NI 43-101 Technical Report

describing

GEOLOGY, MINERALISATION, GEOCHEMICAL SURVEYS, AND ENVIRONMENTAL SURVEYS

on the

McConnell's Jest Intrusion-Related Gold Property Yukon, Canada NTS Map Sheets 106D03 and 105M14 Latitude 64° 1' N Longitude 135° 25' W

Prepared for:

Bill Koe-Carson Box 387 White Fox, Saskatchewan S0J 3B0 Canada

by

Andrew Randell, P.Geo Strata GeoData Services Vancouver, British Columbia Canada

and

Fraser Kirk, MSc., G.I.T. Sherwood Park, Alberta Canada

and

David Wilkie, MSc., Vancouver, British Columbia Canada

Effective Date: January 22, 2017

1.0 Executive Summary

The McConnells Jest property, located in the central Yukon, lies 65 km northeast of Mayo, Y.T. A series of upgrades to the access to the property were conducted during summer 2016, primarily through the creation of direct road access to the property by the Yukon Government. This road has a number of culverts and a bridge, the Cristal Creek Bridge, which is rated to carry up to 20 tonnes of load. This road would allow the transportation of heavy equipment, including drilling equipment, directly to the property. Additionally, during the summer 2016 field season, a number of helicopter landing pads were cleared near areas of geological interest and access points. Helicopter access to the property takes around 25 minutes from the Mayo airstrip.

The McConnell Property consists of 172 contiguous (quartz) claims, owned 100% by Bill Koe-Carson, and covers an area of approximately 3,371 hectares. On November 17, 2016, Bill Koe-Carson granted Zonte Metals Inc. the option to purchase a 100% interest in the project by making payments of \$150,000 over three years and 1.5 Million common shares over two years. The claims are subject to a 3% NSR, 2/3rds of which can be purchased for \$2,000,000.

The property itself has seen limited exploration activity. The property was first staked by United Keno Hill Mines in the 1960's, termed the "Zed" (Z) claims (minfile#: 106D055). The property was subsequently staked in 2010 by Bill Koe-Carson. Golden Predator Canada Corp. oversaw soil and rock sampling programs in 2011 and 2012. Bill Koe-Carson conducted rock sampling programs in 2014, 2015 and 2016.

Mapping took place in 1961 (Green, 1972) by L. Green and the Geological Survey of Canada (GSC) as part of a helicopter-supported party known as the Operation Ogilvie (Minfile# 106D055). Directly south of the property, local topographic map sheet 105M was remapped by Roots (1997) of the GSC, and in 2003 the GSC released a geological compilation that included this area (Golden Predator Canada Corp., 2013).

The property underwent glaciation during the McConnell glaciation (>23,000 years ago; Bond, 1999). It has been demonstrated through a number of field seasons that the ground is covered by basal till. The lack of a distinct soil anomaly is attributed to the presence of loess deposits on the property.

The McConnell pluton is one of a series of Cretaceous plutons that have been included in the Tintina Gold Province. The Tintina Gold Province (e.g. Hart, 2004) is a belt of Au-deposits in the Northern Cordillera of Yukon and Alaska that are bounded by two dextral transpressional fault systems - the Denali Fault (southern limit) and the Tintina Fault (northern limit). The belt extends beyond the northern tip of the Tintina Fault, into the Selwyn Basin in the Yukon, and into the western-most NWT. Within the Tintina Gold Province a series of highly prospective Intrusion-Related Gold (IRGS) deposits form the Tombstone Gold Belt, the most significant host to IRGS globally.

Paleozoic clastic rocks of the upper Devonian and Mississippian Earn Group underlie the majority of the McConnell property. These metasedimentary sequences were formed in a submarine fan and channel deposit setting and subsequently deformed during Cordilleran tectonics. The 7 x 2.5 km McConnell pluton intrudes the Earn Group. The pluton is a mid-Cretaceous Tombstone suite granodiorite intrusion which occupies a large portion of the property.

Two major mineral properties lie adjacent to McConnells Jest, the Dublin Gulch IRGS deposit to the west and the Keno Hill silver district to the south east. Many similarities exist between McConnells Jest and Dublin Gulch (6.3 M oz indicated and inferred, Wardrop Engineering Inc., 2011).

A site visit on August 29th 2016 confirms that the intrusion-related gold system model is the most appropriate for exploration at McConnell's Jest. At least 3 distinct igneous phases have been identified on the property, confirming that the McConnell's Jest intrusion is a compositionally zoned pluton.

The 2016 field season resulted in the definition of a number of highly prospective zones of the deposit. The most recent target discovered is the Two-Four Zone which lies on the southwestern edge of the pluton. This target is characterized by a high density of auriferous quartz, arsenopyrite and scorodite veins. Generally the grades in the veins ranged from 4 to 41 g/t Au and were 3-5 cm wide. The Pink Mountain target is located in the centre of the pluton. Gold values in the veins are generally less than seen at the Two-Four Zone with a lot of 1 g/t Au and grades up to 7 g/t Au. At the Bullion Zone gold mineralization was identified in scorodite veins in oxidized rock and assaying up to 28.8 g/t Au.

An initial environmental assessment of the property was undertaken during the site visit. This assessment included an inventory of the plant species observed during an encounter survey at various sites across the property, and water sampling of water courses to determine the baseline metal content prior to more advanced exploration activity. No elevated metal content was detected in the water courses sampled.

A number of cost effective strategies to advance the understanding of the property are proposed, including geological mapping, a targeted drilling program, and on-going environmental surveys.

1.0 Executive Summaryi
2.0 Introduction1
3.0 Location and Access1
3.1 Accessibility1
3.2 Infrastructure
4.0 Claim Information
5.0 Physiography and Climate5
5.1 Physiography5
5.2 Climate7
6.0 Property History
7.0 Environmental Assessment
7.1 Water Courses/Basin Drainage9
8.0 Geology15
8.1 Regional Geology15
8.2 Property Geology 19
8.3 Mineralisation24
8.4 Statistics
8.5 Surficial Geology
8.6 Adjacent Properties
9.0 Exploration Programs
10.0 Geochemical Analytical Procedure
10.1 Rocks
10.2 Water
11.0 Exploration Results
11.1 Geochemical Evidence
11.2 Structural Elements
11.3 Rock Types
11.4 Proposed Geology
11.5 Interpretation
12.0 Environmental Results
13.0 Social Licence
13.1 FIRST Nations
13.2 Local Populations
13.3 Environmental issues
14.0 Recommendations
15.0 Relefences
Annual in A. Operificate of Author
Appendix 1: Certificate of Author
Appendix 2: Claims List
Appendix 3: Certificates of Analysis
Appendix 4: Environmental Certificate of Analysis270
Appendix 5: QEMSCAN Images
Appendix 6: Geochemical Maps – Rocks
Appendix 7: Geochemical Maps – Soils

Table of Contents

List of Figures

Figure 3.1. Map showing the boundary of the McConnells Jest claim block	.2
Figure 3.2. Improved infrastructure leading to the property	.3
Figure 3.3. Helicopter landing pad in the Bullion Zone at McConnell's Jest	. 3
Figure 5.1. A view of the McConnell's Jest Property	.6
Figure 5.2. An aerial view of the Bullion Zone	.7
Figure 7.1. Property drainage and water sampling locations	.12
Figure 7.2. Lakes and rivers on the McConnell's Jest property	. 13
Figure 7.3. Drainage around the McConnells Jest property	14
Figure 8.1. Map of the Tintina Gold Province for the Yukon Territory and Alaska	.15
Figure 8.2. Regional geology of the north western Selwyn Basin	.17
Figure 8.3. Stratigraphy of the Selwyn Basin and thrust stacking	.18
Figure 8.4. Regional Geology of the McConnells Jest area	.21
Figure 8.5. Image of the contact between two felsic intrusive phases	.22
Figure 8.6. Sample of the McConnell's Jest granodiorite showing aligned biotite	.23
Figure 8.7. Diorite boulder field on north-facing slope of the "Tea Zone"	. 24
Figure 8.8. Millimetre scale quartz vein with K-feld alteration selvedges	. 26
Figure 8.9. Centimetre scale quartz vein in granodiorite	26
Figure 8.10. Scorodite vein in granodiorite	. 27
Figure 8.11. Scorodite vein swarm with four cm-scale scorodite veins	. 27
Figure 8.12. Muscovite alteration of the host granodiorite	28
Figure 8.13. Principal Component Analysis (PCA) of select elements	.31
Figure 8.14. Claim blocks adjacent to the McConnells Jest property	.33
Figure 9.1. Example of scorodite vein at surface	.36
Figure 11.1. Map of the McConnells Jest pluton	. 44
Figure 11.2. Detailed map of Bullion, Pink Mountain and Two-Four Zones	.45
Figure 11.3. Stacked histograms showing QEMSCAN analyses	.47
Figure 11.4. QEMSCAN image for sample QEM 1/MCJ/2016	. 48
Figure 11.5. Combined aerial photographs for the McConnells Jest property	.49
Figure 11.6. Interpreted structural lineaments on the McConnells Jest property	. 51
Figure 11.7. Distribution of rock types at McConnells Jest	. 52
Figure 11.8. Rock types and vein orientations on the McConnell pluton	. 53
Figure 11.9. The proposed revised geologic map of McConnells Jest	55
Figure 11.10. Comparison of structures at Dublin Gulch and McConnells Jest	.56
Figure 13.1. Map of administrative boundaries 105M and 106D	60

List of Tables

Table 3.1. Helicopter Pad Locations at McConnell's Jest	4
Table 4.1. Claim information for the McConnells Jest property	. 5
Table 7.1. Summary of Plant Species observed	10
Table 8.1. Pearson and Spearman correlation coefficients	. 30
Table 9.1. Summary of channel sampling at McConnell's Jest in 2016	37
Table 10.1. Geochemical Analytical Procedures for 2010 to 2016	39
Table 11.1. QEMSCAN analyses of 2016 prospecting samples	47

2.0 Introduction

The McConnell's Jest property is located in the central Yukon and lies 65 km northeast of Mayo, Y.T. A mid-Cretaceous pluton is the main exploration target for Au and Ag, with a secondary focus on delineating potential W-skarns in the contact zones around the McConnells Jest pluton. This report follows a site visit by all authors on August 29th 2016, guided by the claim owner, Bill Koe-Carson. All information has been fact checked by Andrew Randell, P.Geo who oversaw the project.

This report builds upon the initial summary geological report of Randell et al. (2015) for the property, confirming proposed models and geological associations on the Property, and includes the first environmental sampling on the property. Environmental sampling was conducted to determine the baseline levels of contaminants and metals in water courses on the property. The report of Randell et al. (2015) was prepared using the Hive crowd consulting model of Strata GeoData Services.

On November 17, 2016, Bill Koe-Carson granted Zonte Metals Inc. the option to purchase a 100% interest in the project by making payments of \$150,000 over three years and 1.5 Million common shares over two years. The claims are subject to a 3% NSR, 2/3rds of which can be purchased for \$2,000,000.

3.0 Location and Access

3.1 Accessibility

The property is located in the central Yukon and lies 65 km northeast of Mayo, Y.T. on map sheet 106D03 and 105M14 at 479500 m E and 7100000 m N in NAD83 Zone 8 (Fig 3.1). The closest sizable town is Mayo, located on the Stewart River, approximately 65 km to the southwest. Mayo is accessible from Whitehorse via a 460 km all-weather road and is also serviced by the Mayo airport, which is located just to the north of Mayo. Helicopter access to the property takes around 25 minutes from the Mayo airstrip.

Figure 3.1. Map showing the boundary of the McConnells Jest claim block. Inset shows position within the Yukon Territory.

A series of upgrades to the access to the property were conducted during summer 2016, primarily through the creation of direct road access to the property by the Yukon Government (Fig 3.2). This road has a number of culverts and a bridge, the Cristal Creek Bridge, which is rated to carry up to 20 tonnes of load. This road would allow the transportation of heavy equipment, including drilling equipment, directly to the property. Additionally, during the summer 2016 field season, a number of helicopter landing pads were cleared near areas of geological interest and access points. The helicopter landing pads are summarised in table 3.1. Figure 3.3 shows the helicopter landing pad in the Bullion zone.

Figure 3.2. Improved infrastructure leading to the property. A: View of the upgraded road leading to the McConnell's Jest property. B: Culverts on the road leading to the property.

Figure 3.3. Helicopter landing pad in the Bullion Zone at McConnell's Jest.

	Helicopter Pad Locations										
#	Easting	Northing	Description								
1	483304	7101459	Road Accessible Camp / Staging Pad								
2	478275	7099746	Central Camp & lower Pink Mountain Pad								
3	478638	7099983	Upper Pink Mountain Pad								
4	477684	7099863	Bullion Zone Pad								
5	478408	7098731	Two-Four Zone Pad								
6	476829	7100101	Big Quartz Zone Pad								
7	477491	7101350	Tea Zone Pad								
8	479025	7101152	Seven-Four Zone Pad								
9	478166	7097741	Drainage Outflow at McQuesten River Pad								

3.2 Infrastructure

Mayo has a population of approximately 450 and offers accommodation, fuel, a nursing station, and earth--moving contractors. The Government of Yukon maintains a 1,400 m gravel airstrip, suitable for charter flights, about 3 km north of Mayo. There are no scheduled air services to Mayo. Local resources in terms of manpower, rental equipment, materials, and supplies are very limited.

A broader range of services are available in Whitehorse, Yukon, located about six hours by road to the south of the property. Whitehorse has a population of 22,815 (Statistics Canada, 2013) and has regularly scheduled air service to Vancouver, Edmonton, Calgary, and Fairbanks.

Electrical transmission lines from a hydroelectric facility near Mayo extend to the villages of Elsa and Keno City, about 20 km south of the property.

4.0 Claim Information

Claim Name	Number(s)	Grant Number	Registered Owner
McConnells Jest	1 to 40	YD16701 to YD16740	Bill Koe-Carson - 100%
McConnells Jest	41 to 52	YD54701 to YD54712	Bill Koe-Carson - 100%
McConnells Jest	53 to 56	YD54713 to YD54716	Bill Koe-Carson - 100%
McConnells Jest	57 to 120	YD54717 to YD54780	Bill Koe-Carson - 100%
McConnells Jest	121 to 125	YD61470 to YD61474	Bill Koe-Carson - 100%
McConnells Jest	126 - 172	YD126853 - YD126899	Bill Koe-Carson - 100%

Table 4.1. Claim information for the McConnells Jest property.

5.0 Physiography and Climate

5.1 Physiography

The property is situated just southwest of the Davidson Range and McQuesten Lake. Topographically, the property lies in the bottom of the McQuesten Valley and is characterized by rolling hills and plateaus; elevation ranges from 640 m to 920 m above sea level. Relief on the property is moderately steep due to creek incising and hills that rise rapidly over lithology changes (Golden Predator Canada Corp., 2011). The property underwent glaciation during the McConnell glaciation (>23, 000 years ago; Bond, 1999), and it has been demonstrated through a number of field seasons that the ground is covered by basal till (Golden Predator Canada Corp., 2013). Figure 5.1 shows the glacial geomorphology of the property. Outcrops are rare, generally less than two percent of the surface area, and are limited to ridge tops and creek walls. Patchy permafrost occurs on north-facing slopes (Golden Predator Canada Corp., 2011).

Figure 5.1. A view of the McConnell's Jest Property from the western end on the property facing southeast.

A forest fire in 1998, covering 7,070 hectares, has affected much of the tree growth on the property resulting in a significant amount of dead fall on in areas affected by the fire. Figure 5.2 shows the typical vegetation regrowth through the deadfall, which can make travel by foot more difficult in places.

Figure 5.2. An aerial view of the Bullion Zone showing the relationship between dead fall and fresh growth vegetation.

5.2 Climate

The central Yukon is characterized by a subarctic continental climate with cold winters and warm summers. The mean annual temperature for the area is approximately -3°C, with an annual range of 63.5°C. January is the coldest month, July the warmest. Average temperatures in the winter are between -15 and -20 degrees Celsius (°C) but can reach -60°C. The summers are moderately warm with average temperatures in July around 15°C. Annual precipitation ranges from 375 to 600 mm, about half of which falls as snow, which starts to accumulate in October and remains into May or June.

Because of its northern latitude, winter days are short with the sun low on the horizon such that north-facing slopes can experience ten weeks without direct sunlight around the winter solstice. Conversely, summer days are very long, especially in early summer around the summer solstice. Exploration and mining work can be carried out year-round.

6.0 Property History

There are no historical quartz claims recorded in the immediate vicinity of the property. However, based on the Minfile occurrence report for "Zed" (106D 055), United Keno Hill Mines had some ground over the current McConnells Jest claims. Throughout the 1960s and 1970s, United Keno Hill Mines carried out grid soil sampling and prospecting on its claim groups including over the Zed occurrence. No significant mineralization was recorded, and no assessment report was filed.

The area was regionally mapped (1:250,000) by L. Green (1972) of the GSC, and by C. Roots (1997) of the GSC, who remapped topographic map sheet 105 M located to the immediate south. In 2003, Gordey and Makepeace of the of the GSC released a geological compilation which included the area (MinFile#: 106D 055, 2008).

The ground remained unclaimed until Bill Koe-Carson staked the ground in 2010.

7.0 Environmental Assessment

An initial environmental assessment of the property was undertaken during the site visit. This assessment included an inventory of the plant species observed during an encounter survey at various sites across the property, and water sampling of water courses to determine the baseline metal content prior to more advanced exploration activity.

The project site occurs relatively close to the northern extent of Canada's boreal forest. The project site occurs within the Boreal Cordillera Ecozone (Smith et al. 2004). Within this ecozone, the project site resides on the Yukon-Plateau North which is dominated by the Boreal High (BOH) bioclimatic subzone. A key influence on the forest ecology of the project area is wildfire. The BOH bioclimate zone has the highest fire return interval in the west-central Yukon area, and some of the highest recorded levels of historical fire activity in Yukon (Grods et al. 2012). Since the 1950s, approximate 50% (1,690,000 ha) of the BOH has been affected by fire. In the 2004 fire season alone, almost 15% of the Klondike Plateau was burned (Grods et al. 2012). This high level of fire activity has resulted in extensive areas of shrub, deciduous and young coniferous forests throughout the BOH.

The vegetation survey occurred as an encounter survey with a comprehensive list of species that observed composed into Table 7.1. There were 47 species of plants identified from these sites. None of the species that were identified occur on the Yukon Plant Tracking Database (Yukon Conservation Data Centre, 2017). Species abundances were not estimated due to the preliminary nature of the survey. However, White spruce (*Picea glauca*) is the dominant tree species within the extensive areas of post-burn regeneration. In drier areas such as rocky outcrops, Trembling Aspen (*Populus tremuloides*) and Balsam Poplar (*Populus balsamifera* ssp. *balsamifera*) dominate, with a shrub understory consisting of Canada Buffaloberry (*Sheperdia canadensis*), Pricky Wildrose (*Rosa acicularis*) and various *Salix* spp. Areas of impeded drainage have resulted in wetland-peatland complexes forming around and between rocky slopes and outcrops. These areas were not explicitly or extensively surveyed for plant species. However, several water samples were taken from running streams in order to provide a baseline of metal concentrations in terrestrial water courses (Fig. 7.1).

7.1 Water Courses/Basin drainage

McConnells Jest is drained by several smaller streams that run north to south across the property, joining on the southern margin. They are fed from Hanson Lakes, an extensive area of waterbodies along the eastern portion of the property (Fig 7.2).

Water then passes into the South McQuesten River, then to the McQuesten River proper, before draining into the Stewart River, the major drainage for the entire region (Fig 7.3).

Trees	Shrubs	Forbs/Herbs	Non-Vascular	Lichens	Fungi	Grasses		
<i>Betula papyrifera</i> (White Birch)	Salix spp.	Chamerion angustifolium (Fireweed)	Polytrichum juniperinum (Juniper Hair-cap Moss)	Peltigera canina	<i>Lycoperdon perlatum -</i> (Common Puffball)	Sedge spp.		
<i>Populus tremuloides</i> (Trembling Aspen)	Salix alaxensis var. alaxensis (Feltleaf Willow)	<i>Lupinus arcticus</i> (Arctic Lupine)	<i>Polytrichum piliferum</i> (Awned Hair-cap Moss)	Peltigera apthosa		Carex siccata		
<i>Populus balsamifera</i> ssp. <i>balsamifera</i> (Balsam Poplar)	Salix scouleriana (Scouler's Willow)	<i>Lycopodium complanatum</i> (Ground cedar)	Hylocomium splendens (Stair-step Moss)	Umbilicaria hyperborea		Calamagrostis purpurascens		
	Rhododendron groenlandicum (Labrador Tea)	<i>Lycopodium clavatum</i> (Running clubmoss)	<i>Hypnum revolutum</i> (Rolled-leaf Pigtail Moss)	Peltigera malacea		Arctagrostis latifolia		
	<i>Vaccinium vitis-idaea</i> (Low Bush Cranberry)	<i>Cornus canadensis</i> (Bunchberry)	<i>Aulacomnium palustre</i> (Tufted Moss)	Cladonia gracilis				
	<i>Oxycoccus microcarpus</i> (Bog Cranberry)	Saxifraga tricuspidata (Prickly Saxifrage)	<i>Pohlia nutans</i> (Nodding thread moss)	Cladina stellaris				
	Arctostaphylos uva-ursi (Kinnikinnick)	<i>Pyrola asarifolia</i> (Common Pink Wintergreen)	<i>Syntrichia ruralis</i> (Hairy scew moss)	Cetraria pinastri				
	Shepherdia canadensis (Soapberry)	<i>Oxytropis splendens</i> (Showy Locoweed)	Hedwigia ciliata					
	<i>Rosa acicularis</i> (Prickly Rose)	<i>Cryptogramma crispa</i> (Parsley Fern)	Andreaea rupestris					

 Table 7.1. Summary of Plant Species observed.

Table 7.1. Cont.

Trees	Shrubs	Forbs/Herbs	Non-Vascular	Lichens	Fungi	Grasses
	<i>Ribes oxyacanthoides</i> (Canadian Gooseberry)		Schistidium apocarpum			
	<i>Rubus arcticus</i> (Dwarf Raspberry)		<i>Lophozia ventricosa</i> (Leafy Liverwort 1)			
	<i>Alnus viridis</i> subsp. <i>crispa</i> (Green Alder)		<i>Lophozia longidens</i> (Leafy Liverwort 2)			
			Blepharostoma trichophyllum			

Figure 7.1. Property drainage and water sampling locations.

Figure 7.2. Lakes and rivers on the McConnell's Jest property.

Figure 7.3. Drainage around the McConnells Jest property

8.0 Geology

8.1 Regional Geology

The McConnell pluton is one of a series of Cretaceous plutons that have been included in the Tintina Gold Province (see Fig. 8.1). The Tintina Gold Province (e.g. Hart, 2004) is a belt of Au-deposits in the Northern Cordillera of Yukon and Alaska that are bounded by two dextral transpressional fault systems - the Denali Fault (southern limit) and the Tintina Fault (northern limit). The belt extends beyond the northern tip of the Tintina Fault, into the Selwyn Basin in the Yukon, and into the western-most NWT. Within the Tintina Gold Province a series of highly prospective Intrusion-Related Gold (IRGS) deposits (Pink belt in Fig. 8.1) form the Tombstone Gold Belt, the most significant host to IRGS globally.

Figure 8.1. Map of the Tintina Gold Province for the Yukon Territory and Alaska. Mineral deposits are shown as large circles, mineral occurrences are shown as small circles. Gold deposits in red dots could be considered under the same genetic model as McConnells Jest. Deposits marked in black dots are not of the same origin, or are ambiguous in origin. Deposits marked in purple are skarn deposits (predominantly W-bearing). Within the TGP is the Tombstone Gold Belt (TGB; marked in pink) which is the major host to gold deposits in the Yukon and Alaska. Mair et al. (2006) suggested ~450 km of post-formation offset along the Tintina Fault, causing displacement of the Fairbanks district. Population centres marked are Whitehorse (W), Mayo (Mayo), Dawson (D) and Fairbanks (F). After Hart (2007).

The property lies on the north central margin of the Selwyn Basin tectonic province. The Selwyn Basin, a passive margin sequence, was deposited on the north-western margin of North America during the late Precambrian through Middle Jurassic (Abbott et al. 1986; Gordey and Anderson, 1993). The McConnell property is underlain by metasedimentary rocks of the Earn Group of the Selwyn Basin (see Fig. 8.2). The Earn Group consists of a series of metasedimentary and meta-volcanic rocks originally deposited during the Devonian to Mississippian. Metasedimentary rocks are commonly grey to black shales, metamorphosed to phyllite, with subordinate chert, siltstone, sandstone, limestone, bedded barite, baritic limestone, and chert-pebble conglomerate. A chlorite-muscovite phyllite unit is proposed to be a metamorphosed felsic volcanic rock (Murphy, 1997). The depositional environment of the Earn Group was a deep marine basin disrupted by faults to cause periods of coarser clastic influx (Abbott et al. 1986).

Deformation within the Selwyn Basin is associated with the Cordilleran Orogeny. Metamorphism is typically of lower greenschist facies. The formation of a series of folds and three thrust sheets initiated in the Jurassic as the localized effects of Cordilleran convergence began (Mair et al. 2006) The Dawson Thrust, the Tombstone Thrust, and the Robert Service Thrusts disrupt the stratigraphy of the basin (see Fig. 8.3) and may have formed structural conduits for magma during ascent through the crust.

The Tombstone Gold Belt has been divided into a number of suites based on the age, location, morphology and geochemical properties of plutons. In the north-central Selwyn Basin these are the Tombstone Suite (94 Ma – 89 Ma), the Mayo Suite (96 Ma – 93 Ma), and the Tungsten Suite (98 Ma – 94 Ma) (Rasmussen, 2013). Although no date exists for the McConnell pluton, its proximity to Dublin Gulch and the Roop Lakes Stock (94.0 Ma and 92.8 Ma; Selby et al. 2003; Roots, 1997) suggests an age of c. 93 Ma and a classification within the Mayo Suite. The Mayo Suite is characterized by 1-5 km² (east)/ 20-80 km² (west), single phase to weakly composite plutons, which are alkalic-calcic to calcic and chiefly composed of quartz monzonite, trending east-west along the northern margin of the Selwyn Basin (Hart et al. 2004).

Figure 8.2. Regional geology of the north western Selwyn Basin showing distribution of plutons, stratigraphic units and structural features. The McConnell pluton is hosted by the Devonian-Mississippian Earn Group. Modified after Scott Wilson Mining (2010).

Figure 8.3. Stratigraphy of the Selwyn Basin and thrust stacking, modified from Murphy (1997). The McConnell pluton was intruded outside of- but proximal (<10 km) to- the Tombstone Strain Zone.

Metamorphic cooling ages (⁴⁰Ar-³⁹Ar; Mair et al. 2006) indicate that plutonism in the area took place around 10 Ma after the cessation of Cordilleran collisional tectonics. Plutonism took place around 500 km inboard from the active subduction of the Farallon plate beneath North America, indicating that Andean-style subduction related plutonism is not the source of melting. Melting for plutonism took place in the sub continental lithospheric mantle due to mantle upwelling (and associated heat flow) after delamination (Mair et al. 2011).

8.2 Property Geology

Paleozoic clastic rocks of the upper Devonian and Mississippian Earn Group underlie the majority of the McConnell property (Fig. 8.4). These metasedimentary sequences were formed in a submarine fan and channel deposit setting and subsequently deformed during Cordilleran tectonics. Rock types in the Earn Group are predominantly siliceous shales and cherts with interbeds of arenites and wackes, chert pebble conglomerates, siltstones and barite with rare limestone (Murphy, 1997). A quartz mica schist is the most commonly mapped expression of the Earn Group on the property to date (Koe-Carson, 2010).

Prior to the site visit the McConnell's Jest pluton was mapped as a single intrusive phase, however, at least three intrusive phases were identified on the site visit. Two felsic phases were identified with a contact present at (Bullion Zone; Fig 8.5), a diorite was also identified on the northern margins of the pluton which represents a far more mafic phase than has been previously reported at the property. The diorite appears to be restricted to between 2 and 5 % of the total pluton volume.

Figure 8.5 shows the contact between the felsic phases, observed at the Bullion Zone. The contact is a sharp, suggesting that limited mingling or mixing of the magmas took place and that the magma which was intruded first was at least partially crystallised at the time of the intrusion of the second phase. Generally, the granodiorite in figure 8.5 is the most common at the property at surface (~2% outcrop). The granodiorite is typically equigranular to mildly porphyritic, alkali feldspar and plagioclase phenocrysts, with roughly 10-15% mafic minerals, dominantly biotite with minor hornblende. The quartz monzonite shows a more strongly developed porphyritic texture with a higher proportion of alkali feldspar phenocrysts than the granodiorite, giving the rock a generally lighter

colour. The groundmass of quartz monzonite is fine grained and has around 5% mafic minerals, mostly biotite. The proportion of phenocrysts in quartz monzonite is much higher than in granodiorite, indicating a much quicker cooling profile for the quartz monzonite than for the granodiorite. Biotite grains in the granodiorite are aligned indicating strain during emplacement and crystallisation of this igneous phase (Fig 8.6).

The presence of the diorite is evidenced by a north-facing boulder field of diorite float. An initial inspection of the area showed no major outcrops or contacts with other intrusive rocks. Figure 8.7 shows the diorite boulder field on the northern end of the Property.

Outcrops of the pluton consistently display a high density of joints, in three major orientations. These joint sets are most likely a result of dilation due to the removal of ice following the end of the McConnell glaciation. The timing of the formation of these joint sets is far younger than the proposed timing for mineralisation so should not be considered as important structural conduits for mineralising fluids. Instead, these joints represent the strain field at the end of glaciation.

Figure 8.4. Regional Geology of the McConnells Jest area. A mid-Cretaceous pluton intrudes metasedimentary horizons of the Earn Group.

Figure 8.5. Image of the contact between two felsic intrusive phases (Granodiorite = A, Quartz Monzonite = B) in the Bullion Zone (0477685 E 7099853 N). Smaller images show close--up of each phase. The red line marks the approximate contact between the two felsic intrusive phases.

Figure 8.6. Sample of the McConnell's Jest granodiorite showing aligned biotite grains. Photo from Pink Mountain Zone (0478294 E 7099781 N NAD83).

Figure 8.7. Diorite boulder field on north-facing slope of the "Tea Zone" (477491 E 7101350 N).

8.3 Mineralisation

Mineralisation at McConnell's Jest is most satisfactorily described using the intrusionrelated gold system model. Gold is present in two main styles at McConnell's Jest, 1-7 g/t Au quartz veins and 1->40 g/t Au arsenopyrite-scorodite-quartz veins. This pattern mirrors that described at Dublin Gulch by Kirk (2016) where an earlier array of quartz veins were later fractured by an arsenopyrite-gold event, precipitating gold in quartz veins in lower grade halos around high grade arsenopyrite veins. More detailed mapping and sampling will be required to confirm that these processes operated at McConnell's Jest, but the presence of auriferous quartz veins and higher grade arsenopyritescorodite-veins together in the major zones of the deposit suggest that this is a plausible explanation. Quartz vein morphologies vary between mm-scale veins (Fig 8.8) with purple quartz and cm-scale milky quartz (Fig 8.9). It is not currently understood which quartz morphology is associated with increased gold values. Quartz veins of both styles are present in all of the prominent zones of the deposit. Mm-scale quartz veins are more common than cm-scale quartz vein; although a more detailed assessment of vein densities of each quartz vein type would be of value for further exploration. Alteration associated with mm-scale quartz veins is typically K-feldspar in 1-5 cm vein selvedges, and is commonly oxidized to an orange-pink colour. No examples of alteration were seen in association with cm-scale milky quartz veins.

Arsenopyrite-scorodite-quartz veins which are typically 1 to 5 cm wide are the major residence of gold on the McConnell's Jest property. Figure 8.10 shows the field expression of this mineralisation; the primary arsenopyrite is altered to scorodite and other Fe-oxides giving the vein a rusted brown appearance. The inset in figure 8.10 shows that the scorodite alteration is present on the outward facing portions of the vein and that the inner portions of the vein remain as unaltered primary arsenopyrite and quartz. Veins of this type are typically spaced in small zones at 20 to 50 m intervals, oriented in the same direction, indicating a uniform stress field at the time of precipitation. Figure 8.11 shows an arsenopyrite-scorodite vein swarm at the Pink Mountain Zone, where 4 veins are present over a 15 cm span. The Two-Four Zone, discovered in 2016, contains arsenopyrite-scorodite veins at a density of around 1 vein per metre over a span of around 15 m. The mineralogy of this vein type is discussed in more detail below in section 11.1.2 – QEMSCAN.

Alteration associated with arsenopyrite-scorodite-quartz veins is typically dominated by muscovite (Fig 8.12) as well as a number of clay minerals and oxidation of the host granodiorite. The presence of euhedral muscovite in the alteration assemblage is a departure from the alteration associated with similar veins at Dublin Gulch and may represent different physiochemical conditions of precipitation. The extent of alteration selvedges for this vein stage is of the order of 10's of cm to metres, much more pervasive than those associated with quartz veins, and similar to those for the same vein stages at Dublin Gulch.

Figure 8.8. Millimetre scale quartz vein with K-feldspar alteration selvedges in granodiorite. The selvedges are also oxidised. Photo from Pink Mountain Zone (0478294 E 7099781 N NAD83).

Figure 8.9. Centimetre scale quartz vein in granodiorite. Note the lack of any alteration selvedges. Photo from Bullion Zone (0477685 E 7099853 N NAD83).

Figure 8.10. Scorodite vein in granodiorite. Inset shows arsenopyrite in the inner portions of the vein along with minor quartz. Photo from Top of Pink Mountain Zone (0477687 E 7099851 N NAD83).

Figure 8.11. Scorodite vein swarm with four cm-scale scorodite veins within a c. 15 cm span. Photo from Pink Mountain Zone (0478294 E 7099781 N NAD83).

Figure 8.12. Muscovite alteration of the host granodiorite in close proximity to a scorodite vein in the Bullion Zone (0477685 E 7099853 N NAD83).

8.4 Statistics

Statistical interpretations are available for the McConnell's Jest property in Randell et al. (2015). These interpretations included rock assay data from samples up to 2014. An updated statistical interpretation including assay data from 2015 and 2016 is included below.

8.4.1 Data Preparation

Data was prepared for statistical analysis by replacing values below detection with a value of 0.001 (favoured over zero due to logarithmic data transformations). Given the small sample set, values above detection were reset to the value representing the upper detection limit for inclusion. Data transformations were performed on an element by element basis in order to normalise the distribution of values, in order to satisfy the requirement of normally distributed data for statistical techniques. Data were either normalised using a natural logarithm ("_3" suffix in figures and tables) or a double natural logarithm ("_4" suffix in figures and tables) transformation.

8.4.2 Correlations

Table 8.1 shows the Pearson and Spearman correlation coefficients for select elements at McConnell's Jest. Blue denotes correlations between 0.5 and 0.59, green denotes correlations between 0.6 and 0.69, yellow denoted correlations between 0.7 to 0.79, orange denotes correlations between 0.8 to 0.89, and red denotes correlations over 0.9. Table 8.1 displays four broad groupings which can be attributed to various mineral associations described below:

1) Au-Bi-As: Gold shows the strongest correlations with the elements Bismuth and Arsenic (>0.7). This is most logically attributed to the association of gold with arsenopyrite veins which are locally bismuth mineral-bearing. Note that the correlations between Arsenic and Bismuth are lower (0.6) than the correlations with gold. This pattern is consistent with the pattern observed by Kirk (2016) at Dublin Gulch, and may be evidence for two gold mineralizing events at McConnell's Jest.

2) Fe-Cu: This correlation is due to the association of these elements in minor chalcopyrite and sulfosalt mineral species.

3) K-Ba-Na-Al-Ti: The correlation of this group of elements is due to their residence in feldspar minerals associated with magmatism and hydrothermal alteration.

4) Ca-Sr: This correlation is due to the residence of Ca in plagioclase and the propensity of Sr to replace Ca in plagioclase.

Table 8.1. Pearson and Spearr	man correlation coefficients	s for elements at McConnell's	s Jest. Color codes	are explained in the text
below.				

	Au_3	Ag_3	AI_3	As_3	Ba_3	Bi_3	Ca_3	Co_4	Cu_3	Fe_3	K_3	Mg_3	Mn_3	Mo_3	Na_3	Ni_4	Pb_3	Sb_4	Sr_3	Ti_3	W_3	Zn_4
Au_3		0.47	-0.12	0.70	0.07	0.78	-0.20	0.24	0.58	0.44	0.05	-0.35	0.09	0.29	-0.20	0.07	0.25	0.59	-0.07	-0.31	0.00	0.02
Ag_3	0.48		0.19	0.24	0.26	0.59	-0.16	0.17	0.38	0.27	0.26	-0.14	-0.13	0.29	0.21	0.28	0.36	0.35	0.08	0.08	-0.09	0.18
AI_3	-0.16	0.21		-0.19	0.77	-0.02	0.22	0.27	0.06	0.22	0.83	0.54	0.20	-0.08	0.76	0.34	0.09	-0.21	0.41	0.74	0.06	0.44
As_3	0.73	0.26	-0.14		0.06	0.64	-0.10	0.31	0.56	0.41	0.04	-0.39	0.19	0.12	-0.30	0.03	0.16	0.62	-0.05	-0.46	0.11	-0.05
Ba_3	0.06	0.33	0.78	0.12		0.13	0.11	0.35	0.16	0.29	0.91	0.26	0.29	-0.11	0.62	0.27	0.15	-0.08	0.33	0.51	0.07	0.38
Bi_3	0.76	0.57	0.01	0.63	0.18		-0.22	0.18	0.58	0.37	0.13	-0.32	0.00	0.25	-0.07	0.08	0.34	0.57	-0.04	-0.21	-0.07	0.08
G_3	-0.26	-0.17	0.19	-0.16	0.03	-0.25		-0.03	-0.34	-0.16	0.08	0.58	0.42	-0.21	0.21	0.08	-0.10	-0.11	0.77	0.14	-0.04	0.10
Co_4	0.30	0.15	0.12	0.33	0.21	0.20	-0.05		0.37	0.53	0.32	0.14	0.16	0.09	0.09	0.34	0.32	0.13	0.08	0.15	0.05	0.25
Cu_3	0.56	0.33	0.05	0.55	0.20	0.55	-0.31	0.31		0.64	0.18	-0.25	0.13	0.26	-0.16	0.11	0.30	0.46	-0.18	-0.19	0.04	0.25
Fe_3	0.54	0.32	0.21	0.48	0.33	0.43	-0.23	0.39	0.61		0.28	0.15	0.36	0.28	-0.08	0.32	0.50	0.39	0.02	-0.01	0.00	0.40
K_3	0.09	0.30	0.81	0.14	0.88	0.20	0.04	0.17	0.20	0.35		0.27	0.24	-0.14	0.67	0.19	0.19	-0.09	0.33	0.54	0.09	0.38
Mg_3	-0.40	-0.14	0.53	-0.38	0.24	-0.30	0.65	-0.01	-0.25	-0.02	0.20		0.26	-0.18	0.38	0.30	0.04	-0.35	0.59	0.56	-0.11	0.37
Mn_3	-0.01	-0.08	0.29	0.11	0.30	0.00	0.43	0.04	0.15	0.41	0.32	0.38		0.02	-0.01	0.17	0.13	0.16	0.20	-0.08	0.00	0.40
Mo_3	0.26	0.12	-0.08	0.14	-0.06	0.19	-0.20	0.08	0.21	0.39	0.00	-0.17	0.18		-0.13	0.16	0.21	0.28	-0.22	-0.04	0.11	0.13
Na_3	-0.24	0.27	0.74	-0.26	0.62	-0.05	0.17	0.02	-0.15	-0.09	0.64	0.34	0.02	-0.16		0.25	0.06	-0.32	0.43	0.72	0.11	0.22
Ni_4	0.10	0.25	0.35	0.09	0.32	0.09	0.01	0.28	0.13	0.40	0.27	0.22	0.23	0.15	0.19		0.11	0.05	0.13	0.23	-0.17	0.20
Pb_3	0.25	0.01	-0.18	0.16	-0.19	0.17	-0.10	0.13	0.18	0.40	-0.04	-0.05	0.15	0.38	-0.31	0.02		0.38	0.02	0.03	0.04	0.50
Sb_4	0.57	0.27	-0.17	0.53	-0.06	0.49	-0.18	0.11	0.33	0.48	0.01	-0.32	0.12	0.35	-0.27	0.13	0.51		-0.12	-0.37	0.09	0.07
Sr_3	-0.12	0.05	0.33	-0.07	0.23	-0.08	0.77	0.06	-0.18	-0.09	0.18	0.58	0.18	-0.26	0.34	-0.02	-0.15	-0.19		0.31	-0.04	0.19
Ti_3	-0.31	0.09	0.68	-0.41	0.50	-0.20	0.11	0.14	-0.18	0.02	0.47	0.52	-0.03	-0.10	0.70	0.19	-0.18	-0.34	0.23		0.11	0.35
W_3	-0.02	-0.03	0.10	0.04	0.10	-0.08	-0.09	0.04	0.00	0.02	0.12	-0.08	0.01	0.26	0.18	-0.09	0.07	0.08	-0.09	0.18		-0.04
Zn_4	0.02	0.21	0.45	0.01	0.42	0.14	0.13	0.14	0.27	0.46	0.43	0.34	0.51	0.27	0.21	0.33	0.34	0.16	0.09	0.30	-0.02	

Figure 8.13. Principal Component Analysis (PCA) of select elements at McConnell's Jest.
8.4.3 Principal Component Analysis (PCA)

A principal component analysis (PCA) measures the covariance of elements in a given data set. For the transformed data set at McConnell's Jest there are a total of 15 components. Each additional component describes progressively less of the variance. The variances associated with each principal component are shown in the upper right of figure 8.13. Figure 8.13 shows principal component 1 plotted against principal component 2, this figure describes a total of 55.34 % of the total variance between elements at McConnell's Jest. The oval shows the 95 % spread of values.

A number of groupings are present in figure 8.12 and can be tied to vein and paragenetic stages to further solidify mineral associations. The groupings are described below:

- Au-As-(Cu): This is due to the association of gold with arsenopyrite. Copper (Cu) with this grouping does not apply to any observed mineral association, but may represent an association of chalcopyrite and/or cu-sulfosalts with arsenopyrite veins.
- 2) Bi-Ag: This is the loosest association present on the PCA and may be due to bismuthinite and electrum in arsenopyrite veins. It should be noted that these minerals have not been observed directly at McConnell's Jest but are commonly associated in intrusion-related gold systems.
- Sb-Fe: The sulfosalt minerals jamesonite and boulangerite, present in minor volumes in arsenopyrite veins, are the most likely cause of this elemental covariance.
- Pb-Mo-Cd: A mineral association of these elements has not been directly observed. The most likely scenario is an association of galena (Pb), molybdenite (Mo) and sphalerite (Cd) in minor amounts.

5) W: This is most likely due to the presence of scheelite in carbonate horizons of the Earn Group which have been skarnified. W-skarns are commonly associated with intrusion-related gold systems and represent a secondary exploration target on the property.

8.5 Surficial Geology

The property underwent glaciation during the McConnell glaciation (>23,000 years ago; Bond, 1999). It has been demonstrated through a number of field seasons that the ground is covered by basal till. Sampling of the property has been carefully completed, where possible, at sufficient depths (i.e. > 0.50 m) to avoid sampling possible shallow loess deposits. Generally, samples were collected at shallower depths (i.e. <0.3 m) in subalpine terrain with limited overburden or in boulder fields, as this was sufficient to avoid sampling glacial material (Golden Predator Canada Corp., 2013).

8.6 Adjacent Properties

Two major mineral properties lie adjacent to McConnells Jest, the Dublin Gulch gold deposit to the west and the Keno Hill silver district to the southeast (see Fig. 8.14). The Dublin Gulch and Keno Hill properties are owned by Victoria Gold Corp. and Alexco Resources Corp., respectively.

Figure 8.14. Claim blocks adjacent to the McConnells Jest property.

Victoria Gold Corp. acquired the Dublin Gulch property in June, 2009 through the acquisition of StrataGold Corp. Victoria Gold Corp. holds 1,912 quartz claims, 10 quartz leases, and 1 federal Crown grant on the Dublin Gulch property. Currently, Dublin Gulch is an advanced-stage gold exploration project with around 630 diamond drill holes to date and a global resource of 6.3 M oz (4.8 M oz – 222 Mt @ 0.68g/t Au indicated; 1.5 M oz - 78 Mt @ 0.60 g/t Au inferred). The Eagle Zone, which has a 2.3 M oz (proven and probable) gold reserve contained within it (Wardrop Engineering Inc., 2011, 2012) is the most significant zone of mineralization. The property also hosts the Olive Zone - a recent gold exploration target, the Wolf (Mar) tungsten skarn (Indicated: 12.7 Mt @ 0.31 % WO₃, 86.2 M lbs contained WO₃; Inferred: 1.3 Mt @ 0.30 % WO₃, 8.9 M lbs contained WO₃; SRK Consulting, 2008) and the Rex-Peso silver prospect (Probable: 0.14 Mt @ 716 g/t Ag, 3.7 % Pb; Hitchins and Orssich, 1995). Mineralization within the Eagle and Olive Zones at Dublin Gulch is considered a holotypic example of an intrusion-related gold system (IRGS) (e.g. Lang and Baker, 2001).

Alexco Resources Corp. acquired the Keno Hill property in February, 2006 through the purchase of the assets of the bankrupt United Keno Hill Mines Limited. The property was purchased using a wholly-owned subsidiary, Elsa Reclamation and Development Company. Alexco Resources Corp. holds 695 quartz mining leases and 871 quartz mining claims on the Keno Hill property to the south of McConnells Jest. The Keno Hill silver district is a polymetallic silver-lead-zinc vein district that has been mined since the Klondike gold rush of the 1890's. Historical production up to 1989 for the Keno Hill district is 117.5M oz Ag, 710M lbs Pb and 436M lbs Zn (Cathro, 2006). From 2006 to 2012, Alexco Resources drilled 405 diamond drill holes on the property. The most prominent zone in the district at current is the Bellekeno silver mine (Indicated: 365,000 t @ 659 g/t Ag, 5.3 % Pb, 5.3 % Zn; Inferred: 243,000 @ 428 g/t Ag, 4.1 % Pb, 5.1 % Zn - Alexco Resources Corp., 2012). Historical production (since 1919) for the Bellekeno mine is 7.9 M oz Ag (SRK Consulting, 2014). Commercial production of the Bellekeno mine began on January 1, 2011 until operations were temporarily suspended in August, 2013. The nominal rate of production for the Bellekeno mine during this period was 250 tonnes per day. Production is expected to begin again in 2017. The Lucky Queen, Flame & Moth, Onek and Bermingham occurrences provide additional silver, lead and zinc resources. The deposit model of Hantelmann (2013) to describe mineralization at

Bellekeno is unlikely to occur at McConnells Jest, but cannot be entirely ruled out until further work has taken place.

9.0 Exploration Programs

In 2010 and with the assistance of a YMIP grant, Bill Koe Carson staked the property and collected 12 stream samples, 44 soil samples and 28 rock samples (Bourne, 2011). Stream sample MJSED-004 returned 11.7 ppm Au, MJSED-006 returned 0.558 ppm Au and MJSED-009 returned 0.305 ppm Au. Of the 28 rock samples, two had weakly anomalous gold assays in the 0.1 to 0.2 ppm range, however several samples contained anomalous pathfinder elements, for example 3722 ppm arsenic and 98 ppm bismuth in sample MJR-24.

In 2011, Golden Predator optioned the ground and contracted All-In Exploration Inc. (Whitehorse, Yukon) to complete the collection of 380 soil samples from a grid covering the western section of the property. Samples were collected every 50m along east-west oriented lines 200m apart, to a total of 19.6km.

The results from this survey outlined several multi-element geochemical anomalies, with sporadic highs (up to 208 ppb Au) and a cluster of elevated values (10 to 17 ppb Au) in the northeast quadrant. This anomaly is around 400m in length and lie within 500m of the anomalous stream sediments collected in 2010. This anomaly is associated with elevated levels of copper and arsenic.

In the southwest part of the grid, there is a strong cluster of arsenic anomalies that are associated with the highest gold result (208 ppb). There were also elevated levels of silver and bismuth in the same quadrant.

Work continued in 2012 with a short field program undertaken again by Golden Predator. A total of 74 rock samples were taken over the 3 day program on the McConnell claims. The program was undertaken by three geologists and an experienced prospector who has worked with Golden Predator for a number of years. Focus was put on intrusive rocks and sedimentary rocks proximal to those intrusions, as well as rocks which hosted sheeted quartz veins.

2012 work resulted in a number of interesting anomalous targets which warranted further work on the property. Most notable is AA064560, a bedrock sample from a quartz-arsenopyrite breccia/vein which assayed over 25 g/t Au (Fig 9.1). With an orientation of 112 degrees azimuth, and a 38 degree dip, the sample shows a similarity to Dublin Gulch style structural extensional veining. In addition, a number of samples assaying over 0.3 g/t Au were discovered, and a soil sample which assayed 1.47 g/t Au at the north of the property were also discovered.

It is understood that no work was undertaken in 2013 due to economic setbacks. Golden Predator did not return to the site, and the claim owner could not raise the cash to return to the property that year.

In 2014, the claim owner did return to the property, and with a small team collected 102 rock samples from across the property, in particular in the two anomalous areas previously identified by Golden Predator in their soil program.

Figure 9.1. Example of scorodite vein at surface. Sample AA064560 has an assay grade >25g/t Au.

These rocks samples returned values up to 28.8ppm Au (sample 14474), with an additional 16 samples returning grades in excess of 0.5ppm. Many of the samples were from sheeted veins or scorodite exposures within the two anomalous zones. These zones were subsequently named Bullion Blister (in the west) and Pink Mountain (in the east).

Pink Mountain has an abundance of sheeted vein systems, and covers an area approximately 500m by 375m (although this remains open on three sides). The grades here are slightly lower but more consistent, around 1g/t Au.

Bullion Blister hosts many of the scorodite veins in oxidised rock, and as such has returned the highest assays, including the 28.8g/t.

In 2015, the claim owner conducted prospecting and sampling of aligned quartz veins and cross-cutting arsenopyrite/scorodite veins. The prospecting focussed on an area in the centre to the northern edge of the pluton on the western portion of the Property. A total of seven samples were extracted from the site for analysis.

The 2016 exploration efforts included the extraction of 59 samples for geochemical assay. A total of 30 samples of vein material were taken from the newly defined zones of the deposit (see below). A further 29 samples were taken at 1 m intervals across several metres at 6 locations on the property. Table 9.1 shows the locations and number of samples taken for each channel sample.

rable ern cummary er chambing at medermen e cost in 2010.								
Channel #	Zone	Start	End	Number of Samples				
1	Bullion	477683 E 7099857 N	477685 E 7099866 N	10				
2	Pink Mountain	478587 E 7099879 N	478587 E 7099883 N	4				
3	Pink Mountain	478601 E 7099892 N	478596 E 7099897 N	5				
4	Pink Mountain	478589 E 7099913 N	478587 E 7099915 N	3				
5	Pink Mountain	478621 E 7099985 N	478621 E 7099989 N	4				
6	Pink Mountain	478664 E 7099996 N	478662 E 7100000 N	4				

Table 9.1. Summary of channel sampling at McConnell's Jest in 2016.

10.0 Geochemical Analytical Procedure

Geochemical analyses for samples from 2010 to 2016 are summarised in Table 10.1. A more detailed description of the analytical techniques is presented below, split by the year of analysis.

10.1 Rocks

10.1.1 2010

All samples from the 2010 field season were sent to Inspectorate Laboratories, Whitehorse, YT, Canada. A total of 37 rock (certificates: 10-360-00307 – 9 samples, 10-360-00309 – 28 samples), 44 soil (certificate: 10-360-03010) were analysed for 30 elements using inductively coupled plasma emission spectroscopy (ICP-ES) package "30-4A-TR". A 4-acid aqua regia digestion was performed on a 0.5 g split of the sample and subsequently analysed using ICP-ES.

46 soil (certificates: 10-360-02341 – 2 samples, 10-360-03010 – 44 samples) and 37 pulp samples (certificate: 10-360-03200) were analysed for gold using the "Au-1AT-AA" fire assay package. A lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS).

Platinum, Palladium and Silver were also tested for in 2 soil samples (certificate: 10-360-02341) using the "Pt-1AT-ICP", "Pd-1AT-ICP" and, "Ag-1AT-GV" and "Ag-4A-OR", respectively. For Platinum and Palladium, A lead collection fire assay fusion was made from 50 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by ICP-ES. For silver in the "Ag-1AT-GV" package, a lead collection fire assay fusion was made for total sample decomposition. The resulting silver dore was digested by gravimetric analysis. For "Ag-4A-OR" the sample was decomposed using a 4-acid digestion and analysed for silver using AAS.

Certificate	Lab	Туре	Total Samples	Received	Completed	Method
10-360-023/1	INSP	Soil	2 2	26th July 2010	11th August	Pd-1AT-ICP Ag-1AT-GV Au-1AT-AA Ag-4A-
10 300 02341	INOI	001	2	2011 001y 2010	2010	OR Pt-1AT-ICP
10-360-00307	INSP	Rock	9	28th October	10th December	30-4A-TR
			-	2010	2010	
10-360-00308	INSP	Moss	1	24th September	4th October	30-4A-TR
				2010	2010	
10-360-00309	INSP	Rock	28	30th September	12th October	30-4A-TR
				2010	2010	
10-360-03010	INSP	Soil	44	30th September	19th October	30-4A-TR, Au-1AT-AA
				2010	2010	
10-360-03200	INSP	Pulp	37	13th October	18th October	Au-1AT-AA
40)/040050	A.O.A.T.	Deals	70	2010	2010	ACAT 004074
121640856	AGAT	ROCK	78	-	19th October	AGAT 201074
127610881	AGAT	Soil	242		2012 10th Octobor	ACAT 201074
121040004	AGAT	301	242		2012	AGAT 201074
WHI1101802	ACME	Soil	320	24th October	5th December	ACM 1DX15
1111101002	/ COME	0011	020	2011	2011	
WHI1101803	ACME	Soil	58	24th October	5th December	ACM 1DX15
				2011	2011	
WHI14000057	ACME	Rock	102	24th July 2014	13th August	FA430, AQ200, G6Gr
					2014	
WHI14000057	ACME	Metalli	4	24th September	8th October	-
М		С		2014	2014	
		Scree				
	Duran	n Daala	0	746 August 0045	Ord Contorolion	FA 400, A 0000
WHI15000139	Bureau	ROCK	6	7th August 2015	3rd September	FA430, AQ200
WHI15000155	Bureau	Pock	1	7th August 2015	2015 3rd September	EA430 ES631 AO200
WT1113000133	Veritas	NUCK	I	7 III August 2015	2015	1 A430, 1 3031, AQ200
WHI16000188	Bureau	Rock	40	17th August	8th September	FA430, AQ200
	Veritas			2016	2016	
WHI16000232	Bureau	Rock	19	31st August	15th September	FA430, AQ200
	Veritas			2016	2016	

Table 10.1. Geochemical Analytical Procedures for 2010 to 2016.

All samples from the 2011 field season were sent to ACME Analytical Laboratories Ltd. in Whitehorse, YT, Canada. A total of 320 soil (certificate: WHI1101802) and 61 rock (certificate: WHI1101803) samples were analysed using the "ACM 1DX15" package for 36 elements. Samples were dried at 60°C, 100g of the sample was then sieved using an 80 mesh. Sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS).

10.1.3 2012

All samples from the 2012 field season were sent to AGAT ISO 9001 certified lab in Whitehorse Y.T, Canada. A total of 242 soil (certificate: 12Y640884) and 78 rock (certificate: 12Y640856) samples were analysed using the "AGAT 201074" package.

Analysis was by aqua-regia digestion and a mass spectrometer finish with a 52 metal analysis package. What follows are excerpts from the AGAT laboratory mining geochemistry package.

Samples were dried at 60 degrees centigrade, crushed to the point of 75% passing through a 2mm mesh, then split with a Jones riffler splitter or rotary split. The sample was then pulverized to the point of 85% passing through a 75 micrometer mesh. Finally, samples were screened after drying, shaken on an 80 mesh sieve with the positive fraction stored and the negative fraction sent to the laboratory for analysis. This concludes the preparation portion of sampling.

Prepared samples are digested with aqua regia for one hour using temperature controlled hot blocks. Resulting digests are diluted with de-ionized water. Sample splits of 1 gram or routinely used. These 1 gram samples are then ran through a mass spectrometer. Perkin Elmer 7300DV and 8300DV ICP-OES (Optical Emission Spectroscopy) and Perkin Elmer Elan 9000 and NexION ICP-MS (Mass Spectrometer) are used in analysis. Inter-Element Correction (IEC)

techniques are used to correct for any spectral interferences (Golden Predator Canada Corp., 2013).

It should be noted that determination of gold by this method is semi-quantitative due to small sample size. Samples with arsenic above detection (>10,000 ppm) were re-run using AAS.

10.1.4 2014

All samples from the 2014 field season were sent to ACME Labs in Whitehorse, YT., Canada. A total of 102 rock (certificate: WHI14000057) samples were analysed using the "FA430" package for gold and "AQ200" package for a further 36 elements. Using the "FA430" package, a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS). For "AQ200", Sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Gold samples >10 g/t were re-run using the "FA-530" package, where a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed for by gravimetric analysis.

A sub-set of four samples (certificate: WHI14000057M) from the original 102 were selected for additional metallic screening to test for gold using the "FS651" package. Samples underwent metallic pulverizing and a 500 g sample split was screened to 106 μ m. Gravimetric analysis was performed on the plus fraction and instrumentation on the minus fraction. Two of the samples >10 g/t gold were rerun using the "FA550-Au" package; a lead collection fire assay fusion was made from 50 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by gravimetric analysis.

All of the samples from the 2015 field season were sent to Bureau Veritas Minerals Limited in Whitehorse, Yukon. Six samples (certificate: WHI15000139) were analysed using the "FA430" package for gold and "AQ200" package for a further 36 elements. Using the "FA430" package, a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS). For "AQ200", Sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS). A single sample, 15607 (certificate: WHI15000155), which was predicted to have anomalously high Au-values, was analysed using both the "FA430" and "AQ200" packages, described above, and the "FS631" package. The sample underwent metallic pulverizing and a 500 g sample split was screened to 106 μ m. Gravimetric analysis was performed on the plus fraction of the split.

10.1.6 2016

All of the samples from the 2016 field season were sent to Bureau Veritas Minerals Limited in Whitehorse, Yukon. Fifty Nine samples (certificates: WHI16000188 and WHI16000232) were analysed using the "FA430" package for gold and "AQ200" package for a further 36 elements.Using the "FA430" package, a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS). For "AQ200", sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Two samples were further analysed using "FA530" as they returned values of >10 g/t Au using "FA430". A lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed using "FA530" as they returned values of >10 g/t Au using "FA430". A lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by gravimetric analysis.

42

10.2 Water

Water samples were sent to ALS Environmental (151 Industrial Rd, Whitehorse, YT Y1A 2V3). They were analysed for conductivity, hardness, total dissolved solids, total metals and dissolved metals. Results were finalised on 14th September 2016.

11.0 Exploration Results

11.1 Geochemical Evidence

11.1.1 Geochemical Assays

The 2016 field season resulted in the definition of a number of highly prospective zones of the deposit (Fig 11.1). The most recent target discovered is the two-four zone which lies on the southwestern edge of the pluton (Fig 11.2). This target is characterized by a high density of auriferous quartz and scorodite veins. Scorodite veins generally form in the carapace (outer edge of the pluton) are characteristic of IRG systems. Generally, scorodite veins in the carapace are widely spaced and often on the order of one vein every 20 - 50 metres. At the two-four zone these scorodite veins showed a high density of one vein every metre in the outcrop that was examined. It is unclear if more veins or finer veins exist between the observed scorodite veins since the rock was highly oxidized and only partially exposed. Generally the grades in the veins ranged from 4 to 41 g/t Au and were 3-5 cm wide. Based on the high density of these vein sets this is a high-priority target.

The Pink Mountain target is located in the centre of the pluton. This target is identified by sheeted auriferous quartz veins in an oxidized host. The general area is about 500 by 375 metres and open on three sides. Gold values in the veins are generally less than seen at the two-four zone with a lot of 1 g/t Au and grades up to 7 g/t Au. Vein densities were high in places at about five veins per metre, which is commonly observed in Intrusion Related Gold deposits. This zone needs additional sampling and mapping prior to drilling.

Figure 11.1. Map of the McConnells Jest pluton showing the zones of the deposit as defined by 2016 prospecting. Pluton is shown in pink, country rocks shown in green. Structural elements are shown in blue and purple dashed lines, soil sampling grid is shown by black dashed lines.

Figure 11.2. Detailed map of mineralisation within the Bullion, Pink Mountain and Two-Four Zones.

At the Bullion Zone gold mineralization was identified in scorodite veins in oxidized rock and assaying up to 28.8 g/t Au. The Tea Zone and the Seven-Four zones have returned gold in vein sets with very limited exploration. These areas are also associated with multi-element soil geochem anomalies and each need follow-up to ascertain the potential (Zonte Metals, 2016).

11.1.2 QEMSCAN

Five samples were sent to SGS Canada Inc. (9620 Production Way, Burnaby, British Columbia) for QEMSCAN analysis. Table 11.1 shows the mineral composition of each sample. Figure 11.3 shows the same information plotted graphically as stacked histograms. Samples QEM 1/MCJ/16, QEM 2/MCJ/16, and QEM 3/MCJ/16 are dominated by arsenopyrite, scorodite (a secondary alteration mineral of arsenopyrite), and quartz, with minor volumes of Fe-oxides. These samples represent only vein material from scorodite rich veins which were prospected in 2016.

