Technical Report for the Justin Property Target Evaluation Program (YMEP Project 14-105) Yukon Territory

Volume I - Report

61°39'N, 128°6'W NTS Mapsheet 105 H 09 Watson Lake Mining District

Prepared for:

Derek Torgerson, P. Geol. Mineral Development Geologist Yukon Geological Survey

Prepared by:

Mike McCuaig, P. Geo. TerraLogic Exploration Inc. Suite 200, 44-12th Avenue South. Cranbrook, BC, Canada V1C 2R7

On behalf of:

Aben Resources Ltd. Suite 1610 – 777 Dunsmuir Street Vancouver, BC, Canada V7Y 1K4

January 16th, 2015

Table of Contents

Introduction	1
Location and Access	1
Tenure	3
History and Previous Work	5
Geology	6
Regional Geology	6
Property Geology	10
2014 Exploration Program	18
2014 Exploration Results	18
Geological Mapping	18
Analytical Results	25
Geochemical Surveys	25
Trenching Program.	29
Diamond Drill Core Sampling Program.	
Conclusions	51
Recommendations	53
References	54

List of Figures

Figure 1 – Project Location Map	2
Figure 2 – Tenure Map	4
Figure 3a – Regional Geology Map	8
Figure 3b – Geology Legend	9
Figure 4a – Property Geology and Geostation Location Map	17
Figure 4b – 2014 Sample Location and Au Results Map	
Figure 5a – Trench Overview Map	
Figure 5b – TR14-001 & TR14-002 Trench Map	
Figure 5c – TR14-003 & TR14-004 Trench Map	
Figure 6 – DDH Plan Map	41
Figure 7 – Section 6: JN11009 & JN11010	44
Figure 8 – Section 3: JN12012, JN12013 & JN12014	47
Figure 9 – Section 5: JN12016 & JN12019	50

List of Plates

Plate 1 – Brittle structures from the POW zone (looking Az 350°)	19
Plate 2 – Big Swifty showing (looking north).	21
Plate 3 – Big Swifty protocataclasite hosting pyrite-marcasite mineralization	22
Plate 4 – Cataclasite from western limit of known mineralization at the POW zone	22
Plate 5 - Cataclasite from the eastern limit of known mineralization at the POW zone (JN12014)	22
Plate 6 – Multiple generations of quartz veining in talus from the Big Swifty area (looking east)	23
Plate 7 – Quartz veining from geologic station MMJNG056 (looking north)	23

Plate 8 – March Fault (looking east)	.24
Plate 9 – Folding in the March Fault hanging wall carbonate strata (looking southeast)	.24
Plate 10 - Ferricrete from the March Fault returned 45.0 % Zn, 6.9% Pb, 54.3 g/t Ag (MMJNR113)	.26
Plate 11 – TR14-001 (looking west)	.29
Plate 12 - TR14-001 Sheeted quartz vein containing Au-Bi-Te alloys (MMJNR041, MMJNR047)	.30
Plate 13 – TR14-001 Sheeted quartz vein array (looking south)	.30
Plate 14 – TR14-002 (looking west)	.31
Plate 15 – TR14-002 Visible Gold from sample MMJNR064	.31
Plate 16 – TR14-003 (looking west)	.32
Plate 17 – TR14-003 Sheeted quartz veining (looking south)	.32
Plate 18 – TR14-004 (looking west)	.33
Plate 19 – TR14-004 Sheeted quartz vein array (looking north)	.34
Plate 20 – TR14-004 Quartz-W+Bi-Te-Au alloy – MMJNR101 – 4.10 g/t Au.	.34
Plate 21 – Photomicrograph of Visible Gold and Au-Bi-Te alloys	.35

List of Tables

Table 1 – Tenure Summary for the Justin Property	3
Table 2 – Summary statistics for the 2014 soil samples (number of samples = 149)	27
Table 3 – Trench Locations and Disturbance Summary.	29
Table 4 – 2014 Significant Trench Results	
Table 5 – Correlation Matrix for the 2014 Rock Chip/Channel Samples	
Table 6 – Summary of Tungsten Sampling Program	
Table 7 – Diamond Drill Hole Collar Locations for Holes Sampled in 2014	
Table 8 – Summary of Tungsten Highlights from the 2014 Drill Core Analysis	40

List of Appendices

Volume II

Appendix I – Final Submission Form

Appendix II – Statement of Qualifications

Appendix III – Geochemical Protocol

Appendix IV – Sample Locations & Sample Description Data

Appendix V – Analytic Certificates

Appendix VI – Bedrock Geologic Mapping Data

INTRODUCTION

Location and Access

The Justin Property is located in southeastern Yukon Territory approximately 190 kilometres north of Watson Lake (Figure 1). The claim group is located within the Watson Lake Mining District, NTS Mapsheet 105 H 09 with a centroid lat and long position of 61°39'N, 128°6'W. The property consists of 376 Quartz Claims (Justin 1-25; SP 1-207; VF 1-144) administered by the Watson Lake Mining Recorder. The claims are owned 100% by Aben Resources, with an underlying 1% NSR held by Bernie Kreft of Whitehorse, Yukon and an underlying 2% NSR held by Gold Royalties Corporation. Aben Resources holds the right to purchase one-half of the Justin royalties from Gold Royalties and all of the Justin royalties held by Bernie Kreft for a one time cash payment of \$1,000,000 each.

The Nahanni Range Road passes through the western portion of the property. The road was rehabilitated in 2002 with the re-opening of the CANTUNG tungsten-copper mine and provides all-weather, all-season access to the property area.

Helicopter access to the property is equidistant from bases in Watson Lake or Ross River. Equipment and personnel can be mobilized from the Justin Base Camp located at kilometre 143 of the Nahanni Range Road.

The property is covered by fairly rugged glaciated terrain typical of the Logan Mountains with elevations ranging from 1300 to 2000 meters. A prominent ridge underlies most of the property, with steep south facing slopes and somewhat more moderate north facing slopes. The property is crossed with several N-S trending valleys with deep WNW trending glacial valleys along the northern and southern property boundaries.

60°0'0"N

Tenure

The property consists of 376 Quartz claims located on the Ostensibility Creek Mapsheet (105 H 09) within the Watson Lake Mining District (Figure 2). The claims are owned 100% by Aben Resources Ltd., with an underlying 1% NSR carried by Bernie Kreft of Whitehorse, Yukon and an underlying 2% NSR held by Gold Royalties Corporation. Aben Resources holds the right to purchase one-half of the Justin royalties from Gold Royalties and all of the Justin royalties held by Bernie Kreft for a one time cash payment of \$1,000,000 each.

District	Grant Number	Claim Name	Claim Owner	Claim Expiry Date	Status	Map Number
Watson Lake	YB59913 - YB70829	JUSTIN 1 - 25	ABEN RESOURCES LTD 100%	29/11/2022	Active	105H09
Watson Lake	YC73232 - YC73281	SP 1-50	ABEN RESOURCES LTD 100%	29/11/2022	Active	105H09
Watson Lake	YD65452 - YD65456	SP 51-55	ABEN RESOURCES LTD 100%	29/11/2020	Active	105H09
Watson Lake	YD87903 - YD87934	SP 57 - 88	ABEN RESOURCES LTD 100%	29/11/2016	Active	105H09
Watson Lake	YF33001 - YF33119	SP 89 - 207	ABEN RESOURCES LTD 100%	29/11/2017	Active	105H09
Watson Lake	YD25701- YD25844	VF1 - 144	ABEN RESOURCES LTD 100%	18/10/2016	Active	105H09

<u>Table 1 – Tenure Summary for the Justin Property</u>

History and Previous Work

The Justin Property area was first explored in 1964, when a Norquest Joint Venture staked the RAIN claim to cover skarn and replacement style pyrite, pyrrhotite, and chalcopyrite mineralization. The Joint Venture carried out geological mapping and a surface magnetic survey in 1965. The area was re-staked as the BJ claim in 1975 by B. Corrigan and again in 1980 by Majestic Mg. Corporation as the SUN claim group. Majestic optioned the claims to Vancliffe Resource Corporation. In 1981, Waterloo Energy Corp tied on the Lightning claims to the south and staked a separate block two kilometres south of the SUN Claims. Vista Resources tied on two more SUN claims in 1987. A 1987 joint venture between Vista, Vancliffe, and Conquest drilled four holes across the "Main Skarn zone" to test for copper-gold mineralization. Noranda Exploration tied on the PTAR claims along the north side in 1988, and E.G. Sykes staked two additional SUN claims in 1990. The claims all lapsed in the early 1990s.

In June 1995 Bernie Kreft of Whitehorse staked the JUSTIN 1-4 claims to cover the central "Main Skarn zone" area and carried out limited prospecting to the southeast. The claims were optioned by Hemlo Gold Mines Inc in 1995, which staked the JUSTIN 5-25 claims to the east, west and south of the Justin Property in October 1995.

In 1996, Hemlo carried out reconnaissance exploration in the area that led to the staking of the SPROGGE 1-74 Claims southwest of the Justin Property. The entire claim group was consolidated as the Sprogge Property under a 1997 option agreement with Viceroy Exploration, which conducted geologic mapping, prospecting, soil sampling, and limited hand trenching. The option was transferred to NovaGold Resources in 1999 as part of an underlying deal. NovaGold dropped their option on the JUSTIN 1-25 Claims in 2000. The claims were optioned by Eagle Plains Resources Ltd. from property owner Bernie Kreft in 2001.

In 2010 Eagle Plains Resources Ltd conducted a 16 day field program with a crew of 5 workers and a 207 line km airborne geophysical survey. The focus of the program was to evaluate and re-sample the known mineralization occurrences and locate further mineralization on the property. The purpose of the airborne geophysical survey was to locate any buried intrusions and major structural features that could be controlling and influencing mineralization on the property. A total of 135 rock samples, 61 silt samples, and 209 soil samples were taken over the course of the program.

The 2010 exploration program on the property was successful in outlining an abundance of mineralized occurrences returning greater than 1 g/t Au. Channel sampling from the Confluence and Main zone, and chip sampling from the Kangas zone confirmed and expanded on the historical results. The Main zone returned results as high as 11.00 m grading 1.4 g/t Au, 3 g/t Ag, and 0.18 % Cu, including 3.00 m grading 3.04 g/t Au, 4 g/t Ag, and 0.22% Cu as well as 7.00 m at 2.07 g/t Au, including 3.00 m grading 3.15 g/t Au. The Confluence zone returned results including 1.6 g/t Au, 2.4 g/t Ag over 4.00 m while the Kangas zone returned 1.50 m grading 2.85 g/t Au, 4.2 g/t Ag.

The airborne geophysical survey conducted in 2010 was successful in outlining potential target areas of coincident magnetic and electromagnetic anomalies.

Follow up of the geophysical survey late in the 2010 field program led to the discovery of a new mineral occurrence in the northwestern portion of the property adjacent to a previously unknown intrusive stock. The new mineral occurrence has been named the POW zone. It exhibits mineralization styles similar to both the Main and Confluence zones. Results from 2010 include 0.50 g/t Au over 3.00 m in a chip sample: grab samples from different locations within the zone returned values up to 2.40 g/t Au in skarn mineralization and 3.00 g/t Au in mineralized quartz-calcite veins.

The 2011 exploration program consisted of 58 field days, of which the primary focus was to drill-test mineral occurrences outlined by previous exploration activities. Four zones of interest were explored during the 2011 program: the Main Skarn zone, Kangas zone, Confluence zone, and the POW zone. The latter three of these zones were drill tested for the first time.

A small component of mapping, prospecting, and soil sampling occurred concurrently with diamond drilling activities to follow up on the POW zone discovery. A total of 2,020 metres of NQ-size core was drilled in 10 diamond drill holes. A total of 1,374 drill core samples, 52 rock samples, 1 silt sample, and 63 soil samples were collected over the duration of the program. All samples were shipped to ALS Minerals in Whitehorse, YT, Canada for preparation and then transported to ALS Minerals in Vancouver, BC, Canada for analysis.

The 2011 exploration program was successful in confirming gold+/-silver mineralization at all four zones. Of importance was the significant discovery of gold-bearing skarn and stockwork veining within the POW zone, highlighted in diamond drill holes JN11009 and JN11010. Highlights from the POW zone include 60.00 metres grading 1.19 g/t Au (JN11009) and 11.30 metres grading 2.70 g/t Au, 29 g/t Ag (JN11010). The POW zone and the immediate surrounding area is currently believed to hold the greatest potential to host an economic deposit on the Justin property.

Results from the Main Skarn zone and the Confluence zone were encouraging as they prove that gold mineralization extends below their respective surface expressions. Highlights from the Confluence zone include 4.60 m grading 1.15 g/t

Page 6

Au. Highlights from the Main zone include 0.25 m grading 5.37 g/t Au. Although the economic potential of these zones appears limited at this time, the results do prove that elevated concentrations of precious metals occur in both zones. The widespread mineralization is thought to be indicative of one large interconnected intrusion related hydrothermal fluid system.

The surficial geochemical program in 2011 focused on mapping, prospecting, and sampling of the POW zone. Prospecting efforts returned several samples containing gold+/-silver mineralization. Highlights from the POW zone include grab samples returning values up to 8.97 g/t gold and 84.1 g/t silver (MMJNR034) from quartz-calcite veining, and chip samples returning up to 0.86 g/t gold and 18.4 g/t silver over 1.20 metres from a breccia zone (MMJNR029). Reconnaissance mapping, prospecting, rock sampling, and one soil line were conducted south and west of the Confluence zone. No significant results were obtained from these regions during the two days spent on the ground. Further exploration was recommended for the southeast quadrant of the property to follow up on anomalous geochemical and geophysical targets defined by 2010 exploration activities.

Encouraged by the 2011 results, Aben Resources Ltd set out in 2012 with another aggressive exploration program to follow up on the POW zone results with concurrent exploration on outlier areas of the Justin property.

Nine diamond drill holes totalling 1994 metres were drilled during the 2012 field season, expanding the known extents of the POW zone and greatly enhancing the understanding of the local geology. Highlights from the 2012 diamond drilling include 46.60 metres grading 1.49 g/t Au in JN12011, 5.40 metres grading 4.12 g/t Au in JN12016, and 21.90 metres grading 1.06 g/t Au in JN12018.

Reconnissance geochemical surveys were conducted on both the Justin and VF properties to evaluate the potential for expanding known zones of mineralization and discovering new prospective zones of mineralization.

The Justin property, and the POW zone specifically, represents a new discovery of mineral styles representing a reduced intrusion-related gold system (IRGS). The gold system developed in a region of the Yukon previously better known for tungsten, and contributes to further increasing the region's development as a new and emerging gold district (Hart, 2012).

GEOLOGY

Regional Geology

Refer to Figure 3a – Regional Geology Map

The Justin property lies within the Selwyn Mountains and is underlain by a sequence of Selwyn Basin stratigraphy at least 1.5 kilometres thick, composed primarily of shallow marine shelf and off-shelf sedimentary rock derived from the ancient North American Platform. Strata were deposited from late Precambrian to Permian time, with accelerated deposition coinciding with periods of continental uplift, creating specific stratigraphic "Groups".

The Justin area is underlain primarily by Late Precambrian to Early Cambrian Hyland Group stratigraphy, consisting primarily of phyllite, calcareous phyllite, and coarse clastic sediments, with lesser limestone. The fine sediments represent a shallow marine depositional environment, typical of a back-arc basin, although the coarse clastics may represent regions of deltaic or possibly submarine channel emplacement. Tectonic deformation and faulting has resulted in a pronounced NW-SE structural fabric which begins to "bend" southward near the NWT Border. The Hyland Group sequence is separated from younger Cambrian to Ordovician Rabbitkettle Formation thin to medium bedded limestone to the north by a pronounced transcurrent NW-SE trending fault, which is interpreted to represent a significant tectonic event. The regional structure was named the March Fault by Hart and Lewis in 2006.

The Justin claims occur near the eastern limit of a suite of alkaline intrusive rocks known as the Tombstone-Tungsten Plutonic Suite. This intrusive belt consists of a broad suite of mid-Cretaceous (+/- 91Ma) quartz monzonite stocks and plutons extending more than 400 kilometres ESE from just east of the Alaskan border to just beyond the western NWT border. The intrusives often occur as dykes and apophyses, associated with broad zones of hornfels. Tombstone-Tungsten Suite stocks have been emplaced locally within, and to the north of the Justin claims. These intrusives control most of the known mineralization in the area, most notably the Cantung skarn hosted tungsten deposit located 30 km to the north, and similar sub-economic mineralization underlying the Tuna Property located 10 km to the north. A biotite quartz monzonite to granodiorite stock and a suite of related quartz-feldspar porphyry and aplite dykes occur within the bounds of the Justin property and outcrop at the POW Zone.

The Justin claims occur where Selwyn Basin stratigraphy and the NW-SE regional structural fabric begins to curve southwards. Major fault controlled drainages, primarily the Hyland and Little Hyland Rivers, show that major "linears" extend nearly N-S. Emplacement of the Tombstone-Tungsten Suite intrusions is interpreted to have occurred after the major

regional faulting.

A preliminary assessment of the geology of the Hyland River area was conducted by the Yukon Geological Survey during the summer of 2012. The data collected during this assessment was be reviewed during the winter of 2013 and has spurred on field work completed during the 2014 field season by YGS Geologists; conclusions from this assessment will determine if field crews will re-visit the Hyland River area to update the regional geology during the 2015 field season.

Property Geology

(after Schulze, 1997; Gallagher, 2002; Hart, Zuran, van Randen, McCuaig, 2012)

Refer to Figure 4a - Property Geology Map located in a pocket following the property geology description

The property is underlain by a broad package of WNW trending NNE dipping Hyland Group sediments consisting of thick units of coarse clastic sediments inter-bedded with fine-grained phyllitic units and locally thin to thick bedded calcareous siltstones and limestones. The extreme northeastern areas of the property are underlain by a thick package of thin-bedded, tan-buff weathering limestone of the Rabbitkettle Formation. The proximity of these two very different tectonic elements results from their juxtaposition along the March Fault, which is recognized as a significant crustal-scale structural break that was active in the Proterozoic, the Paleozoic, and in the Cretaceous (Hart and Lewis, 2006). Hyland Group stratigraphy underlying the Justin Property has been intruded by a NNW trending structurally controlled Tombstone-Tungsten Suite biotite quartz monzonite pluton and a related suite of quartz-feldspar porphyry to aplite dykes.

Three distinct styles of mineralization are documented on the property. The styles are thought to be the direct reflection of a long lived, widespread mesothermal-epithermal mineralizing event occurring within permeable structures controlled by geology and polyphase brittle and brittle – ductile shearing.

Detailed geologic mapping has been completed across gridded areas of the Justin claim block primarily in the POW zone; limited reconnaissance mapping and prospecting has occurred elsewhere. The following is a brief description of lithologic map units observed on the property.

Lithologic Map Units

Intrusive Rocks

Igneous rocks on the Justin property consist of a medium-grained biotite monzonite to granodiorite pluton, quartz-feldspar porphyry (QFP) dykes, and mafic dykes.

The Justin property is for the most part underlain by horfelsed siliclastic rocks of the Hyland Group, that have undergone thermal metamorphism in response to their proximity to cooling felsic magmas that formed the pluton known as the Justin Stock. However the stock is only scantly exposed in comparison to the extensive hornfeling observed suggesting that there is a much larger buried pluton at depth. The exposed stock likely represents a cupola which has a dome-shaped geometry representing the uppermost and/or highest component of the magmatic body. The Justin stock is interpreted to be Cretaceous in age.

The plutonic rocks on the Justin property form magnetic lows among variably to highly magnetic country rocks, indicating that they lack a significant component of magnetite. The lack of magnetite is likely a result of the intrusive reduced primary oxidation state, and therefore the plutonic rocks can be characterized as reduced.

Igneous rocks are most extensively represented on the property by several thick (10-50 metre), north-trending QFP dykes. The pluton, the quartz-feldspar porphyry dykes, and the aplite dykes were all emplaced (respectively in that order) into a 3 km long, 1 km wide, north-trending magmatic corridor, controlled by the NNW trending Justin Fault. In addition to focusing the magmas, the Justin structural zone was also the focus of mineralizing fluid distributions. This structure remains open both to the south and the north.

Mafic dykes that are recognized on the property have a basaltic, locally vesicular character and composition. Phlogopite phenocrysts and xenocrysts of olivines and pyroxenes comprising the mafic dykes weather recessive, and therefore the dykes have limited exposure. The mafic dykes have been observed cross-cutting both Hyland Group and Rabbitkettle Formation strata, providing some time constraint on the date of emplacement. The origin of these dykes remains unknown.

Sedimentary Rocks

Sedimentary rocks of the Justin claims are comprised of two major formations: the Rabbitkettle Formation (COR) and the Yusezyu Formation of the Hyland Group (PCHy). The Rabbitkettle Formation is characterized by a sequence of thin to medium bedded white to buff weathering limestone (LST). This has been mapped in the extreme NE areas of the map area – northeast of the March Fault (Figure 4a). Field reconnaissance mapping during 2012 led to the discovery of trilobite fossils within Rabbitkettle strata. Further examination of the area is required to properly assess the significance of the discovery. The following lithologic units have been identified within the Yusezyu Formation of the Hyland Group: Limestone (LST); Phyllite (PHY); Argillite (ARG); Siltstone (SLT); Skarn (SKN); Sandstone (SST); Banded Skarn (SKN); Quartz Pebble Conglomerate (QPC) and Quartz Feldspar Pebble Conglomerate (QFPC). The Yusezyu formation can be separated into four distinct members on the Justin Property and are described as follows:

Limestone Member

The limestone member (LST) consists of thin to moderate sized, somewhat discontinuous units of impure thin to medium bedded limestone, often inter-bedded with, or grading into, fine-grained calcareous sediments. Limestone underlying the Justin claims has commonly undergone strong calc-silicate alteration and/or silicification, and hosts much of the mineralization on the claims. The calcareous siltstone (CST) is impure limestone with a significant fine clastic component or a finely inter-bedded sequence of limy and silty beds. This unit often has a banded appearance. The limestone member predominates at the POW zone where it occurs as calc-silicate and pyroxene+/-garnet skarn (Hart, 2012).

Fine-Grained Member

This member is comprised primarily of a weakly silicified calcareous package of phyllite (PHY) with small sub-units of argillite (ARG) within it. The phyllite consists of thick sequences of monotonous, fairly uniform fissile thin-bedded, finegrained sediments. Weakly silicified calcareous phyllite, displaying some calc-silicate alteration underlies the central portion of the Justin claims. The argillitic rocks tend to be fine grained and fissile, with a slightly higher graphite content than the phyllite. The siltstone (SLT) unit is also interbedded within the broad phyllite unit and represents slightly more coarsely grained beds. The two units can be difficult to discern and are sometimes mapped as siltstone. The fine-grained fissile shale (ARG) occurs as a laterally-extensive, fairly thin unit in places displaying a strong deep green chloritic alteration. The unit's distinct colour makes it an excellent marker horizon across parts of the property. The fine grained sediments have undergone extensive hornfels alteration across the property, most notably observed in the cliffs comprising the Kangas zone.

Coarse Grained Clastic Member

The quartz pebble conglomerate (QPC) occurs as thick, poorly sorted, largely undifferentiated units across the property. The framework of the rock consists of 10 - 30% euhedral to subhedral feldspar and 25 - 60% rounded to subrounded quartz grains ranging in size from fine-grained to 20 mm in diameter. Minor mafic lithic fragments occur locally. The matrix consists of very fine grained quartz and minor feldspar within a calc-silicate cement, which has commonly been silicified following decalcification locally resulting in a chalcedonic texture. Across the property, variable amounts of silicification and selective argillic alteration of feldspar grains, has occurred. This unit was originally mapped as an altered intrusive assemblage. The quartz feldspar pebble conglomerate (QFPC) unit is similar to QPC except that it contains a higher concentration of feldspar clasts. Sandstone (SST) represents a more finely grained variant of the QPC and is often calcareous. The sandstone may represent a more distal submarine fan or stream sediment depositional setting to that forming the conglomerates (Gordey and Anderson, 1996).

Outlier Members

Lithologic mapping of rock units both on surface and drill core in the POW zone has identified a rock type previously not encountered on the Justin property. The western margin of the POW zone mapped to date is underlain by approximately 10 metre section of a heterolithic, graphitic fragmental package of rocks. The fragmental varies in colour from light grey to dark black and hosts a variety of lithic fragments which are angular and randomly oriented within a graphitic, pyrite rich clay matrix. At the time of writing it is unknown whether the lithologic unit represents a turbidite flow, or a fault zone. The graphitic matrix of the unit has been interpreted to be the source of a very large EM conductor identified in 2010 located on the western margin of the POW zone.

Structural Geology

The little Hyland River valley is underlain by deformed rocks that form part of the Selwyn fold belt; however, few faults and folds were indicated in previous mapping (Gordey and Makepeace 2003). Structural features described below are the result of distilling years of reconnaissance mapping, diamond drilling, geophysical data, or are extrapolated from those described to the north by Gordey and Anderson (1993).

In the area of the little Hyland river sedimentry rocks of the Hyland Group have a weak to moderate, northwest-trending, shallowly to moderately steep-dipping fabric that is defined by phyllitic partings, with mica development on foliation surfaces. The intensity of the phyllite development is variable and has a low intensity east of the little Hyland River valley. The fabric developed in response to deformation that transposed bedding through a series of northeast-verging overturned folds that are locally cut by thrust faults. Beds of conglomerate, grit, and quartzite are mostly undeformed, particularly where massive. The margins of coarse grained units are typically modified by minor faulting and shearing. Lineations observed in the area plunge shallowly to the south and southeast. The timing of regional deformation is uncertain but may be related to the emplacement of the mid-Cretaceous Hyland plutonic suite batholiths, which are similar in age to mid-Cretaceous deformation in the Tombstone strain zone near Mayo (Hart, 2012).

Two periods of compressional deformation are evident within the Yusezyu formation of the Hyland Group in the immediate vicinity of the Justin claim block. The first deformation event is represented by moderately dipping penetrative foliation in *TerraLogic Exploration Inc.* January 16th, 2015

the fine grained lithologies and recumbent and overturned folds dipping gently to moderately to the NE/SW. The second deformation event is represented by large-scale upright folds and a poorly developed axial planar cleavage, observed in the field as jointing within coarse clastic units. The axial planar cleavage strikes SE and dips steeply to the south. 3 kilometres west of the Kangas zone there are a prominent series of anticlines and synclines with wavelengths of 200 - 1000 metres which parallel the larger scale upright folds (Scott, 1999). Refer to Figure 4a for reference to the features described above.

Stratigraphy underlying the Justin claims generally strikes at about 290° and is variable from flat lying to moderately south dipping. However, at the POW zone, bedding measurements range from 260°- 290°, dipping moderately to the northnorthwest from 30°- 55°. The variance in orientation of the beds at the POW zone reflect deformation in proximity to the March Fault and a doming effect related to the emplacement of the biotite quartz monzonite stock. Foliation directions are variable, commonly striking N-S with a sub-vertical dip near dykes and zones of structural deformation.

A NW-SE trending transcurrent fault zone (March Fault), characterized by a pronounced NW trending lineament, extends along the northeastern property boundary (Figure 4a). On the Justin property, the structure is moderately to steeply dipping to the east, where Hyland Group strata to the west are juxtaposed with Rabbitkettle carbonate units to the east (Hart, 2012). The inferred sub-parallel Dayo Creek Fault extends to the south of the property.

A well developed set of coeval extensional faults, trending at 325°-355°, are documented between the strike-slip faults described above. The orientation of these coeval faults, with respect to the fault system, is consistent with the interpreted right -lateral, right-stepping displacement along the strike-slip fault zone, these faults are the primary control on the distribution of mineralization across the Justin property.

Development of the NNW trending dilation structures provided planes of weakness for emplacement of the mid-Cretaceous stock, porphyry dykes, and sheeted vein arrays. Other NNW trending structural features, including the prominent jointing direction and foliation along major strike-slip fault structures, are also interpreted to result from this extensional regime.

These NNW trending structural features are most prominent in the central area of the Justin claim block where they comprise a 2 kilometre wide structural and magmatic corridor. It is defined by faults, high levels of the intrusion, quartz-feldspar porphyry dykes, and extensional fractures, all variably infiltrated by quartz veins, skarns, and arrays of sheeted veins (Hart, 2012). These NNW trending structures will be referred to in future as the Justin Fault zone.

Surface mapping within the POW zone led to the discovery of lineations and slickenlines along fault scarps indicating right lateral movement along the NNW structures. The amount of displacement which occurred along these structures is unknown at the time of writing. Interpretations from aeromagnetic surveys and DDH JN12012 and JN12014 indicate that a major NNW structure lies approximately 30 metres east of the original POW zone showing. The NNW structure is steeply dipping and separates the Justin stock to the west, from fine grained siliclastic and carbonate rocks of the Hyland Group to the east. This observation leads to the conclusion that in at least one case, an unknown amount of right-lateral, normal displacement has occurred along the structure and may post-date emplacement of the Justin stock.

These north-trending structures play an integral role in controlling mineralization on both a property and district scale. The structures cross-cut the regional deformation described above, but are, in turn, cut by northeast-trending faults.

A conjugate shear set, less obvious than extensional faulting, trends NE-SW and E-W and underlies the property west of the Justin claims. The NE-SW trending structures are typically brittle faults while the coeval E-W trending structures are typically brittle-ductile shear zones. In the POW zone the E-W orientated structures are observed as discreet brittle-ductile shear zones which offset auriferous quartz veins and porphyry dykes on the centimetre to decimetre scale. Left lateral offset was observed consistently across the POW zone on the E-W orientated structures. At the time of writing it is believed that the small scale structures reflect a larger E-W flexure zone which post-dates emplacement of the Justin stock and coeval mineralization. The NE-SW trending fault set controls many of the minor drainages, as well as the NE trending joint set. NE trending minor faults are observed cross-cutting NNW trending dykes that intrude extensional zones associated with strike-slip deformation. This observation is consistent with the development of conjugate shear fabrics post-dating major mid-Cretaceous strike-slip motion.

Two major shearing events have resulted in two planes of structural fabric which are permeable to fluid migration. Intersection of the major NW and NNW shear fabrics within brittle lithologic units in proximity to the Justin stock is considered the favorable settings for economic mineralization on the Justin Property.

(after Schulze, 1997; Gallagher, 2002; McCuaig 2011 & 2012, Hart 2012)

Three styles of gold mineralization have been recognized on the Justin Claims. These varying styles of mineralization are thought to reflect a multi-phased, mesothermal to epithermal intrusion-related mineralization event occurring under different structural settings on the property. The different styles of mineralization include:

1) sheeted vein arrays, vein breccia, stockwork, and extensional fault controlled mineralization;

- 2) skarn replacement style mineralization;
- 3) a composite mineralization style, resulting in pervasive mineralization within coarse clastic sediments;

Where mineralization is structurally controlled, it appears to be controlled by the extensional fault system associated with mid-Cretaceous dextral strike-slip shear. These NNW trending dilational structures host Type 1 (sheeted vein arrays) mineralization and Type 2 (skarn occurrences) with the exception of the Kangas zone skarn (see below). The NW trending March Fault is host to auriferous quartz veining as identified in DDH JN11007 and JN11008. Although gold grades were sub-economic in both DDH intersections, vein densities were greatest in the hanging wall of the fault zone. North-east trending structures, associated with later conjugate shearing, also control some erratically distributed high-grade vein mineralization. Comparable gold values have been returned from both structurally controlled mineralization regimes; however gold distribution within the POW zone is preferential to the NNW trending extensional structures.

Alteration associated with these mineralized settings is a reflection of the physical and chemical characteristics of the original host rock. The major factors in controlling mineralization are: the permeability and reactivity of the host rock, proximity of the host rock to the Justin stock, and proximity to faults which act as fluid conduits. The limestone and calcareous members of the Yusezyu Formation situated proximal to the Justin stock are the most favorable known host for economic mineralization.

All three types of mineralization are, at the oldest, mid-Cretaceous in age. Skarn type replacement mineralization is interpreted to be coeval with, or slightly post-dating, the emplacement of the Justin stock into a 2 km wide, north trending extensional fault system. Vein mineralization is interpreted to be controlled primarily by mid-Cretaceous extensional faults although some vein mineralization is also clearly controlled by the younger conjugate shear system, suggesting that this style of mineralization may post date the mid-Cretaceous tectonic activity.

Mineralization Styles

Sheeted Veining

Quartz+/-calcite veining, breccia zones, and fracture controlled mineralization occur within several areas of the property. Typically, veins have strongly anomalous antimony, bismuth, tellurium, tungsten, molybdenite, and arsenopyrite signatures. Quartz+/-calcite veining occurs within all lithologies, exhibiting varying textural characteristics depending on the host lithology. Within the coarse clastic units, veins tend to be narrow and fault controlled; however, mineralization can extend into the silicified host rock.

A sheeted vein system in the POW zone consists of millimetre to decimetre scale quartz+/-calcite veining occurring in densities of up to 50 veins/metre. The vein arrays exploit a NNW structural fabric which is best developed within calc-silicate altered Hyland Group sediments and the biotite granodiorite stock.

Veins found in other areas of the property tend to be structurally controlled along all of the major lineation orientations, suggesting vein development post-dated major structural development. Narrow fault controlled veining returning up to 1.60 g/t Au occurs within phyllite and limestone strata. One exception is a 20 cm wide quartz-galena-arsenopyrite vein returning 15.80 g/t Au, located roughly 1.0 km E of the Main Skarn.

Dykes within the Justin claims locally contain fine sheeted quartz vein hosted mineralization, largely along contact zones where brittle fracturing has occurred. The porphyritic dyke situated along the west boundary of the Main zone has undergone brittle fracturing and subsequent chalcedonic veining. Sampling has returned values up to 5.70 g/t Au over 1.00 m underlying the western part of Trench SN97-2, which returned 2.30 g/t Au over 22.50m. However, sampling to date of dyke material in the Main zone and POW zone both in surface outcrop and diamond drill core has returned weakly anomalous to background gold values.

<u>Skarn</u>

The limestone and calcareous silty units (Limestone Member) underlying the Justin claims have undergone typical skarn type mineral development, consisting of decalcification, silicification, calc-silicate, and sulphide-oxide mineral

development. Recent exploration efforts in 2010, 2011, and 2012 have identified a new zone of skarn, which has been named the POW zone.

Two major skarn zones occur within the Justin claims: the Main zone and the POW zone (Figure 4a); in the Kangas zone, several smaller zones of skarn alteration occur along the north flank of the central ridge. Gold mineralization on the property is typically associated strongly with bismuth, iron, antimony, and moderately with copper and tungsten. The POW zone skarn is a complex exoskarn, characterized by prograde coarse grained hydrogrossular garnet- clinopyroxene-quartz which has been overprinted by intense clay and Fe-carbonate retrograde alteration. Replacement style massive magnetite, with lesser disseminated pyrrhotite, chalcopyrite, pyrite, molybdenite+/- scheelite +/- bismuth +/- gold characterize the POW zone skarn. Veining within the skarn hosts arsenopyrite, pyrrhotite, pyrite, hematite, chalcopyrite, native bismuth, bisumthinite, jamesonite, sphalerite, molybdenite, scheelite and gold in a quartz-calcite gangue. The veining observed at the POW zone is interpreted to represent a later phase of mineralization within the system. Gold mineralization is developed in both the skarn replacement and sheeted vein styles of mineralization.

All skarn occurrences on the Justin property are interpreted to be associated with the Justin stock. Gold grades are highest where the NNW structures intersect skarn altered lithologies in proximity to the Justin stock. The POW zone occurs within the contact aureole of the Justin stock, which extends to at minimum 200 metres laterally from the margin of the intrusion.

Composite

The coarse clastic sediments provide an excellent setting for hydrothermal mineralization. These thick, uniform units are permeable due to coarse fragment size, fairly reactive due to the calcareous nature of much of the original matrix cement, and prone to semi-brittle fracturing as shown by the presence of several fault and quartz stockwork zones, particularly along lithologic contacts. These broad mineralized zones have the potential to host bulk tonnage gold deposits within the property.

Weak to moderate pervasive silicification, but very limited argillic alteration has occurred in the Confluence zone area. A broad zone of chalcedonic veining within coarse clastic sediments is centered at the confluence of Sun and South Sun Creeks within the eastern part of the Justin claims (Figure 4a). The veined interval occurs at a thrust fault contact between coarse clastic sediments and fine grained, thin bedded limestone. These fracture controlled veins range in size from nearly microscopic to 2.0m in width and return gold values from 0.42 g/t Au to 7.00 g/t Au over 1.00 m with a value of 4.24 g/t Au over 4.50m returned from Trench SN97-3 (Schulze, 1997). These veins overprint localized quartz-pyrite veining and appear to be the primary gold host. Gold values from JN11007 and JN11008 have an association with As and Sb. Mineralization was observed as multi-phase quartz veining within the coarse clastic sediments, where pyrite is partially replaced by a later phase of fine grained arsenopyrite+/-sphalerite+/-galena.

Characteristics of Mineralized Zones

The four zones of significant mineralization in order of importance are: 1) POW zone 2) Main zone, 3) Confluence zone, and 4) Kangas zone.

POW zone:

The POW zone hosts several different episodes of mineralization, which are listed below.

- 1. Magnetite in pyroxene+/-garnet skarn;
- 2. Scheelite mineralization as disseminated crystals and thin veins within skarned rocks and scheelite in sheeted quartz veins;
- 3. Fracture controlled pyrrhotite+/-chalcopyrite overprinting skarn;
- 4. Bismuthinite+/-tellurium-gold overprinting skarn;
- 5. Sheeted quartz veins with bismuthinite, native bismuth, tellurium, gold, and scheelite +/- molybdenite;
- 6. Quartz-arsenopyrite +/- bismuthinite +/- sulphosalts (jamesonite) veins;
- 7. Sheeted sulphide veins and fractures, parallel with sheeted quartz veins;
- 8. Late sulphide, including marcasitic pyrite with grey silica replacements, and sulphidation of magnetite from skarns.

Diverse mineralization is a characteristic of intrusion-related systems. There is confidence that gold is associated with at least three of these mineralization styles, most specifically numbers 4, 5, and 6.

The POW zone represents an array of sheeted auriferous quartz veins, skarns, and sulphide replacement mineralization that are located within and above a cupola of the Justin stock.

Main zone

The Main zone, located in the central Justin claims was first discovered in 1964. Four holes were drilled at the main zone in 1987 to test copper-gold skarn mineralization. The program yielded only sub-economic assay values resulting in the original Sun claims being allowed to lapse. However, in 1996 exploration by Hemlo showed that a fractured, resilicified, and auriferous quartz monzonite dyke bounds the zone to the west. Successive exploration programs showed that a significantly mineralized zone extends east from roughly 6.00 m within the dyke into strongly pyritic and pyrrhotitic limestone and calcareous phyllite. Calc-silicate mineralization consists of fine grained pervasive to fracture controlled actinolite and diopside, with minor chlorite. Trench SN97-2 extending across this zone returned 2.38g/t Au over 22.50 m, and anomalous values continued to the east into the previously tested mineralization (Schulze, 1997). It appears that most of the Main zone consists of low grade peripheral mineralization, and that a significant mineralized zone occurs along the western margin and may extend northward along the dyke. Schulze, 1997 concluded that mineralization was emplaced from fluids traveling from the structural corridor controlling the dyke into decalcified strata within the flat lying limestone.

Trench SN97- 1, excavated roughly 20 m south of SN97-2, returned low gold values within strongly pyritic and pyrrhotitic skarn mineralization. Its spatial relationship to SN97-2 remains unknown; Sun Creek, which flows between the two trenches, may occupy a structural corridor.

Drilling efforts in 2011 at the Main zone returned anomalous gold and copper values from calc-silicate skarn, and quartzsulphide veinlets confirming historic results. Although no significant gold intersections were returned from the three holes valuable geologic information was gleamed providing insight into the geologic history of the property. Significant intersections of porphyritic felsite and quartz biotite monzonite dyke material were intercepted in all three holes. The overall true thickness of the dike swarm has not been determined but drilling to date indicates it is greater than 50 meters. As dikes are derived from a parent magmatic source, the size of the porphyritic dikes and their wide spatial distribution suggests that a larger parent pluton lies beneath the Justin property.

Confluence zone

The Confluence zone is a broad zone measuring at least 600m x 250m in area and consists of coarse clastic material with considerable fracture controlled chalcedonic veining. It is centered at the confluence of Sun and South Sun Creeks (Figure 4a). Veins are typically sulphide poor and range in size from nearly microscopic to up to 2.00 m in width. Gold values range from 0.42 to 7.00 g/t Au over 1.50 m (Schulze, 1997). Trench SN97-3 returned 4.24 g/t Au over 4.50 m and is open to the west; continuous channel sampling east of this intersection returned elevated values up to 0.64 g/t Au. Significant gold values were returned from sampling throughout the occurrence, including proximal glacial float from the western end of known mineralization. This suggests the source rock occurs up-ice further west, expanding the potential size of the showing. Fracture controlled and disseminated pyrite is abundant in the surrounding wall rock. Most elevated gold values are associated with chalcedonic veining, which locally crosscut quartz-pyrite veining. This suggests mineralization resulted from late phases of hydrothermal activity.

Drilling at the Confluence zone in 2011 successfully intercepted auriferous chalcedonic quartz veins representing the downdip extension of the zone sampled in Trench SN97-3. Drill core analysis returned values to 5.60 m grading 0.76 g/t Au in JN11008. An auriferous vein-breccia system hosted in decalcified limestone within the March Fault zone was also intercepted in both JN11007 and JN11008. The fault-controlled zone returned 9.40 m grading 0.76 g/t Au in JN11007 and 11.00 m grading 0.56 g/t Au, including 4.60 m of 1.15 g/t Au in JN11008. The 2011 drilling was the first program to test the regional structure; results indicate that it may be an important structural control for localizing gold mineralization on the Justin property. The confluence zone is interpreted to be a distal expression of the intrusion-related gold system associated with the Justin Stock based upon mineralogy and the geochemistry observed in mineralized vein systems.

Kangas zone

The Kangas zone is a N-S orientated zone of skarn and replacement style mineralization within siltstone, calcareous siltstone, and minor limestone located along the north flank of the central ridge of the Justin claims. Mineralization consists of fracture controlled and replacement style semi-massive pyrrhotite, arsenopyrite, and local pyrite, with minor disseminated chalcopyrite, along with fine grained diopside and actinolite.

Replacement style arsenopyrite is abundant, as well as fracture-controlled arsenopyrite and quartz-arsenopyrite veining. Values up to 1.6 g/t Au over 1.50 m and 1.2 g/t Au over 1.00 m were returned from replacement style arsenopyrite horizons (Schulze, 1997). Quartz-arsenopyrite veining returned elevated gold values, although pyrrhotitic horizons returned low values. Host stratigraphy strikes roughly ESE and dips gently to the south although this may become disrupted near the March Fault.

Mineralization has been traced along a 400 m x 75 m N-S orientated zone, grading into altered weakly calcareous phyllite to the east. Elevated soil (talus fine) values to 805 ppb Au extend along strike uphill to the south. An occurrence discovered by

Viceroy in 1997 of similar skarn mineralization returning 1.26 g/t Au over 1.50 m outcrops nearby to the west, suggesting the zone may be wider than 75 metres.

The Kangas zone is roughly along strike of the NNW trending lineation controlling the Main Skarn mineralization. The Kangas zone may be quite thick, with somewhat discontinuous mineralization occurring across at least 150m of true width. It stratigraphically overlies an interpreted northward extension of stratigraphy hosting the Main Skarn. However, it is close enough that similarly reactive stratigraphy within both zones were affected by a single mineralizing event. The two zones may represent exposures of a significantly thick zone of skarn and replacement style mineralization controlled by the NNW trending Justin Fault, within the broad N-S structural zone outlined on Figure 4a.

Drilling in 2011 on the Kangas zone provided insight into the true extent and nature of the mineralization. Three holes were drilled into the Kangas zone. All three of the holes intersected calc-silicate altered siltstone and thin bedded limestone within the top 20 metres of drilling.

Below the horizon of calc-silicate alteration occurring in JN11001 and JN11002, an interval of core loss and a significant change in rock type occurs. No calc-silicate replacement alteration was encountered, and a generally uniform sequence of unaltered, fine grained, thin bedded siltstone occurs. The lack of correlation between surface exposure and the drill core samples suggests that the surface exposure may not be in place, or that a significant fault zone is present displacing strata. When examining local topographic features, it seems plausible that the rocks observed at the Kangas zone have slumped down from the top of the ridge, either through faulting (along an E-W trending break) or mass wasting, and now forms the top of a large talus slope conforming to the angle of repose which extends to valley bottom. A topographic low observable from a distance as a saddle along the ridge line is located directly up-slope of the Kangas zone, which occurs approximately 200 metres down slope. Previous mapping and anomalies outlined by soil geochemical surveys suggest that an extension of Kangas zone mineralization can be found on the ridge line. Further investigation of this zone should focus on the ridge line and cliffs to the east where bedrock exposure is excellent.

Mineralization Overview

Gold mineralization on the property is directly related to hydrothermal fluids emanating from the Justin stock. It is believed that gold is mobilized in this type of hydrothermal system as a bismuth-tellurium+/-antimony complex and deposited in veins as high temperature Au-Bi-Te+/-Sb-S alloys. As the hydrothermal system cooled, the gold exolved from the alloy, leaving bismuthinite, tellurium and native gold. For this reason gold has a direct and observable association with Bi and Te, therefore the presence of Bi and Te can be utilized as a confident indicator for a potential increase of gold grade.

The Au-Bi-Te association is most directly related to intrusion-related and intrusion-hosted ores, adding further credence to support an intrusion-related gold system on the Justin property. The Au-Bi-Te correlation, strongly controlled by temperature gradient, is indicative of close proximity to the Justin stock. Hydrothermal fluids migrating outward from the intrusion decrease in temperature and have greater interaction with the country rocks enriching them in scavenged metals. In intrusion related gold deposits a predictable zonation of metals is often observed moving outward from the intrusion and is the directly result of a decrease in temperature gradient and the interaction of the fluids with country rock (Hart, 2012). This zonation is typically observed as veins with greater amounts of arsenopyrite, sphalerite, and other sulphide/sulfosalt minerals as you move outward from the intrusion. In these situations, the importance of Bi-Te may be reduced, and Au may have a stronger association with As, or Sb as observed in the Kangas, and Confluence zones respectively. Applying Hart's model of metal zonation to the Justin property may allow for the successful vectoring from distal Au-As-Sb mineralization to proximal Au-Bi-Te+/-Cu+/-Mo+/-W mineralization adjacent to and within the Justin Stock.

2014 EXPLORATION PROGRAM

The 2014 exploration program consisted of 52 person days with a four person crew. The crew mobilized from base camp at km 143 of the Nahanni Range Road, to the POW zone approximately 12 km east of the base camp. Helicopter support was provided by Trans North Helicopters based out of Watson Lake, YT. The field program began on July 20th and all related field work was completed by August 9th, 2014.

The 2014 program was a target evaluation module partially funded through the Yukon Mineral Exploration Program (YMEP). Work completed during the 2014 program included the collection of 60 channel samples from 4 trenches, 24 rock grab samples, re-analysis of 230 drill core samples, 4 silt samples and 151 soil samples with coverage totalling 7.5 line kilometres. The program focused on two main areas of interest (AOI) within the project tenement.

The first AOI was designed to delineate the extent of hard rock mineralization found at surface in the POW zone and surrounding area. Prospecting and trenching focused on evaluating sheeted vein and skarn systems for both gold and tungsten potential. Specific target areas were selected prior to entering the field based upon favourable geochemical results returned from the 2012 program. Resources were also allocated to conduct geochemical surveys northwest of the main POW zone to determine if other mineralized zones could be identified.

The second AOI focused on the southeastern most portion of the tenure where initial prospecting and geochemical sampling in 2012 identified a new hard rock massive sulphide (pyrite-marcasite) showing which has been named the Big Swifty. Geochemical surveys and geological mapping were completed to provide a more comprehensive evaluation of the Big Swifty target area and give context to it's relationship with the intrusion related gold system recognized in the central and northern portions of the property.

Total expenditures related to the Justin Project in 2014 were approximately \$120,000.00. A total of \$67,585.00 of the total expenditures qualify as eligible expenses as defined by the rate guidelines provided by the Yukon Geological Survey.

2014 Exploration Results

Geological Mapping

(after Hart, Zuran, van Randen, McCuaig 2012 & McCuaig, Brown 2014)

Refer to Figure 4a – Property Geology Map

Exploration in 2014 focused on two different areas of the property: The POW zone located in the northern portion of the claim group and the Big Swifty in the southeastern portion of the claim group. The northern mapping program, undertaken as follow up to the 2010-2012 discovery of auriferous skarn and sheeted quartz vein arrays, included detailed mapping of four trenches within the POW zone at a scale of 1:100. The southern mapping program, undertaken as follow up to the 2012 discovery of the Big Swifty pyrite-marcasite vein and anomalous gold in soil results, included two days of mapping at a scale of 1:10,000.

Mapping at the POW zone area further refined the metasedimentary stratigraphic of the Yusezyu Formation - Hyland Group which includes the following rock types: Quartz pebble conglomerate (QPC), siltstone (SLT) grading into sandstone (SST), skarn and banded skarn (calcareous chert) (SKN), biotite granodiorite (GRD) comprising the stock, and quartz monzonite (QMZ) to quartz-feldspar porphyry (QFP) hypabyssal dikes are the primary lithologies occurring in the POW zone.

The interbedded sediments form a package of rock which strike approximately east-west, and dip moderately to the north at 30 - 50 degrees. The north dipping nature of the sediments is related to folding ("doming") during the emplacement of the granodiorite stock. The POW zone is cross cut by at least three major NNW trending brittle structures over 400 + metres, which comprise the known northern extent of the Justin Fault. These features have been mapped on surface, in drill core, and their extensions have been inferred from property scale magnetic geophysical surveys. The Justin Fault is prominent in the central area of the Justin claim block where it comprises a 2 kilometre wide structural/magmatic corridor. In the POW zone, the north trending extensional structural architecture (now expressed as the Justin Fault system) played an integral role in developing permeability within lithologic units allowing for the emanation of metalliferous hydrothermal fluids from the Justin Stock, into structural and chemical traps favourable for metal deposition. Mapping in 2014 identified that the Justin Fault Zone developed as part of a larger regional dextral strike-slip fault system, which displays several key characteristics. The structures mapped within the POW zone during 2014 indicate that brittle deformation conforms to an en-echelon right lateral, right-stepping reidel shear system. The following provides the criteria by which the

- 1. There are two major strike-slip faults recognized on the Justin Property: The March Fault system (Az 305-315° or NW-SE), and the Justin Fault system (Az 350-0° or approximately N-S);
- 2. Right-lateral, right-stepping motion along the March Fault system created zones of extension (Az 350°), most notably observed in the area between the POW and Main zones where the extensional structure allowed for the emplacement of the Justin stock (biotite granodiorite) and associated hypabyssal dykes, and development of sheeted vein arrays. These extensional features are the precursor or embryonic stage of the Justin Fault system;
- 3. The sheeted vein arrays in the POW zone represent extension parallel to the maximum compressional stress interconnected by sheeted vein arrays exploiting the R₁ shear plane (Az ~ 155°). Movement (right-lateral) was concentrated along shear planes (the March Fault system and associated R₁ shear planes), and was oriented ~ 45° and 30° to the maximum principal stress respectively (McClay, 1987), suggesting that maximum compression occurred along the axis Az ~ 005°/185° or N-S during this period of time (most likely mid-Cretaceous but not yet confirmed);
- 4. Right-lateral strike-slip motion was then initiated (time unconstrained but is syn-post mineralization, post emplacement of the intrusion, and likely a continuum of regional deformation along the March Fault System) on the Justin Fault System (the extensional zones created during the tectonic event described in the preceding two points) generating thrust fault(s) and related folding along/parallel to the March Fault system. This phase of deformation signifies a shift in the tectonic evolution of the region. The thrust faulting and related folding exemplifies shortening along the axis of maximum compressive stress, and is approximately 90° to the maximum compressive stress (Az ~ 305-315°). The orientation of the March thrust fault(s) and related folds indicates a change in the axis of maximum compression from Az 350° to Az 035-045° (a 45-55° rotation), and a shift in the direction of maximum resolved stress (from the March Fault system Az 305-315°). The thrust faults and folds associated with this phase of deformation suggest a zone of compression indicative of right-lateral, left stepping strike-slip motion along the Justin Fault system;

<u>Plate 1 – Brittle structures from the POW zone (looking Az 350°)</u>

TerraLogic Exploration Inc.

January 16th, 2015

The geothermal gradient associated with the emplacement of the Justin stock has variably altered the adjacent Yusezyu formation strata throughout the Justin property. The POW zone lies within the contact aureole of the Justin stock and has undergone intense contact metamorphism manifesting as both contact skarn and broad zones of hornfels. Of particular interest to the economic geology of the POW zone is a stratabound calc-silicate (tremolite) – garnet exoskarn, which has an average thickness of approximately 20 metres and has been traced along strike for approximately 450 metres. The skarn is comprised of pyroxene-grossular garnet-tremolite-quartz-epidote-magnetite-magnesite-apatite and in places has undergone partial to complete iron-carbonate and clay retrograde alteration. The skarn is the primary host for auriferous massive sulphide replacement, auriferous sheeted quartz vein arrays, and disseminated scheelite, which is a calcium tungstate mineral and the primary ore forming mineral at the Cantung deposit located 30 km to the north.

The skarn is bound on both it's upper and lower contacts by hornfels, intensely silicified quartz pebble conglomerate and lesser siltstone. The hornfels has acted as a capping mechanism, restricting and allowing subsequent enrichment of the skarn by focusing fluid flow through the permeable horizon. The upper zone of hornfels is then in turn capped by an interbedded sequence of quartz pebble conglomerate, siltstone, and banded skarn. The latter forms a distinct marker unit which has been very useful in determining stratigraphic correlations within the POW zone stratigraphy. The recognition of calcareous chert at the upper contact of the main skarn unit was a new observation made during the 2014 mapping program. The calcareous chert was bleached white-green in color, and is intensely brecciated. The breccia matrix was primarily comprised of tremolite and lesser garnet (infiltration of the main skarn into the calcareous chert). Field observations suggest that the calcareous chert formed an impervious barrier during the initial stages of contact metamorphism. Hydrothermal fluids migrating into the sediments from the granodiorite resulted in a drastic increase in hydrostatic pressure causing significant brecciation/hydrofracturing of the sediments, in particular the skarn and overlying calcareous chert unit.

The strata at the POW zone has been cross-cut by several quartz-feldspar porphyry dykes. Emplacement of these hypabyssal rocks occurred along the same N-S trending structural features which comprise the Justin fault system. The dykes are in turn cross-cut by the auriferous sheeted vein arrays, providing some time constrains on the emplacement of the stock, related dykes, and at least one of the mineralizing events.

The POW zone consists of a wide range of mineralization styles representing the diversity of intrusion related systems including a calc-silicate skarn system, as well as stockwork and sheeted quartz-calcite veining. Both styles of mineralization can host an array of metals including: arsenopyrite, pyrite, molybdenite, sphalerite, galena, scheelite, powellite, native bismuth, bismuthinite, jamesonite, chalcopyrite, pyrrhotite, sphalerite, gold-bismuth-tellurium alloys, and most importantly native gold. As mentioned above, mineralization is best developed within the calc-silicate skarn; the best gold grades observed to date have come from structurally controlled zones within the skarn. The intersection of N-S trending structural zones with the calc-silicate skarn has created at least one "ore-shoot" type geometry which has a NNW orientation, plunging approximately 32 degrees. The zone is marked by massive magnetite+/-chalcopyrite+/-pyrrhotite skarn, silica flooding and associated sulphide replacement, and sheeted quartz vein arrays with densities ranging from 20-50 millimetre size veins per metre. This zone was the primary target evaluated by diamond drilling during the 2012 program, and subsequent trenching in 2014.

An important note to be discussed is the discovery of auriferous sheeted quartz veins hosted within the granodiorite stock. In other Intrusion Related Gold Deposits such as Ft. Knox, AK and the Eagle Deposit, YT, the gold ore occurs within structurally influenced zones within the cupola of the intrusion. More specifically, well developed sheeted quartz vein arrays host native gold and gold alloys within the intrusion which comprise these deposits. At the POW zone the cupola of the intrusion is partially exposed, which in turn hosts auriferous quartz veins which exploit the extensional N-S architecture of the Justin fault. Although rigorous sampling of the sheeted veins and stock in drill core did not return economic intervals of gold mineralization, several veined intervals containing visible native gold and bismuth-tellurium alloys were observed in two of the 2014 trenches and chip samples from these returned highly anomalous gold-bismuth-tellurium concentrations. The discovery of auriferous sheeted veins within the Justin stock is considered to be significant, as it confirms for the first time that the Justin property displays all of the components which comprise an intrusion related gold system. Further exploration efforts are warranted to follow-up the potential for an economic gold deposit within the cupola of the Justin stock.

Mapping in the area of the Big Swifty yielded valuable geological information with respect to characterization of the Big Swifty showing, discovery of intrusive dykes, quartz veining and related alteration, and the southern extension of a splay of the March Fault. Each of these geologic features will be described in detail below.

The Big Swifty showing is a protocataclasite hosted within Hyland Group – Yusezyu formation quartz pebble congomerate. The showing outcrops in an unnamed creek and forms a large gossan adjacent to and within the watercourse which is weathering brown-orange in colour (Plate 2). Mineralization in the form of marcasite and pyrite (locally to 30 %) is manifested as cataclasite infill (quartz veining is conspicuously rare or absent), and is hosted within a dark grey cohesive fault gouge (Plate 3). The showing proper is largely controlled by north-south fracturing (Az 180° Dip 64°), and to a lesser

degree by synthetic northwest-southest trending fractures (Az 313° Dip 76°). One interesting note is that the showing is the only outcrop where a significant north-south dominant structure was mapped in the greater Big Swifty area. The predominant structural orientation in the immediate area surrounding the Big Swifty is northwest-southeast, similar in orientation to the March Fault system. Of interest, and potentially related to the Big Swifty was the recognition of cataclasite within two different localities which bracket (both east & west) the current extent of the POW zone (refer to Plate 4 & 5). These fault zones are thought to coincide with syn-post mineralization tectonic activity along the N-S trending Justin Fault system. Both of the shear systems containing cataclasite within the POW zone are controlled by N-S trending structure, and host significant pyrite+/-marcasite mineralization accompanied in places by significant silica flooding (as described above point number 8 under subsection Characteristics of Mineralized Zones). These characteristics are very similar to those described during the 2014 investigation of the Big Swifty showing. The similarities between the different shear zones are remarkable considering there is over 5.0 km in between the two locations. The Big Swifty showing, based upon the observations provided above, is interpreted to represent the southern extension of the Justin Fault system.

<u>Plate 2 – Big Swifty showing (looking north)</u>

<u>Plate 3 – Big Swifty protocataclasite hosting pyrite-marcasite mineralization</u>

<u>Plate 4 – Cataclasite from western limit of known mineralization at the POW zone</u>

<u>Plate 5 – Cataclasite from the eastern limit of known mineralization at the POW zone (JN12014)</u>

The intrusive rocks mapped in the Big Swifty area infill sub-vertical structures and occur as dykes, similar in character to those observed at the POW zone. The dykes are hypabyssal, comprised of quartz and feldspar, and are porphyritic. The dykes range in thickness from 10 - 20 metres and are variably altered by carbonate-chlorite-quartz. Highly altered quartz feldspar porphyry dykes weather buff orange-red in colour. The dykes are central to a 100 metre wide northwest trending shear zone. Soil samples collected in 2012 on the ridge in proximity to the dykes returned anomalous Au-Sb values. They have an average orientation of Az 155° Dip 80°, which is a slight deviation to the northwest from those observed at the Main and POW zones. The southernmost intrusive dyke mapped in 2014 is located approximately 1.0 km south of an intrusive dyke mapped in 2011 and is over 3.0 km south of the Main zone and 5.0 km south of the POW zone. The intrusive dykes represent the southernmost extension of the Justin Fault system as mapped to date. In one locality (JBJNG032) a carbonatite or carbonate rich vein structure exploited the eastern contact of the 20 metre wide quartz feldspar porphyry dyke.

Quartz veining and associated alteration was noted at several localities, primarily north and northwest of the Big Swifty showing in the shear zone described in the previous paragraph. Quartz veining is typically best developed in the coarse clastic units of the Yusezyu formation, and is accompanied by weak to moderate silica, chlorite and carbonate alteration. Trace pyrite and arsenopyrite was observed along vein margins as fine grained, subhedral crystals, however the majority of the veins examined were milky white and void of any mineralization. Multiple generations of quartz veining are evident with an early set of left-lateral en-echelon veins being cross cut by planar, sheeted quartz veining (Plate 6). The timing of formation of different phases of quartz veining is unclear at present, however it is speculated that the en-echelon quartz veins represent an early, deeper event (brittle-ductile environment), whereas the planar sheeted quartz veins reflect a transition into a higher level brittle structural event.

