Memorandum Report of 2015 Surface Work

On the

Sulphur Property (Lions Zone)

US 1 to 23
US 27
US 86 to 90

YD06601 to YD06623
YD06627
YD17724 to YD17728

Dawson Mining District, Yukon NTS Sheet 115014 \& 115010
$63^{\circ} 42^{\prime} \mathrm{N}$. Lat., $138^{\circ} 47^{\prime} \mathrm{W}$. Long.

Operated by and Recorded to

TAKU GOLD

By
Mark Fekete, P.Geo.
and
Marty Huber, B.Sc., G.I.T
September 30, 2015

Table of Contents

Table of Contents ii
List of Figures ii
List of Tables ii
Certificate of Qualifications iii
Certificate of Qualifications iv
Introduction and Terms of Reference 1
Location, Property Information and Access 1
Previous Work 1
Geological Context and Deposit Model 4
2015 Exploration 10
VLF-Electromagnetic Survey. 10
Prospecting and Sampling 11
Interpretation and Conclusions 11
Recommendations 18
References 18
Appendix A - Statement of Work Expenditures
Appendix B - Sample Descriptions
Appendix C - Assay Certificates
Appendix D - Dynamic Report
Appendix E-Superior Profiles
List of Figures
Figure 1 - General Location Map 2
Figure 2 - Claim Map 3
Figure 3 - Tectonic Map 5
Figure 4 - Regional Geology 6
Figure 5 - Property Geology 8
Figure 6 - Sulphur Gold Zones 9
Figure 7 - VLF-EM survey and rock sample sites 2015 13
Figure 8 - Compilation Lions Zone 14
Figure 9 - Seattle NLK Fraser Filter In-phase (\%) 15
Figure 10 - Detail VLF-05 relative to Au anomaly 16
Figure 11 - Detail VLF-05 Fraser Filter 17
List of Tables
Table 1 - List of Claims 1
Table 2-2012 Significant Drill Intersections 4
Table 3 - Interpreted VLF anomalies with respect to elevated Au-As in soil. 12

Certificate of Qualifications

I, Mark Fekete, having my place of residence at 178 Dennison Boulevard in Val d’Or in the Province of Quebec do hereby certify that:

1. I obtained a Bachelor of Science Degree in Geology from the University of British Columbia in 1986, I have been engaged as a Geologist continuously since 1986 and I am a Member in good standing of the Order of Geologists of Quebec (OGQ \#553) and the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC \#31440), and I am a "qualified person" as defined in Section 1.2 in and for the purposes of National Instrument 43-101;
2. I have visited the Sulphur property on numerous occasions including most recently in July 2015;
3. I co-wrote and I am, as the senior author and qualified person, responsible for the contents of this technical report entitled "Memorandum Report of 2015 Surface Work on the Sulphur Property, Dawson Mining District, Yukon, NTS Sheets 115 O 14 \& $115 \mathrm{O} 10,63^{\circ} 42^{\prime} \mathrm{N}$. Lat., $138^{\circ} 47^{\prime} \mathrm{W}$. Long.," based on my professional experience, a review of relevant reports and maps made available to me from government and corporate sources and my participation in the work programs described in the report;
4. I am not aware of any material fact or material change with respect to the subject matter of the report that is not disclosed in the report which, by its omission, makes the report misleading;
5. I am an Officer and Director, and I beneficially hold a number of shares in Taku Gold Corp.;
6. I hold no direct interest in the Sulphur property as a result of my prior involvement with the property; and
7. I have read, and this report has not been prepared for the purposes, nor in full compliance with, National Instrument 43-101 and according to Form 43-101F1.

Respectfully submitted this $30^{\text {th }}$ day of September 2015,

(s) "Mark Fekete"

Mark Fekete, P.Geo.

Certificate of Qualifications

I, Marty Huber, having my place of residence at 16 Flax Mill Dr. in Conestogo in the Province of Ontario do hereby certify that:

1. I obtained a Bachelor of Science Degree in Geology from Acadia University in May 2011, I have been engaged as a Geologist in Training ("GIT") continuously since May 2011 and I am not a "qualified person" as defined in Section 1.2 in and for the purposes of National Instrument 43-101;
2. I have visited the Sulphur property on numerous occasions including most recently in July 2015;
3. I co-wrote this technical report entitled "Memorandum Report of 2015 Surface Work on the Sulphur Property, Dawson Mining District, Yukon, NTS Sheets 115 O 14 \& $115 \mathrm{O} 10,63^{\circ} 42^{\prime} \mathrm{N}$. Lat., $138^{\circ} 47^{\prime} \mathrm{W}$. Long.," under the supervision of Mark Fekete, P.Geo.;
4. I am not aware of any material fact or material change with respect to the subject matter of the report that is not disclosed in the report which, by its omission, makes the report misleading;
5. I do not beneficially hold a number of shares in Taku Gold Corp.;
6. I hold no direct interest in the Sulphur property as a result of any prior involvement with the property; and
7. I have read, and this report has not been prepared for the purposes, nor in full compliance with, National Instrument 43-101 and according to Form 43-101F1.

Respectfully submitted this $30^{\text {th }}$ day of September 2015,

(s) "Marty Huber"

Marty Huber, GIT.

Introduction and Terms of Reference

Breakaway Exploration Management Inc. ("Breakaway") was engaged by Taku Gold. Corp. ("Taku") to complete and report on an electromagnetic survey followed by prospecting and sampling work at the Lions zone ("Lions") located on the Sulphur property ("Sulphur" or the "Property") in Yukon in 2015. The Lions zone is northwest-trending soil geochemical anomaly defined by elevated arsenic, gold, and silver values. The main goal of the work was to identify geophysical features that may outline gold-bearing bedrock structures that give rise to the Lions zone geochemical anomaly. This memorandum report was prepared to complete statutory assessment work filings, and is accompanied by "Statement of Work" forms, as required under the Yukon Quartz Mining Act. It is not intended to and does not fully comply with National Instrument 43-101. The work program was funded in part by Yukon Mining Exploration Program ("YMEP") Grant No. 15-070. The work done generally followed the original exploration proposal. However the prospecting and sampling part of the planned work was hampered by thick overburden and did not provide the expected number of samples.

Location, Property Information and Access

The Sulphur property is located approximately 45km southeast of Dawson City in the Klondike gold camp of Yukon (Figure 1). Sulphur Creek is the most obvious topographical feature in the area. The approximate center of the Property is described by $138^{\circ} 49^{\prime}$ West Longitude and $63^{\circ} 42^{\prime}$ North Latitude on N.T.S. Sheets $115010 \& 115014$. The Property covers an approximate area of 11,344 hectares within the Dawson Mining Division, and includes 543 contiguous, un-surveyed mineral titles (Figure 2) listed in the following table.

Table 1 - List of Claims

Claim Name	Tag No.	Expiry Date	$\#$
SU 1 to 452	YD28201 to YD28652	14-Mar-19	452
US 1 to 84	YD06601 to YD06684	14-Mar-19	84
US 85 to 91	YD17723 to YD17729	14-Mart-18	7

Taku Gold Corp. holds a 100% interest in the claims subject only to a 2% Net Smelter Return royalty on all smeltable minerals or metals extracted from the claims payable to a local prospecting syndicate. Taku has the right to purchase one-half (or 1%) of the royalty for $\$ 1,000,000$ cash.

The Sulphur Creek road provides relatively good summer access to the Property from Dawson City. There are a number of old cat trails that lead into the claims and provide limited access to heavy equipment. A helicopter however is required to reach most parts of the Property. The Property can be worked from Dawson City by truck or from an exploration camp set up on or near the Property. A camp can be supported from Dawson City, where services are limited, or from Whitehorse where a full range of services are available including line-cutting, geophysics, drilling, assaying, aircraft charters etc.

Previous Work

There is an extensive history of placer mining on Sulphur Creek and there are at least four seasonal placer mines currently in operation. A review of the Yukon Geological Survey MINFILE database however shows that previous hard rock (or quartz) exploration work on the Property was very limited (Southam, 1995a and 1995b; Ouellette and Couttes 1987a and 1987b).