Sample QEM 4/MCJ/16 contains both vein material and the alteration assemblage associated with scorodite-arsenopyrite mineralisation. The same contains arsenopyrite (15.1 %), scorodite (3.09 %) and quartz (40.7 %) associated with mineralisation and muscovite/sericite (32.9 %), K-feldspar (2.21 %) and Fe-oxides (2.27 %) associated with alteration. Sample QEM 5/MCJ/16 is an analysis of an intrusive rock which hosts mineralisation with quartz (28.6 %), plagioclase (35.8 %), k-feldspar (17.9 %) and biotite (8.29 %) as the dominant mineral species. The composition of this sample based on the Streckeisen (QAPF) classification for plutonic rocks is within the granodiorite field. Minor sericite/muscovite (3.22 %), and chlorite (2.45 %) are likely alteration minerals associated with hydrothermal activity and the breakdown of biotite, respectively.

Survey Project Sample Mass Size Distribution (%)		15902-101 / MI7008-OCT16 SGDS						
		1/MCJ/16 100.0	2/VICJ/16 100.0	3/MCJ/16 100.0	4/MCJ/16 100.0	5/MCJ/16 100.0		
			Arsenopyrite	42.7	50.6	49.1	15.1	0.00
	Scorodite	42.9	15.5	16.4	3.09	0.01		
	Other Sulphides	0.06	0.04	0.08	0.04	0.04		
	Quartz	11.2	32.6	29.4	40.7	28.6		
	Plagioclase	0.12	0.04	0.09	0.84	35.8		
	K-Feldspar	0.02	0.02	0.03	2.21	17.9		
	Sericite/Muscovite	0.30	0.19	0.50	32.9	3.22		
	Biotite	0.02	0.00	0.03	0.46	8.29		
Mineral	Amphibole	0.02	0.00	0.00	0.01	0.99		
Mass (%)	Epidote Group	0.00	0.00	0.00	0.00	0.68		
	Chlorite	0.08	0.01	0.08	0.74	2.45		
	Clays	0.12	0.01	0.04	0.38	0.62		
	Other Silicates	0.32	0.68	0.14	0.78	0.86		
	Fe-Oxides	2.04	0.16	3.99	2.27	0.01		
	Other Oxides	0.08	0.00	0.04	0.29	0.00		
	Apatite	0.00	0.00	0.00	0.10	0.34		
	Other	0.01	0.01	0.09	0.11	0.09		
	Total	100.0	100.0	100.0	100.0	100.0		

Table 11.1. QEMSCAN analyses of 2016 prospecting samples at McConnell'sJest.

Figure 11.3. Stacked histograms showing QEMSCAN analyses for 2016 prospecting at McConnell's Jest.

Figure 11.4. QEMSCAN image for sample QEM 1/MCJ/2016. Major phases shown are arsenopyrite (green), scorodite (orange) and quartz (pink).

An example of the QEMSCAN output is shown for QEM 1/MCJ/2016 in Figure 11.4. Scorodite (orange) is concentrated on the margins of and within fractures in the arsenopyrite (green) this texture is a consequence of primary arsenopyrite being altered to secondary scorodite. Scorodite is also present within the primary quartz (pink) suggesting that either primary arsenopyrite was precipitated in fractures in earlier quartz and subsequently altered to scorodite *in situ* or some remobilisation of sulfide minerals may have taken place during supergene alteration stages. Other sulfide minerals are present as micro inclusions in arsenopyrite, which may be a residence of bismuth minerals - although a more detailed analysis would be required to confirm this.

Note that although no gold was present in any of the QEMSCAN analyses that the morphology of these veins is similar to those which were assayed during the 2016 prospecting (returning Au values up to 41 g/t). The lack of significant heavy metal-bearing phases (e.g. Pb-Sb sulfosalts) in the QEMSCAN analyses may point to a less diverse metal assemblage for major gold-bearing mineralisation stages than is present at Dublin Gulch. Low concentrations of heavy metals in the ore assemblage may have advantages during ore processing and in environmental planning going forward.

11.2 Structural Elements

The Energy, Mines and Resources Library in Whitehorse, Yukon Territory, has a considerable library of aerial photos that are publically accessible. Using their online service, Skyline, the flightlines and plates that intersected McConnells Jest were noted and scans of the photos obtained.

The flightline for this property is 'A28301, and plates 185 - 188 inclusive cover the ground. The photos were flown in 1996, and have a scale of 1:30,000 (Fig. 11.5).

Figure 11.5. Combined aerial photographs for the McConnells Jest property. Flightline A28301 plates 185 to 188 were combined to form the image. Scale is 1:30,000.

These images reveal a wealth of information, and the high contrast black and white photos reveal lineations and structures that can be related to ground based observations.

Interpretation of the photos seems to show three sets of lineations (Fig. 11.6);

- North South trends
- Northwest Southeast trends
- Southwest Northeast trends

These have been sketched out on the following map. Initially it seems that the southwest to northeasterly trending lineations are regional, and expand well beyond the boundaries of the property. The areas of intense mineralisation and geochemical highs are found along the area where these regional trends intersect with the other two sets, most notably the northwest to southeast lineaments. This also is similar to the mineralised vein orientations noted in the field, which could be directly related to this trend, or be propagated from smaller riedel shear systems. Further investigations in the field would be required to take more accurate measurements.

It should be noted again that these lineaments align well with the mineralising structures observed at Dublin Gulch, especially with the historic high-grade Olive, Shamrock and Catto veins.

11.3 Rock Types

At current, no detailed geological map of the property exists. Randell et al. (2015) plotted the rock types of individual point samples on the proposed margins of the pluton (Figs 11.7, 11.8.). They showed that the pluton is more or less the right volume and orientation, although it is not homogeneous in texture. The 2016 field visit has confirmed that at least three intrusive phases are present at McConnell's Jest. There are also several outlying igneous exposures, especially in the northeast, which could represent dyke swarms of a cupola of the main pluton. These also correlate with the Ag-Pb mineralisation in the area.

Figure 11.6. Interpreted structural lineaments on the McConnells Jest property. Three main lineaments are present, N-S (Purple), SE-NW (Light Blue), SW-NE (Black). Known vein orientations are shown in white.

Figure 11.7. Distribution of rock types at McConnells Jest interpreted from field sampling notes and sample photographs. Rock types are overlain on the current YGS map for the area.

Figure 11.8. Rock types and vein orientations on the southern shoulder of the central portion of the McConnell pluton.

11.4 Proposed Geology

The work of Randell et al. (2015) is the most complete synthesis of the geology at McConnell's Jest to date. They created a geological framework based on historical data up to and including 2014 to create the map shown in Fig 11.9. It should be noted that no distinction between igneous rock types is made on the map, due to lack of resolution of data points.

In figure 11.9, the north-south lineations represent normal faults, which have displaced blocks of the pluton either 'up' or 'down' relative to one another. This could account for the finger of Earn Group sedimentary rocks in the northwest quadrant of the map.

The northwest-southeast trends seem to be the most strongly associated with mineralisation, and align with the mineral veins observed in the field. It is not known if these are fault related, but they seem restricted to the pluton and do not extend far into the country rock, although further work would be required to test this.

The last trend, those that run southwest to northeast, could be regional shear zones that pass through the entire area.

11.5 Interpretation

The 2016 field visit has confirmed that the intrusion-related gold system model is the most appropriate for continued exploration at the McConnell's Jest property. Randell et al. (2015) highlighted similarities between McConnell's Jest and Dublin Gulch based on geochemical and structural elements. When a map of McConnells Jest and Dublin Gulch are placed side by side (Fig. 11.10), there is a clear similarity in structural regime, although the McConnells Jest pluton is has around double the surface area.

Figure 11.9. The proposed revised geologic map of McConnells Jest based on structural interpretation of the surrounding geology.

Both Dublin Gulch and McConnell's Jest have a series of sheeted quartz veins and a series of more widely spaced arsenopyrite veins. At both deposits, arsenopyrite veins are associated with relatively higher gold grades. At both deposits, it appears that paragenetically gold is strongly tied to arsenopyrite. The most prominent igneous lithology at both deposits is granodiorite in composition.

Figure 11.10. Comparison of structural lineaments at Dublin Gulch (left) and McConnells Jest (right). Both plutons share the same three groups of structural alignments N-S (Purple), SE-NW (Light Blue) and SW-NE (Black). The images are drawn to the same scale and show that the exposed surface of the McConnell pluton is significantly larger than that at Dublin Gulch.

Although both deposits are distinctly intrusion-related gold systems, the field visit has highlighted a number of differences between Dublin Gulch and McConnell's Jest. Dublin Gulch is a single phase intrusive, while McConnell's Jest has 3 igneous phases. At McConnell's Jest, arsenopyrite veins are typically narrower but present in higher densities than at Dublin Gulch.

The pattern of intrusive rocks at McConnell's Jest has similarities to Fort Knox, where 3 felsic phases and one mafic phase are present. Fort Knox is located near Fairbanks, AK, and is the most prominent intrusion-related gold system in the world, having been in production since 1997 under the stewardship of Kinross. It should be noted, however, that Fort Knox does not have a prominent arsenopyrite phase associated with gold.

These similarities and differences likely represent simple heterogeneity within the intrusion-related gold system spectrum and further work will help to define where McConnell's Jest lies within this spectrum of deposits.

12.0 Environmental Results

The first pass assessment of the property shows that it is an environment that is recovering from relatively recent forest fire activity, but no rare or protected species have been noted at this stage, although ongoing awareness of such species, and especially large mammals, should be ongoing.

Water sampling has shown that the watercourses are clean, with little to no influence from local mineralisation. This is an important baseline as any local disturbance that increases run-off could introduce metals into the watercourses, and this should be managed accordingly through buffered zones, sediment control and sumps.

13.0 Social Licence

13.1 First Nations

The property is located within the traditional territory of the Nacho Nyak Dun First Nations. The nearest settlement land or R-block is R-05A on Davidson Range, on the eastern edge of the property and east of McQuesten Lake. Two other nearby R-blocks are R-09B and A-07A, which are located northeast and northwest of the property, respectively.

In July 2016 the Chief of the Nacho Nyuk Dun, Simon Mervyn, agreed to sign a letter of support from the Nacho Nyak Dun people. This proposed agreement gave support to the exploration efforts and to the project in general.

13.2 Local Populations

The capital city of Yukon Territory, Whitehorse is located ~350km south of the McConnells Jest property. According to the 2011 National Household Survey (NHS) the population of Whitehorse is 22,815 where 19,040 have a non-Aboriginal identity. Amongst the 19,040 people 17,130 have European origins and 1,905 have Asian origins. Filipino (705) and Chinese (535) make up the largest portions of the Asian visible minority. Other notable visible minorities include African (145) and Latin American (125) (Statistics Canada, 2013).

Local communities within ~100km of the McConnells Jest Property include: Elsa (~8km SW), Keno City (~10km SE), Mayo (~45km SW) and Stewarts Crossing (~90km SW).

According to the 2011 National Census, amongst the local communities, Mayo is largest with a population of 226, followed by Keno Hill (Keno City) with a population of 28 and Stewarts Crossing with a population of 25 (Statistics Canada, 2012c).

Elsa is considered a ghost town as its population moved out following the closure of the United Keno Hill mine in 1989.

According to Statistics Canada, 2011 NHS data for Mayo, Keno City and Stewarts Crossing has been suppressed for data quality or confidentiality reasons (Statistics Canada 2012a,b and d). Due to this, ethnicities for these communities is not public data.

13.3 Environmental Issues

The surrounding region of the property, which itself is located on the border between the administrative boundaries of 105M and 106D (Fig 13.1), is home to wildlife that range from being very common throughout the Yukon to being only endemic within the territory's central eastern region. The administrative boundaries of 105M and 106D are home to about 43 species of mammals, over 100 species of birds, 38 species of butterflies, 14 species of fish, the common wood frog and the less common boreal snaketail dragonfly.

The nearest significant wildlife key area is located just north of the property and is a summer nesting area shared by four species of raptors: peregrine falcon (*Falco peregrinus*), osprey (*Pandion haliaetus*), golden eagle (*Aquila chrysaetos*) and bald eagle (*Haliaeetus leucocephalus*). This area in turn overlaps a waterfowl breeding area to the east.

Aside from animals, the area is also home to rare vascular plant species endemic to the Yukon's Central Territory. A 2014 edition guide with descriptions of 39 of the rarest plants in the Central Territory of the Yukon can be found on the Yukon Conservation Data Centre website (Yukon Conservation Data Centre, 2014).

Given the concentration of mines and related development within the vicinity of the property, there does not appear to be any urgent conservation issues related to this area. There is however hunting and trapping activities present in the vicinity, as there is an abundance of small game such as weasels, waterfowl and grouse.

Figure 13.1. Map of administrative boundaries 105M and 106D used to classify the potential flora and fauna on the property.

14.0 Recommendations

Several activities are proposed to add increased understanding and improved mineral potential of the McConnell's Jest pluton.

Drone Photography: Using drones to fly lines over the property and produce high resolution images would be extremely valuable for this type of property. Outcrops of rocks and associated structures could be identified and targeted for follow up, saving time on geologists walking the field. It would also help identify clearings for helipads, drills and campsites. Drone imagery can also be captured off season, meaning that the data can be interpreted by geologists and their findings incorporated into the following field season.

Lithological Mapping: Of primary importance is the construction of a detailed geologic map of the area. Outcrops are somewhat rare (<2%) on the property which may limit the detail which can be obtained, but this exercise will undoubtedly improve exploration strategies. Mapping will help to answer several outstanding questions about mineralisation on the McConnell's Jest property:

- 1) What is the relationship between intrusive events and mineralisation?
- 2) What is the extent of each currently identified intrusive rock type?
- 3) Do any further intrusive rock types exist?
- 4) Does a single intrusive phase preferentially hosts significant mineralisation or is mineralisation independent of intrusive rock types?
- 5) How do structures relate to mineralisation?

Mineralisation Mapping: Also of key importance is mapping of expressions of mineralisation. A particular focus should be placed on identifying and quantifying areas of mineralisation. The following characteristics of mineralisation should be recorded for all showings on the property:

- 1) Vein type
- 2) Gangue mineralogy
- 3) Sulfide and ore mineralogy
- 4) Strike and dip
- 5) Width
- 6) Alteration selvedge type
- 7) Width of alteration

The collection of this information will allow for construction of an initial database and will help to answer a number of questions, including:

- 1) What is the vein assemblage(s) associated with gold?
- 2) Is there a preferred orientation(s) of gold bearing veins?
- 3) Does gold occur with more common tracer/indicator minerals?
- 4) Is gold associated with a particular alteration assemblage?

Targeted Drilling Program: The Two-Four, Pink Mountain and Bullion Zones should be prepared for drilling through work focussed on clearing the required sites for drilling. It is proposed that the Two-Four Zone should be the focus on initial drilling, with secondary targets in the Pink Mountain and Bullion Zones dependent on the available budget.

A heliportable drilling rig would be advantageous to the program given the limited internal road network on the property. Low impact excavations also fit within existing exploration permits and demonstrate environmental stewardship.

Drill holes should be planned at shallow depths (c. 100 m) to allow for an increased coverage of targets. This initial drilling will determine the expression of mineralisation at depth, the depth of surficial weathering and will identify areas which should be drilled to greater depths and densities.

Ongoing Environmental Monitoring: The first environmental work on the property has been reported here. It is recommended that additional environmental monitoring be done in tandem with all further exploration activities to ensure that any future ground disturbance does not release any metal content into surrounding water courses. Having these results acts almost as an 'insurance' policy to prove that any elevated levels measured in the future are not a direct consequence of exploratory work. Water sampling should be planned out in advance, as the samples need to reach a lab within 24 hours of being collected.

Expanded Soil Grid: An expanded soil grid would allow the identification of further zones of mineralisation on the property. It should be noted that significant glacial cover exists on the property. However, methods for sampling till have come a long way in recent years, especially on the geochemical front, with several laboratories offering specialised services. It could be proposed that additional soil work be undertaken in the southern and eastern portions, but only when regional trends had been identified from mapping, thus giving confidence in these potential extensions.

It is proposed that additional soil sampling should take place only after the currently defined targets have been prepared for drilling and drilled.

Execution: Much of this work would be undertaken by geologists in the field, collecting more information and samples from specific outcrops. Knowledge of the Dublin Gulch system will be an asset when looking at this ground. It is proposed that all of this work could be accomplished in a single field season with an experienced team of geologists / geotechnicians. Depending on funding available, the team could either fly camp on the site, or fly in from accommodations in Keno, Mayo or even the camp at Dublin Gulch. The product of this work program would be to define structures and confirm the geological model. This would generate drill targets for future years and generate further investment interest.

15.0 References

Abbott, J.G., Gordey, S.P., and Templeman-Kluit, D.J., 1986, Setting of stratiform, sediment hosted lead-zinc deposits in Yukon and northeastern British Columbia, In: Morin, J.A., (Ed.), Mineral deposits of the northern Cordillera: Canadian Institute of Mining and Metallurgy Special Volume 37, p. 1–18.

Alexco Resources Corp., 2012, Preliminary Reclamation and Closure Plan, Keno District Mine Operations, Keno Hill Silver District, Revision 2 (internal report for Alexco Resources Corp. September 30, 2012), 306 p.

Bond, J.D, 1999, Glacial Limits and Ice Flow Patterns, Mayo Area, Central Yukon, Geoscience Map 1999-13: Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, 1:250,000 scale.

Bourne, T., (2011), Prepared for Bill Koe-Carson, Assessment Report, 2010 Sampling Program McConnell Property: technical report dated May 3, 2011, 66 p.

Cathro, R.J., 2006, The history and geology of the Keno Hill Silver Camp, Yukon Territory: Geoscience Canada, v. 33, p. 103–134.

Golden Predator Canada Corp., 2011, Assessment Report, 2010 Sampling Program, McConnell Property, Mayo Mining Division, Yukon Canada, internal report prepared for Bill Koe-Carson dated May 3rd 2011.

Golden Predator Canada Corp., 2013, Assessment Report, 2012 Sampling Program, McConnell Property, Mayo Mining Division, Yukon, Canada, internal report prepared for Bill Koe-Carson dated April 4th 2013.

Gordey, S.P., and Anderson, R.G., 1993, Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories: Geological Survey of Canada, Memoir 248, p. 214.

Green, L.H., 1972, Geology of the Nash Creek, Larsen Creek and Dawson Map areas, Yukon Territory: Geological Survey of Canada, Memoir 364, 157 p.

Grods, J., Francis, S.R., Meikle, J.C., and Lapointe, S., 2012, Regional Ecosystems of West-Central Yukon, Part 1: Ecosystem descriptions. Report prepared for Environment, Government of Yukon by Makonis Consulting Ltd. and Associates, West Kelowna, BC.

Hantelmann, J.J., 2013, The paragenesis and geochemistry of the Bellekeno Ag-Pb-Zn vein, Keno Hill district, Yukon, Canada: Unpublished M.Sc. thesis, University of Alberta, Edmonton, Canada, 292 p.

Hart, C.J.R, 2004, Mid-Cretaceous magmatic evolution and intrusion-related metallogeny of the Tintina Gold Province, Yukon and Alaska: Unpublished PhD. thesis, University of Western Australia, Perth, 188p.

Hart, C.J.R., 2007, Reduced intrusion-related gold systems, In: Goodfellow, W.D. (Ed.), Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 95-112.

Hart, C.J.R., Mair, J.L., Goldfarb, R.J., and Groves, D.I., 2004, Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten belt, Yukon Territory, Canada: Transactions of the Royal Society of Edinburgh, Earth Science, v. 95, p. 319–337.

Hitchins, A.C., and Orssich, C.N., 1995, The Eagle zone gold-tungsten sheeted vein porphyry deposit and related mineralization, Dublin Gulch, Yukon Territory: Canadian Institute of Mining and Metallurgy, Special Volume 46, p. 803–810.

Kirk, F.A., 2016, Paragenesis, Geochemistry and Metallogeny of the Dublin Gulch Intrusion-Related Au Deposit, Yukon Territory, Canada: Unpublished MSc. Thesis, Memorial University, St John's, Canada. 362 p.

Koe-Carson, B., 2010, McConnells Jest, 2010 Field Journal Notes, Final Report, Yukon Mining Incentives Program #10-001, 9 p.

Lang, J.R. and Baker, T., 2001, Intrusion-related gold systems: the present level of understanding: Mineralium Deposita, v. 36, p. 477-489.

Mair, J.L., Farmer, G.L., Groves, D.I., Hart, C.J.R and Goldfarb, R.J., 2011, Petrogenesis of Postcollisional Magmatism at Scheelite Dome, Yukon, Canada: Evidence for a Lithospheric Mantle Source for Magmas Associated with Intrusion-Related Gold Systems, Economic Geology, v. 106, p. 451–480.

Mair, J.L., Hart, C.J.R., and Stephens, J.R., 2006, Deformation history of the western Selwyn Basin, Canada: Implications for orogen evolution and the setting of mid-Cretaceous magmatism: Geological Society of America Bulletin, v. 118, p. 304–323.

Murphy, D.C., 1997, Geology of the McQuesten River region, northern McQuesten and Mayo Map Area, Yukon Territory (115P/14, 15, 16; 105M/13, 14): Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada Bulletin 6.

Randell, A., Kirk, F.A., Marcoux, D., Wong, H. and Wong, C., 2015, Prepared for Bill Koe-Carson, Summary Geological Report for the McConnells Jest Property, Yukon Territory: Internal Report, 231 p.

Rasmussen, K.L., 2013, The timing, composition, and petrogenesis of syn- to postaccretionary magmatism in the northern Cordilleran miogeocline, eastern Yukon and southwestern Northwest Territories: Unpublished Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 810 p.

Roots, C.F., 1997, Geology of the Mayo Map area, Yukon Territory (105M): Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Bulletin 7, 82 p.

Scott Wilson Mining, 2010, Technical Report on the Dublin Gulch Property, Yukon Territory, Canada: NI 43-101 technical report (internal report for Victoria Gold Corp., April 23, 2010), 242 p.

Selby, D., Creaser, R.A., Heaman, L.M., and Hart, C.J.R., 2003, Re–Os and U–Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: absolute timing relationships between plutonism and mineralization, Canadian Journal of Earth Science, v. 40, p. 1839–1852.

Smith, C.A.S., Meikle, J.C., and Roots, C.F. (editors), 2004. Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes. Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01, Summerland, British Columbia, 133-140 p.

SRK Consulting, 2014, Updated Preliminary Economic Assessment for the Keno Hill Silver District Project – Phase 2, Yukon, Canada: NI 43-101 technical report (internal report for Alexco Resources Corp., December 10, 2014), 381 p.

Statistics Canada, 2012a, Keno Hill, Yukon (Code 6001052) and Yukon (Code 60) (table), Census Profile, 2011 Census: Statistics Canada Catalogue no. 98-316-XWE, Ottawa, Released October 24, 2012.

Statistics Canada, 2012b, Mayo, Yukon (Code 6001022) and Yukon (Code 60) (table), Census Profile, 2011 Census: Statistics Canada Catalogue no. 98-316-XWE, Ottawa, Released October 24, 2012.

Statistics Canada, 2012c, Population and dwelling counts, for Canada, provinces and territories, and census subdivisions (municipalities), 2011 and 2006 censuses (table), Population and Dwelling Count Highlight Tables. 2011 Census: Statistics Canada Catalogue no. 98-310-XWE2011002, released February 8, 2012.

Statistics Canada, 2012d, Stewart Crossing, Yukon (Code 6001050) and Yukon (Code 60) (table), Census Profile, 2011 Census: Statistics Canada Catalogue no. 98-316-XWE, Ottawa, Released October 24, 2012.

Statistics Canada, 2013, Whitehorse, CY, Yukon (Code 6001009) (table), National Household Survey (NHS) Profile, 2011 National Household Survey: Statistics Canada Catalogue no. 99-004-XWE, Ottawa, Released September 11, 2013.

Wardrop Engineering Inc., 2011, Technical report on the Eagle zone, Dublin Gulch property, Yukon Territory, Canada: NI 43-101 technical report, (internal report for Victoria Gold Corp., April 15 2011), 48 p.

Wardrop Engineering Inc., 2012, Technical report on the Eagle zone, Dublin Gulch property, Yukon Territory, Canada: NI 43-101 technical report, (internal report for Victoria Gold Corp., April 05 2012), 419 p.

Yukon Conservation Data Centre, 2014, Rare species database: Yukon Department of Environment, Whitehorse, Yukon, www.env.gov.yk.ca/cdc, accessed April 8, 2015.

Yukon Conservation Data Centre, 2017, Rare species database. Yukon Department of Environment, Whitehorse, Yukon. www.env.gov.yk.ca/cdc, accessed November 14, 2016.

Zonte Metals, 2016, Zonte Metals Announces Acquisition of an Intrusion Related Gold Target in the Tintina Gold Belt in the Yukon [online] Available at http://www.zontemetals.com, accessed Jan 19, 2017.
Appendix 1: Certificate of Author

I, Andrew P. Randell, geologist, with business address in Vancouver, British Columbia, do hereby certify that:

I am currently Principal Geologist of Strata GeoData Services with an office at:
415 - 1035 Pacific Street, Vancouver, British Columbia, V6E 1S9, Canada

2) I graduated from the University of Cardiff in 1998 with a B.Sc. in Environmental Geoscience.

3) I registered as a Professional Geologist in the Province of British Columbia on December 18th, 2012 (Non-Resident Licence #172600), and as a permanent resident licence on December 20th, 2012 (#44669).

4) I have worked in geological exploration for a total of 13 years and as a Professional Geologist for 4 of those 13. Much of my work has focused on greenfields exploration work in the Yukon and in Guyana, especially in relation to gold and silver targets. I have also spent an increasingly significant amount of time on project evaluation, resource calculation, permitting and feasibility studies, most recently with Victoria Gold Corp., Ryan Gold Corp., IDM Mining and Strikepoint Gold.

5) I have read the definition of "qualified person" set out in the National Instrument 43-101 (NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

6) I am the Independent Author responsible for the preparation of the technical report titled "Geology, Mineralisation, Geochemical Surveys and Environmental Surveys on the McConnell's Jest Intrusion-Related Gold Property Yukon, Canada" dated January 22, 2017. I am responsible for reviewing and approving all items in this report but have relied on the expertise of Fraser Kirk to provide interpretation and recommendations regarding the geology of the deposit and David Wilkie to provide interpretation and recommendations regarding the environmental aspects of the deposit. 7) I have examined the mineralization and host lithologies in the field as recently as August 29th, 2016.

8) I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, or the omission to disclose that makes the Technical Report misleading.

9) I have read National Instrument 43-101 and Form 43-101F, and the Technical Report has been prepared in compliance with that instrument and form.

10) As of January 22, 2017 to the best of the my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

11) I consent to the filing of the Technical Report titled "Geology, Mineralisation, Geochemical Surveys and Environmental Surveys on the McConnell's Jest Intrusion-Related Gold Property Yukon, Canada" and dated January 22, 2017 with any stock exchange and other regulatory authority and its publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public.

DATED at Vancouver, British Columbia, this 22nd day of January, 2017. "Andrew P. Randell" {Signed and Sealed}

Andrew P. Randell, P. Geo.

Appendix 2: Claim List

District	GrantNumber	ClaimName	#	Claim Owner	RecordingDate	StakingDate	ClaimExpiryDate	Status
Mayo	YD54713	McConnells Jest	53	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Mayo	YD54714	McConnells Jest	54	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Mayo	YD54715	McConnells Jest	55	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Mayo	YD54716	McConnells Jest	56	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Mayo	YD16701	McConnells Jest	1	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Мауо	YD16702	McConnells Jest	2	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16703	McConnells Jest	3	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16704	McConnells Jest	4	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16705	McConnells Jest	5	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16706	McConnells Jest	6	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16707	McConnells Jest	7	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Мауо	YD16708	McConnells Jest	8	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16709	McConnells Jest	9	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16710	McConnells Jest	10	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Мауо	YD16711	McConnells Jest	11	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16712	McConnells Jest	12	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16713	McConnells Jest	13	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16714	McConnells Jest	14	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16715	McConnells Jest	15	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16716	McConnells Jest	16	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16717	McConnells Jest	17	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16718	McConnells Jest	18	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16719	McConnells Jest	19	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16720	McConnells Jest	20	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16721	McConnells Jest	21	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16722	McConnells Jest	22	Bill Koe-Carson - 100%	21/05/2010	21/05/2010	1/5/2018	Active
Mayo	YD16723	McConnells Jest	23	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16724	McConnells Jest	24	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16725	McConnells Jest	25	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active

Mayo	YD16726	McConnells Jest	26	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16727	McConnells Jest	27	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16728	McConnells Jest	28	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16729	McConnells Jest	29	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16730	McConnells Jest	30	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16731	McConnells Jest	31	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16732	McConnells Jest	32	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16733	McConnells Jest	33	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16734	McConnells Jest	34	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16735	McConnells Jest	35	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16736	McConnells Jest	36	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16737	McConnells Jest	37	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16738	McConnells Jest	38	Bill Koe-Carson - 100%	19/07/2010	9/7/2010	1/5/2018	Active
Mayo	YD16739	McConnells Jest	39	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD16740	McConnells Jest	40	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54701	McConnells Jest	41	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54702	McConnells Jest	42	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54703	McConnells Jest	43	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54704	McConnells Jest	44	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54705	McConnells Jest	45	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54706	McConnells Jest	46	Bill Koe-Carson - 100%	19/07/2010	10/7/2010	1/5/2018	Active
Mayo	YD54707	McConnells Jest	47	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Mayo	YD54708	McConnells Jest	48	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Mayo	YD54709	McConnells Jest	49	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Mayo	YD54710	McConnells Jest	50	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Мауо	YD54711	McConnells Jest	51	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Mayo	YD54712	McConnells Jest	52	Bill Koe-Carson - 100%	19/07/2010	11/7/2010	1/5/2018	Active
Мауо	YD54717	McConnells Jest	57	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Мауо	YD54718	McConnells Jest	58	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Мауо	YD54719	McConnells Jest	59	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active

Mayo	YD54720	McConnells Jest	60	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Mayo	YD54721	McConnells Jest	61	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Mayo	YD54722	McConnells Jest	62	Bill Koe-Carson - 100%	19/07/2010	12/7/2010	1/5/2018	Active
Mayo	YD54723	McConnells Jest	63	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54724	McConnells Jest	64	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Мауо	YD54725	McConnells Jest	65	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54726	McConnells Jest	66	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Мауо	YD54727	McConnells Jest	67	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54728	McConnells Jest	68	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54729	McConnells Jest	69	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54730	McConnells Jest	70	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54731	McConnells Jest	71	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54732	McConnells Jest	72	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54733	McConnells Jest	73	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Mayo	YD54734	McConnells Jest	74	Bill Koe-Carson - 100%	19/07/2010	13/07/2010	1/5/2018	Active
Мауо	YD54735	McConnells Jest	75	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Мауо	YD54736	McConnells Jest	76	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54737	McConnells Jest	77	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54738	McConnells Jest	78	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Мауо	YD54739	McConnells Jest	79	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54740	McConnells Jest	80	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54741	McConnells Jest	81	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Мауо	YD54742	McConnells Jest	82	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54743	McConnells Jest	83	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54744	McConnells Jest	84	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54745	McConnells Jest	85	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54746	McConnells Jest	86	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54747	McConnells Jest	87	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Мауо	YD54748	McConnells Jest	88	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54749	McConnells Jest	89	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active

Mayo	YD54750	McConnells Jest	90	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54751	McConnells Jest	91	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54752	McConnells Jest	92	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54753	McConnells Jest	93	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Mayo	YD54754	McConnells Jest	94	Bill Koe-Carson - 100%	19/07/2010	15/07/2010	1/5/2018	Active
Мауо	YD54755	McConnells Jest	95	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Mayo	YD54756	McConnells Jest	96	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Мауо	YD54757	McConnells Jest	97	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Мауо	YD54758	McConnells Jest	98	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Mayo	YD54759	McConnells Jest	99	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Мауо	YD54760	McConnells Jest	100	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Мауо	YD54761	McConnells Jest	101	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Mayo	YD54762	McConnells Jest	102	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Mayo	YD54763	McConnells Jest	103	Bill Koe-Carson - 100%	19/07/2010	16/07/2010	1/5/2018	Active
Mayo	YD54764	McConnells Jest	104	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54765	McConnells Jest	105	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54766	McConnells Jest	106	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54767	McConnells Jest	107	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54768	McConnells Jest	108	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54769	McConnells Jest	109	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54770	McConnells Jest	110	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54771	McConnells Jest	111	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54772	McConnells Jest	112	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54773	McConnells Jest	113	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54774	McConnells Jest	114	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54775	McConnells Jest	115	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD54776	McConnells Jest	116	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54777	McConnells Jest	117	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54778	McConnells Jest	118	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD54779	McConnells Jest	119	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active

Mayo	YD54780	McConnells Jest	120	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD61470	McConnells Jest	121	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD61471	McConnells Jest	122	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD61472	McConnells Jest	123	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD61473	McConnells Jest	124	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Мауо	YD61474	McConnells Jest	125	Bill Koe-Carson - 100%	19/07/2010	17/07/2010	1/5/2018	Active
Mayo	YD126853	McConnells Jest	126	Bill Koe-Carson - 100%	3/2/2011	13/01/2011	1/5/2018	Active
Mayo	YD126854	McConnells Jest	127	Bill Koe-Carson - 100%	3/2/2011	13/01/2011	1/5/2018	Active
Mayo	YD126855	McConnells Jest	128	Bill Koe-Carson - 100%	3/2/2011	10/1/2011	1/5/2018	Active
Мауо	YD126856	McConnells Jest	129	Bill Koe-Carson - 100%	3/2/2011	10/1/2011	1/5/2018	Active
Mayo	YD126857	McConnells Jest	130	Bill Koe-Carson - 100%	3/2/2011	10/1/2011	1/5/2018	Active
Mayo	YD126858	McConnells Jest	131	Bill Koe-Carson - 100%	3/2/2011	10/1/2011	1/5/2018	Active
Mayo	YD126859	McConnells Jest	132	Bill Koe-Carson - 100%	3/2/2011	10/1/2011	1/5/2018	Active
Mayo	YD126860	McConnells Jest	133	Bill Koe-Carson - 100%	3/2/2011	10/1/2011	1/5/2018	Active
Mayo	YD126861	McConnells Jest	134	Bill Koe-Carson - 100%	3/2/2011	11/1/2011	1/5/2018	Active
Mayo	YD126862	McConnells Jest	135	Bill Koe-Carson - 100%	3/2/2011	11/1/2011	1/5/2018	Active
Mayo	YD126863	McConnells Jest	136	Bill Koe-Carson - 100%	3/2/2011	11/1/2011	1/5/2018	Active
Mayo	YD126864	McConnells Jest	137	Bill Koe-Carson - 100%	3/2/2011	11/1/2011	1/5/2018	Active
Mayo	YD126865	McConnells Jest	138	Bill Koe-Carson - 100%	3/2/2011	11/1/2011	1/5/2018	Active
Mayo	YD126866	McConnells Jest	139	Bill Koe-Carson - 100%	3/2/2011	11/1/2011	1/5/2018	Active
Mayo	YD126867	McConnells Jest	140	Bill Koe-Carson - 100%	3/2/2011	12/1/2011	1/5/2018	Active
Mayo	YD126868	McConnells Jest	141	Bill Koe-Carson - 100%	3/2/2011	12/1/2011	1/5/2018	Active
Mayo	YD126869	McConnells Jest	142	Bill Koe-Carson - 100%	3/2/2011	12/1/2011	1/5/2018	Active
Mayo	YD126870	McConnells Jest	143	Bill Koe-Carson - 100%	3/2/2011	12/1/2011	1/5/2018	Active
Mayo	YD126871	McConnells Jest	144	Bill Koe-Carson - 100%	3/2/2011	22/01/2011	1/5/2018	Active
Мауо	YD126872	McConnells Jest	145	Bill Koe-Carson - 100%	3/2/2011	22/01/2011	1/5/2018	Active
Мауо	YD126873	McConnells Jest	146	Bill Koe-Carson - 100%	3/2/2011	22/01/2011	1/5/2018	Active
Mayo	YD126874	McConnells Jest	147	Bill Koe-Carson - 100%	3/2/2011	22/01/2011	1/5/2018	Active
Мауо	YD126875	McConnells Jest	148	Bill Koe-Carson - 100%	3/2/2011	23/01/2011	1/5/2018	Active
Мауо	YD126876	McConnells Jest	149	Bill Koe-Carson - 100%	3/2/2011	23/01/2011	1/5/2018	Active

Mayo	YD126877	McConnells Jest	150	Bill Koe-Carson - 100%	3/2/2011	23/01/2011	1/5/2018	Active
Mayo	YD126878	McConnells Jest	151	Bill Koe-Carson - 100%	3/2/2011	24/01/2011	1/5/2018	Active
Мауо	YD126879	McConnells Jest	152	Bill Koe-Carson - 100%	3/2/2011	24/01/2011	1/5/2018	Active
Mayo	YD126880	McConnells Jest	153	Bill Koe-Carson - 100%	3/2/2011	24/01/2011	1/5/2018	Active
Mayo	YD126881	McConnells Jest	154	Bill Koe-Carson - 100%	3/2/2011	25/01/2011	1/5/2018	Active
Mayo	YD126882	McConnells Jest	155	Bill Koe-Carson - 100%	3/2/2011	25/01/2011	1/5/2018	Active
Mayo	YD126883	McConnells Jest	156	Bill Koe-Carson - 100%	3/2/2011	25/01/2011	1/5/2018	Active
Mayo	YD126884	McConnells Jest	157	Bill Koe-Carson - 100%	3/2/2011	25/01/2011	1/5/2018	Active
Mayo	YD126885	McConnells Jest	158	Bill Koe-Carson - 100%	3/2/2011	27/01/2011	1/5/2018	Active
Mayo	YD126886	McConnells Jest	159	Bill Koe-Carson - 100%	3/2/2011	27/01/2011	1/5/2018	Active
Мауо	YD126887	McConnells Jest	160	Bill Koe-Carson - 100%	3/2/2011	27/01/2011	1/5/2018	Active
Mayo	YD126888	McConnells Jest	161	Bill Koe-Carson - 100%	3/2/2011	27/01/2011	1/5/2018	Active
Mayo	YD126889	McConnells Jest	162	Bill Koe-Carson - 100%	3/2/2011	26/01/2011	1/5/2018	Active
Mayo	YD126890	McConnells Jest	163	Bill Koe-Carson - 100%	3/2/2011	26/01/2011	1/5/2018	Active
Mayo	YD126891	McConnells Jest	164	Bill Koe-Carson - 100%	3/2/2011	26/01/2011	1/5/2018	Active
Мауо	YD126892	McConnells Jest	165	Bill Koe-Carson - 100%	3/2/2011	29/01/2011	1/5/2018	Active
Mayo	YD126893	McConnells Jest	166	Bill Koe-Carson - 100%	3/2/2011	29/01/2011	1/5/2018	Active
Mayo	YD126894	McConnells Jest	167	Bill Koe-Carson - 100%	3/2/2011	30/01/2011	1/5/2018	Active
Мауо	YD126895	McConnells Jest	168	Bill Koe-Carson - 100%	3/2/2011	30/01/2011	1/5/2018	Active
Mayo	YD126896	McConnells Jest	169	Bill Koe-Carson - 100%	3/2/2011	2/2/2011	1/5/2018	Active
Mayo	YD126897	McConnells Jest	170	Bill Koe-Carson - 100%	3/2/2011	2/2/2011	1/5/2018	Active
Mayo	YD126898	McConnells Jest	171	Bill Koe-Carson - 100%	3/2/2011	1/2/2011	1/5/2018	Active
Mayo	YD126899	McConnells Jest	172	Bill Koe-Carson - 100%	3/2/2011	1/2/2011	1/5/2018	Active

Appendix 3: Certificates of Analysis

Certificate of Analysis

10-360-02341-01

Inspectorte America Corporation #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. Y1A 4S5 Phone: 867-456-7930 EMail: prospector@hushmail.com	Submitted By: Bill ka 37 Le White Attention: Bill ka Project: McCo Description:	oe Carson wes Blvd Suite 1(ehorse, Y.T. YIA oe Carson onnells Jest	Date Received: 07/26/2010 Date Completed: 08/11/2010 A 4S5 Invoice:
	Samples	Туре	Preparation Description
	2	Soil	SP-SS-1K/Soils, Humus Sediments 1kg dried, sieved and riffle split
	Method Pd-1AT-ICP Ag-1AT-GV Au-1AT-AA Ag-4A-OR Pt-1AT-ICP	Description Pd, 1AT, IC Ag, 1AT, G Au, 1AT Fi Ag, 4 Acid, Pt, 1AT, IC	n CP Gravimetric Ÿire Assay, AAS i, AA, Ore Grade CP

The results of this assay were based tolely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

David Chiu, BC Certified Assayer

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

		An	Pd	Pt	Ag
		Au-1AT-AA	Pd-1AT-ICP	PI-LAT-ICP	Ag-4A-OR
Sample	Sample	ppm	ppb	ррь	ppm
Description	Туре	0.005	5	5	1.0
MJSED-003	Soil	0.022	4	4	<1.0
MJSED-004	Soil	11.700	<5	-5	2.6

Data Page 1 of 1

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

		Au	Pd	Pt	Ag
		Au-1AT-AA	Pd-1AT-ICP	PI-1AT-ICP	Ag-4A-OR
Sample	Sample	ppm	ppb	ррь	ppm
Description	Туре	0.005	5	5	1.0
MJSED-003	Soil	0.022	4	4	
MJSED-003 Dup		0.019	<5	<5	
QCV1007-00855-0002-BLK		0.012	<5	<5	
QCV1007-00858-0001-BLK					<1.0
MJSED-003	Soil				<1.0
MJSED-003 Dup					1.0
QCV1007-00858-0003-BLK					<1.0
STD-ME-6 expected					101.0
STD-ME-6 result					96.7

QC Data Page 1 of 1

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. Y1A 4S5 Phone: 867-456-7930 EMail: prospector@hushmail.com	Submitted By: Bill koe 37 Lew Whiteh Attention: Bill koe Project: McCon Description:	Date Received: 10/28/2010 Date Completed: 10/12/2010 Invoice:		
	Samples	Preparation Description		
	Method 30-4A-TR	Description 30 Element,	4 Acid, ICP, Trace Level	

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concarning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

David Chiu, BC Certilied Assayer

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	La	Mg
		30-4A-TR													
Sampl	a Sample	ppm	%	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	%	%	ppm	96
Descriptio	n Type	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10	0.01
MJSED 00	Sediment	1.7	3.87	94	685	Ą	1.39	<0.5	14	49	39	2.75	1.15	38	0.67
MJSED 00	2 Sediment	1.7	3.07	43	567	<2	1.21	<0.5	10	42	41	1.54	0.87	23	0.54
MJSED 00	5 Sediment	1.4	3.76	50	531	4	1.14	<0.5	14	53	41	2.71	1.01	34	0.65
MJSED 00	5 Sediment	1.2	3.48	52	502	<2	0.77	<0.5	9	42	27	1.79	0.97	24	0.55
MJSED 00	7 Sediment	1.5	3.56	69	671	3	1.16	<0.5	11	42	22	1.73	0.97	25	0.56
MJSED 00	8 Sediment	1.3	3.63	53	686	4	1.29	<0.5	11	44	25	2.11	0.97	22	0.59
MJSED 00	9 Sediment	1.5	3.75	73	686	4	1.39	<0.5	13	46	30	2.61	1.03	28	0.64
MJSED 01) Sediment	1.2	3.45	48	624	4	1.23	<0.5	11	41	21	1.87	0.95	26	0.55
MJSED 01	Sediment	1.6	3.93	59	774	3	1.33	<0.5	13	53	33	2.52	1.09	21	0.67

Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Mn	Mo	Ns	Ni	P	Pb	Sb	Sc	Sr	Ti	T1	v	w	Zn
		30-4A-TR													
Sample	Sample	ppm	ppm	56	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm
Description	Type	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10	2
MJSED 001	Sediment	719	<1	0.79	17	849	Ą	\$	9	172	0.50	<10	71	<10	81
MJSED 002	Sediment	381	<1	0.76	12	945	4	<	7	151	0.32	<10	47	<10	48
MISED 005	Sediment	536	<1	0.56	18	858	4	<	10	128	0.52	<10	72	<10	71
MJSED 006	Sediment	349	<1	0.50	14	669	6	<	8	112	0.25	<10	49	<10	63
MJSED 007	Sediment	357	<1	0.89	16	848	4	<	8	159	0.26	<10	42	<10	73
MJSED 008	Sediment	599	<1	0.83	17	848	4	<	8	162	0.28	<10	44	<10	75
MJSED 009	Sediment	1271	<1	0.78	20	842	4	<	8	164	0.36	<10	.50	<10	84
MJSED 010	Sediment	468	<1	0.84	15	865	4	<	8	163	0.35	<10	45	<10	63
MJSED 011	Sediment	492	<1	0.75	27	913	<2	4	9	155	0.26	<10	54	22	97

Data Page 2 of 3

#200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

Certificate of Analysis 10-360-03007-01

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

Z£ 30-4A-TR Sample Sample ppm Description Type 1 MJSED 001 Sediment 143 MJSED 002 Sediment 113 MJSED 005 Sediment 133 MJSED 006 Sediment 97 MJSED 007 Sediment 116 MJSED 008 Sediment 117 MJSED 009 Sediment 126 MJSED 010 Sediment 126 MJSED 011 Sediment 125

Data Page 3 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horsesboe Way Richmond, British Columbia V7A 4V5 Canada

		Ag	Al	As	Ba	Bi	Ca	Cđ	Co	Cr	Cu	Fe	K	La	Mg
		30-4A-TR													
Sample	Sample	ppm	56	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	96	96	ppm	96
Description	Type	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10	0.01
MJSED 001	Sediment	1.7	3.87	94	685	Q	1.39	<0.5	14	49	39	2.75	1.15	38	0.67
MJSED 001 Dup		1.7	3.85	94	664	<2	1.39	<0.5	15	50	40	2.74	1.12	38	0.66
QCV1010-00069-0002-BLK		<0.5	<0.01	<	<10	4	<0.01	<0.5	<1	<1	<1	<0.01	<0.01	<10	<0.01
STD-ME-6 expected		101.0									6130				
STD-ME-6 result		99.5	5.08	271	542	⊲	1.41	2.0	2	53	5428	5.59	1.23	<10	1.22

QC Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horsesboe Way Richmond, British Columbia V7A 4V5 Canada

		Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	T1	v	w	Zn
		30-4A-TR													
Sample	Sample	ppm	ppm	56	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm
Description	Type	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10	2
MJSED 001	Sediment	719	<1	0.79	17	849	Q	4	9	172	0.50	<10	71	<10	81
MJSED 001 Dup		716	<1	0.78	17	843	4	<5	9	174	0.51	<10	71	<10	81
QCV1010-00069-0002-BLK		4	<1	< 0.01	<1	<10	4	<	<1	<1	<0.01	<10	<1	<10	<2
STD-ME-6 expected							10200								5170
STD-ME-6 result		1848	27	1.51	24	449	>10000	424	12	185	0.23	<10	32	<10	5444

QC Data Page 2 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

			Zr
			30-4A-TR
	Sample	Sample	ppm
l	Description	Type	1
[MJSED 001	Sediment	143
	MJSED 001 Dup		142
	QCV1010-00069-0002-BLK		<1
	SID-ME-6 expected		
l	STD-ME-6 result		151

QC Data Page 3 of 3

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: Bill koe Carson. 37 Lewes Blvd Suite 102a Whitehorse, Y.T. Y1A 4S5 Phone: 867-456-7930 EMail: prospector@hushmail.com	Submitted By: 1 3 Attention: 1 Project: 1 Description:	Bill koe Carson 37 Lewes Blvd Suite 1 Whitehorse, Y.T. YIA Bill koe Carson McConnells Jest	Date Received: 09/29/2010 Date Completed: 10/14/2010 A 4S5 Invoice:
	Samples 1	s Type Other	Preparation Description SP-SS-1K/Soils, Humus Sediments 1kg dried, sieved and riffle split
	Method 30-4A-TR SP-H2O	Descriptio 30 Elemen Moisture	n t, 4 Acid, ICP, Trace Level

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

David Chiu, BC Certified Assayer

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Au	Ag	Al	As	Ba	Bi	Ca	Cd	Co	α	Cu	Fe	K	La
		Au-1AT-AA	30-4A-TR												
Sample	Sample	ppb	ppm	56	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	%	56	ppm
Description	Type	5	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
MJSED -012 (Moss)	Other	NS	<0.5	0.19	47	234	2	2.33	<0.5	3	3	19	2.71	0.19	<10

Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sc	Sr	Ti	T1	v	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
MJSED -012 (Moss)	Other	0.35	2512	<1	0.05	7	1167	4	<	<1	111	<0.01	<10	1	<10

Data Page 2 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verlitas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

11			Zn	Zr	Moisture	
Ш			30-4A-TR	30-4A-TR	SP-H2O	
L	Sample	Sample	ppm	ppm	56	
L	Description	Type	2	1	0.01	
Г	MISED -012 (Moss)	Other	80	36	10.20	

Data Page 3 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Au	Ag	Al	As	Ba	Bi	Ca	Cd	Co	α	Cu	Fe	K	La
		Au-1AT-AA	30-4A-TR												
Sample	Sample	ppb	ppm	56	ppm	ppm	ppm	56	ppm	ppm	ppm	ppm	%	56	ppm
Description	Type	5	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
MJSED -012 (Moss)	Other		<0.5	0.19	47	234	2	2.33	⊲0.5	3	3	19	2.71	0.19	<10
MJSED -012 (Moss) Dup			<0.5	0.20	48	243	<2	2.34	<0.5	3	3	19	2.80	0.18	<10
MJSED -012 (Moss)	Other	NS													
MJSED -012 (Moss) Dup		NS													

QC Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Se	Sr	Ti	T1	v	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
MJSED -012 (Moss)	Other	0.35	2512	<1	0.05	7	1167	\$	4	<1	111	<0.01	<10	1	<10
MJSED -012 (Moss) Dup		0.36	2582	<1	0.05	7	1156	<2	<5	<1	111	<0.01	<10	1	<10

QC Data Page 2 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritos Group Compony #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

			Zn	Zz	Moisture
			30-4A-TR	30-4A-TR	SP-H2O
	Sample	Sample	ppm	ppm	56
	Description	Type	2	1	0.01
	MJSED -012 (Moss)	Other	80	36	
м	JSED -012 (Moss) Dup		79	36	
	MJSED -012 (Moss)	Other			10.20
м	JSED -012 (Moss) Dup				10.65

QC Data Page 3 of 3

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. Y1A 4S5 Phone: 867-456-7930 EMail: prospector@hushmail.com	Submitted By: Bill koo 37 Lew Whiteh Attention: Bill koo Project: McCon Description:	e Carson res Blvd Suite 1(10rse, Y.T. YIA e Carson mells Jest	12a 455	Date Received: 09/30/2010 Date Completed: 10/12/2010 Invoice:
	Samples 28	Type Rock	Preparation Description SP-RX-2K/Rock/Chips/Drill Core	
	Method 30-4A-TR	Description 30 Element,	4 Acid, ICP, Trace Level	

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

David Chiu, BC Certified Assayer

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

			Ag	Al	As	Ba	Bi	Ca	Cđ	Co	Cr	Cu	Fe	K	La	Mg
			30-4A-TR													
	Sample	Sample	ppm	56	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	96	56	ppm	
	Description	Type	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10	0.01
	MJR-001	Rock	1.9	4.68	50	7739	4	0.07	<0.5	13	177	73	3.26	1.42	16	0.72
	MJR-002	Rock	1.3	2.98	33	2925	5	0.07	<0.5	10	288	47	2.19	0.99	12	0.51
	MJR-003	Rock	1.2	1.15	17	171	4	0.64	<0.5	2	220	4	0.56	0.30	<10	0.08
	MJR-004	Rock	1.3	0.71	12	292	3	0.02	<0.5	1	160	2	0.32	0.40	25	0.05
	MJR-005	Rock	1.2	3.66	99	3439	6	0.04	<0.5	3	354	36	2.34	1.14	17	0.47
	MJR-006	Rock	1.2	4.76	75	1127	3	0.15	<0.5	3	148	17	1.61	2.59	36	0.15
	MJR-007	Rock	1.1	0.78	128	172	4	0.20	<0.5	<1	151	4	0.36	0.39	<10	0.04
	MJR-008	Rock	1.2	3.91	48	3115	4	1.20	<0.5	4	164	2	0.66	0.98	26	0.15
	MJR-009	Rock	1.2	0.67	32	76	6	1.66	<0.5	1	100	3	0.42	0.18	<10	0.05
	MJR-010	Rock	1.0	0.59	12	230	5	0.05	<0.5	2	134	2	0.41	0.57	<10	0.03
	MJR-011	Rock	1.2	0.99	16	216	7	0.13	<0.5	1	95	3	0.40	0.44	<10	0.02
	MJR-012	Rock	1.4	2.16	35	369	5	0.41	<0.5	2	118	13	0.74	0.84	11	0.11
	MJR-013	Rock	1.4	0.19	766	92	6	2.42	<0.5	10	169	2	2.57	0.07	<10	0.50
	MJR-014	Rock	1.7	5.56	453	1365	5	3.69	<0.5	3	89	50	2.87	2.91	30	0.32
	MJR-015	Rock	1.4	1.25	23	355	5	0.13	<0.5	6	225	46	1.19	0.38	<10	0.26
	MJR-016	Rock	1.8	2.53	39	1010	5	0.27	<0.5	10	240	51	2.09	0.88	<10	0.65
	MJR-017	Rock	1.2	4.04	54	164	6	0.65	<0.5	2	67	12	0.59	3.55	<10	0.03
	MJR-018	Rock	1.0	4.66	120	264	4	2.59	<0.5	1	97	4	0.40	0.83	18	0.14
	MJR-019	Rock	1.5	6.32	1409	1218	6	1.09	<0.5	3	120	3	1.15	3.26	40	0.23
	MJR-020	Rock	1.4	1.13	108	128	9	0.61	<0.5	1	128	4	0.41	0.31	<10	0.05
	MJR-021	Rock	1.0	1.34	26	303	4	1.55	<0.5	2	109	2	0.68	0.46	12	0.27
	MJR-022	Rock	1.4	3.18	100	437	4	1.86	<0.5	4	146	10	0.72	1.22	20	0.13
	MJR-023	Rock	1.2	1.16	91	180	4	0.29	<0.5	2	114	5	0.50	0.34	16	0.05
	MJR-024	Rock	29.9	4.59	3722	1156	98	0.04	<0.5	4	122	11	1.59	2.54	32	0.19
	MJR-025	Rock	2.2	5.77	355	2298	8	2.04	<0.5	3	100	13	1.07	2.79	40	0.22
	MJR-026	Rock	3.9	5.42	178	2112	6	1.10	<0.5	3	142	6	1.24	2.04	29	0.19
	MJR-027	Rock	1.4	2.18	270	696	6	0.49	<0.5	3	110	10	0.79	0.97	24	0.13
	MJR-028	Rock	1.2	4.03	53	413	7	0.28	<0.5	2	126	21	0.69	1.24	<10	0.08

Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritos Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

			Mn	Mo	Ns	Ni	Р	Pb	Sb	Sc	Sr	Ti	T1	v	w	Zn
			30-4A-TR													
	Sample	Sample	ppm	ppm	56	ppm	ppm	ppm	ppm	ppm	ppm	56	ppm	ppm	ppm	ppm
	Description	Type	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10	2
	MJR-001	Rock	157	<1	0.10	30	346	<2	<	11	102	0.28	<10	91	<10	89
	MJR-002	Rock	226	<1	0.08	23	304	15	<	7	61	0.17	<10	53	<10	80
	MJR-003	Rock	106	5	0.38	5	93	<2	6	<1	74	0.02	<10	<1	<10	10
	MJR-004	Rock	49	<1	0.01	4	38	4	<	2	4	0.01	<10	20	<10	5
	MJR-005	Rock	96	<1	0.08	8	159	<2	4	9	67	0.08	<10	164	<10	45
	MJR-005	Rock	795	<1	0.17	5	277	<2	6	4	25	0.05	<10	<1	<10	18
	MJR-007	Rock	85	<1	0.09	3	31	<2	<5	<1	17	0.01	<10	<1	<10	5
	MJR-008	Rock	167	<1	1.36	4	218	~	5	3	484	0.14	<10	<1	75	19
	MJR-009	Rock	286	6	0.18	3	42	4	<	1	114	0.01	<10	4	145	17
	MJR-010	Rock	68	<1	0.09	4	29	<2	<	<1	31	0.02	<10	<1	<10	8
	MJR-011	Rock	84	3	0.22	3	47	24	<	<1	36	0.01	<10	<1	<10	36
	MJR-012	Rock	97	19	0.57	3	167	9	13	2	110	0.05	<10	<1	77	52
	MJR-013	Rock	2151	<1	0.05	4	24	15	<	2	78	<0.01	<10	<1	<10	41
	MJR-014	Rock	463	<1	0.22	\$	328	4	<	4	137	0.05	<10	4	11	10
	MJR-015	Rock	167	<1	0.23	18	279	<2	<	4	26	0.08	<10	17	<10	33
	MJR-016	Rock	273	2	0.57	28	584	~	<	8	62	0.18	<10	56	<10	60
	MJR-017	Rock	162	<1	2.07	2	46	55	6	2	82	0.03	<10	<1	<10	21
	MJR-018	Rock	174	<1	1.83	4	176	~	7	2	620	0.03	<10	<1	<10	10
	MJR-019	Rock	391	<1	0.22	3	331	4	10	3	77	0.05	<10	4	<10	11
	MJR-020	Rock	141	<1	0.46	5	89	4	<	<	31	<0.01	<10	<1	<10	6
	MJR-021	Rock	377	<1	0.40	4	92	~	<	2	114	0.03	<10	<1	<10	9
	MJR-022	Rock	311	3	0.80	5	314	<2	<	4	164	0.04	<10	<1	1144	6
	MJR-023	Rock	138	13	0.39	4	63	~	<	2	95	0.02	<10	<1	1274	10
	MJR-024	Rock	82	<1	0.18	2	114	246	17	3	36	0.05	<10	4	14	16
	MJR-025	Rock	354	1	1.08	2	331	5	10	4	166	0.08	<10	<1	401	23
	MJR-026	Rock	382	2	1.36	2	296	4	9	4	247	0.06	<10	<1	513	26
	MJR-027	Rock	193	5	0.37	4	134	<2	<	2	85	0.04	<10	<1	<10	17
1	MJR-028	Rock	105	<1	1.77	4	158	31	6	1	178	0.04	<10	<1	<10	60

Data Page 2 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritos Group Compony #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Ze
		30-4A-TR
Sample	Sample	ppm
Description	Type	1
MJR-001	Rock	110
MJR-002	Rock	81
MJR-003	Rock	36
MJR-004	Rock	34
MJR-005	Rock	94
MJR-006	Rock	109
MJR-007	Rock	29
MJR-008	Rock	60
MJR-009	Rock	21
MJR-010	Rock	40
MJR-011	Rock	29
MJR-012	Rock	54
MJR-013	Rock	45
MJR-014	Rock	121
MJR-015	Rock	57
MJR-016	Rock	90
MJR-017	Rock	115
MJR-018	Rock	54
MJR-019	Rock	110
MJR-020	Rock	34
MJR-021	Rock	37
MJR-022	Rock	58
MJR-023	Rock	34
MJR-024	Rock	104
MJR-025	Rock	103
MJR-026	Rock	88
MJR-027	Rock	55
MJR-028	Rock	62

Data Page 3 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Ag	Al	As	Ba	Bi	Ca	Cđ	Co	Cr	Cu	Fe	K	La	Mg
		30-4A-TR													
Sample	Sample	ppm	56	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	96	56	ppm	96
Description	Type	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10	0.01
MJR-001	Rock	1.9	4.68	50	7739	Q	0.07	<0.5	13	177	73	3.26	1.42	16	0.72
MJR-001 Dup		1.5	4.70	50	7708	<2	0.07	<0.5	13	176	72	3.25	1.41	16	0.71
QCV1010-00009-0002-BLK		<0.5	<0.01	<	<10	<2	<0.01	<0.5	<1	<1	<1	<0.01	<0.01	<10	<0.01
STD-ME-6 expected		101									6130				
STD-ME-6 result		>100	4.81	272	228	<2	1.37	2.8	2	57	5444	5.51	1.17	<10	1.13
MJR-019	Rock	1.5	6.32	1409	1218	6	1.09	<0.5	3	120	3	1.15	3.26	40	0.23
MIR-019 Dup		1.3	6.42	1385	1214	5	1.11	<0.5	3	124	3	1.15	3.22	38	0.23
QCV1010-00009-0005-BLK		<0.5	<0.01	<5	<10	<2	<0.01	<0.5	<1	<1	<1	<0.01	<0.01	<10	<0.01
STD-ME-6 expected		101									6130				
STD-ME-6 result		>100	4.64	270	224	4	1.40	4.2	1	58	5343	5.71	1.19	<10	1.14

QC Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Mn	Mo	Ns	Ni	Р	Pb	Sb	Sc	Sr	Ti	T1	v	w	Zn
		30-4A-TR													
Sample	Sample	ppm	ppm	56	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm
Description	Type	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10	2
MJR-001	Rock	157	<1	0.10	30	346	4	4	11	102	0.28	<10	91	<10	89
MJR-001 Dup		153	<1	0.10	29	346	<2	<5	11	102	0.28	<10	91	<10	87
QCV1010-00009-0002-BLK		<	<1	<0.01	<1	<10	4	<	<1	<1	<0.01	<10	<1	<10	<2
STD-ME-6 expected							10200								5170
STD-ME-6 result		1817	25	1.45	24	438	>10000	427	11	182	0.23	<10	33	<10	5407
MJR-019	Rock	391	<1	0.22	3	331	4	10	3	77	0.05	<10	<1	<10	11
MJR-019 Dup		390	<1	0.22	3	332	<2	10	3	75	0.05	<10	<1	<10	11
QCV1010-00009-0005-BLK		4	<1	<0.01	<1	<10	4	<	<1	<1	<0.01	<10	<1	<10	<2
STD-ME-6 expected							10200								5170
STD-ME-6 result		1858	27	1.51	24	445	>10000	435	11	178	0.24	<10	34	<10	5535