<u>Plate 6 – Multiple generations of quartz veining in talus from the Big Swifty area (looking east)</u>

Plate 7 – Quartz veining from geologic station MMJNG056 (looking north)

The southern extension of the March Fault, or a sub-parallel splay of the fault system was mapped whilst completing a ridge traverse north-northeast of the Big Swifty showing (Plate 8). At this locality (MMJNG049-052) thin to medium bedded, light-dark grey limestone and lesser light-dark green mafic volcanics of the Algae Lake or Rabbitkettle Formation (?) have been thrust on top of thin bedded, light grey phyllite of the Yusezyu Formation (further mapping east of the fault zone is required to constrain the strata to either the Algae Lake or Rabbitkettle Formation). The fault at this locality has an orientation of approximately Az 290° Dip 72° (field observations suggest that the shear plans is actually at a much lower angle, however absolute measurements from one outcrop have been provided here). The carbonate rocks in the hanging wall of the thrust fault have been intensely folded, with folds verging to the southwest (Plate 9). A well developed axial planar cleavage within the limestone has an orientation of Az 313° Dip 39°. Fold axis within the limestone were measured at the following orientation Trend 106° Plunge 12°. Mapping west of the fault zone identified an intensely developed cleavage with an orientation of Az 310° Dip ~ 40-70°, and is interpreted to represent shearing associated with the March Fault system.

Plate 9 – Folding in the March Fault hanging wall carbonate strata (looking southeast)

Analytical Results

The 2014 exploration program resulted in the collection of 151 soil samples, 4 silt samples, 60 rock chip/channel samples, 24 rock grab samples and re-analysis of 230 drill core samples. All samples were submitted to ALS Minerals laboratory in Whitehorse, YT for preparation. The samples were subsequently shipped to ALS Minerals laboratory in North Vancouver for analysis. The following analytic techniques were used for all rock samples: ME-MS41, Au-AA23 30 g Fire Assay, Au-GRA21 30 g Fire Assay for all samples grading > 10 ppm Au in the Au-AA23 analysis, ME-OG46 for all samples > 10,000 ppm Zn, Zn-VOL50 for all samples > 300,000 ppm Zn, W-XRF05 for all samples > 200 ppm W in the ME-MS41 analysis and W-XRF10 for all samples > 5000 ppm W in the W-XRF05 analysis. The following analytic techniques were used for all samples grading > 1 ppm Au in the Au-ST43 analysis. The Company's QAQC measures included insertion of external blanks and standards into the sample stream for all rock chip/channel samples and drill core samples. A minimum of one standard sample and one blank sample were inserted for each trench and a minimum of one standard was submitted into each diamond drill hole sample stream.

Refer to Appendix 3 for detailed descriptions of each analytic technique.

The analytic results for each component of the 2014 program will be summarized in the following text.

Geochemical Surveys

Rock Sampling

A total of 24 rock grab samples were collected from talus, subcrop and outcrop during field mapping activities. For a detailed description of rock sampling techniques please refer to Appendix 3. A total of 12 samples were collected from the greater POW zone area, and 12 samples were collected from the greater Big Swifty area. 5 of the 24 samples returned anomalous results and 1 of the 24 samples returned highly anomalous results. The results will be summarized below by zone. Refer to Figure 4a for sample locations.

One sample from the POW zone (JBJNR006) collected from subcrop of quartz pebble conglomerate containing quartz veining 400 metres south of the collar for DDH JN12019 returned interesting results. Assay results are as follows: 311 ppb Au, 1.21 % As, 5.5 ppm Bi, 15.5 ppm Sb and 0.85 ppm Te. These results are considered favourable because the represent the southern most extent of quartz veining containing elevated Au, As, Bi, Sb, Te in the POW zone. The geochemical signature of the sample is consistent with that observed within the mineralized veins at the POW zone. Future work is required to follow up on these results.

Five samples from the greater Big Swifty area returned weakly to highly anomalous assay results. Grab sample JBJNR015 collected from a carbonatite dyke exploiting the eastern contact of a quartz feldspar porphyry dyke returned weakly anomalous results of 1.39 ppm Ag, 6.78 ppm Cd, 466 ppm Pb and 1580 ppm Zn. Grab sample JBJNR019 collected from the Big Swifty showing (quartz pebble conglomerate and cataclasite containing pyrite-marcasite mineralization) returned weakly anomalous values of 119 ppb Au, 0.56 ppm Bi and 13.65 ppm Sb. A second grab sample collected from the Big Swifty showing (MMJNR110) also returned a weakly anomalous values of 201 ppb Au, 2.92 ppm Bi and 21.8 ppm Sb from sulphide rich cataclasite (Plate 3). These sample results suggest that mineralization within the Big Swifty cataclasite is likely a distal expression of the IRGS system observed at the POW zone. Further work is recommended to prospect along strike of the N-S structure containing the Big Swifty showing to determine if gold grade increases to concentrations suitable for economic extraction. Grab sample MMJNR113 (Plate 10) collected from talus within the March Fault is a metal-rich, strongly magnetic ferricrete which returned highly anomalous assay results of 45.0 % Zn, 6.9 % Pb, 54.3 ppm Ag, 111 ppm Hg, 5.94 ppm Bi and 31.2 ppm Sb. The sample was collected from one of several cobble sized fragments of the ferricrete found within a talus slide primarily comprised of limestone. At present there are two plausible explanations for the formation of the ferricrete: The precipitate represents deposition of metals leached from sediments into a chemical trap at the fault contact between the limestone and phyllite lithologies; and/or the concentration of base metals is a distal expression of the IRGS which focused hydrothermal fluids along the March Fault system. Sample MMJNR113 explains why base metal values in silt samples (LJSPS001 - 005) north of the fault zone collected in 2010 are so elevated (sample MMJNR113 comes from the headwaters of the drainage from which the silt samples were collected in 2010). Future work should aim to determine if significant volumes of the metal-rich ferricrete material can be found along or within the March Fault system. Prospecting and geochemical sampling are recommended to follow up on this years work. Grab sample MMJNR114 (Plate 7) was collected from quartz-carbonate veining containing trace arsenopyrite mineralization hosted within quartz pebble conglomerate. The sample returned weakly anomalous results as follows: 519 ppm As and 1210 ppm Zn. The vein sample was collected in close proximity to soil sample RZJND011 which returned 73.3 ppb Au suggesting that the quartz veining may be auriferous. In addition the quartz veining is located along strike of the Big Swifty, and the larger Justin Fault system which is known to be auriferous. Further prospecting is required to determine the gold-bearing potential of the vein systems which outcrop along the ridge north of the Big Swifty.

Plate 10 – Ferricrete from the March Fault returned 45.0 % Zn, 6.9% Pb, 54.3 g/t Ag (MMJNR113)

Soil Sampling

A total of 151 soil samples were collected from 6 lines covering approximately 7.5 line-kilometres. Soil samples were collected at 50 meter station spacing. For a detailed description of sampling techniques please refer to Appendix 3.

A total of 3 soil lines were completed to the northwest of the POW zone (JNL023 – 025, refer to Figure 4b), providing additional coverage to the geochemical and geophysics work completed in 2012. Although till cover is extensive at valley bottom limiting outcrop exposure and providing poor sampling substrate, soil sampling did reveal and area of highly anomalous (> 99th Percentile) gold-in-soil values (JNL024 13+75 W and JNL024 14+00W) returning 67 ppb Au and 2410 ppb Au respectively. The anomaly remains open to the west and represents an area warranting follow up work to determine the source of the gold-bearing soil. The soil anomaly is within 250 metres of a magnetic high signature of similar intensity to that observed at the POW zone. Infill soil sampling and prospecting is recommended in the immediate area surrounding soil samples JNL024 13+75W and 14+00W.

A total of 3 soil contour lines were completed north of the Big Swifty showing (JNL026 – 028, refer to Figure 4b) to follow up on anomalous (> 95th - 99th Percentile) gold-in-soil values returned from ridge sampling during the 2012 exploration program. Soil line JNL026 returned four consecutive samples (JNL026 04+00E to 05+50 E) > 95th Percentile which corresponds to an area where extensive quartz-carbonate stock work veining was observed. The quartz-veining and gold-insoil anomaly corresponds to the southern extension of the Justin Fault system, and suggests that the structure is weakly enriched in gold. Future prospecting should focus on rigorous sampling of the quartz stock work veining, and evaluating the Justin Fault system along strike to the north. Soil lines JNL027 and JNL028 did not return anomalous gold-in-soil values. This may be more a reflection of poor soil sample substrate that an indication of baseline geochemical values. These soil lines traversed extensive glacial till and lateral moraine features which would easily mask underlying bedrock geochemical signatures.

Silt Sampling

A total of 4 silt samples were collected from the greater POW zone area during the 2014 program (refer to Figure 4b). The samples were collected as field duplicates to follow up on historical silt samples. Two samples (JBJNS001 & JBJNS002) were collected from an incised drainage north-east of the POW zone which marks the inferred surface trace of the March Fault. These samples were collected upstream from sample LJJNS003. Both of these samples did not return significant gold values, but did return 335 ppm Zn and 385 ppm Zn respectively which is consistent with LJJNS003 which returned 331 ppm Zn. Two samples (JBJNS003 & JBJNS004) were collected from the unnamed creek which drains the western flank of the POW zone as field duplicates to ETSPS001. These samples did not return significant gold values, but did return 315 ppm Zn and 381 ppm Zn respectively, which are slightly higher than ETSPS001 which returned 254 ppm Zn. As a general comment the highest gold-in-silt anomaly returned from the POW zone is 24 ppb, a sample taken from a small creek draining outcrop which contains significant gold mineralization as defined by trenching and diamond drilling. It is important to follow up on any elevated gold-in-silt values observed on the property.

Geochemical Statistics

Geochemical statistics were calculated for the 2014 soil samples using ioGAS Advanced Exploratory Geochemical Data Analysis software. Highly anomalous gold-bearing outlier samples (n = 2) were removed from the data set prior to calculating summary statistics as these samples exponentially skew the percentile breaks distorting real world geochemical thresholds. The summary statistics are presented below in Table 2.

<u>Table 2 – Summary statistics for the 2014 soil samples (number of samples = 149)</u>

	Ag ppm	As ppm	Au ppb	Bi ppm	Cu ppm	Mo ppm	Pb ppm	Sb ppm	Te ppm	W ppm	Zn ppm
75 percentile	0.26	73	3	0.50	22	0.61	40	1.83	0.03	0.16	100
90 percentile	0.40	157	7	0.69	31	0.86	57	2.87	0.04	0.28	136
95 percentile	0.56	222	13	0.98	39	1.38	90	3.44	0.05	0.39	167
99 percentile	0.92	459	64	3.37	75	8.22	251	4.81	0.07	0.79	296

A total of four trenches were completed during the 2014 program (Refer to Figure 5a-c). The trenches were located within the POW zone area, and were completed using a combination of mechanical and hand tools. A CanDig heli-portable excavator was used to complete mechanical trenching. A total of 60 rock chip/channel samples were collected during the trenching program. The trench geology and analytic results are summarized below. Refer to Figures 5a – 5c for detailed geology and sample locations. Trenching was completed by the following TerraLogic Exploration Inc employees: Mike McCuaig, Jarrod Brown, Nathan Taylor and Jason Kolucn.

Trench ID	Length (m)	Start Easting	Start Northing	End Easting	End Northing	Volume (m ³)	Disturbance Type
TR14-001	15.0	546707	6839234	546719	6839238	22.5	Mechanical
TR14-002	11.0	546735	6839239	546743	6839232	4.0	Mechanical
TR14-003	12.0	546648	6839490	546659	6839496	0.75	Hand Tools
TR14-004	13.0	546652	6839477	546665	6839479	0.75	Hand Tools
*All coordinates a	re reported in UT	M Nad 83 Zone 9N	Ň				

Table 3 – Trench Locations and Disturbance Summary

*All coordinates are reported in UTM Nad 83 Zone 9N

Trench TR14-001 (Figure 5b) was designed to follow up on a grab sample collected in 2012 (MMJNR041) which returned 22.2 g/t Au from sheeted veins within the Justin Stock biotite granodiorite. TR14-001 successfully delineated gold-tellurium-bismuth bearing sheeted vein arrays correlating to sample MMJNR041 extending the prospective sheeted vein array 225 meters south along strike from the original POW zone discovery outcrop (refer to Table 4 for trench results). The biotite granodiorite has been variably altered (weak to intense) by silica, sericite and clay, and is directly related to the formation of the sheeted vein array. The auriferous structures occur as linear arrays of 0.1 - 2.0 cm wide sheeted quartz veins with densities ranging from 2 - 10 per metre. The sheeted veins, where mineralized contain pyrite, bismuth-tellurium alloys and native gold (Plate 12). Mineralization is very fine grained, and on a macroscopic scale appears as smokey to metallic silver-grey blemishes along vein contacts and hairline fractures parallel to the vein margins. Several clay altered shear zones parallel the sheeted veins occur within TR14-001. These shear zones are comprised of very friable clay gouge which is often moderately oxidized. The orientation of vein and shear structures across the trench is consistent with an average orientation of Az 170° Dip 80°, parallel to the Justin Fault.

<u> Plate 11 – TR14-001 (looking west)</u>

Plate 12 – TR14-001 Sheeted quartz vein containing Au-Bi-Te alloys (MMJNR041, MMJNR047)

Plate 13 – TR14-001 Sheeted quartz vein array (looking south)

TR14-002 (Figure 5b) located approximately 16 metres east of TR14-001, was initiated after field crews discovered sheeted veining within shallowly buried outcrop. The geology of TR14-002 is similar in character to TR14-001 and is underlain by biotite granodiorite which has been variably silica, sericite and clay altered. The development of alteration is directly related to the development of linear arrays of sheeted quartz veins/veinlets which range in thickness from 0.1 - 2.5 cm wide, and densities range from 2 - 5 per metre. The sheeted veins, where mineralized contain pyrite, bismuth-tellurium alloys and native gold. Mineralization is very fine grained, and on a macroscopic scale appears as smokey to metallic silver-grey blemishes along vein contacts and hairline fractures parallel to the vein margins. One speck of native gold was observed within a sheeted vein in sample MMJNR064, which returned an assay value of 0.95 g/t Au (refer to Table 4 and Plate 15). The quartz veins have an orientation of Az 163° Dip 82°, parallel to the Justin Fault. A set of conjugate joints are observed within the granodiorite with the following orientations: dominant Az 175° Dip 83°, subordinate Az 262° Dip 84°. The eastern extent of the trench was terminated due to mechanical failure of the trenching equipment and remains open to exploration.

Plate 14 – TR14-002 (looking west)

<u>Plate 15 – TR14-002 Visible Gold from sample MMJNR064</u>

TR14-003 (Figure 5c) was designed to evaluate sheeted vein arrays hosted within calcareous chert, a rock unit which defines the upper contact of the POW zone skarn. The calcareous chert is light green-white in colour weathering a light-dark brown. The unit approaches a cryptocrystalline porcelain like texture, and has been fractured and brecciated. Where brecciated the calcareous chert has been inundated by the underlying calc-silicate skarn. Well-developed sheeted quartz vein arrays occur as linear quartz veinlets/veins with densities ranging from 1 – 6 veins per metre (Plate 17). Two distinct vein orientations were observed in TR14-003 and are as follows: Principal vein (Parallel to Justin Fault) Az 179° Dip 82°; Subordinate vein (R1 of reidel shear system) Az 150° Dip 60°. Mineralization within the veins was primairly observed as molybdenite with trace amounts of scheelite and bismuth-tellurium alloys. Although the vein density and mineralogy appeared to be favourable for gold mineralization sampling of bedrock in TR14-003 returned no significant results. The poor results may reflect the importance of host rock on the distribution of gold mineralization within the sheeted vein system. The eastern end of the trench was terminated in a brittle fault structure with an orientation of Az 170° Dip 75°.

<u>Plate 16 – TR14-003 (looking west)</u>

<u>Plate 17 – TR14-003 Sheeted quartz veining (looking south)</u>

TR14-004 (Figure 5c) was designed to evaluate sheeted vein arrays hosted within the POW zone skarn, the main focus of exploration on the Justin property to date. TR14-004 is located ~ 15 metres south of TR14-003. TR14-004 successfully delineated gold-tellurium-bismuth-tungsten bearing sheeted vein arrays within the skarn extending gold mineralization at surface 50 metres north from that defined in diamond drill holes JN12013 and JN12014. Refer to Table 4 for a summary of results from TR14-004. The calc-silicate skarn outcropping in TR14-004 can be characterized as a medium-coarse grained calc-silicate (tremolite) dominant - hydrogrossular garnet (subordinate) with accessory apatite, magnesite and retrograde chlorite, calcite. The auriferous structures occur as linear arrays of 0.1 - 15.0 cm wide sheeted quartz veins with densities ranging from 1 - 8 per metre (Plate 19). The sheeted veins, where mineralized contain pyrite, bismuth-tellurium alloys, scheelite and native gold. Mineralization is very fine to medium grained, and on a macroscopic scale appears as smokey to metallic silver-grey blemishes along vein contacts and hairline fractures parallel to the vein margins. There are two principal vein orientations noted in TR14-004: Az 175° Dip 66° (Parallel to Justin Fault) and Az 156° Dip 58° (R₁ to March Fault). A note of interest is that the best gold grade returned from TR14-004 (sample MMJNR101 – 4.10 g/t Au) was collected from one of the R_1 veins (Plate 20). The R_1 veins appear to form vein-linkage segments between the sheeted veins which parallel the Justin Fault. Several clay altered shear zones parallel the sheeted veins occur within TR14-004 and have an orientation of Az 145° Dip 58° and Az 197° Dip 68° consistent with the R_1 and Justin Fault orientations. A notable observation is the significant difference in gold distribution between TR14-003 & TR14-004, located only 15 metres apart. Both of these trenches sampled the same vein system, but yielded vastly different gold results. These differences may result from the requirement of a chemical catalyst (present in the calc-silicate skarn but not in the calcareous chert) to initiate the precipitation of gold. Further investigation is required to elucidate the controls of mineralization within the metasedimentary rocks.

Plate 18 - TR14-004 (looking west)

Plate 19 – TR14-004 Sheeted quartz vein array (looking north)

<u>Plate 20 – TR14-004 Quartz-W+Bi-Te-Au alloy – MMJNR101 – 4.10 g/t Au</u>

Zone	Trench	Easting	Northing	Composite Channel Sample Results
POW	TR14-001	546710	6839235	0.33 g/t Au over 6.70 m, including
POW	TR14-001	546710	6839235	0.59 g/t Au over 3.10 m, also including
POW	TR14-001	546710	6839235	0.96 g/t Au over 0.50 m
POW	TR14-002	546737	6839240	0.23 g/t Au over 4.00 m, including
POW	TR14-002	546737	6839240	0.95 g/t Au over 0.50 m
POW	TR14-003	546650	6839490	No Significant Results
POW	TR14-004	546650	6839475	0.92 g/t Au over 13.15 m, including
POW	TR14-004	546650	6839475	1.15 g/t Au over 7.90 m, also including
POW	TR14-004	546650	6839475	2.76 g/t Au over 1.90 m

Table 4 – 2014 Significant Trench Results

The correlation matrix displayed in Table 5 was calculated using ioGAS Advanced Exploratory Geochemcial Data Analysis software. From the sampling in 2014 a clear relationship can be observed between Au-Bi-Te with Au:Te having a correlation coefficient of 0.98 and Au:Bi having a correlation coefficient of 0.94. The Au-Bi-Te association is most directly related to intrusion-related and intrusion-hosted ores, adding further credence to support an intrusion-related gold system on the Justin property. The Au-Bi-Te correlation, strongly controlled by temperature gradient, is indicative of the 2014 samples close proximity to the Justin stock.

Table 5 – Correlation Matrix for the 2014 Rock Chip/Channel Samples

Correlation	Ag	As	Au	Bi	Cu	Fe	Мо	Sb	Те	W
Ag	1.00	0.30	0.65	0.68	0.73	0.68	0.30	0.51	0.64	0.25
As	0.30	1.00	-0.01	-0.02	0.00	0.03	-0.13	0.29	0.00	-0.15
Au	0.65	-0.01	1.00	0.94	0.51	0.69	0.43	0.47	0.98	0.35
Bi	0.68	-0.02	0.94	1.00	0.50	0.59	0.40	0.51	0.93	0.28
Cu	0.73	0.00	0.51	0.50	1.00	0.76	0.35	0.29	0.46	0.33
Fe	0.68	0.03	0.69	0.59	0.76	1.00	0.41	0.40	0.65	0.37
Мо	0.30	-0.13	0.43	0.40	0.35	0.41	1.00	0.09	0.41	0.61
Sb	0.51	0.29	0.47	0.51	0.29	0.40	0.09	1.00	0.47	-0.01
Te	0.64	0.00	0.98	0.93	0.46	0.65	0.41	0.47	1.00	0.27
W	0.25	-0.15	0.35	0.28	0.33	0.37	0.61	-0.01	0.27	1.00

<u>Plate 21 – Photomicrograph of Visible Gold and Au-Bi-Te alloys</u>

Diamond Drill Core Sampling Program

The goal of the 2014 tungsten reconnaissance sampling was to make a preliminary assessment of the property for economic W (tungsten) mineralization and sample core, previously drilled, for W specific analysis.

Examination of drill core using short wave ultraviolet lamps in 2012 revealed visible scheelite (calcium tungstate) mineralization disseminated within the POW zone skarn and sheeted vein arrays. Review of the 2011 - 2012 drill hole geochemical data set indicated that anomalous concentrations of tungsten (> 200 ppm W) were reported in the multielement ICP analysis from several intervals within the POW zone skarn. It is important to note that although multi-element ICP analysis can indicate tungsten anomalies, it is not considered appropriate quantitative analyses for the commodity since it can grossly under-report actual quantities. The ICP W data, combined with the Justin project being situated 35 km southwest of North American Tungsten Corporations world-class Cantung tungsten deposit, helped the Company recognize the importance of evaluating the project to determine if significant quantities of tungsten could be identified.

The drill core sampling program consisted of re-analysis of 230 drill core samples from 7 of the 9 previously drilled POW zone holes (Refer to Table 6 and Table 7). All samples were submitted to ALS Minerals in Whitehorse for preparation. Geochemical analysis was completed at ALS Minerals Laboratory in Vancouver. The following analytic techniques were used for all drill core samples: W-XRF05 for all samples > 200 ppm W in the ME-ICP41 analysis and W-XRF10 for all samples > 5000 ppm W in the W-XRF05 analysis. QAQC measures included insertion of external blanks and standards into the sample stream for each drill hole sampled. A minimum of one standard sample and one blank sample were inserted into the sample stream every 20th sample. All reported intersections were determined using uncut WO₃ % weighted average calculations. WO₄ % values were calculated using a conversion factor of 1 2611 ((W ppm/10.000) * 1.2611 = WO₄%). BC

calculations. WO₃ % values were calculated using a conversion factor of 1.2611 ((W ppm/10,000) * $1.2611 = WO_3$ %). BC Energy & Mines.

DDH ID	Number of Samples Analyzed
JN11009	17
JN11010	19
JN12012	18
JN12013	63
JN12014	61
JN12016	15
JN12019	37

<u> Table 6 – Summary of Tungsten Sampling Program</u>

Zone	Hole Number	Length(m)	Azimuth	Dip	Easting	Northing	Accuracy(m)	Elevation(m)	Hole Status	Start Date	Finish Date
POW	JN11009	291.7	250	-45	546562	6839670	0.5	1429	COMPLETE	09/07/11	09/11/11
POW	JN11010	254.5	250	-60	546562	6839670	0.5	1429	COMPLETE	09/11/11	09/14/11
POW	JN12012	157.5	80	-45	546734	6839430	0.5	1430	COMPLETE	07/29/12	08/01/12
POW	JN12013	162.0	260	-45	546656	6839429	0.5	1435	COMPLETE	08/01/12	08/03/12
POW	JN12014	294.0	80	-50	546662	6839429	0.5	1434	COMPLETE	08/04/12	08/07/12
POW	JN12016	300.0	270	-46	546559	6839484	0.5	1432	COMPLETE	08/08/12	08/12/12
POW	JN12019	210.0	80	-55	546296	6839504	0.5	1465	COMPLETE	09/16/12	09/23/12

Table 7 – Diamond Drill Hole Collar Locations for Holes Sampled in 2014

Very encouraging results were returned from the program with highlights presented below in Table 8. High-grade tungsten mineralization is preferentially concentrated at the contact between the granodiorite and metasedimentary rocks (both the calc-silicate skarn and hornfels quartz pebble conglomerate lithologies host significant tungsten mineralization). The mineralization typically occurs as fine-medium grained disseminated scheelite with accessory powellite within the calc-silicate skarn and underlying hornfels quartz pebble conglomerate. Significant concentrations of scheelite also occur within sheeted quartz veins in close proximity to, and within the granodiorite stock. Gold mineralization is spatially associated with tungsten within the sheeted veins, but not within the calc-silicate skarn suggesting that multiple tungsten mineralization events overprint each other within the POW zone.

<u>Table 8 – Summary of Tungsten Highlights from the 2014 Drill Core Analysis</u>

2014 WO ₃ Analysis Highlights								
DDH ID	From (m)	To (m)	Uncut Sample Results WO ₃ %					
JN11010	194.0	206.0	0.25 % WO ₃ over 12.00 m					
including	195.0	200.0	0.45 % WO ₃ over 5.00 m					
also including	196.0	200.0	0.48 % WO ₃ over 4.00 m					
also including	197.0	200.0	0.53 % WO ₃ over 3.00 m					
JN12013	4.1	33.0	0.10 % WO ₃ over 28.90 m					
including	23.8	33.0	0.14 % WO ₃ over 9.20 m					
and	45.8	46.9	1.15% WO ₃ over 1.10 m					
and	88.7	90.8	0.46 % WO ₃ over 2.10 m					
including	88.7	89.7	0.87 % WO ₃ over 1.00 m					
JN12016	104.7	113.2	0.39 % WO ₃ over 8.50 m					
including	104.7	107.3	0.62 % WO ₃ over 2.60 m					
also including	106.3	107.3	1.12 % WO ₃ over 1.00 m					
and	110.1	113.2	0.50 % WO ₃ over 3.10 m					
including	111.2	113.2	0.72 % WO ₃ over 2.00 m					
also including	111.2	112.6	0.88 % WO ₃ over 1.40 m					
JN12019	192.5	199.7	0.27 % WO ₃ over 7.20 m					
including	194.2	199.7	0.32 % WO ₃ over 5.50 m					
also including	197.8	199.4	0.52 % WO ₃ over 1.60 m					
also including	197.8	198.3	1.18 % WO ₃ over 0.50 m					
also including	199.4	199.7	1.27 % WO ₃ over 0.30 m					

Section 6 – JN11009 and JN11010 (Figure 7)

JN11009: Azimuth 250°, Inclination – 45°, EOH – 291.67 meters

Hole JN11009 was drilled as an addition to the 2011 Justin project, following discovery of two "new" mineral occurrences displaying favourable gold indicator minerals during follow-up mapping and prospecting of the POW zone. JN11009 was collared in a sequence of interbedded pebble conglomerate, marble and fine grained siltstone of the Hyland Group which extends to a depth of 145.95 meters. From 145.95-239.85 meters a sequence of thin to thick bedded, intensely altered limestone unit occurs. From 239.85-291.67 meters interbedded and intensely altered, hornfles fine grained siltstone and sandstone occur. Alteration within JN11009 is strongly controlled by the primary composition of the lithologies. Hydrothermal alteration occurs as vein-halo envelopes, contact metamorphic calc-silicate skarn, and as pervasive crystalline replacement associated with contact metamorphism. Hydrothermal stockwork veining and vein-breccia systems are enveloped by pervasive silicification and argillic alteration. The pebble conglomerate beds are receptive to the hydrothermal fluids and are commonly partially recrystallized within zones of intense brecciation and veining. Silica, biotite, chlorite +/epidote +/- white clay alteration is common within the pebble conglomerate, and occurs as matrix replacement. Adjacent to calc-silicate altered limestone members, the pebble conglomerate matrix is also partially replaced by medium-coarse grained calc-silicate minerals such as pyroxene, epidote, and actinolite. Finer grained sediments such as siltstone and sandstone beds generally do not display the same degree of silicification, but are locally pervasively altered to sericite and/or biotite. Limestone and associated calcareous sediments are pervasively altered to a fine to coarse grained prograde exoskarn consisting of clinopyroxene, quartz, and hydrogrossular garnet. Retrograde alteration of the skarn occurs in areas of brittle fracturing and quartz-calcite veining. The alteration occurs as fine grained actinolite, chlorite, epidote +/- hematite. A secondary phase of intense clay and limonite alteration overprints the calc-silicate skarn, yielding a bleached beige-white color. The alteration is associated with quartz stock work veining, and occurs as an envelope with distinct solution-front boundaries. Below the well defined calc-silicate zone, skarn alteration intensity increases, with partial or complete recrystallization of coarse grained siliciastic sediments, and intense sericite alteration of fine grained siliclastics. The increase in alteration intensity is interpreted to reflect the spatial proximity to the intrusive sock identified in 2010. Hole JN11009 returned the most significant results of the 2011 drilling program. Mineralization occurs in two distinct settings: 1) Structurally controlled vein and vein-breccia hosted pyrite + pyrrhotite +/- bismuth +/- chalcopyrite +/- arsenopyrite +/molybdenite +/- sphalerite +/- galena +/- scheelite +/-jamesonite; 2) Lithologically controlled skarn replacement hosted magnetite +/- pyrrhotite +/- chalcopyrite +/- bismuth +/- hematite +/- pyrite. Highlights from stock work veining include a 5.00 metre interval of 1.79 g/t Au from 158.00-163.00 meters, including 0.50 meters of 9.77 g/t Au from 159.05-159.55 meters. Highlights from intervals of skarn/ replacement mineralization include 5.85 meters of 5.12 g/t Au and 0.07 % WO₃ from 198.00-203.85 meters. Gold values returned from vein hosted mineralization have an excellent correlation with elevated values of Bi, and a moderate correlation with elevated values of Cu. Gold values returned from skarn hosted mineralization have a moderate correlation with both Bi and Cu. The interval of 21.00 meters of 2.47 g/t Au from 184.00-205.00 meters is characterized by elevated values of Bi, Cu, Fe, Mo, and W. An interesting observation is that both the skarn replacement and vein hosted mineralization are most highly developed within the limestone unit suggesting that the skarn alteration is an important precursor for ground preparation for the structurally controlled stock work veining. A pronounced magnetic anomaly was detected by the down hole survey tool magnetic susceptibility meter at a depth of 92.00 meters. The anomaly is interpreted to represent the influence of the magnetite rich skarn on the survey tool.

JN11010: Azimuth 250°, Inclination – 60°, EOH – 254.50 meters

Drill hole JN11010 was added to the 2011 Justin project after significant vein and skarn hosted mineralization was discovered in Hole JN11009. It was designed to test the down dip expression of the intersection obtained from JN11009. The geological setting observed within JN11009 and JN11010 correlates very well between drill holes, and with the surface exposure mapped in 2010 and 2011. Major differences in the geology observed within JN11010 compared to Hole JN11009 are as follows: 1) The calc-silicate skarn interval has been overprinted by extensive hydrothermal potassic alteration associated with post-skarn quartz-calcite stockwork veining. The increase in density of quartz-calcite veining and associated alteration in JN11010 within the calc-silicate skarn is interpreted to represent the intersection of a structurally controlled zone of hydrothermal fluid flow. The same style of veining and alteration was observed in JN11009 from 150.00-174.00 meters. The increase in intensity across this zone from JN11009 to JN11010 is interpreted to reflect the proximity to a property scale NNW trending structural zone focusing hydrothermal fluids. 2) The intersection of a porphyritic felsite dike from 210.90-217.40 meters. 3) Change in the geochemical signature of the mineralized quartz stock work system. In Hole JN11009, the mineralized vein interval from 158.00-163.00 meters was characterized by Au associated with Bi, whereas in JN11010 the vein stockwork interval from 149.00-172.00 meters was characterized by Au associated with Ag. As. Bi, and Sb. Another stark difference is that replacement-style gold skarn mineralization has been leached from altered skarn in JN11010. This is a function of retrograde alteration as seen in other DDH from the POW zone. A highly anomalous intersection of gold-tungsten mineralization grading 12.00 metres if 0.44 g/t Au and 0.25 % WO₃ was returned from 194.00-206.00 meters in JN11010. It is plausible that the hydrothermal activity responsible for the emplacement of the quartz

2014 Report for the Justin Property

stockwork veining may have acted as a leaching mechanism for gold from the original skarn, yielding a lower grade intersection across the same zone. 4) Intense silicification and argillic alteration occurs from 217.40 meters to the end of the hole at 254.50 meters. Pebble conglomerate beds have been partially to completely replaced by crystalline silica and calc-silicate minerals, and feldspar clasts have been replaced by white clay. Fine-medium grained molybdenite occurs as disseminations within the intensely altered sediments. The increase in alteration (hornfels) at depth within the hole, coupled with the presence of disseminated molybdenite within the sediments and quartz veins, suggests that JN11010 is in close proximity to an intrusive stock.

An interval of highly anomalous tungsten mineralization intercepted from 195.00-206.00 meters returned a value of 0.25 % WO₃, including 3.00 meters of 0.53 % WO₃ from 197.00-200.00 meters. This tungsten bearing zone of hornfels quartz pebble conglomerate is interpreted to represent the contact aureole of the granodiorite stock, and suggests that further exploration of this contact zone is warranted to define the extent of mineralization.

Section 3 – JN12012, JN12013, JN12014 (Figure 8)

JN12012: Azimuth 080°, Inclination - 45°, EOH - 157.5 metres

Hole JN12012 was designed to test the down dip extension of the original POW zone showing, an array of sheeted quartz veins in which samples from 2010 returned 0.54 g/t Au over 3.00 metres and 0.88 g/t Au over 1.00 metre. The hole collared in calc-silicate skarn, which continued to a depth of 102.1 metres. The skarn is in direct contact with the granodiorite, and throughout the skarn characteristics of both exoskarn and endoskarn were observed. The latter endoskarn occurs as calcsilicate altered granodiorite, observed as a mottled greenish-white-pinkish equigranular granodiorite to quartz-feldspar porphyry dykes and/or sills. A zone of sheeted quartz veining within the calc-silicate exoskarn was intersected from 79.9 metres to 102.1 metres, which returned 22.2 metres grading 0.26 g/t Au. A sub-interval within the sheeted vein array returned 7.80 metres of 0.05 % WO₃. Vein density through the interval ranged from 5 - 30 veins per metre. Intense tan coloured retrograde alteration as described in JN12011 occurred throughout the sheeted vein interval. Pyrite, pyrrhotite, chalcopyrite, bismuthinite, and scheelite were observed within the sheeted veins. A barren set of quartz veins is also present as a stockwork vein system overprinting the sheeted veins. From 102.1 to 107.4 metres, a quartz-feldspar porphyry dyke was intersected which is strongly fractured, veined, and weakly mineralized by pyrite and scheelite. From 107.4 to 108.2 metres, a large cataclasite fault structure was intersected, one of the major N-S faults which comprise the Justin Fault system. Fragments of the quartz feldspar porphyry dyke and abundant clay gouge were observed within the fault. Tracing both the sheeted veins and porphyry dyke from surface indicates that the structure is nearly vertically inclined. From 108.2 -157.5 metres interbedded siltstone, sandstone and black limestone were intersected. Hornfels alteration decreases from the fault contact at 108.2 metres and is not evident in the sediments by 112.5 metres. Bedding angles suddenly shift on the eastern side of the fault and were commonly observed at 10-20 degrees to core axis. No sheeted quartz veins or mineralization was observed below 108.2 metres. Bedding is highly deformed, with numerous folds observed within the core. The fault observed at 107.4 metres has allowed for an unknown amount of displacement which has in turn juxtaposed the calc-silicate skarn and granodiorite stock to the west, with unaltered Hyland group sediments to the east. The hole was terminated at a depth of 157.5 metres in unaltered, equigranular grey quartz sandstone.

JN12013: Azimuth 260°, Inclination – 45°, EOH – 162.0 metres

Hole JN12013 was designed to test the near surface potential of sheeted quartz vein arrays within the calc-silicate skarn identified early in the 2012 exploration program. The calc-silicate skarn was intersected from surface to a depth of 90.8 metres and is cross-cut by a quartz-feldspar porphyry dyke from a down-hole depth of 70.9 to 88.7 metres. Sheeted veining and retrograde alteration of the skarn began at a depth of 14.2 metres and continued to a depth of 27.8 metres. The friable nature of the retrograde skarn made for very difficult drilling conditions and as a result 7.4 metres of the interval was not recovered. The sheeted veins contain variable amounts of pyrite, pyrrhotite, scheelite, bismuthinite, chalcopyrite, and gold. The interval returned two significant intersections including 7.1 metres grading 0.67 g/t Au and 7.4 metres grading 1.81 g/t Au. These intervals represent the successful intersection of near surface gold mineralization within the POW zone. The calcsilicate skarn is also host to disseminated scheelite, which returned anomalous values from the collar to a depth of 70.3 metres including: 66.80 metres of 0.09 % WO₃; 28.90 metres of 0.10 % WO₃; and 5.90 metres of 0.19 % WO₃. A one metre interval of endoskarn at a depth of 88.7 metres returned 0.87 %WO₃. For a complete summary of results from DDH JN12013 refer to Table 8, significant intersections. The lower contact of the skarn is in contact with a quartz feldspar porphyry dyke which continued to a depth of 106.6 metres. The dyke is white in colour, with abundant clay on hairline fractures. Numerous quartz stockwork stringers cross-cut the dyke and contain molybdenite, bismuthinite, and native bismuth. From 106.6 to 162.0 metres, the Justin stock was intersected; comprised of equigranular biotite granodiorite and porphyritic segregations of quartz monzonite. Clay altered fault zones were observed at 133.9-134.8 and 149.6-150.0 metres; the fault orientations remain unclear at present. Local concentrations of sheeted quartz veins with molybdenite, chalcopyrite, and rare bismuthinite occur within the stock. No significant gold values were returned from these veins. The hole was terminated due to a decrease in sheeted vein density and alteration within the granodiorite intrusion.

JN12014: Azimuth 080°, Inclination - 50°, EOH - 294.0 metres

Hole JN12014 was designed to test the down dip extension of the sheeted vein array observed along the western margin of the Justin fault intersected in JN12012. The hole collared in the calc-silicate skarn and continued in the skarn to a depth of 68.8 metres. A sheeted vein interval intersected at 41.5 metres within the skarn returned 1.8 metres grading 4.88 g/t Au. This interval has been interpreted to be the down dip extension of MMJNR036, a grab sample of sheeted quartz vein material containing visible gold which returned a value of 3.66 g/t Au. As observed in JN12013, the calc-silicate skarn in JN12014 is host to anomalous concentrations of tungsten from the beginning of the hole to the contact with the Justin stock at a downhole depth of 72.2 metres. Assays from the calc-silicate skarn returned 64.70 metres of 0.05 % WO₃. The Justin stock was intersected at 68.8 metres and continued to 217.0 metres. The intrusion displays variably intense kaolinite alteration, which emphasizes large euhedral quartz eyes. Both the kaolinite altered and unaltered biotite granodiorite host sheeted quartz veins. Beginning at 184.4 metres and continuing to 217.0 metres, a zone of sheeted quartz veining was intersected

correlating to the zone beginning at 80.6 metres in JN12012. The sheeted quartz veins range in thickness from 1 - 300 mm, with densities ranging from 1-5 per metre. The veins contain pyrite, bismuthinite, scheelite, and visible gold. A 40 mm wide quartz vein at 187.3 metres contained 3 sightings of visible gold, the first documented occurrence of visible gold in drill core on the Justin property. Assays from the sheeted vein interval returned significant results, including: 0.6 metres grading 1.45 g/t Au, 0.3 m grading 1.68 g/t Au, and 0.3 metres grading 4.45 g/t Au. Uncut gold grades from 184.4 to 196.9 metres return 12.5 metres grading 0.40 g/t Au. The granodiorite is abruptly truncated by a cataclasite fault at 217.0 metres. The fault marks the upper contact of the Justin fault which in JN12014 hosts a faulted block of retrograde skarn. The upper fault contact is marked by a 40 cm interval of clay gouge. From 217.0 to 224.2 metres, brecciated, tan coloured retrograde skarn and cataclasite was intersected. Where brecciated, the retrograde skarn hosts 30-40 cm zones of semi-massive pyrite cement, with trace bismuthinite, sulfosalts, arsenopyrite, sphalerite, and gold. The interval returned 7.5 metres grading 0.94 g/t Au. The lower 50 cm of the interval is comprised of a dark grey to black, sulphide rich clay gouge, marking the lower contact of the fault. The retrograde skarn is interpreted to represent a fault block separating the granodiorite to the west from unaltered fine grained siliclastic and carbonate rocks of the Hyland group to the east. Pierce points in the fault in JN12012 and JN12014 indicate that the Justin fault is steeply dipping to the east. It remains unclear the amount of displacement which has taken place along the Justin fault. The presence of sulphide rich clay gouge suggests that the fault was active post-mineralization. The structural evidence must be taken into account when targeting future drill holes in the area. From 224.2 metres to 294.0 metres, interbedded siltstone, laminated calcareous siltstone, black limestone and sandstone of the Hyland group were intersected. The sediments are generally unaltered, with only weak calc-silicate alteration of calcareous sediments. As in JN12012, bedding orientations were observed at 10-20 degrees to core axis, and all of the units display both brittle and ductile deformation. Fine grained disseminations of rare pyrite, pyrrhotite, and arsenopyrite mineralization were observed mottling calcareous siltstones from 259.7 to 270.8 metres. The hole was terminated within a massive grit sandstone, which is unaltered and void of mineralization.

Section 5 – JN12016 and JN12019 (Figure 9)

JN12016: Azimuth 270°, Inclination - 46°, EOH - 300.0 metres

JN12016 was designed to test the potential for skarn hosted mineralization south and up-dip of the zone intersected in JN11009, JN11010, and JN12011. The hole collared in hornfelsed units comprised of quartz pebble conglomerate and siltstone which continued to a depth of 26.2 metres. From 26.2 to 50.6 metres, calc-silicate exoskarn was intersected. Trace amounts of disseminated scheelite occur within the skarn and 4 samples from the interval returned > 100 ppm tungsten. From 50.6 to 112.6 metres, variably veined tan coloured retrograde skarn was intersected. The best vein development occurrs at the base of the retrograde skarn zone. Sheeted veins from 98.0 to 107.3 metres return an uncut gold grade of 2.88 g/t Au over 9.30 metres with 5.3 metres grading 4.12 g/t Au. The veins host pyrite, pyrrhotite, chalcopyrite, bismuthinite, scheelite and visible gold. A 0.8 metre sample collected from a depth of 104.7 metres contained two sightings of visible gold and returned an assay value grading 21.20 g/t Au. This is the highest gold assay from drill core reported to date on the Justin property and highlights the potential for structurally hosted high-grade gold. In addition to high-grade gold this interval of veining also contains significant concentrations of high-grade tungsten. Assay results from this interval returned 8.50 metres of 0.39 % WO₃, including 2.60 metres of 0.62 % WO₃, also including 1.00 metres of 1.12% WO₃. 112.6 metres marks the contact between the retrograde skarn and underlying hornfels, which continued to a depth of 118.4 metres. The hornfels is soapy green to brown in colour and has a banded appearance. The interval is cut by abundant milky white quartz and calcite veins, which returned weakly anomalous gold and tungsten values. The hornfels is in direct contact with the Justin stock at a depth of 118.4 metres. The stock, a variably clay altered granodiorite, continued to the end of the hole at 300.0 metres. Quartz stockwork and sheeted veining were observed within the granodiorite, as well as 10-30 cm intervals of brecciation. The zones of brecciation are infilled by fine grained brownish black biotite and trace black aphanitic tourmaline. Pyrite, molybdenite, arsenopyrite, bismuthinite, scheelite, and sulfosalts were observed in trace amounts within the sheeted quartz veins. Overall samples collected from intervals of sheeted quartz veining returned weakly anomalous gold values, which were concentrated within the upper 20 metres of the intrusion at the contact zone with the overlying retrograde skarn and hornfels. JN12016 was terminated in unaltered biotite granodiorite at a depth of 300.0 metres.

JN12019: Azimuth 080°, Inclination - 55°, EOH - 210.0 metres

Hole JN12019 was designed to test the potential of the POW zone skarn 50 metres south of JN12011, which returned 15.0 metres of 3.1 g/t Au. A total of 5 days were spent driving casing to bedrock using HQ coring gear. A boulder field extends from the collar to a depth of 39.5 metres and proved to be very difficult to drill through. Hornfels quartz pebble conglomerate and siltstone were collared into, and continued to a depth of 73.9 metres. A cataclasite breccia containing a graphite and pyrite rich matrix was intersected at a depth of 73.9 metres and continued until 95.4 metres. The breccia is light grey to black in colour, with sub-rounded to angular framework clasts ranging in size from 2 mm up to 100 mm. From 84.2 to 85.7 metres, the breccia has local open space vugs measuring up to 40 mm in diameter. The graphitic matrix of this rock type is thought to be the source of the very large EM conductor detected by the 2010 airborne geophysics survey. At 95.4 metres, the targeted calc-silicate skarn was intersected and continued to a depth of 198.3 metres. From 95.4 metres to 118.8 metres, the skarn is unusually garnet rich and has undergone extensive oxidation likely from the interaction of meteoric waters. One significant interval of gold mineralization within the oxidized interval returned 2.40 metres grading 2.44 g/t Au, including 0.60 metres grading 6.68 g/t Au. The gold mineralization occurs in association with fine grained bands of magnetite, coarse grained garnet, and epidote. Below the oxidixed garnet rich zone observed at the top of the interval, the skarn grades into the more classic dark green calc-silicate skarn, which in turn has undergone partial retrograde alteration. Difficult drilling conditions encountered at a depth of 156.0 metres forced the drill crew to reduce to NQ size coring gear. This procedure was successful and coring continued through the targeted skarn. Mineralization within the skarn was restricted to the vein hosted type. Several zones of quartz+/-polymetallic veining occurred within the prograde calc-silicate skarn, but returned only weakly anomalous gold values. At present it is not fully understood why such a significant change in the character of the skarn occurred over a horizontal distance of 50 metres. The unusual garnet concentration in the upper portions of the skarn indicate that contact metamorphic temperatures may have been higher in proximity to the Justin stock, and therefore this portion of the skarn may not have been within the favourable temperature regime for precipitating significant concentrations of gold. The base of the calc-silicate skarn is in direct contact with the Justin stock. The granodiorite stock was intersected at a depth of 198.3 and the hole continued along the granodiorite/hornfels contact to a total depth of 210.0 metres. Sheeted quartz veining occurs in the granodiorite, skarn, and hornfels and contains pyrite+/bismuthinite+/-chalcopyrite+/-scheelite+/-gold. Of significance is the high concentration of tungsten that were reported from the interval 192.50 to 199.70 metres averaged 0.27 % WO₃ with one 0.5 metre sample at 197.8 metres returning 1.18 % WO₃ and one 0.3 metre sample at 199.40 metres returning 1.27 % WO₃. This intersection is the highest tungsten concentration reported on the Justin property to date and warrants further evaluation. The hole was terminated for two reasons: 1) the primary skarn type target was intersected and 2) budget constraints. Of particular interest is the last sample of the hole, a 1.5 metre interval from 208.5 to 210.0 containing sheeted quartz veins which returned an assay value of 0.91 g/t Au. This sample may represent the beginning of another gold zone. Assay control from JN12011 and JN12016, which

are both relatively close to each other, suggest that gold grades in the immediate area of JN12019 dissipate rapidly at depth within the granodiorite.

sii SLT	Y S	8 85		-
265	264	B5 1 75	200 800	
GRT (QTE)	BOER	sheeted 270		
(O)			Qz peb CGL	*
mixed SLT-GRT	- 54660		Silonded Siles	24680
	00 E		П П 00,	— 200 Е
	5466		5467	5468
ion in the second se				
			1L	
5 S			1L 1L	
~ <i>ъ</i>			14 14 14	
	QFP		11. 11. 11.	
			1 1 1	
			1 	
			1 1 1	
			1 I I I I I I I I I I I I I I I I I I I	
	Ц Ш		Ц Ш О	Ш
	546600		54670(546800

	HOLES PLOTTED
	TOTAL 3 JN12011 JN12016 JN12019
-27.5 m	
—————————————————————————————————————	
546900	
1450 RL	
1400 RL -	
1350 RL —	
1300 RL	
	Topographic Surface Granodiorite Contact
1250 RL -	Skarn Envelope NUMBER BANDS L/R COL RANGE
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ROCK CODES PAT CODE DESCRIPTION Rock Type calc-silicate rock CLS
	calcareous mudstone CMS calcareous siltstone CSS fault FLT
1200 RL -	granodiorite GRD hornfels HFL limestone LST lost LOS
	massive sulphide MAS overburden OVB
	sandstone SST siltstone SLT skarn SKN
	VEN Ven </th
1150 RL -	SECTION SPECS: REF. PT. E, N 546570 m 6839510 m EXTENTS 665.9 m 400.2 m
	SECTION TOP, BOT 1479 m 1079 m TOLERANCE +/- 27.55 m
	SCALE 1:983
	(m) -10 0 10 20 30 40 W
1100 RL -	*unknown S
546900 E	Aben Resources Ltd.
	Section 5

CONCLUSIONS

The Justin property hosts Au-W skarns, Au+/-W bearing sheeted quartz veins, and Au vein-breccia systems which are related to an intrusion related gold (+/-tungsten) system (IRGS). The property is underlain by sedimentary rocks assigned to the Yusezyu Formation, the older of the two formations comprising the Upper Proterozoic to Lower Cambrian Hyland Group, and by sedimentary rocks assigned to the Cambrian-Ordovician Rabbitkettle Formation. These sediments are intruded by the Justin stock: a biotite granodiorite to quartz monzonite pluton and a suite of related dykes interpreted to be mid-Cretaceous in age.

The primary objective of the 2014 exploration program was to determine the potential for economic gold & tungsten mineralization at surface within the POW zone and to prospect the Big Swifty showing discovered in 2012. The YMEP funded program included geological mapping, geochemical surveying, trenching and sampling of drill core.

The 2014 exploration program was successful in identifying gold and tungsten mineralization at the POW zone, both at surface (2014 trenching) and at depth (drill core sampling).

Trenches TR14-001 and TR14-002 were designed to follow up on a grab sample collected in 2012 which returned 22.2 g/t Au from sheeted veins within the Justin Stock granodiorite (MMJNR041). Both TR14-001 and TR14-002 successfully delineated gold-tellurium-bismuth bearing sheeted vein arrays at surface within the granodiorite stock extending the prospective sheeted vein array 225 meters south along strike from the original POW zone discovery outcrop. TR14-003 was designed to evaluate sheeted vein arrays hosted within calcareous chert, a rock unit which defines the upper contact of the POW Zone skarn. Well-developed sheeted vein arrays were sampled; however TR14-003 returned no significant results. TR14-004 was designed to evaluate sheeted vein arrays hosted within the POW Zone skarn, the main exploration target on the Justin property. TR14-004 successfully delineated gold-tellurium-bismuth bearing sheeted vein arrays within the skarn extending gold mineralization at surface 50 meters north from that defined in diamond drill holes JN12013 and JN12014 Visible gold was identified in quartz veins found in outcrop within the granodiorite stock (TR14-002). Highlights from the trenching program returned significant results as follows: 6.70 metres grading 0.33 g/t Au, including 0.50 metres grading 0.96 g/t Au in TR14-001; 4.00 metres grading 0.23 g/t Au, including 0.50 metres grading 0.95 g/t Au in TR14-002; and 13.15 metres grading 0.92 g/t Au, including 7.90 m grading 1.15 g/t Au in TR14-004.

Highlights from the diamond drill core sampling program returned significant results as follows: 8.50 metres grading 0.39 % WO₃, including 1.00 metre of 1.12 % WO₃ in JN12016; 28.90 metres grading 0.10 % WO₃ beginning at surface and 1.10 metre grading 1.15 % WO₃ in JN12013; 12.00 metres grading 0.25 % WO₃, including 3.00 metres of 0.53 % WO₃ in JN11010; and 7.20 metres grading 0.27 % WO₃, including 1.60 metres grading 0.52 % WO₃, also including 0.50 metres grading 1.18 % WO₃ and 0.30 metres grading 1.27 % WO₃ in JN12019.

Soil sampling northwest of the POW zone outlined a 100-metre long zone of elevated to highly anomalous (> 99th Percentile) Au values in soil (67 – 2410 ppb Au) from JNL024 13+50 W to 14+00 W. The anomaly remains open in three directions. The 2140 ppb Au soil sample is the highest gold-in-soil assay value discovered on the property to date. The two samples correlate with the southern margin of a magnetic high anomaly of similar intensity to that observed at the POW zone. Further prospecting, infill geochemical surveys, trenching and mapping is recommended to follow up on this high priority geochemical anomaly.

Soil sampling completed north of the Big Swifty showing returned anomalous Au results. Soil line JNL026 returned four consecutive samples (JNL026 04+00E to 05+50 E) > 95th Percentile Au (14.8 – 59.9 ppb Au) which corresponds to an area where extensive quartz-carbonate stock work veining was observed in Yusezyu Formation outcrop. The quartz-veining and gold-in-soil anomaly corresponds to the southern extension of the Justin Fault system, and suggests that the structure is weakly enriched in gold. Future prospecting should focus on rigorous sampling of the quartz stock work veining, and evaluating the prospective Justin Fault system along strike.

Five rock samples from the greater Big Swifty area returned weakly to highly anomalous assay results. Of particular interest was grab sample MMJNR113 collected from talus within the March Fault. MMJNR113 is a metal-rich, magnetic ferricrete which returned highly anomalous assay results of 45.0 % Zn, 6.9 % Pb, 54.3 ppm Ag, 111 ppm Hg, 5.94 ppm Bi and 31.2 ppm Sb. The sample was collected from one of several cobble sized fragments of ferricrete found within a talus slide primarily comprised of limestone. At present there are two plausible explanations for the formation of the ferricrete: The precipitate represents deposition of metals leached from sediments into a chemical trap at the fault contact between the limestone and phyllite lithologies; and/or the concentration of base metals is a distal expression of the IRGS which focused base-metal rich hydrothermal fluids along the March Fault system. Regardless of it's paragenesis, sample MMJNR113 represents the highest base metal values discovered on the property to date.

In summary, the Justin Property has several key features which highlight its significant potential to host an economic intrusion related gold+/-base metal deposit:

- The Justin property hosts multiple styles of gold and tungsten mineralization all of which are consistent with an IRGS;
- Gold mineralization on the property is directly related to bismuth and tellurium; the presence of bismuth and tellurium can be utilized as a confident indicator for the potential of increasing gold grade;
- High-grade tungsten mineralization has been discovered on the property and is preferentially concentrated at the contact between the granodiorite and metasedimentary rocks at the POW zone;
- Au + W skarns and sheeted veins are preferentially developed within the contact aureole of a partially un roofed pluton;
- At the POW zone, the north trending extensional architecture comprising the Justin Fault (and related splays) has played an integral role in developing permeability within stratigraphic lithologic units allowing for the emanation of metalliferous hydrothermal fluids from the Justin stock into favourable structural and chemical traps, with the best grade development occurring within the skarn;
- There is great potential to explore for cupola zones of the partially un roofed Justin stock within the Justin Fault system, often the most prospective target in an IRGS;
- Several high-priority exploration targets, defined by geophysics and geochemistry exist within 2 km of the POW zone mineralization and remain under explored and untested by drilling. These areas offer significant potential for expanding the current extent of mineralization and making additional gold and tungsten discoveries;
- Outlier zones on the property such as the Big Swifty area hold potential for the discovery of both gold and base metal mineralization.

Total expenditures related to the Justin Project in 2014 were approximately \$120,000.00. A total of \$67,585.00 of the total expenditures qualify as eligible field expenses as defined by the rate guidelines provided by the Yukon Geological Survey.

RECOMMENDATIONS

Further exploration work is strongly recommended on the Justin property with a focus on expanding the POW zone and assessing the remainder of the property for economic gold and base metal potential, including, but not limited to the following items:

- Phase I (\$30,000.00)
 - Data compilation which would include:
 - 1. Consolidation and production of a complete property geologic map which incorporates recent updates from the YGS regional geology mapping of Mapsheet 105 H 09;
 - 2. Sourcing original assay certificates from historic property vendors and compiling all historic assay data into a centralized database;
 - Geologic modelling which would include:
 - 1. Refinement and expansion of the3-D model of the POW zone to generate a tool for visualizing and targeting favourable zones of geology, mineralization, alteration, and structure;
 - 2. 3-D inversion modelling of the complete total magnetic data set for the Justin and VF properties to delineate both magnetically high skarn zones and the magnetically low features associated with the Justin stock;
 - 3. Age dating of the Justin stock and molybdenum mineralization within sheeted veins at the POW zone.
 - Geochemical modelling which would include:
 - 1. Statistical analysis of complete geochemical data set;
 - 2. Modelling of trace element geochemistry across the property to determine primary versus secondary sources of metal ions;
 - 3. Generate a list of targets to prospect/investigate ranked by trace element geochemistry and underlying geology.
- Phase II (\$200,000.00)
 - Property scale geologic mapping and prospecting with a focus on under explored areas of the property;
 - Trenching of high priority soil targets on JNL016 & JNL024 to determine the source of the gold anomalies;
 - Regional silt sampling/prospecting program outside of the Justin Property to explore for other IRGS;
 - Infill geochemical surveys and prospecting both east and northwest of the POW zone;
 - Infill geochemical surveys and prospecting north of the Big Swifty showing.
- Phase III (\$1,500,000.00)
 - 2500 metres of diamond drilling which would include evaluating the following targets:
 - 1. Diamond drilling of high priority targets in the POW zone to define near surface Au-W mineralization;
 - 2. Diamond drilling targeting cupola zones of the Justin stock southeast and southwest of the POW zone;
 - 3. Diamond drilling prospective skarn horizons and structural zones northwest of the POW zone.

REFERENCES

Brownlee, D.J. and Allen, D.G., 1987: Geological and Diamond Drilling Report on the Sun Property, AR # 092148.

Colpron, M., 2008. Tectonic assemblages map of Yukon-Tanana and related terranes in Yukon and northern British Columbia (1:1,000,000 scale). Yukon Geological Survey, Open File 2006-1.

Colpron, M., 2011. Geological compilation of Whitehorse trough – Whitehorse (105D), Lake Laberge (105E), and part of Carmacks (115I), Glenlyon (105L), Aishihik Lake (115H), Quite Lake (105F), and Teslin (105C). Yukon Geological Survey, Geoscience Map 2011-1, 1:250,000 scale.

Colpron, M., 2014. Update of the Yukon Bedrock Geology Map (105H). Yukon Geological Survey, version 11/10/2014, 1:500,000 scale.

Gallagher, Chris and Downie, Charles, 2002. Geological Assessment Report for the SPROGGE (Justin) Property prepared for Eagle Plains Resources Ltd.

Gallagher, Chris. 1999. Regional transposition and large scale folding in the Dycer Creek area, Pelly Mountains, Yukon. Unpublished M.Sc. thesis, Carleton University, 179 pp.

Gordey, S.P. and Makepeace, A.J. 2001: Bedrock Geology, Yukon Territory. Geological Survey of Canada, Open File 3754. 1:1,000,000 scale; also Yukon Geological Survey, Open File 2001-1.

Hart, C, JR PhD. 2012: Geological Observations of the Justin POW zone, Yukon. MDRU – Mineral Deposit Research Unit. August 2012.

Higgs, A., 2009: 2008 Assessment Report on the Sprogge Project.

Higgs, A., 2011: 2010 Assessment Report on the SPROGGE (Justin) Property prepared for Eagle Plains Resources Ltd.

McClay, K., 1987: The Mapping of Geological Structures (Geological Society of London Handbook). John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex, England, 1991.

McCuaig, M., 2012: Assessment Report on the Justin Property (Diamond Drilling, Geochemistry). Prepared for Aben Resources Ltd. January 2012.

McCuaig, M., 2013: Assessment Report on the Justin Property (Diamond Drilling, Geophysics, Geochemistry). Prepared for Aben Resources Ltd. January 2013.

Schulze, C. M., 1995: Sun Prospect, Prospecting and Rock Sampling Report, AR # 093495.

Schulze, C. M., 1996: Report on 1996 Exploration Program, Justin 1-25 (Sun) Claims; internal report prepared for Battle Mountain Canada Ltd. – Hemlo Gold Mines Inc.

Schulze, C. M., 1997: Justin Claims Progress Report; internal report prepared for Viceroy International Exploration.

Schulze, C. M. and Johnson, G., 2000: 1999 Geological and Geochemical Assessment Report on the Sprogge Property, AR# 094218.

Scott, E., 1999: 1998 Geological and Geochemical Assessment Report on the Sprogge Project, AR # 093959.

Department of Indian and Northern Affairs, 1995: Yukon MinFile, Frances Lake Area (Mapsheet 105 H).