After staking Sulphur in 2010, Taku completed a multi-sensor airborne geophysical survey over the entire Property. A total of 1,292 line kilometers of data were collected at 100 m line spacing by Precision Geosurveys Inc. of Vancouver, British Columbia (Poon, 2010). In 2011, Taku collected a total of 6,408 soil samples with hand augers on predetermined GPS traverse lines and detailed grids (Fekete and Dubois, 2011). Five gold zones were defined from the grid sample results and trenching was done at three of the five zones. In 2012 a total of 1,033 metres of NQ diameter drilling was done in seven holes. Six holes were drilled in the Lions area and one in the Blues area (Fekete and Huber, 2012). Significant intersections are listed in Table 2 below:

SULPHUR PROPERTY

Figure 2. CLAIM MAP

Table 2-2012 Significant Drill Intersections

Hole	Zone	From (m)	Length (m)	Wt.Avg. (gpt Au)
SU12-01	Lions	50.0	2.0	0.31
SU12-02	Lions	58.0	5.0	0.12
SU12-04	Lions	75.0	2.0	0.14
SU12-06	Lions	56.0	2.0	0.14
SU12-07	Blues Z1	39.0	3.0	0.32
	Blues Z2	50.0	6.0	0.19
	Blues Z3	72.0	1.0	0.72

In 2013 Taku completed High definition DC ("HRDC") induced polarization ("IP") and resistivity ("Res") surveys at the Blues zone followed by Geoprobe ${ }^{\circledR}$ geochemical sampling. Both of these methods were developed and are offered by Ground Truth Exploration Inc. of Dawson City, Yukon as a technique to upgrade soil geochemical anomalies to a high confidence drill targets. This approach was used successfully at the Blues zone in 2013 to identify three discreet target structures marked by resistivity contrasts and strongly anomalous Geoprobe ${ }^{\circledR}$ results (Fekete and Huber, 2014). However, the IP-Res survey in particular was found to be cost prohibitive at approximately $\$ 12,000$ per line kilometre. Since 2013 Taku has been looking for an alternative geophysical method to replace the HRDC IP-Res survey.

Geological Context and Deposit Model

The Property lies within the Yukon-Tanana Terrane (Figure 3), where large areas have little to no bedrock exposure so consequently mapping of the area remains poorly understood. Generally it consists of several successions of layered sedimentary and volcanic rocks ranging from Late Proterozoic to Late Permian age that overlay the older Nisling Terrane. These complexly deformed layered rocks have been episodically intruded by various intrusive rocks in the Permian, Jurassic, Cretaceous and Tertiary periods. The intrusive events have been accompanied by volcanic activity especially in the Upper Jurassic to Lower Cretaceous. The Yukon-Tanana has been subjected to numerous prolonged deformational events including subduction and accretion that has led to significant structural thickening. Imbricated allochthonous terranes such as Slide Mountain Terrane are evidenced by altered ultramafic fragments.

The Property lies within the Klondike-White Gold district of the Stewart River area (Figure 4). The district has been interpreted to be underlain by the Klondike assemblage which is comprised of strongly deformed and altered mafic to felsic metavolcanic rocks and as well as deformed subvolcanic and plutonic equivalents, together with interlayered non-carbonaceous metasediments. This assemblage has been emplaced as a stack of three distinct thrust plates over rocks of the Late Devonian Early Mississippian Nasina assemblage (Mortensen, 1996).

According to the most recent mapping and compilation of the Stewart River area by Ryan and Gordy (2005), the majority of the Property is underlain by the Permian Klondike Schist (Pks) unit (Figure 5). This rock assemblage consists of muscovite-chlorite-quartz-feldspar schists and chlorite schists, phyllites and phyllonites. The northeastern parts of the Sulphur West block and most of the Sulphur East block are underlain by the Sulphur Creek Orthogneiss (Pogq) which consists of Permian orthogneiss derived from quartz monzonite.

The property lies within underexplored Klondike-White Gold district of the loosely defined Tintina Gold Belt. This metallurgical province has past production of 29.9 million ounces and 39.3 million ounces, for total gold resources of 69.2 million ounces. Notable gold deposits are Donlin Creek, Ft. Knox, Pogo and Brewery Creek. The Klondike-White Gold district lies within the larger Dawson Range area where a number of known gold and porphyry copper deposits show a wide range of styles, geological settings and geochemical associations. Taku's exploration effort at Sulphur is not adhering to any firm deposit model but is instead based on practical survey methods that generate drill targets and have led to discoveries by other groups working in the area.

Figure 3 - Yukon Tectonic Map

Sulphur P roperty Figure 3. Regional Geology Taku G old Corp NTS Sheet: 1150 Date: November 8, 2011

QUATERNARY

\square| Qs |
| :--- |
| Fluvial silt，sand and gravel |

TERTIARY
Ts
Conglomerate，sandsone，shale

DEVONIAN TO MISSISSIPPIAN？

DME
Earn group

TERTIARY
 EOCENE

CRETACEOUS

UPPER CRETACEOUS
uKCv
Carmacks Group
MID？－CRETACEOUS
Kg／Kgd Granite／G ranodiorite

LOWER CRETACEOUS
\square IKTcg Tantalus（？）F ormation

JURASSIC

EARLY JURASSIC

EJgd

Granodiorite

TRIASSIC

LATE TRIASSIC

Pyroxene Mountain Body

PALEOZOIC ANDIOR MESOZOIC

PMd
Gabbro

CARBONIFEROUS
CD
Dawson－Clinton Creek Assemblage

MID（？）－TO LATE PALEOZOIC

$\mathrm{mPum} / \mathrm{mP}$ ums Ultramafic－G abbro

PERMIAN

	Pv Foliated volcanic
	PKs Klondike Schist
	Pg J im Creek Pluton
	Pogg，Pogq／Poga Pogt Orthogneiss（Younger，264－259 Ma

DEVONIAN TO MISSISSIPPIAN

SYMBOLS

	Geological contact （defined，approximate，assumed）
｜IIIIIIII $11 / 1 / 1 / 1 / 11$	Fault，sense of movement uncertain （defined，approximate，assumed）
	Fault，transcurrent，dextral （approximate）
ーヘー－4－－4－	Fault，thrust（teeth on upper plate） （defined，approximate，assumed）
－L－	Fault，normal（teeth on upper plate） （defined，approximate，assumed）
－－－－	Fault，low－angle normal （teeth on upper plate） （approximate，assumed）

Figure 3 continued．Legend for Regional Geology

SULPHUR PROPERTY
Figure 4. PROPERTY GEOLOGY
Universal Transverse Mercator Zone 7 World Geodetic System 1984 Scale 1:90 000

Sulphur P roperty
Figure 4. Property Geology Taku G old Corp NTS Sheet: $1150 / 10,11,14 \& 11$
Date: November 8, 2011

2015 Exploration

The exploration work in 2015 was completed in two parts by geologists Mark Fekete and Marty Huber (the "Authors"). The first part of the work was completed over 10 days from May 15 To May 29 and included the electromagnetic survey. This work was done from a trailer camp set up just off the Property with travel by truck to and from the Lions zone each day. The second part of the work was completed over five days from July 15 to August 2. This work was done from a trailer camp set up at the Klondike River Campground with travel by truck to and from the Lions zone each day. A detailed "Statement of Work" form is included herein as Appendix A. The 2015 work (Figure 7) covered mineral claims US 1 to 23 (YD06601 to YD06623), US 27 (YD06627) and US 86 to 90 (YD17724 to YD177728).

It is the Authors' opinion that the sampling procedures, security measures, sample preparations and analytical methods applied to the rock samples were diligently followed and are adequate to meet industry standards commonly accepted for this level of exploration. The Authors have relied upon the adequacy and accuracy of the analytical results provided by the contracted laboratories. Independent verification of those results has not been undertaken. The Author's reconciled the field data with the analytical results and found no irregularities.

VLF-Electromagnetic Survey

The Very Low Frequency Electromagnetic ("VLF-EM") method has been in use since the 1960's (Milsom, 1996). The VLF-EM method uses the signals broadcast from radio transmitters operating in $15-30 \mathrm{kHz}$ frequency bandwidth set up in different parts of the world for military communications and navigation systems. The signals broadcast from these remote stations consist of a vertical electric field component and a horizontal magnetic field component each perpendicular to the direction of propagation. The broadcast signals are very powerful and induce electric currents in conductive bodies thousands of kilometers away. The induced currents produce secondary magnetic fields that can be detected at the surface by instruments like the Geonics EM-16 that effectively measure the deviation of the measured signal from the normal level. This deviation is a direct result of subsurface geological features such as conductive bodies, faults etc. VLF works best where the "coupling" angle between the long axis of the subsurface feature and the remote transmitting station is zero. Due to the fixed location of the transmitters it is difficult to find a station that provides a perfect coupling angle. Often data from two stations is collected.

The Geonics EM-16 records the tilt angle of the in-phase and quadrature components of the secondary VLF field as percentages of the primary field. Conductors can be located when the sign of the tilt angle changes from positive to negative giving a "crossover" as the instrument passes over the conductor. Traditionally the in-phase and quadrature components were plotted on plan maps as stacked profiles of the tilt angle; and conductors were identified by connecting the crossovers from line to line. The asymmetry of tilt angle data makes it awkward to contour and visually difficult to interpret. VLF data also tends to be noisy with minor anomalies adding complications to interpretation. Maps are easier to understand visually if crossovers are converted to peaks and noise is smoothed out by using filtering equations that average adjacent data points. Filtered data is easy to contour and anomalies, positive or negative, are easy to identify. The most commonly used filtering equation was developed by Fraser (1969) as a measure of horizontal gradient.

