Yukon Mining Exploration Program 2016 Report on the

SPY Project

Target Evaluation 16-030

VM 1-32: YE69339-YE69366 V 1-28: YC66812-YC66843 SPY 1-86: YE10801-YE10886 SPY 87-126: YF47275-YF47314

Kluane Ranges, near Destruction Bay, Yukon Territory NTS map sheet 115G02 Whitehorse Mining District 61°08'N 138°45'W

> February, 2017 Produced for Group Ten Metals Inc. By Debbie James B.Sc., P Geo.

Table of Contents

1	Si	Summary4								
2	Ir	ntrodu	ction6	5						
3	Reliance on Other Experts6									
4	P	roject	Description and Location6	5						
	4.1	Pe	rmit6	ŝ						
5	A	ccessi	bility, Climate, Local Resources, Infrastructure and Physiography7	7						
	5.1	Ca	mp7	7						
	5.2	Ph	ysiography7	7						
6	Н	istory)						
	6.1	Ge	ophysics11	L						
	6.2	Ro	ck Samples11	L						
7	G	eologi	cal Setting and Mineralization12	<u>)</u>						
	7.1	Re	gional Geology and Mineral Potential12	<u>)</u>						
7.2 Property Geology										
	7.3	Str	ucture	ł						
	7.4	Mi	neralization	5						
8	D	eposit	Types	<u>)</u>						
9	Ex	xplora	tion23	3						
	9.1	20	16 Program23	3						
	9.	.1.1	Prospecting and Sampling23	3						
9.2 Previous Work 2013-2015										
	9.	.2.1	2015	L						
	9.	.2.2	2013-2014	L						
1	0	Adjad	cent Properties	<u>,</u>						
1	1	Inter	pretation and Conclusions	<u>,</u>						

12 R	ecom	mmendations							
12.1	Prop	osed Activities							
12.1	1.1	Data retrieval and compilation							
12.1	1.2	Drone Magnetic Survey							
12.1	1.3	Trenching							
12.1	1.4	Chip Sampling							
12.1	1.5	Prospecting & Sampling							
12.2	Sche	dule							
12.3	Bud	get							
Referenc									
Appendi	Appendix 1 Claim List								
Appendix 2: 2016 rock and soil samples46									
Appendi	x 3: W	/ork summary and cost statements47							
Appendi	Appendix 4: Maps								

List of Figures

7
8
9
17
20
21
22
25
26
27
30
33

1 Summary

This report describes a field exploration and geochemical sampling program carried out on the SPY property in 2016. The work was carried out by Midnight Mining Services Ltd. and funded by Group Ten Metals Inc. with assistance from YMEP. The work consisted of prospecting and sampling on the Spy Sill from September 16 to 22, 2017 for 18.5 man-days of work. This report was prepared to satisfy requirements for the Yukon Mineral Exploration Program (YMEP) reporting.

The Spy project is located approximately 13 km south of Destruction Bay, which is 267 km northwest of Whitehorse, Yukon Territory. The project area is on NTS map sheet 115 G02 and centered at a latitude of 61°08'N and a longitude of 138°45'W. The Spy project consists of 186 contiguous claims and covers an area of approximately 3812 hectares in the Whitehorse Mining District. The project is close to Kluane National Park and within the Kluane Wildlife Sanctuary in which exploration and mining are allowed. The project is within the traditional territory of the Kluane First Nation.

The Spy Project lies within the Wrangell Terrane in the northeastern portion of the accreted Insular Super Terrane, which consists of the Alexander and Wrangell Terranes. Regionally, the project is situated within the 600-km long Kluane Ultramafic Belt, which is characterized by Triassic aged mafic to ultramafic sills that are referred to as the Kluane mafic-ultramafic suite. The Kluane mafic-ultramafic suite hosts many magmatic nickel (Ni) - copper (Cu) - platinum group element (PGE) ±gold (Au) occurrences from Northern British Columbia through Yukon and into Alaska. The Kluane suite intrusions are sill-like bodies that preferentially intrude the country rock sequences at or near the contact between the Hasen Creek Formation and Station Creek Formation. Many of the ultramafic sills have marginal gabbro phases at their bases and upper contacts that appear to be preferentially mineralized. The Kluane Belt Ni-Cu-PGE occurrences are particularly enriched in the rarer platinum group elements osmium, iridium, ruthenium and rhodium.

The Wellgreen deposit represents the most advanced property within the Kluane Belt, with historic production (1972-1973) of 171,652 tonnes grading 2.23% Ni, 1.39% Cu, 0.073% Co, and 2.15 g/t Pt and Pd. As of February 2015 Wellgreen released a preliminary economic assessment with a measured and indicated resource of 5.5 Million ounces PGM+Au, 2.9 billion pounds Ni+Cu and an inferred resource of 13.8 million ounces of PGM+Au and 7 billion pounds Ni+Cu. Measured and indicated grades are 1.67 g/t platinum equivalent or 0.44% nickel equivalent. Inferred grades are 1.57 g/t platinum equivalent and 5% nickel equivalent (www.wellgreenplatinum.com). Wellgreen has the potential to become the second largest PGM and third largest nickel sulphide producer outside Russia or Africa. The Wellgreen deposit emphasizes the excellent potential for large tonnage nickel- copper-PGE deposits in the Kluane Ultramafic Belt.

The oldest rocks exposed on the Spy project are clastic sedimentary rocks of the Hasen Creek Formation and volcanic rocks of the Station Creek Formation. Both formations are intruded by the Kluane maficultramafic suite including the Spy sill, which has been the target for exploration since it was discovered in 1972. Maple Creek gabbros intrude the Station Creek and Hasen Creek formations and the Kluane intrusions. The Hasen Creek Formation is overlain to the southwest by the Triassic Nikolai Group volcanic rocks, Triassic to Cretaceous clastic rocks of the Tatamagouche succession, Tertiary Amphitheatre Group sedimentary rocks and Wrangell Lavas.

The Spy sill is located in the southern half of the project and extends for 6-8 kilometres along a northwest trend. The sill is 75 to 100 metres thick and dip varies from 30 to 45° to vertical. At the north end the sill intersects the Bock's Brook mafic-ultramafic intrusions. Ni-Cu-PGE mineralization on the property has historically been associated with the basal marginal gabbro phase of the Spy Sill. Intermittent sulphide showings have been found over a strike of 3.6 km along the base of the Spy sill, of which a 1.5km exposure on the Spy claims has received the most work. These sulphide showings have highly anomalous PGE grades along with significant Ni and Cu.

Recent work at the at the Wellgreen deposit have shifted attention from narrow, rich basal sulphides to bulk tonnage deposits contained in the entire sill and the adjacent country rock. Previous sampling programs at Spy did not include a large component of consistent chip samples across the sill and country rock. Most of the samples are grab samples with no length and work was focused on exploring and evaluating mineralization at the basal contact of the Spy sill and underlying footwall siltstone of the Hasen Creek formation.

The Spy sill is close to being ready for a drill program. The Ni-Cu-PGE values and the consistency of mineralization over the 1.5km exposure are sufficient, but the area needs more ground work to delineate drill targets. The bulk of work should take place on the Spy sill to delineate drill targets, and other work would include prospecting and investigation into prospective areas on the property. A budget of \$181,100 including the following activities is proposed:

- Drone magnetic geophysics survey
- Chip sampling across the width of the sill and into the country rock.
- Trenching to uncover the sill in areas of low cover.
- Prospecting and mapping the other Kluane mafic-ultramafic intrusions and Skolai Group rocks from the north end of the Spy sill to the northwest end of the claim block.

2 Introduction

This report describes a field exploration and geochemical sampling program carried out on the SPY property in 2016. The work was carried out by Midnight Mining Services Ltd. and funded by Group Ten Metals Inc. with assistance from YMEP. The work consisted of prospecting and sampling on the Spy Sill from September 16 to 22, 2017 for 18.5 man-days of work. This report was prepared to satisfy requirements for the Yukon Mineral Exploration Program (YMEP) reporting.

3 Reliance on Other Experts

The author relied on information, maps, geochemical analysis results and interpretations produced by other experts in the fields of geology or geophysics during the preparation of this report. The 1995 Inco sampling program report includes copies of laboratory analysis certificates. The 2000 Santoy sampling program report does not include copies of certificates; instead values were entered into spreadsheets.

4 Project Description and Location

The Spy property is located approximately 13 km south of Destruction Bay, which is 267 km northwest of Whitehorse, Yukon Territory (Figure 1). The project area is on NTS map sheet 115 G02 and centered at a latitude of 61°08'N and a longitude of 138°45'W.

The Spy project consists of 186 contiguous claims and covers an area of approximately 3812 hectares in the Whitehorse Mining District (Figure 2). The claims are registered to Tom Morgan, Bill Harris and Group Ten Metals Inc. See claim map in figure 2 and Table 1 below.

The project is adjacent to Kluane National Park on the south and within 4 kilometres on the west side. It is within the Kluane Wildlife Sanctuary where exploration and mining are allowed. The project is within the traditional territory of the Kluane First Nation.

Claims	Grant Number	No. of Claims	Registered owner	Recording Date	Expiry Date
VM 1-32	YE69339 – YE69366	32	Tom Morgan	21/02/2008	21/02/2017*
V 1-28	YC66812 – YC66843	28	Tom Morgan	18/08/2011	21/02/2017*
SPY 1-86	YE10801 – YE10886	86	Group Ten Metals Inc.	01/04/2015	01/04/2020
SPY 87-126	YF47275 – YF47314	40	Bill Harris	11/26/2015	11/26/2016*
Total		186			

Table 1 - Claim List

*Assessment work is currently being filed and expiry dates will be extended.

4.1 Permit

A Mining Land Use (MLU) Permit is required to do exploration work on claims in Yukon except for low impact, grassroots activities that are classified as Class 1 activities as defined in the Quartz Mining Act.

Group Ten applied for a Class 3 permit, which was granted in July 5, 2016 and is in effect until July 4, 2021. Group Ten have met with the Kluane First Nation Chief and council and staff and keep them apprised of exploration activities in their traditional territory.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

The best access to the property is by helicopter, which is available from Haines Junction on a year-round basis and if work warrants, may be based in Destruction Bay during the summer. Gravel roads extend from the Alaska Highway along Nines Creek, Bock's Creek and Congdon Creek, approaching within 2 km, 3.5 km and 6 km respectively of the property boundary. Travel along these roads isl be by truck or ATV, depending on road conditions, and then on foot from the end of the road. Suitable staging sites for helicopter access into the project area are available from the Talbot Arm Motel at Destruction Bay and at suitable locations along the access roads.

5.1 Camp

There have not been any camps on the Spy property from past exploration programs. Crews have stayed in nearby Destruction Bay and commuted to the site by helicopter and/or road. The valleys are not suitable for camps because they are active floodplains covered by large boulders. The MLU permit allows for term fly camps at higher elevations.

5.2 Physiography

The southeast end of the Spy Project starts at Congdon Creek within the Kluane Mountains of southwestern Yukon and extends northwest into the drainages of Nines Creek and Bocks Creek. It covers steep, craggy mountain peaks of the Front Ranges. Elevations range between 1400 and 2400 metres

above sea level. The property is generally devoid of vegetation, dominated by barren talus slopes, rocky cliffs and mountain peaks, with buck brush along the valleys. Water is available from Nines Creek, Bock's Creek, Congdon Creek and their tributaries. Rock exposure on the project is good at higher elevations, but the valley bottoms and lower sides are typically filled with glacial material and talus fans. Glaciers cover some ground at higher elevations, but the ice has retreated in recent years exposing more bedrock.

Figure 1: Looking SE up Nines Creek.

Figure 2: Project Location Map

Figure 3: Claim Map

6 History

The Spy Project covers the Congdon (Spy) nickel-copper-PGE showing (Minfile 115G 003) and Bock showing (Minfile 115G 084) as documented by the Yukon Geology Program (Deklerk, 2009). A summary of previous work follows:

Year	Work	results
1953	Conwest stake the RAM claims over	Several minor showings of copper-nickel and copper
	headwaters of Halfbreed and Lewis Creeks.	found.
	Program of detailed geological mapping and	
	prospecting.	
1953-54	Staked as Rawhide, Eagle, etc. in Apr-Oct/53 by	
	P. Versluce, H. Versluce and C. Gibbons, who	
	optioned the property in Apr/54 to R. Hide.	
1956	Restaked as Ram cl 1-6 (72751) in Aug/56 by	
	M. McCallion	
1961	Restaked as Eva cl 1-4 (77040) in Oct/61 by D.	
	Carnegie	
1967	Gypsum reported by GSC in 3 localities	Southernmost occurrence staked by AGIP in 1983
1972-73	Restaked as Spy cl 1-12 in Jul/72 by Nickel	Discovery of chalcopyrite and nickeliferous
	Syndicate (Canadian Superior Exploration Ltd,	pyrrhotite in gabbro at the base of the main (Spy)
	Aquitaine, Home Oil Ltd and Getty Mines Ltd).	peridotite sill (McLoughlin and Vincent, 1973).
	Geological mapping and geochemical	
	sampling.	
1986-87	Restaked in Aug/86 by Polestar Exploration Inc,	
	and as Tony cl (YB5915) in Jul/87 by Walhalla	
	Exploration Ltd, which carried out prospecting,	
	mapping and sampling in 1988.	
1988-89	Polestar conducted geochemical surveying on	Outlined four gold and four platinum and palladium
	the I claims in 1988 and optioned 50% of its	anomalies with values up to 920 ppb Au, 158 ppb Pt
	interest to Hunter Gold Inc in Jan/89.	and 277 ppb Pd over the Spy ultramatic sill (<i>Giroux</i>
4000		and Montgomery, 1988)
1993	R.H.W. Temple staked the Ashley cl (YB37999)	
4004.05	On Nines creek in Jun/93.	
1994-95	In Oct/94 Inco Ltd staked a block of 508 Klu	
	Claims. The claim block covered Minnie	
	Occurrences #115G 003, 084, 098 and 099.	
	Inco staked a second block of 18 klu claims	
1004.07	North of Congdon Creek in Aug/95.	Deligented culphide aboutings with highly
1994-97	Geological mapping, introgeochemical, sint,	Delineated sulphide showings, with highly
	1004 and 1005 (<i>Bell</i> 1006) an airborno EM and	anomatous FGE grades and significant Ni and Cu,
	magnetics survey in 1996 (McCowan 1996)	long Spy Sill Maximum values from the gabbro at
	followed up by geological mapping prospecting	the lower contact include 3 1% Ni 2 8% Cu 0 2%
	and ground geophysical surveying in 1997	Co 3.1 g/t Pt 1.4 g/t Pd and 1.0 g/t Au from grab
	(Hattie, 1997), by Inco I th	samples.

Year	Work	results
2000	Santoy Resources Ltd optioned the property from Inco and carried out geological mapping, chip sampling, prospecting, silt and soil sampling.	The program outlined massive and disseminated Ni, Cu and PGE mineralization associated with a 950m strike length of the Spy sill (<i>Tulk, 2001</i>).
2005	Klu claims were acquired by Resolve Ventures. Re-processing of the 1996 airborne geophysics and a brief property visit sampling previously identified geophysical features was completed. The majority of the claim block lapsed in 2007.	Recommends drilling on the Spy sill, but more information needed to target holes, and blast trenching to uncover the basal contact. (<i>Liard and</i> <i>Lavigne, 2006</i>)
2008	Staked by Tom Morgan as VM claims, with V claims added. Reconnaissance program in 2008. Brief mapping and prospecting program in 2011.(<i>Pautler, 2012</i>)	Recommends deep auger sampling along contact areas and exposing fresh contact material by trenching (Morgan, 2009).
2013	Spy claims optioned by Ashburton Ventures	

6.1 Geophysics

An airborne magnetics and EM geophysical survey was conducted in 1996 by Inco and subsequently reprocessed in 2006 by Resolve Ventures. Digital datasets are not publicly available. Final products from the 2006 processing were georeferenced in 2014 and 2015 and used for geophysical reviews and interpretations.

Due to the severe terrain over much of the claim block, Inco used 100 m spacing between flight lines. The airborne geophysical survey outlined 3 coincident EM and magnetic conductors on the claim block. In 1997, Inco carried out follow-up ground magnetic and EM geophysical surveys on the three conductors. Two of the conductors were found to relate to black calcareous shale exposures. The third anomaly was interpreted to represent conductive overburden.

A small ground magnetic and UTEM survey was completed in 1996 just off the northwestern limit of the Spy property. No other records of historical ground geophysical surveys over the property.

6.2 Rock Samples

A section of the Spy sill has been intensively sampled in 1988 by Polestar and between 1994 and 2006 by Inco, Santoy and Resolve. Polestar set up a grid and collected approximately 450 rock samples. Inco analyzed 400 rock samples: the majority for whole rock by XRF/ICP and multi-element using a partial (AR) digestion ICP, the remainder with total digestion. Some additional lab work, including REE, and other trace elements was done on a limited number of samples. In the summer of 2000, Santoy Resources collected another 186 rock samples, which underwent multi-element, and where appropriate, precious metal, analyses using a partial digestion. The 26 samples taken by Resolve in 2005 were selected for lithogeochemical analysis rather than assay; therefore all were prepared using a near total (3-acid) digestion to liberate metals in silicate lattice.

Most of the samples are grab samples with no length unless they were chip samples collected on boulders or in talus. The Polestar samples do not seem to have attracted much attention or follow-up

work. Only grid coordinates are provided for their samples so locations derived from georeferencing grid maps will be approximate. Polestar's best PGE and gold anomalies were in the northwestern part of the Spy claim block, in areas which do not appear to have been revisited by Inco and Santoy. Inco and Santoy concentrated on sampling the higher grade, sulphide rich samples in the basal gabbro of the exposed Spy sill. A digital database is not available, but coordinates are either listed along with sample descriptions or can be pulled from maps of sample locations. Digitizing of sample information is ongoing.

7 Geological Setting and Mineralization

7.1 Regional Geology and Mineral Potential

The Spy Project lies within the Wrangell Terrane in the northeastern portion of the accreted Insular Super Terrane, made up of the Alexander and Wrangell Terranes. The Wrangell Terrane consists of Devonian to Permian arc volcanic, clastic and platform carbonate rocks overlain by Triassic oceanic rift tholeiitic basalt and carbonate rocks. The Wrangell Terrane is bounded by the Denali and the Duke River Faults. The Denali Fault is a large strike-slip fault, with a dextral sense of motion and an offset in the order of 350 km, that defines the Shakwak Valley and lies approximately 5 km northeast of the Spy property. The Duke River Fault, separating the Alexander and Wrangell Terranes, lies approximately 5 km southwest of the property.

