GEOLOGICAL ASSESSMENT REPORT

for work performed on the

RAINBOW PROPERTY

2016 Yukon Mineral Exploration Program Project #16-001

End of the $1-6$	YE51692 – YE51697
End 127 – 136	YD69161 - YD69170
End 165 – 168	YD69199 - YD69202
End 185 – 194	YD69219 - YD69228
End $287 - 298$	YD69365 - YD69376

NTS: 105N12

Latitude 63° 38' N, Longitude 133° 40' W

Located in the

Mayo Mining District, Yukon Territory

Prepared by:

SCOTT BERDAHL & BILL MANN

Claims owned by:

18526 YUKON INC.

Work performed:

JUNE 23 - 30, 2016

CONTENTS

Introduction	•	•	•	2
Work History				2
Property Information				3
Location and Access				4
Physiography	·	•		5
Regional Geology				6
Local Geology				7
2016 Program Description				10
Results & Discussion				12
Conclusions & Recommendations				21
Statement of Expenditures				22
Statement of Qualifications				23
Figures				
1. Rainbow Project Location				4
2. Geological units in northwestern Lansing r	nap area	ļ		9
3. Total Field Magnetics				14
4A. Gold Geochemical Results				15
4B. Arsenic Geochemical Results .	•			16
4C. Bismuth Geochemical Results				17
4D. Antimony Geochemical Results				18
4E. Silver Geochemical Results				19
4F Tellurium Geochemical Results .				20
Tables				
1. Claim Tenure Information	•	•		3
2. Unit Descriptions				8
Appendices				
A. Geological Report on the Rainbow Proj	ect .	•	•	24
B. Geochemical Assay ResultsC. Relevant Receipts				43 63
C. Kelevalli Kecelpis				03

INTRODUCTION

18526 Yukon Inc.'s "Rainbow" property is located south of the Stewart River, downstream of its confluence with the Lansing River in the central Yukon Territory, some 110 kilometers east of the village of Mayo. The property was initially staked in 1999 by prospector Ron Berdahl to cover exposed gold-bearing sulphide veins in Rainbow Creek along with a newly-discovered intrusion and surrounding hornsfels. Soil sampling programs in 2004 and 2012 revealed a broad, multi-element anomaly associated with the alteration, with gold values in excess of 1 g/t in soils. A one-day property visit in 2015 yielded a quartz float specimen running 8 g/t Au.

This report describes the July 2016 work program conducted on the Cliff property by 18526 Yukon Inc. and serves as a final report for the project's Yukon Mineral Exploration Program funding as project #16-001. The purpose of this program was to establish the extent of the hornsfels alteration surrounding the recently discovered intrusive system, as well as the extent of the system itself and its connection with mineralization. The work program comprised a ground-based magnetic survey grid covering 37.5 kilometers across 30 lines, as well as first-pass property-scale mapping of lithology, structure and alteration, and general prospecting yielding 36 rock samples and 11 soil samples submitted for geochemical analysis.

The 2016 program outlined an alteration system covering some three square kilometers, comprising multiple magnetized features associated with magnetic-low intrusions. The extent of this alteration remains open in several directions. Prospecting results, paired with previous prospecting and geochemical data, demonstrate the property's potential to host economic, intrusion-related gold deposits. More work is required to establish suitable drill targets.

WORK HISTORY

Prospector Ron Berdahl encountered gold bearing, pyrite-rich fault zones in 1995 exposed along Rainbow Creek, along with visible gold in panned sediments. Regional mapping by geologist Charlie Roots in 1996 identified previously undocumented granitic dykes exposed in the Rainbow Creek canyon. Berdahl staked the occurrence with his sons (including the author) in 1999 as the "End of the" claims and did more general prospecting, obtaining sulphide-rich grab samples from outcrop of up to 4.1 g/t Au. Geologist David Caulfield visited the property on behalf of Rimfire Metals in 2000 and did a brief bit of prospecting and soils work, concluding the property had potential to host a deep-seated, intrusive-related gold system.

In 2004 Berdahl and his sons completed e a small reconnaissance soils program, collecting 174 samples along contours at 50 m spacings. The soil geochemistry revealed zones of anomalous

gold in soils (to 188 ppb Au) accompanied by and adjacent to zones of anomalous arsenic, bismuth, antimony, silver, lead, molybdenum and tungsten.

In 2012, 18526 Yukon Inc. completed a 182 sample soils grid at 100 m spacings over Rainbow Creek and the mineralized and anomalous areas encountered in prospecting and during the 2004 survey. The survey revealed a 1.7-kilometer zone of elevated to highly anomalous multi-element geochemistry, with values of up to 1.27 g/t Au, >100 g/t Ag (detection limit), 7747 ppm As, 224 ppm Bi and 743 ppm Sb in talus fines and soils, coincident with the eroded edge of a 2 by 3 kilometer magnetic high in regional magnetic data.

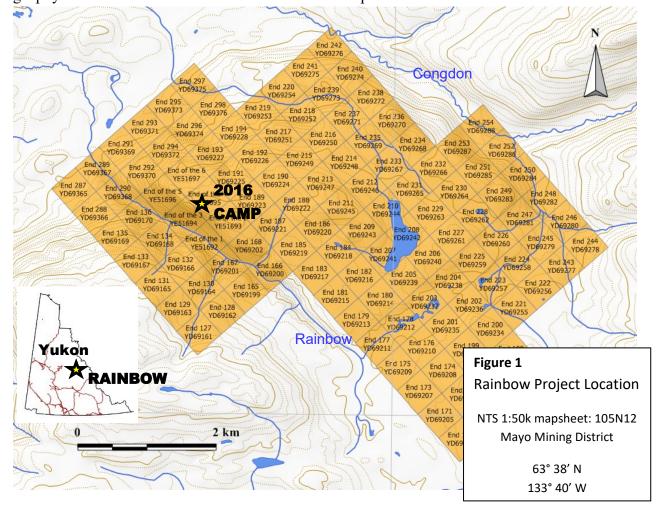
A property-wide stream sediment sampling program was also conducted by 18526 Yukon Inc. in 2012, revealing several streams with anomalous gold values and highlighting the increase in gold and pathfinders as Rainbow Creek passes through the mineralized canyon. A slight increase in arsenic values in a stream 3 kilometers east of Rainbow Creek, at the eastern edge of the anomaly in the regional magnetic data, suggests a large lateral alteration footprint associated with the intrusion.

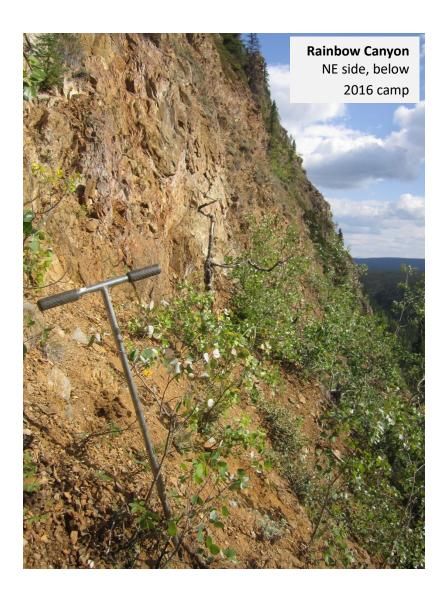
In 2015, a day visit to the property yielded an angular quartz float specimen from high on the cliffs in Rainbow Canyon, within the geochemical anomaly, which ran 8 g/t Au.

Prior to Berdahl's 1995 discoveries, no previous work on the Rainbow Creek gold occurrences is known.

PROPERTY INFORMATION

The Rainbow property presently consists of 42 quartz claims. All claims are registered with the Mayo Mining Recorder in the name of 18526 Yukon Inc., Ron or Scott Berdahl (Table 1).


Table 1 – Rainbow Claim Tenure Information


<u>Claim Name</u>	<u>Grant Numbers</u>	<u>Owner</u>
End of the $1-6$	YE51692 – YE51697	Ron Berdahl - 100%
End 127 - 136	YD69161 - YD69170	Scott Berdahl - 100%
End 165 - 168	YD69199 - YD69202	18526 Yukon Inc 100%
End 185 - 194	YD69219 - YD69228	18526 Yukon Inc 100%
End 287 - 298	YD69365 - YD69376	18526 Yukon Inc 100%

LOCATION AND ACCESS

The "Rainbow" property is located in the east-central Yukon, roughly 16 kilometers southwest of the confluence of the Lansing and Stewart Rivers in the Mayo Mining District, on NTS 1:50k map sheet 105N12 at 63° 38' N latitude, 133° 40' W longitude (Figure 1). The property overlies parts of Rainbow Creek, a north-flowing tributary stream to the Stewart River. It is roughly 110 kilometers due east of the village of Mayo, Yukon, 72 kilometers from the existing road network out of Keno, Yukon, and 4 kilometers from the Stewart River, which itself is navigable to this point apart from a portage at Fraser Falls. A small lake, which can be accessed by float plane, exists off the east end of the property about 3 kilometers from the soil anomalies at Rainbow Canyon.

Access to the 2016 reconnaissance program was provided by Trans North helicopters out of Mayo, Yukon. A fly camp was established on the property at 63°37'41.13"N, 133°39'43.58"W on a high ridge overlooking Rainbow Canyon, one of the few places on the property that a helicopter can land due to thick vegetative cover elsewhere. All geological, prospecting and geophysical traverses were accessed on foot from camp.

PHYSIOGRAPHY

18526 Yukon Inc.'s Rainbow property is located on the Stewart Plateau, a region of subdued, glacially sculpted, subalpine to alpine mountains between Stewart and Hess rivers, to the east of their confluence. The local climate is relatively dry, with nearby Mayo receiving some 31 cm of precipitation annually, mostly as rain during the summer months (May to September). Temperatures range from daily highs of 10 to 30°C in the summer and can drop well below - 40°C in the winter, with a high degree of variability at any time of year. The region is accessible for regular surface exploration from late May through September, though permafrost is prevalent on north-facing slopes throughout the year. The first winter snows can begin at high altitude as early as late August. Streams generally freeze around October.

The Rainbow property straddles Rainbow Creek, which occupies a steep, linear NW-SE trending canyon 320 m deep, lined by large cliffs and active scree and talus slopes. Outside of the canyon, much of the property covers an undulating plateau (1100 m elevation), truncated along its northwestern edge by a steep drop into the Stewart River valley (to 680 m elevation).

A large portion of the Rainbow property is covered by buckbrush (dwarf birch) ingrown after a several decades old burn. Spruce-dominated boreal forest occurs elsewhere on the property, and on north facing slopes thick moss and permafrost are common. Geological exposure is generally poor outside of Rainbow Canyon, though outcropping cliffs and talus frost boils can be found and were useful in the 2016 mapping program.

GEOLOGY

For a detailed account of the Rainbow property geology and observations made in 2016, refer to Appendix A, Bill Mann's report and accompanying maps.

Below (this section) is a brief overview of the local and regional geological setting of the Rainbow property and descriptions of pertinent units (Figure 2¹ and Table 2²) taken from Roots (1997).

Regional Geology: The regional geology around the 'End of The' claims is described as follows by C. F. Roots (1997)³ in his study of the Upper Paleozoic strata for the northwestern Lansing map area (105N):

The Lansing map area lies near the northern edge of the Selwyn Basin, which is the outer part of the Lower Paleozoic miogeocline of ancestral North America. Stratigraphic units in the Lansing area are summarized [in Table 2]. The Proterozoic off-self depositional environment accumulated grit succeeded by shale and chert. This regime was disrupted by Late Devonian block faulting, deposition of Earn Group turbidites and fanglomerates; structurally elevated areas were eroded. The subsequent clastic shelf regime included a sandstone, the Keno Hill quartzite, which form a 500 km. long, relatively narrow regional marker. In Middle Jurassic time the sedimentary succession was deformed by folds and thrust faults, perhaps resulting from collision and transpression with far-traveled terranes 300km southwest. The turbidite basin continued into Early Carboniferous time.

¹ Modified from Roots, C.F., 1997. *Upper Paleozoic strata with potential for massive sulphide mineralization, northwestern Lansing map area (105N), Yukon.* In: *Yukon Exploration and Geology, 1996*, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 138-146.

² Ibid.

³ Ibid.

Jurassic and Early Cretaceous deformation of the Selwyn Basin is by tight, upright to overturned folds of competent rocks and echelon, fault imbrication of incompetent strata, all at sub-greenschist metamorphic grade. In general the structural style suggests thin-skinned contractions and underlying, relatively flat regional detachment faults. Deformation structures are cut by the Tombstone plutonic suite, whose 92-94 Ma (Late Early Cretaceous) age constrains the end of regional deformation.

The 1996 mapping in northwestern Lansing established the location of Robert Service Thrust map area. The Yusezyu grit (Hyland Group: PCH) is contorted in east- and west-plunging cylindrical and box folds in the hanging wall of the Robert Service Thrust. A 15km long strip of Hyland Group strata is separated from the larger area of Hyland Group by a belt of Keno Hill and younger rocks. This strip is bounded on its south side by a vertical, northwest-trending fault. The northern contact, with Earn Group conglomerate, must be a fault and may also be a segment of the Robert Service Thrust. Thus the strip of isolated Hyland Group is interpreted as a klippe preserved by later downfaulting. The late northwest-trending faults were predominantly dextral transcurrent faults, and were traced southeastward about 9km of dextral offset is indicated.

Local Geology: Property geology is described as follows by C. F. Roots (1997):

The covered surface trace of the Robert Service Thrust trends northwest, roughly parallel to (Rainbow) creek on its south side of the valley. The footwall Earn Group, consisting of black mudstone laced with white quartz and lesser brown phyllite which results in iron-stained seeps, is exposed in the floor of the steep-walled creek. The northeast side is brush-covered talus surmounted by 200m high vertical, rusty weathering green, grey and brown interlaminated siltstone and fine sandstone, commonly silicified, occurs at the west end and atop the cliffs. This rock, considered part of the southern belt of the green-grey phyllite has a map width of 2km to a possible stratigraphic contact with Keno Hill quartzite. Gradations between siltstones and fine sandstone laminae indicate upright bedding. Because adjacent Keno Hill quartzite forms an anticline structure, the grey-green phyllite probably overlies it. The cliff, when viewed from a vantage point across Rainbow Creek, reveals a reticulate pattern of granitic dykes, up to 30m wide, vertically and horizontally on the face. Talus blocks consist of medium-grained, leucocratic, muscovite granite, and contain up to 1% interstitial sulphide blebs (probably

pyrrhotite). The granite has not been described or shown on earlier maps. Because the exposure is steep, the plan view of this intrusion is minute, probably 1300m long.

Period or	Formation (if	Map unit and lithology	Def to necont		
	` `	Map unit and lithology	Ref. to nearest described locality		
Epoch	ch established)				
Late Early	Tombstone	Kr rhyolite dykes, biotite felsite			
Creatceous	Intrusions	KT quartz monzonite, granodiorite			
Creatceous	Indusions	K 1 quanz monzonne, granourorne			
		Clastic Shelf			
		(Middle Carboniferous to Triassic)			
Triassic	Jones Lake	TJps slate, sandy slate, limestone, calcareous black shale, micaceous,	Roots et al. 1995		
Formation Tups state, sandy state, timestone, calcareous black shale, micaceous, Roots et al. 1995					
	Tomation	unconformable			
Mid.Triassic	Mafic	Td metadiorite, gabbro	Mortensen and		
Wild. I Hubbie	intrusions	a a medianic, gaodi o	Thompson, 1990		
	111111111111111111111111111111111111111	intrusive contact	Thompson, 1990		
Permian	Mt. Christie	PMC green-grey siltsone, argillite, chert	Roots et al., 1995		
	Formation	The grant gray management and	1		
		conformable			
Permian-		CPp sandstone, argillite, dark grey slate interbedded with laminated	Roots et al., 1995		
Carboniferous		quartz sandstone and thick bedded fine-grained quartzite, buff green	ĺ		
		phyllite.			
Carboniferous	Keno Hill	MKH quartzite, carbonaceous schist, limestone	Abbott, 1990a		
	Quartzite				
		MKv chloritic phyllite	Turner and Abbott,		
		<u> </u>	1990		
		unconformable			
		Turbidite Basin			
		(Middle Devonian to Middle Carboniferous)			
Devonian to	Earn Group	DME - black shale, sandstone, chert grit, chert pebble	600 ?		
Carboniferous	1	conglomerate,minor limestone, siltstone and mudstone	Abbott and Turner,		
		DMp - silicious slate, carbonaceous schist, metachert and meta-	1990		
		conglomerate	Gordey, 1990a		
		DMv - quartz-sericite-chlorite phyllite, quartz-feldspar augen phyllite uDc- thick bedded coralline limestone	200; Gordey, in prep		
		unconformable	200, Cordey, at prep		
		unconformatic			
		Selwyn Basin			
		(Late Precambrian to Middle Devonian)			
	Road River Grou				
Siturian	Steel Fm.	Ss - grey-green siltstone, chert, minor carbonate	40; Roots et al., 1995		
STATE AND ADDRESS OF THE PARTY	_ Stoce Fill.	conformable	To, Kuna et al., 1993		
Ordovician to	Duo Lake	OSD -black, brown argillite, grey and black chert, dark siltstone, minor	~200; Gordey and		
Early	Fm./ Elmer	quartz arenite	Anderson, 1993 /		
Devonian	Creek Fm.	quare arenne	Cecile, in press.		
_ / vandil	1 2222 1 1111	unconformable	Trenty to press.		
Mid. Cambr	Gull Lake	COG - olive and brown siltstone, black argillite and shale; grey	100-300; Roots et al.		
Ordovician	Formation	dolostone or carbonate breccia at base, minor grey quartzite	1995		
0140114141	7 0111111111011	actions of enforme process at case, make grey quarters	1		
		conformable			
	Hyland Group (1	Narchilla, Algae Lake, Yuseyzu formations)	·		
Late Prot. to	Narchilla	PCN - Maroon argillite, grey and brown slate, minor quartz sandstone	50 ? Roots et al.,		
Mid. Cambr.	Formation	interbeds	1995a,b		
	Senoah mbr.	PCNS - siltstone, sandstone	? Cecile, in press		
	Algae Lk.Fm.	PCAL - Limestone	? Cecile, in press		
Late	Yusezyu	PY-Sandstone, grit, psammite, metaconglomerate, chloritic metasiltstone;	3000+; Roots et al.,		
Proterozoic	Formation	carbonaceous phyllite or graphitic slate near base; grey limestone, marble	1995a, b		
		lenses near top			
		Table to the tab	L		

Table 2 – Unit descriptions. From Roots, 1997.