A more complex filter was developed by Karous and Hjelt (1977) that gives apparent current flow densities at different depths with areas of strong current density corresponding to conductors. K-H filtered data can be plotted on "real" (in-phase) and "imaginary" (quadrature) pseudo-sections that can be used to estimate conductor depth and dip. Apparent resistivity can also be calculated. K-H filtering is difficult to plot without a microprocessor. Furthermore K-H pseudo-sections predict possible rather than actual current flow scenarios. Shaun Parent of Superior Exploration Adventure \& Climbing Co. Ltd. ("Superior") of Sault Ste. Marie, Ontario helped to develop EMTOMO VLF software with Fernando Santos of Lisbon Portugal. This software allows VLF data to be quickly plotted into profiles, Fraser filtered maps, and K-H pseudo-sections. More importantly the software allows one to produce a model response for a given transmitting station. The software also allows drill targets to be plotted on the K-H and modeled sections, and multiple sections can be viewed in 3-D. In summary it is a very powerful interpretative tool for defining prospecting, trenching and drill targets from VLF data.

The VLF-EM survey was completed on 25 predetermined GPS traverse lines spaced 100m apart and oriented at N090. Sample stations were spaced every 25 m . The survey lines varied from 900 to 200 metres long for a total surveyed length of 43.7 kilometres (Figure 7). HP iPAQ 200 series field computers running GeoInfoMobile and Tierra Mapper software paired with Holux GPS receivers in map datum UTM WGS84 Zone 7N were used for point-to-point navigation, and to record real-time GPS locations, VLF readings and other attribute data. Geonics EM-16 receivers were used to determine VLF-EM readings utilizing the signals from two stations (NPM Lualualei, Hawaii transmitting at 21.4 kHz , and NLK Seattle, Washington transmitting at 24.8 kHz). On May 20 the NPM Hawaii station was not transmitting so no readings were obtained for the five lines at the north end of the survey area (3000 mN to 3400 mN inclusive). The survey is more fully described the report completed by Joel Dubé (Dubé) of Dynamic Discovery Geosciences Ltd. ("Dynamic") of Ottawa, Ontario attached as Appendix E. Mr. Dubé also re-interpreted the airborne magnetic and radiometric data (Figure 8) collected on the Property in 2010 Precision GeoSurveys Inc. (Poon, 2010).

Superior then used the VLF-EM data to plot K-H sections and resistivity profiles, and to prepare predictive models sections (Appendix E) relative to topography.

The primary goal of the survey was to identify geophysical features that may outline gold-bearing bedrock structures that give rise to the Lions zone geochemical anomaly. Integral to this goal is the generation of specific targets for prospecting and sampling, trenching and drilling.

Prospecting and Sampling

Six man days were spent by the Authors prospecting and sampling along the length of the most prospective VLF-EM anomalies (VLF-05, 04, 08, 13 and 06 in order of priority) outlined on the Lions zone. This work was frustrated by an almost complete lack of outcrop. Only three rock samples were collected (Figure 7). Sample locations were tagged in the field and recorded with HP iPAQ 200 series field computers running GeoInfoMobile and Tierra Mapper software paired with Holux GPS receivers in map datum UTM WGS84 Zone 7N. Sample locations and descriptions are included as Appendix B. Samples were placed in heavyduty plastic bags with the appropriate sample numbers marked in indelible ink. Samples were then sealed in rice bags and delivered to Bourlamaque Analytical Laboratories Ltd. ("Bourlamaque") in Val-d'Or, Quebec for analysis. Samples were crushed, and 250 g split and pulverized to -200 mesh, and analyzed for gold by 30 gram fire assay with atomic absorption finish (Appendix C).

Interpretation and Conclusions

Dubé interpreted 15 VLF-EM anomalies based on the strength of the VLF-EM conductor, its continuity over several lines, its association to a magnetic lineament or its location close to a structural feature possibly favourable to mineralisation. Each anomaly was assigned a priority number from 1 to 3 with 1 being the best. The Authors then examined the spatial association of each VLF-EM conductor with elevated gold and arsenic soil geochemical responses. The best conductors with respect to elevated gold and arsenic in soil are indicated in bold face in Table 3 below.

The most prospective VLF anomaly is VLF-05 which continues over a length of 1,300 metres and may extend an additional 600 m to the southeast as VLF-04. The axes of these two anomalies are roughly coincident with the ridgeline of a prominent north-trending ridge. It is important to mention that strong topographic features are known to affect the VLF-EM such that ridges may cause a response typical of a conductor. The ridge spatially related to the VLF-04 and 05 axes may contribute, at least in part, to the VLF-EM response of these geophysical features.

Prospecting and sampling over the best conductors was hindered by an almost complete lack of outcrop. None of the only three rock samples returned significant gold values (Appendix 3). However in the course of the prospecting it became apparent to the Authors that there is more downslope displacement in the soils than had been previously anticipated. It now appears certain that the trenching done in 2011 and the drilling done in 2012, both targeted directly over gold and arsenic anomalies in soil, did not adequately test prospective structures adjacent to the soil anomalies. Indeed it seems that all but one of the six drill holes in fact were drilled away from VLF-05.

At the south end of VLF-05 ($1600 \mathrm{mN}, 1700 \mathrm{mN}$ and 1800 mN) the gold-arsenic soil anomaly is displaced 200 m downslope to the east (Figures 10 and 11). In contrast further north (2200 mN), the gold-arsenic soil anomaly is displaced 75 m downslope to the west. And again further north $(2800 \mathrm{mN})$ the gold-arsenic soil anomaly is displaced 50 m downslope to the west.

Table 3 - Interpreted VLF anomalies with respect to elevated Au-As in soil

ID	Length (m)	Priority	Comments	Au-As Geochem Assoc.
VLF-01	100	3	Moderate end of line anomaly (not well defined marginal). Possible cultural anomaly related to road. Open at both to north and south.	Weak
VLF-02	500	N/A	Cultural anomaly caused by power line.	N/A
VLF-03	100	3	Weak to moderate VLF-EM conductor. Associated to a weak magnetic high.	Weak
VLF-04	600	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Associated to topographic ridge. Possible continuity of the VLF-5 conductor. Open to south.	Moderate: possible SE extension of VLF-05
VLF-05	1,300	1	Weak to strong VLF-EM conductor. Locally associated to strong magnetic high. Associated to topographic ridge. Possible continuity of the VLF-4 conductor.	Strong: south end downslope 200 m east; north end downslope 75m west
VLF-06	500	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Open to south.	Moderate: not covered but possible south extent of VLF-08
VLF-07	700	3	Weak to moderate VLF-EM conductor. No clear magnetic expression.	Not covered
VLF-08	600	2	Weak to moderate VLF-EM conductor. Locally associated to strong magnetic high.	Moderate: anomalies along entire length
VLF-09	300	2	Moderate VLF-EM conductor. No clear magnetic expression. Possibly associated to the VLF-5 conductor.	Moderate: centered on anomaly (due to VLF05?)
VLF-10	200	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Located near potassium anomaly.	Weak
VLF-11	1,200	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Passes across potassium anomaly.	Moderate: spot anomaly at north end (due to VLF-05?)
VLF-12	200	2	Weak to moderate VLF-EM conductor. No clear magnetic expression.	Weak
VLF-13	700	2	Weak to moderate VLF-EM conductor. Locally associated to magnetic high.	Moderate: anomalies along entire length
VLF-14	300	2	Weak to moderate VLF-EM conductor. No magnetic expression.	Moderate: spot anomaly at north end
VLF-15	N/A	3	Moderate VLF-EM conductor. No magnetic expression. Open to north.	Weak

The modelling done by Superior on VLF-05 (Appendix E) predicts strong current flow (i.e. conductivity) near ridgeline upslope from the gold-arsenic geochemical anomalies. Moreover the modelling predicts the strongest current flow at 50 to 75 m below surface. Also the apparent resistivity sections all show sharp drops moving from east to west over VLF-05. This interpretative work supports the idea that VLF-05 represents an untested bedrock structure that is prospective for gold mineralization.

The re-interpretation of the airborne magnetic and radiometric data by Dubé identifies two distinct families of magnetic lineaments in the area of the VLF-EM survey. The first strikes generally at N100E and is probably an expression of the bedrock stratigraphy mapped at this orientation by Ryan and Gordy (2005). The second family of magnetic lineaments trends generally at N170E subparallel to the best VLF-EM conductors (VLF-05, 04, 08, 13 and 06). The Authors propose that this second family of magnetic lineaments together with the best VLF-EM conductors is an expression of and is caused by a bedrock structural feature that cross cuts (and probably post-dates) the bedrock stratigraphy.