QC Data Page 2 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Zr
		30-4A-TR
Sample	Sample	ppm
Description	Type	1
MJR-001	Rock	110
MIR-001 Dup		110
QCV1010-00009-0002-BLK		<1
STD-ME-6 expected		
STD-ME-6 result		149
MJR-019	Rock	110
MIR-019 Dup		100
QCV1010-00009-0005-BLK		<1
STD-ME-6 expected		
STD-ME-6 result		146

QC Data Page 3 of 3

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. Y1A 4S5 Phone: 867-456-7930 EMail: prospector@hushmail.com	Submitted By: Bill koe 37 Lew Whiteh Attention: Bill koe Project: McCon Description:	Date Received: 09/30/2010 Date Completed: 10/19/2010 A 4S5 Invoice:	
	Samples	Type	Preparation Description
	44	Soil	SP-SS-1K/Soils, Humus Sediments 1kg dried, sieved and riffle split
	Method	Description	n
	30-4A-TR	30 Element	t, 4 Acid, ICP, Trace Level
	Au-1AT-AA	Au, 1AT Fi	'ire Assay, AAS

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

David Chiu, BC Certified Assayer

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

L			Au	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Qr	Cu	Fe	K	La
L			Au-1AT-AA	30-4A-TR												
L	Sampl	s Sample	ppm	ppm	56	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	%	56	ppm
F	Descriptio	1 Type	0.005	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
L	MJS-00	Soil	0.006	0.8	3.07	59	1165	4	1.40	<0.5	13	39	40	3.19	0.77	15
L	MJS-00	2 Soil	<0.005	<0.5	3.44	53	940	4	3.18	<0.5	14	42	36	2.97	0.99	20
L	MJS-00	s Soil	0.006	5.5	3.23	55	972	4	3.57	<0.5	14	43	36	3.15	0.92	20
ŀ	MJS-00	Soil	0.046	<0.5	2.55	45	1061	4	2.38	<0.5	12	34	74	2.36	0.67	17
ŀ	MJS-00	Soil	0.009	<0.5	3.34	58	968	5	3.27	<0.5	14	51	47	3.31	0.95	19
L	MJS-00	5 304	0.006	<0.5	5.02	80	990	4	1.13	<0.5	23	64	73	5.39	0.74	28
L	MJS-00	/ Soul	0.008	<0.5	3.71	65	993	4	0.97	40.5	16	48	49	3.82	0.81	19
L	MJS-00	5 301	0.005	0.7	3.28	67	1255	4	1.78	40.5	19	**	70	4.11	0.67	15
ŀ	MJS-00	/ Soll	0.046	0.7	3.29	70	10/5	4	0.96	40.5	19	44		4.38	0.70	18
F	MJS-01) Sou	0.012	0.5	3.75	98	1245	-	0.96	40.5	23	49	3/8	4.91	0.76	14
L	M25-01	0.000	0.006	0.7	3.24	0/	1450	3	1.62	-0.5	10			4.17	0.74	17
L	MIS-01	: 208 Soll	0.013	40.1	434	04 27	863	23	1.45	-0.5	19	44 50		4.17	1.21	23
L	MIS-01	5 Soll	0.007	<0.5	3.07	73	981	3	1.27	-0.5	14	48	43	3.21	1.05	18
ŀ	MIS-01	5 501	0.005	0.6	5.34	76	1181	3	3.76	-0.5	15	64	46	3.60	1.74	23
Г	M35-01	5 Soil	0.010	0.8	3.53	63	677	4	1.11	<0.5	15	49	52	3.47	0.82	29
L	M05-01	7 Soil	0.007	0.8	3.40	73	710	~	2.58	<0.5	14	42	42	3.07	0.97	19
L	MJS-01	Soil	0.017	0.8	3.64	74	1383	4	1.46	<0.5	15	48	45	3.86	0.93	20
L	M03-01	Soil	0.016	<0.5	4.28	95	913	4	1.28	<0.5	14	34	41	3.39	1.32	26
L	MJS-02) Soil	0.026	0.7	3.97	84	929	4	1.89	<0.5	16	34	58	3.53	1.11	26
Г	MJS-02	Soil	0.047	<0.5	2.38	52	638	<	3.18	<0.5	9	24	32	2.13	0.68	18
L	MJS-02	2 Soil	0.009	0.6	4.34	75	849	<2	2.30	<0.5	14	33	26	3.08	1.30	25
L	MJS-02	Soil Soil	0.009	<0.5	3.63	51	921	4	2.46	<0.5	10	32	36	2.47	0.95	26
L	MJS-02	Soil Soil	0.007	0.7	4.97	68	1289	4	4.40	<0.5	15	57	38	3.54	1.60	23
	MJS-02	5 Soil	0.008	1.0	4.12	60	933	4	1.39	<0.5	12	41	32	2.33	1.11	24
L	MJS-02	5 Soil	0.017	<0.5	3.35	72	763	4	2.37	<0.5	13	34	35	2.82	0.98	19
L	MJS-02	7 Soil	0.010	0.6	2.73	48	750	4	3.22	<0.5	10	29	33	2.22	0.78	17
L	MJS-02	3 Soil	0.010	0.6	3.40	60	785	4	2.28	<0.5	11	35	31	2.58	0.97	21
L	MJS-02	> Soil	0.008	<0.5	3.91	62	901	4	1.77	<0.5	13	40	31	2.81	1.10	27
	MJS-03) Soil	0.010	0.6	4.26	76	969	3	1.61	<0.5	12	41	28	2.76	1.20	28
L	MJS-03	Soil	0.031	0.6	1.76	66	464	4	2.83	<0.5	8	22	33	2.14	0.47	14
L	MJS-03	2 Soil	0.021	<0.5	3.91	127	901	4	1.30	<0.5	14	42	31	2.42	1.06	18
L	MJS-03	3 Soil	0.027	<0.5	3.12	72	696	4	1.95	<0.5	8	34	18	2.34	0.90	17
L	MJS-03	4 Soil	0.014	0.6	4.55	76	916	4	1.19	<0.5	13	42	27	3.08	1.21	28
ŀ	MJS-03	5 Soil	0.028	0.8	3.02	84	782	4	0.98	<0.5	20	48	54	3.79	1.00	19
	MJS-03	5 Soil	0.019	0.6	3.32	114	859	4	0.79	<0.5	17	43	57	3.56	0.96	16
	MJS-03	Soil	0.027	<0.5	3.93	84	897	4	0.75	<0.5	16	51	42	4.72	1.16	14
	MJS-03	s Soul	0.006	0.6	2.86	40	044	4	0.72	<0.5	11	39	13	2.05	0.75	15
	MJS-03	Soil	0.010	<0.5	3.69	60	808	4	0.74	<0.5	12	50	18	2.72	1.09	18
£	MJS-04) Soil	0.008	0.5	3.26	54	935	~	1.60	<0.5	15	41	35	2.96	0.94	15

Data Page 1 of 6

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

			Au	Ag	Al	As	Ba	Bi	Ca	Cd	Co	a	Cu	Fe	K	La
			Au-1AT-AA	30-4A-TR												
	Sample	Sample	ppm	ppm	56	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	56	56	ppm
	Description	Type	0.005	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	MJS-041	Soil	0.055	0.7	3.36	136	701	Q	1.67	<0.5	14	38	32	2.89	0.93	43
	MJS-042	Soil	0.023	1.0	3.93	243	798	<2	1.25	<0.5	19	46	43	3.70	1.11	19
1	MJS-043	Soil	0.016	0.5	4.47	73	1069	4	1.56	<0.5	20	56	57	4.02	1.23	20
	MJS-044	Soil	0.033	<0.5	3.79	57	781	<2	1.56	<0.5	13	39	27	2.71	1.03	18

Data Page 2 of 6

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Se	Sr	Ti	T1	v	w
		30-4A-TR													
Sample	Sample	56	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
MJS-001	Soil	0.86	537	1	0.48	32	897	~2	<	8	89	0.24	<10	59	<10
MJS-002	Soil	1.43	441	1	0.53	31	802	<2	<	8	112	0.23	<10	58	<10
MJS-003	Soil	1.49	938	1	0.47	36	874	<2	<\$	8	110	0.22	<10	58	<10
MJS-004	Soil	0.62	376	<1	0.37	35	781	4	4	7	118	0.20	<10	46	<10
MJS-005	Soil	1.53	545	1	0.48	36	932	<2	<	8	108	0.26	<10	64	<10
MJS-006	Soil	1.24	882	3	0.71	54	1075	<2	<5	12	138	0.27	<10	86	<10
MJS-007	Soil	0.76	586	<1	0.64	39	545	<2	<5	10	93	0.29	<10	67	<10
MJS-008	Sou	0.96	630	1	0.53	40	854	<2		9	101	0.36	<10	70	<10
MJS-009	Soil	0.73	501	1	0.52	44	931	4	4	10	91	0.38	<10	70	<10
M03-010	Soil	0.80	684	1	0.56	48	621	4	4	11	92	0.40	<10	80	<10
MJS-011	204	1.08	721		0.48	45	1032	<2	~	9	103	0.31	<10	73	<10
MJS-012	Soil	0.81	711	-	0.49	41	823	<2		9	91	0.42	<10	12	<10
MJS-013	304	0.72	188	~1	0.56	42	844	-4	0	10	101	0.25	<10	63	<10
MJS-014	201	0.79	557	4	0.51	33	787	<4	0	, ,	106	0.21	<10	63	<10
MJS-015	Soll	1.54	604	<	0.52	35	809	<2	0	12	136	0.26	<10	11	<10
1413-016	001	0.76	402	1	0.35	34	402	-			33	0.28	<10	02	<10
MJS-017	2011	1.14	4/3	1	0.47	30	1050	-2	0	8	110	0.22	<10	54	<10
M25-010	Reit	0.51	479		0.37	34	7050	10	~	2	120	0.31	<10		<10
M35-019	Reit	0.64	4/0	4	0.75	20	702	10	0		135	0.25	<10	33	<10
MIS-020	Soll	0.53	566	4	0.65	18	715	á	3	e c	1/0	0.25	<10	3/	<10
M19 (022	Roll	0.76	500		0.35	17	615	-	Ä		221	0.15	<10	20	<10
MIS-023	Soil	0.64	836	<1	0.65	29	831	2	ä	8	197	0.24	<10	30	<10
MIS-024	Soil	1.60	650	<1	0.55	33	801	0	4	10	148	0.26	<10	20	<10
MIS-025	Soil	0.63	350	4	0.68	10	747	4	a	9	160	0.24	<10	42	<10
MIS-026	Soil	0.71	522	<1	0.54	22	687	<2	S	8	192	0.21	<10	38	<10
MIS-027	Soil	0.64	489	<1	0.45	20	658	<2	-5	6	170	0.16	<10	30	<10
MJS-028	Soil	0.62	349	<1	0.57	19	650	<2	4	ž	157	0.21	<10	38	<10
MJS-029	Soil	0.76	393	<1	0.67	23	867	<2	4	8	152	0.27	<10	47	<10
MJS-030	Soil	0.69	605	<1	0.60	21	841	<2	4	9	155	0.23	<10	41	<10
MJS-031	Soil	0.40	274	1	0.28	15	629	<2	<	4	143	0.10	<10	22	<10
MJS-032	Soil	0.55	227	<1	0.61	21	654	<2	<	9	137	0.20	<10	45	<10
MJS-033	Soil	0.54	191	<1	0.52	14	701	<2	<5	7	143	0.19	<10	37	<10
MJS-034	Soil	0.60	342	<1	0.67	20	811	<2	<	9	159	0.23	<10	46	<10
MJS-035	Soil	0.64	569	2	0.66	40	712	<2	4	9	111	0.25	<10	56	<10
MJS-036	Soil	0.59	467	<1	0.50	41	711	<2	<	9	96	0.23	<10	59	<10
MJS-037	Soil	0.67	450	3	0.51	32	979	9	<5	9	90	0.22	<10	66	<10
MJS-038	Soil	0.54	227	<1	0.54	20	530	<2	<5	7	88	0.24	<10	58	<10
MJS-039	Soil	0.67	275	<1	0.84	22	630	<2	<	8	117	0.27	<10	64	<10
MJS-040	Soil	0.60	726	<1	0.59	30	845	<2	<5	8	137	0.21	<10	49	<10

Data Page 3 of 6

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

			Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sc	Sr	Ti	T1	v	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	MJS-041	Soil	0.54	501	1	0.49	23	873	\$	4	8	146	0.17	<10	44	<10
1	MJS-042	Soil	0.61	618	1	0.64	31	893	6	<5	10	144	0.23	<10	51	<10
1	MJS-043	Soil	0.64	848	<1	0.53	48	1082	<2	<	11	121	0.20	<10	59	<10
	MJS-044	Soil	0.61	562	<]	0.65	22	810	<2	<5	9	147	0.23	<10	45	<10

Data Page 4 of 6

#200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Certificate of Analysis 10-360-03010-01 Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

		Zn	Zr
		30-4A-TR	30-4A-TR
Sample	Sample	ppm	ppm
Description	Type	2	1
MJS-001	Soil	122	104
MJS-002	Soil	125	112
MJS-003	Soil	139	104
MJS-004	Soil	97	91
MJS-005	Soil	141	114
MJS-006	Soil	239	143
MJS-007	Soil	116	124
MJS-008	Soil	133	116
MJS-009	Soil	167	131
MJS-010	Soil	166	139
MJS-011	Soil	161	126
MIS-012	Soil	154	122
MIS-013	Soil	152	129
MIS-014	Soll	101	121
100-014	Reit	101	1.07
MUS-015	Roll	135	140
AUS-016	000	104	127
MJS-017	Soil	114	109
MJS-018	Sou	143	115
MJS-019	Soil	112	126
MJS-020	Soil	101	117
MJS-021	Soil	69	79
MJS-022	Soil	83	127
MJS-023	Soil	66	104
MJS-024	Soil	137	139
MJS-025	Soil	83	109
MJS-026	Soil	80	98
MJS-027	Soil	52	88
MJS-028	Soil	73	98
MIS-029	Soil	92	119
MIS-030	Sait	108	109
MIS-030	Solt	100	63
100-001	Reit	30	105
MUS-032	2011	81	105
MJS-033	2011	30	34
MJS-034	304	101	114
MJS-035	Soil	112	131
MJS-036	Soil	123	116
MJS-037	Soil	155	132
MJS-038	Soil	70	95
MJS-039	Soil	70	121
3472.040	C. it		1/02

Data Page 5 of 6

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Zn	Zz
		30-4A-TR	30-4A-TR
Sample	Sample	ppm	ppm
Description	Type	2	1
MJS-041	Soil	72	97
MJS-042	Soil	104	130
MJS-043	Soil	115	126
MJS-044	Soil	81	110

Data Page 6 of 6

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Veritos Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

Г			Au	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Qr	Cu	Fe	K	La
- 1			Au-1AT-AA	30-4A-TR												
- 1	Sample	Sample	ppm	ppm	56	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	56	56	ppm
– H	Description	Type	0.005	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	MJS-001	Soil		0.8	3.07	59	1165	~	1.40	<0.5	13	39	40	3.19	0.77	15
	MJS-001 Dup			0.9	3.06	59	1187	~	1.46	<0.5	14	40	41	3.14	0.79	15
	QCV1010-00008-0002-BLK			<0.5	<0.01	<	<10	4	<0.01	<0.5	<1	<1	<1	<0.01	<0.01	<10
	MJS-019	Soil		<0.5	4.28	95	913	~	1.28	<0.5	14	34	41	3.39	1.32	26
	MJS-019 Dup			<0.5	4.31	95	914	4	1.30	<0.5	14	34	40	3.32	1.35	25
	QCV1010-00008-0005-BLK			<0.5	<0.01	<	<10	4	<0.01	<0.5	4	<1	<1	<0.01	<0.01	<10
SIL	OREAS-45P-4A expected			0.3		13		0			122	1103	749			
SI.	D-OREAS-45P-4A result			0.7	6.11	71	272	~	0.27	<0.5	112	937	633	>10	0.32	10
	MJS-037	Soil		<0.5	3.93	84	897	4	0.75	<0.5	16	51	42	4.72	1.16	14
- I-	MJS-037 Dup			<0.5	3.93	82	896	4	0.75	<0.5	16	51	43	4.90	1.14	13
	QCV1010-00008-0008-BLK			<0.5	<0.01	<	<10	4	<0.01	<0.5	4	2	<1	<0.01	<0.01	<10
	SID-ME-8 expected			61.7									1030			
	STD-ME-8 result			60.1	4.44	2839	190	4	6.77	97.8	<1	44	934	3.85	1.40	<10
	MJS-001	Soil	0.006													
	MJS-001 Dup		0.007													
	STD-Oxi67 expected		1.817													
	SID-Oxi67 result		1.709													
	QCV1010-00348-0004-BLK		<0.005													
	MJS-037	Soil	0.027													
- L	MJS-037 Dup		0.039													
	STD-Oxi67 expected		1.817													
	SID-Oxi67 result		1.711													

QC Data Page 1 of 3

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

A Bureau Verltas Group Company #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

[Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sc	Sr	Ti	T1	v	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
[Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	M33-001	Soil	0.86	537	1	0.48	32	897	<2	4	8	89	0.24	<10	59	<10
	MJS-001 Dup		0.89	535	1	0.48	33	895	<2	<	8	89	0.23	<10	60	<10
	QCV1010-00008-0002-BLK		<0.01	<	<1	<0.01	<1	<10	<2	<	<1	<1	<0.01	<10	<1	<10
	MJS-019	Soil	0.64	478	<1	0.79	26	702	10	<	8	195	0.23	<10	33	<10
	MJS-019 Dup		0.66	478	<1	0.79	27	695	9	<5	8	194	0.24	<10	34	<10
	QCV1010-00008-0005-BLK		<0.01	<	<1	<0.01	<1	<10	<2	<	<1	<1	<0.01	<10	<1	<10
SID	-OREAS-45P-4A expected					0.08	385	454	22	1						
- 3	TD-OREAS-45P-4A result		0.21	1306	<1	0.07	302	397	<2	<	60	31	1.01	<10	171	<10
	MJS-037	Soil	0.67	450	3	0.51	32	979	9	<	9	90	0.22	<10	66	<10
	MJS-037 Dup		0.66	444	3	0.52	32	986	8	<	9	90	0.21	<10	65	<10
	QCV1010-00008-0008-BLK		<0.01	<	<1	<0.01	<1	<10	<2	4	<1	<1	<0.01	<10	<1	<10
	SID-ME-8 expected								19400							
	STD-ME-8 result		0.70	3217	18	1.13	23	599	>10000	52	7	369	0.18	<10	18	<10

QC Data Page 2 of 3

#200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Camada

Certificate of Analysis 10-360-03010-01

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

Zn Zr 30-4A-TR 30-4A-TR Sample Sample ppm ppm Description Type 2 1 MJS-001 Soil 122 104 MJS-001 Dup 121 112 QCV1010-00008-0002-BLK <2 <1 MJS-019 Soil 112 126 MJS-019 Dup QCV1010-00008-0005-BLK 113 126 ~2 <1 STE-OREAS-45P-4A expected 142 394 STD-OREAS-45P-4A result 141 Soil 155 MJS-037 132 155 <2 MJS-037 Dup 130 QCV1010-00008-0008-BLK <1 STD-ME-8 expected 19200 STD-ME-8 result >10000 104

QC Data Page 3 of 3

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. Y1A 4S5 Phone: 867-456-7930 EMail: prospector@hushmail.com	Submitted By: Bill koe 37 Lew Whiteh Attention: Bill koe Project: McCon Description: Re:10-3	e Carson es Blvd Suite 1(orse, Y.T. YIA e Carson nells Jest 360-03007-01, 1	02a 4S5 0-360-03009-01	Date Received: 10/13/2010 Date Completed: 10/18/2010 Invoice:
	Samples 37	Type Pulp	Preparation Description SP-PU/Pulp Handling, submitted pulps	
	Method Au-1AT-AA	Description Au, 1AT Fi	ı re Assay, AAS	

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

David Chiu, BC Certified Assayer

#200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada Certificate of Analysis 10-360-03200-01 Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

			Au	
			Au-1AT-AA	
Sar	uple	Sample	ppb	
Descrip	otion	Туре	5	
MJSED	001	Pulp	23	
MJSED	002	Pulp	7	
MJSED	005	Pulp	12	
MJSED	006	Pulp	558	
MJSED	007	Pulp	10	
MJSED	800	Pulp	15	
MJSED	009	Pulp	305	
MJSED	010	Pulp	12	
MJSED	011	Pulp	29	
MJR	-001	Pulp	7	
MJR	-002	Pulp	13	
MJR	-003	Pulp	79	
MJR	-004	Pulp	<5	
MJR	-005	Pulp	7	
MJR	-006	Pulp	13	
MJR	-007	Pulp	8	
MJR	-008	Pulp	10	
MJR	-009	Pulp	6	
MJR	-010	Pulp	8	
MJR	-011	Pulp	29	
MJR	-012	Pulp	6	
MJR	-013	Pulp	7	
MJR	-014	Pulp	6	
MJR	-015	Pulp	8	
MJR	-016	Pulp	13	
MJR	-017	Pulp	8	
MJR	-018	Pulp	6	
MJR	-019	Pulp	121	
MJR	-020	Pulp	10	
MJR	-021	Pulp	8	
MJR	-022	Pulp	11	
MJR	-023	Pulp	9	
MJR	-024	Pulp	159	
MJR	-025	Pulp	11	
MJR	-026	Pulp	17	
MJR-	-027	Pulp	11	
MJR	-028	Pulp	7	

Data Page 1 of 1

#200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Camada

Certificate of Analysis 10-360-03200-01

Bill koe Carson 37 Lewes Blvd Suite 102a Whitehorse, Y.T. YIA 4S5

Au Au-1AT-AA ppb 5 Sample Sample Description Туре MJSED 001 Pulp 23 MJSED 001 Dup 14 STD-Oxi67 expected 1817 STD-Oxi67 result 1864 MJR-010 Pulp 8 MJR-010 Dup QCV1010-00303-0004-BLK 6 8 7 MJR-028 Pulp MJR-028 Dup 6 QCV1010-00303-0006-BLK 5 STD-Oxi67 expected 1817 STD-Oxi67 result 1840

QC Data Page 1 of 1

CLIENT NAME: PREDATOR MINING GROUP IN 201A - 170 TITANIUM WAY WHITEHORSE, YT Y1A0G1 (867) 633-4653

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Oct 19, 2012

PAGES (INCLUDING COVER): 22

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

NOTES	

All camples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Results relate only to the items tested and to all the items tested

Page 1 of 22

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2368

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED): Oct 19, 20	12	SAM	PLE TYPE:	Rock	
	Analyte:	Sample Login Weight	A	A	As	Au	в	Ba	Be	ы	Ca	Cd	Ce	Co	c
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppr
Sample Decoription	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.
AAD63161		0.77	0.44	0.21	150	0.12	<5	32	0.34	1.45	0.21	0.37	3.17	0.5	31.
AAD63162		0.79	0.08	0.19	4.6	<0.01	<5	9	<0.05	0.02	0.06	0.10	2.68	1.4	65.
AAD63163		0.69	0.03	0.11	6.1	<0.01	<5	23	0.08	0.02	0.25	0.10	3.29	2.1	52.
AAD63164		0.93	0.04	0.23	6.6	<0.01	<5	22	0.08	0.04	0.04	0.05	10.7	1.3	58.
AAD63165		0.76	0.03	0.18	11.0	<0.01	<5	83	0.19	0.08	0.36	0.04	62.5	1.5	64.3
AAD63166		0.66	0.02	0.15	9.0	<0.01	<5	84	0.18	0.01	0.06	0.07	24.5	2.2	52.
AAD63167		0.92	0.02	0.24	11.1	0.02	<5	92	0.30	0.01	0.34	0.05	17.8	1.2	37.
AAD63168		0.54	0.02	0.11	129	<0.01	<5	38	0.09	<0.01	0.44	0.07	0.89	21.1	52.9
AAD63169		0.49	1.51	0.03	157	<0.01	<5	557	<0.05	0.50	0.01	0.18	2,45	1.3	51.5
AA063170		0.70	0.05	0.33	362	<0.01	<5	70	0.20	<0.01	0.13	0.03	24.2	0.8	25.
AA063171		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NR
A063172		1.39	0.04	0.33	292	<0.01	<5	84	0.19	<0.01	0.78	0.09	22.3	1.3	21.
AAD63173		0.82	0.05	1.05	4.8	<0.01	<5	178	0.42	0.03	1.62	0.06	83.2	4.4	27.
AA063174		0.22	0.04	0.20	10.6	<0.01	<5	14	0.05	0.02	0.23	0.02	20.2	0.7	38.
AAD63175		0.74	0.02	0.17	12.0	<0.01	<5	42	0.12	<0.01	0.32	0.06	38.0	1.0	42
AAD63176		0.78	0.04	0.58	18.0	<0.01	<5	63	0.48	0.02	0.69	0.27	68.7	4.8	37.
AA063177		0.70	0.02	0.25	10.9	<0.01	<5	64	0.22	<0.01	0.74	0.05	57.3	1.2	28.
AAD63178		0.32	0.02	0.39	6.7	<0.01	<5	136	0.43	0.01	0.40	0.13	61.5	1.5	30.
AAD63179		0.34	0.06	1.38	1.9	<0.01	<5	217	0.27	0.04	0.45	0.03	69.5	4.8	34.
AA063180		0.93	0.06	0.53	230	0.07	<5	98	0.21	3.45	0.90	0.27	49.0	7.1	20.
AAD63181		0.85	0.31	0.48	3.4	0.01	<5	43	0.06	0.32	0.03	0.03	4.00	2.0	6.
AA063182		0.41	0.10	1.50	6.7	<0.01	<5	194	0.27	0.19	1.08	0.05	89.8	4.7	33.
AAD63183		0.37	0.09	1.56	4.7	<0.01	<5	204	0.24	0.14	0.56	0.03	81.0	3.5	26.
AAD63184		0.47	1.85	0.85	15.3	<0.01	<5	152	0.38	1.15	1.70	2.23	53.2	3.6	25.
AD63185		0.53	0.10	0.40	531	0.02	<5	143	0.27	0.60	0.35	0.07	45.0	5.6	25.
AAD63186		0.52	0.08	0.76	8.8	<0.01	<5	133	0.18	0.50	0.32	0.03	36.5	2.5	40.
AAD63187		0.75	0.12	0.51	>10000	0.22	<5	159	0.31	10.7	0.82	0.06	39.2	32.6	27.
AD63188		0.90	0.05	0.89	>10000	0.12	<5	208	0.32	0.77	0.49	0.03	55.3	19.2	30.
A063189		1.32	0.07	1.05	449	<0.01	<5	210	0.32	0.14	1.16	0.06	67.2	4.0	27.
AA063190		1.81	0.23	0.32	1810	0.74	<5	141	0.24	38.7	0.18	0.21	28.2	8.6	23.
4062494		1.62	1.02	0.41	5630	0.03	<5	227	0.31	2.31	0.29	0.08	30.0	9.2	23

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 2 of 22

ATTENTION TO: ANDREW CALDWELL

ζ.

PROJECT NO: MCC-2012-NK-2368

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Rock	
	Analyte:	Sample Login Weight	~	A	As	Au	в	Ba	Be	в	Ca	Cd	Ce	Co	c
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppr
Sample Decoription	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.
AAD63192		0.50	0.06	0.52	73.6	<0.01	<5	162	0.28	0.30	0.83	0.05	43.6	1.5	26.
AAD63193		0.34	0.06	1.69	19.1	<0.01	<5	270	0.34	0.40	0.46	0.06	66.7	5.3	42.
AA063194		0.32	0.05	0.39	162	<0.01	<5	92	0.25	0.31	0.67	0.60	58.0	5.6	29.
AAD63195		0.29	0.09	0.29	400	<0.01	<5	117	0.19	0.29	0.84	0.08	14.4	1.5	36.
AAD63196		0.41	0.10	0.69	118	<0.01	<5	128	0.31	0.57	1.22	0.68	61.7	3.7	27.3
AAD63197		0.53	0.03	0.74	325	<0.01	<5	191	0.33	0.10	0.78	0.33	63.3	5.4	20.9
AAD63198		0.34	0.34	0.24	9.6	<0.01	<5	25	0.16	0.50	0.05	0.04	10.6	1.9	21.
AAD63199		0.09	0.35	1.13	4.6	<0.01	<5	92	0.20	0.05	0.76	0.22	11.8	8.6	22.
AAD63601		0.75	0.16	0.08	12.3	0.02	<5	23	0.19	0.13	0.30	0.36	3.85	1.6	18.
AA063602		0.53	0.04	0.17	5.1	<0.01	<5	10	<0.05	0.04	0.02	0.01	1.57	0.4	42/
AAD63603		0.40	0.09	2.20	7.5	<0.01	<5	104	0.42	0.21	0.20	0.06	41.4	2.7	47.
AAD63604		0.43	0.20	1.05	7.8	<0.01	<5	124	0.24	0.12	0.28	0.07	32.8	1.1	33.
AAD63605		0.83	0.20	0.59	3.8	<0.01	<5	26	0.09	0.04	0.23	0.07	4.49	1.0	39.
AAD63606		0.46	0.28	2.59	2.6	<0.01	<5	185	0.62	0.19	0.43	0.10	19.2	4.5	46.
AA063607		0.34	0.15	1.75	24.9	<0.01	<5	69	0.51	0.72	0.08	0.02	43.0	3.2	37.
AAD63608		0.59	0.04	0.52	11.0	<0.01	<5	42	<0.05	0.04	0.07	0.03	5.95	1.2	52.
AAD63609		0.71	0.17	0.35	82.9	<0.01	<5	59	0.22	0.62	0.23	0.08	2.88	0.9	20.
AA063610		0.57	0.12	1.85	13.7	<0.01	<5	68	0.44	0.48	0.14	0.03	19.8	18.8	37.
AAD63611		0.43	0.06	1.35	6.5	<0.01	<5	292	0.39	0.05	0.40	0.05	70.7	5.3	24.5
AA063612		0.30	0.35	0.43	4.9	<0.01	6	125	0.65	0.07	0.18	0.36	77.6	3.6	30.
AAD63613		0.33	0.07	0.87	4.3	<0.01	<5	136	0.24	0.49	0.48	0.11	52.4	2.4	31.
AAD63614		0.40	11.4	0.11	24.0	0.11	<5	42	0.17	1070	0.33	0.36	16.4	1.4	38.
AAD63615		0.36	0.29	0.01	1120	0.20	<5	19	<0.05	10.7	0.07	0.50	0.56	1.7	58.
AAD63616		0.27	0.08	0.58	9.9	<0.01	<5	23	0.23	2.36	0.38	0.10	77.3	1.3	21.
AAD63617		0.37	0.37	0.25	28.4	<0.01	<5	157	0.30	1.80	2.89	0.19	38.4	2.6	12.
AA064251		0.42	0.06	0.39	7.1	<0.01	<5	114	0.27	0.56	0.73	0.25	46.5	2.6	33.
AA064252		0.19	0.02	0.04	2.5	<0.01	<5	37	<0.05	0.09	0.02	0.02	5.77	0.7	52.
AA064253		0.55	0.08	1.30	4.8	<0.01	<5	254	0.27	0.16	0.64	0.09	83.3	4.9	24.3
AA064254		0.33	0.07	1.13	4.5	<0.01	<5	38	0.29	0.28	0.10	0.02	23.3	1.5	43.
AA064255		0.27	0.09	0.04	3.3	<0.01	<5	22	<0.05	0.17	0.01	0.16	0.64	0.6	44.
AAD64256		0.94	1.79	0.21	24.3	<0.01	<5	79	0.21	3.16	1.56	2.10	33.2	1.0	24.

Certified By:

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 3 of 22

PROJECT NO: MCC-2012-NK-2368

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MI	NING GROU	JP IN						ATTEN	TION TO:	ANDREW	CALDWEI	L		
			Aqua	Regia I	Digest - M	letals Pa	ickage, l	CP/ICP-I	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Rock	
	Analyte:	Sample Login Weight	Au	AI	As	Au	в	Ba	Be	ы	Ca	Cd	Ce	Co	Cr
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AA064257		0.51	0.08	1.60	5.1	<0.01	<5	150	0.48	0.23	0.04	0.03	29.2	2.0	64.5
AA064258		0.85	0.02	0.69	27.7	<0.01	<5	63	0.29	0.03	2.05	0.10	75.6	5.7	38.9
AA064259		0.21	0.10	0.37	191	0.66	<5	121	0.23	3.33	0.09	0.06	22.8	1.0	26.7
AA064551		0.43	0.04	0.74	20.5	<0.01	<5	33	0.20	0.08	1.78	0.11	30.8	1.8	36.5
AA064552		0.77	0.01	0.11	136	<0.01	<5	36	0.10	0.07	0.95	0.06	11.0	1.4	38.6
AA064553		1.11	0.01	0.22	13.3	<0.01	<5	62	0.25	0.02	0.52	0.04	39.9	1.2	38.9
AA064554		2.41	0.06	0.03	3410	0.04	<5	20	<0.05	2.41	0.05	0.05	3.07	2.8	51.1
AA064555		0.26	0.06	1.63	82.2	<0.01	<5	354	0.28	0.05	0.44	0.08	71.8	5.4	31.5
AA064556		1.00	0.03	2.77	26.2	<0.01	<5	43	0.16	0.04	1.84	0.04	4.90	23.2	118
AA064557		0.98	0.05	0.28	27.6	<0.01	<5	79	0.29	0.11	0.61	0.10	2.19	2.0	9.3
AA064558		0.80	0.02	0.19	134	<0.01	<5	51	0.15	0.06	0.28	0.05	35.7	0.8	31.3
AA064559		0.81	0.15	0.22	507	0.12	<5	55	0.23	0.86	7.01	0.33	27.4	0.8	11.5
AA064560		1.85	7.40	0.02	>10000	>25	<5	34	<0.05	97.5	0.02	0.16	0.80	229	10.0
AA064561		5.95	0.09	0.25	1120	0.08	<5	84	0.22	0.62	1.39	0.38	32.7	31.6	11.4
AA064562		0.83	0.10	0.87	53.9	<0.01	<5	20	0.06	0.05	0.39	0.04	1.54	11.0	56.1
AAD64600		0.04	0.36	0.37	513	0.23	<5	2300	0.14	0.17	0.96	0.43	13.7	3.5	37.2

Certified By:

1 af stamme

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 4 of 22

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2368

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ INS TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-	MS finis	h (201074	4)				
DATE SAMPLED: Sep 12, 2012 DATE RECEIVED: Sep 11, 2012 DATE REPORTED: Oct 19, 2012 Analyte: Cs Cu Fe Ga Ge Hf Hg In K													IPLE TYPE	Rock	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD63161		0.79	6.5	0.38	0.59	0.10	0.25	0.02	0.070	0.18	1.5	0.8	<0.01	215	0.87
AAD63162		0.92	3.1	0.59	0.81	0.09	<0.02	<0.01	<0.005	0.03	1.3	4.1	0.13	106	1.80
AAD63163		0.32	2.6	0.59	0.38	0.10	0.03	<0.01	<0.005	0.03	1.7	0.8	0.11	208	1.98
AAD63164		0.43	3.7	0.85	0.87	0.11	<0.02	<0.01	<0.005	0.04	4,4	2.8	0.14	94	2.12
AAD63165		0.15	1.6	0.76	0.91	0.13	0.03	<0.01	0.009	0.05	32.2	1.3	0.27	289	1.43
AAD63166		0.11	1.1	0.70	0.54	0.11	0.02	<0.01	0.007	0.06	12.5	0.7	0.02	382	1.41
AAD63167		0.37	0.9	0.72	0.84	0.10	0.06	<0.01	0.012	0.13	9.6	1.2	0.10	467	1.15
AAD63168		0.13	1.3	0.64	0.62	0.09	<0.02	<0.01	0.010	0.03	0.3	1.8	0.29	308	1.61
AAD63169		0.11	3.8	2.07	0.27	0.12	0.05	0.56	0.040	0.06	1.3	1.0	0.01	45	4.18
AA063170		0.35	0.5	1.19	0.59	0.12	0.04	0.01	0.136	0.27	13.3	0.3	0.01	754	0.74
AAD63171		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC
AA063172		0.31	<0.1	1.47	0.60	0.11	0.12	<0.01	0.152	0.27	12.6	0.3	0.02	1150	2.00
AA063173		1.59	<0.1	1.75	5.38	<0.05	0.21	<0.01	0.020	0.36	46.2	15.4	0.42	440	1.16
AAD63174		0.14	⊲0.1	0.30	1.20	<0.05	0.09	<0.01	<0.005	0.01	10.7	2.4	0.12	53	0.99
AAD63175		0.16	0.9	0.40	0.72	0.11	0.02	<0.01	0.007	0.07	21.4	0.6	0.04	213	1.20
AAD63176		0.31	1.1	0.71	2.45	0.13	0.05	<0.01	0.010	0.09	38.7	8.9	0.40	364	0.97
AA063177		0.20	0.4	0.40	1.09	0.12	0.10	<0.01	0.020	0.11	33.0	0.9	0.05	371	0.75
AAD63178		0.43	0.7	0.99	1.57	0.14	0.06	<0.01	0.008	0.20	32.9	1.7	0.07	348	0.58
AAD63179		3.09	0.3	1.87	6.76	0.17	0.11	<0.01	0.014	0.58	38.1	31.6	0.62	360	0.64
AAD63180		0.40	23.9	1.34	1.98	0.13	0.05	<0.01	0.017	0.20	27.4	7.7	0.26	563	0.85
AAD63181		0.08	81.5	23.7	5.12	0.52	0.03	0.05	0.072	<0.01	2.2	3.0	0.10	2210	0.84
AAD63182		3.04	1.3	2.05	6.83	0.14	0.12	<0.01	0.013	0.54	51.0	28.0	0.67	400	0.83
AAD63183		2.60	2.4	2.61	5.39	0.15	0.20	<0.01	0.010	0.56	43.6	24.1	0.76	355	0.92
AAD63184		1.05	19.0	1.90	1.44	0.12	0.04	0.01	0.030	0.31	29.6	5.2	0.40	762	1.20
AAD63185		0.77	5.4	1.24	2.88	0.11	0.05	<0.01	0.016	0.29	25.2	9.7	0.07	416	1.09
AAD63186		1.71	2.0	1.11	3.36	0.12	0.08	<0.01	0.008	0.38	19.8	15.4	0.33	184	0.83
AAD63187		0.38	31.2	2.81	1.80	0.14	0.09	<0.01	0.029	0.24	21.7	3.9	0.15	654	1.26
AAD63188		0.96	29.2	3.05	3.19	0.16	0.10	<0.01	0.022	0.34	30.4	9.3	0.38	517	1.10
AAD63189		1.54	18.1	1.70	4.61	0.14	0.12	<0.01	0.011	0.42	37.9	16.5	0.50	366	0.96
AA063190		0.32	6.8	1.82	0.96	0.13	0.07	<0.01	0.053	0.19	15.5	1.6	0.02	685	1.25
AAD63191		0.51	32.1	3.33	1.32	0.14	0.14	<0.01	0.019	0.26	16.9	3.3	0.04	443	2.09
AA063192		0.49	30.3	2.82	1.93	0.12	0.15	<0.01	0.011	0.24	24.8	6.3	0.15	652	0.90

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 5 of 22

1 ef tomme

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2368

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ INS TEL (905)501-9998 FAX (905)501-0589 http://www.sgstabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

Aqua Regia Digest - Metals Package, ICP/ICP-MS finish (201074) ATE \$AMPLED: Sep 12, 2012 DATE RECEIVED: Sep 11, 2012 DATE REPORTED: Oct 19, 2012 SAMPLE TYPE: Rock															
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTER	D: Oct 19, 2	012	SAN	IPLE TYPE	Rock	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD63193		4.39	0.5	2.17	7.77	0.17	0.19	<0.01	0.023	0.74	36.6	38.6	0.65	460	0.78
AAD63194		0.30	44.9	1.60	1.50	0.13	0.03	<0.01	0.019	0.17	32.9	3.4	0.10	466	1.08
AAD63195		0.28	7.4	0.99	0.74	0.11	0.06	<0.01	0.015	0.23	6.1	1.3	0.03	757	0.76
AAD63196		0.62	3.4	1.49	2.29	0.13	0.06	<0.01	0.041	0.33	34.9	8.0	0.30	884	1.24
AAD63197		0.62	4.1	1.74	2.58	0.13	0.11	<0.01	0.029	0.30	34.8	10.9	0.30	1100	0.72
AAD63198		0.46	19.2	0.51	1.03	0.12	0.28	<0.01	<0.005	0.17	3.9	3.2	0.05	65	0.56
AAD63199		0.30	22.7	1.84	4.13	0.14	0.31	0.04	0.016	0.08	4.5	7.3	0.55	336	3.29
AA063601		0.27	29.7	15.2	4.28	0.48	0.02	<0.01	0.144	<0.01	1.9	0.2	0.32	17700	5.53
AAD63602		0.43	7.5	1.20	0.77	0.10	<0.02	<0.01	<0.005	0.04	0.7	2.2	0.09	85	1.63
AA063603		3.07	26.5	4.38	6.67	0.17	0.06	<0.01	0.018	0.30	21.2	36.4	1.24	578	1.74
AAD63604		5.24	20.2	2.06	5.33	0.14	0.20	<0.01	0.017	0.40	20.1	23.8	0.57	246	1.30
AAD63605		0.73	14.0	1.73	2.12	0.11	0.02	<0.01	0.006	0.10	2.3	9.7	0.33	90	3.86
AAD63606		6.90	25.0	3.60	7.73	0.16	0.04	<0.01	0.025	0.78	9.4	54.9	1.81	354	2.14
AA063607		1.19	30.8	4.98	4.97	0.18	0.09	<0.01	0.007	0.20	23.3	36.3	1.12	155	2.62
AAD63608		0.22	4.6	2.86	1.70	0.14	0.03	<0.01	0.009	0.03	2.9	15.0	0.19	236	1.63
AAD63609		0.82	0.5	0.34	1.45	0.11	0.31	<0.01	<0.005	0.20	1.6	3.2	0.04	61	0.65
AA063610		1.35	29.3	3.90	5.35	0.16	0.08	<0.01	0.009	0.17	10.1	36.6	1.22	342	1.19
AAD63611		3.29	0.3	1.91	6.30	0.17	0.23	<0.01	0.013	0.67	38.5	26.2	0.56	339	0.66
AA063612		1.36	2.1	1.50	1.59	0.15	0.19	0.01	0.017	0.26	39.6	3.4	0.07	514	0.94
AAD63613		1.08	0.2	0.77	3.43	0.17	0.15	<0.01	0.008	0.23	29.0	13.1	0.38	119	0.77
AAD63614		0.21	47.A	0.63	0.44	0.12	0.04	0.01	0.018	0.06	8.2	1.2	0.10	170	1.62
AAD63615		0.07	14.1	0.60	0.06	0.10	<0.02	<0.01	0.193	<0.01	0.3	0.1	0.02	188	1.76
AAD63616		0.66	0.5	0.43	2.52	0.17	0.11	<0.01	0.006	0.03	40.8	5.9	0.24	129	0.51
AAD63617		0.26	8.3	1.68	0.79	0.12	0.10	<0.01	0.038	0.18	20.0	0.9	0.14	1710	0.59
AA064251		0.52	0.7	0.92	1.71	0.13	0.11	<0.01	0.014	0.19	26.3	7.3	0.13	228	1.31
AA064252		0.09	1.9	0.57	0.21	0.12	<0.02	<0.01	<0.005	0.01	2.8	0.3	<0.01	84	1.16
AA064253		2.18	1.6	1.99	6.51	0.16	0.22	<0.01	0.020	0.55	46.6	37.4	0.61	416	0.98
AA064254		2.13	6.5	3.42	3.62	0.17	0.02	<0.01	0.010	0.17	12.3	27.5	0.90	190	1.67
AA064255		2.62	3.0	0.73	0.16	0.10	<0.02	<0.01	0.007	0.02	0.3	0.6	<0.01	97	1.57
AA064256		0.29	30.9	1.16	0.65	0.11	0.08	0.02	0.225	0.15	17.5	1.1	0.18	1190	0.81
AA064257		6.41	7.7	2.73	6.38	0.17	0.05	<0.01	0.016	0.85	15.2	23.7	1.18	190	1.94
AA064258		0.36	0.1	0.72	3 38	0.14	0.10	<0.01	<0.005	0.11	41.3	13.4	0.78	379	0.99

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 6 of 22

et tomara

Ľ

PROJECT NO: MCC-2012-NK-2368

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MIN	IING GROU	JP IN						ATTEN	TION TO:	ANDREW	CALDWE	LL		
			Aqua	Regia D	igest - N	letals Pa	nckage, l	CP/ICP-	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	0 11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAN	IPLE TYPE	Rock	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD64259		0.49	26.9	1.58	1.14	0.13	0.04	<0.01	0.007	0.25	12.8	5.4	0.06	231	1.06
AAD64551		0.17	0.2	1.06	3.20	0.12	0.08	<0.01	0.015	0.05	18.1	12.5	0.91	519	1.23
AA064552		0.11	1.2	0.85	0.54	0.12	0.02	<0.01	0.011	0.04	5.6	1.4	0.19	539	2.24
AAD64553		0.14	0.9	0.33	0.73	0.13	0.05	<0.01	0.008	0.10	22.8	1.4	0.05	223	1.17
AAD64554		0.05	3.2	0.89	0.14	0.12	<0.02	<0.01	0.007	0.02	1.8	0.2	<0.01	177	2.49
AAD64555		3.29	<0.1	1.95	7.54	0.19	0.26	<0.01	0.020	0.79	37.7	32.7	0.64	367	0.48
AAD64556		0.11	18.8	3.14	6.71	0.16	0.16	<0.01	0.013	0.03	2.0	24.6	1.68	514	1.02
AA064557		0.41	1.5	0.91	0.77	0.10	0.35	0.05	0.010	0.19	1.2	0.5	0.08	176	0.30
AAD64558		0.14	0.9	0.24	0.61	0.09	0.04	<0.01	0.020	0.14	20.4	0.8	0.02	144	1.57
AAD64559		0.15	0.5	0.97	0.68	<0.05	0.09	0.02	0.119	0.14	15.5	1.1	0.88	1460	0.38
AAD64560		<0.05	21.3	16.4	0.11	0.46	<0.02	0.05	0.327	0.05	0.5	<0.1	<0.01	46	2.20
AA064561		0.31	13.4	1.43	0.85	0.10	0.11	<0.01	0.060	0.17	18.1	2.0	0.06	962	0.75
AA064562		0.52	53.8	1.81	2.54	0.14	0.12	0.03	0.010	0.02	0.7	14.9	0.70	256	1.71
AAD64600		0.46	34.7	3.41	1.66	0.14	0.37	3.43	0.019	0.09	6.0	2.0	0.03	76	14.1

Certified By:

1 af stamme Page 7 of 22

AGAT CERTIFICATE OF ANALYSIS (V1)

🔛 թթն 👹	Laboratories
---------	--------------

ATTENTION TO: ANDREW CALDWELL

Ľ

et tomare

PROJECT NO: MCC-2012-NK-2368

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	TE SAMPLED: Sep 12, 2012 DATE RECEIVED: Sep 11, 2012 DATE REPORTED: Oct 19, 2012 SAMPLE TYPE: Rock														
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD63161		0.05	0.64	1.5	250	35.4	14.5	<0.001	0.007	0.60	0.1	<0.2	0.5	13.7	<0.01
AAD63162		<0.01	0.14	5.7	193	28.2	2.3	<0.001	<0.005	0.14	0.6	<0.2	<0.2	3.2	<0.01
AAD63163		0.03	0.14	6.8	161	8.0	2.4	<0.001	<0.005	0.23	2.1	<0.2	<0.2	13.0	<0.01
AAD63164		0.03	0.08	6.8	147	5.6	3.2	<0.001	0.014	0.21	1.4	<0.2	<0.2	7.6	<0.01
AAD63165		0.03	0.16	11.7	164	2.0	3.0	<0.001	<0.005	0.50	4.9	<0.2	<0.2	17.2	<0.01
AAD63166		0.04	0.10	6.3	104	1.4	3.1	<0.001	<0.005	0.29	1.7	<0.2	<0.2	4.8	<0.01
AAD63167		0.03	0.11	7.8	279	1.3	7.4	<0.001	<0.005	0.22	1.4	<0.2	<0.2	7.8	<0.01
AAD63168		<0.01	0.11	54.5	51	1.1	2.2	<0.001	<0.005	0.20	1.0	<0.2	<0.2	8.4	<0.01
AAD63169		<0.01	0.16	8.9	113	127	0.9	<0.001	0.190	32.7	0.1	1.3	0.6	7.6	<0.01
AA063170		<0.01	0.07	1.2	500	2.7	14.5	<0.001	0.352	1.05	0.2	0.2	0.8	5.5	<0.01
AAD63171		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC
AA063172		<0.01	0.07	1.2	599	1.0	14.8	<0.001	0.479	1.53	0.3	0.3	0.6	13.6	<0.01
AA063173		0.05	0.57	3.1	537	7.2	34.9	<0.001	<0.005	0.22	3.7	0.3	0.7	99.3	<0.01
AAD63174		0.05	1.67	2.3	210	2.0	1.2	<0.001	<0.005	0.08	0.9	<0.2	1.3	27.8	<0.01
AAD63175		0.06	0.07	3.6	296	0.9	3.8	<0.001	<0.005	0.24	1.0	<0.2	<0.2	14.5	<0.01
AAD63176		0.06	0.29	16.5	466	4.0	5.1	<0.001	<0.005	1.13	3.0	<0.2	<0.2	30.0	<0.01
AA063177		0.07	0.06	4.8	465	1.8	5.4	<0.001	<0.005	0.20	1.0	<0.2	<0.2	17.6	<0.01
AAD63178		0.06	0.15	4.3	547	3.3	11.8	<0.001	<0.005	0.28	1.2	<0.2	<0.2	21.9	<0.01
AAD63179		0.12	2.10	3.3	478	8.7	63.2	<0.001	<0.005	0.18	3.6	<0.2	0.9	55.0	<0.01
AAD63180		0.02	0.23	1.9	461	8.6	14.3	<0.001	0.018	0.80	1.3	<0.2	0.4	46.5	<0.01
AAD63181		<0.01	0.44	<0.2	1290	7.3	1.1	<0.001	0.272	5.37	2.1	7.2	<0.2	9.7	<0.01
AAD63182		0.11	2.67	3.1	573	16.2	48.7	<0.001	0.008	0.41	3.6	0.3	0.9	63.6	<0.01
AAD63183		0.10	2.55	2.8	541	16.0	38.6	<0.001	0.008	0.51	2.8	0.4	0.8	38.9	<0.01
AAD63184		0.03	0.24	3.3	518	485	19.8	<0.001	0.024	2.36	1.2	0.2	0.3	17.9	<0.01
AAD63185		0.02	0.50	2.1	506	9.2	19.8	<0.001	0.020	0.55	1.8	<0.2	0.4	102	<0.01
AAD63186		0.07	2.01	2.5	275	9.2	36.3	<0.001	0.015	0.09	2.1	<0.2	0.6	29.6	<0.01
AAD63187		0.03	0.18	7.8	497	14.6	14.4	<0.001	0.442	5.60	1.4	0.6	0.4	55.6	<0.01
AAD63188		0.03	0.48	7.1	473	7.0	26.1	<0.001	0.284	3.78	1.9	0.6	0.4	30.5	<0.01
AAD63189		0.05	1.20	2.7	518	19.0	35.3	<0.001	0.022	0.30	2.6	0.2	0.5	51.0	<0.01
AAD63190		0.02	0.11	2.3	384	59.5	11.1	<0.001	0.508	9.04	0.8	0.3	0.2	6.8	<0.01
AAD63191		0.03	0.12	2.7	494	43.5	14.6	<0.001	0.643	5.48	0.8	0.4	0.3	8.7	<0.01
AA063192		0.03	0.18	7.7	483	5.6	14.0	<0.001	0.437	0.42	1.2	<0.2	0.3	97.7	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 6 of 22

🔛 🖓	Laboratories
-----	--------------

PROJECT NO: MCC-2012-NK-2368

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MIN	IING GROU	JP IN						ATTEN	TION TO:	ANDREW	CALDWEI	L		
			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SAM	PLE TYPE:	Rock	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD63193		0.15	1.75	3.1	493	13.7	81.0	<0.001	<0.005	0.14	4.7	0.2	1.5	56.4	<0.01
AAD63194		0.06	0.15	3.4	484	19.6	11.1	<0.001	0.011	0.32	1.2	0.3	<0.2	29.9	<0.01
AAD63195		0.03	0.20	2.1	138	3.7	13.2	<0.001	0.018	0.49	0.6	<0.2	0.3	38.4	<0.01
AAD63196		<0.01	0.10	2.0	517	26.1	21.3	<0.001	0.025	0.47	1.1	0.2	0.6	63.5	<0.01
AAD63197		0.01	0.37	3.6	521	6.6	23.9	<0.001	0.006	0.40	1.9	<0.2	0.4	40.8	<0.01
AAD63198		0.04	25.5	1.0	30	33.2	14.7	<0.001	0.018	0.31	0.9	0.9	0.3	5.0	0.03
AAD63199		0.07	0.64	18.4	490	2.3	3.4	0.001	0.042	0.34	5.0	0.4	0.3	32.6	<0.01
AA063601		<0.01	0.42	6.8	990	1.7	0.4	0.004	0.307	4.34	0.5	0.9	0.4	22.2	<0.01
AAD63602		<0.01	0.40	1.5	119	2.8	3.5	<0.001	0.034	0.11	0.6	<0.2	<0.2	3.3	<0.01
AAD63603		0.08	0.17	8.4	877	23.1	35.6	<0.001	0.215	0.34	5.4	0.5	0.2	19.2	<0.01
AA063604		0.09	3.26	1.2	366	9.4	55.7	<0.001	0.057	0.45	4.7	2.2	1.7	45.4	<0.01
AA063605		0.01	0.51	3.7	618	3.8	7.9	<0.001	0.046	0.08	2.1	1.5	<0.2	10.6	<0.01
AAD63606		0.05	0.76	11.7	1760	5.1	80.6	0.001	0.358	0.13	5.0	1.0	0.6	19.0	<0.01
AA063607		0.03	0.10	6.4	716	15.8	16.5	0.001	0.363	1.65	2.0	0.5	<0.2	19.8	<0.01
AAD63608		<0.01	0.33	3.6	514	3.2	2.8	<0.001	0.081	0.43	1.1	0.7	<0.2	5.2	<0.01
AAD63609		0.05	1.18	2.2	51	38.3	18.3	<0.001	0.009	0.21	<0.1	<0.2	0.3	8.3	<0.01
AA063610		0.04	0.11	28.7	647	8.2	15.2	0.001	0.589	0.31	2.3	0.4	<0.2	13.4	<0.01
AAD63611		0.10	2.26	3.7	517	8.8	79.0	<0.001	<0.005	0.15	3.6	<0.2	0.6	43.5	<0.01
AA063612		0.03	0.39	4.4	499	50.7	22.9	<0.001	0.009	1.29	3.5	0.2	<0.2	14.9	<0.01
AAD63613		0.12	2.67	3.1	577	4.4	27.4	<0.001	<0.005	0.18	2.8	<0.2	0.5	51.0	<0.01
AAD63614		0.01	1.05	2.3	86	524	4.0	<0.001	0.026	234	1.7	1.7	<0.2	9.3	<0.01
AAD63615		<0.01	0.54	2.8	13	5.4	0.3	<0.001	0.068	4.07	0.2	<0.2	<0.2	2.2	<0.01
AAD63616		0.10	2.27	3.1	602	4.5	3.7	<0.001	<0.005	0.65	2.4	<0.2	0.5	44.9	<0.01
AAD63617		0.02	0.23	3.7	451	37.4	14.4	<0.001	0.185	1.39	3.6	0.2	0.5	94.0	<0.01
AA064251		0.03	0.84	2.7	348	7.7	15.6	<0.001	<0.005	1.11	1.3	<0.2	<0.2	40.6	<0.01
AA064252		<0.01	0.43	2.0	98	1.3	1.1	<0.001	0.006	0.21	0.4	<0.2	<0.2	2.9	<0.01
AA064253		0.07	3.14	2.7	547	11.2	66.5	<0.001	0.005	0.21	4.2	0.2	0.8	53.6	<0.01
AA064254		0.02	0.22	2.8	986	10.0	18.0	<0.001	0.397	0.20	1.5	0.4	<0.2	17.3	<0.01
AA064255		0.02	0.44	2.0	56	46.5	2.1	<0.001	0.020	0.23	0.1	<0.2	<0.2	14.5	<0.01
AA064256		0.02	0.24	4.3	422	459	9.3	<0.001	0.018	15.1	1.9	0.3	0.3	37.6	<0.01
AA064257		0.02	0.21	5.1	519	6.1	93.9	<0.001	0.298	0.27	7.8	0.7	0.2	11.9	<0.01
AAD64258		0.03	0.18	31.6	2100	8.9	11.8	<0.001	<0.005	0.24	9.7	0.5	<0.2	69.6	<0.01

Certified By:

Page 9 of 22

Ľ

4 Jameson

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2368

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

NTION TO AND DOLLAR DWELL

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN						ATTEN	TION TO:	ANDREW	CALDWEI	L		
			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	PLE TYPE:	Rock	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AA064259		0.01	0.30	1.6	331	2.4	18.3	<0.001	0.016	0.68	0.7	<0.2	0.4	5.4	<0.01
AA064551		0.02	0.66	7.1	258	3.6	4.1	<0.001	<0.005	0.23	3.6	<0.2	<0.2	103	<0.01
AA064552		<0.01	0.36	4.5	79	0.8	2.5	<0.001	<0.005	0.66	1.1	<0.2	<0.2	20.2	<0.01
AA064553		0.03	0.29	4.8	359	1.1	5.6	<0.001	<0.005	0.21	0.6	<0.2	<0.2	15.8	<0.01
AAD64554		<0.01	0.50	2.8	41	6.3	1.2	<0.001	0.066	2.81	0.1	<0.2	<0.2	2.3	<0.01
AAD64555		0.12	2.58	3.8	513	8.0	104	<0.001	<0.005	0.13	4.5	<0.2	1.2	53.2	<0.01
AAD64556		0.01	0.43	50.2	628	0.4	2.3	<0.001	<0.005	0.10	4.4	0.2	0.3	6.3	<0.01
AAD64557		0.02	0.36	2.5	62	8.9	13.7	<0.001	0.440	1.29	0.2	<0.2	<0.2	8.8	<0.01
AAD64558		<0.01	0.41	1.6	173	0.5	7.8	<0.001	<0.005	0.14	0.2	<0.2	0.5	11.8	<0.01
AA064559		<0.01	0.20	1.3	543	8.7	9.7	<0.001	0.013	1.10	7.8	0.4	0.3	387	<0.01
AA064560		<0.01	0.56	23.0	43	43.4	1.5	<0.001	5.58	165	0.2	7.2	<0.2	19.4	<0.01
AAD64561		<0.01	0.48	5.9	509	2.3	10.8	<0.001	0.074	1.02	1.2	<0.2	0.4	51.9	<0.01
AA064562		0.01	0.64	15.6	183	3.7	2.5	<0.001	0.084	0.44	3.5	0.2	0.4	7.0	<0.01
AAD64600		0.02	0.23	15.3	134	15.4	4.4	0.002	0.246	36.5	1.2	1.2	1.4	97.6	<0.01

Certified By:

1 af stommer

Page 10 of 22

AGAT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2368

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-9589 http://www.sgatisbs.com