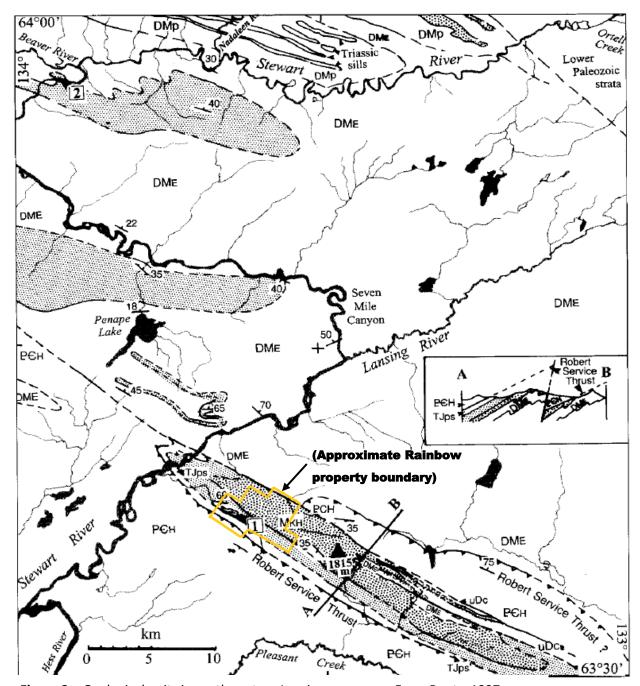


Figure 2 – Geological units in northwestern Lansing map area. From Roots, 1997.

2016 PROGRAM DESCRIPTION

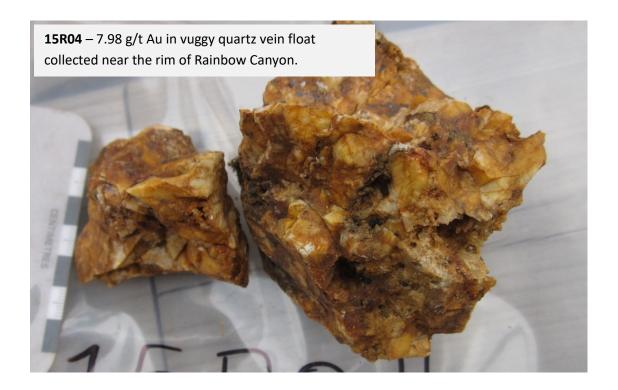
The 2016 work program on the Rainbow comprised three main elements: a ground magnetometer survey conducted by the author, first-pass geological mapping performed by Bill Mann, and general prospecting by Ron Berdahl to follow up on the promising soil geochemistry collected in 2004 and 2012. The field work was completed over 8 days, from June 23 to 30, 2016.

Magnetometer Survey

The ground magnetic survey employed two GSM-19T proton magnetometers manufactured by GEM Systems of Richmond, BC. One of the magnetometers was equipped with an external GPS unit and was used as a mobile sensor to cover the survey area. With GPS guidance, and reading location automatically recorded with every measurement taken by the mobile magnetometer, no physical sight nor cut lines were needed to conduct the survey. The second magnetometer was used simultaneously as a stationary base at approximately 63° 37' 41.7" N, 133° 39' 42.9" W to monitor temporal variations in the regional magnetic field during the survey.

In regional magnetic data, the Rainbow property is characterized by a large positive anomaly to the northeast of the Robert Service Thrust associated with hornsfelsing around local intrusions. To establish a higher resolution picture of this anomaly, a grid of 30 survey lines running N-S was established from the northeast edge of Rainbow Canyon and extending east, covering a 2.8 by 1.6 km area, with line spacings of 50 m in the west, 100 m in the middle of the survey, and 200 m on the eastern extent (Figure 3). Readings were taken every 10 m along lines at a consistent height of 2.0 m above ground level. At one pronounced anomaly near camp, where magnetic highs abutted lows with values outside of the detection thresholds of the magnetometer, a more detailed, improvised set of readings was taken. In all, 3979 raw magnetic readings were taken by the mobile magnetometer, for a total of 37.5 line kilometers of magnetic information. Meanwhile, the base station magnetometer took 1 reading every 5 seconds while the mobile survey was underway.

Following the survey, the raw magnetic data with correlative base station readings were corrected for diurnal variation by subtracting the field strength at the base station from the strength measured simultaneously at the mobile magnetometer, and then adding a datum of 57,400 nT. For mobile magnetometer readings taken in between those of the base station, a base station value was obtained by linearly interpolating the field strength between the two adjacent base station readings.


Geological Mapping

Multiple traverses were conducted from the fly camp during the week on the property, into Rainbow Canyon itself and onto the plateau to the east of camp. The objective of these traverses was to get a general sense of the overall property geology and alteration patterns. This work is disclosed in more detail as Appendix A.

Prospecting

Complementing the geological mapping, 8 man-days were spent on the property exploring soil geochemical anomalies, several magnetic anomalies encountered by the magnetometer on the western part of the grid, and extending a previous soil survey with samples to the northeast. In total, 36 rock samples and 11 soils were submitted for analysis.

A field-portable XRF machine was used in camp nightly to analyze rocks and ultimately to select those to submit for analysis. It should be noted, however, that the unit has a high detection limit for gold, so even multi-gram per tonne Au samples could have been passed over.

RESULTS & DISCUSSION

Magnetic Results

Figure 3 shows the results of the ground magnetic survey, corrected for temporal variations in the background field. As can be seen, the broad anomaly in the regional magnetic survey comprises multiple large WNW-ESE trending magnetic highs. In several areas, the highest magnetic responses have a tight, pronounced magnetic low at their center, consistent with hornsfels alteration around a reduced intrusive system, possibly a dyke swarm related to the kinematics of the Robert Service fault. The magnetic highs exceed the current survey in scale, extending east, south, and northwest beyond the 2016 survey coverage.

Geochemical Results

Figures 4A through 4F show the geochemistry encountered thus far at Rainbow for Au, As, Bi, Sb, Ag & Te, in soil, rock and stream sediment sampling. These figures compile the 2016 data alongside geochemical information from previous property visits in 2015 (one rock sample taken on a day visit), 2012 (extensive stream and soil coverage, 3 rock samples), 2004 (initial contour soil sampling) and 1999 (several rock samples with high gold – other samples not digitized).

Soils

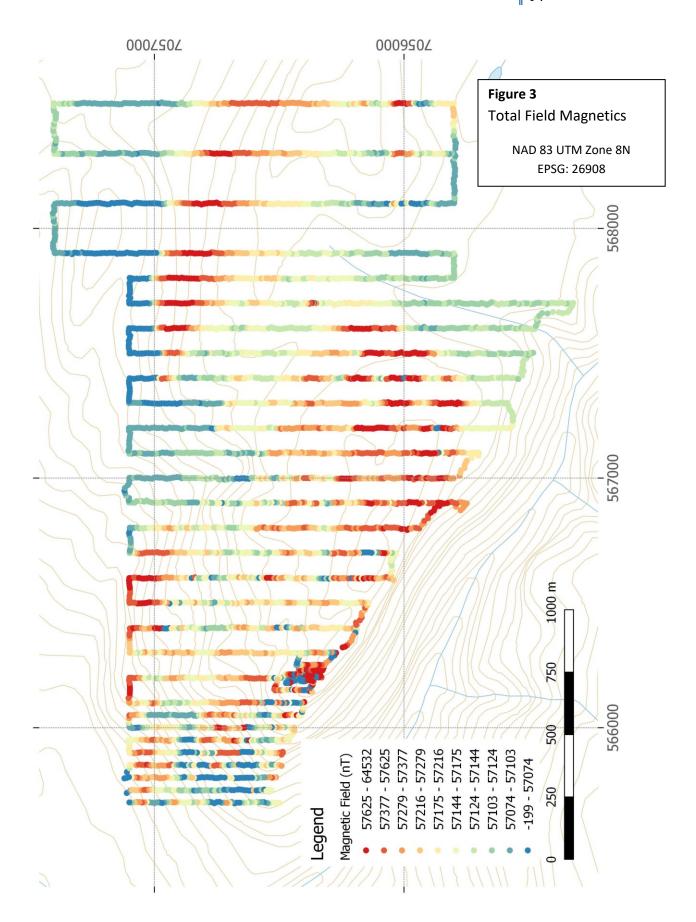
In soil geochemistry, various zones are highly anomalous for each of the six elements shown, with a pronounced, kilometer-scale gold anomaly complemented by arsenic, bismuth and tellurium and rimmed by high antimony and silver values. In the central zone of the soil anomaly, where a soil value of 1.27 g/t Au was observed and a 7.98 g/t quartz float specimen recovered, arsenic values are low, but tellurium and bismuth values are highest, again suggestive of mineralization from a reduced intrusive source.

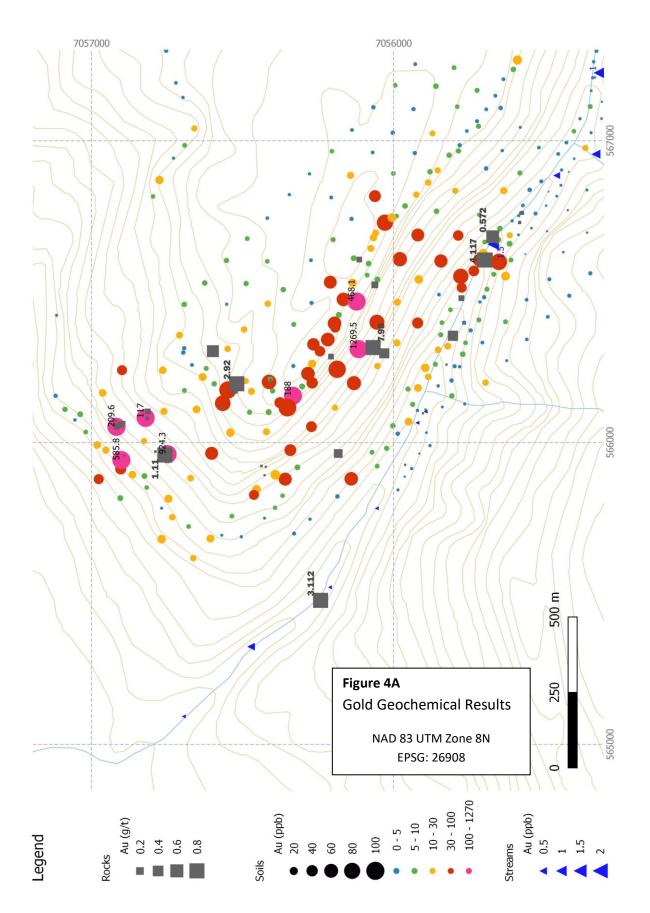
Streams

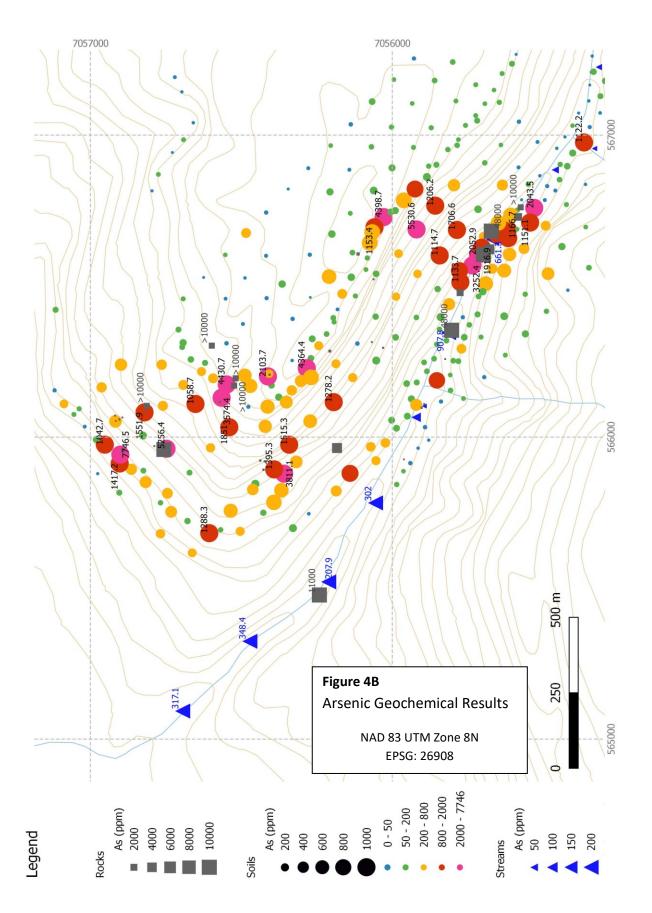
Stream sediment samples yield anomalous geochemistry in Rainbow Creek across a wide range of elements, beginning at the upstream end of the soil anomaly. A muted region in the middle of Rainbow Canyon is likely due to a landslide that occurred from the SW side of the canyon shortly before the 2012 streams survey, causing barren phyllites of the Jones Lake Formation to dominate the local sediment load. The sediment values along Rainbow Creek are not surprising given the known soil and rock values. More interesting is the stream draining the small lake 3 km east of Rainbow Canyon, off the east end of the 2016 magnetic survey, which has a response in gold, arsenic, antimony and bismuth. Paired with the magnetic data, this suggests that mineralization associated with the intrusive system may extend in the E-W direction across more than 3 kilometers.