Post accretionary units, overlapping Wrangell and Alexander Terranes, include Jura- Cretaceous sedimentary rocks of the Tatamagouche Group and Tertiary felsic to mafic volcanic rocks with interbedded terrestrial sedimentary rocks. Post accretionary intrusions include Jura-Cretaceous, mid Cretaceous and Neogene plutons. Thick Quaternary deposits and glaciers cover much of the region.

The Permian and Triassic rocks are faulted and folded about steep axial planes with shallow northwest trending axes. Faulting has occurred along bedding plane slip faults and strike slip faults which trend subparallel to the Denali Fault.

The Wrangell Terrane hosts the 600 km long Kluane Ultramafic Belt, which is characterized by Triassic aged mafic (gabbro to diorite) to ultramafic (commonly peridotite) sills known as the Kluane maficultramafic suite. The Kluane mafic-ultramafic suite hosts a number of magmatic nickel (Ni) - copper (Cu) - platinum group element (PGE) ±gold (Au) occurrences from northern British Columbia, through Yukon and into Alaska.

The mafic-ultramafic intrusions are sill-like bodies that preferentially intrude the country rock sequences at or near the contact between the Hasen Creek Formation (tuffs, mafic volcanics, argillite and limestone) and Station Creek Formation (tuffs, pyritic black tuff, mafic volcanics and argillite), part of the Pennsylvanian (?) to Permian Skolai Group. Many of the ultramafic sills have marginal gabbro phases at their bases and upper contacts that appear to be preferentially mineralized. The Kluane Belt nickel-copper-PGE occurrences are particularly enriched in the rarer platinum group elements osmium, iridium, ruthenium and rhodium.

The Wellgreen deposit represents the most advanced property within the Kluane Belt, with historic production (1972-1973) of 171,652 tonnes grading 2.23% Ni, 1.39% Cu, 0.073% Co, and 2.15 g/t Pt and Pd. As of February 2015 Wellgreen released a preliminary economic assessment with a measured and indicated resource of 5.5 Million ounces PGM+Au, 2.9 billion pounds Ni+Cu and an inferred resource of 13.8 million ounces of PGM+Au and 7 billion pounds Ni+Cu. Measured and indicated grades are 1.67 g/t platinum equivalent or 0.44% nickel equivalent. Inferred grades are 1.57 g/t platinum equivalent and 5% nickel equivalent (www.wellgreenplatinum.com). Wellgreen has the potential to become the second largest PGM and third largest nickel sulphide producer outside Russia or Africa. The Wellgreen deposit emphasizes the excellent potential for large tonnage nickel- copper-PGE deposits in the Kluane Ultramafic Belt.

7.2 Property Geology

Property geology is summarized from reports by Jackson, 2014, Pautler, 2012, Tulk, 2001 and Bell, 1996. Figure 3 and the accompanying legend in figure 4 illustrate property scale geology map and is derived from YGS regional mapping. Unit descriptions are in the table of formations below.

The oldest rocks exposed on the Spy property are clastic sedimentary rocks of the Hasen Creek Formation and Station Creek Formation, both Pennsylvanian to Lower Permian Skolai Group and exposed along the length of the claim block. The strata trend northwest and dip at an average of 40° southwest. The Hasen Creek Formation is intruded by Late Triassic mafic to ultramafic sills of the Kluane maficultramafic suite, including the Spy sill. A significant band of limestone within the Hasen Creek Formation is mapped below the Spy sill and additional similar limestone bands occur above the sill. Maple Creek gabbros intrude the Station Creek formation and ultramafic rocks.

The Hasen Creek Formation is overlain by the Triassic Nikolai Group volcanic rocks, Jurassic to Cretaceous clastic rocks of the Tatamagouche succession, Tertiary Amphitheatre Group sedimentary rocks and Wrangell Lavas. The Wrangell Lavas which dominate in the southwest of the property consist of rusty, red-brown basaltic andesite flows, interbedded with felsic tuff. On the northwestern edge of the project is the semi-circular Bock's Brook stock, a Wrangell Suite intrusion of diorite to gabbro composition.

The Spy sill is in the southern half of the claim block and intrudes Hasen Creek siltstone for 6-8 kilometres along a northwest trend, extending off the property at the south end. The sill is 75 to 100 metres thick. Dip is variable, interpretation of magnetic data suggest it ranges from 30 to 45° at the Spy Showing to vertical at the southeast and northwest ends(Bell, 1996). Contacts with the country rock are sharp and often sheared, accompanied by local hornfelsing, silicification and sulphide mineralization. At the north end the sill intersects the Bock's Brook mafic-ultramafic intrusions. The northern 4 km of sill are more diffuse than the southern portion and are dominated by gabbro.

The Spy sill is composed of peridotite, gabbro and anorthositic gabbro members, which form sub-parallel moderately dipping units. Peridotite forms the central phase of the sill and measures approximately 35 to 60 metres in thickness. It is generally unserpentinized, fine to medium grained, black, and feldspathic. Marginal gabbro, between 2 to 50 metres thick, occurs at the top and base of the peridotite unit and

varies in composition between gabbro and melagabbro. The contact between the marginal gabbro and the peridotite is generally gradational over several metres. Both the marginal gabbro and peridotite units are intruded by an anorthosite to anorthositic gabbro which occurs locally as a 10 to 15 m thick, concordant to cross-cutting sill with gabbroic margins. The anorthositic gabbro is light grey, fine to medium grained and generally contains 2 to 4% finely disseminated pyrite and pyrrhotite. Thin anorthosite seams within peridotite have also been noted south of the Spy showing and highlight small scale block faulting.

Maple Creek gabbro sills intrude the Spy sill and occur stratigraphically above and below it. The most continuous Maple Creek gabbro sill occurs 230 metres down-section from the base of the peridotite and is up to 160 metres thick. This sill is intermittently exposed over a 10-kilometre strike. The northwestern end of the Spy sill is cut by a 200-metre thick section of Maple Creek gabbro. Elsewhere, smaller bodies of Maple Creek gabbro also cut and form lens shaped bodies within the peridotite. Maple Creek gabbros are typically barren of mineralization.

The Bock's Brook intrusions are in the northern half of the claim block and are only partly covered by Spy claims. The southernmost intrusion is the largest peridotite intrusion on the property, measuring 500m at its thickest extent. The thickness may be exaggerated by repeated fault slices, but there appears to be at least one smaller sill below the main sill. The peridotite is serpentinized and fault bounded along the northern contact.

The Lewis intrusions are located at the northwest end of the claim block. There are three intrusions of relatively unserpentinized peridotite to pyroxenite composition intruding Hasen Creek Formation sediments. Only part of one intrusion is covered by the Spy claims. They are in an extremely rugged area which has made exploration difficult.

All the above units are locally overlain by Quaternary unconsolidated glacial, glaciofluvial and glaciolacustrine deposits and ice.

7.3 Structure

Quaternary material in the valley bottoms of Nines Creek, Bock's Brook and Lewis Creek obscures much of the structure, but it appears to consist of several fault bounded slices of folded Paleozoic and Mesozoic strata, overlain by gently dipping Tertiary rocks. Bounding faults trend northwest, parallel to the regional Denali Fault and appear to have a steep dip. Axial planes of folds are also northwest with a steep dip; axes are assumed to be near horizontal.

Q – Quaternary	Unconsolidated alluvium, colluvium and glacial deposits.
NW1 Miocene to Pliocene Wrangell Lavas	Extensive volcanic unit, volumetrically significant but not associated with mineralization. Suture unit, joining Wrangellia and Alexander Terranes. Can form thick piles 400-1000m thick. Rusty red, brown phyric and non-phyric basalt and andesite flows, interbedded with felsic tuff, volcanic sandstone and conglomerate. Associated granodiorite and diorite intrusions.

Table of Formations

MW Mid to late	Intrusions of granodiorite and diorite with lesser gabbro. Associated subvolcanic felsic
Miocene	intrusions.
Wrangell Suite	
OA Paleocene to	Tertiary freshwater clastic rocks 60 to 575 metres thick with a limited occurrence.
Oligocene	Clastic rocks, minor carbonaceous shale and thin coal seams, mostly fluvial and lacustrine
Amphitheatre	deposits.
Formation	
uTrKT upper	Dark to light grey phyllite, medium to coarse grained sandstone, minor greywacke and
Triassic	pebble to cobble conglomerate
Tatamagouche	
Formation	
LTrK late Triassic	Preferentially intrudes at or near the Hasen Creek-Station Creek contact.
Kluane Ultramafic	LTrK2 – Maple Creek Gabbro; fine to coarse grained gabbro sills and dykes.
Suite.	LTrK1 - peridotite, dunite and clinopyroxenite, layered intrusions, locally with gabbroic
	chilled margins.
uTrC upper Triassic	Thin interbedded argillaceous limestone and argillite; massive limestone, limestone
Chitistone	breccia, well-bedded limestone; gypsum and anhydrite.
Formation	
uTrN upper Triassic	uTrN2 – dark green to maroon amygdaloidal basalt and basaltic andesite flows, locally
Nikolai Formation	pyroxene and plagioclase phyric.
	uTrN1 – basal conglomerate.
CP Pennsylvanian	CPH1- Hasen Creek Formation – dark to light grey/brown siltstone turbidites, siliceous
to lower Permian	argillite, chert and minor volcaniclastics sandstone and tuffs
Skolai Group	CPH2- Hasen Creek formation - buff to gray bioclastic limestone, local cherty interbeds
	CPS5 – Station Creek Formation - Dark to light green volcanic breccia, crystal tuff and
	tuffaceous sandstone; breccia clasts consist of basalt within tuffaceous matrix; minor
	basalt flow.
	CPS1 – undivided Skolai Group

7.4 Mineralization

The Spy property covers the Congdon/Spy 115G003 mineral occurrence and two of three locations for the Bock 115G084 minfile occurrence as documented by the Yukon Geological Survey. The Congdon/Spy occurrence is the Spy Sill and the Bock occurrences were originally gypsum showings, but have been reclassified as Ni-Cu-PGE (Au) showings.

Ni-Cu-PGE (Au) mineralization is associated with the basal marginal gabbro phase of the Spy Sill, a northwest trending sill which contains the original Spy Showing. Intermittent sulphide showings occur over a strike of 4 km along the base of the 6-8 km long sill. These sulphide showings have anomalous PGE grades along with significant Ni and Cu.

Most Ni-Cu-PGE mineralization is associated with the basal contact of the Spy Sill and the footwall Hasen Creek siltstone, but disseminated lower grade mineralization is also found throughout the entire sill and into the country rock on either side. Numerous mineral occurrences have established the presence of both narrow massive sulphide lenses and disseminated mineralization within the contact zone. Host rocks include gabbro and peridotite phases of the sill as well as footwall siltstone. Several showings of

massive and disseminated mineralization occur intermittently over a strike length of 1.5km between the 99 and Sweet 16 showings. Between Nines Creek and Congdon Creek, the Solo and South Spy showings suggest that mineralization continues at the south end, but steep terrain makes access difficult and this area has not received much work. A description of the Spy sill showings follows, listed in order from northwest to southeast. See figure 8 for the locations of showings. No significant Ni-Cu-PGE showings on Group Ten claims have been found at intrusions other than the Spy Sill although only a limited amount of work has been done elsewhere.

Claim Post

The Claim Post showing is one of several pyrrhotite-magnetite horizons found above the Spy Sill. At Claim Post a 4m thick pyrrhotite horizon is hosted by silicified siltstone and capped by magnetite and gabbro. Minor magnetite and chalcopyrite occur within the pyrrhotite. Copper values from historic samples were in the 0.1 to 0.3% range, cobalt values were 33-640 ppm. Nickel values reached a maximum of 520ppm and PGE values were low (Bell, 1996).

Sweet 16

The Sweet 16 showing is located northwest of the Taz Showing and consists of one small outcrop and several small pits over a 100m area. Extensive talus cover extends between the Taz and Sweet 16 showings. Mineralization is disseminated net-mesh textured pyrrhotite>pyrite>chalcopyrite in a marginal gabbro at or above the siltstone contact. The best result was a 1.2m chip containing 1.850 g/t Pt, 1.554 g/t Pd, 1.071 g/t Au, 0.12 % Cu and 0.03% Ni. Several grab and chip samples collected by Santoy and Inco in the area contain values ranging from 0.5-2.1 g/t combined PGE+Au, but a lack of outcrop has limited understanding of the extent of mineralization. This showing was revisited in 2016.

21 Again

The 21 Again showing is a semi-massive pyrrhotite skarn up to 3 m occurring at the contact of limestone, limey shales and gabbro, located between the Sweet 16 and Taz showings and approx. 230m upsection in an overlying gabbro unit. It may be part of the same horizon as Claim Post. The mineralization was traced for over 50 metres and then into talus cover. A composite chip was taken by Santoy, but contained only 77 ppb Pt, 68 ppb Au and 604 ppm Cu.

Taz

The Taz showing consists of strongly malachite altered siltstone downsection of the gabbro contact. Thick scree in the area covers the gabbro contact. A hand trench over the siltstone was sampled for its entire 5.5 metre length with the most significant mineralization being a 1.5m chip that returned 1.324 g/t Pt, 0.701 g/t Pd, 0.489 g/t Au, 0.25% Cu and 0.38% Ni. The Taz was revisited in 2016

Wylie

At the Wylie showing mineralization occurs in sulphide net textured marginal gabbro, malachite-stained, footwall siltstone with disseminated chalcopyrite and pyrite, and massive sulphide veins in marginal gabbro. A 4.4m chip sample returned a weighted average of 1.01 g/t PGE+Au, 1.17% Cu and 0.23% Ni. Between the Wylie and Bug showings, mineralization is common but not continuous.

Figure 4: Looking SE along the Spy Sill from the Taz Showing towards the Wylie Showing.

Bugs

The Bugs showing is located approximately 200 metres northwest of the Spy showing and consists of two outcrops of silicified gossanous siltstone in contact with mineralized marginal gabbro. The siltstone is strongly malachite stained and hosts 10 cm wide massive chalcopyrite-pyrrhotite veins in several orientations. The best grab sample was 3.954 g/t Pt, 1.248 g/t Pd, 0.342 g/t Au, 3.66% Cu and 1.44% Ni over 0.9m. Santoy collected a continuous chip over 2.8m with a weighted average of 2.613 g/t PGE+Au, 1.60% Cu and 0.77% Ni.

Spy

The Spy showing consists of massive chalcopyrite-pyrrhotite lenses, up to 2.0 by 0.25 metres, occurring in sediments at the base of the Spy sill. The host siltstone is weakly altered, but highly fractured with chalcopyrite-pyrrhotite mineralization occurring along

the fractures. Inco took a grab sample

that returned spectacular values of 75.8 g/t Pt, 7.9 g/t Pd, 7.0 g/t Au, 10.4% Cu and 2.6% Ni, but this sample has not been replicated. Santoy's best sample returned 7.07 g/t Pt, 1.33 g/t Pd, 0.693 g/t Au, 0.45% Cu and 0.16% Ni over 1.0m, open in all directions, but there is a question as to whether Santoy relocated the Spy showing previously sampled by Inco.

Spy South-Central

This is an area not a specific showing. It refers to the strike extension of the Spy sill south of the Spy Showing into the southern Nines Creek valley. The area is extremely rugged and difficult to access. The sill can be seen in outcrop trending across the cliff. Two new showings were prospected in this area in 2016, the 99 Showing and Solo Showing.

99 Showing

The 99 Showing occurs in talus and subcrop of rusty peridotite with 10% net textured or fracture controlled and vug-filling sulphides (pyrrhotite>pentlandite>chalcopyrite) 10m above the basal gabbro contact. Downslope is another medium grained gabbro unit with 2-5% pyrrhotite/pentlandite, minor chalcopyrite and local malachite and azurite. The best samples from 2016 contained 0.587 g/t PGE+Au, 5122 ppm Cu, 469 ppm Ni, and 43 ppm Co and 0.302 g/t PGE+Au, 2047 ppm Cu, 1263 ppm Ni and 163 ppm Co. Fifty metres to the east the sill is buried under talus.

Inco collected a grab sample approximately 120m upslope from this area which returned 4.750 g/t Pt, 1.910 g/t Pd, 2.610 g/t Au, 0.28% Cu and 2.91% Ni. Santoy were not able to locate the sample. Interestingly, the sample was taken at a gabbro-siltstone contact above the peridotite from an underexplored horizon.

Solo Showing

The Solo Showing is on the east side of Nines Creek in a fault zone perpendicular to the contact between the Spy sill and Hasen Creek sediments. Mineralization is found in the peridotite, gabbro, sediments and contact hornfels. The ultramafic has been altered to a listwanite with carbonate veining, and trace Cu oxides. Gabbro lenses within the ultramafic are mineralized with blebs of pyrrhotite, pentlandite, and chalcopyrite with limonite staining. Sediments are rusty, altered and fractured with minor Cu oxides and disseminated sulphides. The best samples ran 1.542 g/t PGE+Au, 3130 ppm Cu, 7636 ppm Ni and 276 ppm Co and 2.182 g/t PGE+Au, 1694 ppm Ni, 1367 ppm Ni and 74 ppm Co.

Outside of Main Spy Sill

Spy North

Spy North covers the sill from the Claim Post showing northwest to its intersection with the Bock's Brook intrusions. The sill kinks north in this section and heads down into the Nines Creek valley where it can be traced through scattered outcrops. Part of this area was prospected and sampled in 2015 and 2016. There is some evidence that a parallel gabbro sill continues directly northwest from where the sill kinks. A subtle discontinuous trend of moderate conductivity parallel to the sill suggests the presence of gabbro that continues northwest parallel to the strong linear magnetic high that defines the sill. In 2015, a prospecting traverse along a ridge that intersected this trend passed through Nikolai basalts and andesite dykes.

Bock's Brook Intrusion

Previous work needs to be researched and compiled for this area, but the amount of work and number of samples is limited. The ruggedness of the terrain and the higher results from the Spy sill have diverted attention away from this area. INCO collected samples from three intrusions and country rock in this area. The southernmost intrusion extends onto the Spy claims and contained the best overall sample of the three intrusions at 674 ppm Ni, 289 ppm Cu, 65 ppm Co, 15 ppb Pt, 26 ppb Pd and tr Au. Santoy

spent one day in the area and collected no anomalous PGE samples, but did find one sample of float with 20% pyrite and chalcopyrite that assayed 0.85% Cu. No bedrock source was located.