ATTENTION TO: ANDREW CALDWELL

CLIENT NAME: PREDATOR MINING GROUP IN

	Aqua Regia Digest - Metals Package, ICP/ICP-MS finish (201074) TE \$AMPLED: \$ep 12, 2012 DATE RECEIVED: \$ep 11, 2012 DATE REPORTED: Oct 19, 2012 \$AMPLE TYPE: Rock														
DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAMPLE TYPE: Rock			
	Analyte:	Те	Th	т	п	U	v	w	Y	Zn	Zr	As-OL			
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*			
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	0.01			
AAD63161		<0.01	3.6	<0.005	0.07	8.79	<0.5	0.26	1.90	124	4.5				
AA063162		<0.01	0.5	<0.005	0.04	0.13	2.7	<0.05	1.02	36.4	<0.5				
AAD63163		<0.01	1.4	<0.005	0.03	0.23	3.1	0.08	1.84	23.3	0.6				
AAD63164		<0.01	2.4	<0.005	0.04	0.35	6.7	<0.05	1.01	24.1	<0.5				
AAD63165		<0.01	17.4	<0.005	0.03	1.75	35.7	<0.05	2.00	8.5	0.9				
AAD63166		<0.01	5.0	<0.005	0.03	0.58	4.7	0.07	1.68	5.1	0.8				
AAD63167		< 0.01	8.6	<0.005	0.07	1.34	3.6	0.16	3.12	11.5	1.6				
AAD63168		< 0.01	0.6	<0.005	0.02	0.11	14.3	0.17	2.21	7.1	<0.5				
AAD63169		<0.01	0.4	<0.005	3.37	0.45	2.1	0.16	0.31	123	2.3				
AA063170		<0.01	26.2	<0.005	0.13	0.55	<0.5	0.32	2.13	5.3	1.4				
AA063171		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC				
AA063172		<0.01	25.6	<0.005	0.11	1.43	<0.5	0.35	3.12	12.4	3.3				
AA063173		<0.01	19.5	0.033	0.17	3.51	7.2	0.13	9.52	36.7	5.4				
AA063174		<0.01	5.6	0.039	<0.01	0.75	2.2	0.57	2.41	3.3	1.7				
AA063175		< 0.01	12.1	<0.005	0.04	0.57	<0.5	0.13	2.51	4.4	0.9				
AAD63176		<0.01	20.6	0.005	0.05	1.00	5.7	0.19	4.03	14.8	2.3				
AA063177		<0.01	22.8	<0.005	0.05	1.09	0.9	0.17	2.76	6.2	3.4				
AAD63178		<0.01	21.4	<0.005	0.08	2.06	<0.5	0.13	4.37	11.4	1.8				
AAD63179		<0.01	21.3	0.120	0.42	4.82	11.1	0.32	4.61	48.1	2.6				
AA063180		< 0.01	19.8	<0.005	0.11	4.18	<0.5	0.12	4.71	70.4	1.1				
AAD63181		0.19	0.8	0.005	0.05	0.26	26.2	0.08	3.34	56.8	1.1				
AAD63182		<0.01	25.3	0.126	0.33	6.62	12.4	0.28	7.22	54.2	2.1				
AAD63183		<0.01	24.4	0.131	0.25	4.49	7.7	0.28	5.25	42.2	3.9				
AA063184		< 0.01	17.7	0.013	0.14	4.21	1.9	0.12	3.87	26.1	1.3				
AAD63185		<0.01	19.1	<0.005	0.20	4.35	<0.5	0.13	4.44	515	1.5				
AAD63186		<0.01	11.1	0.073	0.24	2.73	5.3	0.11	2.75	23.5	1.4				
AAD63187		0.08	18.4	<0.005	0.18	4.62	<0.5	0.18	4.30	19.9	2.0	1.25			
AAD63188		0.07	22.2	0.019	0.21	3.33	3.0	0.15	4.46	28.0	2.2	1.21			
AAD63189		<0.01	21.2	0.059	0.23	4.46	7.6	0.34	6.86	33.6	2.3				
AA063190		0.02	16.7	<0.005	0.13	3.62	<0.5	0.13	3.26	58.2	2.1				
AA063191		0.04	19.0	<0.005	0.20	2.90	<0.5	0.17	3.05	20.2	3.5				
AA063192		<0.01	16.9	<0.005	0.08	4.07	<0.5	0.10	4.73	19.6	3.5				

Certified By:

Page 11 of 22

af tomara

Ľ

AC AT CERTIFICATE OF ANALYSIS (V1)

<0.01

<0.01

<0.01

< 0.01

<0.01

0.03

< 0.01

0.01

0.05

<0.01

25.5

20.1

15.9

1.3

29.6

9.2

0.5

15.9

12.9

16.0

0.064

<0.005

0.012

<0.005

0.137

0.006

<0.005

<0.005

0.087

<0.005

0.02

0.06

0.08

<0.01

0.40

0.16

0.09

0.06

0.70

0.07

3.07

3.81

4.02

0.13

5.31

0.79

0.07

2.86

0.84

1.22

5.7

<0.5

1.2

1.6

11.6

17.4

<0.5

<0.5

87.6

25.1

Certificate of Analysis AGAT WORK ORDER: 12Y640856

DDO IDOT NO. MOO DAVA NIK DADA

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 bs.com

						PROJECI	NO: MC	C-2012-N	N-2368				http://www.accaliah
CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN						ATTEN	TION TO:	ANDREW	CALDWELL	
			Aqua	a Regia D)igest - N	letals Pa	ckage, l	CP/ICP-	NS finish	n (201074	4)		
DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SAMPLE	TYPE: Rock
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr	As-OL	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	0.01	
AAD63193		<0.01	24.9	0.146	0.54	14.6	14.0	0.14	4.92	55.8	3.4		
AAD63194		<0.01	20.6	<0.005	0.11	6.46	<0.5	0.10	4.61	147	1.0		
AAD63195		<0.01	7.3	<0.005	0.07	3.18	<0.5	0.08	2.68	9.6	1.6		
AAD63196		<0.01	23.6	<0.005	0.11	4.05	<0.5	0.17	4.51	166	1.4		
AAD63197		<0.01	23.4	0.006	0.12	4.01	0.6	0.14	5.38	81.0	2.5		
AAD63198		<0.01	19.6	0.012	0.08	25.2	0.6	1.32	27.7	8.7	4.1		
AAD63199		0.02	1.2	0.110	0.06	0.31	41.3	27.9	7.34	35.4	7.9		
AA063601		0.09	0.4	<0.005	<0.01	0.36	<0.5	0.82	1.40	190	1.3		
AAD63602		0.02	0.6	<0.005	0.04	0.10	3.3	<0.05	0.45	6.7	<0.5		
AAD63603		0.04	14.3	0.025	0.31	1.05	44.5	<0.05	3.57	62.9	2.4		
AA063604		0.03	19.6	0.116	0.37	2.99	12.3	0.63	3.72	51.6	4.5		
AA063605		0.02	2.0	0.016	0.09	0.80	21.4	0.07	3.83	23.4	0.8		
AAD63606		0.04	13.5	0.064	0.74	1.04	34.7	0.06	9.19	68.5	1.2		
AAD63607		0.05	13.2	<0.005	0.12	1.22	26.7	0.06	2.25	59.0	6.9		
AAD63608		<0.01	1.5	<0.005	0.01	0.15	5.4	<0.05	1.02	41.6	1.2		
AA063609		<0.01	1.5	<0.005	0.09	3.09	<0.5	0.07	0.22	35.0	4.3		
AA063610		0.04	17.1	0.005	0.10	0.89	28.9	0.06	4.51	61.6	3.3		
AAD63611		<0.01	23.1	0.116	0.35	7.81	11.7	0.08	4.69	41.6	5.0		
AAD63612		<0.01	24.9	<0.005	0.14	7.28	0.9	0.05	5.03	51.6	5.1		
AAD63613		<0.01	17.5	0.102	0.11	2.81	10.4	0.28	4.67	20.4	3.3		
AAD63614		0.03	4.3	<0.005	0.03	1.41	<0.5	0.13	2.78	51.6	1.0		
AA063615		<0.01	0.3	<0.005	<0.01	0.11	<0.5	<0.05	0.72	135	<0.5		

Certified By:

0.27

0.33

0.64

<0.05

0.19

<0.05

<0.05

0.12

<0.05

0.10

4.07

7.26

3.55

0.39

7.80

3.32

0.29

7.11

2.43

21.4

9.8

39.5

30.5

8.3

57.6

53.1

56.1

396

48.0

24.5

2.6

3.2

2.6

<0.5

3.5

1.0

<0.5

2.7

2.3

2.4

Ľ

el tomara

Page 12 of 22

CERTIFICATE OF ANALYSIS (V1)

AAD63616

AAD63617

AA064251

AA064252

AA064253

AA064254

AAD64255

AAD64256

AAD64257

AAD64258

Certificate of Analysis

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ INS TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

AGAT WORK ORDER: 12Y640856
 PROJECT NO: MCC-2012-NK-2368
ATTENTION TO: ANDREW CALDWELL

	Aqua Regia Digest - Metals Package, ICP/ICP-MS finish (201074)													
DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SA	MPLE TYPE: Rock	
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr	As-OL		
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%		
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	0.01		
AA064259		<0.01	12.0	<0.005	0.09	3.16	<0.5	0.20	2.26	11.4	0.9			
AA064551		<0.01	11.5	0.012	0.04	1.33	10.9	0.13	3.13	29.8	2.1			
AA064552		<0.01	1.6	<0.005	0.02	0.78	2.2	0.09	1.49	5.6	0.8			
AAD64553		<0.01	15.4	<0.005	0.03	0.90	<0.5	0.14	2.72	3.2	1.4			
AA064554		<0.01	1.3	<0.005	0.02	0.21	<0.5	<0.05	0.39	4.3	<0.5			
AA064555		<0.01	24.3	0.168	0.49	4.09	14.4	0.08	5.01	50.0	4.2			
AA064556		<0.01	0.4	0.174	0.01	0.05	80.1	0.05	5.15	48.9	3.7			
AA064557		<0.01	1.4	<0.005	0.08	1.25	<0.5	<0.05	0.83	24.4	6.8			
AAD64558		<0.01	3.8	<0.005	0.04	0.53	<0.5	0.14	1.13	5.1	1.0			
AA064559		<0.01	19.8	<0.005	0.05	3.42	<0.5	0.14	18.4	31.1	2.9			
AA064560		0.35	0.5	<0.005	0.03	0.47	<0.5	<0.05	0.58	18.8	<0.5	22.3		
AA064561		<0.01	20.2	<0.005	0.06	4.11	<0.5	0.23	4.09	96.6	3.1			
AA064562		<0.01	0.4	0.070	0.03	0.12	35.7	50.1	1.96	39.3	0.5			
AAD64600		0.07	1.5	0.007	13.6	1.58	23.2	14.1	2.02	21.8	11.5			

Comments: RDL - Reported Detection Limit

Certified By:

1 ef stommer

Page 13 of 22

AC AT CERTIFICATE OF ANALYSIS (V1)

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis													
RPT Date: Oot 19, 2012	RPT Date: Oot 19, 2012 REPLICATE REFERENCE MATERIAL												
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	Upper		
Aqua Regia Digest - Metais Paokage, K	CP/ICP-M8	finich (2010)	74)										
Ag	1	3698839	0.053	0.043	20.8%	< 0.01	11.7	13.0	90%	80%	120%		
AI .	1	3698827	0.215	0.228	5.9%	< 0.01				80%	120%		
As	1	3698839	4.8	4.6	4.3%	< 0.1				80%	120%		
Au	1	3698839	< 0.01	< 0.01	0.0%	< 0.01				80%	120%		
B	1	3698839	< 5	< 5	0.0%	< 5	5.66	7.00	81%	80%	120%		
Ba	1	3698827	32	34	6.1%	< 1				80%	120%		
Be	1	3698839	0.422	0.413	2.2%	< 0.05				80%	120%		
BI	1	3698839	0.033	0.037	11.4%	< 0.01				80%	120%		
Ca	1	3698827	0.21	0.22	4.7%	< 0.01				80%	120%		
Cd	1	3698839	0.06	0.06	0.0%	< 0.01				80%	120%		
Ce	1	3698839	83.2	83.1	0.1%	< 0.01				80%	120%		
Co	1	3698839	4.4	4.4	0.0%	< 0.1				80%	120%		
Cr	1	3698827	31.8	34.7	8.7%	< 0.5				80%	120%		
Cs	1	3698839	1.59	1.62	1.9%	< 0.05				80%	120%		
Cu	1	3698827	6.54	5.74	13.0%	< 0.1	5838	6000	97%	80%	120%		
Fe	1	3698827	0.38	0.40	5.1%	< 0.01				80%	120%		
Ga	1	3698839	5.38	5.37	0.2%	< 0.05				80%	120%		
Ge	1	3698839	< 0.05	< 0.05	0.0%	< 0.05				80%	120%		
H	1	3698839	0.21	0.21	0.0%	< 0.02				80%	120%		
Hg	1	3698839	< 0.01	< 0.01	0.0%	< 0.01				80%	120%		
in .	1	3698839	0.0195	0.0189	3.1%	< 0.005				80%	120%		
к	1	3698827	0.18	0.19	5.4%	< 0.01				80%	120%		
La	1	3698839	46.2	45.6	1.3%	< 0.1				80%	120%		
u	1	3698839	15.4	14.9	3.3%	< 0.1				80%	120%		
Mg	1	3698827	< 0.01	< 0.01	0.0%	< 0.01				80%	120%		
Mn	1	3698827	215	231	7.2%	< 1				80%	120%		
Mo	1	3698839	1.16	1.15	0.9%	< 0.05	334	360	92%	80%	120%		
Na	1	3698827	0.05	0.05	0.0%	< 0.01				80%	120%		
Nb	1	3698839	0.57	0.48	17.1%	< 0.05				80%	120%		
NI	1	3698827	1.5	1.6	6.5%	< 0.2				80%	120%		
P	1	3698827	250	270	7.7%	< 10	631	600	105%	80%	120%		
Pb	1	3698839	7.20	7.35	2.1%	0.2				80%	120%		
Rb	1	3698839	34.9	33.8	3.2%	< 0.1				80%	120%		
Re	1	3698839	< 0.001	< 0.001	0.0%	< 0.001				80%	120%		
8	1	3698827	0.007	0.007	0.0%	< 0.005				80%	120%		
Sb	1	3698839	0.22	0.21	4.7%	< 0.05				80%	120%		
Sc	1	3698839	3.7	3.7	0.0%	< 0.1				80%	120%		
Se	1	3698839	0.3	0.3	0.0%	< 0.2				80%	120%		
Sn	1	3698839	0.7	0.7	0.0%	< 0.2				80%	120%		
8r	1	3698839	99.3	96.8	2.5%	< 0.2				80%	120%		
Та	1	3698839	< 0.01	< 0.01	0.0%	< 0.01				80%	120%		
Те	1	3698839	< 0.01	< 0.01	0.0%	< 0.01				80%	120%		
Th	1	3698839	19.5	20.4	4.5%	< 0.1	1.1	1.4	80%	80%	120%		
п	1	3698827	< 0.005	< 0.005	0.0%	< 0.005				80%	120%		
AGAT QUALITY ASSURANCE R	EPORT (V1	0								Page	14 of 22		

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	ATE				REFER	ENCE MATE	RIAL	
PARAMETER	Batch	Sample M	Original	Rep #1	890	Method Blank	Result	Expect	Recovery	Accepta	ble Limita
							Value	Value		Lower	Upper
п	1	3698839	0.17	0.17	0.0%	< 0.01				80%	120%
U	1	3698839	3.51	3.30	6.2%	< 0.05				80%	120%
v	1	3698827	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
w	1	3698839	0.13	0.10	26.1%	< 0.05				80%	120%
Y	1	3698839	9.52	9.15	4.0%	< 0.05	6	7	85%	80%	120%
Zn	1	3698827	124	135	8.5%	< 0.5				80%	120%
Zr	1	3698839	5.39	5.24	2.8%	< 0.5				80%	120%
Aqua Regia Digest - Metais Paokage, IC	P/ICP-M8	finish (20107	74)								
Ag	1	3698843	0.02	0.03		< 0.01	10.7	13.0	82%	80%	120%
A	1	3698843	0.25	0.25	0.0%	< 0.01				80%	120%
As	1	3698843	10.9	11.1	1.8%	0.5				80%	120%
Au	1	3698843	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
B	1	3698843	<5	< 5	0.0%	< 5	6.48	7.00	93%	80%	120%
Ba	1	3698843	64	63	1.6%	<1				80%	120%
Be	1	3698843	0.22	0.22	0.0%	< 0.05				80%	120%
BI	1	3698843	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Ca	1	3698843	0.74	0.74	0.0%	< 0.01	2.31	2.21	105%	80%	120%
Cd	1	3698843	0.051	0.056	9.3%	< 0.01				80%	120%
Ce	1	3698843	57.3	54.5	5.0%	< 0.01				80%	120%
Co	1	3698843	1.2	1.2	0.0%	< 0.1				80%	120%
Cr	1	3698843	28.4	29.0	2.1%	< 0.5				80%	120%
Cs	1	3698843	0.20	0.20	0.0%	< 0.05				80%	120%
Cu	1	3698843	0.4	0.4	0.0%	< 0.1	5666	6000	94%	80%	120%
Fe	1	3698843	0.403	0.405	0.5%	< 0.01				80%	120%
Ga	1	3698843	1.09	1.07	1.9%	< 0.05				80%	120%
Ge	1	3698843	0.12	0.12	0.0%	0.08				80%	120%
Hr	1	3698843	0.102	0.094	8.2%	< 0.02				80%	120%
Hg	1	3698843	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
In	1	3698843	0.020	0.020	0.0%	< 0.005				80%	120%
ĸ	1	3698843	0.11	0.11	0.0%	< 0.01				80%	120%
La	1	3698843	33.0	32.1	2.8%	< 0.1				80%	120%
u	1	3698843	0.9	0.9	0.0%	< 0.1				80%	120%
Mg	1	3698843	0.05	0.05	0.0%	< 0.01				80%	120%
Mn	1	3698843	371	378	1.9%	<1				80%	120%
Mo	1	3698843	0.75	0.85	12.5%	< 0.05	291	360	80%	80%	120%
Na	1	3698843	0.07	0.07	0.0%	< 0.01				80%	120%
Nb	1	3698843	0.06	0.06	0.0%	< 0.05				80%	120%
N	1	3698843	4.76	4.71	1.1%	< 0.2				80%	120%
P	1	3698843	465	465	0.0%	< 10	507	600	84%	80%	120%
Pb	1	3698843	1.8	1.8	0.0%	< 0.1				80%	120%
Rb	1	3698843	5.4	5.4	0.0%	< 0.1				80%	120%
Re	1	3698843	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
8	1	3698843	< 0.005	< 0.005	0.0%	< 0.005				80%	120%

CAL QUALITY ASSURANCE REPORT (V1)

Results relate only to the items tested and to all the items tested

Page 16 of 22

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	Upper
Sb	1	3698843	0.20	0.20	0.0%	< 0.05				80%	120%
Sc	1	3698843	1.0	1.0	0.0%	< 0.1				80%	120%
Se	1	3698843	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
Sn	1	3698843	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
8r	1	3698843	17.6	17.9	1.7%	< 0.2				80%	120%
Та	1	3698843	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3698843	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Th	1	3698843	22.8	22.2	2.7%	< 0.1	1.2	1.4	88%	80%	120%
п	1	3698843	< 0.005	< 0.005	0.0%	< 0.005				80%	120%
T	1	3698843	0.05	0.05	0.0%	< 0.01				80%	120%
U	1	3698843	1.09	1.23	12.1%	< 0.05				80%	120%
v	1	3698843	0.9	0.9	0.0%	< 0.5				80%	120%
w	1	3698843	0.168	0.164	2.4%	< 0.05				80%	120%
Y	1	3698843	2.76	2.84	2.9%	< 0.05		7		80%	120%
Zn	1	3698843	6.21	5.81	6.7%	< 0.5				80%	120%
Zr	1	3698843	3.44	3.56	3.4%	< 0.5				80%	120%
Aqua Regia Digest - Metals Package, K	CP/ICP-M8	finish (2010)	74)								
Ag	1	3698852	0.08	0.08	0.0%	< 0.01	12.2	13.0	94%	80%	120%
N	1	3698852	0.763	0.777	1.8%	< 0.01				80%	120%
As	1	3698852	8.8	7.0	22.8%	< 0.1				80%	120%
Au	1	3698852	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
B	1	3698852	<5	< 5	0.0%	< 5	7.05	7.00	101%	80%	120%
Ba	1	3698852	133	137	3.0%	<1				80%	120%
Be	1	3698852	0.18	0.18	0.0%	< 0.05				80%	120%
BI	1	3698852	0.502	0.607	18.9%	< 0.01				80%	120%
Ca	1	3698852	0.322	0.330	2.5%	< 0.01				80%	120%
Cd	1	3698852	0.025	0.024	4.1%	< 0.01				80%	120%
Ce	1	3698852	36.5	35.7	2.2%	< 0.01				80%	120%
Co	1	3698852	2.48	2.56	3.2%	< 0.1				80%	120%
Cr	1	3698852	40.7	42.9	5.3%	< 0.5				80%	120%
Cs	1	3698852	1.71	1.71	0.0%	< 0.05				80%	120%
Cu	1	3698852	2.0	2.0	0.0%	< 0.1	5845	6000	97%	80%	120%
Fe	1	3698852	1.11	1.14	2.7%	< 0.01				80%	120%
Ga	1	3698852	3.36	3.47	3.2%	< 0.05				80%	120%
Ge	1	3698852	0.12	0.12	0.0%	< 0.05				80%	120%
Hf	1	3698852	0.08	0.08	0.0%	< 0.02				80%	120%
Hg	1	3698852	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
in .	1	3698852	0.008	0.008	0.0%	< 0.005				80%	120%
к	1	3698852	0.382	0.387	1.3%	< 0.01				80%	120%
La	1	3698852	19.8	19.5	1.5%	< 0.1				80%	120%
u	1	3698852	15.4	16.1	4.4%	< 0.1				80%	120%
Mg	1	3698852	0.329	0.336	2.1%	< 0.01				80%	120%
Mn	1	3698852	184	188	2.2%	< 1				80%	120%
Mo	1	3698852	0.83	0.92	10.3%	< 0.05	339	360	94%	80%	120%
AGAT QUALITY ASSURANCE R	EPORT (V1	1)								Page	16 of 22

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample M	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Acceptal	ble Limits
							Value	Value	,	Lower	Upper
Na	1	3698852	0.07	0.07	0.0%	< 0.01				80%	120%
Nb	1	3698852	2.01	2.11	4.9%	< 0.05				80%	120%
NI	1	3698852	2.5	2.5	0.0%	< 0.2				80%	120%
P	1	3698852	275	281	2.2%	< 10	621	600	104%	80%	120%
Pb	1	3698852	9.2	9.2	0.0%	< 0.1				80%	120%
Rb	1	3698852	36.3	37.6	3.5%	< 0.1				80%	120%
Re	1	3698852	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
8	1	3698852	0.015	0.015	0.0%	< 0.005				80%	120%
Sb	1	3698852	0.09	0.09	0.0%	< 0.05				80%	120%
Sc	1	3698852	2.1	2.2	4.7%	< 0.1				80%	120%
Se	1	3698852	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
Sn	1	3698852	0.65	0.68	4.5%	< 0.2				80%	120%
Sr	1	3698852	29.6	30.8	4.0%	< 0.2				80%	120%
Та	1	3698852	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Te	1	3698852	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Th	1	3698852	11.1	11.0	0.9%	< 0.1	1.5	1.4	105%	80%	120%
п	1	3698852	0.073	0.074	1.4%	< 0.005				80%	120%
π	1	3698852	0.245	0.246	0.4%	< 0.01				80%	120%
u .	1	3698857	2 73	2 72	0.4%	< 0.05				80%	120%
v	1	3698852	5.33	5.36	0.6%	< 0.5				80%	120%
w	1	3698852	0.107	0.104	2.8%	< 0.05				80%	120%
Y	1	3698852	2.75	2.82	2.5%	< 0.05				80%	120%
Zn	1	3698852	23.5	23.6	0.4%	< 0.5				80%	120%
Zr	1	3698852	1.4	1.4	0.0%	< 0.5				80%	120%
Aqua Regia Digest - Metais Package, IC	P/ICP-M8	finish (2010)	74)								
Ag	1	3698878	0.07	0.06	15.4%	< 0.01	11.3	13.0	87%	80%	120%
N	1	3698878	0.87	0.87	0.0%	< 0.01				80%	120%
As	1	3698878	4.3	4.2	2.4%	< 0.1				80%	120%
Au	1	3698878	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
8	1	3698878	< 5	< 5	0.0%	< 5	6.16	7.00	88%	80%	120%
Ba	1	3698878	136	139	2.2%	<1				80%	120%
Be	1	3698878	0.24	0.24	0.0%	< 0.05				80%	120%
BI	1	3698878	0.49	0.51	4.0%	< 0.01				80%	120%
Ca	1	3698878	0.48	0.48	0.0%	< 0.01				80%	120%
Cd	1	3698878	0.11	0.11	0.0%	< 0.01				80%	120%
Ce	1	3698878	52.4	52.9	0.9%	< 0.01				80%	120%
Co	1	3698878	2.4	2.4	0.0%	< 0.1				80%	120%
Cr	1	3698878	31.1	30.6	1.6%	< 0.5				80%	120%
Cs	1	3698878	1.08	1.07	0.9%	< 0.05				80%	120%
Cu	1	3698878	0.2	0.2	0.0%	< 0.1	5708	6000	95%	80%	120%
Fe	1	3698878	0.774	0.787	1.7%	< 0.01				80%	120%
Ga	1	3698878	3.43	3.50	2.0%	< 0.05				80%	120%
Ge	1	3698878	0.166	0.164	1.2%	< 0.05				80%	120%
H	1	3698878	0.15	0.15	0.0%	< 0.02				80%	120%
AGAT QUALITY ASSURANCE REPORT (V1) Page 17 of 22											
		Results rela	ate only to the	nems tested	and to all	me nems tested					

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta	ble Limits
Hg	1	3698878	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
		3000070	0.009	0.009	0.0%	< 0.005				0.066	12096
ĸ	- i	3698878	0.235	0.238	1.3%	< 0.01				80%	120%
La	1	3698878	29.0	29.0	0.0%	< 0.1				80%	120%
u	1	3698878	13.1	13.3	1.5%	< 0.1				80%	120%
Mg	1	3698878	0.381	0.387	1.6%	< 0.01				80%	120%
Mn	1	3698878	119	119	0.0%	<1				80%	120%
Mo	1	3698878	0.773	0.715	7.8%	< 0.05	327	360	90%	80%	120%
Na	1	3698878	0.12	0.12	0.0%	< 0.01				80%	120%
Nb	1	3698878	2.67	2.57	3.8%	< 0.05				80%	120%
NI	1	3698878	3.1	3.1	0.0%	< 0.2				80%	120%
P	1	3698878	577	592	2.6%	< 10	605	600	101%	80%	120%
Pb	1	3698878	4.36	4.27	2.1%	< 0.1				80%	120%
Rb	1	3698878	27.4	27.6	0.7%	< 0.1				80%	120%
Re	1	3698878	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
8	1	3698878	< 0.005	< 0.005	0.0%	< 0.005				80%	120%
Sb	1	3698878	0.18	0.17	5.7%	< 0.05				80%	120%
Sc	1	3698878	2.8	2.9	3.5%	< 0.1				80%	120%
Se .	1	3698878	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
Sn	1	3698878	0.5	0.5	0.0%	< 0.2				80%	120%
8r	1	3698878	51.0	51.6	1.2%	< 0.2				80%	120%
Та	1	3698878	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3698878	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Th	1	3698878	17.5	17.8	1.7%	< 0.1				80%	120%
π	1	3698878	0.102	0.100	2.0%	< 0.005				80%	120%
п	1	3698878	0.11	0.11	0.0%	< 0.01				80%	120%
U	1	3698878	2.81	2.93	4.2%	< 0.05				80%	120%
v	1	3698878	10.4	10.5	1.0%	< 0.5				80%	120%
w	1	3698878	0.28	0.27	3.6%	< 0.05				80%	120%
Y	1	3698878	4.67	4.72	1.1%	< 0.05				80%	120%
Zn	1	3698878	20.4	20.9	2.4%	< 0.5				80%	120%
Zr	1	3698878	3.26	3.24	0.6%	< 0.5				80%	120%
Aqua Regia Digest - Metais Paokage, K	CP/ICP-M8	finish (2010)	74)								
Ag	1	3698902	0.09	0.05		< 0.01	14	13.0	107%	80%	120%
AL .	1	3698902	0.250	0.233	7.0%	< 0.01				80%	120%
As	1	3698902	1120	1090	2.7%	< 0.1				80%	120%
Au	1	3698902	0.08	0.07	13.3%	< 0.01				80%	120%
8	1	3698902	< 5	< 5	0.0%	< 5				80%	120%
Ba	1	3698902	84	77	8.7%	<1				80%	120%
Be	1	3698902	0.224	0.230	2.6%	< 0.05				80%	120%
BI	1	3698902	0.62	0.59	5.0%	< 0.01				80%	120%
Ca	1	3698902	1.39	1.37	1.4%	< 0.01				80%	120%
0	1	3698902	0.376	0.374	0.5%	< 0.01				80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

Results relate only to the items tested and to all the items tested

Page 10 of 22

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)												
RPT Date: Oot 19, 2012 REPLICATE REFERENCE MATERIAL												
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limita Upper	
Ce	1	3698902	32.7	31.6	3.4%	< 0.01				80%	120%	
Co	1	3698902	31.6	30.9	2.2%	< 0.1				80%	120%	
Cr	1	3698902	11.4	11.6	1.7%	< 0.5				80%	120%	
Cs	1	3698902	0.31	0.31	0.0%	< 0.05				80%	120%	
Cu	1	3698902	13.4	13.8	2.9%	< 0.1	5461	6000	91%	80%	120%	
Fe	1	3698902	1.43	1.39	2.8%	< 0.01				80%	120%	
Ga	1	3698902	0.847	0.810	4.5%	< 0.05				80%	120%	
Ge	1	3698902	0.098	0.089	9.6%	< 0.05				80%	120%	
н	1	3698902	0.114	0.115	0.9%	< 0.02				80%	120%	
Hg	1	3698902	< 0.01	< 0.01	0.0%	< 0.01				80%	120%	
in .	1	3698902	0.060	0.057	5.1%	< 0.005				80%	120%	
к	1	3698902	0.173	0.165	4.7%	< 0.01				80%	120%	
La	1	3698902	18.1	17.4	3.9%	< 0.1				80%	120%	
u	1	3698902	2.0	2.0	0.0%	< 0.1				80%	120%	
Mg	1	3698902	0.06	0.06	0.0%	< 0.01				80%	120%	
Mn	1	3698902	962	940	2.3%	< 1				80%	120%	
Mo	1	3698902	0.75	0.81	7.7%	< 0.05	322	360	89%	80%	120%	
Na	1	3698902	< 0.01	< 0.01	0.0%	< 0.01				80%	120%	
Nb	1	3698902	0.48	0.49	2.1%	< 0.05				80%	120%	
N	1	3698902	5.91	6.06	2.5%	< 0.2				80%	120%	
P	1	3698902	509	503	1.2%	< 10	571	600	95%	80%	120%	
Pb	1	3698902	2.3	2.1	9,1%	< 0.1				80%	120%	
Rb	1	3698902	10.8	10.2	5.7%	< 0.1				80%	120%	
Re	1	3698902	< 0.001	< 0.001	0.0%	< 0.001				80%	120%	
8	1	3698902	0.0744	0.0645	14.3%	< 0.005				80%	120%	
Sb	1	3698902	1.52	0.99		< 0.05				80%	120%	
8c	1	3698902	1.24	1.27	2.4%	< 0.1				80%	120%	
Se	1	3698902	< 0.2	< 0.2	0.0%	< 0.2				80%	120%	
Sn	1	3698902	0.35	0.32	9.0%	< 0.2				80%	120%	
Sr	1	3698902	51.9	51.4	1.0%	< 0.2				80%	120%	
Та	1	3698902	< 0.01	< 0.01	0.0%	< 0.01				80%	120%	
Те	1	3698902	< 0.01	< 0.01	0.0%	< 0.01				80%	120%	
Th	1	3698902	20.2	20.7	2.4%	< 0.1	1.1	1.4	80%	80%	120%	
п	1	3698902	< 0.005	< 0.005	0.0%	< 0.005				80%	120%	
п	1	3698902	0.06	0.06	0.0%	< 0.01				80%	120%	
U	1	3698902	4.11	4.88	17.1%	< 0.05				80%	120%	
v	1	3698902	< 0.5	< 0.5	0.0%	< 0.5				80%	120%	
w	1	3698902	0.226	0.201	11.7%	< 0.05				80%	120%	
T Zn	1	3698902	4.09	4.07	0.5% 4,3%	< 0.05	6	7	85%	80%	120%	
-			20.0			- 0.0					1447.0	
Zr	Zr 1 3698902 3.13 3.04 2.9% < 0.5 80% 120%											
Aqua Regia Digest - Metais Paokage, IC	Aqua Regia Digest - Metais Paokage, ICP/ICP-M8 finish (201074)											
	1					< 0.01	14.8	13.0	114%	80%	120%	
	1					< 0.05	0.3	0.4	13%	80%	120%	
AGAT QUALITY ASSURANCE R	EPORT (V1) Describe and	the cashy in the	Marrie American	and in all	the linear leader				Page	19 of 22	
		Accusts /ela	ac only to the	nems reside	and to all	one nerma resteu						

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2368

AGAT WORK ORDER: 12Y640856 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)												
RPT Date: Oot 19, 2012			REPLIC	ATE				REFER	ENCE MATE	RIAL		
PARAMETER	Batch	Sample M	Original	Rep #1	890	Method Blank	Result	Expect	Recovery	Acceptable Limits		
		oumple to					Value	Value		Lower	Upper	
Cu	1					< 0.1	5968	6000	99%	80%	120%	
Mo	1					< 0.05	344	360	95%	80%	120%	
P	1					< 10	633	600	106%	80%	120%	
Th	1					< 0.1	1.4	1.4	101%	80%	120%	
Y	1					< 0.05	6	7	81%	80%	120%	

y el terme Certified By:

Page 20 of 22

RGRT QUALITY ASSURANCE REPORT (V1) Results relate only to the items tested and to all the items tested

Method Summary

CLIENT NAME: PREDATOR MINING GRO	UP IN	AGAT WORK ORDER: 12Y640856					
PROJECT NO: MCC-2012-NK-2368		ATTENTION TO: /	ANDREW CALDWELL				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Solid Analysis							
Sample Login Weight	MIN-12009		BALANCE				
Ag	MIN-200-12017		ICP-MS				
AI	MIN-200-12017		ICP/OES				
As	MIN-200-12017		ICP-MS				
Au	MIN-200-12017		ICP-MS				
в	MIN-200-12017		ICP/OES				
Ba	MIN-200-12017		ICP-MS				
Be	MIN-200-12017		ICP-MS				
BI	MIN-200-12017		ICP-MS				
Ca	MIN-200-12017		ICP/OES				
Cd	MIN-200-12017		ICP-MS				
Ce	MIN-200-12017		ICP-MS				
Co	MIN-200-12017		ICP-MS				
Cr	MIN-200-12017		ICP/OES				
Cs	MIN-200-12017		ICP-MS				
Cu	MIN-200-12017		ICP-MS				
Fe	MIN-200-12017		ICP/OES				
Ga	MIN-200-12017		ICP-MS				
Ge	MIN-200-12017		ICP-MS				
HT	MIN-200-12017		ICP-MS				
Hg	MIN-200-12017		ICP-MS				
In	MIN-200-12017		ICP-MS				
к	MIN-200-12017		ICP/OES				
La	MIN-200-12017		ICP-MS				
L	MIN-200-12017		ICP-MS				
Ma	MIN-200-12017		ICP/OES				
Mn	MIN-200-12017		ICP/OES				
Mo	MIN-200-12017		ICP-MS				
Na	MIN-200-12017		ICP/OES				
ND	MIN-200-12017		ICP-MS				
N	MIN-200-12017		ICP-MS				
P	MIN-200-12017		ICP/OES				
Pb	MIN-200-12017		ICP-MS				
Rb	MIN-200-12017		ICP-MS				
Re	MIN-200-12017		ICP-MS				
s	MIN-200-12017		ICP/OES				
Sb	MIN-200-12017		ICP-MS				
Sc	MIN-200-12017		ICP-MS				
Se	MIN-200-12017		ICP-MS				
Sn	MIN-200-12017		ICP-MS				
Sr	MIN-200-12017		ICP-MS				
та	MIN-200-12017		ICP-MS				
те	MIN-200-12017		ICP-MS				
Th	MIN-200-12017		ICP-MS				
h	MIN-200-12017		ICP/OES				
m	MIN-200-12017		ICP-MS				
u	MIN-200-12017		ICP-MS				
v	MIN-200-12017		ICP/OES				
w	MIN-200-12017		ICP-MS				

AGAT METHOD SUMMARY (V1)

Results relate only to the Items tested and to all the Items tested

Page 21 of 22

Method Summary

CLIENT NAME: PREDATOR MINING GRO	UP IN	AGAT WORK ORDER: 12Y640856						
PROJECT NO: MCC-2012-NK-2368		ATTENTION TO: ANDREW CALDWELL						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE ANALYTICAL TECHNIQUE						
Y	MIN-200-12017	ICP-MS						
Zn	MIN-200-12017	ICP-MS						
Zr	MIN-200-12017		ICP-MS					
As-OL			AA					

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested and to all the items tested

Page 22 of 22

CLIENT NAME: PREDATOR MINING GROUP IN 201A - 170 TITANIUM WAY WHITEHORSE, YT Y1A0G1 (867) 633-4653

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Oct 19, 2012

PAGES (INCLUDING COVER): 50

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

NOTES			

All camples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Results relate only to the items tested and to all the items tested

Page 1 of 60

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

DATE SAMPLED: Se	DATE RECEIVED: Sep 11, 2012					DATE REPORTED: Oct 19, 2012				SAMPLE TYPE: Soll					
	Analyte:	Sample Login Weight	A 0	A	As	Au	в	Ba	Be	ы	Ca	Cd	Ce	Co	a
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Decoription	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AA063501 (-)		0.28	0.35	0.76	16.0	<0.01	20	258	0.23	0.19	0.74	0.78	23.3	10.8	23.4
AA063502 (-)		0.32	0.19	0.60	19.3	<0.01	42	285	0.19	0.10	1.62	0.74	16.0	4.3	12.9
AA063503 (-)		0.37	0.20	0.90	9.6	<0.01	<5	198	0.24	0.16	0.68	0.42	27.4	4.5	19.1
AA063504 (-)		0.35	0.22	1.14	18.8	<0.01	<5	283	0.28	0.19	0.41	0.31	32.4	9.2	24.0
AA063505 (-)		0.28	0.21	0.92	14.8	<0.01	7	299	0.24	0.19	1.44	0.71	24.9	8.4	19.0
AA063506 (-)		0.38	0.32	1.09	28.9	<0.01	<5	374	0.29	0.26	1.55	0.84	37.6	14.3	23.6
AA063507 (-)		0.35	0.25	1.03	30.6	<0.01	<5	260	0.24	0.22	0.63	0.40	33.8	9.8	21.3
AA063508 (-)		0.46	0.25	1.04	37.2	<0.01	<5	221	0.25	0.26	0.44	0.33	38.2	10.3	21.3
AA063509 (-)		0.40	0.34	0.98	44.6	<0.01	<5	261	0.26	0.27	0.41	0.42	43.1	16.4	22.4
AA063510 (-)		0.32	0.32	0.95	45.4	<0.01	<5	294	0.26	0.27	0.57	0.26	35.9	13.6	19.9
AA063511 (-)		0.31	0.34	1.02	60.4	<0.01	<5	304	0.27	0.30	0.32	0.21	40.5	16.6	20.9
AA063512 (-)		0.28	0.28	0.87	48.4	<0.01	<5	217	0.20	0.25	0.08	0.18	40.2	9.7	18.1
AAD63513 (-)		0.33	0.31	1.07	34.8	0.07	<5	380	0.27	0.25	1.20	0.34	38.5	13.2	22.2
AAD63514 (-)		0.31	0.30	1.18	24.5	<0.01	<5	419	0.30	0.24	0.66	0.41	36.0	14.8	24.5
AA063515 (-)		0.29	0.19	0.95	11.4	<0.01	8	229	0.24	0.14	0.41	0.43	29.4	6.4	17.8
AA063516 (-)		0.35	0.33	1.10	15.0	<0.01	24	265	0.30	0.17	0.67	0.78	30.4	9.7	19.4
AA063517 (-)		0.25	0.29	0.97	14.3	<0.01	24	214	0.26	0.16	0.72	0.61	27.9	5.9	17.5
AAD63518 (-)		0.29	0.32	1.02	14.1	<0.01	24	196	0.28	0.19	0.70	0.79	32.7	12.0	19.0
AAD63519 (-)		0.30	0.24	1.03	17.2	<0.01	14	185	0.22	0.19	0.80	0.62	28.2	12.6	18.9
AA063520 (-)		0.31	0.26	0.74	9.6	<0.01	16	139	0.14	0.13	0.55	0.28	23.5	6.4	16.2
AA063521 (-)		0.41	0.32	1.28	19.5	<0.01	<5	163	0.28	0.23	0.31	0.32	35.7	13.8	24.7
AA063522 (-)		0.35	0.28	1.15	14.0	<0.01	<5	219	0.25	0.20	0.23	0.25	32.3	5.8	20.4
AA063523 (-)		0.32	0.20	1.10	16.4	<0.01	<5	237	0.26	0.16	0.41	0.37	31.8	9.3	19.0
AAD63524 (-)		0.32	0.11	0.96	20.9	<0.01	<5	44	0.09	0.19	0.06	0.09	30.7	3.7	17.6
AA063525 (-)		0.35	0.21	1.14	16.4	<0.01	<5	241	0.24	0.19	0.46	0.44	34.0	9.4	21.3
AA063526 (-)		0.36	0.25	1.19	17.3	<0.01	<5	297	0.31	0.20	0.66	0.54	38.4	12.7	23.9
AA063527 (-)		0.29	0.45	1.66	60.2	<0.01	<5	399	0.38	0.40	0.53	0.69	42.6	18.2	25.5
AAD63528 (-)		0.25	0.12	1.26	17.4	<0.01	<5	193	0.27	0.17	0.22	0.23	32.2	9.6	23.2
AA063529 (-)		0.28	0.17	1.22	12.7	<0.01	<5	140	0.22	0.15	0.19	0.14	34.7	5.1	21.7
AA063530 (-)		0.26	0.30	1.12	36.3	<0.01	<5	166	0.25	0.28	0.42	0.45	51.6	14.1	21.4
AA063531 (-)		0.39	0.40	1.29	19.2	<0.01	<5	223	0.29	0.18	0.62	0.77	38.3	11.1	27.0

Certified By:

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 2 of 50

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MI	NING GROU	ip in					ATTEN	TION TO:	ANDREW	CALDWEI	L			
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-	NS finish	(201074	4)				
DATE SAMPLED: Se	ap 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE I	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll	
	Analyte:	Sample Login Weight	A0	А	As	Au	в	Ba	Be	ы	Ca	Cd	Ce	Co	a
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AAD63532 (-)		0.31	0.28	0.96	11.8	<0.01	14	231	0.22	0.13	1.00	0.65	24.7	6.6	19.7
AAD63533 (-)		0.33	0.30	1.12	14.5	<0.01	<5	251	0.26	0.15	0.62	0.53	29.1	9.1	21.6
AAD63534 (-)		0.54	0.50	1.14	26.0	0.01	<5	169	0.26	0.23	0.56	1.09	38.4	11.7	24.1
AAD63535 (-)		0.36	0.73	1.15	33.2	<0.01	<5	182	0.26	0.23	0.71	1.34	38.6	11.4	23.6
AAD63536 (-)		0.35	0.30	1.52	112	<0.01	<5	173	0.35	0.23	0.34	0.63	53.5	12.0	23.5
AAD63537 (-)		0.30	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AAD63538 (-)		0.34	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AAD63539 (-)		0.38	NSS	NSS	N88	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AA063540 (-)		0.31	0.40	1.25	12.6	0.03	14	286	0.30	0.21	0.62	1.23	26.3	7.1	25.9
AAD63541 (-)		0.34	0.18	0.75	7.6	<0.01	14	162	0.18	0.08	0.45	0.35	21.1	4.5	16.3
AAD63542 (-)		0.21	0.27	1.08	12.6	<0.01	16	269	0.21	0.14	0.58	0.80	19.8	9.8	21.9
AAD63543 (-)		0.35	0.47	1.05	40.9	<0.01	<5	159	0.27	0.23	0.46	0.65	32.1	12.4	22,4
AAD63544 (-)		0.38	0.20	1.19	29.6	<0.01	<5	143	0.30	0.20	0.14	0.25	25.4	10.7	21.9
AAD63545 (-)		0.29	0.21	0.97	41.3	0.01	<5	143	0.26	0.24	0.29	0.34	33.7	13.9	20.2
AAD63546 (-)		0.29	0.25	1.11	19.1	<0.01	5	200	0.25	0.18	0.40	0.18	22.5	6.6	20.2
AAD63547 (-)		0.31	0.25	0.86	13.0	<0.01	15	187	0.22	0.14	0.89	0.62	23.6	7.0	17.6
AAD63548 (-)		0.34	0.23	1.12	17.9	<0.01	<5	243	0.28	0.18	0.45	0.33	26.3	8.1	20.9
AAD63549 (-)		0.47	0.36	1.08	31.9	<0.01	<5	174	0.27	0.23	0.47	0.82	40.9	13.4	21.3
AA063550 (-)		0.09	0.54	1.12	3.5	<0.01	<5	97	0.17	0.04	0.74	0.27	10.5	7.5	22.7
AAD63551 (-)		0.34	0.25	1.18	16.4	<0.01	<5	305	0.32	0.20	0.62	0.47	30.1	11.5	22.6
AAD63552 (-)		0.48	0.30	1.05	19.6	<0.01	<5	276	0.27	0.21	0.62	0.60	29.0	14.9	21.2
AAD63553 (-)		0.24	0.07	1.23	40.3	<0.01	<5	157	0.24	0.14	0.20	0.20	23.8	6.0	22,4
AAD63554 (-)		0.29	0.23	0.99	24.5	<0.01	7	261	0.28	0.17	0.81	0.54	29.1	6.6	19.2
AAD63555 (-)		0.23	0.30	0.76	368	0.01	60	278	0.25	0.44	2.57	0.52	21.1	5.0	13.3
AAD63556 (-)		0.35	0.22	0.85	49.2	0.02	9	263	0.22	0.15	1.10	0.62	30.3	6.9	15.2
AAD63557 (-)		0.28	0.16	0.94	12.7	<0.01	10	289	0.24	0.15	0.56	0.33	28.4	6.0	16.8
AAD63558 (-)		0.29	0.10	0.61	23.5	<0.01	<5	133	0.13	0.09	0.49	0.19	21.4	4.0	10.9
AAD63559 (-)		0.34	0.21	0.86	12.1	<0.01	14	321	0.23	0.12	0.76	0.63	28.5	4.5	17.2
AA063560 (-)		0.30	0.11	0.92	16.5	<0.01	<5	128	0.31	0.12	0.27	0.16	35.2	5.4	14.2
AAD63561 (-)		0.40	0.23	0.99	26.5	<0.01	<5	197	0.28	0.15	0.81	0.28	38.5	6.9	15.8
AAD63562 (-)		0.27	0.16	0.88	32.7	<0.01	<5	174	0.22	0.16	0.66	0.19	30.0	5.5	16.3

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the Items tested and to all the Items tested

Page 3 of 50

PROJECT NO: MCC-2012-NK-2367

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MI	NING GROU	jp in					ATTEN	TION TO:	ANDREW	CALDWEI	L			
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-	NS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE I	REPORTED	: Oct 19, 20	012	SAM	PLE TYPE:	Soll	
	Analyte:	Sample Login Weight	A 0	AI	As	Au	в	Ba	Be	BI	Ca	Cd	Ce	Co	G
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Decoription	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AAD63563 (-)		0.30	0.07	0.71	44.0	<0.01	<5	96	0.10	0.15	0.22	0.12	21.6	3.5	13.4
AAD63564 (-)		0.35	0.13	1.26	21.4	<0.01	<5	154	0.24	0.19	0.11	0.25	27.6	6.7	18.2
AAD63565 (-)		0.23	0.12	1.09	29.7	<0.01	<5	75	0.17	0.19	0.12	0.36	24.4	4.9	16.7
AAD63566 (-)		0.26	0.20	1.02	23.9	<0.01	<5	147	0.22	0.21	0.47	0.27	37.8	9.6	17.6
AAD63567 (-)		0.25	0.10	1.59	19.1	<0.01	<5	148	0.32	0.20	0.13	0.18	27.3	12.3	25.2
AAD63568 (-)		0.26	0.15	0.73	15.9	<0.01	12	141	0.18	0.10	0.63	0.31	25.2	4.8	14.6
AAD63569 (-)		0.30	0.27	1.10	198	<0.01	<5	170	0.38	0.30	0.93	0.35	48.1	11.1	16.9
AA063570 (-)		0.30	0.12	1.30	64.6	<0.01	<5	228	0.29	0.52	0.20	0.33	42.8	24.9	22.7
AAD63571 (-)		0.31	0.11	1.20	36.7	0.02	<5	203	0.28	0.26	0.42	0.27	39.5	14.6	18.5
AAD63572 (-)		0.29	0.23	0.99	30.3	<0.01	<5	107	0.23	0.26	0.42	0.31	38.5	10.9	16.3
AAD63573 (-)		0.28	0.25	1.05	22.6	<0.01	<5	169	0.24	0.23	0.83	0.38	36.1	9.9	18.3
AA064001 (-)		0.37	0.12	1.12	15.5	<0.01	<5	177	0.29	0.17	0.14	0.39	25.1	6.6	17.6
AA064002 (-)		0.36	0.12	1.18	11.9	<0.01	<5	135	0.22	0.14	0.15	0.15	24.0	4.1	19.2
AA064003 (-)		0.42	0.35	1.09	30.7	<0.01	7	178	0.30	0.23	0.73	0.68	32.4	10.3	21.9
AA064004 (-)		0.32	0.31	0.98	18.3	<0.01	<5	261	0.27	0.17	0.51	0.47	29.3	9.6	21.1
AA064005 (-)		0.27	0.21	0.83	8.7	<0.01	19	226	0.20	0.12	0.94	0.38	20.3	5.6	15.8
AAD64006 (-)		0.26	0.34	1.10	18.2	<0.01	10	282	0.30	0.17	0.55	0.45	27.7	8.4	20.7
AA064007 (-)		0.44	0.15	1.06	23.4	<0.01	<5	120	0.19	0.16	0.30	0.14	27.7	4.9	18.1
AA064008 (-)		0.28	0.12	1.19	14.7	<0.01	<5	123	0.28	0.13	0.20	0.10	28.1	7.1	19.1
AA064009 (-)		0.28	0.21	0.87	110	<0.01	<5	68	0.18	0.25	0.16	0.33	25.4	5.3	15.8
AA064010 (-)		0.30	0.42	1.65	625	1.27	<5	150	0.49	0.61	0.18	0.44	32.5	6.3	17.1
AA064011 (-)		0.27	0.23	0.98	269	<0.01	6	340	0.26	0.61	0.67	1.44	28.4	8.2	17.2
AA064012 (-)		0.26	0.34	1.14	28.8	<0.01	7	186	0.32	0.21	0.30	0.55	36.6	8.3	22.6
AA064013 (-)		0.27	0.22	1.03	17.5	<0.01	5	130	0.22	0.17	0.24	0.32	30.4	5.5	18.5
AA064014 (-)		0.27	0.33	1.10	22.6	<0.01	<5	175	0.26	0.20	0.33	0.34	36.5	7.5	21.0
AA064015 (-)		0.36	0.61	0.94	31.7	<0.01	<5	185	0.23	0.21	0.62	0.69	28.7	11.2	18.4
AA064016 (-)		0.46	0.24	1.23	13.7	<0.01	<5	204	0.23	0.15	0.25	0.16	29.3	4.8	20.3
AA064017 (-)		0.28	0.33	1.30	26.9	<0.01	<5	265	0.37	0.23	0.23	0.29	37.4	11.0	24.5
AA064018 (-)		0.27	0.32	1.29	28.2	<0.01	<5	276	0.28	0.21	0.45	0.26	33.8	8.1	23.4
AA064019 (-)		0.29	0.50	1.49	30.7	<0.01	<5	382	0.36	0.23	0.70	0.71	30.6	10.3	24.6
AA064020 (-)		0.36	0.33	1.01	16.7	<0.01	<5	196	0.27	0.15	0.80	0.63	27.9	7.5	18.1

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 4 of 50

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

DATE SAMPLED: Se	p 12, 2012			DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll	
	Analyte:	Sample Login Weight	A 0	Ν	As	Au	в	Ba	Be	в	Ca	Cd	Ce	Co	a
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AA064021 (-)		0.33	0.38	1.13	26.2	<0.01	<5	208	0.32	0.21	0.65	0.44	32.0	11.7	20.6
AA064022 (-)		0.30	0.36	0.81	11.1	<0.01	21	274	0.23	0.15	1.44	0.93	18.8	15.2	15.1
AA064023 (-)		0.46	0.31	1.19	16.6	<0.01	<5	294	0.32	0.20	0.90	1.02	29.4	13.8	20.9
AA064024 (-)		0.49	0.24	1.16	10.8	<0.01	<5	381	0.35	0.19	0.38	0.30	32.9	7.7	22.0
AA064025 (-)		0.25	0.20	1.01	33.1	<0.01	<5	127	0.26	0.26	0.34	0.26	42.5	11.1	19.7
AA064026 (-)		0.35	0.28	1.24	19.9	<0.01	<5	200	0.26	0.22	0.52	0.23	31.0	7.8	23.0
AA064027 (-)		0.42	0.34	0.96	56.2	0.01	5	185	0.24	0.24	0.62	0.36	31.4	11.3	20.6
AA064028 (-)		0.18	NSS	NSS	NSS	NSS	NSS	NSS	NS8	NSS	NSS	NSS	NSS	NSS	NSS
AA064029 (-)		0.39	0.24	1.16	36.8	<0.01	15	265	0.29	0.25	0.68	0.53	26.2	11.0	22.1
AA064030 (-)		0.26	0.24	1.18	24.2	<0.01	38	311	0.28	0.20	0.83	0.61	26.8	16.1	22.8
AA064031 (-)		0.39	0.30	1.04	43.5	0.01	<5	240	0.23	0.30	0.33	0.51	44.8	17.7	21.8
AA064032 (-)		0.23	0.53	1.19	24.7	<0.01	24	499	0.27	0.20	0.76	1.32	27.2	22.8	22.8
AA064033 (-)		0.19	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AA064034 (-)		0.31	0.20	0.86	36.8	<0.01	20	144	0.17	0.21	0.65	0.49	26.6	10.5	19.0
AA064035 (-)		0.26	0.29	0.98	16.0	<0.01	<5	269	0.24	0.20	0.66	0.65	27.7	14.0	20.1
AA064036 (-)		0.13	0.24	0.48	13.4	<0.01	57	240	0.27	0.15	1.69	0.75	17.3	6.8	9.0
AA064037 (-)		0.33	0.12	1.17	9.8	0.03	<5	161	0.19	0.14	0.15	0.10	32.3	4.7	20.8
AA064038 (-)		0.38	0.21	1.72	62.4	0.06	<5	164	0.37	0.50	0.07	0.41	40.4	21.3	30.0
AA064039 (-)		0.21	0.17	0.96	12.4	<0.01	8	143	0.17	0.18	0.23	0.28	25.0	5.0	17.9
AA064040 (-)		0.36	0.19	1.02	10.4	<0.01	<5	318	0.28	0.17	0.64	0.36	28.6	8.1	20.2
AA064041 (-)		0.19	0.46	1.45	29.9	<0.01	5	281	0.41	0.27	0.85	0.60	34.5	17.9	24.9
AA064042 (-)		0.24	0.51	1.04	13.8	<0.01	15	355	0.43	0.17	1.52	1.67	29.6	12.9	17.5
AA064043 (-)		0.18	0.18	0.73	9.7	<0.01	41	218	0.26	0.12	2.15	0.83	15.7	6.3	14.5
AAD64044 (-)		0.25	0.12	0.85	10.5	<0.01	<5	126	0.19	0.13	0.52	0.24	29.0	7.7	16.8
AA064045 (-)		0.32	0.14	1.63	55.0	<0.01	<5	185	0.31	1.42	0.18	0.15	31.5	7.0	27.0
AA064046 (-)		0.18	0.06	1.52	7.1	<0.01	<5	262	0.30	0.14	0.22	0.04	29.7	5.0	26.3
AAD64047 (-)		0.27	0.13	1.38	63.5	<0.01	<5	233	0.25	0.35	0.39	0.13	41.8	9.5	17.5
AA064048 (-)		0.31	0.07	0.74	42.7	<0.01	<5	68	0.08	0.30	0.08	0.14	35.7	6.0	13.8
AA064049 (-)		0.31	0.18	1.20	131	<0.01	<5	213	0.35	0.28	1.13	0.14	38.7	9.4	18.9
AA064050 (-)		0.05	0.64	0.89	226	0.01	<5	102	0.58	9.71	16.9	1.86	32.0	3.0	30.1
		0.27	0.26	1.02	40.1	<0.01	<5	255	0.27	0.31	1.39	0.44	31.5	12.5	18.6

Certified By:

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 5 of 50

PROJECT NO: MCC-2012-NK-2367

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MI	NING GROU	ip in				ATTEN	TION TO:	ANDREW	CALDWEI	L				
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	NS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE F	REPORTED	: Oct 19, 20)12	SAM	PLE TYPE:	Soll	
	Analyte:	Sample Login Weight	^0	A	As	Au	в	Ba	Be	ы	Ca	Cd	Ce	Co	G
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AA064052 (-)		0.31	0.08	1.39	31.9	<0.01	<5	165	0.34	0.26	0.27	0.14	36.7	9.6	24.9
AA064053 (-)		0.33	0.20	1.25	44.2	<0.01	<5	282	0.25	0.29	0.37	0.40	29.5	14.8	22.7
AA064054 (-)		0.28	0.11	0.87	49.1	<0.01	<5	109	0.11	0.25	0.27	0.27	27.8	7.6	19.0
AA064055 (-)		0.24	0.28	1.00	36.3	<0.01	<5	278	0.25	0.20	1.09	0.41	30.5	11.0	19.3
AAD64056 (-)		0.31	0.18	1.30	29.4	<0.01	<5	234	0.25	0.27	0.37	0.21	31.6	7.2	22.3
AA064057 (-)		0.27	1.52	2.19	2460	0.10	<5	280	0.54	14.5	0.88	0.54	165	27.5	15.9
AA064058 (-)		0.28	0.16	1.37	89.9	<0.01	<5	216	0.28	0.40	0.39	0.14	39.1	11.6	23.8
AA064059 (-)		0.20	0.14	1.53	26.8	<0.01	<5	403	0.38	0.70	0.69	1.30	50.1	9.3	24.5
AAD64060 (-)		0.27	0.15	1.61	51.6	<0.01	<5	255	0.30	0.40	0.21	0.38	48.5	16.4	24.7
AA064061 (-)		0.35	0.27	1.47	128	0.10	<5	220	0.41	2.82	0.60	0.93	64.0	13.6	18.8
AA064062 (-)		0.30	0.12	0.94	14.8	<0.01	<5	57	0.15	0.33	0.07	0.27	19.2	1.2	7.9
AAD64063 (-)		0.42	0.26	1.16	49.1	<0.01	<5	208	0.25	0.36	1.45	0.56	47.6	15.5	21.8
AAD64064 (-)		0.32	0.29	0.93	40.3	<0.01	<5	167	0.22	0.28	0.84	0.56	40.1	15.9	18.5
AA064065 (-)		0.32	0.28	0.94	35.1	<0.01	<5	191	0.22	0.30	0.76	0.58	43.8	12.9	18.4
AAD64066 (-)		0.30	0.22	1.07	22.8	<0.01	<5	164	0.23	0.23	0.59	0.34	39.3	8.3	18.3
AA064067 (-)		0.37	0.19	1.05	23.5	<0.01	<5	182	0.25	0.26	0.39	0.36	49.9	9.2	19.7
AAD64068 (-)		0.31	0.22	1.14	20.4	<0.01	<5	201	0.27	0.23	0.50	0.23	42.0	9.3	20.0
AA064069 (-)		0.30	0.27	1.19	29.3	<0.01	<5	235	0.25	0.29	0.75	0.38	44.0	11.2	21.5
AA064501 (-)		0.35	0.20	0.93	20.5	<0.01	<5	241	0.26	0.19	0.34	0.30	37.2	11.2	17.4
AA064502 (-)		0.45	0.23	0.89	24.6	<0.01	<5	171	0.24	0.24	0.39	0.29	40.2	6.0	18.5
AA064503 (-)		0.35	0.23	0.92	28.9	<0.01	<5	207	0.21	0.24	0.61	0.36	36.6	8.8	18.5
AA064504 (-)		0.46	0.32	0.95	46.1	0.02	<5	241	0.27	0.30	0.45	0.54	43.8	14.8	20.0
AA064505 (-)		0.50	0.26	0.88	37.8	<0.01	<5	194	0.24	0.28	0.45	0.38	40.2	10.8	19.8
AA064506 (-)		0.38	0.25	0.92	37.0	<0.01	<5	195	0.24	0.26	0.56	0.53	40.3	13.5	19.1
AA064507 (-)		0.42	0.26	0.91	40.5	<0.01	<5	208	0.25	0.27	0.51	0.52	39.2	12.4	19.2
AA064508 (-)		0.41	0.31	0.83	44.1	<0.01	<5	178	0.22	0.28	0.48	0.38	41.2	12.3	17.8
AA064509 (-)		0.42	0.25	0.86	35.5	<0.01	<5	192	0.22	0.26	0.40	0.28	44.4	7.7	17.9
AA064510 (-)		0.37	0.27	1.00	34.0	<0.01	<5	217	0.26	0.28	0.42	0.47	46.7	14.7	20.9
AA064511 (-)		0.45	0.24	1.15	38.2	0.02	<5	288	0.29	0.28	0.28	0.31	49.0	11.5	23.4
AA064512 (-)		0.28	0.17	0.98	7.2	<0.01	<5	210	0.25	0.13	0.35	0.32	29.8	8.7	18.0
AA064513 (-)		0.25	0.31	1.37	13.4	<0.01	<5	421	0.34	0.19	0.55	0.92	35.1	27.8	24.6

Certified By:

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 6 of 50

PROJECT NO: MCC-2012-NK-2367

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MI	NING GROU	jp in					ATTEN	TION TO:	ANDREW	CALDWEI	L			
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-	AS finish	(201074	4)				
DATE SAMPLED: Se	ap 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE I	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll	
	Analyte:	Sample Login Weight	Ag	AI	As	Au	в	Ba	Be	BI	Ca	Cd	Ce	Co	G
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AAD64514 (-)		0.50	0.32	1.11	35.0	<0.01	<5	314	0.29	0.33	0.33	0.40	51.8	13.8	23.5
AA064515 (-)		0.38	0.28	1.18	33.6	<0.01	<5	356	0.30	0.32	0.38	0.34	48.0	16.2	24.4
AAD64516 (-)		0.37	0.21	1.28	14.6	<0.01	<5	387	0.32	0.23	0.58	0.51	37.6	7.8	24.2
AA064517 (-)		0.55	0.14	1.43	18.4	<0.01	<5	143	0.27	0.25	0.11	0.24	40.0	17.9	23.8
AAD64518 (-)		0.45	0.13	1.49	14.4	<0.01	<5	67	0.15	0.24	0.06	0.11	35.8	6.1	25.0
AAD64519 (-)		0.35	0.36	1.33	31.6	<0.01	<5	238	0.31	0.34	0.56	0.58	54.4	19.8	25.1
AA064520 (-)		0.45	0.10	1.27	42.5	0.01	<5	166	0.43	0.36	0.09	0.35	45.6	25.2	22.6
AA064521 (-)		0.25	0.17	1.26	20.0	0.01	<5	220	0.26	0.25	0.39	0.16	35.5	7.8	22.4
AA064522 (-)		0.42	0.45	1.33	83.2	<0.01	<5	203	0.35	0.60	0.53	0.56	41.0	19.6	26.0
AAD64523 (-)		0.27	0.19	1.21	17.4	<0.01	<5	216	0.26	0.24	0.39	0.11	35.7	7.1	22.3
AA064524 (-)		0.31	0.25	1.20	24.0	<0.01	<5	244	0.31	0.26	0.44	0.27	45.6	11.8	22.0
AA064525 (-)		0.28	0.32	1.21	29.0	<0.01	<5	173	0.34	0.29	0.45	0.64	51.3	16.3	23.3
AA064527 (-)		0.32	0.16	1.29	15.1	<0.01	<5	171	0.34	0.17	0.14	0.32	31.8	7.3	22.9
AA064528 (-)		0.29	0.44	1.23	18.0	<0.01	<5	210	0.33	0.20	0.53	0.44	34.2	8.0	24.2
AA064529 (-)		0.41	0.45	1.31	15.2	<0.01	<5	345	0.33	0.21	1.03	1.26	35.5	9.7	26.3
AA064530 (-)		0.33	0.34	1.31	11.1	<0.01	<5	391	0.36	0.20	0.73	1.09	34.3	7.9	24.9
AAD64531 (-)		0.32	0.20	1.42	12.1	<0.01	<5	249	0.36	0.19	0.20	0.14	38.4	6.1	24.0
AA064532 (-)		0.35	0.23	1.21	16.3	<0.01	<5	244	0.28	0.18	0.28	0.18	34.6	6.5	22.2
AAD64533 (-)		0.38	0.40	1.36	13.9	<0.01	<5	348	0.35	0.21	0.48	0.58	34.8	8.8	26.8
AAD64534 (-)		0.40	0.44	1.29	16.2	<0.01	<5	292	0.33	0.22	0.54	0.89	33.0	8.1	33.5
AAD64535 (-)		0.25	0.39	1.04	13.9	<0.01	<5	155	0.20	0.20	0.59	0.74	31.7	7.1	23.1
AAD64536 (-)		0.48	0.25	1.67	44.1	0.01	<5	105	0.29	0.29	0.11	0.31	35.8	6.2	31.5
AAD64537 (-)		0.46	0.69	1.26	92.1	0.01	<5	182	0.33	0.30	0.79	1.13	43.9	12.2	24.3
AAD64538 (-)		0.47	0.43	1.31	11.0	<0.01	<5	307	0.28	0.24	0.33	0.70	37.5	17.3	25.4
AAD64539 (-)		0.42	0.48	1.28	23.3	<0.01	<5	286	0.41	0.25	0.33	0.43	46.5	9.6	25.0
AA064540 (-)		0.48	0.95	1.12	36.3	0.01	<5	196	0.34	0.31	0.45	1.09	44.8	9.5	23.8
AAD64541 (-)		0.46	0.57	1.17	30.8	<0.01	<5	297	0.32	0.28	0.48	1.10	45.1	9.3	23.5
AA064542 (-)		0.38	0.17	1.17	6.4	<0.01	<5	200	0.28	0.18	0.36	0.26	37.7	4.3	22.5
AA064543 (-)		0.50	0.21	1.25	15.2	<0.01	<5	310	0.31	0.21	0.35	0.22	45.2	7.3	25.2
AAD64544 (-)		0.43	0.33	0.99	29.2	<0.01	<5	188	0.30	0.27	0.41	0.49	44.1	9.4	19.9
AAD64545 (-)		0.52	0.24	1.35	16.8	<0.01	<5	370	0.34	0.23	0.42	0.20	43.7	7.5	25.1

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the Items tested and to all the Items tested

Page 7 of 50

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 MLADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

DATE SAMPLED: Se	p 12, 2012		1	DATE RECE	EIVED: Sep	11, 2012		DATE F	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll	
	Analyte:	Sample Login Weight	^0	A	As	Au	в	Ba	Be	ы	Ca	Cd	Ce	Co	c
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AAD64546 (-)		0.45	0.32	1.25	11.4	<0.01	<5	464	0.30	0.21	0.65	0.46	35.4	8.5	23.1
AAD64547 (-)		0.51	0.42	1.28	22.6	<0.01	<5	184	0.35	0.27	0.58	0.75	46.5	10.8	23.7
AAD64548 (-)		0.44	0.30	1.17	19.6	<0.01	<5	224	0.38	0.24	0.54	0.67	44.3	8.6	21.4
AA064550 (-)		0.09	0.39	1.29	3.6	<0.01	<5	102	0.22	0.05	0.89	0.25	13.5	7.0	23.6
AA065001 (-)		0.21	0.27	0.93	17.4	< 0.01	<5	576	0.28	0.18	0.46	0.63	38.9	7.8	20.1
AA065002 (-)		0.15	0.35	1.13	13.0	<0.01	<5	247	0.25	0.19	2.19	0.90	50.4	8.3	23.6
AAD65004 (-)		0.24	0.36	0.78	12.8	<0.01	<5	178	0.17	0.16	2.65	0.89	38.6	8.3	18.3
AA065005 (-)		0.22	1.83	0.93	54.0	0.01	<5	372	0.21	0.49	0.50	2.28	41.6	17.6	22.0
AA065007 (-)		0.11	0.21	1.13	4.2	<0.01	<5	383	0.32	0.18	0.51	0.45	36.6	4.4	21.8
AA065008 (-)		0.24	0.43	1.16	57.0	<0.01	<5	273	0.21	0.36	0.49	0.51	36.9	21.0	24.3
AA065009 (-)		0.23	0.35	1.16	41.8	<0.01	<5	347	0.32	0.32	0.42	0.56	44.4	13.9	23.6
AA065010 (-)		0.21	0.40	1.17	40.2	<0.01	<5	353	0.34	0.35	0.59	0.46	44.0	10.8	22.9
AA065011 (-)		0.30	0.42	1.07	51.9	<0.01	<5	311	0.28	0.40	0.96	0.55	38.8	9.7	21.9
AA065012 (-)		0.32	0.42	1.05	65.5	<0.01	<5	300	0.26	0.38	0.36	0.55	42.2	10.3	21.7
AA065013 (-)		0.22	0.35	1.05	48.8	<0.01	<5	232	0.26	0.32	0.81	0.43	48.9	14.8	21.4
AA065014 (-)		0.26	0.58	0.77	71.1	<0.01	<5	295	0.20	0.41	0.32	0.48	35.5	9.6	17.5
AA065015 (-)		0.12	0.25	0.97	22.1	<0.01	<5	324	0.29	0.22	0.66	0.87	33.8	9.8	20.4
AA065016 (-)		0.13	0.23	1.01	29.3	<0.01	<5	296	0.26	0.18	0.70	0.55	28.2	9.7	19.9
AA065017 (-)		0.20	0.32	1.05	34.0	<0.01	<5	256	0.25	0.27	0.60	0.57	35.1	13.9	21.8
AA065018 (-)		0.16	0.28	0.85	94.1	<0.01	<5	255	0.22	0.42	0.23	0.58	30.8	13.7	19.7
AA065019 (-)		0.29	0.41	1.02	73.5	0.01	<5	275	0.21	0.38	0.50	0.41	36.4	18.8	20.8
AA065020 (-)		0.20	0.26	1.11	56.2	<0.01	<5	216	0.23	0.31	0.25	0.29	44.2	21.0	22.9
AA065021 (-)		0.21	0.32	1.05	36.9	<0.01	<5	219	0.24	0.28	0.74	0.44	32.8	19.1	21.1
AA065022 (-)		0.25	0.22	1.30	26.1	0.01	<5	231	0.25	0.24	0.33	0.25	31.6	18.0	26.0
AA065023 (-)		0.24	0.25	1.24	14.6	<0.01	<5	368	0.28	0.20	0.53	0.64	31.7	10.4	23.4
AA065024 (-)		0.16	0.31	1.28	46.3	<0.01	<5	244	0.23	0.30	0.40	0.29	40.6	14.7	23.7
AA065025 (-)		0.29	0.24	1.12	26.5	<0.01	<5	164	0.23	0.23	0.34	0.32	41.0	11.7	22.3
AA065026 (-)		0.16	0.45	1.54	26.2	<0.01	<5	310	0.34	0.28	0.56	0.50	40.3	21.7	29.6
AAD65028 (-)		0.17	0.23	1.15	23.1	<0.01	<5	195	0.25	0.22	0.53	0.36	34.7	9.7	22.1
AA065029 (-)		0.26	0.11	1.44	17.3	<0.01	<5	103	0.25	0.18	0.16	0.17	28.5	9.0	26.0
AA065030 (-)		0.24	0.31	1.35	37.0	<0.01	<5	170	0.30	0.31	0.41	0.35	42.7	15.0	26.4

Certified By:

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 6 of 50

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MI	NING GROU	JP IN					ATTEN	TION TO:	ANDREW	CALDWEI	L			
			Aqua	Regia D	igest - N	Metals Pa	ckage, l	CP/ICP-I	NS finish	a (201074	4)				
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	0 11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	IPLE TYPE:	Soll	
	Analyte:	Sample Login Weight	Au	AI	As	Au	в	Ba	Be	BI	Ca	Cd	Ce	Co	Cr
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5
AAD65031 (-)		0.19	0.11	1.57	34.7	<0.01	<5	182	0.31	0.28	0.17	0.20	34.1	19.4	26.8
AA065032 (-)		0.22	0.28	1.27	23.5	<0.01	<5	193	0.27	0.24	0.59	0.60	38.6	12.3	25.2
AAD65033 (-)		0.26	0.32	1.31	38.1	<0.01	<5	201	0.27	0.27	1.39	0.68	44.8	15.5	24.1
AAD65034 (-)		0.21	0.29	1.09	25.9	<0.01	<5	131	0.24	0.24	0.51	0.53	41.4	12.0	21.5
AAD65035 (-)		0.18	0.43	1.32	19.2	<0.01	<5	259	0.30	0.24	0.71	0.62	35.6	12.3	25.4
AAD65036 (-)		0.17	0.47	1.34	26.6	<0.01	<5	226	0.31	0.23	0.72	0.98	37.4	14.3	26.0
AAD65037 (-)		0.26	0.42	1.22	32.9	<0.01	<5	161	0.24	0.22	0.99	0.99	35.0	12.9	23.9
AAD65038 (-)		0.23	0.51	1.20	34.5	<0.01	<5	163	0.23	0.25	0.43	0.78	38.7	13.7	24.6
AAD65039 (-)		0.33	0.50	1.13	31.9	<0.01	<5	223	0.24	0.24	0.88	0.79	39.2	10.7	21.9
AAD65040 (-)		0.30	0.19	1.24	41.4	<0.01	<5	191	0.27	0.25	0.30	0.33	41.4	12.5	24.8
AAD65041 (-)		0.31	0.69	1.31	40.2	<0.01	<5	209	0.30	0.28	0.74	0.93	40.2	14.9	28.0
AAD65042 (-)		0.33	0.58	1.19	27.4	<0.01	<5	261	0.25	0.22	0.49	0.63	36.6	10.6	24.1
AAD65043 (-)		0.18	0.45	0.91	28.7	0.01	<5	260	0.19	0.19	1.32	1.14	38.2	11.6	19.9
AAD65044 (-)		0.26	0.57	1.13	39.0	<0.01	<5	185	0.26	0.27	0.37	0.95	37.4	12.4	23.5
AAD65045 (-)		0.21	0.61	1.06	30.2	<0.01	<5	198	0.26	0.21	0.37	0.86	35.9	9.9	23.0
AAD65046 (-)		0.25	0.65	1.23	33.6	<0.01	<5	180	0.30	0.25	0.83	1.81	37.5	13.4	26.7
AAD65047 (-)		0.21	0.34	1.60	52.4	<0.01	<5	259	0.24	0.30	0.47	0.33	34.0	9.8	27.5
AAD65048 (-)		0.20	0.51	1.19	25.8	<0.01	<5	241	0.25	0.22	0.72	1.00	33.2	10.2	24.5
AAD65049 (-)		0.23	0.56	1.41	28.2	<0.01	<5	347	0.32	0.22	0.91	0.96	35.0	11.5	24.9
AAD65050 (-)		0.05	0.53	0.54	496	0.23	<5	601	0.11	0.15	1.11	0.41	16.4	3.5	45.7
AAD65051 (-)		0.27	0.34	1.29	18.6	<0.01	<5	305	0.28	0.20	0.59	0.61	34.5	9.9	26.3
AAD65052 (-)		0.33	0.30	1.24	14.2	<0.01	<5	285	0.28	0.17	0.42	0.19	31.3	7.8	22.3
AAD65053 (-)		0.28	0.26	1.33	21.3	<0.01	<5	284	0.28	0.21	0.44	0.30	33.1	9.2	25.4
AAD65054 (-)		0.26	0.27	1.22	22.1	<0.01	<5	268	0.31	0.19	0.42	0.23	33.3	7.9	23.9
AAD65055 (-)		0.28	0.47	0.92	32.3	<0.01	<5	184	0.21	0.22	0.41	0.70	32.9	9.3	20.9
AAD65056 (-)		0.30	0.60	0.96	32.5	<0.01	<5	190	0.30	0.21	0.32	0.71	40.2	8.6	20.4
AAD65057 (-)		0.26	0.41	1.06	180	<0.01	<5	173	0.28	0.19	0.50	0.43	38.8	7.5	20.9
AAD65058 (-)		0.31	0.38	1.29	41.1	<0.01	<5	325	0.28	0.19	0.57	0.58	38.6	8.5	25.3
AA063171 (-)		1.47	0.12	0.75	15.0	<0.01	5	149	0.15	0.09	0.44	0.34	26.1	4.4	17.5

Certified By:

Page 9 of 50

1 ef stommer

AGAT CERTIFICATE OF ANALYSIS (V1)

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - M	letals Pa	ckage, I	CP/ICP-	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	0 11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	IPLE TYPE:	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD63501 (-)		0.44	85.6	2.30	2.46	0.08	0.18	0.07	0.018	0.04	11.8	9.2	0.34	311	0.85
AA063502 (-)		0.29	27.3	2.39	1.75	0.07	0.13	0.07	0.011	0.03	7.1	7.8	0.39	203	0.45
AAD63503 (-)		0.43	34.8	1.59	2.86	0.07	0.07	0.08	0.021	0.04	13.8	12.7	0.46	206	0.57
AAD63504 (-)		0.59	29.2	2.87	3.51	0.09	0.05	0.06	0.022	0.05	16.2	13.1	0.51	221	0.94
AAD63505 (-)		0.55	39.2	2.12	2.76	<0.05	0.09	0.07	0.019	0.05	12.3	10.1	0.45	276	0.58
AAD63506 (-)		0.64	57.3	2.81	3.33	0.08	0.08	0.07	0.025	0.07	18.8	12.0	1.01	442	1.22
AAD63507 (-)		0.64	49.8	3.05	3.10	0.10	0.06	0.06	0.023	0.07	17.0	10.8	0.47	387	1.35
AAD63508 (-)		0.61	54.3	3.24	3.23	0.10	0.05	0.05	0.025	0.07	18.8	11.6	0.49	298	1.47
AAD63509 (-)		0.61	82.0	3.63	3.09	0.12	0.05	0.06	0.027	0.06	21.4	10.8	0.49	413	1.64
AA063510 (-)		0.46	73.7	3.41	2.85	0.10	0.04	0.06	0.026	0.05	18.2	10.9	0.45	444	2.03
AAD63511 (-)		0.42	82.5	3.75	3.10	0.12	0.03	0.05	0.028	0.05	20.5	11.8	0.49	562	2.12
AAD63512 (-)		0.48	64.2	3.29	2.90	0.11	<0.02	0.04	0.024	0.04	20.3	9.3	0.36	289	1.68
AAD63513 (-)		0.51	62.2	3.22	3.21	0.10	0.05	0.07	0.025	0.06	19.1	10.5	0.92	537	1.49
AAD63514 (-)		0.49	58.7	3.20	3.54	0.09	0.07	0.06	0.028	0.05	17.9	12.7	0.56	418	1.32
AAD63515 (-)		0.74	29.2	1.54	2.95	0.08	0.02	0.07	0.015	0.04	14.9	13.4	0.39	118	0.74
AA063516 (-)		0.77	48.4	1.71	3.20	0.07	0.04	0.10	0.019	0.04	16.6	14.1	0.42	378	0.83
AA063517 (-)		0.74	35.2	1.83	3.01	0.08	0.03	0.06	0.017	0.04	14.7	14.1	0.44	134	0.74
AAD63518 (-)		0.83	50.3	1.83	3.28	0.08	0.03	0.06	0.019	0.05	16.8	13.8	0.44	545	0.94
AAD63519 (-)		0.84	31.2	2.29	3.21	0.08	0.03	0.05	0.018	0.05	14.6	12.2	0.46	715	1.23
AA063520 (-)		1.04	21.3	1.28	2.95	0.06	<0.02	0.05	0.011	0.04	12.1	10.7	0.35	302	0.57
AAD63521 (-)		1.39	35.7	3.11	4.04	0.10	<0.02	0.06	0.023	0.07	17.9	15.6	0.53	437	1.72
AAD63522 (-)		0.97	20.9	2.05	3.88	0.08	<0.02	0.05	0.018	0.05	16.3	14.3	0.41	145	0.89
AAD63523 (-)		0.77	29.2	2.53	3.09	0.09	0.02	0.06	0.018	0.04	16.5	13.3	0.41	210	1.06
AAD63524 (-)		0.82	14.4	3.03	4.26	0.09	<0.02	0.01	0.015	0.04	15.5	7.8	0.31	147	1.51
AAD63525 (-)		0.68	29.1	2.61	3.44	0.09	0.03	0.05	0.019	0.05	17.1	12.2	0.50	496	1.35
AAD63526 (-)		0.67	40.8	2.86	3.46	0.09	0.12	0.06	0.023	0.06	19.3	12.5	0.57	461	1.42
AAD63527 (-)		1.16	40.9	3.50	4.58	0.11	0.03	0.05	0.038	0.08	21.8	14.9	0.55	694	2.21
AAD63528 (-)		0.62	29.6	2.86	3.38	0.09	<0.02	0.04	0.021	0.05	16.4	12.7	0.53	314	1.38
AA063529 (-)		0.65	19.4	2.33	3.67	0.09	<0.02	0.04	0.018	0.04	17.5	12.9	0.44	138	0.96
AA063530 (-)		0.70	52.8	3.98	3.16	0.13	0.04	0.06	0.023	0.06	26.7	12.3	0.59	390	2.37
AAD63531 (-)		0.91	47.8	2.85	3.54	0.10	0.05	0.08	0.027	0.08	19.4	11.8	0.56	524	2.78
AA063532 (-)		0.55	35.4	1.85	2.85	0.06	0.05	0.06	0.019	0.04	12.5	9.4	0.45	336	1.23

Certified By:

Page 10 of 50

1 af stommer

AGAT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN				ATTEN	TION TO:	ANDREW	CALDWEI	L				
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	0 11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	in	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD63533 (-)		0.75	30.2	2.32	3.27	0.08	0.03	0.06	0.022	0.05	14.7	10.5	0.48	446	1.98
AAD63534 (-)		0.89	50.9	3.08	3.30	0.10	0.07	0.09	0.030	0.07	19.8	11.4	0.60	262	3.21
AAD63535 (-)		0.80	66.1	3.50	3.17	0.10	0.14	0.11	0.035	0.09	20.0	9.8	0.63	583	3.92
AAD63536 (-)		1.80	54.3	3.42	4.48	0.11	0.03	0.03	0.038	0.07	29.2	15.7	0.56	552	2.60
AAD63537 (-)		NSS	NSS	NSS	N88	NS3	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AAD63538 (-)		NSS	NSS	NSS	N88	NS3	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AAD63539 (-)		NSS	NSS	NSS	N88	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AAD63540 (-)		0.77	66.3	1.80	3.44	0.07	0.05	0.08	0.023	0.06	13.5	14.2	0.50	514	2.39
AAD63541 (-)		0.50	29.4	1.28	2.17	0.06	0.05	0.04	0.011	0.03	10.8	10.8	0.34	192	0.95
AAD63542 (-)		0.63	29.1	2.58	3.12	0.07	0.03	0.06	0.020	0.04	9.8	12.0	0.46	1150	2.47
AAD63543 (-)		1.06	58.7	3.43	3.07	0.11	0.05	0.11	0.027	0.07	16.7	11.8	0.57	466	3.05
AAD63544 (-)		0.80	39.0	3.22	3.49	0.09	0.02	0.03	0.025	0.03	12.9	12.4	0.42	302	2.49
AAD63545 (-)		0.46	68.4	3.87	2.44	0.10	0.04	0.04	0.028	0.03	17.0	8.2	0.36	342	3.07
AAD63546 (-)		0.69	30.3	2.42	3.53	0.07	0.03	0.05	0.021	0.03	11.6	12.3	0.41	234	1.88
AAD63547 (-)		0.48	38.4	2.04	2.43	0.06	0.06	0.06	0.018	0.04	11.8	9.8	0.47	264	1.36
AAD63548 (-)		0.63	29.4	2.50	3.26	0.07	0.05	0.06	0.021	0.04	13.1	11.8	0.45	294	1.71
AAD63549 (-)		0.82	52.9	3.40	3.18	0.11	0.08	0.08	0.026	0.07	20.6	12.4	0.57	557	2.65
AA063550 (-)		0.27	20.3	1.85	4.00	0.08	0.32	0.04	0.014	0.08	4.3	6.5	0.56	339	3.31
AAD63551 (-)		0.58	38.5	2.58	3.44	0.09	0.11	0.07	0.024	0.05	15.2	13.3	0.55	457	1.43
AAD63552 (-)		0.62	41.5	3.02	3.08	0.09	0.06	0.06	0.023	0.05	14.4	11.2	0.48	789	1.84
AAD63553 (-)		0.52	20.8	2.29	3.49	0.08	0.05	0.02	0.025	0.03	12.6	12.9	0.43	155	1.30
AAD63554 (-)		0.55	32.2	2.21	3.12	0.08	0.06	0.05	0.020	0.06	15.0	13.0	0.46	143	2.36
AAD63555 (-)		0.76	65.7	1.48	2.25	<0.05	0.14	0.07	0.015	0.05	12.7	8.1	0.36	458	1.33
AAD63556 (-)		0.98	28.8	1.92	2.90	0.06	0.05	0.06	0.016	0.07	16.4	10.0	0.44	350	1.38
AAD63557 (-)		0.78	23.3	1.78	3.19	0.08	0.04	0.05	0.018	0.04	14.9	12.5	0.39	168	0.81
AAD63558 (-)		0.44	8.2	1.06	2.19	0.05	0.03	0.03	0.009	0.03	11.0	9.9	0.31	129	0.39
AAD63559 (-)		0.75	21.3	0.95	3.02	<0.05	0.05	0.07	0.016	0.04	14.7	13.5	0.38	466	1.01
AAD63560 (-)		0.97	26.8	2.28	3.18	0.08	0.03	0.04	0.019	0.05	20.6	10.9	0.43	236	1.27
AAD63561 (-)		0.99	28.6	2.43	3.39	0.07	0.04	0.09	0.022	0.08	21.5	13.3	0.48	310	1.47
AAD63562 (-)		0.66	19.2	1.83	3.00	0.07	0.04	0.04	0.018	0.04	15.1	12.6	0.39	193	2.38
AAD63563 (-)		0.67	9.5	1.89	3.48	0.06	<0.02	0.02	0.014	0.05	11.2	8.8	0.29	137	1.35
AAD63564 (-)		0.92	25.9	2.90	4.57	0.08	<0.02	0.01	0.022	0.03	14.0	13.5	0.34	225	1.88

Certified By:

Page 11 of 50

Ľ

al tomara

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN				ATTEN	TION TO:	ANDREW	CALDWEI	LL				
			Aqua	Regia D	igest - N	letals Pa	ickage, l	CP/ICP-I	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SAM	IPLE TYPE	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD63565 (-)		1.30	17.3	2.98	4.46	0.09	0.02	0.02	0.021	0.07	12.6	13.4	0.38	162	2.03
AAD63566 (-)		0.74	19.4	2.76	3.49	0.08	0.04	0.05	0.024	0.07	17.9	12.6	0.49	476	1.56
AAD63567 (-)		0.88	19.3	2.94	4.00	0.09	0.03	0.02	0.028	0.05	13.4	18.1	0.47	235	1.58
AAD63568 (-)		0.53	12.1	1.54	2.30	0.05	0.03	0.03	0.013	0.04	13.1	10.1	0.37	307	1.12
AAD63569 (-)		1.48	39.0	3.11	3.87	0.10	0.08	0.05	0.025	0.15	26.3	13.2	0.66	431	1.75
AA063570 (-)		0.94	72.4	5.50	3.71	0.13	0.05	0.04	0.034	0.06	21.0	10.6	0.53	407	2.77
AAD63571 (-)		0.71	39.2	3.38	3.82	0.10	0.07	0.02	0.024	0.07	19.6	13.0	0.55	383	1.81
AAD63572 (-)		1.26	40.3	3.26	3.48	0.11	0.05	0.05	0.021	0.12	21.4	14.2	0.58	355	1.78
AAD63573 (-)		1.16	32.3	2.67	3.67	0.08	0.05	0.05	0.022	0.13	18.7	16.5	0.58	418	1.39
AA064001 (-)		0.83	9.8	2.10	4.08	0.08	<0.02	0.02	0.024	0.03	12.6	14.6	0.29	131	1.46
AA064002 (-)		0.69	13.3	2.39	3.51	0.07	<0.02	0.02	0.019	0.03	12.1	11.8	0.36	135	1.05
AA064003 (-)		0.79	47.5	2.79	2.99	0.08	0.04	0.07	0.038	0.08	16.7	10.8	0.61	430	2.67
AA064004 (-)		0.52	37.6	2.38	2.90	0.08	0.05	0.06	0.023	0.04	14.8	10.0	0.49	542	1.78
AA064005 (-)		0.46	21.5	1.70	2.47	<0.05	0.07	0.04	0.017	0.03	10.2	8.7	0.41	284	0.97
AA064006 (-)		0.62	35.2	2.39	3.09	0.07	0.05	0.07	0.024	0.05	13.9	10.4	0.46	641	1.68
AA064007 (-)		0.90	13.5	2.35	3.67	0.07	<0.02	0.03	0.021	0.04	14.1	13.4	0.43	270	1.58
AA064008 (-)		0.50	21.9	2.25	2.98	0.09	0.09	0.02	0.019	0.03	14.2	10.4	0.40	227	0.93
AA064009 (-)		0.93	17.5	2.28	3.60	0.08	<0.02	0.02	0.021	0.04	13.0	10.4	0.31	167	1.96
AA064010 (-)		1.21	6.7	3.38	5.89	0.09	<0.02	0.03	0.043	0.06	16.4	16.6	0.36	307	1.46
AA064011 (-)		0.91	25.3	2.56	3.62	0.08	<0.02	0.05	0.034	0.05	14.9	8.8	0.30	897	2.43
AA064012 (-)		0.77	48.9	3.01	3.09	0.10	<0.02	0.06	0.027	0.06	19.1	12.1	0.50	341	3.92
AA064013 (-)		0.62	26.1	2.23	3.18	0.09	<0.02	0.05	0.020	0.03	15.3	11.4	0.38	159	1.80
AA064014 (-)		0.71	42.7	2.75	3.25	0.10	<0.02	0.09	0.023	0.04	19.3	12.1	0.46	409	2.50
AA064015 (-)		0.55	50.9	3.15	2.62	0.09	0.04	0.08	0.027	0.03	15.1	9.2	0.45	392	3.05
AA064016 (-)		0.69	24.6	2.20	3.47	0.08	<0.02	0.06	0.019	0.03	14.7	13.9	0.45	128	1.45
AA064017 (-)		0.70	59.2	3.17	3.26	0.10	0.02	0.10	0.027	0.04	18.7	11.6	0.48	405	2.34
AA064018 (-)		1.03	33.3	2.79	3.59	0.09	<0.02	0.06	0.027	0.06	17.5	14.6	0.56	336	2.64
AA064019 (-)		0.86	52.7	3.11	4.07	0.08	0.03	0.08	0.031	0.06	16.2	14.0	0.48	485	2.94
AA064020 (-)		0.59	36.3	2.37	2.70	0.07	0.04	0.07	0.019	0.05	14.2	11.8	0.47	349	1.79
AA064021 (-)		0.68	45.1	3.05	3.04	0.09	0.04	0.08	0.023	0.05	16.2	12.5	0.51	500	2.71
AA064022 (-)		0.48	36.1	1.80	2.49	0.05	0.04	0.07	0.018	0.03	9.4	7.6	0.37	2110	1.23
AA064023 (-)		0.68	42.6	2.87	3.23	0.08	0.05	0.06	0.022	0.05	14.8	13.2	0.58	531	1.43

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 12 of 50

Ľ

al tomara

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN					ATTEN	TION TO:	ANDREW	CALDWEI	L			
			Aqua	Regia D	igest - N	letals Pa	ckage, I	CP/ICP-	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	in	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD64024 (-)		0.74	23.1	2.19	3.78	0.08	0.03	0.07	0.023	0.05	16.4	13.2	0.47	297	1.20
AAD64025 (-)		0.68	36.6	3.35	3.02	0.11	<0.02	0.03	0.022	0.05	21.3	13.7	0.55	311	1.96
AA064026 (-)		0.96	21.0	3.00	3.69	0.08	0.02	0.07	0.023	0.05	15.7	14.0	0.50	258	1.62
AAD64027 (-)		0.51	54.8	2.56	2.85	0.08	0.03	0.05	0.026	0.06	15.5	12.1	0.44	380	1.44
AA064028 (-)		NSS	NSS	NSS	N88	NSS	NSS	NSS	N88	NSS	NSS	NSS	NS8	NSS	NSS
AA064029 (-)		0.83	53.8	3.02	3.27	0.08	0.13	0.07	0.026	0.05	13.4	14.9	0.47	553	1.38
AA064030 (-)		0.81	41.7	2.68	3.25	0.08	0.03	0.06	0.022	0.06	13.4	16.0	0.53	3170	1.31
AA064031 (-)		0.74	68.8	3.69	3.19	0.12	0.04	0.07	0.026	0.07	22.1	11.8	0.47	490	1.54
AA064032 (-)		0.75	47.0	3.31	3.16	0.08	0.05	0.08	0.023	0.05	13.3	13.1	0.49	1600	1.95
AA064033 (-)		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AA064034 (-)		0.64	44.0	3.84	2.57	0.10	0.03	0.05	0.021	0.04	13.7	9.3	0.46	824	2.59
AA064035 (-)		0.80	46.8	2.15	3.10	0.08	0.03	0.08	0.022	0.05	14.3	13.9	0.46	806	1.19
AA064036 (-)		0.43	83.7	1.13	1.43	<0.05	0.09	0.07	0.013	0.03	9.9	5.8	0.29	291	0.58
AA064037 (-)		0.71	19.3	2.04	3.72	0.08	<0.02	0.02	0.017	0.04	16.1	11.8	0.38	154	1.01
AA064038 (-)		2.39	102	5.00	3.31	0.12	0.04	0.07	0.041	0.06	20.3	13.8	0.37	394	9.06
AA064039 (-)		0.94	12.2	1.81	3.86	0.07	<0.02	0.02	0.014	0.08	12.5	9.7	0.33	252	0.98
AA064040 (-)		0.58	34.1	1.97	3.01	0.07	0.04	0.05	0.018	0.05	14.2	12.3	0.49	205	0.96
AA064041 (-)		1.26	83.2	3.90	3.78	0.11	0.04	0.11	0.030	0.08	19.4	13.5	0.57	684	1.97
AA064042 (-)		0.70	111	2.02	2.62	0.07	0.04	0.07	0.023	0.04	17.3	8.0	0.45	441	0.72
AA064043 (-)		0.59	36.2	1.54	2.07	<0.05	0.05	0.05	0.016	0.03	8.5	6.3	0.43	367	0.97
AA064044 (-)		0.48	12.7	1.89	2.56	0.07	0.03	0.03	0.015	0.04	14.3	10.7	0.41	248	0.94
AA064045 (-)		0.72	20.9	2.67	4.62	0.09	<0.02	<0.01	0.023	0.06	16.4	11.8	0.43	259	1.30
AAD64046 (-)		0.71	14.4	1.95	4.37	0.07	0.03	0.01	0.018	0.04	14.6	13.0	0.49	166	0.72
AA064047 (-)		1.15	42.9	3.47	4.95	0.09	0.02	0.02	0.025	0.08	21.0	17.1	0.55	321	1.85
AA064048 (-)		0.59	29.6	3.13	3.75	0.10	<0.02	<0.01	0.019	0.05	17.8	5.8	0.22	163	2.25
AAD64049 (-)		0.87	34.1	3.34	3.80	0.09	0.04	0.04	0.031	0.06	21.4	18.5	0.51	411	1.67
AA064050 (-)		3.59	88.4	2.19	4.58	<0.05	0.32	1.83	0.592	0.23	21.1	4.5	3.81	2030	101
AA064051 (-)		0.74	57.1	2.86	3.12	0.08	0.04	0.06	0.025	0.08	16.4	12.7	0.56	595	1.47
AA064052 (-)		0.60	37.9	3.11	3.92	0.10	0.03	0.01	0.026	0.08	17.9	15.6	0.55	301	1.69
AA064053 (-)		0.74	32.7	3.58	4.04	0.10	0.09	0.03	0.028	0.08	14.6	12.2	0.45	640	1.62
AA064054 (-)		0.50	38.1	3.49	3.08	0.09	0.04	0.02	0.023	0.05	13.9	8.7	0.35	204	2.44
AA064055 (-)		0.61	44.4	2.45	3.04	0.07	0.05	0.05	0.021	0.06	15.3	12.9	0.48	601	1.45

Certified By:

Page 13 of 50

Ľ

af stomme

AC AT CERTIFICATE OF ANALYSIS (V1)

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ickage, l	CP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	IPLE TYPE	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD64056 (-)		0.66	34.4	3.05	4.05	0.09	0.03	0.02	0.022	0.05	15.8	11.3	0.39	488	1.64
AAD64057 (-)		4.09	71.6	7.76	7.52	0.23	0.13	0.12	0.213	0.29	112	12.5	0.59	3130	2.99
AAD64058 (-)		0.66	34.4	3.62	4.43	0.10	0.03	0.03	0.029	0.07	20.2	14.4	0.56	549	1.87
AAD64059 (-)		0.80	37.5	3.31	4.45	0.10	0.03	0.04	0.029	0.17	25.2	11.2	0.49	1330	3.00
AAD64060 (-)		0.86	75.4	4.57	4.73	0.12	<0.02	0.03	0.029	0.06	23.1	14.1	0.57	498	2.22
AAD64061 (-)		1.56	57.6	4.14	4.93	0.12	0.06	0.03	0.040	0.19	34.9	15.1	0.55	1180	1.53
AA064062 (-)		0.58	7.1	0.99	7.94	0.06	<0.02	0.02	0.010	0.04	10.1	2.1	0.07	71	1.24
AA064063 (-)		1.18	71.6	3.93	3.56	0.10	0.29	0.07	0.027	0.15	24.2	12.8	1.10	600	2.02
AAD64064 (-)		0.70	63.0	3.54	2.98	0.11	0.06	0.07	0.026	0.08	20.1	11.6	0.54	473	1.69
AAD64065 (-)		0.78	61.2	3.51	2.84	0.10	0.06	0.08	0.024	0.07	22.2	11.5	0.53	356	1.63
AAD64066 (-)		1.14	26.4	2.85	3.71	0.09	0.03	0.05	0.022	0.09	19.9	14.6	0.52	423	1.49
AA064067 (-)		0.95	40.6	3.15	3.33	0.11	0.06	0.05	0.023	0.07	25.6	12.9	0.52	450	1.53
AA064068 (-)		0.99	37.2	2.80	3.75	0.10	0.02	0.06	0.024	0.06	21.4	13.9	0.49	443	1.48
AAD64069 (-)		1.29	28.6	3.22	3.82	0.10	0.06	0.06	0.024	0.13	22.6	15.9	0.61	572	1.57
AA064501 (-)		0.54	36.0	2.03	2.73	0.09	0.02	0.05	0.019	0.05	18.4	13.2	0.39	296	0.79
AA064502 (-)		0.46	42.1	2.54	2.63	0.10	<0.02	0.06	0.024	0.05	19.9	11.8	0.41	222	1.33
AA064503 (-)		0.58	34.5	2.81	2.60	0.09	0.02	0.07	0.022	0.07	18.2	11.3	0.44	863	1.10
AA064504 (-)		0.62	60.6	3.81	2.71	0.11	0.03	0.07	0.026	0.06	21.6	10.2	0.42	407	1.59
AAD64505 (-)		0.56	61.0	3.31	2.58	0.10	0.03	0.06	0.023	0.06	20.3	9.7	0.43	477	1.50
AAD64506 (-)		0.61	49.0	3.42	2.59	0.10	0.02	0.05	0.023	0.07	20.1	9.9	0.44	620	1.56
AA064507 (-)		0.62	58.4	3.44	2.63	0.10	0.03	0.06	0.024	0.07	19.4	9.6	0.44	574	1.62
AA064508 (-)		0.53	54.8	3.75	2.40	0.11	0.02	0.06	0.023	0.06	20.3	8.6	0.38	305	1.62
AA064509 (-)		0.63	49.8	3.59	2.53	0.11	0.03	0.05	0.022	0.06	21.9	9.4	0.39	261	1.37
AA064510 (-)		0.66	59.3	3.33	2.99	0.11	0.03	0.07	0.024	0.08	23.0	12.0	0.51	748	1.66
AAD64511 (-)		0.62	61.3	3.37	3.35	0.12	0.13	0.06	0.026	0.07	24.2	12.3	0.51	555	1.45
AA064512 (-)		0.65	22.2	1.10	2.86	0.07	0.05	0.05	0.015	0.04	14.9	15.1	0.41	134	0.33
AA064513 (-)		0.89	34.7	1.81	3.83	0.08	0.04	0.07	0.023	0.06	16.5	18.3	0.54	414	1.26
AA064514 (-)		0.69	77.3	3.52	3.30	0.11	0.11	0.07	0.032	0.06	25.4	12.0	0.48	252	1.59
AA064515 (-)		0.74	74.1	3.59	3.47	0.11	0.05	0.09	0.030	0.06	23.7	12.2	0.50	786	1.69
AAD64516 (-)		0.75	44.1	2.36	3.52	0.09	0.05	0.07	0.026	0.06	18.6	16.5	0.53	217	1.16
AA064517 (-)		0.94	31.4	3.14	3.89	0.10	<0.02	0.03	0.025	0.05	19.5	16.3	0.43	416	1.87
AAD64518 (-)		1.22	19.0	3.77	5.55	0.10	<0.02	0.04	0.023	0.03	17.8	12.8	0.29	177	1.94

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the Items tested and to all the Items tested

Page 14 of 50

1 af stamme

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

TION TO AND DOLLAR DWELL

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PRO			ATTEN	HON TO.	ANDREW	CALDWEI	L								
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	in	к	La	u	Mg	Mn	Mo
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AAD64519 (-)		1.02	75.7	4.03	3.68	0.12	0.04	0.07	0.037	0.07	27.0	14.5	0.59	585	3.21
AA064520 (-)		0.76	72.5	4.28	3.37	0.17	0.03	0.03	0.031	0.04	23.3	18.9	0.49	373	2.53
AAD64521 (-)		1.01	21.8	2.64	3.86	0.08	0.04	0.05	0.022	0.05	17.6	14.0	0.51	424	1.65
AA064522 (-)		1.54	71.2	5.05	3.73	0.12	0.04	0.07	0.033	0.06	21.6	13.5	0.63	636	2.73
AAD64523 (-)		0.81	17.6	3.00	3.53	0.08	0.04	0.07	0.023	0.05	17.7	12.2	0.52	221	1.40
AA064524 (-)		0.67	45.1	3.30	3.26	0.10	0.06	0.08	0.024	0.05	23.1	13.5	0.58	442	1.90
AAD64525 (-)		0.69	54.3	3.59	3.32	0.10	0.12	0.07	0.028	0.07	25.8	14.3	0.62	375	2.64
AA064527 (-)		0.66	30.9	2.42	3.18	0.07	0.05	0.03	0.022	0.04	15.6	10.0	0.44	273	1.43
AAD64528 (-)		0.94	42.0	2.59	3.41	0.08	0.06	0.09	0.025	0.05	17.6	12.5	0.60	333	2.03
AA064529 (-)		1.02	41.3	2.57	3.69	0.06	0.05	0.08	0.026	0.07	17.5	12.5	0.70	469	2.22
AA064530 (-)		0.80	27.0	2.40	3.77	0.07	0.05	0.07	0.024	0.06	17.0	12.3	0.53	292	1.60
AA064531 (-)		0.67	29.1	2,44	3.80	0.08	0.02	0.04	0.023	0.03	18.5	12.7	0.49	286	1.06
AAD64532 (-)		0.72	27.5	2.33	3.47	0.07	0.03	0.04	0.022	0.04	17.2	11.8	0.49	283	1.50
AAD64533 (-)		0.98	36.2	2.42	3.92	0.08	0.03	0.07	0.025	0.04	17.2	12.8	0.52	513	1.91
AAD64534 (-)		1.13	44.9	2.57	3.83	0.08	0.03	0.08	0.026	0.05	16.4	13.2	0.54	445	2.32
AA064535 (-)		0.69	44,4	2.41	3.16	0.07	0.03	0.06	0.025	0.05	15.9	11.2	0.46	233	4.25
AAD64536 (-)		2.47	45.8	4.34	5.18	0.11	0.02	0.02	0.037	0.10	18.4	14.6	0.60	250	3.28
AAD64537 (-)		1.46	66.8	3.60	3.54	0.10	0.07	0.14	0.034	0.11	24.2	13.8	0.63	636	5.20
AA064538 (-)		0.92	30.4	2.72	4.02	0.09	0.03	0.07	0.028	0.05	16.6	11.9	0.47	772	2.69
AAD64539 (-)		0.84	54.1	2.88	3.64	0.10	0.05	0.10	0.028	0.05	23.9	12.5	0.51	358	3.95
AA064540 (-)		0.93	128	3.64	3.03	0.11	0.09	0.18	0.034	0.07	24.1	11.1	0.57	342	6.37
AAD64541 (-)		0.78	64.6	3.42	3.30	0.10	0.08	0.12	0.031	0.07	23.0	12.0	0.59	560	4.22
AA064542 (-)		0.68	17.9	1.28	3.63	0.07	0.06	0.06	0.021	0.05	18.5	15.1	0.48	126	0.82
AAD64543 (-)		0.79	33.7	2.47	3.69	0.09	0.03	0.06	0.033	0.05	22.8	13.3	0.54	310	1.58
AAD64544 (-)		0.61	53.0	3.17	2.85	0.09	0.06	0.09	0.026	0.05	22.6	11.0	0.51	421	2.02
AAD64545 (-)		0.89	36.0	2.61	3.88	0.09	0.05	0.06	0.024	0.06	21.7	13.2	0.58	278	1.42
AAD64546 (-)		0.91	33.8	2.33	3.74	0.07	0.05	0.08	0.026	0.05	17.3	13.1	0.51	524	1.10
AAD64547 (-)		1.21	49.6	3.19	3.52	0.10	0.04	0.09	0.026	0.07	23.1	16.0	0.61	374	2,49
AAD64548 (-)		0.86	33.6	2.45	3.28	0.09	0.06	0.07	0.026	0.06	21.8	16.5	0.55	224	1.97
AAD6455D (-)		0.30	20.5	1.91	4.41	0.07	0.42	0.05	0.018	0.09	5.5	7.0	0.59	353	3.52
AA065001 (-)		0.53	36.0	2.51	2.84	0.08	0.08	0.09	0.020	0.05	19.3	10.6	0.47	492	1.16
AA065002 (-)		0.75	44.9	2.68	3.45	0.06	0.28	0.10	0.024	0.09	25.1	13.5	1.12	672	2.83

Certified By:

Page 15 of 50

1 ef tomme

ACAT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	LIENT NAME: PREDATOR MINING GROUP IN Aqua Regia Digest - Metals Package								ATTENTION TO: ANDREW CALDWELL						
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	IPLE TYPE:	Soll	
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Мо
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05
AA065004 (-)		0.50	40.4	2.61	2.36	0.06	0.33	0.12	0.021	0.05	19.3	10.3	1.16	511	3.47
AA065005 (-)		1.23	120	5.35	2.64	0.13	0.09	0.26	0.038	0.08	23.7	8.1	0.51	828	8.17
AA065007 (-)		0.61	25.0	1.13	3.40	0.06	0.07	0.07	0.022	0.05	17.7	15.6	0.49	143	0.30
AA065008 (-)		0.84	37.7	5.00	3.40	0.11	0.03	0.06	0.031	0.06	17.8	10.0	0.50	950	2.93
AA065009 (-)		0.78	67.9	3.25	3.42	0.09	0.06	0.06	0.032	0.09	21.5	10.2	0.45	443	1.57
AA065010 (-)		0.72	70.6	3.21	3.43	0.09	0.07	0.07	0.031	0.09	21.7	10.9	0.50	545	1.62
AA065011 (-)		0.64	72.5	3.23	3.13	0.09	0.06	0.07	0.029	0.08	19.7	10.6	0.75	447	1.64
AA065012 (-)		0.61	93.9	3.64	3.10	0.10	0.07	0.06	0.031	0.08	20.9	9.9	0.42	414	1.76
AA065013 (-)		0.69	76.1	3.89	3.05	0.10	0.23	0.06	0.029	0.11	23.9	10.5	0.78	592	2.05
AA065014 (-)		0.45	73.2	3.73	2.43	0.10	0.07	0.07	0.028	0.04	18.1	7.6	0.39	536	2.25
AA065015 (-)		0.69	39.3	2.60	3.02	0.08	0.05	0.10	0.023	0.04	16.6	12.4	0.44	564	1.00
AA065016 (-)		0.71	33.8	2.24	3.05	0.11	0.13	0.06	0.021	0.05	14.4	10.0	0.48	329	1.12
AA065017 (-)		0.54	66.7	2.94	3.14	0.12	0.07	0.07	0.028	0.05	17.2	9.6	0.49	395	1.53
AA065018 (-)		0.49	77.7	4.43	2.59	0.15	0.05	0.04	0.028	0.04	15.2	5.5	0.38	334	3.91
AA065019 (-)		0.47	96.0	4.30	3.02	0.15	0.04	0.08	0.032	0.06	18.4	8.5	0.57	485	1.90
AA065020 (-)		0.54	86.2	4.08	3.29	0.15	0.04	0.07	0.029	0.07	21.3	9.7	0.53	742	2.17
AA065021 (-)		0.67	55.9	3.24	3.09	0.13	0.04	0.08	0.025	0.05	16.2	9.0	0.51	664	1.83
AA065022 (-)		0.95	33.9	3.39	3.78	0.13	0.02	0.05	0.025	0.05	15.5	11.7	0.54	630	1.70
AA065023 (-)		0.63	33.2	2.66	3.72	0.11	0.05	0.06	0.025	0.05	15.7	9.8	0.52	355	1.30
AA065024 (-)		0.48	81.6	4.60	3.18	0.14	0.04	0.07	0.027	0.07	20.3	9.6	0.61	542	2.15
AA065025 (-)		0.59	56.3	3.28	3.06	0.14	0.03	0.05	0.024	0.05	21.1	9.6	0.51	359	1.80
AA065026 (-)		1.40	74.5	3.71	4.02	0.15	0.04	0.11	0.033	0.08	24.2	11.5	0.60	1060	1.81
AA065028 (-)		0.59	35.0	2.84	3.20	0.12	0.04	0.06	0.023	0.05	17.2	10.0	0.55	285	1.97
AA065029 (-)		0.77	31.9	2.93	3.88	0.12	0.03	0.02	0.024	0.06	14.3	10.4	0.52	193	1.32
AA065030 (-)		0.89	67.1	4.51	3.53	0.15	0.06	0.09	0.027	0.08	22.4	10.5	0.68	430	2.67
AA065031 (-)		0.72	44.0	4.34	3.86	0.14	0.04	0.02	0.034	0.04	16.8	11.2	0.55	350	2.54
AA065032 (-)		0.70	48.6	3.32	3.45	0.14	0.04	0.07	0.026	0.06	19.3	12.2	0.63	330	2.22
AA065033 (-)		1.01	63.1	4.13	3.52	0.13	0.21	0.08	0.026	0.11	22.4	10.8	1.18	520	2.81
AA065034 (-)		0.54	47.5	3.37	3.01	0.14	0.08	0.06	0.024	0.06	21.1	10.1	0.56	352	2.04
AA065035 (-)		0.68	58.4	3.17	3.44	0.13	0.07	0.10	0.026	0.07	17.9	10.5	0.62	485	2.67
AA065036 (-)		0.74	70.9	3.48	3.50	0.14	0.07	0.10	0.028	0.08	18.9	11.0	0.63	735	3.32
AA065037 (-)		0.98	61.3	3.51	3.21	0.13	0.14	0.11	0.026	0.10	17.9	10.2	0.86	558	3.62

Certified By:

AC AT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 16 of 50

Ľ

et tomara

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN									ATTEN	ATTENTION TO: ANDREW CALDWELL S finish (201074)								
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	a (201074	4)							
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAM	PLE TYPE:	Soll				
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	u	Mg	Mn	Мо			
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm			
Sample Description	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05			
AAD65038 (-)		0.82	76.2	3.99	3.16	0.15	0.08	0.15	0.028	0.08	20.3	9.3	0.58	510	3.91			
AAD65039 (-)		0.76	58.1	3.29	3.31	0.13	0.07	0.12	0.030	0.08	20.2	9.3	0.68	375	3.32			
AAD65040 (-)		0.68	81.9	3.80	3.14	0.15	0.07	0.15	0.028	0.06	22.6	8.7	0.56	433	3.46			
AA065041 (-)		1.05	79.2	3.95	3.54	0.14	0.08	0.15	0.033	0.09	20.5	9.6	0.73	598	4.39			
AAD65042 (-)		0.64	59.5	3.16	3.36	0.13	0.04	0.10	0.027	0.06	18.7	9.3	0.57	413	2.56			
AAD65043 (-)		0.62	65.6	3.43	2.77	0.13	0.13	0.10	0.024	0.07	19.4	7.1	0.91	686	3.43			
AAD65044 (-)		0.68	73.5	3.69	3.12	0.14	0.03	0.11	0.029	0.06	19.8	8.5	0.55	383	4.29			
AA065045 (-)		0.63	66.2	3.08	3.03	0.14	0.03	0.12	0.027	0.05	19.0	8.4	0.50	355	3.54			
AAD65046 (-)		1.00	78.5	3.40	3.47	0.13	0.10	0.11	0.032	0.10	19.4	9.8	0.69	495	5.32			
AA065047 (-)		0.87	21.8	3.07	4.95	0.13	0.07	0.05	0.035	0.05	17.2	12.6	0.59	414	1.87			
AAD65048 (-)		0.80	47.0	2.69	3.59	0.12	0.03	0.08	0.032	0.06	17.0	9.8	0.55	532	2.27			
AA065049 (-)		0.89	51.4	2.77	3.87	0.12	0.04	0.09	0.033	0.07	18.3	10.1	0.53	429	2.09			
AA065050 (-)		0.47	39.7	3.84	2.06	0.11	0.38	3.60	0.021	0.12	8.5	1.2	0.04	87	15.1			
AA065051 (-)		0.63	39.5	2.80	3.64	0.12	0.05	0.08	0.028	0.06	17.4	8.5	0.58	453	1.65			
AA065052 (-)		0.66	32.5	2.26	3.46	0.12	0.03	0.07	0.026	0.04	15.9	9.1	0.49	371	1.38			
AA065053 (-)		0.79	34.1	2.68	3.72	0.12	<0.02	0.05	0.032	0.05	16.3	9.9	0.54	476	2.22			
AA065054 (-)		0.65	37.3	2.44	3.45	0.12	0.03	0.06	0.031	0.05	17.3	9.0	0.50	408	1.90			
AAD65055 (-)		0.48	61.2	3.13	2.48	0.13	0.06	0.14	0.032	0.05	17.9	6.5	0.44	437	2.90			
AA065056 (-)		0.58	49.9	2.64	2.42	0.14	0.05	0.15	0.038	0.06	22.8	6.3	0.36	569	2.57			
AA065057 (-)		0.91	30.0	3.06	3.17	0.14	0.04	0.08	0.067	0.07	22.7	7.9	0.49	470	1.80			
AA065058 (-)		0.74	36.8	2.55	3.87	0.13	0.04	0.07	0.029	0.07	20.0	11.0	0.58	315	1.52			
AAD63171 (-)		0.43	14.3	1.24	2.20	0.10	<0.02	0.04	0.011	0.04	12.9	7.3	0.32	201	0.60			

Certified By:

1 af stamme Page 17 of 50

AGAT CERTIFICATE OF ANALYSIS (V1)

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agstabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SAM	PLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD63501 (-)		<0.01	0.76	37.1	880	12.6	5.4	0.007	0.191	1.44	2.7	1.2	0.5	32.2	0.02
AAD63502 (-)		<0.01	0.72	17.6	801	8.4	3.3	0.002	0.172	0.79	1.9	1.0	1.0	54.0	0.03
AAD63503 (-)		<0.01	0.96	20.5	775	21.0	5.8	0.001	0.068	0.97	2.9	0.7	0.3	28.9	<0.01
AAD63504 (-)		<0.01	1.00	25.4	927	17.6	8.1	<0.001	0.030	0.87	3.4	1.4	0.4	22.6	<0.01
AAD63505 (-)		0.01	0.88	27.3	885	12.1	7.5	0.002	0.121	1.13	3.0	2.4	0.3	46.9	0.01
AAD63506 (-)		0.01	0.95	42.5	880	19.6	7.5	<0.001	0.016	1.59	3.6	1.1	0.3	32.1	<0.01
AA063507 (-)		<0.01	0.70	36.8	819	18.9	7.9	<0.001	0.043	1.52	3.2	0.7	0.2	29.3	<0.01
AA063508 (-)		<0.01	0.64	28.9	631	19.5	7.6	<0.001	0.031	1.84	2.8	0.7	0.3	23.1	<0.01
AAD63509 (-)		<0.01	0.71	51.5	693	16.6	5.8	<0.001	0.019	2.31	3.1	0.8	0.3	24.1	<0.01
AAD63510 (-)		<0.01	0.56	46.7	656	17.5	4.6	<0.001	0.038	2.18	2.9	0.9	0.2	29.3	<0.01
AAD63511 (-)		<0.01	0.52	54.6	499	16.3	4.9	<0.001	0.020	2.64	3.1	0.7	0.3	20.4	<0.01
AA063512 (-)		<0.01	0.47	36.4	359	14.1	5.6	<0.001	0.013	2.47	2.1	0.6	0.2	11.6	<0.01
AA063513 (-)		<0.01	0.73	44.4	875	16.7	5.1	<0.001	0.018	1.88	3.3	0.6	0.3	29.2	<0.01
AAD63514 (-)		<0.01	0.94	43.5	761	18.7	5.4	0.001	0.028	1.29	3.8	1.0	0.4	30.6	<0.01
AAD63515 (-)		<0.01	0.88	24.6	699	12.1	8.4	0.003	0.101	0.55	2.6	0.6	0.3	24.5	<0.01
AAD63516 (-)		<0.01	0.83	36.8	802	13.7	10.5	0.006	0.140	0.77	3.3	1.1	0.3	32.9	<0.01
AA063517 (-)		<0.01	0.73	27.4	733	12.7	9.9	0.003	0.094	0.58	2.5	0.8	0.3	31.1	<0.01
AA063518 (-)		<0.01	0.72	36.8	671	15.1	10.8	0.002	0.074	0.67	2.7	0.9	0.3	32.5	<0.01
AAD63519 (-)		<0.01	0.70	28.5	667	14.6	11.7	0.002	0.053	0.56	2.4	0.6	0.3	33.0	<0.01
AA063520 (-)		<0.01	0.62	18.7	530	8.9	12.0	0.001	0.057	0.32	1.6	0.3	0.3	23.8	<0.01
AA063521 (-)		<0.01	0.95	34.1	913	17.7	13.9	<0.001	0.029	0.80	2.8	0.5	0.3	19.2	<0.01
AA063522 (-)		<0.01	1.02	25.3	608	13.0	11.5	<0.001	0.035	0.89	2.3	0.4	0.7	16.0	<0.01
AA063523 (-)		<0.01	0.97	37.9	938	12.2	9.5	<0.001	0.052	0.54	2.6	0.4	0.3	21.2	<0.01
AAD63524 (-)		<0.01	1.16	14.3	511	10.2	6.6	<0.001	0.015	0.85	1.4	<0.2	0.4	6.4	<0.01
AA063525 (-)		<0.01	0.83	30.6	864	14.3	8.9	<0.001	0.025	0.87	2.8	0.4	0.3	22.9	<0.01
AA063526 (-)		0.01	1.02	41.5	1050	13.9	7.0	<0.001	0.024	1.10	3.3	0.5	0.3	28.0	<0.01
AAD63527 (-)		<0.01	0.66	43.5	866	20.1	10.4	<0.001	0.030	1.22	3.1	0.4	0.4	26.7	<0.01
AAD63528 (-)		<0.01	0.85	32.3	678	17.2	5.7	<0.001	0.005	0.95	2.4	0.2	0.3	14.8	<0.01
AA063529 (-)		<0.01	0.97	22.7	693	12.8	8.6	<0.001	0.008	0.64	2.1	<0.2	0.3	14.3	<0.01
AA063530 (-)		<0.01	0.60	48.7	1240	22.0	5.6	<0.001	0.015	2.00	2.9	0.7	0.2	23.2	<0.01
AAD63531 (-)		0.02	1.00	40.7	1130	21.5	9.8	<0.001	0.017	1.67	3.5	0.8	0.3	29.4	<0.01
AA063532 (-)		0.01	0.88	25.2	867	14.8	6.0	<0.001	0.044	0.90	2.6	0.6	0.3	36.3	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 16 of 50

1 af stommer

🔛 զզգլ	Laboratories
--------	--------------

ATTENTION TO: ANDREW CALDWELL

Ľ

et tomare

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	ep 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	IPLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD63533 (-)		0.01	0.90	26.7	926	17.8	8.6	<0.001	0.025	0.98	2.9	0.8	0.3	27.4	<0.01
AAD63534 (-)		0.02	1.10	34.7	1290	44.1	9.3	<0.001	0.013	1.99	3.5	1.4	0.4	28.5	<0.01
AAD63535 (-)		0.02	0.76	50.5	1490	47.4	8.6	<0.001	0.014	2.44	3.6	0.8	0.3	31.1	<0.01
AAD63536 (-)		0.01	1.97	31.5	754	24.7	14.3	<0.001	0.020	1.80	3.5	1.5	0.5	25.2	<0.01
AAD63537 (-)		NSS	NSS	NSS	NS8	NSS	NSS	NSS	NSS	NS3	NSS	NSS	NSS	NSS	NSS
AAD63538 (-)		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	N33	NSS
AAD63539 (-)		NSS	NSS	NSS	N88	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	N33	NSS
AA063540 (-)		0.01	0.92	26.8	883	19.1	11.5	0.011	0.103	0.90	2.9	3.8	0.3	31.7	<0.01
AAD63541 (-)		0.01	0.57	16.6	859	9.1	5.0	0.006	0.042	0.54	1.8	1.8	0.2	21.7	<0.01
AAD63542 (-)		0.01	0.59	24.9	872	12.4	8.8	0.008	0.059	0.80	2.4	3.5	0.3	26.9	<0.01
AAD63543 (-)		0.01	0.61	46.3	1230	32.0	10.8	<0.001	0.016	2.40	3.3	0.8	0.3	23.8	<0.01
AAD63544 (-)		<0.01	0.78	33.4	500	24.3	8.1	<0.001	0.010	1.60	2.2	0.6	0.3	9.9	<0.01
AAD63545 (-)		<0.01	0.83	41.4	977	29.3	4.3	<0.001	0.018	2.24	2.5	1.1	0.2	17.5	<0.01
AAD63546 (-)		<0.01	0.72	24.5	608	15.0	6.6	<0.001	0.017	1.03	2.5	0.5	0.4	17.9	<0.01
AAD63547 (-)		<0.01	0.64	27.3	923	13.3	5.4	<0.001	0.039	1.06	2.5	0.5	0.2	30.7	<0.01
AAD63548 (-)		<0.01	0.69	25.7	842	15.4	7.0	<0.001	0.025	1.09	2.8	0.4	0.3	20.9	<0.01
AAD63549 (-)		<0.01	0.52	48.4	1300	20.7	7.1	<0.001	0.008	2.19	3.3	0.5	0.2	25.4	<0.01
AA063550 (-)		0.07	0.54	18.6	485	2.2	3.2	0.001	0.042	0.34	4.0	<0.2	0.4	32.8	<0.01
AAD63551 (-)		<0.01	0.78	34.9	843	17.3	6.1	0.002	0.030	1.33	3.5	1.1	0.3	29.8	<0.01
AA063552 (-)		<0.01	0.74	42.7	918	17.7	6.2	0.004	0.041	1.45	3.1	1.5	0.2	33.6	<0.01
AAD63553 (-)		<0.01	0.75	22.9	422	13.2	5.6	<0.001	0.008	1.05	2.3	<0.2	0.3	15.0	<0.01
AA063554 (-)		0.01	1.37	24.3	629	13.0	9.1	0.001	0.049	1.38	3.1	1.0	0.3	48.9	<0.01
AAD63555 (-)		0.01	1.09	16.8	767	9.7	11.2	0.002	0.128	2.14	2.1	1.0	0.2	144	0.04
AAD63556 (-)		0.01	1.61	20.4	872	10.6	14.6	<0.001	0.052	1.18	2.7	0.6	0.3	51.1	0.01
AAD63557 (-)		<0.01	1.40	19.5	563	11.0	10.7	<0.001	0.042	0.67	2.8	0.2	0.3	30.5	<0.01
AAD63558 (-)		<0.01	0.86	10.9	534	5.4	6.0	<0.001	0.025	0.42	1.7	<0.2	0.2	32.8	<0.01
AAD63559 (-)		<0.01	1.39	12.3	850	11.4	6.6	0.002	0.131	0.57	2.8	1.7	0.3	45.9	<0.01
AAD6356D (-)		<0.01	1.53	20.9	468	13.4	9.0	<0.001	0.006	1.08	2.9	0.2	0.3	14.8	<0.01
AAD63561 (-)		0.01	1.48	22.6	755	13.7	13.3	<0.001	0.025	0.98	2.9	0.3	0.3	37.4	<0.01
AAD63562 (-)		<0.01	1.18	15.0	581	17.5	9.5	<0.001	0.040	0.89	2.6	0.4	0.3	31.9	<0.01
AAD63563 (-)		<0.01	1.07	12.0	195	6.9	14.3	<0.001	0.006	0.75	1.4	<0.2	0.4	12.1	<0.01
AAD63564 (-)		<0.01	1.33	21.2	328	14.3	9.0	<0.001	0.008	1.14	2.0	<0.2	0.5	8.5	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 19 of 50