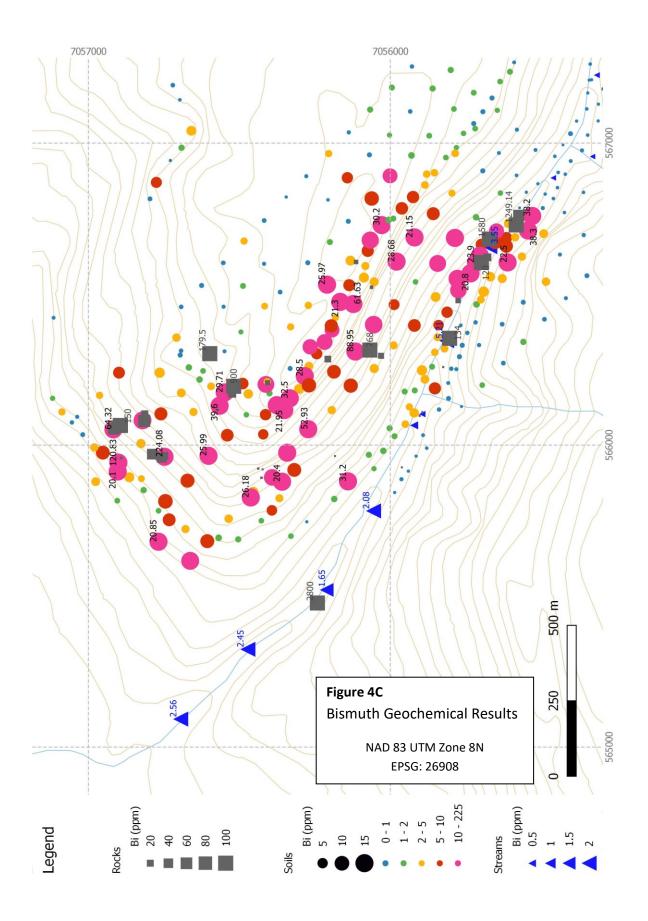
Rocks

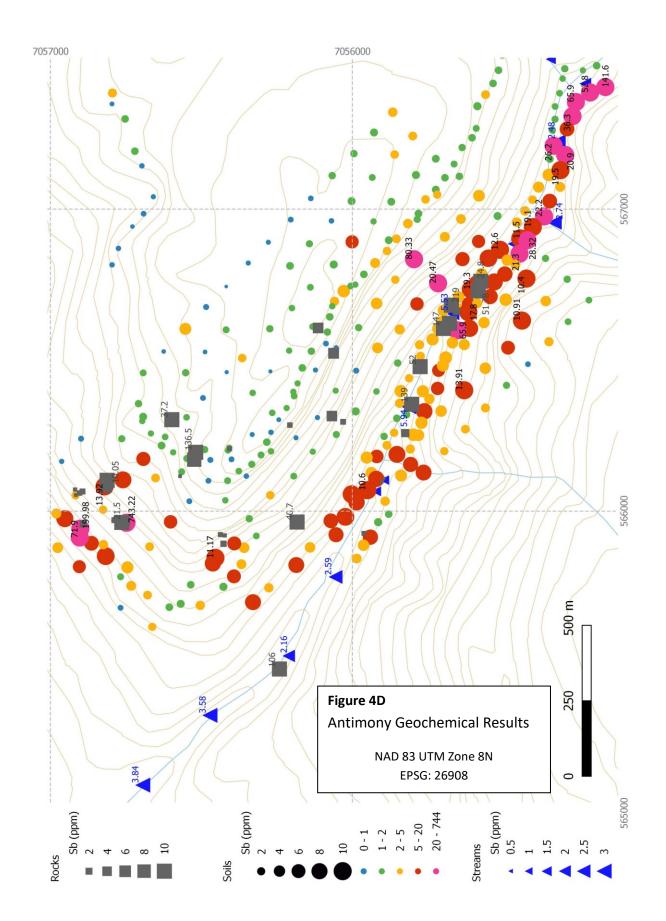
Multi-gram per tonne Au rock samples have been recovered from various parts of the Rainbow property, spanning an area of several kilometers. These samples and field observations demonstrate the presence of several zones and types of mineralization, and explain some of the characteristics of the observed soil anomalies.

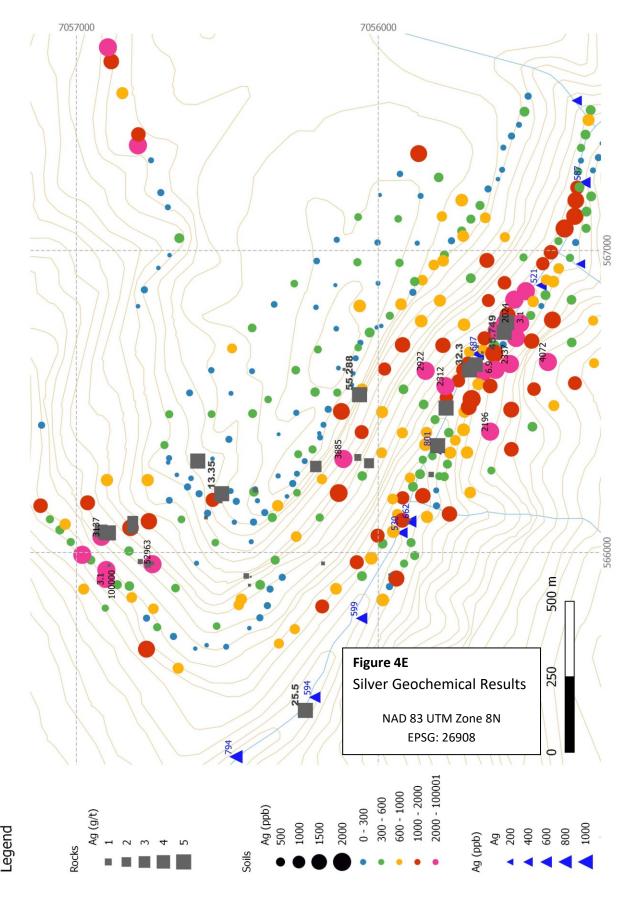

The northeastern end of the soil anomaly is characterized by high Au, Ag, As, Bi & Sb values. Rock samples 16R05 and 16R22 target thin arsenopyrite veins cutting the hornsfelsed sediments in the area. Sample 16R05 accounts for high Au values (despite a single thin, 2-3 mm vein occupying only a small fraction of the material, the sample returned 1.11 g/t Au) accompanied by high Bi and Te, but lacks particularly high Sb and Ag values as seen elsewhere in the soils. The strength of a nearby soil sample, at 0.9 g/t Au, suggests the float is locally sourced, and that more of these veins may outcrop locally beneath the soil cover. Orientation was not recorded as this rock was found as float. Rock sample 16R22 is a direct, outcrop sample of arsenopyrite vein material (oriented ~165/80), is high across Au (2.92 g/t), Ag, Sb, As, Bi & Te, and may be more representative of the source of the anomalies. The density and abundance of such veins in this area is not known.

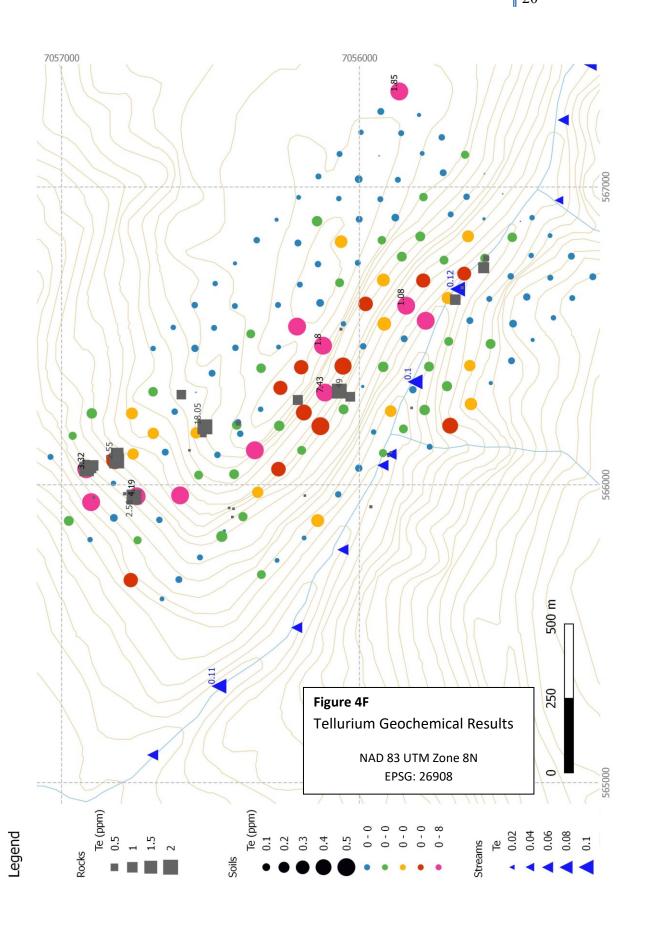

Also in the northeastern end of the survey is a zone of prominent, gossanous orange cliffs, visible from the Stewart River valley. These cliffs contain lenses of intensely-horsnfelsed, scheelite-bearing phyllite(?) to 1 m thick. The outcrop is variably auriferous, with a talus fines sample taken below the lower cliffs running 0.21 g/t Au (selected outcrop and local float samples did not return gold values above 0.12 g/t Au).


The strongest gold-in-soil anomaly, running 1.27 g/t, occurs amidst strongly hornsfelsed sediments below the rim of Rainbow Canyon. Outcropping sulphosalts here are mildly auriferous (and copper-bearing), but not so much as to explain the anomaly. Rock sample 15R04 is a more likely candidate, a quartz float specimen running 7.98 g/t Au collected from a talus field below the soil sample. Above the soil sample the cliffs are steep enough to have prevented more serious inspection, except in float and along the base.


Observed rock types and mineralization are described in more detail in Bill Mann's geological report of the Rainbow Property (Appendix A).


Digital files containing magnetic and geochemical data presented here in the results section accompany this report.





18526 Yukon Inc.

Rainbow Property Assessment

CONCLUSIONS & RECOMMENDATIONS

The 2016 exploration program at Rainbow offers strong evidence for the possibility of a reduced intrusion-related gold system or systems across a broad area. Multiple styles of mineralization are present, including thin, near-vertical, gold-bearing quartz-arsenopyrite veins (to 2.92 g/t Au), mineralized quartz (to 7.98 g/t Au), sulphide-rich fault zones (to 4.1 g/t Au) and auriferous skarns. Sheeted quartz veining was observed in phyllites, but thus far the nature of mineralized veins is not well-characterized.

Further work should concentrate on determining the scope of the system and locating potential zones of economic mineralization. Age dating of the intrusives on the property would determine their relationship with members of the Tombstone plutonic suite. Magnetic surveying should be expanded to map out the full extent of the hornsfeling and to better understand the location of intrusions and dykes. Prospecting and contour soil sampling should be performed in central portions and towards the eastern end of the observed magnetic anomalies to understand how widespread mineralization is across the magnetic anomalies—whether it is constrained to the western end along Rainbow Canyon, or, as suggested by the 2012 streams survey, whether the mineralized system is more widespread. Suitable drill targets might well be identified during this phase.

Additional recommendations are outlined in Bill Mann's accompanying report (Appendix A).

STATEMENT OF EXPENDITURES

Expenses for the 2016 program are as summarized in this YMIP claim form:

YMEP Expense Claim Form - Client Copy

YMEP no:	16- 001	project name:	Rainbo	w 2016	applicant name:	Scott Berdahl	
expense claim no:		<i>program</i> ha type:	rd rock		program ta module:	rget evaluation	
date submitted:	19-Mar-17	phone:	+33 7 68	866 9197 email:		yukongold@gmail.com	
address:			Box 112	250, Whitehors	e, YT, Y1A 6N4		
start/end da this claim:	ates of field	work for	23-Jun-16	30-Jun-16	no. of field days/this 8 claim:		
eligible expenses item	Please re	efer to rate gu		vide photocopy o		total	
daily field expenses	no persons: 3		8	\$100/day	\$2,400.00		
	Name (sup	pply statemen	nt of qualificat	ions)			
	Bill Mann (Senior Geologist)			10	450	\$4,500.00	
personnel	Scot	Scott Berdahl (Geologist)			400	\$3,600.00	
Ron Berdahl (Pros		pector)	8	350	\$2,800.00		
equipment (rental)			private or commercial	unit/days	rate	total	
GEM S	ystems Mag	netometer	private	8	110	\$880.00	
Fie	eld Portable	XRF	private	8	110	\$880.00	
Yamaha 2000W Generator		enerator	private	8	10	\$80.00	
Husqvarna Chainsaw		insaw	private	8	10	\$80.00	
Truck (Wh	nitehorse to I	Mayo return)	private	925 km	0.60	\$555.00	
			private				
			private				
			private				
			private				
			private				
			private				
other			Please provi	ide details.			
Helico	pter (mob &	demob)	TransNorth			\$4,505.50	
Rock Assays #1		ALS	34 samples		\$1,871.37		
Rock Assays #2		ALS	2 samples		\$144.36		
	Soil Assays		B. Veritas	11 samples		\$404.25	
Data A	nalysis & Re	port Prep	18526 Yukon			\$2,000.00	
				Т	otal this claim:	\$24,700.48	

STATEMENT OF QUALIFICATIONS

I, JAMES SCOTT BERDAHL, hereby certify that:

- 1. I am a geologist contracted by 18526 YUKON INC., Box 11250, Whitehorse, Yukon, Y1A 6N4.
- 2. I am a graduate of the Massachusetts Institute of Technology (MIT), with a degree in geology (B.Sc., 2008). I also hold an M.Sc. in Earth Science and Engineering from the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.
- 3. I have been employed in mineral exploration, as a prospector or as a project geologist, annually for more than a decade, and full-time for over four years.
- 4. I supervised and assisted with the exploration activities described above in June of 2016.
- 5. The data contained herein is true and correct to the best of my knowledge.

I also disclose that I have a direct interest in 18526 Yukon Inc. and thus a direct interest in the Rainbow mineral property itself.

March 19, 2017

APPENDIX A

Geological Report on the Rainbow Project (END OF THE claims)

W.D. Mann, M.Sc., P.Geo.

INTRODUCTION

The author spent eight days on the property (June 23-30, 2016), accompanied by the owners of the property, Ron and Scott Berdahl. Camp was established on the ridge top above Rainbow creek canyon, one of the highest points on the claims. The purpose of the program was to improve the geological understanding of the property, and to identify the most favourable targets. The program was successful in extending the area known to be favourable beyond the cliffs and soil anomalies to the northeast where intrusions were found along with associated magnetic anomalies.

The property was originally staked based on stream sediment geochemical anomalies, prominent rusty outcrops and the discovery of mineralized outcrops along the creek banks. The presence of a prominent magnetic high anomaly and igneous intrusive rocks led to the assumption of a Tombstone intrusive-related gold type target. Previous geological examination of the property was conducted by Charlie Roots during regional mapping at 1:250,000 scale for the GSC and YGS (Roots, 2003) and during day trips by geologists investigating the property for potential option agreements. The author conducted mapping of most of the outcrops proximal to camp and examination of showings near the creek. Outcrop is highly concentrated on cliffs along Rainbow creek canyon, while most of the property is gently sloping and covered by forest that was extensively burnt by wildfires a couple of decades ago. The burnt area has been revegetated by dense buckbrush and young trees. The focus of the 2016 geological work was on the alteration, mineralization, lithology and structure related to potential gold mineralization.

During the 2016 field program Scott Berdahl primarily conducted a ground magnetometer survey while Ron Berdahl did follow-up prospecting on soil geochemical anomalies, hand trenching on the highest magnetometer anomaly, and cut helicopter pads close to the creek. The author provided a Niton portable XRF device which was used to confirm mineralization by pathfinder elements and base metals in rocks and soil samples.

The 2016 program was successful in expanding the overall size of the favourable area, in identifying structures that may control mineralization, and in mapping areas of intense contact and hydrothermal alteration.

This summary report is intended for use as an appendix within an assessment report or a YMEP report. The author's GPS waypoints are presented in a spreadsheet to accompany this document.

GEOLOGY

The 1:250,000 scale regional geological framework documented by Roots is accepted as a good basis for exploration of the property. Roots also focused specific attention on the area of the claims in an attempt to assist mineral exploration as presented in the 1996 YEG volume.

The geologic units in the area underwent regional metamorphism to sub-greenschist facies and were deformed during two or more episodes of thrust faulting. The Robert Service Thrust Fault is mapped along the southwest edge of the claims, but was not examined in 2016. Rocks to the southwest of the fault are dominantly Upper Proterozoic to Cambrian Yusezyu formation grits of the Hyland Group. Northeast of the fault in the footwall lie Triassic to lower Carboniferous rocks of the Jones Lake formation, the Mount Christie formation and the Keno Hill formation. These formations form an anticlinal structure, and are intruded by Cretaceous granitic rocks of the Tombstone suite. A northwest trending vertical dextral transcurrent fault is present near the northern edge of the claims.

Triassic Jones Lake Formation

Rocks of the Jones Lake formation outcrop on the southwest side of Rainbow creek on the claims, and dip southwest according to mapping by Roots. The contact with the underlying Mt. Christie formation lies approximately along Rainbow creek, and was not seen in outcrop. The creek also marks the transition between hornfelsed rocks to the northeast and unaltered rocks of the Jones Lake formation. Outcrop of this unit is limited to a few locations along the creek bank and a few steep exposures higher up on the southwest side of the canyon.

Rocks examined by the author in this area included phyllitic grey shale, pyritic black shale, and pale cream-green phyllite. Some highly convoluted folding was locally observed. Narrow rusty white quartz-sulphide veins up to 10cm wide were observed locally. The high water level and extremely dense vegetation prevented detailed examination of many outcrops along the creek, and Ron Berdahl was unable to relocate the discovery outcrop.

Fig. 1 Phyllites of the Jones Lake formation beside Rainbow creek.