Lewis Intrusions

The Lewis Intrusions at the northwest end of the claim have also not received much work. INCO collected 12 samples from two intrusions in this area. All samples were collected outside the current spy claim area. The best sample assayed 1585 ppm Ni, 4360 ppm Cu, 105 ppm Co, 580 ppb Pt, 296 ppb Pd and Au from the westernmost intrusion. Limited sampling on the eastern intrusion which extends onto the SPY claims returned Ni in the 59-361 ppm range, Cu in the 59-361 ppm range, Co in the 35-99 ppm range and trace PGE values.

Bock minfile

The original Bock minfile occurrences were originally recorded as gypsum showings from 1967. The deposit type was later updated to Gabbroid Ni-Cu once the focus of investigation changed. Bell, 1995 records fault slices containing gypsum along the tributary creek below on the Bock's Brook ultramafic intrusions and 2m by 3m by 1m rafts of gypsum in Nikolai basalt north of the ultramafic intrusion. This area corresponds roughly with the recorded location of 115G084C.

Figure 5: Property Geology Map

Geology Legend

Yukon Faults

- --- strike slip, dextral, approximate MID TO LATE MIOCENE
- thrust, , approximate
- -- thrust, , covered
- · unknown, , approximate
- unknown, , covered
- unknown, , defined
- -- unknown, , inferred
- Folds

Yukon Bedrock Geology

MW: WRANGELL SUITE: fine to medium grained, hornblende biotite granodiorite and porphyritic (K-feldspar) hornblende granodiorite; medium grained, uniform biotite diorite and pyroxene gabbro; subvolcanic hornblende biotite rhyolite, rhyodacite, dacite, and trachyte (Wrangell Suite)

MIOCENE TO PLIOCENE

NW1: WRANGELL LAVAS: rusty red-brown, phyric and non-phyric basaltic andesite flows (minor pillow lava), interbedded with felsic tuff, volcanic sandstone and conglomerate; acid pyroclastics related to intra-Wrangell intrusions; thin basaltic andesite and andesite flows (Wrangell Lavas)

PALEOCENE TO OLIGOCENE

OA: AMPHITHEATRE: yellow-buff to grey-buff sandstone, pebbly sandstone, polymictic conglomerate, siltstone, mudstone; minor brown-grey carbonaceous shale and thin lignitic coal; mostly fluvial and lacustrine deposits, local debris-flow deposits; some shallow marine (Aphitheatre : Kulthieth)

CRETACEOUS AND (?) OLDER

KK1: KK: KLUANE SCHIST: undivided

LATE TRIASSIC AND (?) OLDER

- LTrK2: MAPLE CREEK: gabbro
- LTrK1: KLUANE: mafic to ultramafic intrusions

UPPER TRIASSIC

uTrN2: NIKOLAI: basalt, andesite

uTrN1: NIKOLAI: basal conglomerate

- uTrM: MC CARTHY
- uTrKT: TATAMAGOUCHE

uTrC: CHITISTONE: thin interbedded light to dark grey argillaceous limestone and dark grey argillite; massive light grey limestone, limestone breccia and darker grey, well-bedded limestone; white to creamy-white gypsum and anhydrite (McCarthy, Chitistone and Nizina limestones)

PENNSYLVANIAN TO (?) LOWER PERMIAN

- CPH2:SKOLAI/HASEN CREEK: carbonate
- CPH1: SKOLAI/HASEN CREEK: siltstone, mudstone, sandstone
- CPS5: SKOLAI/STATION CREEK: volcanic breccia

CPS1: SKOLAI: undivided Skolai Gp., Station Creek and Hasen Creek fms.

DEVONIAN TO UPPER TRIASSIC AND (?) OLDER

DTrI2: ICEFIELD: white to creamy-white gypsum and anhydrite; thin-bedded to massive, light grey to dark bluish-grey limestone or marble; minor dark grey calcareous argillite, calcareous siltstone-sandstone; local buff-grey crinoidal limestone

DTrI3: ICEFIELD: dark green (locally purple), porphyritic (augite) and non-porphyritic basaltic to andesitic flows and pillow lava; local volcaniclastic sediments, agglomerate, breccia, cherty tuff, grey limestone or marble, gypsum and basic intrusions

SILURIAN AND DEVONIAN

SDB1: BULLION: massive to well-bedded light grey limestone or marble, thin-bedded dark grey limestone or marble; minor dark blue-grey calcareous argillite or phyllite (Bullion Creek Limestone)

LOWER ORDOVICIAN TO DEVONIAN AND (?) OLDER

ODG2: GOATHERD: dull rusty-buff or green-grey greywacke siltstone-sandstone, and argillite or phyllite; minor grit; rarer limestone, pebble conglomerate, conglomerate; locally includes quartzite

CAMBRIAN TO ORDOVICIAN AND (?) YOUNGER

COD1: DONJEK: massive to well-bedded, coarse- to medium-grained greywacke; minor siltstonesandstone, argillite, phyllite or schist, and basic intrusions; conglomerate, basic flows (some pillowed), pyroclastics(?), and volcanic breccia; greenstone, amphibolite (N. Alsek Ranges Greywacke-Gabbro assem.; Donjek Range Greywacke-Greenstone assem.; Field Creek Volcanics)

Figure 6: Geology map legend

8 Deposit Types

The Congdon/Spy occurrence is classified by the YGS as Gabbroid Ni-Cu-PGE (Au) a term roughly synonymous with magmatic Ni-Cu-PGE and USGS model 7a synorogenic-synvolcanic Ni-Cu (Page). The same model, with local variations, is applicable to all ultramafic associated mineralization within the Kluane belt.

Gabbroid Ni-Cu-PGE (Au) deposits are characterized by basal massive sulphide lenses and matrix and disseminated sulphides in small to medium sized gabbroic intrusions in orogenic belts of metamorphosed volcanic and sedimentary rocks. The intrusions were emplaced during an orogeny or simultaneously with basalt volcanism. Typical mineralogy is pyrrhotite, pentlandite, chalcopyrite ± pyrite, ± Ti-magnetite ± Cr-magnetite ± graphite and by-product cobalt, platinum group elements and gold.

In the Kluane Belt Ni-Cu PGE + Au mineralization is spatially associated with ultramafic sills or lenses that zone outwards from a dunite core to peridotite and pyroxenite and finally to a gabbroic margin. The intrusions are preferentially located at the contact between the Station Creek and overlying Hasen Creek formations. Massive sulphide mineralization occurs at the base of the sill and sometimes at the top. Net and mesh textured sulphides are found in the marginal gabbro. Hydrothermal and skarn type mineralization may occur in the Hasen Creek sediments above the contact, especially where there are carbonate beds.

Figure 7: Deposit model for Ni-Cu-PGE mineralization in the Kluane Ultramafic Belt (modified from Hulbert, 1997)

There is potential for copper occurrences in the overlying Nikolai basalt and andesite. These rocks have a high copper background which is remobilized and redeposited as native copper and copper oxides in

amygdules, veinlets and joint plants. Additionally, polymetallic vein deposits can be found that have formed in a similar manner in the Nikolai basalts. The Skolai Group (Hasen Creek and Station Creek formations) and the Nikolai volcanics and related rocks have the potential to host volcanogenic massive sulphide (VMS). These deposit types will not be discussed further because they are not the current target.

9 Exploration

This section covers work done by Group Ten Metals Inc. (previously called Ashburton Ventures) since optioning the Spy claims in 2013. Previous work is covered in section 6.

9.1 2016 Program

The work in 2016 was undertaken by Midnight Mining Services Ltd. and funded by Group Ten Metals Inc. with assistance from YMEP. Crew member were: Bill Harris, Manager, Debbie James, Geologist/GIS, Graham Davidson, Geologist, Jean Pautler, Geologist and Ron Berdahl, Prospector. The work consisted of prospecting, sampling and collection of XRF readings. Kluane Helicopters from Destruction Bay provided flight services. The program ran from September 16 to 22, 2017 for 18.5 man-days of work. Field work was carried out on the 17th, 18th, 20th and 21st and the 19th was a weather/office day.

9.1.1 Prospecting and Sampling

Prospecting and sampling were carried out at and near showings on the main part of the Spy Sill. Two new showings were identified. XRF readings were collected from outcrops and from samples sent for assay to characterise rock types and reduce the number of samples sent for assay.

99 Showing

The 99 Showing is the strike extension of the Spy sill south of the Spy Showing towards southern Nines Creek. The area is extremely rugged and difficult to access. The sill can be seen in outcrop trending across the cliff, but had been lightly sampled by previous operators, most likely due to the difficulty of access. Previous values (see table below) were low except for 224271, collected by Inco approximately 120m upslope from this area which returned 4.750 g/t Pt, 1.910 g/t Pd, 2.610 g/t Au, 0.28% Cu and 2.91% Ni. This sample has not been relocated since originally sampled. Interestingly, the sample was taken at a gabbro-siltstone contact above the peridotite from an underexplored horizon.

At the 99 showing, samples 135670, 71 and 74 were collected of rusty peridotite with 10% net textured or fracture controlled and vug-filling sulphides (pyrrhotite>pentlandite>chalcopyrite) 10m above gabbro contact. Forty metres downslope, is a medium grained gabbro with 2-5% pyrrhotite/pentlandite, minor chalcopyrite, local malachite and azurite. The showing is a good trenching target and trenching should continue to the east where the outcrop is buried under talus.

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
1353670	1263	2047	163	0.302	peridotite	subcrop of rusty peridotite with 10% net
						textured sulphide (pyrrhotite, 4%
						pentlandite, 1% chalcopyrite), with trace

Sample	Ni (nnm)	Cu (nnm)	Co	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(8/1)		
						10m above contact with gabbro
1353671	1481.6	1441.1	193	0.573	peridotite	grab of rusty peridotite with 10% net textured sulphide (pyrrhotite, 4% pentlandite, 1% chalcopyrite), about 10m above contact with gabbro
1353672	697.4	824.3	94.7	0.547	gabbro	medium grained gabbro with fracture controlled 5% pyrrhotite/pentlandite, minor chalcopyrite
1353673	469	5122	43	0.587	gabbro	rusty weathering medium grained gabbro with 2% fracture controlled and vug filling chalcopyrite and pyrrhotite/pentlandite, malachite and azurite staining
1353674	559	1027.6	53.4	0.414	peridotite	medium grained peridotite with fracture controlled and some disseminated sulphide - 3% sulphide with definite pentlandite, some pyrrhotite, 1% chalcopyrite
182532	1704	819	130	94 ppb	gabbro	Anorthositic gabbro layers with some gossanous horizons in more mafic gabbro ~-4m wide, gossanous horizons to 30 cm.
222611	1560	420	125	116 ppb	peridotite	 1.5m chip of gossanous spotted o/c, mod magnetic, fine to med grained, no serp. 2- 3% net textured pyrrhotite.
222726	997	75	75	na	gabbro	o/c. Light gray brown on weathered, light grey on fresh surface. Massive, fine to med grained. Trace diss. Pyrrhotite.
222728	1330	276	83	na	peridotite	o/c. Feldspathic peridotite, dark gray brown on weathered, dark gray-green on fresh. Massive, 1mm grain size, magnetic. Trace pyrrhotite.
222729	28	123	23	na	gabbro	o/c. Med gray brown on weathered, light grey on fresh. Massive, 1.5-2.0 mm grain size
224271	2840	29100	120	9.27	siltstone	Chert or silicified siltstone at basal contact with gabbro sill. Sill is 60m thick. Pyrite and pyrrhotite droplets up to 3cm in diameter, up to 8% sulphide in sample.
222609	65	60	40	38 ppb	gabbro	Med grained, reddish brown on weathered, dark gray-black on fresh. 2-4% diss. pyrrhotite (magnetic).

Table of results from 99 Showing. Samples 1353670-74 were collected in 2016, the rest are from previous operators.

Figure 8: The 99 Showing. A good trenching target.

Solo Showing

The Solo Showing is on the east side of Nines Creek in a fault zone perpendicular to the contact between the Spy sill and Hasen Creek sediments. Mineralization is found in the peridotite, gabbro, sediments and contact hornfels. The ultramafic has been altered to a listwanite with carbonate veining, and trace Cu oxides. Gabbro lenses within the ultramafic are mineralized with blebs of pyrrhotite, pentlandite, and chalcopyrite with limonite staining. Sediments are rusty, altered and fractured with minor Cu oxides and disseminated sulphides. The best samples ran 1.542 g/t PGE+Au, 3130 ppm Cu, 7636 ppm Ni and 276 ppm Co and 2.182 g/t PGE+Au, 1694 ppm Ni, 1367 ppm Ni and 74 ppm Co.

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
615819	983.4	136.4	88.7	0.054		
615820	1087.6	149.7	97.3	0.037		
615821	7636	3130	276	1.542	gabbro	narrow gabbro lens in um at contact with argillite. Sulphide blebs, limonitic staining. Located at footwall of um sill.
1501264	1503.7	133.94	141.8	59 ppb	Soil	
1501265	1367	1694	74	2.182	sediments	altered rusty, fractured sediments with minor Cu stain and diss. sulphides. Within 3-5m of um contact. Cu rich, oxide and sulphide <<5%
1501266	1042	507	107	0.405	peridotite	rusty subangular talus within peridotite. >5% sx approx 5m from footwall contact

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
1501267	59	155.45	40.4	38 ppb	soil	
222732	40	130	128	na	gabbro	
222613	1345	151	102	Na	peridotite	
225698	637	4180	56	0.860	gabbro	Marginal gabbro
225697	737	1180	114	0.340	peridotite	Up to 10% net textured sulphide

Table of results from Solo Showing. Samples 615819 down to 1501267 were collected in 2016, the rest are from previous operators.

Sweet 16 Showing

Seven rock samples were collected from the Sweet 16 Showing area. The best values were from sample 615813 and 615815 100m along strike in the same horizon as the Sweet 16 Showing. This area has been well sampled by previous operators so along with familiarization of the showing, the purpose was to prospect upslope and downslope of the showing and scout for trenching sites. As can be seen in figure 9, the talus slopes would be good trenching targets because the mineralized horizon probably continues under the talus to the left of the rusty outcrop.

Figure 9: Looking north towards the mineralized horizon that is a continuation of the Sweet 16 Showing. Rusty outcrop is site of samples 615814 and 615815. Black talus in foreground is Spy Sill peridotite.

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
615810	145.9	583.8	41.3	0.057	gabbro	limonitic gabbro near siltstone contact
615811	27.2	152.3	28.5	0.020	hornfels	disseminated to locally net textured sx
						(cpy, po, py, pn?) in siliceous gabbro or
						siltstone. In contact zone.
615812	98.7	880.9	123.3	0.017	siltstone	sx pod in siltstone at gabbro contact. 15-
						20% sx (py, cpy) as fine dissem and blebs.
615813	564.5	1254	62.4	0.961	hornfels	Taz Showing horizon. Gabbro or silicified
						siltstone at contact. Dissem sx.
615814	41.2	94.4	9.3	0.009		listwanitic alteration in o/c
615815	2645.3	4900.6	191.6	1.285	hornfels	Sweet 16 Showing horizon. Mineralized
						gabbro and strongly oxidized siltstone with
						10-15% sx
615816	85.4	6025	250	0.024	siltstone	massive sulphide pod in silicified siltstone.

Table of 2016 results from the Sweet 16 Showing.

Taz Showing

The Taz Showing and ground towards the Wylie Showing were prospected and sampled. Attention was paid to the area west of Taz, looking for continuity down towards Sweet 16.

Figure 10: Trench at the Taz Showing.

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
615817	2108.8	756.3	143.5	0.351		2-5% net textured py and po. Limonitic
						weathering, manganese, malachite
						staining
615818	496.5	8882.2	33.6	1.144	hornfels	argillite at gabbro contact. Gossan, oxide
						material, malachite, azurite, cpy. Old
						trench. TAZ showing
1353661	2168.3	1086.1	115	0.472	gabbro	medium grained gabbro with 2%
						pyrrhotite, minor chalcopyrite, as patchy
						rusty weathering talus over 5m area
1353662	1484	8150.4	125.3	2.006	gabbro	very rusty, malachite stained medium
						grained gabbro with 5% pyrrhotite/some
						pentlandite?, 1% chalcopyrite as net
						textured sulphides, in talus over 10m area,
						below second peridotite sill; argillite below
						this;
1353663	2241.9	729.6	157.8	0.244		talus. 10% sx
1353664	2413.8	483.8	162.7	0.315	peridotite	bit rusty, medium grained peridotite with
						3% pyrrhotite/some pentlandite?, minor
						chalcopyrite as net textured sulphides.
1353665	24.3	250.8	16.6	0.008	siltstone	strong rusty, brecciated and hornfelsed
						limy siltstone, trend 090/moderate S
1353666	1033.7	639.7	133.6	0.332	gabbro	strong rusty, medium grained gabbro with
						6% pyrrhotite/some pentlandite?, minor
						chalcopyrite as net textured sulphides, just
						N of peridotite contact
1501251	2108.2	791.1	161.6	0.224		sx +/- 5%, magnetic with Fe stain on
						fractures
1501252	29	67.4	22.9	0.007	Argillite	rusty, calcareous argillite near linestone
						(grey) contact, 5-10% sx or vuggy rust
450/051		455.00	494.5			Γ
1501254	148	457.28	181.6	5 ppb	soil	
1501255	575.7	344.17	79.8	41 ppb	Soil	
1501256	496.3	181.64	69.5	65 ppb	Soil	
1501257	609.7	229.21	81.7	54 ppb	Soil	
1501258	800.4	443.48	80.2	50 ppb	Soil	
1501259	639.9	211.75	73	44 ppb	Soil	
1501260	608	553.76	81.1	47 ppb	Soil	
1501261	150.6	122.29	44.1	30 ppb	Soil	
1501262	231.8	562.48	65.3	110 ppb	Soil	
1501263	1587.1	7239.74	102.3	3407	soil	
				ppb		

Table of 2016 results from the Taz Showing.

Other Samples

Eight samples were collected at the south end of the Spy claims close to Congdon Creek. Values generally low except for 2242 ppm Cu in 615801.