Technical Report for the Justin Property Target Evaluation Program (YMEP Project 14-105) Yukon Territory

Volume II – Appendices

61°39'N, 128°6'W NTS Mapsheet 105 H 09 Watson Lake Mining District

Prepared for:

Derek Torgerson, P. Geol. Mineral Development Geologist Yukon Geological Survey

Prepared by:

Mike McCuaig, P. Geo. TerraLogic Exploration Inc. Suite 200, 44-12th Avenue South. Cranbrook, BC, Canada V1C 2R7

On behalf of:

Aben Resources Ltd. Suite 1610 – 777 Dunsmuir Street Vancouver, BC, Canada V7Y 1K4 Appendix I

YMEP Final Submission Form

YMEP FINAL SUBMISSION FORM

			Date submitted:		
submit by January 31st to:	YMIP- FM	1R/ YTG			
	Street ad	dress: 102-300 N	∕lain Street	YMEP@go	ov.yk.ca
(winter placer projects may	Mailing a	1ailing address: Box 2703, K-102			7-456-3828
submit at pre-approved date)	Whitehor	rse, Yt, Y1A 2C6		fax: 867-66	57-3198
CONTACT INFO			PROJECT INFO		
Name:			YMEP no:		
Address:			Project name:		
			Project type:		
email			Project module:		
Phone:					
Is the final report enclosed?		yes	hard copy		
		_no	pdf copy		
			digital spreadshe	et of station	n location data
Comment:			-		
l'otal project expenditures:					
Number of new claims since March	31st:				
Has an option resulted since March	31?	yes	no	in	negotiation
Number of calendar field days:					
Number of person-days of employm	ent:	paid		days of un	paid work
Total no. of samples:	rocks	silts		soils	other
Total length/volume of trenching/ sh	nafting:				
Total number of line-km of geophysi	ics				
Total meters drilled		diamond drill	RC drill	au	ger/percussion drill
Other products (provide details):					
This is I	not an expe	ense claim form. ubmit a congrate	To request reimbo datailed expanse	ursement of claim form	expenses, please
Total daily field allowance	30	ασπηί α σεραίατε	Total contractor	costs	
Total field air transportation costs			Total overvating	(boo)//	
(helicopter/plane)			equipment costs	riedvy	
Total truck/ mileage costs			Total assay/anal	yses costs	
Total wages paid			Total reclamatio	n costs	
Total light equipment rental costs			Total report writ	ing cost	
Other (please specify)			Total staking cos	ts	
Other (please specify)			-		

Your feedback on any aspect of the program:

The Department of Energy, Mines and Resources may verify all statements related to and made on this form, in any previously submitted reports, interim claims and in the Summary or Technical Report which accompanies it. I certify that; 1. I am the person, or the representative of the company or partnership, named in the Application for Funding and in the Contribution Agreement under the Yukon Mining Incentives Program. 2. I am a person who is nineteen years of age or older, and I have complied with all the requirements of the said program. 3. I hereby apply for the final payment of a contribution under the Yukon Mineral Exploration Program (YMEP) and declare the information contained within the Summary or Technical Report and this form to be true and accurate. Date _____ Signature of Applicant Name (print)

Appendix II

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Michael A. McCuaig, Do hereby certify that:

I am currently employed as a Geologist, with TerraLogic Exploration Inc., Suite 200, 44-12th Avenue South, Cranbrook, BC, V1C 2R7.

I graduated with a Bachelor of Science Degree from St. Francis Xavier University in 2003.

I have worked as a geologist for 8 years since my graduation from University.

I am currently a member in good standing with APEGBC, Registration Number 39402.

I managed, and participated in field work during the 2014 exploration program on the Justin Project.

The report is supported by geochemical data and samples collected during fieldwork on the Justin Property in the Watson Lake Mining District, during the months of July – August 2014.

I have authored the assessment report titled "Technical Report for the Justin Property Target Evaluation Program (YMEP Project 14-105)", and dated January 16th, 2015 on behalf of Aben Resources Ltd.

Dated this 16th day of January 2015, in Cranbrook, British Columbia.

Michael A. McCuaig, P. Geo.

Appendix III

Geochemical Protocol

3.1 Handling and Sampling Protocol

All 2014 samples were collected by TerraLogic Exploration Inc employees. The sampling process is standardized and continually monitored for quality assurance and quality control. Four types of samples were collected during the program, these include: rock, silt, soil, and drill core samples. All samples are described in a field notebook in the field at the time of collection and also have a GPS location recorded at the site. Upon returning to the field office all of the sample metadata was input into a digital database. All of the 2014 samples from the Justin program were delivered directly to ALS Minerals at 78 Mt Sima Road, Whitehorse, YT for sample preparation. Subsequent analysis was completed by ALS Minerals at 2103 Dollarton Hwy, North Vancouver, BC.

Rock Samples

Rock samples were collected where mineralization was noted. Transported rock materials were sampled as Float, Talus or Subcrop rock sample types, depending on the perceived distance the rock had traveled from its source. Rocks were collected from outcrops as fist sized Grab samples, or as Chip or Channel samples. A Chip sample is a series of continuous and representative samples taken over a set direction and length using a hammer and chisel. Channel samples is a continuous and representative sample using the channel saw. In each case rock samples were recorded on digital access forms in a portable tablet device with a spatial location and a variety of attributes which include: map unit, major rock type, minor rock type, colour fresh, colour weathered, texture, grain size, mineralization major and mineralization minor. All samples were shipped in plastic rice bags with locking plastic straps with unique identification numbers to prevent tampering during the chain of custody.

Soil Samples

Samplers conducted soil sampling traverses over contour lines. Soil lines were laid out using compass bearings and hand held GPS units. Sample spacing during this program was 50 metres. Soil samples were collected from pits dug with geotuls to an average depth of 15-30 cm. Where possible the soil sample was collected from the B-Horizon of the soil profile. Attribute data collected for each soil sample included: sample size, quality, depth, slope of sample site, soil horizon, colour and other notes. Sample size is rated from 1-5 with one being much too small sample size and 5 being the perfect sample size, filling roughly ³/₄ of the sample bag. Quality of the sample was rated from 1-5 with 1 being very poor quality and 5 being excellent quality. Factors that include: sample size, soil development and quality (the lack of organics), and depth of sample all contribute to the overall assigned quality.

Silt Samples

Geologists collected silt samples at a couple of stream localities while on traverse to verify historic geochemical values. Attribute data collected for each silt sample included: sample size, quality, depth, water velocity and tributary order. Samples size is rated on a scale of 1-5 with 1 being a very small sample and 5 being the perfect sample amount, filling roughly ³/₄ of the sample bag. Factors that include: sample size and silt quality (lack or pebbles or mud) contribute to the overall assigned quality.

Drill Core Samples

Field crew members spent one field day at the Justin Base Camp retrieving bulk master pulp and pulp samples from 7 of 9 drill holes completed in the POW zone. The samples were transported in the original lab boxes from the Justin base camp to the ALS preparation lab in Whitehorse, and were under constant supervision during transport to prevent tampering or accidental damage. Once delivered to the lab the pulp samples were organized and re-pulverized by qualified ALS technicians. Upon completion of the sample preparation all of the pulp samples were shipped to ALS Minerals in North Vancouver for analysis. Upon completion of the analysis all samples were shipped back to Whitehorse and are currently stored in a locked container owned by TerraLogic Exploration Inc.

Sample Handling and Shipping Procedure

All samples were brought back to the field base camp; here soil and silt samples were arranged in order and laid to dry. Rock samples were also lined up in order of sampler and number. Samples with damaged bags or unclear labels were re-bagged and placed back into order. At the end of the program, a series of shipments was prepared. This required one person going through each sample ensuring that all samples were in order and that any missing samples were accounted for with an empty bag marked with the sample number and "LS" for lost sample. The other person would record each sample number to be shipped. Once recorded, the samples were placed in rice bags labeled with the shipment number and addresses. Each shipping bag weighed approximately 25 kg. The list of samples was compared to the database and any discrepancies investigated. Once the list of samples to be shipped matched the database's records, the bags were sealed with a zip tie security seal. The bags were delivered to the ALS Minerals Preparation Laboratory in Whitehorse, YT.

3.2 Analytic Procedures

All samples were submitted to ALS Minerals laboratory in Whitehorse, YT for preparation. The samples were subsequently shipped to ALS Minerals laboratory in North Vancouver for analysis. The following sample preparation and analytic techniques were used for all rock samples: PREP-31 – Rock and Drill Core Samples, ME-MS41, Au-AA23 30 g Fire Assay, Au-GRA21 30 g Fire Assay for all samples grading > 10 ppm Au in the Au-AA23 analysis, ME-OG46 for all samples > 10,000 ppm Zn, Zn-VOL50 for all samples > 300,000 ppm Zn, W-XRF05 for all samples > 200 ppm W in the ME-MS41 analysis and W-XRF10 for all samples > 5000 ppm W in the W-XRF05 analysis. The following sample preparation and analytic techniques were used for all soil and silt samples: PREP-41 Soil and Sediment Samples, ME-MS41, Au-ST43 and Au-AROR43 for all samples grading > 1 ppm Au in the Au-ST43 analysis. A detailed overview of sample preparation and analytic methods used for the 2014 samples is provided as follows.

Sample Preparation Procedure

Logging Samples Received as Pulps

All pulp samples received at ALS Chemex are furnished with a bar code label attached to the original sample bag. The system will also accept client supplied bar coded labels that are attached to sampling bags in the field. The label is scanned and the weight of the sample is recorded together with additional information such as date, time, equipment used and operator name. The scanning procedure is used for each subsequent activity involving the sample from preparation to analysis, through to storage or disposal of the pulp.

At least one out of every 50 samples is selected at random for routine pulp QC tests (LOG-QC). For routine pulps, the specification is 85 % passing a 75 micron screen. Other specifications may be checked as per client requirements.

Method Code	Specifications	Description
LOG-23	85 % < 75 ⊡m	Log received sample pulp in tracking system (Sample pulps received with bar code labels attached).
LOG-24	85 % < 75 ⊡m	Log received sample pulp in tracking system (Sample pulps received without bar code labels attached).
LOG-25	95 % < 106 ⊡m	Log received sample pulp in tracking system (Sample pulps received with bar code labels attached).
LOG-26	95 % < 106 ⊡m	Log received sample pulp in tracking system (Sample pulps received without bar code labels attached).
LOG-QC	See method specifications	Testing Procedure for samples received as pulp.

Revision 01.00 Dec 16, 2005

RIGHT SOLUTIONS RIGHT PARTNER

www.alsglobal.com

SAMPLE PREPARATION PACKAGE

PREP-31

STANDARD SAMPLE PREPARATION: DRY, CRUSH, SPLIT AND PULVERIZE

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.

METHOD CODE	DESCRIPTION
L0G-22	Sample is logged in tracking system and a bar code label is attached.
DRY-21	Drying of excessively wet samples in drying ovens. This is the default drying procedure for most rock chip and drill samples.
CRU-31	Fine crushing of rock chip and drill samples to better than 70% of the sample passing 2 mm.
SPL-21	Split sample using riffle splitter.
PUL-31	A sample split of up to 250 g is pulverized to better than 85% of the sample passing 75 microns.

FLOW CHART - SAMPLE PREPARATION PACKAGE - PREP-31 STANDARD SAMPLE PREPARATION: DRY, CRUSH, SPLIT AND PULVERIZE

- *If samples air-dry overnight, no charge to client. If samples are excessively wet, the sample should be dried to a maximum of 120°C. (DRY-21)
- #QC testing of crushing efficiency is conducted on random samples (**CRU-QC**).
- †The sample reject is saved or dumped pending client instructions. Prolonged storage (> 45 days) of rejects will be charged to the client.
- ‡QC testing of pulverizing efficiency is conducted on random samples (**PUL-QC**).
- ^Lab splits are required when analyses must be performed at a location different than where samples received.

SAMPLE PREPARATION PACKAGE

PREP-41

STANDARD PREPARATION: DRY SAMPLE AND DRY- SIEVE TO -180 MICRON

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

An entire sample is dried and then dry-sieved using a 180 micron (Tyler 80 mesh) screen. The plus fraction is retained unless disposal is requested. This method is appropriate for soil or sediment samples up to 1 kg in weight.

METHOD CODE	DESCRIPTION
LOG-22	Sample is logged in tracking system and a bar code label is attached.
DRY-22	Low temperature drying of excessively wet samples where the oven temperature is not to exceed 60°C. This method is suitable for more soil and sediment samples that are analyzed for volatile elements.
SCR-41	Sample is dry-sieved to – 180 micron and both the plus and minus fractions are retained.

SAMPLE PREPARATION FLOWCHART PACKAGE - PREP- 41

*If samples air-dry overnight, no charge to client. If samples are excessively wet, the sample should be dried to a maximum of 120°C. (**DRY-21**)

#The plus fraction is the material remaining on the screen. The minus fraction is the material passing through the screen.

†The plus fraction is retained unless disposal is requested.

Geochemical Procedure

ME- MS41 Ultra- Trace Level Methods Using ICP- MS and ICP- AES

Sample Decomposition:

Aqua Regia Digestion (GEO-AR01)

Analytical Method:

Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.50 g) is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples are then analysed by ICP-MS for the remaining suite of elements. The analytical results are corrected for inter-element spectral interferences.

Element	Symbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	0.01	100
Aluminum	AI	%	0.01	25
Arsenic	As	ppm	0.1	10 000
Gold	Au	ppm	0.2	25
Boron	В	ppm	10	10 000
Barium	Ba	ppm	10	10 000
Beryllium	Ве	ppm	0.05	1 000
Bismuth	Bi	ppm	0.01	10 000
Calcium	Са	%	0.01	25
Cadmium	Cd	ppm	0.01	1 000
Cerium	Ce	ppm	0.02	500
Cobalt	Со	ppm	0.1	10 000
Chromium	Cr	ppm	1	10 000

Revision 04.00 Sep 20, 2006

RIGHT SOLUTIONS RIGHT PARTNER

Geochemical Procedure

Element	Symbol	Units	Lower Limit	Upper Limit
Cesium	Cs	ppm	0.05	500
Copper	Cu	ppm	0.2	10 000
Iron	Fe	%	0.01	50
Gallium	Ga	ppm	0.05	10 000
Germanium	Ge	ppm	0.05	500
Hafnium	Hf	ppm	0.02	500
Mercury	Hg	ppm	0.01	10 000
Indium	In	ppm	0.005	500
Potassium	K	%	0.01	10
Lanthanum	La	ppm	0.2	10 000
Lithium	Li	ppm	0.1	10 000
Magnesium	Mg	%	0.01	25
Manganese	Mn	ppm	5	50 000
Molybdenum	Мо	ppm	0.05	10 000
Sodium	Na	%	0.01	10
Niobium	Nb	ppm	0.05	500
Nickel	Ni	ppm	0.2	10 000
Phosphorus	Р	ppm	10	10 000
Lead	Pb	ppm	0.2	10 000
Rubidium	Rb	ppm	0.1	10 000
Rhenium	Re	ppm	0.001	50
Sulphur	S	%	0.01	10
Antimony	Sb	ppm	0.05	10 000
Scandium	Sc	ppm	0.1	10 000
Selenium	Se	ppm	0.2	1 000
Tin	Sn	ppm	0.2	500
Strontium	Sr	ppm	0.2	10 000

Revision 04.00 Sep 20, 2006

RIGHT SOLUTIONS RIGHT PARTNER

Geochemical Procedure

Element	Symbol	Units	Lower Limit	Upper Limit
Tantalum	Та	ppm	0.01	500
Tellurium	Те	ppm	0.01	500
Thorium	Th	ppm	0.2	10000
Titanium	Ti	%	0.005	10
Thallium	TI	ppm	0.02	10 000
Uranium	U	ppm	0.05	10 000
Vanadium	V	ppm	1	10 000
Tungsten	W	ppm	0.05	10 000
Yttrium	Y	ppm	0.05	500
Zinc	Zn	ppm	2	10 000
Zirconium	Zr	ppm	0.5	500

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

RIGHT SOLUTIONS RIGHT PARTNER

FIRE ASSAY PROCEDURE

Au-AA23 & Au-AA24

FIRE ASSAY FUSION, AAS FINISH

SAMPLE DECOMPOSITION

Fire Assay Fusion (FA-FUS01 & FA-FUS02)

ANALYTICAL METHOD

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

METHOD CODE	ELEMENT	SYMBOL	UNITS	SAMPLE WEIGHT (G)	LOWER LIMIT	UPPER LIMIT	DEFAULT OVERLIMIT METHOD
Au-AA23	Gold	Au	ppm	30 0.005		10.0	Au-GRA21
Au-AA24	Gold	Au	ppm	50	0.005	10.0	Au-GRA21

FIRE ASSAY PROCEDURE

Ag-GRA21, Ag-GRA22, Au-GRA21 and Au-GRA22

PRECIOUS METALS GRAVIMETRIC ANALYSIS METHODS

SAMPLE DECOMPOSITION

Fire Assay Fusion (FA-FUSAG1, FA-FUSAG2, FA-FUSGV1 and FA-FUSGV2)

ANALYTICAL METHOD

Gravimetric

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents in order to produce a lead button. The lead button containing the precious metals is cupelled to remove the lead. The remaining gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold. Silver, if requested, is then determined by the difference in weights.

METHOD CODE	ELEMENT	SYMBOL	UNITS	SAMPLE WEIGHT (G)	DETECTION LIMIT	UPPER LIMIT
Ag-GRA21	Silver	Ag	ppm	30	5	10,000
Ag-GRA22	Silver	Ag	ppm	50	5	10,000
Au-GRA21	Gold	Au	ppm	30	0.05	1,000
Au-GRA22	Gold	Au	ppm	50	0.05	1,000

Assay Procedure

<u>ME-OG46</u>

Ore Grade Elements by Aqua Regia Digestion Using Conventional ICP-AES Analysis

Sample Decomposition:

HNO₃-HCl Digestion (ASY-AR01)

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)*

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample (0.4 g) is digested with concentrated nitric acid for 90 minutes in a graphite heating block. The resulting solution is diluted with concentrated hydrochloric acid before cooling to room temperature. The samples are diluted in a volumetric flask (100 or 250) mL with demineralized water and analysed using atomic absorption spectrometry.

*NOTE: ICP-AES is the default finish technique for ME-OG46. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted.

Element	Symbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	1	1500
Arsenic	As	%	0.01	30
Cadmium	Cd	%	0.001	10
Cobalt	Со	%	0.001	20
Copper	Cu	Cu % 0		40
Iron	Fe	%	0.01	100
Manganese	Mn	%	0.01	50
Molybdenum	Мо	%	0.001	10
Nickel	Ni	%	0.001	10
Lead	Pb	%	0.001	20
Zinc	Zn	%	0.001	30

Revision 02.04 Oct 06, 2011

Specialty Assay Procedure

Zn-VOL50 Potentiometric Titration for Zn

Sample Decomposition:

HNO₃-HCI-H₂SO₄-HF

Analytical Method:

Potentiometric Titration

Sample is digested with HCl, HNO_3 , H_2SO_4 and HF; followed by reduction and complexion of Fe. Interfering elements such as Cu, Bi, As, Sb is cementated with granular Pb and pyrophosphate is added to yield free Zn^{2+} ions. The Zinc ions are then titrated potentimetrically with Ferrocyanide solution.

Element	Symbol	Units	Detection Limit	Upper Limit
Zinc	Zn	%	0.01	100

Revision 01.00 Dec 23, 2005

RIGHT SOLUTIONS RIGHT PARTNER

Minerals

Food & Environmental Tribology Pharmaceutical Industrial

Pressed Pellet Geochemical Procedure

ME-XRF05

Sample Decomposition:

Pressed Powder Pellet (XRF-PPP)

Analytical Method:

X-Ray Fluorescence Spectroscopy (XRF)

A finely ground sample powder (10 g minimum) is mixed with a few drops of liquid binder (Polyvinyl Alcohol) and then transferred into an aluminum cap. The sample is subsequently compressed under approximately 30 ton/in² in a pellet press. After pressing, the pellet is dried to remove the solvent and analyzed by WDXRF spectrometry for the following elements.

Element	Symbol	Units	Lower Limit	Upper Limit	
Arsenic	As	ppm	5	5 000	
Barium	Ba	ppm	10	10 000	
Bismuth	Bi	ppm	4	10 000	
Cerium	Ce	ppm	10	10 000	
Chromium	Cr	ppm	5	10 000	
Copper	Cu	ppm	10	10 000	
Gallium	Ga	ppm	4	10 000	
Lanthanum	La	ppm	10	10 000	
Molybdenum	Мо	ppm	4	10 000	
Niobium	Nb	ppm	2	10 000	
Nickel	Ni	ppm	10	15 000	
Lead	Pb	ppm	4	4 000	
Rubidium	Rb	ppm	2	10 000	
Antimony	Sb	ppm	4	10 000	
Selenium	Se	ppm	2	10 000	
Tin	Sn	ppm	5	10 000	

Ore Grade Analysis by XRF

ME-XRF10

Sample Decomposition:

50% Li₂B₄O₇ - 50% LiBO₂ (WEI-GRA06)

Analytical Method:

X-Ray Fluorescence Spectroscopy (XRF)

A calcined or ignited sample (0.9 g) is added to 9.0g of Lithium Borate Flux (50 % - 50 % $\text{Li}_{2}B_{4}O_{7}$ – LiBO₂), mixed well and fused in an auto fluxer between 1050 - 1100°C. A flat molten glass disc is prepared from the resulting melt. This disc is then analysed by X-ray fluorescence spectrometry.

Element	Symbol	Units	Lower Limit	Upper Limit	
Barium	Ba	%	0.01	50	
Niobium	Nb	%	0.01	10	
Antimony	Sb	%	0.01	50	
Tin	Sn	%	0.01	60	
Tantalum	Ta	%	0.01	50	
Thorium	Th	%	0.01	15	
Uranium	U	%	0.01	15	
Tungsten	W	%	0.01	50	
Zirconium	Zr	%	0.01	50	

Ore Grade Analysis by XRF

Elements listed below are available upon request

Element	Symbol	Units	Lower Limit	Upper Limit	
Iron	Fe ₂ O ₃	%	0.01	100	
Potassium	K ₂ O	%	0.01	100	
Magnesium	MgO	%	0.01	100	
Sodium	Na ₂ O	%	0.01	100	

RIGHT SOLUTIONS RIGHT PARTNER

Minerals

Coal

Pressed Pellet Geochemical Procedure

Element	Symbol	Units	Lower Limit	Upper Limit
Strontium	Sr	ppm	2	10 000
Tantalum	Ta	ppm	10	10 000
Thorium	Th	ppm	4	10 000
Titanium	Ti	ppm	5	10 000
Uranium	U	ppm	4	10 000
Vanadium	V	ppm	10	10 000
Tungsten	W	ppm	10	10 000
Yttrium	Y	ppm	2	10 000
Zinc	Zn	ppm	10	10 000
Zirconium	Zr	ppm	2	10 000

RIGHT SOLUTIONS RIGHT PARTNER

Geochemical Procedure

<u>Au-ST43/44</u> Determination of ultra-trace level gold by Aqua Regia

Sample Decomposition:

Gold aqua regia digestion (GEO-AUAR01/02)

Analytical Method:

Inductively Couple Plasma - Mass Spectrometry (ICP-MS)

Finely pulverised sample is digested in aqua regia. The gold in solution is determined by ICP-MS.

Samples containing high sulfides or carbon may lead to low gold recoveries unless they are roasted prior to digestion.

Method Code	Symbol	Units	Mass	Lower Limit	Upper Limit
Au-ST43	Au	ppm	25 g	0.0001	0.1
Au-ST44	Au	ppm	50 g	0.0001	0.1

Geochemical Procedure

Au-AROR43/Au-AROR44

Determination of Gold by Aqua Regia Digestion - Over-Range Method

Analytical Method:

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS)

A finely pulverised sample (25 - 50 g) is digested in a mixture of 3 parts hydrochloric acid and 1 part nitric acid (aqua regia). This acid mixture generates nascent chlorine and nitrosyl chloride, which will dissolve free gold and gold compounds such as calaverite (AuTe₂).

Gold is determined by ICPMS directly from the digestion liquor. This method allows for the simple and economical addition of extra elements by running the digestion liquor through the ICPMS.

This method is only an over-limit method which is used to analyze the same solution prepared from the Trace Level Au by aqua regia extraction method (25-50g).

Method	Element	Sample Mass	Units	Lower Limit	Upper Limit
Au-AROR43	Gold	25 g	ppm	0.01	100
Au-AROR44	Gold	50 g	ppm	0.01	100

3.3 Software

The following is a list of software used in the field and writing of this report:

- Arc GIS 9.3
- Microsoft Access
- Pendragon Forms
- Apache Open Office
- IoGas
- Adobe Acrobat 10

Appendix IV

Sample Locations & Sample Description Data

Appendix 4.1 Rock Sample Locations and Descriptions

KOCK S	sample I	locatio	ons and	Descri	ptions										
Sample Number	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Channel Length (m)	Channel Azimuth	Major Rock Type	Minor Rock Type	Colour	Grain Size	Description
JBJNR001	7/24/2014	talus	assay	GPS		547049	6839525				shale	skarn			goeth&lim - dk grey fissile, hrd, heavy stnd slt/mudstn w 8/m qtz vnlts w cetral chl-py ff
JBJNR002	7/24/2014	float	assay	GPS		546718	6839825				siltstone				lt grn gry , hrd massiv, fn grnd sil limey sltstn, w h density 40/m sheeted wht qtz vnlts. No vis sulph
JBJNR003	7/24/2014	grab	assay	GPS		546724	6839612				quartz pebble conglomerate	quartzite			high angle sheeted veins w trace lim pockets
JBJNR004	7/25/2014	grab	assay	GPS		546552	6839200				quartz pebble conglomerate	hornfels			qtz vnlet with feld margins w trc ds py+-bi on vert ne orint. Vn is 10% of samp w 90% qpc
JBJNR005	7/25/2014	subcrop	assay	GPS		546527	6839159				siltstone	quartz pebble conglomerate			strn hornflsed siltstone w min calc-sil in contact w bull qtz vein
JBJNR006	7/25/2014	subcrop	assay	GPS		546377	6839116				quartz pebble conglomerate	quartz		coarse	lim stnd 75% silica replaced siltstone w 10% vugs of etched qtz& sulph. Remnant bangs of semimass py.
JBJNR007	7/25/2014	grab	assay	GPS		546377	6839116				quartz pebble conglomerate	quartz		coarse	yl-wt mottld & bndd QPC w intns shtd veinlets of etched vuggy qtz. Mod-intense lim+clay alt. Check 4 W
JBJNR008	7/25/2014	grab	assay	GPS		546235	6839196				quartz pebble conglomerate	quartz			20+ cm frost heaved wht qtz vein w 5% earthy punky hem pockts and abundant ff-lim; is part of n-trending shear
JBJNR009	7/25/2014	float	assay	GPS		546148	6839182				quartz				lim stn 20+cm qtz vein float; has punky grey sooty 5mm pockets cut by later lim-stained ethed cavities
JBJNR010	7/25/2014	grab	assay	GPS		546127	6839173				phyllite	quartz			white and grey 3cm qtz vein in phyllite
JBJNR011	7/25/2014	float	assay	GPS		546009	6839357				phyllite	quartz			>15cm qtz vein w chl-filled vugs; hosted in phyllite
JBJNR012	7/25/2014	grab	assay	GPS		546910	6835118				grit	argillite			strong cb+ank alt; swarms of sub vert nw tren qtz-cb-chl-lim vns w sub-britt tension gas vens@30o. Grab of typical 15cm wide vn
JBJNR013	7/25/2014	grab	assay	GPS		546951	6835119				grit	argillite			30 cm qtz vn sill hosted in chl-altrd grit. Epd-chl-lim pockets to 10%
JBJNR014	7/25/2014	grab	assay	GPS		547038	6835092				grit	argillite			nw trnding sheeted qtz vns (20/m)w punky lim/ank after sulph in ser cb-chl altrd grit
JBJNR015	7/25/2014	grab	assay	GPS		547164	6835074				carbonatite				fn grnd dk grey marginal to QFP dyke. Trc gal-cpy-py w wht calc vnlts

Thursday, January 15, 2015

Sample Number	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Channel Length (m)	Channel Azimuth	Major Rock Type	Minor Rock Type	Colour	Grain Size	Description
JBJNR016	7/29/2014	grab	assay	GPS		547396	6834996				grit	argillite			5cm qtz-chl-arg w pockets lim hosted in grit; @az 106 = oc pannel
JBJNR017	7/29/2014	grab	assay	GPS		547629	6834152				grit	argillite			ne trnding sheeted vns; qtz vn is 30% of samp; rest is altered grit
JBJNR018	7/29/2014	grab	assay	GPS		547643	6834155				quartz feldspar porphyry	carbothermal vein			dk grey cb vein w qtz eys hosts qtz-cb-ank vns
JBJNR019	7/29/2014	grab	assay	GPS		548255	6834392				quartz pebble conglomerate	cataclasite			white clasts in dk grey matrix= crush breccia. Dk brn-red weathering. Minor qtz stringers on 2+ orientations w trc py
JKJNR014	7/24/2014	float	assay	GPS	1401	545364	6840717				Quartz			fine-medium	disemminated pyrite in vein and along fractures, calcareous, qtz has grey/blue tint from very fine pyrite?
MMJNR043	7/23/2014	channel	assay	GPS	1440	546716	6839227		1	95	granodiorite		dark brown (reddish)	medium-fine	0.0-1.0 m.
MMJNR044	7/23/2014	channel	assay	GPS	1440	546716	6839227		1	95	granodiorite		dark brown (reddish)	medium-fine	1.0-2.0 m.
MMJNR045	7/23/2014	channel	assay	GPS	1440	546716	6839227		1	95	granodiorite		dark brown (reddish)	medium-fine	2.0-3.0 m.
MMJNR046	7/23/2014	chip	assay	GPS	1440	546716	6839227		0.6	95	granodiorite		dark brown (reddish)	medium-fine	3.0-3.6 m.
MMJNR047	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.5	95	granodiorite		dark brown (reddish)	medium-fine	3.6-4.1 m.
MMJNR048	7/23/2014	qaqc	assay	GPS	1440	546716	6839227				granodiorite		dark brown (reddish)	medium-fine	Blank
MMJNR049	7/23/2014	qaqc	assay	GPS	1440	546716	6839227				granodiorite		dark brown (reddish)	medium-fine	Standard PM447.
MMJNR050	7/23/2014	channel	assay	GPS	1440	546716	6839227		1	95	granodiorite		dark brown (reddish)	medium-fine	4.1-5.1 m.
MMJNR051	7/23/2014	channel	assay	GPS	1440	546716	6839227		1.1	95	granodiorite		dark brown (reddish)	medium-fine	5.1-6.2 m.
MMJNR052	7/23/2014	chip	assay	GPS	1440	546716	6839227		0.5	95	granodiorite		dark brown (reddish)	medium-fine	6.2-6.7 m.
MMJNR053	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.3	95	granodiorite		dark brown (reddish)	medium-fine	6.7-7.0 m.

Sample Number	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Channel Length (m)	Channel Azimuth	Major Rock Type	Minor Rock Type	Colour	Grain Size	Description
MMJNR054	7/23/2014	channel	assay	GPS	1440	546716	6839227		1	75	granodiorite		dark brown (reddish)	medium-fine	Part four of trench segment 0.0-1.0 m.
MMJNR055	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.5	75	granodiorite		dark brown (reddish)	medium-fine	1.0-1.5 m.
MMJNR056	7/23/2014	channel	assay	GPS	1440	546716	6839227		1	55	granodiorite		dark brown (reddish)	medium-fine	1.5-2.5 m.
MMJNR057	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.5	70	granodiorite		dark brown (reddish)	medium-fine	2.5-3.0 m.
MMJNR058	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.8	50	granodiorite		dark brown (reddish)	medium-fine	3.0-3.8 m.
MMJNR059	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.9	80	granodiorite		dark brown (reddish)	medium-fine	3.8-4.7 m.
MMJNR060	7/23/2014	channel	assay	GPS	1440	546716	6839227		0.6	60	granodiorite		dark brown (reddish)	medium-fine	4.7-5.3 m. End of TR14-001.
MMJNR061	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	0.0-1.0 m.
MMJNR062	7/25/2014	channel	assay	GPS	1447	546735	6839239		0.5	130	granodiorite		bright orange	medium- coarse	1.0-1.5 m.
MMJNR063	7/25/2014	channel	assay	GPS	1447	546735	6839239		0.5	130	granodiorite		bright orange	medium- coarse	1.5-2.0 m.
MMJNR064	7/25/2014	channel	assay	GPS	1447	546735	6839239		0.5	130	granodiorite		bright orange	medium- coarse	2.0-2.5 m. Sample rake -20 degrees.
MMJNR065	7/25/2014	qaqc	assay	GPS	1447	546735	6839239				granodiorite		bright orange	medium- coarse	Blank.
MMJNR066	7/25/2014	qaqc	assay	GPS	1447	546735	6839239				granodiorite		bright orange	medium- coarse	Standard PM.
MMJNR067	7/25/2014	channel	assay	GPS	1447	546735	6839239		0.5	130	granodiorite		bright orange	medium- coarse	2.5-3.0 m.
MMJNR068	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	3.0-4.0 m.
MMJNR069	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	4.0-5.0 m.
MMJNR070	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	5.0-6.0 m.
MMJNR071	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	6.0-7.0 m.
MMJNR072	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	7.0-8.0 m.

Sample Number	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Channel Length (m)	Channel Azimuth	Major Rock Type	Minor Rock Type	Colour	Grain Size	D	escription
MMJNR073	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	8.0-9.0 m.	
MMJNR074	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	9.0-10.0 m.	
MMJNR075	7/25/2014	channel	assay	GPS	1447	546735	6839239		1	130	granodiorite		bright orange	medium- coarse	10.0-11.0 m.	
MMJNR076	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	0.0-1.0 m.	
MMJNR077	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	1.0-2.0 m.	
MMJNR078	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	2.0-3.0 m.	
MMJNR079	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	3.0-4.0 m.	
MMJNR080	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	4.0-5.0 m.	
MMJNR081	7/25/2014	qaqc	assay	GPS	1436	546648	6839490				calcareous chert	skarn	pale yellow (orangish)	medium- coarse	Blank	
MMJNR082	7/25/2014	qaqc	assay	GPS	1436	546648	6839490				calcareous chert	skarn	pale yellow (orangish)	medium- coarse	Standard PM	
MMJNR083	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	5.0-6.0 m.	
MMJNR084	7/25/2014	channel	assay	GPS	1436	546648	6839490		1.2	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	6.0-7.2 m.	
MMJNR085	7/25/2014	channel	assay	GPS	1436	546648	6839490		0.3	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	7.2-7.7 m.	
MMJNR086	7/25/2014	channel	assay	GPS	1436	546648	6839490		0.5	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	7.5-8.0 m.	
MMJNR087	7/25/2014	channel	assay	GPS	1436	546648	6839490		1	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	8.0-9.0 m.	
MMJNR088	7/25/2014	channel	assay	GPS	1436	546648	6839490		0.8	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	9.0-9.8 m.	

Sample Number	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Channel Length (m)	Channel Azimuth	Major Rock Type	Minor Rock Type	Colour	Grain Size	Description
MMJNR089	7/25/2014	channel	assay	GPS	1436	546648	6839490		0.5	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	9.8-10.3.
MMJNR090	7/25/2014	channel	assay	GPS	1436	546648	6839490		0.7	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	10.3-11.0 m.
MMJNR091	7/25/2014	channel	assay	GPS	1436	546648	6839490		1.3	60	calcareous chert	skarn	pale yellow (orangish)	medium- coarse	11.0-12.3 m.
MMJNR092	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.75	80	skarn		brilliant orange	medium-fine	0.25-1.00 m.
MMJNR093	7/27/2014	channel	assay	GPS	1426	546652	6839477		1	80	skarn		brilliant orange	medium-fine	1.0-2.0 m.
MMJNR094	7/27/2014	channel	assay	GPS	1426	546652	6839477		1	80	skarn		brilliant orange	medium-fine	2.0-3.0 m.
MMJNR095	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.5	80	skarn		brilliant orange	medium-fine	3.0-3.5 m.
MMJNR096	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.5	80	skarn		brilliant orange	medium-fine	3.5-4.0 m.
MMJNR097	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.5	80	skarn		brilliant orange	medium-fine	4.0-4.5 m.
MMJNR098	7/27/2014	channel	assay	GPS	1426	546652	6839477		1	80	skarn		brilliant orange	medium-fine	4.5-5.5 m.
MMJNR099	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.6	80	skarn		brilliant orange	medium-fine	5.5-6.1 m.
MMJNR100	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.7	80	skarn		brilliant orange	medium-fine	6.1-6.8 m.
MMJNR101	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.6	80	skarn		brilliant orange	medium-fine	6.8-7.4 m.
MMJNR102	7/27/2014	qaqc	assay	GPS	1426	546652	6839477				skarn		brilliant orange	medium-fine	Blank
MMJNR103	7/27/2014	qaqc	assay	GPS	1426	546652	6839477				skarn		brilliant orange	medium-fine	Standard
MMJNR104	7/27/2014	channel	assay	GPS	1426	546652	6839477		1.3	80	skarn		brilliant orange	medium-fine	7.4-8.7 m.
MMJNR105	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.8	80	skarn		brilliant orange	medium-fine	8.7-9.5 m.
MMJNR106	7/27/2014	channel	assay	GPS	1426	546652	6839477		1	80	skarn		brilliant orange	medium-fine	9.5-10.5 m.
MMJNR107	7/27/2014	channel	assay	GPS	1426	546652	6839477		1	80	skarn		brilliant orange	medium-fine	10.5-11.5 m.
MMJNR108	7/27/2014	channel	assay	GPS	1426	546652	6839477		1	80	skarn		brilliant orange	medium-fine	11.5-12.5 m.

Sample Number	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Channel Length (m)	Channel Azimuth	Major Rock Type	Minor Rock Type	Colour	Grain Size	Description
MMJNR109	7/27/2014	channel	assay	GPS	1426	546652	6839477		0.9	80	skarn		brilliant orange	medium-fine	12.5-13.4 m.
MMJNR110	7/28/2014	grab	assay	GPS	1593	547943	6834763				quartz feldspar pebble conglom		deep orange	medium- coarse	Check Sample
MMJNR111	8/1/2014	grab	assay	GPS	1791	548141	6835353		1	15	quartz pebble conglomerate	quartz grit	brilliant orange	medium- coarse	Chip sample of quartz vein.
MMJNR112	8/1/2014	grab	assay	GPS	1722	548579	6835584				phyllite		brilliant orange		Silica altered phyllite/limestone? Contact between the two units.
MMJNR113	8/1/2014	talus	assay	GPS	1787	548575	6835486				limestone	chert	milky	medium-fine	Talus from fault zone.
MMJNR114	8/1/2014	grab	assay	GPS	1877	548022	6835451				quartz grit	phyllite	light grey (purplish)	medium-fine	To verify aspy mineralization.

Appendix 4.2 Silt Sample Locations and Descriptions

Sample Number	Sampler	Date	Туре	Purpose	Location Method	Elevation (m)	Easting	Northing	UTM Zone	Accuracy	Depth	Size	Quality	Turbidity	Description
JBJNS001	JB	7/24/2014	silt	assay	GPS		547221	6839502	09N	8	5	5	5	0	high energy ck; 1m wide
JBJNS002	JB	7/24/2014	silt	assay	GPS		547140	6839644	09N	8	5	5	4	0	high energy ck; 1.5m wide
JBJNS003	JB	7/25/2014	silt	assay	GPS		546019	6839146	09N	8	7	5	4		mod-high energy ck; 2m wide
JBJNS004	JB	7/25/2014	silt	assay	GPS		546033	6839370	09N	8	7	5	4		high energy ck; 2m wide

Friday, January 16, 2015

Appendix 4.3 Soil Sample Locations and Descriptions

Sample Number	Date	Time Purpos	e Location Method	Elevation (m) Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JBJND001	7/24/2014	check	GPS	547049	6839525			0 - 20	10	В	5	see JBJNR001
JBJND002	7/24/2014	check	GPS	547198	6839511			0 - 20	10	В	5	west side of ck
JBJND003	7/24/2014	check	GPS	547229	6839514			0 - 20	10	В	5	east side of ck
JBJND004	7/24/2014	check	GPS	547216	6839562			0 - 20	15	В	5	east side of ck
JBJND005	7/24/2014	check	GPS	547175	6839580			0 - 20		В	4	west side of ck
JKJND001	7/30/2014	assay	GPS	548250	6835067			20-40	25	В	5	
JKJND002	7/30/2014	assay	GPS	548212	6835047			20-40	25	В	5	
JKJND003	7/30/2014	assay	GPS	548147	6835028			20-40	25	В	5	
JNL023 00+00	7/23/2014	assay	GPS	546528	6840519		greyish brown	20-40	25	В	4	line start
JNL023 00+50W	7/23/2014	assay	GPS	546477.75	6840519.4		greyish brown	20-40	15	В	5	
JNL023 01+00W	7/23/2014	assay	GPS	546427.5	6840519.8		greyish brown	20-40	25	В	4	organic
JNL023 01+50W	7/23/2014	assay	GPS	546377.25	6840520.1		greyish brown	20-40	25	В	4	rocky
JNL023 02+00W	7/23/2014	assay	GPS	546327	6840520.5		greyish brown	20-40	25	В	5	
JNL023 02+50W	7/23/2014	assay	GPS	546276.75	6840520.9		greyish brown	20-40	15	В	4	rocky
JNL023 03+00W	7/23/2014	assay	GPS	546226.5	6840521.3		light grayish brown (reddish)	20-40	25	В	4	rocky
JNL023 03+50W	7/23/2014	assay	GPS	546176.25	6840521.6		light brown	20-40	25	С	4	rocky
JNL023 04+00W	7/23/2014	assay	GPS	546126	6840522		greyish brown	20-40	25	В	4	talus
JNL023 04+50W	7/23/2014	assay	GPS	546076.75	6840519		dark brown	20-40	15	В	4	organic
JNL023 05+00W	7/23/2014	assay	no sample	546027.5	6840516							talus
JNL023 05+50W	7/23/2014	assay	GPS	545978.25	6840513		pale brown (reddish)	20-40	25	В	4	organic

Thursday, January 15, 2015

Sample Number	Date	Time F	Purpose	Location Method Elevation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JNL023 06+00W	7/23/2014		assay	GPS	545929	6840510		greyish green	20-40	25	В	5	
JNL023 06+50W	7/23/2014		assay	GPS	545879.75	6840507		light grayish brown (reddish)	20-40	25	В	5	rocky
JNL023 07+00W	7/23/2014		assay	GPS	545830.5	6840504		light grayish brown (reddish)	0-20	25	В	5	
JNL023 07+50W	7/23/2014		assay	GPS	545781.25	6840501		greyish brown	0-20	25	В	5	rocky
JNL023 08+00W	7/23/2014		assay	GPS	545732	6840498		light grayish brown (reddish)	0-20	25	В	5	organic
JNL023 08+50W	7/23/2014		assay	GPS	545681.58	6840498.3		light grayish brown (reddish)	0-20	15	В	4	rocky
JNL023 09+00W	7/23/2014		assay	GPS	545631.17	6840498.7		light grayish brown (reddish)	0-20	15	В	5	
JNL023 09+50W	7/23/2014		assay	GPS	545580.75	6840499		light grayish brown (reddish)	0-20	25	В	5	
JNL023 10+00W	7/23/2014		assay	GPS	545530.33	6840499.3		light brown	0-20	15	В	5	
JNL023 10+50W	7/23/2014		assay	GPS	545479.92	6840499.7		light grayish brown (reddish)	0-20	15	В	5	rocky
JNL023 11+00W	7/23/2014		assay	GPS	545429.5	6840500		greyish brown	0-20	15	В	5	
JNL023 11+50W	7/23/2014		assay	GPS	545379.08	6840500.3		greyish brown	0-20	15	В	5	
JNL023 12+00W	7/23/2014		assay	GPS	545328.67	6840500.7		light grayish brown (reddish)	0-20	25	В	5	
JNL023 12+50W	7/23/2014		assay	GPS	545278.25	6840501		greyish brown	0-20	25	В	5	rocky
JNL023 13+00W	7/23/2014		assay	GPS	545227.83	6840501.3		greyish brown	0-20	25	В	5	
JNL023 13+50W	7/23/2014		assay	GPS	545177.42	6840501.7		greyish brown	0-20	15	В	5	
JNL023 14+00W	7/23/2014		assay	GPS	545127	6840502		greyish brown	0-20	15	В	5	line end
JNL024 00+00	7/24/2014		assay	GPS	546162	6840709		greyish brown	20-40	25	В	4	line start

Sample Number	Date	Time	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JNL024 00+50W	7/24/2014		assay	тар		546111.88	6840707.5		light grayish brown (reddish)	20-40	15	В	4	rocky
JNL024 01+00W	7/24/2014		assay	map		546061.75	6840706		dark grayish brown (yellowish)	20-40	25	В	4	rocky
JNL024 01+50W	7/24/2014		assay	тар		546011.63	6840704.5		light grayish brown (reddish)	20-40	15	В	4	rocky
JNL024 02+00W	7/24/2014		assay	тар		545961.5	6840703		dark greyish brown	20-40	25	В	4	organic
JNL024 02+50W	7/24/2014		assay	map		545911.38	6840701.5		light grayish brown (reddish)	20-40	25	В	4	organic
JNL024 03+00W	7/24/2014		assay	map		545861.25	6840700		light grayish brown (reddish)	20-40	25	В	4	rocky
JNL024 03+50W	7/24/2014		assay	map		545811.13	6840698.5		blackish black	20-40	25	В	5	
JNL024 04+00W	7/24/2014		assay	GPS		545761	6840697		greyish brown	20-40	25	В	5	
JNL024 04+50W	7/24/2014		assay	map		545710.88	6840696.6		greyish brown	20-40	25	В	4	rocky
JNL024 05+00W	7/24/2014		assay	map		545660.75	6840696.3		blackish black	20-40	25	В	2	organic
JNL024 05+50W	7/24/2014		assay	map		545610.63	6840695.9		greyish brown	20-40	25	В	4	organic
JNL024 06+00W	7/24/2014		assay	map		545560.5	6840695.5		greyish brown	20-40	25	В	5	
JNL024 06+50W	7/24/2014		assay	map		545510.38	6840695.1		greyish brown	0-20	25	В	5	
JNL024 07+00W	7/24/2014		assay	map		545460.25	6840694.8		greyish brown	0-20	15	В	5	
JNL024 07+50W	7/24/2014		assay	map		545410.13	6840694.4		moderate grey	0-20	15	В	5	rocky
JNL024 08+00W	7/24/2014		assay	GPS		545360	6840694		moderate grey	0-20	25	В	4	
JNL024 08+50W	7/24/2014		assay	map		545309.92	6840694.3		greyish brown	0-20	15	В	5	rocky
JNL024 09+00W	7/24/2014		assay	map		545259.83	6840694.5		greyish brown	0-20	15	В	5	rocky

Sample Number	Date	Time P	urpose	Location Method Elevation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JNL024 09+50W	7/24/2014	:	assay	map	545209.75	6840694.8		greyish brown	0-20	15	В	5	
JNL024 10+00W	7/24/2014	;	assay	map	545159.67	6840695		greyish brown	0-20	15	В	4	
JNL024 10+50W	7/24/2014	:	assay	map	545109.58	6840695.3		greyish brown	0-20	25	В	5	
JNL024 11+00W	7/24/2014		assay	map	545059.5	6840695.5		greyish brown	20-40	25	В	5	rocky
JNL024 11+50W	7/24/2014		assay	map	545009.42	6840695.8		greyish brown	20-40	25	В	5	rocky
JNL024 12+00W	7/24/2014		assay	map	544959.33	6840696		greyish brown	20-40	25	В	4	rocky
JNL024 12+50W	7/24/2014		assay	map	544909.25	6840696.3		greyish brown	20-40	25	В	5	
JNL024 13+00W	7/24/2014		assay	map	544859.17	6840696.5		dark grayish brown (yellowish)	0-20	25	В	5	
JNL024 13+50W	7/24/2014		assay	map	544809.08	6840696.8		greyish brown	0-20	25	В	4	rocky
JNL024 14+00W	7/24/2014		assay	GPS	544759	6840697		greyish brown	0-20	25	В	5	line end
JNL025 00+00	7/25/2014	:	assay	map	546127	6840922		light grayish brown (reddish)	20-40	15	В	5	line start
JNL025 00+50W	7/25/2014		assay	map	546076.88	6840923		light grayish brown (reddish)	20-40	15	В	5	
JNL025 01+00W	7/25/2014	:	assay	map	546026.75	6840924		light grayish brown (reddish)	20-40	15	В	5	
JNL025 01+50W	7/25/2014	:	assay	map	545976.63	6840925		light grayish brown (reddish)	20-40	15	В	4	rocky
JNL025 02+00W	7/25/2014	:	assay	map	545926.5	6840926		light grayish brown (reddish)	20-40	15	В	5	rocky
JNL025 02+50W	7/25/2014		assay	map	545876.38	6840927		dark grey	20-40	15	В	5	
JNL025 03+00W	7/25/2014		assay	map	545826.25	6840928		light grayish brown (reddish)	0-20	25	В	5	
JNL025 03+50W	7/25/2014		assay	map	545776.13	6840929		light grayish brown (reddish)	0-20	25	В	5	rocky

Sample Number	Date	Time	Purpose	Location Method Elevation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JNL025 04+00W	7/25/2014		assay	GPS	545726	6840930		dark grey	0-20	25	В	5	
JNL025 04+50W	7/25/2014		assay	map	545675.25	6840929		light grayish brown (reddish)	0-20	25	В	4	organic
JNL025 05+00W	7/25/2014		assay	map	545624.5	6840928		greyish brown	20-40	25	В	5	rocky
JNL025 05+50W	7/25/2014		assay	map	545573.75	6840927		greyish brown	20-40	35	В	4	rocky
JNL025 06+00W	7/25/2014		assay	map	545523	6840926		light grayish brown (reddish)	20-40	35	В	4	rocky
JNL025 06+50W	7/25/2014		assay	map	545472.25	6840925		light grayish brown (reddish)	20-40	35	В	4	rocky
JNL025 07+00W	7/25/2014		assay	map	545421.5	6840924		greyish brown	20-40	15	В	5	
JNL025 07+50W	7/25/2014		assay	map	545370.75	6840923		greyish brown	0-20	35	В	4	rocky
JNL025 08+00W	7/25/2014		assay	GPS	545320	6840922		moderate brown	0-20	15	В	4	organic
JNL025 08+50W	7/25/2014		assay	map	545270.46	6840919.8		greyish brown	0-20	25	В	4	organic
JNL025 09+00W	7/25/2014		assay	map	545220.92	6840917.5		light grayish brown (reddish)	0-20	25	В	3	organic
JNL025 09+50W	7/25/2014		assay	map	545171.38	6840915.3		greyish brown	0-20	25	В	4	rocky
JNL025 10+00W	7/25/2014		assay	map	545121.85	6840913.1		light brown	0-20	25	В	5	
JNL025 10+50W	7/25/2014		assay	map	545072.31	6840910.9		light brown	0-20	25	В	5	
JNL025 11+00W	7/25/2014		assay	map	545022.77	6840908.6		light grayish brown (reddish)	0-20	15	В	4	rocky
JNL025 11+50W	7/25/2014		assay	map	544973.23	6840906.4		light brown	0-20	15	В	5	rocky
JNL025 12+00W	7/25/2014		assay	map	544923.69	6840904.2		strong brown	0-20	15	В	5	rocky
JNL025 12+50W	7/25/2014		assay	map	544874.15	6840901.9		light grayish brown (reddish)	0-20	15	В	5	

Sample Number	Date	Time	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JNL025 13+00W	7/25/2014		assay	map		544824.62	6840899.7		light grayish brown (reddish)	0-20	25	В	5	
JNL025 13+50W	7/25/2014		assay	map		544775.08	6840897.5		light grayish brown (reddish)	0-20	25	В	5	
JNL025 14+00W	7/25/2014		assay	map		544725.54	6840895.2		light grayish brown (reddish)	0-20	25	В	5	
JNL025 14+50W	7/25/2014		assay	GPS		544676	6840893		light grayish brown (reddish)	20-40	25	В	5	line end
JNL026 00+50E	7/30/2014		assay	map		547656.03	6835140.7		greyish brown	20-40	15	В	5	
JNL026 01+00E	7/30/2014		assay	map		547710.06	6835164.5		greyish brown	20-40	45	В	5	
JNL026 01+50E	7/30/2014		assay	map		547764.1	6835188.2		greyish brown	20-40	15	В	5	
JNL026 02+00E	7/30/2014		assay	map		547818.19	6835211.8		greyish brown	20-40	15	В	5	
JNL026 02+50E	7/30/2014		assay	map		547872.3	6835235.4		greyish brown	20-40	15	В	5	
JNL026 03+00E	7/30/2014		assay	map		547926.04	6835259.8		greyish brown	20-40	25	В	5	
JNL026 03+50E	7/30/2014		assay	map		547980.13	6835283.2		light grayish brown (reddish)	20-40	15	В	5	
JNL026 04+50E	7/30/2014		assay	map		548086.59	6835310.6		greyish brown	20-40	25	В	5	
JNL026 06+50E	7/30/2014		assay	map		548285.31	6835355.5		light grayish brown (reddish)	20-40	25	В	5	
JNL026 08+50E	7/30/2014		assay	map		548482.07	6835408		greyish brown	20-40	15	В	5	
JNL026 09+50E	7/30/2014		assay	map		548581.7	6835429		greyish brown	20-40	25	В	5	
JNL027 00+50W	7/30/2014		assay	map		548368.15	6835262.5		greyish brown	20-40	25	В	4	
JNL027 01+00W	7/30/2014		assay	map		548318.39	6835250.7		greyish brown	20-40	25	В	3	
JNL027 01+50W	7/30/2014		assay	map		548271.83	6835229.4		greyish brown	20-40	35	В	2	
JNL027 02+00W	7/30/2014		assay	map		548224.44	6835210.3		greyish brown	20-40	35	В	3	
JNL027 02+50W	7/30/2014		assay	map		548176.37	6835192.7		greyish brown	20-40	35	В	3	
JNL027 03+00W	7/30/2014		assay	map		548129.32	6835172.7		greyish brown	20-40	35	В	3	

_	Sample Number	Date	Time Pu	ırpose	Location Method E	levation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
	JNL027 03+50W	7/30/2014	a	assay	map		548082.41	6835152.2		greyish brown	20-40	35	В	3	
	JNL027 04+00W	7/30/2014	a	assay	GPS		548035	6835133		greyish brown	20-40	35	В	3	
	JNL027 04+50W	7/30/2014	a	assay	map		547989.26	6835107.7		greyish brown	20-40	35	В	3	
	JNL027 05+00W	7/30/2014	a	assay	map		547943.52	6835082.3		greyish brown	20-40	35	В	3	
	JNL027 05+50W	7/30/2014	a	assay	map		547897.79	6835057		greyish brown	20-40	35	В	3	
	JNL027 06+00W	7/30/2014	a	assay	map		547852.05	6835031.7		greyish brown	20-40	35	В	3	
	JNL027 06+50W	7/30/2014	a	assay	map		547806.07	6835006.8		greyish brown	20-40	35	В	3	
	JNL027 07+00W	7/30/2014	a	assay	map		547759.6	6834982.8		greyish brown	20-40	35	В	3	
	JNL027 07+50W	7/30/2014	a	assay	map		547713.13	6834958.8		greyish brown	20-40	25	В	3	
	JNL027 08+00W	7/30/2014	а	assay	map		547666.67	6834934.9		greyish brown	20-40	25	В	3	
	JNL027 08+50W	7/30/2014	a	assay	map		547630.17	6834897.7		greyish brown	20-40	25	В	3	
	JNL027 09+00W	7/30/2014	a	assay	map		547595.88	6834858.4		greyish brown	20-40	25	В	3	
	JNL027 09+50W	7/30/2014	a	assay	map		547567.94	6834814.2		greyish brown	20-40	25	В	3	
	JNL028 00+50E	7/30/2014	a	assay	map		547673.96	6834675.2		greyish brown	0-20	35	В	3	
	JNL028 01+00E	7/30/2014	a	assay	map		547710.93	6834706.5		greyish brown	0-20	25	В	3	
	JNL028 01+50E	7/30/2014	a	assay	map		547747.89	6834737.7		greyish brown	20-40	25	В	3	
	JNL028 02+00E	7/30/2014	a	assay	map		547784.55	6834769.3		greyish brown	20-40	25	В	3	
	JNL028 02+50E	7/30/2014	a	assay	map		547819.48	6834802.8		greyish brown	20-40	25	В	3	
	JNL028 03+00E	7/30/2014	a	assay	map		547854.52	6834836.2		greyish brown	20-40	25	В	3	
	JNL028 03+50E	7/30/2014	a	assay	map		547891.76	6834867.1		greyish brown	20-40	25	В	3	
	JNL028 04+00E	7/30/2014	a	assay	GPS		547929	6834898		greyish brown	20-40	25	В	3	

Sample Number	Date	Time	Purpose	Location Method	Elevation (m)	Easting	Northing	GPS Accuracy (m)	Colour	Slope	Depth (cm)	Soil Horizon	Quality	Notes
JNL028 04+50E	7/30/2014		assay	map		547971.25	6834928		greyish brown	20-40	25	В	3	
JNL028 05+00E	7/30/2014		assay	map		548013.51	6834957.9		greyish brown	20-40	25	В	3	
JNL028 05+50E	7/30/2014		assay	map		548057.95	6834984.4		greyish brown	20-40	35	В	3	
JNL028 06+00E	7/30/2014		assay	map		548103	6835010		greyish brown	20-40	35	В	3	
JNL028 06+50E	7/30/2014		assay	map		548303	6835092		greyish brown	20-40	25	В	4	
JNL028 07+00E	7/30/2014		assay	map		548348.73	6835111.9		greyish brown	20-40	25	В	5	
JNL028 07+50E	7/30/2014		assay	map		548394.47	6835131.8		greyish brown	20-40	25	В	5	
JNL028 08+00E	7/30/2014		assay	map		548440.55	6835150.8		greyish brown	20-40	25	В	5	
JNL028 08+50E	7/30/2014		assay	map		548487.42	6835167.8		greyish brown	20-40	25	В	5	
JNL028 09+00E	7/30/2014		assay	map		548534.45	6835184.4		greyish brown	20-40	25	В	5	
JNL028 09+50E	7/30/2014		assay	map		548582.23	6835198.7		greyish brown	20-40	25	В	5	

Appendix 4.4 Friday, January 16, 2015 2014 DDH Sample Log Interval Length(m) Recovered Length(m) DDH Sample Number From(m) To(m) Sample Method JN11009 JN11009-169 197 198 1 1 SPLIT JN11009 JN11009-170 198 199 1 1 SPLIT 200 JN11009 JN11009-171 199 SPLIT 1 1 JN11009 JN11009-172 200 201 SPLIT 1 1 201 202 SPLIT JN11009 JN11009-173 1 1 JN11009 JN11009-174 202 202.8 0.8 0.8 SPLIT 1.05 1.05 JN11009 JN11009-175 202.8 203.85 SPLIT JN11009 JN11009-176 203.85 204.9 1.05 1.02 SPLIT 0.8 0.8 JN11009 JN11009-177 204.9 205.7 SPLIT JN11009 JN11009-178 205.7 206.7 1 0.98 SPLIT JN11009 JN11009-179 207.7 206.7 1 1 SPLIT JN11009 JN11009-180 207.7 208.7 SPLIT 1 1 JN11009 JN11009-181 208.7 209.7 1 1 SPLIT JN11009 JN11009-182 209.7 210.7 SPLIT 1 1 0.95 0.82 JN11009 JN11009-183 210.7 211.65 SPLIT JN11009 JN11009-184 211.65 212.4 0.75 0.75 SPLIT JN11010-104 189.9 190.9 1 0.79 SPLIT JN11010 JN11010 JN11010-105 190.9 191.5 0.6 0.6 SPLIT 0.5 0.48 JN11010 JN11010-106 191.5 192 SPLIT JN11010 JN11010-107 192 193 1 0.63 SPLIT JN11010 JN11010-108 193 194 1 0.33 SPLIT 194 195 JN11010 JN11010-109 1 0.27 SPLIT JN11010 JN11010-110 195 196 1 0.26 SPLIT JN11010 JN11010-111 196 197 1 0.68 SPLIT JN11010-112 198 1 0.5 SPLIT JN11010 197 JN11010 JN11010-113 198 199 1 0.95 SPLIT

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN11010	JN11010-113	198	199	1	0.95	SPLIT
JN11010	JN11010-114	199	200	1	0.89	SPLIT
JN11010	JN11010-115	200	200.6	0.6	0.55	SPLIT
JN11010	JN11010-116	200.6	201.6	1	0.8	SPLIT
JN11010	JN11010-117	201.6	202.6	1	0.82	SPLIT
JN11010	JN11010-118	202.6	203.6	1	0.97	SPLIT
JN11010	JN11010-119	203.6	204.8	1.2	0.97	SPLIT
JN11010	JN11010-120	204.8	206	1.2	1.14	SPLIT
JN12012	JN12012-071	82	83.3	1.3	0.6	SAW
JN12012	JN12012-072	83.3	83.8	0.5	0.5	SAW
JN12012	JN12012-073	83.8	85	1.2	1.2	SAW
JN12012	JN12012-074	85	86.1	1.1	0.9	SAW
JN12012	JN12012-075	86.1	87.1	1	0.9	SAW
JN12012	JN12012-076	87.1	88.6	1.5	1.5	SAW
JN12012	JN12012-077	88.6	89.7	1.1	0.5	SAW
JN12012	JN12012-078	89.7	90.1	0.4	0.3	SAW
JN12012	JN12012-079	90.1	91.1	1	1	SAW
JN12012	JN12012-080	94.9	96.1	1.2	1.1	SAW
JN12012	JN12012-081	97.2	98	0.8	0.7	SAW
JN12012	JN12012-082	98	99	1	0.9	SAW
JN12012	JN12012-083	99	99.5	0.5	0.4	SAW
JN12012	JN12012-084	99.5	100.7	1.2	0.7	SAW
JN12012	JN12012-085	100.7	101.6	0.9	0.9	SAW
JN12012	JN12012-086	101.6	102.1	0.5	0.4	SAW
JN12013	JN12013-001	4.1	5.5	1.4	1.4	SAW
JN12013	JN12013-002	5.5	6.4	0.9	0.9	SAW
JN12013	JN12013-003	6.4	7.4	1	0.8	SAW
JN12013	JN12013-004	7.4	7.8	0.4	0.4	SAW