Recommendations

The 2015 work met its primary goal of identifying a geophysical feature adjacent to the Lions zone soil geochemical anomaly that is the probable cause of the soil anomaly and is prospective as a gold-bearing bedrock structure. Moreover previous trenching and drilling appears to have focused directly over the soil anomaly and did not test the prospective geophysical feature (VLF-05). The results of the work described in this Report merit further work. Specifically it is recommended that VLF-05 be tested for gold mineralization by drilling. A total of 500 m in three holes are recommended with two holes on line 1700 mN and one hole on either 1600 mN or 1800 mN . Drilling in the Dawson area is relatively expensive due mainly to helicopter costs and water supply issues. It is estimated that the proposed 500 m drill program will cost $\$ 150,000$ based on all-in expenses of $\$ 300$ per metre.

References

Fekete, M. and Dubois, B. (2011): Surface work performed from May 22, 2011 to September 23, 2011 on the Sulphur Property, Dawson Mining District, Yukon, NTS Sheet 115 O 14 \& 115O10) $63^{\circ} 42^{\circ} \mathrm{N}$. Lat., $138^{\circ} 47^{\prime}$ W. Long. (unpub.)

Fekete, M. and Huber, M. (2012): Memorandum report of 2012 drilling on the Sulphur Property, Dawson Mining District, Yukon, NTS Sheet 115014 \& 115O10) $63^{\circ} 42^{\prime}$ N. Lat., $138^{\circ} 47^{\prime}$ W. Long. (unpub.)

Fekete, M. and Huber, M. (2013): Memorandum report of 2012 drilling on the Sulphur Property, Dawson Mining District, Yukon, NTS Sheet 115 O 14 \& 115O10) $63^{\circ} 42^{\prime} \mathrm{N}$. Lat., $138^{\circ} 47^{\prime} \mathrm{W}$. Long. (unpub.)

Fekete, M. and Huber, M. (2014): Memorandum report of 2013 surface work on the Sulphur Property, Dawson Mining District, Yukon, NTS Sheet 115 O 14 \& 115O10, $63^{\circ} 42^{\prime}$ N. Lat., $138^{\circ} 47^{`} \mathrm{~W}$. Long. (unpub.)

Fraser, D.C. (1969): Contouring of VLF-EM data in Geophysics Vol. 34, p. 958-967
Gordey, S.P. and Ryan, J.J. (2005): Geology, Stewart River Area (115 N, 115-O and part of 115 J), Yukon Territory; Geological Survey of Canada, Open File 4970, scale 1:250 000.

Mortensen, J.K. (1996): Geological compilation maps of the northern Stewart River map area, Klondike and Sixtymile Districts (115N/15, 16; 115O/13, 14; and parts of 115O/15, 16). Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 19961 (G).

Karous, M. and Hjelt, S-E. (1977): Determination of apparent current density from VLF measurements, Department of Geophysics, Oulu University, Paper No. 89

Milsom, J. (1996): Field Geophysics 2nd Edition p.119-130., John Wiley and Sons Ltd.

Ouellette, D. and Couttes (1987a): Geological, Geochemical, Geophysical and Trenching Report of the RIJ Mineral Claims; Yukon Geological Survey Assessment File Report No. 091721

Ouellette, D. and Couttes (1987b): Report on the Upper Sulphur Creek Project; Yukon Geological Survey Assessment File Report No. 091946.

Poon, J. (2010): Airborne geophysical report, Sulphur and Sulphur East Property (unpub.)
Southam, P. (1995a): 1994 Geochemical report on the Flug Claims; Yukon Geological Survey Assessment File Report No. 093242.

Southam, P. (1995b): 1995 Geochemical report on the Flug Claims; Yukon Geological Survey Assessment File Report No. 093351.

Appendix A - Statement of Work Expenditures

APPLICATION FOR A CERTIFICATE OF WORK

Client I.D. Number: \qquad

1. I am the owner, or agent of the owner, of the mineral claim(s) to which reference is made herein.
2. I have done, or caused to be done, work, on the following mineral claim(s): (Here list claims on which work was actually done by number and name)

See attached schedule
\qquad
\qquad
\qquad
\qquad
situated at left limit of Sulphur Creek Claim sheet No. 115010 \& 115014
in the Dawson \qquad Mining District, to the value of at least $\underline{22,082.54}$ dollars,
since the 15 th
day of May
2015 \qquad
to represent the following mineral claims under the authority of Grouping Certificate No. HD 03393
(Here list claims to be renewed in numerical order, by grant number and claim name, showing renewal period requested).

See attached schedule
\qquad
\qquad
\qquad
\qquad
3. The following is a detailed statement of such work: (Set out full particulars of the work done indicating dates work commenced and ended in the twelve months in which such work is required to be done as shown by Section 56).

Geophysics (VLF-EM) - 43.7 km completed over 10 day period from May 15 to 29, 2015
Prospecting - 5 days prospecting and sampling from July 15 to August 2, 2015
Report compilation and writing - 4 days in September 2005
(See attached Project Allocation Detail)

Sworn before me at ___ this day of ___ 20 .

Taku Proj Mang

Project Allocation Detail

Item	Date	Supplier	Invoice No.	Amount	Totals
Lions Zone - Geophysics					
5250 Geophysics - Wages \& Contract					
	06-01-2013	BXM	1090	\$7,000.00	
	07-30-2015	Dynamic	2015161	\$2,550.00	
	09-03-2015	Superior	20150903	\$2,162.50	
5251 Geophysics - F\&L					
	06-01-2013	BXM	1090	\$556.20	
5253 Geophysics - Transport					
	06-01-2013	BXM	1090	\$960.30	
5254 Geophysics - Rentals					
	06-01-2013	BXM	1090	\$1,370.00	
					\$14,599.00
Lions Zone - Prospecting \& Sampling					
5550 Prospecting - Wages and Contract					
	08-25-2015	BXM	1097	\$3,500.00	
5551 Prospecting - F\&L					
	08-25-2015	BXM	1097	\$1,423.48	
5553 Prospecting - Transport					
	08-25-2015	BXM	1097	\$600.00	
5554 Prospecting - Rentals					
	08-25-2015	BXM	1097	\$350.00	
5555 Prospecting - Drafting					
	12-08-2015	BXM	1103	\$1,538.84	
5556 Prospecting - Assays					
	08-14-2015	Bourlamaque	B15-0714	\$71.22	

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim		Renewal				
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect	Years		Fee		
Quartz	YD06601	US	1	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06602	US	2	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06603	US	3	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06604	US	4	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06605	US	5	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06606	US	6	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06607	US	7	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06608	US	8	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06609	US	9	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06610	US	10	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06611	US	11	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06612	US	12	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06613	US	13	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06614	US	14	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06615	US	15	14-Mar-19	\$503.41	\$258.05		\$	5.00	\$	5.00
Quartz	YD06616	US	16	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06617	US	17	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06618	US	18	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06619	US	19	14-Mar-19	\$503.41	\$258.05		\$	5.00	\$	5.00
Quartz	YD06620	US	20	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06621	US	21	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06622	US	22	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06623	US	23	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06624	US	24	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06625	US	25	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06626	US	26	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06627	US	27	14-Mar-19	\$503.41	\$258.05	1	\$	5.00	\$	5.00
Quartz	YD06628	US	28	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06629	US	29	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06630	US	30	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06631	US	31	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06632	US	32	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06633	US	33	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06634	US	34	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06635	US	35	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06636	US	36	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06637	US	37	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06638	US	38	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06639	US	39	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06640	US	40	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06641	US	41	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06642	US	42	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06643	US	43	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06644	US	44	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06645	US	45	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06646	US	46	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06647	US	47	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06648	US	48	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06649	US	49	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06650	US	50	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06651	US	51	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06652	US	52	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06653	US	53	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06654	US	54	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06655	US	55	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06656	US	56	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06657	US	57	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06658	US	58	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06659	US	59	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06660	US	60	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06661	US	61	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06662	US	62	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06663	US	63	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06664	US	64	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06665	US	65	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06666	US	66	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06667	US	67	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06668	US	68	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06669	US	69	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06670	US	70	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06671	US	71	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06672	US	72	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06673	US	73	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06674	US	74	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06675	US	75	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06676	US	76	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06677	US	77	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06678	US	78	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD06679	US	79	14-Mar-19			1	\$	5.00	\$	5.00