Carboniferous to Permian Mt. Christie Formation

Most of the 2016 field examination occurred over rocks of the Mt. Christie formation as camp was located on this unit, and the prominent cliffs along the northeast side of Rainbow creek and the "Orange Cliffs" to the north are of this unit. Most of the 2012 geochemical survey was conducted over this unit, with some sampling over the Jones Lake formation.

The Mt. Christie formation consists of green-grey laminated sediments, mostly phyllitic siltstones and sandstones. On the claims these rocks are rusty weathering and hornfels altered in most places where examined, with tan coloured sandstones or quartzites the most prominent unit and variably deformed and layered siltstones and phyllites common. Local calcareous sections are altered to calc-silicate hornfels. No obvious marker horizons were noted within this formation.

The cliffs along Rainbow creek and the orange cliffs to the north are coloured by the weathering of very fine-grained pyrrhotite &/or pyrite, and a white powdery precipitate (thought to be sulphate) with local malachite and scorodite is common along the cliffs. The sulphide weathering and resultant acid leaching is likely to result in the metal enrichment of soil samples collected at the base of the cliffs, especially for more mobile metals such as copper and arsenic.

Fig. 2. Fine-grained tan sandstone/ quartzite of the Mt. Christie formation.

Lower Carboniferous Keno Hill Quartzite

The Keno Hill Quartzite is massive to thick bedded, grey to brown weathering dark grey to black fine-grained quartzite. The quartzite beds have thin interbeds of phyllitic shale or schist. This quartz-dominant lithology does not show obvious signs of hornfels alteration, however the magnetic high identified by the regional magnetic and the 2016 ground magnetic survey indicates disseminated pyrrhotite due to contact metamorphism. Some silicification is likely also present, however this is difficult to determine in the field.

The ridge that lies immediately west of the lake on the claims is underlain by the quartzite, and has a prominent magnetic high that coincides with the topographic high of the northwest trending ridge. This ridge should be prospected, mapped and soil sampled.

Cretaceous Tombstone Intrusions

Tombstone intrusions are considered to be the main source of gold, silver, base metals and pathfinder elements for many of the gold and silver deposits in the region. They are also the source of heat that drives the hydrothermal systems that produced mineral deposits and hornfels alteration. Roots identified a reticulate network of dykes up to 30m wide on the cliffs northeast of Rainbow creek, a medium-grained, leucocratic, muscovite granite that contains up to 1% interstitial sulphide blebs (probably pyrrhotite). This dyke (Charlie's dyke) outcrops on the cliff below the 2016 campsite, and is the most leucocratic and siliceous found on the property, with no visible feldspars. The muscovite locally appears to be altered biotite. Note that all other intrusive rocks observed on the property are biotite bearing where micas are preserved. Contacts between the intrusives and hosts rocks are rarely visible, but locally present in cliff exposures in the southwest.

2016 mapping identified numerous granitic dykes in outcrop and boulders extending over an area roughly 2km by 1km, and a small stock (the Berdahl Stock) that is roughly 200m by 400m and open to expansion in size. These intrusions are all quartz porphyries, with biotite the only mica except at Charlie's dyke. Many intrusive rocks on the property have "ghosted" white feldspars visible. Biotite is locally coarse enough to be considered phenocrystic, but most rocks are close to being equigranular with only quartz above average grain size. The intrusions are most likely to be of quartz monzonite composition.

The Berdahl stock is exposed in outcrop and extensive felsenmeer on a north-facing slope, and is representative of the most common type of intrusive found on the property. The fine to medium-grained granite is weakly porphyritic with 10mm rounded, glassy quartz eyes, black biotite and ghosted white feldspar phenocrysts. Rocks are slightly rusty due to a trace of very fine-grained pyrite. White to grey quartz veinlets are rarely present (maximum 15mm, typically 1-3mm wide). The intrusive is well exposed in cliffs, and large blocks of quartzite rafted into the intrusion are present in the lower cliff (waypoint 62). A small section of white fine-grained aplite is also present in this location.

Some quartz-eye porphyry intrusives are orange coloured, highly altered with a soft matrix that is locally calcareous. Feldpars and micas are no longer present. Pits due to weathering of pyrite were observed locally, and orange colour may be due to iron oxides. The orange alteration is locally present from "Ron's dyke" on cliffs in the southwest to waypoint R 106 at the northeast end of the mapped area. The calcareous nature of this alteration is thought to be due to hydrothermal alteration, as carbonate would not be formed by weathering. The relatively soft nature of the altered granite results in recessive weathering. These altered rocks are thought to be the most favourable lithology observed on the property, and may be proximal to gold mineralization.

Rounded granitic boulders are fairly common on the claims, and found in Rainbow creek. They are usually weakly quartz-biotite porphyritic, fine to medium grained granites. In one location a dyke appeared to be weathered to rounded boulders more or less in place, due to spheroidal weathering.

The northwestern-most dyke on the property (waypoint 28) is locally magnetic, with trace magnetite in addition to pyrrhotite/pyrite. This dyke is about 4m true width, strikes about 120 degrees with a very steep dip. Intense hornfels alteration is present proximal to the dyke. No other intrusive rocks on the claims were identified as magnetic.

It is likely that the extent of the granitic outcrops on the property can be expanded by further mapping.

Fig. 3. Outcrop and talus of Tombstone quartz biotite porphyry granite of the Berdahl stock.

Metamorphism and Alteration

The regional rocks are all sub-greenschist metamorphic grade, with phyllitic rocks common. On the property, rocks southeast of Rainbow creek are of this metamorphic grade. As one heads uphill to the northeast into the granitic contact metamorphic aureole the phyllites lose their micaceous sheen and become more indurated. The most intense hornfels becomes massive, with no cleavage remaining, is extremely hard with a conchoidal fracture and rings like a bell when hit with a hammer. A purple-brown hue is indicative of biotite hornfels, the highest grade rocks observed.

Contact metamorphism causes the minerals present to reform into higher grade minerals, changing the texture of the original rock. Where the original rocks were calcareous a calc-silicate hornfels forms, often with green minerals and some remnant calcite indicated by fizz with acid. Calc-silicate hornfels is also hard and massive, but generally coarser grained and less homogeneous than biotite hornfels.

In addition to the heat alteration of contact metamorphism due to intrusion of the granitic rocks, some hydrothermal alteration accompanied this process. There was likely an addition of silica and sulphur along with enhancement of metals such as iron and copper broadly introduced into the area around the intrusion. This results in the rusty, magnetic rocks found over most of the property.

Highly siliceous lithologies like the Keno Hill Quartzite do not usually show hornfels alteration, as contact metamorphism on its own doesn't introduce new elements. The quartzite is likely recrystallized or silicified within the hornfels zone.

The weakest hornfels is often not pyrrhotite/pyrite mineralized, and has some remnant cleavage. The phyllitic partings no longer have a micaceous sheen.

Fig. 4. Biotite hornfels alteration. Massive texture with conchoidal fracture on fresh surface with remnant banding visible on the weathered surface.

Structural Geology

The property is poly-deformed due to multiple phases of Jurassic to early Cretaceous folding and thrusting. Most of the claims lie in the footwall of the Robert Service Thrust Fault, a northeasterly directed thrust. The younger Tombstone Thrust Fault underlies and deforms the overlying strata but is not exposed nearby. The trace of the Robert Service fault is not visible at surface, but lies roughly parallel to Rainbow creek on the southwest side. A vertically dipping northwest trending dextral transcurrent fault runs near the northern property boundary, and is likely related to the thrust faults. The strata underlying the property form an anticline, with the southwest dipping limb most prominent on the claims. Note the change in cross-section interpretation between the 1996 map and 2003 final map of Roots in the area of the claims.

There may be a steep fault along the trace of Rainbow creek in the area of the claims, as this would help explain the lack of hornfels alteration from one side of the creek to the other near the intrusions. Secondary northeast trending faults are interpreted cutting the claims in the cliff area near camp where recessive zones terminate cliff outcrops. Further to the southeast another northeasterly fault is interpreted where a major discontinuity is present in the ground magnetic survey data.

No significant faults or breccias were seen in outcrop on the claims, though slickensides were observed in two places on the cliffs below the 2016 campsite. Jointing is generally weak and inconsistent in orientation. Complex folding was observed locally, but is not well exposed.

Fig. 5. A northeasterly trending fault is interpreted to run from the recessive notch on the ridgetop to the lower right hand corner of the photo. The fault truncates the lower cliff exposure.

Mineralization

Disseminated fine-grained pyrrhotite +/- pyrite is widespread on the claims, notably on the rusty cliffs along Rainbow creek and the orange cliffs to the north. This mineralization is due to contact metamorphic hornfels associated with granitic intrusions. Additional pyrrhotite not exposed on surface is indicated in the broad magnetic high anomaly present across the property.

Narrow quartz-sulphide veins enriched in gold, silver, base metals and gold pathfinder elements are found cutting several rock types in several geographic areas on the claims. Pyrite (and oxidized equivalent) is the most common accessory mineral in the veins, with local arsenopyrite (and scorodite), sphalerite, chalcopyrite (and malachite), molybdenite and scheelite. None of the veins observed were of sufficient width or length to be an attractive target on their own.

The best mineralized veins seen on the property were found in the Orange Cliffs area. They are hosted in hornfels altered rocks and contain abundant arsenopyrite and local scheelite in addition to pyrite. These veins discovered so far are narrow and don't seem to extend more than a few meters.

Quartz veins within the intrusive rocks are typically grey or white quartz with no sulphide mineralization and a maximum width of 15mm (Fig. 7 below). Sheeting of these veins is very rare and sparse. Accessory sulphides were observed in granitic felsenmeer at waypoint 51, where chalcopyrite and molybdenite were observed in veinlets up to 3mm wide. Angular boulders at this location are found in a circle about 15m diameter, with no other rock types present and mossy forest all around.

A vertically dipping calcite vein up to 15cm wide was mapped in the cliff below camp. There was no obvious alteration associated with the vein, and no sulphides noted.

Quartz sulphide veinlets were observed beside the creek cutting phyllite (see Fig. 6 below). These veins locally swell to 15cm, but are generally about 1cm wide. This outcrop is one of the original showings found at the property, however analytical results are not known. The host rock is not hornfels altered. Phyllites are generally not a favourable host rock for strong and persistent veins due to their weakness and plasticity. The original Rainbow property showing is thought to be located a couple of hundred meters upstream from this location, however it could not be relocated.

Black shale that is locally very pyritic is present in outcrop along Rainbow creek. This mineralization may be primary, and may indicate potential for massive sulphide deposits. It is unlikely to be associated with Tombstone type deposits, though this interpretation could change depending on gold and trace element analysis.

Irregular white to grey quartz veins are common within various units on the property, and are not thought to have any potential for commercial mineralization. These veins pinch and swell, are often parallel to cleavage and are not laterally persistent (Fig. 8 below). They are thought to be produced locally during deformation and metamorphism.

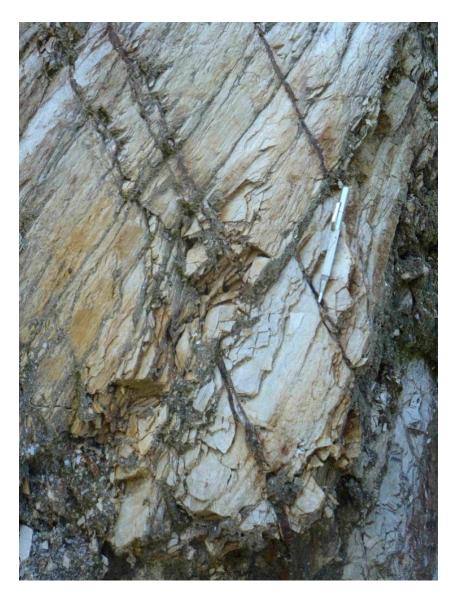


Fig. 6. Quartz-sulphide veins cutting phyllite near creek.

Fig. 7. Quartz veinlets cutting Berdahl stock.

Fig. 8. Metamorphic quartz veins.

Surficial Geology and Geochemistry

The region of the claims (map sheet 105N) has not been subject to government surficial geological mapping. The Stewart river valley just north of the claims has thick accumulations of overburden that inhibit exploration. Most of the property has only thin overburden, and glacial till is locally exposed (with rounded polylithic boulders). The claims appear to be well suited to soil geochemical surveys, as confirmed by the results of the 2012 soil survey. Local permafrost on north-facing slopes with thick moss is the main impediment to soil sampling.

Glacial transport is thought to be generally from east to west, with a northwesterly trend along the Rainbow creek valley. Kame terraces are present along the creek, including the site of the large new helicopter pad. This sandy gravel was deposited between the cliffs and a small glacier in the creek valley, and this material is not recommended for geochemical surveys. This is confirmed by very low metal values from the soil sample collected in 2012 in the location of the helicopter pad. A similar kame terrace is visible across the creek in the same general area.

DISCUSSION

The property has excellent potential to host Tombstone intrusion-related gold deposits, though no obvious drill target has been identified yet. The geological setting and large, strong multi-element geochemical anomalies are very encouraging. a ground magnetics survey has identified mag lows likely associated with intrusions and cross-cutting structures that might focus hydrothermal mineralization.

The cliff exposures are the only part of the claims to have been closely examined, and these are not likely to host economic concentrations of gold due to the lack of strong mineralized structures. However, recessive zones that cut the cliffs may host cross-cutting mineralized structures of reasonable size that are covered. Some of the strongest gold in soil results are found near these structures. The rest of the property is so poorly exposed that there is potential for multiple deposits of various subtypes.

The Tombstone plutonic suite is about 92 million years old, and is found in an east-west linear belt extending from the Northwest Territories across the Yukon into Alaska. The intrusives are of various compositions, but generally form magnetic lows, and often have a magnetic high halo due to pyrrhotite-bearing hornfels. The intrusions tend to be high in bismuth and tungsten in addition to gold, and have arsenic-rich veining in the altered surrounding rocks. This seems to be the situation at the Rainbow project. Some mineralization related to Tombstone intrusions such as Keno Hill type silver veins are thought to extend for ten kilometers or more beyond the outcrop of the intrusions into unaltered rocks, though this sort of deposit is more difficult to target.

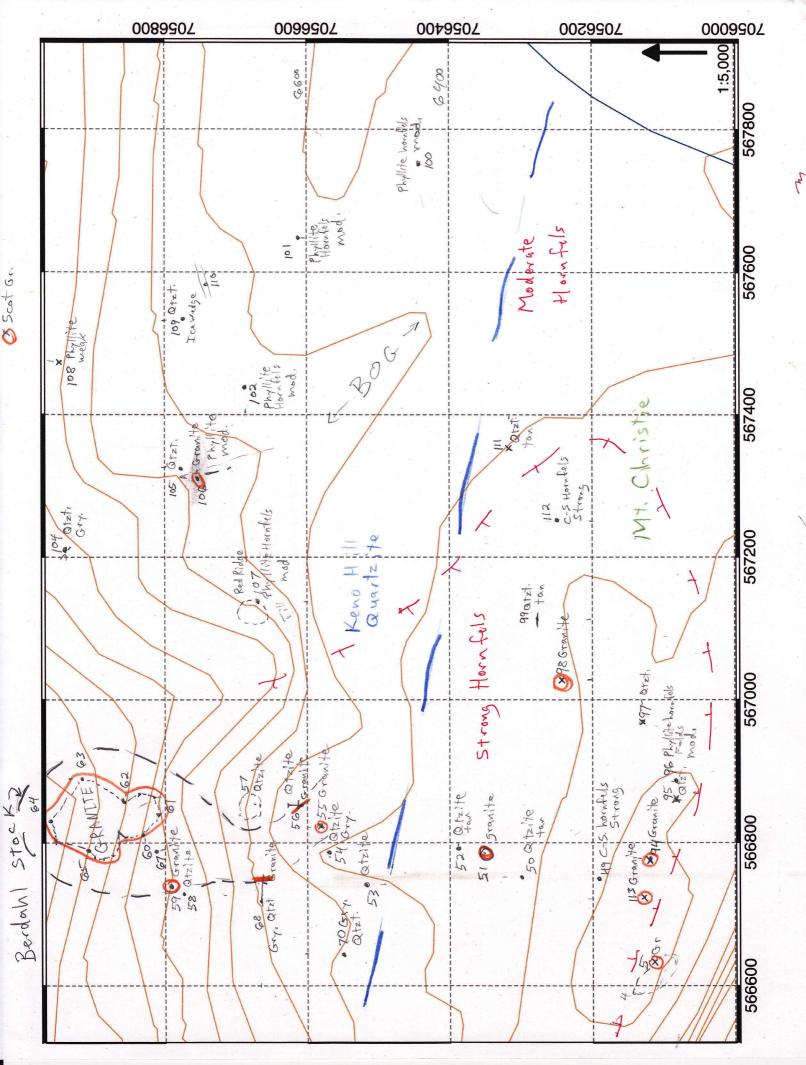
Intrusive hosted sheeted vein deposits of the type mined at Ft. Knox Alaska are one of the best known and most productive Tombstone targets. If present at the Rainbow project, the intrusive will likely be altered and recessive weathering, with little outcrop. The orange coloured, texture-destructive, calcareous altered quartz porphyry intrusives found in several locations on the property in 2016 are considered to be the best indicators of favourable hydrothermal activity. The intrusive hosted deposit type can best be explored for with soil geochemistry over covered areas with magnetic lows.