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN12013	JN12013-005	7.8	9	1.2	1.2	SAW
JN12013	JN12013-006	9	10	1	1	SAW
JN12013	JN12013-007	10	11	1	0.8	SAW
JN12013	JN12013-008	11	12.1	1.1	0.9	SAW
JN12013	JN12013-009	14.2	15.3	1.1	1.1	SAW
JN12013	JN12013-010	15.3	16	0.7	0.7	SAW
JN12013	JN12013-011	16	17	1	0.9	SAW
JN12013	JN12013-012	17	18.2	1.2	0.7	SAW
JN12013	JN12013-013	21	21.3	0.3	0.3	SAW
JN12013	JN12013-014	23.8	25.3	1.5	0.7	SAW
JN12013	JN12013-015	25.3	26.2	0.9	0.9	SAW
JN12013	JN12013-016	26.2	26.6	0.4	0.4	SAW
JN12013	JN12013-017	26.6	27	0.4	0.3	SAW
JN12013	JN12013-018	27	27.8	0.8	0.5	SAW
JN12013	JN12013-019	27.8	28.8	1	1	SAW
JN12013	JN12013-020	28.8	29.9	1.1	1.1	SAW
JN12013	JN12013-021	29.9	30.8	0.9	0.9	SAW
JN12013	JN12013-022	30.8	32.3	1.5	1	SAW
JN12013	JN12013-023	32.3	33	0.7	0.7	SAW
JN12013	JN12013-024	33	34	1	1	SAW
JN12013	JN12013-025	34	35	1	1	SAW
JN12013	JN12013-026	35	36	1	1	SAW
JN12013	JN12013-027	36	37.5	1.5	1.5	SAW
JN12013	JN12013-028	37.5	39	1.5	1.5	SAW
JN12013	JN12013-029	39	40.5	1.5	1.5	SAW
JN12013	JN12013-030	40.5	42	1.5	1.4	SAW
JN12013	JN12013-031	42	43.5	1.5	1.5	SAW
JN12013	JN12013-032	43.5	45	1.5	1.5	SAW

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN12013	JN12013-033	45	45.8	0.8	0.8	SAW
JN12013	JN12013-034	45.8	46.9	1.1	1.1	SAW
JN12013	JN12013-034	45.8	46.9	1.1	1.1	SAW
JN12013	JN12013-035	46.9	48	1.1	1.1	SAW
JN12013	JN12013-036	48	49.5	1.5	1.5	SAW
JN12013	JN12013-037	49.5	51	1.5	1.5	SAW
JN12013	JN12013-038	51	52.5	1.5	1.5	SAW
JN12013	JN12013-039	52.5	54	1.5	1.5	SAW
JN12013	JN12013-040	54	55.5	1.5	1.5	SAW
JN12013	JN12013-041	55.5	57	1.5	1.3	SAW
JN12013	JN12013-042	57	58.5	1.5	1.5	SAW
JN12013	JN12013-043	58.5	59.5	1	1	SAW
JN12013	JN12013-044	59.5	60.1	0.6	0.6	SAW
JN12013	JN12013-045	60.1	60.6	0.5	0.5	SAW
JN12013	JN12013-046	60.6	61.5	0.9	0.9	SAW
JN12013	JN12013-047	61.5	61.9	0.4	0.3	SAW
JN12013	JN12013-048	61.9	63	1.1	1.1	SAW
JN12013	JN12013-049	63	64.5	1.5	1.5	SAW
JN12013	JN12013-050	64.5	66	1.5	1.5	SAW
JN12013	JN12013-051	66	67	1	1	SAW
JN12013	JN12013-052	67	68	1	1	SAW
JN12013	JN12013-053	68	69.3	1.3	1.3	SAW
JN12013	JN12013-054	69.3	70.3	1	1	SAW
JN12013	JN12013-055	70.3	70.9	0.6	0.6	SAW
JN12013	JN12013-069	87.9	88.7	0.8	0.6	SAW
JN12013	JN12013-070	88.7	89.7	1	1	SAW
JN12013	JN12013-070	88.7	89.7	1	1	SAW
JN12013	JN12013-071	89.7	90.8	1.1	1.1	SAW

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN12013	JN12013-072	90.8	92	1.2	1.2	SAW
JN12014	JN12014-001	4.6	6	1.4	1.4	SAW
JN12014	JN12014-002	6	7.5	1.5	1.4	SAW
JN12014	JN12014-003	7.5	9	1.5	1.5	SAW
JN12014	JN12014-004	9	10	1	1	SAW
JN12014	JN12014-005	10	10.4	0.4	0.4	SAW
JN12014	JN12014-006	10.4	10.8	0.4	0.4	SAW
JN12014	JN12014-007	10.8	12.1	1.3	1.2	SAW
JN12014	JN12014-008	12.1	13.8	1.7	1.5	SAW
JN12014	JN12014-009	13.8	15.1	1.3	1.3	SAW
JN12014	JN12014-010	15.1	16.2	1.1	1	SAW
JN12014	JN12014-011	16.2	17.4	1.2	1.2	SAW
JN12014	JN12014-012	17.4	18.9	1.5	1.5	SAW
JN12014	JN12014-013	18.9	20.3	1.4	1.4	SAW
JN12014	JN12014-014	20.3	21.3	1	1	SAW
JN12014	JN12014-015	21.3	22.5	1.2	1	SAW
JN12014	JN12014-016	22.5	23.5	1	1	SAW
JN12014	JN12014-017	23.5	25	1.5	1.5	SAW
JN12014	JN12014-018	25	26.1	1.1	1.1	SAW
JN12014	JN12014-019	26.1	27	0.9	0.9	SAW
JN12014	JN12014-020	27	28.5	1.5	1.5	SAW
JN12014	JN12014-021	28.5	29.5	1	1	SAW
JN12014	JN12014-022	29.5	30.4	0.9	0.7	SAW
JN12014	JN12014-023	30.4	31.5	1.1	1.1	SAW
JN12014	JN12014-024	31.5	33	1.5	1.5	SAW
JN12014	JN12014-025	33	34.5	1.5	1.5	SAW
JN12014	JN12014-026	34.5	36	1.5	1.5	SAW
JN12014	JN12014-027	36	37.5	1.5	1.5	SAW

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN12014	JN12014-028	37.5	39	1.5	1.5	SAW
JN12014	JN12014-029	39	40.2	1.2	1.1	SAW
JN12014	JN12014-030	40.2	41.5	1.3	1.3	SAW
JN12014	JN12014-031	41.5	42.9	1.4	1.1	SAW
JN12014	JN12014-032	42.9	43.3	0.4	0.3	SAW
JN12014	JN12014-033	43.3	44.4	1.1	0.8	SAW
JN12014	JN12014-034	44.4	45	0.6	0.6	SAW
JN12014	JN12014-035	45	46	1	1	SAW
JN12014	JN12014-036	46	47	1	1	SAW
JN12014	JN12014-037	47	48.5	1.5	1.4	SAW
JN12014	JN12014-038	48.5	49.3	0.8	0.8	SAW
JN12014	JN12014-039	49.3	50.7	1.4	0.6	SAW
JN12014	JN12014-040	50.7	51.8	1.1	1.1	SAW
JN12014	JN12014-041	51.8	52.9	1.1	0.3	SAW
JN12014	JN12014-042	52.9	54	1.1	1.1	SAW
JN12014	JN12014-043	54	55.5	1.5	1.4	SAW
JN12014	JN12014-044	55.5	57	1.5	1.3	SAW
JN12014	JN12014-045	57	58.5	1.5	1.5	SAW
JN12014	JN12014-046	58.5	60	1.5	1.5	SAW
JN12014	JN12014-047	60	61.5	1.5	1.5	SAW
JN12014	JN12014-048	61.5	63	1.5	1.4	SAW
JN12014	JN12014-049	63	63.5	0.5	0.5	SAW
JN12014	JN12014-050	63.5	65	1.5	0.8	SAW
JN12014	JN12014-051	65	66	1	0.8	SAW
JN12014	JN12014-052	66	67.3	1.3	0.6	SAW
JN12014	JN12014-053	67.3	68.8	1.5	1.4	SAW
JN12014	JN12014-054	68.8	69.3	0.5	0.4	SAW
JN12014	JN12014-055	69.3	70.5	1.2	0.9	SAW

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN12014	JN12014-056	70.5	71	0.5	0.5	SAW
JN12014	JN12014-057	71	72.2	1.2	0.9	SAW
JN12016	JN12016-075	104	104.7	0.7	0.7	SAW
JN12016	JN12016-076	104.7	105.5	0.8	0.8	SAW
JN12016	JN12016-077	105.5	106.3	0.8	0.4	SAW
JN12016	JN12016-078	106.3	107.3	1	1	SAW
JN12016	JN12016-078	106.3	107.3	1	1	SAW
JN12016	JN12016-079	107.3	108	0.7	0.7	SAW
JN12016	JN12016-080	108	109	1	1	SAW
JN12016	JN12016-081	109	110.1	1.1	1	SAW
JN12016	JN12016-082	110.1	110.9	0.8	0.8	SAW
JN12016	JN12016-083	110.9	111.2	0.3	0.3	SAW
JN12016	JN12016-084	111.2	112.6	1.4	1.2	SAW
JN12016	JN12016-084	111.2	112.6	1.4	1.2	SAW
JN12016	JN12016-085	112.6	113.2	0.6	0.6	SAW
JN12016	JN12016-086	113.2	113.5	0.3	0.3	SAW
JN12016	JN12016-087	113.5	114.3	0.8	0.7	SAW
JN12019	JN12019-147	186	186.5	0.5	0.5	SAW
JN12019	JN12019-148	186.5	188	1.5	1.5	SAW
JN12019	JN12019-149	188	189.5	1.5	1.5	SAW
JN12019	JN12019-150	189.5	190.6	1.1	1.1	SAW
JN12019	JN12019-151	190.6	191	0.4	0.4	SAW
JN12019	JN12019-152	191	191.9	0.9	0.9	SAW
JN12019	JN12019-153	191.9	192.5	0.6	0.6	SAW
JN12019	JN12019-154	192.5	192.8	0.3	0.3	SAW
JN12019	JN12019-155	192.8	193.2	0.4	0.4	SAW
JN12019	JN12019-156	193.2	194.2	1	1	SAW
JN12019	JN12019-159	196.3	197.8	1.5	1.4	SAW

DDH	Sample Number	From(m)	To(m)	Interval Length(m)	Recovered Length(m)	Sample Method
JN12019	JN12019-160	197.8	198.3	0.5	0.4	SAW
JN12019	JN12019-160	197.8	198.3	0.5	0.4	SAW
JN12019	JN12019-162	199.4	199.7	0.3	0.3	SAW
JN12019	JN12019-162	199.4	199.7	0.3	0.3	SAW
JN12019	JN12019-163	199.7	201	1.3	1	SAW
JN12019	JN12019-164	201	202.5	1.5	1.4	SAW
Appendix V

Analytic Certificates

P.O. No.: JN14-002

on 2- AUG- 2014.

JESSE CAMPBELL

ALS Canada Ltd.

CERTIFICATE WH14116725

This report is for 92 Rock samples submitted to our lab in Whitehorse, YT, Canada

CHRIS GALLAGHER

The following have access to data associated with this certificate:

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

MIKE MCCUAIG

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC VIC 2R7

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
CRU- 31	Fine crushing - 70% < 2mm
BAG- 01	Bulk Master for Storage
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
SPL- 21	Split sample - riffle splitter
PUL- 32m	Pulverize 500g - 85%<75um
LOG- 24	Pulp Login - Rcd w/o Barcode

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE
Au- AA23	Au 30g FA- AA finish	AAS
W- XRF05	Trace Level W XRF Analysis	XRF
As- OG46	Ore Grade As - Aqua Regia	VARIABLE
Zn- VOL50	Zn by titration	
ME- MS41	51 anal. aqua regia ICPMS	

TERRALOGIC EXPLORATION SERVICES INC. To: ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

<u>S)</u>

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

									Cl	ERTIFIC	ΔΤΕ Ο	F ANAL	YSIS	WH141	16725	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME- MS41 Cr ppm 1
MMJNR043		3.88	0.160	0.04	0.72	11.4	<0.2	10	60	1.08	6.24	0.21	0.24	63.4	5.0	6
MIMJNR044		5.99	0.007	0.05	1.07	13.0	<0.2	10	100	1.11	7.38	0.22	0.17	67.7	5.5	7
MINUNKU45		0.70	0.116	0.04	1.02	5.4	0.2	<10	120	0.68	9.08	0.21	0.07	56.0	4.1	7
MINUNKU46		3.12	0.070	0.11	1.17	22.6	<0.2	<10	40	0.63	5.44	0.09	0.16	41.4	4.5	8
WIMUNKU47		∠.19	0.965	0.11	1.16	5,8	1.1	<10	20	0.58	119.0	0.07	0.20	34.5	3.8	5
MMJNR048		3,78	<0.005	<0.01	0.04	<0.1	<0.2	<10	10	<0.05	0.14	>25.0	0.01	0.47	0.7	1
MMJNR049		0.04	1.230	0.45	1.86	6330	1.2	10	70	0.25	21.7	4.77	0.89	17.75	156,5	28
MMJNR050		5,79	0.731	0.06	1.24	3,3	0.3	<10	10	0.57	141.5	0.13	0.16	46.2	5.2	4
MMJNR051		4.61	0.306	0.05	1.30	7.0	0.3	<10	20	0.46	26.3	0.09	0.05	40.2	5.2	5
MMJNR052		2.53	0.464	0.07	0.88	8.2	0.5	<10	20	0.33	48.1	0.10	0.06	27.0	2.8	4
MMINR053		1 50	0.012	0.01	1 16	21	<0.2	<10	150	0.46	1.82	0.26	0.02	30.0	2.1	0
MMINR054		7.09	0.499	0.08	1 17	1.3	0.5	<10	170	0.40	143.0	0.25	0.02	44.6	3.2	0
MMINR055		2.77	<0.005	0.01	1.05	0.6	<0.2	<10	150	0.42	1.62	0.20	0.03	44.0	3.0	9
MMINR056		3.81	0.097	0.03	1 10	0.4	<0.2	<10	160	0.40	29.9	0.24	0.03	44.0	3.9	3
MMJNR057		2.87	0.009	0.01	1.11	1.4	<0.2	<10	170	0.50	2.83	0.23	0.05	44.1	4.0	8
MMJNR058		4.21	0.013	0.01	1.16	0.8	<0.2	<10	170	0.44	3.08	0.23	0.03	38.1	4.5	8
MMJNR059		3.72	0.020	0.01	1.09	0.4	<0.2	<10	150	0.52	3.53	0.26	0.02	40.3	3.4	9
MMJNR060		2.54	0.009	0.01	1.05	1.1	<0.2	<10	130	0.58	2.78	0.22	0.06	44.4	4.7	7
MMJNR061		5.34	0.055	0.06	1.06	8.3	<0.2	<10	40	0.35	2.93	0.03	<0.01	28.1	4.6	4
MMJNR062		2.50	0.023	0.01	1.09	10.9	<0.2	<10	20	0.35	5.81	0.01	0.01	34.9	6.2	4
MMJNR063		4.21	0.053	0.01	0.92	8.3	<0.2	<10	20	0.31	8.41	0.01	<0.01	29.7	7.3	4
MMJNR064		4.26	0.954	0.19	0.72	4.6	1.1	<10	20	0.27	491	0.02	<0.01	21.6	4.1	4
MMJNR065		5.35	<0.005	<0.01	0.04	<0.1	<0.2	<10	<10	<0.05	0.52	>25.0	<0.01	0.45	0.3	1
MMJNR066		0.04	1.220	0.42	1.77	6340	1.0	10	70	0.23	20.7	4.67	0.81	15.90	152.5	28
MMJNR067		3.11	0.017	0.04	1.09	89.2	<0.2	<10	40	0,58	9.22	0,19	0.07	41.6	10.0	10
MMJNR068		4.45	0.084	0.02	0.76	10.4	<0,2	<10	60	0.61	11.70	0.15	0.09	48.2	8.5	5
MMJNR069		5.55	0.036	0.02	0.77	7.3	<0.2	<10	60	0.65	2,50	0.15	0.09	50.5	7.9	7
MMJNR070		7.09	0.295	0.02	0.74	3.6	0.2	<10	60	0.56	30.5	0.15	0.09	47.0	7.4	7
MMJNR071		7.46	0.061	0.02	0.79	13.5	<0.2	<10	40	0.59	7.04	0.07	0.05	47.4	12.9	5
MMJNR072		6.14	0.076	0.05	0.74	8.1	<0.2	<10	40	0.54	8.97	0.03	0.02	35,7	10.5	4
MM/NR073		4.59	0.070	0.03	0.62	2.1	<0.2	<10	50	0.72	12.30	0.14	0.11	52.8	6.3	6
MMJNR074		5.23	0.067	0.02	0.72	1.6	<0.2	<10	60	0.84	11.40	0.16	0.12	61.2	8.3	6
MMUNR075		5.71	0.031	0.02	1.11	9,4	<0.2	<10	110	0.56	8.45	0.22	0.09	47.2	8.7	8
MMJNR076		3.95	0.022	0.02	5.83	2.6	<0.2	10	20	3.87	3.44	6.17	0.05	59.0	6.9	33
MMJNR077		7.69	<0.005	0.02	5.66	1,6	<0.2	<10	20	2.52	0.82	4.56	0.01	39.8	5.7	26
MM/NR078		7.69	0.024	0.01	0.63	0.8	<0.2	<10	10	1.25	2.13	1.40	0.07	15.55	4.9	5
MIMUNKU79		6.20	0.203	0.03	0.64	0.7	0.2	<10	10	1.54	15.40	1.52	0.05	12.50	6.0	4
MMUNRU80		8.59	0.093	0.02	6.59	1.2	<0.2	<10	10	2.09	10.35	6.32	0.03	46.3	4.0	17
MIMUNIKU81		4.91	<0.005	<0.01	0.05	0.3	<0.2	<10	10	<0.05	0.07	>25.0	<0.01	0.48	0.4	1
MMJNKU82		0.04	1.230	U.42	1.83	6410	1.1	10	70	0.23	21.8	4.81	0.86	17.10	156.0	29

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

									CI	ERTIFIC	ATE O	F ANAL	YSIS	WH141	16725	
Sample Description	Method	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41
	Analyte	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%
	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01
MMJNR043 MMJNR044 MMJNR045 MMJNR046 MMJNR047 MMJNR048 MMJNR049		7.19 7.68 3.84 1.88 0.98 <0.05 1.06	13.2 15.6 9.4 14.9 13.5 1.1 123.0	2.12 2.49 2.02 2.51 3.00 0.05 3.98	3.45 5.61 5.68 3.93 3.53 0.12 5.23	0.10 0.12 0.11 0.11 0.08 <0.05 0.14	0.10 0.12 0.20 0.02 0.06 <0.02 0.27	<0.01 0.01 0.01 0.01 0.04 <0.01	0.013 0.015 0.015 0.018 0.013 <0.013 <0.005 0.117	0.30 0.41 0.41 0.17 0.11 0.01 0.14	35.2 33.1 25.2 18.4 14.5 0.2 11.7	15.2 29.5 29.7 8.6 4.8 0.7 13.0	0.10 0.19 0.27 0.06 0.02 1.87 0.45	441 428 364 353 393 22 759	4.43 2.94 5.29 3.74 2.37 0.08 10.40	0.06 0.10 0.09 0.01 <0.01 <0.01 <0.01 0.16
MMJNR050 MMJNR051 MMJNR052 MMJNR053		1,01 1.30 1.68 2.76	13.2 19,5 12.2 9,7	2.14 2.30 2.21 2.31	3.30 3.51 2.78 6.09	0.05 0.06 0.05 0.09	0.07 0.03 0.02 0.12	0.02 0.05 0.01 <0.01	0.013 0.011 0.014 0.009	0.07 0.12 0.10	18.8 17.7 15.1 18.8	5.6 6.4 3.0 35.4	0.02 0.03 0.03 0.32	595 495 241 327	11.60 3.58 7.28 2.03	<0.01 <0.01 <0.01 0.11
MMJNR054		3.10	13.6	2.18	6.37	0.09	0.16	<0.01	0.010	0.56	21.1	37.5	0.36	339	17.25	0.12
MMJNR055		2.96	15.5	2.19	6.08	0.09	0.20	0.01	0.015	0.50	20.3	32.6	0.32	381	23.9	0.10
MMJNR056		3.93	11.9	2.09	6.76	0.10	0.17	<0.01	0.013	0.56	21.1	40.8	0.34	357	24.2	0.11
MMJNR057		3.01	13.8	2.16	6.26	0.09	0.20	<0.01	0.012	0.51	20.4	39.2	0.33	382	3.01	0.12
MMJNR058 MMJNR059 MMJNR060 MMJNR061 MMJNR062		2.99 3.07 3.06 0.99 1.03	9.6 19.6 19.5 20.5	2.13 2.14 2.09 2.08 2.48	6.13 6.44 6.71 2.96 3.50	0.09 0.10 0.09 <0.05 <0.05	0.18 0.18 0.16 0.05 <0.02	0.01 <0.01 <0.01 0.04 0.01	0.010 0.009 0.009 0.009 0.014	0.57 0.54 0.44 0.15 0.13	19.4 20.0 13.2 15.5	37.1 34.2 36.1 7.1 3.3	0.36 0.33 0.31 0.02 0.01	349 334 265 407	4.12 8.92 11.75 3.48 5.83	0.12 0.12 0.10 <0.01 <0.01
MMJNR063		1.19	22.4	3.23	3.56	0.05	<0.02	0.01	0.013	0.10	14.5	2.8	0.01	568	4.47	<0.01
MMJNR064		0.86	18.4	1.49	2.46	<0.05	0.02	0.01	0.012	0.14	9.0	2.8	0.01	162	22.4	<0.01
MMJNR065		<0.05	1.6	0.05	0.11	0.05	<0.02	<0.01	<0.005	0.01	0.2	0.3	1.98	25	0.12	0.01
MMJNR066		1.00	118.5	3.91	4.77	0.10	0.24	0.01	0.105	0.14	10.2	12.6	0.45	740	10.15	0.16
MMJNR067		2.27	25.7	3.34	3.43	0.06	0.02	0.01	0.029	0.23	16.1	12.9	0.12	474	6.79	0.03
MMJNR068		3.99	22.3	2:16	3.61	0.07	0.09	0.01	0.029	0.25	21.2	15.6	0.13	306	3.89	0.05
MMJNR069		2.66	19.6	2.37	3.67	0.06	0.07	0.01	0.011	0.29	21.1	15.5	0.14	352	3.28	0.06
MMJNR070		3.28	12.1	2.00	3.89	0.07	0.06	0.01	0.010	0.26	20.8	15.9	0.14	317	4.44	0.07
MMJNR071		1.81	19.3	2.41	2.21	0.06	0.03	0.01	0.014	0.25	21.5	5.8	0.04	425	2.55	0.02
MMJNR072		1.48	12.6	2.17	1.88	0.05	0.04	0.01	0.010	0.23	17.0	5.0	0.03	240	4.97	<0.01
MMJNR073		1.93	4.9	2.11	2,60	0,06	0,09	0.01	0.009	0.28	24.1	9.0	0.06	340	31.4	0.05
MMJNR074		2.56	7.0	2.00	3,66	0.07	0,13	<0.01	0.010	0.32	29.2	16.4	0.12	354	5.39	0.07
MMJNR075		2.76	9.7	2.42	5,81	0.07	0,11	0.01	0.021	0.39	22.1	28.1	0.27	326	16.00	0.09
MMJNR076		4.07	14.6	3.60	21,6	1.24	0,83	<0.01	0.332	0.07	31.3	29.4	0.14	1470	11.75	0.13
MMJNR077		2.39	14.1	1.57	17,80	0.43	0,36	<0.01	0.104	0.08	20.2	23.5	0.26	519	120.5	0.26
MMUNR078		0.80	5.8	1,67	4.79	0.37	0.19	0.01	0.124	0.02	7.1	7.7	0.10	792	12.75	0.05
MMUNR079		0.62	6.2	2.03	5.66	0.54	0.21	0.02	0.186	0.02	5.9	5.9	0.06	868	7.42	0.06
MMUNR080		0.95	3.6	1.38	16.75	0.68	0.55	0.01	0.123	0.02	24.7	8.2	0.06	754	16.35	0.13
MMUNR081		<0.05	0.7	0.06	0.13	0.05	0.02	<0.01	<0.005	<0.01	0.2	0.3	1.89	29	0.14	<0.01
MMUNR082		1.04	123.0	3.96	4.95	0.11	0.26	0.01	0.108	0.14	11.1	13.3	0.46	767	10.55	0.16

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25-AUG-2014 Account: TELOEX

						CE	RTIFIC	CATE O	F ANAL	YSIS	WH141	16725				
Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME- MS41 Ni ppm 0.2	ME- MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS4 } Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME- MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
MMJNR043		0,32	4.0	410	9.3	22.0	<0.001	0.01	0.59	4.1	0.7	1.3	12 1	<0.01	0.23	13.0
MMJNR044		0.52	4.5	430	9.0	32,4	<0.001	0.01	0.57	4.8	0.5	1.8	16.3	<0.01	0.20	14.3
MMJNR045		0.64	2.8	390	6.8	31.8	0.001	0.01	0.26	4.5	0.8	1.3	14.6	<0.01	0.18	13.4
MMJNR046		0.29	6.6	330	17.0	11.2	<0.001	0.02	0.82	4.6	0.3	1.2	6.7	< 0.01	0 14	12.5
MMJNR047		<0.05	2.4	350	12.1	9.7	<0.001	0.02	1.41	4.9	0.2	1.1	5.7	<0.01	2.31	10.5
MMJNR048		<0.05	<0.2	30	<0,2	0.3	0.001	0.10	<0.05	0.3	0.2	<0.2	4710	<0.01	0.02	<0.2
MMJNR049		0.19	35.2	980	18.4	5.9	0.046	0.62	10.05	3.4	10.5	2.5	139.5	<0.01	4 42	1.8
MMJNR050		0.09	2.4	410	17,6	5.9	<0.001	0.02	0.75	4.1	0.6	1.3	7.3	< 0.01	1 90	11.8
MMJNR051		0.13	2.7	360	13.5	9.4	< 0.001	0.07	1.59	3.4	0.6	2.1	4.9	<0.01	0.62	10.2
MMJNR052		0.16	2.5	290	9.7	6.4	<0.001	0.02	0.74	3.2	0.4	1.1	6.5	<0.01	3.71	11.7
MMJNR053		0.84	2.2	390	3,6	38.6	0.001	0,01	0.18	4.6	0.6	1.3	16.6	<0.01	0.03	11.5
MMJNR054		0.88	1.7	420	4.0	43.1	0.003	0.02	0.16	5.0	0.7	1.9	16.4	< 0.01	1.51	11.9
MM/NR055		0.81	1.7	370	3.2	38.7	<0.001	0.01	0.10	4.4	0.7	2.2	15.2	<0.01	0.03	10.6
MMJNR056		1.02	1.6	360	3.7	48.3	0.001	0.01	0.13	5.1	0.7	2.2	17.2	<0.01	0.36	11.3
MMJNR057		0.78	2.1	360	4.8	38.7	0.001	0.01	0.08	4.7	0,6	2.0	17.3	<0.01	0.04	11.7
MMJNR058		0.85	1,6	380	3.3	43.3	0.001	0.01	0.07	4.7	0.6	3.6	15,3	<0.01	0.05	10,7
MMJNR059		0.89	1.6	350	2.9	41.8	0.001	0.01	0.07	4.6	0.6	1.4	15.4	<0.01	0.09	11.0
MMJNR060		0.78	1.8	390	3.1	35.0	0.001	0.01	0.09	4.5	0.5	2.1	13.3	<0.01	0.04	11.6
MMJNR061		0.12	1.2	310	11.2	12.2	<0.001	0.08	6.25	2.4	0.3	1.9	4.2	< 0.01	0.04	9.8
MMJNR062		0,16	1.3	400	10.3	9.1	<0.001	0.02	0.65	4.3	0.3	2.0	3.6	<0.01	0.09	11.8
MMJNR063		0.23	1.9	380	6.6	7.5	<0.001	0.02	0.79	4.2	0.3	2.1	2.8	<0.01	0.20	9.8
MMJNR064		0.19	2.9	280	14.7	_, 10.6	0.001	0.02	2.96	2.0	0.7	1.2	2.3	<0.01	3.27	10.3
MMJNR065		0.08	0.4	30	0.3	0.2	<0.001	0.09	0.07	0.2	0.2	<0.2	4820	<0.01	0.01	<0.2
MMJNR066		0.20	33.4	980	18.4	5.5	0.044	0.62	8.79	3.1	9.8	2.0	132.0	<0.01	3.87	1.8
MMJNR067		0.71	6.6	410	27.1	17.4	<0.001	0.04	0.95	2.6	0.4	1.3	14.6	<0.01	0.08	11.0
MMINR068		0.73	2.7	390	8.7	19.8	<0.001	0.01	1.02	3.8	0.7	3.2	9.8	<0.01	0.20	12.4
MMJNR069		0.63	4.0	420	8.6	21.8	<0.001	0.01	0.26	3.5	0.6	1.6	9.8	<0.01	0.07	12.2
MMJNR070		0.88	2.4	390	7.1	19,8	<0.001	0.01	0.32	3.7	0.7	1,3	10.1	<0.01	0.66	11.3
MMJNR071		0.21	2.8	410	13.1	17.6	<0.001	0.02	0.51	1.7	0.4	1.8	4.1	<0.01	0.25	11.5
MMJNR072		0.12	3.0	380	17.1	17.5	<0.001	0.07	1.26	1.7	0.2	1.7	2.8	<0.01	0.20	11.0
MMJNR073		0.27	4.3	380	9.6	19.1	0.001	0.01	0.26	2.8	0.7	0,8	8.1	<0.01	0.20	11.9
MMJNR074		0.52	3.2	410	8.4	25.2	<0.001	0.01	0.20	3.7	0.7	1.5	9.8	<0.01	0.32	13.4
MMJNR075		1.32	5.0	410	9.4	31.7	0.001	0.04	0.30	4.3	0.5	1.8	15.7	<0.01	0.11	12.3
MMJNR076		0.89	8,5	490	2.3	6.3	0.001	0.01	0.18	4.2	0.7	25.1	331	0.01	0.05	14.3
MMJNR077		1.27	10.8	480	1.9	8.0	0.007	0.04	0.12	3.2	0.5	8.1	477	0.03	0.02	13.1
MMJNR078		0.63	4.0	620	0,8	3.4	<0.001	0.01	0.11	0.5	0.3	3.9	21.2	<0.01	0.04	2.8
MIMUNKU/9		0.83	2.2	280	0.9	2.4	0.002	<0.01	0.11	0.4	0.4	5.1	19.2	<0.01	0.36	2.4
MMJNR080		0.46	3.8	920	0.9	2.1	<0.001	<0.01	0.16	1.9	0.6	6.5	492	0.01	0.26	13.0
MMJNR081		0.11	0.3	30	<0.2	0.2	<0.001	0.11	0.06	0.3	<0.2	<0.2	4830	<0.01	0.01	<0.2
MMJNR082		0.24	34.5	1000	18.9	5.8	0.050	0.62	9.42	3.2	10.6	2.2	138.0	< 0.01	4.11	1.9

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

									CI	ERTIFIC	ATE O	F ANAL	YSIS	WH14116725	
Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	As- OG46 As % 0.01	Zn- OG46 Zn % 0.001	W-XRF05 W ppm 10	Zn- VOL50 Zn % 0.01		
MMJNR043		0.016	0.15	3.21	11	70.4	17,05	48	3.4						
MMJNR044		0.041	0.20	3.31	17	72.2	15.80	41	4.0						
MMJNR045		0.069	0.19	3,18	19	49.7	13.45	32	4.9						
MMJNR046		0.009	0.14	2.82	15	8.04	10.30	56	0.9						
MMJNR047		<0.005	0.12	2.46	11	14.55	8.11	39	2.8						
MMJNR048	17-1-1	<0.005	<0.02	1.38	1	0.06	0.47	2	<0.5				•		
MMJNR049		0.101	0.05	2.21	51	2.51	7.44	88	8.6						
MMJNR050		<0.005	0.07	3.46	12	2.13	9.74	36	3.4						
MMJNR051		<0.005	0.16	3.24	10	3.55	10.05	24	1.4						
MMJNR052		<0.005	0.11	2.34	13	13,90	8.35	26	0.7						
MMINR053		0.105	0.17	2.80	23	116.5	11,80	21	3.2						
MMJNR054		0.118	0.19	1.66	25	80.6	12.20	25	3.5						
MMJNR055		0.102	0.16	2.11	22	35.0	11.60	31	4.4						
MMJNR056		0.117	0.24	1.83	24	128.0	12.20	28	3.7						
MMJNR057		0.104	0.19	2.25	22	91.6	12.45	27	4.3						
MMINR058		0.120	0.19	1.76	24	43.8	11.35	26	3.4						
MMJNR059		0.107	0,17	1.95	23	200	12.65	25	3.9			210			
MMJNR060		0.082	0.15	2.21	22	140.0	13.15	28	3.4			- ; -			
MMJNR061		<0.005	0.14	1.84	8	2.44	4,91	13	2.0						
MMINR062		<0.005	0.06	2.22	14	2.35	5,54	26	0.7						
MMJNR063		0.005	0.05	1.59	18	4.83	5.82	28	<0.5					····	
MMJNR064		<0.005	0,07	1.51	8	94.4	3.78	13	1.2						
MMINR065		<0.005	<0.02	1.24	1	0.20	0.47	<2	<0.5						
MMJNR066		0.089	0.06	2.18	49	2.60	7.39	87	7.7						
MMJNR067		0.012	0.17	1.91	12	6.08	7.03	41	1.0						
MMJNR068		0.022	0.13	2.44	12	43.9	11.05	29	3.0						
MMJNR069		0.018	0.11	2.53	11	13.15	11.50	31	2.7						
MMJNR070		0.028	0.09	2.49	14	38.8	11.40	27	2.2						
MMJNR071		<0.005	0.10	2.03	5	30.1	6.80	26	1.5						
MMJNR072		< 0.005	0.11	2.16	3	13.55	5.18	26	1.6						
MMJNR073		<0.005	0.11	2.49	7	183.0	11.90	24	3.2						
MMJNR074		0.018	0.12	3.37	11	20.0	14.15	27	4.0						
MMJNR075		0.065	0.19	2.19	20	143.0	11.90	35	3.6						
MMJNR076		0.199	0.04	2.97	41	159.5	13.35	38	26.8						
MMJNR077		0.167	0.04	2.54	35	61.0	11.20	26	10.0						
MMINR078		0.039	0.03	1.11	8	131.0	6.91	33	6.3						
MMJNR079		0.039	0.03	0.85	6	380	6.21	26	7.1			470			
MMJNR080		0.133	<0.02	2.49	22	28.0	9.66	15	17.1						
MMJNR081		<0.005	<0.02	1.38	1	1.07	0.53	<2	0.6						
MMJNR082		0.096	0.06	2.33	51	2.89	7.97	89	8.2						

5)

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

.

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25-AUG-2014 Account: TELOEX

									CI	ERTIFIC	ATE O	F ANAL	YSIS	WH141	16725	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME- MS41 Cr ppm 1
MMJNR083		6.35	0.257	0.04	4.30	2.9	0.2	<10	10	2.38	32.2	3.87	0.04	30.8	5.5	12
MMJNR084		8,12	0.008	0.01	9.24	1.2	<0.2	<10	40	2.97	1.00	0.00	0.04	53.2	10.5	30
MMJNR085		2.46	0.043	0.01	7.10	1.1	<0.2	10	30	4.4	4.09	0.10	0.03	00.9	4.9	34
MMJNK086		3.56	0,099	0.02	0.90	1.0	<0.2	10	10	3.11	2.90	7.76	0.02	49.2	4.9	21
MMJNR087		6.65	0.011	0.02	6.04	2.1	<0.2	30	10	4.00	3.37	1.70	0.02	09.0	7.4	31
MMJNR088		3.54	0.090	0.02	10.95	0.8	<0.2	<10	20	4.74	13.00	7.90	0.02	59.0	8.2	28
MMJNR089		4.83	0.040	0.03	12.30	1.4	<0.2	<10	10	3.90	3.78	9.01	0.03	45.7	4.8	26
MMJNR090		4.13	0.114	0.79	6.04	2.4	0.2	10	20	3.57	103.0	4.52	0.11	46.4	15.6	31
MMJNR091		6.18	0.233	0.10	7.68	2.4	0.2	10	10 .	4.48	105.5	6.21	0.07	54.1	8.7	26
MMJNR092		2.80	0.185	0.03	0.42	0.6	0.2	<10	20	2.34	17.90	1.47	0.15	8.31	2.3	3
MMINR093		5.61	0.629	0 10	1.49	1.4	0.9	10	10	2.37	64.0	4.69	<0.01	23.4	2.1	12
MMINR094		6 63	0.692	0.06	0.67	0.7	0.6	20	20	2.78	59.2	3.72	<0.01	9.99	2.2	5
MMINR095		3 76	0.636	0.08	0.77	2.0	0.6	<10	10	3.08	52.4	2.47	<0.01	10.45	2.5	5
MMINR096		2.90	0.043	0.06	3.56	51	<0.2	10	30	2 13	3 67	5.04	0.07	43.7	3.5	21
MMINR097		4.34	0.027	0.04	3.09	2.6	<0.2	10	30	3.87	5,39	4.72	0,22	40.9	4.1	20
NUMPROOF		0.07	0.402	0.03	2.76	0.7	<0.2	20	10	2.07	10 55	6 16	0.04	54 G	4 7	24
MMJNKU98		3.67	1 450	0.03	3.70	2.1 1.5	17	20 r10	10	3.87	2/1	2.05	<0.04	04.0 21.1	4.7	34 15
MMJNR099		2.02	0.031	0.45	2.30	1.5	<0.2	10	10	2.43	8 70	2.00	<0.01	21.1	3.6	16
MMUNRIOU		3.55	0.031	0.00	2.35	0.3	~0.2	~10	10	2.45	769	2 10	<0.01	34.9	7.2	14
MMUNRIUT		3.07	4.10	0,02 <0.01	0.05	2.0	4.2	<10	10	<0.04	0.76	>25.0	~0.01	0.45	7.5	1
		4.00	~0.000	<0.01	0.00	0.1	<0.2	~10	10	-0.00	0.10	-20.0	0.01	0.40	0.0	
MMJNR103		0.04	1.220	0.43	1.8D	6480	1.2	10	70	0.21	23.8	4.74	0.85	15.75	157,5	29
MMJNR104		5.02	0.179	0,02	3,06	7.4	0.2	20	20	3.18	20.7	8.19	0.04	44.9	2.7	24
MMJNR105		3.44	0.018	0.01	3.38	3.1	<0.2	30	20	2.70	4.34	7.77	0.05	40.7	2.7	22
MMJNR106		3.07	0.010	0.01	4.51	2.3	<0.2	20	20	2.48	2.35	6,55	0.14	34.2	2.5	22
MMJNR107		4.42	0.257	0.03	4,78	4.0	0.3	20	20	2.86	29.9	8.50	0.05	51.0	2,7	27
MMJNR108		1.92	3.29	0.42	3.11	16.5	3,4	<10	20	2,77	536	2.72	<0.01	46.9	6.7	21
MMJNR109		1.42	2.18	0.30	1.48	53.2	2.0	<10	20	2.21	338	0.47	<0.01	21.8	7.7	27
MMJNR110		3.22	0.201	0.23	0.23	76.7	0.2	<10	30	0,07	2.92	0.04	0.02	6.57	4.3	10
MMJNR111		1.46	0.024	0.41	0.28	316	<0.2	<10	30	0.12	1.39	0.02	0.17	19.30	0.9	11
MMJNR112		1.88	<0.005	0.21	1.29	19.0	<0.2	<10	20	0.19	0.40	0.04	0.25	6.09	9.1	14
MMJNR113		2.42	0.064	54.3	0.09	146.0	<0.2	<10	10	0.37	5.94	0.11	39.5	4.76	44.4	8
MMJNR114		1.76	0.013	0.17	0.33	519	<0.2	<10	20	0.10	0.29	0.02	0.16	24.9	1.9	14
JBJNR001		1.12	0.037	0.24	4.25	50.3	<0.2	<10	70	1.52	0.85	2.14	0.13	27.8	11.9	40
JBJNR002		1.03	<0.005	0.03	0.57	2.1	<0.2	<10	20	0.17	0.11	0.97	0.07	26.7	1.6	13
JBJNR003		1.53	<0.005	0.02	0.35	1.7	<0.2	<10	20	0.18	0.11	0.13	0.11	12.55	2.5	17
JBJNR004		0.38	<0.005	0.02	2.75	6.3	<0.2	<10	70	0.85	0.10	0.91	0.06	42.2	8.1	59
JBJNR005		1.24	<0.005	0.03	4.08	2.4	<0.2	<10	120	1.62	0.09	0.96	0.06	44.9	11.4	53
IBINR006		0.77	0.311	0.37	0.09	>10000	0.3	80	20	0.12	5.50	0.01	0.02	11.60	6.1	11
IBINR007		0.89	<0.005	0.01	0.60	76.0	<0.2	<10	<10	0.13	0.09	0.01	0.02	11.35	1,0	14
IBINR008		1.79	<0.005	0.03	0.15	24.1	<0.2	<10	<10	0.06	0.08	0.01	0.03	4,69	1,5	14
1-5																

(ALS) Minerals 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

Method									C	ERTIFIC	ATE O	F ANAL	YSIS	WH141	16725	!
Sample Description	Method Analyte Units LOR	ME- MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME- MS4T Li ppm 0.1	ME- MS41 Mg % 0.01	ME- MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
MMJNR083 MMINR084		0.93	5.8 9 9	2.16	13.35 24.2	0.49	0.30	<0.01	0.163	0.02	14.7	9.8	0.10	683	14.90	0.18
MMINRO85		2.00	4.3	2.16	23.0	0.77	0.40	0.01	0.200	0.20	28.4	16.0	0.32	201	40.95	0.52
MMINR086		1.33	5.8	1 20	22.0	0.33	0.94	<0.01	0.200	0.20	23.8	84	0.02	306	6.96	0.49
MMJNR087		3.77	19.5	1.68	21.9	0.56	0.72	<0.01	0.158	0.05	38.5	13.0	0.21	506	16.75	0.13
MMJNR088		2,56	7.4	1.43	28.3	0.46	0.47	<0.01	0.138	0,05	26.6	11.8	0.20	388	53.6	0.53
MMINR089		3.52	4.8	0.76	28.3	0.20	0.44	<0.01	0.054	0.03	19.7	12.3	0.16	293	73.0	0.39
MMINR090		2.63	247	8.28	21.2	0.16	0.61	<0.01	0,458	0.17	21.6	35,9	0.33	1620	26.1	0.08
MMINR091		3.52	124.5	3.27	22.5	0.54	D,55	<0.01	0.229	0.04	27.2	24.0	0.26	9D1	25.7	0.15
MMJNR092		0.35	2.0	3.03	7.67	0.87	0.14	<0.01	0.442	0.03	3.4	5,9	0.07	1220	174.5	0.02
MMJNR093		0.47	1.8	4 14	12.80	1.58	0.76	<0.01	0.878	0.03	12.4	9.0	0.08	1520	46.7	0.03
MMJNR094		0.44	8.0	4.53	12.75	1.73	0.24	<0.01	1.370	0.05	3.7	4.3	0.08	1660	54.3	0.03
MMJNR095		0,69	15.5	4.04	10.35	1.11	0.21	<0.01	0.733	0.02	4.3	8.8	0.07	1620	12.15	0.02
MMJNR096		1.51	21.3	3.78	14.40	1.19	0,59	<0.01	0.513	0.14	24.1	17.6	0.19	1720	28.6	0.12
MMJNR097		2.05	34.9	5.19	15.30	0.97	0.65	<0.01	0.630	0.07	22.7	16.7	0.21	2380	46.2	0.08
MMJNR098		1.67	53.0	5.38	18.05	1.29	1.13	<0.01	0.592	0.07	33.1	22.0	0.28	2270	37.9	0.08
MMJNR099		0.97	450	9.52	21.9	1.71	0.49	<0.01	0.681	0.07	11.5	9.9	0.14	777	90.1	0.07
MMJNR100		0.51	89.4	4.90	15.65	1.62	0.52	<0.01	0.716	0.02	16.1	10.3	0.07	1460	45.3	0.04
MMJNR101		0.70	176.5	7.81	23.2	1,85	0.33	<0.01	0.856	D. 1 1	13.0	9.6	0.09	1180	129.5	0.07
MMJNR102		<0.05	1.1	0.07	0.17	<0.05	<0.02	<0.01	<0.005	0.01	0.2	0.4	1.95	28	0.29	0.01
MMJNR103		1.00	120.5	3.97	4.81	0.11	0.23	0.01	0.110	0.14	10.1	13.6	0.46	746	9.26	0.16
MMJNR104		1.12	12.7	5.19	14.65	1.10	1.02	<0.01	1.025	0.03	28.7	12.1	0.18	2190	34.4	0.04
MMJNR105		1.34	7.8	5.26	16.15	1.46	0.82	<0.01	0.988	0.02	23.1	15.7	0.13	2150	51.4	0.02
MMJNR106		1.66	16.1	3.43	16.25	1.03	0.73	<0.01	0.491	0.03	19.8	16.5	0.11	1540	67.0	0.06
MMJNR107		1.17	12.3	4.66	16.45	1.26	1.11	<0.01	0,693	0.02	31.1	11.8	0.15	2230	31.7	0.06
MMJNR108		0.48	95.2	10.65	12.95	0.32	0.51	0.02	2.73	0.04	21.7	4.5	0.08	3340	64.3	0.07
MMJNRT09		0.58	222	11.85	9.11	0.13	0.29	0.04	3.24	0.02	8.3	2.4	0.03	2310	53.3	0.02
MMUNRITO		0.58	10.3	4.78	0.71	<0.05	0.09	0.42	0.030	0.10	2,8	0.7	0.01	90	0.69	<0.01
MMUNRITI		0.53	12.5	2.22	0.92	<0.05	0.05	0.02	0.033	0.15	9.4	1.4	0.01	125	0.46	<0.01
MMUNRTIZ		1.28	52.9	3.67	2.93	<0.05	0.07	<0.01	0.022	0.19	2.6	30,3	0.41	398	0.18	<0.01
MMINRTIS		0.09	281	10.85	38.5	4.52	0.02	111.0	9.28	0.02	2.7	5.5	D.13	333	0.31	<0.01
MMJNRT 14		0.68	7.1	1.87	1.16	<0.05	0.11	0.21	0.022	0.13	11.1	3.1	0.04	198	0.27	0.03
JBJNRUUT		3.72	30.5	3.63	14.10	0.05	0.27	0.06	0.021	0.57	14.4	45.3	0.50	125	0.36	0.41
JBJNR002		0.33	3.8	1.49	2.14	<0.05	0.05	0.02	0.008	0.16	12.9	14. 1	0.18	226	0.20	0.05
JBJNR003		1.38	8.6	1.20	1.28	<0.05	0.03	0.04	0.013	0.06	4.5	6.0	0.07	193	0.53	0.03
JBJNR004		6.41	18.1	3.03	9.46	0.08	0.11	0.01	0.026	0.55	20.9	116.0	0.81	342	5.66	0.21
IRINROOS		1.48	28.0	4.00	15.10	0.10	0.09	0.01	0.038	1.42	23.0	88.4	1.09	238	0.66	0.11
		0.12	33,3	0.00	0.69	<0.05	0.06	0.17	0.025	0.04	6.0	0.9	0.02	100	0.26	<0.01
		0.19	1.1	1.01	1.63	<0.05	0.05	0.01	0.006	0.03	5.3	2.8	0.01	64	0.12	<0.01
JOJINKUUS		0.10	7.1	2.05	0.69	<0.05	0.02	0.01	0.015	0.01	2.2	0.5	<0.01	198	0.33	<0.01

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

					•				CE	ERTIFIC	ATE O	F ANAL	YSIS	WH141	16725	
Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME- MS41 Ni ppm 0.2	ME- MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- M541 Sb ppm 0.05	ME- MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
MMJNR083 MMJNR084		1.06 0.70	3.8 11.5	300 320	1.6 . 1.6	1.9 22.0	0.001 0.001	<0.01 0.01	0.10 0.08	1.3 3.6	0.4 0.9	5.4 5.1	385 814	0.03 0.01	0.70 0.03	8.8 19.9
MMJNR085 MMJNR086		1.34 0.57	9.2 4.7	300 200	1.1 1.1	20.4 1.9	<0.001 <0.001	<0.01 <0.01	0.11 0.14	4.0 2.4	0.8 0.7	10.6 7.8	557 770	0.04 0.01	0.09 0.29	17,2 17.7
MMJNR087 MMJNR088		1.00	7:5	210	2.1	2.9	0.001	<0.03	0.64	2.8	1.0	8.7	1110	0.01	0.04	20.9
MMJNR089 MMJNR090 MMJNR091		0.39 0.57 0.41	7.5 17.6 13.6	220 440 740	2.5 55.1 1.6	2.9 15.4 4.1	<0.0012 <0.001 0.002	<0.01 0.30 0.50	0.08 1.83 0.33	2.6 4.9 3.6	0.7 1.3 1.0	4.7 12.3 10.0	1135 391 657	0.01 <0.01 <0.01	0.10 0.56 1.41	19.9 15.2 18.4
MMJNR092 MMJNR093 MMINR094		1.12 0.87	3.1 1.6	120 260	1.9	2.6 3.5 4.4	0.003	0.01	0.10	1.6 0.6	0.3	46.4 69.7	9.2 7.3	<0.01 0.01 <0.01	0.34 1.50 1 19	4.2 1.3
MMJNR095 MMJNR096 MMJNR097		0.46 1.22 1.18	1.9 7.3 7.3	80 330 160	2.4 5.8 2.2	1.3 11.5 4.8	0.002 0.002 0.002	0.04 0.06 0.03	0.50 0.82 1.45	0.6 3.1 2.9	<0.2 0.5 0.5	31.5 16.7 27.7	5.6 196.5 75.1	<0.01 0.03 0.02	1.62 0.04 0.06	1.9 8.7 8.1
MMJNR098 MMJNR099		1.50 1.75	7.7 6.7	170 150	1.7 2.8	4.3 3.5	0.001	0,03 1.84	1.49 0.75	5.2 1.6	0.6 3.0	36.5 57.4	49.9 76.6	0.02	0.18 3.08	13.1 4.8
MMJNR100 MMJNR101 MMJNR102		1.54 1.22 0.10	3.7 4.2 <0.2	260 260 30	0.9 2.1 <0.2	1.7 3.4 0.2	0.002 0.011 0.001	0.26 0.75 0.10	0.64 3.87 <0.05	2.2 1,4 0.2	0.5 1.9 0.7	46.0 56.9 0.2	78.4 14.0 4670	0.01 <0.01 <0.01	0.07 14.00 0.05	6.6 3.7 <0.2
MMJNR103 MMJNR104 MMJNR105		0.24 1.25 1.10	35.2 6.5	1010 210 300	19.4 1.1	`5.8 4.8	0.045 0.002 0.001	0.63 <0.01	8.98 1.16 0.78	3.2 3.3	10.6 0.4	2.2 40.8	137.5 68.8	<0.01 0.02	4.33 0.50	1.9 8.9
MMJNR103 MMJNR106 MMJNR107		1.10 1.20	6.0 6.5	260 170	1.0 1.0	4.2 4.3 2.7	0.002 0.001	0.01 <0.01	0.48 1.07	2.8 3.6	0.4 0.5	19.9 24.1	297 230	0.02 0.02 0.02	0.03 0.02 0.86	10.0 11.7
MMUNR108 MMUNR109 MMUNR110 MMUNR111		0.61 0.28 0.10 0.10	11.8 7.6 5.3 2.6	460 240 20 160	3.0 2.4 5.7 29.4	2.6 1.7 5.2 8.6	0.001 0.001 <0.001 <0.001	0.05 0.05 4.14 0.01	1.78 3.28 21.8 2.65	4.7 6.5 0.3 0.5	1.7 1.2 0.6 0.2	37.1 54.5 1.5 1.1	178.0 42.7 9.4 7.4	0.01 <0.01 <0.01 <0.01	11.40 7.24 0.06 0.02	9.3 8.6 1.6 7.4
MMUNR112 MMUNR113 MMUNR114		0.07	9.2 1.9 4.7	450	6990 52.2	0.5	<0.001	0.01	0.46 31.2 1.46	0.8	<0.2 4.4 <0.2	1.9 15.2 0.2	6.3 8.4	<0.01	0.01	4.7 0.3 5.7
JBJNR001 JBJNR002 JBJNR003		0.34 0.08 0.19	31.8 4.0 6.4	410 110 320	32.8 8.5 3.1	59.9 10.4 7.5	0,001 <0.001 <0.001	1.46 0.01 <0.01	2.28 0.16 0.15	5.0 0.7 1.1	0.6 0.2 0.2	1.3 0.2 0.3	172.0 32.5 7.6	<0.01 <0.01 <0.01	0.03 <0.01 <0.01	16.4 7.7 4.2
JBJNR004 JBJNR005 JBJNR006 JBJNR007 JBJNR007		0.46 0.50 0.14 0.10	30.9 41.8 3.6 4.1	200 580 80 100	4.5 2.8 14.0 2.6	49.1 114.5 1.5 3.1	0.001 <0.001 <0.001 <0.001 <0.001	0.05 0.07 0.87 <0.01	0.12 0.07 15.80 0.33	6.9 10.8 0.3 0.6	0.5 0.5 0.9 <0.2	1.1 1.7 1.3 0.6	60.5 76.7 4.2 2.2	0.01 0.01 <0.01 <0.01	0.01 0.02 0.85 0.01	13.7 12.4 2.4 5.6
<u>β</u> είνκυνα		0,10	4.9	30	3.4	1.0	<0.001	0.01	0.40	0.9	0.3	U.4	1.1	<0.01	<0.01	1.2

(ALS) Minerals 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

CERTIFICATE OF ANALYSIS

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

WH14116725

ME- MS41 ME- MS41 ME- M541 ME- MS41 ME- MS41 ME- MS41 ME- MS41 ME- MS41 As- OG46 Zn- OG46 W- XRF05 Zn- VOL50 Method Τì ΤI U v W Y Zn Ζг As Zn W Zn Analyte % % Units ppm ppm ppm ppm ppm ppm ppm % ppm % Sample Description LOR 0.005 0.02 0.05 0.05 0.05 2 0.5 0.01 0.001 10 0.01 MMJNR083 0.111 0.02 1.30 16 96.2 8.48 22 7.6 MMINR084 0.269 0.08 2.39 43 7,76 16,95 20 11.0 MMJNR085 0.229 0.06 2.17 43 45.8 16.45 25 10.5 MMJNR086 0.236 13 < 0.02 2.27 31 28.3 14.50 31.2 MMJNR087 0.214 0.02 2.71 38 139.0 15.60 17 23.6 36 17.00 MMINR088 0.238 < 0.02 2.40 90.9 15 14.2 0.209 <0.02 33 13.75 1.96 118.5 MMJNR089 10 13.3 MMJNR090 0.106 0.09 1.83 35 130.0 11.85 48 20.5 MMINR091 0.148 0.03 2.89 34 176.5 12.65 27 17.9 0.021 0.04 1.62 3 760 50 MMINR092 3.49 5.3 860 0.085 0.03 1.98 14 380 MMINR093 6.63 48 28.2 440 MMJNR094 0.032 0,06 2.22 6 1070 6.31 65 11.0 1140 0.034 MMJNR095 0.03 2.09 6 430 3.71 28 7.7 510 MMJNR096 0.140 0.06 2.13 24 72.6 9.14 33 22.4 MMJNR097 0.124 0.06 2.67 26 320 9.41 63 25.1 380 0.183 2.80 0.04 40 148.5 9.93 46 42.3 MMJNR098 MMJNR099 0.075 0.06 1.48 19 6.88 23 15.6 690 750 0.093 MMJNR100 0.02 2.51 20 165,0 6,89 24 20.5 MMJNR101 0.062 0.05 1.26 17 620 7.07 32 13.3 650 MMJNR102 < 0.005 < 0.02 1.29 1.62 0.51 <2 <0.5 1 MMJNR103 0.091 0.06 2.21 51 3.08 7.63 90 8,6 0.134 MMJNR104 0.03 3.91 26 107.5 8.47 51 40.6 MMINR105 0.127 0.02 26 3.24 123.0 7.81 48 33.1 MMJNR106 0.136 0.02 3.03 27 149.5 45 26.9 6.63 MMJNR107 0.176 0.02 4.30 33 38 129.0 8.37 43.6 3.37 28 MMINR108 0.084 0.22 116.5 15.95 64 18.4 MMJNR109 0.021 0.57 2.26 41 96.0 8.83 72 11.7 < 0.005 1.14 0.23 1.45 MMJNR110 3.26 2 2.9 1 MMJNR111 < 0.005 0.13 0.32 2 0.98 1.22 17 1.9 MMJNR112 < 0.005 0.11 0.46 7 0.33 0.79 40 2.5 MMINR113 <0.005 0.05 9.80 10 5.69 >10000 0.6 0.43 >30.0 45.01 MMJNR114 <0.005 0.05 0.44 2 0.29 1.65 1210 4.1 JBJNR001 0.110 0.43 1.45 36 0.50 7.00 151 9,7 JBJNR002 < 0.005 0.05 0.37 4 0.19 2.79 40 2.0 JBJNR003 0.008 0.06 0.50 7 0.95 2.42 95 1.5 IBINR004 0.184 0.22 1.64 53 4.74 8.57 49 3.1 JBJNR005 0.201 0.62 2.11 69 0.50 4.82 68 3.0 JBJNR006 < 0.005 0.48 0.15 1 0.28 1.34 7 2.0 1.21 JBJNR007 <0.005 0.04 0.24 8 0.40 0.91 9 3.1 JBJNR008 < 0.005 0.02 0.09 5 0.23 0.96 14 0.8

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

E E (E 4) E: 9 (4,)									CE	ERTIFIC	ATE O	F ANAL	YSIS	WH141	16725	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME- MS41 Со ррт 0.1	ME- MS41 Cr ppm 1
JBJNR009 JBJNR010 JBJNR011 JBJNR012 JBJNR013		1.50 0.51 1.90 1.55 2.37	<0.005 <0.005 <0.005 <0.005 <0.005	0.02 0.02 0.03 0.01 0.02	0.03 1.30 0.81 0.13 0.32	72.2 1.8 6.8 0.9 3.4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	<10 60 30 <10 10	<0.05 0.39 0.24 <0.05 0.11	0.06 0.05 0.09 0.04 0.11	0.01 0.24 0.11 0.75 1.06	0.02 0.09 0.05 0.02 0.03	0.76 32.2 24.7 2.14 81.4	0.6 9.0 6.9 0.7 3.4	15 26 18 15 14
JBJNR014 JBJNR015 JBJNR016 JBJNR017 JBJNR018		1.89 1.61 0.74 1.28 1.17	<0.005 <0.005 <0.005 <0.005 0.021	0.10 1.39 0.03 0.02 0.04	0.34 0.33 0.19 0.31 0.17	8.6 15.7 0.8 3.5 65.9	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	10 30 <10 20 20	0.07 0.45 0.05 0.14 0.15	0,06 0.37 0.03 0.07 0.10	0.56 16.80 1.56 7.24 3.30	0.04 6.78 0.06 0.02 0.03	21.2 23.6 10.10 27.0 29.0	3.5 3.2 1.6 4.5 2.0	15 5 10 8 9
JEJNRO19 JKJNRO14		1.09 1.54	0.119 <0.005	0.32 0.08	0.19 0.56	59.4 28.0	<0.2 <0.2	<10 <10	20 40	0.06 0.15	0.56 0.42	0.04 0.43	0.01 0.06	18.90 26.3	0.6 4.3	11 21
													·			

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME-MS41 Cs ppm 0.05	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME- MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
JBJNR009		<0.05	2.1	0,93	0.19	<0.05	<0.02	0.02	<0.005	<0.01	0.3	0.2	<0.01	78	0.21	<0.01
JBJNR010		0.88	17.7	2.95	4.18	0.05	0.11	<0.01	0.016	0.22	18.0	33.7	0.53	529	0.23	0.01
JBJNR011		0.33	9.5	2.58	2.45	<0.05	0.05	0.01	0.010	0.12	10,1	24.8	0.35	374	0.29	0.01
JBJNR012		0.11	1.7	1.16	0.58	<0.05	<0.02	0.01	0.005	0.01	0.9	4.6	0.05	187	0.20	<0.01
JBJNROT 3		0.25	5.5	2.15	1.66	0.09	0.13	0.01	0.008	0.05	41.3	17.3	0.11	271	0.33	0.01
JBJNR014		0.31	2.9	1.47	1.38	<0.05	0,10	0.01	0.012	0.05	10.3	8.8	0.10	381	0.19	0.04
JBJNR015		1.03	26.5	1.65	0,99	<0.05	0.10	0.05	0.089	0.17	11.0	1.9	0.13	1580	0.17	0.02
JBJNR016	•	0.13	3.4	1.03	0.87	<0.05	<0.02	<0.01	0.008	0.02	4.6	6.3	0.09	299	0.16	0.02
JBJNR017		0.34	2.5	1.69	1.19	<0.05	0.11	<0.01	0.057	0.09	12.6	6.8	0.13	463	0.25	0.03
JBJNR018		0.57	10.0	1.65	0.52	<0.05	0.07	0.01	0.010	0.07	13.7	3,5	0.09	464	0.20	0.01
JBJNR019		0.57	2.6	1.95	0.75	<0.05	0.06	0.85	0.038	0.12	8.6	0.7	0.01	100	0.31	<0.01
JKJNR014		0.61	102.0	2.45	2.92	<0.05	0.07	<0.01	0.072	0.08	12.1	16.9	0.27	174	0.16	0.05

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax; 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25-AUG- 2014 Account: TELOEX

	ME MCa1 ME MC								CE	ERTIFIC	ATE O	F ANAL	YSIS	WH141	16725	<i>}</i>
Sample Description	Method	ME- MS41	ME- MS41	ME-MS41	ME-MS41	ME-MS41	ME- MS41	ME-MS41	ME- MS41	ME- MS41	ME-MS41					
	Analyte	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2
JBJNR009		0.07	1.9	80	3.4	0.3	<0.001	0.04	0.37	0.2	0.2	<0.2	1.4	<0.01	<0.01	0.2
JBJNR010		0.22	24,1	100	3.4	15.0	<0.001	<0.01	0.13	1.7	0.3	0.3	20.6	<0.01	<0.01	7.5
JBJNR011		0.16	17.2	60	6.6	6.9	<0.001	<0.01	0.23	0.8	0.3	0.2	13.4	<0.01	<0.01	4.1
JBJNR012		0.07	3.5	20	1.4	0.7	<0.001	<0.01	0.12	0.3	0.2	<0.2	54.2	<0.01	<0.01	0.4
JBJNR013		0.08	9.0	60	9.3	2.7	<0.001	<0.01	0.47	1.0	0.2	<0.2	103.5	<0.01	<0.01	4.3
JBJNR014		0.07	7.0	70	14.3	3.1	<0.001	0.02	0.81	1.0	0,3	<0.2	28.7	<0.01	<0.01	5.6
JBJNR015		0.08	8.1	110	466	9.9	<0.001	0.39	1.60	1.9	0.6	0.4	866	<0.01	<0.01	3.5
JBJNR016		0.07	4.3	100	6.4	0.9	<0.001	<0.01	0.22	0.9	0.2	<0.2	111.0	<0.01	<0.01	3.9
JBJNR017		0.07	7.6	100	7.6	4.3	<0.001	0.10	0.85	1.5	0.6	<0.2	539	<0.01	<0.01	6.5
JBJNR018		0.07	6.3	110	14.0	3.9	<0.001	0.10	0.89	0.9	0.4	<0.2	190.0	<0.01	<0.01	3.2
JBJNR019		0,07	2.5	170	10.4	6.7	<0.001	0.12	13.65	0.5	0.2	1.2	6.8	<0.01	<0.01	4.5
JKJNR014		0.26	9.9	100	4.8	5.7	<0.001	0.50	0.23	2.1	0.3	11.5	20.1	<0.01	<0.01	9.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	As- OG46 As • % 0.01	Zn- OG46 Zn % 0.001	W- XRF05 W ppm 10	Zn- VOL50 Zn % 0.01		
JBJNR009 JBJNR010 JBJNR011 JBJNR012 JBJNR013		<0.005 0.027 0.017 <0.005 <0.005	0.18 0.09 0.06 <0.02 0.02	<0.05 0.49 0.40 0.06 0.38	1 14 7 1 4	0.10 0.08 0.06 0.05 <0.05	0.31 3.95 2.85 1.76 5.48	11 53 52 14 25	<0.5 4.2 2.1 <0.5 5.4						
JBJNRO14 JBJNRO15 JBJNRO16 JBJNRO17 JBJNRO18		<0.005 <0.005 <0.005 <0.005 <0.005	0.03 0.07 <0.02 0.03 0.03	0.32 0.44 0.27 0.46 0.36	4 3 3 3 1	<0.05 0.07 <0.05 <0.05 <0.05	2.41 8.69 3.02 9.23 5.49	18 1040 20 10 25	3.3 3.9 0.5 4.4 2.3					 	
JBJNR019 JKJNR014		<0.005 0.030	0.43 0.04	0.29 0.53	2 11	0.25 0.16	2.81 5.96	5 14	1.9 1.6						
												·			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

CERTIFICATE OF ANALYSIS

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25- AUG- 2014 Account: TELOEX

WH14116725

·		CERTIFICATE COM	MMENTS	
		ANAL	TICAL COMMENTS	
Applies to Method:	Gold determinations by ME- MS41	this method are semi- quantitative due	to the small sample weight used (0.5g)	
		LABOR	ATORY ADDRESSES	
	Processed at ALS Whiteh	orse located at 78 Mt. Sima Rd. Whiteh	iorse. YT. Canada	
Applies to Method:	BAG- 01	CRU- 31	CRU- OC	106-22
	LOG- 24 WEI- 21	PUL- 32m	PUL- QC	SPL- 21
	Processed at ALS Vanco	uver located at 2103 Dollarton Hwy. No	orth Vancouver, BC, Canada.	
Applies to Method:	As- OG46	Au- AA23	ME- MS41	ME- OG46
	W- XRF05	Zn- OG46	Zn- VOL50	
		· · · · · · · · · · · · · · · · · · ·		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE WH14116725

P.O. No.: JN14-002

This report is for 92 Rock samples submitted to our lab in Whitehorse, YT, Canada on 2- AUG- 2014.

