., 1962. GSC Paper 62-7 (& map 13-1962).

Green, L. H., Geology of Nash Creek, Larsen Creek and Dawson map areas. GSC Memoir 364 (& map 1284A).

Environmental Services, Public Works and Government Services Canada, 1997. Phase II Environmental Assessment of the Silver City Abandoned Mine Site.

Liverton, T. and Mann, W., 2011. Quartz vein gold mineralization in the Klondike Schist: The Mitchell-Sheba system, central Klondike district, Yukon. In: Yukon Exploration and Geology, K.E. MacFarlane, L.H. Weston and C. Relf (eds.), Yukon Geological Survey, p. 149-160.

Mann, W.D., 2013. 2012 Geochemical Assessment Report On The Silver City Project. Yukon Assessment Report.

Mortensen, J.K., 1988. Geology, southwestern Dawson map Area, Yukon. Geological Survey of Canada, Open File, 1927.

Ogilvy, A.C. & Presunka, S., 1971. Geophysical report on the Plata 1- 4 claims. Yukon Assessment Report #061134.

Sevensma, P.H., 1967a. Report on the Silver City Group. In 1968 prospectus for Silver City ML. Yukon Assessment Report #061677.

Sevensma, P.H., 1967b. Geochemical report on the ABW Group for Consolidated Skeena Mines Ltd. Yukon Assessment Report #017945.

Stubens, T.C., & Patnode, B.R., 1986. Silver City Project, Geology & Prospecting Report. Yukon Assessment Report #091876.

Smith, C.A.S., Meikle, J.C. & Roots, C.F. (editors), 2004. Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes.

Yukon MINFILE - Occurrences 116B 036, 037, 038, 044, 073, 074 & 075. Yukon Geological Survey, Energy, Mines and Resources, Yukon Government. Available on the internet at: http://data.geology.gov.yk.ca/

APPENDIX I

STATEMENT OF QUALIFICATIONS

WILLIAM D. MANN, M.Sc., P.Geo.

19 HAYES CRESCENT, WHITEHORSE, YUKON Y1A 0E1

- 1. I am a member in good standing of the Association of Professional Engineers and Geoscientists of BC, Licence #31907.
- 2. I am a Graduate of Queen's University, 1986, with a Master of Science Degree in Mineral Exploration Geology.
- 3. I am a Graduate of the University of British Columbia, 1983, with a Bachelor of Science Degree in Geology.
- 4. I have worked in mineral exploration and mining continuously since 1979.
- 5. I designed, supervised and participated in the work program on the SILVER CITY Project in 2013.
- 6. I am consulting geologist for Klondike Gold Corp., owner of the claims. I hold no interest in the SILVER CITY property. I hold shares and share purchase options of Klondike Gold Corp.

December 11, 2015
William D. Mann, M.Sc., P.Geo.

December 11 2013

<u>LIST OF PERSONNEL – SILVER CITY PROJECT</u>

WILLIAM D. MANN, M.Sc., P.Geo. (Senior Geologist) 19 Hayes Crescent, Whitehorse, Yukon Y1A 0E1

MAX MIKHAILYTCHEV, (Prospector) Box 1665 Dawson City, Y0B 1G0

SANDRO FRIZZI, (Geologist) 1930 East Sixth St., Vancouver, B.C., V5N 1P7

<u>ALEX HOARE</u>, (Assistant) General Delivery, Dawson City, Y0B 1G0

APPENDIX II

STATEMENTS OF EXPENDITURE - SILVER CITY PROJECT 2013

Phase 1 - Applied for July 26, 2013 anniversary date

Field Work July 11- 15, 2013 & July 23, 2013

DATE	SUPPLIER	ITEM	INVOICE #	TOTAL
24 Jul, 2013	Sandro Frizzi	labour, supplies, transport	138-5650-SF	4,500.00
27 Jul, 2013	Max Mikhailytchev	labour, supplies, transport	2013/06	4,500.00
07 Aug, 2013	Acme Analytical Laboratories	154 Samples - soil & silt	VANI173222-040602	2,835.42
07 Aug, 2013	Acme Analytical Laboratories	2 Samples - rock	VANI17333-040602	44.56
		miscellaneous		120.02
			Phase 1 Total:	\$12,000.00

Phase 2 - Applied for July 26, 2014 anniversary date

			Phase 2 Total:	\$13,202.39
31 Dec, 2013	William Mann	report writing	(estimate)	1,500.00
03 Nov, 2013	Max Mikhailytchev	labour	2013/08	1,400.00
08 Oct, 2013	William Mann	expenses reimbursed	1305E	611.42
07 Oct, 2013	William Mann	field work portion	13-148	5,712.50
08 Oct, 2013	Acme Analytical Laboratories	18 Samples - rock	VANI178975	503.94
27 Sep, 2013	Acme Analytical Laboratories	74 Samples - soil	VANI178066-40602	1,487.03
24 Sep, 2013	Trans North Helicopters	access	1979	1,987.50
Field Work Septe	mber 13- 16, 2013			

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Submitted By: Sandro Frizzi
Receiving Lab: Canada-Whitehorse
Received: July 22, 2013
Report Date: August 02, 2013

Page: 1 of 7

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

CERTIFICATE OF ANALYSIS

WHI13000171.1

CLIENT JOB INFORMATION

Project: Silver City
Shipment ID: KGS-13-001

P.O. Number

Number of Samples: 157

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT-SOIL Immediate Disposal of Soil Reject

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2

CANADA

CC: Katie Dodd

Bill Hann

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
Dry at 60C	157	Dry at 60C			WHI
SS80	157	Dry at 60C sieve 100g to -80 mesh			WHI
1DX2	157	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 2 of 7 Part: 1 of 2

CERTIF	FICATE O	F AN	IALY	SIS													WI	HI13	3000	171	.1	
		Method	1DX15																			
		Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
1959801	Soil		0.6	38.3	10.1	54	0.1	43.9	13.9	633	2.93	9.4	11.5	6.2	22	<0.1	8.0	0.3	45	0.41	0.065	27
1959802	Soil		8.0	43.7	13.3	50	0.2	37.0	15.1	1196	3.29	13.4	3.8	5.5	52	<0.1	0.9	0.3	46	0.78	0.065	26
1959803	Soil		0.9	35.7	13.3	61	0.1	38.4	13.9	779	3.13	10.2	2.0	8.7	27	0.1	0.9	0.2	44	0.37	0.062	33
1959804	Soil		0.7	33.5	11.7	56	0.1	32.4	11.5	570	2.77	10.4	3.8	4.6	70	<0.1	0.7	0.2	50	0.96	0.070	23
1959805	Soil		0.6	22.0	8.7	45	<0.1	22.2	8.2	240	2.26	9.4	1.5	3.5	20	<0.1	0.6	0.1	48	0.26	0.059	15
1959806	Soil		0.9	33.8	13.7	59	0.2	34.8	14.6	674	2.90	11.0	2.7	6.4	87	0.3	8.0	0.2	47	1.15	0.074	27
1959807	Soil		0.9	29.4	10.4	54	<0.1	29.4	10.2	445	2.57	10.1	3.5	4.5	39	<0.1	0.7	0.1	52	0.45	0.071	22
1959808	Soil		0.6	35.8	17.3	82	0.2	55.7	14.7	626	3.14	9.8	4.0	5.7	51	0.3	8.0	0.1	57	0.55	0.080	33
1959809	Soil		0.5	25.9	11.9	61	0.1	36.6	11.4	356	2.70	10.4	3.6	4.6	48	0.2	0.6	0.1	49	0.70	0.067	21
1959810	Soil		0.6	30.9	13.3	59	0.1	38.0	12.8	955	3.74	10.6	4.1	5.8	48	0.1	8.0	0.2	47	0.80	0.061	27
1959811	Soil		0.7	29.2	10.8	50	<0.1	38.4	13.1	904	3.48	9.4	2.4	5.0	49	0.3	1.0	0.1	50	1.36	0.070	26
1959812	Soil		0.5	32.3	14.4	60	0.2	44.2	13.4	447	3.01	10.6	7.2	4.9	50	0.2	0.9	0.1	57	0.71	0.080	21
1959813	Soil		0.9	27.3	27.6	73	0.2	37.7	15.9	828	3.53	14.5	4.1	6.4	47	0.1	1.4	0.1	44	1.63	0.072	21
1959814	Soil		8.0	27.1	11.6	63	0.1	39.1	16.3	616	3.24	8.9	4.5	6.5	47	0.2	0.9	0.2	47	0.76	0.066	29
1959815	Soil		8.0	29.7	8.6	52	<0.1	59.6	12.9	365	2.97	8.3	0.9	4.8	40	<0.1	0.4	0.1	60	0.53	0.085	28
1959816	Soil		0.8	32.8	11.5	61	0.1	40.4	15.4	658	2.96	8.9	4.8	5.9	32	0.2	0.7	0.1	48	0.46	0.067	29
1959817	Soil		0.7	31.3	9.9	55	<0.1	38.3	11.6	453	2.71	7.7	4.0	4.7	33	0.1	0.7	<0.1	53	0.56	0.075	26
1959818	Soil		0.9	35.4	14.8	74	0.1	49.0	14.6	525	3.26	9.2	3.5	5.1	36	0.3	1.0	0.1	65	0.58	0.073	23
1959819	Soil		0.6	43.9	13.9	66	<0.1	65.0	16.5	519	3.58	10.0	5.7	4.4	52	0.2	1.2	0.1	69	1.00	0.094	23
1959820	Soil		0.5	39.1	11.5	66	0.1	59.0	15.8	618	3.41	12.9	2.6	4.7	39	0.1	1.3	<0.1	63	0.73	0.070	21
1959821	Soil		0.9	29.3	10.2	57	0.2	34.3	14.2	858	3.07	8.6	10.1	4.4	51	0.2	1.0	<0.1	49	0.83	0.067	22
1959822	Soil		0.7	26.8	12.1	51	0.2	41.6	14.2	670	3.10	10.3	1.9	2.9	48	0.1	0.7	<0.1	52	1.01	0.073	20
1959823	Soil		1.1	45.3	10.4	78	0.1	113.6	23.7	565	4.25	12.3	1.0	4.5	32	0.2	1.0	<0.1	84	0.65	0.111	29
1959824	Soil		2.3	46.0	12.3	69	0.3	47.3	14.9	558	3.53	11.5	4.0	5.6	27	0.3	1.1	0.1	63	0.50	0.076	22
1959825	Soil		1.7	50.2	9.1	84	0.1	87.5	17.8	559	3.43	12.6	5.4	4.6	25	0.3	1.0	<0.1	69	0.41	0.078	19
1959826	Soil		1.9	44.8	9.8	135	0.2	67.1	14.7	449	2.96	10.9	7.0	4.3	27	1.1	1.1	<0.1	60	0.41	0.067	18
1959827	Soil		1.4	37.3	6.3	126	0.3	94.9	29.1	1245	5.18	11.8	4.5	4.3	32	1.3	0.9	<0.1	48	0.72	0.225	32
1959828	Soil		1.5	53.9	7.4	168	0.3	87.8	19.8	634	3.78	7.8	6.8	2.9	26	1.0	8.0	<0.1	61	0.43	0.111	22
1959829	Soil		4.5	95.7	8.0	502	0.4	170.7	34.9	1192	6.45	14.7	3.3	3.5	24	4.2	2.6	<0.1	78	0.59	0.195	25
1959830	Soil		1.9	53.4	8.6	185	0.2	72.3	16.1	457	3.29	10.8	<0.5	4.0	25	0.7	1.3	<0.1	75	0.39	0.074	20

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 2 of 7 Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI13000171.1

	N	lethod	1DX15															
	Α	nalyte	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Те
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959801	Soil		49	0.66	224	0.042	<1	1.35	0.011	0.05	0.2	0.02	5.3	<0.1	<0.05	4	<0.5	<0.2
1959802	Soil		32	0.43	302	0.039	<1	1.28	0.020	0.04	0.2	0.03	5.1	<0.1	<0.05	4	<0.5	<0.2
1959803	Soil		38	0.42	228	0.046	2	1.38	0.010	0.06	0.1	0.02	5.7	<0.1	<0.05	4	<0.5	<0.2
1959804	Soil		33	0.44	271	0.044	<1	1.32	0.014	0.04	0.2	0.04	5.5	<0.1	<0.05	4	<0.5	<0.2
1959805	Soil		27	0.42	161	0.044	<1	1.36	0.009	0.03	0.1	0.01	3.6	<0.1	<0.05	4	<0.5	<0.2
1959806	Soil		31	0.44	249	0.044	<1	1.34	0.014	0.05	0.2	0.03	4.7	<0.1	<0.05	3	<0.5	<0.2
1959807	Soil		37	0.47	254	0.048	<1	1.38	0.013	0.04	0.2	0.04	5.0	<0.1	<0.05	4	<0.5	<0.2
1959808	Soil		62	0.78	206	0.045	<1	1.65	0.013	0.04	0.2	0.03	6.8	<0.1	<0.05	5	<0.5	<0.2
1959809	Soil		40	0.48	213	0.048	<1	1.45	0.013	0.04	0.2	0.04	5.1	<0.1	<0.05	5	<0.5	<0.2
1959810	Soil		37	0.48	270	0.050	2	1.43	0.013	0.04	0.2	0.06	5.8	<0.1	<0.05	4	<0.5	<0.2
1959811	Soil		37	0.76	266	0.046	<1	1.47	0.013	0.04	0.1	0.03	5.3	<0.1	<0.05	4	<0.5	<0.2
1959812	Soil		51	0.55	260	0.055	1	1.60	0.014	0.04	0.1	0.02	5.6	<0.1	<0.05	5	<0.5	<0.2
1959813	Soil		33	0.61	196	0.054	<1	1.32	0.013	0.05	0.2	0.02	4.4	<0.1	<0.05	4	<0.5	<0.2
1959814	Soil		39	0.45	249	0.049	<1	1.39	0.013	0.07	0.2	0.03	4.2	<0.1	<0.05	4	<0.5	<0.2
1959815	Soil		94	0.83	255	0.039	<1	1.76	0.010	0.04	0.1	0.04	6.2	<0.1	<0.05	6	<0.5	<0.2
1959816	Soil		45	0.51	270	0.047	<1	1.51	0.011	0.06	0.2	0.03	5.2	<0.1	<0.05	4	<0.5	<0.2
1959817	Soil		55	0.64	286	0.053	<1	1.69	0.013	0.05	0.2	0.02	5.3	<0.1	<0.05	5	<0.5	<0.2
1959818	Soil		63	0.58	326	0.074	<1	1.70	0.016	0.05	0.2	0.03	6.5	<0.1	<0.05	5	<0.5	<0.2
1959819	Soil		103	0.86	268	0.062	<1	1.75	0.018	0.05	0.2	0.03	5.7	<0.1	<0.05	5	<0.5	<0.2
1959820	Soil		65	0.56	270	0.061	<1	1.59	0.016	0.05	0.2	0.03	6.8	<0.1	<0.05	5	<0.5	<0.2
1959821	Soil		34	0.38	291	0.043	2	1.34	0.014	0.06	0.2	0.03	4.9	<0.1	<0.05	3	<0.5	<0.2
1959822	Soil		44	0.41	297	0.031	2	1.44	0.012	0.04	0.2	0.05	5.3	<0.1	<0.05	4	0.5	<0.2
1959823	Soil		130	0.88	408	0.043	<1	1.66	0.011	0.05	0.1	0.06	9.9	<0.1	<0.05	5	<0.5	<0.2
1959824	Soil		47	0.51	292	0.050	<1	1.47	0.016	0.07	0.2	0.05	6.4	<0.1	<0.05	4	<0.5	<0.2
1959825	Soil		82	0.66	300	0.046	3	1.51	0.011	0.05	0.1	0.03	7.1	<0.1	<0.05	4	<0.5	0.2
1959826	Soil		47	0.48	331	0.064	<1	1.59	0.012	0.06	0.1	0.05	5.7	<0.1	<0.05	4	<0.5	<0.2
1959827	Soil		56	0.63	381	0.027	<1	1.61	0.008	0.08	<0.1	0.06	5.4	0.4	<0.05	5	<0.5	<0.2
1959828	Soil		70	0.74	321	0.043	<1	1.46	0.009	0.05	0.1	0.05	5.1	<0.1	<0.05	4	<0.5	<0.2
1959829	Soil		52	0.43	315	0.024	<1	1.32	0.006	0.08	<0.1	0.09	7.7	<0.1	<0.05	4	<0.5	<0.2
1959830	Soil		51	0.59	416	0.055	<1	1.84	0.011	0.05	0.2	0.06	7.4	0.1	<0.05	5	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 3 of 7 Part: 1 of 2 CEDTIFICATE OF ANALYSIS

CERTIFICATI	= OF AN	IAL Y	515													VV	HI13	5000	7171	. 1	
	Method	1DX15																			
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
1959831	Soil	0.9	19.2	7.3	62	0.2	27.9	10.4	548	2.08	5.2	5.0	3.0	37	0.2	0.6	<0.1	40	0.65	0.070	17
1959832	Soil	1.1	18.5	7.3	60	0.2	22.7	8.4	327	1.77	4.9	5.6	2.7	25	0.6	0.6	<0.1	38	0.43	0.061	14
1959833	Soil	1.0	13.1	10.4	39	<0.1	12.2	4.8	131	1.94	5.8	5.6	2.1	13	<0.1	0.6	0.1	39	0.18	0.038	14
1959834	Soil	8.0	19.9	10.5	45	<0.1	16.8	6.9	201	1.88	7.7	1.3	4.2	20	<0.1	8.0	0.1	41	0.27	0.053	17
1959835	Soil	2.9	28.7	8.7	66	0.2	26.5	8.0	241	2.25	8.0	8.3	3.8	27	0.3	1.1	<0.1	46	0.35	0.056	17
1959836	Soil	6.3	38.9	12.0	90	0.2	29.4	8.4	204	2.62	10.0	7.2	2.6	25	8.0	1.5	0.2	53	0.29	0.051	17
1959837	Soil	9.0	45.1	9.1	68	0.3	31.5	6.3	196	2.37	9.7	4.5	3.5	23	0.5	1.5	0.2	42	0.30	0.051	14
1959838	Soil	65.8	85.4	25.2	240	1.6	69.2	8.2	153	5.29	39.9	12.2	5.0	58	0.9	7.2	0.3	47	0.19	0.076	10
1959839	Soil	21.4	59.0	18.3	101	0.4	102.9	8.7	421	3.73	18.5	6.7	5.2	49	0.9	3.0	0.3	52	0.17	0.047	15
1959840	Soil	16.4	83.8	16.0	148	0.6	158.1	51.8	1444	5.84	27.0	4.1	4.5	25	1.7	2.4	0.2	51	0.34	0.112	26
1959841	Soil	1.4	18.8	7.2	51	<0.1	27.2	9.4	289	3.01	9.4	1.9	2.9	13	<0.1	0.6	0.1	68	0.22	0.031	11
1959842	Soil	8.0	32.5	7.2	54	<0.1	34.9	10.7	414	2.60	9.5	5.9	3.0	21	0.1	8.0	0.1	60	0.37	0.053	15
1959843	Soil	2.1	24.4	7.1	57	<0.1	31.0	10.2	269	2.44	8.9	2.1	2.8	17	0.1	0.7	0.1	52	0.30	0.054	17
1959844	Soil	8.0	32.5	6.3	59	<0.1	49.6	17.7	896	2.87	6.6	2.4	2.8	21	0.2	0.5	<0.1	69	0.38	0.042	16
1959845	Soil	1.8	31.0	7.4	67	0.1	44.0	12.7	563	2.86	9.6	8.3	3.5	20	0.3	0.7	0.1	65	0.35	0.053	15
1959846	Soil	7.3	54.5	9.7	88	0.2	57.1	14.7	772	2.87	17.2	2.6	4.9	16	0.7	1.2	0.2	45	0.19	0.051	12
1959847	Soil	3.8	79.1	16.6	186	0.5	93.4	21.6	1153	3.56	15.3	4.3	5.8	17	2.2	1.3	0.2	49	0.34	0.104	29
1959848	Soil	17.2	63.1	21.3	117	0.5	66.7	12.9	327	3.81	22.7	7.6	6.4	33	0.7	2.8	0.3	48	0.17	0.065	18
1959849	Soil	8.0	85.8	6.9	39	0.2	69.3	25.4	762	4.46	31.2	4.6	2.3	125	0.1	0.6	<0.1	51	7.32	0.135	20
1959850	Soil	8.0	86.5	5.4	33	0.3	54.6	20.9	567	3.59	26.1	5.9	1.4	154	0.1	0.5	<0.1	36	11.53	0.152	14
1959851	Soil	8.0	21.4	8.4	40	0.1	36.1	10.9	323	2.57	13.3	1.7	4.5	16	<0.1	0.6	0.2	47	0.29	0.032	16
1959852	Soil	8.0	21.6	8.7	40	0.1	35.9	11.0	327	2.64	13.4	2.0	4.3	16	<0.1	0.6	0.1	50	0.29	0.034	16
1959853	Soil	0.8	17.9	10.4	36	0.1	31.4	11.6	347	2.54	12.5	2.4	4.0	15	<0.1	0.5	0.4	53	0.29	0.031	15
1959854	Soil	0.7	45.5	26.0	53	0.5	40.0	19.2	444	3.57	13.0	1.6	3.0	16	<0.1	8.0	0.4	89	0.41	0.021	12
1959855	Soil	0.8	41.0	31.9	53	0.3	46.6	16.4	409	3.08	14.5	8.0	3.2	14	<0.1	0.9	1.8	89	0.35	0.030	14
1959856	Soil	0.7	25.1	9.4	41	<0.1	32.4	12.7	307	2.63	15.7	1.0	2.6	14	<0.1	8.0	0.3	68	0.29	0.016	12
1959857	Soil	0.9	36.0	11.3	36	<0.1	38.3	14.5	360	3.49	22.9	3.5	2.9	15	<0.1	8.0	2.6	85	0.27	0.029	13
1959858	Soil	0.7	27.8	14.2	35	<0.1	72.7	13.7	273	2.83	18.6	2.7	3.0	17	<0.1	0.7	1.6	70	0.28	0.035	14
1959859	Soil	1.0	33.9	12.4	44	<0.1	63.7	15.6	402	3.19	17.9	9.3	3.5	17	<0.1	0.8	0.7	68	0.28	0.032	15
1959860	Soil	0.6	20.3	7.3	31	<0.1	62.9	12.6	251	2.35	11.1	1.7	2.4	16	<0.1	0.5	0.4	56	0.28	0.035	10

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 3 of 7 Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI13000171.1