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim			Renewal				
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect		Years		Fee		
Quartz	YD06680	US	80	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD06681	US	81	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD06682	US	82	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD06683	US	83	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD06684	US	84	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD17723	US	85	14-Mar-18				2	\$	5.00	\$	10.00
Quartz	YD17724	US	86	14-Mar-18	\$503.41	\$258.05		2	\$	5.00	\$	10.00
Quartz	YD17725	US	87	14-Mar-18	\$503.41	\$258.05		2	\$	5.00	\$	10.00
Quartz	YD17726	US	88	14-Mar-18	\$503.41	\$258.05		2	\$	5.00	\$	10.00
Quartz	YD17727	US	89	14-Mar-18	\$503.41	\$258.05		2	\$	5.00	\$	10.00
Quartz	YD17728	US	90	14-Mar-18	\$503.41	\$258.05		2	\$	5.00	\$	10.00
Quartz	YD17729	US	91	14-Mar-18				2	\$	5.00	\$	10.00
Quartz	YD28201	SU	1	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28202	SU	2	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28203	SU	3	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28204	SU	4	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28205	SU	5	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28206	SU	6	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28207	SU	7	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28208	SU	8	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28209	SU	9	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28210	SU	10	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28211	SU	11	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28212	SU	12	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28213	SU	13	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28214	SU	14	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28215	SU	15	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28216	SU	16	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28217	SU	17	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28218	SU	18	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28219	SU	19	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28220	SU	20	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28221	SU	21	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28222	SU	22	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28223	SU	23	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28224	SU	24	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28225	SU	25	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28226	SU	26	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28227	SU	27	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28228	SU	28	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28229	SU	29	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28230	SU	30	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28231	SU	31	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28232	SU	32	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28233	SU	33	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28234	SU	34	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28235	SU	35	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28236	SU	36	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28237	SU	37	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28238	SU	38	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28239	SU	39	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28240	SU	40	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28241	SU	41	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28242	SU	42	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28243	SU	43	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28244	SU	44	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28245	SU	45	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28246	SU	46	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28247	SU	47	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28248	SU	48	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28249	SU	49	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28250	SU	50	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28251	SU	51	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28252	SU	52	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28253	SU	53	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28254	SU	54	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28255	SU	55	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28256	SU	56	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28257	SU	57	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28258	SU	58	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28259	SU	59	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28260	SU	60	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28261	SU	61	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28262	SU	62	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28263	SU	63	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28264	SU	64	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28265	SU	65	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28266	SU	66	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28267	SU	67	14-Mar-19				0	\$	5.00	\$	-

Claim List for Cert of Work 2015 Sulphur

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim		Renewal				
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect	Years		al Fee		
Quartz	YD28347	SU	147	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28348	SU	148	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28349	SU	149	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28350	SU	150	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28351	SU	151	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28352	SU	152	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28353	SU	153	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28354	SU	154	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28355	SU	155	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28356	SU	156	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28357	SU	157	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28358	SU	158	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28359	SU	159	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28360	SU	160	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28361	SU	161	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28362	SU	162	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28363	SU	163	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28364	SU	164	14-Mar-19				\$	5.00	\$	5.00
Quartz	YD28365	SU	165	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28366	SU	166	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28367	SU	167	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28368	SU	168	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28369	SU	169	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28370	SU	170	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28371	SU	171	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28372	SU	172	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28373	SU	173	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28374	SU	174	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28375	SU	175	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28376	SU	176	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28377	SU	177	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28378	SU	178	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28379	SU	179	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28380	SU	180	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28381	SU	181	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28382	SU	182	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28383	SU	183	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28384	SU	184	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28385	SU	185	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28386	SU	186	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28387	SU	187	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28388	SU	188	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28389	SU	189	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28390	SU	190	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28391	SU	191	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28392	SU	192	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28393	SU	193	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28394	SU	194	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28395	SU	195	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28396	SU	196	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28397	SU	197	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28398	SU	198	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28399	SU	199	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28400	SU	200	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28401	SU	201	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28402	SU	202	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28403	SU	203	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28404	SU	204	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28405	SU	205	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28406	SU	206	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28407	SU	207	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28408	SU	208	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28409	SU	209	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28410	SU	210	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28411	SU	211	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28412	SU	212	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28413	SU	213	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28414	SU	214	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28415	SU	215	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28416	SU	216	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28417	SU	217	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28418	SU	218	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28419	SU	219	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28420	SU	220	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28421	SU	221	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28422	SU	222	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28423	SU	223	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28424	SU	224	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28425	SU	225	14-Mar-19			1	\$	5.00	\$	5.00

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim		Renewal				
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect	Years		al Fee		
Quartz	YD28426	SU	226	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28427	SU	227	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28428	SU	228	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28429	SU	229	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28430	SU	230	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28431	SU	231	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28432	SU	232	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28433	SU	233	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28434	SU	234	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28435	SU	235	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28436	SU	236	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28437	SU	237	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28438	SU	238	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28439	SU	239	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28440	SU	240	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28441	SU	241	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28442	SU	242	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28443	SU	243	14-Mar-19				\$	5.00	\$	5.00
Quartz	YD28444	SU	244	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28445	SU	245	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28446	SU	246	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28447	SU	247	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28448	SU	248	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28449	SU	249	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28450	SU	250	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28451	SU	251	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28452	SU	252	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28453	SU	253	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28454	SU	254	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28455	SU	255	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28456	SU	256	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28457	SU	257	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28458	SU	258	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28459	SU	259	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28460	SU	260	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28461	SU	261	14-Mar-19			0	\$	5.00	\$	-
Quartz	YD28462	SU	262	14-Mar-19			0	\$	5.00	\$	-
Quartz	YD28463	SU	263	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28464	SU	264	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28465	SU	265	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28466	SU	266	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28467	SU	267	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28468	SU	268	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28469	SU	269	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28470	SU	270	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28471	SU	271	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28472	SU	272	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28473	SU	273	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28474	SU	274	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28475	SU	275	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28476	SU	276	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28477	SU	277	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28478	SU	278	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28479	SU	279	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28480	SU	280	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28481	SU	281	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28482	SU	282	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28483	SU	283	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28484	SU	284	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28485	SU	285	14-Mar-19			0	\$	5.00	\$	-
Quartz	YD28486	SU	286	14-Mar-19			0	\$	5.00	\$	-
Quartz	YD28487	SU	287	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28488	SU	288	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28489	SU	289	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28490	SU	290	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28491	SU	291	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28492	SU	292	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28493	SU	293	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28494	SU	294	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28495	SU	295	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28496	SU	296	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28497	SU	297	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28498	SU	298	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28499	SU	299	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28500	SU	300	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28501	SU	301	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28502	SU	302	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28503	SU	303	14-Mar-19			1	\$	5.00	\$	5.00
Quartz	YD28504	SU	304	14-Mar-19			1	\$	5.00	\$	5.00

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim			Renewal				
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect		Years		al Fee		
Quartz	YD28505	SU	305	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28506	SU	306	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28507	SU	307	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28508	SU	308	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28509	SU	309	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28510	SU	310	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28511	SU	311	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28512	SU	312	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28513	SU	313	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28514	SU	314	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28515	SU	315	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28516	SU	316	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28517	SU	317	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28518	SU	318	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28519	SU	319	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28520	SU	320	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28521	SU	321	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28522	SU	322	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28523	SU	323	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28524	SU	324	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28525	SU	325	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28526	SU	326	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28527	SU	327	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28528	SU	328	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28529	SU	329	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28530	SU	330	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28531	SU	331	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28532	SU	332	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28533	SU	333	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28534	SU	334	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28535	SU	335	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28536	SU	336	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28537	SU	337	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28538	SU	338	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28539	SU	339	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28540	SU	340	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28541	SU	341	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28542	SU	342	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28543	SU	343	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28544	SU	344	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28545	SU	345	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28546	SU	346	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28547	SU	347	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28548	SU	348	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28549	SU	349	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28550	SU	350	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28551	SU	351	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28552	SU	352	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28553	SU	353	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28554	SU	354	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28555	SU	355	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28556	SU	356	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28557	SU	357	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28558	SU	358	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28559	SU	359	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28560	SU	360	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28561	SU	361	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28562	SU	362	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28563	SU	363	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28564	SU	364	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28565	SU	365	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28566	SU	366	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28567	SU	367	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28568	SU	368	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28569	SU	369	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28570	SU	370	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28571	SU	371	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28572	SU	372	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28573	SU	373	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28574	SU	374	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28575	SU	375	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28576	SU	376	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28577	SU	377	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28578	SU	378	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28579	SU	379	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28580	SU	380	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28581	SU	381	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28582	SU	382	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28583	SU	383	14-Mar-19				0	\$	5.00	\$	-