The following have access to data associated with this certificate:

1	JESSE CAMPBELL	CHRIS GALLAGHER	MIKE MCCUAIG

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU- 31	Fine crushing - 70% < 2mm
BAG- 01	Bulk Master for Storage
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
SPL- 21	Split sample - riffle splitter
PUL- 32m	Pulverize 500g - 85%<75um
LOG- 24	Pulp Login - Rcd w/o Barcode

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE
Au- AA23	Au 30g FA- AA finish	AAS
W- XRF05	Trace Level WXRF Analysis	XRF
As- OG46	Ore Grade As - Aqua Regia	VARIABLE
Zn- VOL50	Zn by titration	
ME- MS41	51 anal. aqua regia ICPMS	

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

									QC	CERTIF	ICATE	OF AN	ALYSIS	WH1	41167	25
Sample Description	Method Analyte Units LOR	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Аш ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							STAN	DARDS	5							
BP-13		0.364														
BP-13		0.350														
Target Range - Lower Upper	Bound Bound	0.332														
Target Range - Lower Upper	Bound Bound															
CD- 1 Tärget Range - Lower Upper	Bound Bound															
CDN- GS- P8C		0.793														
Target Range - Lower Upper	Bound Bound	0.732														
CZN- 4																
CRM002 12	Bound Bound															
Target Range - Lower	Bound Bound															
GBM908-10			3.05	1.04	57.4	0.4	<10	110	0.32	1.19	0.75	1,78	96.5	14.8	24	0.83
GBM908-10			2.95	1.03	57.9	0.5	<10	110	0.30	1.37	0,75	1.74	90.1	14.7	24	0.80
GBM908-10			3.10	0.96	59.3	0.5	<10	110	0.32	1.16	0.71	1.75	96,9	15.4	23	0.82
GBM908-10	CAUSES IN CONTRACTOR		3.08	1.03	58.0	0.4	<10	110	0.31	1.20	0.73	1.65	91.5	14.4	24	0.76
Target Range - Lower	Bound		2.69	0.85	49.4	<0.2	<10	70	0.17	1.09	0.62	1.52	79.3	12.9	20	0.66
CPMOOR E	Bonua	1	62.6	1.06	60.6	0.9	30	140	0.40	1.35	0.79	1.88	97.0	15.9	27	0.94
Target Range - Lower	Round		52.0 52.4	1.21	6,3 5,8	<0.2	<10	210	0.38	0.80	U.77	U.15	198.0	10.9	19	1.15
Upper	Bound		64.0	1.02	7.4	0.6	30	230	0.50	0.75	0.79	0.12	208	11 7	20	1 31
MRGeo08			4.46	2.64	31.3	<0.2	<10	440	0.82	0.64	1.06	2.30	76.2	18.0	90	10.50
MRGeo08			4.05	2.81	30.0	<0.2	<10	480	0.79	0.63	1.17	2.07	68.6	17.8	100	10.35
MRGeo08			4.54	2.70	33.4	<0.2	<10	460	0.92	0.73	1.14	2.35	79.3	19,4	95	11.20
MRGeo08			4.51	2.75	31,8	<0.2	<10	470	0.80	0.68	1.08	2.15	74.6	19.0	93	10.60
Target Range - Lower Upper	Bound Bound		4.00 4.92	2:44 3.00	28.9 35.5	<0.2 0.6	<10 20	370 530	0.66 0.94	0,62 0.78	1.00 1.24	2.01 2.47	66.7 81.5	17.5 21.6	81 102	9,85 12,15

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME- MS41 Nb ppm 0.05
						1.1.1	STAN	DARDS								
BP-13																
BP-13																
Larget Range - Lower	Bound															
CCU-1d	uvano															
Target Range - Lower	Bound	1														
Upper	sound															
Target Range - Lower	Bound															
Upper	Bound															
Target Range - Lower	Bound															
Upper	Bound															
CZN- 4																
Upper	Bound															
GBM903-13																
Target Range - Lower	Bound															
GBM908-10	Bonua	3650	2.76	5.08	0.15	0.75	0.01	0.026	0 44	50.9	63	0.56	304	67.5	0.13	0.41
GBM908-10		3610	2.77	4.80	0.12	0.63	0.01	0.023	0.44	47.5	5,9	0.56	308	65.5	0.13	0.39
GBM908-10		3700	2.73	4.88	0.13	0.68	0.01	0.027	0.44	51.5	6.7	0.55	299	64.3	D.13	0.47
Target Range - Lower	Round	3900	2.83	4.67	0.13	0.70	0.01	0.025	0.45	48.6	6.1 5.6	0.57	316	64.9 57.0	0.14	0.42
Upper	Bound	3880	2.89	5.22	0.31	0.80	0.04	0.034	0.48	53.2	7.1	0.59	327	70.9	0.05	0,63
GBM908- 5		513	2.46	6.22	0.16	0.34	0.02	0.017	0.89	107.5	10.1	0.82	370	52,8	0.03	0.91
Target Range - Lower	Bound	465	2,13	5.31	0.08	0.29	<0.01	<0.005	0.73	91.9	9.4	0.68	315	49.5	0.02	0.89
MRGeo08	Dourid	604	3,49	9.63	0.20	0.73	0.06	0.167	1.24	37.9	30.7	1 14	401	14.75	0.32	1.03
MRGeo08		668	3.80	9.00	0.15	0.76	0.06	0.144	1.33	33.7	30.3	1.24	446	13.95	0.35	0.95
MRGeo08		647	3.76	9.84	0.16	0.75	0.06	0.165	1.32	39.4	36.0	1.22	436	14.40	0.34	0.86
Target Range - Lower	Bound	587	3.22	9.30 8.89	0.14	0.66	0.06	0.161	1.30	37.6 33.2	32.3	1.20	426 378	13.90	U.35 0.30	0.87
Upper	Bound	675	3.96	10.95	0.32	0,87	0.10	0,184	1.40	41.0	37.2	1.29	473	16.10	0.39	1.09
,																
					·											

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME- MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
							STAN	DARDS			·					
BP-13																
BP-13 Target Range - Lower	Round															
Upper	Bound															
CCU-1d	D															
Upper	Bound										·					
CD- 1																
Lower	Bound															
CDN- GS- P8C																
Target Range - Lower	Bound															
CZN- 4	Donna															
Target Range - Lower	Bound															
GBM903-13	Bound															
Target Range - Lower	Bound															
CBM908-10	Bound	2300	880	2120	20.6	-0.001	0.00	1.00								
GBM908-10		2320	900	2160	28.7	0,001	0.39	1.38	2.2	1.1 1.1	1.9 1.6	39.3 35.6	<0.01 <0.01	0.05	17.3 17.0	0.333
GBM908-10		2300	880	2110	31.8	<0.001	0.38	1.25	2.2	1.4	1.8	37.0	<0.01	0.04	17.7	0.313
Target Range - Lower	Bound	2400	910	2180	29.7 26 d	<0.001	0.41	1.33	2.1	1.2	1.7	35.1	< 0.01	0.05	16.3	0.337
Upper	Bound	2480	960	2270	32.4	0.003	0.43	1.55	2.4	1.3	2.2	38.0	0,03	0.02	15.2	0.276
GBM908- 5	Dound	464	1350	400	60.9	<0.001	0.17	0.15	1.6	1.4	1.7	58.0	0.01	0.04	41.6	0.182
Upper	Bound	466	140	422	62.3	0.003	0.14	<0.05	1.3	0.5	1.1	47.3	0.01	0.02	34.4	0.146
MRGeo08		683	990	1040	140.0	0.006	0.30	3.42	7.1	1.7	3.5	79,3	0.01	0.02	21.4	0.377
MRGeo08 MRGeo08		746 728	1100 1060	1135	136.0 154.0	0.007	0.34	2.76	7.2	1.5	3.1	78.4	0.01	0.02	20.3	0.407
MRGeo08		721	1030	1100	144.5	0.003	0.31	3.50	0.4 7.6	1.7	3.4 3.1	83.0 79.2	0.01	0.02	23.0 21.2	0,397 0,397
Target Range - Lower	Bound	622	900	959	132.0	0.007	0.27	2.80	6.8	0.9	2.8	73,2	<0.01	<0.01	19.5	0,350
Opper	BOUND	100		11/5	162.0	0.011	0.36	3,90	8.6	1.9	4.0	89.9	0:04	0.04	24.3	0,439
"	··	· · · · · · · · · · · · · · · · · · ·				· .		···· ,				·				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

BP-13 BP-13 BP-13 Target Range Lower Bound CCU-1d Target Range Lower Bound Upper Bound CD-1 Target Range Lower Bound Upper Bound CD-1 Target Range Lower Bound Upper Bound CD-1 CD-1 Target Range Lower Bound Upper Bound CD-1 CD-1 Target Range Lower Bound Upper Bound CD-1 CD-1 Target Range Lower Bound Upper Bound CD-1 CD-1 Target Range Lower Bound Upper Bound CBM903-13 Target Range Lower Bound CBM903-10 CBM908-10 CBM908-10 CBM908-10 CD-21 Target Target Target Target Range Lower Bound Upper Bound CD-1 CD-1 Target Range Lower Bound Upper Bound CBM908-10 CD-23 Target Target Targe	Method Analyte Units LOR	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	As- OC46 As % 0.01	Zn- OG46 Zn % 0.001	W-XRF05 W ppm 10	Zn- VOL50 Zn % 0.01		
BP-13 BP-13 Target Range Lower Bound CCU-1d Target Range Lower Bound Upper Gound CD-1 0.06 2.55 Target Range Lower Bound Upper Bound Upper Bound CDN- CS-P8C 0.06 2.54 Target Range Lower Bound Upper Bound CZN-4 0.06 2.54 Target Range Lower Bound Upper Bound CZN-4 0.05 0.013 Target Range Lower Bound Upper Bound CZN-4 0.65 0.72 Target Range Lower Bound CZN-4 0.65 0.72 Target Range Lower Bound CZN-4 0.65 0.72 Target Range Lower Bound CZN-4 0.03 0.925 Target Range Lower Bound CBM903-13 0.26 1.38 50 1.94 21.2 1020 30.5 CBM908-10 0.21 1.35 50 1.96 20.1 1050 0.925 CBM908-10 0.21 1.37 51 47.3 20.7 1060 30.9							STAN	DARDS						
Target Range Lower Bound 0.15 1.15 41 1.57 17.56 936 24.0 Upper Bound 0.27 1.51 53 2.24 21.6 1155 33.6 GBM 908-5 0.40 3.04 28 2.33 30.5 239 9.8 Target Range Lower Bound 0.47 3.34 29 2.48 31.1 266 10.5 MRCeo08 0.79 5.37 99 2.89 19.05 745 21.8 MRCeo08 0.71 5.11 109 2.51 18.20 817 21.0 MRCeo08 0.73 5.66 104 2.76 19.65 802 22.3 0.73 5.66 104 2.76 19.65 802 22.3 Target Range Lower Bound 0.84 6.21 112 3.42 21.9 870 Upper Bound 0.84 6.21 112 3.42 21.9 870 25.7	BP- 13 BP- 13 Target Range - Lower Bound CCU- 1d Target Range - Lower Bound CD- 1 Target Range - Lower Bound CDN- CS- P8C Target Range - Lower Bound CBM903- 13 Target Range - Lower Bound CBM908- 10 CBM908- 10 Target Range - Lower Bound CBM908- 5 Target Range - Lower Bound MRGe008 MRCe008 Target Range - Lower Bound CBM908- 10 CBM908- 10 CBM9	0.26 0.21 0.23 0.21 0.40 0.31 0.47 0.79 0.71 0.80 0.73 0.66 0.94	1.38 1.35 1.31 1.27 1.51 3.04 2.64 3.34 5.37 5.11 5.84 5.66 4.99 6.21	50 50 48 51 41 53 28 22 29 99 109 105 104 90 112	1.94 1.96 2.06 4.73 1.57 2.24 2.33 1.75 2.48 2.89 2.51 3.00 2.76 2.44 3.42	21.2 20.1 21.4 20.7 17.55 21.6 30.5 25.4 31.1 19.05 18.20 21.3 19.65 17.85 21.9	STAN 1020 1050 1040 1060 939 1259 214 266 745 817 824 802 745 817 824 802 708 870	30.5 26.3 30.3 29.9 24.0 33.6 9.8 6.8 10.5 21.8 21.0 23.8 22.3 18.1 25.7	0.06 0.04 0.07 0.70 0.65 0.72	2.55 2.54 2.72 0.013		55.28 53.27 57.21		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 3 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method	Au- AA23	ME- MS41	ME- MS41	ME- MS41	ME-MS41	ME-MS41	ME- MS41	ME-MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME-MS41	ME-MS41	ME- MS41
	Analyte	Au	Ag	Al	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOR	0.005	0.01	0.01	0.1	0.2	10	10	0.05	0.01	0.01	0.01	0.02	0.1	1	0.05
NCSDC70006 Target Range - Lowe Uppe OREAS 90 Target Range - Lowe Uppe OREAS 133b Target Range - Lowe Uppe OREAS 134b Target Range - Lowe OREAS 62c Target Range - Lowe Uppe OXJ111 OXJ111 Target Range - Lowe Uppe PB-105 Target Range - Lowe Uppe TILL - 4 Target Range - Lowe Uppe TLG - 1 Target Range - Lowe Uppe	r Bound F Bound	8.93 8.26 9.32 2.18 2.11 2.03 2.30	0.04	2.31 2.09 2.57	4.7	<0.2 <0.2 0.4	<10 <10 20	50 30 80	0.58 0.48 0.74	0.90	0.38 0.33 0.43	0.02	61.3 54.5 66.7	14.4 13.7 16:9	40 35 45	0.93

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Meth Analy Sample Description LOF	od ME-MS41 te Cu s ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME- MS41 In 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME- M\$41 Nb ppm 0.05
						STAN	DARDS								
NCSDC70006 Target Range - Lower Bound Upper Bound OREAS 90 Target Range - Lower Bound Upper Bound OREAS-133b Target Range - Lower Bound Upper Bound OREAS-134b Target Range - Lower Bound Upper Bound OREAS-62C Target Range - Lower Bound Upper Bound OxJ111 OxJ111 Target Range - Lower Bound Upper Bound DB-105 Target Range - Lower Bound Upper Bound TLC-1 Target Range - Lower Bound Upper Bound TLC-1		3.70 3:39 4.17	5.92 5.78 7.17	0,08	0.66	<0.01 <0.01 0.02	0.027	0.35	30.4 27.9 34.6	19.4 17.8 22:0	1.36 1.21 1.50	589 515 641	0.32	0.01	0.41

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME- MS41 ⊤i % 0.005
							STAN	DARDS								
NCSDC70006 Target Range - Lower OREAS 90 Target Range - Lower Upper OREAS-133b Target Range - Lower Upper OREAS-134b Target Range - Lower Upper OREAS-62c Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound	81.7 76.5 93.9	650 570 720	5.0 4.8 6.3	19.7 18.0 22.3	<0.001 <0.001 0.002	0.07 0.05 0.09	0.34 0.33 0.60	2.1 2.1 2.7	1.1 0.4 1.3	1.2 0.8 1.8	11.0 10.5 13.3	0.01 <0.01 0:04	0.02	16.6 14:3 17:9	0.090 0.070 0.098
Upper OxJ111 OxJ111 Target Range - Lower PB- 105 Target Range - Lower Upper TILL- 4 Target Range - Lower TLG- 1 Target Range - Lower Upper	Bound Bound Bound Bound Bound Bound Bound Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME- MS41 B ppm 10	ME-MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME- MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							BLA	ANKS								
BLANK		<0.005														
BLANK		<0.005														
BLANK		<0.005														
Target Range - Lower Upper	Bound Bound	<0.005														
BLANK		000000000000000000000000000000000000000	<0.01	<0.01	0.1	<0.2	<10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05
BLANK			<0.01	<0.01	<0.1	<0.2	<10	<10	<0.05	0.01	<0,01	<0.01	<0.02	<0.1	<1	<0.05
BLANK			<0.01	<0.01	<0.1	<0.2	<10	<10	<0.05	<0.01	<0.01	0.01	<0.02	<0.1	<1	<0.05
BLANK			< 0.01	< 0.01	0.1	<0.2	<10	<10	<0.05	0.01	< 0.01	<0.01	<0.02	<0.1	<1	<0.05
BLANK	(Decord		<0.01	<0,01	U.1	<0.2	<10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<u>~0.1</u>	<u>~</u>	<0.05
Talget Kange - Lower	Bound		0.02	0.02	0.2	0.4	20	20	0.10	0.02	0.02	0.02	0.04	0.2	2	0.10
BLANK	DOUTIN						19.000 mg.000000	No. of the local data was a set of the local data was a set of the local data was a set of the local data was a	990 960Z 1624 60 993		CONTRACTOR CLUB	Lu <u>Lu victori al an</u> come	Septemblic Collected		99 19-17-19-19-19-19-19-19-19-19-19-19-19-19-19-	Charlenge (Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-
Target Range - Lower Upper	Bound															
BLANK																
Target Range - Lower Upper	r Bound Bound															
							DUPL	ICATES								
		10.005														
		<0.005														
Target Range - Lower	Bound	<0.005														
Upper	Bound	0.010														
		0.022														
		0.022														
Target Range - Lower	Bound	0.010														
Upper	Bound	0.022														
ORIGINAL		<0.005														
DUP		<0.005														
Target Range - Lower	Bound	<0.005														
Upper	Bound	0.010														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 4 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME-MS41 Nb ppm 0.05
							BLA	NKS -								
BLANK																
BLANK																
BLANK Target Range - Lower Upper	Bound Bound															
BLANK	inanaisatin (* 1775)	<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	0.1	<0.01	<5	<0.05	<0.01	<0.05
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	< 0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	0.06
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	< 0.01	0.06
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	0.06
BLANK	-	<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	<0.05
larget Kange - Lower	Round	SU.2	~0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<6	<0.05	<0.01	<0.05
BLANK		Linnen (Linner)	V.V4	Vity	U. 10	0,04	0.02	0.010	0.02	0.4	0.2	0.02	10	0,10	0.02	0,10
Target Range - Lower Upper	Bound Bound															
BLANK	Date: 1															
Upper	Bound															
							DUPL	CATES								
ORIGINAL																
DUP																
Target Range - Lower Upper	Bound Bound															
ORIGINAL	- · · ·												······································			
DUP Target Range - Lower	Bound															
	ovunu															
ORIGINAL																
DUP Target Range - Lower Upper	Bound Bound															

BLANK BLANK BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

Section Section BLANK

DUP

DUP

DUP

ALS Canada Ltd,

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725 ME- MS41 ME- MS41 ME- MS41 ME-MS41 ME- MS41 ME-MS41 ME- MS41 Method ME- MS41 Analyte Ni Р PЬ Rb Re S Sb Sc Se Sr Sn Та Te Τh Ti Units ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm Sample Description LOR 0.2 10 0.2 0.1 0.001 0.01 0.05 0.1 0.2 0.2 0.2 0.01 0.005 0.01 0.2 BLANKS Target Range - Lower Bound Upper Bound <0.2 <10 < 0.2 < 0.1 < 0.001 < 0.01 < 0.05 < 0.1 < 0.2 < 0.2 <0.2 < 0.01 <0.01 < 0.2 < 0.005 <0.2 <10 <0.2 < 0.1 < 0.001 < 0.01 < 0.05 < 0.1 < 0.2 <0.2 <0.2 < 0.01 <0.01 <0.2 < 0.005 <0.2 <10 < 0.2 < 0.1 < 0.001 < 0.01 < 0.05 < 0.1 < 0.2 <0.2 <0.2 < 0.01 <0.01 < 0.2 < 0.005 <0.2 <10 < 0.2 < 0.1 < 0.001 < 0.01 < 0.05 <0.1 0.2 <0.2 <0.2 < 0.01 < 0.01 < 0.2 <0.005 <0.2 <10 0,2 <0.1 < 0.001 < 0.01 <0.05 <0.1 <0.2 <0.2 < 0.2 < 0.01 <0.01 < 0.2 < 0.005 Target Range - Lower Bound <0.2 <10 <0.2 <0.1 <0.001 <0.01 <0.05 <0.1 <0.2 <0.2 <0.2 <0.01 <0.01 <0.2 <0.005 Upper Bound 0.4 20 0.4 0.2 0.002 0.02 0.10 0.2 0.4 0.4 0.4 0.02 0.02 0.4 0.010 Target Range - Lower Bound Upper Bound Target Range - Lower Bound Upper Bound DUPLICATES ORIGINAL Target Range - Lower Bound Upper Bound ORIGINAL Target Range - Lower Bound Upper Bound **ORIGINAL** Target Range - Lower Bound Upper Bound

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

	· · · · · ·		-						QC	CERTIF	ICATE	OF ANA	ALYSIS	WH1	411672	25
Sample Description	Method Analyte Units LOR	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME- MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME- MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		0.07 0.06 0.05 0.08	0.98 0.93 0.90 1.01	6.4 6.6 6.1 6.9	<0.2 <0.2 <0.2 0.4	10 10 <10 20	120 110 100 130	0.45 0.48 0.39 0.54	0,14 0.15 0.13 0.16	9.57 9.10 8.86 9.81	0.31 0.31 0.28 0.34	25.6 26.1 24.5 27.2	3.7 3.8 3.5 4.0	10 10 9 12	1.38 1.44 1.29 1.53
ORICINAL DUP Target Range - Lower Upper	Bound Bound	0.196 0.191 0.179 0.208														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.358 0.343 0.328 0.373														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.082 0.087 0.075 0.094														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		0.40 0.39 0.37 0.42	1.24 1.17 1.13 1.28	1.3 2.1 1.5 1.9	0.2 <0.2 <0.2 0:4	<10 <10 <10 20	130 120 110 140	0.55 0.51 0.45 0.61	1.07 1.05 1.00 1.12	1.66 1.56 1.52 1.70	0.09 0.11 0.09 0.12	39.8 36.8 36.4 40.2	17.4 17.2 16.3 18.3	140 130 127 143	1.68 1.58 1.50 1.76
MMJNR059 DUP Target Range Lower Upper	Bound Bound	Second Second	0.01 0.01 <0.01 0.02	1.09 1.08 <u>1.02</u> 1.15	0.4 0.7 0.4 0.7	<0.2 <0.2 <0.2 0.4	<10 <10 <10 20	150 150 130 170	0.52 0.54 0.45 0.61	3.53 4.04 3.59 3.98	0.26 0.26 0.24 0.28	0.02 0.02 <0.01 0.03	40.3 43.9 40.0 44.2	3.4 3.5 3.2 3.7	9 9 	3.07 3.38 3.01 3.44
MMJNR068 DUP Target Range – Lower Upper	3ound Bound	0.084 0.080 0.073 0.091										<u> </u>			·	
MMJNR088 DUP Färget Range – Lower Upper I	Sound Sound	0.090 0.089 0.080 0.099													• ••	

ORIGINAL

ORIGINAL DUP

ORIGINAL DUP

ORIGINAL DUP

ORIGINAL

MMINR059

1000

MMJNR068 DUP

MMJNR088 DUP

DUP

DUP

DUP

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725 ME-MS41 ME- MS41 ME-MS41 Method ME- MS41 ME- MS41 ME-MS41 ME- MS41 ME- MS41 ME- MS41 ME- MS41 ME-MS41 ME- MS41 ME- MS41 ME- MS41 ME- MS41 Analyte Cu Fe Ga Ge Ηf Нg In к La Li Mg Mл Мо Na Nb Units ppm % ppm ppm ppm ppm ppm % mog ppm % maa ppm % ppm Sample Description LOR 0.2 0.01 0.05 0.05 0.02 0.01 0.005 0.01 0.2 0.1 0.01 5 0.05 0.01 0.05 DUPLICATES 8.4 1.44 2.74 0.06 0.05 0.01 0.014 0.35 13.3 11.4 0.79 350 0.65 0.04 0.88 8.7 1.37 2.81 0.06 0.05 0,01 0.015 0.33 13.4 11.7 0.75 331 0.69 0.03 0.97 Target Range - Lower Bound 8.1 1.32 2.59 <0.05 0.03 <0.01 0.009 0.31 12.5 10.9 0.72 318 0.59 0.02 0.83 Upper Bound ...9:0 1.49 2.96 0.10 0.07 0.02 0.020 0.37 14.2 12.2 0.82 363 0.75 0.05 1.02 Target Range - Lower Bound Upper Bound Target Range - Lower Bound Upper Bound Target Range - Lower Bound Upper Bound 35.8 3.00 6.31 0.12 0.78 < 0.01 0.013 0.83 19.7 14.6 1.31 394 23.1 0.02 0.10 40.0 2.87 6.05 0.11 0.72 0.01 0.015 0.78 18.2 14.1 1.23 371 23.2 0.02 0.09 Target Range - Lower Bound 36.4 2.78 5.82 0.06 0.69 <0.01 0.008 0.75 17.8 13.5 1.20 358 21.9 <0.01 <0.05 Upper Bound 39.4 6.54 3.09 0.17 0.81 0.02 0.020 0.86 20.1 15.2 1.34 407 24.4 0.03 0.10 9.6 2.14 6.44 0,10 0.01 0.18 0.009 0.54 19.4 34.2 0.33 349 8.92 0.12 0.89 9.8 2.12 6.68 0.09 0.20 0.02 0.011 0.53 20.8 36.8 0.32 339 9.55 0.11 0.95 9.2 Target Range - Lower Bound 2.01 6.18 <0.05 0.16 <0.01 <0.005 0.50 18.9 33.6 322 0.30 8.72 0.82 0.10 Upper Bound 10.2 2.25 6.94 0.10 0.22 0.02 0.016 0.57 21.3 37.4 0.35 366 9.75 0.13 1.02 Target Range - Lower Bound Upper Bound Target Range - Lower Bound Upper Bound

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

									QC	CERTIF	ICATE	OF AN/	ALYSIS	WH1	411672	25
Sample Description	Method Analyte Units LOR	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	7.7 8.0 7.3 8.4	520 490 470 540	13.7 14.6 13.2 15.1	16.8 17.5 16.2 18:1	<0.001 <0.001 <0.001 0.002	0.02 0.01 ≺0.01 0.02	0.46 0.47 0.38 0.55	1.9 2.0 1.8 2.1	0.3 0.4 <0.2 0.4	0.4 0.4 <0.2, 0.6	132.0 131.0 1 24.5 138.5	<0.01 <0.01 <0.01 0.02	0.03 0.04 0.02 0.05	3.1 3.2 2.8 3.5	0.030 0.029 0.023 0.036
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	:														
ORICINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	60.0 58.2 55.9 62.3	500 470 450 520	13.6 13.9 12.9 14.6	38.1 36.5 35.3 39.3	0.003 0.002 <0.001 0.004	1.55 1.51 1.44 1.62	0.07 0.07 <0.05 0.10	5.2 5.0 4.7 5.5	0.7 0.4 0.3 0.8	0.3 0.3 <0.2 = 0.4	128.5 123.0 119.5 132.0	<0.01 <0.01 <0.01 0.02	2.12 2.28 2.08 2.32	4.8 4.5 4.2 5.1	0.114 0.105 0.099 0.120
MMJNR059 DUP Target Range – Lower Upper	Bound	1.6 1.7 1.4 1.9	350 350 320 380	2.9 3.1 2.7 3.4	41.8 44.1 40.7 45.2	0.001 0.001 <0.001 0.002	0.01 <0.01 <0.01 0.02	0.07 0.08 <0.05 0.10	4.6 4.9 4.4 5.1	0.6 0.6 0.4 0.8	1.4 1.5 1.2 1.7	15.4 16.0 14.7 16.7	<0.01 <0.01 <0.01 <0.02	0.09 0.09 0.08 0.10	11.0 11.9 10.7 12:2	0.107 0.106 0.096 9.117
MMJNR068 DUP Target Range - Lower Upper	Bound Bound										196 - Y I					
MMJNR088 DUP Target Range - Lower Upper	Bound Bound								-							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	As- OG46 As % 0.01	Zn- OG46 Zn % 0.001	W-XRFOS W ppm 10	Zn- VOL50 Zn % 0.01				
						-	DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.14 0.14 0.11 0.11	0.51 0.50 0.43 0.58	15 14 13 16	0.54 0.50 0.43 0.61	7.36 7.64 7.08 7.93	41 39 36 44	2.4 2.5 1.8 3.1								
ORICINAL DUP Target Range - Lower Upper	Bound Bound									·						
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound													- 1		
ORICINAL DUP Target Range - Lower Upper	Bound Bound	0.25 0.27 0.22 0.30	1.19 1.17 1.07 1.29	50 47 45 52	3.26 3.37 3.02 3.61	5.84 5.45 5.31 (* 5.98	63 60 56 67	27.0 25.4 23.7 28.7								
MMJNR059 DUP Target Range - Lower Upper	Bound Bound	0.17 0.20 0.15 0.22	1.95 2.11 2.18 2.18	23 22 20 25	200 202 186.0 216	12.65 13.30 12.30 13.65	25 24 21 28	3.9 4.1 3.2 4.8		··· ,			· · · ·			
MMJNR068 DUP Farget Range – Lower Upper	Bound Bound													æţ		
MMJNR088 DUP Target Range - Lower, Upper	Bound Bound						· ·									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	Au- AA23 Au ppm 0.005	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME- MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							DUPL	ICATES								
MMJNR095 DUP Target Range = Lower Upper	Bound Bound		0.08 0.10 0.08 0.10	0.77 0.76 0.72 0.81	2.0 6.0 3.7 4.3	0.6 0.7 0.4 0:9	<10 <10 <10 20	10 10 <10 20	3.08 2.90 2.79 3.19	52.4 51.5 49.3 54.6	2.47 2.44 2.32 2.59	<0.01 <0.01 <0.01 0:02	10.45 10.45 9.91 11.00	2.5 2.4 2.2 2.7	5 5 4 6	0.69 0.73 0.62 0.80
MMJNR101 DUP Target Range - Lower Upper	Bound Bound															
MMJNR108 DUP Target Range - Lower Upper	Bound Bound	3.29 3.25 3.10 3.44					. •									
MMJNR113 DUP Target Range - Lower Upper	Bound Bound													·		
JBJNR017 DUP Target Range - Lower Upper	Bound Bound		0.02 0.03 <0.01 0.04	0.31 0.31 0.28 0.34	3.5 4.1 3.5 4.1	<0.2 <0.2 <0.2 0.4	<10 <10 <10 20	20 20 <10 30	0.14 0.14 0.08 0.20	0.07 0.08 0.06 0.09	7.24 7.22 6.86 7.60	0.02 0.02 <0.01 0.03	27.0 27.5 25.9 28.6	4.5 4.4 4.1 4.8	8 8 7 9	0.34 0.34 0.27 0.41
							PREP DL	IPLICAT	ES							
MMJNR096 MMJNR096 PREP DUP		0.043 0.009	0.06 0.04	3.56 3.31	5.1 5.0	<0.2 <0.2	10 10	30 20	2.13 2.26	3.67 3.40	5.04 4.69	0.07 0.08	43.7 42.1	3.5 3.5	21 19	1.51 1.58

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725 ME- MS41 ME-MS41 ME- MS41 ME- MS41 ME-MS41 ME-MS41 ME- MS41 ME- MS41 ME-MS41 ME- MS41 ME- MS41 Method ME- MS41 ME- MS41 ME-MS41 ME- MS41 Cu Fe Ga Ge Hf Analyte Hg 1n К La Li Мg Mn Nb Мо Na % Units ppm ppm ppm ppm ppm ppm % % ppm ppm % ppm ppm ppm Sample Description LOR 0.2 0.01 0.05 0.05 0.02 0.01 0.005 0.01 0.2 0.1 0.01 5 0.05 0.01 0.05 DUPLICATES MMJNR095 15,5 4.04 10.35 1.11 0.21 <0.01 0.733 0.02 4.3 8.8 0.07 1620 12.15 0.02 0.46 DUP 14.3 3.87 11.05 1.22 0.21 <0.01 0.722 0.02 4.5 8.4 0.07 1560 11.25 0.01 0.50 14.2 Target Range - Lower Bound 3.75 10.10 1.06 0.18 <0.01 0.686 <0.01 4.0 8.1 0.06 1505 11.05 <0.01 0.41 Upper Bound 15.6 4.16 11.30 1.27 0.24 0.769 0.02 0.03 4.8 9.1 80.0 12:35 1675 0.02 0.55 MMJNR101 DUP Target Range - Lower Bound Upper Bound MMJNR108 DUP Target Range - Lower Bound Upper Bound MMJNR113 DUP Target Range - Lower Bound Upper Bound and the second second BINR017 2.5 1.69 1.19 < 0.05 0.11 < 0.01 0.057 0.09 12.6 6.8 0.13 463 0.25 0.03 0.07 DUP 2.5 1.69 1.17 < 0.05 0.11 0.057 0.09 < 0.01 12.7 6.5 0.13 459 0.24 0.03 0.07 Target Range - Lower Bound 2.2 1.60 1.07 <0.05 0.08 < 0.01 0.049 0.08 11.8 6.2 0.11 433 0.18 0.02 <0.05 2.8 1.78 Upper Bound 1.29 0.10 0.14 0.02 0.065 0.10 13.5 7.1 0.15 489 0.31 0.04 0.10 PREP DUPLICATES MMJNR096 21.3 3.78 14.40 1.19 0.59 <0.01 0.513 0.14 24.1 17.6 0.19 1720 28.6 0.12 1.22 MMJNR096 PREP DUP 23.6 3.47 14.40 1.43 0.51 < 0.01 0.477 0.13 23.1 18.6 0.18 1560 25.5 0.11 0.93

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

							<u></u>	QC	CERTIF	ICATE	<u>OF AN/</u>	ALYSIS	<u></u>	<u>41167:</u>	25
Metho Analyi Sample Description LOR	d ME-MS te Ni ppm 0.2	41 ME- MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 5 % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
						DUPL	ICATES				<u> </u>				
MMJNR095 DUP Target Range Lower Bound Upper Bound	1.9 1.4 1.4 1.9	80 70 60 90	2.4 1.5 1.7 2.2	1.3 1.4 1.2 1.5	0.002 0.002 <0.001 0.003	0.04 0.01 <0.01 0.04	0.50 0.50 0.41 0.59	0.6 0.5 0.4 0.7	<0.2 0.2 <0.2 0.4	31.5 32.4 30.2 33.7	5.6 6.1 5.4 6.3	<0.01 <0.01 <0.01 0.02	1.62 1.63 1.53 1.72	1.9 2.0 1.7 2.2	0.034 0.032 0.026 0.040
MMJNR101 DUP Target Range - Lower Bound Upper Bound															
MMJNR108 DUP Target Range - Lower Bound - Upper Bound						<u></u>		- <u> </u>							
MMJNR113 DUP Target Range - Lower Bound Upper Bound															
JBJNR017 DUP Target Range - Lower Bound Upper Bound	7.6 7.5 7.0 8.1	100 100 90 120	7.6 7.8 7.1 8.3	4.3 4.3 4.0 4.6	<0.001 <0.001 <0.001 0.002	0.10 0.10 0.09 0.12	0.85 0.84 0.73 0.96	1.5 1.5 1.3 × 1.7	0.6 0.5 0.3 0.8	<0.2 <0.2 <0.2 0.4	539 539 512 566	<0.01 <0.01 <0.01 0.02	<0.01 <0.01 <0.01 0.02	6.5 6.4 5.9 7.0	<0.005 <0.005 <0.005 0.010
						PREP DU	IPLICATE	S							
MMJNR096 MMJNR096 PREP DUP	7.3 7.4	330 320	5.8 5.7	11.5 11.8	0.002 0.003	0.06 0.03	0.82 0.75	3.1 3.0	0.5 0.5	16.7 15.6	196.5 198.0	0.03 0.02	0.04 0.03	8.7 8.8	0.140 0.122
														·	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 25- AUG- 2014 Account: TELOEX

QC CERTIFICATE OF ANALYSIS WH14116725

Sample Description	Method Analyte Units LOR	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	As- OG46 As % 0.01	Zn- OG46 Zn % 0.001	W-XRF05 W ppm 10	Zn- VOL50 Zn % 0.01			
							DUPL	ICATES							
MMJNR095 DUP		0.03 0.03	2.09 1.94	6 6	430 410	3.71 3.97	28 27	7.7 8.3							
Target Range - Lower Upper	Bound Bound	<0.02 0.04	1.86 2.17	7	388 452	3.60 4.08	24 31	6.9 9.1							
MMJNR101 DUP Target Range - Lower Upper	Bound Bound								·		650 620 590 680				
MMJNR108 DUP Farget Range - Lower Upper	Bound														
MMJNR113 DUP Target Range - Lower Upper	Bound Bound				·							45.01 45.02 43.88 46.15			
JBJNR017 DUP Target Range - Lower Upper	Bound Bound	0.03 0.03 <0.02 0.04	0.46 0.45 0.38 0.53	3 3 2 4	<0.05 <0.05 <0.05 0.10	9.23 9.22 8.71 9.74	10 10 8 13	4.4 4.3 3.5 5.2							
							PREP DU	PLICATE	s			-			
MMJNR096 MMJNR096 PREP DUP		0.06 0.07	2,13 2.17	24 22	72.6 58.0	9.14 8.60	33 31	22.4 19.3							

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25- AUG- 2014 Account: TELOEX

		CERTIFICATE COM	IMENTS	
	Gold determinations by t	ANALY his method are semi- quantitative due	TICAL COMMENTS	g).
Applies to Method:	ME- MS41			
		LABOR	ATORY ADDRESSES	
	Processed at ALS Whiteho	orse located at 78 Mt. Sima Rd, Whiteh	orse, YT, Canada.	
Applies to Method:	BAG- 01	CRU-31	CRU- QC	LOG-22
	WEI- 21	PUL- 32m	PUL-QC	SPL- 21
	Processed at ALS Vancou	ver located at 2103 Dollarton Hwy, No	rth Vancouver, BC, Canada.	
Applies to Method:	As- OG46	Au- AA23	ME- MS41	ME- OG46
	W- XRF05	Zn- OG46	Zn-VOL50	
			· · · · · · · · · · · · · · · · · · ·	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

CERTIFICATE WH14116723

Project: ALSM

P.O. No.: JN14-001

This report is for 164 Soil samples submitted to our lab in Whitehorse, YT, Canada on 2- AUG- 2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

MIKE MCCUAIG

SAMPLE PREPARATION ALS CODE DESCRIPTION WEI- 21 **Received Sample Weight** LOG- 22 Sample login - Rcd w/o BarCode SCR-41 Screen to - 180um and save both ANALVTICAL DROCEDURES

	ANALTTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au- ST43	Super Trace Au - 25g AR	ICP- MS
ME- MS41	51 anal. aqua regia ICPMS	
Au- AROR43	Au AR Overrange - 25g	

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsgiobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME- MS41 Cr ppm 1
JNL023 00+ 00		0.51	0.0003	0.05	1.44	5.0	<0.2	<10	130	0.71	0.11	5.99	0.08	47.3	7,9	17
JNL023 00+ 50W		0.49	0.0002	0.05	1.86	4.1	<0.2	<10	170	0.98	0.13	1.16	0.10	56.7	7.2	21
JNL023 01+ 00W		0.48	0.0005	0.06	1.70	4.6	<0.2	<10	130	0.95	0.12	1.39	0.13	55.8	7.6	19
JNL023 01+ 50W		0.55	0.0011	0.80	1.55	11.5	<0.2	<10	120	0.97	0.13	2,35	1.36	62.7	7.8	20
JNL023 02 + 00W		0.49	0.0008	0.82	1.02	18.5	<0.2	<10	170	1.13	0,16	0.76	2.84	36.2	4.6	12
JNL023 02+ 50W		0.45	0.0003	0.06	1.43	3.7	<0.2	<10	100	0.77	0.09	0.93	0.24	43.8	4.1	15
JNL023 03 + 00		0.48	0.0005	0.23	1.75	75.0	<0.2	<10	70	0,48	0.51	0.04	0.27	30.6	6.7	28
JNL023 03 + 50W		0.70	0.0017	0.18	2.20	162.0	<0.2	<10	120	1.32	1.71	0.42	0.53	80.4	18.7	34
JNL023 04 + 00		0.65	0.0005	0.06	1.11	7.5	<0.2	<10	130	0.81	0.09	7.89	0.07	55.9	9.5	12
JNL023 04 + 50W		0.45	0.0004	0.06	0.94	5.9	<0.2	<10	120	0.82	0.08	2.40	0.13	44.2	7,1	9
JNL023 05 +00		Not Recvd														
JNL023 05 + 50W		0.43	<0.0001	80.0	0.63	2.4	<0.2	<10	30	0.19	0.03	0.99	0.14	11.25	1.2	2
JNL023 06 + 00		0.54	0.0002	0.29	0.91	9.7	<0.2	<10	110	0.34	0.14	0.94	0.23	25.3	3.4	8
JNL023 06 + 50W		0.62	0.0004	0.05	1.52	7.2	<0.2	<10	140	0.98	0.10	2.36	0.22	58.3	8.5	16
JNL023 07 + 00		0,47	0.0017	0.17	1.26	129.0	<0.2	<10	130	0.45	0.69	0.78	0.21	26.0	5.2	13
JNL023 07 +50W		0,56	0.0017	0.18	1.25	227	<0.2	<10	30	0.26	3.58	0.02	0.12	35.4	9.1	20
JNL023 08 + 00		0.46	0.0011	0.18	1.79	27.8	<0.2	<10	150	0.91	0.37	1.75	0.86	53.0	9.9	22
JNL023 08 + 50W		0.62	0.0003	0.16	2.17	20.6	<0.2	<10	240	1.06	0.21	4.69	0.45	61.3	12.7	27
JNL023 09 + 00		0.50	0.0027	0.15	1.75	62.0	<0.2	<10	130	0.92	0.67	0.98	0.28	52.7	9.4	22
JNL023 09 + 50W		0.42	0.0012	0.09	2.26	38.6	<0.2	<10	230	1.21	0.57	0.94	0.21	54.6	9.4	28
JNL023 10 + 00		0.46	0.0004	0.05	0.68	5.6	<0.2	<10	20	0.14	0.12	0.03	0.07	8,56	1.8	5
JNE023 TO + 50W		0.50	0.0012	0.06	0.65	17.0	<0.2	<10	10	0.11	0.17	0.02	0.06	8.26	3.0	5
JNL023 11 + 00		0,48	0.0013	0.06	0.43	80,8	<0.2	<10	20	0.27	0.47	0.05	0.16	25.5	10.1	9
JNL023 11 + 50W		0.60	0.0011	0.11	0.36	30.8	<0.2	<10	10	0.13	0,28	0.01	0.22	16.20	5.8	8
JNL023 T2 + 00		0.45	0.0035	0.19	0.71	129.5	<0.2	<10	30	0.44	0.54	0.42	0.31	39.3	17.5	14
JNL023 12 + 50W	·	0.47	0.0023	0.16	0.76	25.0	<0.2	<10	20	0.16	0.30	0.04	0.05	15.00	3.5	8
JNL023 13 + 00		0.52	0.0020	0.13	0.75	22.1	<0.2	<10	40	0.13	0.30	0.11	0.05	16.65	2.6	11
JNL023 13 + 50W		0.56	0.0003	0.09	1.00	64.7	<0.2	<10	20	0.09	0,60	0.02	0.06	30.8	4.9	13
JNL023 14 + 00		0.48	0.0115	0.13	1.58	45.1	<0.2	<10	60	0.33	0.33	0.12	0.06	27.3	6.4	21
JBJND001		0.45	0.0054	0.22	1.37	230	<0.2	<10	50	1.03	1.37	0.08	0.32	61.8	15.8	24
JBJND002		0.38	0.0006	0.46	1.45	56.1	<0.2	<10	90	0.39	0.54	0.10	1.50	32.8	6.2	19
JRIND003		0.38	0.0026	0.10	0.87	39.9	<0.2	<10	250	1.58	0.18	1.13	0.48	71.6	12.9	11
JBJND004		0.35	0.0008	0.37	1.05	21.6	<0.2	<10	260	0.90	0.25	1.81	0.22	39.2	6.7	15
JBJND005		0.45	0.0036	0.09	1.67	155.5	<0.2	<10	60	0.92	1.02	0.08	0.34	47.1	12.2	25
JKJNDUUT		0.48	0.0041	0.55	0.54	86.0	<0.2	<10	50	0.23	0.39	0.11	1.14	33.8	9.4	10
JKJND002		0.45	0.0026	0.41	0.31	47.5	<0.2	<10	40	0.18	0.30	0.10	0.47	26.8	3.2	6
JKJND003		0.50	0.0019	0.85	0.96	37.5	<0.2	<10	40	0.40	0.56	0.06	0.39	27.2	10.5	12
MMJND001		0.54	>0.1000	2.03	0.75	4930	0.2	<10	90	1.33	0.80	0.12	3.48	92.3	72.4	7
JNL024 00 + 00		0.42	0.0010	0.06	2.10	11.3	<0.2	<10	100	1.28	0.17	1.91	0.19	68.7	7.9	25
JNL024 00 + 50W		0,50	0.0010	0.06	2.39	6.8	<0.2	<10	80	1.30	0.17	1.95	0.12	57.3	7.9	28

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ca ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Нf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Lî ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
JNL023 00+ 00 JNL023 00+ 50W		0.78 0.49 0.47	12.7 10.8 10.8	2.12 2.42 2.28	3.83 5.18 4.97	0.08 0.08	0.08	0.03	0.026	0.12 0.13	23.0 28.5	18.0 23.7	1.42	235 419	0.37 0.29	<0.01 <0.01
JNL023 01+ 50W JNL023 02 + 00W		1.07 1.18	20.0	2.37 2.21	4.42 2.80	0.08 0.06	0.08 0.08 0.06	0.02 0.05 0.04	0.033 0.033	0.14 0.12 0.11	20.5 31.0 23.6	22.7 21,7 8,7	1.68 1.49 0.48	401 474 200	0.37 4.65 11.65	<0.01 <0.01 <0.01
JNL023 02+ 50W JNL023 03 + 00 JNL023 03 + 50W JNL023 04 + 00		0.45 12.45 11.35 0.52	8,5 19.2 74,5 12,5	1.84 4.75 6.61 2.22	3.87 7.75 6.61 3.12	0.07 0.05 0.08 0.08	0.06 <0.02 0.06 0.07	0.02 0.04 0.02 0.02	0.029 0.024 0.047 0.026	0.09 0.06 0.05 0.10	24.2 13.5 40.3 24.4	18.5 16.2 47.6 13.6	1.20 0.61 0.83 1.00	170 649 668 418	0.26 0.69 1.26 0.41	0.01 <0.01 0.01 0.01
JNL023 04 + 50W JNL023 05 + 00 JNL023 05 + 50W JNL023 06 + 00		0,28 0.11 0.81	12.9 3.8 5.4	0.37 1.06	2.69 1.25 3.10	0.07	0.09	0.03 0.02 0.02	0.023 <0.005 0.015	0.08	5.5 11.5	10.1 1.4 8.5	0.71 0.07 0.48	343 136 189	0.39 0.15 0.47	0.01
JNL023 06 + 50W JNL023 07 + 00		0.47	14.1 10.7	2.31 1.97	4.53 4.18	0.09 0.05	0.14 0.08	0.02 0.02	0.028 0.028	0.10 0.04	27.3 13.7	18.0 17.3	1.31 0.54	382 223	0.46 0.40	0.01 0.02
JNL023 07 + 50W JNL023 08 + 00 JNL023 08 + 50W JNL023 09 + 00 JNL023 09 + 50W		2.59 2.27 1.03 1.70 2.09	23,8 18,0 21,3 25,9 19,9	4.47 2.59 2.74 2.80 2.73	7.00 5.42 6.29 5.38 6.98	0.05 0.09 0.13 0.09 0.10	<0.02 0.10 0.11 0.13 0.14	0,03 0.04 0.03 0,02 0.01	0.039 0.035 0.032 0.039 0.040	0.04 0.10 0.11 0.11 0.13	18.3 26.2 30.5 28.6 27.9	19.7 25.1 24.5 24.6 31.4	0.36 1.47 1.96 1.23 2.08	462 352 452 220 172	0.85 0.84 1.25 0.59 0.86	0.01 0.02 0.02 0.02 0.02 0.02
JNL023 10 + 00 JNL023 10 + 50W JNL023 11 + 00 JNL023 11 + 50W JNL023 12 + 00		0.44 0.41 0.83 0.73 0.83	5.8 9.6 18.8 16.3 37.3	0.85 1.14 3,58 2.50 3.96	2.77 3.00 1.70 1.91 2.37	<0.05 <0.05 <0.05 <0.05 0.07	<0.02 <0.02 0.02 <0.02 0.05	0,03 0.03 0.02 0.02 0.02 0.06	0.012 0.013 0.036 0.031 0.037	0.02 0.02 0.02 0.02 0.02 0.04	4.0 4.2 7.9 7.8 20.0	4.7 5.2 3.3 2.9 13.4	0.08 0.10 0.05 0.05 0.20	45 97 261 133 459	0.31 0.28 0.66 0.59 0.54	0.02 0.02 0.01 0.01 0.01
JNL023 12 + 50W JNL023 13 + 00 JNL023 13 + 50W JNL023 14 + 00 JBJND001		0.50 1.14 0.88 1.03 2.53	12.7 6.9 10.2 13.6 40.5	1.92 1.38 3.31 2.85 4.44	3.67 3.57 7.65 5.08 4.37	<0.05 <0.05 0.05 0.05 0.07	0.02 0.03 <0.02 0.05 0.02	0.04 0.02 0.03 0.03 0.04	0.021 0.013 0.024 0.019 0.069	0.02 0.03 0.02 0.04 0.09	7.0 8.4 15.7 15.0 27.0	9.8 13.6 11.6 42.1 20.0	0.14 0.19 0.18 0.54 0.27	106 105 228 199 561	0.43 1.16 0.73 0.81 0.69	0,02 0,01 0,01 0,01 0,01 0,01
JBJND002 JBJND003 JBJND004 JBJND005 JKJND001		0.76 1.23 0.35 1.95 0.91	10.6 18.4 15.0 21.0 18.2	4.67 3.24 2.37 4.16 2.07	6.02 1.83 2.79 5.59 1.97	0.06 0.09 0.05 0.06 0.05	<0.02 0.07 0.11 <0.02 0,02	0.04 0.03 0.03 0.03 0.03	0.038 0.050 0.041 0.064 0.018	0.07 0.08 0.07 0.09 0.07	16.9 31.3 22.5 19.5 17.3	17.2 6.2 13.6 26.2 9.4	0.27 0.18 0.59 0.41 0.15	240 1600 331 555 571	3,50 0,97 1,49 0,87 0,37	0.01 0.01 0.01 0.01 0.01
JKIND002 JKJND003 MMJND001 JNL024 00 + 00 JNL024 00 + 50W		0.93 1.35 5.04 1.14 1.51	10.6 20.6 68.4 13.7 12.4	1.17 3.10 6.64 2.32 2.34	1.57 3.49 2.55 6.59 7.65	<0.05 <0.05 0.11 0.11 0.13	<0.02 0.04 0.07 0.07 0.12	0.03 0.02 0.06 0.05 0.03	0.010 0.027 0.074 0.040 0.031	0.07 0.06 0.08 0.13 0.13	13.4 13.6 41.8 35.8 28.2	2.3 13.8 11.9 41.2 44.5	0.05 0.19 0.21 2.50 2.88	226 845 4760 430 277	0.28 0.38 0.58 0.39 0.41	0.01 0.01 0.01 0.01 0.01