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	s	Ga	Se	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959831 Soil		34	0.59	208	0.048	<1	1.17	0.011	0.04	0.2	0.05	2.8	<0.1	<0.05	3	<0.5	<0.2
1959832 Soil		28	0.47	216	0.049	<1	1.06	0.011	0.04	0.3	0.03	2.5	<0.1	<0.05	4	8.0	<0.2
1959833 Soil		21	0.28	146	0.030	<1	1.24	0.008	0.05	0.1	0.01	1.7	<0.1	<0.05	4	<0.5	<0.2
1959834 Soil		24	0.33	301	0.043	<1	1.20	0.010	0.05	0.3	0.04	3.3	<0.1	<0.05	3	<0.5	<0.2
1959835 Soil		34	0.47	296	0.054	<1	1.34	0.011	0.04	0.2	0.15	4.1	0.1	<0.05	4	<0.5	<0.2
1959836 Soil		36	0.47	283	0.041	<1	1.58	0.011	0.04	0.2	0.14	3.1	0.2	<0.05	4	1.1	<0.2
1959837 Soil		32	0.48	269	0.034	2	1.23	0.011	0.04	0.1	0.20	3.3	0.2	<0.05	4	1.5	<0.2
1959838 Soil		41	0.37	234	0.010	2	0.87	0.047	0.09	<0.1	0.86	3.1	0.7	0.36	4	9.9	0.3
1959839 Soil		55	0.87	315	0.023	2	1.49	0.014	0.06	0.1	0.47	4.1	0.3	0.09	4	2.3	<0.2
1959840 Soil		63	1.40	230	0.014	1	1.84	0.006	0.04	<0.1	0.19	4.2	0.2	<0.05	5	3.0	<0.2
1959841 Soil		45	0.52	204	0.050	2	1.96	0.006	0.03	0.2	0.03	3.3	0.1	<0.05	6	<0.5	<0.2
1959842 Soil		43	0.54	306	0.064	1	1.61	0.009	0.04	0.2	0.06	5.0	<0.1	<0.05	4	<0.5	<0.2
1959843 Soil		34	0.53	241	0.037	2	1.38	0.009	0.04	0.2	0.06	4.2	<0.1	<0.05	4	<0.5	<0.2
1959844 Soil		58	0.75	308	0.065	2	1.83	0.008	0.05	0.1	0.06	5.9	<0.1	<0.05	5	<0.5	<0.2
1959845 Soil		48	0.80	331	0.068	1	1.64	0.010	0.05	0.1	0.06	6.1	<0.1	<0.05	5	<0.5	<0.2
1959846 Soil		32	0.65	233	0.031	<1	1.28	0.006	0.05	0.1	0.14	4.2	0.1	<0.05	3	1.1	<0.2
1959847 Soil		39	1.06	271	0.007	2	1.61	0.004	0.05	<0.1	0.33	3.2	0.2	<0.05	4	0.6	<0.2
1959848 Soil		43	0.89	222	0.023	1	1.46	0.013	0.05	0.1	0.35	3.3	0.2	0.07	4	2.8	<0.2
1959849 Soil		76	1.29	501	0.016	2	1.48	0.007	0.09	<0.1	0.04	6.5	<0.1	<0.05	4	0.5	<0.2
1959850 Soil		58	1.05	597	0.013	2	1.11	0.006	0.08	<0.1	0.05	4.9	<0.1	0.05	4	8.0	<0.2
1959851 Soil		50	0.64	158	0.037	2	1.25	0.008	0.07	0.2	0.02	4.1	<0.1	<0.05	4	<0.5	<0.2
1959852 Soil		51	0.59	159	0.035	2	1.22	0.008	0.08	0.2	0.02	4.0	<0.1	<0.05	4	<0.5	<0.2
1959853 Soil		44	0.60	209	0.030	2	1.43	0.008	0.08	0.1	0.02	3.3	<0.1	<0.05	4	<0.5	<0.2
1959854 Soil		53	1.27	298	0.073	2	2.17	0.008	0.07	<0.1	0.02	7.6	<0.1	<0.05	6	0.7	<0.2
1959855 Soil		96	1.08	289	0.058	1	2.16	0.007	0.11	<0.1	0.02	7.1	<0.1	<0.05	6	<0.5	0.2
1959856 Soil		59	0.84	274	0.040	1	1.68	0.009	0.05	0.1	0.02	4.9	<0.1	<0.05	4	<0.5	<0.2
1959857 Soil		54	0.97	294	0.055	<1	1.74	0.012	0.05	0.1	0.02	6.2	<0.1	<0.05	5	<0.5	0.2
1959858 Soil		75	0.89	346	0.030	1	1.59	0.016	0.07	0.1	0.01	5.4	<0.1	<0.05	5	<0.5	0.2
1959859 Soil		68	0.79	418	0.032	1	1.64	0.016	0.07	0.1	0.02	5.5	<0.1	<0.05	5	<0.5	<0.2
1959860 Soil		58	0.58	288	0.034	1	1.26	0.012	0.04	0.2	0.01	3.3	<0.1	<0.05	4	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 4 of 7 Part: 1 of 2

CERTIF	ICATE O	FAN	IALY	'SIS													WI	HI13	8000	171	.1	
		Method	1DX15																			
		Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
1959861	Soil		0.8	35.6	13.2	39	<0.1	44.8	14.7	264	3.03	14.5	2.9	3.2	16	<0.1	0.7	0.6	74	0.23	0.029	14
1959862	Soil		0.8	29.0	9.4	44	0.1	103.5	17.0	395	2.56	15.4	2.4	3.4	22	0.1	1.0	0.2	56	0.38	0.039	15
1959863	Soil		1.0	27.8	10.6	43	0.1	79.7	13.8	324	2.63	16.9	2.6	4.5	21	0.1	1.3	0.2	56	0.41	0.032	19
1959864	Soil		1.5	28.1	19.9	65	0.2	34.2	9.5	328	2.83	19.7	2.0	4.7	35	0.3	2.3	0.3	55	0.62	0.089	22
1959865	Soil		6.8	33.8	19.3	105	<0.1	48.8	22.9	897	3.44	32.2	1.7	7.5	20	8.0	4.4	0.3	54	0.22	0.050	19
1959866	Soil		2.1	27.5	12.6	62	0.1	25.8	8.1	237	2.94	31.4	2.4	6.2	22	0.2	1.4	0.3	48	0.31	0.035	19
1959867	Soil		4.3	62.5	23.6	180	0.4	59.9	16.2	557	4.24	53.1	5.9	8.6	25	1.0	4.3	0.4	44	0.41	0.070	31
1959868	Soil		0.7	28.6	11.8	37	<0.1	18.0	11.0	350	2.49	10.2	1.4	3.7	16	<0.1	0.9	0.2	58	0.35	0.015	15
1959869	Soil		0.6	24.5	11.5	24	<0.1	14.0	8.3	276	1.84	10.0	10.5	5.0	13	<0.1	1.1	0.4	42	0.26	0.014	18
1959870	Soil		0.7	42.6	11.8	41	<0.1	26.5	15.4	528	2.99	9.5	4.8	4.2	16	<0.1	8.0	0.2	66	0.46	0.021	15
1959871	Soil		1.0	34.7	9.0	41	<0.1	22.4	10.1	348	2.42	9.2	3.6	3.8	19	<0.1	0.7	0.1	67	0.46	0.022	14
1959872	Soil		0.7	44.1	9.3	44	<0.1	22.7	11.8	352	2.54	9.4	4.1	3.5	17	<0.1	8.0	0.2	69	0.48	0.026	14
1959873	Soil		0.5	65.4	15.6	43	<0.1	23.2	11.7	317	2.60	10.3	0.6	3.0	25	0.2	1.0	0.5	51	0.76	0.040	15
1959874	Soil		0.7	49.8	25.1	46	<0.1	20.3	10.7	359	2.31	9.3	5.2	3.8	26	<0.1	1.1	0.3	46	0.54	0.038	16
1959875	Soil		0.3	26.5	12.3	49	<0.1	18.5	8.1	249	2.18	8.6	7.8	4.3	17	0.2	1.0	0.2	47	0.29	0.031	16
1959876	Soil		0.6	32.1	23.5	47	0.1	19.4	8.1	261	2.18	9.5	6.3	4.7	21	0.2	1.1	0.2	45	0.44	0.033	18
1959877	Soil		1.1	55.7	31.1	53	0.3	22.2	13.6	497	2.76	12.5	6.7	5.0	24	0.2	1.1	0.3	48	0.54	0.038	20
1959878	Soil		0.8	42.9	29.2	48	<0.1	18.9	11.3	419	2.41	9.7	3.6	5.1	21	0.3	1.3	0.2	51	0.46	0.032	19
1959879	Soil		1.1	39.2	49.1	53	0.4	23.5	9.5	303	2.46	9.6	2.4	4.9	23	0.2	1.0	0.2	51	0.42	0.038	18
1959880	Soil		1.0	31.1	21.3	57	0.1	24.6	7.9	253	2.09	8.1	3.5	3.7	33	0.2	0.9	0.2	43	0.58	0.041	16
1959881	Soil		2.2	42.0	16.6	72	0.2	27.9	10.1	370	2.33	11.1	25.1	4.2	33	0.2	1.6	0.1	47	0.63	0.048	17
1959882	Soil		4.2	43.7	16.0	101	0.3	43.5	12.8	523	2.50	18.5	5.8	4.2	40	0.7	3.2	0.2	45	0.77	0.073	18
1959883	Soil		3.1	41.9	13.7	75	0.3	35.4	9.9	352	2.37	17.1	5.4	3.6	41	0.2	2.5	0.1	46	0.80	0.064	17
1959884	Soil		1.6	43.9	14.4	80	0.2	41.4	13.6	402	2.22	15.8	3.3	3.3	44	0.4	1.8	0.1	40	1.00	0.067	20
1959901	Silt		0.7	30.3	10.7	45	<0.1	25.7	12.6	330	2.64	8.4	3.1	4.0	24	<0.1	0.6	0.2	62	0.32	0.043	16
1959902	Silt		0.8	33.5	15.9	41	<0.1	23.0	10.1	280	2.27	6.9	1.7	3.2	22	<0.1	0.5	0.2	57	0.28	0.026	16
1959903	Silt		0.9	32.2	11.3	49	<0.1	21.2	10.4	315	2.51	7.5	1.1	3.8	21	<0.1	0.6	0.1	64	0.33	0.033	18
1959904	Silt		0.6	23.9	9.3	44	<0.1	18.4	9.3	230	2.31	6.4	15.4	4.5	19	<0.1	0.6	0.1	58	0.25	0.019	18
1959905	Silt		8.0	19.8	9.6	44	<0.1	18.7	7.8	229	2.21	6.5	<0.5	3.6	18	0.1	0.5	0.1	56	0.30	0.039	16
1959906	Silt		0.8	17.6	9.2	52	<0.1	17.5	7.1	197	2.13	5.6	2.9	4.2	19	<0.1	0.4	<0.1	51	0.30	0.046	18

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

4 of 7 Page:

Part: 2 of 2

WHI13000171.1

CERTIFICATE OF ANALYSIS

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	ΑI	Na	K	w	Hg	Sc	TI	s	Ga	Se	Te
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959861 Soil		57	0.65	294	0.044	<1	1.73	0.012	0.04	0.1	0.02	4.7	<0.1	<0.05	5	<0.5	0.2
1959862 Soil		86	0.94	344	0.027	2	1.39	0.014	0.05	0.2	0.04	5.8	<0.1	<0.05	4	0.7	<0.2
1959863 Soil		78	0.66	388	0.021	1	1.48	0.014	0.05	0.2	0.03	6.1	<0.1	<0.05	4	<0.5	<0.2
1959864 Soil		39	0.58	212	0.019	1	1.46	0.019	0.06	0.2	0.04	4.4	<0.1	0.06	5	1.0	<0.2
1959865 Soil		36	0.55	189	0.015	1	1.58	0.010	0.06	<0.1	0.01	3.3	<0.1	<0.05	5	0.7	<0.2
1959866 Soil		33	0.62	201	0.019	1	1.55	0.014	0.06	<0.1	0.02	3.5	<0.1	<0.05	5	0.7	<0.2
1959867 Soil		34	0.69	217	0.004	1	1.66	0.011	0.08	<0.1	0.02	4.9	<0.1	0.05	5	2.1	0.2
1959868 Soil		29	0.55	346	0.029	<1	1.50	0.010	0.06	0.1	0.02	5.4	<0.1	<0.05	4	<0.5	<0.2
1959869 Soil		21	0.35	309	0.017	<1	0.94	0.010	0.08	0.1	0.02	4.1	<0.1	<0.05	2	<0.5	<0.2
1959870 Soil		40	0.84	308	0.027	1	1.73	0.011	0.06	0.1	0.03	7.3	<0.1	<0.05	4	<0.5	<0.2
1959871 Soil		37	0.55	284	0.054	<1	1.76	0.013	0.05	0.1	0.03	5.8	<0.1	<0.05	5	0.6	<0.2
1959872 Soil		37	0.75	236	0.045	<1	1.55	0.012	0.05	0.1	0.04	6.6	<0.1	<0.05	4	<0.5	<0.2
1959873 Soil		38	0.76	300	0.021	<1	1.43	0.012	0.04	0.1	0.01	6.2	<0.1	<0.05	4	0.8	<0.2
1959874 Soil		28	0.49	271	0.035	<1	1.22	0.015	0.04	0.2	0.03	5.2	<0.1	<0.05	3	<0.5	<0.2
1959875 Soil		33	0.54	272	0.035	<1	1.16	0.011	0.04	0.2	0.02	4.3	<0.1	<0.05	3	<0.5	<0.2
1959876 Soil		29	0.47	289	0.034	1	1.17	0.016	0.05	0.2	0.04	5.7	<0.1	<0.05	4	<0.5	<0.2
1959877 Soil		34	0.61	284	0.031	1	1.34	0.012	0.04	<0.1	0.02	5.8	<0.1	<0.05	4	<0.5	<0.2
1959878 Soil		36	0.53	255	0.036	<1	1.31	0.011	0.04	0.1	0.03	6.1	<0.1	<0.05	4	<0.5	<0.2
1959879 Soil		38	0.53	301	0.049	<1	1.34	0.012	0.05	0.2	0.05	5.1	<0.1	<0.05	4	<0.5	<0.2
1959880 Soil		33	0.50	376	0.035	<1	1.24	0.013	0.05	0.1	0.04	4.3	<0.1	<0.05	3	<0.5	<0.2
1959881 Soil		35	0.56	476	0.036	<1	1.35	0.013	0.05	0.2	0.05	4.2	<0.1	<0.05	4	<0.5	<0.2
1959882 Soil		35	0.55	359	0.043	2	1.35	0.014	0.05	0.1	0.04	3.8	<0.1	<0.05	3	<0.5	<0.2
1959883 Soil		31	0.54	374	0.038	<1	1.36	0.015	0.05	0.2	0.02	4.3	0.1	<0.05	4	0.8	<0.2
1959884 Soil		31	0.52	368	0.037	<1	1.24	0.013	0.05	0.1	0.03	4.4	<0.1	<0.05	3	<0.5	<0.2
1959901 Silt		56	0.78	304	0.056	<1	1.87	0.013	0.05	0.1	0.02	4.9	<0.1	<0.05	5	<0.5	<0.2
1959902 Silt		61	0.64	292	0.046	1	1.54	0.011	0.06	0.1	0.03	5.0	<0.1	<0.05	4	<0.5	<0.2
1959903 Silt		42	0.55	340	0.052	<1	1.55	0.013	0.06	0.2	0.04	6.0	<0.1	<0.05	4	<0.5	<0.2
1959904 Silt		41	0.53	281	0.058	<1	1.65	0.011	0.04	0.1	<0.01	4.7	<0.1	<0.05	4	<0.5	<0.2
1959905 Silt		37	0.47	266	0.050	<1	1.61	0.010	0.06	0.2	0.02	3.5	<0.1	<0.05	5	<0.5	<0.2
1959906 Silt		35	0.46	271	0.046	<1	1.40	0.011	0.05	0.2	0.02	3.8	<0.1	<0.05	4	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 5 of 7 Part: 1 of 2 CERTIFICATE OF ANALYSIS

CENTITIONIE	Method 10X15															VVI			1/1	. !	
	Method	1DX15																			
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
1959907 Silt		0.6	18.3	8.4	41	<0.1	17.1	7.1	179	1.98	4.9	12.7	4.0	20	<0.1	0.5	0.1	48	0.30	0.044	17
1959908 Silt		0.5	19.9	8.1	47	<0.1	19.0	7.9	217	2.25	7.2	1.9	4.0	19	0.2	0.6	<0.1	53	0.29	0.050	16
1959909 Silt		0.5	20.6	8.7	45	<0.1	19.3	8.0	253	2.13	5.1	<0.5	4.1	21	0.2	0.5	0.1	52	0.37	0.041	16
1959910 Silt		0.6	26.8	7.8	55	<0.1	18.9	10.2	249	2.32	4.9	8.0	4.3	24	<0.1	0.6	0.1	58	0.46	0.055	16
1959911 Silt		0.3	24.4	8.4	51	<0.1	20.4	10.8	360	2.09	4.7	1.3	2.5	35	<0.1	0.5	0.1	49	0.78	0.057	17
1959912 Silt		8.0	22.9	9.6	53	<0.1	21.1	11.7	554	2.29	6.4	1.5	3.4	33	0.2	0.5	0.1	53	0.76	0.057	15
1959913 Silt		0.2	16.1	7.5	56	<0.1	22.2	7.8	324	1.75	4.2	5.9	2.8	31	<0.1	0.3	<0.1	41	0.71	0.064	14
1959914 Silt		8.0	42.1	13.4	64	<0.1	51.9	20.7	267	3.97	12.4	5.9	12.5	46	<0.1	0.6	0.3	16	1.69	0.078	47
1959915 Silt		0.4	46.9	7.4	43	0.1	69.2	26.3	324	3.87	16.6	<0.5	17.7	123	<0.1	0.5	0.3	13	2.42	0.079	56
1959916 Silt		0.3	28.1	7.5	22	<0.1	49.0	20.7	501	2.78	12.5	2.1	7.2	87	<0.1	0.4	0.3	10	2.23	0.057	48
1959917 Silt		0.7	29.9	7.8	29	<0.1	36.6	12.7	316	2.66	8.4	2.9	3.6	92	<0.1	0.5	0.2	14	2.51	0.071	34
1959918 Silt		0.5	35.1	12.1	66	0.1	52.2	18.1	480	3.39	16.4	4.4	5.9	34	0.2	1.0	0.1	38	1.24	0.110	24
1959919 Silt		0.4	42.7	13.5	80	0.1	58.6	19.1	569	3.79	8.0	2.4	6.3	33	0.2	0.6	0.2	54	1.12	0.110	29
1959920 Silt		1.3	44.4	12.6	77	<0.1	72.1	25.1	819	5.11	16.4	1.9	9.5	33	<0.1	1.0	0.1	51	1.84	0.143	44
1959921 Silt		0.7	36.8	14.9	78	<0.1	57.2	16.8	601	2.99	6.4	<0.5	5.2	29	0.2	0.5	0.2	46	0.66	0.074	21
1959922 Silt		0.5	52.9	20.9	100	0.1	76.1	21.3	856	4.00	8.6	<0.5	8.5	36	0.5	0.6	0.4	52	0.89	0.097	29
1959923 Silt		0.3	49.5	12.8	74	<0.1	55.6	15.1	345	3.25	6.5	2.7	4.2	23	0.4	0.6	0.1	59	0.43	0.093	17
1959924 Silt		0.6	45.8	13.0	66	<0.1	46.8	13.9	321	3.03	7.0	1.5	4.6	24	<0.1	0.7	0.1	58	0.48	0.083	18
1959925 Silt		0.7	25.6	9.2	50	<0.1	30.3	11.1	385	2.32	8.6	3.6	3.7	19	0.1	0.5	0.1	49	1.03	0.057	15
1959926 Silt		0.7	12.6	9.7	52	<0.1	24.5	11.3	374	2.56	6.5	3.9	2.6	14	0.1	0.4	0.1	66	0.38	0.025	12
1959927 Silt		0.7	20.6	10.3	51	0.1	30.2	10.2	392	2.44	7.8	5.0	2.7	25	0.2	0.4	0.1	57	1.03	0.062	17
1959928 Silt		0.9	29.0	14.2	70	<0.1	46.8	15.9	433	3.13	8.4	3.5	4.2	23	0.2	0.5	0.1	67	1.39	0.099	19
1959929 Silt		0.7	25.6	8.8	51	<0.1	26.7	9.8	480	2.27	8.8	8.4	3.7	27	0.2	0.6	0.1	48	2.73	0.065	14
1959930 Silt		1.3	42.1	11.1	61	<0.1	50.3	12.6	294	3.68	9.9	6.0	4.8	19	<0.1	8.0	0.2	94	0.33	0.018	24
1959931 Silt		1.1	26.0	10.1	51	<0.1	34.7	11.4	245	3.03	9.4	3.4	4.3	15	<0.1	0.5	0.1	83	0.20	0.016	20
1959932 Silt		1.0	22.0	10.6	49	<0.1	27.2	9.8	199	3.09	10.2	2.3	4.4	15	<0.1	0.6	0.2	83	0.19	0.015	17
1959933 Silt		0.9	25.3	10.0	46	<0.1	32.5	11.8	271	3.00	8.1	3.7	4.0	15	<0.1	0.5	0.1	83	0.25	0.016	18
1959934 Silt		1.3	20.0	10.1	47	<0.1	29.3	11.5	233	3.11	9.4	1.7	3.3	14	<0.1	0.5	0.1	81	0.21	0.016	13
1959935 Silt		1.2	25.8	12.2	46	<0.1	30.9	10.0	228	2.84	9.3	3.8	3.7	15	<0.1	0.6	0.1	72	0.24	0.014	18
1959936 Silt		0.9	32.8	11.1	49	<0.1	33.6	10.3	309	2.67	8.8	6.1	3.7	18	<0.1	0.6	0.1	67	0.32	0.020	19

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

5 of 7

Page:

CERTIFICATE OF ANALYSIS

WHI13000171.1

Part: 2 of 2

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959907 Silt		32	0.44	297	0.048	<1	1.30	0.013	0.05	0.2	0.02	4.0	<0.1	<0.05	3	0.5	<0.2
1959908 Silt		36	0.47	295	0.044	<1	1.41	0.013	0.06	0.3	0.02	4.4	<0.1	<0.05	4	<0.5	<0.2
1959909 Silt		35	0.48	319	0.045	<1	1.50	0.014	0.05	0.2	0.02	4.2	<0.1	<0.05	4	<0.5	<0.2
1959910 Silt		38	0.57	335	0.045	<1	1.68	0.015	0.06	0.2	0.04	5.9	<0.1	<0.05	4	<0.5	<0.2
1959911 Silt		37	0.52	383	0.032	<1	1.51	0.015	0.04	0.2	<0.01	5.2	<0.1	<0.05	4	<0.5	<0.2
1959912 Silt		39	0.54	393	0.031	<1	1.47	0.013	0.04	0.2	0.03	4.7	<0.1	<0.05	4	<0.5	<0.2
1959913 Silt		26	0.50	202	0.061	<1	1.11	0.019	0.05	0.3	0.03	3.4	<0.1	<0.05	3	<0.5	<0.2
1959914 Silt		25	0.16	54	0.004	<1	0.56	0.003	0.06	<0.1	0.03	3.5	<0.1	<0.05	1	<0.5	<0.2
1959915 Silt		41	0.67	110	0.002	<1	0.80	0.005	0.10	<0.1	0.03	3.2	<0.1	<0.05	2	<0.5	<0.2
1959916 Silt		14	0.32	86	0.002	<1	0.57	0.005	0.07	<0.1	0.02	2.6	<0.1	<0.05	1	<0.5	<0.2
1959917 Silt		18	0.26	93	0.004	1	0.68	0.008	0.05	<0.1	0.02	2.3	<0.1	<0.05	2	<0.5	<0.2
1959918 Silt		44	0.65	176	0.045	<1	1.08	0.009	0.07	0.1	0.04	4.5	<0.1	<0.05	4	<0.5	<0.2
1959919 Silt		63	0.74	185	0.060	3	1.33	0.009	0.09	<0.1	0.03	5.3	<0.1	<0.05	5	<0.5	<0.2
1959920 Silt		55	0.42	124	0.029	2	0.84	0.005	0.10	<0.1	0.05	5.8	<0.1	<0.05	2	<0.5	<0.2
1959921 Silt		59	0.77	185	0.079	1	1.40	0.008	0.07	<0.1	0.04	4.6	<0.1	<0.05	5	<0.5	<0.2
1959922 Silt		70	1.06	219	0.077	3	1.77	0.008	0.10	<0.1	0.06	5.1	0.1	<0.05	6	<0.5	<0.2
1959923 Silt		69	0.89	220	0.104	3	1.79	0.012	0.08	0.2	<0.01	4.3	0.1	<0.05	6	<0.5	<0.2
1959924 Silt		56	0.80	237	0.093	<1	1.59	0.013	0.08	0.1	0.04	4.9	<0.1	<0.05	5	<0.5	<0.2
1959925 Silt		36	0.86	226	0.049	2	1.19	0.014	0.05	0.2	0.04	4.5	<0.1	<0.05	4	<0.5	<0.2
1959926 Silt		39	0.51	237	0.043	2	1.70	0.010	0.04	0.2	0.01	3.2	0.1	<0.05	5	<0.5	<0.2
1959927 Silt		38	0.69	253	0.047	3	1.37	0.017	0.05	0.3	0.04	4.0	<0.1	<0.05	4	<0.5	<0.2
1959928 Silt		61	1.30	239	0.076	2	1.69	0.016	0.10	0.2	0.04	5.1	0.1	<0.05	5	<0.5	<0.2
1959929 Silt		29	1.79	180	0.058	2	1.12	0.019	0.06	0.3	0.04	4.0	<0.1	<0.05	4	<0.5	<0.2
1959930 Silt		75	0.71	385	0.094	2	2.53	0.013	0.06	0.2	0.10	9.4	<0.1	<0.05	8	0.6	<0.2
1959931 Silt		55	0.59	308	0.073	1	2.31	0.011	0.04	0.1	0.03	5.9	0.1	<0.05	6	<0.5	<0.2
1959932 Silt		50	0.52	270	0.070	1	2.44	0.008	0.05	0.1	0.03	5.1	0.1	<0.05	7	<0.5	<0.2
1959933 Silt		54	0.56	278	0.077	1	2.24	0.009	0.04	<0.1	0.02	5.6	0.1	<0.05	7	<0.5	<0.2
1959934 Silt		51	0.53	240	0.069	1	2.38	0.008	0.05	0.1	0.01	4.1	0.1	<0.05	6	<0.5	<0.2
1959935 Silt		49	0.51	269	0.067	1	2.13	0.010	0.05	0.1	0.04	5.3	0.1	<0.05	6	<0.5	<0.2
1959936 Silt		44	0.53	394	0.064	2	1.75	0.013	0.05	0.1	0.06	6.4	<0.1	<0.05	5	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 6 of 7 Part: 1 of 2

CERTIFIC	CATE O	F AN	IALY	SIS													W	HI13	3000	171	.1	
		Method	1DX15																			
		Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
1959937	Silt		1.3	37.1	16.6	61	<0.1	44.0	14.1	505	3.26	10.7	5.0	4.5	21	<0.1	0.7	0.2	79	0.47	0.037	21
1959938	Silt		1.1	23.0	11.7	47	<0.1	33.4	11.5	420	2.88	7.9	4.0	2.7	16	<0.1	0.4	0.1	78	0.31	0.038	18
1959939	Silt		1.0	33.9	12.5	58	<0.1	43.5	12.7	416	3.08	10.6	3.6	4.0	18	<0.1	0.7	0.1	78	0.43	0.032	21
1959940	Silt		0.7	31.5	9.1	47	<0.1	30.6	9.7	284	2.67	10.0	3.4	4.1	18	<0.1	0.6	0.1	65	0.32	0.023	18
1959941	Silt		0.8	22.1	10.3	49	<0.1	29.9	9.4	429	2.13	8.9	2.2	3.4	26	0.2	0.7	0.3	52	0.52	0.050	13
1959942	Silt		1.0	31.8	43.1	62	0.5	40.9	13.1	397	3.08	17.6	295.2	4.4	55	0.2	0.9	1.4	66	1.70	0.045	21
1959943	Silt		1.1	41.8	44.2	60	0.3	57.2	18.7	410	3.62	20.3	13.2	5.0	46	0.3	1.3	1.3	64	1.30	0.059	24
1959944	Silt		1.1	44.8	52.8	51	0.2	48.3	17.9	388	3.27	20.5	17.4	5.6	59	0.1	0.7	1.7	67	2.08	0.042	18
1959945	Silt		1.1	43.7	444.4	279	0.5	76.5	29.3	586	4.17	48.2	14.2	5.8	40	1.3	1.1	8.7	74	1.15	0.065	20
1959946	Silt		1.2	45.7	81.3	57	0.2	41.8	16.6	420	4.14	23.2	6.0	7.6	46	0.1	8.0	1.4	72	0.56	0.045	22
1959947	Silt		1.2	31.2	48.4	53	<0.1	36.1	16.3	340	3.20	15.9	4.6	3.6	29	0.1	0.7	0.7	78	0.51	0.028	13
1959948	Silt		1.4	33.7	61.0	55	0.1	34.6	14.1	308	3.56	12.7	3.7	4.7	36	0.1	0.6	8.0	74	0.45	0.042	16
1959949	Silt		1.3	58.5	49.3	48	0.2	37.9	19.7	453	3.91	12.3	3.7	2.6	36	0.1	0.6	0.9	102	0.65	0.044	11
1959950	Silt		1.0	32.1	13.7	57	0.1	60.2	11.9	333	2.80	11.0	6.8	3.2	33	0.2	0.7	0.3	67	0.64	0.066	13
1959951	Silt		0.6	30.4	15.9	46	0.2	280.9	22.3	378	2.71	9.9	39.7	2.6	32	0.2	0.6	0.4	56	0.70	0.045	12
1959952	Silt		0.7	31.9	12.2	53	0.2	335.8	23.0	281	2.73	14.7	3.5	3.1	37	0.3	1.0	0.3	47	0.94	0.051	15
1959953	Silt		0.9	26.8	9.8	54	0.2	241.5	17.7	283	2.69	11.9	3.2	3.6	25	0.2	0.9	0.2	50	0.58	0.054	15
1959954	Silt		1.9	35.3	13.4	52	0.3	29.1	7.3	219	2.25	16.4	3.6	2.8	48	0.2	1.1	0.3	51	1.27	0.056	15
1959955	Silt		1.4	34.8	12.8	53	0.2	31.6	9.3	338	2.41	14.0	4.3	3.4	38	0.3	0.7	0.4	60	0.79	0.054	15
1959956	Silt		1.1	24.3	15.2	49	0.2	24.2	7.6	285	2.52	11.6	3.7	2.9	42	0.2	0.8	0.3	58	1.03	0.067	13
1959957	Silt		1.3	26.4	17.6	50	0.2	25.5	7.8	295	2.54	15.5	4.3	3.1	64	0.2	0.9	0.4	53	2.47	0.054	14
1959958	Silt		3.4	26.1	22.4	47	0.5	20.5	6.3	217	2.84	16.0	7.0	3.5	26	0.1	0.8	0.7	55	0.29	0.041	14
1959959	Silt		0.6	40.9	9.7	44	0.1	22.5	9.5	366	2.21	9.0	3.0	2.5	35	0.3	0.9	0.2	56	1.00	0.049	14
1959960	Silt		0.9	38.7	10.4	45	0.1	23.4	10.1	311	2.57	9.5	2.2	2.9	33	0.2	0.9	0.2	66	0.84	0.040	13
1959961	Silt		1.4	31.6	27.1	54	0.2	16.3	7.9	260	3.92	17.4	1.9	5.8	31	0.1	1.6	0.6	41	0.20	0.047	9
1959962	Silt		1.0	53.3	17.5	51	0.1	28.4	15.1	465	3.65	13.9	2.6	5.5	38	0.2	1.1	0.5	53	0.53	0.059	11
1959963	Silt		0.7	46.7	11.1	46	<0.1	22.9	12.6	407	2.70	10.3	2.7	4.0	32	0.1	8.0	0.2	60	0.53	0.039	13
1959964	Silt		1.0	67.5	19.0	51	0.1	23.8	17.1	499	2.99	11.0	2.2	4.4	40	0.2	1.3	0.4	66	0.65	0.044	13
1959965	Silt		1.3	25.7	30.6	37	0.1	16.3	9.1	269	2.13	9.8	1.8	4.8	26	0.2	0.9	0.6	40	0.42	0.030	15
1959966	Silt		1.4	52.0	20.4	51	<0.1	32.0	14.3	457	3.10	16.3	3.7	7.8	23	<0.1	1.8	0.3	64	0.34	0.023	25

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: August 02, 2013

Page: 6 of 7 Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI13000171.1

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959937 Silt		56	0.62	417	0.070	2	2.10	0.016	0.07	0.2	0.07	6.8	<0.1	<0.05	6	<0.5	<0.2
1959938 Silt		51	0.53	293	0.066	2	2.13	0.010	0.05	0.1	0.02	4.5	0.1	<0.05	6	<0.5	<0.2
1959939 Silt		52	0.65	377	0.069	2	2.01	0.014	0.07	0.2	0.05	6.6	0.1	<0.05	6	<0.5	<0.2
1959940 Silt		40	0.53	381	0.061	1	1.77	0.012	0.05	0.1	0.06	6.4	<0.1	<0.05	5	<0.5	<0.2
1959941 Silt		27	0.49	184	0.048	2	0.94	0.017	0.06	0.2	0.02	3.4	<0.1	<0.05	3	<0.5	<0.2
1959942 Silt		48	0.80	265	0.056	2	1.43	0.023	0.07	0.2	0.03	4.9	<0.1	0.05	5	<0.5	0.3
1959943 Silt		58	0.72	309	0.047	3	1.50	0.024	0.11	0.1	0.03	6.3	<0.1	0.07	5	<0.5	0.4
1959944 Silt		56	0.88	249	0.090	2	1.87	0.024	0.08	0.1	0.03	6.0	0.1	<0.05	6	<0.5	0.4
1959945 Silt		102	1.36	180	0.092	2	2.15	0.032	0.12	0.1	0.02	6.5	0.2	0.06	6	<0.5	5.2
1959946 Silt		58	0.81	250	0.096	2	2.15	0.045	0.15	0.2	0.02	6.5	0.1	0.17	7	<0.5	0.5
1959947 Silt		48	0.70	282	0.083	2	2.08	0.025	0.08	0.1	0.03	6.0	<0.1	0.05	6	<0.5	0.2
1959948 Silt		50	0.64	246	0.075	1	1.85	0.039	0.10	0.1	0.01	4.4	<0.1	0.15	6	<0.5	0.3
1959949 Silt		46	0.89	393	0.103	2	2.36	0.051	0.09	<0.1	0.02	8.7	0.1	0.15	7	8.0	<0.2
1959950 Silt		48	0.68	302	0.066	2	1.37	0.033	0.06	0.2	0.02	4.6	<0.1	0.07	4	0.6	<0.2
1959951 Silt		120	1.15	327	0.041	4	1.32	0.022	0.06	0.3	0.03	5.2	<0.1	0.05	4	0.6	<0.2
1959952 Silt		138	1.47	241	0.027	5	1.23	0.015	0.05	0.4	0.03	4.5	<0.1	0.06	3	1.1	0.3
1959953 Silt		108	1.15	214	0.039	4	1.24	0.020	0.05	0.3	0.04	4.7	<0.1	<0.05	4	0.5	<0.2
1959954 Silt		31	0.57	344	0.025	3	1.30	0.022	0.05	0.2	0.03	4.1	<0.1	0.08	4	1.5	<0.2
1959955 Silt		36	0.61	346	0.038	2	1.46	0.023	0.05	0.2	0.03	4.7	<0.1	<0.05	4	0.7	0.3
1959956 Silt		31	0.53	287	0.035	2	1.26	0.024	0.05	0.3	0.02	3.6	<0.1	0.06	4	0.5	<0.2
1959957 Silt		31	0.50	321	0.034	2	1.38	0.018	0.05	0.2	0.04	3.9	<0.1	<0.05	4	8.0	<0.2
1959958 Silt		29	0.52	431	0.024	<1	1.25	0.023	0.06	0.1	0.01	2.8	<0.1	0.08	4	1.7	0.3
1959959 Silt		35	0.63	326	0.025	2	1.29	0.016	0.05	0.2	0.02	5.1	<0.1	<0.05	3	0.7	<0.2
1959960 Silt		47	0.79	393	0.045	1	1.44	0.018	0.06	0.2	0.02	5.7	<0.1	<0.05	4	0.6	<0.2
1959961 Silt		30	0.56	294	0.023	<1	1.33	0.059	0.08	0.1	0.01	3.5	<0.1	0.24	4	1.0	0.4
1959962 Silt		49	0.82	258	0.037	<1	1.20	0.032	0.05	0.2	0.03	5.1	<0.1	<0.05	4	<0.5	0.3
1959963 Silt		45	0.77	372	0.059	1	1.39	0.018	0.06	0.2	0.03	5.4	<0.1	<0.05	4	<0.5	<0.2
1959964 Silt		56	0.98	411	0.057	1	1.54	0.021	0.07	0.1	0.03	7.8	<0.1	<0.05	4	8.0	<0.2
1959965 Silt		27	0.42	468	0.030	1	1.09	0.012	0.09	0.2	0.02	3.5	<0.1	<0.05	3	<0.5	<0.2
1959966 Silt		47	0.69	330	0.063	1	1.50	0.015	0.08	0.2	0.05	8.5	<0.1	<0.05	4	0.6	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Part:

1 of 2

Project: Silver City

Report Date: August 02, 2013

Page: 7 of 7

												9									
CERTIFIC	ATE OF AN	IALY	′SIS													WI	HI13	3000	171	.1	
	Method	1DX15																			
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
1959967	Silt	1.4	17.5	11.5	38	<0.1	18.0	8.6	426	2.19	8.1	1.7	3.6	20	<0.1	0.7	0.2	48	0.33	0.015	13
1959968	Silt	1.6	28.3	40.9	50	<0.1	22.2	11.1	386	2.69	15.2	8.5	8.0	16	<0.1	1.9	0.3	47	0.21	0.017	20
1959969	Silt	1.5	81.1	34.2	100	<0.1	27.1	25.9	718	3.66	17.9	2.1	3.0	27	0.2	4.4	0.5	81	0.38	0.022	11
1959970	Silt	1.1	37.2	11.7	52	<0.1	27.6	13.0	325	2.59	13.1	3.8	4.9	19	<0.1	1.6	0.2	55	0.32	0.020	15
1959971	Silt	1.0	39.4	36.0	75	0.1	21.8	13.3	404	2.67	14.4	2.2	3.2	27	0.3	3.3	0.2	65	0.44	0.022	11
1959972	Silt	0.9	70.6	16.6	82	<0.1	48.8	23.9	483	3.53	39.6	1.1	3.5	42	0.3	5.1	0.3	80	0.95	0.051	13
1959973	Silt	2.2	62.7	22.8	264	0.2	133.4	37.2	328	4.25	103.1	0.6	7.6	43	1.6	14.4	0.5	52	0.45	0.087	25

Client:

Klondike Gold Corp. 711 - 675 W. Hastings St.

Vancouver BC V6B 1N2 CANADA

Project:

Silver City

Report Date:

August 02, 2013

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page:

7 of 7

Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI13000171.1

		Method	1DX15															
		Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	s	Ga	Se	Te
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959967	Silt		28	0.34	431	0.028	<1	1.26	0.010	0.07	0.1	0.02	3.8	<0.1	<0.05	4	<0.5	<0.2
1959968	Silt		34	0.45	349	0.037	<1	1.40	0.010	0.07	0.2	0.02	5.8	<0.1	<0.05	4	0.7	<0.2
1959969	Silt		50	0.95	354	0.040	<1	1.93	0.013	0.07	0.1	0.02	8.4	<0.1	<0.05	5	1.0	0.4
1959970	Silt		39	0.56	293	0.048	<1	1.38	0.012	0.05	0.2	0.02	6.1	<0.1	<0.05	4	<0.5	<0.2
1959971	Silt		30	0.68	507	0.037	1	1.70	0.013	0.06	0.1	0.03	5.2	<0.1	<0.05	5	0.7	<0.2
1959972	Silt		59	1.18	456	0.048	1	2.01	0.024	0.09	0.1	0.02	8.6	0.1	<0.05	5	0.7	<0.2
1959973	Silt		66	0.89	337	0.010	1	1.81	0.030	0.12	0.1	0.02	5.3	<0.1	<0.05	4	2.2	<0.2

Client: Klondike Gold Corp. 711 - 675 W. Hastings St.

Vancouver BC V6B 1N2 CANADA

Part:

1 of 2

Project: Silver City

Page:

Report Date: August 02, 2013

1 of 1

Acme Analytical Laboratories (Vancouver) Ltd.
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

	. •											Page:		1 01 1					Pan	t: 1 01	i Z
QUALITY C	ONTROL	REP	OR	Т												WH	H113	000	171.	1	
	Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15												
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
Pulp Duplicates																					
1959803	Soil	0.9	35.7	13.3	61	0.1	38.4	13.9	779	3.13	10.2	2.0	8.7	27	0.1	0.9	0.2	44	0.37	0.062	33
REP 1959803	QC	1.0	37.6	13.4	62	<0.1	40.2	14.0	815	3.17	11.0	1.6	8.7	28	<0.1	0.9	0.3	46	0.41	0.057	34
1959831	Soil	0.9	19.2	7.3	62	0.2	27.9	10.4	548	2.08	5.2	5.0	3.0	37	0.2	0.6	<0.1	40	0.65	0.070	17
REP 1959831	QC	0.7	19.4	7.3	56	0.1	27.2	10.2	539	2.08	4.4	1.7	3.0	38	0.1	0.5	<0.1	41	0.71	0.071	16
1959839	Soil	21.4	59.0	18.3	101	0.4	102.9	8.7	421	3.73	18.5	6.7	5.2	49	0.9	3.0	0.3	52	0.17	0.047	15
REP 1959839	QC	21.9	61.5	18.2	107	0.4	105.8	8.8	424	3.78	18.9	7.0	5.2	52	0.9	3.0	0.3	54	0.17	0.047	14
1959867	Soil	4.3	62.5	23.6	180	0.4	59.9	16.2	557	4.24	53.1	5.9	8.6	25	1.0	4.3	0.4	44	0.41	0.070	31
REP 1959867	QC	4.3	62.7	23.6	176	0.4	59.6	16.5	546	4.20	50.7	7.5	8.7	25	1.0	4.4	0.4	43	0.41	0.070	31
1959875	Soil	0.3	26.5	12.3	49	<0.1	18.5	8.1	249	2.18	8.6	7.8	4.3	17	0.2	1.0	0.2	47	0.29	0.031	16
REP 1959875	QC	0.9	24.8	12.0	43	<0.1	16.5	8.4	244	2.16	8.4	4.7	4.3	18	<0.1	0.8	0.2	46	0.30	0.030	15
1959919	Silt	0.4	42.7	13.5	80	0.1	58.6	19.1	569	3.79	8.0	2.4	6.3	33	0.2	0.6	0.2	54	1.12	0.110	29
REP 1959919	QC	0.5	45.0	14.2	80	<0.1	65.0	20.6	578	3.90	7.5	1.2	6.6	34	0.1	0.7	0.2	55	1.10	0.117	29
1959927	Silt	0.7	20.6	10.3	51	0.1	30.2	10.2	392	2.44	7.8	5.0	2.7	25	0.2	0.4	0.1	57	1.03	0.062	17
REP 1959927	QC	0.6	21.9	10.5	51	0.1	31.0	10.7	391	2.46	8.0	4.1	2.7	24	0.2	0.4	0.1	57	1.06	0.061	17
1959955	Silt	1.4	34.8	12.8	53	0.2	31.6	9.3	338	2.41	14.0	4.3	3.4	38	0.3	0.7	0.4	60	0.79	0.054	15
REP 1959955	QC	1.4	34.5	13.4	54	0.2	30.6	9.1	339	2.46	13.7	3.9	3.3	38	0.3	0.7	0.4	59	0.81	0.054	15
Reference Materials																					
STD DS9	Standard	14.0	97.0	121.8	289	1.7	40.0	7.4	560	2.23	23.5	108.1	5.4	61	2.2	4.6	5.0	39	0.70	0.069	14
STD DS9	Standard	14.0	97.0	135.7	305	1.8	42.3	8.0	593	2.34	24.4	118.4	5.6	62	2.4	4.6	5.1	43	0.76	0.071	14
STD DS9	Standard	14.3	107.2	125.7	317	1.7	42.2	7.5	578	2.29	24.3	118.1	6.2	73	2.2	5.8	6.0	44	0.74	0.084	15
STD DS9	Standard	14.0	107.8	129.9	297	1.7	43.8	7.2	572	2.34	23.7	115.0	6.3	75	1.8	5.7	6.1	41	0.80	0.081	16
STD DS9	Standard	13.6	103.4	116.9	306	1.7	38.1	7.2	540	2.20	25.8	102.4	6.4	73	2.6	5.7	6.2	37	0.67	0.085	14
STD DS9 Expected		12.84	108	126	317	1.83	40.3	7.6	575	2.33	25.5	118	6.38	69.6	2.4	4.94	6.32	40	0.7201	0.0819	13.3
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	8	<0.01	<0.001	<1
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	6	<0.01	<0.001	<1
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1

Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project:

Client:

Silver City

Report Date:

August 02, 2013

Acme Analytical Laboratories (Vancouver) Ltd.
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page: 1 of 1

Part: 2 of 2

QUALITY CONTROL REPORT

WHI13000171.1

	Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																	
1959803	Soil	38	0.42	228	0.046	2	1.38	0.010	0.06	0.1	0.02	5.7	<0.1	<0.05	4	<0.5	<0.2
REP 1959803	QC	39	0.44	235	0.046	<1	1.43	0.009	0.06	0.2	0.03	6.6	<0.1	<0.05	4	<0.5	<0.2
1959831	Soil	34	0.59	208	0.048	<1	1.17	0.011	0.04	0.2	0.05	2.8	<0.1	<0.05	3	<0.5	<0.2
REP 1959831	QC	33	0.58	207	0.047	1	1.21	0.011	0.04	0.2	0.05	3.1	<0.1	<0.05	3	<0.5	<0.2
1959839	Soil	55	0.87	315	0.023	2	1.49	0.014	0.06	0.1	0.47	4.1	0.3	0.09	4	2.3	<0.2
REP 1959839	QC	55	0.84	304	0.025	2	1.55	0.014	0.06	0.1	0.46	4.2	0.3	0.10	4	2.9	<0.2
1959867	Soil	34	0.69	217	0.004	1	1.66	0.011	0.08	<0.1	0.02	4.9	<0.1	0.05	5	2.1	0.2
REP 1959867	QC	35	0.73	217	0.004	<1	1.64	0.011	0.08	<0.1	0.02	4.9	<0.1	0.05	5	2.1	<0.2
1959875	Soil	33	0.54	272	0.035	<1	1.16	0.011	0.04	0.2	0.02	4.3	<0.1	<0.05	3	<0.5	<0.2
REP 1959875	QC	31	0.53	264	0.031	<1	1.14	0.011	0.04	0.2	<0.01	4.6	<0.1	<0.05	3	<0.5	<0.2
1959919	Silt	63	0.74	185	0.060	3	1.33	0.009	0.09	<0.1	0.03	5.3	<0.1	<0.05	5	<0.5	<0.2
REP 1959919	QC	65	0.78	191	0.063	2	1.38	0.009	0.08	0.1	0.05	5.7	<0.1	<0.05	5	<0.5	<0.2
1959927	Silt	38	0.69	253	0.047	3	1.37	0.017	0.05	0.3	0.04	4.0	<0.1	<0.05	4	<0.5	<0.2
REP 1959927	QC	40	0.69	264	0.048	3	1.34	0.017	0.06	0.3	0.06	4.2	<0.1	<0.05	4	<0.5	<0.2
1959955	Silt	36	0.61	346	0.038	2	1.46	0.023	0.05	0.2	0.03	4.7	<0.1	<0.05	4	0.7	0.3
REP 1959955	QC	36	0.61	348	0.038	1	1.47	0.023	0.05	0.2	0.03	4.8	<0.1	<0.05	4	0.7	0.3
Reference Materials																	
STD DS9	Standard	123	0.62	303	0.109	3	0.95	0.088	0.36	3.1	0.20	2.4	5.1	0.16	5	4.6	5.3
STD DS9	Standard	124	0.62	291	0.107	3	0.97	0.093	0.39	3.1	0.21	2.6	5.2	0.17	5	5.6	4.9
STD DS9	Standard	124	0.63	299	0.121	3	0.99	0.088	0.38	3.0	0.18	2.2	5.3	0.14	5	6.3	5.2
STD DS9	Standard	121	0.62	301	0.124	2	0.99	0.093	0.37	2.7	0.18	2.2	5.0	0.15	4	3.3	4.4
STD DS9	Standard	112	0.61	305	0.114	4	0.92	0.077	0.40	3.2	0.19	2.6	5.2	0.11	4	5.0	5.1
STD DS9 Expected		121	0.6165	295	0.1108		0.9577	0.0853	0.395	2.89	0.2	2.5	5.3	0.1615	4.59	5.2	5.02
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Submitted By: Katie Dodd

Receiving Lab: Canada-Whitehorse Received: September 18, 2013 Report Date: September 27, 2013

Page: 1 of 4

Saving all or part of Soil Reject

1:1:1 Aqua Regia digestion ICP-MS analysis

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

CERTIFICATE OF ANALYSIS

WHI13000438.1

15

WHI

VAN

Completed

CLIENT JOB INFORMATION

Silver City Project:

Shipment ID:

P.O. Number

74 Number of Samples:

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days PICKUP-RJT Client to Pickup Rejects

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Klondike Gold Corp. Invoice To:

> 711 - 675 W. Hastings St. Vancouver BC V6B 1N2

CANADA

CC: Bill Mann

Number of Procedure Code Description Test Report Lab Code Samples Wgt (g) Status Dry at 60C 74 Dry at 60C WHI SS80 74 Dry at 60C sieve 100g to -80 mesh WHI

ADDITIONAL COMMENTS

74

74

RJSV

1DX2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Page:

Report Date: September 27, 2013

2 of 4

Part:

1 of 2

CERTIFICATE (AN AC	IALY	'SIS													W	HI13	3000	438	.1	
	Method	1DX15																			
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
E5272456 Soi		0.9	85.7	6.5	92	<0.1	72.1	28.4	2519	4.11	3.0	2.8	2.6	19	0.2	0.6	0.3	68	0.49	0.084	7
E5272457 Soi		2.8	26.1	10.6	64	<0.1	32.2	9.2	221	2.16	9.2	3.8	4.2	14	0.3	0.9	0.3	43	0.15	0.033	15
E5272458 Soi		1.0	24.9	6.7	51	<0.1	31.3	10.7	327	2.19	5.6	16.6	3.5	20	0.1	0.5	0.2	50	0.30	0.044	15
E5272459 Soi	l	37.2	69.4	29.7	164	1.2	52.3	7.9	198	4.27	29.2	10.8	5.1	67	0.5	5.2	0.4	49	0.26	0.077	13
E5272460 Soi	1	0.9	13.5	7.4	48	0.1	17.6	7.7	280	1.68	5.5	3.2	2.7	26	0.2	8.0	0.2	34	0.42	0.054	12
E5272461 Soi		1.0	18.9	8.4	57	0.1	26.6	10.0	373	1.87	6.4	1.8	3.1	37	0.3	8.0	0.2	38	0.68	0.066	15
E5272462 Soi		0.9	45.7	50.0	141	0.2	62.1	18.5	572	3.25	18.9	6.6	6.6	90	0.6	1.4	0.3	38	1.21	0.078	41
E5272463 Soi		0.7	42.7	16.9	70	0.1	56.7	17.8	718	3.23	11.3	4.0	5.4	80	0.3	0.9	0.2	47	1.08	0.080	37
E5272464 Soi		0.7	39.6	16.4	77	0.1	50.6	15.5	549	3.13	9.0	3.4	5.0	50	0.3	1.0	0.2	49	0.75	0.083	27
E5272465 Soi		8.0	39.0	16.8	75	0.1	61.3	20.4	760	4.13	10.6	3.0	5.8	46	0.2	8.0	0.1	60	0.82	0.113	31
E5272466 Soi		0.9	49.4	13.8	74	0.1	59.5	19.1	563	3.51	11.0	15.4	6.8	71	0.2	1.1	0.2	51	1.13	0.085	37
E5272467 Soi		0.6	44.1	14.9	75	0.1	59.4	19.8	615	3.77	14.4	4.8	8.6	72	0.2	1.3	0.2	41	1.14	0.065	36
E5272468 Soi		8.0	62.8	11.3	75	0.1	96.4	28.7	502	4.08	14.2	2.8	8.4	79	<0.1	1.1	0.2	55	1.23	0.128	45
E5272469 Soi		8.0	66.4	10.0	78	<0.1	105.8	30.3	697	4.05	12.9	3.9	5.6	76	<0.1	1.0	0.2	59	1.20	0.132	40
E5272470 Soi		0.7	57.3	12.2	78	<0.1	99.6	28.2	658	4.08	7.4	6.0	6.1	98	<0.1	0.9	0.1	66	1.33	0.132	39
E5272471 Soi	1	0.7	49.7	10.9	71	<0.1	76.1	22.6	629	3.80	15.9	3.4	6.0	70	<0.1	1.0	0.2	53	1.08	0.106	35
E5272472 Soi		2.9	54.5	43.7	68	0.2	54.6	18.3	392	3.83	30.6	8.0	14.7	67	<0.1	2.5	0.4	21	0.90	0.080	53
E5272473 Soi		0.9	48.8	13.1	88	<0.1	107.9	32.1	1089	5.51	8.8	4.1	4.1	80	<0.1	2.0	<0.1	100	1.17	0.123	33
E5272474 Soi	l	2.0	111.2	36.9	132	0.2	75.3	24.2	1815	4.22	52.6	5.5	11.6	24	0.3	6.7	0.3	23	0.32	0.080	40
E5272475 Soi	l	0.9	32.2	13.0	61	0.1	36.4	12.0	459	2.92	8.6	2.9	5.1	17	0.1	0.9	<0.1	41	0.31	0.041	17
E5272476 Soi		1.1	22.6	12.5	56	<0.1	44.5	10.0	263	2.64	8.7	5.3	4.2	14	<0.1	8.0	0.1	51	0.27	0.030	16
E5272477 Soi		0.9	24.4	13.8	70	0.1	37.1	13.8	679	2.63	7.0	2.8	3.2	33	0.2	0.4	0.1	58	0.77	0.070	15
E5272478 Soi		8.0	17.7	11.2	52	<0.1	22.6	9.0	275	2.34	8.4	3.5	3.3	20	0.1	0.5	0.1	61	0.36	0.032	15
E5272479 Soi		0.9	16.1	12.2	51	<0.1	20.0	7.9	211	2.14	6.7	2.7	3.7	20	0.1	0.4	<0.1	50	0.33	0.036	14
E5272480 Soi	l	0.8	26.8	11.0	58	0.2	25.9	9.7	279	2.33	7.5	2.7	4.6	23	0.1	0.6	0.4	52	0.36	0.049	17
E5272481 Soi		0.6	20.2	11.9	56	<0.1	23.5	9.6	265	2.21	5.9	4.0	4.0	21	0.1	0.4	0.2	51	0.35	0.048	16
E5272482 Soi		1.1	56.6	17.6	78	0.3	53.1	27.9	1379	5.31	23.3	1.7	5.6	12	0.3	1.5	0.3	102	0.30	0.057	19
E5272483 Soi		1.1	26.7	16.2	61	0.1	21.1	10.1	320	3.07	8.5	3.6	5.1	18	0.3	8.0	0.2	63	0.27	0.045	16
E5272484 Soi		0.6	31.1	8.8	52	<0.1	25.5	12.7	473	3.28	9.8	9.1	4.2	27	0.1	8.0	0.1	78	0.50	0.040	13
E5272485 Soi		0.6	31.6	8.8	53	0.1	24.8	10.0	361	2.37	9.7	3.1	4.0	31	0.1	8.0	0.1	57	0.47	0.051	13

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: September 27, 2013

Page: 2 of 4

CERTIFICATE OF ANALYSIS

WHI13000438.1

Part: 2 of 2

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	S	Ga	Se	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
E5272456 Soil		100	1.78	379	0.117	2	2.40	0.004	0.03	<0.1	0.11	5.3	<0.1	<0.05	6	<0.5	<0.2
E5272457 Soil		33	0.46	161	0.034	1	1.23	0.006	0.04	0.1	0.05	2.8	<0.1	<0.05	3	<0.5	<0.2
E5272458 Soil		41	0.57	214	0.076	2	1.47	0.007	0.04	0.1	0.02	4.0	<0.1	<0.05	4	<0.5	<0.2
E5272459 Soil		43	0.45	259	0.026	1	1.09	0.036	0.09	<0.1	0.64	3.7	0.5	0.34	4	5.8	<0.2
E5272460 Soil		20	0.38	179	0.034	2	0.91	0.010	0.03	0.2	0.02	2.4	<0.1	0.06	3	<0.5	<0.2
E5272461 Soil		30	0.50	187	0.031	3	1.02	0.009	0.04	0.2	0.04	2.8	<0.1	0.08	3	0.6	<0.2
E5272462 Soil		60	0.76	180	0.016	4	1.42	0.007	0.05	<0.1	0.03	4.7	<0.1	0.06	4	<0.5	<0.2
E5272463 Soil		63	0.85	266	0.026	3	1.57	0.010	0.05	0.1	0.03	4.9	<0.1	0.07	5	8.0	<0.2
E5272464 Soil		59	0.76	288	0.038	3	1.48	0.010	0.06	0.1	0.04	5.0	<0.1	0.05	5	<0.5	<0.2
E5272465 Soil		75	1.08	271	0.033	1	1.84	0.008	0.05	<0.1	0.05	6.0	<0.1	0.05	6	0.6	<0.2
E5272466 Soil		67	0.95	298	0.036	3	1.67	0.009	0.06	<0.1	0.03	5.5	<0.1	0.07	5	1.2	<0.2
E5272467 Soil		61	0.83	202	0.023	2	1.42	0.008	0.06	<0.1	0.03	5.2	<0.1	0.06	5	<0.5	<0.2
E5272468 Soil		123	1.59	153	0.018	2	1.76	0.004	0.06	<0.1	0.03	7.1	<0.1	0.08	7	0.7	<0.2
E5272469 Soil		131	1.82	194	0.023	2	1.95	0.005	0.06	<0.1	0.03	7.3	<0.1	0.05	8	0.5	<0.2
E5272470 Soil		146	1.92	179	0.034	2	1.96	0.005	0.05	<0.1	0.03	7.6	<0.1	0.06	8	<0.5	<0.2
E5272471 Soil		75	0.84	287	0.015	2	1.38	0.006	0.06	<0.1	0.04	7.5	<0.1	<0.05	5	<0.5	<0.2
E5272472 Soil		37	0.81	161	0.006	2	1.28	0.005	0.07	<0.1	0.02	3.2	<0.1	0.16	4	1.0	<0.2
E5272473 Soil		118	0.94	587	0.037	2	1.49	0.007	0.08	<0.1	0.02	14.6	<0.1	<0.05	7	0.5	<0.2
E5272474 Soil		21	0.19	470	0.004	2	0.73	0.003	0.11	<0.1	0.03	6.0	<0.1	<0.05	2	1.2	<0.2
E5272475 Soil		30	0.41	351	0.019	1	1.13	0.007	0.06	0.1	0.02	4.7	<0.1	<0.05	3	<0.5	<0.2
E5272476 Soil		40	0.42	188	0.036	<1	1.31	0.008	0.05	<0.1	<0.01	3.4	<0.1	0.05	4	<0.5	<0.2
E5272477 Soil		47	0.68	409	0.056	1	1.84	0.013	0.06	0.2	0.03	4.2	<0.1	0.08	5	0.6	<0.2
E5272478 Soil		38	0.47	278	0.055	<1	1.53	0.009	0.04	0.2	0.03	3.7	<0.1	<0.05	5	0.6	<0.2
E5272479 Soil		34	0.44	269	0.052	<1	1.44	0.008	0.04	0.1	0.03	3.6	<0.1	<0.05	5	0.7	<0.2
E5272480 Soil		39	0.52	336	0.060	2	1.57	0.010	0.05	0.2	0.04	5.0	0.1	<0.05	4	0.5	<0.2
E5272481 Soil		37	0.50	295	0.061	<1	1.50	0.009	0.04	0.2	0.02	4.0	<0.1	<0.05	5	<0.5	<0.2
E5272482 Soil		142	1.02	196	0.009	<1	1.83	0.004	0.05	<0.1	0.04	16.0	<0.1	<0.05	5	0.7	<0.2
E5272483 Soil		43	0.65	245	0.019	<1	1.40	0.007	0.05	<0.1	0.01	6.6	<0.1	<0.05	4	0.7	<0.2
E5272484 Soil		55	0.61	333	0.029	2	1.44	0.014	0.05	<0.1	0.02	9.8	<0.1	<0.05	4	<0.5	<0.2
E5272485 Soil		35	0.51	337	0.042	<1	1.46	0.016	0.04	0.1	0.03	5.4	<0.1	<0.05	4	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd.
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Part:

1 of 2

Project: Silver City

Page:

Report Date: September 27, 2013

3 of 4

CERTIFICATE C	F AN	IALY	'SIS													WI	HI13	3000	438	.1	
	Method	1DX15																			
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
E5272486 Soil		1.0	33.8	8.9	46	<0.1	31.4	11.5	318	2.96	8.9	3.8	5.1	27	0.1	8.0	0.1	78	0.38	0.015	16
E5272487 Soil		0.8	35.1	9.8	45	<0.1	33.4	12.7	382	2.86	9.4	3.2	5.1	27	<0.1	0.7	<0.1	81	0.38	0.014	17
E5272488 Soil		0.7	57.5	10.4	48	<0.1	37.2	18.9	674	3.97	8.1	1.5	5.8	63	<0.1	1.0	<0.1	110	0.68	0.030	11
E5272489 Soil		8.0	35.8	3.2	60	<0.1	19.3	18.5	540	4.91	2.7	0.9	2.9	72	<0.1	0.2	<0.1	172	0.97	0.240	29
E5272490 Soil		0.9	45.5	2.8	82	<0.1	27.4	28.9	1102	5.55	2.6	<0.5	1.9	62	<0.1	0.1	<0.1	155	1.17	0.339	20
E5272491 Soil		0.9	55.4	2.3	89	<0.1	33.9	33.8	971	7.00	1.5	<0.5	2.2	67	<0.1	<0.1	<0.1	213	1.43	0.425	28
E5272492 Soil		0.9	42.5	2.3	72	<0.1	49.1	27.7	795	5.56	1.7	1.9	1.7	55	0.1	<0.1	0.3	210	1.22	0.255	19
E5272493 Soil		8.0	40.2	4.1	68	<0.1	35.8	22.1	601	4.83	3.2	3.8	2.1	52	0.1	0.1	0.2	189	1.21	0.252	18
E5272494 Soil		8.0	46.2	2.1	72	<0.1	52.5	30.5	1057	5.78	2.2	2.0	2.0	76	<0.1	<0.1	0.1	139	1.34	0.334	24
E5272495 Soil		0.4	57.3	1.8	84	<0.1	37.5	32.3	992	5.94	1.4	1.5	1.6	93	<0.1	<0.1	<0.1	141	1.48	0.367	27
E5272496 Soil		0.7	58.6	3.8	94	<0.1	33.4	33.9	753	6.92	0.8	2.1	1.3	70	<0.1	<0.1	<0.1	212	1.72	0.374	26
E5272497 Soil		0.6	53.2	3.1	67	<0.1	39.3	28.5	1521	5.68	1.9	3.1	1.7	97	<0.1	0.1	<0.1	178	1.35	0.323	23
E5272498 Soil		1.0	52.8	6.3	59	<0.1	45.5	23.0	730	4.32	10.6	6.6	3.8	42	0.2	0.6	0.1	133	0.69	0.061	13
E5272499 Soil		8.0	46.1	8.8	59	<0.1	31.2	15.7	490	4.40	7.6	4.5	4.6	51	<0.1	0.5	<0.1	140	0.70	0.035	11
E5272500 Soil		0.9	39.7	11.9	79	0.2	33.9	9.3	481	2.69	11.3	8.2	5.1	24	0.2	1.1	0.1	62	0.40	0.047	16
E5272501 Soil		0.6	72.0	10.2	50	0.2	33.1	20.0	763	3.73	26.5	3.7	3.8	68	0.1	1.4	0.6	119	1.07	0.046	17
E5272502 Soil		0.6	51.9	9.9	53	<0.1	33.8	20.7	774	3.73	9.1	4.3	3.4	59	0.1	0.6	0.3	119	1.03	0.050	13
E5272503 Soil		8.0	26.7	9.1	48	<0.1	21.9	13.2	379	2.76	7.2	1.7	2.6	27	<0.1	0.5	0.2	82	0.43	0.027	9
E5272504 Soil		0.7	29.6	9.8	51	<0.1	24.4	11.0	363	3.07	9.2	3.1	2.9	21	0.1	0.6	0.2	85	0.36	0.036	10
E5272505 Soil		0.5	43.5	12.6	51	<0.1	25.3	13.9	457	2.78	6.2	3.2	3.3	32	0.2	0.7	0.1	76	0.77	0.049	18
E5272506 Soil		0.5	28.3	11.6	54	0.1	24.4	10.3	314	2.23	5.2	3.8	3.8	26	0.1	0.6	0.1	58	0.55	0.041	14
E5272507 Soil		0.5	33.1	12.5	58	0.1	27.3	10.0	299	2.14	7.0	4.4	3.5	26	0.2	0.7	0.2	52	0.57	0.066	15
E5272508 Soil		0.4	29.8	8.0	45	0.1	17.5	8.2	253	2.06	5.0	7.3	3.7	21	0.2	0.5	<0.1	55	0.40	0.045	14
E5272509 Soil		0.6	26.8	10.7	54	<0.1	22.0	11.3	411	2.39	6.0	3.6	3.6	25	0.2	0.6	0.1	59	0.50	0.051	15
E5272510 Soil		0.5	23.9	9.3	48	<0.1	22.6	10.4	406	2.04	6.7	2.6	3.1	30	0.2	0.6	0.1	49	0.57	0.055	14
E5272511 Soil		0.5	23.4	9.4	51	0.1	21.6	10.8	400	2.17	6.4	2.6	2.6	27	0.2	0.5	0.1	56	0.52	0.053	13
E5272512 Soil		0.7	15.2	9.0	42	<0.1	15.6	8.6	225	2.08	6.3	7.3	2.9	24	<0.1	0.5	0.1	52	0.36	0.040	12
E5272513 Soil		0.4	29.4	18.4	65	<0.1	78.8	18.0	602	3.30	4.2	5.6	12.4	21	0.1	0.4	<0.1	64	0.33	0.057	35
E5272514 Soil		4.9	134.7	26.9	446	<0.1	180.1	50.1	2890	6.97	2.9	5.1	21.6	578	0.7	0.6	0.1	115	5.50	0.459	289
E5272515 Soil		13.6	111.5	22.7	694	0.2	275.8	52.4	2656	6.75	11.3	5.7	22.7	243	0.7	0.5	0.2	114	3.35	0.314	133