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
615801	18.4	2242.3	159.3	0.012	chert	orange weathered, limonitic chert on SW
						side of creek.
615802	310.4	123.9	46.4	0.065	gabbro	
615803	1394.8	201.8	106.3	0.064	ultramafic	near top of blowout
615804	7.7	14.9	13.4	0.003	gabbro	gabbro around rim of blowout
615805	1371.5	326	121.6	0.056	ultramafic	15 m upslope from 615806
615806	467.5	86.8	117.8	0.031	ultramafic	
615807	11.6	15.2	14.4	0.001	gabbro	
615808	74	61	23.9	0.017	ultramafic	o/c. sample piece has qtz vein with silvery
						SX.
615809	503.1	80.4	116.5	0.024	ultramafic	sample near base of outcrop

Table of 2016 results from the south end of the Spy Sill near Congdon Creek.

An area 1 km northwest of the Claim Post Showing where the Spy Sill is broken up was prospected. Four samples were collected but results were low.

Sample	Ni	Cu	Со	PGE+Au	Rock	description
	(ppm)	(ppm)	(ppm)	(g/t)		
1353667	32.3	108.2	26.5	0.027	siltstone	strong rusty hornfelsed siltstone with 7-8%
						pyrrhotite
1353668	117.4	181.3	18	0.030	hornfels	strongly limonitic, pyrrhotite hornfels with
						2% pyrrhotite, well fractured
1353669	88.5	99.5	11.9	0.022	argillite	black, variably sooty argillite with strong
						rusty, limonitic (after pyrite) beds
1501253	32.1	258.1	11.2	0.007		

Table of 2016 samples from northwest of the Claim Post showing.

All samples were delivered by Midnight Mining staff to the Bureau Veritas preparation laboratory in Whitehorse. Soils were analysed by method AQ251-EXT, an ultratrace aqua regia digest on a 15 g sample split giving results for 39 elements. Rocks were analysed by method AQ270, an aqua regia digest with expanded detection limits that gives results for 34 elements. Gold, platinum and palladium were analysed separately by a 30g fire assay. See appendix 2 for preparation and method descriptions, complete results and assay certificates.

Figure 11: Sample location map. See Appendix 4 for detailed maps.

9.2 Previous Work 2013-2015

9.2.1 2015

Forty new claims were staked at the southern end of the claim block extending into the Congdon Creek drainage, in the headwaters of Bock's Creek and to the northwest end of the claim block. Three areas were prospected and one sample collected from each area during staking.

Thirty two samples were collected, mostly outcrop samples, from outcrops along Nines Creek, Bock's Creek and their tributaries. Chip samples ranging from 0.5 to 5m long were collected from larger gabbro outcrops mostly in the Spy North area.

Data Compilation. Digitizing of geological maps from the 2001 report by Tulk for Santoy Resources Ltd. (assessment report 094164) was started.

A geophysical data compilation and review was conducted using the 2015 regional airborne survey and the 2006 property airborne survey. The scope of work was geophysical data compilation, grid filtering and review/interpretation on both the 2015 Kluane West airborne magnetic survey and data images from the 1996 MAG/EM Survey. The data review consisted of a first pass look at the Spy sil magnetic characteristics and documentation of magnetic regional lineaments as they relate to the sill. Lineaments and trends were interpreted manually and through automated routines. A variety of data filtering processes were applied and images produced for discussion and interpretation. The review is a sampling of geophysical work that could be undertaken in combination with geological interpretation.

9.2.2 2013-2014

In 2013 and 2014, a geophysical review accompanied by a petrophysical study was conducted on the property (Jackson, 2014). The petrophysical study was completed on surrounding lithological units to establish which physical properties of the mineralized zones could be readily differentiated from surrounding lithological units.

The petrophysical analysis indicated, as expected, that the ultramafic units have a consistent and high magnetic susceptibility. Moderately high susceptibility is also observed in the massive sulphides, the Nikolai group and gabbroic samples. The petrophysical analysis can be used to guide future exploration, with magnetic susceptibility, resistivity and chargeability providing an identifiable geophysical signature to the mineralization encountered on the property. The resistivity and chargeability results clearly identify all samples with noted massive sulfides regardless of whether they are within highly magnetic ultramafic assemblages or associated with the more moderate magnetic signature of the gabbroic units. A single peridotite sample with serpentine coated fractures is the only sample not associated with any mineralization to exhibit these same characteristics. While these are encouraging results they also indicate that false positive anomalies from altered ultramafics will likely be common in the surrounding area.

10 Adjacent Properties

Quartz claims surround the Spy claim block but most have recently expired and no significant work been recorded. There are five minfile occurrences in the vicinity of the Spy claim block: Dickson (115G005), Destruction (115G006), Windgap (115G009), Tony (115G098), and Kluane (115G099). All are Ni-Cu-PGE showings with the exception of Windgap which is a coal showing. Dickson was sold to the crown in 1978 and is now within Kluane National Park. The Destruction showing was last worked in 1953 and is on Kluane First Nation settlement land. Tony and Kluane were part of the original INCO Klu claim block staked in 1994, but no work has been recorded since 2001.

To the northwest of Spy are the Category A Settlement Lands of the Kluane First Nation. The nation has been actively exploring their lands since 2014. So far exploration has bee early stage, but KFN were part of a consortium that commissioned an airborne geophysics survey along the west side of Kluane Lake.

There are placer operation along Nines and Mines Creek. Placer claims along the Lower reaches of Nines Creek and all the Mines Creek placer claims are registered to Ming Lee. Claims on the upper reaches of Nines creek are registered to Ralph Keefe and the latest recorded work was in 2010 (Galambos, 2010).

11 Interpretation and Conclusions

Although the Spy Sill has been intensively sampled, recent drill hole results at the at the Wellgreen deposit have shifted attention from narrow, rich basal sulphides to the possibility of bulk tonnage deposits contained in the entire sill and the adjacent country rock. Previous sampling programs did not include a large component of consistent chip samples across the sill and country rock. Most of the samples are grab samples with no length and work was focused on exploring and evaluating mineralization at the basal contact of the Spy sill and underlying footwall siltstone of the Hasen Creek formation. Stacked, repeated sequences of gabbro, ultramafic and sediments above and below the known outcrop of the Spy Sill are future exploration targets, e.g. the gabbro horizon upslope from the 99 Showing.

The bulk of INCO and Santoy's exploration work was focused on exploring and evaluating the nickel, copper and platinum group element mineralization known to exist at the basal contact of the Spy Sill and underlying footwall siltstone of the Hasen Creek formation. Showings discovered by Inco and Santoy extended massive and disseminated Ni, Cu and PGE mineralization at the Spy showing to over 950 m in strike length. Although other areas outside of the Spy sill were briefly examined, the Spy is currently the only area that appears to possess any economic potential.

12 Recommendations

The Spy sill is close to being ready for a drill program. The Ni-Cu-PGE values and the consistency of mineralization over the 1.5km exposure are sufficient, but the area needs more ground work to delineate drill targets. The bulk of work should take place on the Spy sill to delineate drill targets, and

other work would include prospecting and investigation into prospective areas on the property. Activities include:

- Drone magnetic geophysics survey
- Chip sampling across the width of the sill and into the country rock.
- Trenching to uncover the sill in areas of low cover.
- Prospecting and mapping the other Kluane mafic-ultramafic intrusions and Skolai Group rocks from the north end of the Spy sill to the northwest end of the claim block.

The Spy project can be broken into three areas that require similar work. Area 1 covers the 5.5 km section of the Spy sill from the Claim Post showing southeast to Congdon Creek. It contains the 1.5km exposed section between the Sweet 16 and 99 Showings and is the area of the property closest to being a drill target. This area will receive the most intensive work.

Figure 12: Work Areas

Area 2 continues from the end of Area 1 northwest for approx. 6km, stopping north of Nines Creek. In the southern half of Area 2 the Spy sill kinks north but ultramafic rocks have been mapped by Polestar and Pautler (2011) continuing straight northwest. Polestar also report anomalous rock samples from grid sampling over this area. The 1996 airborne geophysics clearly traces the sill as a linear magnetic high that turns north at 619500E, but subtle, secondary conductive features associated with patchy magnetic highs parallels the Spy sill to the northwest.

Area 3 covers the northwest end of the claim block. It covers a large area of territory, approx. 1000 hectares that has received very little work. INCO mapped the area, but sampling was limited and there do not appear to be any chip samples. Kluane suite mafic-ultramafic intrusions occur within this area – the Bock's Brook and Lewis intrusions, including the thick (up to 500m) southern Bock's Brook sill that is thickened by fault repetition. There is a large area of prospective Skolai Group mapped in Area 3, although Quaternary cover obscures much of the area.

12.1 Proposed Activities

12.1.1 Data retrieval and compilation

Complete digitizing of the detailed historic geology maps and create a geochemical database from all samples collected on the property since the 1988 Polestar work.

12.1.2 Drone Magnetic Survey

Group Ten attempted to retrieve a digital copy of the 1996 INCO geophysics survey, but were unsuccessful. A drone magnetic survey is proposed along the length of the sill that will extend 300 to 500m on either side. The purpose is to delineate those areas of magnetic complexity that have proven successful at Wellgreen in highlighting mineralization. Also, the survey may pick out other mineralized horizons above and below the main Spy sill. Further, in steep, inaccessible areas, a camera mounted on the drone could substitute for human eyes. The survey would start in Area 1 and depending on budget would be extended into areas 2 and 3.

12.1.3 Trenching

Use hand and blast trenching to expose the sill where it is covered by overburden. In some areas slope stability and the size and amount of talus may preclude blasting. Key places for trenching are where the Spy sill is buried on either side of the Sweet 16 showing and in the 99 showing area. Deep auger sampling with a backpack motorized drill may be used to sample the sill and to drill holes for blasting.

12.1.4 Chip Sampling

Chip sample across the width of the sill and into the country rock in the exposed area between the Taz and Congdon/Spy showings. Relocate Santoy's chip samples and extend sampling up and down section, concentrating on upsection. Santoy focused on the basal contact but the main body of the peridotite, the upper marginal contact and the overlying country rock should be tested. Hand or blast trenches may be needed to expose the sill for sampling. Drill pad locations will be scouted for and may be constructed while the blasters are on site.

12.1.5 Prospecting & Sampling

Prospecting and sampling will be done over the northern part of the project). Detailed historic mapping will be used as a guide, but Group Ten will also prospect for Skolai outcrops.

12.2 Schedule

This section outlines a field program described above. Depending on weather conditions, field work would begin in early August.

Pre – Field Program

- Finish geochemical sample database from Inco, Santoy and Resolve rock sample descriptions, maps and assay certificates.
- Review 1988 Polestar rock sampling and digitize all or some of the information.
- Review ultramafic fingerprinting efforts from Inco and Resolve.

Field Program

<u>Area 1</u> – Spy Sill drone survey, chip sampling and trenching

- Drone magnetic survey over Spy Sill, done before rest of program so that results can be incorporated into geological field work.
- Chip sampling and trenching across Spy sill in the 1.5km stretch with known showings.
- Trenching to expose Spy sill outside of the known showings where it is covered with overburden.

Area 2 - North end of Spy sill

- Drone magnetic survey, dependent on budget.
- Investigate and prospect the area where the Spy sill kinks to the north.
- Follow up Polestar rock sample anomalies and ultramafic outcrops.
- Map and sample area.

Area 3 - North end of claims

- Drone magnetic survey, dependent on budget.
- Investigate and prospect mapped locations of ultramafic rock and Skolai formation, minfile occurrences.

12.3 Budget

Costs and assumptions used in budget on the following page:

Travel to site: Budget is for combination of truck and helicopter travel. Depending on the state of the Nines Creek placer crews should be able to drive partway to site. From the end of the road crews will be airlifted to work sites. Depending on the distance and terrain crews may be able to walk back to trucks at the end of the day.

Camp: Crew will stay in a rental house or motel in Destruction Bay. A fly camp above the Spy sill may be used when working in that area.

Trenching: The best method for trenching will not be known until on site investigation has occurred. Budget includes blasting, but hand trenching and possibly deep auger sampling will also be used.

Fuel: \$200 per day includes vehicles and helicopter.

Rare PGEs: Selected high grade platinum and/or palladium pulps or rejects will be rerun for the rare platinum group elements: Osmium, Iridium, Ruthenium and Rhodium. The actual number of samples to be analyzed will not be known until regular assay results are received. This analysis is expensive (~\$150) so is a separate line item from regular analysis.
Spy project budget

First Phase - geochemical database, drone magnetic survey

			unit	
	amount	time	cost	total
geologist	1	3	500	\$1,500
GIS technician	1	8	350	\$2,800
Drone magnetic survey				\$10,000
helicopter	1	4	1,600	\$6,400
total				\$20,700

Area 1 - Spy sill chip sampling and trenching - 12 days

	rock samples	300		45	\$13,500
Geochemistry	soil samples	100		35	\$3,500
	rare PGEs assay	10		150	\$1,500
	senior geologist	1	12	500	\$6,000
Labour	jr geologist	1	12	400	\$4,800
	field technician	2	12	350	\$8,400
	blaster	1	6	400	\$2,400
	blaster's assistant	1	6	275	\$1,650
	camp costs	1	60	150	\$9,000
Camp, travel,	fuel		12	200	\$2,400
logistics	truck	2	12	50	\$1,200
	helicopter	1	10	1600	\$16,000
Supplies	blasting - powder, b-line, amex, caps				\$3,000
	total cost area 1				\$73,350

Area 2 - North end of Spy sill exposure to Bock's Brook intrusion - 5 days

Coochomistry	rock samples	50		45	\$2,250
Geochemistry	soil samples	50		35	\$1,750
	senior geologist	1	5	500	\$2,500
Labour	junior geologist	1	5	400	\$2,000
	field technician	2	5	350	\$3,500
	camp costs	1	20	150	\$3,000
Camp, travel, logistics	fuel	1	5	200	\$1,000
	truck	1	5	50	\$250
	helicopter	1	10	1600	\$16,000
				\$32,250	

Area 3 - North end of claim block - 3 days

	rock samples	75		45	\$3,375
Geochemistry	soil samples	50		35	\$1,750
Labour	senior geologist	1	3	500	\$1,500
	prospector	1	3	350	\$1,050

	jr geologist	1	3	400	\$1,200
	camp costs	1	12	100	\$1,200
Camp, travel, logistics	fuel		3	200	\$600
	truck	1	3	50	\$150
	helicopter	1	10	1600	\$16,000
				\$26,825	

Subtotal - field	\$153,125
contingona (150/	622.060

contingency 15%	\$22,969
Field Total	\$176,094

Report Writing and GIS \$5,000

|--|

References

Bell, C., 1996. Report on 1995 Geological and Geochemical Surveys on the KLU Property. Report for INCO Limited. Yukon Assessment Report 093371.

Campbell, S.W. Nickel-Copper Sulphide deposits in the Kluane Ranges, Yukon territory. Indian and Northern Affairs Canada. Open File report EGS 1976-10.

Campbell, R. B. and Dodds, C. J., 1982. Geology of the S.W. Kluane Lake map area (115F and 115G), Yukon Territory. Geological Survey of Canada, Open File Report 829, 1:250,000.

Carne, R. C., 2003. Metallogeny of the Kluane Ranges, Southwest Yukon Territory. Archer, Cathro & Associates (1981), Ltd.

Deklerk, R., 2009. The MINFILE Manual. Yukon Geological Survey, CD-ROM

Dodds, C.J., Campbell, R.B., 1992. Overview, legend and mineral deposit tabulations for Geological Survey of Canada Open Files 2188, 2189, 2190 and 2191.

Downey, Michael E. et al., 1980. K-Ar, Rb-Sr and fission track geochronometry of the Bock's Brock Stock, Kluane Ranges, southwestern Yukon Territory; in Current Research, part B, Geological Survey of Canada, Paper 80-1B, p. 189-193, 1980.

Galambos, K., 2010. Evaluation report on the Nines Creek project. Report for Ralph Keefe.

Giroux, G.H. and Montgomery, J.H., 1988. Geological, geophysical and geochemical report on the I, IV and V mineral claims. Report for Polestar Exploration Inc. Yukon Assessment Report 092092.

Hattie, K., 1997. Report on 1997 Geological and Geophysical Surveys. Report for INCO Limited. Assessment Report #093726 for INCO LIMITED,

Hulbert, L. J., 1997. Geology and Metallogeny of the Kluane mafic-ultramafic belt, Yukon Territory, Canada: eastern Wrangellia – a new Ni-Cu-PGE metallogenic terrene. GSC Bulletin 506, 265 p.

Israel, S., Tizzard, A. and Major, J., 2005. Geological Map of the Duke River area (parts of NTS 115G/2, 3, 5, 6, 7), Yukon (1:50,000 scale). Yukon Geological Survey, Open File 2005-11.

Israel, S., Van Zeyl, D., 2004. Preliminary bedrock geology of the Quill Creek area (parts of NTS 115G/5,

6, 12), southwest Yukon (1:50 000 scale). Yukon Geological Survey, Open File 2004-2.

Jackson, P., 2014. Assessment report on the Spy property 2014 exploration program. Yukon Assessment Report (number not assigned).

Liard, J.M., Lavigne, J., 2006. An Initial Field Investigation and Data Compilation the KLU Property. Yukon Assessment Report 094687.

McGowan, P., 1996. Report on 1996 geophysical survey on the Klu property. Report for INCO Limited. Yukon Assessment Report 093560.

McLoughlin and J.S. Vincent, 1973. Geological report Spy Claims 1-12. Yukon Assessment Report 060154.

Morgan, T., 2009. Prospecting and geochemical report on the 2008 Spy project. YMIP report 08-025.

Page, N. J., Descriptive model of synorogenic-synvolcanic Ni-Cu. USGS model 7a. United States Geological Survey.

Read, P.B. and Monger, J.W.H., 1976. Pre-Cenozoic volcanic assemblages of the Kluane and Alsek Ranges, southwestern Yukon Territory. Geological Survey of Canada, Open File 381, 96 p.

Pautler, J.M., 2012. Geological and geochemical assessment report on the Spy project. Yukon Assessment Report 096111.

Tulk, L.A., 2001. Report on geological and geochemical surveys on the Klu property. Yukon Assessment Report 094164

Woodcock, J.R., 1953. Report on the RAM GROUP Halfbreed Creek, Y.T. Report for Yukon Exploration Company. Yukon assessment report #091698.