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME- MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
JNL023 00+ 00 JNL023 00+ 50W JNL023 01+ 00W JNL023 01+ 50W		0.17 0.24 0.25 0.59	14.5 14.7 15.3 24.1	1570 1440 1520 1660	10.9 12.5 12.6 15.5	8.7 12.5 10.6 10.3	<0.001 <0.001 <0.001 <0.001	0.03 0.07 0.08 0.04	0.63 0.40 0.45 3.42	3.1 3.2 2.7 4.9	0.4 0.6 0.8 1.3	0.2 0.2 0.2 0.3	221 62.3 67.9 114.0	<0.01 <0.01 <0.01 <0.01	0.01 0.01 0.01 0.02	2.9 1.8 1.7 3.0
JNL023 02+ 50W JNL023 02+ 50W JNL023 03+ 00 JNL023 03+ 50W JNL023 04+ 00 JNL023 04+ 50W		0.29	10.7 12.2 38.2 16.9 14.7	1400 1570 1180 1570 1220	10.2 8.6 30.6 14.1 12.5	9.6 11.3 5.0 6.4 5.3	<0.002 <0.001 <0.001 <0.001 <0.001 <0.001	0.05 0.07 0.10 0.01 0.11	0.39 0.62 1.90 1.21 1.26	3.3 0.2 2.7 4.2 2.1	0.5 0.6 0.9 0.6 0.7	0.3 0.2 0.5 0.6 <0.2 <0.2	52.3 7.4 39.2 324 110.5	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.04 0.01 0.03 0.03 0.02 0.02	1.7 <0.2 7.4 4.9
JNL023 05 +00 JNL023 05 +50W JNL023 05 + 00 JNL023 06 + 50W		0.24 0.30 0.59 0.40	1.7 8.1 21.9 12.4	750 730 1770	2.0 9.1 15.1 21.0	1.2 10.9 8.9 7 1	0.001 <0.001 <0.001 <0.001	0.05 0.04 0.03 0.07	0.10 0.39 0.74	0.3 1.0 4.0	0.4 0.5 0.7	<0.2 0.3 0.2	48.7 48.8 111.0	0.01 <0.01 <0.01 <0.01	<0.01 0.01 0.01 0.02	0.2 0.7 3.8 1.8
JNL023 07 + 50W JNL023 07 + 50W JNL023 08 + 00 JNL023 09 + 00 JNL023 09 + 00		0.72 1.72 2.94 1.31 1.76	19.5 31.1 50.1 31.3 32.0	630 1120 1960 1370 1720	44.4 23.4 16.0 23.7 18.9	9.7 10.0 10.8 10.4 14.1	<0.001 <0.001 0.001 0.001 0.001	0.02 0.07 0.04 0.05 0.09	1.87 1.10 1.00 1.16 0.68	0.8 3.5 4.2 3.5	0.3 0.7 0.7 0.7 1.6	0.8 0.5 0.4 0.7	6.0 103.0 248 65.6 126.0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.05 0.02 0.01 0.02 0.02	1.4 3.3 3.2 4.2
JNL023 10 + 00 JNL023 10 + 50W JNL023 11 + 00 JNL023 11 + 50W		0.15 0.12 0.11 0.11	4.5 5.9 23.2 17.2	420 430 650 760	10.7 12.7 47.3 31.0	2.9 3.3 2.9 3.5	<0.001 <0.001 <0.001 <0.001 <0.001	0.03 0.03 0.04 0.03	0.33 0.47 3.13 2.36	0.1 0.1 1.0 0.4	0.5 0.5 0.4 0.5	<0.2 <0.2 0.3 0.3	5.3 4.0 20.0 11.1	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.01 0.03 0.07 0.05	<0.2 <0.2 1.3 0.6
JNL023 12 + 50W JNL023 13 + 00 JNL023 13 + 50W JNL023 13 + 50W JNL023 14 + 00 IRIND001		0.40 0.29 0.77 0.31 0.59	8.6 8.8 10.9 21.4 36.2	390 610 420 490 540	26.5 14.3 26.6 20.6 55.6	4.5 4.1 5.1 4.9 7.0 11 9	<0.001 <0.001 <0.001 <0.001 <0.001	0.03 0.05 0.03 0.03 0.03	0.80 0.45 0.85 0.46 1.60	0.4 0.4 0.4 1.0 2.9	0.6 0.3 0.3 0.5 0.8	0.2 0.3 0.5 0.3 1.3	5.2 16.9 5.2 15.0 10.0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.03 0.07 0.02 0.04	1.0 1.1 0.3 3.6 9.2
JBJND002 JBJND002 JBJND003 JBJND004 JBJND005 JKJND001		0.00 1.39 0.17 0.21 1.04 0.05	16.5 25.5 17.1 24.2 13.4	340 1620 1230 670 1060	31.4 21.3 16.0 47.8 38.6	12.2 5.6 5.8 13.2 4.4	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.02 0.05 0.09 0.03 0.05	1.56 5.51 2.12 1.58 1.55	1.3 6.8 2.6 2.1 0.4	0.7 0.9 1.4 0.6 0.2	0.7 0.3 0.3 1.2 <0.2	9.8 72.6 109.0 11.4 16.1	<0.01 <0.01 <0.01 <0.01 0.01 <0.01	0.03 0.01 <0.01 0.04 0.02	1.8 4.5 1.3 4.5 1.2
JKJND002 JKJND003 MMJND001 JNL024 00 + 00 JNL024 00 + 50W		0.08 0.14 <0.05 0.31 0.49	6.3 18.1 101.0 16.3 18.2	940 1160 750 1980 1670	22.4 71.5 739 14.5 13.9	6.0 8.3 5.6 14.4 13.8	<0.001 <0.001 0.001 <0.001 <0.001	0.06 0.06 0.06 0.08 0.04	0.99 1.95 12.05 0.74 0.60	0.1 0.4 2.6 3.0 4.0	<0.2 0.2 0.8 0.4 0.6	<0,2 0.2 0.5 0.3 0.4	14.0 8.3 59.3 110.5 94.0	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.02 0.02 <0.01 <0.01	<0.2 1.2 17.6 1.5 3.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS4 t Ti % 0.005	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01			
JNL023 00+ 00 JNL023 00+ 50W JNL023 01+ 00W JNL023 01+ 50W JNL023 02 + 00W		0,005 0.006 0.005 0.012 <0.005	0.08 0.08 0.08 0.12 0.24	0.44 0.42 0.43 0.67 0.96	14 18 15 28 56	0.06 <0.05 0.07 0.07 0.09	11.55 15.00 14.45 17.75 16,50	74 67 66 177 345	2.9 2.2 2.4 2.6 1.9				
JNL023 02+ 50W JNL023 03 + 00 JNL023 03 + 50W JNL023 04 + 00 JNL023 04 + 50W		0.008 0.006 <0.005 0.005 <0.005	0.06 0.07 0.05 0.06 0.06	0.39 0.69 1.13 0.48 0.52	13 33 23 10 8	0.05 0.08 0.11 <0.05 <0.05	12,75 2,58 10,40 12,35 14,60	81 72 130 62 57	2.1 <0.5 2.5 3.0 2.7				
JNL023 05 +00 JNL023 05 +50W JNL023 06 + 00 JNL023 06 + 50W JNL023 07 + 00		0.016 0.007 0.008 0.007	0.02 0.08 0.06 0.06	0.18 0.23 0.47 1.59	6 12 13 14	<0.05 <0.05 <0.05 0.07	2.98 3.85 13.95 4.57	11 36 71 65	1.9 1.1 4.8 2.6			 	
JNL023 07 + 50W JNL023 08 + 00 JNL023 08 + 50W JNL023 09 + 00 JNL023 09 + 50W		0.014 0.025 0.050 0.020 0.023	0.07 0.08 0.09 0.10 0.09	0.59 0.77 0.60 1.25 5.76	27 23 32 23 26	0.19 0.08 <0.05 0.13 0.07	2.23 11.40 13.95 12.35 14.10	79 106 102 90 92	<0.5 3.7 4.9 3.7 4.7				
JNL023 10 + 00 JNL023 10 + 50W JNL023 11 + 00 JNL023 11 + 50W JNL023 12 + 00		0.012 0.010 <0.005 <0.005 <0.005	0.04 0.04 0.12 0.09 0.14	0.37 0.38 0.99 0.83 1.88	11 10 12 12 13	0.10 0.09 0.37 0.37 0.28	1.11 0.98 3.04 1.87 8.39	18 23 85 82 130	<0.5 <0.5 <0.5 <0.5 1.6				
JNL023 12 + 50W JNL023 13 + 00 JNL023 13 + 50W JNL023 14 + 00 JBJND001		0,010 0.006 0.015 0.006 0.012	0.05 0.07 0.07 0.07 0.29	0.38 1.02 0.55 1.61 1.05	12 14 29 16 25	0.07 0.10 0.19 0.09 0.28	1.00 1.24 1.54 2.58 8.70	34 30 42 65 110	<0.5 0.8 <0.5 1.4 0.5			 	
JBJND002 JBJND003 JBJND004 JBJND005 JKJND001		0.015 <0.005 <0.005 0.019 <0.005	0.18 0.11 0.09 0.27 0.06	0.52 0.60 2.28 0.91 0.71	43 12 27 26 6	0.22 0.05 0.05 0.41 0.10	3.53 18.65 14. 6 5 5.32 3.56	119 110 97 86 85	<0.5 2:4 3.5 <0.5 0.5				
JKJND002 JKJND003 MMJND001 JNL024 00 + 00 JNL024 00 + 50W		<0.005 <0.005 <0.005 0.006 0.010	0.06 0.06 0.20 0.10 0.13	0.61 0.75 2.22 0.48 0.41	6 10 6 23 27	0.14 <0.05 0.08 0.05 <0.05	1.65 3.39 20.7 13.90 14.60	48 128 694 68 75	<0.5 1.2 4.3 2.3 4.1	0.22		 · .	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units	WEI- 21 Recvd Wt. kg	Au- ST43 Au ppm	ME-MS41 Ag ppm	ME- MS41 Al %	ME-MS41 As ppm	ME-MS41 Au ppm	ME-MS41 B ppm	ME-MS41 Ba ppm	ME-MS41 Be ppm	ME-MS41 Bi ppm	ME- MS41 Ca %	ME-MS41 Cd	ME-MS41 Ce	ME-MS41 Co	ME- MS41 Cr
		0.02	0.0001	0.01	0.01	0.1	0.2	10	10	0.05	0.01	10.0	0.01	0.02	0.1	1
JNL024 01 + 00		0.38	0.0003	0.03	1.60	3.6	<0.2	<10	70	0.91	0.10	2.28	0.24	38.3	4.7	17
JNL024 01 + 50W		0.54	0.0006	0.11	1.47	10.5	<0.2	<10	80	0.90	0.19	5.66	0.32	50,2	7.4	19
JNL024 02 + 00		0.40	0.0003	0.03	1.35	1.2	<0.2	<10	70	0.62	0.07	1.11	0,15	24.8	1.9	10
JNL024 02 + 50W		0.37	0.0004	0.02	0.99	2.1	<0.2	<10	90	0.37	0.07	0.83	0.05	17.25	2.0	9
JNL024 03 + 00		0.72	0.0015	0.28	1.60	47.8	<0.2	<10	120	0.82	0.49	0.68	0.20	47.8	9.2	24
JNL024 03 + 50W		0.55	0.0002	80.0	1.71	6,9	<0,2	<10	120	0.64	0.16	0.84	0.13	31.4	4.7	21
JNL024 04 + 00		0.42	0.0008	0.08	1.22	204	<0.2	<10	100	0.47	1.14	0.32	0.14	43.5	5.9	15
1002404 + 50W		0.52	0.0004	0.21	1.52	19,9	<0.2	<10	100	0.85	0.15	3.43	0.52	57.6	8.3	22
$1002405 \pm 50W$		0.35	<0.0001	0.08	0.97	4.0	<0.2	<10	70	0.65	0.07	3.63	0.86	31.5	3.7	11
JNL024 03 + 50W		0.46	0.0007	0.17	0.92	45.8	<0.2	<10	80	0.35	0.38	0.45	0.27	28.1	3,5	13
JNL024 06 + 00		0.37	0.0015	0.21	1.50	79.0	<0.2	<10	190	0.68	0.74	1.25	0.67	42.4	9.6	20
JNL024 06 + 50W		0.46	0.0006	0.09	2.13	22.8	<0.2	<10	100	0.96	0.30	2.55	0.52	50.0	7.2	23
JNL024 07 + 00		0.45	0.0019	0.14	1.28	73.3	<0.2	<10	100	0.67	0.61	1.34	1.62	38.0	9.4	15
INLO24 07 + 30W		0.60	0.0010	0.08	1.94	86.2	<0.2	<10	80	0.91	0.38	3.51	0.33	44.1	11.1	23
JNL024 08 + 00	··.	0.46	0.0010	0.17	0.68	56.0	<0.2	<10	40	0.50	0.50	0.27	0.25	38.0	13.0	15
JNL024 08 + 50W		0.50	0.0013	0.22	1.79	46.7	<0.2	<10	70	0.99	0.34	1.18	0.65	49.1	7.9	21
JNL024 09 + 00		0.50	0.0019	0.20	0.90	72.7	<0.2	<10	50	0.57	0.45	1.05	0.58	43.7	14.2	17
JNL024 09 + 30W		0.47	0.0025	0.21	0.83	117.5	<0.2	<10	20	0.49	0.61	0.34	0.29	43.2	16.9	17
10102410 + 00		0.46	0.0018	0.20	0.59	215	<0.2	<10	40	0.44	0.56	0.43	0.26	37.7	17. 2	13
JNL024 10 + 30W		U.44	0.0099	0.25	1.55	241	<0.2	<10	80	0.55	0.44	0.62	0.35	26.3	9.7	17
JNL024 11 +00		0.52	0.0025	0.04	1.10	27.5	<0.2	<10	30	0.20	0.43	0.03	0.09	29.7	5.5	16
JNL024 11 + 50W		0.62	0.0038	0.22	1.57	87.2	<0.2	<10	30	0.55	0.89	0.16	0.40	44.6	19.2	21
JNL024 + 2 + 00		0.46	0.0007	0.08	1.02	32.7	<0.2	<10	40	0.21	0.43	0.24	0.07	24.7	4.6	11
JNL024 2 + 50W		0.47	0.0003	0.04	0.65	15.6	<0.2	<10	40	0.09	0.35	0.08	0.12	32.1	2.4	8
1142024 13 + 00		0.84	0.0019	0.09	0.66		<0.2	<10	20	0.11	0.39	0.01	0.04	35.6	3.0	8
JNL024 13 + 50W		0.57	0.0670	0.31	0.72	166.0	<0.2	<10	50	0.25	0.43	0.48	0.10	20.7	4.5	9
JNLU24 14 + UUW		0.58	>0.1000	0.35	1.09	542	2.2	<10	20	0.13	0.79	0.02	0.07	34.3	7.1	17
IBINSOOD		0.48	0.0055	0.72	0.70	47.0	<0.2	<10	170	0.85	0.40	2.79	2.23	35.8	8.5	14
JBJNS002		0.50	0.0037	0.75	0.64	35.1	<0.2	<10	160	0.93	0.33	3.18	2.49	34.3	9.4	12
JEUNSOUS		0.63	0.0067	0.11	1.29	38.4	<0.2	<10	20	1.20	0.23	0.14	2.39	315	90.1	10
JBJNS004		0.73	0.0122	0.13	1.77	37.7	<0.2	<10	20	1.44	0.24	0.17	3.07	421	112.0	10
JNL025 00+00		0.47	0.0004	0.06	1.69	4.8	<0.2	<10	130	1.29	0.11	1.25	0.12	55.6	9.2	18
		0.45	0.0004	0.04	2.64	2.6	<0.2	<10	40	1.28	0.09	1.03	0.11	54.0	6.7	30
$10202501 \pm 50W$	ļ	0.47	0.0001	0.05	2.41	2.6	<0.2	<10	90	1.36	0.11	2.08	0.19	52.5	8.7	28
JINLO2D 01 + 30W		0.02	0.0007	0.05	1.28	8,9	<0.2	<10	80	0.87	0.10	16.75	0.10	42.1	7.1	17
JNL025 02 + 00	1	0.58	0.0011	0.09	2.31	11.4	<0.2	<10	180	1.39	0.23	2.46	0.16	60.5	14.0	28
JNL025 02 + 50W		0.49	0.0001	0.12	1.82	3.9	<0.2	<10	120	0.86	0.12	0.89	0.40	43.1	4.7	20
JNL025 03 + 00		0.38	0.0003	0.15	1.48	2.7	<0.2	<10	90	0.64	0.09	0.41	0.42	21.4	2.3	13
JNL025 03 + 50W	ļ	0.39	0.0001	0.06	1.17	4.2	<0.2	<10	60	0.70	0.08	1.06	0.85	33.3	4.2	10
JNLUZO U4 + UU		0.42	0.0002	0.18	1.89	5.8	<0.2	<10	120	1.17	0.11	1,52	0.37	43.4	4.7	19

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

	Method Analyte	ME- MS41 Cs	ME- MS41 Cu	ME- MS41 Fe	ME- MS41 Ga	ME- MS41 Ge	ME- MS41 Hf	ME- MS41 Hg	ME- MS41 In	ME- MS41 K	ME- MS41 La	ME- MS41 Li	ME- MS41 Mg	ME- MS4 } Mn	ME- MS41 Mo	ME- MS41 Na
Sample Description	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	% 0.01	0.2	0.1	∞ 0.01	ppm 5	ppm 0.05	% 0.01
JNL024 01 + 00		0.55	9.8	1.57	4.93	0.10	0.06	0.05	0.024	0.07	23.0	27.8	1.81	233	0.30	0.02
JNL024 01 + 50W		0.73	11.7	2.14	4.53	0,09	0.08	0.02	0.026	0.10	24.7	26.8	1.56	345	0.76	0.01
JNL024 02 + 00		0.52	5.3	0.87	3.68	0.06	0.06	0.03	0.017	0.04	13.2	14.4	0.89	102	0,19	0.03
JNL024 02 + 30W JNL024 03 + 00		4.76	3.3 19.8	2.92	3.48 4.76	0.05	0.05	0.01	0.012	0.03	7.U 24.7	13.7 29.4	0.77	309	0.28	0.03
JNL024 03 + 50W		3.37	6.6	1.94	5.73	0.05	0.07	0.02	0.025	0.09	13,1	26.0	1.53	226	0.66	0.01
JNL024 04 + 00		1.37	15.9	2.51	4.94	0.06	<0.02	0.02	0.031	0.07	22.8	20.0	0.38	179	0.55	0.01
JNL024 04 + 50W		0.88	14.7	2.08	4.61	0.12	0.11	0.03	0.029	0.11	30.3	24,0	1,76	541	1.17	0.01
JNL024 05 + 00		0.63	11.7	1.18	3.62	0.12	0.08	0,06	0.021	0.05	30.8	13.6	0.94	258	0.48	0.01
JNL024 05 + 50W		8.35	5.5	1.68	3,36	0.06	0.07	0.02	0.045	0.05	14.1	13.3	0.54	126	1.51	0.02
JNL024 06 + 00		5.54	16.4	2.56	4.44	0.07	0.13	0.02	0,050	0,08	19.1	26.2	1.23	419	1.56	0.01
JNL024 06 + 50W		0.94	14.1	2.52	6.19	0.09	0.12	0.03	0.031	0.12	27.0	35.8	2.37	300	0.61	0.01
JNL024 07 + 00		0.79	27.4	5.10	3.85	0.08	0.07	0,03	0.032	0.06	22.1	24.6	0.95	1800	1.54	0.01
JNL024 07 + 50W		1.26	21.2	2.54	5.64	0.08	0.14	0.01	0.036	0.09	21.3	35.4	1.77	184	0.35	0.01
JNLU24 08 + 00		0.83	36.6	2.28	2.18	0.06	0.04	0.05	0,039	0,03	20.9	13.0	0.23	98	1.54	0.01
JNL024 08 + 50W		0.95	15.0	2.88	5.27	0.08	0.13	0.02	0.049	0.11	25.3	26.4	1.76	275	0.69	0.01
JNL024 09 + 00		1.55	24.0	3.57	2.85	0.06	0.08	0.04	0.041	0.05	21.8	17.2	0.49	514	0.53	0.01
JNL024 09 + 50W		0.83	40.6	4.15	2.71	0.08	0.05	0,05	0.047	0.03	23.6	18.4	0.28	329	0.50	0.01
JNL024 T0 + 00		2.82	34.9 26.4	3.54	2.11	0.06	0.06	0,05	0.040	0.03	20.6	11.4	0.18	620	0.60	0.01
JNL024 10 + 30W		2.02	20.4	0.04	4.20	0.00	0.10	0,03	0.020	0,04	10.0	52.2	0.40	530	0.45	0.01
JNL024 11 +00		0.96	17.2	2.63	4.42	<0.05	0.02	0.02	0.015	0.03	15.6	19.8	0.40	159	0.53	0.01
JNL024 11 + 50W		1.01	12.0	4.0	4.07	0.07	0.05	0,03	0.001	0.03	22.9 13 E	37.4	0.69	104	0.68	0.01
$JNL024 12 \pm 50W$		1.01	13,5	1.00	4.71	<0.05	<0.02	0.02	0.023	0.03	13.5	12.9	0.20	194	0.66	0.01
JNL024 13 + 00		1.03	7.3	2.06	5.46	0.05	<0.02	0.02	0.012	0.02	18.6	3,6	0,05	128	0,54	0.01
JNL024 13 + 50W		2,09	23.4	1.87	3.48	<0.05	0.03	0.02	0.021	0.04	11.7	5.8	0.09	87	0.80	0.01
JNL024 14 + 00W		0.84	25.4	3.61	4.91	0.05	<0.02	0.02	0.021	0.02	18.4	25.1	0.32	304	0.74	0.01
JBJNS001		2.52	35.9	2.46	2.23	0.06	0.08	0.06	0,039	0.09	19.2	9.9	0.89	436	12.45	0.01
JBJNS002		2.52	37.7	2.36	2.16	0.06	0.09	0.06	0.039	0.08	18.8	9.2	1.08	411	19.00	0.01
JBJNS003		0.63	42.2	3.13	2.99	0.31	0.05	0.02	0.022	0.03	143.5	12.2	0.10	2850	0.45	0.01
JBJNS004		0.66	43.6	3.21	3.78	0.43	0,07	0,02	0.021	0.04	186.5	14.7	0.10	3680	0.39	0.01
JNL025 00+00		0.53	12.7	2.10	5.40	0.09	0.16	0.02	0.028	0.11	27.5	22.7	1.46	277	0.43	0.01
JNL025 00 + 50W		1.75	8.2	2.00	8.97	0.17	, 0.07	0.02	0.031	0.07	27.8	66.9	4.04	244	0.21	0.01
INL025 01 + 00		1.23	10.8	2.05	8,35	0.14	0.07	0.03	0.031	0.09	25.0	50.2	3.33	503	0.26	0.01
JINEUZS UT + SUW		0.82	10.0	00.1	4.09	V.11	0.07	0.02	0.020	0.08	23.1	24.0	1.40	234	0.49	0.01
JNL025 02 + 00		1,50	21.9	2.88	6.85	0,11	0.14	0.01	0.033	0.15	28.2	34.4	1.95	397	0.72	0.01
JNL025 02 + 50W		0.58	8.6	1.91	6.01	0.07	0.10	0.02	0,027	0.09	20.1	28.6	1.74	189	0.52	0.01
INL025 03 + 00		0.69	4,5	1.13	5.13	<0.05	0.02	0.01	0.019	0.07	9.0	19.6	0.97	64	0.49	0.02
$10102503 \pm 50W$		0.40	0.0	1.21	J.∠J 6 11	0.06	0.00	0.01	0.019	0.06	10.1	10.0 33.5	1.91	∠04 179	0.47	0.02
		0.01	10,0	1.00	V.11	0.10	u. 13	0,00	0.001	0.00	20.0	55.5	1.01	170	0.37	0.01

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 3 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME-MS41 Nî ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
JNL024 01 + 00 INL024 01 + 50W		0.23	10.7	1500	9.5	9.8 8 1	<0.001	0.12	0.41	1.5	0.8	0.2	109.0	<0.01	0.01	0.7
INL024 02 + 00		0.35	4.8	970	4.8	0.1 6.0	<0.001	0.03	1.04	3.5	0.6	0.3	254	<0.01	<0.01	3.2
JNL024 02 + 50W		0.36	4.0	610	4.6	5.8	<0.001	0.00	0.15	0.7	1.2	0.2	70.0	<0.01	<0.01	· 0.6
JNL024 03 + 00		0.24	20.8	1090	36.8	8.4	< 0.001	0.06	1.43	3.1	1.5	0.2	71.6	<0.01	0.01	4.5
JNL024 03 + 50W		1.14	12.2	1310	12.5	12.1	<0.001	0.07	0.46	1.7	0.3	0.3	55.7	<0.01	0.01	1.4
JNL024 04 + 00		0.31	15.8	510	22.7	8.7	<0.001	0.02	1.16	0,9	0.4	1.1	32.5	<0.01	0.01	1.4
JNL024 04 + 50W		1.57	24.2	1780	14.7	10.2	<0.001	0.10	0.76	3.9	0.9	0.2	184.5	<0.01	<0.01	2.5
JNL024 05 + 00		0.66	12.7	1620	7.4	6.4	< 0.001	0,19	0.33	1.5	0.7	<0.2	176.0	<0.01	<0.01	0.6
JINL024 03 + 30W		0.56	9.1	840	32.3	6.5	<0.001	0.06	1.09	1.2	1.0	0.5	32.9	< 0.01	0.01	1.6
JNL024 06 + 00		0.73	21.4	1340	36.9	9.9	0.001	0.09	1.34	2,5	1.9	0.6	123.0	<0.01	0.01	2.7
JNL024 06 + 50W		0.30	17.3	1610	19.2	12.5	<0.001	0.07	0.72	3,4	0.7	0.4	128.0	<0.01	<0.01	2.9
1002407 + 00		0.15	20.5	1240	36.6	6.2	0.001	0.09	2.46	3.1	0.7	0.3	69.5	<0.01	0.01	2.9
10102407 + 3000		0.25	22.2	1160	21.0	9.8	<0.001	0.05	0.60	3.4	1.0	0.3	149.0	<0.01	0.01	5.3
JNE024 00 + 00		0.17		000	35.1	2.1	<0.001	0.13	2.64	2,8	1.2	0,3	37.8	<0.01	0.03	7.4
JNL024 08 + 50W		0.22	19.9	1120	46.1	9.0	<0.001	0.05	1.41	4.5	0.6	0.4	57.4	<0.01	0.01	4.0
JNL024 09 + 00		0.15	29.7	620	40.6	4.4	< 0.001	0.06	2.12	3.1	1.0	0,3	56.7	0.01	0.02	4.6
$JNL024 09 \pm 30W$		0.19	30.9	740	47.3	3.5	<0.001	0.03	2.93	3.0	0.9	0.3	39.4	<0.01	0.04	7.2
$IN1024 10 \pm 50W$		0.10		7.40 830	31.3	2.7	0.001	0,03	3.46	2.8	0.6	0.3	51.1	<0.01	0.03	.7.5
INL024 11 ± 00		0.00	45.4	400		0.2	~0.001	0.08	0.54	1.0	0.6	0.3	00.4	<0.01	0.02	2.7
10102411+00		0.30	15,1	400	18.6	6.1	< 0.001	0.02	0.76	0.8	<0.2	0.3	5.4	<0.01	0.02	2.5
INE024 17 + 50W		0.13	37.3 10.4	920	94.0	3.8 5.6	<0.001	0.02	2.76	2.7	0.8	<0.2	13.0	<0.01	0.04	10.0
INL024 12 + 50W		0.50	55	280	12 0	5.0	<0.001	0.03	0.97	0.5	0.4	0.4	24.3	<0.01	0.02	0.8
JNL024 13 + 00		0.47	5.9	380	16.0	7.0	<0.001	0.02	0.31	0.4	<0.2	0.4	11.9	<0.01	0.01	1.0
$102413 \pm 50W$		0.32	13.2	810	19.7	4.0	-0.001	0.02	4.04	0.7	NU.2	0.4	4.0	<0.01	0.03	1.3
INL024 14 + 00W		0.27	20.3	580	54.3	4.5	<0.001	0.07	1.01	0.5	0.5	0.4	51.6	<0.01	0.03	1.1
IBINS001		0.38	39.6	920	29.6	6.7	0.004	0.03	5.86	3.7	0.4	0.3	5.U 100 F	<0.01	0.08	2.5
JBJNS002		0.21	47.4	940	18.2	6.6	0.005	0.08	5.80	3.8	3.2	0.4	118.0	<0.01	0.02	2.3
JBJNS003		<0.05	124.0	400	26.0	2.3	<0.001	0.14	1.80	1.7	2.7	0.2	18.4	<0.01	0.02	10.0
JBJNS004		<0.05	148.0	410	25.4	2.5	<0.001	0.11	1.70	1.7	3.4	0.2	22.2	<0.01	0.02	9.5
JNL025 00+00		0.48	17.5	1770	13.6	9.6	<0.001	0.04	0.45	3.4	1.0	0.2	73.4	< 0.01	<0.01	2.3
JNL025 00 + 50W		0.21	13.6	1350	9.6	17.6	<0.001	0.04	0.17	3.3	0.5	0.4	60.5	<0.01	0.01	2.1
JNL025 01 + 00		0.43	14.5	1320	9.4	17. 3	<0.001	0.07	0.21	2.7	0.6	0.4	116.5	<0.01	0.01	1.2
JNL025 01 + 50W		0.87	14.4	1260	11.1	8.1	<0.001	0.01	0.76	4.1	0.6	0.3	782	<0.01	0.02	4.3
JNL025 02 + 00		1.62	31,0	1680	17.6	13.0	<0.001	0.03	0.89	5.1	0.6	0.7	135.0	<0.01	0.02	6.0
JNL025 02 + 50W		0.31	11.6	1270	9.3	11.9	<0.001	0.05	0.55	3.5	0.4	0.3	62.6	<0.01	0.01	2.4
JINL025-03 + 00		0.29	6,6	930	5.0	10.8	<0.001	0.04	0.35	0.3	0.2	0.3	28.2	<0.01	<0.01	<0.2
JINLUZD US + 50W		0.27	8.2	1130	6.6	7.1	<0.001	0.06	0.77	1.6	0.7	0.2	64.0	<0.01	0.01	. 0.8
		0.32	12.0	1840	11,2	9.3	<0.001	0.10	0.72	2.8	0.6	0.3	96.8	<0.01	0.01	1.6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

CERTIFICATE OF ANALYSIS

Page: 3 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

WH14116723

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01			
JNL024 01 + 00 JNL024 01 + 50W JNL024 02 + 00 JNL024 02 + 50W JNL024 03 + 00		0.006 0.009 0.011 0.014 0.005	0.07 0.08 0.07 0.04 0.09	0.44 0.44 0.53 1.55 1.40	16 19 12 11 18	<0.05 0.06 <0.05 <0.05 0.06	10.75 11.05 5.99 3.50 9.58	92 83 33 18 105	2.1 2.3 2.3 1.6 4.7				
JNL024 03 + 50W JNL024 04 + 00 JNL024 04 + 50W JNL024 05 + 00 JNL024 05 + 50W		0.014 0.005 0.021 0.008 0.008	0.09 0.10 0.07 0.05 0.08	0.90 0.44 0.52 0.92 0.72	21 20 19 11 16	<0.05 0.14 <0.05 <0.05 0.08	4.55 4.41 14.20 17.40 2.87	44 64 76 40 68	2.0 <0.5 4.7 2.9 2.2		MURINIESE 211		
JNL024 06 + 00 JNL024 06 + 50W JNL024 07 + 00 JNL024 07 + 50W JNL024 08 + 00		0.011 0.007 <0.005 0.005 0.005	0,06 0.08 0.06 0.07 0.11	1.47 .0.87 1.85 0.39 1.76	18 19 15 18 14	0.08 <0.05 0.05 <0.05 0.24	6.76 12.90 14.90 8.94 8.94	139 136 216 121 115	3,8 4.2 2.5 4.5 1.7				
JNL024 08 + 50W JNL024 09 + 00 JNL024 09 + 50W JNL024 10 + 00 JNL024 10 + 50W		0.005 <0.005 0.006 <0.005 0.007	0.07 0.13 0.14 0.11 0.07	0.53 1.03 1.59 1.09 3.15	17 13 14 12 13	<0.05 0.19 0.23 0.27 0.18	13.10 11.05 9.90 8.90 10.90	175 130 121 105 100	4.2 2.4 1.5 2.1 3.1				
JNL024 11 + 00 JNL024 11 + 50W JNL024 12 + 00 JNL024 12 + 50W JNL024 13 + 00		<0.005 <0.005 0.008 0.011 0.008	0.07 0.05 0.08 0.06 0.08	0.50 0.98 0.59 0.41 0.44	16 12 19 18 20	0.75 0.06 0.17 0.23 0.16	2.01 9.69 2.68 1.31 1.35	53 161 51 37 21	<0.5 2.1 <0.5 <0.5 <0.5				
JNL024 13 + 50W JNL024 14 + 00W JBJNS001 JBJNS002 JBJNS003		<0.005 0.005 <0.005 <0.005 <0.005	0.07 0.06 0.26 0.29 0.19	1.59 0.67 1.43 1.79 2.30	13 17 38 44 8	0.08 0.09 0.14 0.10 0.30	2.10 1.83 12.45 13.75 72.2	48 70 335 385 315	1.2 <0.5 3.0 3.1 1.7	2.41		 	
JBJNS004 JNL025 00+00 JNL025 00 + 50W JNL025 01 + 00 JNL025 01 + 50W		<0.005 0.008 0.008 0.011 0.022	0.20 0.08 0.09 0.09 0.09	2.90 0.39 0.35 0.41 0.40	8 16 28 25 15	0.29 <0.05 0.08 <0.05 0.05	101.5 16.65 13.35 9.87 11.80	381 69 57 61 43	1.6 4.4 2.0 2.0 3.1				
JNL025 02 + 00 JNL025 02 + 50W JNL025 03 + 00 JNL025 03 + 50W		0.045 0.006 0.005 0.009	0.13 0.08 0.08 0.08	0.54 0.38 0.39 0.27	29 26 22 15	0.07 <0.05 0.07 <0.05	12.30 8.52 2.86 5.93	83 71 69 72	5.7 2.5 <0,5 2 1				

***** See Appendix Page for comments regarding this certificate *****

0.005

0.07

1.10

22

< 0.05

13.65

63

3.3

JNL025 04 + 00

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME- MS41 Al %	ME- MS41 As ppm	ME-MS41 Au ppm	ME-MS41 B ppm	ME- MS41 Ba ppm	ME-MS41 Be ppm	ME- MS41 Bi ppm	ME- MS41 Ca %	ME- MS41 Cd ppm	ME- MS41 Ce ppm	ME- MS41 Co ppm	ME-MS41 Cr ppm
INL025.04 + 50W		0.33		0.05		0.1	0.2	10		0.05	0.01		0.01	0.02	0.1	1
$INL025.05 \pm 00$		0.35	0.0002	0.05	1.60	2.5	<0.2	<10	60 ·	0.96	0.08	1.64	0.81	50.5	7.2	18
INL025 05 + 50W		0.33	0.0002	0.14	1.01	3.0	<0.2	<10	80	0.97	0.09	3.79	0.45	50.0	8.4	18
JNL025 06 + 00		0.42	0.0120	0.26	1.55	55.8	<0.2	<10	50	0.77	0.08	1.32	0.50	42.8	7.0	14
JNL025 06 + 50W		0.37	0.0004	0.06	1.30	4.6	<0.2	<10	70	0.91	0.97	1.58	0.76	44.0	8.8	16
JNL025 07 + 00		0.47	0.0010	0.12	1 72	44 4	<0.2	<10	60	0.50	0.00	0.40	0.00	39.2	4.4	
JNL025 07 + 50W		0.32	0.0012	0.14	1.80	34.0	<0.2	<10	120	1.09	0.87	1.75	1.09	34.2	9.9	20
JNL025 08 + 00		0.38	<0.0001	0.02	0.94	1.0	<0.2	<10	40	0.31	0.25	1.75	0.71	40,1	10.7	19
JNL025 08 + 50W		0.42	0.0008	0.06	1.17	7.9	<0.2	<10	130	0.78	0.08	1.20	0.00	34.2	2.4	3
JNL025 09 + 00		0.36	0.0004	0.10	0,82	13.0	<0.2	<10	150	0.38	0.14	2.40	0,18	14.60	3.9	7
JNL025 09 + 50W		0.41	0.0006	0.06	1.62	34.9	<0.2	<10	130	0.79	0.40	0.32	0.34	45.8	12.0	
JNL025 10 + 00		0.54	0.0008	0.10	1.05	27.8	<0.2	<10	40	0.41	0.44	0.02	0.20	31.0	6.4	13
JNL025 10 + 50W		0.58	0.0008	0.08	1.41	24.2	<0.2	<10	80	0,66	0.36	0.20	0.23	36.4	10.0	20
JNL025 11 +00		0.50	0.0042	0.19	0.64	78.3	<0.2	<10	30	0.52	0.39	4.53	0.47	36.4	15.0	15
JNL025 11 + 50W		0.49	0.0011	0.13	1.14	33.7	<0.2	<10	40	0.45	0.41	0.48	0.14	22,9	8.1	12
JNL025 12 + 00		0.43	0.0005	0.06	1.50	20.8	<0.2	<10	60	0.39	0.43	0.06	0.31	34.3	11.4	
JNL025 12 + 50W		0.50	0.0038	0.05	1.50	23.9	<0.2	<10	60	0.49	0.43	0.05	0.16	41.6	12.7	20
JNL025 13 + 00		0.35	0.0039	0.12	1.54	37.7	<0,2	<10	30	0.43	0.36	0.35	0.10	28.0	15,8	23
JNL025 13 + 50W		0.43	0.0037	0.15	1.38	59.5	<0.2	<10	40	0.41	0.43	0.48	0.15	29.7	12.0	20
JNL025 14 + 00W		0.47	0.0061	0.14	1.17	98,1	<0.2	<10	40	0.41	0.50	0.44	0.23	30.2	15.3	20
JNL002 14 + 50W		0.47	0.0031	0.12	1.01	125.0	<0.2	<10	30	0.33	0.55	0.10	0.10	32.8	10.1	20
JNL026 00+00		0.51	0.0009	0.32	1.10	17.6	<0.2	<10	60	0.43	0.32	0.16	0.14	25.2	9.6	12
JNL026 00 + 50E		0.41	0.0038	0.40	0.89	46.5	<0.2	<10	40	0.41	0.37	0,06	0.26	21.1	8.0	10
JNL026 01 + 00		0.49	0.0136	0.80	1.33	108.5	<0.2	<10	40	0.92	3.15	0.04	0.27	45.7	23.4	15
JNL026 01 + 30E		0.46	0.0055	0.22	1.28	429	<0.2	<10	40	0.37	0.98	0.04	0.36	28.6	8.6	16
JNL026 02 + 00		0.40	0.0039	0.26	0.86	365	<0.2	<10	40	0.22	0.77	0.02	0.19	21.1	5.4	11
INL020 02 + 30E		0.39	0.0043	0.29	0.75	341	<0.2	<10	50	0.22	0.83	0.02	0.45	23.8	8.3	12
INL026 03 ± 50E		0.40	0.0055	0.21	0.55	378	<0.2	<10	30	0.30	0.67	0.01	0.15	53.8	6.7	9
INL026.04 + 00	ſ	0.52	0.0051	0.20	0.43	78.3	<0.2	<10	30	0.22	0.30	0.05	0.11	45.3	3.5	6
JNL026 04 + 60		0.02	0.0181	0.20	0.52	194.5	<0,2	<10	30	0.29	0.42	0.01	0.21	71.2	6.7	7
INL026 04 + 50E		0.43	0.0148	0.38	0.97	157.0	< 0.2	<10	30	0.31	0.39	0.06	0.27	23.5	9.7	12
INL026.05 + 50F		0.56	0.0055	0.90	1.23	487	<0.2	<10	40	0.40	1.96	0.01	0.30	61.4	15.5	16
INL026.06 + 00		0.46	0.0200	0.57	1.34	104.5	<0.2	<10	30	0.43	0.66	0.02	0.26	38.6	15.1	17
INL026 06 + 50F		0.58	0.0082	0.07	1.17	104.5	<u.z< td=""><td><10</td><td>40</td><td>0.27</td><td>0.50</td><td>0.09</td><td>0.20</td><td>27.8</td><td>8,8</td><td>12</td></u.z<>	<10	40	0.27	0.50	0.09	0.20	27.8	8,8	12
INU 036 07 + 00			0.0002	0.20	1.10	121.0	<0.Z	<10	40	0.23	0.41	0.01	0.20	39.7	6.2	12
JNEUZO UZ + UU INILO26 07 + EOE		0.48	0.0027	0.26	2.21	37.5	<0.2	<10	50	0.97	0.64	0.05	0.17	41.7	51.8	26
JINLO20 U7 + SUE		0.53	0.0034	0.39	2.23	28.2	<0.2	<10	40	0.96	0,70	0.04	0.29	37,3	43.3	26
INLO20 00 + 00		0.58	0.0023	0.26	1.58	25.5	<0.2	<10	40	0.64	0.74	0.04	0.14	29.8	23.2	20
		0.02	0.0031	0.54	2.23	76.0	<0.2	<10	40	1.03	1.37	0.02	0.16	68.1	49.8	25
JIVE020 05 T 00		0.40	0.0013	U.23	1.46	31.6	<0.2	<10	40	0.64	0,55	0.02	0.21	46.6	16.7	16

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 4 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units	ME-MS41 Cs ppm	ME-MS41 Cu ppm	ME- MS41 Fe %	ME- MS41 Ga ppm	ME- MS41 Ge ppm	ME- MS41 Hf ppm	ME-MS41 Hg ppm	ME-MS41 In ppm	ME- MS41 K %	ME-MS41 La ppm	ME-MS41 Li ppm	ME-MS41 Mg %	ME-MS41 Mn ppm	ME-MS41 Mo ppm	ME- MS41 Na %
Sample Description	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01
JNL025 04 + 50W		0.60	8.7	1.73	5.77	0.12	0.11	0.02	0.022	0.11	26.8	31.0	2.01	342	0.43	0.01
I JNL025 05 + 00		0.72	13.4	1.84	5.54	0.10	0.13	0.03	0.025	0.10	25.4	28.7	1.97	285	0.83	0.01
I JNL025 05 + 50W		0.59	12.4	1.54	4.57	0.09	0.09	0.02	0.023	0.08	20,0	22.4	1.48	235	1.48	0.02
JNL025 06 + 00		0.45	16.8	2.41	4.92	0.09	0.10	0.03	0.031	0.07	22.6	23.8	1.16	347	0.62	0.01
JINLUZS UB + SUW		0.44	10.1	1.24	3.83	0.08	0.09	0.01	0.020	0.06	22.3	17.7	1.13	228	0.33	0.02
JNL025 07 + 00		0.95	24.0	3.51	5,39	0.06	0.07	0.01	0.024	0.05	17.8	35.2	0.83	304	1.05	0.01
JNL025 07 + 50W		0.79	15.4	2,48	5.59	0.09	0.19	0.03	0.037	0.11	19.9	25.2	1.72	299	0.49	0.01
JNL025 08 + 00		0.23	5.0	0.54	2.03	0.05	0,06	0.02	0.008	0.02	7.6	3.6	0.22	243	0.23	0.03
102508 ± 500		0.24	12.0	1.00	3.30	0.07	0.09	0.02	0.023	0.06	21.0	13.4	0.84	310	0.47	0.02
JNE025 05 + 50		0.20	10.0	1.00	2.33	<0.05	0.07	0,05	0.010	0.03	7.3	6.8	0.33	270	0.43	0.02
JINL025 09 + 50W		0.83	12.0	3.11	5.25	0.05	0.07	0.02	0.043	0.06	16.6	26.5	0.77	469	0.77	0.01
JNE025 10 + 00		0.79	15.3	3.28	5.39	0.05	0.02	0.02	0.025	0.03	15.9	14.4	0.24	167	0.67	0.01
INLO25 10 + 50W		1.94	20,6	3.84	4.82	0.05	0.02	0.02	0.042	0.05	15.7	20.4	0,51	327	0.58	0.01
$INL025 11 \pm 50W$		0.70	20.0	3.35	2.13	0.06	0.06	0.06	0.038	0.04	19.2	12.7	0.26	589	0.68	0.01
JNL025 17 + 30W		0.70		5.22	3.04	0.03	0.03	0.02	0,031	0.03	10.2	20.6	0.31	214	0,43	0.01
JNL025 12 + 00		0.82	17.1	4.71	5.76	0.05	0.02	0.02	0.035	0.05	13.6	21.2	0.69	609	0.89	0.01
JINLUZS 12 + 50W		0.96	20.0	3,23	5.07	0.05	0.02	0.01	0.015	0.04	20.5	35.6	0.52	357	0,55	0.01
JNL025 + 5 + 00		0.83	24.2	3.42	4.82	<0.05	0.10	0.02	0.027	0.03	15.3	49.6	0.59	456	0.64	0.01
1NL025 + 10W		0.63	24.0	3.08	4.27	0.05	0.06	0.03	0.024	0.04	17.5	37.8	0.48	327	0.43	0.01
		0.00		0.02	0.71	0.00	0.10	0.03	0.023	0.00	10.7	31.4	0.41	397	0.61	0.01
JNL002 14 + 50W		0.72	26.6	3.39	3.78	0.05	0.02	0.02	0.017	0,06	17.8	22.5	0.30	212	0.63	0.01
INL026 00+00		0.03	17.5	2.94	4.09	<0.05	0.05	0.02	0.021	0.05	12.9	21.6	0.25	399	0.33	0.01
INL020.00 + 30L		3.15	17.4	2.07	2.93	<u.u5 0.08</u.u5 	0.05	0.04	0.029	0.05	9,5	16.0	0.21	320	0.33	0.01
INL026 01 + 50F		1.09	23.5	4.05	3.50	<0.06	0.08	0.03	0.089	0.05	20,9	26.7	0.33	1960	0.49	0.01
		1.00	47.5		0.70	-0.00	0.00		0.037	0.08	13,3	19.7	U.27	037	0.48	<0.01
JNL026 02 + 00		1.20	17.5	2.64	3.77	<0.05	0.03	0.02	0.025	0.04	10.3	4.9	0.07	640	0.57	<0.01
INLO20 02 + 30E		1.03	22.0	3,29	3,54	<0.05	0.02	0.04	0.030	0.04	11.6	3.4	0.06	889	0.56	<0.01
INLO26 03 + 50F		1.63	20.1	3.10	2.00	0.06	0.02	0.02	0.033	0.06	26.7	5.9	0.08	306	0.53	<0.01
INL026 04 + 00		1.85	17.5	1.55	1.74	0.05	<0.02	0.01	0.015	0.06	22.8	5.1	0,06	155	0.31	<0.01
		0.76	19.0	0.78	0.00	-0.05	-0.02	0.01	0.020	0.00	34.8	Q.7	0.09	200	0.27	<0.01
$INL020.04 \pm 000$		2.49	31.4	2.70	2.99	<0.05	0.03	0.03	0.014	0.03	11.7	20.3	0.35	507	0.32	0.01
INLO26 05 + 50F		2.10	32.2	4.08	3.88	0.05	0.02	0.13	0.026	0.06	30.1	27.9	0.41	783	0.41	<0.01
INL026 06 + 00		1.16	16.5	2 4 9	3.43	0.05	0.03	0.02	0.035	0.04	19.Z	30.2	0.43	656	0.43	<0.01
JNL026 06 + 50E		1.97	14.2	2.70	3.98	0.05	0.02	0.02	0.013	0.04	20.4	16.5	0.27	481	0.36	0.01
INL026.07 ± 00		2 94	56.8	4.57	5.54	0.00	0.02	0.02	0.020	0.00		10.0	0.24	401	0.42	0.01
INL026 07 + 50F		3.08	57.2	4.07	0.04 5.28	0.06	0.05	0.01	0.034	0.04	21.6	51.1	0.68	1370	0.70	0.01
INL026 08 + 00		2.57	37.6	471	4 10	<0.00	0.05	0.03	0.040	0.03	10.2	54.6 20.0	0.69	1700	0.54	<0.01
INL026 08 + 50E		5.20	74.5	5 70	6.16	~0.05	0.04	0.02	0,027	0.03	10,3	30.9	0.53	869	0.40	0.01
JNL026 09 + 00		3.11	29.0	4.29	4.72	0.05	0.04	0.02	0.000	0.04	24.9	4∠.5 18.7	0.56	1940	0.61	· <0.01
L										2.01	27.5		0.01	1020	0.01	0.01

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 4 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method	ME- MS41	ME- MS41	ME-MS41	ME-MS41	ME-MS41	ME- MS41	ME- MS41	ME- MS41	ME-MS41	ME-MS41	ME- MS41	ME- MS41	ME- MS4 1	ME- MS41	ME-MS41
	Analyte	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2
JNL025 04 + 50W		0.31	12.0	1510	9.9	11.1	<0.001	0.08	0.24	2.7	0.8	0.2	90.6	<0.01	<0.01	1.7
JNL025 05 + 00		0.32	13.8	1520	10.3	9.4	<0.001	0.06	0.47	2.6	0.7	0.3	168.5	<0.01	<0.01	1.7
JNL025 05 + 50W		0.31	12.6	970	8.9	8.1	<0.001	0.06	0.84	2.0	0.5	0.2	71.3	<0.01	0.01	1.1
JNL025 06 + 00		0.22	15.0	1220	24.9	9.2	<0.001	0.10	1.35	2.0	0.4	0.5	84.1	<0.01	0.03	1.3
JNL025 06 + 50W JNL025 07 + 00 JNL025 07 + 50W		0.25 0.18 0.26	7.7 23.3 17.6	1300 690 1250	7.3 28.5 33.2	7.0 6.8 9.6	<0.001 <0.001 <0.001	0.09 0.03 0.11	0.31	1.7 1.4 3.4	0.9 0.3 1,3	<0.2 0.3 0.4	74.4 9.6 86.5	<0.01 <0.01 <0.01	<0.01 0.02 0.01	0.8 3.3 2.6
JNL025 08 + 00 JNL025 08 + 50W JNL025 09 + 00		0.40	2.3 10.2 6.3	940 1080 1180 760	3.3 9.3 8.6 70.0	3,3 5,9 3,6 8,8	<0.001 <0.001 <0.001	0.10	0.10	0.5 2.1 0.4	0.2 1.3 1.8	<0.2 0.2 0.2	61.3 78.0 143.5	0.01 <0.01 <0.01	<0.01 0.01 0.01	0.2 0.9 0.3
JNL025 10 + 00 JNL025 10 + 50W JNL025 11 +00 JNL025 11 + 50W		0.43 0.29 0.14 0.24	11.4 17.0 31.9 18.1	490 650 730 490	22.7 25.1 28.6 40.3	7.2 8.5 4.7 4.9	<0.001 <0.001 <0.001 <0.001 <0.001	0.02 0.02 0.09 0.03	0.71 0.92 2,87 0.80	0.8 2.0 3.5 1.0	0.5 0.5 0.9 0.3	0.3 0.3 0.3 0.2	6.7 20.1 178.5 37.0	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.05 0.02 0.05 0.03	2.4 3.0 3.7 5.0 3.3
JNL025 12 + 00		0.61	17.7	890	36.6	7.6	<0.001	0.02	1.01	1.2	0.6	0.3	8.3	<0.01	0.02	2.3
JNL025 12 + 50W		0.45	23.8	390	22.1	5.4	<0.001	0.01	0.56	1.4	0.3	0.3	8.1	<0.01	0.01	4.4
JNL025 13 + 00		0.14	29.0	470	33.9	3.9	<0.001	0.04	1.25	1.4	0.4	0.2	40.0	<0.01	0.03	5.4
JNL025 13 + 50W		0.22	26.4	520	25.4	4.0	<0.001	0.04	0.86	1.5	0.4	0.2	45.5	<0.01	0.01	5.5
JNL025 14 + 00W		0.20	31.5	440	25.0	4.3	<0.001	0.06	1.58	1.7	0.7	0.3	34.8	<0.01	0.03	5.9
JNL002 14 + 50W		0.16	26.5	490	18.0	5.0	<0.001	0.03	1.19	1.2	0.3	0.4	13.2	<0.01	0.03	3.5
JNL026 00+00		0.18	18.0	950	24.5	7.9	<0.001	0.05	1.59	0.5	0.3	0.2	12.5	<0.01	0.02	1.2
JNL026 00 + 50E		0.16	18.2	960	34.9	5.7	<0.001	0.06	2.05	0.5	0.2	0.2	9.0	<0.01	0.02	1.2
JNL026 01 + 00 JNL026 01 + 50E JNL026 02 + 00 JNL026 02 + 50E		0.09 0.31 0.20 0.20	36.1 19.5 8.7 12.3	1190 1280 1530 1270	65.0 52.2 50.7 58.8	5.2 7.5 9.2 8.9	<0.001 <0.001 <0.001 <0.001	0.03 0.08 0.06 0.07	4.64 2.17 1.58 1.97	1.7 0.7 0.2	1.0 0.6 0.4	0.9 0.4 0.4	7.9 7.9 8.6 7.4	<0.01 0.01 0.01	0.03 0.03 0.03 0.03	4.2 2.9 0.8
JNL026 03 + 00 JNL026 03 + 50E JNL026 04 + 00		0.19 0.13 0.05	13.3 8.5 13.0	680 510 340	37.9 37.9 65.5	6.6 6.0 5.3	<0.001 <0.001 <0.001 <0.001	0.05 0.03 0.03	3.49 1.30 1.69	0.0 1.1 0.5 1.1	0.8 0.3 0.5	0.3 <0.2 0.2	15.0 13.7 15.2	<0.01 <0.01 <0.01 <0.01	0.02 0.03 0.01 <0.01	5.2 1.9 7.3
JNL026 04 + 50E		0.16	17.3	720	29,7	3.0	<0.001	0.05	1.88	0.7	<0.2	<0.2	8.6	<0.01	0.02	1.9
JNL026 05 + 00		0.12	24.3	610	57.3	6.0	<0.001	0.05	4.98	1.4	0.2	1.0	18.1	<0.01	0.03	7.7
JNL026 05 + 50E		0.12	26.2	600	108.5	5.1	<0.001	0.03	3.18	1.3	0.5	0.2	11.4	<0.01	0.02	5.6
JNL026 06 + 00		0.22	13.5	870	70.6	6.0	<0.001	0.06	1.73	0.4	0.2	0.2	14.7	<0.01	0.02	0.9
JNL026 06 + 50E		0.30	12.6	640	53.9	10.5	<0.001	0.03	1.25	0.5	<0.2	0.2	7.0	<0.01	0.02	1.3
JNL026 07 + 00		0.32	39.6	670	95.3	4.6	<0.001	0.04	1.74	1.7	0.3	0.2	12.7	<0.01	0.04	7.0
JNL026 07 + 50E		0.16	42.7	860	88.0	4.5	<0.001	0.03	2.92	2.3	0.5	0.2	8.4	<0.01	0.03	8.9
JNL026 08 + 00		0.07	32.7	690	48.2	4.0	<0.001	0.04	2.17	1.7	0.4	0.2	5.7	<0.01	0.03	6.0
JNL026 08 + 50E		0.33	36.1	1190	113.0	7.3	<0.001	0.03	2.80	2.2	0.7	0.5	6.6	<0.01	0.04	8.7
JNL026 09 + 00		0.28	19.9	940	92.1	7.1	<0.001	0.04	2.46	1.2	0.4	0.3	5.2	<0.01	0.04	3.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 4 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units	ME- MS41 Ti %	ME- MS41 TI ppm	ME-MS41 U ppm	ME- MS41 V ppm	ME- MS41 W ppm	ME- MS41 Y ppm	ME-MS41 Zn ppm	ME- MS41 Zr ppm	Au- AROR43 Au ppm			
· · ·	LOR	0.005	0.02	0.05		0.05	0.05	2	0.5	0.01	 	 	
JNL025 04 + 50W		0.009	0.06	0.41	16	<0.05	12.35	75	3.4				
JNL025 05 + 00		0.009	0.09	0.39	16	<0.05	13.55	76	3.6				
JNL025 05 + 50W		0.008	0.06	0.32	16	<0.05	9.37	75	2.8				
JNL025 06 + 00		<0.005	0.05	0.53	14	<0.05	10.50	108	2.5				
JNL025 06 + 50W		0.010	0.06	0.52	12	<0.05	11.40	64	2.6				
JNL025 07 + 00		<0.005	0.06	0.48	17	<0.05	3.34	134	2.0				
JNL025 07 + 50W		<0.005	0.08	1.25	15	<0.05	11.00	125	5.5				
JNL025 08 + 00		0.014	0.03	0.57	6	<0.05	4.17	64	2.2				
JNL025 08 + 50W		0.005	0.04	1.62	11	<0.05	11.75	46	2.5				
JNL023 09 + 00		0.006	0,03	9.67	1	<0.05	4.26	25	1.9			 	
JNL025 09 + 50W		0.011	0.11	0.80	22	0.79	6.63	114	1.8				
JNL025 10 + 00		0.006	0.06	0.53	19	0.46	1.96	49	0.5				
JNL025 10 + 50W		<0,005	0.07	0.61	20	0.19	4.13	64	0.5				
JNL025 11 +00		<0.005	0.11	1.89	12	0.24	11.05	103	1.8				
JNL025 11 + 50W		<0.005	0.06	0.76	11	0.39	3,59	64	0.9			 	
JNL025 12 + 00		0.010	0.06	0.53	19	0.10	2,48	70	0.6			 	
JNL025 12 + 50W		0.009	0.05	0,64	18	0.48	3.45	74	0.6				
JNL025 13 + 00		<0.005	0.04	2.16	14	0.11	4.41	93	2.7				
JNL025 13 + 50W		<0.005	0.06	1.80	14	0.12	5.14	73	1.6				
JNL025 14 + 00W		<0.005	0.05	1.90	14	0.15	4.76	96	2.9				
JNL002 14 + 50W		<0.005	0.08	1.24	17	0.20	3.20	82	<0.5				
JNL026 00+00		<0.005	0.05	0.66	10	<0.05	2.98	72	1.3				
JNL026 00 + 50E		<0.005	0.03	0.76	9	0.08	2.94	83	1.3				
JNL026 01 + 00		<0.005	0.08	1.32	10	0.05	12.30	130	2.1				
JNL026 01 + 50E		0.007	0.06	0.91	12	0.07	3.89	108	2.6				
JNL026 02 + 00		0.006	0.09	0.67	13	0.08	2.34	59	1.1				
JNL026 02 + 50E		0.006	0.09	0.85	14	0.08	2.66	88	0.5				
JNL026 03 + 00		0.005	0.10	1.11	9	0.11	3.79	67	0.7				
JNL026 03 + 50E		<0.005	0.04	0.69	5	0.08	2.73	47	0.5				
JNL026 04 + 00		<0.005	0.07	1.17	5	0.20	5.03	67	<0.5				
JNL026 04 + 50E		0.006	0.03	0.81	8	<0.05	2.76	86	1.2				
JNL026 05 + 00		<0.005	0.33	1.39	9	0.33	5.31	115	0,6				
JNL026 05 + 50E		<0.005	0.07	1.14	10	0.07	4.57	160	0.9				
JNL026 06 + 00		0.008	0.05	0,68	10	0.06	2.22	84	1.0				
JNL026 06 + 50E		0.007	0.08	0.59	13	80.0	1.90	100	0.6		 	 	
JNL026 07 + 00		0.008	0.09	1.93	17	0.07	6.77	161	1.5				
JNL026 07 + 50E		<0.005	0.07	2.20	15	<0.05	10.60	162	1.8				
JNL026 08 + 00		<0.005	0.06	1.54	12	<0.05	7.31	129	1.3				
JNL026 08 + 50E		0.006	0.12	3.01	19	0,06	8.52	171	1.6				
JNL026 09 + 00		0.006	0.08	1.48	17	0.06	4.60	148	1.2				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS4⊺ Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME- M\$41 Cr ppm 1
JNL026 09 + 50E JNL026 10 + 00 JNL027 00+00 JNL027 00 + 50W JNL027 01 + 00		0.50 0.49 0.39 0.45 0.52	0.0013 0.0017 0.0027 0.0069 0.0076	0.25 0.14 0.50 0.55 0.22	1.75 1.33 0.53 1.26 0.89	17.4 22.6 17.3 125.0 160.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10 <10	30 50 20 40 40	0.85 0.53 0.18 0.27 0.26	0.61 0.60 0.13 0.52 0.45	0.05 0.03 0.04 0.01 0.02	0.66 0.59 0.16 0.11 0.10	59.7 35.3 9.60 45.2 31.1	14.8 14.2 4.0 6.3 5.6	19 20 5 18 14
JNL027 01 + 50W JNL027 02 + 00 JNL027 02 + 50W JNL027 03 + 00 JNL027 03 + 50W		0.48 0.54 0.56 0.55 0.59	0.0028 0.0038 0.0055 0.0049 0.0008	0.24 0.13 0.41 0.18 0.15	0.74 0.96 0.51 1.10 0.42	135.5 82.5 99.0 59.4 62.3	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	50 30 20 30 40	0.26 0.35 0.20 0.42 0.19	0.53 0.42 0.45 0.67 0.29	0.03 0.02 0.01 0.03 0.01	0.38 0.24 0.09 0.16 0.13	31.9 35.9 58.3 36.3 33.6	6.9 6.0 3.9 10.6 3.8	12 11 11 16 6
JNL027 04 + 00 JNL027 04 + 50W JNL027 05 + 00 JNL027 05 + 50W JNL027 06 + 00		0.38 0.47 0.44 0.51 0.48	0.0005 0.0066 0.0020 0.0014 0.0010	0.18 0.30 0.29 0.24 0.16	0.61 0.44 0.95 1.51 0.95	22.5 63.4 35.7 31.3 22.9	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	50 20 30 50 30	0.20 0.21 0.20 0.53 0.31	0.19 0.45 0.31 0.45 0.26	0.03 0.02 0.02 0.04 0.02	0.27 0.14 0.09 0.77 0.09	13.95 24.2 19.05 24.1 18.05	5.2 3.8 7.4 17.7 4.9	6 10 11 19 9
JNL027 06 + 50W JNL027 07 + 00 JNL027 07 + 50W JNL027 08 + 00 JNL027 08 + 50W		0.55 0.54 0.48 0.48 0.48	0.0041 0.0006 0.0040 0.0003 0.0005	0.19 0.04 0.51 0.16 0.10	1.68 1.02 0.92 1.12 1.16	47.5 12.4 58.2 9.0 9.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	50 40 40 60 40	0.69 0.26 0.75 0.46 0.23	0.44 0.28 0.51 0.24 0.27	0.08 0.05 0.53 0.15 0.02	0.18 0.19 0.14 0.21 0.08	47.2 23.6 26.3 24.1 26.2	16.1 6.0 12.8 8.2 4.2	19 10 12 11 11
JNL027 09 + 00 JNL027 09 + 50W JNL027 10 + 00 JNL028 00+00 JNL028 00 + 50E		0.47 0.38 0.44 0.43 0.47	0.0006 0.0006 0.0002 0.0020 0.0011	0.08 0.14 0.02 0.17 0.09	1.20 0.63 1.00 1.23 1.23	9.1 7.1 17.3 25.9 21.0	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	40 20 50 30 40	0.31 0.24 0.19 0.57 0.58	0.26 0.16 0.35 0.48 0.39	0.02 0.03 0.02 0.02 0.05	0.09 0.08 0.08 0.18 0.17	28.7 17.70 33.5 39.0 43.1	6.4 4.0 6.8 17.5 13.7	12 6 12 15 14
JNL028 01 + 00 JNL028 01 + 50E JNL028 02 + 00 JNL028 02 + 50E JNL028 03 + 00		0.48 0.42 0.47 0.45 0.46	0.0014 0.0014 0.0008 0.0008 0.0008	0.18 0.18 0.10 0.16 0.13	1.17 1.32 1.35 1.12 1.01	11.8 20.0 23.8 17.0 13.0	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	40 40 30 40 40	0.41 0.50 0.37 0.48 0.30	0.33 0.40 0.42 0.33 0.29	0.03 0.03 0.02 0.54 0.02	0.09 0.21 0.15 0.13 0.14	33.7 32.3 30.5 25.0 25.4	5.9 13.9 11.4 11.2 5.2	12 15 17 13 11
JNL028 03 + 50E JNL028 04 + 00 JNL028 04 + 50E JNL028 05 + 00 JNL028 05 + 50E	<u>, , , , , , , , , , , , , , , , , , , </u>	0.41 0.45 0.48 0.42 0.49	0.0030 0.0011 0.0008 0.0012 0.0012	0.15 0.32 0.86 0.38 0.36	0.73 1.04 1.30 1.34 1.24	45.8 11.9 8.5 24.0 23.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	50 40 30 40 50	0.35 0.37 0.40 0.48 0.46	0.37 0.28 0.18 0.37 0.37	0.17 0.03 0.09 0.06 0.06	0.18 0.22 0.13 0.15 0.33	27.3 25.7 17.50 32.0 36.1	8.7 10.0 5.9 9.2 10.3	10 11 9 15 14
JNL028 06 + 00 JNL028 06 + 50E JNL028 07 + 00 JNL028 07 + 50E JNL028 08 + 00		0.49 0.35 0.49 0.50 0.51	0.0014 0.0012 0.0051 0.0024 0.0066	0.26 0.09 0.30 0.14 0.35	1.17 0.32 1.21 0.35 1.06	22.4 24.8 70.2 37.3 88.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	50 30 30 20 40	0.43 0.09 0.31 0.10 0.31	0.34 0.14 0.47 0.38 0.45	0.03 0.03 0.01 0.01 0.04	0.25 0.09 0.14 0.04 0.20	26.1 10.70 44.5 28.6 33.9	10.9 2.5 10.0 1.8 7.7	12 4 16 8 15