🔛 զզգլ	Laboratories
--------	--------------

ATTENTION TO: ANDREW CALDWELL

Ľ

et tomare

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	ep 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	PLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD63565 (-)		<0.01	2.07	18.4	289	13.9	21.1	<0.001	0.019	1.21	1.7	<0.2	0.4	11.0	<0.01
AAD63566 (-)		0.01	1.47	21.4	797	15.9	13.1	<0.001	0.021	0.98	2.7	0.2	0.3	24.2	<0.01
AAD63567 (-)		<0.01	1.34	24.0	376	16.2	14.2	<0.001	0.006	0.83	2.1	<0.2	0.4	10.8	<0.01
AAD63568 (-)		0.01	0.94	15.5	680	8.3	7.3	0.003	0.037	0.61	1.9	1.5	0.2	30.1	<0.01
AAD63569 (-)		0.01	1.83	30.1	914	19.4	23.0	<0.001	0.026	1.44	3.6	0.6	0.4	41.7	<0.01
AAD63570 (-)		<0.01	1.08	54.6	588	42.2	11.4	<0.001	0.036	3.08	3.4	1.1	0.3	15.6	<0.01
AAD63571 (-)		<0.01	1.28	37.4	521	20.5	12.7	<0.001	0.012	1.28	3.1	0.4	0.3	20.1	<0.01
AA063572 (-)		<0.01	1.12	31.9	978	19.3	20.0	<0.001	0.034	1.61	2.9	0.6	0.3	21.7	<0.01
AAD63573 (-)		<0.01	1.49	27.3	916	16.2	22.8	<0.001	0.036	1.08	3.0	0.7	0.3	35.6	<0.01
AA064001 (-)		<0.01	1.16	16.5	288	15.8	11.2	<0.001	0.006	0.70	1.8	<0.2	0.4	13.2	<0.01
AA064002 (-)		<0.01	1.13	17.2	436	13.0	5.5	<0.001	0.006	0.60	1.8	<0.2	0.3	10.5	<0.01
AA064003 (-)		0.02	0.96	39.2	1120	35.5	9.4	<0.001	0.019	1.76	3.1	0.5	0.3	26.5	<0.01
AA064004 (-)		0.01	0.85	34.2	905	17.5	5.1	<0.001	0.014	1.29	3.0	0.3	0.3	24.1	<0.01
AA064005 (-)		0.01	0.84	17.8	728	12.9	5.2	<0.001	0.049	0.65	2.1	0.2	0.2	34.7	0.01
AA064006 (-)		<0.01	0.93	27.2	811	23.9	7.1	<0.001	0.023	1.05	3.0	0.6	0.3	26.5	<0.01
AA064007 (-)		<0.01	1.77	16.1	543	23.5	9.2	<0.001	0.011	1.04	1.9	<0.2	0.4	14.8	<0.01
AA064008 (-)		<0.01	0.74	25.4	551	12.0	4.2	<0.001	0.005	0.83	1.9	<0.2	0.3	14.0	<0.01
AA064009 (-)		<0.01	1.06	16.7	434	36.5	6.7	<0.001	0.013	4.90	1.6	<0.2	0.4	12.0	<0.01
AA064010 (-)		<0.01	1.70	11.6	419	69.4	18.3	<0.001	0.020	3.51	2.1	<0.2	0.7	13.8	<0.01
AA064011 (-)		0.01	0.76	22.6	1070	26.8	13.8	<0.001	0.068	1.30	1.0	0.3	0.4	33.9	<0.01
AA064012 (-)		<0.01	0.62	45.5	900	19.8	7.2	<0.001	0.011	2.13	2.6	0.5	0.3	17.4	<0.01
AA064013 (-)		<0.01	0.79	22.0	653	14.8	6.0	<0.001	0.011	1.09	1.8	0.3	0.3	14.8	<0.01
AA064014 (-)		<0.01	0.73	32.6	869	19.0	5.9	<0.001	0.008	1.65	2.7	0.4	0.3	18.7	<0.01
AA064015 (-)		<0.01	0.62	37.2	974	23.4	4.6	<0.001	0.025	2.00	2.8	0.8	0.2	27.1	<0.01
AA064016 (-)		<0.01	0.80	21.5	690	13.1	6.4	<0.001	0.009	0.76	1.9	<0.2	0.3	15.7	<0.01
AA064017 (-)		<0.01	0.64	42.4	502	21.6	6.8	<0.001	0.012	1.65	3.9	0.7	0.3	15.9	<0.01
AAD64018 (-)		<0.01	0.59	31.2	838	16.9	10.6	<0.001	0.011	1.33	2.6	0.5	0.3	20.8	<0.01
AA064019 (-)		<0.01	0.63	39.3	803	19.6	7.5	<0.001	0.025	1.61	2.8	0.6	0.4	27.5	<0.01
AA064020 (-)		<0.01	0.57	30.5	879	13.9	5.6	<0.001	0.028	1.31	2.3	0.5	0.2	29.8	<0.01
AA064021 (-)		<0.01	0.61	37.0	835	20.3	6.8	<0.001	0.026	1.75	2.7	0.6	0.9	26.4	<0.01
AA064022 (-)		<0.01	0.51	28.3	779	12.7	4.8	<0.001	0.084	0.72	2.1	0.5	0.2	50.0	<0.01
AA064023 (-)		<0.01	0.70	42.7	755	16.5	7.1	0.001	0.071	1.31	2.9	0.6	0.3	30.9	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 20 of 50

(159) (159)	agat	Laboratories
----------------	------	--------------

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agstabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED): Oct 19, 2	012	SAM	IPLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD64024 (-)		<0.01	1.02	24.8	692	13.1	9.7	<0.001	0.015	0.89	3.4	0.5	0.4	27.8	<0.01
AAD64025 (-)		<0.01	0.70	36.6	937	19.3	6.4	<0.001	0.019	1.67	2.2	0.5	0.2	21.6	<0.01
AAD64026 (-)		<0.01	0.82	25.0	757	15.6	10.5	0.001	0.038	1.01	2.7	0.4	0.3	26.8	<0.01
AAD64027 (-)		<0.01	0.66	33.2	500	16.4	7.3	<0.001	0.038	2.12	2.7	0.5	0.3	29.8	<0.01
AAD64028 (-)		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NS8	NSS	NSS
AAD64029 (-)		<0.01	0.81	33.4	801	15.8	10.8	0.003	0.105	1.39	3.0	0.9	0.3	35.0	0.01
AAD64030 (-)		<0.01	0.67	41.2	833	12.4	11.4	0.002	0.086	1.15	2.6	0.5	0.3	39.7	<0.01
AA064031 (-)		<0.01	0.78	49.7	796	19.9	9.2	<0.001	0.021	2.22	3.3	0.7	0.3	27.7	<0.01
AAD64032 (-)		<0.01	0.80	37.5	871	14.6	7.4	0.003	0.144	1.18	3.0	0.8	0.3	41.6	<0.01
AAD64033 (-)		NSS	NSS	NSS	NS8	NSS	NSS	NSS	NSS	NS3	NSS	NSS	NS8	NSS	NSS
AAD64034 (-)		0.01	0.62	24.8	956	16.5	5.4	0.001	0.071	1.29	1.8	0.4	0.2	34.3	<0.01
AA064035 (-)		<0.01	0.81	31.4	616	15.3	10.1	0.002	0.109	1.06	2.6	0.5	0.3	36.8	<0.01
AAD64036 (-)		0.01	0.52	24.8	581	9.7	7.7	<0.001	0.107	0.44	1.8	0.4	1.0	82.9	0.03
AAD64037 (-)		<0.01	0.95	18.7	326	10.2	7.8	<0.001	0.007	0.61	1.9	<0.2	0.4	12.0	<0.01
AAD64038 (-)		<0.01	0.93	63.5	786	44.6	14.0	<0.001	0.053	3.22	2.3	1.3	0.3	14.5	<0.01
AA064039 (-)		<0.01	1.02	13.7	261	12.1	18.4	<0.001	0.017	0.44	1.6	<0.2	0.4	15.4	<0.01
AA064040 (-)		<0.01	1.03	29.1	695	11.9	6.1	<0.001	0.048	0.85	2.8	0.5	0.3	36.3	<0.01
AAD64041 (-)		<0.01	0.74	67.2	775	18.8	14.2	<0.001	0.046	1.25	3.7	0.5	0.3	42.7	<0.01
AAD64042 (-)		0.01	0.74	75.5	807	13.1	6.1	<0.001	0.083	0.61	2.7	0.5	0.3	76.4	0.01
AA064043 (-)		0.01	0.62	28.9	788	9.0	6.1	0.001	0.150	0.53	1.5	0.2	0.2	94.0	0.02
AAD64044 (-)		<0.01	0.94	19.8	820	8.6	6.0	<0.001	0.022	0.61	1.9	<0.2	0.2	28.1	<0.01
AA064045 (-)		<0.01	1.30	22.7	175	17.8	14.6	<0.001	0.008	1.17	2.4	<0.2	0.5	13.6	<0.01
AAD64046 (-)		<0.01	1.17	19.0	285	10.8	10.8	<0.001	<0.005	0.54	2.4	<0.2	0.6	14.0	<0.01
AA064047 (-)		0.01	2.17	25.8	358	17.4	21.3	<0.001	0.012	1.11	2.4	<0.2	0.5	23.8	<0.01
AAD64048 (-)		<0.01	1.23	17.2	216	9.2	12.4	<0.001	0.008	1.46	1.3	<0.2	0.4	10.6	<0.01
AAD64049 (-)		0.01	1.46	22.5	401	21.5	11.5	<0.001	0.050	0.85	2.6	0.2	0.3	83.8	<0.01
AA064050 (-)		<0.01	0.19	83.1	1110	20.2	23.0	0.063	0.680	5.14	3.6	2.1	3.7	268	<0.01
AA064051 (-)		0.01	1.15	32.6	724	14.7	14.1	<0.001	0.047	1.14	2.8	0.2	0.3	57.0	<0.01
AA064052 (-)		<0.01	1.21	30.2	276	14.6	13.5	<0.001	0.009	0.94	2.8	<0.2	0.4	16.8	<0.01
AA064053 (-)		<0.01	1.36	25.8	397	18.2	19.8	<0.001	0.023	1.25	2.3	<0.2	0.4	20.0	<0.01
AA064054 (-)		<0.01	1.15	23.6	257	10.8	7.8	<0.001	0.016	1.50	1.8	<0.2	0.3	16.0	<0.01
AA064055 (-)		0.01	1.06	27.9	752	13.0	10.3	<0.001	0.042	0.80	2.7	0.4	0.3	46.3	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 21 of 50

et tomar

Ľ

	agat	Laboratories
--	------	--------------

ATTENTION TO: ANDREW CALDWELL

Ľ

af tomar

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAM	PLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD64056 (-)		<0.01	1.24	24.3	209	15.0	12.5	<0.001	0.010	0.98	2.2	<0.2	0.5	18.0	<0.01
AAD64057 (-)		0.01	1.90	17.9	947	120	44,4	<0.001	0.056	1.74	5.5	0.4	0.8	85.4	0.01
AAD64058 (-)		0.01	1.68	21.3	631	19.0	7.5	<0.001	0.017	0.94	2.6	<0.2	0.5	21.9	<0.01
AAD64059 (-)		0.01	1.22	27.9	524	26.6	21.2	<0.001	0.025	0.83	2.8	<0.2	0.5	49.5	<0.01
AAD64060 (-)		<0.01	1.12	42.5	416	24.6	8.3	<0.001	0.020	1.44	3.0	0.4	0.4	15.7	<0.01
AAD64061 (-)		0.01	1.95	23.6	541	58.8	26.6	<0.001	0.034	1.45	3.5	<0.2	0.6	36.5	<0.01
AA064062 (-)		<0.01	2.31	3.5	163	25.2	4.8	<0.001	0.017	0.80	1.2	<0.2	1.3	7.4	<0.01
AA064063 (-)		0.01	0.51	47.7	1050	22.1	16.5	<0.001	0.048	2.05	3.5	0.6	0.3	34.8	<0.01
AAD64064 (-)		0.01	1.16	41.2	984	17.4	11.4	<0.001	0.056	1.61	3.0	0.8	0.3	40.9	<0.01
AA064065 (-)		<0.01	0.97	42.5	1120	20.3	10.3	<0.001	0.060	1.68	2.8	0.6	0.2	32.4	<0.01
AA064066 (-)		0.01	1.55	21.7	1050	14.8	17.7	<0.001	0.023	1.04	2.6	0.3	0.4	28.0	<0.01
AA064067 (-)		0.01	1.32	28.8	982	16.9	11.2	<0.001	0.010	1.27	2.7	0.4	0.3	23.0	<0.01
AA064068 (-)		<0.01	1.22	27.2	863	18.0	10.9	<0.001	0.018	1.03	2.9	0.4	0.4	24.0	<0.01
AA064069 (-)		0.01	1.62	27.6	988	18.0	20.5	<0.001	0.024	1.07	3.1	0.4	0.4	32.0	<0.01
AA064501 (-)		<0.01	0.82	30.1	684	13.6	5.4	0.001	0.045	1.31	2.3	0.4	0.3	23.3	<0.01
AA064502 (-)		<0.01	0.64	25.5	679	15.3	5.4	0.001	0.032	1.65	2.4	0.5	0.2	24.2	<0.01
AA064503 (-)		<0.01	0.55	31.0	770	14.0	7.0	0.002	0.045	1.54	2.2	1.1	0.2	33.3	<0.01
AA064504 (-)		<0.01	0.58	41.2	814	20.7	6.8	0.002	0.054	2.30	2.7	1.1	0.2	28.2	<0.01
AA064505 (-)		<0.01	0.60	41.6	814	18.7	5.7	<0.001	0.036	1.97	2.5	0.5	0.2	25.2	<0.01
AA064506 (-)		<0.01	0.64	42.5	856	18.0	7.2	<0.001	0.091	2.01	2.3	0.7	0.2	29.7	<0.01
AA064507 (-)		<0.01	0.62	44.9	706	17.7	6.5	0.002	0.066	2.22	2.4	1.0	0.3	27.3	<0.01
AA064508 (-)		<0.01	0.64	39.2	864	20.6	5.2	0.002	0.070	2.31	2.4	0.8	0.3	29.3	<0.01
AA064509 (-)		<0.01	0.63	35.2	874	16.9	5.5	0.001	0.044	2.11	2.4	0.7	0.2	26.9	<0.01
AA064510 (-)		<0.01	0.57	44.6	844	19.8	6.6	<0.001	0.015	1.86	2.8	0.3	0.3	26.4	<0.01
AAD64511 (-)		<0.01	0.58	44.7	744	17.3	6.7	<0.001	0.007	2.06	3.3	0.2	0.3	20.9	<0.01
AA064512 (-)		<0.01	1.00	26.4	664	11.1	6.5	0.003	0.087	0.50	2.3	<0.2	0.3	22.9	<0.01
AA064513 (-)		0.01	1.05	40.1	782	15.5	11.0	0.005	0.151	0.85	3.0	0.6	0.4	31.8	<0.01
AA064514 (-)		<0.01	0.83	49.7	645	21.8	7.0	<0.001	0.016	2.35	3.1	0.5	0.3	26.6	<0.01
AA064515 (-)		<0.01	0.83	52.7	646	19.8	7.2	<0.001	0.023	2.12	3.3	0.5	0.4	29.9	<0.01
AAD64516 (-)		0.01	1.22	33.2	797	16.6	7.2	0.002	0.072	0.95	3.1	0.8	0.4	34.6	<0.01
AA064517 (-)		<0.01	1.11	37.6	523	13.6	9.4	<0.001	0.011	0.73	2.0	<0.2	0.4	9.6	<0.01
AA064518 (-)		<0.01	1.64	22.4	408	12.1	6.6	<0.001	0.012	0.71	1.6	<0.2	0.5	6.6	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 22 of 50

🔛 զզգլ	Laboratories
--------	--------------

ATTENTION TO: ANDREW CALDWELL

Ľ

et tomar

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	a (201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SAM	PLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	8c	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD64519 (-)		<0.01	0.61	64.2	1130	20.3	10.5	<0.001	0.031	1.62	3.1	0.6	0.3	29.3	<0.01
AA064520 (-)		<0.01	0.45	52.8	324	23.0	7.4	<0.001	0.014	2.43	3.3	0.9	0.2	10.2	<0.01
AAD64521 (-)		<0.01	0.92	21.9	634	18.1	11.7	0.001	0.020	0.61	2.4	<0.2	0.4	21.7	<0.01
AAD64522 (-)		<0.01	0.82	59.2	1030	33.6	11.6	<0.001	0.034	2.18	2.9	0.7	0.3	26.7	<0.01
AAD64523 (-)		<0.01	0.92	20.0	745	17.1	7.0	0.001	0.024	0.77	2.4	<0.2	0.3	20.9	<0.01
AAD64524 (-)		<0.01	0.69	44.0	941	17.9	5.8	<0.001	0.010	1.29	3.0	0.6	0.3	23.4	<0.01
AAD64525 (-)		0.01	0.59	57.3	1040	23.9	6.3	<0.001	0.020	1.98	3.1	0.4	0.3	23.8	<0.01
AAD64527 (-)		<0.01	1.09	29.6	407	15.4	6.4	<0.001	0.007	0.88	2.1	0.2	0.3	11.3	<0.01
AAD64528 (-)		0.04	0.96	34.6	1040	30.3	6.7	<0.001	0.012	1.43	3.1	0.2	0.4	28.1	<0.01
AAD64529 (-)		0.02	1.06	36.3	979	22.0	10.8	0.001	0.026	1.27	3.2	0.8	0.4	36.5	<0.01
AAD64530 (-)		0.01	1.20	26.8	942	17.8	9.1	0.002	0.049	0.79	3.1	1.4	0.4	33.9	<0.01
AAD64531 (-)		<0.01	0.98	25.7	514	18.0	7.5	<0.001	<0.005	0.74	2.3	<0.2	0.4	14.0	<0.01
AAD64532 (-)		<0.01	1.17	24.9	668	20.0	5.9	<0.001	0.007	0.85	2.3	<0.2	0.4	18.2	<0.01
AAD64533 (-)		0.01	1.02	32.4	770	24.2	9.2	0.001	0.016	0.74	3.1	0.7	0.4	23.4	<0.01
AAD64534 (-)		0.01	0.90	34.0	809	24.3	11.2	0.001	0.021	0.88	3.3	1.0	0.4	25.8	<0.01
AAD64535 (-)		<0.01	0.97	28.2	918	20.2	7.1	0.002	0.038	0.79	2.4	1.2	0.3	26.4	<0.01
AAD64536 (-)		<0.01	1.35	39.1	718	40.2	19.0	<0.001	0.029	1.82	2.7	0.5	0.5	10.6	<0.01
AAD64537 (-)		0.01	1.21	53.3	1140	38.5	18.1	0.001	0.030	3.64	3.4	1.2	0.4	39.5	<0.01
AAD64538 (-)		<0.01	0.71	26.8	1050	18.6	8.0	<0.001	0.020	0.82	2.8	0.4	0.4	19.0	<0.01
AAD64539 (-)		<0.01	0.86	44.8	605	19.8	7.2	<0.001	0.008	1.52	4.1	0.8	0.5	20.2	<0.01
AA064540 (-)		<0.01	0.67	65.5	1050	31.1	7.2	<0.001	0.020	2.82	3.5	0.8	0.4	23.7	<0.01
AAD64541 (-)		0.01	0.68	51.1	1130	23.2	6.9	<0.001	0.014	2.31	3.3	0.6	0.4	26.6	<0.01
AA064542 (-)		<0.01	1.23	18.2	733	15.0	6.6	0.003	0.031	0.62	2.6	0.4	0.5	23.4	<0.01
AAD64543 (-)		<0.01	1.00	30.7	881	15.1	7.2	<0.001	0.007	0.99	3.1	<0.2	1.0	22.8	<0.01
AAD64544 (-)		0.01	0.55	44.1	924	20.4	5.2	<0.001	0.009	1.76	3.1	0.3	0.3	25.2	<0.01
AAD64545 (-)		<0.01	0.99	33.2	810	17.6	8.0	<0.001	0.008	1.01	3.2	<0.2	0.6	22.7	<0.01
AAD64546 (-)		<0.01	0.95	32.0	679	17.7	8.0	<0.001	0.027	0.94	3.1	0.5	0.6	27.4	<0.01
AAD64547 (-)		0.01	0.74	48.4	1210	22.2	11.1	0.001	0.023	1.54	3.1	1.4	0.4	29.9	<0.01
AAD64548 (-)		<0.01	0.85	28.7	905	25.2	8.1	0.004	0.060	1.41	2.7	1.6	0.3	28.7	<0.01
AA064550 (-)		0.08	0.48	18.7	475	2.7	3.5	0.001	0.043	0.36	4.1	<0.2	0.4	40.1	<0.01
AA065001 (-)		0.01	1.07	36.6	977	14.1	4.4	<0.001	0.018	1.14	2.6	<0.2	0.5	29.3	<0.01
AA065002 (-)		0.01	0.83	35.2	1090	17.2	6.2	0.002	0.008	1.52	3.0	0.8	0.3	59.0	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 23 of 50

ATTENTION TO: ANDREW CALDWELL

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ IN9 TEL (905)501-9998 FAX (905)501-0589 http://www.agstabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	(201074	4)				
DATE SAMPLED: Se	p 12, 2012		I	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20)12	SAM	PLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	8c	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AA065004 (-)		<0.01	0.43	30.6	1180	15.1	3.5	0.001	0.013	1.54	2.3	0.8	0.2	67.9	<0.01
AA065005 (-)		<0.01	0.89	77.A	1490	55.1	9.1	<0.001	0.088	2.96	4.1	4.1	0.4	31.1	<0.01
AAD65007 (-)		<0.01	1.21	17.2	681	16.1	6.2	0.001	0.083	0.91	2.9	0.5	0.4	28.1	<0.01
AA065008 (-)		<0.01	0.99	26.0	757	30.0	8.4	<0.001	0.033	1.82	2.6	1.0	0.4	23.6	<0.01
AA065009 (-)		<0.01	0.84	49.4	629	22.2	8.7	<0.001	0.017	2.13	3.2	0.5	0.4	23.2	<0.01
AA065010 (-)		<0.01	0.98	48.4	628	20.2	7.9	<0.001	0.021	2.56	3.2	0.5	0.4	25.3	<0.01
AAD65011 (-)		0.01	1.00	46.1	726	22.9	7.0	<0.001	0.025	2.55	3.1	0.4	0.4	26.4	<0.01
AA065012 (-)		<0.01	0.75	51.5	692	26.0	6.8	<0.001	0.021	3.37	3.0	0.7	0.3	25.6	<0.01
AAD65013 (-)		<0.01	0.25	53.9	784	19.6	6.9	<0.001	0.034	3.43	2.9	0.5	0.3	26.7	<0.01
AAD65014 (-)		<0.01	0.81	45.9	799	22.6	4.2	<0.001	0.020	2.95	2.6	0.9	0.3	23.8	<0.01
AAD65015 (-)		<0.01	1.06	36.8	914	16.3	7.5	0.002	0.058	1.09	2.7	0.9	0.3	36.7	<0.01
AA065016 (-)		0.01	1.25	30.3	853	13.1	8.5	0.004	0.077	0.94	3.4	1.2	0.3	38.7	<0.01
AA065017 (-)		<0.01	1.00	44.0	725	18.3	7.4	0.001	0.031	1.96	3.7	0.8	0.3	35.9	<0.01
AAD65018 (-)		<0.01	0.87	45.5	696	25.0	4.9	<0.001	0.020	2.55	3.0	2.0	0.3	17.6	<0.01
AAD65019 (-)		<0.01	0.58	59.8	605	24.4	5.4	<0.001	0.048	3.05	3.5	1.1	0.3	25.5	<0.01
AA065020 (-)		<0.01	0.51	54.2	453	18.9	6.3	<0.001	0.016	2.14	3.7	0.6	0.2	23.2	<0.01
AA065021 (-)		<0.01	0.82	37.2	783	17.7	7.9	<0.001	0.033	1.42	3.2	0.9	0.3	36.4	<0.01
AA065022 (-)		<0.01	1.01	30.2	745	15.4	8.2	<0.001	0.023	0.94	3.0	0.5	0.3	21.6	<0.01
AA065023 (-)		<0.01	1.15	31.2	780	14.3	8.3	<0.001	0.027	0.91	3.8	0.9	0.4	32.2	<0.01
AA065024 (-)		<0.01	0.68	52.2	769	18.6	6.1	<0.001	0.030	1.83	3.6	0.6	0.3	24.5	<0.01
AA065025 (-)		<0.01	0.79	46.5	704	14.9	6.1	<0.001	0.010	1.48	3.1	0.6	0.3	21.5	<0.01
AA065026 (-)		0.01	0.95	70.5	890	18.3	16.6	<0.001	0.022	1.21	4.9	0.5	0.4	32.1	<0.01
AA065028 (-)		<0.01	0.85	31.1	774	16.0	7.5	<0.001	0.025	1.09	3.1	0.5	0.3	30.6	<0.01
AA065029 (-)		<0.01	1.29	31.2	272	13.8	11.5	<0.001	0.008	0.89	2.7	<0.2	0.4	11.6	<0.01
AA065030 (-)		0.01	0.55	60.9	1060	20.8	8.5	<0.001	0.022	1.78	3.7	0.7	0.3	25.5	<0.01
AA065031 (-)		<0.01	0.77	47.0	443	21.9	8.8	<0.001	0.011	1.50	2.7	0.7	0.3	13.2	<0.01
AA065032 (-)		<0.01	0.64	42.4	1180	16.6	7.5	<0.001	0.032	1.35	3.6	0.8	0.3	27.9	<0.01
AA065033 (-)		0.01	0.54	61.6	1230	21.5	9.9	0.001	0.017	1.94	3.8	0.8	0.2	36.0	<0.01
AA065034 (-)		0.01	0.81	45.7	1270	16.3	5.9	<0.001	0.014	1.48	3.4	0.7	0.3	28.6	<0.01
AA065035 (-)		0.01	0.80	46.6	1040	17.9	8.6	<0.001	0.024	1.42	3.7	1.0	0.3	32.1	<0.01
AA065036 (-)		0.01	0.70	58.5	1150	20.4	8.9	<0.001	0.023	1.75	3.6	0.8	0.3	32.3	<0.01
AA065037 (-)		0.01	0.51	52.2	1330	20.7	9.9	0.001	0.026	1.91	3.5	0.9	0.3	31.1	<0.01

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 24 of 50

1 af stommer

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

NTION TO ANODEW OALDWELL

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN					ATTEN	TION TO:	ANDREW	CALDWEI	L			
			Aqua	Regia D	igest - N	letals Pa	ckage,	ICP/ICP-	MS finish	n (201074	4)				
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED): Oct 19, 20	012	SAM	PLE TYPE:	Soll	
	Analyte:	Na	Nb	NI	P	Pb	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Та
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
AAD65038 (-)		0.01	0.52	57.6	1230	22.4	8.1	<0.001	0.016	2.19	4.0	1.0	0.3	25.8	<0.01
AAD65039 (-)		0.01	0.43	42.7	1260	24.8	8.6	<0.001	0.012	2.44	3.7	0.8	0.3	36.4	<0.01
AAD65040 (-)		0.01	0.50	51.9	691	33.1	6.7	<0.001	0.009	2.12	4.3	1.2	0.3	18.5	<0.01
AAD65041 (-)		0.01	0.54	60.9	1230	26.0	10.5	<0.001	0.021	2.45	4.1	1.2	0.3	30.4	<0.01
AAD65042 (-)		0.01	0.78	43.6	1090	19.3	7.2	<0.001	0.011	2.21	3.8	0.8	0.3	30.6	<0.01
AAD65043 (-)		0.01	0.73	41.8	1310	18.1	6.5	<0.001	0.023	1.93	3.6	1.5	0.3	41.4	<0.01
AAD65044 (-)		<0.01	0.64	55.4	1040	31.8	7.2	<0.001	0.018	2.59	3.8	1.3	0.3	22.3	<0.01
AAD65045 (-)		<0.01	0.59	49.5	882	20.4	6.5	<0.001	0.013	2.17	3.9	0.7	0.3	21.0	<0.01
AAD65046 (-)		0.01	0.99	64.4	1310	24.6	11.9	0.001	0.041	2.28	4.0	1.6	0.4	32.8	<0.01
AAD65047 (-)		0.01	1.77	20.6	374	27.3	7.3	<0.001	0.010	0.91	3.5	0.5	0.6	23.1	<0.01
AAD65048 (-)		0.01	1.29	36.0	961	25.5	10.7	<0.001	0.025	1.37	3.5	0.7	0.4	33.8	<0.01
AAD65049 (-)		0.01	1.18	38.9	900	32.3	11.6	<0.001	0.033	1.60	3.8	0.9	0.5	40.3	<0.01
AAD65050 (-)		0.03	0.13	17.2	170	13.8	5.4	0.001	0.271	27.1	1.2	1.3	1.7	114	<0.01
AA065051 (-)		0.01	1.15	34.5	981	18.9	8.3	<0.001	0.015	1.28	3.7	0.6	0.4	32.2	<0.01
AA065052 (-)		<0.01	0.87	29.8	880	17.8	7.5	<0.001	0.013	0.89	3.2	0.3	0.4	23.9	<0.01
AAD65053 (-)		<0.01	1.04	29.3	745	28.5	8.3	<0.001	0.010	1.30	3.0	0.4	0.5	22.4	<0.01
AAD65054 (-)		<0.01	0.94	31.9	932	23.3	7.4	<0.001	0.009	1.16	3.2	0.4	0.5	23.2	<0.01
AA065055 (-)		0.01	0.77	42.2	976	37.5	5.7	<0.001	0.017	2.08	3.9	0.8	0.4	24.2	<0.01
AA065056 (-)		<0.01	0.67	40.5	1020	35.7	6.8	<0.001	0.013	1.84	4.0	0.7	0.3	20.9	<0.01
AAD65057 (-)		0.01	1.23	26.5	1130	36.7	11.0	<0.001	0.017	2.18	3.4	0.5	0.4	31.4	<0.01
AAD65058 (-)		0.01	1.64	31.8	907	22.4	11.7	<0.001	0.016	1.42	3.8	0.6	0.5	31.4	<0.01
AAD63171 (-)		<0.01	0.85	15.3	795	6.2	4.9	0.003	0.023	0.45	1.9	1.3	0.5	22.5	<0.01

Certified By:

1 ef stommer

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

Page 25 of 50

PROJECT NO: MCC-2012-NK-2367

Ľ

1 James

TION TO AND DOLLAR DWELL

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatisbs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PRO	EDATOR MIN	ING GROU	ATTEN	TION TO:	ANDREW	ALDWELL						
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	n (201074	4)	
DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAMPLE TYPE: Soll
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	
AA063501 (-)		0.04	2.3	0.012	0.07	1.24	18.3	0.11	6.96	108	2.0	
AA063502 (-)		0.04	1.7	0.020	0.05	1.74	13.1	0.12	4.84	82.0	1.7	
AA063503 (-)		0.03	3.1	0.025	0.07	0.90	24.8	0.21	7.51	98.5	1.6	
AAD63504 (-)		0.04	4.2	0.025	0.07	1.10	32.9	0.16	8.26	115	1.5	
AA063505 (-)		0.04	2.7	0.021	0.07	1.24	23.6	0.11	7.07	98.2	2.3	
AA063506 (-)		0.04	5.0	0.031	0.08	0.49	29.4	0.16	8.88	140	2.7	
AA063507 (-)		0.05	4.3	0.017	0.07	0.61	25.2	0.10	7.24	104	1.9	
AAD63508 (-)		0.06	4.8	0.014	0.07	0.69	25.8	0.10	6.21	105	1.5	
AA063509 (-)		0.07	5.4	0.018	0.07	0.72	26.6	0.13	7.20	134	2.2	
AA063510 (-)		0.06	3.5	0.013	0.06	0.90	24.0	0.13	7.16	117	1.3	
AAD63511 (-)		0.07	4.7	0.012	0.06	1.05	25.3	0.12	7.86	135	1.2	
AA063512 (-)		0.07	3.2	0.011	0.07	0.47	25.6	0.10	3.89	109	<0.5	
AAD63513 (-)		0.05	4.7	0.024	0.08	0.56	28.0	0.13	8.52	126	1.9	
AAD63514 (-)		0.05	4.8	0.025	0.07	0.91	33.2	0.17	9.07	126	2.4	
AA063515 (-)		0.02	2.3	0.024	0.10	1.37	22.9	0.11	7.00	73.7	0.5	
AAD63516 (-)		0.03	1.9	0.021	0.11	4.39	24.9	0.19	11.7	95.6	0.8	
AAD63517 (-)		0.02	1.6	0.018	0.09	3.79	21.8	0.10	7.89	101	0.7	
AAD63518 (-)		0.03	1.9	0.019	0.10	3.66	22.2	0.17	8.88	117	0.7	
AAD63519 (-)		0.03	1.5	0.018	0.10	4.16	25.6	0.10	7.00	117	0.6	
AA063520 (-)		0.02	1.0	0.017	0.10	1.60	16.2	0.13	3.32	62.2	<0.5	
AA063521 (-)		0.04	3.5	0.030	0.12	0.85	33.3	0.15	6.52	118	<0.5	
AA063522 (-)		0.02	1.9	0.028	0.11	0.59	30.1	0.21	5.65	69.1	<0.5	
AA063523 (-)		0.03	2.0	0.025	0.08	0.89	26.4	0.49	8.37	93.5	<0.5	
AAD63524 (-)		0.04	2.6	0.028	0.09	0.28	39.5	0.16	1.76	65.8	<0.5	
AAD63525 (-)		0.03	4.4	0.024	0.07	0.74	28.0	0.14	6.94	97.2	0.9	
AA063526 (-)		0.04	4.9	0.032	0.07	0.79	28.9	0.15	9.19	124	1.6	
AA063527 (-)		0.05	4.6	0.013	0.12	1.27	32.9	0.11	9.97	107	0.9	
AAD63528 (-)		0.03	4.2	0.028	0.08	0.49	30.6	0.13	5.14	93.2	<0.5	
AA063529 (-)		0.03	2.7	0.028	0.08	0.47	30.1	0.12	5.22	57.4	<0.5	
AA063530 (-)		0.06	7.1	0.024	0.08	0.71	22.2	0.07	9.57	141	1.9	
AAD63531 (-)		0.05	5.2	0.037	0.13	0.75	33.3	0.15	10.1	149	2.1	
AA063532 (-)		0.03	2.3	0.028	0.08	0.66	24.6	0.10	7.24	90.8	1.2	

Certified By:

Page 26 of 50

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

•

TION TO AND DOLL ON DWELL

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0599 http://www.agatabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MIN	ING GROU	JPIN				ATTEN	TION TO:	ANDREW	ALDWELL			
			Aqua	Regia D)igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	n (201074	4)		
DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED): Oct 19, 2	012	SAMPLE TYPE: Soli	
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr		-
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5		
AAD63533 (-)		0.03	3.1	0.029	0.10	0.73	29.4	0.12	7.41	97.9	0.9		
AAD63534 (-)		0.05	5.5	0.041	0.13	1.11	29.2	0.15	10.7	183	2.7		
AAD63535 (-)		0.05	6.1	0.038	0.13	0.73	28.8	0.16	11.8	217	6.7		
AAD63536 (-)		0.04	8.2	0.062	0.16	2.91	34.6	0.49	10.1	164	1.0		
AAD63537 (-)		NSS	NSS	NSS	N88	NSS	NSS	NSS	N88	NS8	NSS		
AAD63538 (-)		N88	NSS	NSS	N88	NSS	NSS	NSS	N88	NSS	NSS		
AAD63539 (-)		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS		
AA063540 (-)		0.05	2.1	0.025	0.12	2.24	31.5	1.33	8.24	147	1.0		
AAD63541 (-)		0.02	2.3	0.021	0.07	1.19	17.7	0.21	5.81	84.2	0.9		
AAD63542 (-)		0.03	1.9	0.018	0.11	1.24	23.1	0.12	6.28	132	0.8		
AAD63543 (-)		0.05	5.6	0.029	0.14	0.65	24.7	0.13	9.84	148	2.6		
AAD63544 (-)		0.05	3.6	0.021	0.11	0.45	30.2	0.14	3.31	106	1.3		
AAD63545 (-)		0.06	4.9	0.024	0.09	0.58	25.6	0.17	6.71	141	1.6		
AAD63546 (-)		0.04	2.5	0.017	0.09	0.55	32.0	0.15	4.73	74.5	0.7		
AAD63547 (-)		0.03	3.1	0.020	0.06	0.54	19.4	0.11	6.82	91.8	1.9		
AAD63548 (-)		0.03	3.2	0.018	0.08	0.69	25.8	0.12	7.06	88.2	1.2		
AAD63549 (-)		0.05	6.8	0.025	0.11	0.59	23.8	0.11	9.75	158	4.3		
AA063550 (-)		0.02	1.1	0.105	0.05	0.27	40.6	26.2	7.58	38.1	6.9		
AAD63551 (-)		0.04	4.5	0.021	0.08	1.22	27.8	0.14	8.71	105	1.8		
AAD63552 (-)		0.04	3.5	0.021	0.08	2.74	25.4	0.16	8.37	123	1.4		
AAD63553 (-)		0.03	3.6	0.021	0.09	0.78	35.2	0.23	3.55	94.6	1.7		
AAD63554 (-)		0.03	4.4	0.034	0.08	12.1	25.5	0.29	8.71	96.8	1.5		
AAD63555 (-)		0.03	1.5	0.027	0.09	20.8	14.2	0.11	6.37	82.2	1.6		
AAD63556 (-)		0.03	3.3	0.041	0.12	7.94	19.5	0.52	8.12	73.8	1.1		
AAD63557 (-)		0.02	3.2	0.026	0.09	4.25	21.8	0.21	7.61	62.0	1.0		
AAD63558 (-)		0.01	2.7	0.025	0.06	1.34	13.6	0.18	4.08	48.2	0.9		
AAD63559 (-)		0.01	4.9	0.034	0.10	12.0	16.0	0.21	7.05	102	1.3		
AAD6356D (-)		0.02	7.7	0.041	0.10	1.57	18.8	0.49	7.17	74.0	1.2		
AAD63561 (-)		0.03	5.3	0.036	0.12	4.51	22.8	0.57	9.93	78.7	0.7		
AAD63562 (-)		0.02	4.4	0.031	0.09	4.22	22.3	0.39	7.09	71.8	1.0		
AAD63563 (-)		0.03	2.7	0.030	0.08	0.41	28.3	0.18	1.82	48.9	<0.5		
AAD63564 (-)		0.04	3.6	0.034	0.10	0.54	37.3	0.24	2.67	87.6	0.5		

Certified By:

Page 27 of 50

et tomara

Ľ

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

5623 MCADAM ROAD MISSISAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9598 FAX (905)501-9599 http://www.agatabs.com

ATTENTION TO: ANDREW CALDWELL

CLIENT NAME: PREDATOR MINING GROUP IN

Aqua Regia Digest - Metals Package, ICP/ICP-MS finish (201074)													
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	012	SAMPLE TYPE: Soli	
	Analyte:	Те	Th	т	п	U	v	w	Y	Zn	Zr		
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5		
AAD63565 (-)		0.04	3.1	0.037	0.11	0.42	27.6	0.29	1.86	73.2	0.9		
AAD63566 (-)		0.03	5.9	0.038	0.09	4.69	23.2	1.20	6.78	109	1.1		
AAD63567 (-)		0.04	4.6	0.036	0.10	0.61	35.4	0.30	3.03	83.0	1.5		
AAD63568 (-)		0.02	3.2	0.029	0.07	1.64	18.1	0.80	5.82	72.2	0.9		
AAD63569 (-)		0.04	8.9	0.043	0.17	2.51	22.1	0.32	11.0	111	2.5		
AA063570 (-)		0.10	8.6	0.028	0.13	1.25	28.3	0.27	6.70	144	2.0		
AAD63571 (-)		0.05	7.8	0.032	0.10	1.11	25.4	0.29	6.15	108	2.9		
AAD63572 (-)		0.04	7.9	0.042	0.16	1.52	19.3	0.50	8.59	117	2.1		
AAD63573 (-)		0.03	5.5	0.043	0.15	5.10	22.6	0.19	8.13	114	1.4		
AA064001 (-)		0.03	3.1	0.026	0.11	0.41	28.6	0.22	2.79	47.6	0.8		
AA064002 (-)		0.03	3.0	0.031	0.09	0.41	30.3	0.17	3.14	51.8	0.9		
AA064003 (-)		0.04	4.9	0.032	0.12	0.74	26.5	0.23	9.74	163	2.1		
AA064004 (-)		0.03	4.2	0.029	0.08	0.70	26.1	0.16	9.23	112	1.8		
AA064005 (-)		0.02	2.2	0.023	0.07	0.59	20.4	0.18	4.86	65.4	1.3		
AA064006 (-)		0.03	3.2	0.026	0.09	1.40	27.3	0.14	8.69	102	1.3		
AA064007 (-)		0.03	4.3	0.040	0.12	0.75	27.3	0.25	3.47	87.7	<0.5		
AA064008 (-)		0.03	5.3	0.033	0.09	1.11	25.6	0.16	4.12	53.6	3.4		
AA064009 (-)		0.04	3.0	0.027	0.10	0.71	28.8	0.29	2.90	104	<0.5		
AA064010 (-)		0.03	6.9	0.019	0.16	1.58	31.8	1.34	3.69	154	<0.5		
AA064011 (-)		0.04	0.7	0.014	0.11	2.43	26.4	0.20	5.91	123	<0.5		
AA064012 (-)		0.04	4.9	0.020	0.13	0.70	27.8	0.18	8.55	140	0.5		
AA064013 (-)		0.03	2.5	0.023	0.09	0.47	27.8	0.14	4.42	74.9	<0.5		
AA064014 (-)		0.04	4.9	0.027	0.11	0.70	27.0	0.15	8.46	111	0.6		
AA064015 (-)		0.05	3.3	0.022	0.08	0.75	23.9	0.12	9.35	122	1.0		
AA064016 (-)		0.03	2.7	0.024	0.10	0.46	30.3	0.13	5.72	61.4	<0.5		
AA064017 (-)		0.05	4.6	0.019	0.11	0.75	31.2	0.16	11.9	119	0.5		
AA064018 (-)		0.05	3.4	0.015	0.13	0.97	27.3	0.14	6.80	115	<0.5		
AA064019 (-)		0.05	2.3	0.012	0.13	1.23	34.6	0.11	9.39	132	0.6		
AA064020 (-)		0.03	2.9	0.017	0.07	0.83	21.1	0.09	7.42	96.3	1.2		
AA064021 (-)		0.05	3.4	0.017	0.09	0.81	23.7	0.11	8.75	120	1.3		
AA064022 (-)		0.03	1.3	0.014	0.05	0.84	16.9	0.12	6.69	57.2	1.1		
AA064023 (-)		0.03	3.6	0.016	0.08	1.43	25.7	0.11	8.63	94.2	1.6		

Certified By:

Page 28 of 50

el tomar

Ľ

AGAT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

Ľ

1 James

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MIN	IING GROU	JP IN				ATTEN	TION TO:	ANDREW	CALDWELL		
			Aqua	Regia D	igest - N	letals Pa	ckage, I	CP/ICP-I	MS finish	n (201074	4)	
DATE SAMPLED: Se	p 12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAMPLE TYPE: Soli
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	
AA064024 (-)		0.03	3.6	0.026	0.10	0.87	30.3	0.18	9.04	84.3	0.8	
AA064025 (-)		0.05	5.7	0.025	0.09	0.65	21.8	0.11	6.93	120	0.9	
AA064026 (-)		0.04	3.1	0.021	0.11	1.19	30.6	0.12	6.13	97.7	0.6	
AA064027 (-)		0.06	3.1	0.018	0.09	1.39	27.4	0.21	5.82	137	0.8	
AA064028 (-)		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NS3	NSS	
AA064029 (-)		0.06	2.3	0.014	0.11	2.60	31.8	0.15	9.18	136	1.1	
AA064030 (-)		0.04	1.8	0.018	0.11	1.81	25.4	0.10	8.16	151	0.7	
AA064031 (-)		0.06	6.1	0.023	0.12	1.04	27.7	0.13	8.90	145	1.5	
AA064032 (-)		0.05	2.3	0.018	0.11	2.06	27.6	0.11	9.62	145	1.1	
AA064033 (-)		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	
AA064034 (-)		0.05	2.4	0.016	0.09	1.66	23.7	0.11	6.89	123	0.7	
AA064035 (-)		0.03	2.4	0.018	0.11	4.90	23.8	0.13	8.08	104	0.7	
AA064036 (-)		0.03	1.4	0.014	0.04	3.03	10.3	0.06	8.67	87.1	1.4	
AA064037 (-)		0.02	2.7	0.032	0.10	0.50	34.8	0.15	3.62	63.2	<0.5	
AA064038 (-)		0.11	3.8	0.019	0.17	1.00	32.0	0.19	4.62	253	0.9	
AA064039 (-)		0.03	1.7	0.026	0.09	0.68	34.7	0.14	2.36	75.6	<0.5	
AA064040 (-)		0.03	3.4	0.028	0.08	1.93	27.6	0.15	8.06	95.9	1.3	
AA064041 (-)		0.05	3.0	0.015	0.17	2.82	31.8	0.18	14.9	140	1.0	
AA064042 (-)		0.03	1.1	0.023	0.05	2.50	17.9	0.08	15.5	87.0	0.9	
AA064043 (-)		0.03	0.7	0.019	0.06	2.08	15.6	0.07	6.82	94.6	1.1	
AA064044 (-)		0.02	2.9	0.032	0.06	1.11	23.0	0.30	5.10	82.7	0.8	
AA064045 (-)		0.03	5.0	0.036	0.12	1.05	44,4	0.17	2.77	67.2	1.0	
AAD64046 (-)		0.02	3.6	0.043	0.10	0.47	40.5	0.21	3.44	56.7	1.4	
AA064047 (-)		0.05	5.4	0.051	0.15	2.02	27.0	0.92	4.26	74.7	<0.5	
AA064048 (-)		0.06	3.1	0.033	0.09	0.33	33.5	0.16	1.92	81.8	<0.5	
AA064049 (-)		0.04	5.5	0.025	0.12	7.60	27.6	0.17	7.51	76.5	1.0	
AA064050 (-)		0.30	3.8	0.006	0.82	16.8	192	18.0	22.9	394	9.0	
AA064051 (-)		0.04	3.4	0.030	0.09	3.33	23.0	0.23	8.51	97.9	1.2	
AA064052 (-)		0.03	5.7	0.029	0.10	1.11	35.5	0.17	3.91	82.7	1.5	
AA064053 (-)		0.05	3.1	0.028	0.09	0.71	34.8	0.17	3.06	95.8	<0.5	
AA064054 (-)		0.05	3.5	0.030	0.09	0.49	30.1	0.26	2.16	81.7	0.9	
AA064055 (-)		0.03	3.2	0.030	0.07	10.9	24.5	0.15	7.82	78.8	1.2	

Certified By:

Page 29 of 50

AC AT CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

AGAT WORK ORDER: 12Y640884 PROJECT NO: MCC-2012-NK-2367 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN					ATTEN	TION TO:	ANDREW (ALDWELL	
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	NS finish	n (201074	4)	
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAMPLE TYPE: Soll
	Analyte:	Те	Th	т	п	U	v	w	Y	Zn	Zr	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	
AAD64056 (-)		0.04	3.7	0.026	0.10	0.53	38.0	0.15	2.80	86.4	1.4	
AA064057 (-)		0.07	21.2	0.031	0.43	26.5	24.0	0.56	38.8	168	1.7	
AAD64058 (-)		0.04	6.2	0.040	0.14	1.60	37.5	3.27	6.37	97.2	0.7	
AAD64059 (-)		0.04	6.4	0.031	0.12	3.06	36.0	0.27	6.27	209	0.7	
AAD64060 (-)		0.06	6.7	0.022	0.13	0.97	34.9	0.21	4.81	117	0.5	
AA064061 (-)		0.04	11.0	0.045	0.23	6.50	27.2	0.25	13.1	129	1.2	
AA064062 (-)		0.02	2.4	0.058	0.09	0.63	41.6	0.14	1.18	39.2	<0.5	
AAD64063 (-)		0.05	9.3	0.036	0.17	1.01	25.9	0.19	9.54	139	8.3	
AAD64064 (-)		0.05	6.2	0.037	0.10	1.76	23.1	1.54	9.00	128	2.1	
AAD64065 (-)		0.05	6.9	0.030	0.11	2.92	21.6	0.28	9.22	128	2.0	
AAD64066 (-)		0.03	6.2	0.046	0.13	1.26	24.3	0.28	7.43	107	1.1	
AA064067 (-)		0.04	8.3	0.043	0.13	1.35	25.4	0.22	8.60	113	2.0	
AA064068 (-)		0.03	6.7	0.036	0.11	1.72	26.2	0.20	8.37	101	0.7	
AAD64069 (-)		0.04	7.0	0.054	0.17	2.46	27.4	0.28	8.73	115	1.7	
AA064501 (-)		0.03	5.1	0.025	0.09	0.97	22.3	0.13	7.13	88.8	0.9	
AA064502 (-)		0.04	5.4	0.021	0.08	1.04	23.3	0.12	7.00	101	0.8	
AA064503 (-)		0.05	3.9	0.016	0.09	1.10	22.1	0.13	6.11	123	0.6	
AA064504 (-)		0.07	5.7	0.016	0.10	1.25	24.3	0.12	8.23	134	0.9	
AA064505 (-)		0.06	5.5	0.022	0.08	0.96	24.4	0.12	7.64	128	1.1	
AA064506 (-)		0.06	4.1	0.023	0.09	0.99	24.5	0.13	7.61	145	0.7	
AA064507 (-)		0.06	4.2	0.020	0.10	1.00	24.6	0.12	7.28	137	0.8	
AA064508 (-)		0.06	4.4	0.023	0.08	0.94	24.1	0.17	7.53	129	0.8	
AA064509 (-)		0.06	6.0	0.021	0.10	0.79	22.1	0.12	7.45	125	1.1	
AA064510 (-)		0.06	6.5	0.020	0.10	0.73	24.9	0.10	8.27	133	1.2	
AA064511 (-)		0.05	7.5	0.027	0.10	0.72	30.6	0.13	8.49	125	4.0	
AA064512 (-)		0.01	2.8	0.031	0.10	1.48	23.0	0.11	6.89	72.8	0.6	
AA064513 (-)		0.03	2.7	0.026	0.15	2.33	32.5	0.12	9.64	129	0.5	
AA064514 (-)		0.07	7.8	0.024	0.10	1.13	29.8	0.12	8.28	128	3.8	
AA064515 (-)		0.06	7.1	0.024	0.11	1.34	31.5	0.13	8.81	127	1.9	
AA064516 (-)		0.04	4.3	0.032	0.11	4.73	34.6	0.23	8.91	109	1.2	
AA064517 (-)		0.04	5.0	0.032	0.12	1.04	35.1	0.19	3.85	99.0	<0.5	
AA064518 (-)		0.04	4.0	0.043	0.12	0.60	51.7	0.25	2.41	73.6	<0.5	

Certified By:

Page 30 of 50

al Jamura

Ľ

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

Ľ

1 James

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatisbs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PREL	DATORMIN	ING GROU	JP IN				ATTEN	TION TO:	ANDREW	ALDWELL		
			Aqua	Regia D	igest - N	letals Pa	ckage, I	CP/ICP-I	NS finish	n (201074	4)	
DATE SAMPLED: Sep	12, 2012			DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAMPLE TYPE: Soll
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	
AA064519 (-)		0.07	7.6	0.020	0.10	1.65	28.3	0.13	10.3	140	1.0	
AA064520 (-)		0.06	8.5	0.012	0.10	0.76	23.7	0.16	4.28	134	2.3	
AA064521 (-)		0.03	4.0	0.024	0.12	2.63	32.3	0.18	5.35	85.1	0.8	
AA064522 (-)		0.09	5.0	0.029	0.12	2.86	27.9	0.16	10.1	163	0.7	
AA064523 (-)		0.04	4.5	0.024	0.11	1.25	32.9	0.21	5.59	79.4	0.9	
AA064524 (-)		0.04	7.7	0.025	0.09	1.03	25.2	0.17	9.56	113	2.4	
AA064525 (-)		0.05	9.0	0.026	0.09	0.93	25.0	0.13	10.6	141	5.0	
AA064527 (-)		0.03	6.1	0.039	0.11	0.65	31.8	0.27	3.94	77.1	2.3	
AA064528 (-)		0.04	6.2	0.047	0.14	0.97	28.3	0.19	9.96	118	2.1	
AA064529 (-)		0.04	4.4	0.036	0.15	1.09	34.3	0.21	9.52	130	1.4	
AA064530 (-)		0.03	3.7	0.031	0.12	1.53	35.5	0.26	9.02	115	1.2	
AA064531 (-)		0.03	4.4	0.029	0.11	0.69	34.9	0.21	6.18	62.3	0.9	
AA064532 (-)		0.03	4.5	0.044	0.12	0.83	31.3	0.18	5.60	74.9	1.0	
AAD64533 (-)		0.04	4.0	0.031	0.14	1.55	36.7	0.22	9.17	99.0	0.7	
AAD64534 (-)		0.04	3.7	0.030	0.14	1.32	42.3	0.32	9.13	118	0.6	
AA064535 (-)		0.04	3.8	0.032	0.10	2.18	31.4	0.32	6.12	112	0.7	
AA064536 (-)		0.05	6.4	0.047	0.25	0.88	44.3	0.24	5.24	141	1.0	
AA064537 (-)		0.06	6.6	0.034	0.21	3.89	29.2	0.34	13.7	178	1.8	
AAD64538 (-)		0.04	1.9	0.025	0.14	0.93	34.7	0.21	6.93	107	<0.5	
AA064539 (-)		0.04	7.0	0.032	0.15	1.12	33.1	0.21	13.8	107	1.8	
AA064540 (-)		0.06	7.7	0.028	0.15	1.14	30.8	0.24	14.0	196	2.9	
AA064541 (-)		0.05	7.3	0.034	0.14	0.79	30.0	0.36	11.5	158	2.6	
AA064542 (-)		0.02	5.0	0.038	0.11	1.06	30.8	0.23	6.24	75.7	1.4	
AA064543 (-)		0.03	6.3	0.037	0.12	0.91	32.9	0.20	9.18	95.9	0.8	
AA064544 (-)		0.04	7.4	0.030	0.09	0.73	24.6	0.14	10.5	128	2.4	
AA064545 (-)		0.04	6.9	0.035	0.12	0.77	34.4	0.16	9.02	92.7	1.7	
AA064546 (-)		0.03	4.2	0.025	0.11	1.29	30.7	0.18	8.93	90.0	1.0	
AAD64547 (-)		0.05	7.0	0.031	0.14	2.14	27.0	0.13	10.8	140	1.1	
AA064548 (-)		0.04	7.3	0.027	0.11	2.72	27.2	0.18	9.25	121	2.0	
AA064550 (-)		0.02	1.4	0.131	0.06	0.38	45.7	29.6	8.54	36.3	8.1	
AA065001 (-)		0.03	4.8	0.040	0.09	0.78	26.2	0.48	9.31	103	2.1	
AA065002 (-)		0.04	8.0	0.040	0.11	0.93	28.5	0.18	10.4	119	10.1	

Certified By:

Page 31 of 50

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN				ATTEN	TION TO:	ANDREW	ALDWELL			
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-I	MS finish	a (201074	4)		
DATE SAMPLED: Se	p 12, 2012		1	DATE REC	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 2	012	SAMPLE TYPE: Soli	
	Analyte:	Те	Th	п	п	U	v	w	Y	Zn	Zr		-
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5		
AA065004 (-)		0.04	6.8	0.033	0.08	0.76	20.5	0.14	9.66	107	10.7		
AA065005 (-)		0.13	7.1	0.025	0.17	1.37	22.9	0.12	23.2	205	3.4		
AA065007 (-)		0.02	5.6	0.034	0.11	2.64	29.1	0.14	8.10	91.4	1.8		
AA065008 (-)		0.08	4.6	0.026	0.13	2.31	34.8	0.21	6.32	116	0.9		
AA065009 (-)		0.07	6.5	0.024	0.12	1.06	31.9	0.24	8.44	131	2.1		
AA065010 (-)		0.07	6.2	0.027	0.12	0.99	32.5	0.23	9.28	122	2.1		
AA065011 (-)		0.06	5.2	0.030	0.12	0.70	30.1	0.30	8.80	134	2.1		
AA065012 (-)		0.09	6.5	0.025	0.11	0.99	31.3	0.19	8.07	146	2.6		
AA065013 (-)		0.07	7.9	0.022	0.16	1.92	26.2	0.13	8.35	134	7.0		
AA065014 (-)		0.08	5.3	0.035	0.10	1.51	23.7	0.15	8.54	125	2.7		
AA065015 (-)		0.03	4.6	0.022	0.10	3.52	26.3	0.18	8.52	137	1.6		
AA065016 (-)		0.03	3.7	0.029	0.08	4.14	27.6	0.13	9.23	121	2.7		
AA065017 (-)		0.05	4.8	0.025	0.09	1.60	29.2	0.15	8.98	119	2.6		
AA065018 (-)		0.09	4.1	0.035	0.08	1.20	24.7	0.13	7.82	122	2.3		
AA065019 (-)		0.08	5.4	0.018	0.09	0.79	26.1	0.12	8.50	143	2.3		
AA065020 (-)		0.06	6.2	0.016	0.08	0.56	28.3	0.11	7.04	129	2.4		
AA065021 (-)		0.05	3.3	0.023	0.07	3.15	25.1	0.11	8.83	109	1.2		
AA065022 (-)		0.04	2.9	0.034	0.10	1.30	33.1	0.22	6.28	103	<0.5		
AA065023 (-)		0.03	3.5	0.029	0.07	1.72	31.7	0.15	9.94	103	1.8		
AA065024 (-)		0.05	6.0	0.022	0.07	1.02	26.7	0.11	9.73	134	2.3		
AA065025 (-)		0.04	5.4	0.027	0.08	0.98	27.6	0.17	9.09	127	1.5		
AA065026 (-)		0.04	4.0	0.029	0.11	1.25	35.8	0.21	17.2	130	1.1		
AA065028 (-)		0.04	3.9	0.027	0.06	2.62	27.5	0.17	6.96	103	1.3		
AA065029 (-)		0.03	3.7	0.040	0.09	0.47	38.0	0.19	4.05	79.8	1.8		
AA065030 (-)		0.05	7.2	0.027	0.10	0.71	27.7	0.11	10.9	163	4.1		
AA065031 (-)		0.05	5.6	0.018	0.10	0.65	33.0	0.12	3.92	119	2.8		
AA065032 (-)		0.04	6.1	0.021	0.08	1.47	27.0	0.10	9.41	129	2.1		
AA065033 (-)		0.05	7.5	0.030	0.13	0.87	26.9	0.12	10.4	159	9.1		
AA065034 (-)		0.03	6.1	0.033	0.07	0.68	26.5	0.11	10.2	129	3.6		
AA065035 (-)		0.04	4.2	0.025	0.08	1.22	29.9	0.11	10.8	131	2.4		
AAD65036 (-)		0.04	5.4	0.023	0.09	0.84	28.9	0.11	10.8	149	3.1		
AA065037 (-)		0.04	6.3	0.030	0.13	0.62	25.3	0.11	10.2	153	7.6		

Certified By:

Page 32 of 50

af stomme

Ľ

5623 McADAM ROAD

TEL (905)501-9998 FAX (905)501-0589

http://www.agatiabs.com

MISSISSAUGA, ONTARIO CANADA LAZ 1N9

AC AT CERTIFICATE OF ANALYSIS (V1)

PROJECT NO: MCC-2012-NK-2367

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA LAZ 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

CLIENT NAME: PREDATOR MINING GROUP IN

CLIENT NAME: PR	EDATOR MIN	ING GROU	JP IN					ATTEN	TION TO:	ANDREW (CALDWELL	
			Aqua	Regia D	igest - N	letals Pa	ckage, l	CP/ICP-	AS finish	(201074	4)	
DATE SAMPLED: Se	p 12, 2012		I	DATE RECE	EIVED: Sep	11, 2012		DATE	REPORTED	: Oct 19, 20	12	SAMPLE TYPE: Soli
	Analyte:	Te	Th	п	п	U	v	w	Y	Zn	Zr	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.01	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5	
AA065038 (-)		0.05	6.6	0.027	0.12	0.76	26.5	0.10	12.5	162	5.5	
AA065039 (-)		0.05	6.3	0.026	0.12	0.63	25.5	0.12	11.2	138	4.9	
AA065040 (-)		0.05	6.4	0.026	0.11	0.89	28.5	0.15	15.8	173	3.8	
AAD65041 (-)		0.05	6.5	0.030	0.15	0.68	32.0	0.17	12.3	173	4.9	
AA065042 (-)		0.04	5.3	0.034	0.10	0.74	32.5	0.23	10.8	130	2.2	
AA065043 (-)		0.04	6.1	0.042	0.10	0.67	25.7	0.16	11.4	132	7.6	
AA065044 (-)		0.05	5.7	0.033	0.11	0.85	30.7	0.17	12.4	170	2.3	
AA065045 (-)		0.05	5.3	0.032	0.11	0.73	31.7	0.18	12.4	148	1.9	
AA065046 (-)		0.05	6.0	0.036	0.17	0.97	34.5	0.74	13.4	183	5.4	
AA065047 (-)		0.04	5.3	0.038	0.17	2.18	44.7	0.27	5.33	102	3.1	
AA065048 (-)		0.03	3.5	0.032	0.11	1.93	31.4	0.24	11.0	138	1.2	
AA065049 (-)		0.04	3.2	0.029	0.12	2.72	33.8	0.17	12.9	139	1.2	
AA065050 (-)		0.05	1.4	0.009	11.0	1.40	28.0	10.4	2.80	25.5	12.7	
AA065051 (-)		0.03	3.8	0.041	0.13	0.83	35.3	0.28	10.5	122	1.9	
AA065052 (-)		0.03	3.2	0.026	0.09	0.82	29.7	0.16	9.02	88.8	1.1	
AA065053 (-)		0.03	3.8	0.029	0.11	0.84	33.8	0.22	6.19	109	1.0	
AA065054 (-)		0.03	3.8	0.028	0.09	0.83	31.2	0.15	9.47	109	1.2	
AA065055 (-)		0.05	5.1	0.035	0.09	0.94	27.1	0.18	13.1	145	3.3	
AA065056 (-)		0.04	5.7	0.024	0.11	1.18	22.5	0.17	19.4	126	2.3	
AA065057 (-)		0.03	9.2	0.043	0.09	1.67	27.5	0.39	13.1	123	1.5	
AA065058 (-)		0.03	5.3	0.047	0.10	2.09	33.6	0.38	10.8	115	1.7	
AAD63171 (-)		0.01	2.9	0.033	0.07	0.95	18.3	0.34	5.12	58.8	0.7	

Comments: RDL - Reported Detection Limit

Certified By:

1 ef tomme

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the Items tested and to all the Items tested

Page 33 of 50

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis											
RPT Date: Oot 19, 2012			REPLIC	ATE			REFERENCE MATERIAL				
PARAMETER	Batch	Sample M	Original	Peo #1	880	Method Blank	Result	Expect	Becountry	Acceptable Limits	
	C. A.C.		Chightin				Value	Value	naccinal)	Lower	Upper
Aqua Regia Digest - Metals Paokage, K	P/ICP-M8	finish (2010)	74)								
Ag	1	3699399	0.203	0.217	6.7%	0.03	11.9	13.0	92%	80%	120%
A	1	3699399	0.905	0.910	0.6%	< 0.01				80%	120%
As	1	3699399	9.6	9.5	1.0%	0.2				80%	120%
Au	1	3699399	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
8	1	3699399	<5	< 5	0.0%	< 5	7.27	7.00	104%	80%	120%
Ba	1	3699399	198	195	1.5%	<1				80%	120%
Be	1	3699399	0.24	0.24	0.0%	< 0.05				80%	120%
BI	1	3699399	0.158	0.154	2.6%	< 0.01				80%	120%
Ca	1	3699399	0.680	0.696	2.3%	< 0.01				80%	120%
Cd	1	3699399	0.42	0.43	2.4%	< 0.01				80%	120%
Ce	1	3699399	27.4	27.1	1,1%	< 0.01				80%	120%
Co	1	3699399	4.55	4.59	0.9%	< 0.1				80%	120%
Cr	1	3699399	19.1	19.0	0.5%	< 0.5				80%	120%
Cs	1	3699399	0.43	0.43	0.0%	< 0.05				80%	120%
Cu	1	3699399	34.8	33.5	3.8%	< 0.1	5844	6000	97%	80%	120%
E.		2699299	1 59	1.61	1 396	< 0.01				80%	12096
Ga	- i	3699399	2.86	2.83	1 195	< 0.05				80%	120%
Ge	- i	3699399	0.070	0.062	12.1%	< 0.05				80%	120%
Hr	1	3699399	0.065	0.064	1.6%	< 0.02				80%	120%
Hg	1	3699399	0.08	0.08	0.0%	< 0.01				80%	120%
in .	1	3699399	0.021	0.021	0.0%	< 0.005				80%	120%
к	1	3699399	0.04	0.04	0.0%	< 0.01				80%	120%
La	1	3699399	13.8	13.4	2.9%	< 0.1				80%	120%
u	1	3699399	12.7	13.0	2.3%	< 0.1				80%	120%
Mg	1	3699399	0.46	0.46	0.0%	< 0.01				80%	120%
Mn	1	3699399	206	202	2.0%	<1				80%	120%
Mo	1	3699399	0.57	0.57	0.0%	< 0.05	339	360	94%	80%	120%
Na	1	3699399	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699399	0.96	0.96	0.0%	< 0.05				80%	120%
NI	1	3699399	20.5	20.4	0.5%	< 0.2				80%	120%
P	1	2699399	775	777	0.396	< 10	621	600	104%	80%	120%
Pb	1	3699399	21.0	21.0	0.0%	< 0.1				80%	120%
Rb	1	3699399	5.78	5.73	0.9%	< 0.1				80%	120%
Re	1	3699399	0.001	0.001	0.0%	< 0.001				80%	120%
8	1	3699399	0.068	0.068	0.0%	< 0.005				80%	120%
Sb	1	3699399	0.97	0.98	1.0%	< 0.05				80%	120%
Sc	1	3699399	2.9	2.9	0.0%	< 0.1				80%	120%
Se	1	3699399	0.72	0.77	6.7%	< 0.2				80%	120%
Sn	1	3699399	0.3	0.3	0.0%	< 0.2				80%	120%
Sr	1	3699399	28.9	29.3	1.4%	< 0.2				80%	120%
Та	1	3699399	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699399	0.03	0.03	0.0%	< 0.01				80%	120%
Th	1	3699399	3.15	3.18	0.9%	< 0.1	1.2	1.4	85%	80%	120%
π	1	3699399	0.025	0.025	0.0%	< 0.005				80%	120%
AGAT QUALITY ASSURANCE R	EPORT (V1	0								Page	34 of 60

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)												
RPT Date: Oot 19, 2012		REPLIC	ATE			REFERENCE MATERIAL						
						Method Blank	Result Excert			Acceptable Limit		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper	
π	1	3699399	0.07	0.07	0.0%	< 0.01				80%	120%	
U	1	3699399	0.901	0.915	1.5%	< 0.05				80%	120%	
v	1	3699399	24.8	24.1	2.9%	< 0.5				80%	120%	
w	1	3699433	0.16	0.19	17.1%	< 0.05				80%	120%	
Y	1	3699399	7.51	7.51	0.0%	< 0.05	6	7	90%	80%	120%	
Zn	1	3699399	98.5	97.4	1.1%	< 0.5				80%	120%	
Zr	1	3699399	1.6	1.6	0.0%	< 0.5				80%	120%	
Aqua Regia Digest - Metals Paokage, IC	P/ICP-MS	finish (20107	(4)									
Ag	1	3699422	0.25	0.27	7.7%	0.03	11.9	13.0	92%	80%	120%	
A	1	3699422	1.19	1.23	3.3%	< 0.01				80%	120%	
As	1	3699422	17.3	17.2	0.6%	0.3				80%	120%	
Au	1	3699422	< 0.01	< 0.01	0.0%	< 0.01				80%	120%	
8	1	3699422	<5	< 5	0.0%	< 5	6.65	7.00	32.46	80%	120%	
Ba	1	3699422	297	309	4.0%	<1				80%	120%	
Be	1	3699422	0.309	0.318	2.9%	< 0.05	0.3	0.4	75%	80%	120%	
BI	1	3699422	0.20	0.20	0.0%	< 0.01				80%	120%	
Ca	1	3699422	0.66	0.67	1.5%	< 0.01				80%	120%	
ca	1	36994.22	0.539	0.556	3.1%	< 0.01				80%	120%	
Ce	1	3699422	38.4	41.1	6.8%	< 0.01				80%	120%	
Co	1	3699422	12.7	13.0	2.3%	< 0.1				80%	120%	
Cr	1	3699422	23.9	24.3	1.7%	< 0.5				80%	120%	
Cs	1	3699422	0.671	0.719	6.9%	< 0.05			_	80%	120%	
cu	1	3699422	40.8	41.7	2.2%	< 0.1	5/56	6000	32.46	80%	120%	
Fe	1	3699422	2.86	2.88	0.7%	0.03				80%	120%	
Ga	1	3699422	3.46	3.59	3.7%	< 0.05				80%	120%	
Ge	1	3699422	0.091	0.097	6.4%	< 0.05				80%	120%	
HT	1	3699422	0.12	0.06	0.00	< 0.02				80%	120%	
	1	3033422	0.06	0.05	0.0%	× 0.01				0070	120%	
In	1	3699422	0.023	0.024	4.3%	< 0.005				80%	120%	
ĸ	1	3699422	0.062	0.069	10.7%	< 0.01				80%	120%	
La	1	3699422	19.3	20.5	6.0%	< 0.1				80%	120%	
U	1	3699422	12.5	12.6	0.8%	< 0.1				80%	120%	
		3033422	0.572	0.575	1.278	S 0.01				0070	120%	
Mn	1	3699422	461	467	1.3%	<1				80%	120%	
Mo	1	3699422	1.42	1.46	2.8%	< 0.05	331	360	91%	80%	120%	
Na	1	3699422	0.01	0.01	0.0%	< 0.01				80%	120%	
ND	1	3699422	1.02	1.01	1.0%	< 0.05				80%	120%	
		3033422	41.5	41.5	0.0%	- 4.2				0070	12070	
P	1	3699422	1050	1040	1.0%	< 10	620	600	103%	80%	120%	
Pb	1	3699422	13.9	14.2	2.1%	< 0.1				80%	120%	
Rb	1	3699422	7.0	8.5	19.4%	< 0.1				80%	120%	
RE	1	3699422	< 0.001	< 0.001	0.0%	< 0.001				80%	120%	
•	1	3633422	0.024	0.024	0.0%	< 0.005				80%	120%	

AGAT QUALITY ASSURANCE REPORT (VI)

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)												
RPT Date: Oot 19, 2012		REPLICATE						REFER	REFERENCE MATE		RIAL	
PARAMETER	Batch	Sample kt	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits	
							Value	Value		Lower	Upper	
Sb	1	3699422	1.10	1.13	2.7%	< 0.05				80%	120%	
Sc	1	3699422	3.33	3.45	3.5%	< 0.1				80%	120%	
Se	1	3699422	0.5	0.5	0.0%	< 0.2				80%	120%	
Sn Ge	1	3699422	0.3	0.3	0.0%	< 0.2				80%	120%	
ar	1	3633422	28.0	23.4	4.378	×0.2				80%	120%	
Та	1	3699422	< 0.01	< 0.01	0.0%	< 0.01				80%	120%	
те	1	3699422	0.04	0.04	0.0%	< 0.01				80%	120%	
Th	1	3699422	4.93	5.08	3.0%	< 0.1				80%	120%	
π	1	3699422	0.032	0.033	3.1%	< 0.005				80%	120%	
п	1	3699422	0.073	0.078	6.6%	< 0.01				80%	120%	
U	1	3699422	0.79	0.80	1.3%	< 0.05				80%	120%	
v	1	3699422	28.9	30.3	4.7%	< 0.5				80%	120%	
w	1	3699422	0.15	0.16	6.5%	< 0.05				80%	120%	
Y	1	3699422	9.19	9.51	3.4%	< 0.05	6	7	89%	80%	120%	
Zn	1	3699422	124	126	1.6%	< 0.5				80%	120%	
71		3699477	16	15	6 5%	< 0.5				80%	12096	
-										00.0	122.0	
Aqua Regia Digest - Metais Paokage, K	CP/ICP-M8	finish (2010)	74)									
Ag	1	3699447	0.25	0.27	7.7%	< 0.01	11.5	13.0	88%	80%	120%	
N	1	3699447	1.18	1.17	0.9%	< 0.01				80%	120%	
As	1	3699447	16.4	16.1	1.8%	0.3				80%	120%	
~	1	3699447	< 0.01	< 0.01	0.0%	< 0.01	c 70	7.00		80%	120%	
B	1	3633447	*5	* 5	0.0%	*5	6./3	7.00	3/%	80%	120%	
Ba	1	3699447	305	300	1.7%	<1				80%	120%	
Be	1	3699447	0.319	0.338	5.8%	< 0.05				80%	120%	
BI	1	3699447	0.20	0.20	0.0%	< 0.01				80%	120%	
Ca	1	3699447	0.62	0.62	0.0%	< 0.01				80%	120%	
Cd	1	3699447	0.470	0.462	1.7%	< 0.01				80%	120%	
Ce	1	3699447	30.1	30.5	1.3%	< 0.01				80%	120%	
Co	1	3699447	11.5	11.2	2.6%	< 0.1				80%	120%	
Cr	1	3699447	22.6	22.5	0.4%	< 0.5				80%	120%	
Cs	1	3699447	0.582	0.610	4.7%	< 0.05				80%	120%	
Cu	1	3699447	38.5	37.7	2.1%	< 0.1				80%	120%	
Fe		3699447	2.58	2.57	0.4%	< 0.01				80%	120%	
Ga	1	3699447	3.44	3.39	1.5%	< 0.05				80%	120%	
Ge	1	3699447	0.085	0.071	17.9%	< 0.05				80%	120%	
нг	1	3699447	0.11	0.08		< 0.02				80%	120%	
Hg	1	3699447	0.066	0.058	12.9%	< 0.01				80%	120%	
-		2000447	0.0005	0.0004	0.49	- 0.005				0.044	1700	
ĸ		3633447	0.0235	0.0234	0.4%	< 0.005				80%	120%	
La	1	3699447	15.2	15.2	0.0%	< 0.1				80%	120%	
u	1	3699447	13.3	13.2	0.8%	< 0.1				80%	120%	
Mg	1	3699447	0.547	0.534	2.4%	< 0.01				80%	120%	
Mn	1	3699447	457	452	1.1%	<1	264	260	1005	80%	120%	
MO	1	3633447	1.43	1.43	0.0%	< 0.05	361	360	100%	80%	120%	
GOAT QUALITY ASSURANCE R	EPORT (V1)								Page .	36 of 60	

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

		Solid	Anal	ysis (O	Conti	nued)					
RPT Date: Oot 19, 2012		REPLICATE					REFERENCE MATERIAL				
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta	ble Limits Upper
Na	1	3699447	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699447	0.782	0.837	6.8%	< 0.05				80%	120%
NI	1	3699447	34.9	34.6	0.9%	< 0.2				80%	120%
		3000447				- 15					4700
F		3633447	47.2	16.6	4 796	< 10	653	600	11076	00%	120%
Rb		3699447	61	63	3,796	<0.1				80%	120%
Re	- i	3699447	0.002	0.002	0.0%	< 0.001				80%	120%
8	1	3699447	0.0297	0.0292	1.7%	< 0.005				80%	120%
Sb	1	3699447	1.33	1.22	8.6%	< 0.05				80%	120%
Sc	1	3699447	3.46	3.40	1.7%	< 0.1				80%	120%
3e	1	3699447	1.1	1.1	0.0%	< 0.2				80%	120%
Sn	1	3699447	0.3	0.3	0.0%	< 0.2				80%	120%
Sr	1	3699447	29.8	29.5	1.0%	< 0.2				80%	120%
Та	1	3699447	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699447	0.04	0.04	0.0%	< 0.01				80%	120%
Th	1	3699447	4.5	4.6	2.2%	< 0.1	1.2	1.4	83%	80%	120%
π	1	3699447	0.021	0.023	9,1%	< 0.005				80%	120%
п	1	3699447	0.08	0.08	0.0%	< 0.01				80%	120%
U	1	3699447	1.22	1.22	0.0%	< 0.05				80%	120%
v	1	3699447	27.8	27.7	0.4%	< 0.5				80%	120%
w	1	3699447	0.14	0.14	0.0%	< 0.05				80%	120%
Y	1	3699447	8.71	8.61	1.2%	< 0.05	6	7	90%	80%	120%
Zn	1	3699447	105	102	2.9%	< 0.5				80%	120%
21	1	3699447	1.76	1.74	1.1%	< 0.5				80%	120%
Aqua Regia Digest - Metals Package, K	CP/ICP-M8	finish (20107	74)								
Ag	1	3699473	0.312	0.304	2.6%	< 0.01	11.5	13.0	88%	80%	120%
A	1	3699473	0.98	1.01	3.0%	< 0.01				80%	120%
As	1	3699473	18.3	18.6	1.6%	0.3				80%	120%
Au	1	3699473	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
8	1	3699473	< 5	< 5	0.0%	< 5				80%	120%
Ba	1	3699473	261	259	0.8%	<1				80%	120%
Be	1	3699473	0.27	0.27	0.0%	< 0.05				80%	120%
BI	1	3699473	0.17	0.17	0.0%	< 0.01				80%	120%
Ca	1	3699473	0.51	0.52	1.9%	< 0.01				80%	120%
Cd	1	3699473	0.471	0.481	2.1%	< 0.01				80%	120%
Ce	1	3699473	29.3	28.9	1.4%	< 0.01				80%	120%
Co	1	3699473	9.6	8.5	12.2%	< 0.1				80%	120%
Cr	1	3699473	21.1	21.2	0.5%	< 0.5				80%	120%
Cs	1	3699473	0.52	0.50	3.9%	< 0.05				80%	120%
Cu	1	3699473	37.6	39.6	5.2%	< 0.1				80%	120%
Fe	1	3699473	2.38	2.45	2.9%	< 0.01				80%	120%
Ga	1	3699473	2.90	2.91	0.3%	< 0.05				80%	120%
Ge	1	3699473	0.08	0.08	0.0%	< 0.05				80%	120%
н	1	3699473	0.05	0.12		< 0.02				80%	120%
RGAT QUALITY ASSURANCE REPORT (V1) P										Page	37 of 60

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oct 19, 2012			REPLK	ATE			REFERENCE MATERIAL				
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptal Lower	Upper
Hg	1	3699473	0.06	0.06	0.0%	< 0.01				80%	120%
In	1	3699473	0.0235	0.0254	7.8%	< 0.005				80%	120%
к	1	3699473	0.04	0.04	0.0%	< 0.01				80%	120%
La	1	3699473	14.8	14.7	0.7%	< 0.1				80%	120%
u	1	3699473	9.98	9.83	1.5%	< 0.1				80%	120%
Mg	1	3699473	0.487	0.485	0.4%	< 0.01				80%	120%
Mn	1	3699473	542	544	0.4%	< 1				80%	120%
Mo	1	3699473	1.78	1.74	2.3%	< 0.05	360	360	100%	80%	120%
Na	1	3699473	0.01	0.01	0.0%	< 0.01				80%	120%
Nb	1	3699473	0.85	0.98	14.2%	< 0.05				80%	120%
N	1	3699473	34.2	34.6	1.2%	< 0.2				80%	120%
P	1	3699473	905	903	0.2%	< 10	664	600	111%	80%	120%
Pb	1	3699473	17.5	16.5	5.9%	< 0.1				80%	120%
Rb	1	3699473	5.09	5.04	1.0%	< 0.1				80%	120%
Re	1	3699473	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
8	1	3699473	0.014	0.014	0.0%	< 0.005				80%	120%
Sb	1	3699473	1.29	1.19	8.1%	< 0.05				80%	120%
Sc	1	3699473	3.0	3.0	0.0%	< 0.1				80%	120%
8e	1	3699473	0.3	0.3	0.0%	< 0.2				80%	120%
Sn	1	3699473	0.3	0.3	0.0%	< 0.2				80%	120%
Sr	1	3699473	24.1	24.3	0.8%	< 0.2				80%	120%
Та	1	3699473	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699473	0.03	0.03	0.0%	< 0.01				80%	120%
Th	1	3699473	4.2	3.5	18.2%	< 0.1				80%	120%
п	1	3699473	0.029	0.031	6.7%	< 0.005				80%	120%
п	1	3699473	0.078	0.075	3.9%	< 0.01				80%	120%
U	1	3699473	0.70	0.70	0.0%	< 0.05				80%	120%
v	1	3699473	26.1	26.6	1.9%	< 0.5				80%	120%
w	1	3699473	0.16	0.28		< 0.05	-	-		80%	120%
	1	3699473	9.23	9.14	1.0%	< 0.05	6	1	92%	80%	120%
21	1	3633473	112	112	0.0%	< 0.5				80%	120%
Zr	1	3699473	1.8	2.0	10.5%	< 0.5				80%	120%
Aqua Regia Digest - Metais Paokage, IC	P/ICP-M8	finish (2010)	74)								
Ag	1	3699498	0.241	0.257	6.4%	< 0.01	11	13.0	85%	80%	120%
A	1	3699498	1.16	1.21	4.2%	< 0.01				80%	120%
As	1	3699498	36.8	38.2	3.7%	0.3				80%	120%
Au	1	3699498	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
8	1	3699498	15	17	12.5%	< 5	5.84	7.00	83%	80%	120%
Ba	1	3699498	265	277	4.4%	< 1				80%	120%
Be	1	3699498	0.29	0.30	3.4%	< 0.05				80%	120%
BI	1	3699498	0.25	0.25	0.0%	< 0.01				80%	120%
Ca	1	3699498	0.68	0.69	1.5%	< 0.01				80%	120%
ua -	1	3699498	0.53	0.54	1.9%	< 0.01				80%	120%

Results relate only to the items tested and to all the items tested

Page 30 of 60

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 18, 2012			REPLIC	ATE				REFER	ENCE MATE	RIAL	
PARAMETER	Batch	Sample M	Original	Rep #1	860	Method Blank	Result	Expect	Becomer	Accepts	able Limits
	Calch		Chightin	. ap et			Value	Value	, according	Lower	Upper
Ce	1	3699498	26.2	27.7	5.6%	0.01				80%	120%
Co	1	3699498	11.0	11.2	1.8%	< 0.1				80%	120%
Cr	1	3699498	22.1	22.9	3.6%	< 0.5				80%	120%
Cs	1	3699498	0.83	0.83	0.0%	< 0.05			_	80%	120%
Cu	1	3699498	53.8	55.0	2.2%	< 0.1	5859	6000	97%	80%	120%
Fe	1	3699498	3.02	3.09	2.3%	< 0.01				80%	120%
Ga	1	3699498	3.27	3.44	5.1%	< 0.05				80%	120%
Ge	1	3699498	0.085	0.090	5.7%	< 0.05				80%	120%
Hr	1	3699498	0.13	0.05		< 0.02				80%	120%
Hg	1	3699498	0.07	0.07	0.0%	< 0.01				80%	120%
In .	1	3699498	0.0265	0.0275	3.7%	< 0.005				80%	120%
ĸ	1	3699498	0.051	0.056	9.3%	< 0.01				80%	120%
La	1	3699498	13.4	14.2	5.8%	< 0.1				80%	120%
u	1	3699498	14.9	15.2	2.0%	< 0.1				80%	120%
Mg	1	3699498	0.471	0.491	4.2%	< 0.01				80%	120%
Mn	1	3699498	553	574	3.7%	<1				80%	120%
Mo	1	3699498	1.38	1.39	0.7%	< 0.05	338	360	93%	80%	120%
Na	1	3699498	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699498	0.805	0.802	0.4%	< 0.05				80%	120%
NI	1	3699498	33.4	34.5	3.2%	< 0.2				80%	120%
P	1	3699498	801	823	2.7%	< 10	626	600	104%	80%	120%
Pb	1	3699498	15.8	16.1	1.9%	< 0.1				80%	120%
Rb	1	3699498	10.8	11.0	1.8%	< 0.1				80%	120%
Re	1	3699498	0.003	0.003	0.0%	< 0.001				80%	120%
8	1	3699498	0.105	0.108	2.8%	< 0.005				80%	120%
Sb	1	3699498	1.39	1.35	2.9%	< 0.05				80%	120%
Sc	1	3699498	2.96	2.92	1,4%	< 0.1				80%	120%
Se	1	3699498	0.9	0.9	0.0%	< 0.2				80%	120%
Sn	1	3699498	0.3	0.3	0.0%	< 0.2				80%	120%
Sr	1	3699498	35.0	36.5	4.2%	< 0.2				80%	120%
Та	1	3699498	0.01	< 0.01		< 0.01				80%	120%
Te	1	3699498	0.06	0.06	0.0%	< 0.01				80%	120%
Th	1	3699498	2.31	2.02	13,4%	< 0.1				80%	120%
п	1	3699498	0.0144	0.0154	6.7%	< 0.005				80%	120%
π	1	3699498	0.11	0.11	0.0%	< 0.01				80%	120%
		3699498	2 60	2.63	1 195	< 0.05				90%	120%
v	- i -	3699498	31.8	32.9	3.4%	< 0.5				80%	120%
w	-	3699498	0.146	0.124	16.3%	< 0.05				80%	120%
Y	-	3699498	9.18	9.42	2.6%	< 0.05				80%	120%
Zn	1	3699498	136	133	2.2%	< 0.5				80%	120%
2r	1	3699498	1.1	0.8		< 0.5				80%	120%
Aqua Regia Digest - Metals Paokage, IC	P/ICP-MS	finish (2010)	74)								
Ag	1	3699523	0.11	0.10	9.5%	< 0.01	11	13.0	85%	80%	120%
As	1	3699523	49.1	50.2	2.2%	0.4				80%	120%
AGAT QUALITY ASSURANCE RE	EPORT (V1)								Page	39 of 60
		Results rela	te only to the	Items tested	and to all	the items tested					

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	ATE				REFER	ENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptal Lower	Upper
Au	1	3699523	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
8	1	3699523	<5	< 5	0.0%	< 5	6.2	7.00	89%	80%	120%
Ba	1	3699523	109	111	1.8%	<1				80%	120%
Be	1	3699523	0.113	0.118	4.3%	< 0.05				80%	120%
BI	1	3699523	0.252	0.258	2.4%	< 0.01				80%	120%
Cd	1	3699523	0.274	0.276	0.7%	< 0.01				80%	120%
Ce	1	3699523	27.8	28.8	3.5%	< 0.01				80%	120%
Co	1	3699523	7.6	7.8	2.6%	< 0.1				80%	120%
Cs	1	3699523	0.503	0.508	1.0%	< 0.05				80%	120%
Ga	1	3699523	3.08	3.23	4.8%	< 0.05				80%	120%
Ge	1	3699523	0.09	0.09	0.0%	0.06				80%	120%
Hr	1	3699523	0.040	0.033	19.2%	< 0.02				80%	120%
Ha	1	3699523	0.02	0.02	0.0%	< 0.01				80%	120%
In .	1	3699523	0.0235	0.0240	2.1%	< 0.005				80%	120%
La	1	3699523	13.9	14.4	3.5%	< 0.1				80%	120%
u	1	3699523	8.66	8.61	0.6%	< 0.1				80%	120%
Mo	1	3699523	2.44	2.50	2.4%	< 0.05	320	360	88%	80%	120%
Na	1	3699517	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699523	1.15	1.16	0.9%	< 0.05				80%	120%
Pb	1	3699523	10.8	11.0	1.8%	0.1				80%	120%
Rb	1	3699523	7.8	8.1	3.8%	< 0.1				80%	120%
Re	1	3699523	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
Sb	1	3699523	1.50	1.54	2.6%	< 0.05				80%	120%
Sc .	1	3699523	1.82	1.86	2.2%	< 0.1				80%	120%
8e	1	3699523	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
Sn	1	3699523	0.3	0.3	0.0%	< 0.2				80%	120%
Sr	1	3699523	16.0	16.6	3.7%	< 0.2				80%	120%
та	1	3699523	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699523	0.053	0.055	3.7%	< 0.01				80%	120%
Th	1	3699523	3.48	3.56	2.3%	< 0.1				80%	120%
π	1	3699523	0.095	0.095	0.0%	< 0.01				80%	120%
U	1	3699523	0.49	0.49	0.0%	< 0.05				80%	120%
*	1	3699523	2.16	2.22	2.7%	< 0.05				80%	120%
Zr	1	3699523	0.9	0.9	0.0%	< 0.5				80%	120%
Aqua Regia Digest - Metals Package, K	P/ICP-M8	finish (20107	74)								
Ag	1	3699549	0.24	0.25	4.1%	< 0.01	11.4	13.0	88%	80%	120%
AL .	1	3699523	0.87	0.89	2.3%	< 0.01				80%	120%
As	1	3699549	38.2	37.9	0.8%	< 0.1				80%	120%
8	1	3699549	< 5	< 0.01	0.0%	< 0.01	5.92	7,00	85%	80%	120%
-											
Ba	1	3699549	288	292	1.4%	< 1				80%	120%
Be	1	3699549	0.287	0.281	2.1%	< 0.05				80%	120%
Ca	1	3699549	0.28	0.28	3.6%	< 0.01				80%	120%
	I CROPT CH		9.471	0.201	2.070	- 0.01				Dage	10 -1 50
COLOR QUALITY ASSURANCE R	EPORT (V1									Page	40 OF 60

PORT (V1) Results relate only to the items tested and to all the items tested

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012	_		REPLK	ATE				REFER	ENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	Upper
Cd	1	3699549	0.31	0.31	0.0%	< 0.01				80%	120%
Ce	1	3699549	49.0	48.5	1.0%	< 0.01				80%	120%
Co	1	3699549	11.5	9.9	15.0%	< 0.1				80%	120%
Cr	1	3699523	19.0	19.8	4.1%	< 0.5				80%	120%
Cs	1	3699549	0.62	0.65	4.7%	< 0.05				80%	120%
Cu	1	3699523	38.1	39.3	3.1%	< 0.1	5673	6000	94%	80%	120%
Fe	1	3699523	3.49	3.53	1.1%	< 0.01				80%	120%
Ga	1	3699549	3.35	3.40	1.5%	< 0.05				80%	120%
Ge	1	3699549	0.118	0.109	7.9%	< 0.05				80%	120%
Hr	1	3699549	0.13	0.12	8.0%	< 0.02				80%	120%
Hg	1	3699549	0.063	0.071	11.9%	< 0.01				80%	120%
In	1	3699549	0.026	0.027	3.8%	< 0.005				80%	120%
ĸ	1	3699523	0.053	0.056	5.5%	< 0.01				80%	120%
La	1	3699549	24.2	24.3	0.4%	< 0.1				80%	120%
u	1	3699549	12.3	12.1	1.6%	< 0.1				80%	120%
Mg	1	3699523	0.35	0.37	5.6%	< 0.01				80%	120%
Mn	1	3699523	204	213	4.3%	<1				80%	120%
Mo	1	3699549	1.45	1.50	3.4%	< 0.05	327	360	90%	80%	120%
Na	1	3699523	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699549	0.58	0.62	6.7%	< 0.05				80%	120%
NI	1	3699523	23.6	24.5	3.7%	< 0.2				80%	120%
P	1	3699523	257	272	5.7%	< 10	568	600	95%	80%	120%
Pb	1	3699549	17.3	17.6	1.7%	< 0.1				80%	120%
Rb	1	3699549	6.70	7.07	5.4%	< 0.1				80%	120%
Re	1	3699549	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
8	1	3699523	0.0163	0.0172	5.4%	< 0.005				80%	120%
Sb	1	3699549	2.06	2.09	1.4%	< 0.05				80%	120%
Sc .	1	3699549	3.3	3.3	0.0%	< 0.1				80%	120%
Se	1	3699549	0.2	0.2	0.0%	< 0.2				80%	120%
Sn	1	3699549	0.3	0.3	0.0%	< 0.2				80%	120%
ar	1	3699549	20.9	22.4	6.9%	< 0.2				80%	120%
Та	1	3699549	< 0.01	< 0.01	0.0%	< 0.01	0.9	0.9	99%	80%	120%
те	1	3699549	0.05	0.05	0.0%	< 0.01				80%	120%
Th	1	3699549	7.5	7.5	0.0%	< 0.1				80%	120%
π	1	3699523	0.030	0.031	3.3%	< 0.005				80%	120%
п	1	3699549	0.10	0.10	0.0%	< 0.01				80%	120%
U	1	3699549	0.722	0.728	0.8%	< 0.05				80%	120%
v	1	3699523	30.1	30.5	1.3%	< 0.5				80%	120%
w	1	3699549	0.13	0.13	0.0%	< 0.05				80%	120%
Y	1	3699549	8.49	8.74	2.9%	< 0.05	6	7	85%	80%	120%
Zn	1	3699523	81.7	84.2	3.0%	< 0.5				80%	120%
21	1	3699549	4.0	4.2	4.9%	< 0.5				80%	120%
Aqua Regia Digest - Metals Package, II	CP/ICP-M8	finish (2010)	74)								

AGAT QUALITY ASSURANCE REPORT (V1)

Results relate only to the Items tested and to all the Items tested

Page 41 of 60

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample kt	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Acceptal	ble Limits
							Value	Value		Lower	Upper
Ag	1	3699574	0.692	0.665	4.0%	< 0.01	11.4	13.0	88%	80%	120%
AL .	1	3699549	1.15	1.17	1.7%	< 0.01				80%	120%
As	1	3699574	92.1	91.9	0.2%	< 0.1				80%	120%
~	1	3633574	0.01	< 0.01		< 0.01		7.00	0.70	80%	120%
0	1	3033574	*5	~ 5	0.0%	* 5	6.76	7.00	3/76	0076	120%
Ba	1	3699574	182	178	2.2%	< 1				80%	120%
Be	1	3699574	0.33	0.34	3.0%	< 0.05				80%	120%
BI	1	3699574	0.300	0.292	2.7%	< 0.01				80%	120%
Ca	1	3699549	0.28	0.28	0.0%	< 0.01				80%	120%
Cd	1	3699574	1.13	1.12	0.9%	< 0.01				80%	120%
Ce	1	3699574	43.9	44.6	1.6%	< 0.01				80%	120%
Co	1	3699574	12.2	12.1	0.8%	< 0.1				80%	120%
Cr	1	3699549	23.4	24.2	3.4%	< 0.5				80%	120%
Cs	1	3699574	1.46	1.47	0.7%	< 0.05				80%	120%
Cu	1	3699549	61.3	62.4	1.8%	< 0.1	5511	6000	91%	80%	120%
Fe	1	3699549	3 37	3 37	0.0%	< 0.01				80%	120%
Ga	- i	3699574	3.54	3.57	0.8%	< 0.05				80%	120%
Ge	1	3699574	0.10	0.10	0.0%	< 0.05				80%	120%
нг	1	3699574	0.07	0.14		< 0.02				80%	120%
Hg	1	3699574	0.14	0.14	0.0%	< 0.01				80%	120%
		3000074	0.024	0.022	2.096	< 0.005				0.066	1208
		3699549	0.034	0.033	0.0%	< 0.005				80%	12036
La la	- i	3699574	24.2	24.1	0.4%	< 0.1				80%	120%
	1	3699574	13.8	13.8	0.0%	< 0.1				80%	120%
Mg	1	3699549	0.51	0.51	0.0%	< 0.01				80%	120%
					_					_	
Mn	1	3699549	555	558	0.5%	< 1	-	-		80%	120%
MO No.		3633574	5.20	5.06	2.7%	< 0.05	311	360	0076	00%	120%
Nb		3699574	1.21	1 32	8 7%	< 0.05				80%	120%
N	1	3699549	44.7	45.2	1,1%	< 0.2				80%	120%
	-										
P	1	3699549	744	752	1.1%	< 10	565	600	94%	80%	120%
Pb	1	3699574	38.5	36.9	4.2%	< 0.1				80%	120%
ND Re	1	3699574	18.1	18.2	0.6%	< 0.1				80%	120%
8	1	3633574	0.007	0.001	0.0%	< 0.001				80%	120%
•						0.000					
Sb	1	3699574	3.64	3.66	0.5%	< 0.05				80%	120%
8c	1	3699574	3.38	3.46	2.3%	< 0.1				80%	120%
Se	1	3699574	1.2	1.3	8.0%	< 0.2				80%	120%
an o-	1	3699574	0.4	0.4	0.0%	< 0.2				80%	120%
or	1	3633574	39.5	38.9	1.5%	< 0.2				80%	120%
Та	1	3699574	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699574	0.06	0.06	0.0%	< 0.01				80%	120%
Th	1	3699574	6.6	6.6	0.0%	< 0.1				80%	120%
π	1	3699549	0.0271	0.0287	5.7%	< 0.005				80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

Results relate only to the items tested and to all the items tested

Page 42 of 60

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLIC	ATE				REFER	ENCE MATE	RIAL	
						Method Blank	Result	Expect		Accepta	ble Limita
PARAMETER	Batch	Sample Id	Original	Hep #1	MPD		Value	Value	Recovery	Lower	Upper
п	1	3699574	0.21	0.21	0.0%	< 0.01				80%	120%
U	1	3699574	3.89	3.46	11.7%	< 0.05				80%	120%
v	1	3699549	30.6	31.5	2.9%	< 0.5				80%	120%
w	1	3699574	0.34	0.35	2.9%	< 0.05				80%	120%
Y	1	3699574	13.7	13.4	2.2%	< 0.05	6	7	90%	80%	120%
Zn	1	3699549	125	127	1.6%	< 0.5				80%	120%
Zr	1	3699574	1.8	1.8	0.0%	< 0.5				80%	120%
Aqua Regia Digest - Metals Paokage, IC	P/ICP-M8	finish (20107	(4)								
Ag	1	3699594	0.396	0.371	6.5%	< 0.01	11.2	13.0	86%	80%	120%
A	1	3699574	1.26	1.08	15.4%	< 0.01				80%	120%
As	1	3699594	40.2	39.1	2.8%	< 0.1				80%	120%
~	1	3699594	< 0.01	< 0.01	0.0%	< 0.01	6.43	7.00	0000	80%	120%
•		3033334	~ >	~ 2	0.0%	~ ~	0.15	7.00	0070	0070	12010
Ba	1	3699594	353	326	8.0%	<1				80%	120%
Be	1	3699594	0.335	0.323	3.6%	< 0.05				80%	120%
BI	1	3699594	0.35	0.34	2.9%	< 0.01				80%	120%
Ca	1	3699574	0.788	0.664	17.1%	< 0.01				80%	120%
Cd	1	3699594	0.46	0.46	0.0%	< 0.01				80%	120%
Ce	1	3699594	44.0	39.9	9.8%	< 0.01				80%	120%
Co	1	3699594	10.8	10.5	2.8%	< 0.1				80%	120%
Cr	1	3699574	24.3	21.6	11.8%	< 0.5				80%	120%
Cs	1	3699594	0.716	0.597	18.1%	< 0.05				80%	120%
Cu	1	3699574	66.8	57.4	15.1%	< 0.1	5718	6000	95%	80%	120%
Fe	1	3699574	3.60	3.03	17.2%	< 0.01				80%	120%
Ga	1	3699594	3.43	3.18	7.6%	< 0.05				80%	120%
Ge	1	3699594	0.09	0.09	0.0%	< 0.05				80%	120%
H	1	3699594	0.066	0.058	12.9%	< 0.02				80%	120%
Hg	1	3633534	0.07	0.08	13.5%	< 0.01				80%	120%
In	1	3699594	0.0313	0.0295	5.9%	< 0.005				80%	120%
ĸ	1	3699574	0.11	0.10	9.5%	< 0.01				80%	120%
La	1	3699594	21.7	19.5	10.7%	< 0.1				80%	120%
U Ma	1	3699594	10.9	11.0	17.7%	< 0.1				80%	120%
		3033374	0.05	0.55	17.27	× 0.01				00%	120 %
Mn	1	3699574	636	550	14.5%	< 1				80%	120%
Mo	1	3699594	1.62	1.53	5.7%	< 0.05	331	360	91%	80%	120%
Na	1	3699574	0.01	0.01	0.0%	< 0.01				80%	120%
ND	1	3699594	0.98	0.83	16.6%	< 0.05				80%	120%
	1	3633574	53.3	46.8	13.0%	×0.2				80%	120%
P	1	3699574	1140	1010	12.1%	< 10	580	600	97%	80%	120%
Pb	1	3699594	20.2	19.5	3.5%	< 0.1				80%	120%
Rb	1	3699594	7.93	6.73	16.4%	< 0.1				80%	120%
Re	1	3699594	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
o	1	3699574	0.0301	0.0273	9.8%	< 0.005				80%	120%

AGAT QUALITY ASSURANCE REPORT (VI)

Results relate only to the Items tested and to all the Items tested

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Ratek	Remain M	Original	Date #1	880	Method Blank	Result	Expect	Bergunner	Accepta	ble Limita
FRAMEIER	Diston	Campie io	ongina	rap et	10-0		Value	Value	recovery	Lower	Upper
Sb	1	3699594	2.56	2.43	5.2%	< 0.05				80%	120%
Sc	1	3699594	3.19	3.03	5.1%	< 0.1				80%	120%
Se	1	3699594	0.50	0.45	10.5%	< 0.2				80%	120%
Sn	1	3699594	0.37	0.34	8.5%	< 0.2				80%	120%
Sr	1	3699594	25.3	23.6	7.0%	< 0.2				80%	120%
Та	1	3699594	< 0.01	< 0.01	0.0%	< 0.01	0.9	0.9	102%	80%	120%
Те	1	3699594	0.069	0.064	7.5%	< 0.01				80%	120%
Th	1	3699594	6.17	4.99	21.1%	< 0.1				80%	120%
п	1	3699574	0.034	0.031	9.2%	< 0.005				80%	120%
π	1	3699594	0.12	0.11	8.7%	< 0.01				80%	120%
U	1	3699594	0.988	0.919	7,2%	< 0.05				80%	120%
v	1	3699574	29.2	25.9	12.0%	< 0.5				80%	120%
w	1	3699594	0.23	0.18	24.4%	< 0.05				80%	120%
Y	1	3699594	9.28	8.65	7.0%	< 0.05	6	7	87%	80%	120%
Zn	1	3699574	178	154	14.5%	< 0.5				80%	120%
71		3000004	74	10	10.0%	< 0.5				0.066	1208
-		3033334		1.2	10.0%	× 0.5				00%	120 %
Aqua Regia Digest - Metais Paokage, IC	P/ICP-M8	finich (2010)	74)								
Ag	1	3699599	0.25	0.24	4.1%	< 0.01	11.4	13.0	88%	80%	120%
N	1	3699594	1.17	1.12	4.4%	< 0.01				80%	120%
As	1	3699599	22.1	21.9	0.9%	< 0.1				80%	120%
~	1	3699599	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
8	1	3633533	*5	~ 5	0.0%	*5	6./8	7.00	3/%	80%	120%
Ba	1	3699599	324	332	2.4%	<1				80%	120%
Be	1	3699599	0.29	0.30	3.4%	< 0.05	0.3	0.4	70%	80%	120%
BI	1	3699599	0.220	0.225	2.2%	< 0.01				80%	120%
Ca	1	3699594	0.59	0.58	1.7%	< 0.01				80%	120%
Cd	1	3699599	0.87	0.89	2.3%	< 0.01				80%	120%
Ce	1	3699599	33.8	36.0	6.3%	< 0.01				80%	120%
Co	1	3699599	9.8	9.8	0.0%	< 0.1				80%	120%
Cr	1	3699594	22.9	21.5	6.3%	< 0.5				80%	120%
Cs	1	3699599	0.69	0.75	8.3%	< 0.05				80%	120%
Cu	1	3699594	70.6	68.2	3.5%	< 0.1	5980	6000	99%	80%	120%
Fe	1	3699594	3.21	3.16	1.6%	< 0.01				80%	120%
Ga	1	3699599	3.02	3.06	1.3%	< 0.05				80%	120%
Ge	1	3699599	0.08	0.08	0.0%	< 0.05				80%	120%
HT	1	3699599	0.054	0.062	13.8%	< 0.02				80%	120%
Hg	1	3699599	0.10	0.07		< 0.01				80%	120%
in .	1	3699599	0.023	0.023	0.0%	< 0,005				80%	120%
ĸ	1	3699594	0.09	0.08	11.8%	< 0.01				80%	120%
La	1	3699599	16.6	17.7	6.4%	< 0.1				80%	120%
u	1	3699599	12.4	12.7	2.4%	< 0.1				80%	120%
Mg	1	3699594	0.50	0.50	0.0%	< 0.01				80%	120%
Mn		1000004	EAE	676	3 79	-1				90%	1208
Mo	- i	3699599	1.00	1.02	2.0%	< 0.05	346	360	96%	80%	120%
AGAT QUALITY ASSURANCE RE	PORT (V1)								Page	44 of 50

Results relate only to the items tested and to all the items tested

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample ki	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limita
							Value	Value		Lower	Upper
Na	1	3699594	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699599	1.06	1.11	4.6%	< 0.05				80%	120%
NI	1	3699594	48.4	47.0	2.9%	< 0.2				80%	120%
P	1	3699594	628	608	3.2%	< 10	613	600	102%	80%	120%
Pb	1	3699599	16.3	16.7	2.4%	< 0.1				80%	120%
Rb	1	3699599	7.5	7.6	1.3%	< 0.1				80%	120%
Re	1	3699599	0.002	0.002	0.0%	< 0.001				80%	120%
8	1	3699594	0.0213	0.0204	4.3%	< 0.005				80%	120%
3b	1	3699599	1.09	1.11	1.8%	< 0.05				80%	120%
Sc	1	3699599	2.70	2.76	2.2%	< 0.1				80%	120%
8e	1	3699599	0.9	0.9	0.0%	< 0.2				80%	120%
Sn	1	3699599	0.33	0.36	8.7%	< 0.2				80%	120%
ar	1	3933233	36.7	37.6	2.4%	<0.2				80%	120%
Та	1	3699599	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699599	0.033	0.036	8.7%	< 0.01				80%	120%
Th	1	3699599	4.63	4.85	4.8%	< 0.1				80%	120%
1	1	3699594	0.027	0.023	16.0%	< 0.005				80%	120%
•		3033535	0.102	0.106	2./70	× 0.01				0070	12070
U	1	3699599	3.52	3.63	3.1%	< 0.05				80%	120%
v	1	3699594	32.5	29.8	8.7%	< 0.5				80%	120%
w	1	3699599	0.18	0.18	0.0%	< 0.05				80%	120%
Y	1	3699599	8.52	8.66	1.6%	< 0.05				80%	120%
20		30333394	122	125	2.4%	× 0.5				0070	120%
Zr	1	3699599	1.6	1.7	6.1%	< 0.5				80%	120%
Anus Regia Digest - Metals Package IC	PICP.MS	finich (2010)	741								
Ag	1	3699625	0.578	0.573	0.9%	< 0.01	11.7	13.0	90%	80%	120%
A	1	3699599	0.971	1.05	7.8%	< 0.01				80%	120%
As	1	3699625	27.4	28.0	2.2%	< 0.1				80%	120%
Au	1	3699625	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
B	1	3699625	<5	< 5	0.0%	< 5	7.63	7.00	109%	80%	120%
Ba	1	3699625	261	267	2.3%	<1				80%	120%
Be	1	3699625	0.251	0.244	2.8%	< 0.05				80%	120%
BI	1	3699625	0.219	0.226	3.1%	< 0.01				80%	120%
Ca	1	3699599	0.66	0.66	0.0%	< 0.01				80%	120%
Cd	1	3699625	0.63	0.64	1.6%	< 0.01				80%	120%
Ce	1	3699625	36.6	35.5	3.1%	< 0.01				80%	120%
Co	1	3699625	10.6	10.7	0.9%	< 0.1				80%	120%
Cr	1	3699599	20.4	21.1	3.4%	< 0.5				80%	120%
Cs	1	3699625	0.64	0.60	6.5%	< 0.05				80%	120%
Cu	1	3699599	39.3	37.5	4.7%	< 0.1				80%	120%
Fe	1	3699599	2.60	2.46	5.5%	< 0.01				80%	120%
Ga	1	3699625	3.36	3.38	0.6%	< 0.05				80%	120%
Ge	1	3699625	0.13	0.13	0.0%	< 0.05				80%	120%
H	1	3699625	0.041	0.047	13.6%	< 0.02				80%	120%
AGAT QUALITY ASSURANCE RE	EPORT (V1	0								Page	45 of 50
		Results rela	ite only to the	nems tested	and to all	me items tested					

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLIK	CATE				REFE	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limits Upper
Hg	1	3699625	0.10	0.10	0.0%	< 0.01				80%	120%
in .	1	3699625	0.027	0.027	0.0%	< 0.005				80%	120%
к	1	3699599	0.04	0.05	22.2%	< 0.01				80%	120%
La	1	3699625	18.7	17.9	4.4%	< 0.1				80%	120%
u	1	3699625	9.3	9.5	2.1%	< 0.1				80%	120%
Mg	1	3699599	0.439	0.458	4.2%	< 0.01				80%	120%
Mn	1	3699599	564	524	7.4%	<1				80%	120%
Mo	1	3699625	2.56	2.58	0.8%	< 0.05	361	360	100%	80%	120%
Na	1	3699599	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Nb	1	3699625	0.78	0.76	2.6%	< 0.05				80%	120%
NI	1	3699599	36.8	35.7	3.0%	< 0.2				80%	120%
P	1	3699599	914	902	1.3%	< 10	636	600	106%	80%	120%
Pb	1	3699625	19.3	19.9	3.1%	< 0.1				80%	120%
Rb	1	3699625	7.2	6.9	4.3%	< 0.1				80%	120%
Re	1	3699625	< 0.001	< 0.001	0.0%	< 0.001				80%	120%
8	1	3699599	0.058	0.053	9.0%	< 0.005				80%	120%
Sb	1	3699625	2.21	2.24	1.3%	< 0.05				80%	120%
8c	1	3699625	3.8	3.8	0.0%	< 0.1				80%	120%
3e	1	3699625	0.8	0.8	0.0%	< 0.2				80%	120%
Sn	1	3699625	0.34	0.35	2.9%	< 0.2				80%	120%
Sr	1	3699625	30.6	30.7	0.3%	< 0.2				80%	120%
Та	1	3699625	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Те	1	3699625	0.04	0.04	0.0%	< 0.01				80%	120%
Th	1	3699625	5.3	5.3	0.0%	< 0.1	1.2	1.4	86%	80%	120%
п	1	3699599	0.022	0.030		< 0.005				80%	120%
п	1	3699625	0.10	0.10	0.0%	< 0.01				80%	120%
U	1	3699625	0.741	0.751	1.3%	< 0.05				80%	120%
v	1	3699599	26.3	29.0	9.8%	< 0.5				80%	120%
w	1	3699625	0.23	0.15		< 0.05				80%	120%
Y	1	3699625	10.8	10.9	0.9%	< 0.05	6	7	82%	80%	120%
Zn	1	3699599	137	130	5.2%	< 0.5				80%	120%
Zr	1	3699625	2.2	2.3	4.4%	< 0.5				80%	120%
Aqua Regia Digest - Metais Package, I	CP/ICP-MS	finish (2010)	74)								
Ag	1	3699625	0.230	0.245	6.3%	< 0.01	11.9	13.0	91%	80%	120%
N	1	3699625	1.19	1.21	1.7%	< 0.01				80%	120%
As	1	3699625	26.2	25.9	1.2%	< 0.1				80%	120%
B	1	3699625	< 5	< 5	0.0%	< 5	7.83	7.00	112%	80%	120%
Ba	1	3699625	275	278	1.1%	< 1				80%	120%
Be	1	3699625	0.572	0.562	1.8%	< 0.05	0.3	0.4	73%	80%	120%
BI	1	3699625	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Ca	1	3699625	0.491	0.507	3.2%	< 0.01				80%	120%
Cd	1	3699625	0.85	0.81	4.8%	< 0.01				80%	120%
Ce	1	3699625	36.4	35.3	3.1%	< 0.01				80%	120%
	EPOPT OF									Page	46 of 50
CONCIL RECORDINGE	resource (M									- age	40 UI OU

Results relate only to the items tested and to all the items tested

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample kt	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits
							Value	Value	,	Lower	Upper
Co	1	3699625	11.9	12.2	2.5%	< 0.1				80%	120%
Cr	1	3699625	24.1	24.4	1.2%	< 0.5				80%	120%
Cu	1	3699625	59.5	61.3	3.0%	< 0.1				80%	120%
Fe	1	3699625	3.16	3.28	3.7%	< 0.01				80%	120%
Ga	1	3699625	8.94	9.76	8.8%	< 0.05				80%	120%
Hg	1	3699625	< 0.01	0.02		< 0.01				80%	120%
In	1	3699625	0.754	0.76	0.8%	< 0.005				80%	120%
ĸ	1	3699625	0.06	0.05	0.0%	< 0.01				80%	120%
La	1	3699625	17.0	16.5	3.0%	< 0.1				80%	120%
U	1	3699625	16.7	17.3	3.5%	< 0.1				80%	120%
Mg	1	3699625	0.570	0.578	1.4%	< 0.01				80%	120%
Mn	1	3699625	413	424	2.6%	< 1				80%	120%
Mo	1	3699625	1.62	2.00	21.0%	< 0.05	362	360	100%	80%	120%
Na	1	3699625	0.01	0.01	0.0%	< 0.01				80%	120%
NI	1	3699625	43.6	44.6	2.3%	< 0.2				80%	120%
P	1	3699625	1090	1110	1.8%	< 10	639	600	106%	80%	120%
Pb	1	3699625	16.8	17.3	2.9%	< 0.1				80%	120%
Rb	1	3699625	9.8	8.6	13.0%	< 0.1				80%	120%
8	1	3699625	0.0108	0.0101	6.7%	< 0.005				80%	120%
Sb	1	3699625	1.03	1.04	1.0%	< 0.05				80%	120%
Sc.	1	3699625	3.5	3.5	0.0%	< 0.1				80%	120%
Se	1	3699625	0.7	0.5	33.3%	< 0.2				80%	120%
Sn	1	3699625	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
8r	1	3699625	29.5	32.1	8.4%	< 0.2				80%	120%
Та	1	3699625	0.78	0.53		< 0.01				80%	120%
Те	1	3699625	< 0.01	0.02		< 0.01				80%	120%
Th	1	3699625	8.1	8.4	3.6%	< 0.1	1.4	1.4	97%	80%	120%
п	1	3699625	0.0337	0.0321	4.9%	< 0.005				80%	120%
п	1	3699625	4.31	3.89	10.2%	< 0.01				80%	120%
U	1	3699625	< 0.05	< 0.05	0.0%	< 0.05				80%	120%
v	1	3699625	32.5	32.3	0.6%	< 0.5				80%	120%
w	1	3699625	< 0.05	< 0.05	0.0%	< 0.05				80%	120%
Y	1	3699625	10.5	10.6	0.9%	< 0.05	6	7	85%	80%	120%
Zn	1	3699625	130	140	7.4%	< 0.5				80%	120%
Zr	1	3699625	2.82	2.95	4.8%	< 0.5				80%	120%
Aqua Regia Digest - Metals Package, K	CP/ICP-M8	finish (2010)	74)								
Ag	1					< 0.01	11.8	13.0	91%	80%	120%
B	1					< 5	6.7	7.00	96%	80%	120%
Be	1					< 0.05	0.3	0.4	78%	80%	120%
Mo	1					< 0.05	357	360	99%	80%	120%
P	1					< 10	612	600	102%	80%	120%
Та	1					< 0.01	1	0.9	113%	80%	120%
Th	1					< 0.1	1.1	1.4	80%	80%	120%
Agua Regia Digest - Metals Paokage, K	CP/ICP-M8	finich (2010)	(4)								

Adda Rogia Digot - motale Folkage, ICFACF-as Innen (201 AGAT QUALITY ASSURANCE REPORT (V1)

Results relate only to the Items tested and to all the Items tested

Quality Assurance

CLIENT NAME: PREDATOR MINING GROUP IN

PROJECT NO: MCC-2012-NK-2367

AGAT WORK ORDER: 12Y640884 ATTENTION TO: ANDREW CALDWELL

Solid Analysis (Continued)											
RPT Date: Oot 19, 2012			REPLK	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Ratab	Records Id	Ordering	Days #1	880	Method Blank	Result	Expect	Descenter	Accepta	ble Limits
FARAMETER	Calch	o ampre ra	Cinginia	- append	10-0		Value	Value	recovery	Lower	Upper
Ag	1					< 0.01	12.1	13.0	93%	80%	120%
B	1					< 5	7.42	7.00	106%	80%	120%
Mo	1					< 0.05	355	360	98%	80%	120%
P	1					< 10	622	600	104%	80%	120%
10	1					×0.1	1.2	1.4	0/70	0076	120%
Y	1					< 0.05	6	7	83%	80%	120%
Aqua Regia Digest - Metals Paokage, IC	P/ICP-MS	finish (2010	74)								
Ag	1					< 0.01	12.4	13.0	95%	80%	120%
B	1					< 5	7.8	7.00	111%	80%	120%
Cu	1					< 0.1	5729	6000	95%	80%	120%
P	1					< 10	335	360	93%	80%	120%
						~ 10	307	000	2070	0070	120%
Th	1					< 0.1	1.2	1.4	83%	80%	120%
Y	1					< 0.05	6	7	84%	80%	120%
Aqua Regia Digest - Metais Paokage, IG	P/ICP-M8	finish (2010)	74)								
Ag	1					< 0.01	11.8	13.0	90%	80%	120%
Cu	1					< 0.1	5895	6000	98%	80%	120%
Mo	1					< 0.05	336	360	93%	80%	120%
P	1					< 10	602	600	100%	80%	120%
та	1					< 0.01	1	0.9	108%	80%	120%
Y	1					< 0.05	6	7	78%	80%	120%
Aqua Regia Digest - Metais Paokage, K	P/ICP-M8	finish (2010	74)								
Ag	1					< 0.01	11.5	13.0	88%	80%	120%
Cu	1					< 0.1	5847	6000	97%	80%	120%
MO	1					< 0.05	331	360	91%	80%	120%
Ŷ	-					< 0.05	6	7	80%	80%	120%
						0.00					
Aqua Regia Digest - Metals Paokage, IC	P/ICP-M8	finish (2010)	74)								
~u	-					< 10	641	600	107%	80%	120%
Y	1					< 0.05	6	7	85%	80%	120%
Aqua Regia Digest - Metals Package, IC	P/ICP-M8	finish (2010)	74)								
A0	1					< 0.01	15	13.0	115%	80%	120%
BC No.	1					< 0.05	0.3	0.4	000	80%	120%
P	1					< 10	549	600	10.9%	80%	120%
U	1					< 0.05	0.9	0.8	115%	80%	120%
Y	1					< 0.05	6	7	91%	80%	120%
× 1 ±											
Certified By:											
Page 40 of 50											
		Results rela	ate only to the	tems tested	and to all	the items tested					

Method Summary

CLIENT NAME: PREDATOR MINING GRO	DUP IN	AGAT WORK ORDER: 12Y640884					
PROJECT NO: MCC-2012-NK-2367		ATTENTION TO: /	ANDREW CALDWELL				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Solid Analysis							
Sample Login Weight	MIN-12009		BALANCE				
Ag	MIN-200-12017		ICP-MS				
AI	MIN-200-12017		ICP/OES				
As	MIN-200-12017		ICP-MS				
Au	MIN-200-12017		ICP-MS				
в	MIN-200-12017		ICP/OES				
Ba	MIN-200-12017		ICP-MS				
Be	MIN-200-12017		ICP-MS				
BI	MIN-200-12017		ICP-MS				
Ca	MIN-200-12017		ICP/OES				
Cd	MIN-200-12017		ICP-MS				
Ce	MIN-200-12017		ICP-MS				
Co	MIN-200-12017		ICP-MS				
Cr	MIN-200-12017		ICP/OES				
Cs	MIN-200-12017		ICP-MS				
Cu	MIN-200-12017		ICP-MS				
Fe	MIN-200-12017		ICP/OES				
Ga	MIN-200-12017		ICP-MS				
Ge	MIN-200-12017		ICP-MS				
HT	MIN-200-12017		ICP-MS				
Hg	MIN-200-12017		ICP-MS				
In	MIN-200-12017		ICP-MS				
к	MIN-200-12017		ICP/OES				
La	MIN-200-12017		ICP-MS				
L	MIN-200-12017		ICP-MS				
Mg	MIN-200-12017		ICP/OES				
Mn	MIN-200-12017		ICP/OES				
Mo	MIN-200-12017		ICP-MS				
Na	MIN-200-12017		ICP/OES				
Nb	MIN-200-12017		ICP-MS				
N	MIN-200-12017		ICP-MS				
P	MIN-200-12017		ICP/OES				
Pb	MIN-200-12017		ICP-MS				
Rb	MIN-200-12017		ICP-MS				
Re	MIN-200-12017		ICP-MS				
s	MIN-200-12017		ICP/OES				
Sb	MIN-200-12017		ICP-MS				
Sc	MIN-200-12017		ICP-MS				
Se	MIN-200-12017		ICP-MS				
Sn	MIN-200-12017		ICP-MS				
Sr	MIN-200-12017		ICP-MS				
та	MIN-200-12017		ICP-MS				
те	MIN-200-12017		ICP-MS				
Th	MIN-200-12017		ICP-MS				
m	MIN-200-12017		ICP/OES				
m	MIN-200-12017		ICP-MS				
u	MIN-200-12017		ICP-MS				
v	MIN-200-12017		ICP/OES				
w	MIN-200-12017		ICP-MS				
L							

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested and to all the items tested

Page 49 of 50

Method Summary

CLIENT NAME: PREDATOR MINING GRO	UP IN	AGAT WORK ORDER: 12Y640884						
PROJECT NO: MCC-2012-NK-2367		ATTENTION TO: ANDREW CALDWELL						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Y	MIN-200-12017		ICP-MS					
Zn	MIN-200-12017	ICP-MS						
Zr	MIN-200-12017		ICP-MS					

ACAT METHOD SUMMARY (V1)

Results relate only to the items tested and to all the items tested

Page 50 of 50

		Client:	
7	Acmel abs		1
	Acme Analytical Laboratories (Vancouver) Ltd.	Submitted By:	
	1020 Cordova St. East Vancouver BC V6A 4A3 Canada	Receiving Lab:	¢
		Received:	0

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

WHI11001802.3

www.acmelab.com

M. Burke Canada-Whitehorse October 24, 2011 Report Date: December 05, 2011 1 of 13

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	McConnell
Shipment ID:	None_given
P.O. Number	
Number of Samples:	340

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES Number of Code Departmention Method

Page:

Method Code	Number of Samples	Code Description	Test Wat (a)	Report Status	Lab
Dry at 60C	320	Dry at 60C			WHI
3380	320	Dry at 60C sieve 100g to -80 mesh			WHI
1DX2	312	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days invoice for Storage
DISP-RJT-SOIL	Immediate Disposal of Soll Reject

ADDITIONAL COMMENTS

Version 3: Project McConell Included.