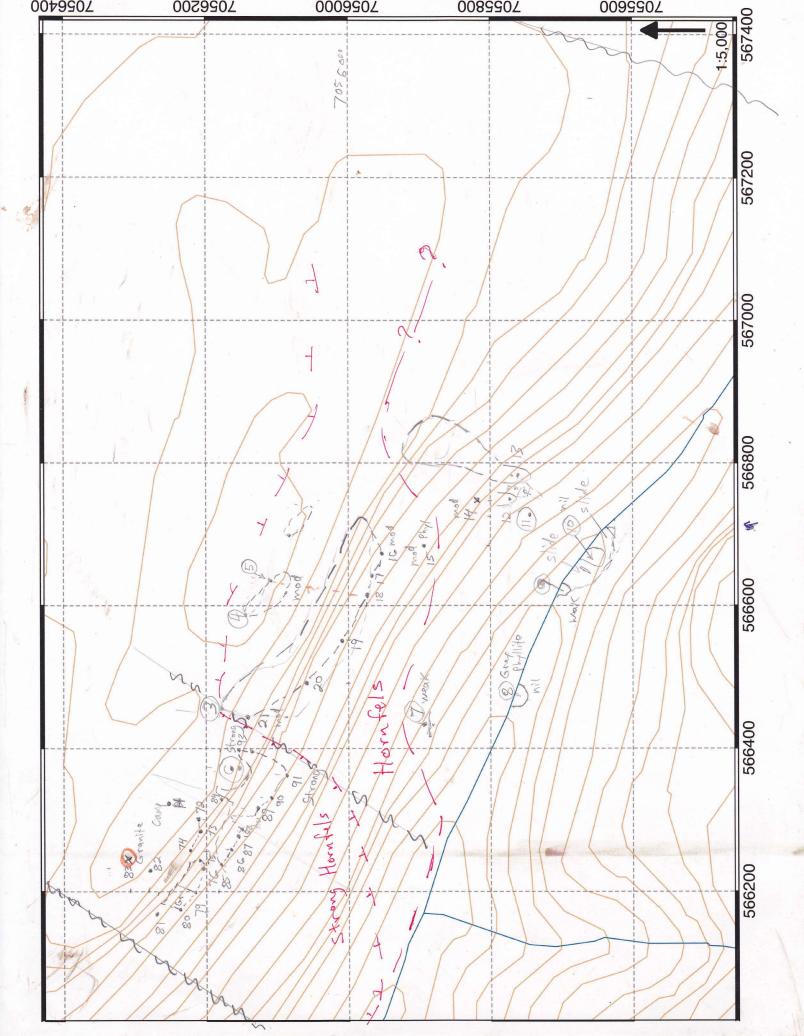
A second type of deposit associated with the Tombstone suite is arsenic-rich veins in the hornfels zone. Some narrow veins of this type have been found on the property near the cliffs within the Mt. Christie formation. It is thought that the Keno Hill Quartzite is likely to be a better host for veins as this unit is very hard, thick-bedded and massive, and can be dilated by faulting into a larger open space for more persistent veins. Hydrothermal breccias may also be present, likely related to intersecting structures.

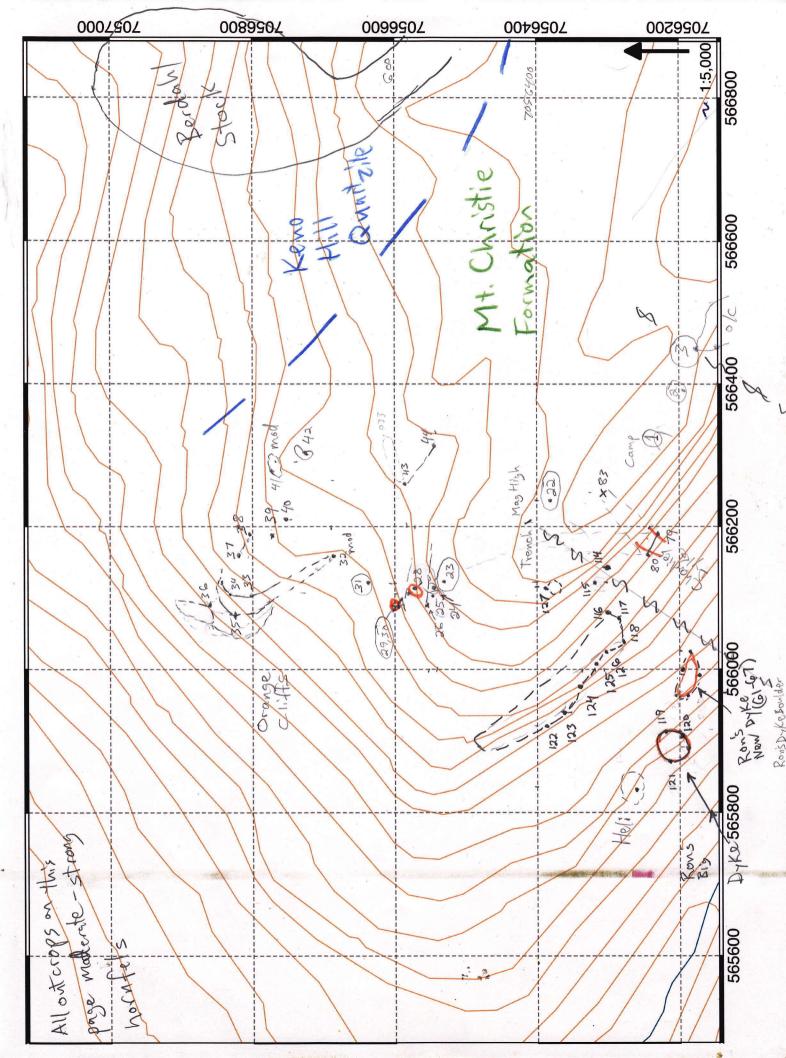
Skarns and replacement type deposits are another possible target on the claims. Some calcareous units are noted regionally within the host formations underlying the property, and some calc-silicate hornfels was observed in float.

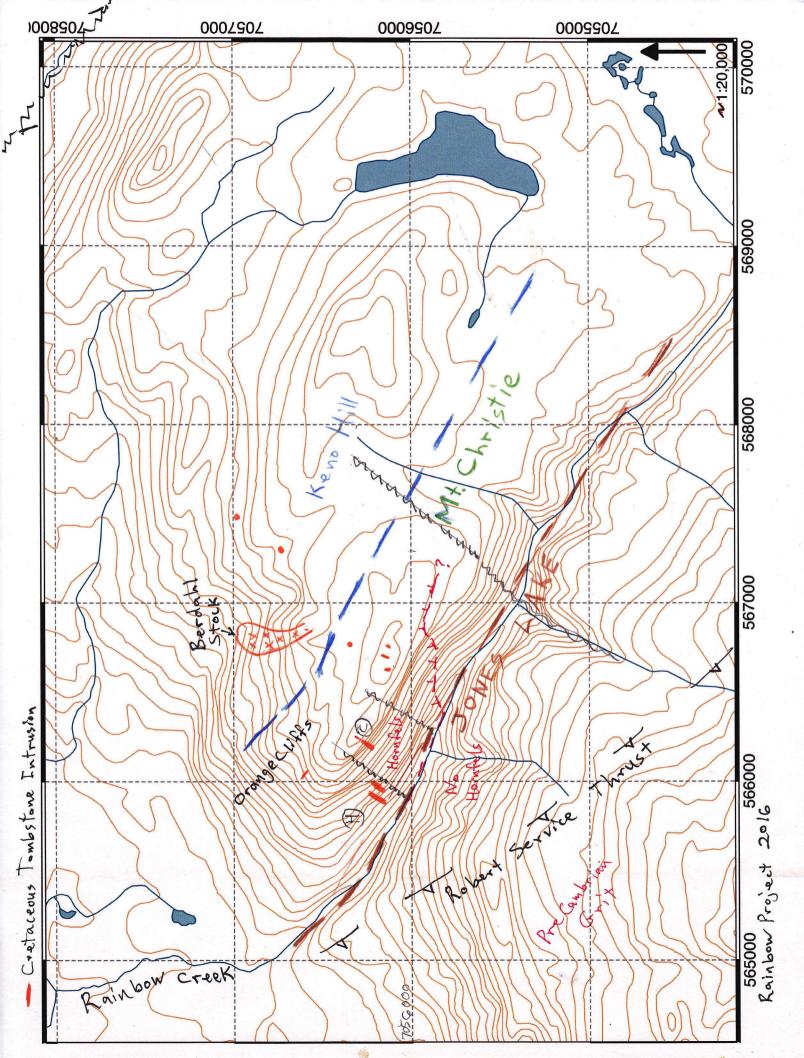
Veins that extend beyond the hornfels alteration are another target, and the veining found along Rainbow creek may be of this type. Soils collected in this area are highly anomalous in a variety of elements, showing good potential. Mineralized dykes with no hornfels alteration such as found at Brewery Creek are also possible.

CONCLUSIONS AND RECOMMENDATIONS


The Rainbow property has excellent potential to host a variety of Tombstone intrusion related gold deposits. Further work is warranted. Continuing to expand the area of high potential is a good strategy for adding value to the property, in addition to seeking economic mineralization in outcrop.


Soil geochemistry is probably the best technique for identifying gold and associated elements close to surface. To save costs soils can be collected, then screened by portable XRF so that only mineralized samples are submitted for analysis. Prospecting near the strongest anomalies may lead to discovery. The area around the Berdahl stock and eastward to the lake is particularly recommended for additional soil surveys. Covered areas with mag lows, and areas proximal to orange-altered granitic rocks should be a top priority. Soils should also be collected over the northeast trending structures.


Ground magnetics should be continued as a good method for outlining the extent of hornfels alteration. This technique can also indirectly identify various lithologies (notably mag low


intrusions) and show cross-cutting structures that may focus hydrothermal fluids. The area to the north and northeast of the current survey is particularly recommended for additional survey due to open-ended mag highs.

Geological mapping should be extended to outline the extent of hornfels alteration and the layout of lithologies and structures. The area northwest of the Berdahl stock and eastward to the lake should be mapped, as well as the Rainbow creek area further east than examined in 2016. Examination of aerial photos of the area in the EMR library was not productive as the only photos are very high elevation (1:50,000 scale). It was hoped that 1:20,000 scale photos would be available and help identify areas of outcrop. The newest air photos are from 1995.

www.alsglobal.com

To: 18526 YUKON INC **BOX 11250** WHITEHORSE YT Y1A 6N4

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-AUG-2016

Account: YUKOIN

CERTIFICATE TR16116035

Project: Rainbow 2016

This report is for 34 Rock samples submitted to our lab in Whitehorse, YT, Canada on 7-JUL-2016.

The following have access to data associated with this certificate:

RON BERDAHL SCOTT BERDAHL RON BERDAHL SCOTT BERDAHL

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% < 2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% < 75 um

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA25 ME-MS61	Ore Grade Au 30g FA AA finish 48 element four acid ICP-MS	AAS

To: 18526 YUKON INC ATTN: SCOTT BERDAHL **BOX 11250** WHITEHORSE YT Y1A 6N4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-AUG-2016 Account: YUKOIN