Appendix 1 Claim List

GRANT NUMBER	STATUS	LABEL	OWNER	STAKE DATE		EXPIRY DATE
YC66812	Active	VM 1	Tom Morgan - 100%	2008-02-19	2008-02-21	2018-02-21
YC66813	Active	VM 2	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66814	Active	VM 3	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66815	Active	VM 4	Tom Morgan - 100%	2008-02-19	2008-02-21	2018-02-21
YC66816	Active	VM 5	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66817	Active	VM 6	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66818	Active	VM 7	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66819	Active	VM 8	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66820	Active	VM 9	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66821	Active	VM 10	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66822	Active	VM 11	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66823	Active	VM 12	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66824	Active	VM 13	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66825	Active	VM 14	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66826	Active	VM 15	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66827	Active	VM 16	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66828	Active	VM 17	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66829	Active	VM 18	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66830	Active	VM 19	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66831	Active	VM 20	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66832	Active	VM 21	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66833	Active	VM 22	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66834	Active	VM 23	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66835	Active	VM 24	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66836	Active	VM 25	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66837	Active	VM 26	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66838	Active	VM 27	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66839	Active	VM 28	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66840	Active	VM 29	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66841	Active	VM 30	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66842	Active	VM 31	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YC66843	Active	VM 32	Tom Morgan - 100%	2008-02-19	2008-02-21	2017-02-21
YE10801	Active	SPY 1	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10802	Active	SPY 2	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10803	Active	SPY 3	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10804	Active	SPY 4	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10805	Active	SPY 5	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10806	Active	SPY 6	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10807	Active	SPY 7	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10808	Active	SPY 8	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01

GRANT NUMBER	STATUS	LABEL	OWNER	STAKE DATE	RECORDED	EXPIRY DATE
YE10809	Active	SPY 9	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10810	Active	SPY 10	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10811	Active	SPY 11	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10812	Active	SPY 12	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10813	Active	SPY 13	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10814	Active	SPY 14	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10815	Active	SPY 15	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10816	Active	SPY 16	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10817	Active	SPY 17	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10818	Active	SPY 18	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10819	Active	SPY 19	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10820	Active	SPY 20	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10821	Active	SPY 21	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10822	Active	SPY 22	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10823	Active	SPY 23	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10824	Active	SPY 24	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10825	Active	SPY 25	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10826	Active	SPY 26	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10827	Active	SPY 27	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10828	Active	SPY 28	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10829	Active	SPY 29	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10830	Active	SPY 30	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10831	Active	SPY 31	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10832	Active	SPY 32	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10833	Active	SPY 33	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10834	Active	SPY 34	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10835	Active	SPY 35	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10836	Active	SPY 36	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10837	Active	SPY 37	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10838	Active	SPY 38	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10839	Active	SPY 39	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10840	Active	SPY 40	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10841	Active	SPY 41	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10842	Active	SPY 42	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10843	Active	SPY 43	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10844	Active	SPY 44	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10845	Active	SPY 45	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10846	Active	SPY 46	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10847	Active	SPY 47	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10848	Active	SPY 48	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10849	Active	SPY 49	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10850	Active	SPY 50	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10851	Active	SPY 51	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01

GRANT NUMBER	STATUS	LABEL	OWNER	STAKE DATE	RECORDED	EXPIRY DATE
YE10852	Active	SPY 52	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10853	Active	SPY 53	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10854	Active	SPY 54	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10855	Active	SPY 55	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10856	Active	SPY 56	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10857	Active	SPY 57	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10858	Active	SPY 58	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10859	Active	SPY 59	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10860	Active	SPY 60	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10861	Active	SPY 61	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10862	Active	SPY 62	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10863	Active	SPY 63	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10864	Active	SPY 64	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10865	Active	SPY 65	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10866	Active	SPY 66	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10867	Active	SPY 67	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10868	Active	SPY 68	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10869	Active	SPY 69	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10870	Active	SPY 70	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10871	Active	SPY 71	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10872	Active	SPY 72	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10873	Active	SPY 73	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10874	Active	SPY 74	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10875	Active	SPY 75	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10876	Active	SPY 76	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10877	Active	SPY 77	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10878	Active	SPY 78	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10879	Active	SPY 79	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10880	Active	SPY 80	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10881	Active	SPY 81	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10882	Active	SPY 82	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10883	Active	SPY 83	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10884	Active	SPY 84	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10885	Active	SPY 85	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE10886	Active	SPY 86	Group Ten Metals Inc 100%	2015-03-19	2015-04-01	2020-04-01
YE69339	Active	V 1	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69340	Active	V 2	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69341	Active	V 3	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69342	Active	V 4	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69343	Active	V 5	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69344	Active	V 6	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69345	Active	V 7	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69346	Active	V 8	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21

GRANT NUMBER	STATUS	LABEL	OWNER	STAKE DATE	RECORDED	EXPIRY DATE
YE69347	Active	V 9	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69348	Active	V 10	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69349	Active	V 11	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69350	Active	V 12	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69351	Active	V 13	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69352	Active	V 14	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69353	Active	V 15	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69354	Active	V 16	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69355	Active	V 17	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69356	Active	V 18	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69357	Active	V 19	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69358	Active	V 20	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69359	Active	V 21	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69360	Active	V 22	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69361	Active	V 23	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69362	Active	V 24	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69363	Active	V 25	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69364	Active	V 26	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69365	Active	V 27	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YE69366	Active	V 28	Tom Morgan - 100%	2011-07-27	2011-08-18	2017-02-21
YF47275	Expired	SPY 87	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47276	Expired	SPY 88	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47277	Expired	SPY 89	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47278	Expired	SPY 90	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47279	Expired	SPY 91	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47280	Expired	SPY 92	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47281	Expired	SPY 93	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47282	Expired	SPY 94	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47283	Expired	SPY 95	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47284	Expired	SPY 96	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47285	Expired	SPY 97	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47286	Expired	SPY 98	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47287	Expired	SPY 99	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47288	Expired	SPY 100	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47289	Expired	SPY 101	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47290	Expired	SPY 102	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47291	Expired	SPY 103	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47292	Expired	SPY 104	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47293	Expired	SPY 105	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47294	Expired	SPY 106	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47295	Expired	SPY 107	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47296	Expired	SPY 108	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47297	Pending	SPY 109	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26

GRANT						
NUMBER	STATUS	LABEL	OWNER	STAKE DATE	RECORDED	EXPIRY DATE
YF47298	Pending	SPY 110	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47299	Pending	SPY 111	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47300	Pending	SPY 112	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47301	Pending	SPY 113	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47302	Pending	SPY 114	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47303	Pending	SPY 115	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47304	Pending	SPY 116	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47305	Pending	SPY 117	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47306	Pending	SPY 118	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47307	Pending	SPY 119	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47308	Pending	SPY 120	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47309	Pending	SPY 121	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47310	Pending	SPY 122	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47311	Pending	SPY 123	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47312	Pending	SPY 124	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47313	Pending	SPY 125	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26
YF47314	Pending	SPY 126	Bill Harris - 100%	2015-11-25	2015-11-26	2016-11-26

Appendix 2: 2016 rock and soil samples

Hardcopy and digital files

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Procedure

Code

SS230

SVRJT

SHP01

AQ251 EXT

Re Ра

Dry at 60C sieve 100g to -230 mesh

Save all or part of Soil Reject

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Number of

Samples

12

12

12

12

ADDITIONAL COMMENTS

WHI16000309.1

Test

15

Wgt (g)

Report

Status

Completed

Lab

WHI

WHI

VAN

VAN

SPY Project: Shipment ID: P.O. Number 12 Number of Samples:

SAMPLE DISPOSAL

RTRN-PLP Return After 90 days RTRN-RJT Return After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Midnight Mining Box 31347 Whitehorse Yukon Y1A 5P7 Canada

CC:

Jean Pautler Bill Harris Graham Davidson

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client:

Midnight Mining Box 31347 Whitehorse Yukon Y1A 5P7 Canada

Submitted By:	Debbie James
Receiving Lab:	Canada-Whitehorse
Received:	September 26, 2016
Report Date:	October 05, 2016
Page:	1 of 2

1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis

Per sample shipping charges for branch shipments

												Clier	nt:	Mic Box 3 White	Inight 31347 ehorse Y	Minir ukon Y1 <i>F</i>	Ig A 5P7 Ca	nada			
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www	.bureau	uverita	s.com/	um				Projec	ct:	SPY							
Bureau Veritas	Commodities Canada Lt	d.										Repor	rt Date:	Octo	ber 05, 2	016					
9050 Shaughne PHONE (604) 2	essy St Vancouver Britis 253-3158	h Colum	nbia V6	P 6E5 (Canada							Page:	:	2 of 2	2				Pa	art: 1	of 3
CERTIF	ICATE OF AN	JALY	′SIS													W	HI16	6000	309	.1	
	Method	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%

		MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
1501254	Soil		27.42	457.28	20.01	662.7	674	148.0	181.6	2133	16.50	0.9	1.2	4.5	2.0	94.7	2.11	0.24	0.80	200	6.42	0.068
1501255	Soil		1.65	344.17	15.72	136.5	435	575.7	79.8	1035	6.15	8.4	0.4	11.6	1.1	31.4	0.36	0.41	0.16	55	0.82	0.059
1501256	Soil		1.52	181.64	15.39	95.9	287	496.3	69.5	1105	6.20	4.4	0.2	35.2	0.7	72.7	0.18	0.37	0.08	78	2.61	0.052
1501257	Soil		2.49	229.21	12.41	153.0	599	609.7	81.7	1098	6.28	10.9	0.6	6.1	1.6	35.1	0.44	0.73	0.16	64	0.75	0.088
1501258	Soil		0.39	443.48	12.77	104.3	376	800.4	80.2	923	6.31	2.8	0.1	17.4	0.4	28.0	0.20	0.15	0.21	40	1.38	0.035
1501259	Soil		1.81	211.75	13.15	115.8	422	639.9	73.0	973	5.88	7.4	0.4	8.0	1.1	27.8	0.30	0.63	0.09	68	1.03	0.070
1501260	Soil		1.10	553.76	19.23	111.2	568	608.0	81.1	1010	5.58	6.5	0.3	22.1	0.7	30.7	0.39	0.62	0.12	54	1.30	0.041
1501261	Soil		0.71	122.29	3.35	76.3	140	150.6	44.1	853	5.14	3.4	0.2	4.2	0.7	59.2	0.19	0.34	0.03	77	1.28	0.036
1501262	Soil		0.97	562.48	5.66	112.3	696	231.8	65.3	1155	7.24	12.1	0.3	15.6	0.7	23.1	0.24	1.30	0.11	106	1.79	0.039
1501263	Soil		2.49	7239.74	23.92	89.2	11007	1587.1	102.3	834	19.67	19.6	0.4	374.5	0.9	19.8	0.31	2.32	1.97	145	0.58	0.053
1501264	Soil		0.21	133.94	1.32	47.1	52	1503.7	141.8	1034	7.38	2.8	<0.1	4.5	0.3	134.2	0.06	0.58	0.04	22	2.65	0.017
1501267	Soil		0.25	155.45	2.56	64.2	115	59.0	40.4	783	4.63	93.4	0.1	13.0	0.6	35.1	0.14	1.47	<0.02	136	2.02	0.094

												Clier	nt:	Mic Box 3 White	Inight 31347 ehorse Y	Minin ukon Y1A	ig 5P7 Car	nada				
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www	.bureau	uverita	s.com/ı	um				Projec	ct:	SPY								
Bureau Veritas	Commodities Canada Lte	d.										Repor	rt Date:	Octo	ber 05, 2	016						
9050 Shaughne PHONE (604) 2	essy St Vancouver Britisl 253-3158	h Colum	ıbia V6I	P 6E5 (Canada							Page:		2 of 2	2				Pa	art: 2	of 3	
CERTIF	ICATE OF AN	IALY	′SIS													W	HI16	6000	309	.1		
	Method	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	ĸ	w	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf	
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm	

		MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
1501254	Soil		33.3	93.9	2.87	216.6	0.134	30	3.28	0.076	0.04	0.3	30.8	0.04	0.53	92	7.8	0.21	14.6	1.59	0.3	0.35
1501255	Soil		7.9	216.1	8.15	294.2	0.057	93	2.62	0.018	0.07	<0.1	6.2	0.08	0.05	31	0.8	0.10	6.3	2.57	0.2	0.07
1501256	Soil		5.8	151.7	7.04	235.9	0.081	66	3.68	0.021	0.05	0.1	7.8	0.04	<0.02	23	0.2	0.06	10.4	1.72	0.1	0.15
1501257	Soil		14.8	190.1	6.46	274.0	0.072	34	2.36	0.025	0.08	<0.1	7.9	0.13	0.08	41	1.4	0.10	6.2	1.80	0.1	0.11
1501258	Soil		3.1	276.0	9.82	134.4	0.057	58	2.68	0.014	0.10	<0.1	5.5	0.05	<0.02	15	0.2	0.11	6.9	3.07	0.1	0.04
1501259	Soil		10.4	240.0	6.67	357.4	0.070	90	2.89	0.020	0.06	<0.1	7.6	0.09	0.05	32	0.7	0.08	8.0	2.60	0.1	0.10
1501260	Soil		5.5	268.9	7.24	270.7	0.055	40	2.75	0.017	0.04	<0.1	6.5	0.06	0.07	28	0.8	0.14	6.2	2.26	0.1	0.08
1501261	Soil		3.8	68.1	3.14	69.4	0.060	12	3.08	0.105	0.04	<0.1	7.6	0.03	0.02	24	0.2	<0.02	7.0	1.67	<0.1	0.08
1501262	Soil		3.7	66.1	3.59	1320.0	0.091	97	3.77	0.017	0.05	0.1	11.6	0.11	0.05	42	1.3	0.17	11.3	1.62	0.2	0.13
1501263	Soil		4.1	122.1	3.22	249.4	0.114	10	3.34	0.138	0.07	0.1	13.5	0.72	0.77	196	75.2	6.45	10.2	2.20	0.4	0.16
1501264	Soil		2.4	311.3	12.37	53.4	0.003	22	0.43	0.017	0.02	<0.1	8.8	0.04	<0.02	115	<0.1	0.05	1.3	0.55	0.3	0.11
1501267	Soil		5.4	86.4	1.91	66.3	0.001	27	1.42	0.009	0.05	0.2	26.4	<0.02	0.02	81	0.2	0.07	5.3	3.01	<0.1	0.10

Client: **Midnight Mining** Box 31347 Whitehorse Yukon Y1A 5P7 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: SPY VERITAS Canada Report Date: October 05, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 2 Page: Part: 3 of 3 CERTIFICATE OF ANALYSIS WHI16000309.1

AQ251

In

ppm

0.02

0.18

0.03

0.04

0.04

0.02

0.04

0.03

0.02

0.03

0.17

0.02

0.05

AQ251

Re

ppb

1

4

2

<1

1

<1

1

2

<1

<1

4

<1

<1

AQ251 AQ251

Ве

ppm

0.1

0.9

0.2

0.4

0.4

0.1

0.3

0.2

0.2

0.2

0.3

0.5

0.3

AQ251

Ce

ppm

0.1

63.8

16.3

13.1

28.4

6.1

21.8

11.4

8.4

8.4

8.9

5.6

13.1

Υ

ppm

0.01

23.60

6.82

7.23

3.09

9.99

5.01

7.32

7.15

6.15

3.57

15.31

11.43

AQ251

Pt

ppb

<2

13

6

13

16

11

8

22

17

8

491

AQ251

Li

ppm

0.1

35.3

20.6

25.5

20.0

23.4

25.3

22.7

17.2

27.6

19.5

20.0

8.7

Pd

ppb

10

<10

16

24

35

17

25

17 22

72

37

17

2541

Method

Analyte

Soil

1501254

1501255

1501256

1501257

1501258

1501259

1501260

1501261

1501262

1501263

1501264

1501267

Unit

MDL

AQ251

Nb

ppm

0.02

0.08

< 0.02

< 0.02

0.05

0.02

0.03

0.02

0.02

0.03

0.08

< 0.02

< 0.02

AQ251

Rb

ppm

0.1

1.9

5.6

3.2

6.4

6.5

5.4

3.6

2.1

3.2

3.9

1.3

4.0

AQ251

Sn

ppm

0.1

3.8

4.4

3.6

2.5

5.4

3.6

4.3

0.5

0.7

2.5

0.5

0.6

AQ251 AQ251 AQ251

Zr

ppm

0.1

7.8

3.0

5.2

4.3

1.4

3.4

2.5

3.1

4.4

4.8

3.3

2.2

Та

ppm

0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

												Clien	::	Mid Box 3 White	night 1347 horse Yul	Mining kon Y1A	g 5P7 Cana	ada			
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www	bureau	iveritas	.com/u	m				Project	:	SPY							
Bureau Veritas	Commodities Canada Lt	d.										Report	Date:	Octob	er 05, 20	16					
9050 Shaughn PHONE (604)	essy St Vancouver Britisl 253-3158	h Colum	ibia V6F	P 6E5 C	Canada							Page:		1 of 1					Par	:: 1 of	3
QUALIT	Y CONTROL	REF	POR	Т												WF	1116	000	309.	1	
	Method	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Reference Mate	erials																				
STD DS10	Standard	14.83	154.05	147.43	360.2	1988	74.9	12.8	880	2.76	45.7	2.6	69.5	7.4	67.4	2.73	9.77	12.49	42	1.06	0.077
STD OXC129	Standard	1.31	27.99	6.21	40.8	21	78.2	20.6	401	3.02	0.6	0.7	193.4	1.8	177.5	0.05	0.04	<0.02	50	0.65	0.108
STD DS10 Expe	ected	15.1	154.61	150.55	370	2020	74.6	12.9	875	2.7188	46.2	2.59	91.9	7.5	67.1	2.62	9	11.65	43	1.0625	0.0765
STD OXC129 E	xpected	1.3	28	6.3	42.9	28	79.5	20.3	421	3.065	0.6	0.72	195	1.9		0.03	0.04		51	0.665	0.102

<0.01

<0.01

<0.01

<0.1

<2

0.3

<0.1

<1 <0.01

<0.1

<0.1

<0.2

<0.1

<0.5 <0.01

<0.02 <0.02

<2 <0.01 <0.001

BLK

Blank

												Clien	t:	Mid Box 3 White	night 1347 horse Yul	Mining] 5P7 Cana	ada			
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www.	bureau	veritas	.com/u	m				Project	:	SPY							
Bureau Veritas	Commodities Canada Lte	d.										Report	Date:	Octob	er 05, 20	16					
9050 Shaughn PHONE (604) 2	essy St Vancouver Britisl 253-3158	h Colum	bia V6F	9 6E5 C	anada							Page:		1 of 1					Part	:: 2 of	3
QUALIT	Y CONTROL	REF	POR	T												WH	1116	000	309.	1	
	Method	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
Reference Mate	rials																				
STD DS10	Standard	17.6	54.3	0.77	360.1	0.080	7	1.05	0.071	0.33	3.2	3.1	5.11	0.29	276	2.5	5.06	4.5	2.62	<0.1	0.06
STD OXC129	Standard	11.7	50.7	1.52	51.2	0.392	<1	1.53	0.590	0.37	<0.1	1.1	0.04	<0.02	<5	<0.1	<0.02	5.5	0.16	<0.1	0.29
STD DS10 Expe	ected	17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	3	5.1	0.29	300	2.3	5.01	4.5	2.63	0.08	0.06
STD OXC129 E	xpected	13	52	1.545	50	0.4	1	1.58	0.6	0.37	0.08	1.1	0.03					5.6	0.16		0.24

<0.01 <0.001

<1

<0.01

<0.1

<0.1

<0.02 <0.02

<5

<0.1 <0.02

<0.1

< 0.02

<0.02

<0.1

BLK

Blank

<0.5

<0.5

<0.01

<0.5 <0.001

Client: **Midnight Mining** Box 31347 Whitehorse Yukon Y1A 5P7 Canada **BUREAU** MINERAL LABORATORIES www.bureauveritas.com/um Project: VERITAS Canada SPY Report Date: October 05, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 Page: 1 of 1 Part: 3 of 3 QUALITY CONTROL REPORT WHI16000309.1

	Method	AQ251												
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppb	ppm	ppm	ppb	ppb							
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
Reference Materials														
STD DS10	Standard	1.58	28.2	1.5	<0.05	2.7	7.96	35.4	0.25	50	0.5	19.8	98	179
STD OXC129	Standard	1.43	15.0	0.7	<0.05	23.2	4.46	22.0	<0.02	<1	0.7	2.2	<10	<2
STD DS10 Expected		1.62	27.7	1.6		2.7	7.77	37	0.23	50	0.63	19.4	110	191
STD OXC129 Expected		1.4		0.7		21	4.7	23.7			0.8	2.22		
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

SPY Project: Shipment ID: P.O. Number Number of Samples: 40

SAMPLE DISPOSAL

RTRN-PLP	Return After 90 days
RTRN-RJT	Return After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Debbie James Canada-Whitehorse September 26, 2016 October 22, 2016

WHI16000310.2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
PRP70-250	40	Crush, split and pulverize 250 g rock to 200 mesh			WHI
FA130	40	Fire assay fusion Au Pt Pd by ICP-MS	30	Completed	VAN
AQ270	40	1:1:1 Aqua Regia digestion ICP-ES/ICP-MS analysis	1	Completed	VAN
SHP01	40	Per sample shipping charges for branch shipments			VAN
FA350	3	50g lead collection fire assay analysis by ICP	50	Completed	VAN
EN002	3	Environmental disposal charge-Fire assay lead waste			VAN

1 of 3

ADDITIONAL COMMENTS

Version 2 : FA350-Pt Pd included.