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: September 27, 2013

Page: 3 of 4 Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI13000438.1

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
E5272486 Soil		73	0.51	233	0.073	<1	2.24	0.020	0.04	0.1	0.04	9.6	<0.1	<0.05	6	<0.5	<0.2
E5272487 Soil		75	0.53	241	0.071	1	2.37	0.022	0.05	0.1	0.03	10.0	<0.1	<0.05	6	0.6	<0.2
E5272488 Soil		121	1.04	328	0.067	2	4.45	0.018	0.04	0.1	0.02	17.5	<0.1	<0.05	10	<0.5	<0.2
E5272489 Soil		53	1.51	307	0.083	<1	2.85	0.042	0.04	<0.1	<0.01	18.7	<0.1	<0.05	7	0.5	<0.2
E5272490 Soil		20	2.24	295	0.096	1	2.66	0.066	0.15	<0.1	<0.01	7.8	<0.1	<0.05	7	0.6	<0.2
E5272491 Soil		53	2.84	422	0.111	<1	2.72	0.061	0.13	<0.1	<0.01	11.4	<0.1	<0.05	7	<0.5	<0.2
E5272492 Soil		79	1.97	178	0.176	2	1.76	0.059	0.14	<0.1	0.02	7.8	<0.1	<0.05	6	<0.5	<0.2
E5272493 Soil		72	1.81	126	0.145	<1	1.81	0.037	0.15	<0.1	0.02	10.5	<0.1	<0.05	6	<0.5	<0.2
E5272494 Soil		45	2.44	249	0.147	1	2.76	0.076	0.36	<0.1	0.01	6.6	<0.1	<0.05	7	<0.5	<0.2
E5272495 Soil		35	2.57	220	0.131	<1	2.96	0.078	0.25	<0.1	0.01	13.5	<0.1	<0.05	7	<0.5	<0.2
E5272496 Soil		56	3.38	200	0.061	<1	2.41	0.042	0.08	<0.1	<0.01	13.8	<0.1	<0.05	8	<0.5	<0.2
E5272497 Soil		66	2.25	240	0.128	<1	3.16	0.075	0.10	<0.1	0.01	20.7	<0.1	<0.05	7	0.6	<0.2
E5272498 Soil		111	1.34	421	0.076	<1	2.68	0.032	0.06	<0.1	0.04	18.0	<0.1	<0.05	7	1.5	<0.2
E5272499 Soil		110	1.48	452	0.084	<1	3.09	0.045	0.03	<0.1	0.02	17.7	<0.1	<0.05	7	0.9	<0.2
E5272500 Soil		37	0.55	288	0.049	<1	1.58	0.012	0.05	0.1	0.03	7.0	<0.1	<0.05	5	<0.5	<0.2
E5272501 Soil		99	1.02	331	0.056	3	3.03	0.041	0.09	0.1	0.03	14.4	0.1	<0.05	7	8.0	<0.2
E5272502 Soil		104	1.10	384	0.040	2	2.97	0.028	0.09	<0.1	0.03	13.3	<0.1	<0.05	7	0.7	<0.2
E5272503 Soil		54	0.60	176	0.040	2	2.18	0.013	0.06	0.1	0.03	6.1	<0.1	<0.05	6	<0.5	<0.2
E5272504 Soil		59	0.70	182	0.036	1	2.15	0.010	0.05	0.1	0.03	6.5	<0.1	<0.05	6	<0.5	<0.2
E5272505 Soil		68	0.62	238	0.048	2	1.94	0.016	0.04	0.1	0.03	10.4	<0.1	<0.05	5	0.7	<0.2
E5272506 Soil		53	0.55	264	0.043	1	1.74	0.013	0.05	0.2	0.03	6.8	<0.1	<0.05	5	0.7	<0.2
E5272507 Soil		50	0.54	358	0.029	2	1.59	0.011	0.04	0.2	0.04	6.3	<0.1	0.09	4	0.6	<0.2
E5272508 Soil		34	0.47	261	0.044	1	1.30	0.010	0.04	0.2	0.03	5.1	<0.1	<0.05	4	<0.5	<0.2
E5272509 Soil		41	0.59	392	0.032	1	1.47	0.009	0.04	0.2	0.03	5.2	<0.1	<0.05	4	<0.5	<0.2
E5272510 Soil		40	0.57	380	0.030	2	1.32	0.009	0.04	0.2	0.04	4.9	<0.1	<0.05	4	0.5	<0.2
E5272511 Soil		38	0.59	370	0.029	1	1.39	0.007	0.04	0.2	0.04	5.1	<0.1	<0.05	4	0.5	<0.2
E5272512 Soil		30	0.52	236	0.030	<1	1.30	0.006	0.03	0.3	0.04	3.9	<0.1	<0.05	4	0.6	<0.2
E5272513 Soil		181	1.74	291	0.076	<1	2.07	0.005	0.12	0.1	0.02	5.5	0.1	<0.05	7	<0.5	<0.2
E5272514 Soil		151	2.70	600	0.028	2	2.65	0.007	0.08	<0.1	0.04	10.5	0.2	0.07	10	0.7	<0.2
E5272515 Soil		214	2.98	349	0.008	<1	2.98	0.003	0.03	<0.1	0.03	11.9	<0.1	<0.05	11	0.9	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: September 27, 2013

PHONE (604) 253	3-3158												Page:		4 of 4	1				Pa	art: 1	of 2
CERTIFIC	CATE C	F AN	IALY	′SIS													WI	HI13	3000	438	.1	
		Method Analyte	1DX15 Mo	1DX15 Cu	1DX15 Pb	1DX15 Zn	1DX15 Ag	1DX15 Ni	1DX15 Co	1DX15 Mn	1DX15 Fe	1DX15 As	1DX15 Au	1DX15 Th	1DX15 Sr	1DX15 Cd	1DX15 Sb	1DX15 Bi	1DX15 V	1DX15 Ca	1DX15 P	1DX15 La
		Unit MDL	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	% 0.01	ppm 0.5	ppb 0.5	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 2	% 0.01	% 0.001	ppm 1
E5272516	Soil		5.0	97.7	12.7	374	0.1	229.4	50.2	1470	6.95	5.8	3.6	25.4	292	0.2	0.5	<0.1	152	3.62	0.400	161
E5272517	Soil		1.0	27.4	8.5	70	<0.1	41.6	13.1	550	2.80	7.1	2.9	4.4	53	0.3	0.6	<0.1	51	1.14	0.085	19
E5272518	Soil		2.1	44.7	18.3	113	0.3	68.6	18.1	473	3.48	9.0	3.6	3.5	79	0.6	0.9	<0.1	47	2.50	0.146	29
E5272519	Soil		1.4	73.6	8.6	73	0.2	103.5	27.8	535	3.68	12.9	3.2	2.5	48	0.4	0.9	<0.1	54	1.39	0.069	20
E5272520	Soil		4.7	67.4	14.9	94	0.3	146.5	25.0	1731	4.64	15.2	3.4	6.2	40	0.9	1.7	0.1	58	0.80	0.135	33
E5272521	Soil		0.9	27.9	14.2	60	<0.1	39.9	11.6	357	2.61	8.9	4.0	6.7	25	<0.1	0.6	<0.1	59	0.30	0.034	21
E5272522	Soil		0.6	17.2	10.9	55	<0.1	42.8	12.8	481	2.95	9.4	3.6	7.3	17	<0.1	0.6	<0.1	53	0.16	0.022	23
E5272523	Soil		0.7	20.1	12.3	45	<0.1	31.1	9.1	217	2.70	9.3	1.7	6.8	13	<0.1	0.6	0.1	53	0.12	0.014	19
E5272524	Soil		0.3	24.4	22.7	175	<0.1	37.5	11.7	351	3.22	4.0	1.4	15.3	16	0.3	0.5	<0.1	36	0.23	0.058	66
E5272525	Soil		0.2	57.6	33.6	117	<0.1	68.6	18.0	617	4.80	3.3	1.9	14.2	27	0.2	0.5	0.1	39	0.34	0.048	49
E5272526	Soil		0.9	29.1	10.7	50	<0.1	28.0	10.7	458	2.84	9.3	3.6	1.9	16	0.2	0.5	0.1	60	0.20	0.063	14
E5272527	Soil		0.5	80.3	13.5	150	<0.1	51.7	13.2	904	3.46	3.0	0.8	5.5	21	0.4	0.3	0.1	57	0.40	0.089	21
E5272528	Soil		0.9	474.2	28.3	160	0.2	29.8	14.8	873	3.41	4.6	1.3	4.1	19	0.3	0.3	0.9	46	0.23	0.061	16
F5272529	Soil		0.5	21.0	23 4	83	<0.1	38.5	11.5	488	2 94	3.5	22	10 4	13	0.2	0.3	0.2	43	0.15	0.031	53

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Page:

Report Date: September 27, 2013

4 of 4

CERTIFICATE OF ANALYSIS

WHI13000438.1

Part: 2 of 2

	Method	1DX15															
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	s	Ga	Se	Te
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
E5272516 Soil		249	4.21	177	0.013	<1	4.05	0.003	0.06	<0.1	0.01	11.2	<0.1	<0.05	14	0.6	<0.2
E5272517 Soil		48	0.88	265	0.045	1	1.22	0.013	0.05	0.1	0.03	4.2	<0.1	<0.05	4	<0.5	<0.2
E5272518 Soil		81	1.05	220	0.018	2	1.52	0.008	0.06	<0.1	0.07	4.7	<0.1	<0.05	4	0.7	<0.2
E5272519 Soil		62	0.96	258	0.026	1	1.53	0.010	0.05	0.1	0.05	4.8	<0.1	<0.05	4	<0.5	<0.2
E5272520 Soil		108	0.94	367	0.021	1	1.54	0.005	0.05	0.1	0.09	6.4	<0.1	<0.05	5	0.9	<0.2
E5272521 Soil		71	0.78	320	0.071	1	1.67	0.012	0.06	0.2	0.04	5.7	<0.1	<0.05	5	<0.5	<0.2
E5272522 Soil		80	0.94	253	0.068	2	1.79	0.013	0.14	0.1	0.03	5.3	0.1	<0.05	5	0.8	<0.2
E5272523 Soil		51	0.62	159	0.063	2	1.80	0.005	0.08	0.1	0.03	3.0	0.1	<0.05	5	8.0	<0.2
E5272524 Soil		49	0.85	252	0.066	<1	1.78	0.004	0.34	<0.1	0.02	3.3	0.3	<0.05	6	<0.5	<0.2
E5272525 Soil		101	1.50	237	0.064	<1	2.30	0.007	0.48	<0.1	0.03	6.4	0.5	<0.05	7	<0.5	<0.2
E5272526 Soil		69	0.60	210	0.029	<1	1.44	0.005	0.06	0.2	0.04	5.1	0.1	<0.05	5	0.8	<0.2
E5272527 Soil		151	2.01	596	0.093	<1	2.20	0.004	0.67	<0.1	0.02	5.6	0.4	<0.05	8	0.7	<0.2
E5272528 Soil		73	1.42	366	0.062	5	1.96	0.005	0.18	<0.1	0.03	3.9	0.1	<0.05	6	0.8	<0.2
E5272529 Soil		79	1.23	255	0.071	3	1.64	0.005	0.34	<0.1	<0.01	4.1	0.3	<0.05	6	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: September 27, 2013

Page: 1 of 1 Part: 1 of 2

QUALITY C	ONTROL	REP	OR	Τ												WH	H113	0004	438.	1	
	Method Analyte	1DX15 Mo	1DX15 Cu	1DX15 Pb	1DX15 Zn	1DX15 Ag	1DX15 Ni	1DX15 Co	1DX15 Mn	1DX15 Fe	1DX15 As	1DX15 Au	1DX15 Th	1DX15 Sr	1DX15 Cd	1DX15 Sb	1DX15 Bi	1DX15 V	1DX15 Ca	1DX15 P	1DX15 La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
Pulp Duplicates																					
E5272458	Soil	1.0	24.9	6.7	51	<0.1	31.3	10.7	327	2.19	5.6	16.6	3.5	20	0.1	0.5	0.2	50	0.30	0.044	15
REP E5272458	QC	0.9	25.0	6.4	54	<0.1	31.7	11.1	306	2.11	5.7	3.4	3.7	20	0.2	0.5	0.2	50	0.30	0.045	14
E5272468	Soil	0.8	62.8	11.3	75	0.1	96.4	28.7	502	4.08	14.2	2.8	8.4	79	<0.1	1.1	0.2	55	1.23	0.128	45
REP E5272468	QC	0.9	59.7	11.4	77	0.1	89.4	27.1	496	4.11	13.7	5.6	8.1	79	<0.1	1.2	0.2	55	1.20	0.129	45
E5272494	Soil	0.8	46.2	2.1	72	<0.1	52.5	30.5	1057	5.78	2.2	2.0	2.0	76	<0.1	<0.1	0.1	139	1.34	0.334	24
REP E5272494	QC	0.8	46.4	2.0	71	<0.1	51.5	28.3	1038	5.64	2.0	2.0	1.9	72	<0.1	<0.1	<0.1	128	1.32	0.351	23
E5272504	Soil	0.7	29.6	9.8	51	<0.1	24.4	11.0	363	3.07	9.2	3.1	2.9	21	0.1	0.6	0.2	85	0.36	0.036	10
REP E5272504	QC	0.7	29.5	9.6	52	<0.1	22.9	11.3	372	3.09	9.4	2.3	2.9	20	<0.1	0.7	0.2	81	0.35	0.036	9
E5272529	Soil	0.5	21.0	23.4	83	<0.1	38.5	11.5	488	2.94	3.5	2.2	10.4	13	0.2	0.3	0.2	43	0.15	0.031	53
REP E5272529	QC	0.5	22.0	22.7	86	<0.1	39.1	11.7	491	2.97	4.0	2.5	10.7	13	0.2	0.3	0.1	44	0.16	0.032	53
Reference Materials																					
STD DS9	Standard	12.6	101.9	123.4	296	1.6	37.2	7.1	546	2.20	24.6	109.5	6.5	67	2.1	5.3	5.5	41	0.64	0.079	14
STD DS9	Standard	12.5	103.4	129.7	302	1.6	37.6	7.5	573	2.27	24.9	108.5	6.3	65	2.6	5.5	5.7	39	0.68	0.081	13
STD DS9	Standard	12.5	121.9	125.7	308	1.9	44.4	8.4	577	2.31	26.5	130.6	5.9	66	2.3	6.0	6.1	47	0.69	0.087	12
STD DS9 Expected		12.84	108	126	317	1.83	40.3	7.6	575	2.33	25.5	118	6.38	69.6	2.4	4.94	6.32	40	0.7201	0.0819	13.3
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	0.8	<0.5	<0.1	<1	<0.1	<0.1	<0.1	2	<0.01	<0.001	<1

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: September 27, 2013

Page: 1 of 1 Part: 2 of 2

QUALITY CONTROL REPORT

WHI13000438.1

	Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																	
E5272458	Soil	41	0.57	214	0.076	2	1.47	0.007	0.04	0.1	0.02	4.0	<0.1	<0.05	4	<0.5	<0.2
REP E5272458	QC	41	0.61	210	0.073	2	1.42	0.007	0.04	0.1	0.02	4.5	<0.1	<0.05	4	<0.5	<0.2
E5272468	Soil	123	1.59	153	0.018	2	1.76	0.004	0.06	<0.1	0.03	7.1	<0.1	0.08	7	0.7	<0.2
REP E5272468	QC	120	1.50	157	0.017	1	1.68	0.004	0.06	<0.1	0.02	7.1	<0.1	0.06	7	<0.5	<0.2
E5272494	Soil	45	2.44	249	0.147	1	2.76	0.076	0.36	<0.1	0.01	6.6	<0.1	<0.05	7	<0.5	<0.2
REP E5272494	QC	42	2.52	247	0.146	2	2.84	0.075	0.33	<0.1	0.01	6.6	<0.1	<0.05	7	<0.5	<0.2
E5272504	Soil	59	0.70	182	0.036	1	2.15	0.010	0.05	0.1	0.03	6.5	<0.1	<0.05	6	<0.5	<0.2
REP E5272504	QC	60	0.69	178	0.030	<1	2.22	0.010	0.05	<0.1	0.02	6.3	<0.1	<0.05	6	0.5	<0.2
E5272529	Soil	79	1.23	255	0.071	3	1.64	0.005	0.34	<0.1	<0.01	4.1	0.3	<0.05	6	<0.5	<0.2
REP E5272529	QC	80	1.20	261	0.073	2	1.64	0.004	0.37	<0.1	<0.01	4.5	0.3	<0.05	5	<0.5	<0.2
Reference Materials																	
STD DS9	Standard	117	0.56	278	0.112	3	0.90	0.084	0.36	2.8	0.17	2.4	4.9	0.20	4	4.8	4.5
STD DS9	Standard	118	0.60	292	0.108	2	0.93	0.079	0.37	2.9	0.21	2.5	5.2	0.23	4	5.6	5.2
STD DS9	Standard	133	0.63	303	0.104	2	0.92	0.082	0.40	3.1	0.18	2.2	5.4	0.18	4	6.0	5.3
STD DS9 Expected		121	0.6165	295	0.1108		0.9577	0.0853	0.395	2.89	0.2	2.5	5.3	0.1615	4.59	5.2	5.02
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd.
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Submitted By: Sandro Frizzi
Receiving Lab: Canada-Whitehorse
Received: July 22, 2013
Report Date: August 08, 2013

Page: 1 of 2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

CERTIFICATE OF ANALYSIS

WHI13000170.1

15

Completed

VAN

CLIENT JOB INFORMATION

Project: Silver City
Shipment ID: KGS-13-001

P.O. Number

Number of Samples:

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2

CANADA

CC: Katie Dodd

Bill Hann

Procedure Number of Code Code Description Test Wgt (g) Report Status R200-250 2 Crush, split and pulverize 250 g rock to 200 mesh WHI

1:1:1 Aqua Regia digestion ICP-MS analysis

ADDITIONAL COMMENTS

2

1DX2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client:

Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project:

Silver City

Report Date:

August 08, 2013

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page:

2 of 2

Part: 1 of 2

CERT	TIFICATE OF AN	IALY	'SIS													WI	HI13	000	170	.1	
	Method	WGHT	1DX15																		
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
1959885	Rock	0.48	0.2	145.4	17.3	84	<0.1	21.7	11.0	803	5.36	15.0	4.4	0.1	127	0.2	0.9	<0.1	12	9.78	0.014
1959886	Rock	1.67	0.2	7513	7.6	74	1.9	24.1	12.4	2621	5.53	31.8	9.0	0.3	333	0.4	223.7	0.2	16	13.23	0.022

Client:

Klondike Gold Corp.

711 - 675 W. Hastings St.

Vancouver BC V6B 1N2 CANADA

www.acmelab.com

Project:

Silver City

2 of 2

Report Date:

Page:

August 08, 2013

Acme Analytical Laboratories (Vancouver) Ltd.
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI13000170.1

	Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1959885 Rock		4	3	3.58	8	<0.001	<1	0.10	0.006	<0.01	<0.1	<0.01	5.2	<0.1	<0.05	<1	<0.5	<0.2
1959886 Rock		1	7	6.08	38	<0.001	<1	0.06	0.006	0.03	<0.1	0.04	4.2	<0.1	0.36	<1	1.2	<0.2

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Page:

Report Date: August 08, 2013

1 of 1

Part:

1 of 2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

QUALITY C	ONTROL	REP	OR	Γ												WH	1113	000	170.	1	
	Method	WGHT	1DX15	1DX15																	
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Pulp Duplicates																					
1959886	Rock	1.67	0.2	7513	7.6	74	1.9	24.1	12.4	2621	5.53	31.8	9.0	0.3	333	0.4	223.7	0.2	16	13.23	0.022
REP 1959886	QC		0.2	7507	7.7	75	2.0	23.8	11.9	2615	5.42	31.3	9.1	0.3	337	0.4	230.1	0.2	16	13.27	0.023
Reference Materials																					
STD DS9	Standard		12.9	112.8	127.0	304	1.7	38.8	7.6	559	2.30	25.0	114.9	6.4	66	2.1	5.4	6.4	40	0.70	0.079
STD DS9 Expected			12.84	108	126	317	1.83	40.3	7.6	575	2.33	25.5	118	6.38	69.6	2.4	4.94	6.32	40	0.7201	0.0819
BLK	Blank		<0.1	3.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
Prep Wash																					
G1-WHI	Prep Blank		1.5	3.7	25.0	45	0.2	1.9	4.1	519	1.80	1.3	4.4	5.0	49	<0.1	0.2	0.1	35	0.45	0.073

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

August 08, 2013

Report Date:

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Page: 1 of 1

QUALITY CONTROL REPORT

WHI13000170.1

Part: 2 of 2

	Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Te
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																		
1959886	Rock	1	7	6.08	38	<0.001	<1	0.06	0.006	0.03	<0.1	0.04	4.2	<0.1	0.36	<1	1.2	<0.2
REP 1959886	QC	1	7	6.05	39	<0.001	2	0.06	0.007	0.03	<0.1	0.05	4.1	<0.1	0.37	<1	0.7	<0.2
Reference Materials																		
STD DS9	Standard	13	118	0.61	284	0.111	3	0.92	0.081	0.39	3.2	0.18	2.3	4.9	0.16	4	5.1	4.4
STD DS9 Expected		13.3	121	0.6165	295	0.1108		0.9577	0.0853	0.395	2.89	0.2	2.5	5.3	0.1615	4.59	5.2	5.02
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
G1-WHI	Prep Blank	10	6	0.47	149	0.104	<1	0.87	0.084	0.48	0.1	<0.01	2.3	0.3	<0.05	4	<0.5	<0.2

Acme Analytical Laboratories (Vancouver) Ltd.
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Submitted By: Katie Dodd

Receiving Lab: Canada-Whitehorse
Received: September 18, 2013
Report Date: October 07, 2013

Page: 1 of 2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

CERTIFICATE OF ANALYSIS

WHI13000437.1

CLIENT JOB INFORMATION

Project: Silver City

Shipment ID: P.O. Number

Number of Samples: 18

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days PICKUP-RJT Client to Pickup Rejects

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2

CANADA

CC: Bill Mann

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	18	Crush, split and pulverize 250 g rock to 200 mesh			WHI
3B	18	Fire assay fusion Au by ICP-ES	30	Completed	VAN
1DX	18	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN

ADDITIONAL COMMENTS

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client:

Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project:

Silver City

Report Date:

October 07, 2013

Page: 2 of 2 Part: 1 of 2

												- 3 -									
CERTIFIC	CATE OF AI	VALY	SIS													Wŀ	- 1113	000	437.	1	
	Method	WGHT	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Wgt	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
5272410	Rock	0.87	<2	1.7	45.6	3.2	95	<0.1	151.8	40.8	1356	4.07	2.7	1.8	1.2	63	0.4	0.3	<0.1	78	1.07
5272411	Rock	0.35	4	9.1	23.2	6.8	53	0.1	56.2	8.9	337	2.33	9.0	3.3	1.8	21	0.2	1.0	0.1	27	0.25
5272412	Rock	0.93	<2	0.4	10.3	2.3	30	<0.1	19.1	8.4	423	1.73	1.0	8.0	6.1	7	0.2	<0.1	0.1	13	0.14
5272413	Rock	0.53	13	5.8	106.9	9.9	141	0.5	50.4	13.3	507	2.20	5.5	4.2	3.2	10	2.6	1.0	0.2	16	0.02
5272414	Rock	0.54	<2	<0.1	93.1	7.0	67	<0.1	52.7	36.5	807	4.91	0.7	1.7	1.8	47	<0.1	0.2	<0.1	79	0.59
5272415	Rock	0.61	<2	0.2	96.5	9.1	61	<0.1	71.6	38.6	1040	5.60	8.3	<0.5	2.8	34	<0.1	0.2	<0.1	128	0.54
5272416	Rock	1.05	<2	0.4	4.7	12.2	36	<0.1	5.4	3.7	287	1.51	2.2	8.0	5.9	14	<0.1	0.3	<0.1	13	0.10
5272417	Rock	0.34	<2	0.2	81.8	6.8	37	<0.1	15.8	12.1	289	2.22	2.2	1.5	2.7	221	<0.1	0.5	<0.1	193	2.91
5272418	Rock	0.74	<2	8.0	8.7	63.7	14	0.2	7.5	3.4	641	1.58	1.5	<0.5	1.0	7	0.1	0.3	0.3	3	0.12
5272419	Rock	0.95	<2	0.1	7.5	9.8	46	<0.1	1.4	1.4	117	1.30	2.5	<0.5	6.1	10	<0.1	0.5	0.1	8	0.09
5272420	Rock	0.51	<2	0.4	2.9	7.7	30	<0.1	5.7	2.5	233	1.41	<0.5	<0.5	4.1	6	<0.1	0.3	<0.1	8	0.08
5272421	Rock	0.37	<2	<0.1	9.9	28.1	20	0.1	0.7	1.7	139	1.09	15.9	5.0	4.4	51	0.2	1.2	0.3	3	0.69
5272422	Rock	0.71	<2	0.1	12.7	7.6	27	<0.1	21.9	8.8	289	1.71	2.1	1.8	7.2	23	<0.1	0.2	<0.1	30	0.25
5272423	Rock	0.78	<2	0.2	38.8	10.0	43	<0.1	21.4	14.7	330	2.58	2.9	3.8	9.0	53	<0.1	0.3	<0.1	59	0.53
5272424	Rock	2.20	<2	5.0	34.5	13.7	117	<0.1	202.1	32.1	2095	5.62	43.3	<0.5	1.2	183	0.6	0.5	0.1	48	12.19
5272425	Rock	0.67	<2	0.5	48.0	14.9	49	<0.1	26.1	14.3	2970	2.76	7.1	<0.5	8.4	2724	0.5	0.2	<0.1	34	26.07
5272426	Rock	0.44	<2	0.3	51.8	44.8	35	0.2	160.5	25.4	633	3.41	1.3	<0.5	1.6	440	<0.1	<0.1	0.4	62	5.18
5272427	Rock	0.61	2	<0.1	0.9	0.3	2	<0.1	3.0	0.3	53	0.27	2.3	<0.5	<0.1	11	<0.1	<0.1	<0.1	<2	0.10

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: October 07, 2013

2 of 2 Part: 2 of 2 Page:

CERTIFICATE OF ANALYSIS

WHI13000437.1

	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	P	La	Cr	Mg	Ва	Ti	В	ΑI	Na	K	w	Hg	TI	S	Sc	Se	Ga	Te
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.2
5272410 Rock		0.137	5	214	2.18	110	0.312	<20	2.61	0.020	0.04	<0.1	0.03	<0.1	<0.05	4.4	<0.5	7	<0.2
5272411 Rock		0.037	6	97	0.40	80	0.068	<20	0.61	0.015	0.05	<0.1	0.10	<0.1	<0.05	1.6	<0.5	2	<0.2
5272412 Rock		0.022	10	8	1.19	71	0.004	<20	1.25	<0.001	0.04	<0.1	0.01	<0.1	<0.05	1.8	<0.5	3	<0.2
5272413 Rock		0.019	9	20	0.44	107	0.003	<20	0.88	0.005	0.09	<0.1	0.22	0.2	<0.05	2.2	0.6	2	<0.2
5272414 Rock		0.026	4	128	3.73	177	0.210	<20	3.74	0.002	0.09	0.1	0.01	<0.1	<0.05	6.4	<0.5	5	<0.2
5272415 Rock		0.053	6	178	3.81	109	0.092	<20	4.01	0.009	0.04	<0.1	<0.01	<0.1	<0.05	13.1	<0.5	7	<0.2
5272416 Rock		0.016	12	4	0.17	216	0.006	<20	0.88	0.043	0.21	<0.1	0.01	<0.1	<0.05	3.4	<0.5	3	<0.2
5272417 Rock		0.039	8	68	0.85	386	0.042	<20	4.98	0.494	0.07	<0.1	0.01	<0.1	<0.05	11.0	<0.5	10	<0.2
5272418 Rock		0.037	3	6	0.03	31	0.002	<20	0.12	0.016	0.01	<0.1	<0.01	<0.1	<0.05	1.6	<0.5	<1	<0.2
5272419 Rock		0.025	11	2	0.18	138	0.004	<20	0.95	0.043	0.10	<0.1	<0.01	<0.1	<0.05	2.4	<0.5	2	<0.2
5272420 Rock		0.038	12	12	0.25	29	0.001	<20	0.55	0.016	0.02	<0.1	0.02	<0.1	<0.05	1.4	<0.5	2	<0.2
5272421 Rock		0.011	8	<1	0.08	282	0.065	<20	0.72	0.008	0.23	0.2	0.01	<0.1	0.20	2.0	<0.5	2	<0.2
5272422 Rock		0.038	16	42	0.66	150	0.034	<20	0.89	0.023	0.15	<0.1	<0.01	<0.1	<0.05	3.8	<0.5	3	<0.2
5272423 Rock		0.074	16	32	1.11	186	0.116	<20	1.50	0.032	0.22	0.1	<0.01	<0.1	<0.05	4.3	<0.5	5	<0.2
5272424 Rock		0.174	12	177	1.61	229	0.005	<20	1.43	<0.001	0.09	<0.1	<0.01	<0.1	<0.05	7.2	<0.5	5	<0.2
5272425 Rock		0.550	63	14	1.38	45	0.005	<20	0.80	0.006	<0.01	<0.1	<0.01	<0.1	0.14	4.1	<0.5	3	<0.2
5272426 Rock		0.096	11	208	4.84	12	0.004	<20	2.13	<0.001	<0.01	<0.1	<0.01	<0.1	<0.05	8.5	<0.5	5	<0.2
5272427 Rock		0.004	1	6	<0.01	5	<0.001	<20	0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.05	0.3	<0.5	<1	<0.2

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Client: Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project: Silver City

Report Date: October 07, 2013

Page: 1 of 1 Part: 1 of 2

QUALITY COI	NTROL	REP	ORT	Γ												WH	1130	0004	37.	1	
	Method	WGHT	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Wgt	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	٧	Ca
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
Pulp Duplicates																					
REP G1-WHI	QC			<0.1	2.1	2.7	46	<0.1	2.9	4.1	581	1.96	<0.5	<0.5	4.2	59	<0.1	<0.1	<0.1	35	0.44
5272412	Rock	0.93	<2	0.4	10.3	2.3	30	<0.1	19.1	8.4	423	1.73	1.0	8.0	6.1	7	0.2	<0.1	0.1	13	0.14
REP 5272412	QC		<2																		
Core Reject Duplicates																					
5272415	Rock	0.61	<2	0.2	96.5	9.1	61	<0.1	71.6	38.6	1040	5.60	8.3	<0.5	2.8	34	<0.1	0.2	<0.1	128	0.54
DUP 5272415	QC		<2	0.1	96.6	9.3	62	<0.1	68.1	38.2	1048	5.49	8.8	<0.5	2.6	33	<0.1	0.3	<0.1	127	0.54
Reference Materials																					
STD DS9	Standard			12.7	103.6	128.3	323	1.9	38.2	7.9	571	2.35	24.4	94.6	6.2	70	2.4	4.9	6.5	41	0.72
STD OREAS45EA	Standard			1.2	682.7	14.1	33	0.3	378.4	53.4	394	23.76	10.1	58.8	9.5	4	<0.1	0.2	0.3	313	0.03
STD OXC109	Standard		215																		
STD OXI96	Standard		1829																		
STD DS9 Expected				12.84	108	126	317	1.83	40.3	7.6	575	2.33	25.5	118	6.38	69.6	2.4	4.94	6.32	40	0.7201
STD OREAS45EA Expected				1.39	709	14.3	28.9	0.26	381	52	400	23.51	9.1	53	10.7	3.5	0.02	0.2	0.26	303	0.036
STD OXC109 Expected			201																		
STD OXI96 Expected			1802																		
BLK	Blank			<0.1	<0.1	<0.1	<1	<0.1	0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01
BLK	Blank		<2																		
BLK	Blank		3																		
Prep Wash																					
G1-WHI	Prep Blank		<2	<0.1	2.2	2.3	47	<0.1	3.3	3.9	558	1.94	<0.5	4.3	3.8	55	<0.1	<0.1	<0.1	37	0.41
G1-WHI	Prep Blank		<2																		
G1-WHI	Prep Blank			<0.1	1.9	2.7	48	<0.1	3.2	3.7	574	1.94	<0.5	8.0	4.5	58	<0.1	<0.1	<0.1	34	0.44

Client:

Klondike Gold Corp.

711 - 675 W. Hastings St. Vancouver BC V6B 1N2 CANADA

Project:

Silver City

Report Date:

October 07, 2013

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page: 1 of 1

Part: 2 of 2

QUALITY CONTROL REPORT

WHI13000437.1

	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	TI	S	Sc	Se	Ga	Te
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.2
Pulp Duplicates																			
REP G1-WHI	QC	0.077	8	7	0.58	221	0.112	<20	0.95	0.051	0.46	<0.1	<0.01	0.3	<0.05	2.3	<0.5	5	<0.2
5272412	Rock	0.022	10	8	1.19	71	0.004	<20	1.25	<0.001	0.04	<0.1	0.01	<0.1	<0.05	1.8	<0.5	3	<0.2
REP 5272412	QC																		
Core Reject Duplicates																			
5272415	Rock	0.053	6	178	3.81	109	0.092	<20	4.01	0.009	0.04	<0.1	<0.01	<0.1	<0.05	13.1	<0.5	7	<0.2
DUP 5272415	QC	0.051	6	177	3.76	104	0.088	<20	3.93	0.009	0.04	<0.1	0.01	<0.1	<0.05	12.5	<0.5	7	<0.2
Reference Materials																			
STD DS9	Standard	0.075	13	114	0.61	305	0.106	<20	0.95	0.079	0.39	2.7	0.34	5.2	0.17	2.3	3.8	4	5.5
STD OREAS45EA	Standard	0.029	7	839	0.11	142	0.090	<20	3.32	0.019	0.06	<0.1	0.02	<0.1	<0.05	80.2	1.1	13	<0.2
STD OXC109	Standard																		
STD OXI96	Standard																		
STD DS9 Expected		0.0819	13.3	121	0.6165	330	0.1108		0.9577	0.0853	0.395	2.89	0.2	5.3	0.1615	2.5	5.2	4.59	5.02
STD OREAS45EA Expected		0.029	6.57	849	0.095	148	0.0875		3.13	0.02	0.053			0.072	0.036	78	0.6	11.7	0.07
STD OXC109 Expected																			
STD OXI96 Expected																			
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.05	<0.1	<0.5	<1	<0.2
BLK	Blank																		
BLK	Blank																		
Prep Wash																			
G1-WHI	Prep Blank	0.075	8	6	0.56	227	0.118	<20	0.92	0.062	0.48	<0.1	0.02	0.2	<0.05	2.4	<0.5	4	<0.2
G1-WHI	Prep Blank																		
G1-WHI	Prep Blank	0.081	8	7	0.57	216	0.114	<20	0.94	0.050	0.46	<0.1	<0.01	0.3	<0.05	2.7	<0.5	5	<0.2

APPENDIX	V	2013 Silver	City SOIL & S	SILT SAMPL	E LOCATIO	ONS					
SampleID		UTM_North	•			Au_ppb_ICP	Cu ppm	Mo ppm	Pb ppm	Sb ppm	Zn ppm
1959801	_ 552725	- 7134272	61	0.1	9.4	11.5	38.3	0.6	10.1	0.8	 54
1959802	552746	7134294	46	0.2	13.4	3.8	43.7	0.8	13.3	0.9	50
1959803	552770	7134312	46	0.1	10.2	2	35.7	0.9	13.3	0.9	61
1959804	552784	7134341	46	0.1	10.4	3.8	33.5	0.7	11.7	0.7	56
1959805	552805	7134366	46	<0.1	9.4	1.5	22	0.6	8.7	0.6	45
1959806	552824	7134387	46	0.2	11	2.7	33.8	0.9	13.7	0.8	59
1959807	552841	7134412	76	<0.1	10.1	3.5	29.4	0.9	10.4	0.7	54
1959808	552868	7134432	61	0.2	9.8	4	35.8	0.6	17.3	0.8	82
1959809	552880	7134459	46	0.1	10.4	3.6	25.9	0.5	11.9	0.6	61
1959810	552902	7134477	61	0.1	10.6	4.1	30.9	0.6	13.3	0.8	59
1959811	552922	7134501	46	<0.1	9.4	2.4	29.2	0.7	10.8	1	50
1959812	552545	7134524	61	0.2	10.6	7.2	32.3	0.5	14.4	0.9	60
1959813	552976	7134541	61	0.2	14.5	4.1	27.3	0.9	27.6	1.4	73
1959814	552988	7134567	61	0.1	8.9	4.5	27.1	0.8	11.6	0.9	63
1959815	553006	7134586	46	<0.1	8.3	0.9	29.7	0.8	8.6	0.4	52
1959816	553032	7134605	46	0.1	8.9	4.8	32.8	0.8	11.5	0.7	61
1959817	553054	7134622	46	<0.1	7.7	4	31.3	0.7	9.9	0.7	55
1959818	553083	7134620	46	0.1	9.2	3.5	35.4	0.9	14.8	1	74
1959819	553111	7134620	76	<0.1	10	5.7	43.9	0.6	13.9	1.2	66
1959820	553111	7134642	61	0.1	12.9	2.6	39.1	0.5	11.5	1.3	66
1959821	553167	7134653	61	0.2	8.6	10.1	29.3	0.9	10.2	1.5	57
1959822	553193	7134667	61	0.2	10.3	1.9	26.8	0.7	12.1	0.7	51
1959822	553227	7134674	46	0.2	12.3	1.3	45.3	1.1	10.4	0.7	78
1959824	553261	7134674	46	0.1	11.5	4	45.5	2.3	12.3	1.1	69
1959825	553302	7134691	46	0.3	12.6	5.4	50.2	1.7	9.1	1.1	84
1959826	553329	7134091	46	0.1	10.9	3.4 7	44.8	1.9	9.8	1.1	135
1959827	553357	7134717	46	0.2	11.8	, 4.5	37.3	1.4	6.3	0.9	126
1959828	553388	7134718	46	0.3	7.8	6.8	53.9	1.5	7.4	0.8	168
1959829	553414	7134728	46	0.3	7.8 14.7	3.3	95.7	4.5	8	2.6	502
1959830	553450	7134740	46	0.4	10.8	<0.5	53.4	1.9	8.6	1.3	185
1959833	555252	7134747	46	<0.1	5.8	5.6	13.1	1.9	10.4	0.6	39
1959834	555222	7133777	46	<0.1	7.7	1.3	19.9	0.8	10.4	0.8	45
1959835			46 46	0.2	7.7	1.3 8.3	28.7	2.9	8.7		66
1959836	554869 554839	7133404 7133374	46 46	0.2	10	7.2	38.9	6.3	12	1.1 1.5	90
1959837			46	0.2	9.7	7.2 4.5	45.1	9	9.1	1.5	68
1959838	554806 554770	7133337		0.5 1.6	39.9	4.5 12.2	45.1 85.4	65.8	25.2	7.2	240
	554779	7133308	46 61	0.4	18.5	6.7	65.4 59	21.4	18.3	3	101
1959839 1959840	554755 554709	7133277 7133259	61 61	0.4	27	4.1	83.8	16.4	16.3	2.4	148
1959841				<0.1	9.4	1.9	18.8	10.4	7.2	0.6	51
	554680	7133223	61 46	<0.1	9.4	5.9	32.5	0.8	7.2	0.8	54
1959842	554643	7133197		<0.1	8.9	2.1	24.4	2.1	7.2	0.8	5 4
1959843	554605	7133166	46 46	<0.1	6.6	2.4	32.5	0.8	6.3	0.7	59
1959844	554566	7133130									
1959845	554537 554496	7133093	46 46	0.1	9.6 17.2	8.3 2.6	31 54.5	1.8 7.3	7.4 9.7	0.7	67 88
1959846	554496	7133049	46 61	0.2 0.5					16.6	1.2	
1959847	554474	7133003	61	0.5 0.5	15.3	4.3 7.6	79.1	3.8		1.3	186
1959848	554438	7132971	61	0.5	22.7	7.6	63.1	17.2	21.3	2.8	117
1959849	552619	7130887	61 46	0.2	31.2	4.6 5.0	85.8	0.8	6.9	0.6	39
1959850	552618	7130919	46	0.3	26.1	5.9 1.7	86.5	0.8	5.4	0.5	33
1959851	552605	7130946	46	0.1	13.3	1.7	21.4	0.8	8.4	0.6	40

SampleID	UTM_East	UTM_North	Depth_cm	Ag_ppm	As_ppm	Au_ppb_ICP	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
1959852	552602	7130978	46	0.1	13.4	2	21.6	0.8	8.7	0.6	40
1959853	552594	7131011	46	0.1	12.5	2.4	17.9	0.8	10.4	0.5	36
1959854	552596	7131037	46	0.5	13	1.6	45.5	0.7	26	0.8	53
1959855	552598	7131075	46	0.3	14.5	8.0	41	0.8	31.9	0.9	53
1959856	552591	7131107	46	<0.1	15.7	1	25.1	0.7	9.4	0.8	41
1959857	552584	7131134	46	<0.1	22.9	3.5	36	0.9	11.3	0.8	36
1959858	552583	7131163	46	<0.1	18.6	2.7	27.8	0.7	14.2	0.7	35
1959859	552582	7131192	46	<0.1	17.9	9.3	33.9	1	12.4	0.8	44
1959860	552591	7131220	46	<0.1	11.1	1.7	20.3	0.6	7.3	0.5	31
1959861	552582	7131253	61	<0.1	14.5	2.9	35.6	0.8	13.2	0.7	39
1959862	552592	7131285	46	0.1	15.4	2.4	29	0.8	9.4	1	44
1959863	552581	7131309	76	0.1	16.9	2.6	27.8	1	10.6	1.3	43
1959864	552587	7131337	61	0.2	19.7	2	28.1	1.5	19.9	2.3	65
1959865	552583	7131363	76	<0.1	32.2	1.7	33.8	6.8	19.3	4.4	105
1959866	552574	7131406	46	0.1	31.4	2.4	27.5	2.1	12.6	1.4	62
1959867	552576	7131437	46	0.4	53.1	5.9	62.5	4.3	23.6	4.3	180
1959868	552567	7131468	46	<0.1	10.2	1.4	28.6	0.7	11.8	0.9	37
1959869	552558	7131495	46	<0.1	10	10.5	24.5	0.6	11.5	1.1	24
1959870	552545	7131545	46	<0.1	9.5	4.8	42.6	0.7	11.8	0.8	41
1959871	552539	7131576	76	<0.1	9.2	3.6	34.7	1	9	0.7	41
1959872	552532	7131612	61	<0.1	9.4	4.1	44.1	0.7	9.3	0.8	44
1959873	552537	7131646	61	<0.1	10.3	0.6	65.4	0.5	15.6	1	43
1959874	552539	7131680	61	<0.1	9.3	5.2	49.8	0.7	25.1	1.1	46
1959875	552541	7131711	61	<0.1	8.6	7.8	26.5	0.3	12.3	1	49
1959876	552538	7131744	46	0.1	9.5	6.3	32.1	0.6	23.5	1.1	47
1959877	552530	7131776	46	0.3	12.5	6.7	55.7	1.1	31.1	1.1	53
1959878	552526	7131817	46	<0.1	9.7	3.6	42.9	0.8	29.2	1.3	48
1959879	552502	7131845	46	0.4	9.6	2.4	39.2	1.1	49.1	1	53
1959880	552495	7131882	46	0.1	8.1	3.5	31.1	1	21.3	0.9	57
1959881	552500	7131922	61	0.2	11.1	25.1	42	2.2	16.6	1.6	72
1959882	552495	7131959	61	0.3	18.5	5.8	43.7	4.2	16	3.2	101
1959883	552523	7131991	46	0.3	17.1	5.4	41.9	3.1	13.7	2.5	75
1959884	552508	7132026	46	0.2	15.8	3.3	43.9	1.6	14.4	1.8	80
1959901	556301	7132610	46	<0.1	8.4	3.1	30.3	0.7	10.7	0.6	45
1959902	556304	7132641	46	<0.1	6.9	1.7	33.5	0.8	15.9	0.5	41
1959903	556313	7132674	46	<0.1	7.5	1.1	32.2	0.9	11.3	0.6	49
1959904	556316	7132705	46	<0.1	6.4	15.4	23.9	0.6	9.3	0.6	44
1959905	556324	7132740	46	<0.1	6.5	<0.5	19.8	0.8	9.6	0.5	44
1959906	556338	7132771	46	<0.1	5.6	2.9	17.6	0.8	9.2	0.4	52
1959907	556350	7132803	46	<0.1	4.9	12.7	18.3	0.6	8.4	0.5	41
1959908	556357	7132831	46	<0.1	7.2	1.9	19.9	0.5	8.1	0.6	47
1959909	556379	7132853	61	<0.1	5.1	<0.5	20.6	0.5	8.7	0.5	45
1959910	556402	7132886	61	<0.1	4.9	0.8	26.8	0.6	7.8	0.6	55
1959911	556409	7132925	46	<0.1	4.7	1.3	24.4	0.3	8.4	0.5	51
1959912	556425	7132947	46	<0.1	6.4	1.5	22.9	0.8	9.6	0.5	53
1959914	557371	7133743	46	<0.1	12.4	5.9	42.1	0.8	13.4	0.6	64
1959915	557323	7133768	46	0.1	16.6	<0.5	46.9	0.4	7.4	0.5	43
1959916	557303	7133749	46	<0.1	12.5	2.1	28.1	0.3	7.5	0.4	22
1959917	557280	7133726	46	<0.1	8.4	2.9	29.9	0.7	7.8	0.5	29
1959918	557291	7133694	61	0.1	16.4	4.4	35.1	0.5	12.1	1	66