TR16116035

Project: Rainbow 2016

CERTIFICATE OF ANALYSIS

1-21 ME-MS61 d Wt. Ag ppm 02 0.01 23 0.21 53 0.19 58 0.11 63 0.08 81 0.33 30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52 96 2.58	ME-MS61 AI % 0.01 8.02 5.17 5.51 5.10 0.96 4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57 1.02 1.37	ME-MS61 As ppm 0.2 36.5 224 9730 18.1 192.5 40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	ME-MS61 Ba ppm 10 1500 7440 1190 7700 370 2640 5710 130 250 1060 100 3860 150 280 >10000 1070 760	ME-MS61 Re ppm 0.05 2.31 1.19 1.39 1.40 0.16 1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68 0.22 0.23	ME-MS61 Bi ppm 0.01 0.58 24.2 44.8 1.22 0.58 3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9 10.35	ME-MS61 Ca % 0.01 2.81 0.06 0.03 0.03 0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30 0.12	ME-MS61 Cd ppm 0.02 0.11 0.05 0.03 0.03 0.03 <0.02 <0.02 0.07 0.03 <0.02 0.07 0.04 0.02 0.03	ME-MS61 Ce ppm 0.01 62.5 54.3 52.7 50.0 6.87 30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	ME-MS61 Co ppm 0.1 6.5 9.6 40.7 4.8 1.0 1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	ME-MS61 Cr ppm 1 6 80 73 83 31 72 73 60 21 28 13 30 96 72 66	ME-MS61 Cs ppm 0.05 1.46 5.47 5.19 5.41 0.95 3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	ME-MS61 Cu ppm 0.2 208 107.5 100.5 47.5 81.9 110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	ME-MS61 Fe % 0.01 2.92 2.76 3.47 2.39 1.49 3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
23 0.21 53 0.19 58 0.11 63 0.08 81 0.33 30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	8.02 5.17 5.51 5.10 0.96 4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26	36.5 224 9730 18.1 192.5 40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6	1500 7440 1190 7700 370 2640 5710 130 250 1060 100 3860 150 280 >10000	2.31 1.19 1.39 1.40 0.16 1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68	0.58 24.2 44.8 1.22 0.58 3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	2.81 0.06 0.03 0.03 0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.11 0.05 0.03 0.03 0.03 <0.02 <0.02 <0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	62.5 54.3 52.7 50.0 6.87 30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	6.5 9.6 40.7 4.8 1.0 1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	6 80 73 83 31 72 73 60 21 28 13 30 96 72 66	1.46 5.47 5.19 5.41 0.95 3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	208 107.5 100.5 47.5 81.9 110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	2.92 2.76 3.47 2.39 1.49 3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
53 0.19 58 0.11 63 0.08 81 0.33 30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	5.17 5.51 5.10 0.96 4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57 1.02	224 9730 18.1 192.5 40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	7440 1190 7700 370 2640 5710 130 250 1060 100 3860 150 280 >10000	1.19 1.39 1.40 0.16 1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68 0.22	24.2 44.8 1.22 0.58 3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88	0.06 0.03 0.03 0.01 0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.05 0.03 0.03 0.03 <0.02 <0.02 <0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	54.3 52.7 50.0 6.87 30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	9.6 40.7 4.8 1.0 1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	80 73 83 31 72 73 60 21 28 13 30 96 72 66	5.47 5.19 5.41 0.95 3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	107.5 100.5 47.5 81.9 110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	2.76 3.47 2.39 1.49 3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
58 0.11 63 0.08 81 0.33 30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	5.51 5.10 0.96 4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57 1.02	9730 18.1 192.5 40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	1190 7700 370 2640 5710 130 250 1060 100 3860 150 280 >10000	1.39 1.40 0.16 1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68	44.8 1.22 0.58 3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	0.03 0.03 0.01 0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.03 0.03 0.03 <0.02 <0.02 0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	52.7 50.0 6.87 30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	40.7 4.8 1.0 1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	73 83 31 72 73 60 21 28 13 30 96 72 66	5.19 5.41 0.95 3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	100.5 47.5 81.9 110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	3.47 2.39 1.49 3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
63 0.08 81 0.33 30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	5.10 0.96 4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26	18.1 192.5 40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	7700 370 2640 5710 130 250 1060 100 3860 150 280 >10000	1.40 0.16 1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68 0.22	1.22 0.58 3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	0.03 0.01 0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.03 0.03 <0.02 <0.02 0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	50.0 6.87 30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	4.8 1.0 1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	83 31 72 73 60 21 28 13 30 96 72 66	5.41 0.95 3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	47.5 81.9 110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	2.39 1.49 3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
81 0.33 30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	0.96 4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57 1.02	192.5 40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	370 2640 5710 130 250 1060 100 3860 150 280 >10000	0.16 1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68 0.22	0.58 3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	0.01 0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.03 <0.02 <0.02 0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	6.87 30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	1.0 1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	31 72 73 60 21 28 13 30 96 72 66	0.95 3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	81.9 110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	1.49 3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
30 0.64 75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	4.27 4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26	40.1 23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	2640 5710 130 250 1060 100 3860 150 280 >10000	1.02 0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68	3.28 2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	0.01 0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10	<0.02 <0.02 0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	30.1 42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	1.5 1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	72 73 60 21 28 13 30 96 72 66	3.21 2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	110.5 28.4 987 121.5 117.5 234 140.0 360 824 129.0	3.50 2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
75 0.18 79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	4.05 1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57 1.02	23.5 17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	5710 130 250 1060 100 3860 150 280 >10000	0.94 1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68	2.65 50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	0.10 8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	<0.02 0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	42.4 17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	1.0 7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	73 60 21 28 13 30 96 72 66	2.19 1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	28.4 987 121.5 117.5 234 140.0 360 824 129.0	2.23 9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
79 0.49 41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	1.92 0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57	17.0 375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	130 250 1060 100 3860 150 280 >10000	1.16 0.17 0.16 0.08 0.09 1.27 0.58 0.68	50.3 1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	8.84 0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.07 0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	17.85 6.60 12.55 17.40 20.0 44.7 18.45 30.8	7.0 4.2 1.6 3.0 0.5 9.5 2.1 3.4	60 21 28 13 30 96 72 66	1.61 0.10 0.23 0.43 0.06 5.04 0.29 6.54	987 121.5 117.5 234 140.0 360 824 129.0	9.02 2.11 2.66 4.35 1.49 5.41 3.80 2.63
41 0.12 54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	0.69 0.81 0.32 0.30 4.89 2.62 4.26 0.57	375 13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	250 1060 100 3860 150 280 >10000	0.17 0.16 0.08 0.09 1.27 0.58 0.68	1.60 5.20 150.0 55.9 2.92 23.5 0.88 63.9	0.03 0.03 0.14 0.05 0.46 0.10 0.30	0.03 <0.02 0.17 <0.02 0.07 0.04 0.02	6.60 12.55 17.40 20.0 44.7 18.45 30.8	4.2 1.6 3.0 0.5 9.5 2.1 3.4	21 28 13 30 96 72 66	0.10 0.23 0.43 0.06 5.04 0.29 6.54	121.5 117.5 234 140.0 360 824 129.0	2.11 2.66 4.35 1.49 5.41 3.80 2.63
54 3.60 09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	0.81 0.32 0.30 4.89 2.62 4.26 0.57 1.02	13.1 13.4 1.5 7.2 2.4 2.6 3.3 14.7	1060 100 3860 150 280 >10000	0.16 0.08 0.09 1.27 0.58 0.68	5.20 150.0 55.9 2.92 23.5 0.88	0.03 0.14 0.05 0.46 0.10 0.30	<0.02 0.17 <0.02 0.07 0.04 0.02	12.55 17.40 20.0 44.7 18.45 30.8	1.6 3.0 0.5 9.5 2.1 3.4	28 13 30 96 72 66	0.23 0.43 0.06 5.04 0.29 6.54	117.5 234 140.0 360 824 129.0	2.66 4.35 1.49 5.41 3.80 2.63
09 5.80 51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	0.32 0.30 4.89 2.62 4.26 0.57 1.02	13.4 1.5 7.2 2.4 2.6 3.3 14.7	100 3860 150 280 >10000	0.08 0.09 1.27 0.58 0.68	150.0 55.9 2.92 23.5 0.88	0.14 0.05 0.46 0.10 0.30	0.17 <0.02 0.07 0.04 0.02	17.40 20.0 44.7 18.45 30.8	3.0 0.5 9.5 2.1 3.4	13 30 96 72 66	0.43 0.06 5.04 0.29 6.54	234 140.0 360 824 129.0	4.35 1.49 5.41 3.80 2.63
51 0.93 56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	0.30 4.89 2.62 4.26 0.57 1.02	1.5 7.2 2.4 2.6 3.3 14.7	3860 150 280 >10000	0.09 1.27 0.58 0.68	55.9 2.92 23.5 0.88 63.9	0.05 0.46 0.10 0.30	<0.02 0.07 0.04 0.02	20.0 44.7 18.45 30.8	0.5 9.5 2.1 3.4	30 96 72 66	0.06 5.04 0.29 6.54	140.0 360 824 129.0	1.49 5.41 3.80 2.63
56 0.41 41 0.51 51 0.30 22 2.50 68 1.52	4.89 2.62 4.26 0.57 1.02	7.2 2.4 2.6 3.3 14.7	150 280 >10000 1070	1.27 0.58 0.68	2.92 23.5 0.88 63.9	0.46 0.10 0.30	0.07 0.04 0.02	44.7 18.45 30.8	9.5 2.1 3.4	96 72 66	5.04 0.29 6.54	360 824 129.0	5.41 3.80 2.63
41 0.51 51 0.30 22 2.50 68 1.52	2.62 4.26 0.57 1.02	2.4 2.6 3.3 14.7	280 >10000 1070	0.58 0.68 0.22	23.5 0.88 63.9	0.10 0.30	0.04 0.02	18.45 30.8	2.1 3.4	72 66	0.29 6.54	824 129.0	3.80 2.63
51 0.30 22 2.50 68 1.52	4.26 0.57 1.02	2.6 3.3 14.7	>10000	0.68	0.88 63.9	0.30	0.02	30.8	3.4	66	6.54	129.0	2.63
22 2.50 68 1.52	0.57 1.02	3.3 14.7	1070	0.22	63.9				-				
68 1.52	1.02	14.7				0.12	0.03	11 45	2.4	10			0.40
			760	0.23	10.25			11.40	3.1	12	0.25	63.9	3.19
96 2.58	1 37				10.55	0.02	< 0.02	17.10	1.8	26	0.67	204	5.71
	1.57	>10000	90	0.11	20.9	0.08	0.52	38.7	60.4	25	0.58	1830	13.65
19 0.35	3.73	>10000	540	1.16	28.0	4.28	0.15	45.4	53.9	42	0.67	303	6.23
18 13.35	0.38	>10000	120	0.13	900	0.06	1.58	2.81	149.0	4	0.06	5840	24.8
04 10.60	2.74	7220	120	0.91	70.5	1.71	5.84	25.0	103.5	39	2.14	202	25.0
62 4.77	1.47	4350	140	0.27	25.4	1.66	6.33	32.2	11.2	35	1.13	348	3.71
94 8.86	2.08	>10000	140	0.48	179.5	0.01	0.31	11.90	1.8	49	1.19	1880	6.74
74 2.86	4.24	172.0	1340	0.97	18.55	0.82	0.15	45.2	12.1	48	2.02	647	5.13
87 0.07	4.53	228	160	0.88	0.81	0.60	0.95	74.9	42.6	46	7.83	64.4	32.1
18 2.46	1.38	>10000	1420	0.28	54.2	3.41	3.47	15.40	5.6	36	1.30	143.5	8.21
51 5.05	0.60	70.1	50	0.15	35.0	3.37	0.22	12.35	22.8	34	0.52	439	12.80
23 0.07	1.50	45.1	800	0.37	0.52	12.95	0.16	15.80	4.0	12	0.57	12.3	2.39
57 0.03	1.22	32.9	320	0.13	0.31	10.65	< 0.02	16.75	2.4	13	0.42	3.9	1.45
24 0.02	5.06	51.8	2090	1.28	0.34	6.39	0.03	43.6	3.2	44	3.41	14.9	1.86
62 0.22	6.90	4350	2440	1.99	0.31	1.68	0.12	53.3	4.7	9	7.24	29.4	2.50
61 0.58	2.33	70.5	2000	0.26	0.82	1.10	0.12	9.46	13.8	17	0.68	363	5.04
41 0.10	4.37	64.5	1500	1.35	0.97	3.35	0.03	44.8	3.7	57	3.34	39.7	1.79
52 0.38	7.04	62.3	490	1.72	9.72	3.30	0.09	71.7	14.1	70	2.38	715	5.66
8 1 5 2 5 2 6 4	7 0.07 8 2.46 1 5.05 3 0.07 7 0.03 4 0.02 2 0.22 1 0.58 1 0.10	7 0.07 4.53 8 2.46 1.38 1 5.05 0.60 3 0.07 1.50 7 0.03 1.22 4 0.02 5.06 2 0.22 6.90 1 0.58 2.33 1 0.10 4.37	7 0.07 4.53 228 8 2.46 1.38 >10000 1 5.05 0.60 70.1 3 0.07 1.50 45.1 7 0.03 1.22 32.9 4 0.02 5.06 51.8 2 0.22 6.90 4350 1 0.58 2.33 70.5 1 0.10 4.37 64.5	7 0.07 4.53 228 160 8 2.46 1.38 >10000 1420 1 5.05 0.60 70.1 50 3 0.07 1.50 45.1 800 7 0.03 1.22 32.9 320 4 0.02 5.06 51.8 2090 2 0.22 6.90 4350 2440 1 0.58 2.33 70.5 2000 1 0.10 4.37 64.5 1500	7 0.07 4.53 228 160 0.88 8 2.46 1.38 >10000 1420 0.28 1 5.05 0.60 70.1 50 0.15 3 0.07 1.50 45.1 800 0.37 7 0.03 1.22 32.9 320 0.13 4 0.02 5.06 51.8 2090 1.28 2 0.22 6.90 4350 2440 1.99 1 0.58 2.33 70.5 2000 0.26 1 0.10 4.37 64.5 1500 1.35	7 0.07 4.53 228 160 0.88 0.81 8 2.46 1.38 >10000 1420 0.28 54.2 1 5.05 0.60 70.1 50 0.15 35.0 3 0.07 1.50 45.1 800 0.37 0.52 7 0.03 1.22 32.9 320 0.13 0.31 4 0.02 5.06 51.8 2090 1.28 0.34 2 0.22 6.90 4350 2440 1.99 0.31 1 0.58 2.33 70.5 2000 0.26 0.82 1 0.10 4.37 64.5 1500 1.35 0.97	7 0.07 4.53 228 160 0.88 0.81 0.60 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 1 5.05 0.60 70.1 50 0.15 35.0 3.37 3 0.07 1.50 45.1 800 0.37 0.52 12.95 7 0.03 1.22 32.9 320 0.13 0.31 10.65 4 0.02 5.06 51.8 2090 1.28 0.34 6.39 2 0.22 6.90 4350 2440 1.99 0.31 1.68 1 0.58 2.33 70.5 2000 0.26 0.82 1.10 1 0.10 4.37 64.5 1500 1.35 0.97 3.35	7 0.07 4.53 228 160 0.88 0.81 0.60 0.95 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 3.47 1 5.05 0.60 70.1 50 0.15 35.0 3.37 0.22 3 0.07 1.50 45.1 800 0.37 0.52 12.95 0.16 7 0.03 1.22 32.9 320 0.13 0.31 10.65 <0.02	7 0.07 4.53 228 160 0.88 0.81 0.60 0.95 74.9 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 3.47 15.40 1 5.05 0.60 70.1 50 0.15 35.0 3.37 0.22 12.35 3 0.07 1.50 45.1 800 0.37 0.52 12.95 0.16 15.80 7 0.03 1.22 32.9 320 0.13 0.31 10.65 <0.02	7 0.07 4.53 228 160 0.88 0.81 0.60 0.95 74.9 42.6 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 3.47 15.40 5.6 1 5.05 0.60 70.1 50 0.15 35.0 3.37 0.22 12.35 22.8 3 0.07 1.50 45.1 800 0.37 0.52 12.95 0.16 15.80 4.0 7 0.03 1.22 32.9 320 0.13 0.31 10.65 <0.02	7 0.07 4.53 228 160 0.88 0.81 0.60 0.95 74.9 42.6 46 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 3.47 15.40 5.6 36 1 5.05 0.60 70.1 50 0.15 35.0 3.37 0.22 12.35 22.8 34 3 0.07 1.50 45.1 800 0.37 0.52 12.95 0.16 15.80 4.0 12 7 0.03 1.22 32.9 320 0.13 0.31 10.65 <0.02	7 0.07 4.53 228 160 0.88 0.81 0.60 0.95 74.9 42.6 46 7.83 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 3.47 15.40 5.6 36 1.30 1 5.05 0.60 70.1 50 0.15 35.0 3.37 0.22 12.35 22.8 34 0.52 3 0.07 1.50 45.1 800 0.37 0.52 12.95 0.16 15.80 4.0 12 0.57 7 0.03 1.22 32.9 320 0.13 0.31 10.65 <0.02	7 0.07 4.53 228 160 0.88 0.81 0.60 0.95 74.9 42.6 46 7.83 64.4 8 2.46 1.38 >10000 1420 0.28 54.2 3.41 3.47 15.40 5.6 36 1.30 143.5 1 5.05 0.60 70.1 50 0.15 35.0 3.37 0.22 12.35 22.8 34 0.52 439 3 0.07 1.50 45.1 800 0.37 0.52 12.95 0.16 15.80 4.0 12 0.57 12.3 7 0.03 1.22 32.9 320 0.13 0.31 10.65 <0.02

^{*****} See Appendix Page for comments regarding this certificate *****

BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-AUG-2016

Account: YUKOIN

Project: Rainbow 2016

To: 18526 YUKON INC

IIIInera	15	CERTIFICATE OF ANALYSIS TR									TR161	TR16116035				
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
16R03		19.60	0.11	3.0	0.017	3.83	30.3	12.3	0.70	125	0.43	1.35	15.7	2.2	590	8.0
16R04		14.10	0.10	1.8	0.053	2.30	27.0	27.1	0.94	261	0.36	0.07	7.9	32.2	390	6.8
16R05		14.60	0.11	1.7	0.039	2.60	25.4	13.2	0.74	153	0.26	0.06	8.2	41.2	300	3.7
16R06		14.90	0.09	1.8	0.051	2.19	24.0	22.1	0.70	290	0.44	0.07	7.7	22.7	350	4.9
16R07		3.20	0.06	0.6	0.019	0.30	2.9	4.5	0.06	78	0.87	<0.01	1.4	6.7	30	3.5
16R08		15.25	0.10	2.0	0.028	1.89	15.3	13.1	0.68	108	20.9	0.05	4.3	4.0	250	4.7
16R09		12.00	0.10	1.6	0.028	1.76	20.5	10.9	0.22	43	7.46	0.06	4.7	6.2	940	3.7
16R10		11.05	0.11	1.4	0.183	0.02	8.8	6.9	3.99	1560	21.5	0.04	4.9	21.2	2340	5.8
16R11		2.37	0.06	0.3	0.019	0.06	3.5	4.3	0.03	59	1.38	<0.01	1.2	21.1	160	1.3
16R12		3.54	0.13	0.8	0.031	0.07	8.7	6.4	0.13	76	15.80	<0.01	2.3	2.1	80	94.9
16R13		2.71	0.13	0.4	0.059	0.02	10.8	4.0	0.07	134	2.05	<0.01	1.1	6.5	100	3.7
16R14		1.58	0.08	0.3	0.005	0.02	11.1	2.6	0.02	61	1.20	0.01	0.9	2.5	110	3.4
16R15		15.20	0.15	2.0	0.065	1.13	19.6	29.0	0.76	160	17.15	0.14	5.0	93.4	570	9.0
16R16		7.83	0.09	1.4	0.028	0.24	8.2	5.2	0.49	195	1.28	0.03	4.3	22.7	50	2.6
16R17		11.60	0.09	2.2	0.021	1.68	14.7	34.2	1.10	183	3.64	0.12	4.7	13.9	580	6.2
16R18		2.31	0.10	0.5	0.016	0.07	6.1	5.8	0.12	342	1.81	0.01	1.6	5.6	130	17.9
16R19		5.55	0.10	0.4	0.016	0.11	8.8	5.1	0.08	117	1.79	<0.01	0.8	6.1	260	6.9
16R20		4.29	0.15	0.4	0.129	0.43	16.4	4.4	0.14	112	4.22	0.02	1.3	120.0	400	12.0
16R21		10.35	0.14	1.6	0.184	2.99	21.1	6.5	2.20	547	5.17	0.18	8.5	21.8	2460	3.9
16R22		1.36	0.42	0.1	0.612	0.16	1.5	1.6	0.02	23	3.10	0.02	0.2	9.7	80	47.8
16R23C		6.68	0.23	1.3	0.142	1.02	9.6	9.8	0.73	447	23.7	0.05	5.6	209	1060	1405
16R24		4.52	0.09	0.5	0.365	0.60	10.9	4.2	0.41	262	0.77	0.01	2.3	18.4	120	175.5
16R25		6.72	0.11	0.6	0.634	0.68	5.5	11.2	0.09	29	3.42	0.02	1.4	14.6	140	15.7
16R26		10.55	0.12	1.9	0.284	2.58	22.3	12.2	1.79	260	5.37	0.20	7.4	14.3	1490	10.0
WP46		12.20	0.31	1.2	0.377	0.27	30.8	11.3	5.06	3250	1.36	0.07	6.5	80.1	2030	3.3
WP50A		3.49	0.10	0.6	0.089	0.49	7.3	12.9	0.47	286	0.95	0.01	1.9	12.8	750	80.0
WP50B		1.63	0.21	0.2	0.066	0.22	5.4	3.1	1.05	404	1.22	0.01	1.2	22.2	250	59.9
WP53		3.03	0.06	0.5	0.016	0.28	6.9	22.2	0.54	1660	0.39	0.39	1.0	8.9	80	9.7
WP54		2.11	<0.05	1.2	0.005	0.22	7.1	28.4	0.31	457	0.19	0.39	1.2	5.9	200	16.3
WP58		11.30	0.10	1.9	0.039	1.81	22.5	12.5	2.13	369	9.07	0.48	7.5	17.9	2520	3.1
WP62		16.00	0.09	1.5	0.018	3.12	26.3	25.9	0.52	524	0.97	0.04	9.4	3.4	350	53.8
WPQTZA		3.53	0.06	0.3	0.073	1.86	4.4	3.7	0.52	217	12.30	0.15	1.2	38.7	590	3.0
WPQTZB		10.35	0.08	1.8	0.027	1.79	22.3	10.2	0.85	268	3.46	0.37	7.4	25.0	1450	4.5
Trench 0		17.95	0.15	2.1	0.090	3.32	34.4	9.9	1.73	196	3.83	0.69	11.1	46.0	1100	4.9