Midnight Mining Invoice To: Box 31347 Whitehorse Yukon Y1A 5P7 Canada

CC:

Jean Pautler Bill Harris Graham Davidson

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client:

Submitted By:

Receiving Lab:

Received:

Page:

Report Date:

Midnight Mining Box 31347 Whitehorse Yukon Y1A 5P7 Canada

Client: **Midnight Mining** Box 31347 Whitehorse Yukon Y1A 5P7 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada SPY Report Date: October 22, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 3 Part: 1 of 2 Page: CERTIFICATE OF ANALYSIS WHI16000310.2 Method WGHT FA130 AQ270 AQ270 AQ270 AQ270 AQ270 AQ270 AQ270 AQ270 FA130 FA130 AQ270 AQ270 AQ270 AQ270 AQ270 AQ270 AQ270 AQ270 Analyte Pt Cu Pb Ni Co Mn As υ Cd Sb Bi Wgt Au Pd Мо Zn Ag Fe Th Sr Unit kg ppb ppb ppb ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ----. . . - -- -

	MDL	0.01	1	0.1	0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	5	0.01	5	0.5	0.5	5	0.5	0.5	0.5
615801 Rocl	k	1.30	9	1.1	1.5	7.3	2242.3	7.2	76	1.0	18.4	159.3	565	21.19	<5	1.0	5.2	24	<0.5	2.1	0.7
615802 Rocl	k	1.16	9	36.9	19.2	<0.5	123.9	1.5	46	<0.5	310.4	46.4	447	3.81	<5	<0.5	<0.5	13	<0.5	<0.5	<0.5
615803 Rocl	k	1.37	8	20.0	35.9	<0.5	201.8	1.2	56	<0.5	1394.8	106.3	871	7.37	<5	<0.5	<0.5	45	<0.5	<0.5	<0.5
615804 Rocl	k	0.82	2	0.2	0.6	1.1	14.9	15.4	108	<0.5	7.7	13.4	512	4.25	<5	0.7	2.4	32	<0.5	<0.5	<0.5
615805 Rocl	k	2.08	8	16.5	31.6	<0.5	326.0	1.3	68	<0.5	1371.5	121.6	1132	8.51	<5	<0.5	<0.5	33	<0.5	<0.5	<0.5
615806 Rocl	k	1.11	7	16.9	7.5	<0.5	86.8	1.9	72	<0.5	467.5	117.8	994	7.98	<5	<0.5	<0.5	26	<0.5	<0.5	<0.5
615807 Rocl	k	1.56	1	0.2	<0.5	0.8	15.2	4.6	78	<0.5	11.6	14.4	544	4.20	<5	0.7	2.5	31	<0.5	<0.5	<0.5
615808 Rocl	k	1.21	3	5.7	8.2	<0.5	61.0	2.4	42	<0.5	74.0	23.9	409	3.54	<5	<0.5	<0.5	15	<0.5	<0.5	<0.5
615809 Rocl	k	2.45	3	14.7	6.2	<0.5	80.4	1.7	83	<0.5	503.1	116.5	1261	8.44	<5	<0.5	<0.5	43	<0.5	<0.5	<0.5
615810 Rocl	k	1.94	10	8.4	38.9	<0.5	583.8	2.0	42	<0.5	145.9	41.3	300	4.57	<5	<0.5	<0.5	58	<0.5	<0.5	<0.5
615811 Rocl	k	2.51	5	7.5	7.2	0.6	152.3	2.5	34	<0.5	27.2	28.5	315	4.82	<5	<0.5	<0.5	10	<0.5	<0.5	<0.5
615812 Rocl	k	1.47	10	2.4	4.1	1.1	880.9	30.5	67	6.1	98.7	123.3	795	33.89	<5	2.8	0.8	45	<0.5	0.7	0.8
615813 Rocl	k	2.54	28	316.1	616.7	1.7	1254.0	7.6	24	0.6	564.5	62.4	313	11.41	<5	<0.5	1.3	33	<0.5	1.4	<0.5
615814 Rocl	k	1.07	3	1.6	4.8	0.6	94.4	1.7	11	<0.5	41.2	9.3	309	2.70	20	<0.5	3.1	16	<0.5	1.6	<0.5
615815 Rocl	k	2.15	70	549.1	665.7	2.5	4900.6	8.1	93	1.9	2645.3	191.6	530	10.28	<5	<0.5	1.6	14	<0.5	1.8	<0.5
615816 Rocl	k	2.99	15	3.0	6.1	2.0	6025.0	30.7	69	4.2	85.4	250.0	429	34.82	<5	1.4	1.1	17	<0.5	0.5	1.1
615817 Rocl	k	1.80	24	111.1	216.2	<0.5	756.3	3.2	62	0.7	2108.8	143.5	1006	8.53	<5	<0.5	<0.5	26	<0.5	<0.5	<0.5
615818 Rocl	k	1.24	570	253.0	320.6	0.8	8882.2	11.5	47	5.8	496.5	33.6	550	6.81	6	0.9	3.4	13	<0.5	0.6	<0.5
1501251 Rocl	k	0.73	20	73.8	130.5	<0.5	791.1	4.0	63	1.1	2108.2	161.6	1061	8.78	<5	<0.5	<0.5	6	<0.5	<0.5	<0.5
1501252 Rocl	k	0.96	4	0.9	1.9	0.8	67.4	26.2	104	1.7	29.0	22.9	411	6.10	17	<0.5	0.7	13	<0.5	0.9	<0.5
1501253 Rocl	k	0.85	4	1.1	2.3	1.3	258.1	43.1	100	<0.5	32.1	11.2	928	3.64	8	<0.5	2.2	35	0.6	<0.5	<0.5
1501265 Rocl	k	1.12	75	>1000	909.7	7.0	1694.1	5.1	59	<0.5	1367.3	74.0	479	4.00	19	0.9	2.8	14	<0.5	2.2	<0.5
1501266 Rocl	k	1.29	44	126.9	234.2	0.6	507.1	3.5	80	1.7	1041.8	106.7	962	8.33	<5	<0.5	<0.5	37	<0.5	<0.5	<0.5
1353661 Rocl	k	1.29	35	151.9	284.9	<0.5	1086.1	3.9	89	1.1	2168.3	115.0	733	6.93	<5	<0.5	<0.5	59	<0.5	<0.5	<0.5
1353662 Rocl	k	1.76	308	>1000	627.4	0.7	8150.4	3.1	68	2.6	1484.0	125.3	449	7.49	<5	<0.5	<0.5	36	<0.5	0.6	<0.5
1353663 Rocl	k	0.84	23	83.4	137.9	<0.5	729.6	2.9	68	0.8	2241.9	157.8	1050	8.71	<5	<0.5	<0.5	6	<0.5	<0.5	<0.5
1353664 Rocl	k	1.33	21	100.7	193.2	<0.5	483.8	2.3	66	0.7	2413.8	162.7	1139	8.37	<5	<0.5	<0.5	30	<0.5	<0.5	<0.5
1353665 Rocl	k	1.51	3	1.8	3.0	2.7	250.8	9.3	690	<0.5	24.3	16.6	738	10.53	<5	0.7	1.7	36	1.6	<0.5	<0.5
1353666 Rocl	k	0.68	38	128.3	165.4	<0.5	639.7	3.8	76	0.7	1033.7	133.6	1017	8.89	<5	<0.5	<0.5	51	<0.5	<0.5	<0.5
1353667 Rock	k	1.23	13	7.7	5.9	0.6	108.2	8.5	75	<0.5	32.3	26.5	461	4.59	<5	<0.5	0.7	35	<0.5	0.5	<0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

										Clier	nt:	Mic Box 3 White	Inight 31347 ehorse Yr	Minin ukon Y1A	Ig A 5P7 Car	nada			
BUREAUMINERAL LABORATORIESVERITASCanada	5	www	.bureau	veritas	.com/u	ım				Projec	:t:	SPY							
Bureau Veritas Commodities Canada Ltd.										Repor	t Date:	Octol	ber 22, 2	016					
9050 Shaughnessy St Vancouver British Co PHONE (604) 253-3158	olumbia V6	P 6E5 (Canada							Page:		2 of 3	3				Pa	rt: 2	of 2
CERTIFICATE OF ANA	LYSIS	•												W	HI16	6000	310	.2	
Method AC	Q270 AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	FA350	FA350
Analyte	V Ca	Р	La	Cr	Mg	Ва	Ti	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Pt	Pd
Unit	ppm %	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppb

	Un	it ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppb
F	MD	∟ 10	0.01	0.001	0.5	0.5	0.01	5	0.001	0.01	0.01	0.01	0.5	0.05	0.5	0.5	0.05	5	2	3	2
615801	Rock	82	0.85	0.221	22.3	9.2	1.44	234	0.273	2.93	0.06	0.26	<0.5	0.07	5.2	<0.5	6.72	18	67		
615802	Rock	37	0.77	0.023	2.1	434.1	4.46	63	0.107	2.06	0.02	0.13	<0.5	<0.05	5.4	<0.5	<0.05	<5	<2		
615803	Rock	18	0.79	0.022	2.6	226.7	13.54	58	0.071	1.89	0.10	0.12	<0.5	0.06	6.2	<0.5	0.05	<5	<2		
615804	Rock	101	1.06	0.088	13.4	23.3	1.58	132	0.338	1.96	0.12	0.18	<0.5	<0.05	6.5	<0.5	<0.05	8	<2		
615805	Rock	12	0.63	0.015	1.7	184.3	16.78	42	0.048	1.44	0.07	0.09	<0.5	<0.05	8.4	<0.5	0.10	<5	<2		
615806	Rock	36	0.58	0.028	3.7	355.0	12.65	123	0.114	2.02	0.05	0.27	<0.5	<0.05	6.5	<0.5	<0.05	5	<2		
615807	Rock	105	1.10	0.080	11.8	71.5	1.78	141	0.299	2.13	0.14	0.19	<0.5	<0.05	7.7	<0.5	<0.05	8	<2		
615808	Rock	54	2.80	0.019	1.5	29.4	1.65	49	0.102	3.18	0.09	0.07	<0.5	<0.05	2.3	<0.5	<0.05	6	<2		
615809	Rock	20	0.52	0.024	2.0	222.4	15.13	74	0.084	1.59	0.06	0.22	<0.5	0.05	6.5	<0.5	<0.05	<5	<2		
615810	Rock	61	1.52	0.025	1.8	30.9	1.63	82	0.132	3.04	0.27	0.15	<0.5	<0.05	4.7	<0.5	0.40	7	<2		
615811	Rock	66	3.63	0.059	4.8	8.9	0.75	46	0.278	2.88	0.05	0.06	<0.5	0.06	3.8	<0.5	1.66	12	6		
615812	Rock	52	4.20	1.835	48.1	25.8	2.66	23	0.019	2.60	<0.01	<0.01	1.9	<0.05	6.4	<0.5	20.59	12	61		
615813	Rock	66	1.66	0.058	4.8	466.2	2.14	78	0.308	2.78	0.12	0.06	<0.5	0.13	4.8	<0.5	1.74	8	12		
615814	Rock	128	0.95	0.066	19.4	34.7	0.63	41	0.007	0.69	0.11	0.04	<0.5	<0.05	9.0	<0.5	<0.05	<5	<2		
615815	Rock	81	1.48	0.166	14.3	194.5	2.20	65	0.147	2.46	0.06	0.06	<0.5	0.09	6.2	0.6	5.01	10	14		
615816	Rock	74	1.12	0.476	23.7	46.3	2.00	120	0.016	2.09	<0.01	0.10	<0.5	<0.05	5.5	<0.5	20.89	11	112		
615817	Rock	15	0.73	0.027	2.2	163.4	14.82	37	0.044	1.66	0.05	0.08	<0.5	0.06	5.6	<0.5	0.86	<5	4		
615818	Rock	112	1.83	0.158	21.8	42.7	1.49	75	0.216	2.62	0.08	0.07	<0.5	0.10	9.6	<0.5	0.96	12	7		
1501251	Rock	25	0.29	0.021	1.5	270.0	18.15	16	0.045	1.48	<0.01	0.03	<0.5	0.05	8.1	<0.5	0.75	<5	2		
1501252	Rock	172	0.84	0.050	9.7	124.0	1.54	42	0.241	1.81	0.14	0.05	<0.5	0.17	13.8	<0.5	1.25	8	7		
1501253	Rock	120	3.97	0.062	14.1	51.1	1.22	106	0.010	1.73	0.09	0.07	<0.5	0.10	7.9	<0.5	<0.05	9	<2		
1501265	Rock	116	1.52	0.133	17.0	39.3	0.95	98	0.126	1.36	0.10	0.07	<0.5	<0.05	8.0	<0.5	0.36	9	4	1193	914
1501266	Rock	37	0.80	0.014	1.6	470.7	9.43	33	0.068	1.89	0.10	0.10	<0.5	0.13	6.1	<0.5	1.34	<5	3		
1353661	Rock	43	1.20	0.025	2.7	282.2	7.33	74	0.089	2.66	0.16	0.15	<0.5	<0.05	5.9	<0.5	1.19	6	3		
1353662	Rock	81	1.27	0.047	3.6	370.1	4.09	86	0.202	3.37	0.12	0.13	<0.5	0.07	7.3	<0.5	1.00	9	14	1095	603
1353663	Rock	22	0.34	0.017	1.4	252.5	17.34	13	0.041	1.53	<0.01	0.03	<0.5	<0.05	7.5	<0.5	0.85	<5	4		
1353664	Rock	15	0.63	0.023	2.0	212.5	16.60	31	0.047	1.45	0.03	0.06	<0.5	<0.05	7.1	<0.5	0.67	<5	2		
1353665	Rock	177	1.05	0.304	23.2	43.3	1.57	56	0.289	2.44	0.11	0.05	<0.5	0.12	19.8	<0.5	0.90	14	8		
1353666	Rock	22	1.01	0.021	2.0	167.7	12.25	51	0.059	2.06	0.13	0.08	<0.5	<0.05	6.0	<0.5	1.09	<5	<2		
1353667	Rock	105	7.24	0.076	7.8	11.1	0.74	10	0.229	4.24	0.03	<0.01	<0.5	0.06	6.7	<0.5	1.10	15	<2		

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

												Clier	nt:	Mic Box 3 White	Inight 31347 ehorse Y	Mini i ukon Y1	ng A 5P7 Ci	anada			
B U R E A U VERITAS	MINERAL LABORATORI Canada	ES		www.	bureau	veritas	s.com/	um				Projec	ct:	SPY							
Bureau Veritas	Commodities Canada Ltd	l.										Repo	rt Date:	Octol	oer 22, 2	016					
9050 Shaughn	essy St Vancouver British	Columb	oia V6F	9 6E5 C	anada																
PHONE (604) 2	253-3158											Page:		3 of 3	3					Part:	1 of 2
CERTIF	ICATE OF AN	ALY	SIS													W	'HI1	600	031	0.2	
	Method	WGHT	FA130	FA130	FA130	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	0 AQ27	0 AQ2	70 AQ270

	moulou	WOHI	FAISU	FAISU	FAISU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU	AQZIU
	Analyte	Wgt	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi
	Unit	kg	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm						
	MDL	0.01	1	0.1	0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	5	0.01	5	0.5	0.5	5	0.5	0.5	0.5
1353668 R	ock	1.32	25	2.1	3.1	2.0	181.3	6.0	210	<0.5	117.4	18.0	3410	17.85	14	2.2	2.4	33	<0.5	<0.5	<0.5
1353669 R	ock	0.98	9	4.1	8.7	15.5	99.5	7.4	244	1.8	88.5	11.9	268	4.22	10	1.4	2.6	76	4.7	4.8	<0.5
1353670 R	ock	2.45	60	102.7	139.4	<0.5	2046.6	26.9	99	0.7	1263.3	162.7	1086	9.92	<5	<0.5	<0.5	57	<0.5	<0.5	<0.5
1353671 R	ock	1.44	75	201.0	297.4	0.6	1441.1	10.6	97	1.5	1481.6	193.0	1019	11.27	<5	<0.5	<0.5	52	0.7	<0.5	1.0
1353672 R	ock	1.44	39	185.3	322.3	<0.5	824.3	10.7	77	1.0	697.4	94.7	289	5.64	11	<0.5	0.9	23	<0.5	<0.5	<0.5
1353673 R	ock	0.59	50	295.2	242.0	1.3	5122.3	10.4	83	1.8	469.4	43.1	264	3.97	6	<0.5	0.8	28	<0.5	1.3	<0.5
1353674 R	ock	1.14	52	183.9	177.7	<0.5	1027.6	6.4	35	0.6	559.0	53.4	312	3.13	<5	<0.5	<0.5	88	<0.5	<0.5	<0.5
615819 R	ock	1.71	6	18.2	29.9	<0.5	136.4	0.9	41	<0.5	983.4	88.7	1251	7.29	12	<0.5	<0.5	141	<0.5	<0.5	<0.5
615820 R	ock	2.37	4	11.4	21.7	< 0.5	149.7	0.8	47	<0.5	1087.6	97.3	1342	6.36	<5	<0.5	< 0.5	126	< 0.5	<0.5	< 0.5
615821 R	ock	1.08	14	526.2	>1000	2.2	3130.1	4.3	25	0.7	7635.9	275.7	209	6.33	<5	0.5	1.3	17	<0.5	1.4	<0.5