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim			Renewal				
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect		Years		Fee		otal
Quartz	YD28584	SU	384	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28585	SU	385	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28586	SU	386	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28587	SU	387	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28588	SU	388	14-Mar-19				,	\$	5.00	\$	5.00
Quartz	YD28589	SU	389	14-Mar-19					\$	5.00	\$	5.00
Quartz	YD28590	SU	390	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28591	SU	391	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28592	SU	392	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28593	SU	393	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28594	SU	394	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28595	SU	395	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28596	SU	396	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28597	SU	397	14-Mar-19				1	\$	5.00	+	5.00
Quartz	YD28598	SU	398	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28599	SU	399	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28600	SU	400	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28601	SU	401	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28602	SU	402	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28603	SU	403	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28604	SU	404	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28605	SU	405	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28606	SU	406	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28607	SU	407	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28608	SU	408	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28609	SU	409	14-Mar-19					\$	5.00	\$	5.00
Quartz	YD28610	SU	410	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28611	SU	411	14-Mar-19					\$	5.00	\$	5.00
Quartz	YD28612	SU	412	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28613	SU	413	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28614	SU	414	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28615	SU	415	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28616	SU	416	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28617	SU	417	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28618	SU	418	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28619	SU	419	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28620	SU	420	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28621	SU	421	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28622	SU	422	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28623	SU	423	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28624	SU	424	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28625	SU	425	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28626	SU	426	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28627	SU	427	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28628	SU	428	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28629	SU	429	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28630	SU	430	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28631	SU	431	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28632	SU	432	14-Mar-19				0	\$	5.00	\$	-
Quartz	YD28633	SU	433	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28634	SU	434	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28635	SU	435	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28636	SU	436	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28637	SU	437	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28638	SU	438	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28639	SU	439	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28640	SU	440	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28641	SU	441	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28642	SU	442	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28643	SU	443	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28644	SU	444	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28645	SU	445	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28646	SU	446	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28647	SU	447	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28648	SU	448	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28649	SU	449	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28650	SU	450	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28651	SU	451	14-Mar-19				1	\$	5.00	\$	5.00
Quartz	YD28652	SU	452	14-Mar-19				1	\$	5.00	\$	5.00
				Columm Total	\$14,599.00	\$7,483.54	\$0.00	432			\$	2,160.00
	Check Column total less Expenses				\$22,082.54							
	Number of Claims Where work was done				29							
	Expenses (from Project Management Sheet) x 2				\$44,165.08							
		Work Required for requested renewal			\$43,200.00							
			Surplus (Deficit)		\$965.08							

Claim List for Cert of Work 2015 Sulphur

	Claim Information				Actual Work Done by Claim		Renewal		
Type	Grant No.	Claim Name	Claim No.	Expiry Date	Geophysics	Prospect	Years	Annual Fee	Total
Years to renew 418 claims $\times 1$ years +7 claims $\times 2$ year					432.00				

Appendix B - Sample Descriptions

Rocks 2015 Report Sulphur

| Sample | Type | Project | Survey | UTMmE | UTMmN | Datum | Elevation | Lithology | Au_ppb |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 148960 | Rock | Sulphur | GPS | 611,539 | $7,064,772$ | UTMZ7N_WGS84 | 587.7 | VeinQuartz | 0.005 |
| 148961 | Rock | Sulphur | GPS | 611,137 | $7,065,645$ | UTMZ7N_WGS84 | 730.2 | VeinQuartz | 0.005 |
| 148962 | Rock | Sulphur | GPS | 611,134 | $7,065,677$ | UTMZ7N_WGS84 | 730.4 | VeinQuartz | 0.005 |

Appendix C - Assay Certificates

BOURLAMAQUE ASSAY LABORATORIES LTD.

ANALYSIS REPORT

B15-0714 Final

Client name:
Submitted by:
Attention:

TAKU GOLD CORPORATION

Mark Fekete

Mark Fekete
203-680 3rd Avenue
Val-d'Or QC J9P 1S5
Canada

Roche / Rock
3
Sulphur
20150804
August 04, 2015
August 14, 2015
Code AU020 Au Pyroanalyse-SAA 30g

Total pages: 3 (including this page)

BOURLAMAQUE ASSAY LABORATORIES LTD.

Client:
Project:
Sample type (s):
Submitted by:

Taku Gold Corporation
Sulphur
Roche / Rock
Mark Fekete

ANALYSIS CERTIFICATE
Report No. B15-0714
14-août-15

RESULTS

	Analyse Symbol	Au
	Unit Symbol	ppm
	Detection Limit	0.01
	Analysis Method	Py-SAA Au
1	148960	<0.01
2	148961	<0.01
3	148962	<0.01

BOURLAMAQUE ASSAY LABORATORIES LTD.

Client:
Project:
Sample type (s):
Submitted by:

Taku Gold Corporation
Sulphur
Roche / Rock
Mark Fekete
QUALITY CONTROL

Au
ppm
0.01
Py-SAA Au
<0.01
7.34
7.68
2.31
2.37
<0.01
<0.01
<0.01

ANALYSIS METHODS

Method Code Description

Py-SAA Au Au

Linda Melnbardis BS
President
Quebec Order of Chemists 1982-119

Appendix D - Dynamic Report

Technical Report

VLF-EM Ground Survey

Sulphur Property, Lions Zone
Dawson Mining District, Yukon 2015

TAKU GOLD

Taku Gold Corporation
Suite 608-409 Granville Street
Vancouver, British Columbia
V6C 1T2

Prepared by Joël Dubé, P.Eng.

July 2015

Dynamic Discovery Geoscience
7977 Décarie Drive Ottawa (Ontario) K1C 3K3
jdube@ddgeoscience.ca

Dynamic Discovery Geoscience

Joc̈l Dubé, ing., P.Eng.
High standard Discovery oriented Innovative
jdube@ddgeoscience.ca Tel.:819.598.8486
Efficacité Professionnalisme Expérience

TABLE OF CONTENT

I. INTRODUCTION 4
II. SULPHUR PROJECT, LIONS ZONE 5
III. TECHNICAL SPECIFICATIONS 8
Field Operations 8
Survey Equipment 8
IV. DATA PROCESSING AND PRESENTATION 9
VLF-EM data 9
Deliverables 9
V. RESULTS INTERPRETATION AND DISCUSSION 10
Airborne data 10
VLF-EM DATA 12
Recommendations 16
VI. CONCLUSION 16
VII. REFERENCES 17
VIII. STATEMENT OF QUALIFICATIONS 18
IX. APPENDIX A - SULPHUR-LIONS PROPERTY MINERAL CLAIMS COVERED 19
FIGURES
Figure 1: General location of the Sulphur Project 4
Figure 2: Mineral properties south of Dawson City 5
Figure 3: Regional location of the Sulphur Property and Lions Zone surveyed area 6
Figure 4: SURVEY lines and Sulphur-Lions mineral claims location. 7
Figure 5: Total Magnetic Intensity and geophysical interpretation 11
Figure 6: Hawall Fraser filtered in-phase component and geophysical interpretation 14
Figure 7: Seattle Fraser filtered in-phase component and geophysical interpretation 15

TABLES

Table 1: Delivered maps. 9
Table 2: Total Magnetic Intensity statistics 10
Table 3: Interpreted VLF-EM anomalies. 13

I. INTRODUCTION

At the request of the mineral exploration company Taku Gold Corporation, the exploration services company Breakaway Exploration Management Inc. of Val-d'Or (QC) conducted a Very Low Frequency Electro-Magnetic (VLF-EM) survey on the Lions Zone of the Sulphur Project (Figure 1). The consulting firm Dynamic Discovery Geoscience Ltd. of Ottawa (ON) received the mandate to control the quality of the survey, to process the acquired data and to present and interpret these data in the current report.

Figure 1: General location of the Sulphur Project

The survey was conducted from May $17^{\text {th }}$ to $24^{\text {th }}, 2015$, under the supervision of Mr. Mark Fekete and Marty Huber, for a total of 43.7 linear km.

The goal of the survey was to characterize the sub-surface rocks with respect to their signature to the VLF-EM method, and to identify response possibly associated to mineralized occurrences. In order to provide assistance in the data interpretation process, airborne magnetic and radiometric data acquired in the area in 2010 (Poon, 2010) is also used.

II. SULPHUR PROJECT, LIONS ZONE

The Sulphur Property consists of a block of 543 mineral claims located about 50 km southeast of Dawson City. This property is part of a constellation of properties owned by Taku Gold Corp. in the area, and shown in red in Figure 2.

Figure 2: Mineral properties south of Dawson City

Within the Sulphur Property, a subset of claims located at the eastern limit of the Property is characterized by As, Au and Ag geochemical anomalies and is referred to as the Lions Zone. The Lions Zone has been the subject of the VLF-EM survey (Figure 3). This zone can be accessed in the summer via secondary roads connecting to Dawson City. The Sulphur Creek road runs along the valley south of the surveyed area.

Figure 3: Regional location of the Sulphur Property and Lions Zone surveyed area

The Property is located within NTS map sheet 115010. The survey grid consists of a network of 25 lines oriented N090 and spaced every 100 m . Survey lines vary from 900 to 2000 m in length, for a total survey production of 43.7 km . The survey was carried out through the bush with the help of real-time GPS navigation, which made line cutting and chaining unnecessary. Mining titles covered by the survey lines are shown in Figure 4, and all the Sulphur Property claims that have been at least partly covered by the survey are listed in Appendix A.

Figure 4: Survey lines and Sulphur-Lions mineral claims location

III. TECHNICAL SPECIFICATIONS

Field Operations

The VLF-EM survey, totalling 43.7 km , was carried out from May $17^{\text {th }}$ to $24^{\text {th }} 2015$, by Marty Huber and Mark Fekete of Breakaway Exploration Management. VLF-EM data were recorded every 25 m along the lines, for a total of 1772 data points collected. Technical supervision was provided by Joël Dubé, P.Eng. On top of data inspection performed on the field by the operators while conducting the survey and transferring the data to a computer, the data were transferred to Dynamic Discovery Geoscience's office in Ottawa to undergo full data QC. All data were verified in this manner.