^{*****} See Appendix Page for comments regarding this certificate *****

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-AUG-2016 Account: YUKOIN

IIIInera	15	CERTIFICATE OF ANALYSIS TR161									116035					
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U	V
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
16R03		126.0	<0.002	0.87	0.42	7.7	3	2.8	360	1.18	<0.05	11.10	0.299	0.80	3.4	20
16R04		138.5	<0.002	0.10	2.34	12.6	1	3.1	88.5	0.54	0.35	7.45	0.286	0.93	1.8	107
16R05		141.0	<0.002	0.70	3.17	13.0	7	3.2	70.0	0.56	2.56	7.11	0.305	1.02	1.5	144
16R06		129.0	<0.002	0.13	0.90	13.2	1	2.2	90.0	0.51	0.07	7.21	0.266	0.71	1.6	120
16R07		22.6	<0.002	0.02	21.5	3.5	1	0.9	4.0	0.09	<0.05	1.26	0.060	0.29	0.3	21
16R08		105.5	0.005	0.30	1.85	15.9	6	1.3	62.1	0.29	0.24	4.45	0.236	0.76	3.1	134
16R09		87.1	<0.002	0.26	2.25	13.0	5	1.6	136.0	0.28	0.20	4.10	0.236	0.59	2.5	126
16R10 16R11 16R12 16R13 16R14 16R15 16R16		1.0 4.9 4.8 1.5 0.8 53.0 7.4 90.3	0.007 <0.002 <0.002 0.002 <0.002 0.008 0.002 <0.002	3.06 0.02 0.60 2.30 0.22 1.44 0.64 0.16	1.38 2.11 0.58 1.42 0.45 1.12 0.61 0.29	6.8 2.1 2.5 1.6 0.5 14.5 7.3 14.8	6 2 30 32 11 14 8 2	8.5 0.8 3.5 4.7 0.8 7.1 2.6 1.0	86.1 41.8 50.2 52.5 94.3 326 108.0 320	0.35 0.07 0.15 0.07 0.05 0.33 0.29 0.32	0.06 <0.05 0.49 1.01 1.91 0.23 1.34 <0.05	3.52 1.11 1.25 0.24 0.27 4.17 3.36 4.33	0.174 0.041 0.095 0.045 0.032 0.251 0.178 0.276	0.14 0.09 0.79 0.14 0.09 1.63 0.10 1.12	2.9 0.6 0.9 0.7 0.3 2.9 1.3 1.7	85 26 26 13 8 147 61 118
16R17 16R18 16R19 16R20 16R21 16R22		4.8 9.6 15.0 95.0 5.2	0.003 <0.002 0.006 0.002 <0.002	1.11 0.86 8.87 1.46 >10.0	5.79 10.05 8.86 9.05 136.5	1.5 2.6 2.4 6.4 0.3	15 18 25 12 146	2.1 1.8 3.6 15.6 9.0	36.4 25.8 57.7 100.0 19.7	0.09 0.05 0.08 0.70 <0.05	2.55 0.12 1.44 0.36 18.05	0.50 0.55 0.75 6.39 0.37	0.056 0.035 0.037 0.287 0.007	0.43 1.14 0.65 0.47 0.21	2.1 0.8 2.0 1.8 0.5	9 37 19 52 5
16R23C		51.6	0.006	>10.0	74.4	6.3	39	4.2	52.8	0.41	0.81	3.77	0.191	0.91	3.8	63
16R24		24.7	<0.002	2.87	15.35	6.1	4	7.0	84.3	0.16	1.00	2.25	0.068	0.30	1.3	52
16R25		36.7	<0.002	2.14	37.2	6.1	28	6.2	28.5	0.10	0.81	1.80	0.071	0.51	0.8	57
16R26		107.0	0.002	0.13	1.18	7.5	8	14.4	81.2	0.55	0.90	6.75	0.277	0.58	2.7	76
WP46		41.3	<0.002	0.38	2.42	20.2	4	1.1	18.6	0.46	0.06	6.21	0.240	0.82	2.2	105
WP50A WP50B WP53 WP54 WP58		9.9 12.7 9.6 78.9	0.002 <0.002 <0.002 <0.002 0.004	0.47 9.87 0.21 0.06 0.02	24.8 8.74 0.38 0.16 0.60	1.5 2.5 1.1 7.7	16 46 1 1	2.8 0.8 0.3 0.2 6.2	138.0 102.5 744 313 184.0	0.09 0.08 0.11 0.57	0.29 0.10 <0.05 <0.05 <0.05	0.97 2.84 4.23 6.18	0.081 0.035 0.036 0.036 0.272	0.33 0.56 0.12 0.07 0.47	0.6 0.7 1.1 3.7	39 7 10 5 164
WP62		125.5	0.002	0.24	40.7	4.2	1	13.0	178.0	0.81	<0.05	9.08	0.230	1.03	3.2	20
WPQTZA		63.2	<0.002	0.08	0.93	2.2	2	1.8	58.6	0.08	<0.05	1.09	0.042	0.40	1.2	17
WPQTZB		81.1	0.002	0.17	1.62	7.0	1	5.5	123.5	0.56	<0.05	6.19	0.268	0.50	2.0	70
Trench 0		136.5	<0.002	2.51	0.99	14.7	8	10.3	175.0	0.83	0.14	9.28	0.381	0.81	2.4	96

^{*****} See Appendix Page for comments regarding this certificate *****

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-AUG-2016 Account: YUKOIN

							CERTIFICATE OF ANALYSIS TR16116035
Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Au-AA25 Au ppm 0.01	
16R03		2.4	12.8	21	102.0	0.01	
16R04		2.8	11.6	32	74.8	0.18	
16R05		3.5	9.8	19	66.4	1.11	
16R06		3.1	12.0	30	73.3	<0.01	
16R07		6.1	2.5	17	18.5	0.01	
16R08		1.8	11.5	17	88.5	0.01	
16R09		2.4	11.0	9	72.0	0.01	
16R10		29.8	19.1	52	59.9	0.01	
16R11		1.4	3.0	12	12.1	<0.01	
16R12		1.9	5.9	8	33.3	0.01	
16R13		110.5	6.3	15	18.3	0.04	
16R14		3.7	3.1	11	10.9	0.11	
16R15		6.8	19.2	29	85.4	0.02	
16R16		4.9	6.5	18	56.3	0.12	
16R17		3.2	12.5	23	83.2	<0.01	
16R18		20.4	6.5	9	17.7	0.04	
16R19		12.0	3.8	16	13.5	0.02	
16R20		115.0	10.2	33	14.9	0.10	
16R21		2.4	29.1	25	51.1	0.07	
16R22		1.7	1.1	66	2.5	2.92	
16R23C		1.2	19.2	610	53.0	0.09	
16R24		2.4	6.2	312	24.2	0.04	
16R25		2.7	3.9	28	26.7	0.50	
16R26		1.3	25.6	41	60.9	0.10	
WP46		1.2	31.3	464	38.9	0.01	
WP50A		1.3	7.6	154	23.2	0.04	
WP50B		0.2	6.9	25	8.3	0.01	
WP53		0.3	11.0	31	19.3	<0.01	
WP54		0.2	6.1	21	50.1	<0.01	
WP58		1.0	25.0	24	62.5	<0.01	
WP62		4.2	7.6	34	44.2	0.26	
WPQTZA		0.3	4.9	19	9.7	0.01	
WPQTZB		1.4	14.6	20	65.9	<0.01	
Trench 0		2.5	27.2	25	71.6	0.01	

^{*****} See Appendix Page for comments regarding this certificate *****

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 16-AUG-2016

Account: YUKOIN

Project: Rainbow 2016

CERTIFICATE OF ANALYSIS TR16116035

	CERTIFICATE CO	MMENTS	
DEE's many mat ha totally askyl		YTICAL COMMENTS	
ME-MS61	ole in this method.		
Processed at ALS Terrace loca CRU-31 PUL-QC	ited at 2912 Molitor Street, Terra CRU-QC SPL-21	ace, BC, Canada. LOG-22 WEI-21	PUL-31
Processed at ALS Vancouver I Au-AA25	ocated at 2103 Dollarton Hwy, N ME-MS61	lorth Vancouver, BC, Canada.	
	Processed at ALS Terrace local CRU-31 PUL-QC Processed at ALS Vancouver local	ANAL REE's may not be totally soluble in this method. ME-MS61 LABOR Processed at ALS Terrace located at 2912 Molitor Street, Terrace CRU-31 CRU-QC PUL-QC SPL-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, N	LABORATORY ADDRESSES Processed at ALS Terrace located at 2912 Molitor Street, Terrace, BC, Canada. CRU-31 CRU-QC LOG-22 PUL-QC SPL-21 WEI-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.

www.alsglobal.com

To: 18526 YUKON INC **BOX 11250** WHITEHORSE YT Y1A 6N4

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-AUG-2016

Account: YUKOIN

CERTIFICATE TR16113415

Project: Rainbow 2016

This report is for 2 Rock samples submitted to our lab in Whitehorse, YT, Canada on 14-JUL-2016.

The following have access to data associated with this certificate:

RON BERDAHL SCOTT BERDAHL RON BERDAHL SCOTT BERDAHL

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% < 2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

ANALYTICAL PROCEDUR	ES
DESCRIPTION	INSTRUMENT
Ore Grade Au 30g FA AA finish 48 element four acid ICP-MS	AAS
	DESCRIPTION Ore Grade Au 30g FA AA finish

To: 18526 YUKON INC ATTN: SCOTT BERDAHL **BOX 11250** WHITEHORSE YT Y1A 6N4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-AUG-2016

Account: YUKOIN

Ilinera		CERTIFICATE OF ANALYSIS TR16113415														
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
16R27 16R28		0.05 0.36	13.15 0.36	0.13 5.65	>10000 4390	40 640	0.05 1.53	267 6.44	0.88 3.48	36.2 2.52	2.18 53.8	72.8 15.5	6 134	1.75 3.55	408 190.5	28.8 4.95

www.alsglobal.com

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-AUG-2016

Account: YUKOIN

Minera	IS								C		CATE O	F ANAL	YSIS	TR161	13415	
Sample Description	Method Analyte Units LOR	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
16R27 16R28		0.41 14.55	0.48 0.11	<0.1 2.3	3.09 0.045	0.22 2.56	0.9 29.0	0.6 5.5	0.03 1.06	176 476	0.51 1.44	0.01 0.04	0.1 9.4	4.2 33.6	350 2280	565 17.6

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-AUG-2016 Account: YUKOIN

iiiiiiei a									CERTIFICATE OF ANALYSIS TR16113415									
Sample Description	Method Analyte Units LOR	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1		
16R27 16R28		7.0 132.5	<0.002 0.004	>10.0 1.10	157.0 9.72	2.0 11.2	185 4	0.6 8.4	300 137.5	<0.05 0.65	10.65 0.08	0.27 7.69	<0.005 0.356	0.31 1.08	2.6 4.5	3 168		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-AUG-2016

Account: YUKOIN

	13						CERTIFICATE OF ANALYSIS TR16113415
Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Au-AA25 Au ppm 0.01	
Sample Description 16R27 16R28	Units LOR		2.2 34.0	187 167		0.01 0.96 <0.01	

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10-AUG-2016

Account: YUKOIN

Project: Rainbow 2016

CERTIFICATE OF ANALYSIS TR16113415

		CERTIFICATE CO	MMENTS	
	DEFIG many mat ha totally only		YTICAL COMMENTS	
Applies to Method:	REE's may not be totally solu ME-MS61	bie in this method.		
			RATORY ADDRESSES	
Applies to Method:	Processed at ALS Terrace loc CRU-31 PUL-QC	ated at 2912 Molitor Street, Terr CRU-QC SPL-21	ace, BC, Canada. LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver Au-AA25	located at 2103 Dollarton Hwy, N ME-MS61	lorth Vancouver, BC, Canada.	

Bureau Veritas Commodities Canada Ltd.

Client: 18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

www.bureauveritas.com/um

Submitted By: Scott Berdahl

Receiving Lab: Canada-Whitehorse Received:

July 07, 2016

Report Date: August 04, 2016

Page: 1 of 2

CERTIFICATE OF ANALYSIS

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

WHI16000099.1

CLIENT JOB INFORMATION

Project: Rainbow 2016

Shipment ID: P.O. Number

11 Number of Samples:

PHONE (604) 253-3158

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days **DISP-RJT-SOIL** Immediate Disposal of Soil Reject

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

18526 Yukon Inc. Invoice To:

P.O. Box 11250

Whitehorse YT Y1A 6N4

Canada

CC: Ron Berdahl

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
Dry at 60C	11	Dry at 60C			WHI
SS80	11	Dry at 60C sieve 100g to -80 mesh			WHI
AQ252_EXT	11	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	30	Completed	VAN
SHP01	11	Per sample shipping charges for branch shipments			VAN
BAT01	11	Batch charge of <20 samples			VAN

ADDITIONAL COMMENTS

Client:

18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

Project:

Rainbow 2016

Report Date:

August 04, 2016

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

ND1478 ND1500 ND1600 ND1800 NE1300 NE1400 NE1700 OC01 OC02 Mag Low Mag High Page:

2 of 2

Part: 1 of 3

CERTIFICATE OF ANALYSIS

	Method	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Soil		8.76	1157.98	17.86	42.0	796	89.0	42.9	432	9.79	198.9	2.9	23.1	10.2	118.4	0.37	11.17	4.66	57	1.19	0.181
Soil		5.32	351.82	35.77	59.5	682	66.4	31.3	540	4.50	413.8	2.5	30.7	6.3	86.6	0.38	8.03	26.18	69	1.91	0.221
Soil		6.44	379.42	8.98	27.3	343	55.3	27.6	421	8.48	611.4	5.2	5.9	9.9	140.8	0.06	1.73	3.30	56	1.02	0.172
Soil		5.78	284.29	272.79	208.1	770	79.8	28.2	423	7.96	238.5	2.1	11.6	9.0	95.2	1.00	2.02	14.68	40	0.64	0.140
Soil		7.69	125.71	10.11	63.5	135	35.1	11.9	250	3.35	538.3	0.8	15.0	3.5	19.6	0.15	1.18	5.01	52	0.34	0.040
Soil		5.29	745.69	21.11	42.0	1765	67.2	34.3	532	5.96	273.6	2.2	22.3	6.5	69.2	0.32	0.95	20.85	69	1.34	0.180
Soil		7.32	92.83	11.85	39.0	94	37.1	17.0	415	4.22	1288.3	1.1	19.0	6.2	91.1	0.24	1.77	9.00	70	1.15	0.198
Soil		11.44	555.78	24.77	70.4	3137	87.1	20.0	336	11.99	498.3	1.8	209.6	4.9	39.8	0.14	2.04	64.32	100	0.03	0.118
Soil		5.60	605.70	15.97	64.3	1688	53.3	16.1	503	10.34	1551.9	1.7	117.0	4.1	17.2	0.09	13.92	14.53	61	0.04	0.118
Soil		2.65	205.42	9.98	80.3	561	37.2	13.0	214	3.31	2103.7	1.7	65.3	3.6	25.4	0.32	1.19	12.93	40	0.36	0.106
Soil		4.06	130.73	10.38	73.2	180	37.2	11.6	169	3.44	221.8	1.1	7.7	4.5	14.2	0.14	1.11	2.50	50	0.12	0.056

www.bureauveritas.com/um

Client:

18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

Rainbow 2016

Report Date:

Project:

August 04, 2016

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

2 of 2

Part: 2 of 3

CERTIFI	CERTIFICATE OF ANALYSIS WHI16000099.1																					
	N	Method	AQ252																			
	A	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Sc	TI	S	Hg	Se	Te	Ga	Cs	Ge	Hf
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
		MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
ND1478	Soil		31.6	42.9	1.48	37.3	0.053	2	3.07	0.099	0.17	0.7	9.1	0.46	0.04	30	6.7	0.02	9.7	1.97	0.1	0.12
ND1500	Soil		14.8	51.6	1.32	196.0	0.049	4	3.15	0.185	0.20	1.0	7.6	0.32	0.05	61	1.9	0.20	10.0	2.79	<0.1	0.08
ND1600	Soil		17.6	38.7	1.39	40.6	0.057	2	2.50	0.083	0.10	0.3	10.5	0.45	0.06	19	10.0	0.06	9.4	1.43	0.1	0.21
ND1800	Soil		9.2	34.6	1.41	144.1	0.035	1	2.62	0.049	0.08	0.2	6.4	0.25	0.05	34	2.8	0.04	7.1	1.25	<0.1	0.11
NE1300	Soil		11.5	30.1	0.58	321.4	0.024	<1	1.70	0.009	0.09	0.3	3.5	0.19	<0.02	37	1.2	0.16	5.9	1.54	<0.1	0.04
NE1400	Soil		22.9	40.1	1.15	103.2	0.048	2	3.01	0.107	0.11	0.3	7.8	0.19	<0.02	40	2.9	0.33	8.6	3.17	<0.1	0.06
NE1700	Soil		9.4	48.6	1.27	184.2	0.041	1	2.83	0.069	0.11	0.3	5.5	0.20	<0.02	22	1.1	0.08	12.0	1.67	<0.1	0.08
OC01	Soil		11.1	73.8	0.61	103.4	0.035	2	1.50	0.025	0.50	3.0	13.7	0.84	1.00	437	24.9	3.32	7.4	4.45	<0.1	0.11
OC02	Soil		11.2	40.0	0.39	659.2	0.015	1	1.67	0.006	0.15	1.7	8.2	0.68	0.29	224	6.8	0.48	6.8	3.82	<0.1	<0.02
Mag Low	Soil		15.4	25.4	0.43	382.6	0.016	1	1.82	0.007	0.08	1.0	3.9	0.16	<0.02	199	2.0	0.15	4.9	1.77	<0.1	0.03
Mag High	Soil		13.6	28.7	0.45	229.1	0.020	2	2.08	0.006	0.07	0.3	3.5	0.22	<0.02	182	1.0	0.07	5.6	1.86	<0.1	0.04

www.bureauveritas.com/um

Client: 18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

www.bureauveritas.com/um

Rainbow 2016

Report Date:

Project:

August 04, 2016

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page:

2 of 2

Part: 3 of 3

CERTIFICATE OF ANALYSIS

WHI16000099.1

	Method	AQ252												
	Analyte	Nb	Rb	Sn	Та	Zr	Υ	Ce	In	Re	Ве	Li	Pd	Pt
	Unit	ppm	ppb	ppm	ppm	ppb	ppb							
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
ND1478 S	oil	1.12	20.5	4.0	<0.05	7.2	29.52	65.3	0.14	<1	2.0	11.5	<10	<2
ND1500 S	oil	0.94	35.8	2.2	<0.05	4.4	14.07	31.0	0.05	2	1.6	14.3	<10	<2
ND1600 S	oil	1.18	10.2	3.8	<0.05	12.2	26.65	35.6	0.08	<1	1.8	10.7	<10	<2
ND1800 S	oil	0.73	7.7	2.3	<0.05	7.1	11.03	22.1	0.17	<1	1.6	11.5	<10	<2
NE1300 S	oil	0.74	23.4	0.9	<0.05	2.2	4.16	21.8	0.04	<1	0.6	15.5	<10	<2
NE1400 S	oil	0.97	19.6	2.2	<0.05	4.0	20.44	40.7	0.18	<1	1.6	15.0	<10	<2
NE1700 S	oil	0.81	11.1	2.4	<0.05	4.7	9.12	21.0	0.06	<1	1.0	12.4	<10	<2
OC01 S	oil	0.25	33.2	2.6	<0.05	9.3	8.24	29.0	0.18	2	0.5	12.6	28	4
OC02 S	oil	0.45	14.5	1.3	<0.05	1.8	8.27	24.6	0.09	1	0.4	12.4	19	<2
Mag Low S	oil	0.63	14.2	0.8	<0.05	1.2	8.26	29.9	0.04	<1	0.9	13.9	<10	<2
Mag High S	oil	0.74	15.4	0.7	<0.05	2.7	5.94	27.5	0.02	<1	0.7	17.0	<10	<2

Client:

18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

Project:

Rainbow 2016

Report Date:

August 04, 2016

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page: 1 of 1

Part: 1 of 3

QUALITY CC	QUALITY CONTROL REPORT WHI16000099.1																				
	Method	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Pulp Duplicates																					
ND1500	Soil	5.32	351.82	35.77	59.5	682	66.4	31.3	540	4.50	413.8	2.5	30.7	6.3	86.6	0.38	8.03	26.18	69	1.91	0.221
REP ND1500	QC	5.24	358.81	35.56	58.2	694	66.7	31.1	534	4.31	409.9	2.4	39.0	6.3	84.2	0.39	7.93	25.67	68	1.84	0.203
Reference Materials																					
STD DS10	Standard	14.35	143.28	149.16	365.3	1896	73.8	12.7	840	2.69	43.5	2.6	79.4	7.0	65.6	2.47	7.73	11.02	41	1.07	0.077
STD OXC129	Standard	1.15	24.75	5.80	41.2	11	79.5	20.5	412	2.94	0.7	0.6	223.9	1.7	182.4	0.02	0.02	<0.02	49	0.64	0.098
STD DS10 Expected		15.1	154.61	150.55	370	2020	74.6	12.9	875	2.7188	46.2	2.59	91.9	7.5	67.1	2.62	9	11.65	43	1.0625	0.0765
STD OXC129 Expected		1.3	28	6.3	42.9	28	79.5	20.3	421	3.065	0.6	0.72	195	1.9		0.03	0.04		51	0.665	0.102
BLK	Blank	<0.01	0.02	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001

www.bureauveritas.com/um

Client: 18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

www.bureauveritas.com/um

Project:

Rainbow 2016

Report Date:

August 04, 2016

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page: 1 of 1

Part: 2 of 3

QUALITY CONTROL REPORT WHI16000099.1																					
	Method	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Sc	TI	s	Hg	Se	Te	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
Pulp Duplicates																					
ND1500	Soil	14.8	51.6	1.32	196.0	0.049	4	3.15	0.185	0.20	1.0	7.6	0.32	0.05	61	1.9	0.20	10.0	2.79	<0.1	0.08
REP ND1500	QC	14.7	52.1	1.26	203.5	0.049	3	3.01	0.184	0.20	0.8	7.2	0.33	0.05	58	2.0	0.14	10.2	2.80	<0.1	0.09
Reference Materials																					
STD DS10	Standard	16.1	54.8	0.76	350.8	0.076	7	1.02	0.070	0.34	3.1	3.0	5.04	0.27	269	2.1	4.79	4.3	2.55	<0.1	0.04
STD OXC129	Standard	10.7	50.7	1.49	46.3	0.356	<1	1.46	0.576	0.37	<0.1	0.9	0.03	<0.02	<5	<0.1	<0.02	5.4	0.15	<0.1	0.20
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	3	5.1	0.29	300	2.3	5.01	4.5	2.63	0.08	0.06
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37	0.08	1.1	0.03					5.6	0.16		0.24
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02

Client: 18526 Yukon Inc.

P.O. Box 11250

Whitehorse YT Y1A 6N4 Canada

www.bureauveritas.com/um

Rainbow 2016

Report Date:

Project:

August 04, 2016

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Page:

1 of 1

Part: 3 of 3

QUALITY CONTROL REPORT

WHI16000099.1

	Method	AQ252												
	Analyte	Nb	Rb	Sn	Та	Zr	Υ	Ce	In	Re	Ве	Li	Pd	Pt
	Unit	ppm	ppb	ppm	ppm	ppb	ppb							
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
Pulp Duplicates														
ND1500	Soil	0.94	35.8	2.2	<0.05	4.4	14.07	31.0	0.05	2	1.6	14.3	<10	<2
REP ND1500	QC	0.98	36.0	2.1	<0.05	4.5	13.85	30.2	0.04	<1	1.5	14.1	<10	<2
Reference Materials														
STD DS10	Standard	1.48	28.1	1.5	<0.05	2.6	7.96	32.6	0.21	50	0.6	20.3	103	186
STD OXC129	Standard	1.48	14.8	0.7	<0.05	15.9	4.32	20.5	<0.02	<1	0.8	2.2	<10	<2
STD DS10 Expected		1.62	27.7	1.6		2.7	7.77	37	0.23	50	0.63	19.4	110	191
STD OXC129 Expected		1.4		0.7		21	4.7	23.7			0.8	2.22		
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

INVOICE NUMBER 3646556

BILLING INFORMATION								
Certificate: Sample Type: Account: Date: Project:	TR16116035 Rock YUKOIN 16-AUG-2016 Rainbow 2016							
Quote: Terms: Comments:	Due on Receipt	C2						

	ANAL	YSED FOR	UNIT	
QUANTITY	CODE -	DESCRIPTION	PRICE	TOTAL
34	PREP-31	Crush, Split, Pulverize	7.45	253.30
17.94	PREP-31	Weight Charge (kg) - Crush, Split, Pulverize	0.70	12.56
34	ME-MS61	48 element four acid ICP-MS	27.90	948.60
34	Au-AA25	Ore Grade Au 30g FA AA finish	16.70	567.80

To: **18526 YUKON INC**

ATTN: SCOTT BERDAHL

BOX 11250

WHITEHORSE YT Y1A 6N4

SUBTOTAL (CAD) \$ 1,782.26

R100938885 GST \$ 89.11

TOTAL PAYABLE (CAD) \$ 1,871.37

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name: ALS Canada Ltd.
Bank: Royal Bank of Canada
SWIFT: ROYCCAT2

Address: Vancouver, BC, CAN Account: 003-00010-1001098

Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To: ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: 18526 YUKON INC BOX 11250 WHITEHORSE YT Y1A 6N4

INVOICE NUMBER 3641779

BILLING INFORMATION								
Certificate: Sample Type: Account: Date: Project:	TR16113415 Rock YUKOIN 10-AUG-2016 Rainbow 2016							
Quote: Terms: Comments:	Due on Receipt	C2						

-	
ANALYSED FOR UNIT	
QUANTITY CODE - DESCRIPTION PRICE	TOTAL
1 BAT-01 Administration Fee 33.10	33.10
2 PREP-31 Crush, Split, Pulverize 7.45	14.90
0.41 PREP-31 Weight Charge (kg) - Crush, Split, Pulverize 0.70	0.29
2 ME-MS61 48 element four acid ICP-MS 27.90	55.80
2 Au-AA25 Ore Grade Au 30g FA AA finish 16.70	33.40

To: **18526 YUKON INC**

ATTN: SCOTT BERDAHL

BOX 11250

WHITEHORSE YT Y1A 6N4

R100938885 GST \$ 6.87

137.49

TOTAL PAYABLE (CAD) \$ 144.36

SUBTOTAL (CAD) \$

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name: ALS Canada Ltd.
Bank: Royal Bank of Canada
SWIFT: ROYCCAT2

Address: Vancouver, BC, CAN Account: 003-00010-1001098

Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To:
ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Bureau Veritas Commodities Canada Ltd.
9050 Shaughnessy St.
Vancouver, BC Canada V6P 6E5
Phone 604 253 3158 Fax 604 253 1716
GST # 843013921 RT
QST # 1219972641

Bill To: 18526 Yukon Inc. P.O. Box 11250

Whitehorse, YT Y1A 6N4

Canada

Invoice Date: August 4, 2016
Invoice Number: VANI256908
Submitted by: Scott Berdahl
yukongold@gmail.com

Job Number: WHI16000099

Order Number:

Project Code: Rainbow 2016

Shipment ID: Quote Number:

Item	Package	Description	Sample No.	Unit Price	Amount
1	SS80	Sieve 100g soil to -80 mesh	11		\$35.20
2	AQ252-EXT	30g Full Suite (53 Elements)	11	\$30.70	\$337.70
	DRPLP	Dispose or return handling of pulps	11		\$1.10
4		Per sample charge for branch shipment			\$11.00
		•	Net Total	•	\$385.00
			Canadian GST		\$19.25
			Grand Total	CAD	\$404.25

Invoice Stated In Canadian Dollars

Payment Terms:

Prepayment required subject to confirmation of credit. Please contact bvmininfo@bureauveritas.com

For **cheque payments**, please remit payable to: Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St. Vancouver BC, V6P 6E5

Please specify invoice number on cheque remittance.

For **electronic payments**, please please contact AccountReceivable.VAN@acmelab.com for banking details.

For any enquiries please contact us at AccountReceivable.VAN@acmelab.com

William D. Mann, P.Geo.

INVOICE

GEOLOGICAL CONSULTANT

#15-156

DATE: 19 Hayes Cres. Whitehorse, Y.T., Y1A 0E1 2016-07-28

Phone: 867-667-7409

email: wdmgeology@gmail.com

Bill To: For:

18526 YUKON Ltd. Geological Consulting: Yukon

Y1A 6N4

10320 TUKUN LIU.	Geological Consulting. Yukon
Box 11250 Whitehorse, Y.T.	RAINBOW project field work and report
/1 / 6 N /	

DATE	WORK	Project	RATE	UNITS	AMOUNT
2016-06-22	travel Whitehorse to Mayo		500	0.5	\$250.00
2016-06-23	Field work on Rainbow project		500	1	\$500.00
2016-06-24	Field work on Rainbow project		500	1	\$500.00
2016-06-25	Field work on Rainbow project		500	1	\$500.00
2016-06-26	Field work on Rainbow project		500	1	\$500.00
2016-06-27	Field work on Rainbow project		500	1	\$500.00
2016-06-28	Field work on Rainbow project		500	1	\$500.00
2016-06-29	Field work on Rainbow project		500	1	\$500.00
2016-06-30	travel to Mayo then Whitehorse		500	0.5	\$250.00
					\$0.00
2016-07-23	Report preparation		500	0.25	\$125.00
2016-07-24	Report preparation		500	0.25	\$125.00
2016-07-25	Report preparation		500	0.25	\$125.00
2016-07-26	Report preparation		500	0.25	\$125.00
			SUBTOTAL	9	\$4,500.00
[TOTAL		\$ 4,500.00

The above rate includes 5% GST

Make all cheques payable to William Mann

A.P.E.G.B.C. License # 31907 GST # 118617992

THANK YOU!

Original

Invoice Number

4229

Customer No.

Document Date 06/30/16

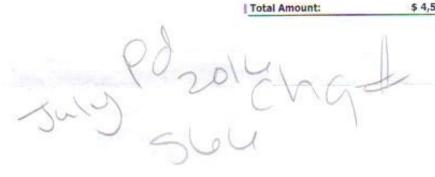
Pape

INVOICE

1/1 Federal Tax ID - Business Partner

BERDRON

Ticket/s


(8526 Rombar

55973; 55981.

RON BERDAHL

BOX 11250 -Whitehorse YT Y1A 6N4 CANADA

GST 5.0000 4,290.					Total Amount:			\$ 4,504.50
		4,290.00		214.50	Total Tax Amou	nt:		\$ 214.50
Tax Code	Tax %	Net		Tax Total Before Tax:			\$ 4,290.00	
Tax Details					Invoice Subtota	ŀ		\$ 4,290.00
FUEL131		06/30/2016	55961	Mayo	210	litres	1.10	231.00
Helicopter Hou	ır - Aircraft FSPE	06/30/2016	55981	Mayo	1.2	hour	1,595.00	1,914.00
FUEL131		06/23/2016	55973	Mayo	210	litres	1.10	231.00
Helicopter Hou	ır - Aircraft FSPE	06/23/2016	55973	Mayo	1.2	hour	1,595.00	1,914.00
Description		Flight Date	Ticket #	Base	Quantity Charged	Units	Price	Total
								Currency \$