											Clier	nt:	Mic Box 3 White	Inight 31347 ehorse Y	Minir ukon Y14	1g A 5P7 Car	nada			
BUREAU VERITAS	MINERAL LABORATOR Canada	IES	www	.bureau	verita	s.com/ı	um				Projec	ct:	SPY							
Bureau Veritas	Commodities Canada Lto	d.									Repoi	rt Date:	Octol	ber 22, 2	016					
9050 Shaughne	essy St Vancouver Britisl	n Columbia	V6P 6E5 0	Canada																
PHONE (604) 2	253-3158										Page:		3 of 3	3				Part:	2	2 of 2
CERTIF	ICATE OF AN	IALYS	IS												W	HI16	6000	310.2	2	
	Method	AQ270 AQ	270 AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270 F	A350	FA350

	method	AQZIU	AQZIU	AQZIU	AQZIU	AQ2/U	AQZIU	FA350	FASSU												
	Analyte	v	Ca	Р	La	Cr	Mg	Ва	Ti	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Pt	Pd
	Unit	ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppb
	MDL	10	0.01	0.001	0.5	0.5	0.01	5	0.001	0.01	0.01	0.01	0.5	0.05	0.5	0.5	0.05	5	2	3	2
1353668 Roc	k	95	0.81	0.079	18.4	41.1	1.92	164	0.132	2.89	0.03	0.06	0.6	<0.05	8.2	<0.5	4.15	10	10		
1353669 Roc	k	144	2.86	0.213	20.1	162.2	1.32	337	0.008	1.57	0.02	0.32	<0.5	0.26	6.3	0.6	3.04	5	28		
1353670 Roc	k	32	1.16	0.020	2.1	260.2	10.00	101	0.097	2.36	0.12	0.18	<0.5	<0.05	4.8	<0.5	1.56	<5	8		
1353671 Roc	k	35	0.98	0.009	1.7	144.9	10.60	65	0.071	1.86	0.14	0.13	<0.5	0.10	4.4	<0.5	2.76	<5	8		
1353672 Roc	k	63	2.90	0.034	4.3	535.9	3.62	13	0.180	3.32	0.01	0.06	<0.5	<0.05	2.4	<0.5	1.21	7	4		
1353673 Roc	k	58	1.18	0.051	7.1	129.4	1.36	74	0.257	1.56	0.13	0.15	<0.5	<0.05	2.6	<0.5	0.93	6	6		
1353674 Roc	k	18	1.80	0.016	2.2	85.3	2.30	408	0.078	1.89	0.05	0.06	<0.5	0.06	1.2	<0.5	0.53	<5	2		
615819 Roc	k	31	5.95	0.009	1.5	380.2	10.97	187	0.010	0.54	0.02	0.05	<0.5	0.17	10.6	<0.5	<0.05	<5	<2		
615820 Roc	k	28	5.91	0.012	1.6	343.6	10.40	248	0.021	0.88	0.05	0.16	<0.5	0.18	7.7	<0.5	<0.05	<5	<2		
615821 Roc	k	93	3.66	0.137	15.7	71.6	2.43	8	0.372	2.79	<0.01	<0.01	<0.5	0.06	5.5	<0.5	2.12	6	15	555	973

												Clien	t:	Mid Box 3 White	night 1347 horse Yul	Mining] 5P7 Cana	ada			
BUREAU M	INERAL LABORATOR	IES		www.	bureau	veritas	.com/u	m				Project	:	SPY							
												Report	Date:	Octob	er 22 20	16					
Bureau Veritas C	ommodities Canada Lt	d.												0 010 2	0, _0						
9050 Shaughnes	sy St Vancouver Britis	h Colum	bia V6F	P 6E5 C	anada																
PHONE (604) 25	3-3158											Page:		1 of 2					Part	: 1 of	2
		DED		г												\\/L	1116	0001	210	\mathbf{c}	
QUALIT	CUNIKUL	REP	UR	l												VVF	1110		D I U.	۲ ۲	
	Method	WGHT	FA130	FA130	FA130	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270
	Analyte	Wgt	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi
	Unit	kg	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	1	0.1	0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	5	0.01	5	0.5	0.5	5	0.5	0.5	0.5
Pulp Duplicates																					
615806	Rock	1.11	7	16.9	7.5	<0.5	86.8	1.9	72	<0.5	467.5	117.8	994	7.98	<5	<0.5	<0.5	26	<0.5	<0.5	<0.5
REP 615806	QC					<0.5	93.3	1.9	75	<0.5	458.1	111.6	995	7.81	6	<0.5	0.5	28	<0.5	<0.5	<0.5
615807	Rock	1.56	1	0.2	<0.5	0.8	15.2	4.6	78	<0.5	11.6	14.4	544	4.20	<5	0.7	2.5	31	<0.5	<0.5	<0.5
REP 615807	QC		2	0.2	0.5																
1501265	Rock	1.12	75	>1000	909.7	7.0	1694.1	5.1	59	<0.5	1367.3	74.0	479	4.00	19	0.9	2.8	14	<0.5	2.2	<0.5
REP 1501265	QC		53	>1000	874.2																
1353666	Rock	0.68	38	128.3	165.4	<0.5	639.7	3.8	76	0.7	1033.7	133.6	1017	8.89	<5	<0.5	<0.5	51	<0.5	<0.5	<0.5
REP 1353666	QC		38	124.1	159.3																
1353672	Rock	1.44	39	185.3	322.3	<0.5	824.3	10.7	77	1.0	697.4	94.7	289	5.64	11	<0.5	0.9	23	<0.5	<0.5	<0.5
REP 1353672	QC		40	138.1	329.1	<0.5	815.3	10.8	78	1.0	699.8	93.4	292	5.63	11	<0.5	0.8	23	<0.5	<0.5	<0.5
Core Reject Duplicates																					
1501266	Rock	1.29	44	126.9	234.2	0.6	507.1	3.5	80	1.7	1041.8	106.7	962	8.33	<5	<0.5	<0.5	37	<0.5	<0.5	<0.5
DUP 1501266	QC		48	135.6	224.7	0.5	524.4	3.9	79	2.0	1060.3	106.5	989	8.66	<5	<0.5	<0.5	39	<0.5	<0.5	<0.5
Reference Materia	ls																				
STD CDN-PGMS-	19 Standard		260	113.5	489.5																
STD CDN-PGMS-	19 Standard		232	114.7	463.8																

476

0.6

STD CDN-PGMS-19

STD CDN-PGMS-19

STD CDN-PGMS-23

STD GBM398-4-AR

STD GBM398-4-AR

STD OREAS927-AR

STD OREAS927-AR

STD GBM398-4-AR Expected

STD OREAS927-AR Expected

STD CDN-PGMS-19 Expected

STD CDN-PGMS-23 Expected

BLK

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Blank

223

235

230

1

104.7

108.2

108

0.1

442.6

481.5

917.8 3916.5 11816.8

900.8 3873.3 11459.3

3919

218.3

227.4

11750

232

0.9 10690.1

1.0 10695.6

1.06 10715

917

5264

5216

724

744

5345

726

48.2 3896.1 1910.2

46.4 4207.2 1906.7

28.5

29.4

4135

30.9

4.7

4.2

4.9

48.7

5390

5141

1104

1088

5300

1110

28.6

28.9

1950

29.4

3.92

3.90

8.03

8.13

3.95

8.15

7

7

13

12

6

13.5

0.6

0.7

1.6

1.7

0.7

1.7

0.7

0.8

12.3

12.7

0.8

12.5

13

12

13

13

13

13.1

8.4

8.4

1.0

1.0

7.7

1.1

12.9

12.2

67.4

65.9

12.3

66

7.5

7.0

1.3

1.4

7.2

1.3

												Clien	t:	Mid Box 3 White	night 1347 horse Yul	Mining] 5P7 Can	ada			
BUREAU VERITAS	IINERAL LABORATOR	IES		www.	bureau	veritas	.com/u	m				Projec	t:	SPY							
Bureau Veritas C	ommodities Canada I t	Ч										Report	Date:	Octob	er 22, 20	16					
		u. h. Caluma																			
	Sy St. Vancouver Britis	n Colum	DIA VOI	0E9 (anada																
FIIONE (004) 25	5-5156											Page:		1 of 2					Part	2 of	2
QUALIT	CONTROL	REP	POR	Т												WF	1116	000	310.:	2	
	Method	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	FA350	FA350
	Analyte	v	Ca	Р	La	Cr	Mg	Ва	Ti	AI	Na	ĸ	w	Hg	Sc	ті	S	Ga	Se	Pt	Pd
	Unit	ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppb
	MDL	10	0.01	0.001	0.5	0.5	0.01	5	0.001	0.01	0.01	0.01	0.5	0.05	0.5	0.5	0.05	5	2	3	2
Pulp Duplicates																					
615806	Rock	36	0.58	0.028	3.7	355.0	12.65	123	0.114	2.02	0.05	0.27	<0.5	<0.05	6.5	<0.5	<0.05	5	<2		
REP 615806	QC	35	0.59	0.027	4.0	357.3	12.71	127	0.114	2.02	0.05	0.26	<0.5	0.05	5.4	<0.5	<0.05	5	<2		
615807	Rock	105	1.10	0.080	11.8	71.5	1.78	141	0.299	2.13	0.14	0.19	<0.5	<0.05	7.7	<0.5	<0.05	8	<2		
REP 615807	QC																				
1501265	Rock	116	1.52	0.133	17.0	39.3	0.95	98	0.126	1.36	0.10	0.07	<0.5	<0.05	8.0	<0.5	0.36	9	4	1193	914
REP 1501265	QC																			1245	926
1353666	Rock	22	1.01	0.021	2.0	167.7	12.25	51	0.059	2.06	0.13	0.08	<0.5	<0.05	6.0	<0.5	1.09	<5	<2		
REP 1353666	QC																				
1353672	Rock	63	2.90	0.034	4.3	535.9	3.62	13	0.180	3.32	0.01	0.06	<0.5	<0.05	2.4	<0.5	1.21	7	4		
REP 1353672	QC	64	2.89	0.035	4.5	543.8	3.63	14	0.185	3.37	0.01	0.06	<0.5	<0.05	2.5	<0.5	1.21	7	4		
Core Reject Duplicates																					
1501266	Rock	37	0.80	0.014	1.6	470.7	9.43	33	0.068	1.89	0.10	0.10	<0.5	0.13	6.1	<0.5	1.34	<5	3		
DUP 1501266	QC	38	0.84	0.017	1.7	458.6	9.68	35	0.070	1.94	0.10	0.10	<0.5	0.08	5.9	<0.5	1.32	<5	4		
Reference Materia	ls																				
STD CDN-PGMS-	19 Standard																				
STD CDN-PGMS-	19 Standard																				
STD CDN-PGMS-	19 Standard																				
STD CDN-PGMS-	19 Standard																				

STD OREAS927-AR 33 0.28 0.052 27.1 40.5 1.96 45 0.081 3.20 <0.01 0.25 5.1 0.13 <0.5 1.78 9 17 Standard 4.1 STD OREAS927-AR 33 26.6 1.88 0.29 16 Standard 0.29 0.056 39.9 51 0.080 3.19 < 0.01 5.0 0.11 4.7 <0.5 1.76 10 STD GBM398-4-AR Expected 24 0.34 0.02 2.8 1950 0.12 21 0.111 0.48 0.25 0.11 3 3.21 1.79 0.94 3 STD OREAS927-AR Expected 34 0.3 0.054 26.9 41.7 1.94 51.4 0.085 3.25 0.011 0.27 4.9 0.12 4.74 1.77 9.09 15.5 STD CDN-PGMS-19 Expected STD CDN-PGMS-23 Expected 456 BLK Blank

19

19 0.112

0.109

0.49

0.44

0.26

0.25

0.11

0.12

3.1

2.9

3.20

3.10

1.7

1.4

<0.5

<0.5

0.94

0.91

<5

<5

0.12

0.13

434

3

3

2006

2032

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

2.8 1943.4

2.5 1936.7

STD CDN-PGMS-23

STD GBM398-4-AR

STD GBM398-4-AR

Standard

Standard

Standard

30

18

0.34

0.30

0.016

0.021

												Clien	t:	Mid Box 3 White	night 1347 horse Yul	Mining) 5P7 Cana	ada			
BUREAU	MINERAL LABORATOR	IES		www	.bureau	uveritas	.com/ι	um				Project	:	SPY							
VENTRAG	Gallaua											Report	Date:	Or i Octob	22 20	40					
Bureau Veritas	s Commodities Canada Lt	d.										roport	Duic.	UCIUD	er 22, 20	16					
9050 Shaughr	nessy St Vancouver Britis	h Colum	bia V6F	9 6E5 C	Canada																
PHONE (604)	253-3158											Page.		2 of 2					Par	t 1 o	f 2
												Faye.		2 01 2					Fait	10	2
QUALI	TY CONTROL	REP	OR	Г												WF	1116	000	310.	2	
		WGHT	FA130	FA130	FA130	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270
		Wgt	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi
		kg	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		0.01	1	0.1	0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	5	0.01	5	0.5	0.5	5	0.5	0.5	0.5
BLK	Blank		2	0.4	0.5																
BLK	Blank		2	0.2	0.6																
BLK	Blank					<0.5	0.9	1.3	<5	<0.5	<0.5	<0.5	<5	<0.01	<5	<0.5	<0.5	<5	<0.5	<0.5	<0.5
BLK	Blank					<0.5	0.6	<0.5	<5	<0.5	<0.5	<0.5	<5	<0.01	<5	<0.5	<0.5	<5	<0.5	<0.5	<0.5
BLK	Blank		2	<0.1	<0.5																
BLK	Blank																				
Prep Wash																					
ROCK-WHI	Prep Blank		<1	0.1	<0.5	0.9	3.9	3.9	34	<0.5	<0.5	3.4	471	1.96	<5	<0.5	2.1	24	<0.5	<0.5	0.6
ROCK-WHI	Prep Blank		3	0.1	<0.5	1.3	6.9	2.7	39	<0.5	1.1	3.5	479	1.90	<5	<0.5	2.2	34	<0.5	<0.5	<0.5

												Clien	t:	Mid Box 3 White	night 1347 horse Yul	Mining) 5P7 Cana	ada			
B U R E A U VERITAS	MINERAL LABORATOR Canada	IES		www	.bureau	veritas	.com/u	ım				Project	:	SPY							
Bureau Veritas	s Commodities Canada Lt	d.										Report	Date:	Octob	er 22, 20	16					
9050 Shaughr PHONE (604)	nessy St Vancouver Britis 253-3158	h Colum	bia V6F	P 6E5 C	Canada							Page:		2 of 2					Part	: 2 of	2
QUALI	TY CONTROL	REP	POR	Т												WF	1116	000	310.2	2	
		AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	AQ270	FA350	FA350
		v	Ca	Р	La	Cr	Mg	Ва	Ti	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Pt	Pd
		ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppb
		10	0.01	0.001	0.5	0.5	0.01	5	0.001	0.01	0.01	0.01	0.5	0.05	0.5	0.5	0.05	5	2	3	2
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<10	<0.01	<0.001	<0.5	<0.5	<0.01	<5	<0.001	<0.01	<0.01	<0.01	<0.5	<0.05	<0.5	<0.5	<0.05	<5	<2		
BLK	Blank	<10	<0.01	<0.001	<0.5	<0.5	<0.01	<5	<0.001	<0.01	<0.01	<0.01	<0.5	<0.05	<0.5	<0.5	<0.05	<5	<2		
BLK	Blank																				
BLK	Blank																			<3	<2
Prep Wash																					
ROCK-WHI	Prep Blank	24	0.62	0.044	5.6	2.9	0.40	65	0.103	1.01	0.16	0.11	<0.5	<0.05	3.4	<0.5	<0.05	<5	<2		
ROCK-WHI	Prep Blank	24	0.69	0.041	8.1	2.5	0.43	85	0.108	1.15	0.19	0.15	<0.5	< 0.05	4.3	<0.5	< 0.05	<5	<2		

PRP70-250

Package Description	Crushing and Pulverizing
Samples Digestion	NA
Instrumentation Method	NA
Legacy Code	R150
Applicability	Rock and Drill Core

► METHOD DESCRIPTION

Received samples are entered into the Laboratory Information Management System (LIMS), weighed, dried and crushed to ensure that greater than 70% pass a 2mm sieve. A 250g split of the crushed material is then pulverized to greater than 85% passing a 75µm sieve.

At random intervals and at the start of each shift QC testing is completed on both crushed and pulverized material to ensure that the above specifications are met.

The flowchart to the left describes the standard practice. Additional splits of the pulp or reject may be taken at client request and to prepare internal Prep QC duplicates.

By default if clients have not specified otherwise Master Pulps are retained and storage charges apply. Rejects are stored for 90 days and are then disposed of at the client's cost.