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

INLO26 09 + 02 4.06 36.5 4.82 4.84 0.06 0.06 0.03 0.087 0.44 22.1 22.6 0.41 774 0.40 INL026 10 + 00 0.53 8.0 1.02 1.73 -0.05 0.068 0.03 0.068 0.03 0.88 6.1 0.10 160 0.53 INL027 01 + 50W 1.56 18 3.33 4.11 -0.06 -0.02 0.04 2.7 2.03 0.05 6.3 0.11 5.7 4.5 6.3 0.11 5.7 4.5 0.06 750 0.63 INL027 01 + 50W 1.47 17.2 2.87 3.84 0.05 -0.02 0.01 0.021 0.07 16.1 2.8 0.06 750 0.63 INL027 02 + 50W 1.40 16.8 2.18 1.55 0.02 0.03 0.017 0.05 17.2 1.2 0.01 2.03 0.021 0.021 0.221 0.021 0.021 0.03 0.034	Sample Description	Method Analyte Units LOR	ME- MS41 Cs ppm 0.05	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K %- 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
INLO2 610 + 00 2:19 2:10 4:89 5:28 0.05 0.05 0.084 0.084 0.08 18.9 12.0 0.23 7740 0.52 INL02 700 + 50W 1.56 19.6 3.38 4.48 0.05 0.03 0.029 0.44 23.7 20.3 0.29 513 0.43 0.48 51 51 6.3 0.11 7740 0.57 16.1 23.7 20.3 0.29 513 0.43 0.48 51 51 6.3 0.11 774 1.5 6.3 0.11 774 1.5 0.5 0.11 774 1.5 0.22 0.22 0.03 0.017 0.65 177 1.4 0.22 0.22 0.33 0.017 0.65 172 0.2 0.22 0.33 0.32 1.8 0.32 1.8 0.32 0.32 0.32 0.32 1.8 0.01 3.6 0.7 5.9 0.33 0.32 1.8 0.32 1.8 0.33 <td>JNL026 09 + 50E</td> <td></td> <td>4.09</td> <td>30.5</td> <td>4.82</td> <td>4.64</td> <td>0.06</td> <td>0.06</td> <td>0.03</td> <td>0.067</td> <td>0.04</td> <td>32.1</td> <td>28.6</td> <td>0.41</td> <td>724</td> <td>0.40</td> <td><0.01</td>	JNL026 09 + 50E		4.09	30.5	4.82	4.64	0.06	0.06	0.03	0.067	0.04	32.1	28.6	0.41	724	0.40	<0.01
JNL027 09+00 0.63 8.0 1.02 1.73 < < 0.03 0.03 0.43 0.03 0.43 0.13 0.13 0.14 0.14 0.16 0.23 0.24 0.11 0.55 1.43 0.44 0.44 0.05 0.02 0.04 0.021 0.05 1.45 0.25 0.52 0.02 0.05 0.01 0.05 1.45 0.22 0.25 0.63 0.02 <	JNL026 10 + 00		2,19	21.0	4,89	5.26	0.05	0.05	0.03	0.084	0.05	18.9	12.0	0,23	1740	0.52	<0.01
JNL027 00 + 50W 1.56 1.96 3.38 4.88 0.05 0.03 0.020 0.04 2.37 20.3 0.226 613 0.44 JNL027 01 + 50W 1.47 17.2 2.87 3.84 0.06 40.02 0.05 15.9 6.3 0.11 574 0.47 JNL027 02 + 50W 1.47 17.2 2.87 3.84 2.85 2.89 -0.05 0.020 0.06 17.7 14.5 0.20 2.72 0.34 JNL027 02 + 50W 1.40 163 2.85 2.89 -0.05 0.02 0.030 0.055 17.7 14.5 0.02 0.28 0.33 0.33 JNL027 03 + 50W 1.67 9.4 1.60 2.71 <0.05	JNL027 00+00		0.53	8.0	1.02	1.73	<0.05	<0.02	0.03	0.006	0.03	4.8	6.1	0.10	196	0.24	0.02
INL027 01 + 00 1.30 18.3 3.30 4.11 <0.05 <0.20 0.04 0.021 0.05 16.9 6.3 0.11 574 0.47 INL027 01 + 50W 1.47 1.2.2 2.87 3.84 0.06 <0.02	JNL027 00 + 50W		1.56	19.6	3.38	4.58	0.05	0.03	0.03	0.020	0.04	23.7	20.3	0.29	513	0.43	<0.01
INL027 01 + 50W 1.47 17.2 2.87 3.64 0.05 <0.02 0.04 0.021 0.07 16.1 2.8 0.06 760 0.63 INL027 02 + 50W 1.40 16.6 2.18 1.95 0.02 0.03 0.017 0.65 2.89 6.2 0.08 2.09 0.33 INL027 03 + 50W 1.37 9.1 1.30 1.85 <0.05	JNL027 01 + 00		1.30	16.3	3.30	4.11	<0.05	<0.02	0.04	0.021	0,05	15.9	6.3	0.11	574	0.47	0.01
JNL027 02 + 00 0.97 16.3 2.88 2.89 <0.05 0.02 0.01 0.020 0.68 17.7 14.5 0.20 272 0.30 JNL027 02 + 50W 1.08 19.9 3.34 2.61 <0.06	JNL027 01 + 50W		1.47	17.2	2.87	3.64	0.05	<0.02	0.04	0.021	0.07	16.1	2.8	0.05	750	0.59	0.01
INL027 02 + 50W 1.40 16.6 2.18 1.95 0.08 0.02 0.03 0.017 0.05 28.8 6.2 0.09 20.9 0.34 JNL027 03 + 50W 1.37 9.1 1.30 1.85 <0.05	JNL027 02 + 00		0.97	16.3	2.58	2.89	<0.05	0,02	0.01	0.020	0.06	17.7	14.5	0.20	272	0,30	0.01
JNL027 03 + 00 1.08 19.9 3.34 2.61 <0.02 0.02 0.030 0.05 17.5 20.2 0.25 538 0.32 JNL027 04 + 00 0.67 9.4 1.60 2.71 <0.05	JNL027 02 + 50W		1.40	16.6	2.18	1.95	0,06	<0.02	0.03	0.017	0.05	28.9	6.2	0.09	209	0.34	<0.01
JNL027 03 + 50W 1.37 9.1 1.30 1.85 <0.05 <0.02 0.011 0.05 17.2 1.2 0.01 283 0.32 JNL027 04 + 00 0.67 9.4 1.60 2.71 <0.05	JNL027 03 + 00		1.08	19.9	3.34	2.61	<0.05	0,02	0.02	0.030	0.05	17.5	20.2	0.25	538	0.32	<0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	JNL027 03 + 50W		1.37	9.1	1.30	1.85	<0.05	<0.02	0.01	0.011	0.05	17.2	1.2	0.01	293	0.32	<0.01
INL027 04 + 50W 0.81 15.6 1.68 <0.02 0.021 0.03 12.3 5.0 0.07 185 0.38 INL027 05 + 00 0.76 15.3 2.66 3.97 <0.05	JNL027 04 + 00		0.67	9.4	1.60	2.71	<0.05	<0.02	0.03	0.010	0.04	7.2	3.8	0.07	504	0.34	0.01
JNL027 05 + 00 0.76 15.3 2.66 3.97 <0.05 <0.02 0.03 0.021 0.03 10.0 11.7 0.16 529 0.38 JNL027 05 + 50W 0.64 28.7 40.06 0.08 0.02 0.030 0.04 19 41.3 0.51 882 0.88 JNL027 05 + 50W 0.90 30.3 4.02 4.04 0.06 0.04 0.02 0.031 0.04 9.0 15.4 0.20 187 0.25 JNL027 07 + 00 0.78 11.0 2.59 4.05 <0.05	JNL027 04 + 50W		0.81	15.6	1.63	1.58	<0.05	<0.02	0.02	0.021	0.03	12,3	5.0	0.07	185	0.34	<0.01
INL027 05 + 50W 0.84 28.7 4.00 4.28 <0.05 0.08 0.02 0.012 0.04 11.9 41.3 0.51 882 0.38 INL027 06 + 50W 0.90 30.3 4.02 4.04 0.06 0.04 0.02 0.015 0.04 9.0 15.4 0.20 187 0.25 INL027 07 + 00 0.78 11.0 2.59 2.98 3.93 2.31 0.05 0.02 0.031 0.04 14.2 23.0 0.25 224 0.51 INL027 07 + 50W 2.50 29.8 3.93 2.31 0.05 0.02 0.031 0.04 14.2 23.0 0.25 224 0.51 INL027 08 + 00 1.20 15.3 2.38 3.60 <0.05	JNL027 05 + 00		0.76	15.3	2.66	3.97	<0.05	<0.02	0.03	0.021	0.03	10.0	11.7	0.16	529	0.38	0.01
INL027 05 + 00 0.68 13.0 1.98 2.85 <0.05 0.03 0.02 0.015 0.04 9.0 15.4 0.20 167 0.25 INL027 06 + 50W 0.90 30.3 4.02 4.04 0.06 0.02 0.031 0.06 21.5 42.1 0.52 618 0.38 INL027 07 + 50W 2.50 29.8 3.93 2.31 0.05 0.068 0.031 0.04 14.2 23.0 0.25 224 0.51 INL027 08 + 50W 1.20 16.3 2.38 3.60 <0.05	JNL027 05 + 50W		0.84	28.7	4.00	4.28	<0.05	0.08	0.02	0.030	0.04	11.9	41.3	0,51	882	0.38	<0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	JNL027 06 + 00		0,68	13.0	1.98	2.85	<0.05	0.03	0.02	0.015	0.04	9.0	15,4	0.20	187	0.25	0.01
INL027 07 + 00 0.78 11.0 2.59 4.06 <0.05 0.02 0.03 0.018 0.05 12.1 11.4 0.14 512 0.05 0.21 0.05 0.031 0.04 14.2 23.0 0.25 224 0.51 INL027 07 + 50W 1.20 15.3 2.38 3.60 <0.05	JNL027 06 + 50W		0.90	30.3	4.02	4.04	0.06	0.04	0.02	0.031	0.06	21.5	42.1	0.52	618	0.30	<0.01
INL027 07 + 50W 2.50 29.8 3.93 2.31 0.05 0.08 0.03 0.04 14.2 29.0 0.25 224 0.51 INL027 08 + 50W 0.93 11.1 2.07 4.18 0.05 0.04 0.03 0.04 11.8 17,0 0.19 838 0.38 JNL027 08 + 50W 0.93 11.1 2.07 4.18 0.05 0.02 0.02 0.017 0.04 13.3 18.0 0.21 134 0.47 JNL027 09 + 00 0.91 13.9 2.35 3.99 <0.05	JNL027 07 + 00		0.78	11.0	2.59	4.05	<0.05	0.02	0.03	0.018	0.05	12.1	11.4	0.14	512	0.58	0.01
INL027 08 + 00 1.20 15.3 2.38 3.60 <0.05 0.04 0.03 0.04 11.8 17.0 0.19 838 0.38 JNL027 08 + 50W 0.93 11.1 2.07 4.18 0.05 0.02 0.02 0.017 0.04 13.3 16.0 0.21 134 0.47 JNL027 09 + 50W 0.94 7.6 1.42 2.35 3.99 <0.05	JNL027 07 + 50W		2.50	29.8	3.93	2.31	0.05	0.08	0.03	0.031	0.04	14.2	23.0	0.25	224	0.51	<0.01
INL027 08 + 50W 0.93 11.1 2.07 4.18 0.05 0.02 0.017 0.04 13.3 16.0 0.21 134 0.47 INL027 09 + 00 0.91 13.9 2.35 3.99 <0.05	JNL027 08 + 00		1.20	15.3	2.38	3.60	<0.05	0.04	0.04	0.033	0.04	11.8	17.0	0.19	838	0.38	0.01
INL027 09 + 00 0.91 13.9 2.35 3.99 <0.05 0.04 0.02 0.025 0.03 14.1 19.3 0.19 346 0.44 JNL027 09 + 50W 0.43 7.6 1.42 2.35 <0.05	JNL027 08 + 50W		0.93	11.1	2.07	4.18	0.05	0.02	0.02	0.017	0.04	13.3	16.0	0.21	134	0.47	<0.01
JNL027 09 + 50W 0.43 7.6 1.42 2.35 <0.05 0.02 0.02 0.017 0.03 8.3 10.4 0.13 201 0.26 JNL027 10 + 00 1.09 14.5 3.13 4.54 <0.05	JNL027 09 + 00		0.91	13.9	2,35	3.99	<0.05	0.04	0.02	0.025	0.03	14.1	19,3	0.19	346	0.44	0.01
JNL027 10 + 00 1.09 14.5 3.13 4.54 <0.05 <0.02 0.01 0.021 0.03 17.4 7.8 0.12 388 0.54 JNL028 00+00 0.90 32.5 4.50 3.25 0.05 0.08 0.03 0.052 0.03 18.4 24.1 0.30 765 0.42 JNL028 00+50E 0.82 19.1 4.00 3.45 0.05 0.04 0.02 0.049 0.03 17.4 21.0 0.25 701 0.45 JNL028 01 + 50E 0.82 19.1 4.00 3.45 <0.05	JNL027 09 + 50W		0.43	7.6	1.42	2,35	<0.05	0.02	0.02	0.017	0.03	8.3	10.4	0.13	201	0.26	0.01
JNL028 00+00 0.90 32.5 4.50 3.25 0.05 0.08 0.03 0.652 0.03 18.4 24.1 0.30 765 0.42 JNL028 00 + 50E 0.82 19.1 4.00 3.45 0.05 0.04 0.02 0.049 0.03 17.4 21.0 0.25 701 0.45 JNL028 01 + 00 0.79 21.5 2.61 3.59 <0.05	JNL027 10 + 00		1.09	14.5	3.13	4.54	<0.05	<0.02	0.01	0.021	0.03	17.4	7.8	0.12	388	0.54	<0.01
JNL028 00 + 50E 0.82 19.1 4.00 3.45 0.05 0.04 0.02 0.049 0.03 17.4 21.0 0.25 701 0.45 JNL028 01 + 00 0.79 21.5 2.61 3.59 <0.05	JNL028 00+00		0.90	32.5	4.50	3.25	0.05	0.08	0.03	0.052	0.03	18.4	24.1	0.30	765	0.42	<0.01
JNL028 01 + 000.7921.52.613.59<0.050.070.020.0350.0317.121.70.242690.36JNL028 01 + 50E0.9523.53.973.45<0.05	JNL028 00 + 50E		0.82	19.1	4.00	3.45	0.05	0.04	0.02	0.049	0.03	17.4	21.0	0.25	701	0.45	<0.01
JNL028 01 +50E 0.95 23.5 3.97 3.45 <0.05 0.04 0.03 0.051 0.03 14.8 18.5 0.21 876 0.50 JNL028 02 + 00 0.98 20.6 4.41 4.13 0.05 0.03 0.03 0.041 0.03 14.4 22.7 0.27 541 0.49 JNL028 02 + 50E 0.79 19.4 3.37 3.25 <0.05	JNL028 01 + 00		0.79	21.5	2,61	3.59	<0.05	0.07	0.02	0.035	0.03	17.1	21.7	0.24	269	0.36	0.01
JNL028 02 + 00 0.98 20.6 4.41 4.13 0.05 0.03 0.03 0.041 0.03 14.4 22.7 0.27 541 0.49 JNL028 02 + 50E 0.79 19.4 3.37 3.25 <0.05	JNL028 01 + 50E		0.95	23.5	3.97	3.45	<0.05	0.04	0.03	0.051	0.03	14.8	18.5	0.21	876	0.50	<0.01
JNL028 02 + 50E 0.79 19.4 3.37 3.25 <0.05 0.03 0.03 0.031 0.03 12.1 15.0 0.15 880 0.49 JNL028 03 + 00 0.83 13.1 2.21 3.29 <0.05	JNL028 02 + 00		0.98	20.6	4.41	4.13	0.05	0.03	0.03	0.041	0.03	14.4	22.7	0.27	54 1	0.49	<0.01
JNL028 03 + 00 0.83 13.1 2.21 3.29 <0.05 <0.02 0.03 0.025 0.04 12.5 16.4 0.20 385 0.44 JNL028 03 + 50E 1.17 17.2 3.01 2.79 <0.05	JNL028 02 + 50E		0.79	19.4	3.37	3.25	<0.05	0.03	0.03	0.031	0.03	12.1	15.0	0.15	880	0.49	<0.01
JNL028 03 + 50E1.1717.23.012.79<0.050.030.020.0230.0614.310.60.134770.46JNL028 04 + 000.7617.52.583.32<0.05	JNL028 03 + 00		0.83	13.1	2.21	3.29	<0.05	<0.02	0.03	0.025	0.04	12.5	16.4	0.20	385	0.44	0.01
JNL028 04 + 00 0.76 17.5 2.58 3.32 <0.05 <0.02 0.03 0.019 0.05 12.4 16.7 0.20 598 0.34 JNL028 04 + 50E 0.44 11.3 1.94 3.63 <0.05	JNL028 03 + 50E		1.17	17.2	3.01	2.79	<0.05	0,03	0.02	0.023	0.06	14.3	10.6	0.13	477	0.46	<0.01
JNL028 04 + 50E 0.44 11.3 1.94 3.63 <0.05 0.02 0.03 0.015 0.04 8.7 17.3 0.18 197 0.28 JNL028 05 + 00 0.80 21.5 3.80 4.15 <0.05	JNL028 04 + 00		0.76	17.5	2.58	3.32	<0.05	<0.02	0.03	0.019	0.05	12.4	16.7	0.20	598	0.34	0.01
JNL028 05 + 00 0.80 21.5 3.80 4.15 <0.05 0.07 0.03 0.026 0.06 16.3 29.5 0.31 371 0.34 JNL028 05 + 50E 0.77 22.3 3.38 3.56 <0.05	JNL028 04 + 50E		0.44	11.3	1.94	3.63	<0.05	0.02	0.03	0.015	0.04	8.7	17.3	0.18	197	0.28	0.01
JNL028 05 + 50E 0.77 22.3 3.38 3.56 <0.05 0.06 0.02 0.020 0.07 18.0 30.7 0.35 388 0.30	JNL028 05 + 00		0.80	21.5	3.80	4,15	<0.05	0.07	0.03	0.026	0.06	16.3	29.5	0.31	371	0.34	0.01
	JNL028 05 + 50E		0.77	22.3	3.38	3.56	<0.05	0.06	0.02	0.020	0.07	18.0	30.7	0.35	388	0.30	<0.01
JNL028 06 + 00 0.82 17.7 2.72 3.52 <0.05 0.02 0.04 0.019 0.05 12.9 22.5 0.23 669 0.32	JNL028 06 + 00		0.82	17.7	2.72	3.52	<0.05	0.02	0.04	0.019	0.05	12.9	22.5	0.23	669	0.32	0.01
INCU28.05 + 50E 0.43 5.3 0.88 1.92 <0.05 <0.02 0.02 0.007 0.03 5.5 2.6 0.04 158 0.21	JNL028 06 + 50E		0.43	5.3	0.88	1.92	<0.05	<0.02	0.02	0.007	0.03	5.5	2.6	0.04	158	0.21	0.02
UNL028 07 + 00 1.23 22.6 3.36 4.02 0.05 0.05 0.03 0.018 0.04 23.4 30.0 0.37 645 0.32	JNLU28 07 + 00		1.23	22.6	3.36	4.02	0.05	0.05	0.03	0.018	0.04	23.4	30.0	0.37	645	0.32	<0.01
INCLU28 07 + SUE 1.24 10.6 1.42 1.57 <0.05 <0.02 0.02 0.010 0.04 15.0 3.5 0.04 47 0.27	JNL028 07 + 50E		1.24	10.6	1.42	1.57	<0.05	<0.02	0.02	0.010	0.04	15.0	3.5	0.04	47	0.27	`<0.01
JNLU28 08 + 00 1.38 20.9 3.17 3.70 0.05 0.03 0.04 0.018 0.05 18,3 20.4 0.29 354 0.33	JNLU28 08 + 00		1.38	20.9	3.17	3.70	0.05	0.03	0,04	0.018	0.05	18.3	20.4	0.29	354	0.33	0.01

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 5 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS4.1 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2
JNL026 09 + 50E JNL026 10 + 00 INL027 00+00		0.19 0.34 0.15	25.7 14.8	1040 1510 740	159.5 338 11.1	5.7 7.4	<0.001 <0.001	0.06 0.08	1.96 3.62	1.2 0.7	0.3 0.3	0.3 0,5	5.8 6.8	<0.01 <0.01	0.07 0.03	3.4 1.2
JNL027 00 + 50W JNL027 01 + 00		0.27 0.21	14.1 9.8	920 1270	43.3 45.0	7.9 7.7	<0.001 <0.001 <0.001	0.04 0.07	0.43 1.29 1.50	0.1 0.7 0.2	<0.2 0,3 0.3	<0.2 0.3 0.3	9.1 8.2	<0.01 <0.01 <0.01	<0.01 0.03 0.02	<0.2 2.8 0.4
JNL027 01 +50W JNL027 02 + 00 JNL027 02 + 50W JNL027 03 + 00		0.17 0.16 0.10 0.06	8.9 14.5 9.9 25.6	1350 670 560 630	52.9 34.7 37.5 37.4	8.8 6.8 5.7 4.5	<0.001 <0.001 <0.001 <0.001	0.07 0.03 0.02 0.02	1.37 1.14 1.03 1.28	0,2 0.5 0.6 0.6	0.4 <0.2 0.3 0.3	0.3 0.2 0.2 0.2	9.1 8.2 9.1 6.9	<0.01 <0.01 <0.01 <0.01	0.03 0.02 0.02 0.02	0.2 1.5 3.2 2.3
JNL027 03 + 50W JNL027 04 + 00		0.06 0.13	7.1	690 910	21.3 12.3	9.6	<0.001	0.03	0.64	0.1	0.2	0.3	4.8 5.2	<0.01	0.02	0.2
JNL027 04 + 50W JNL027 05 + 00 JNL027 05 + 50W JNL027 06 + 00		0.12 0.16 0.16 0.14	9.8 12.7 28.6 13.3	610 920 1150 720	23.6 28.4 46.6 20.7	4.4 5.8 6.3 5.9	<0.001 <0.001 <0.001 <0.001	0.03 0.05 0.04 0.04	0.97 1.45 1.35 0.90	0.4 0.2 1.2 0.3	0.2 0.3 0.3 0.2	0.2 0.2 0.2 <0.2 <0.2	5.9 4.9 6.5 3.7	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.02 0.02 0.02	1.2 <0.2 3.4 0.5
JNL027 06 + 50W JNL027 07 + 00 JNL027 07 + 50W JNL027 08 + 00 JNL027 08 + 50W		0.08 0.28 0.08 0.27 0.41	37.0 10.5 34.3 14.2 11 9	530 940 620 1210 610	51,9 15.1 46.3 26.2 15.0	4.6 9.0 4.4 8.0	<0.001 <0.001 <0.001 <0.001 <0.001	0.01 0.06 0.04 0.06 0.03	1.88 0.98 2.93 0.97 0.65	1.9 0.3 2.5 0.8	0.5 <0.2 0.9 0.3	0.2 0.2 <0.2 0.2 0.2	10.1 6.2 42.9 13.7	<0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.02 0.02 0.02	6.6 0.5 4.9 1.0
JNL027 09 + 00 JNL027 09 + 50W JNL027 10 + 00 JNL028 00+00 JNL028 00 + 505		0.33 0.23 0.46 0.10 0.31	12.4 8.6 13.3 27.8 23.2	870 620 630 1090	15.8 13.1 23.5 63.6 46.5	8.0 4.1 6.2 5.2 5.0	<0.001 <0.001 <0.001 <0.001 <0.001	0.04 0.04 0.03 0.04 0.05	1.19 0.81 1.44 2.90	0.7 0.5 0.7 1.6	0.4 0.3 0.3 0.6	0.2 <0.2 0.4 <0.2	4.0 4.9 4.5 4.8	<0.01 <0.01 <0.01 <0.01 <0.01	0.02	1.4 0.5 1.1 4.4
JNL028 01 + 00 JNL028 01 + 50E JNL028 02 + 00 JNL028 02 + 50E JNL028 03 + 00		0.17 0.30 0.43 0.29 0.23	15.9 19.9 22.0 16.4 11.6	1010 1180 910 1130 1000	26.1 47.4 39.4 37.8 21.7	7.9 7.1 5.7 7.9 7.4	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.05 0.06 0.06 0.08 0.08 0.06	2.41 1.22 2.30 2.15 1.98 1.23	1.0 0.8 0.7 0.9 0.4	0.5 0.4 0.6 0.5 0.5 0.5 0.4	0.2 0.2 0.3 0.2 0.2	4.3 4.7 4.6 39.8 4.1	<0.01 0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.03 0.03 0.02 0.02 0.01	2.4 1.7 1.2 1.4 0.4
JNL028 03 + 50E JNL028 04 + 00 JNL028 04 + 50E JNL028 05 + 00 JNL028 05 + 50E		0.18 0.22 0.30 0.23 0.13	17.3 17.0 12.6 22.7 25.6	1060 980 810 1120 930	28.6 27.0 19.0 36.8 29.9	8.7 5.9 3.2 6.3 6.4	<0.001 <0.001 <0.001 <0.001 <0.001	0.07 0.06 0.05 0.06 0.04	1.79 1.33 0.83 1.84 1.70	0.7 0.3 0.3 0.8 0.7	0.3 0.4 0.3 0.4 0.4	0.3 0.2 <0.2 <0.2 <0.2 <0.2	19.4 4.8 8.3 7.4 8.8	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.03 0.02 0.02 0.03	1.3 0.4 0.2 2.4 2.2
JNL028 06 + 00 JNL028 06 + 50E JNL028 07 + 00 JNL028 07 + 50E JNL028 08 + 00		0.21 0.14 0.18 0.09 0.18	17.5 3.6 19.6 5.1 18.4	1130 560 890 550 1210	33.4 11.7 43.0 26.1 30.1	7.7 3.8 5.9 5.4 7.9	<0.001 <0.001 <0.001 <0.001 <0.001	0.06 0.04 0.05 0.02 0.06	1.42 0.42 1.54 0.67 1.68	0.4 0.1 0.8 0.4 0.6	0.3 0.2 0.3 0.2 0.3	0.2 <0.2 0.2 <0.2 0.2	5.2 5.7 6.8 4.8 9.4	<0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.01 0.02 0.06 0.02	0.7 <0.2 3.1 1.7 1.8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 TI ррт 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01				-	
JNL026 09 + 50E		<0.005	0.06	1.07	14	0,30	3.92	220	1.9		 				
JNL026 10 + 00		0.006	0.07	0.95	21	0.06	3.62	244	1.6						
JNL027 00+00		<0.005	0.02	0.60	7	< 0.05	1.77	27	<0.5						
JNL027 00 + 50W		<0.005	0.09	0.91	13	0.09	2.70	71	1.0						
JNL027 01 + 00		0.005	0.08	0.80	13	0.09	2.24	76	<0.5						
JNL027 01 + 50W		0.005	0.06	0.93	15	0.11	2.30	67	<0.5		 				 <u> </u>
JNL027 02 + 00		<0.005	0.05	0.75	9	0.09	2.84	75	0.5						
JNL027 02 + 50W		<0.005	0.08	0.74	7	0.17	2.81	50	<0.5						
JNL027 03 + 00		<0.005	0.06	0.92	9	0.11	4.63	89	0.7					•	
JNL027 03 + 50W		<0.005	0.08	0.38	8	0.09	1.60	43	<0.5						
JNL027 04 + 00		<0.005	0.05	0.46	11	0.11	1.31	46	<0.5						
JNL027 04 + 50W		<0.005	0.05	0.92	6	0.06	2.08	54	<0.5						
JNL027 05 + 00		<0.005	0.06	0.68	11	<0.05	2.15	58	<0.5						
JNL027 05 + 50W		<0.005	0.05	0.83	11	<0.05	4.39	158	2.7						
JNL027 06 + 00		<0.005	0.05	0.58	8	<0.05	3.05	58	1.1						
JNL027 06 + 50W		<0.005	0.05	1.03	10	<0.05	9.91	119	1.4	••			~~~~		
JNL027 07 + 00		0.006	0.05	0.62	13	0.05	2.74	61	0.8						
JNL027 07 + 50W		<0.005	0.05	3.41	9	<0.05	14.20	114	2.7						
JNL027 08 + 00		0.007	0.05	1.19	10	0.05	7.05	75	1.4						
JNL027 08 + 50W		0.006	0.09	0.63	- 13	0.08	2.02	50	0.7						
JNL027 09 + 00		0.006	0.08	0.68	12	0.06	3.35	47	1.2			- 23			
JNL027 09 + 50W		0.008	0.04	0.59	7	0.05	3.84	34	0.5						
JNL027 10 + 00	1	0.008	0.14	0.66	20	0.10	2.27	53	<0.5						
JNL028 00+00		<0.005	0.08	1.03	8	<0.05	6.27	78	2.4						
JNL028 00 + 50E		0.006	0.06	0.98	12	0.07	6.78	71	1.1						
JNL028 01 + 00		<0.005	0.07	0.79	9	<0.05	4.93	50	1.8						
JNL028 01 + 50E		0.007	0.06	1.01	13	0.06	5.78	72	1.1						
JNL028 02 + 00		0.009	0.07	0.85	14	0.10	3.14	67	0.7						
JNL028 02 + 50E		0.006	0.06	1.41	11	<0.05	6.42	62	1.0						
JNL028 03 + 00		0,007	0.06	0.72	11	0.06	3.62	55	<0.5						
JNL028 03 + 50E		<0.005	0.06	0.95	9	<0.05	2.53	86	0.9	•					
JNL028 04 + 00		0.005	0.05	0.71	10	<0.05	3.52	59	<0.5						
JNL028 04 + 50E		0.009	0.04	0.57	9	0.05	2.82	46	0.5						
JNL028 05 + 00		< 0.005	0.04	0.86	10	<0.05	4.76	82	2.2						
JNL028 05 + 50E		<0.005	0.05	0.80	9	<0.05	3.71	92	1.8						
JNL028 06 + 00		0.005	0.06	0.72	10	<0.05	3.27	67	0.7		 				
JNL028 06 + 50E		0.007	0.03	0.36	7	0.06	0.72	18	<0.5						
JINL028 07 + 00		0.005	0.05	0.85	10	0.08	2.58	79	1.3						
JINLUZ& 07 + 50E		<0.005	0.07	0.48	6	0.14	1.51	24	<0.5						
		<0.005	0.08	0.83	11	0.08	2.20	84	0.8						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method	WEI- 21	Au- ST43	ME-MS41	ME- MS41	ME- MS41	ME- MS41	ME-MS41	ME-MS41	ME-MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME-MS41	ME- MS41
	Analyte	Recvd Wt.	Au	Ag	Al	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.02	0.0001	0.01	0.01	0.1	0.2	10	TO	0.05	0.01	0.01	0.01	0.02	0.1	1
INL028 08 + 50E		0.50	0.0046	0.34	1.34	72.9	<0.2	<10	30	0.27	0.57	0.01	0.14	38.8	9.1	17
JNL028 09 + 00		0.47	0.0040	0.42	0.95	59.2	<0.2	<10	40	0.27	0.44	0.01	0.15	27.0	6.8	12
JNL028 09 + 50E		0.50	0.0038	0.31	0.83	63.8	<0.2	<10	30	0.19	0.57	0.01	0.06	40.9	4.1	12
JNL028 10 + 00E		0.43	0.0023	0.45	0.44	35.9	<0.2	<10	30	0.17	0.26	0.03	0.17	21.2	3.8	7
				·												

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
JNL028 08 + 50E JNL028 09 + 00 JNL028 09 + 50E JNL028 10 + 00E		1.54 1.20 1.52 0.90	25.0 19.3 16.3 13.1	3.83 2.89 2.88 1.31	4.50 3.76 3.28 1.94	0.05 <0.05 0.05 <0.05	0.04 0.02 0.02 <0.02	0.03 0.04 0.03 0.03	0.020 0.024 0.021 0.013	0.03 0.05 0.05 0.05	21.2 13.9 21.3 10.9	27.7 12.0 11.1 3.8	0.41 0.13 0.13 0.06	484 511 150 173	0.36 0.48 0.41 0.31	<0.01 0.01 0.01 0.01
		· .								·		·				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 6 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME- MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME- MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2
JNL028 08 + 50E JNL028 09 + 00 JNL028 09 + 50E JNL028 10 + 00E		0.19 0.19 0.24 0.10	22.0 13.5 10.9 7.2	890 1160 880 970	43.6 35.6 42.5 27.7	6.3 10.0 8.2 5.5	<0.001 <0.001 <0.001 <0.001	0.04 0.05 0.04 0.07	2.29 1.75 1.28 0.96	0.9 0.4 0.5 0.1	0.3 0.3 0.3 0.3	0.2 0.3 0.2 0.2	5.9 4.4 6.1 5.9	<0.01 <0.01 <0.01 <0.01	0.02 0.03 0.02 0.02	3.1 0.6 1.3 <0.2
				·												

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: 6 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01	
JNL028 08 + 50E JNL028 09 + 00 JNL028 09 + 50E JNL028 10 + 00E		<0.005 0.005 0.005 <0.005	0.07 0.08 0.09 0.07	0.85 0.76 0.71 0.62	12 13 11 8	0.06 0.08 0.22 0.09	2.58 2.35 2.20 1.40	97 72 50 38	1.0 0.6 0.5 <0.5		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

		CERTIFICATE COMMENTS	
Applies to Method:	Gold determinations by this method a ME- MS41	ANALYTICAL CON are semi- quantitative due to the small	IMENTS sample weight used (0.5g).
Applies to Method:	Processed at ALS Whitehorse located a LOG- 22	LABORATORY ADI at 78 Mt. Sima Rd, Whitehorse, YT, Car SCR- 41	DRESSES nada. WEI- 21
Applies to Method:	Processed at ALS Vancouver located a Au- AROR43	t 2103 Dollarton Hwy, North Vancouve Au- ST43	er, BC, Canada. ME- MS41
	· · · · · · · · · · · · · · · · · · ·		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

QC CERTIFICATE WH14116723

Project: ALSM

P.O. No.: JN14-001

This report is for 164 Soil samples submitted to our lab in Whitehorse, YT, Canada on 2- AUG- 2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

MIKE MCCUAIG

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR- 41	Screen to - 180um and save both	
_	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT

Au- ST43	Super Trace Au - 25g AR	ICP- MS
ME- MS41	51 anal. aqua regia ICPMS	
Au- AROR43	Au AR Overrange - 25g	

TO: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	Au- ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME-MS4) Cr ppm 1	ME- MS41 Cs ppm 0.05
							STAN	IDARDS								
GAu-11b GAu-11b		0.0103 0.0098														
GAu-11b		0.0098														
Target Range - Lowe	r Bound r Bound	0.0088										4 70		45.4	25	0.92
GBM908-10		COLUMN STREET, STREET, STORE STORE	3.09	1.03	58.4	0.3	<10 <10	120 100	0.37	1.30 1.17	0.77	1.78	91.4 89.8	13.9	25 22	0.85
GBM908-10			2.98	0.94 0.96	58.7 59.1	0.4	<10	110	0.33	1.12	0,70	1.82	92.2	15.5	23	0.77
GBM908-10			2.94	1.02	55.7	0.4	<10	120	0.32	1.30	0.75	1.70	85.3	14.3	24	0.78
GBM908-10			3.03	0.98	59.9	0.4	<10	110	0.27	1.40	0.73	1.79	93.1	15.0	24	0.88
Target Range - Lowe	r Bound r Bound		2.69 3.31	0,85	49.4 60.6	<0.2 0.9	<10 30	70 140	0.17	1.09	0.62	1.52 1.88	97.0	12,9	20	0.94
GBM908- 5			62.7	1.18	7.1	<0.2	<10	210	0.46	0.81	0.77	0.12	195.0	9.4	19	1.11
GBM908- 5			62.2	1.15	6.9	<0.2	<10	210	0.45	1.33 1.70	0.75	0.15	170.5	9.4	15	0.98
Target Range - Lowe Uppe	r Bound r Bound		64.0	1.02	5.8 7.4	0.8	₹10 30	230	0.50	0.98	0.79	0.17	208	11.7	20	1.31
GLG307-4		0.0541														
GLG307-4		0.0462														
GLG307-4 CLC307-4		0.0519														
Target Range - Lowe	r Bound r Bound	0.0443										0.00	70.4	40.4	00	11.25
MRGeo08	a departa construir anna de service	FF LILLINGANING	4.71	2.76	32.3	<0.2	<10	480	0.94	0.70	1.17	2.38	79.4	19.4	99	10.20
MRGeo08			4.55	2.74	34.4	<0.2	<10	460	0.82	0.64	1.12	2.27	73.0	19.7	91	10.05
MRGeo08			4.39	2.63	33.1	<0.2	<10	440	0.88	0.64	1.03	2.17	67.1	19.8	88	9.91
MRGeo08		1	4.35	2.52	327	<0.2	<10	470	0.80	0.67	1.11	2.17	75.7	18.8	98	10.90
MRGeous	Round		4.00	2.44	28.9	<0.2	<10	370	0.66	0.62	1,00	2,01	.66.7	17.5	81	9,85
linne	r Bound		4.92	3.00	35.5	0.6	20	530	0.94	0.78	1.24	2.47	81.5	21.6	102	12.15-
OREAS 90	<u>200</u> 0-21-21-21-22-28-28		0.05	2.34	4.7	<0.2	<10	50	0.70	0.93	0.38	<0.01	61.8 Exte	13.9	40 35	0.00
Target Range - Lowe Uppe	r Bound		0.03	2.09	4.1 5.2	<0.2 0:4	<10 20	30 80	0,48	1.02	0.33	0.03	66.7	16.9	45	1,16
OREAS-23a		0.0018														
OREAS- 23a Target Range - Lowe Uppe	er Bound er Bound	0.0026														
OREAS- 904		0.0136														
		<u> </u>	·	w.				<u> </u>	<u> </u>						,	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 in ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME- MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME- MS41 Nb ppm 0.05
							STAN	IDARDS								
GAu-11b																
GAu-11b																
GAU-11b																
Target Range - Lower	Bound															
Upper CBM908-10	Bound	3790	2.85	5.01	0.14	0.64	0.02	0.023	0.46	48.4	6.4	0.58	318	69.0	0.14	0.38
GBM908-10		3650	2.59	4.78	0.12	0.64	0.01	0.021	0,42	47.5	5.7	0.54	293	67.4 71.4	0.13	0.29
GBM908-10		3690	2.65	5.04	0.12	0.58	0.01	0.023	0.43	48.9	6.2 6.9	0.55	309	59.7	0.14	0.54
GBM908-10		3730	2.75	4,55	0.11	0.68	0.01	0.024	0.46	49.5	5.3	0.58	320	63.9	0.13	0.47
GBM908-10	Round	3800	2.05	4,18	0.10	0.62	<0.01	0.012	0.37	43,2	5.6	0.47	259	57.9	0.09	0,38
Upper Kange Lower	Bound	3880	2,89	5.22	0.31	0.80	0.04	0.034	0.48	53.2	7.1	0.59	327	70,9	0,75	0.63
GBM908-5	2.1. (1999-1991-1920-1941-1993)	524	2.44	6.22	0.18	0.38	0.02	0.015	0.89	107.0	10.4 10.4	0.82	300	54.5 55.7	0.04	0.74
GBM908- 5		513	2.43	5.56	0.19	0,31	0,03	0.015	0.60	91.9	9.4	0.68	315	49.5	0.02	0.89
Target Range - Lowe	r Bound	465	2,10	6.60	0.00	0.41	0.05	0.026	0.91	112.5	11.7	0.86	396	60.6	0.06	1.20
GI G307-4	bound	P	9 1000.000 515 .7.57.90000	a programme to manage	a handesterrerererer	 CORPORTORIO CONTRACTORIO 	A CONTROL									
GLG307-4																
GLG307-4																
GLG307-4	- Dound															
Uppel	r Bound	ļ										4.00	445	14.65	0.36	1.00
MRGeo08	THE TRACTORY CONTRACTOR	660	3.75	10.40	0.19	0.72	0.07	0.166	1.34	39.2	34.3 31.3	1.22	445	14.00	0.35	1,04
MRGeo08		658	3,68	10.15	0.17	0.69	0.07	0.159	1.20	35.8	31.8	1.16	410	13.50	0.33	1.03
MRGeo08		591	3.52	9 34	0.17	0.74	0.07	0.154	1.22	34.1	35.8	1.12	397	13.90	0.33	0.83
MRGeo08		629	3.76	9.35	0.17	0.70	0.06	0,153	1.31	37.9	34.7	1.22	432	14.75	0.33	0.90
Target Range - Lowe	r Bound	587	3.22	8.89	0.10	0.67	0.04	0.142	1.12	33.2	30.2	1.03	473	13.10 16.10	0.30	1.09
Uppe	r Bound 🌕	675	3.96	10.95	0.32	0.87	0.10	0.026	0.35	31.9	19.0	1.41	606	0.39	0.02	0.28
OREAS 90	r Round	105.0	3,60	5.78	<0.05	0.00	<0.01	0.016	0.31	27.9	17,8	1.21	515	0,28	<0:01	0.27
Love	r Bound	118.0	4.17	7.17	0.19	0.79	0.02 ;	0.038	0.40	34.5	22.0	1.50	641	0.52	0,04	0.51
OREAS-23a	T WEAK AND CONTRACTOR	COULD COLLEGE AND AND A	23 1000000000000000000000000000000000000													
OREAS-23a																
Target Range • Lowe	r Bound															
ORFAS- 904	1 DCBRC															
51.510 501																
																_

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME-MS41 Ni ppm 0.2	ME- MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
							STAN	DARDS								
GAu- 11b GAu- 11b GAu- 11b GAu- 11b Target Range - Lower Upper GBM908- 10 GBM908- 10 GBM908- 10 GBM908- 10 GBM908- 10 GBM908- 10 GBM908- 10 GBM908- 5 GBM908- 5 GBM908- 5 GBM908- 5 Target Range - Lower Upper GLG307- 4 GLG307- 4	Bound Bound Bound Bound Bound Bound	2410 2250 2310 2270 2460 2030 2480 452 418 381 466 381 466	940 850 910 920 760 1320 1360 1140 1410 1090 1050	2220 2040 2090 2150 2240 1860 2270 400 397 345 422	30.9 29.7 30.3 29.5 30.7 26.4 32.4 56.9 55.5 50.8 62.3 154.5 146.0	<0.001 0.001 0.001 0.001 0.003 0.001 0.003 0.001 <0.001 0.003	0.42 0.37 0.39 0.41 0.42 0.33 0.43 0.43 0.43 0.18 0.18 0.14 0.20	DARDS 1.18 1.09 1.21 1.31 1.45 1.06 1.55 0.14 0.14 <0.05 0.25 3.02 2.81 2.84	2.3 1.9 2.0 2.1 2.1 1.5 1.5 1.5 1.3 1.9 8.0 7.1 7.2	1.0 0.7 1.1 1.0 1.3 0.5 1.3 0.5 0.6 0.5 1.4 1.7 1.6 1.3	1.8 1.7 1.7 1.7 1.7 1.7 1.6 1.6 1.6 1.1 2.0 3.6 3.5 3.3	37.3 35.3 36.9 36.8 33.2 30.8 36:0 54.1 52.2 47.3 58.2 87.7 81.0 79.4	<0.01 <0.01 <0.01 <0.01 <0.01 <0.03 0.01 0.01 0.03 0.01 0.03	0.05 0.05 0.04 0.04 0.02 0.07 0.05 0.06 0.02 0.07 0.05 0.06 0.02 0.07	17.4 16.5 16.6 16.6 17.7 19.0 39.3 38.7 34.4 42.4 22.9 21.6 20.8	0.345 0.305 0.308 0.333 0.334 0.276 0.348 0.180 0.180 0.181 0.180 0.189 0.189 0.189
MRGeo08 MRGeo08		665	1020	1030	139.5	0.009	0.30	3.14 3.80	7.7 7.9	1.4 1.4	3.2 3.3	76.4 77.2	0.01 0.02	0.01 0.02	19.9 23.1	0.365 0.405
MKCe008 Target Range - Lower Upper OREAS 90 Target Range - Lower Upper OREAS- 23a Target Range - Lower Upper OREAS- 904	Bound Bound Bound Bound Bound Bound	622 760 83.3 765 93.9	900 1130 660 570 720	959 1175 5.5 4.8 6.3	132.0 162.0 18.3 18.0 22.3	0.007 0.011 <0.001 <0.001 0.002	0.27 0.36 0.08 0.05 0.09	2 80 3.90 0.33 0.31 0.60	6.8 8.6 2.1 2.1 2.7	0.9 1.9 0.7 0.4 1.3	2:8 4.0 1.2 0.8 1.8	73.2 89.9 10.6 10.5 13.3	<0.01 0.04 0.01 <0.01 <0.01 0.04	<0.01 0.04 0.01 <0.01 0.05	195 243 170 143 179	0.350 0.439 0.086 0.070 0.098

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01	 	 	
							STAN	DARDS				
CAU-11b												
GAu-11b												
GAu-11b												
GAu-11b Target Bange - Lower	Round											
Upper	Bound											
GBM908-10		0.24	1.36	52	1.89	20.7	1120	29.6				
GBM908-10		0.34	1.22	47	2.36	20.6	1020	24.7				
GBM908-10 GBM908-10		0.23	1.42	49	2.19	19.65	1060	27.5				
GBM908-10		0.23	1.28	51	2.17	20.0	1080	26.9	1			
Target Range - Lower	r Bound	0.15	4 5 1.15	41 52	1.5/	21.6	1155	33.6				
Upper	r Bouna	0.41	2.80	27	1.91	29.2	241	9.5	1			
GBM908- 5		0.40	2.99	28	2.13	27.5	247	8.5	*			
Target Range - Lower	r Bound	0.31	2.64	22	1.75	25.4	214	6.8				
Upper	r Bound	0,4/	3.34	10	Z.40	e anti	200		1			
GLG307-4 GLG307-4												
GLG307-4												
GLG307-4												
Target Range - Lowe	r Bound											
MRGeo08	i Bound	0.83	5.92	106	2.85	20.8	838	23.0				
MRGeo08		0.70	5.25	105	2.39	20.1	809	19.6				
MRGeo08		0.74	5.09	101 95	2.67	19.65	758	22.0				
MRGeo08		0.00	5.62	107	2.87	19.70	817	20.6	-			
Target Range - Lowe	r Bound	0.66	4.99	90	2.44	17.85	708	18.1				
Uppe	r Bound	0.94	6.21	112	0.38	17.40	60	20.6	à			
OREAS 90	r Bound	0.11	2.03	21 1 = 19	0.38	15,40	51	20.6	2			
Uppe	r Bound	0,16	2.33	25	0.56	18.90	66	29.1	3			
OREAS- 23a									<0.01			
OREAS-23a	- Demod											
Target Range - Lowe	r Bound											
OREAS- 904	and an								0.01			
		1										
		Ì								 	 	
		i										

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	Au- ST43 Au ppm 0.0001	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME- MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							STAN	DARDS								
OREAS- 904		0.0132														
Target Range - Lower Upper	r Bound	0.0126														
							BLA	ANKS								
BLANK		0.0001														
BLANK		<0.0001														
BLANK		<0.0001														
BLANK		<0.0001														
BLANK		0.0001														
Target Range - Lowe	r Bound	<0.0001														
Upper	r Bound	0.0002	<0.01	<0.01	01	<0.2	<10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05
BLANK		1	<0.01	<0.01	<0.1	<0.2	<10	<10	< 0.05	< 0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05
BLANK			<0.01	<0.01	0.1	<0.2	<10	<10	<0.05	0.01	<0.01	<0.01	<0,02	<0.1	<1	<0.05
BLANK			<0.01	<0.01	0.1	<0.2	<10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05
BLANK			<0.01	<0.01	0.2	<0.2	<10 <10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05
BLANK			<0.01	<0.01	<0.1	<0.2	<10	<10	<0.05	0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05
Target Range - Lowe	r Bound		<0.01	<0.01	< 0.1	<0.2	<10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	×1	<0.05
Upper	r Bound		0.02	0.02	0.2	0.4	20	20	0.10	0.02	0.02	0,02	0.04	0.2	2 3	0,10
							DUPL	ICATES								
ORIGINAL			0.08	2.31	2.5	<0.2	<10	210	0.46	0.10	2.35	0.08	21.0	13.9	72	2.87
DUP			0.07	2.34	2.1	<0.2	<10	220	0.39	0.10	2.39	0.08	21.1	14.2	74	2.91
Target Range - Lowe	r Bound		0.06	2.20	2.1	<0.2	<10 20	190	0.35	0.09	2.24	0.07	20:00	13.2	78	3.08
Uppe	r Ronua		0.03	2,40	2.0	0.4		L .1M				1.000020220200	a na anna anna	i Billion i Stationara	4 <u>87787777778</u> 74778277777779	Ersen and Analysis and Analysis of

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

QC CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME- MS41 Nb ppm 0.05
							STAN	DARDS								
ORFAS- 904																
Target Range - Lower Upper	Bound Bound															
							BLA	ANKS								
BLANK																
BLANK		-														
BLANK																
Target Range - Lower	Bound											,				
Upper	Bound			-2.05	-0.05	-0.00	-0.01	<0.00E	<0.01	-0.2	0.1	<0.01	~ 5	<0.05	<0.01	<0.05
		<0.2	<0.01 <0.01	<0.05 <0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	<0.05
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	< 0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	0.01	<0.05
BLANK		<0.2	<0.01	<0.05	0.05	<0.02	<0.01	<0.005	<0.01	<0.2	0.1	<0.01	<5	<0.05	<0.01	<0.05
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	< 0.01	<0.005	< 0.01	<0.2	0.1	<0.01	<5 <5	<0.05	<0.01	<0.05
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<o <5</o 	<0.05	<0.01	<0.05
Tarnet Range - Lowel	Round	<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0,1	<0.01	<5	<0.05	<0.01	<0.05
Upper	Bound	0,4	0.02	0.10	0.10	0.04	0.02	0.010	0.02	0.4	0,2	0.02	10	0.10	0.02	0.10
							DUPL	ICATES								
ORIGINAL		8.5	4.32	8.14	0.13	0.06	<0.01	0.008	0.61	9.2	33.8	2.21	866	0.64	0.08	0.19
DUP		8.8	4.38	8.38	0.12	0.06	<0.01	0.010	0.60	9.3	27.2	2.24	893	0.70	0.08	0.21
Target Range - Lowe	r Bound	8,1	4.12	7.80	0.07	0.04	<0.01	<0,005	0.56	8.6 	28.9	2.10	928	0.59	0.07	0.14
Coppei	rsound	7.6	4,00	0.14	U, 10	0.00	U.UL	E.S. William			E				L	
																1
		1														

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

QC CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units	ME-MS41 Ní ppm	ME-MS41 P ppm	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
	LON				••••		STAN	DARDS								
OREAS- 904 Target Range - Lower Upper	Bound Bound															
							BL/	ANKS								
BLANK																
BLANK																
BLANK																
BLANK																
Target Range - Lower	r Bound Bound															
BLANK		<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0,005
BLANK		<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	< 0.01	0.01	< 0.2	<0.005
BLANK		<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005
BLANK		<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005
BLANK		<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.03	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005
		<0.2	<10	<0.2	<0.1	<0.001	<0.01	0,10	<0.1	<0.2	<0.2	<0.2	<0.01	0.01	<0.2	<0.005
Target Range - Lowel	Bound	<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0,2	<0.01	<0.01	<0.2	<0.005
Upper	Bound	0.4	20	0.4	0.2	0.002	0.02	0.10	0,2	0.4	0,4	0.4	0.02	0.02	Ö,4	0.010
							DUPL	ICATES								·
ORICINAL		35.1	3250	15.1	31.6	<0.001	0.01	0 44	3.3	0.3	0.4	104.5	<0.01	0.05	1.5	0.223
		35.3	3300	15.5	32.5	< 0.001	0.01	0.40	3.5	0.3	0.4	107.0	<0.01	0.04	1.6	0.231
Target Range + Lowe	r Bound	33.2	3100	14.3	30,3	<0.001	<0.01	0.34	3.1	<0.2	<0.2	100.5	<0.01	0.03	1.3	0.211
Upper	Bound	37.2	3450	16,3	33,8	0.002	0:02	0.50	3.7	0:4	0.6	111 0	0.02	0.06	1.8	0.243

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

QC CERTIFICATE OF ANALYSIS WH14116723

Page: 3 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

			-		-				
		ME- MS4.1	MF- M\$41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	Au- AROR43
	Method			V	W	Y	7n	Zr	Au
	Analyte			•		, 2000	nnm	nnm	nnm
Sample Description	Units	ppm 	ppin	1 Pbu	0.05	0.05	2	0.5	ρρ 0.01
	LUK	0.02	0.05	1	0.05	0.05	د	0.5	0.01
							CT A N		
							STAN	IDARD3	
OPEAS- 904									
UKEAS- 904	Devind								
Target Kange - Lower	Dound								
opher	очини								
							D 1 /	ANKS	
							BL		
BLANK									
BLANK		1							<0.01
BLANK		1							-
		}							
BLANK	Dound								
arget kange - Lower	Dound								
upper	Bound	<0.00	<0.05	-1	<0.05	<0.05	<2	<0.5	
BLANK		<0.02	<0.05	<1	<0.05	<0.05	~2	<0.5	
BLANK		<0.02	<0.05	~1	<0.05	<0.05	<2	<0.5	
BLANK		<0.02	<0.05	~1	<0.05	<0.05	~2	<0.5	
BLANK		<0.02	<0.05	~1	<0.05	<0.05	~2	<0.5	
BLANK		<0.02	<0.05	<1	<0.05	<0.05	~2	<0.5	
BLANK		<0.02	<0.05	<1	<0.05	<0.05	~2	<0.5	
BLANK		<0.02	<0.05	< 	<0.05	<0.05	~2 1 Rec. 2000	~0.5	8
Target Range - Lower	Bound	<0.02	<0.05	SI.	<u> </u>	<0.00	N	~0.0	
E.S. Upper	Bound	0.04	0.10	<u> </u>	~U, IU	0.10	I DESKOTOSE	i	17 YO 0
							DUD		
							DUPL	ICATES	
ODICINIAL		6.22	0 17	71	0.91	6.22	160	0.9	
		0.22	0.17	71	0.01	642	163	1.0	
	B 200	0.23	U. TO	14	0.52	U.42	COT STATES	20.5	*
Target Range - Lower	r Bound	0,19	0.00	76	0.00	0.80 e éo	170	4.0	
Upper	г война	0,20	0.22	10 10	1.03	; 0.03	a an	: Frank 1.0	1
		1							
		i i							

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

QC CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	Au- ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	- - - - -	0.13 0.12 0.11 0.14	0.52 0.52 0.48 0.56	162.0 164.5 155.0 171.5	<0.2 <0.2 <0.2 0.4	<10 <10 <10 20	50 50 40 60	0.15 0.15 0.09 0.21	0.91 0.90 0.85 0.96	0.08 0.08 0.07 0.09	0.37 0.47 0.39 0.45	25.7 26.2 24.6 27.3	10.5 10.3 9.8 11.0	5 6 4 7	1.52 1.54 1.40 1.66
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		1.32 1.37 1.27 1.42	2.35 2.49 2.29 2.55	63.3 62.5 59.7 66:1	<0.2 <0.2 <0.2 0.4	10 10 <10 20	230 240 210 260	1.12 1.17 1.04 1.25	0.21 0.22 0.19 0.24	0.47 0.49 0.45 0.51	0.27 0.34 0.28 0.33	50.0 52.8 48.8 54.0	8.3 8.2 7.7 8.8	14 14 12 16	6.34 6.59 6.09 6.84
JNL024 01 + 50W DUP Target Range - Lower Upper	Bound Bound		0.11 0.12 0.40 0.73	1.47 1.47 1.39 1.55	10.5 10.4 9.8 11,1	<0.2 <0.2 <0.2 0.4	<10 <10 <10 20	80 80 60 100	0.90 0.89 0.80 0.99	0.19 0.17 0.16 0.20	5,66 5,61 5,34 5,93	0.32 0.32 0.29 0.35	50.2 49.5 47.3 52:4	7.4 7.3 6.9 7.8	19 18 17 20	0.73 0.75 0.65 0.83
JNL024 04 + 00 DUP Target Range - Lower Upper	Bound Bound	0.0008 0.0008 0.0006 0.0010														
JNL025 03 + 00 DUP Target Range - Lower Upper	Bound Bound		0.15 0.15 0.13 0.17	1.48 1.46 1.39 1.55	2.7 2.5 2.4 2.8	<0.2 <0.2 <0.2 0.4	<10 <10 <10 20	90 90 70 110	0.64 0.59 0.53 0.70	0.09 0.09 0.08 0.10	0.41 0.40 0.37 0.44	0.42 0.42 0.39 0.45	21.4 21.5 20.4 22.5	2.3 2.3 2.1 2.5	13 13 11 15	0.69 0.71 0.62 0.79
JNL025 05 + 50W DUP Target Range - Lower Upper	Bound Bound	0.0002 0.0005 0.0002 0.0005														-
JNL026 06 + 00 DUP Target Range - Lower Upper	Bound Bound		0.57 0.52 0.51 0.58	1.17 1.11 1.07 1.21	104.5 100.5 97.3 107.5	<0.2 <0.2 <0.2 <0.2 0.4	<10 <10 <10 20	40 40 30 50	0.27 0.27 0.21 0.33	0.50 0.50 0,47 0.54	0.09 0.08 0.07 0.10	0.20 0.20 0.18 0.22	27.8 25.6 25.3 28.1	8.8 8.8 8.3 9,3	12 11 10 13	1.16 1.08 1.01 1.23
JNL026 08 + 50E DUP Target Range - Lowe Upper	Bound Bound	0.0031 0.0033 0.0029 0.0035														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

QC CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME·MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME·MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME- MS41 Nb ppm 0.05
							DUPL	ICATES						-		
ORIGINAL DUP Target Range - Lowe Uppe	r Bound r Bound	26.4 26.4 25.3 27.5	3.33 3.34 3.16 3.51	0.65 0.63 0.56 0.72	0.08 0.08 <0.05 0.10	0.02 0.02 <0.02 0.04	0.01 <0.01 <0.01 0.02	0.018 0.020 0.013 0.025	0.12 0.12 0.10 0.14	11.1 11.4 10.5 12.0	0.3 0.4 0.2 0.5	0.01 0.01 <0.01 0.02	47 48 40 55	5.92 5.70 5.47 6.15	<0.01 <0.01 <0.01 0.02	<0.05 <0.05 <0.05 0.10
ORIGINAL DUP Target Range - Lowe Uppe	r Bound r Bound	19.7 20.1 19:0 20.8	1.98 2.04 1.90 2.12	7.18 7.37 6.86 7.69	0.11 0.10 <0.05 0.16	0.29 0.31 0.27 0.34	0.07 0.07 0.05 0.09	0.029 0.029 0.023 0.035	0.44 0.46 0.42 0.48	26.2 27.5 25.3 28.4	22.9 24.2 22.3 24.8	0.41 0.43 0.39 0.45	518 545 500 563	0.71 0.70 0.62 0.79	0.03 0.03 0.02 0.04	1.16 1.23 1.09 1.30
JNL024.01 + 50W DUP Target Range - Lowe Uppe	r Bound	11.7 11.4 (10.9 12.2	2.14 2.13 2.02 2.25	4.53 4.67 4.32 4.88	0.09 0.10 <0.05 0.10	0.08 0.08 0.06 0.10	0.02 0.03 <0.01 0.04	0.026 0.033 0.023 0.036	0.10 0.10 0.09 0.12	24.7 24.2 23.0 25;9	26.8 26.4 25.2 28.0	1.56 1.56 1.47 1.65	345 347 324 368	0.76 0.73 0.66 0.83	0.01 0.01 <0.01 0.02	0.36 0.35 0.29 0.42
JNL024 04 + 00 DUP Target Range - Lowe Uppe	r. Bound r Bound														-	·
JNL025 03 + 00 DUP Target Range - Lowe Uppe	r Bound r Bound	4.5 4.7 4.2 5.0	1.13 1.12 1.06 1.19	5.13 4.92 4.72 5.33	<0.05 <0.05 <0.05 0.10	0.02 0.02 <0.02 0.04	0.01 0.01 <0.01 0.02	0.019 0.017 0.012 0.024	0.07 0.07 0.06 0.08	9.0 9.0 8.4 9.7	19.6 19.4 18.4 20.6	0.97 0.95 0.90 1.02	64 65 56 73	0.49 0.48 0.41 0.56	0.02 0.02 <0.01 0.03	0.29 0.29 0.23 0.35
JNL025 05 + 50W DUP Target Range / Lowe Uppe	r Bound r Bound															
JNL026 06 + 00 DUP Target Range - Lowe Uppe	r Bound r Bound	16.5 16.1 15.5 17.1	2.49 2.32 2.27 2.54	3.43 3.37 3.18 3.62	0.05 0.05 <0.05 0.10	0.03 0.02 <0.02 0.04	0.02 0.02 <0.01 0.03	0.019 0.018 0.013 0.024	0.04 0.04 0.03 0.05	14.1 13.1 12.7 14.5	18.1 17.0 16.6 18.5	0.27 0.25 0.24 0.28	612 589 565 636	0.38 0.32 0.28 0:42	0.01 0.01 <0.01 0.02	0.22 0.20 0.15 0.27
JNL026 08 + 50E DUP Target Range - Lowe Uppe	r Bound r Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