Survey Equipment

The equipment used for the VLF-EM survey consisted of an EM-16 device manufactured by Geonics. The EM-16 VLF system enables measurements of the vertical in-phase (P) and out-of-phase (Q) components expressed as \% of the VLF horizontal primary field, with a resolution of 1%.

Two VLF transmitter antennae were used: NPM Lualualei, Hawaii, emitting at a frequency of 21.4 kHz and NLK Seattle, Washington, emitting at a frequency of 24.8 kHz . The Hawaii antenna is located about 5020 km from the survey block, at an azimuth of N203, while the Seattle antenna is at a distance of 2050 km in the N143 direction. This implies that conductors striking NNE-SSW are best coupled with the EM signal from the Hawaii antenna, while the Seattle antenna's signal is best coupled with NW-SE conductors. The 60 degrees difference between the primary field directions from both antennae ensures that no conductors are left undetected with this survey configuration. By convention, all VLF-EM measurements were made with the instrument facing north for proper polarity of the results.

A GPS unit was used both for navigation purposes along an ideal local grid (no lines were cut) and for recording of survey stations locations, with an absolute accuracy of 2 to 5 m .

IV. DATA PROCESSING AND PRESENTATION

Data compilation including editing and filtering, quality control ($Q C$), and final data processing was performed by Joël Dubé, P.Eng. Processing was performed on high performance computers optimized for quick daily QC and processing tasks. Geosoft software Oasis Montaj version 8.4 was used.

VLF-EM data

The vertical in-phase and out-of-phase components are presented in profiles. The in-phase component was further processed with a Fraser filter which results in a signal with maximum amplitude at the inflexion point of the input signal. This parameter was interpolated onto a regular grid using a bi-directional gridding algorithm to create a twodimensional grid equally incremented in x and y directions. The final grids were created with 20 m grid cell size, appropriate for the survey lines spaced at 100 m , and were filtered with a 3×3 Hanning filter to reduce short wavelength noise in the grids. The Fraser filtered in-phase component effectively enables identification of the conductors in an intuitive way by looking at maximum amplitude lineaments on its contour map.

Deliverables

The maps created to present the information extracted from the survey are summarized in Table 1. All maps are referred to NAD-83 in the UTM projection Zone 7 North, with coordinates in metres. Maps are at a 1:5,000 scale and are provided in PDF, PNG and Geosoft MAP formats.

Table 1: Delivered maps

No.	Nom	Description
1	DEM	Location of the survey lines and of the mineral claims
2	PQprof_Hawaii	VLF-EM in-phase \& out-of-phase profiles for Hawaii antenna
3	P-FRASERcont_Hawaii	Fraser filtered VLF-EM in-phase contours for Hawaii antenna
4	PQprof_Seattle	VLF-EM in-phase \& out-of-phase profiles for Seattle antenna
5	P-FRASERcont_Seattle	Fraser filtered VLF-EM in-phase contours for Seattle antenna
6	INTERPRETATION	Interpretation map with regional Residual Total Field

Digital data are also supplied for all the parameters recorded during the survey. The database is delivered in the Geosoft GDB format. As well, data grids created for mapping purposes are included in the deliverables. They are referenced to NAD-83 in the UTM projection Zone 7 North, with coordinates in metres. Grids are provided in Geosoft GRD format, with a 20 m grid cell size. Finally, interpretation elements found on the interpretation map are supplied in the Esri SHP format.

V. RESULTS INTERPRETATION AND DISCUSSION

Abstract

Airborne data

Although no magnetic data was acquired as part of this project, helicopter-borne magnetic data is presented here in an effort to support the interpretation process. The magnetic data used was acquired in the fall of 2010 by Precision GeoSurveys Inc. (Poon, 2010). The Total Magnetic Intensity (TMI) of the VLF-EM survey area, presented in Figure 5 together with interpreted features extracted from the interpretation map, is somewhat settled in the area, and varies only over 91 nT . The variability of the TMI signal within the block is summarized in Table 2, which present data statistics.

Table 2: Total Magnetic Intensity statistics

Statistic	TMI (nT)
Minimum	57372
Maximum	57463
Median	57415
Mean	57414
Standard Deviation	13.8

Several magnetic lineaments are found in the block. The strongest magnetic lineaments found in the surveyed area are organized in 2 compact families: a first is preferentially oriented N-S, while the second is rather striking WNW-ESE. Both families of strong lineaments are crossing each other in the center of the area. Several other weaker magnetic lineaments are also found in the area, and are not oriented in any dominant direction. Magnetic lineaments are caused by magnetite/pyrrhotite bearing structures, such as dykes, mafic intrusive and/or volcanic rocks or mineralized structures. Magnetic lineaments have been identified as thick red lines on the interpretation map and figures.

The radiometric data acquired in conjunction with the magnetic data as part of the 2010 airborne survey was also analyzed. As expected, the radiometric results (not shown here) are mostly controlled by topography in the area: lower values are generally found in valleys with more overburden and increased humidity, preventing gamma-rays to reach the aircraft detector, and higher values are rather found near topographic ridges, which are usually dryer and covered by sparser vegetation. However, the highest Potassium values are not directly located along ridges, and so they were chosen as interesting exploration features since gold mineralization is sometimes emplaced by mineralizing fluids also leading to potassic alteration as is the case at the Hemlo deposit for instance (Pemberton et al., 1984; Doyle, 1990; Manning at al., 1998), near Marathon in Ontario. The Potassium anomalies are shown as hatched blue polygons. The mineralizing fluids can also lead to destruction of magnetite minerals, which would be denoted by a combined Potassium high/magnetic low association. It is also of interest to note that the strongest magnetic anomaly of the surveyed area is partly overlapping with the northwestern most Potassium anomaly.

Figure 5: Total Magnetic Intensity and geophysical interpretation

VLF-EM data

VLF-EM anomalies have been identified by looking at both the in-phase and out-of-phase components for typical cross-over patterns, in conjunction with the Fraser-filtered in-phase contours, which aim at making the cross-over detection easier. The Fraser-filtered data is shown on Figure 6 for the NPM Hawaii antenna and on Figure 7 for the NLK Seattle antenna. Note that on May $20^{\text {th }}$, the NPM Hawaii antenna was inactive, resulting in no data being available for this antenna from line 3000 N to 3400 N (inclusive). Fortunately, data from NLK Seattle could still be acquired, and this was considered sufficient to perform reliable interpretation of the conductors for those lines. The results are generally similar for both antennae in most areas (confirming that the results are of good quality), except for conductive features that are rather oriented WNW-ESE (poorly coupled to Hawaii antenna) or NE-SW (poorly coupled to Seattle antenna), which is expected when coupling between antennae used is at a high angle such as in this case. The interpretation of conductive axes has therefore been carried out looking at results for both antennae simultaneously.

Interpreted anomalies have been classified as weak (dotted black lines), moderate (dashed black lines) and strong (continuous black lines) based on the amplitude of the vertical components and the out-of-phase signal behaviour relative to the in-phase signal. For instance, strong conductors will generate an out-of-phase response that is opposite in sign to the in-phase component (reversed cross-over). Among the anomalies that have been outlined on the interpretation products, the few that were stronger and appearing related to possible mineralisation were identified with an ID number starting with the 'VLF' prefix. Based on the strength of the VLF-EM conductor, its continuity over several lines, its association to a magnetic lineament or its location close to a structural feature possibly favourable to mineralisation, a priority number (1 being prioritized) has been given to each VLF-EM conductor axis in order to guide follow-up efforts. This information, together with the approximate strike length and some comments for each conductive axis, are listed in Table 3. Out of the 15 VLF-EM conductors identified in the survey area, 1 is deemed of first priority and 9 of second priority.

It is important to mention that strong topographic features are known to affect the VLF-EM results (Nabighian, 1991). For instance, prominent ridges will cause a response typical of a conductor, while a deep valley will cause a reversed anomaly. However, these effects are dependent on the resistivity of the ground and cannot be corrected for since this parameter is unknown a priori. In the surveyed area of the Lions Zone, the N-S valley found in the eastern part of the area is clearly associated to a reversed VLF-EM anomaly. It is also possible that the N-S ridge associated to VLF-4 and 5 axes is contributing, at least partly, to generate these 2 anomalies. However, since it is very difficult to discriminate topographic effects from the effect of real conductors, it is still recommended to investigate these anomalies especially if they are associated to other exploration vectors. But, in the event that no conductors are found at these locations, the topographic effect will likely explain these anomalies.

Also, cultural effects have been noted in the south-western part of the survey. The VLF-2 conductive axis is clearly related to a power line, while the VLF-1 axis is likely related to road infrastructures. Both axes are oriented parallel to the Sulphur Creek valley along which cultural infrastructures are running.