► SS80, SS230, SSXX

Package Description	Soil Preparation
Samples Digestion	NA
Instrumentation Method	NA
Legacy Code	SS80, S230, SSXX
Applicability	Soils and Sediments

► METHOD DESCRIPTION

Wet or damp soil samples are dried at 60°C (Air dried or 40°C if specified by the client). Soil and sediment sieved to -80 mesh (SS80) or -230 mesh (SS230), unless client specifies otherwise (SSXXX). Sieves cleaned by brush and compressed air between samples.

NOMINAL OPENING	US STANDARD SIEVE	TYLER SIEVE
250 μm	60	60
180 µm	80	80
150 µm	100	100
106 µm	140	150
75 μm	200	200
63 µm	230	250

de el De else ser

.....

· ·····

► AQ250

Package Description	Ultra Trace Geochemical Aqua Regia digestion
Samples Digestion	HNO ₃ -HCl acid digestion
Instrumentation Method	ICP-ES and ICP-MS
Legacy Code	1F
Applicability	Sediment, Soil, Non-mineralized Rock and Drill Core

METHOD DESCRIPTION

.....

Prepared sample is digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO_3 and $DI H_2O$ for one hour in a heating block or hot water bath. Sample is made up to volume with dilute HCl. Sample splits of 0.5g, 15g or 30g can be analyzed.

Lead isotope Add On (+ISO) ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb are suitable for geochemical exploration of U and other commodities where gross differences in natural to radiogenic Pb ratios, is a benefit. Isotope values can be reported in both concentrations and intensities. Sample splits of 0.5g, 15g or 30g can be analyzed.

						LAIG	Extended Fackage Liements	
ELEMENT	DETECTION LIMIT	UPPER LIMIT	ELEMENT	DETECTION LIMIT	UPPER LIMIT	ELEMENT	DETECTION LIMIT	UPPER LIMIT
Ag	2 ppb	100 ppm	Мо	0.01 ppm	2000 ppm	Be*	0.1 ppm	1000 ppm
Al*	0.01%	10%	Na*	0.001%	5%	Ce*	0.1 ppm	2000 ppm
As	0.1 ppm	10000 ppm	Ni	0.1 ppm	10000 ppm	Cs*	0.02 ppm	2000 ppm
Au	0.2 ppb	100 ppm	P*	0.001%	5%	Ge*	0.1 ppm	100 ppm
B*^	20 ppm	2000 ppm	Pb	0.01 ppm	10000 ppm	Hf*	0.02 ppm	1000 ppm
Ba*	0.5 ppm	10000 ppm	S	0.02%	10%	In	0.02 ppm	1000 ppm
Bi	0.02 ppm	2000 ppm	Sb	0.02 ppm	2000 ppm	Li*	0.1 ppm	2000 ppm
Ca*	0.01%	40%	Sc	0.1 ppm	100 ppm	Nb*	0.02 ppm	2000 ppm
Cd	0.01 ppm	2000 ppm	Se	0.1 ppm	100 ppm	Rb*	0.1 ppm	2000 ppm
Co	0.1 ppm	2000 ppm	Sr*	0.5 ppm	10000 ppm	Re	1 ppb	10000 ppb
Cr*	0.5 ppm	10000 ppm	Те	0.02 ppm	1000 ppm	Sn*	0.1 ppm	100 ppm
Cu	0.01 ppm	10000 ppm	Th*	0.1 ppm	2000 ppm	Ta*	0.05 ppm	2000 ppm
Fe*	0.01%	40%	Ti*	0.001%	5%	Y*	0.01 ppm	2000 ppm
Ga*	0.1 ppm	1000 ppm	ТІ	0.02 ppm	1000 ppm	Zr*	0.1 ppm	2000 ppm
Hg	5 ppb	50 ppm	U*	0.05 ppm	2000 ppm	Pt*	2 ppb	100 ppm
K *	0.01%	10%	V*	2 ppm	10000 ppm	Pd*	10 ppb	100 ppm
La*	0.5 ppm	10000 ppm	W *	0.05 ppm	100 ppm			
Mg*	0.01%	30%	Zn	0.1 ppm	10000 ppm			
Mn*	1 ppm	10000 ppm						

Limitations: *This digestion is only partial for some Cr and Ba minerals and some oxides of Al, Hf, Mn, Sn, Ta and Zr. †Volatilization may occur during fuming resulting in some loss of As, and Sb

+REE Add on			+PGM Add on			+ISO Add on			
ELEMENT	DETECTION LIMIT	UPPER LIMIT	ELEMENT	DETECTION LIMIT	UPPER LIMIT		ELEMENT	DETECTION LIMIT	UPPER LIMIT
Pr	0.02 ppm	2000 ppm	Pt*	2 ppb	100 ppm		²⁰⁴ Pb	0.01 ppm	10000 ppm
Nd	0.02 ppm	2000 ppm	Pd*	10 ppb	100 ppm		²⁰⁶ Pb	0.01 ppm	10000 ppm
Sm	0.02 ppm	2000 ppm					²⁰⁷ Pb	0.01 ppm	10000 ppm
Eu	0.02 ppm	2000 ppm					²⁰⁸ Pb	0.01 ppm	10000 ppm
Gd	0.02 ppm	2000 ppm							
Tb	0.02 ppm	2000 ppm							
Dy	0.02 ppm	2000 ppm							
Но	0.02 ppm	2000 ppm							
Er	0.02 ppm	2000 ppm							
Tm	0.02 ppm	2000 ppm							
Yb	0.02 ppm	2000 ppm							
Lu	0.02 ppm	2000 ppm							

. .

...........

.....

•••••••

► FA100, FA300, FA400 & FA500

Package Description	Precious Metals by Lead Collection Fire Assay
Samples Digestion	Lead-collection fire assay fusion
Instrumentation Method	ICP-MS (FA100), ICP-ES (FA300), AAS (FA400), Gravimetric (FA500)
Legacy Code	3B, G6
Applicability	Rock, Drill Core

► METHOD DESCRIPTION

30 or 50g of prepared sample is custom-blended with fire-assay fluxes, PbO litharge and a silver inquart. Firing the charge at 1050°C liberates Ag, Au and PGEs that report to the molten Pb-metal phase. After cooling the Pb button is recovered, placed in a cupel and fired at 950°C to render a Ag, Au and PGEs dore bead. The bead is then either digested with nitric and hydrochloric acids for instrumentation determination or weighed and parted with nitric acid to dissolve Ag leaving gold which is weighed directly. Ag is determined by difference of the dore bead from the gold in gravimetric analysis.

ELEMENT DETECTION LIMIT		UPPER LIMIT			
	FA100 – ICP-MS				
Au	1 ppb	1 ppm			
Pt	0.1 ppb	1 ppm			
Pd	0.5 ppb	1 ppm			
	FA300-ICP-ES				
Au	2 ppb	10 ppm			
Pt	3 ppb	10 ppm			
Pd	2 ppb	10 ppm			
	FA400-AAS				
Au	5 ppb	10 ppm			
FA500-Gravimetric					
Au	0.9 ppm				
Ag	20 ppm				

Note: Sulphide rich samples may require a 15g or smaller sample charge for proper fusion.

.....

.....

Appendix 3: Work summary and cost statements

Hardcopy and digital files

Submit completed form by September 30th to:

Yukon Mineral Exploration Program Energy, Mines and Resources Government of Yukon 102 - 300 Main Street Box 2703 (K102), Whitehorse, Yukon Y1A 2C6

E-mail: ymep@gov.yk.ca tel: 867-456-3828 fax: 867-667-3198 toll free (in Yukon): 1-800-661-0408

YMEP no:	16-	Applicant name	Group 10 Metals	project name:	Spy
Address	Suite 81	14, 675 W. I	Hastings St., Vancouver,	module:	Target Evaluation
	BC, V6C 1N2			type:	Quartz
phone 1:	1: Cell: 604 961 4224			phone 2:	
date submitted: Nov 29/11		Nov 29/11	6	email:	mrowley@grouptenmetals.com

The purpose of this form is to help us keep track of budget expenditures to date. We need to keep this information current so please update us if significant changes occur between now and January 31st.

YMEP Expense Claim Form - Client Copy

YMEP no:	16-	project name:	Sp	у	Applicant name	Group Ten Metals
Expense Claim no:	final	program ha type:	rd rock		program module: ta	arget evaluation
date submitted	07-Dec-16	phone:	604-681	-1568	mro email:	owley@grouptenmetals.com
address		8	14-675 W. Ha	stings St., Va	ncouver, BC V	/6C 1N2
Start/ end of this claim:	lates of fiel	dwork for	16-Sep-16	22-Sep-16	no of field days/ this claim:	6
eligible expenses item	Please refe	er to rate guide.	lines. Provide p	bhotocopy of rece unit/days	eipts.	total
daily field	l			[
expenses	no persor	IS:			\$100/day	
	Name (su	oply statemer	nt of qualificat	ions)		
	see attach	ed Midnight N	lining Invoice			
Personnel	see attache	ed Kluane Helic	copters Invoice			
equipment (rental)	1		private or commercial	unit/days	rate	total
			private			
			private			
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		private			
			private			
			private			
			private			
			private			
			private			
			private			
			private			
			private			
other			please prov	ide details		
Midnig	nt Mining Se	rvices 16-6				\$25,964.90
K	luane Helico	opters				\$9,102.24
L						
And mail and and an and an						\$25 067 1A
				Grand	i totai this ciail	າມ ຈວວ,007.14

Midnight Mining Services Box 31347 Whitehorse, YT Y1A 5P7

Invoice

Invoice No. 16-6

25-Sep-16

То:	Group Ten Metals		
	789 W. Pender St.,	Suite 1450	
	Vancouver, BC	V6C 1H2	
Attention:	Michael Rowley		

Date From	Date To	Project
16-Sep-16	22-Sep-16	Spy Property

Description		Rate		Am	iount
Prospecting/Geological Mapping/VLF Days	-EM Geophysical Survey				
3.5 Bill Harris - Prospector/P	roject Manager	\$	500.00	\$	1 750 00
6 Debbie James - Geolog	st	ŝ	450.00	ŝ	2 700 00
6 Graham Davidson - Geo	logist	\$	500.00	ŝ	3,000,00
3 Jean Pautler - Geologist		ŝ	650.00	ŝ	1 950 00
3 Ron Berdahl - Prospecto	r	\$	500.00	\$	1,500.00
5 VLF rental		\$	100.00	\$	500.00
7 XRF rental		\$	200.00	Ś	1.400.00
7 4 x 4 truck (Midnight Min	es)	\$	150.00	\$	1,050.00
7 Quad (Midnight Mines)		\$	75.00	\$	525.00
7 4 x 4 truck - Graham Dav	vidson	\$	150.00	\$	1.050.00
3 truck-camper Jean Pault	er	\$	125.00	Ŝ	375.00
Report				Ŝ	4.000.00
	Subtotal Services			\$	19,800.00
	GST on services			\$	990.00
	assays (estimate)			\$	2,640.00
	accomodation/food (Debbie/Bill/Graham/Ron)			\$	2,534,90
	Subtotal Expenses			\$	5,174.90
()				CUMMUZ.	
Bill Harris Director	ns	Total		\$	25,964.90

,

Total payable within 30 days of invoice GST # 852268341
Kluane

CHARTER TICKET: KH 1091

HELICOPTERS A DIVISION OF 528470 ALBERTA LIMITED P.O. BOX 2128, HAINES JUNCTION, YUKON TERRITORY, CANADA Y0B 1L0 TELEPHONE: (403) 634-2224 • FAX: (403) 634-2226

	- Graup 1	1 MATTON	<.		·····	. <u></u>	
CHARTERE	R: <u>v 702p 7</u>	· / / E / F/ C	·· ••				
ADDRESS:	Spy Clain	-1-5					
	6						
DATE:	A/C TYPE	A/C REC	à.	PURCHASE		FORES	TRY
Sept. 221	16 AS350B1	0-6776) 	ORDER #	-		No.
FLIGHT DESCRIPTION			TIME UP	TIME DOWN	HOURS	RATE	SUB-TOTAL
Sept18	H.J-Creu	1070 VES			131.3		
Sept 4	kir dag				0		
Sept 20	Crow Mov.	CS			1.1		
Sent 21	Creu Move	5 r			1.2		
Cent 22	DBAY - H.	- magnesser			0.6		diada a constructive in the second
		e e e constanado a de constana de la seconda de las secondo a da terrete de la develo					teres of the second sec
			l		4.2	1775	1455.00
		· · · · · · · · · · · · · · · · · · ·					
				<u> </u>			
				<u> </u>			
					l		
No.	DAYS				FUEL:		1213.8
CHARTERER FUEL:		COMPANY FUE	COMPANY FUEL:		OIL:		
DRUMS:		GALLONS \$ /GAL.		MEALS:			
GALLONS		LITRES: 7/4	LITRES: 7/4 \$ 1.70 /LTR.		LODGING:		
LITRES:							8668. 80
<u> </u>					G.S.T. RE	G. 132709809	433.44
CHARTERER AUTHORIZATION:		PILOT:	PILOT: Jo harnour		TOTAL: \$ 9102.24		

SIGNING OF THIS TICKET BY AUTHORIZED REPRESENTATIVES CONSTITUTES THE RIGHT BY THE CARRIER TO CHARGE 3% PER MONTH INTEREST ON ALL ACCOUNTS OVER 30 DAYS.

GST# R105125892 MILE 1083 ALASKA HIGHWAY DESTRUCTION BAY, YT YOB 1H0 7) 841-4461 FAX (867) 841-4804 (867) 841-4461 TELEPHONE CUSTOMER ORDER NUMBER FAX DATE NAME ninu PVNi ADDRESS CITY PROVINCE POSTAL CODE SOLD BY CASH CHARGE CHEQUE DEBIT CARD C.O.D. ON ACCT. MDSE, RETD. PAID OUT QTY DESCRIPTION PRICE AMOUNT 00. - should be 6 nights or 643-0 08.00 ORN. # e hhip D 08.00 00 648 ± Gva 1 108.00 00. 224 っユ 00 108.00 108 O) 世 70 6 ariti 05 Renseel total to Spy \$2534.90 SPECIAL INSTRUCTIONS -qĆ SUBTOTAL HST/GST ₿ PST All claims and returned goods MUST be accompanied by this bill. RECEIVED BY TOTAL 22487 THANK YOU Product 610

Bill To: Midnight Mining Box 31347 Whitehorse, YT Y1A 5P7 CANADA

Invoice Date: October 18, 2016 Invoice Number: VANI261587 Submitted by: Email: Job Number: Order Number: Project Code: SPY Shipment ID: Quote Number:

Debbie James debbiejames25@gmail.com WHI16000310

Item	Package	Description	Sample No.	Unit Price	Amount
1	PRP70-250	Crush and Pulverize 250 g	40	\$7.20	\$288.00
2	PRP70-250	Overweight crushing charges per 100g	221	\$0.07	\$15.47
3	FA130	30g Fire Assay Au Pt Pd ICPMS	40	\$21.00	\$840.00
4	AQ270	1g AR Digestion ICP-MS	40	\$21.00	\$840.00
5	DRPLP	Dispose or return handling of pulps	40	\$0.10	\$4.00
6	DRRJT	Dispose or return handling of reject	40	\$0.35	\$14.00
7	SHP-01	Per sample charge for branch shipmen	t 40	\$1.00	\$40.00
			Net Total		\$2,041.47
			Canadian GST		\$102.07
Grand Total					\$2,143.54

Invoice Stated In Canadian Dollars

Payment Terms:

Due upon receipt of invoice. Please pay the last amount shown on the invoice.

For **cheque payments**, please remit payable to: Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St. Vancouver BC, V6P 6E5

Please specify invoice number on cheque remiltance.

For electronic payments, please please contact AccountReceivable.VAN@acmelab.com for banking details.

For any enquiries please contact us at AccountReceivable.VAN@acmelab.com

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St. Vancouver, BC Canada V6P 6E5 Phone 604 253 3158 Fax 604 253 1716 GST # 843013921 RT QST # 1219972641

Bill To: Midnight Mining Box 31347 Whitehorse, YT Y1A 5P7 CANADA

Invoice Date: October 6, 2016 Invoice Number: VANI260977 Submitted by: Email: Job Number: Order Number: Project Code: Shipment ID: Quote Number:

Debbie James debbiejames25@gmail.com WHI16000309 SPY

Item	Package	Description	Sample No.	Unit Price	Amount
1	SS230	Sieve 100g soil to -230 mesh	12	\$4.05	\$48.60
2	SVRJT	Saving all or portion of reject	12	\$0.60	\$7.20
3	AQ251-EXT	15g Full Suite (53 Elements)	12	\$27.05	\$324.60
4	DRPLP	Dispose or return handling of pulps	12	\$0.10	\$1.20
5	DRRJT	Dispose or return handling of reject	12	\$0.35	\$4.20
6	SHP-01	Per sample charge for branch shipment	12	\$1.00	\$12.00
			Net Total		\$397.80
			Canadian GST		\$19.89
			Grand Total	CAD	\$417.69

Invoice Stated In Canadian Dollars

Payment Terms:

Due upon receipt of invoice. Please pay the last amount shown on the invoice.

For cheque payments, please remit payable to: Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St. Vancouver BC, V6P 6E5

Please specify invoice number on cheque remittance.

For electronic payments, please please contact AccountReceivable.VAN@acmelab.com for banking details.

For any enquiries please contact us at AccountReceivable.VAN@acmelab.com

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St. Vancouver, BC Canada V6P 6E5 Phone 604 253 3158 Fax 604 253 1716 GST # 843013921 RT QST # 1219972641

Bill To: Midnight Mining Box 31347 Whitehorse, YT Y1A 5P7 CANADA Invoice Date:October 24, 2016Invoice Number:VANI261979Submitted by:Debbie JamesEmail:debbiejames25@gmail.comJob Number:WHI16000310Order Number:SPYShipment ID:Quote Number:

Item	Package	Description	Sample No.	Unit Price	Amount
1	FA350	50g Fire Assay Au Pt Pd, ICP finish	3	\$20.45	\$61.35
2	EN002	Lead waste disposal fee	3	\$0.25	\$0.75
			Net Total		\$62.10
			Canadian GST		\$3.11
			Grand Total	CAD	\$65.21

Invoice Stated In Canadian Dollars

Payment Terms:

Due upon receipt of invoice. Please pay the last amount shown on the invoice.

For **cheque payments**, please remit payable to: Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St. Vancouver BC, V6P 6E5

Please specify invoice number on cheque remittance.

For electronic payments, please please contact AccountReceivable.VAN@acmelab.com for banking details.

For any enquiries please contact us at AccountReceivable.VAN@acmelab.com

Appendix 4: Maps

Hardcopy and digital files