1959919 557312 7133678 61	Sample	eID UTM_East	UTM_North	Depth_cm	Ag_ppm	As_ppm A	.u_ppb_ICP	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
1959921 557363 713357	19599	19 557312	7133678	61	0.1	8	2.4	42.7	0.4	13.5	0.6	80
1959922 557364 713359	19599	20 557335	7133653	46	<0.1	16.4	1.9	44.4	1.3	12.6	1	77
1959923 557401 7133574 46 46 40.1 6.5 2.7 49.5 0.3 12.8 0.6 74 195992 557411 7133551 46 46 40.1 8.6 3.6 25.6 0.7 9.7 0.4 52 1959926 557404 7133451 46 40.1 8.6 3.6 25.6 0.7 9.7 0.4 52 195992 557407 713345 46 40.1 8.4 3.5 2.9 0.9 14.2 0.5 70 195992 557407 713345 46 40.1 8.8 8.4 25.6 0.7 8.8 0.6 51 195992 557407 713345 46 40.1 8.8 8.4 25.6 0.7 8.8 0.6 51 195993 557407 713324 46 40.1 9.9 6 42.1 1.3 11.1 0.8 61 195993 557407 7133294 46 40.1 9.4 3.4 26 1.1 10.1 0.5 51 195993 557407 7133294 46 40.1 9.4 3.4 26 1.1 10.1 0.5 51 195993 557506 7133294 46 40.1 9.4 3.4 26 1.1 10.1 0.5 51 195993 557506 713327 46 40.1 9.4 1.7 20 1.3 10.1 0.5 47 195993 557506 7133189 46 40.1 9.4 1.7 20 1.3 10.1 0.5 47 195993 557506 713316 46 40.1 9.4 1.7 20 1.3 10.1 0.5 47 195993 557506 713305 46 40.1 9.4 1.7 20 1.3 10.1 0.5 47 195993 557556 7133097 46 40.1 10.7 5 37.1 1.3 16.6 0.7 61 195993 557555 7133097 46 40.1 10.7 5 37.1 1.3 16.6 0.7 61 195993 557545 7133004 46 40.1 10.6 3.6 33.9 1 12.5 0.7 58 195994 552225 713094 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 195994 552225 713094 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 195994 552226 713102 61 0.3 20.3 13.2 41.8 1.1 44.4 1.1 279 195994 552226 713144 46 0.2 23.2 6 45.7 1.2 48.4 0.7 53 195994 552226 713144 46 0.2 23.2 6 45.7 1.2 48.4 0.7 53 195994 552226 713144 46 0.2 23.2 6 45.7 1.2 48.4 0.7 53 195994 552226 713144 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959997 552246 713145 46 0.1 11.2 3.7 3.7 3.7 4.6 0.1 3.6	19599	21 557363	7133637	46	<0.1	6.4	<0.5	36.8	0.7	14.9	0.5	78
1959924 557413 7133550 46 \$\text{-0.1}\$ 7 \$\text{-1.5}\$ 45.8 \$\text{-0.6}\$ 0.7 9.2 0.5 50 1959925 557404 7133492 46 \$\text{-0.1}\$ 6.5 3.9 12.6 0.7 9.7 0.4 52 1959927 557407 7133450 46 \$\text{-0.1}\$ 7.8 5 20.6 0.7 9.7 0.4 52 1959928 557407 7133451 46 \$\text{-0.1}\$ 8.8 8.4 25.6 0.7 9.7 0.5 70 1959929 557392 7133388 46 \$\text{-0.1}\$ 8.8 8.4 25.6 0.7 8.8 0.6 51 1959930 557467 7133317 46 \$\text{-0.1}\$ 9.9 6 42.1 1.3 11.1 0.8 61 1959931 557491 7133294 46 \$\text{-0.1}\$ 10.2 2.3 22 1 10.6 0.6 49 1959933 557508 713324 46 \$\text{-0.1}\$ 10.2 2.3 22 1 10.6 0.6 49 1959933 557608 7133227 46 \$\text{-0.1}\$ 8.1 3.7 25.3 0.9 10 0.5 46 1959935 557607 7133189 46 \$\text{-0.1}\$ 9.4 3.4 26 1.1 10.1 0.5 51 1959935 557606 7133165 46 \$\text{-0.1}\$ 9.4 3.8 25.8 1.2 12.2 0.6 46 1959936 557536 7133036 46 \$\text{-0.1}\$ 9.3 3.8 25.8 1.2 12.2 0.6 49 1959938 557536 7133036 46 \$\text{-0.1}\$ 10.7 5 37.1 1.3 1.6 6 0.7 61 1959938 557535 7133036 46 \$\text{-0.1}\$ 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133034 46 \$\text{-0.1}\$ 10.6 3.6 33.9 1 12.5 0.7 58 1959941 552255 713094 76 \$\text{-0.1}\$ 10.6 3.6 33.9 1 12.5 0.7 58 1959942 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959943 552236 713104 46 \$\text{-0.1}\$ 10.6 3.6 33.9 1 12.5 0.7 58 1959944 552238 713105 46 \$\text{-0.1}\$ 1.5 4.6 31.2 1.2 41.8 1.1 44.2 1.3 60 1959945 552236 7131144 46 0.2 20.5 17.4 48.8 1.1 44.2 1.3 60 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959995 552206 7131345 46 0.1 12.7 3.7 3.7 3.7	19599	22 557364	7133599	46	0.1	8.6	<0.5	52.9	0.5	20.9	0.6	100
1959925 557404 7133451 46 \cdot \cdo \cdot \cdo \cdot \c	19599	23 557390	7133574	46	<0.1	6.5	2.7	49.5	0.3	12.8	0.6	74
1959926 557404 7133495 46 0.1 6.5 3.9 12.6 0.7 9.7 0.4 52 1959927 557407 7133415 46 0.1 8.4 3.5 2.9 0.9 14.2 0.5 70 1959929 557392 7133388 46 0.1 8.8 8.4 25.6 0.7 8.8 0.6 51 1959930 557497 7133317 46 0.1 9.9 6 42.1 1.3 11.1 0.8 61 1959931 557491 7133294 46 0.1 9.4 3.4 26 1.1 10.1 0.5 51 1959932 557504 7133274 46 0.1 10.2 2.3 22 1 10.6 0.6 49 1959934 557508 7133274 46 0.1 10.2 2.3 22 1 10.6 0.6 49 1959934 557607 7133189 46 0.1 9.4 1.7 20 1.3 10.1 0.5 46 1959935 557506 7133165 46 0.1 9.4 1.7 20 1.3 10.1 0.5 47 1959935 557506 7133165 46 0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959936 557535 7133067 46 0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 7133067 46 0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959936 557535 7133064 46 0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133084 46 0.1 10.6 3.6 33.9 1 12.5 0.7 47 1959945 557535 7133084 46 0.1 10.6 3.6 33.9 1 12.5 0.7 47 1959945 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959946 552232 713084 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959946 552232 713103 46 0.2 20.5 17.4 44.8 1.1 44.2 1.3 60 60 1959945 552226 7131103 46 0.2 20.5 17.4 44.8 1.1 44.2 1.3 60 60 1959945 552226 7131103 46 0.2 20.5 17.4 44.8 1.1 44.2 1.3 60 60 60 60 60 60 60 6	19599	24 557411	7133550	46	<0.1	7	1.5	45.8	0.6	13	0.7	66
1959927 557420 7133450 46 0.1 7.8 5 20.6 0.7 10.3 0.4 51 1959928 557407 7133415 46 0.1 8.8 8.4 25.6 0.7 8.8 0.6 51 1959930 557746 7133374 46 0.1 9.9 6 42.1 1.3 11.1 0.8 61 1959931 557747 7133274 46 0.1 9.4 3.4 26 1.1 10.1 0.5 51 1959932 557504 7133274 46 0.1 10.2 2.3 22 1 10.6 0.6 49 1959933 557508 7133272 46 0.1 8.1 3.7 25.3 0.9 10 0.5 46 1959934 557506 7133189 46 0.1 8.1 3.7 25.3 0.9 10 0.5 46 1959935 557506 7133165 46 0.1 9.4 1.7 20 1.3 10.1 0.6 49 1959936 557513 7133136 46 0.1 8.8 6.1 32.8 0.9 11.1 0.6 49 1959937 557526 7133067 46 0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959939 557535 7133065 46 0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959939 557535 7133065 46 0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133084 46 0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133084 46 0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557235 7133084 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959941 552235 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959945 552236 713103 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959946 552236 713103 46 0.5 48.2 14.2 43.7 1.2 44.4 0.7 53 1959947 552248 7131166 46 0.1 12.7 3.7 33.7 1.4 44.4 1.1 279 1959948 552246 7131166 46 0.1 12.7 3.7 3.7 3.7 1.3 4.4 4.1 1.2 1959959 552208 713128 46 0.1 12.7 3.7 3.7 3.7 3.7 4.4 4.8 1.1 4.2 1.3 6.0 195995 552208 713128 46 0.1 12.7 3.7 3.7 3.7 4.4 4.8 1.1 4.2 1.3 6.0 195995 552246 713146 46 0.1 1.1 6.8 3.7 2.4 3.1 1.1 1.5 0.6 6.5 1959996 552226 713186 46 0.1 1.1 6.8	19599	25 557413	7133531	46	<0.1	8.6	3.6	25.6	0.7	9.2	0.5	50
1959928 557407 7133415 46 < Col. 8.4 8.5 2.9 0.9 14.2 0.5 70 1959929 557392 7133388 46 < Col. 8.8 8.4 25.6 0.7 8.8 0.6 51 1959931 557467 7133294 46 < Col. 9.9 6 42.1 1.3 11.1 0.8 61 1959931 557407 7133294 46 < Col. 9.4 3.4 26 1.1 10.1 0.5 51 1959932 557508 7133227 46 < Col. 10.2 2.3 22 1 10.6 0.6 49 1959934 557607 7133189 46 < Col. 9.4 1.7 20 1.3 10.1 0.5 46 1959936 557506 7133165 46 < Col. 9.3 3.8 25.8 1.2 12.2 0.6 64 49 1959936 557506 7133165 46 < Col. 9.3 3.8 25.8 1.2 12.2 0.6 64 49 1959936 557513 7133067 46 < Col. 7.9 4 23 1.1 1.7 0.6 49 1959936 557535 7133065 46 < Col. 7.9 4 23 1.1 1.7 0.4 47 195993 557555 7133024 46 < Col. 7.9 4 23 1.1 1.7 0.4 47 195994 557535 713298 46 < Col. 10.6 3.6 3.3 1 12.5 0.7 58 195994 552235 7130954 76 < Col. 8.9 2.2 22.1 0.1 0.6 49 195994 552235 7130954 76 < Col. 8.9 2.2 22.1 0.1 0.6 40 195994 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 195994 552232 713103 61 0.5 48.2 14.2 43.8 1.3 1.4 44.4 1.1 279 195994 552236 713103 64 0.2 20.5 17.4 44.8 1.1 44.4 1.1 279 195994 552236 713103 64 0.2 20.5 17.4 44.8 1.1 44.4 1.1 279 195994 552236 713103 64 0.2 20.5 17.4 44.8 1.1 44.4 1.1 279 195994 552236 713103 64 0.2 20.5 17.4 44.8 1.1 44.4 1.1 279 195994 552236 713103 64 0.5 48.2 14.2 3.7 58.5 1.3 49.3 0.6 48 195995 552206 713146 64 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 195995 552206 713146 64 0.2 11.9 3.2 26.8 0.9 9.8 0.9 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	19599	26 557404	7133492	46	<0.1	6.5	3.9	12.6	0.7	9.7	0.4	52
1959929 557392 7133388 46 <0.1 8.8 8.4 25.6 0.7 8.8 0.6 51 1959931 557467 7133317 46 <0.1 9.9 6 42.1 1.1 10.1 0.5 1959931 557504 7133254 46 <0.1 10.2 2.3 22 1 10.6 0.6 49 1959933 557508 7133227 46 <0.1 8.1 3.7 25.3 0.9 10 0.5 1959934 557506 7133189 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 1959935 557607 7133165 46 <0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959936 557513 7133165 46 <0.1 8.8 6.1 32.8 0.9 11.1 0.6 49 1959937 557526 7133097 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 7133065 46 <0.1 7.9 4 23 1.1 11.7 0.4 47 1959939 557535 7133064 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 552232 7130984 46 <0.1 10.6 3.4 31.5 0.7 9.1 0.6 47 1959941 552232 7130984 61 0.5 17.6 295.2 31.8 1.1 44.2 1.3 60 1959943 552232 7130984 61 0.5 17.6 295.2 31.8 1.1 44.2 1.3 60 1959944 552232 7130984 61 0.5 71.6 295.2 31.8 1.1 44.2 1.3 60 1959945 552236 7131103 66 0.5 48.2 14.2 43.7 1.2 44.4 1.1 279 1959946 552236 7131103 46 0.5 48.2 14.2 43.7 1.2 44.4 0.7 53 1959947 552236 7131134 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959948 552236 7131134 66 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959994 552228 713132 61 0.2 20.3 3.7 58.5 1.3 40.3 0.6 55 1959995 552206 713124 64 0.1 1.5 9.4 6 31.2 1.1 1.3 0.8 57 1959996 552207 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959997 552208 7131328 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959998 552210 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959997 552220 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959	19599	27 557420	7133450	46	0.1	7.8	5	20.6	0.7	10.3	0.4	51
1959930 557476 7133317 46 <0.1 9.9 6 42.1 1.3 11.1 0.8 61 1959931 557491 7133294 46 <0.1 9.4 3.4 26 1.1 10.1 0.5 54 1959933 557508 7133227 46 <0.1 8.1 3.7 25.3 0.9 10 0.5 46 1959934 557607 7133189 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 46 1959936 557508 7133165 46 <0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959937 557506 7133097 46 <0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959937 557526 7133097 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959939 557535 7133065 46 <0.1 7.9 4 2.3 1.1 11.7 0.4 47 1959939 557535 7133085 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133084 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959941 552255 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959942 552232 713084 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552238 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131034 64 0.2 20.5 17.4 44.8 1.1 44.2 1.3 60 1959945 552238 7131034 64 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131164 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 713126 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959959 552208 713134 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552206 713134 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552207 713158 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552207 713159 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552207 713159 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552208 713169 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552207 713150	19599	28 557407	7133415	46	<0.1	8.4	3.5	29	0.9	14.2	0.5	70
1959931 557491 7133294 46 <0.1 9.4 3.4 26 1.1 10.1 0.5 51 1959932 557504 7133227 46 <0.1 10.2 2.3 22 1 10.6 0.6 49 1959934 557607 7133189 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 46 1959935 557506 7133165 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 47 1959936 557513 7133165 46 <0.1 8.8 6.1 32.8 0.9 11.1 0.6 49 1959937 557526 7133097 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 713305 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959939 557545 7133097 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133024 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959941 552255 713094 46 <0.1 10.6 3.4 31.5 0.7 9.1 0.6 47 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959944 552238 7131032 61 0.3 20.3 31.3 24.8 1.1 1.5 2.8 0.7 51 1959945 552236 7131103 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959946 552236 7131103 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131164 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959949 552229 713126 46 0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959959 552208 7131281 46 0.1 11.5 6.8 32.1 1 13.7 0.7 57 195995 552208 7131281 46 0.1 11.5 6.8 32.1 1 13.7 0.7 57 195995 552208 7131345 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552208 7131346 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552208 7131365 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552210 7131345 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 552210 7131368 46 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 5522	19599	29 557392	7133388	46	<0.1	8.8	8.4	25.6	0.7	8.8	0.6	51
1959932 557504 7133254 46 <0.1 10.2 2.3 22 1 10.6 0.6 49 1959933 557508 7133257 46 <0.1 8.1 3.7 25.3 0.9 10 0.5 46 1959935 557506 7133165 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 47 1959936 557513 7133165 46 <0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959936 557513 7133165 46 <0.1 10.7 5 37.1 1.3 1.1 1.7 0.4 47 1959939 5575526 7133065 46 <0.1 7.9 4 23 1.1 11.7 0.4 47 1959939 557545 7133044 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7132988 46 <0.1 10.6 3.4 31.5 0.7 9.1 0.6 47 1959941 552255 7130954 76 <0.1 8.9 2.2 22.1 0.8 10.3 0.7 49 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552235 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 444.4 1.1 279 1959946 552246 7131104 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959948 552247 7131186 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 713126 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 713126 46 0.1 11.6 6.8 32.1 1 13.7 0.7 57 1959955 552201 7131342 61 0.2 19.9 39.7 30.4 0.6 15.9 0.6 46 1959955 552201 7131342 61 0.2 19.9 39.7 30.4 0.6 15.9 0.6 46 1959959 552202 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 195995 55210 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 195995 55220 713156 46 0.2 11.5 3.7 24.3 11.1 1.7 0.9 50 195995 55220 713156 46 0.2 11.5 3.7 24.3 11.1 1.5 0.9 50 195995 552240 713169 46 0.2 11.5 3.7 24.3 11.1 1.7 0.9 50 19	19599	30 557476	7133317	46	<0.1	9.9	6	42.1	1.3	11.1	0.8	61
1959933 557508 7133127 46 <0.1 8.1 3.7 25.3 0.9 10 0.5 46 1959934 557507 7133189 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 47 1959935 557506 7133165 46 <0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959937 557513 7133136 46 <0.1 8.8 6.1 32.8 0.9 11.1 0.6 49 1959938 557535 7133065 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959939 557545 7133024 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 51 1959940 557535 7132988 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7132988 46 <0.1 10 3.4 31.5 0.7 9.1 0.6 47 1959941 552235 7130984 61 0.5 17.6 295.2 21.1 0.8 10.3 0.7 49 1959943 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959944 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959945 552236 713103 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 713186 46 <0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959948 552247 7131246 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959995 55220 7131343 61 0.2 12.3 3.7 33.7 1.4 61 0.6 65 1959995 55220 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959955 55220 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 55220 7131345 64 0.2 11.6 3.7 24.3 1.1 15.2 0.6 195995 55220 7131446 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 195995 55220 7131456 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 47 195995 552246 7131469 76 0.1 9.5 2.2 38.7 0.9 10.4 0.9 44 195996 552247 7131469 76 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959995 552240 7131456 46 0.2 11.6 3.7 24.3 1.1 15.2 0.9 0.9 195995 5522	19599	31 557491	7133294	46	<0.1	9.4	3.4	26	1.1	10.1	0.5	51
1959934 557607 7133189 46 <0.1 9.4 1.7 20 1.3 10.1 0.5 47 1959935 557506 7133165 46 <0.1 8.8 6.1 3.8 25.8 1.2 12.2 0.6 46 1959937 557526 7133097 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 7133065 46 <0.1 10.6 3.6 33.9 1 11.7 0.4 47 1959939 557545 7133024 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7133084 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959941 552255 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552235 7131093 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959945 552236 7131032 61 0.3 20.3 13.2 41.8 1.1 44.4 1.3 60 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 44.4 1.1 279 1959945 552246 7131144 46 0.2 23.2 6 45.7 1.2 48.4 0.7 53 1959949 552248 7131126 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.1 12.7 3.7 33.7 33.7 1.4 61 0.6 55 1959995 55220 7131343 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 195995 55220 7131343 61 0.2 19.9 39.7 30.4 0.6 15.9 0.6 46 195995 55220 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 55210 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 55220 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 195995 55220 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 195995 552246 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 195995 552246 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 195995 552246 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 195995 552246 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 50 195995 552246 7131456 46 0.2 11.9 3.	19599	32 557504	7133254	46	<0.1	10.2	2.3	22	1	10.6	0.6	49
1959935 557506 7133165 46 <0.1 9.3 3.8 25.8 1.2 12.2 0.6 46 1959936 557513 7133136 46 <0.1 8.8 6.1 32.8 0.9 11.1 0.6 49 1959937 557526 7133097 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 7133065 46 <0.1 7.9 4 23 1.1 11.7 0.4 47 1959939 557545 7133024 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7132988 46 <0.1 10.8 3.4 31.5 0.7 9.1 0.6 47 1959940 552325 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 44.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131186 46 0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959949 552229 7131246 46 0.1 12.7 3.7 33.7 58.5 1.3 49.3 0.6 48 1959959 552208 7131246 46 0.1 11.6 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131342 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552208 7131246 46 0.1 11.6 6.8 32.1 1 13.7 0.7 57 1959955 552208 7131246 46 0.1 11.6 6.8 32.1 1 13.7 0.7 57 1959955 552208 7131345 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552208 713144 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552206 713155 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552246 713160 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552240 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 50 1959958 552240 713160 46 0.2 11.9 3.2 26.8 3.3 1.1 15.2 0.8 49 1959956 552240 713165 46 0.	19599	33 557508	7133227	46	<0.1	8.1	3.7	25.3	0.9	10	0.5	46
1959936 557513 7133136 46 <0.1 8.8 6.1 32.8 0.9 11.1 0.6 49 1959937 557526 7133097 46 <0.1 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 7133065 46 <0.1 7.9 4 23 1.1 11.7 0.4 47 1959940 557535 7133084 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 713298 46 <0.1 10 3.4 31.5 0.7 9.1 0.6 47 1959941 552255 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 41.1 44.2 1.3 60 1959943 552235 71310984 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 444.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 66 45.7 1.2 48.4 0.7 53 1959947 552248 7131186 46 (0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959948 552240 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552220 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959951 55220 7131343 61 0.2 19.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552196 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959959 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959959 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 50 1959959 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 50 1959959 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 50 1959959 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 50 1959959 552206 7131456 46 0.2 11.9 3.2 26.8 0.9 0.9 0.0	19599	34 557607	7133189	46	<0.1	9.4	1.7	20	1.3	10.1	0.5	47
1959937 557526 7133097 46 < Color: 10.7 5 37.1 1.3 16.6 0.7 61 1959938 557535 7133065 46 < Color: 10.7 4 23 1.1 11.7 0.4 47 1959939 557545 7133024 46 < Color: 10.7 3.6 33.9 1 12.5 0.7 58 1959940 557535 7132988 46 < Color: 10.7 3.4 31.5 0.7 9.1 0.6 47 47 1959942 552232 7130954 76 < Color: 10.7 3.4 31.5 0.7 9.1 0.6 47 49 1959942 552232 7130954 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959945 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959945 552246 7131146 46 0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959948 552242 7131246 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552208 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552192 7131348 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959954 552210 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959954 552196 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959957 552239 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959958 552246 713160 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959960 552248 7131685 46 0.1 19.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552237 713158 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959965 552246 713169 76 0.1 9.5 2.2 38.7 0.9 10.4 	19599	35 557506	7133165	46	<0.1	9.3	3.8	25.8	1.2	12.2	0.6	46
1959938 557535 7133065 46	19599	36 557513	7133136	46	<0.1	8.8	6.1	32.8	0.9	11.1	0.6	49
1959939 557545 7133024 46 <0.1 10.6 3.6 33.9 1 12.5 0.7 58 1959940 557535 7132988 46 <0.1 10 3.4 31.5 0.7 9.1 0.6 47 1959941 552255 7130954 76 <0.1 8.9 2.2 22.1 0.8 10.3 0.7 49 1959942 552232 7131032 61 0.5 17.6 295.2 31.8 1.1 44.2 1.3 60 1959943 552238 713103 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 713105 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 444.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131168 46 <0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959948 552242 7131246 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131328 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959952 552201 7131344 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 55219 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959954 552216 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552106 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959958 552216 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959957 552239 713168 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959958 552240 7131619 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 713169 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552247 7131789 46 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959961 552253 7131811 61 0.1 11.3 2.7 46.7 0.7 11.1 0.8 46 1959965 552240 7131838 46 0.1 19.8 1.8 25.7 1.3 30.6 0.9 37 1959966 552227 7131878 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 19599	19599	37 557526	7133097	46	<0.1	10.7	5	37.1	1.3	16.6	0.7	61
1959940 557535 7132988 46 <0.1 10 3.4 31.5 0.7 9.1 0.6 47 1959941 552255 7130954 76 <0.1 8.9 2.2 22.1 0.8 10.3 0.7 49 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 444.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131186 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959948 552242 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 55229 7131246 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959953 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959954 552216 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959955 552196 7131456 46 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959957 552219 7131658 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959959 552246 713169 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552246 713169 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131755 76 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 713181 61 0.1 11.3 2.6 65.3 1 17.5 1.1 1.6 51 1959965 552207 7131789 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959966 552227 7131789 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959966 552227 713188 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 19	19599	38 557535	7133065	46	<0.1	7.9	4	23	1.1	11.7	0.4	47
1959941 552255 7130954 76 < 40.1 8.9 < 2.2 22.1 0.8 10.3 0.7 49 1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552232 7131092 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 44.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959954 552192 7131349 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959955 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959957 552299 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959959 552246 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552246 7131450 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959959 552246 7131450 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959959 552246 7131450 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959959 552246 713169 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 713169 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959961 552253 7131875 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959965 552240 7131888 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46	19599	39 557545	7133024	46	<0.1	10.6	3.6	33.9	1	12.5	0.7	58
1959942 552232 7130984 61 0.5 17.6 295.2 31.8 1 43.1 0.9 62 1959943 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 444.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 48.4 0.7 53 1959947 552248 7131216 46 0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959948 552242 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959954 55216 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959958 55226 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959959 552246 713168 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552246 713168 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959959 552246 713168 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959960 552248 7131789 46 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959961 552257 7131789 46 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959965 552207 7131878 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959966 552227 713177 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959966 552227 7131877 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 713188 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51	19599	40 557535	7132988	46	<0.1	10	3.4	31.5	0.7	9.1	0.6	47
1959943 552232 7131032 61 0.3 20.3 13.2 41.8 1.1 44.2 1.3 60 1959944 552238 7131065 46 0.2 20.5 17.4 44.8 1.1 52.8 0.7 51 1959945 552236 7131103 46 0.5 48.2 14.2 43.7 1.1 444.4 1.1 279 1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131186 46 46 0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959948 552249 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 55229 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959954 552192 7131389 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959955 55210 7131344 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959958 552246 713160 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 713169 76 0.1 9.5 2.2 38.7 0.9 0.4 0.9 45 195996 552248 713169 76 0.1 9.5 2.2 38.7 0.9 0.4 0.9 45 195996 552248 713169 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 195996 552247 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959965 552240 713183 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959965 552247 713175 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959965 552240 713183 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959965 552240 713183 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959965 552240 713183 46 0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959966	19599	41 552255	7130954	76	<0.1	8.9	2.2	22.1	0.8	10.3	0.7	49
1959944 552238	19599	42 552232	7130984	61	0.5	17.6	295.2	31.8	1	43.1	0.9	62
1959945 552236	19599	43 552232	7131032	61	0.3	20.3	13.2	41.8	1.1	44.2	1.3	60
1959946 552246 7131144 46 0.2 23.2 6 45.7 1.2 81.3 0.8 57 1959947 552248 7131186 46 <0.1 15.9 4.6 31.2 1.2 48.4 0.7 53 1959948 552242 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131349 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552192 7131389 61 0.2 11.9 3.5 31.9 0.7 12.2 1 53 1959954 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 55216 7131456 46 0.2 11.9 3.6 35.3 1.9 13.4 1.1 52 1959957 552239 7131568 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959962 552227 7131789 46 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959964 552253 7131811 61 0.1 11 2.2 67.5 1 19 1.3 51 1959965 552240 7131838 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959966 552227 7131877 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959967 552239 7131877 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131877 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131903 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131877 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131903 46 0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 713190	19599	44 552238	7131065	46	0.2	20.5	17.4	44.8	1.1	52.8	0.7	51
1959947 552248 7131186 46 46 46 46 46 47 47 4	19599	45 552236	7131103	46	0.5	48.2	14.2	43.7	1.1	444.4	1.1	279
1959948 552242 7131216 46 0.1 12.7 3.7 33.7 1.4 61 0.6 55 1959949 552229 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552192 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959954 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 71	19599	46 552246	7131144	46	0.2	23.2	6	45.7	1.2	81.3	0.8	57
1959949 552229 7131246 46 0.2 12.3 3.7 58.5 1.3 49.3 0.6 48 1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131343 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959953 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959956 552216 7131503 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959957	19599	47 552248	7131186	46	<0.1	15.9	4.6	31.2	1.2	48.4	0.7	53
1959950 552208 7131281 46 0.1 11 6.8 32.1 1 13.7 0.7 57 1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552192 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959954 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240	19599	48 552242	7131216	46	0.1	12.7	3.7	33.7	1.4	61	0.6	55
1959951 552210 7131312 61 0.2 9.9 39.7 30.4 0.6 15.9 0.6 46 1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 14 4.3 34.8 1.4 12.8 0.7 53 1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959960 552248 7	19599	49 552229	7131246	46	0.2	12.3	3.7	58.5	1.3	49.3	0.6	48
1959952 552201 7131343 61 0.2 14.7 3.5 31.9 0.7 12.2 1 53 1959953 552192 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959954 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 14 4.3 34.8 1.4 12.8 0.7 53 1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131690 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960	19599	50 552208	7131281	46	0.1	11	6.8	32.1	1	13.7	0.7	57
1959953 552192 7131389 61 0.2 11.9 3.2 26.8 0.9 9.8 0.9 54 1959954 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 14 4.3 34.8 1.4 12.8 0.7 53 1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 <	19599	51 552210	7131312	61	0.2	9.9	39.7	30.4	0.6	15.9	0.6	46
1959954 552196 7131424 61 0.3 16.4 3.6 35.3 1.9 13.4 1.1 52 1959955 552196 7131456 46 0.2 14 4.3 34.8 1.4 12.8 0.7 53 1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 713175	19599	52 552201	7131343	61	0.2	14.7	3.5	31.9	0.7	12.2	1	53
1959955 552196 7131456 46 0.2 14 4.3 34.8 1.4 12.8 0.7 53 1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 713183 </td <td>19599</td> <td>53 552192</td> <td>7131389</td> <td>61</td> <td>0.2</td> <td>11.9</td> <td>3.2</td> <td>26.8</td> <td>0.9</td> <td>9.8</td> <td>0.9</td> <td>54</td>	19599	53 552192	7131389	61	0.2	11.9	3.2	26.8	0.9	9.8	0.9	54
1959956 552216 7131503 46 0.2 11.6 3.7 24.3 1.1 15.2 0.8 49 1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131726 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959962 552227 7131789 46 <0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959964 <td< td=""><td>19599</td><td>54 552196</td><td>7131424</td><td>61</td><td>0.3</td><td>16.4</td><td>3.6</td><td>35.3</td><td>1.9</td><td>13.4</td><td>1.1</td><td>52</td></td<>	19599	54 552196	7131424	61	0.3	16.4	3.6	35.3	1.9	13.4	1.1	52
1959957 552239 7131568 46 0.2 15.5 4.3 26.4 1.3 17.6 0.9 50 1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131726 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959962 552227 7131789 46 <0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 7131789 46 <0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959965	19599	55 552196	7131456	46	0.2	14	4.3	34.8	1.4	12.8	0.7	53
1959958 552240 7131610 46 0.5 16 7 26.1 3.4 22.4 0.8 47 1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131726 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959962 552227 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 7131789 46 <0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959964 552253 7131831 61 0.1 11 2.2 67.5 1 19 1.3 51 1959965 552240<	19599	56 552216	7131503	46	0.2	11.6	3.7	24.3	1.1	15.2	0.8	49
1959959 552246 7131649 76 0.1 9 3 40.9 0.6 9.7 0.9 44 1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131726 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959962 552227 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 7131789 46 <0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959964 552253 7131811 61 0.1 11 2.2 67.5 1 19 1.3 51 1959965 552240 7131838 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959966 5522	19599	57 552239	7131568	46	0.2	15.5	4.3	26.4	1.3	17.6	0.9	50
1959960 552248 7131685 46 0.1 9.5 2.2 38.7 0.9 10.4 0.9 45 1959961 552253 7131726 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959962 552227 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 7131789 46 <0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959964 552253 7131811 61 0.1 11 2.2 67.5 1 19 1.3 51 1959965 552240 7131838 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959966 552227 7131877 46 <0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 <td< td=""><td>19599</td><td>58 552240</td><td>7131610</td><td>46</td><td>0.5</td><td>16</td><td>7</td><td>26.1</td><td>3.4</td><td>22.4</td><td>0.8</td><td>47</td></td<>	19599	58 552240	7131610	46	0.5	16	7	26.1	3.4	22.4	0.8	47
1959961 552253 7131726 46 0.2 17.4 1.9 31.6 1.4 27.1 1.6 54 1959962 552227 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 7131789 46 <0.1 10.3 2.7 46.7 0.7 11.1 0.8 46 1959964 552253 7131811 61 0.1 11 2.2 67.5 1 19 1.3 51 1959965 552240 7131838 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959966 552227 7131877 46 <0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131903 46 <0.1 8.1 1.7 17.5 1.4 11.5 0.7 38	19599	59 552246	7131649	76	0.1	9	3	40.9	0.6	9.7	0.9	44
1959962 552227 7131755 76 0.1 13.9 2.6 53.3 1 17.5 1.1 51 1959963 552217 7131789 46 <0.1	19599	60 552248	7131685	46	0.1	9.5	2.2	38.7	0.9	10.4	0.9	45
1959963 552217 7131789 46 <0.1	19599	61 552253	7131726	46	0.2	17.4	1.9	31.6	1.4	27.1	1.6	54
1959964 552253 7131811 61 0.1 11 2.2 67.5 1 19 1.3 51 1959965 552240 7131838 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959966 552227 7131877 46 <0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131903 46 <0.1 8.1 1.7 17.5 1.4 11.5 0.7 38	19599	62 552227	7131755	76	0.1	13.9	2.6	53.3	1	17.5	1.1	51
1959965 552240 7131838 46 0.1 9.8 1.8 25.7 1.3 30.6 0.9 37 1959966 552227 7131877 46 <0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131903 46 <0.1 8.1 1.7 17.5 1.4 11.5 0.7 38	19599	63 552217	7131789	46	<0.1	10.3	2.7	46.7	0.7	11.1	0.8	46
1959966 552227 7131877 46 <0.1 16.3 3.7 52 1.4 20.4 1.8 51 1959967 552239 7131903 46 <0.1 8.1 1.7 17.5 1.4 11.5 0.7 38	19599	64 552253	7131811	61	0.1	11	2.2	67.5	1	19	1.3	51
1959967 552239 7131903 46 <0.1 8.1 1.7 17.5 1.4 11.5 0.7 38	19599	65 552240	7131838	46	0.1	9.8	1.8	25.7	1.3	30.6	0.9	37
	19599	66 552227	7131877	46	<0.1	16.3	3.7	52	1.4	20.4	1.8	51
1959968 552257 7131919 46 <0.1 15.2 8.5 28.3 1.6 40.9 1.9 50	19599	67 552239	7131903	46	<0.1		1.7	17.5	1.4		0.7	38
	19599	68 552257	7131919	46	<0.1	15.2	8.5	28.3	1.6	40.9	1.9	50