The remaining VLF axes are mostly trending N-S, but can vary from NNW-SSE to NE-SW. It is interesting to note that conductive and magnetic anomalies are correlated only very locally. In fact, in many cases, conductive axes appear to highlight discontinuities in the magnetic signal. This suggests that some conductors may actually be associated to faults, fractures or shear zones which are offsetting observed magnetic lineaments and causing abrupt interruption or changes of the magnetic response. The overburden troughs, clay minerals or mineralization often found in association with fault structures can explain their conductive nature and hence their response to the VLF-EM method. Such structural features are known to enable the circulation and precipitation of mineralizing fluids. Consequently, VLF-EM axes that appear to denote such type of structure should definitely be investigated further.

Table 3: Interpreted VLF-EM anomalies

ID	Length (m)	Priority	Comments
VLF-1	100	3	Moderate end of line anomaly (not well defined - marginal). Possible cultural anomaly related to road. Open both to north and south.
VLF-2	500	N/A	Cultural anomaly caused by power line.
VLF-3	100	3	Weak to moderate VLF-EM conductor. Associated to a weak magnetic high.
VLF-4	600	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Associated to topographic ridge. Possible continuity of the VLF-5 conductor. Open to south.
VLF-5	1300	1	Weak to strong VLF-EM conductor. Locally associated to strong magnetic high. Associated to topographic ridge. Possible continuity of the VLF-4 conductor.
VLF-6	500	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Open to south.
VLF-7	700	3	Weak to moderate VLF-EM conductor. No clear magnetic expression.
VLF-8	600	2	Weak to moderate VLF-EM conductor. Locally associated to strong magnetic high.
VLF-9	300	2	Moderate VLF-EM conductor. No clear magnetic expression. Possibly associated to the VLF-5 conductor.
VLF-10	200	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Located near potassium anomaly.
VLF-11	1200	2	Weak to moderate VLF-EM conductor. No clear magnetic expression. Passes across potassium anomaly.
VLF-12	200	2	Weak to moderate VLF-EM conductor. No clear magnetic expression.
VLF-13	700	2	Weak to moderate VLF-EM conductor. Locally associated to magnetic high.
VLF-14	300	2	Weak to moderate VLF-EM conductor. No magnetic expression.
VLF-15	N/A	3	Moderate VLF-EM conductor. No magnetic expression. Open to north.

Figure 6: Hawaii Fraser filtered in-phase component and geophysical interpretation

Figure 7: Seattle Fraser filtered in-phase component and geophysical interpretation

Recommendations

It is worth mentioning that the penetration of the VLF-EM method is relatively weak compared to other methods. It is estimated in the order of $40-60 \mathrm{~m}$ in resistive areas, but can go down to $4-5 \mathrm{~m}$ in very conductive environments. However, this limitation is greatly compensated for by the limited efforts and expenses that must be deployed to acquire the results, which makes it a very efficient reconnaissance tool. The limited penetration depth of the method also implies that simple ground prospection and stripping techniques are usually sufficient to perform follow-up and determine the nature of the sources.

It is therefore recommended to investigate the outlined anomalies by basic prospection methods. Areas where these VLF-EM conductors seem to cross-cut magnetic lineaments could relate to fault structures and should be paid particular attention since such features are sometimes related to gold mineralization. Likewise, areas with Potassium anomalies or where the strongest magnetic anomalies are crossing each other are deemed of interest. Prioritization of targets should be revisited in light of other geoscientific information such as geochemical and geological data.

Following a preliminary prospection phase, sources identified as promising for mineralization discoveries could then be the object of localized resistivity/IP surveys that can be efficiently used to penetrate the ground at further depth and better image the geometry of conductive and chargeable sources in preparation for drilling. This method has the advantage of responding to disseminated sulphide occurrences, to which gold mineralization is often associated.

VI. CONCLUSION

The VLF-EM survey conducted in May 2015 by Breakaway Exploration Management on Taku Gold's Sulphur-Lions Property was successful in better characterising the physical properties distribution within the area, which could support a better understanding of the geological setting. In particular, several magnetic lineaments and conductors were interpreted based on the results. Some of the VLF-EM conductors interpreted were identified as potential exploration targets and prioritized for further investigation. The survey parameters used and the general data quality of the survey were adequate to meet these objectives.

Respectfully submitted,

Joël Dubé, P.Eng.
July $30^{\text {th }} 2015$

VII. REFERENCES

Doyle, H.A., 1990. Geophysical Exploration for Gold - A Review; Geophysics, v.55(2); p. 134146

Manning, S.E., Morris W.A. and Leblanc, G.E., 1998. Multi-Scale Radiometric Mapping of Potassium Alteration: An Example from Hemlo, Ontario; $68{ }^{\text {th }}$ Annual Internat. Mtg. SEG, Expanded Abstracts, v. 98

Nabighian, M.N, 1991. Electromagnetic Methods in Applied Geophysics, Vol 2; Society of Exploration Geophysicists, p. 611

Pemberton, R.H. and Carriere, D., 1984. Hemlo Gold Camp Geophysics; SEG Abstracts 1984; p. 303

Poon, J., 2010. Airborne Geophysical Survey Report, Sulphur and Sulphur E Property; Precision GeoSurveys Inc. for Taku Gold Corp.; Internal Report.

VIII. Statement of Qualifications

Joël Dubé

7977 Décarie Drive
Ottawa, ON, Canada, K1C 3K3
Telephone: 819.598.8486
E-mail: jdube@ddgeoscience.ca

I, Joël Dubé, P.Eng., do hereby certify that:

1. I am a Professional Engineer specialized in geophysics, President of Dynamic Discovery Geoscience Ltd, registered in Canada.
2. I earned a Bachelor of Engineering in Geological Engineering in 1999 from the École Polytechnique de Montréal.
3. I am an Engineer registered with the Ordre des Ingénieurs du Québec, No. 122937, and a Professional Engineer with Professional Engineers Ontario, No. 100194954 (CofA No. 100219617) and with the Association of Professional Engineers and Geoscientists of New Brunswick, No. L5202 (CofA No. F1853).
4. I have practised my profession for 16 years in exploration geophysics.
5. I have not received and do not expect to receive a direct or indirect interest in the properties covered by this report.

Dated this $30^{\text {th }}$ of July, 2015

[^0]
IX. Appendix A - Sulphur-Lions Property mineral claims covered

NTS Map Sheet	Grant Number	Mineral Claim Tag
115010	US 1	YD06601
115010	US 2	YD06602
115010	US 3	YD06603
115010	US 4	YD06604
115010	US 5	YD06605
115010	US 6	YD06606
115010	US 7	YD06607
115010	US 8	YD06608
115010	US 9	YD06609
115010	US 10	YD06610
115010	US 11	YD06611
115010	US 12	YD06612
115010	US 13	YD06613
115010	US 14	YD06614
115010	US 15	YD06615
115010	US 16	YD06616
115010	US 17	YD06617
115010	US 18	YD06618
115010	US 19	YD06619
115010	US 20	YD06620
115010	US 21	YD06621
115010	US 22	YD06622
115010	US 23	YD06623
115010	US 27	YD06627
115010	US 86	YD17724
115010	US 87	YD17725
115010	US 88	YD17726
115010	US 89	YD17727
115010	US 90	YD17728

Appendix E - Superior Profiles

$10+75 \mathrm{E} 12+50 \mathrm{E} \quad 14+50 \mathrm{~B} 16+25 \mathrm{E} \quad 18+25 \mathrm{E} 20+00 \mathrm{E} 21+75 \mathrm{E} \quad 23+75 \mathrm{E} 25+50 \mathrm{E} \quad 27+50 \mathrm{E} 29+25 \mathrm{E}$

Line: Sulpher Project Line1600N

K-H Filter - Real Component Data (raw data)
Line: Sulpher Project Linelroon
$10+75 \mathrm{E} 12+50 \mathrm{E} \quad 14+50 \mathrm{E} \quad 16+25 \mathrm{E} \quad 18+25 \mathrm{E} 30+00 \mathrm{E} 21+75 \mathrm{E} \quad 23+75 \mathrm{E} 25+50 \mathrm{E} \quad 27+50 \mathrm{E} 29+25 \mathrm{E}$

K-H Filter - Imaginary Component Data (raw data) Line: Sulpher Project Line1700N

$$
\begin{gathered}
\text { K-H Filter - Real Component Data (raw data) } \\
\text { Line: Sulpher Project Line1800N }
\end{gathered}
$$

$10+75 \mathrm{E} \quad 12+50 \mathrm{E} \quad 14+50 \mathrm{E} \quad 16+25 \mathrm{E} \quad 18+25 \mathrm{E} \quad 20+00 \mathrm{E} 21+75 \mathrm{E} \quad 23+75 \mathrm{E} 25+50 \mathrm{E} \quad 27+50 \mathrm{E} 29+25 \mathrm{E}$

K-H Filter - Imaginary Component Data (raw data) Line: Sulpher Project Line1800N

1021.0
1013.3
1005.5

4037.0

[^0]: Joël Dubé, P.Eng. \#100194954