QC CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS4 } Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm. 0.05	ME- MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	r Bound Bound	4.8 4.9 4.4 5.3	1190 1190 1120 1260	80.0 86.0 78.7 87.4	6.3 6.3 5.9 6.7	0.016 0.014 0.013 0.017	3.55 3.57 3.37 3.75	0.67 0.67 0.57 0.77	3.0 3.1 2.8 3.3	14.7 15.1 14.0 15.8	0.4 0.4 <0.2 0.6	45.7 45.2 (343.0 47.9	<0.01 <0.01 <0.01 0.02	2.33 2.35 2.21 2.47	3.9 4.0 3.6 4(3	<0.005 <0.005 <0.005 0.010
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	12.0 11.7 11.1 12.6	400 430 380 450	12.3 12.7 11.7 13.3	36.9 37.4 35.2 39.1	<0.001 <0.001 <0.001 0.002	0,02 0.03 <0.01 0,04	3.44 3.44 3.13 3.75	3.8 3.8 3.5 4 .1	1.2 0.7 0.7 1.2	1.0 1.0 0.8 1.3	64.2 65.4 61.4 68.2	<0.01 <0.01 <0.01 0.02	0.01 0.02 <0.01 0:02	3.7 3.6 3.3 4.0	0.058 0.064 0.053 0.069
JNL024 01 + 50W DUP Target Range - Lower Upper	r Bound Bound	16.9 16.3 15.6 17.6	1290 1300 1220 1370	17.0 16.5 15.7 17.8	8.1 8.3 7.7 8.7	0.001 <0.001 <0.001 0.002	0.03 0.03 0.02 0.04	1,04 1.01 0.90 1.15	3.5 3.5 3.2 3.8	0.6 0.7 0:4 0:9	0.3 0.3 <0.2 0.4	254 253 241 266	<0.01 <0.01 <0.01 0.02	<0.01 <0.01 <0.01 0.02	3.2 3.3 2.9 3.6	0.009 0.009 <0.005 0.010
JNL024 04 + 00 DUP Target Range Lower Upper	r Bound Bound															
JNL025 03 + 00 DUP Target Range - Lowe Upper	r Bound r Bound	6.6 6.7 6.1 7.2	930 930 870 990	5.0 4.9 4.5 5.4	10.8 11.1 10.3 11.6	<0.001 <0.001 <0.001 0.002	0.04 0.04 0.03 0.05	0,35 0.37 0.28 0.44	0.3 0.3 0.2 0.4	0.2 <0.2 <0.2 0.4	0.3 0.3 <0.2 0.4	28.2 28.4 26.7 29.9	<0.01 <0.01 <0.01 0.02	<0.01 <0.01 <0.01 0.02	<0.2 0.2 <0.2 0.4	0.005 0.006 <0.005 0.010
JNL025 05 + 50W DUP Target Range - Lowe Upper	r Bound r Bound															
JNL026 06 + 00 DUP Targët Range - Lowe Upper	r Bound r Bound	13.5 13.3 12.5 14.3	870 830 800 900	70.6 68.4 65.8 73.2	6.0 5.8 5.5 6.3	<0.001 <0.001 <0.001 0.002	0.06 0.05 0.04 0.07	1.73 1.63 1.50 1.86	0.4 0.3 0.2 0.5	0.2 <0.2 <0.2 0.4	0.2 0.2 <0.2 0.4	14.7 14.5 13.7 15.5	<0.01 <0.01 <0.01 0.02	0.02 0.03 <0.01 0:04	0.9 0.6 0.5 1.0	0.008 0.007 <0.005 0.010
JNL026 08 + 50E DUP Target Range Lowe Upper	r Bound r Bound															

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 4 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	· ME- MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01				
							DUPL	ICATES					
ORIGINAL DUP Tärget Range – Lower Upper	Bound Bound	0.25 0.25 0.21 0.29	0.64 0.64 0.56 0.72	7 7 6 8	0.07 0.08 <0.05 0.10	6.94 6.96 6.55 7.35	27 28 24 31	0.7 0.7 ≤0.5					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.27 0.29 0.24 0.32	2.12 2.19 2.00 2.31	37 39 35 41	0.33 0.31 0.25 0.39	16.65 17.05 15.95 17.75	58 61 55 64	11.1 11.5 10.0 12.6					
JNL024 01 + 50W DUP Target Range - Lower Upper	Bound Bound	0.08 0.08 0.05 0.11	0.44 0.46 0.38 0.52	19 19 17 21	0,06 0,05 <0.05 0,10	11.05 10.80 10.35 11.50	83 84 77 90	2.3 2.3 1.6 3.0		·			
JNL024 04 + 00 DUP Target Range - Lower Upper	Bound Bound								<0.01 <0.01 0.02				
JNL025 03 + 00 DUP Target Range - Lower Upper	Bound Bound	0.08 0.09 0.06 0.11	0.39 0.38 0.32 0.45	22 21 19 24	0.07 0.05 <0.05 0.10	2.86 2.86 2.67 3.05	69 69 64 74	<0.5 0.5 <0.5 1.0					
JNL025 05 + 50W DUP Target:Range - Lower Upper	Bound Bound												
JNL026 06 + 00 DUP Target Range - Lower Upper	Bound Bound	0.05 0.05 0.03 0.07	0.68 0.66 0:59 0.75	10 9 8 11	0.06 0.06 <0.05 0.10	2.22 2.21 2.05 2.38	84 76 74 86	1.0 0.7 <0.5 1.0					
JNL026 08 + 50E DUP Target Range Cower Upper	Bound Bound												

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	Au- ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME- MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME- MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME- MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
							DUPL	ICATES								
JNL028 03 + 00 DUP Target Range - Lower Upper	Bound Bound		0.13 0.15 0.12 0.16	1.01 1.03 0.96 1.08	13.0 13.2 12.3 13.9	<0.2 <0.2 <0.2 -0.4	<10 <10 (. <10 20	40 40 30 50	0.30 0.30 0.24 0.37	0.29 0.30 0.27 0.32	0.02 0.03 <0.01 0.04	0.14 0.14 0.12 0.16	25.4 25.7 24.3 26.8	5.2 5.2 4.8 5.6	11 11 9 13	0.83 0.88 0.76 0.95
JNL028 05 + 50E DUP Target Range - Lowe Upper	Bound Bound	0.0012 0.0012 0.0010 0.0014														
		-														
4																

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

QC CERTIFICATE OF ANALYSIS WH14116723

Sample Description	Method Analyte Units LOR	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME-MS41 La ppm 0.2	ME- MS41 Li ppm ().1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS4 <u>1</u> Mo ppm 0.05	ME- MS41 Na % 0.01	ME- MS41 Nb ppm 0.05
							DUPL	ICATES								
JNL028 03 + 00 DUP Target Range - Lower Upper	Bound Bound	13.1 13.1 12.4 13.8	2.21 2.25 2.11 2.35	3.29 3.34 3.10 3.53	<0.05 <0.05 <0.05 0.10	<0.02 <0.02 <0.02 0:04	0.03 0.03 0.02 0.04	0.025 0.030 0.021 0.034	0.04 0.04 0.03 0.05	12.5 12.9 11.9 13.5	16.4 14.9 14.8 16.5	0.20 0.21 0.18 0.23	385 391 364 412	0.44 0.46 0.38 0.52	0.01 0.01 <0.01 0.02	0.23 0.25 0.18 0.30
JNL028 05 + 50E DUP Target Range - Lower Upper	Bound Bound												<u>10 - 17 17 - 17</u>			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
							DUPL	ICATES								
JNL028 03 + 00 DUP Target Range - Lower Upper	Bound Bound	11.6 11.5 10.8 12.3	1000 1060 970 1090	21.7 22.0 20.6 23.1	7.4 7.7 7.1 8.0	<0.001 <0.001 <0.003 0.002	0.06 0.06 0.05 0.07	1.23 1.28 1.11 1.40	0.4 0.3 0.2 0.5	0.4 0.4 <0.2 0.6	0.2 0.2 <0.2 0.4	4.1 4.2 3.7 4.6	<0.01 <0.01 <0.01 0:02	0,01 0.02 <0.01 0.02	0.4 0.3 <0.2 0.4	0.007 0.008 <0.005 0.010
JNL028 05 + 50E DUP Target Range - Lower Upper	Bound Bound															
					·											

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 5 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

Sample Description	Method Analyte Units LOR	ME- MS41 Ti ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Au- AROR43 Au ppm 0.01			
							DUPL	ICATES				
JNL028 03 + 00 DUP		0.06 0.07	0.72 0.77	11 11	0.06 0.07	3.62 3.73	55 56	<0.5 <0.5				
Target Range - Lower Upper	Bound Bound	0.04 0.09	0.66	9 13	<0.05 0.10	3.44 3.91	51 60	<0.5 1.0				
JNL028 05 + 50E												
Target Range - Lower Upper	Bound Bound											
				····-								
						·						
· · ·												
			~									

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14- AUG- 2014 Account: TELOEX

Project: ALSM

		CERTIFICATE COMMENTS												
Applies to Method:	Gold determinations by this method a ME- MS41	ANALYTICAL COMMENTS Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g). ME- MS41												
Applies to Method:	Processed at ALS Whitehorse located a LOG- 22	LABORATORY ADDRESSES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. LOG- 22 SCR- 41 WEI- 21												
Applies to Method:	Processed at ALS Vancouver located a Au- AROR43	t 2103 Dollarton Hwy, North Vancouve Au- ST43	r, BC, Canada. ME- MS41											

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

ME-XRF10

OA- GRA06

ME- XRF05

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 2- SEP- 2014 Account: TELOEX

WST- SIM

XRF

CERTIFICATE WH14116724

P.O. No.: JN14-003

This report is for 37 Rock samples submitted to our lab in Whitehorse, YT, Canada on 2- AUG- 2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL	

MIKE MCCUAIG

	SAMPLE PREPARATION										
ALS CODE	DESCRIPTION										
WEI-21	Received Sample Weight										
	ANALYTICAL PROCEDU	JRES									
ALS CODE	DESCRIPTION	INSTRUMENT									
ME YPE10	Eusion XRE - Ore Grade	XRF									

Fusion XRF - Ore Grade

Trace Level XRF Analysis

LOI for ME-XRF06

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 2- SEP- 2014 Account: TELOEX

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME-XRF05 W ppm 10	ME- XRF10 Tungsten % 0.01				_			
PULP JN12019-147 PULP JN12019-148 PULP JN12019-149 PULP JN12019-150 PULP JN12019-151		0.21 0.18 0.23 0.14 0.15	340 250 650 470 240								
PULP JN1 2019-152 PULP JN1 2019-153 PULP JN1 2019-154 PULP JN1 2019-155 PULP JN1 2019-155 PULP JN1 2019-156		0.13 0.14 0.14 0.18 0.10	340 610 2200 960 480								
PULP JN12019-157 PULP JN12019-158 PULP JN12019-159 PULP JN12019-160 PULP JN12019-161		0.13 0.11 0.10 0.09 0.11	2270 1220 760 >5000 1700	0.94							
PULP JN12019- 162 PULP JN12019- 163 PULP JN12019- 164 BULK JN12019- 147 BULK JN12019- 148		0.12 0.10 0.09 0.03 0.20	>5000 590 260 340 270	1.01							
BULK JN12019- 149 BULK JN12019- 150 BULK JN12019- 151 BULK JN12019- 152 BULK JN12019- 153		0.09 0.12 0.18 0.36 0.35	670 460 250 340 640								
BULK JN12019-154 BULK JN12019-155 BULK JN12019-155 BULK JN12019-155 BULK JN12019-155 BULK JN12019-158		0.28 0.45 0.30 0.21 0.32	2190 940 480 2260 1210								
BULK JN12019-159 BULK JN12019-160 BULK JN12019-161 BULK JN12019-162 BULK JN12019-163		0.22 0.27 0.27 0.27 0.27 0.31	740 >5000 1680 >5000 570	0.94 1.00							
BÜLK JN12019- 164 JN12019- 16051		0.22 0.08	240 >5000	0.72			 				

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC VIC 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 2- SEP-2014 Account: TELOEX

milerais		CERTIFICATE OF ANA	LYSIS WH14116724
	CERTIFICATE CO	MMENTS	
Processed at Applies to Method: ME- XRF05	LABO ALS Vancouver located at 2103 Dollarton Hwy, N ME- XRF10	RATORY ADDRESSES North Vancouver, BC, Canada. OA- GRA06	WEI- 21
			·

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages:2 (A) Plus Appendix Pages Finalized Date: 2- SEP- 2014 Account: TELOEX

QC CERTIFICATE WH14116724

P.O. No.: JN14-003

This report is for 37 Rock samples submitted to our lab in Whitehorse, YT, Canada on 2- AUG- 2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

MIKE MCCUAIG

SAMPLE	PREPARATION	

ALS CODE DESCRIPTION

WEI- 21 Received Sample Weight

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- XRF10	Fusion XRF - Ore Grade	XRF
OA- GRA06	LOI for ME- XRF06	WST- SIM
ME-XRE05	Trace Level XRF Analysis	XRF

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 2- SEP- 2014 Account: TELOEX

Sample Description	Method Analyte Units LOR	ME-XRF05 W ppm 10	ME- XRF10 Tungsten % 0.01					
					STANDARDS			
TILL- 4 TILL- 4 Target Range - Lower Upper TLG- 1 TLG- 1 Target Range - Lower	Bound Bound Bound	190 190 230 820 820 730						
Upper	Bound	920						
BLANK BLANK Target Range – Lower Upper	Bound Bound	<10 <10 <10 20			BLANKS			
					DUPLICATES			
PULP JN12019- 156 DUP Target Range - Lower Upper	Bound Bound	480 470 440 510						
JN12019-16051 DUP Target Range Cower Upper	Bound Bound	>5000 >5000 4740 >5000	0.72 0.72 0.69 0.75					
	· ·							

TO: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 2- SEP- 2014 Account: TELOEX

	CERTIFICATE COMMENTS	
Applies to Method:	LABORATORY ADDRESSE Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, C ME- XRF05 ME- XRF10 OA- C	E S Canada. IRA06 WEI- 21
, ,		

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

CERTIFICATE VA14129066

Project: TELOEX- R2

P.O. No.: JN14-004

This report is for 17 Pulp samples submitted to our lab in Vancouver, BC, Canada on 21-AUG-2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

CHRIS GALLAGHER

MIKE MCCUAIG

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
HOM- 01	Homogenize by light pulverizing	
LOG- 24	Pulp Login - Rcd w/o Barcode	
	ANALYTICAL PROCEDURES	

ALS CODE	DESCRIPTION	INSTRUMENT
ME- XRF05	Trace Level XRF Analysis	XRF

TO: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 5- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME-XRF05 W ppm 10						
JN11009-169 JN11009-170 JN11009-171 JN11009-171 JN11009-172 JN11009-173		0.24 0.24 0.20 0.26 0.22	190 230 450 420 380						
JN11009-174 JN11009-175 JN11009-176 JN11009-176 JN11009-177 JN11009-178		0.22 0.20 0.26 0.22 0.26	860 1160 240 730 490		 · · · · · · · · · · · · · · · · · · ·				
JN11009-179 JN11009-180 JN11009-180 S JN11009-181 JN11009-181 JN11009-182		0.24 0.26 0.08 0.24 0.26	240 200 2130 540 170						
אנן 1009-183 1009-184 אנן 1009-184		0.22 0.28	180 420						

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

	CERTIFICATE COMMENTS
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.HOM- 01LOG- 24ME- XRF05WEI- 21

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 7- SEP- 2014 Account: TELOEX

CERTIFICATE VA14129069

Project: TELOEX- R2

P.O. No.: JN14-005

This report is for 19 Pulp samples submitted to our lab in Vancouver, BC, Canada on 21-AUG-2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

CHRIS GALLAGHER

MIKE MCCUAIG

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
WEI- 21 LOG- 24 HOM- 01	Received Sample Weight Pulp Login - Rcd w/o Barcode Homogenize by light pulverizing				

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- XRF05	Trace Level XRF Analysis	XRF
ME- XRF10	Fusion XRF - Ore Grade	XRF
OA- GRA06	LOI for ME- XRF06	WST- SIM
W- XRF10	Fusion XRF - W Ore Grade	XRF

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 7- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- XRFOS W ppm 10	W- XRF10 W % 0.01	
JN11010-104 JN11010-105 JN11010-106 JN11010-107 JN11010-107 JN11010-108		0.24 0.24 0.24 0.22 0.18	420 340 90 170 110		
JN11010-109 JN11010-110 JN11010-111 JN11010-111 JN11010-112 JN11010-113		0.12 0.10 0.24 0.20 0.22	420 2400 2790 4320 >5000	0.51	
JN11010-114 JN11010-115 JN11010-116 JN11010-117 JN11010-117 JN11010-118		0.30 0.22 0.26 0.22 0.22 0.20	3130 600 290 400 910		
JN11010- 119 JN11010- 120 JN11010- 120 S JN11010- 120 B		0.24 0.20 0.06 Empty Bag	360 2580 2070		

.

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

		CERTIFICATE COM	MENTS	
Applies to Method:	Processed at ALS Vancouver Ic HOM- 01 OA- GRA06	LABOR ocated at 2103 Dollarton Hwy, No LOG- 24 WEI- 21	ATORY ADDRESSES rth Vancouver, BC, Canada. ME- XRF05 W- XRF10	ME- XRF10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

CERTIFICATE VA14129208

Project: TELOEX

P.O. No.: JN14-006

This report is for 18 Pulp samples submitted to our lab in Vancouver, BC, Canada on 21 AUG-2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

CHRIS GALLAGHER

MIKE MCCUAIG

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 5- SEP- 2014 Account: TELOEX

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
WEI- 21	Received Sample Weight					
LOG-24	Pulp Login - Rcd w/o Barcode					
HOM- 01	Homogenize by light pulverizing					
	ANALYTICAL PROCEDU	JRES				
ALS CODE	DESCRIPTION	INSTRUMENT				
ME- XRF05	Trace Level XRF Analysis	XRF				

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 5- SEP- 2014 Account: TELOEX

Project: TELOEX

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- XRF05 W ppm 10						:	
JN12012-071 JN12012-072 JN12012-073 JN12012-073 JN12012-074 JN12012-075		0.16 0.16 0.12 0.18 0.14	390 640 870 310 320							
JN12012-076 JN12012-077 JN12012-078 JN12012-078 JN12012-079 JN12012-080		0.14 0.12 0.12 0.14 0.14	500 270 400 260 480							
JN12012-080 B JN12012-080 S JN12012-081 JN12012-081 JN12012-082 JN12012-083		0.14 0.08 0.18 0.14 0.16	<10 2120 170 170 160							
JN12012-084 JN12012-085 JN12012-086		0.14 0.20 0.16	160 170 190							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- SEP- 2014 Account: TELOEX

Project: TELOEX

	CERTIFICATE COMMENTS									
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. HOM- 01 LOG- 24 ME- XRF05 WEI- 21									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

OA- GRA06

W-XRF10

Page: 1 Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

WST- SIM

XRF

CERTIFICATE VA14129262

Project: TELOEX- R2

P.O. No.: JN14-007

This report is for 63 Pulp samples submitted to our lab in Vancouver, BC, Canada on 21-AUG-2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL	CHRIS GALLAGHER	MIKE MCCUAIG

	SAMPLE PREPARATIO	DN
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-24	Pulp Login - Rcd w/o Barcode	
HOM- 01	Homogenize by light pulverizing	
<u></u>	ANALYTICAL PROCEDU	JRES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- XRF05	Trace Level XRF Analysis	XRF
ME-XRF10	Fusion XRF - Ore Grade	XRF

LOI for ME- XRF06

Fusion XRF - W Ore Grade

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

CERTIFICATE OF ANALYSIS VA14129262

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME-XRF05 W ppm 10	ME- XRF10 W % 0.01	W- XRF10 W % 0.01						
JN12013-001 JN12013-002 JN12013-003 JN12013-004 JN12013-004 JN12013-005		0.28 0.30 0.22 0.28 0.28	1040 620 950 2400 2420								
JN12013-006 JN12013-007 JN12013-008 JN12013-009 JN12013-019 JN12013-010		0.20 0.30 0.28 0.26 0.26	2250 520 680 350 400								
JN12013-011 JN12013-012 JN12013-013 JN12013-013 JN12013-014 JN12013-015		0.26 0.24 0.24 0.24 0.24 0.28	410 440 640 1300 290								
JN12013-016 JN12013-017 JN12013-018 JN12013-018 JN12013-019 JN12013-020		0.24 0.22 0.24 0.28 0.30	410 680 850 560 750								
JN12013-020 S JN12013-020 B JN12013-021 JN12013-021 JN12013-022 JN12013-023		0.06 0.20 0.28 0.20 0.22	2140 <10 1140 2500 1490								
JN12013-024 JN12013-025 JN12013-026 JN12013-026 JN12013-027 JN12013-028		0.20 0.30 0.28 0.32 0.30	630 800 580 420 490				*****		·		
JN12013-029 JN12013-030 JN12013-031 JN12013-031 JN12013-032 JN12013-033		0.28 0.28 0.28 0.30 0.26	210 230 270 130 320								
JN12013-034 JN12013-035 JN12013-036 JN12013-036 JN12013-037 JN12013-038		0.24 0.22 0.28 0.26 0.22	>5000 900 390 310 140	0.91	0,91						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME- XRF05 W ppm 10	ME- XRF10 W % 0.01	W- XRF10 W % 0.01	
JN12013-039 JN12013-040 JN12013-040 S JN12013-040 S JN12013-040 B JN12013-041		0.28 0.24 0.10 0.22 0.28	330 460 >5000 <10 510	0.72	0.72	
JN12013-042 JN12013-043 JN12013-044 JN12013-044 JN12013-045 JN12013-046		0.26 0.28 0.26 0.20 0.22	140 1200 90 1230 500			
JN12013-047 JN12013-048 JN12013-049 JN12013-050 JN12013-050 JN12013-051		0.20 0.28 0.28 0.28 0.28 0.28	220 150 100 200 310			
JN12013-052 JN12013-053 JN12013-054 JN12013-054 JN12013-055 JN12013-069		0.24 0.26 0.24 0.24 0.20	680 750 1370 1660 40			
JN12013-070 JN12013-071 JN12013-072		0.24 0.26 0.20	>5000 630 80	0.69	0.69	

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

	CERTIFICATE COMMENTS								
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. HOM- 01 LOG- 24 ME- XRF05 ME- XRF10 OA- GRA06 WEI- 21 W- XRF10								
			<u> </u>						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

CERTIFICATE VA14129206

Project: TELOEX- R2

P.O. No.: JN14-008

This report is for 61 Pulp samples submitted to our lab in Vancouver, BC, Canada on 21-AUG-2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL

CHRIS GALLAGHER

MIKE MCCUAIG

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
WEI- 21	Received Sample Weight					
HOM- 01	Homogenize by light pulverizing					
LOG-24	Pulp Login - Rcd w/o Barcode					

ANALYTICAL PROCEDURES						
ALS CODE	DESCRIPTION	INSTRUMENT				
ME- XRF05	Trace Level XRF Analysis	XRF				
ME- XRF10	Fusion XRF - Ore Grade	XRF				
OA- GRA06	LOI for ME- XRF06	WST- SIM				
W- XRF10	Fusion XRF - W Ore Grade	XRF				

TO: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

CERTIFICATE OF ANALYSIS VA14129206

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-XRF05 W ppm 10	W- XRF10 W % 0.01							
JN12014-001 JN12014-002 JN12014-003 JN12014-004 JN12014-004 JN12014-005		0.22 0.22 0.24 0.24 0.24 0.24	1090 430 340 770 510			·					
JN12014-006 JN12014-007 JN12014-008 JN12014-009 JN12014-010		0.24 0.24 0.26 0.24 0.26	370 640 610 510 720				 				
JN12014-011 JN12014-012 JN12014-013 JN12014-013 JN12014-014 JN12014-015		0.26 0.26 0.28 0.26 0.26 0.24	890 120 300 100 180			<u> </u>					
JN12014-016 JN12014-017 JN12014-018 JN12014-018 JN12014-019 JN12014-020		0.28 0.26 0.24 0.28 0.26	210 660 1050 80 260						-		
JN12014-020 S JN12014-020 B JN12014-021 JN12014-021 JN12014-022 JN12014-023		0.06 0.18 0.30 0.30 0.32	2070 <10 310 220 420								
JN12014-024 JN12014-025 JN12014-026 JN12014-027 JN12014-027 JN12014-028		0.28 0.26 0.28 0.28 0.28 0.26	400 310 380 360 300								
JN12014-029 JN12014-030 JN12014-031 JN12014-032 JN12014-033		0.28 0.24 0.20 0.24 0.24 0.22	240 350 970 360 530		···· ·						
JN12014-034 JN12014-035 JN12014-036 JN12014-036 JN12014-037 JN12014-038		0,20 0,30 0,24 0,30 0,28	480 630 560 230 180								

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 3 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME-XRF05 W ppm 10	W- XRF10 W % 0.01							
JN12014-039 JN12014-040 JN12014-040 S JN12014-040 B JN12014-041		0.22 0.28 0.08 0.22 0.30	460 280 >5000 <10 340	0.72		••••••••••••••••••••••••••••••••••••••					
JN12014-042 JN12014-043 JN12014-044 JN12014-044 JN12014-045 JN12014-046		0.30 0.32 0.28 0.34 0.32	180 200 180 250 420							_	
JN12014-047 JN12014-048 JN12014-049 JN12014-049 JN12014-050 JN12014-051		0.28 0.26 0.28 0.24 0.24	160 180 490 590 570								
JN12014-052 JN12014-053 JN12014-054 JN12014-054 JN12014-055 JN12014-056		0.24 0.26 0.22 0.22 0.22 0.24	590 800 40 120 180	·							
JN12014-057		0.24	260								

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

	CERTIFICATE COMMENTS								
Applies to Method:	Processed at ALS Vancouver lo HOM- 01 OA- GRA06	LAB ocated at 2103 Dollarton Hwy LOG- 24 WEI- 21	ORATORY ADDRESSES , North Vancouver, BC, Canada. ME- XRF05 W- XRF10	ME- XRF10					

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

CERTIFICATE VA14129261

Project: TELOEX- R2

P.O. No.: JN14-009

This report is for 15 Pulp samples submitted to our lab in Vancouver, BC, Canada on 21-AUG-2014.

The following have access to data associated with this certificate:

JESSE CAMPBELL	CHRIS GALLAGHER	MIKE MCCUAIG

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21 LOG- 24 HOM- 01	Received Sample Weight Pulp Login - Rcd w/o Barcode Homogenize by light pulverizing	

	ANALT HCAL PROCEDU	KE3
ALS CODE	DESCRIPTION	INSTRUMENT
ME- XRF05 ME- XRF10 OA- GRA06	Trace Level XRF Analysis Fusion XRF - Ore Grade LOI for ME- XRF06	XRF XRF WST- SIM
W- XRF10	Fusion XRF - W Ore Grade	XKF

To: TERRALOGIC EXPLORATION SERVICES INC. ATTN: MIKE MCCUAIG 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME-XRF05 W ppm 10	ME- XRF10 W % 0.01	W- XRF10 W % 0.01		 		 	
JN12016-075 JN12016-076 JN12016-077 JN12016-077 JN12016-078 JN12016-079		0.24 0.24 0.24 0.26 0.20	370 3490 1300 >5000 420	0.89	0.89					
JN12016-080 JN12016-080 S JN12016-080 B JN12016-081 JN12016-081 JN12016-082		0.24 0.08 0.22 0.20 0.28	810 2150 <10 260 470					 		
JN12016-083 JN12016-084 JN12016-085 JN12016-086 JN12016-086 JN12016-087		0.22 0.22 0.22 0.18 0.18	1500 >5000 2790 160 330	0.70	0.70			 		

To: TERRALOGIC EXPLORATION SERVICES INC. 44 - 12TH AVENUE SOUTH SUITE 200 CRANBROOK BC V1C 2R7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8- SEP- 2014 Account: TELOEX

Project: TELOEX- R2

	CERTIFICATE COMMENTS											
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.HOM- 01LOG- 24OA- GRA06WEI- 21WEI- 21W- XRF10											
				- -								

Appendix VI

Bedrock Geologic Mapping Data

Appendix	6.1		Appendix 6.1								
Station Lo	cations an	d Description	S								
Station Number	Date	Location Method	Elevation (M)	Easting	Northing	Accuracy (m)	Notes				
JBJNG001	7/23/2014	GPS		546163	6839466		jab gps 144				
JBJNG002	7/24/2014	GPS		546935	6839512		1st stat ne of camp				
JBJNG003	7/24/2014	GPS		546951	6839572						
JBJNG004	7/24/2014	GPS		547019	6839505		at soil station; no oc; flag unreadable				
JBJNG005	7/24/2014	GPS		547049	6839525		JBJNR AND D001; NO OC				
JBJNG006	7/24/2014	GPS		547198	6839511		verify au soil w JBJND002				
JBJNG007	7/24/2014	GPS		547229	6839514		au dsamp anom check 1220n 99+50E				
JBJNG008	7/24/2014	GPS		547216	6839562		JBJND004				
JBJNG009	7/24/2014	GPS		547033	6839682						
JBJNG010	7/24/2014	GPS		546869	6839679						
JBJNG011	7/24/2014	GPS		546836	6839773		claim post #YD87927; SEPT21,2011				
JBJNG012	7/24/2014	GPS		546849	6839900						
JBJNG013	7/24/2014	GPS		546718	6839825						
JBJNG014	7/24/2014	GPS		546705	6839711						
JBJNG015	7/24/2014	GPS		546707	6839632						
JBJNG016	7/24/2014	GPS		546724	6839612						
JBJNG017	7/25/2014	GPS		546552	6839200		base of dome				
JBJNG018	7/25/2014	GPS		546527	6839159						
JBJNG019	7/25/2014	GPS		546476	6839135		g168				
JBJNG020	7/25/2014	GPS		546447	6839114						
JBJNG021	7/25/2014	GPS		546377	6839116						
JBJNG022	7/25/2014	GPS		546235	6839196						
JBJNG023	7/25/2014	GPS		546148	6839182						
JBJNG024	7/25/2014	GPS		546127	6839173						
JBJNG025	7/25/2014	GPS		545970	6839302						
JBJNG026	7/25/2014	GPS		546009	6839357						
JBJNG027	7/28/2014	GPS		546362	6840236		white oc in draw visible from valley bottom halfway up north apron				
JBJNG028	7/28/2014	GPS		546554	6840188						
JBJNG029	7/25/2014	GPS		546747	6835059		saddle @ head of big swifty ck				
JBJNG030	7/25/2014	GPS		546910	6835118		west lim of 20+ m wide nw trending qtz vn shaer system w cb-chl-ank-lim alt; can see same system across valley to se				
JBJNG031	7/25/2014	GPS		546951	6835119		in shear next to grnt dyke				

Station Number	Date	Location Method	Elevation (M)	Easting	Northing	Accuracy (m)		Notes
JBJNG032	7/25/2014	GPS		546965	6835119			
JBJNG033	7/25/2014	GPS		547001	6835095			
JBJNG034	7/25/2014	GPS		547038	6835092			
JBJNG035	7/25/2014	GPS		547089	6835033		went downhill and section to next lith	
JBJNG036	7/25/2014	GPS		547164	6835074			
JBJNG037	7/29/2014	GPS		547255	6834993			
JBJNG038	7/29/2014	GPS		547780	6834799		2x2m oc in sound of music setting	
JBJNG039	7/29/2014	GPS		547553	6835037		5x3m exposr	
JBJNG040	7/29/2014	GPS		547500	6835025		strat below prev ssltstn	
JBJNG041	7/29/2014	GPS		547396	6834996		east lim of large 50+ long oc @292az	
JBJNG042	7/29/2014	GPS		547286	6835007			
JBJNG043	7/29/2014	GPS		547538	6834145		on south ridge flank zeroing in on porph	
JBJNG044	7/29/2014	GPS		547570	6834121			
JBJNG045	7/29/2014	GPS		547623	6834131			
JBJNG046	7/29/2014	GPS		547629	6834152			
JBJNG047	7/29/2014	GPS		547643	6834155		same uniT as JBJNG036	
JBJNG048	7/29/2014	GPS		547683	6834190			
JBJNG049	7/29/2014	GPS		547820	6834172			
JBJNG050	7/29/2014	GPS		547885	6834201			
JBJNG051	7/29/2014	GPS		548037	6834256			
JBJNG052	7/29/2014	GPS		548255	6834392			
MMJNG039	7/14/2014	GPS	1444	546710.8	6839234			
MMJNG041	7/23/2014	GPS	1440	546707	6839234		 TR14-001 - Objective - to determine if the sheeted veining disturbance with Candig. The trench is comprised of four p 1) 7.0 m @ Az 100 - continuous outcrop exposure; 2) 3.0 m @ Az 100 - ephemeral stream - boulders and cove 3) 3.0 m @ Az 355 - ephemeral stream - boulders and cove 4) 5.3 m @ Az 080 - continuous outcrop exposure. 	observe parts: er; er;
MMJNG042	7/25/2014	GPS	1447	546735	6839239		TR14-002. Prospecting with JAB located sheeted veining commensues of the end of TR14-001. Combination hand-mechan	ontaining ized trer
MMJNG043	7/25/2014	GPS	1436	546648	6839490		TR14-003: 15.0 m @ Az 66. Target is northern extension of sheeted vein interval inters Hand Trench.	sected in
MMJNG044	7/27/2014	GPS	1426	546652	6839477		TR14-004: 13.4 m @ Az 085. Northern extension of sheted bedrock has been frost heaved but is intact enough to colle	veins fr ct reliab
MMJNG045	7/28/2014	GPS	1428	546640	6839520			
MMJNG046	7/28/2014	GPS	1593	547943	6834763		Big Swifty Mineral Occurrence.	

ved in MMJNR041 is laterally extensive. Mechanical

ng bismuthinite within the granodiorite approximately 15.0 ench.

in JN12014. Excellent outcrop exposure of sheeted veins.

from DDH JN12014. Hand Trench. From 8.5-13.3 m the able representative samples.

Station Number	Date	Location Method	Elevation (M)	Easting	Northing	Accuracy (m)	Notes
MMJNG047	8/1/2014	GPS	1791	548141	6835353		
MMJNG048	8/1/2014	GPS	1883	548116	6835494		
MMJNG049	8/1/2014	GPS	1722	548579	6835584		Contact between phyllite and limestone. 30-50 metre spires of lime
MMJNG050	8/1/2014	GPS	1745	548582	6835534		Station @ base of 50 + m cliff.
MMJNG051	8/1/2014	GPS	1768	548579	6835507		Structural station - drag folding associated with fault west of outcr
MMJNG052	8/1/2014	GPS	1787	548575	6835486		Structural station - fault zone.
MMJNG053	8/1/2014	GPS	1767	548482	6835424		Outcrop-sub crop forms "ridge cap"
MMJNG054	8/1/2014	GPS	1797	548360	6835426		Outcrop - subcrop forms "ridge cap".
MMJNG055	8/1/2014	GPS	1877	548146	6835485		Sample JNL016 21+00 E. Phyllite scree, no visible quartz veining.
MMJNG056	8/1/2014	GPS	5	548022	6835451		
MMJNG057	8/1/2014	GPS	1880	548000	6835460		Dirt sample @ base of Talus slope from station MMJNG056. JNL106 soil anomaly.

5

nestone outcrop above the contact.

rop.

06 19+50 E. Quartz vein fragments in talus likely source of

Appendix 6.2 Lithology Descriptions

Station Number	Degree of Transport	Proportion of Rocktype	Map Unit	Major Rock Type	Minor Rock Type	Grain Size	
JBJNG001	subcrop		РСН	quartzite		fine	massive bl-grey qzt s
JBJNG002	subcrop		РСН	quartz pebble conglomerate			grey-buff, crowded q be porph?no alt or m
JBJNG003	outcrop			null			no oc on this fall line.
JBJNG004	outcrop			null			zig zag contour trav f
JBJNG005	float		РСН	shale	skarn		OPEN licken clearing silt/mud(JBJNR001)
JBJNG006	scree		COR	limestone			verfy au soil w JBJND is very fissile, v fn gri
JBJNG007	rubble		COR	limestone	granodiorite		au dsamp anom chec holes. Some rsty gra
JBJNG008	outcrop		COR	limestone			low alt low frac
JBJNG009	waypoint			null			no oc southwest of cr
JBJNG010	float		РСН	quartz pebble conglomerate			no oc; float of QPC ru
JBJNG011	waypoint			null			claim post; no oc to h
JBJNG012	waypoint			null			no oc to here; thoreti
JBJNG013	float		COR	siltstone			no oc
JBJNG014	glacial			null			planar slope in snow
JBJNG015	subcrop		РСН	siltstone			hard, bl-grey nornfel
JBJNG016	outcrop		РСН	quartz pebble conglomerate	quartzite		hard, mass, rsty weat sheeted veins w trace
JBJNG017	outcrop		РСН	quartz pebble conglomerate	hornfels		interbedded fn qtz pe density; minor fe-stn
JBJNG018	outcrop		РСН	siltstone	quartz pebble conglomerate		strn hornflsed siltsto
JBJNG019	subcrop		РСН	skarn			sudden step up and a
JBJNG020	rubble		РСН	siltstone	quartz pebble conglomerate		uphill from hrre is ss
JBJNG021	rubble		РСН	quartz pebble conglomerate	quartz	coarse	broad rubble fields o conglom& lesser slts
JBJNG022	outcrop		РСН	quartz pebble conglomerate	quartz		frost heaved strng ar
JBJNG023	float			quartz			quartz vein float is al into region of fewer l
JBJNG024	outcrop		РСН	phyllite	quartz		tan grey wthrd, lt gre vns; rel low alt in we

Notes

subcrop east of ck

qtz-feld pebb con; no bt mt or cb. Massive; subang clasts. Could nin

. Tight scrub conifers

from stats 2&3 lib no oc to here

g(JBJND001) w minor mixed angular cobbles of gossanous and silic lst/qtzite/skarn

0002; avy slope on bench west of creek; lst in ck cut 10m to east nd w lesser chaotitc wht lst ff. No alt; trc py ff

ck 1220n 99+50E. N0 oc. Lst rubble in orig and ver JBJND003 andrt&qtz peb conglom in creek

reek

isty but no vns

iere

ical junction of march & justin faults

brush; no hope of OC

lsed phyllitic siltstone,mod fissile, qtz vnlts rare;

thering, fn-med grnd qtz-feld-conglom (qtzite) w high angle e lim pockets

beb congom and mauve hornfelsed siltstone overall low vn n

one w min calc-sil in contact w bull qtz vein

ang boulders of skarn suggest lith change

st/qpc rubble/subcrop

of mod-high limonite-clay +-silica vuggy altered cs qtz peb stn

rg altered qpc; strng n-trending shearing w qtz veins >20cm

bundant from here to prev station. Seems we have moved distal but larger qtz veins

ey fresh, frost heaved thinly bedded phyllite w rare <10cm qtz estery direc
Station Number	Degree of Transport	Proportion of Rocktype	Map Unit	Major Rock Type	Minor Rock Type	Grain Size	
JBJNG025	subcrop		РСН	phyllite			as prev station acros
JBJNG026	rubble		РСН	phyllite	quartz		
JBJNG027	outcrop		COR	marble	calcareous chert		10m oc of tan coulou Wavy deformation.
JBJNG028	scree		COR	limestone			steep scar in main av
JBJNG029	outcrop		РСН	quartz pebble conglomerate	siltstone		bottom of 20+m thick weathering; rare calc
JBJNG030	outcrop		РСН	grit	argillite		tan&orange wthrd th swarms of sub vert n
JBJNG031	outcrop		РСН	grit	argillite		
JBJNG032	outcrop		Kqfp	quartz feldspar porphyry			grey and tan weathre west cntct. Ser-silica
JBJNG033	outcrop		РСН	grit			brown soft very alter
JBJNG034	outcrop		РСН	grit	argillite		lt grn grey grit w 10-
JBJNG035	outcrop		РСН	argillite			darkish blue-grey arş rare; alt low-mod
JBJNG036	outcrop		Kqfp	carbonatite			fn grnd dk grey marg
JBJNG036	outcrop		Kqfp	quartz feldspar porphyry	argillite		strng cb-ank+-hm alt
JBJNG037	outcrop		РСН	grit	argillite		back into grit; strat lo
JBJNG038	outcrop		РСН	quartz pebble conglomerate	siltstone		buff orang weatherin cb in 20cm sltsn bed
JBJNG039	outcrop		РСН	argillite	siltstone		dull grey very fissile
JBJNG040	outcrop		РСН	grit	argillite		occasinal se steep dij
JBJNG041	outcrop		РСН	grit	argillite		buff weatrd; grn-grey
JBJNG042	outcrop		РСН	phyllite	grit		grey phyllite below; g strain picked up to p
JBJNG043	outcrop		РСН	quartz pebble conglomerate			buff to orang weathr
JBJNG044	outcrop		РСН	lime grainstone	quartz pebble conglomerate		same as prev. Has QF resistant to fracturin
JBJNG045	outcrop		РСН	siltstone			recessive intervening
JBJNG046	outcrop		РСН	grit	argillite		orange brn wthrd; lt vning
JBJNG047	outcrop		Kqfp	quartz feldspar porphyry	carbothermal vein		orange cb-hem altere
JBJNG048	outcrop		РСН	limestone	siltstone		grey massive lst abov
JBJNG049	outcrop		РСН	grit	argillite		calc grit above, arg b

ss creek; low to mod alt; rare cm qtz veins

ured silty limestone, marble and calcareous chert. No veins.

vy gully. No oc.

ck blocky grey QPC; Lots of subphyllite scree from above; tan cite vnlts

hick bedded qtz grit w 10cm arg interbeds; strong cb+ank alt; nw tren qtz-cb-chl-lim vns w sub-britt tension gas vens@300

ed, lt grn-grey fresh; qtz eye, feld phyric 20+m granite dyke. At a-lim altred

red grit; fw of gran dyke

-20cm arg interbeds; strng ser-cb alt

gillite+-phyllite; top of 15+m thick shallow dipping beds; qt vns

ginal to QFP dyke

no vning; has fw carbothermal vein; hosted in arg bed

lower than prev arg ststion

ng- grey fresh well rnded qtz pebble clasts in calcite matrix; no 1

dom by S1; strat above next stat to nw; 3m thick bed

ip rsty qtz vns

y fresh; altered and vnd

grn-brn grit above; at east edge of fault induced open anticline; bhyllite; rock is very fractured on nw srtk

red; calcite matrix; mod ank alt; low vn/frac density

PC texture w 60+% matrix of calcite; is wk foliated and ng.

g rock is 20m thick grn bl-grey strngly fol dull siltstone

t grn-grey fresh grit w subodnt arg interbeds; strong alt and ne

ed qfp; 12m dyke

ove in cntct w grey fol silstone below

below

Station Number	Degree of Transport	Proportion of Rocktype	Map Unit	Major Rock Type	Minor Rock Type	Grain Size	
JBJNG050	outcrop		РСН	siltstone	quartz		vert striped contact i
JBJNG051	outcrop		РСН	siltstone	argillite		interbedded silts/dk shearing does impar
JBJNG052	outcrop		РСН	quartz pebble conglomerate	cataclasite		white clasts in dk gre stringers on 2+ orier
MMJNG039	subcrop		Kgd	granodiorite		medium-fine	4-5 cm wide quartz v High-grade sample, g is laterally continuou a sheeted vein syster
MMJNG041	outcrop	100	Kgd	granodiorite		medium-fine	Exposure of the Justi narrow discreet shea sandy gouge. Fine gr quartz and subhedra observed across outo long.
MMJNG042	outcrop	100	Kgd	granodiorite		medium-coarse	Exposure of the Justi Generally uniform in outcrop decomposin Sheeted veins observ fault zone. Weathere pinkish white soft cla
MMJNG043	outcrop	100	РСН	calcareous chert	skarn	medium-coarse	Calc-silicate-garnet p thick rhythmic bedd mineral? Intensely fr
MMJNG044	outcrop	100	РСН	skarn		medium-fine	Outcrop exposure of surfaces as alternation 5-10 cm thick.
MMJNG045	outcrop	70	РСН	quartz pebble conglomerate	quartz grit	medium-coarse	Quartz grit generally lensoidal coarse grai
MMJNG045	outcrop	30	РСН	phyllite		fine	Distinct beds up to 4 quartz pebble debris
MMJNG046	outcrop	100	РСН	quartz feldspar pebble conglomerate		medium-coarse	QFPC is mature, well stratigraphic unit wh appearance to the ho flattened and attenua outcrop.
MMJNG047	outcrop	30	РСН	argillite		fine	Bedding right way uj
MMJNG047	outcrop	70	РСН	quartz pebble conglomerate	quartz grit	medium-coarse	Distinct tabular beds
MMJNG048	outcrop	100	РСН	phyllite		fine	Very thin wavy bedd determine due to S1
MMJNG049	outcrop	50	COR	limestone		medium-fine	Reacts strongly to H

is glacially ground sltstn and rst qtz-cb vn rubble

x mudstone w variable fe-cb alt. Shallow dipping to west; nw rt some qtz-cb-lim vning

ey matrix= crush breccia. Dk brn-red weathering. Minor qtz ntations w trc py; chl-ser alt - no cb.

vein with 0.05% bismuthinite found in dry seasonal creek bed. grab from vein to confirm bismuthinite mineralizaiton. The vein us along strike for approximately 50 cm. Appears to be a part of m.

in stock - bio-GRD. Generally uniform in composition except in ar zones where the unit decomposes to a rotten orange coarse rained feldspathic groundmass with euhedral xls of vitreous al feldspar. Weathered surfaces are corroded. Sheeted veining crop exposure. Outcrop exposure is approximately 15.0 metres

in stock - bio-GRD. 0.5 - 1.5 metres of cover ontop of outcrop. In composition except where narrow shear zones cross-cut the ing the granodiorite to a rotten orange-yellow sandy gouge. Inved across the interval. Nearing inferred contact of the Justin ed surfaces are pitted from selective weathering of Feldsparay. Vitreous subhedral quartz xls are resistive and conspicuous.

prograde exoskarn. Relic bedding planes observed - 1-5 mm ling - pitted from partial dissoultion of select beds- carbonate ractured and veined.

f prograde exoskarn. Relic bedding observed on weathered ng bands of actinolite-diopside and garnet. Alternating beds are

y fining up but some bed tops are capped with irregular, ined quartz pebble conglomerate.

10 cm thick. Wavy bedding contacts from loading of coarse s flow @ upper contact.

l rounded coarse grained unit is conspicuous and forms distinct hich has a high sulphide content matrix. Very similar in ornfels QPC observed at the POW Zone. Quartz pebbles are lated parallel to the dominant fabric observed across the

p. Individual beds range from 0.1-10.0 cm thick.

s up to 3.0 metres thick - quartz grit.

ling. Bedding orientation is subhorizontal and is diffcult to development.

Cl.

Station Number	Degree of Transport	Proportion of Rocktype	Map Unit	Major Rock Type	Minor Rock Type	Grain Size	
MMJNG049	subcrop	50	РСН	phyllite			Phyllite is strongly o
MMJNG050	outcrop	100	COR	limestone	shale	medium-fine	Beds are on average
MMJNG051	outcrop	100	COR	limestone	slate	medium-fine	Limestone-slate bed
MMJNG052	outcrop	50	COR	limestone	chert	medium-fine	
MMJNG052	outcrop	50	РСН	phyllite		fine	
MMJNG053	outcrop	100	РСН	phyllite		fine	
MMJNG054	outcrop	100	РСН	phyllite		fine	Way up unknown - s structures.
MMJNG056	outcrop		РСН	quartz grit	phyllite	medium-fine	Beds are 10 - 100 cm

oxidized and friable. Weakly magnetic.

e 5 cm thick with thin, fissle interbeds of shale < 5.0 cm thick.

ds are boudinaged and strongly cleaved.

super imposed slaty cleavage has disrupted primary bedding

n thick with thin interbeds of phyllite.

Appendix 6	.3					Saturday, January 17, 2015
Structure D	escriptions					
Station Number	Name	Phase	Azimuth	Dip	Quality	Notes
JBJNG006	foliation (dominant)		316	50	moderate	v fissile thin; sub parallel to ck cut
JBJNG016	vein (>10cm)		192	85	good	
JBJNG017	joint	1	1	90	good	
JBJNG017	fracture	2	68	85		jointing + frac+occasion qtz-feld vnlts
JBJNG017	foliation (late)	3	96	66		30/m; hosts chl; wll dev in slt but not qpc
JBJNG027	fracture	2	148	74	good	well developed planar fracture of the March fault
JBJNG027	joint	3	80	43	good	well developed, planar, m-scale
JBJNG027	Bedding	0	247	50	good	low amplitude, open, wavy
JBJNG030	veinlet (<10cm)	2	355	75	moderate	sheeted vnlts- white; 10/m
JBJNG030	shear plane	1	325	65	good	20+ wide shear west exposure; has classic ORG ALT and vning
JBJNG030	Bedding		254	12		
JBJNG031	vein (>10cm)	1	175	23		qtz vn sill - see JBJNR013
JBJNG032	dike		151	86	good	20+m grnt dyke
JBJNG032	joint	3	43	81	good	block 4/m strng
JBJNG034	foliation (early)		310	48	good	s1 foliation in argillite bed(penetrative); poorly dev in grit
JBJNG035	Bedding		145	16		
JBJNG035	foliation (early)		287	22	good	penetrative
JBJNG036	dike		155	72	good	10m strg cb-altrd QFP dyke IN arg
JBJNG037	foliation (early)		320	35		
JBJNG037	Bedding		240	5		
JBJNG039	foliation (early)		309	40	good	s1 penetrative strong
JBJNG040	Bedding		316	17	good	40 cm beds
JBJNG041	Bedding		287	38	good	
JBJNG041	veinlet (<10cm)		106	47		fracture controls cliff face
JBJNG042	Bedding		288	7		
JBJNG042	foliation (early)		292	38	good	very strong in shaer
JBJNG042	foliation (late)		128	68		15cm spc; possible axial plane to open drag folds; am in open fold anticline
JBJNG044	Bedding		282	8	moderate	
JBJNG046	veinlet (<10cm)		105	50	moderate	1/m
JBJNG046	sheeted veins		32	82	good	12/m
JBJNG046	fracture		265	58	good	central vn to left lateral tension gashes

Station Number	Name	Phase	Azimuth	Dip	Quality	Notes
JBJNG047	dike		141	84		10m qfp
JBJNG048	Bedding		83	34	good	
JBJNG049	foliation (early)		318	76		fracture and host to qtz vnlt swa
JBJNG049	Bedding		222	32		
JBJNG051	Bedding		180	16	moderate	
JBJNG051	foliation (early)		317	61	good	dominant penetrative fol; carries som
MMJNG041	sheeted veins		170	82	good	@ 4.0 m- Sample MMFGR041 - representative
MMJNG041	gouge		175	85	moderate	
MMJNG041	veinlet (<10cm)		160	82	good	@ 4.0 m of second part of trend
MMJNG041	gouge		170	85	moderate	
MMJNG042	joint		175	83	good	@ 2.4 m. Distinct, decimeter density dis
MMJNG042	fault plane		175	83	good	Shear zone begins @ 1.4 m. Minimal fg gouge - rubble, co
MMJNG042	joint		262	84	good	@ 5.0 m. 10/m density, sharp, blocky
MMJNG042	veinlet (<10cm)		163	82	good	VG vein.
MMJNG043	fracture		170	75	good	Brittle fault.
MMJNG043	veinlet		150	60	good	
MMJNG043	veinlet		179	82	good	
MMJNG043	Bedding		280	18	good	
MMJNG043	cleavage		181	72	good	
MMJNG043	joint		80	47	good	
MMJNG043	joint		42	70	good	
MMJNG044	veinlet		176	85	good	
MMJNG044	Bedding		261	22	moderate	
MMJNG044	joint		265	82	good	R2?
MMJNG044	cleavage		175	74	good	
MMJNG044	veinlet		156	58	good	R1 vein
MMJNG046	slickenline		72	62	good	Reverse motion on Fault. It must postdate v
MMJNG046	shear plane	2	190	72	good	Controls min distribution @ the big swifty.
MMJNG046	cleavage		185	73	good	
MMJNG046	joint		316	66	good	Density 20/m.
MMJNG047	cleavage	1	316	75	good	
MMJNG047	bedding (upright)	0	275	26	good	
MMJNG047	vein (>10cm)	2	285	60	moderate	
MMJNG048	cleavage	1	322	43	good	Intense S1 development.

arm

m veining

e vein orientation.

ch.

istribution.

parrse sand (relic quartz xls)

y texture.

vertical veining.

. Reverse Fault.

Station Number	Name	Phase	Azimuth	Dip	Quality	Notes
MMJNG048	veinlet (<10cm)		198	80	good	
MMJNG050	Bedding	0	55	13	moderate	
MMJNG051	fold axis	1	106	12	good	Fold axis.
MMJNG051	Bedding	0	295	80	good	
MMJNG051	cleavage	1	319	39	good	Axial planar cleavage.
MMJNG052	shear plane		292	72	moderate	Measurement taken in limestone.
MMJNG052	cleavage		95	26	good	Crenulation cleavage.
MMJNG052	shear plane		285	72	good	Mesaurement taken in phyllite.
MMJNG053	Bedding	0	282	23	good	
MMJNG054	crenulation lineation	3	45	28	good	
MMJNG054	cleavage	1	334	30	good	
MMJNG054	Bedding	0	200	18	moderate	
MMJNG056	tension gash		20	40	moderate	
MMJNG056	veinlet (<10cm)	1	45	69	moderate	
MMJNG056	Bedding	0	237	15	good	

Appendix 6.4 Vein Interval Descriptions

Station Number	Width (cm)	Density	Grainsize	Texture	Veining Notes
JBJNG016	40	2			
JBJNG030	0.3				
JBJNG031	30	1			
JBJNG041	5	5			qtz-chl-arg w pockets lim
JBJNG046	1	12			
JBJNG046	5				
MMJNG039	4		fine	sheeted	Vein exposed for 50 cm along strike. May be part of sheeted vein system observed in outc
MMJNG041	1.5	2	fine	sheeted	Vein density varies across the outcrop but generally averages 2 vn per metre. The best she interval - up to 10 vn/m.
MMJNG042	1	2	fine	sheeted	Sheeted quartz veins range in thickness from 0.1-3.0 cm. Vein density is very difficult to de 2/m is a conservative estimate. Only one vein was observed to contain vg @ 2.3 m.
MMJNG043	1	5	fine	sheeted	
MMJNG043	1	3	fine	sheeted	
MMJNG044	15	1	fine	boudinage	
MMJNG044	1	8	fine	sheeted	
MMJNG046	1	3	fine	fractured	
MMJNG047	100		medium-fine	vuggy	
MMJNG048	0.1	5	fine	fractured	
MMJNG050	0.5	30	medium-coarse	stockwork	
MMJNG056	2.5	10	medium-fine	other	
MMJNG056	0.1	2	fine	crackle	

rop east of sample location. Follow up trenching required.

neeted vein density occurs within the second 5.0 metre

determine given oxidized covering of bedrock but an average of

Appendix 6.	Appendix 6.5 Saturday, January 17, 20							
Mineralization Descriptions								
Station Number	Code Style	Oxidation (1-5)	Notes					
JBJNG018								
JBJNG030	fractur	es	strong cb+ank alt; swarms of sub vert nw tren qtz-cb-chl-lim vns w sub-britt tension gas vens@30o					
JBJNG036								
MMJNG039	blebb	7 0	Sample take to confirm bismuthinite mineralization.					
MMJNG041	dissemin	ated 0	Pyrite min accompanies si-ab alteration as alteration envelopes.					
MMJNG041	veinle	s 1	Bi minerals and pyrite hosted within sheted veins and appear as dark grey blebby laminations.					
MMJNG042	blebb	/ 1	Bismuthinite and rare visible gold (1 pin head observed @ 2.3 m) occur as blebby laminations infilling hairline fractures @ contact of sheeted veins. Bismuthinite as vfg bluish-grey laminations, blemishes and rarley as sectile euhedral xls. Gold spatially associated with bismuthinite.					
MMJNG043	trace	1	20 + specks of scheelite in 2.5 x 3.0 cm fragment of quartz vein.					
MMJNG044	blebb	<i>v</i> 0	Scheelite occurs as vfg-fg disseminations within sheeted veins and within the skarn as fine disseminations enveloping the vein as a halo. Bismuthinite occurs as blebby laminations within sheeted quartz veins and is accompained by scheelite mineralization.					
MMJNG046	semimas	sive 3						
MMJNG048	trace	3						
MMJNG049	trace	3	Mineralization occurs at contact between Limestone and Phylllite - subcrop sample - difficult to determine protolith due to oxidation and alteration.					
MMJNG052	other	5	Ferrecrete found within fault zone but not observed in outcrop. Dissolution within the fault zone?					
MMJNG056	trace	0	Arsenopyrite mineralization is very rare, and occurrs as dark grey blemishes within quartz.					

Appendix 6.6 Alteration Descriptions

Station Number	Assemblage	Assemblage Generation	Process	Texture	Distribution	Intensity (1-5)	
JBJNG021	advanced argillic					4	corrosive silica-clay alt increasing uphill
JBJNG030	carbonate		replacement		discordant	4	strong cb+ank alt; swarms of sub vert nw tren qtz-
JBJNG031	chlorite		replacement		discordant	4	adjact to 20m granite dyke
JBJNG032	sericite		replacement				pervasive sil alt in matrix. Felds to ser+lim. Bt to e
JBJNG034	sericite					4	bleached and greend
JBJNG036	carbonate					5	v strng; qtz porph preseved
JBJNG046						4	chl-cb alt w hornfels overprint; min and alt is lith s
MMJNG041	sericitized		replacement	pervasive	selective	4	Sericite alteration selectively replaces plagioclase pitted from corrosion of altered feldspar grains.
MMJNG041	silicified		replacement	vein halo	selvage	4	Silica-albite alteration as vein halo/selvage to shee but generally < 1 cm.
MMJNG042	sericitized		replacement	selective	selective	4	Weak chloritization of biotite - weathered to limor is pervasive.
MMJNG043	skarn	3	static recrystalization	intergrowths	stratabound	5	Retrograde alteration. Epidote overprinting progra
MMJNG043	skarn	2	infill	massive infill	fractures	5	Fracture cleavage infill - leakage from underlying a fractures are up to 50/m and form bifrucating ana Emanate along cleavage parallel to and oblique to
MMJNG043	silicified	1	static recrystalization	hornfels	local	4	Associated with skarn formation.
MMJNG044	skarn	1	replacement	selective	stratabound	5	Prograde skarn.
MMJNG044	skarn	2	replacement	selective	selective	3	Retrograde alteration of skarn.
MMJNG045	bleached		replacement	vein halo	envelope	4	bleaching of phyllite associated with actinolite infi Alteration envelope extends up to 3 cm from the te
MMJNG046	silicified	1	replacement	pervasive	local	5	Silicification accompanies sulphidation event. Smo brecciated shear zone.
MMJNG046	clay		replacement	selective	selective	3	Feldspar selectively altered to pale grey clay.
MMJNG047	carbonate	1	replacement	patchy	selvage	3	Ankerite alteration associated with quartz veining

Notes

-cb-chl-lim vns w sub-britt tension gas vens@300

epd+chl.

specific; this unit amenable

- pale greenish grey tinge to feldspar. Weathered surfaces are

eted vein intervals. Penetrates up to 2 cm from vein contacts

nite along fractures. Selective sericite-clay alteration of feldspar

ade skarn.

actinolite-tremolite-garnet prograde skarn. In places the astomosing networks. As selvageto BiS rich sheeted veins. the veins.

ill of tension gash fractures that parallel the march fault. ension gash veinlets.

okey dark grey silica is vfg matrix. Halo and within the