	SampleID	UTM_East	UTM_North	Depth_cm	Ag_ppm	As_ppm	Au_ppb_ICP	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
	1959969	552257	7131940	61	<0.1	17.9	2.1	81.1	1.5	34.2	4.4	100
	1959970	552272	7131968	46	<0.1	13.1	3.8	37.2	1.1	11.7	1.6	52
	1959971	552253	7132013	46	0.1	14.4	2.2	39.4	1	36	3.3	75
	1959972	552264	7132043	46	<0.1	39.6	1.1	70.6	0.9	16.6	5.1	82
_	1959973	552286	7132094	46	0.2	103.1	0.6	62.7	2.2	22.8	14.4	264
	1959913	557174	7133140	silt	<0.1	4.2	5.9	16.1	0.2	7.5	0.3	56
	1959831	554094	7133992	silt	0.2	5.2	5	19.2	0.9	7.3	0.6	62
	1959832	554095	7133984	silt	0.2	4.9	5.6	18.5	1.1	7.3	0.6	60
	5272456	555204	7132615	70	<0.1	3	2.8	85.7	0.9	6.5	0.6	92
	5272457	554399	7133141	35	<0.1	9.2	3.8	26.1	2.8	10.6	0.9	64
	5272458	554434	7133220	40	<0.1	5.6	16.6	24.9	1	6.7	0.5	51
	5272459	554776	7133308	50	1.2	29.2	10.8	69.4	37.2	29.7	5.2	164
	5272460	555986	7133434	silt	0.1	5.5	3.2	13.5	0.9	7.4	0.8	48
	5272461	556504	7134420	silt	0.1	6.4	1.8	18.9	1	8.4	0.8	57
	5272462	556446	7134527	80	0.2	18.9	6.6	45.7	0.9	50	1.4	141
	5272463	556445	7134567	80	0.1	11.3	4	42.7	0.7	16.9	0.9	70
	5272464	556433	7134638	70	0.1	9	3.4	39.6	0.7	16.4	1	77
	5272465	556422	7134687	80	0.1	10.6	3	39	0.8	16.8	0.8	75
	5272466	556375	7134620	70	0.1	11	15.4	49.4	0.9	13.8	1.1	74
	5272467	556330	7134580	80	0.1	14.4	4.8	44.1	0.6	14.9	1.3	75
	5272468	556262	7134490	70	0.1	14.2	2.8	62.8	0.8	11.3	1.1	75
	5272469	556223	7134468	80	<0.1	12.9	3.9	66.4	0.8	10	1	78
	5272470	556193	7134431	80	<0.1	7.4	6	57.3	0.7	12.2	0.9	78
	5272471	556160	7134371	60	<0.1	15.9	3.4	49.7	0.7	10.9	1	71
	5272472	556111	7134337	70	0.2	30.6	8	54.5	2.9	43.7	2.5	68
	5272473	556085	7134286	60	<0.1	8.8	4.1	48.8	0.9	13.1	2	88
	5272474	556031	7134243	50	0.2	52.6	5.5	111.2	2	36.9	6.7	132
	5272475	555965	7134180	50	0.1	8.6	2.9	32.2	0.9	13	0.9	61
	5272476	555951	7134108	40	<0.1	8.7	5.3	22.6	1.1	12.5	0.8	56
	5272477	555923	7134063	50	0.1	7	2.8	24.4	0.9	13.8	0.4	70
	5272478	555876	7134016	60	<0.1	8.4	3.5	17.7	0.8	11.2	0.5	52
	5272479	555884	7133962	70	<0.1	6.7	2.7	16.1	0.9	12.2	0.4	51
	5272480	555840	7133919	50	0.2	7.5	2.7	26.8	0.8	11	0.6	58
	5272481	555792	7133859	70	<0.1	5.9	4	20.2	0.6	11.9	0.4	56
	5272482	556206	7132146	70 50	0.3	23.3	1.7	56.6	1.1	17.6	1.5	78
	5272483	556252	7132167	50	0.1	8.5	3.6	26.7	1.1	16.2	0.8	61
	5272484	556301	7132191	90	<0.1	9.8	9.1	31.1	0.6	8.8	0.8	52 52
	5272485	556331	7132236	70 70	0.1	9.7	3.1	31.6	0.6	8.8	0.8	53
	5272486	556383	7132262	70	<0.1	8.9	3.8	33.8	1	8.9	0.8	46
	5272487	556399	7132303	60	<0.1	9.4	3.2	35.1	0.8	9.8	0.7	45
	5272488	556447	7132320	40	<0.1	8.1	1.5	57.5	0.7	10.4	1	48
	5272489	556492	7132347	60	<0.1	2.7	0.9	35.8	0.8	3.2	0.2	60
	5272490	556544	7132371	60 70	<0.1	2.6	<0.5	45.5	0.9	2.8	0.1	82 80
	5272491	556601	7132369	70 70	<0.1	1.5	<0.5	55.4	0.9	2.3	<0.1	89 73
	5272492	556661 556734	7132386	70 60	<0.1	1.7	1.9	42.5	0.9	2.3	<0.1	72 69
	5272493	556724	7132400	60	<0.1	3.2	3.8	40.2	0.8	4.1	0.1	68 73
	5272494	556768	7132408	60	<0.1	2.2	2	46.2	0.8	2.1	<0.1	72
	5272495	556831	7132397	60 80	<0.1	1.4	1.5	57.3	0.4	1.8	<0.1	84
	5272496	556903	7132396	80	<0.1	0.8	2.1	58.6	0.7	3.8	<0.1	94 67
	5272497	556875	7132442	70	<0.1	1.9	3.1	53.2	0.6	3.1	0.1	67

SampleID	UTM_East	UTM_North	Depth_cm	Ag_ppm	As_ppm	Au_ppb_ICP	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
5272498	556855	7132493	60	<0.1	10.6	6.6	52.8	1	6.3	0.6	59
5272499	556809	7132515	70	<0.1	7.6	4.5	46.1	0.8	8.8	0.5	59
5272500	556784	7132569	80	0.2	11.3	8.2	39.7	0.9	11.9	1.1	79
5272501	556731	7132617	40	0.2	26.5	3.7	72	0.6	10.2	1.4	50
5272502	556706	7132667	50	<0.1	9.1	4.3	51.9	0.6	9.9	0.6	53
5272503	556652	7132719	30	<0.1	7.2	1.7	26.7	0.8	9.1	0.5	48
5272504	556618	7132750	40	<0.1	9.2	3.1	29.6	0.7	9.8	0.6	51
5272505	556566	7132783	60	<0.1	6.2	3.2	43.5	0.5	12.6	0.7	51
5272506	556520	7132811	50	0.1	5.2	3.8	28.3	0.5	11.6	0.6	54
5272507	556475	7132845	60	0.1	7	4.4	33.1	0.5	12.5	0.7	58
5272508	556431	7132870	60	0.1	5	7.3	29.8	0.4	8	0.5	45
5272509	556419	7132920	50	<0.1	6	3.6	26.8	0.6	10.7	0.6	54
5272510	556388	7132960	50	<0.1	6.7	2.6	23.9	0.5	9.3	0.6	48
5272511	556354	7133010	70	0.1	6.4	2.6	23.4	0.5	9.4	0.5	51
5272512	556305	7133027	60	<0.1	6.3	7.3	15.2	0.7	9	0.5	42
5272513	552988	7133434	70	<0.1	4.2	5.6	29.4	0.4	18.4	0.4	65
5272514	552263	7133195	50	<0.1	2.9	5.1	134.7	4.9	26.9	0.6	446
5272515	552242	7133197	40	0.2	11.3	5.7	111.5	13.6	22.7	0.5	694
5272516	552274	7133158	40	0.1	5.8	3.6	97.7	5	12.7	0.5	374
5272517	552354	7133279	60	<0.1	7.1	2.9	27.4	1	8.5	0.6	70
5272518	552432	7133357	60	0.3	9	3.6	44.7	2.1	18.3	0.9	113
5272519	552550	7133385	60	0.2	12.9	3.2	73.6	1.4	8.6	0.9	73
5272520	552717	7133412	70	0.3	15.2	3.4	67.4	4.7	14.9	1.7	94
5272521	553017	7133411	60	<0.1	8.9	4	27.9	0.9	14.2	0.6	60
5272522	553277	7133361	40	<0.1	9.4	3.6	17.2	0.6	10.9	0.6	55
5272523	553303	7133304	30	<0.1	9.3	1.7	20.1	0.7	12.3	0.6	45
5272524	553314	7133244	40	<0.1	4	1.4	24.4	0.3	22.7	0.5	175
5272525	553326	7133183	50	<0.1	3.3	1.9	57.6	0.2	33.6	0.5	117
5272526	553493	7132963	60	<0.1	9.3	3.6	29.1	0.9	10.7	0.5	50
5272527	553490	7132896	50	<0.1	3	8.0	80.3	0.5	13.5	0.3	150
5272528	553516	7132833	60	0.2	4.6	1.3	474.2	0.9	28.3	0.3	160
5272529	553558	7132783	40	<0.1	3.5	2.2	21	0.5	23.4	0.3	83