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:	Golden Predator Canada Corp.
	11th Floor, 888 Dunsmuir Street
	Vancouver BC V6C 3K4
	Canada

CC: Andrew Caldwell Jack Cote Gilles Dessureau

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acres assumes the fiabilities for actual cost of analysis only. Results are solutioned and should be used for reference only. "In additional the involves the markficial result could not be provided due to unusually high levels of interference from other elements.

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

OF DIFICATE OF ANALYOIO

December 05, 2011

McConnell

2 of 13 Part 1

IF.																							
	CERTIFIC	ATE O	F AN	JAL Y	′SIS													W	HI11	001	802	.3	
			Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
			Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca	P	La
			Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
			MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
	11KENOFA001	Boll		1.2	22.3	17.5	61	0.2	22.8	8.6	302	2.51	17.5	1.8	3.5	13	0.2	0.8	0.2	43	0.17	0.042	14
	11KENOFA002	Boll		3.0	50.5	27.7	116	0.5	37.2	12.6	560	3.03	56.2	7.8	3.7	31	0.8	1.8	0.3	39	0.62	0.100	15
	11KENOFA003	Boll		1.5	38.9	22.1	99	0.4	30.0	10.8	384	2.62	20.7	5.5	3.6	35	0.6	1.2	0.2	36	0.71	0.082	16
	11KENOFA004	Boll		2.5	64.2	31.6	134	0.7	46.1	13.3	398	3.47	41.2	6.1	4.8	27	0.6	2.3	0.3	37	0.47	0.099	18
	11KENOFA005	Boll		2.3	49.1	21.7	129	0.4	39.5	14.3	429	3.09	68.4	4.3	52	36	0.9	2.0	0.3	37	1.27	0.109	15
	11KENOFA006	Boll		2.1	45.3	24.7	110	0.4	35.1	11.4	350	3.03	27.3	5.3	3.8	27	0.6	1.7	0.3	38	0.60	0.095	16
	11KENOFA007	Boll		1.8	43.0	19.8	107	0.4	34.0	11.3	411	2.67	23.8	4.5	3.3	30	0.6	1.5	0.2	35	0.58	0.093	14
	11KENOFA008	Boll		2.3	52.0	20.3	123	0.5	40.1	12.0	418	2.76	23.6	5.4	3.5	30	1.0	1.6	0.3	35	0.64	0.106	14
	11KENOFA009	Boll		2.5	45.8	22.3	110	0.5	34.8	11.7	492	2.61	26.7	5.7	2.7	39	0.9	1.5	0.3	35	0.84	0.097	14
	11KENOFA010	Boll		1.4	29.4	15.1	71	0.3	22.1	6.8	251	1.76	13.5	3.0	12	105	1.1	0.9	0.2	26	1.37	0.060	9
	11KENOFA011	Boll		1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.
	11KENOFA012	Boll		4.3	70.1	24.9	150	0.5	42.9	12.7	396	3.75	38.1	7.3	5.3	32	1.1	2.6	0.3	35	0.58	0.116	18
	11KENOFA013	Boll		1.1	26.5	9.5	58	0.3	15.5	5.3	261	1.10	7.0	3.2	0.9	71	1.3	0.6	<0.1	15	2.09	0.067	10
	11KENOFA014	Boll		1.1	30.7	11.3	55	0.4	18.9	6.4	459	1.23	10.9	2.9	0.8	160	1.0	1.0	0.1	14	2.62	0.072	12
	11KENOFA015	Boll		2.5	40.0	19.6	116	0.5	27.7	9.6	1863	2.41	85.9	6.8	12	72	1.5	1.5	0.3	22	1.62	0.105	15
	11KENOFA016	Boll		1.8	31.9	24.7	99	0.3	29.5	11.0	386	3.01	23.8	3.4	9.7	72	0.7	1.4	0.2	27	0.78	0.106	36
	11KENOFA017	Boll		2.1	47.4	31.4	106	0.4	37.6	15.1	566	3.47	32.9	8.3	5.9	27	0.6	1.6	0.3	38	0.45	0.088	19
	11KENOFA018	Boll		2.2	47.7	25.5	124	0.4	37.6	11.4	294	3.19	29.1	9.1	4.7	25	0.6	1.7	0.3	33	0.47	0.099	16
	11KENOFA019	Boll		1.9	71.0	25.9	128	0.3	53.0	19.4	466	3.91	39.0	6.9	5.4	25	0.4	2.0	0.4	34	0.39	0.095	16
	11KENOFA020	Boll		1.4	43.1	23.9	102	0.4	35.0	12.8	459	3.03	24.6	5.2	4.5	27	0.2	1.3	0.3	40	0.47	0.089	17
	11KENOFA021	Boll		1.6	34.6	20.3	84	0.2	29.3	11.7	239	2.83	21.3	4.8	42	32	0.3	1.2	0.3	42	0.66	0.056	16
	11KENOFA022	Boll		1.4	49.7	21.9	93	0.4	39.3	14.2	442	2.75	24.4	4.1	2.6	59	0.7	1.4	0.3	26	1.17	0.087	11
	11KENOFA023	Boll		1.9	53.2	24.5	100	0.5	41.6	17.5	557	3.03	26.7	3.6	2.9	45	0.6	1.7	0.3	27	1.13	0.084	13
	11KENOFA024	Boll		0.7	27.6	14.0	38	0.3	22.8	7.0	319	1.39	10.9	2.1	0.8	106	0.6	1.0	0.1	15	2.88	0.085	5
	11KENOFA025	Boll		1.7	52.6	24.7	118	0.3	42.1	16.2	539	3.33	25.6	6.2	42	31	0.4	1.4	0.3	37	0.75	0.089	17
	11KENOFA026	Boli		2.0	59.6	24.1	120	0.2	45.5	17.2	501	3.83	33.1	5.8	5.6	25	0.4	1.9	0.4	42	0.47	0.084	19
	11KENOFA027	Boll		2.7	80.6	29.2	156	0.3	61.7	24.3	522	4.78	49.8	6.7	6.6	24	0.7	2.7	0.4	36	0.64	0.096	21
	11KENOFA028	Boll		1.1	35.7	17.0	82	0.2	30.1	13.9	564	2.75	13.9	3.9	4.6	24	0.2	0.9	0.3	42	0.41	0.067	16
	11KENOFA029	Boll		2.3	72.5	29.9	151	0.3	52.4	21.9	571	4.45	45.3	7.4	5.7	25	0.7	2.4	0.5	33	0.58	0.102	19
	11KENOFA030	Boll		2.5	67.2	26.3	135	0.3	53.4	18.8	467	4.00	45.2	7.0	5.5	30	0.7	2.3	0.4	31	0.88	0.106	17

This report supernedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

2 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16															
	Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
	Unit	ppm	%	ppm	%	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOFA001 Bol		23	0.37	241	0.020	<1	1.31	0.006	0.03	0.2	0.04	2.3	<0.1	<0.05	4	<0.5	<0.2
11KENOFA002 Bol		25	0.46	292	0.030	2	1.11	0.011	0.06	0.3	0.10	3.4	0.1	<0.05	3	1.0	<0.2
11KENOFADD3 Bol		22	0.48	348	0.027	2	1.05	0.011	0.05	0.5	0.09	3.1	<0.1	<0.05	3	0.6	<0.2
11KENOFA004 Bol		25	0.44	225	0.024	<1	1.13	0.008	0.05	0.2	0.17	4.2	0.1	<0.05	3	1.2	<0.2
11KENOFADDS Bol		25	0.85	172	0.048	1	1.18	0.013	0.09	0.2	0.10	3.6	0.2	<0.05	3	0.8	<0.2
11KENOFAD06 Bol		22	0.48	230	0.021	1	1.18	0.008	0.04	0.2	0.11	3.0	0.1	<0.05	3	0.6	<0.2
11KENOFA007 Bol		22	0.44	321	0.025	<1	1.02	0.010	0.04	0.2	0.08	3.1	<0.1	<0.05	3	1.1	<0.2
11KENOFADD8 Bol		21	0.52	262	0.023	<1	1.03	0.010	0.05	0.2	0.11	3.0	0.1	<0.05	3	1.1	<0.2
11KENOFA009 Bol		21	0.48	247	0.024	1	0.94	0.010	0.05	0.2	0.09	2.8	<0.1	<0.05	3	1.1	<0.2
11KENOFAD10 Bol		17	0.40	236	0.017	3	0.77	0.011	0.05	0.1	0.07	1.8	<0.1	0.10	3	1.0	<0.2
11KENOFAD11 Bol		1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.
11KENOFA012 Bol		23	0.51	158	0.042	<1	0.96	0.013	0.07	0.3	0.08	3.3	0.1	<0.05	3	1.3	<0.2
11KENOFAD13 Bol		10	0.37	207	0.023	2	0.56	0.010	0.04	0.1	0.06	1.2	<0.1	0.15	2	0.9	<0.2
11KENOFAD14 Bol		11	0.41	235	0.015	6	0.60	0.013	0.05	0.1	0.08	1.0	<0.1	0.21	2	1.8	<0.2
11KENOFAD15 Bol		17	0.41	341	0.013	4	0.85	0.011	0.04	0.2	0.11	1.9	<0.1	0.35	2	5.2	<0.2
11KENOFAD16 Bol		16	0.48	210	0.042	2	0.93	0.012	0.09	0.7	0.05	4.1	0.1	<0.05	3	0.8	<0.2
11KENOFA017 Bol		23	0.48	283	0.028	<1	1.21	0.012	0.05	6.2	0.09	3.7	0.1	<0.05	3	1.0	<0.2
11KENOFAD18 Bol		22	0.52	218	0.019	<1	1.19	0.009	0.05	0.1	0.10	2.7	<0.1	<0.05	3	0.8	<0.2
11KENOFAD19 Bol		22	0.48	176	0.030	<1	1.09	0.010	0.04	0.2	0.09	3.3	0.1	<0.05	3	1.3	<0.2
11KENOFA020 Bol		25	0.51	353	0.030	<1	1.30	0.011	0.05	0.1	0.08	3.8	<0.1	<0.05	4	0.6	<0.2
11KENOFA021 Bol		24	0.52	267	0.024	<1	1.34	0.009	0.05	0.1	0.05	3.0	<0.1	<0.05	4	<0.5	<0.2
11KENOFA022 Bol		19	0.47	309	0.020	2	0.93	0.010	0.04	0.1	0.07	2.7	<0.1	0.07	2	1.5	<0.2
11KENOFA023 Bol		20	0.48	275	0.012	1	1.07	0.008	0.04	⊲0.1	0.09	2.7	<0.1	0.05	3	1.3	<0.2
11KENOFA024 Bol		13	0.52	212	0.012	2	0.56	0.011	0.02	⊲0.1	0.08	1.3	<0.1	0.22	1	1.2	<0.2
11KENOFA025 Bol		24	0.61	351	0.028	1	1.11	0.012	0.05	0.1	0.07	3.3	<0.1	<0.05	3	0.7	<0.2
11KENOFA026 Bol		27	0.56	340	0.027	<1	1.26	0.011	0.06	0.1	0.08	4.0	<0.1	<0.05	3	0.9	<0.2
11KENOFA027 Bol		27	0.76	216	0.021	<1	1.27	0.010	0.08	0.1	0.11	4.1	0.1	<0.05	4	1.0	<0.2
11KENOFA028 Bol		26	0.49	401	0.022	<1	1.39	0.009	0.04	0.1	0.06	3.6	<0.1	<0.05	4	<0.5	<0.2
11KENOFA029 Bol		23	0.53	216	0.016	<1	1.17	0.009	0.07	0.2	0.07	3.4	0.1	0.05	3	1.1	<0.2
11KENOFA030 Bol		24	0.70	194	0.021	<1	1.06	0.010	0.07	<0.1	0.10	3.3	<0.1	<0.05	3	0.7	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Project:

Page:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICATE OF ANALYSIS

McConnell Report Date: December 05, 2011

3 of 13 Part 1 WHI11001802.3

		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOFA031	Boll		2.0	61.9	22.8	123	0.3	47.A	16.6	483	3.82	31.5	5.6	5.7	21	0.5	2.1	0.4	37	0.29	0.085	20
11KENOFA032	Boll		2.1	71.1	23.3	130	0.3	46.5	15.6	439	3.81	38.2	5.9	5.9	26	0.5	2.2	0.4	31	0.57	0.103	18
11KENOFA033	Boll		2.8	104.0	43.3	177	0.5	73.3	36.5	895	6.67	108.0	12.6	6.2	15	1.0	3.6	0.7	36	0.16	0.064	22
11KENOFA034	Boll		1.1	41.4	15.3	72	0.2	34.2	14.2	569	2.69	17.1	1.6	2.9	33	0.4	1.1	0.2	32	0.95	0.074	11
11KENOFA035	Boll		1.0	38.6	13.5	75	0.3	26.9	11.9	529	2.05	14.8	2.5	1.5	42	0.8	0.9	0.2	24	1.13	0.084	9
11KENOFA036	Boll		1.4	63.3	17.9	111	0.3	41.2	19.2	745	3.48	34,4	8.1	4.5	41	0.6	1.5	0.3	32	0.64	0.089	16
11KENOFA037	Boll		1.4	49.3	19.1	103	0.3	32.5	13.8	429	2.87	28.0	7.0	42	25	0.4	1.3	0.4	30	0.46	0.088	14
11KENOFA038	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOFA039	Boll		0.4	14.1	12.2	40	0.1	12.2	4.9	91	1.36	16.4	1.6	2.1	37	0.2	0.5	0.2	24	0.71	0.078	11
11KENOFA040	Boll		1.4	48.9	14.8	96	0.2	31.1	13.6	582	2.48	35.8	4.7	2.8	50	0.5	1.5	0.3	20	1.26	0.078	13
11KENOFA041	Boll		1.0	29.5	15.0	79	0.2	25.6	10.1	415	2.30	13.4	3.8	3.4	32	0.4	0.8	0.2	35	1.58	0.079	14
11KENOFA042	Boll		1.1	13.5	14.6	54	⊲0.1	18.5	72	253	2.37	10.1	0.8	3.5	17	<0.1	0.6	0.2	40	0.26	0.025	13
11KENOFA043	Boll		L8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	L8.	1.8.	LS.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.
11KENOFA044	Boll		1.1	26.5	14.9	83	0.2	24.1	9.5	349	2.39	13.8	2.5	2.9	31	0.5	0.9	0.2	33	0.52	0.094	12
11KENOFA045	Boll		0.7	28.6	15.8	72	0.2	20.0	72	328	1.93	32.9	4.2	3.1	32	0.4	0.8	0.3	25	0.66	0.084	12
11KENOFA046	Boll		2.0	36.4	18.5	98	0.3	26.0	17.8	770	4.58	95.5	3.4	3.3	34	0.9	1.2	0.3	33	0.54	0.093	13
11KENOFA047	Boll		0.8	26.2	9.7	56	0.2	16.7	7.1	333	1.93	41.4	3.1	2.5	33	0.4	0.7	0.2	21	0.61	0.091	11
11KENOFA048	Boll		1.0	37.5	15.7	87	0.3	23.3	6.5	225	2.15	37.4	4.3	2.1	40	0.3	1.1	0.2	27	0.78	0.081	14
11KENOFA049	Boll		1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	L8.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	LS.	1.8.	1.8.
11KENOFA050	Boll		0.4	28.6	14.8	82	0.2	20,4	6.2	203	1.64	13.3	3.0	2.7	40	0.4	0.8	0.2	25	0.83	0.075	10
11KENOFA051	Boll		0.6	30.1	14.9	91	0.2	21.2	7.1	104	1.52	13.5	3.4	3.4	28	0.5	0.8	0.2	28	0.46	0.069	11
11KENOFA052	Boll		1.3	37.4	14.3	81	0.2	25.0	8.8	508	2.38	17.6	3.2	3.6	48	0.8	1.1	0.2	25	1.14	0.102	12
11KENOFA053	Boll		1.8	60.4	22.5	115	0.3	42.6	17.3	511	3.80	44.8	5.2	4.3	31	0.5	2.0	0.3	31	0.89	0.099	16
11KENOFA054	Boll		1.8	44.1	24.2	116	0.2	30.3	12.8	276	3.28	25.6	5.3	5.9	22	0.4	1.5	0.3	33	0.40	0.108	18
11KENOFA055	Boll		2.0	92.7	27.9	129	0.5	51.7	20.6	1029	4.19	42.9	7.7	4.7	50	0.7	2.0	0.4	28	0.87	0.092	18
11KENOFA056	Boll		2.0	67.7	26.8	133	0.3	44.0	23.0	525	4.30	43.7	5.4	4.3	23	0.7	2.0	0.4	33	0.43	0.067	16
11KENOFA057	Boll		2.1	76.1	28.2	155	0.4	51.9	24.1	511	4.66	56.2	16.3	5.0	20	0.6	2.4	0.4	31	0.46	0.083	16
11KENOFA058	Boll		1.6	61.7	20.4	87	0.3	41.7	17.5	451	3.56	36.6	5.3	4.7	20	0.2	1.5	0.3	37	0.41	0.054	16
11KENOFA059	Boll		1.8	53.9	22.7	90	0.2	36.8	17.0	511	3.22	34.9	4.7	4.1	25	0.4	1.2	0.3	41	0.49	0.046	14
11KENOFA060	Boll		1.0	63.3	17.1	118	0.2	40.0	13.5	328	3.47	29.0	9.3	5.5	12	0.2	1.5	0.3	56	0.21	0.033	19

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

3 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Cr	Mg	Ba	т	в	A	Na	к	w	Hg	80	т	8	Ga	Se.	Те
	Unit	ppm	%	ppm	%	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOFAD31 Bol		25	0.49	244	0.021	<1	1.23	0.012	0.07	0.1	0.07	3.5	<0.1	<0.05	4	<0.5	<0.2
11KENOFAD32 Boll		22	0.60	209	0.017	<1	1.08	0.010	0.07	<0.1	0.07	3.4	<0.1	<0.05	3	0.6	<0.2
11KENOFAD33 Boll		24	0.53	203	0.022	<1	1.22	0.010	0.05	0.1	0.11	4.1	0.1	<0.05	3	1.5	<0.2
11KENOFA034 Bol		20	0.43	354	0.020	1	1.03	0.009	0.04	0.1	0.07	2.8	<0.1	0.06	3	0.8	<0.2
11KENOFAD35 Boll		16	0.38	300	0.014	1	0.76	0.008	0.03	<0.1	0.08	2.0	<0.1	0.11	2	0.6	<0.2
11KENOFAD36 Boll		21	0.48	259	0.022	1	1.00	0.008	0.06	0.1	0.06	3.1	<0.1	<0.05	3	0.7	<0.2
11KENOFAD37 Boll		20	0.41	218	0.019	2	0.94	0.006	0.05	0.1	0.07	2.8	<0.1	<0.05	3	0.6	<0.2
11KENOFAD38 Boll		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOFAD39 Boll		15	0.26	188	0.017	2	0.70	0.005	0.05	0.1	0.05	1.9	<0.1	0.12	2	<0.5	<0.2
11KENOFA040 Boll		14	0.38	214	0.012	3	0.62	0.005	0.04	<0.1	0.07	2.2	<0.1	0.08	2	0.8	<0.2
11KENOFAD41 Boll		21	0.88	350	0.026	1	1.02	0.007	0.05	0.2	0.05	3.0	<0.1	<0.05	3	<0.5	<0.2
11KENOFA042 Boll		21	0.34	232	0.022	1	1.22	0.005	0.05	0.1	0.01	2.6	<0.1	<0.05	4	<0.5	<0.2
11KENOFAD43 Boll		1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.
11KENOFAD44 Boll		20	0.40	305	0.022	1	0.95	0.006	0.05	0.2	0.06	2.8	<0.1	<0.05	3	0.6	<0.2
11KENOFAD45 Boll		16	0.37	215	0.013	1	0.84	0.006	0.04	⊲0.1	0.06	2.3	<0.1	0.07	2	0.6	<0.2
11KENOFAD46 Boll		20	0.39	381	0.014	2	1.01	0.006	0.05	0.1	0.07	2.8	<0.1	0.09	3	1.0	<0.2
11KENOFA047 Boll		14	0.29	165	0.018	1	0.72	0.007	0.04	0.1	0.06	1.9	<0.1	0.13	2	<0.5	<0.2
11KENOFAD48 Boll		16	0.37	159	0.016	1	0.79	0.005	0.04	0.1	0.06	2.3	<0.1	0.11	2	0.9	<0.2
11KENOFA049 Boll		1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.
11KENOFAD50 Boll		17	0.38	235	0.017	2	0.83	0.006	0.04	⊲0.1	0.07	2.2	<0.1	0.17	2	1.0	<0.2
11KENOFAD51 Boll		19	0.38	215	0.015	1	0.92	0.005	0.04	0.1	0.08	2.7	<0.1	0.11	3	1.2	<0.2
11KENOFAD52 Boll		16	0.38	266	0.025	3	0.74	0.008	0.04	0.1	0.06	2.6	<0.1	0.34	2	2.3	<0.2
11KENOFAD53 Boll		21	0.65	247	0.020	2	1.01	0.014	0.08	0.1	0.06	3.8	<0.1	<0.05	3	0.7	<0.2
11KENOFAD54 Boll		23	0.51	153	0.030	1	1.08	0.007	0.06	0.2	0.07	2.8	0.1	<0.05	3	0.8	<0.2
11KENOFAD55 Boll		20	0.50	186	0.020	1	1.00	0.006	0.06	0.1	0.11	3.5	<0.1	0.06	3	1.6	<0.2
11KENOFAD56 Boll		21	0.39	213	0.013	1	1.04	0.004	0.05	0.2	0.05	3.4	<0.1	<0.05	3	0.9	<0.2
11KENOFA057 Boll		21	0.45	176	0.018	1	0.93	0.007	0.05	<0.1	0.12	3.8	<0.1	0.06	3	1.1	<0.2
11KENOFAD58 Boll		23	0.46	236	0.021	<1	1.15	0.007	0.05	0.1	0.06	3.8	<0.1	<0.05	3	0.8	<0.2
11KENOFAD59 Boll		25	0.46	251	0.025	<1	1.17	0.006	0.06	0.2	0.05	3.4	<0.1	<0.05	3	0.8	<0.2
11KENOFA060 Boll		34	0.58	398	0.071	<1	1.31	0.007	0.16	<0.1	0.06	3.7	0.2	<0.05	4	0.6	<0.2

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

OF DIFICATE OF ANALYOIC

McConnell

December 05, 2011

4 of 13 Part 1

CERTIFIC	ATE O	FAN	IALY	′SIS													W	HI11	001	802	.3	
		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	81	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOFA061	Boll		1.2	57.0	20.3	100	0.2	36.5	12.3	471	3.09	31.2	4.5	4.5	24	0.3	1.4	0.3	36	0.49	0.081	16
11KENOFA062	Boll		1.6	71.9	22.6	106	0.2	43.2	17.4	520	3.84	49.0	5.8	5.1	24	0.3	1.6	0.3	35	0.67	0.050	19
11KENOFA063	Boll		1.2	30.7	26.3	105	0.2	20.8	16.5	704	3.45	26.1	5.6	9.7	21	0.4	0.9	0.7	39	0.29	0.087	28
11KENOFA064	Boll		1.6	72.5	25.1	110	0.2	42.3	16.3	485	3.93	47.2	7.7	6.4	16	0.3	1.9	0.3	39	0.19	0.028	23
11KENOFA065	Boll		1.4	59.3	16.5	86	⊲0.1	33.0	13.1	246	3.37	49.6	6.0	5.7	11	0.1	1.4	0.3	38	0.11	0.026	18
11KENOFA066	Boll		1.2	54.6	20.5	84	0.2	33.9	14.0	576	3.05	59.7	4.6	3.8	48	0.3	1.4	0.3	30	1.26	0.079	15
11KENOFA067	Boll		1.7	57.3	20.8	100	0.2	33.7	14.8	462	3.63	132.4	7.7	7.1	27	0.3	1.7	0.4	34	0.53	0.076	23
11KENOFA068	Boll		1.4	48.7	20.6	87	0.2	27.3	12.1	536	2.85	135.8	6.4	5.4	43	0.4	1.2	0.4	31	0.92	0.077	21
11KENOFA069	Boll		2.2	32.7	18.5	103	0.3	24.9	10.0	375	2.37	458.7	17.3	5.8	42	0.6	1.9	1.1	28	0.68	0.089	21
11KENOFA070	Boll		1.8	31.2	15.0	73	0.2	21.9	7.8	289	1.88	182.7	11.0	3.4	55	0.6	1.8	0.6	27	1.03	0.072	16
11KENOFA071	Boll		1.1	21.3	11.7	69	0.2	16.5	6.1	151	1.57	107.6	6.2	3.8	30	0.3	1.1	0.3	26	0.49	0.076	14
11KENOFA072	Boll		1.7	26.0	14.3	88	0.2	23.5	8.0	265	2.00	19.1	7.6	3.4	31	0.8	1.0	0.2	29	0.62	0.085	13
11KENOFA073	Boll		1.7	23.5	12.5	83	0.2	18.4	6.4	170	1.84	101.7	4.6	3.5	33	0.4	1.2	0.3	28	0.56	0.088	13
11KENOFA074	Boll		1.5	21.5	13.2	99	0.2	21.5	7.6	570	1.96	15.5	2.5	2.7	45	1.0	0.8	0.2	25	0.93	0.084	11
11KENOFA075	Boll		1.3	16.7	10.7	82	0.2	16.7	5.6	241	1.33	11.5	4.1	2.3	37	0.5	0.7	0.2	23	0.66	0.077	11
11KENOFA076	Boll		0.8	19.5	10.1	91	0.2	18.7	7.4	845	1.09	7.0	2.3	1.5	160	0.7	0.7	0.1	20	1.75	0.068	9
11KENOFA077	Boll		2.1	23.6	15.4	118	0.2	19.5	8.4	205	2.43	16.3	11.2	4.6	69	0.6	0.9	0.2	28	0.84	0.093	14
11KENOFA078	Boll		2.5	43.6	19.3	126	0.4	35.1	11.3	468	2.87	23.4	5.2	5.2	50	0.9	1.7	0.3	28	0.93	0.104	16
11KENOFA079	Boll		1.5	35.7	18.8	102	0.3	28.6	10.5	373	2.69	18.3	4.8	5.0	51	0.7	1.3	0.2	26	1.16	0.089	18
11KENOFA080	Boll		1.0	34.1	16.4	73	0.1	26.4	9.7	383	2.61	16.4	3.4	42	15	0.2	1.0	0.2	38	0.20	0.057	17
11KENOFA081	Boll		0.9	22.3	16.5	64	0.1	21.0	7.6	218	1.88	10.0	2.6	3.0	25	0.2	0.6	0.2	28	0.41	0.072	14
11KENOFA082	Boll		1.8	44.0	28.8	112	0.4	35.2	16.0	584	3.31	37.2	6.1	4.1	36	0.6	1.7	0.3	27	0.85	0.086	17
11KENOFA083	Boll		1.0	29.6	15.3	76	0.3	24.8	9.5	347	2.27	11.5	4.7	2.7	44	0.4	0.9	0.2	31	0.96	0.072	12
11KENOFA084	Boll		1.3	37.0	19.2	78	0.4	32.8	11.8	547	2.75	29.2	8.5	3.7	31	0.2	1.1	0.2	39	0.62	0.068	15
11KENOFA085	Boll		1.4	39.6	18.8	84	0.2	34.5	11.9	421	3.04	22.5	5.5	42	26	0.2	1.2	0.2	36	0.48	0.075	16
11KENOFA086	Boll		L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOFA087	Boll		1.4	45.7	18.4	91	0.3	35.9	12.8	456	3.06	24.2	6.6	3.7	28	0.3	1.3	0.2	34	0.77	0.094	14
11KENOFA088	Boll		1.1	38.3	16.3	83	0.3	29.9	11.0	587	2.55	13.1	4.0	3.2	29	0.3	0.8	0.2	36	0.60	0.073	14
11KENOFA089	Boll		2.1	55.9	28.2	123	0.4	44.7	17.0	372	3.61	35.4	8.0	4.9	25	0.6	1.8	0.4	33	0.56	0.075	19
11KENOFA090	Boll		1.4	46.2	19.3	84	0.3	36.2	12.2	400	2.96	20.2	6.0	3.9	24	0.2	1.1	0.2	36	0.45	0.081	16

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

4 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Cr	Mg	Ba	т	в	AI	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOFAD61 B		23	0.47	282	0.024	<1	1.07	0.008	0.05	0.1	0.08	3.5	<0.1	<0.05	3	0.5	<0.2
11KENOFAD62 B		23	0.57	228	0.012	1	1.19	0.007	0.06	0.1	0.05	3.3	<0.1	<0.05	3	0.6	<0.2
11KENOFAD63 B	ll.	21	0.47	171	0.041	1	1.31	0.009	0.15	2.3	0.03	3.3	0.2	<0.05	5	<0.5	<0.2
11KENOFA064 B	al I	26	0.44	221	0.027	1	1.27	0.009	0.09	⊲0.1	0.08	3.8	0.1	<0.05	4	0.7	<0.2
11KENOFAD65 B	ll.	24	0.40	176	0.017	<1	1.26	0.005	0.05	0.1	0.04	3.1	<0.1	<0.05	3	0.6	<0.2
11KENOFAD66 B	ll.	19	0.52	277	0.023	2	0.93	0.007	0.08	0.1	0.05	2.7	<0.1	0.06	3	0.8	<0.2
11KENOFA067 B	al I	21	0.54	194	0.040	2	1.14	0.011	0.12	0.2	0.05	3.1	0.2	<0.05	4	0.8	<0.2
11KENOFAD68 B		19	0.49	297	0.041	2	1.07	0.008	0.17	0.2	0.06	3.0	0.2	0.07	4	0.7	<0.2
11KENOFA069 B	ll.	20	0.41	174	0.030	1	1.01	0.009	0.10	1.0	0.05	2.5	0.1	0.06	3	1.1	<0.2
11KENOFA070 B	al I	17	0.36	211	0.024	2	0.90	0.008	0.07	0.6	0.06	2.3	<0.1	0.12	3	1.1	<0.2
11KENOFA071 B	al I	15	0.31	178	0.025	<1	0.81	0.007	0.04	0.4	0.05	2.3	<0.1	0.08	3	0.6	<0.2
11KENOFA072 B		18	0.35	175	0.031	1	0.78	0.009	0.06	0.7	0.05	2.3	<0.1	0.07	2	2.8	<0.2
11KENOFA073 B	all and a second se	17	0.35	186	0.027	1	0.79	0.009	0.04	0.4	0.04	2.1	<0.1	0.11	2	2.0	<0.2
11KENOFA074 B	all in the second s	17	0.39	195	0.026	2	0.82	0.011	0.05	0.5	0.05	1.9	<0.1	0.11	2	3.6	<0.2
11KENOFA075 B	al I	15	0.36	156	0.022	2	0.74	0.011	0.04	0.3	0.06	1.8	<0.1	0.08	2	2.2	<0.2
11KENOFA076 B	all and a second se	15	0.43	186	0.022	7	0.69	0.011	0.05	0.3	0.06	1.7	<0.1	0.16	2	3.3	<0.2
11KENOFA077 B		19	0.47	191	0.042	2	0.81	0.010	0.06	0.5	0.05	2.5	<0.1	0.11	3	4.1	<0.2
11KENOFA078 B	al I	19	0.57	149	0.029	3	0.88	0.012	0.11	1.0	0.09	2.8	0.2	<0.05	3	1.0	<0.2
11KENOFA079 B	all in the second s	18	0.49	170	0.038	2	0.91	0.010	0.12	0.5	0.07	2.7	0.1	<0.05	3	1.3	<0.2
11KENOFA080 B	ll.	23	0.41	258	0.034	2	1.15	0.008	0.05	0.2	0.07	3.3	<0.1	<0.05	3	0.7	<0.2
11KENOFAD81 B	all and a second se	17	0.37	195	0.028	<1	0.91	0.007	0.04	0.2	0.05	2.1	<0.1	<0.05	3	<0.5	<0.2
11KENOFA082 B	all in the second s	19	0.47	205	0.030	2	0.95	0.009	0.05	0.2	0.06	2.6	0.1	<0.05	3	1.1	<0.2
11KENOFA083 B	ll.	21	0.45	319	0.023	2	0.95	0.008	0.04	0.2	0.07	2.6	<0.1	<0.05	3	0.7	<0.2
11KENOFA084 B	al I	23	0.52	397	0.026	2	1.16	0.010	0.05	0.2	0.06	3.1	<0.1	<0.05	3	0.6	<0.2
11KENOFA085 B	all in the second s	24	0.50	288	0.028	2	1.14	0.011	0.06	0.2	0.07	3.3	<0.1	<0.05	3	<0.5	<0.2
11KENOFAD86 B		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOFAD87 B	al I	22	0.68	244	0.028	2	1.03	0.011	0.06	0.1	0.07	2.9	<0.1	<0.05	3	<0.5	<0.2
11KENOFAD88 B	all in the second se	24	0.49	368	0.018	1	1.15	0.009	0.04	0.2	0.06	3.1	<0.1	<0.05	3	0.7	<0.2
11KENOFA089 B	all in the second s	22	0.47	189	0.024	4	1.06	0.008	0.05	0.2	0.08	3.3	0.1	<0.05	3	0.9	<0.2
11KENOFA090 B		24	0.51	289	0.029	2	1.14	0.009	0.06	0.1	0.07	3.3	<0.1	<0.05	3	<0.5	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

OF DIFICATE OF ANALYOIC

McConnell

December 05, 2011

5 of 13 Part 1

CERTIFIC	ATE O	FAN	JALY	′SIS													W	HI11	001	802	.3	
		Method	1DX16																			
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca	P	La
		Unit	ppm	56	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOFA091	Boll		1.8	42.4	20.8	87	0.3	38.0	16.5	618	3.00	33.2	4.5	2.6	46	0.5	1.3	0.2	26	1.25	0.045	12
11KENOFA092	Boll		2.3	64.0	26.1	142	0.5	51.6	20.6	566	3.78	37.2	8.4	4.7	40	1.0	2.6	0.4	26	1.08	0.098	15
11KENOJR001	Boll		1.5	13.1	14.6	71	0.1	17.0	6.8	187	2.65	43.7	22.1	3.6	10	0.2	1.1	0.2	41	0.13	0.040	13
11KENOJR002	Boll		1.9	12.1	18.1	66	0.2	15.4	6.6	186	2,48	39.0	3.9	3.5	16	0.2	1.1	0.2	41	0.24	0.055	15
11KENOJR003	Boll		1.8	21.9	25.6	85	0.3	18.7	7.1	175	2.64	84.3	19.8	3.8	16	0.4	1.5	0.3	31	0.19	0.064	19
11KENOJR004	Boll		1.6	35.2	30.7	43	0.9	17.7	9.6	332	2.26	35.0	7.1	1.5	50	0.3	1.3	0.2	29	0.72	0.081	64
11KENOJR005	Boll		1.7	22.1	31.2	103	0.3	22.7	9.7	281	2.90	79.3	9.9	62	21	0.3	2.1	0.3	34	0.34	0.082	22
11KENOJR006	Boll		1.4	11.5	14.6	65	0.2	11.4	4.3	133	1.82	33.6	1.9	2.5	20	0.3	0.9	0.1	29	0.33	0.053	14
11KENOJR007	Boll		2.1	18.1	23.4	86	0.3	17.0	6.7	220	2.80	58.1	8.6	3.0	22	0.4	1.2	0.3	41	0.37	0.055	15
11KENOJR008	Boll		1.7	17.5	25.5	90	0.3	18.5	12.4	454	3.43	43.4	9.0	8.2	18	0.3	1.2	0.2	41	0.29	0.081	22
11KENOJR009	Boll		1.8	19.3	26.1	94	0.2	22.0	10.9	440	3.42	43.6	14.2	7.8	22	0.3	1.3	0.2	42	0.34	0.095	25
11KENOJR010	Boll		1.4	28.4	26.8	76	0.4	20,4	9.8	364	2,48	34.3	2.6	4.0	37	0.8	1.0	0.2	29	0.62	0.069	32
11KENOJR011	Boll		2.7	14.8	13.6	58	0.1	16.4	5.4	126	2.40	24.0	2.9	3.2	11	0.1	1.0	0.2	39	0.14	0.034	13
11KENOJR012	Boll		2.2	13.5	19.2	67	0.1	17.6	7.9	170	2.65	23.9	1.7	4.1	16	0.2	0.9	0.2	41	0.24	0.046	14
11KENOJR013	Boll		1.1	33.2	15.3	101	0.4	27.6	8.9	325	2.17	15.6	3.0	2.5	43	0.7	0.9	0.2	29	1.11	0.076	13
11KENOJR014	Boll		0.9	34.3	15.5	100	0.4	29.1	9.3	420	2.13	15.0	6.1	2.1	45	0.7	1.0	0.2	28	1.18	0.078	12
11KENOJR015	Boll		1.8	46.8	20.4	94	0.4	37.6	13.7	500	2.92	18.6	5.5	3.1	34	0.6	1.5	0.2	34	0.87	0.096	14
11KENOJR016	Boll		1.7	49.3	20.2	95	0.5	39.3	12.8	495	2.74	19.3	17.8	3.0	36	0.7	1.5	0.2	32	0.95	0.093	14
11KENOJR017	Boll		3.3	60.2	26.7	135	0.4	47.1	15.2	432	3.58	32.2	6.7	5.4	25	0.5	2.2	0.3	35	0.71	0.074	19
11KENOJR018	Boll		2.4	48.3	22.3	112	0.3	38.5	12.4	320	3.41	27.5	8.1	4.7	17	0.4	1.8	0.2	37	0.33	0.059	17
11KENOJR019	Boll		1.6	55.4	26.5	91	0.3	39.0	12.5	366	3.05	21.3	5.6	5.0	24	0.3	1.7	0.3	36	0.47	0.082	16
11KENOJR020	Boll		1.0	49.6	24.3	67	0.3	34.8	11.3	437	2.61	18.6	4.4	5.1	21	0.2	1.4	0.3	38	0.32	0.078	16
11KENOJR021	Boll		1.9	35.1	22.7	80	0.4	28.8	13.0	519	2.64	19.7	8.1	3.4	37	0.4	1.4	0.3	30	0.94	0.074	12
11KENOJR022	Boll		2.0	47.A	22.9	103	0.5	41.1	14.3	481	2.87	22.3	4.3	4.0	40	0.8	1.8	0.3	31	0.97	0.098	13
11KENOJR023	Boll		1.5	37.3	20.3	72	0.4	32.0	12.3	527	2.47	15.0	3.4	2.4	37	0.5	1.1	0.3	29	0.92	0.084	12
11KENOJR024	Boll		1.8	42.1	21.8	79	0.3	35.3	12.8	366	2.80	18.5	6.1	3.6	33	0.3	1.4	0.3	33	0.74	0.086	13
11KENOJR025	Boll		2.0	37.0	20.5	95	0.3	32.6	13.4	365	2.86	18.0	6.6	3.8	33	0.5	1.3	0.3	32	0.72	0.092	14
11KENOJR026	Boll		1.3	29.6	18.0	85	0.2	27.5	12.0	483	2.57	13.9	4.3	3.3	29	0.5	1.0	0.3	35	0.61	0.096	14
11KENOJR027	Boll		1.4	32.7	16.3	92	0.3	31.3	12.5	509	2.67	12.7	2.6	3.9	28	0.6	1.1	0.3	38	0.57	0.092	15
11KENOJR028	Boll		2.0	61.1	22.2	123	0.4	55.3	18.7	598	3.73	30.4	5.6	5.1	37	0.7	2.0	0.4	34	0.80	0.098	15

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

5 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

		Method	1DX16															
		Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOFA091	Boll		18	0.48	203	0.016	1	0.89	0.008	0.04	<0.1	0.08	2.5	<0.1	0.05	2	0.8	<0.2
11KENOFA092	Boll		20	0.55	149	0.023	2	0.93	0.008	0.07	0.2	0.09	2.9	0.1	0.08	3	1.1	<0.2
11KENOJR001	Boll		21	0.43	96	0.045	<1	1.17	0.006	0.04	0.6	0.03	2.1	0.1	<0.05	5	<0.5	<0.2
11KENOJR002	Boll		19	0.44	138	0.046	<1	1.14	0.008	0.05	0.6	0.02	2.1	0.1	<0.05	5	<0.5	<0.2
11KENOJR003	Boll		17	0.35	133	0.033	1	1.10	0.007	0.06	0.5	0.05	1.8	0.1	<0.05	4	1.0	<0.2
11KENOJR004	Boll		15	0.23	369	0.021	1	1.21	0.008	0.05	0.3	0.10	2.6	0.1	<0.05	4	<0.5	<0.2
11KENOJR005	Boll		21	0.46	190	0.028	<1	1.21	0.008	0.06	0.3	0.04	2.4	0.2	<0.05	4	<0.5	<0.2
11KENOJR005	Boll		13	0.30	117	0.028	1	0.76	0.006	0.06	0.7	0.04	1.6	0.1	<0.05	4	<0.5	<0.2
11KENOJR007	Boll		21	0.39	191	0.018	<1	1.23	0.007	0.07	0.5	0.04	2.1	0.1	<0.05	5	<0.5	<0.2
11KENOJR008	Boll		22	0.49	191	0.037	1	1.55	0.008	0.07	0.6	0.05	3.2	0.2	<0.05	5	<0.5	<0.2
11KENOJR009	Boll		22	0.52	232	0.049	<1	1.51	0.010	0.07	1.2	0.04	3.5	0.2	<0.05	6	<0.5	<0.2
11KENOJR010	Boll		18	0.38	267	0.026	1	1.10	0.011	0.06	0.4	0.05	2.4	0.1	<0.05	4	<0.5	<0.2
11KENOJR011	Boll		18	0.35	68	0.034	<1	0.92	0.005	0.05	0.3	0.02	1.6	0.1	<0.05	4	<0.5	<0.2
11KENOJR012	Boll		21	0.44	99	0.034	<1	1.20	0.007	0.05	0.3	0.02	2.3	0.1	<0.05	5	0.5	<0.2
11KENOJR013	Boll		18	0.45	266	0.018	<1	0.99	0.007	0.05	0.1	0.08	2.4	<0.1	0.06	3	0.9	<0.2
11KENOJR014	Boll		19	0.44	246	0.019	2	0.95	0.007	0.05	0.2	0.08	2.2	<0.1	0.06	3	1.1	<0.2
11KENOJR015	Boll		22	0.47	283	0.017	1	1.09	0.010	0.05	0.1	0.10	3.2	<0.1	<0.05	3	1.3	<0.2
11KENOJR016	Boll		21	0.45	269	0.017	2	1.00	0.007	0.05	0.1	0.10	3.0	<0.1	<0.05	3	1.3	<0.2
11KENOJR017	Boll		24	0.56	182	0.016	<1	1.19	0.008	0.07	<0.1	0.13	3.5	0.1	<0.05	3	1.1	<0.2
11KENOJR018	Boll		24	0.44	193	0.017	<1	1.20	0.007	0.05	⊲0.1	0.09	3.1	0.1	<0.05	3	0.8	<0.2
11KENOJR019	Boll		23	0.54	215	0.018	2	1.15	0.010	0.04	0.1	0.10	3.2	0.1	<0.05	3	0.5	<0.2
11KENOJR020	Boll		23	0.46	227	0.015	<1	1.17	0.007	0.04	0.1	0.09	3.2	<0.1	<0.05	3	0.6	<0.2
11KENOJR021	Boll		21	0.49	222	0.011	<1	1.02	0.007	0.05	⊲0.1	0.09	2.2	<0.1	<0.05	3	0.6	<0.2
11KENOJR022	Boll		21	0.54	223	0.017	1	1.10	0.011	0.05	0.1	0.09	2.6	0.1	<0.05	3	0.9	<0.2
11KENOJR023	Boll		19	0.46	253	0.011	1	0.98	0.007	0.04	0.1	0.07	2.1	<0.1	<0.05	3	1.0	<0.2
11KENOJR024	Boll		22	0.49	244	0.011	<1	1.09	0.008	0.05	0.1	0.08	2.6	<0.1	<0.05	3	0.5	<0.2
11KENOJR025	Boll		21	0.50	202	0.017	1	1.04	0.008	0.05	<0.1	0.08	2.4	<0.1	<0.05	3	0.8	<0.2
11KENOJR026	Boll		23	0.48	280	0.019	2	1.09	0.008	0.05	0.2	0.07	2.8	<0.1	<0.05	3	0.6	<0.2
11KENOJR027	Boll		23	0.50	302	0.018	1	1.14	0.009	0.05	0.1	0.07	2.9	<0.1	<0.05	3	0.7	<0.2
11KENOJR028	Boll		23	0.58	180	0.017	2	1.11	0.010	0.08	<0.1	0.08	2.9	<0.1	<0.05	3	0.9	<0.2

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

OF DIFICATE OF ANALYOIO

McConnell

December 05, 2011

6 of 13 Part 1

CERTIFIC	ATE O	FAN	IALY	'SIS													W	HI11	001	802	.3	
		Method	1DX16																			
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca	P	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOJR029	Boll		2.2	64.6	23.9	136	0.3	58.5	22.2	573	4.25	32.9	6.4	6.6	31	0.6	2.2	0.4	34	0.57	0.098	18
11KENOJR030	Boll		1.3	46.7	16.8	100	0.3	40.5	13.0	556	2.85	20.6	3.8	4.6	56	0.7	1.5	0.3	31	0.67	0.097	15
11KENOJR031	Boll		1.8	52.2	21.0	105	0.3	38.8	13.5	250	3.17	23.5	6.7	5.9	39	0.5	1.6	0.3	34	0.45	0.099	18
11KENOJR032	Boll		1.7	44,4	19.4	109	0.3	42.3	15.5	488	3.21	23.5	4,4	52	43	0.4	1.6	0.3	35	0.81	0.079	17
11KENOJR033	Boll		1.8	48.8	20.6	116	0.3	43.6	14.1	455	3.21	24.8	6.2	5.3	39	0.6	1.7	0.3	35	0.71	0.085	17
11KENOJR034	Boll		2,4	55.4	39.5	166	0.3	51.3	21,4	626	4.09	43.3	4.8	5.4	34	0.6	2,4	0.6	33	1.01	0.088	17
11KENOJR035	Boll		2.1	49.6	22.7	111	0.2	44.0	16.8	506	3.77	40.7	4.7	5.6	27	0.3	2.0	0.3	32	0.61	0.079	20
11KENOJR036	Boll		3.0	39.9	57.8	98	0.8	23.8	33.3	2049	3.06	47.9	3.3	4.1	105	1.6	0.9	0.5	37	1.81	0.147	77
11KENOJR037	Boll		1.1	22.1	25.2	56	0.5	9.9	12.9	1024	0.98	8.3	2.3	12	102	1.3	0.4	0.2	11	1.74	0.101	31
11KENOJR038	Boll		1.4	39.3	17.4	78	0.1	32.1	13.0	326	3.01	27.0	9.9	4.5	12	0.2	1.6	0.3	46	0.21	0.022	16
11KENOJR039	Boll		1.8	44.5	21.4	89	0.3	38.6	16.2	423	3.46	38.8	8.6	5.8	13	0.1	1.9	0.4	42	0.19	0.034	19
11KENOJR040	Boli		1.3	43.0	18.5	85	0.3	33.0	14.4	449	2.84	35.5	3.8	4.7	32	0.4	1.5	0.3	35	0.63	0.072	15
11KENOJR041	Boll		1.0	40.4	15.7	81	0.2	30.2	12.5	337	2.62	24.8	17.4	5.0	24	0.2	1.3	0.3	34	0.45	0.073	17
11KENOJR042	Boll		1.0	40.3	15.3	77	0.2	30.7	12.0	352	2.58	24.5	3.5	4.8	25	0.3	1.1	0.3	35	0.49	0.069	16
11KENOJR043	Boll		LS.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	LS.	1.8.	1.8.
11KENOJR044	Boll		1.5	35.6	17.4	114	0.2	25.2	14.6	3335	2.36	36.7	4.3	3.5	56	0.7	0.9	0.3	31	0.79	0.070	13
11KENOJR045	Boll		1.4	104.8	26.7	138	0.3	50.7	14.0	412	3.86	83.6	13.1	4.3	11	0.3	4.6	0.6	32	0.12	0.040	19
11KENOJR046	Boll		1.6	114.8	30.9	156	0.3	56.8	16.1	476	4.16	92.6	13.7	5.2	14	0.3	4.9	0.9	36	0.14	0.043	19
11KENOJR047	Boll		1.2	44.0	18.5	95	0.3	32.7	10.7	417	2.71	22.4	5.0	4.9	22	0.2	1.5	0.3	48	0.34	0.067	16
11KENOJR048	Boll		1.3	80.5	22.5	135	0.4	46.3	12.1	340	3.36	56.9	8.9	5.2	22	0.3	3.6	0.4	41	0.28	0.068	18
11KENOJR049	Boll		1.0	43.1	17.7	89	0.3	34.9	11.1	519	2.68	18.8	4.1	4.6	23	0.3	1.5	0.3	39	0.40	0.080	16
11KENOJR050	Boll		1.3	39.0	18.3	97	0.2	32.9	11.3	641	2.73	15.1	2.2	4.4	30	0.3	1.3	0.3	42	1.10	0.087	16
11KENOJR051	Boll		1.3	36.6	19.5	105	0.2	36.4	11.8	728	2.76	13.5	4.9	4.4	40	0.5	1.3	0.3	40	2.49	0.088	15
11KENOJR052	Boll		1.8	60.1	23.8	111	0.2	46.2	17.5	487	3.72	32.9	4.9	6.0	24	0.4	1.9	0.4	39	0.48	0.083	19
11KENOJR053	Boll		1.4	45.8	20.0	80	0.3	34.2	14.4	474	2.99	20.6	2.7	3.5	30	0.3	1.3	0.3	37	0.81	0.075	14
11KENOJR054	Boll		2.1	83.4	29.8	131	0.1	48.5	21.7	460	5.29	55.9	10.3	6.3	16	0.3	2.9	0.6	37	0.21	0.063	19
11KENOJR055	Boll		1.3	33.6	18.8	59	0.2	20.6	8.4	189	2.33	21.0	3.5	2.8	14	0.2	1.1	0.3	37	0.26	0.037	12
11KENOJR056	Boll		1.2	52.7	16.3	87	0.3	37.6	15.0	610	2.74	18.8	2.3	2.7	33	0.5	1.2	0.3	31	1.12	0.090	12
11KENOJR057	Boll		1.1	30.1	15.2	67	0.2	25.5	10.8	306	2.52	12.3	3.5	2.8	25	0.2	0.8	0.2	37	0.49	0.083	13
11KENOJR058	Boll		1.6	48.3	17.8	121	0.2	38.6	13.7	535	3.04	21.3	2.7	4.9	24	0.6	1.3	0.3	38	0.46	0.095	16

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

6 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16															
	Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
	Unit	ppm	%	ppm	%	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOJR029 Bol		23	0.57	174	0.022	2	1.18	0.012	0.09	0.1	0.08	3.4	0.1	<0.05	3	0.8	<0.2
11KENOJR030 Bol		20	0.51	314	0.029	1	0.88	0.011	0.06	0.1	0.06	2.6	<0.1	<0.05	2	0.6	<0.2
11KENOJR031 Bol		24	0.56	172	0.026	1	1.11	0.010	0.06	0.1	0.08	3.0	<0.1	<0.05	3	0.7	<0.2
11KENOJR032 Bol		23	0.55	211	0.028	2	1.10	0.009	0.10	⊲0.1	0.08	3.0	0.1	<0.05	3	0.6	<0.2
11KENOJR033 Bol		23	0.55	258	0.029	2	1.14	0.010	0.09	0.2	0.08	3.2	0.1	<0.05	3	0.5	<0.2
11KENOJR034 Bol		24	0.71	163	0.025	2	1.13	0.009	0.08	0.1	0.06	3.1	0.1	<0.05	3	0.6	<0.2
11KENOJR035 Bol		21	0.53	155	0.016	1	1.06	0.009	0.06	0.1	0.07	2.9	<0.1	<0.05	3	1.1	<0.2
11KENOJR036 Bol		19	0.45	561	0.017	3	1.66	0.012	0.07	0.2	0.15	3.1	0.2	0.15	4	0.8	<0.2
11KENOJR037 Bol		6	0.30	361	0.013	4	0.56	0.014	0.04	⊲0.1	0.11	1.3	0.1	0.17	1	0.6	<0.2
11KENOJR038 Bol		26	0.45	252	0.020	1	1.40	0.005	0.05	0.1	0.03	3.0	<0.1	<0.05	4	0.6	<0.2
11KENOJR039 Bol		24	0.44	258	0.019	1	1.28	0.007	0.05	0.1	0.03	2.9	<0.1	<0.05	3	<0.5	<0.2
11KENOJR040 Bol		21	0.52	289	0.030	2	1.02	0.008	0.05	0.1	0.06	2.7	<0.1	<0.05	3	0.6	<0.2
11KENOJR041 Bol		22	0.50	262	0.034	1	1.04	0.010	0.05	0.2	0.07	2.8	<0.1	<0.05	3	0.7	<0.2
11KENOJR042 Bol		20	0.46	253	0.035	1	0.97	0.011	0.05	0.1	0.06	2.6	<0.1	<0.05	3	0.5	<0.2
11KENOJR043 Bol		1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.
11KENOJR044 Bol		21	0.46	459	0.018	2	1.03	0.010	0.05	<0.1	0.08	2.7	0.1	0.13	3	1.0	<0.2
11KENOJR045 Bol		19	0.32	208	0.016	1	0.85	0.006	0.08	0.1	0.06	3.2	<0.1	<0.05	2	1.1	<0.2
11KENOJR046 Bol		21	0.35	262	0.021	1	0.92	0.012	0.10	0.1	0.06	4.0	0.1	<0.05	3	0.9	<0.2
11KENOJR047 Bol		27	0.48	367	0.032	- 4	1.29	0.010	0.07	0.2	0.06	4.2	<0.1	<0.05	4	<0.5	<0.2
11KENOJR048 Bol		22	0.40	301	0.024	1	0.98	0.011	0.07	0.1	0.07	3.7	<0.1	<0.05	3	0.5	<0.2
11KENOJR049 Bol		23	0.48	362	0.026	1	1.05	0.009	0.05	0.1	0.07	3.4	<0.1	<0.05	3	<0.5	<0.2
11KENOJR050 Bol		25	0.81	372	0.030	2	1.06	0.010	0.05	0.1	0.07	3.3	<0.1	<0.05	3	<0.5	<0.2
11KENOJR051 Bol		23	1.45	390	0.032	3	0.99	0.011	0.06	0.1	0.07	3.4	<0.1	<0.05	3	<0.5	<0.2
11KENOJR052 Bol		25	0.55	248	0.022	2	1.22	0.010	0.06	0.1	0.07	3.5	<0.1	<0.05	3	0.6	<0.2
11KENOJR053 Bol		24	0.54	302	0.014	2	1.22	0.008	0.05	0.1	0.07	2.7	<0.1	<0.05	3	0.8	<0.2
11KENOJR054 Bol		27	0.51	213	0.015	1	1.28	0.009	0.07	0.1	0.03	2.9	0.1	<0.05	3	0.9	<0.2
11KENOJR055 Bol		17	0.28	268	0.009	<1	0.99	0.006	0.02	0.2	0.02	2.0	<0.1	<0.05	4	<0.5	<0.2
11KENOJR056 Bol		20	0.67	366	0.014	<1	0.94	0.006	0.03	0.1	0.07	3.0	<0.1	<0.05	3	0.7	<0.2
11KENOJR057 Bol		23	0.43	362	0.013	<1	1.11	0.006	0.03	0.1	0.05	2.9	<0.1	<0.05	3	<0.5	<0.2
11KENOJR058 Bol		25	0.49	244	0.026	<1	1.00	0.008	0.05	0.1	0.05	3.8	<0.1	<0.05	3	<0.5	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CEDTIFICATE OF ANALVER

McConnell

December 05, 2011

7 of 13 Part 1

CERTIFIC	ATE O	FAN	JALY	′SIS													W	HI11	001	802	.3	
		Method	1DX16																			
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	81	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOJR059	Boll		1.6	48.7	17.4	117	0.2	38.5	13.5	387	3.13	21.9	4.5	5.1	25	0.5	1.3	0.3	37	0.43	0.098	16
11KENOJR060	Boll		2.3	88.6	22.3	117	0.3	52.9	20.3	563	4.19	46.8	5.5	5.4	17	0.3	2.0	0.4	40	0.27	0.058	18
11KENOJR061	Boll		2.2	85.5	22.3	131	0.3	55.2	19.9	542	4.25	47.8	6.3	5.8	24	0.4	2.3	0.4	37	0.60	0.088	17
11KENOJR062	Boll		1.3	40.3	17.6	94	0.2	30.4	14.5	614	3.16	34.3	16.0	3.4	27	0.3	1.1	0.3	40	0.51	0.072	14
11KENOJR063	Boll		1.5	35.3	14.8	81	0.1	26.1	11.0	259	3.01	31.5	1.6	3.6	19	0.2	1.1	0.3	41	0.32	0.035	14
11KENOJR064	Boll		1.5	37.4	20.4	93	0.2	28.1	13.8	585	3.10	52.5	3.8	5.0	35	0.3	1.0	0.3	35	0.72	0.066	20
11KENOJR065	Boll		1.4	37.6	15.7	102	0.2	27.7	12.5	517	2.77	32.3	4.9	4.5	48	0.5	1.1	0.2	28	1.20	0.094	17
11KENOJR066	Boll		1.5	23.4	19.5	57	0.2	22.5	8.9	247	2.58	64.7	3.3	8.2	30	<0.1	0.6	0.3	42	0.51	0.028	36
11KENOJR067	Boll		1.4	19.2	18.4	56	0.1	22.2	8.2	186	2.60	48.4	8.2	7.5	25	<0.1	0.7	0.3	42	0.40	0.035	28
11KENOJR068	Boll		2.8	32.9	24.7	95	0.2	24.3	13.9	304	3.17	188.0	5.7	5.6	51	0.5	1.2	0.4	36	0.95	0.086	20
11KENOJR069	Boll		1.2	34.8	22.7	87	0.3	22,4	9.6	374	2.47	116.9	5.9	4.0	70	0.6	0.9	0.6	29	1.42	0.078	22
11KENOJR070	Boll		0.9	38.1	18.3	34	0.2	18.3	6.0	185	1.46	29.7	7.2	2.4	75	0.4	0.9	0.3	18	1.81	0.070	19
11KENOJR071	Boll		L8.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.
11KENOJR072	Boll		2.1	39.5	15.7	94	0.3	31.3	10.7	416	2.34	15.3	7.3	3.6	39	0.8	1.2	0.2	31	0.84	0.093	13
11KENOJR073	Boll		1.9	43.0	17.2	90	0.4	35.3	11.7	400	2.38	14.4	7.6	3.4	36	0.7	1.3	0.2	33	0.77	0.079	14
11KENOJR074	Boll		2.1	52.5	21.1	104	0.4	41.3	12.3	603	2.68	18.0	3.2	3.9	41	1.1	1.4	0.3	36	0.96	0.088	15
11KENOJR075	Boll		1.9	39.3	16.9	86	0.3	31.2	11.2	419	2.52	18.3	2.7	3.7	38	0.6	1.2	0.2	34	0.85	0.081	14
11KENOJR076	Boll		2.9	46.4	19.0	111	0.4	33.8	10.3	231	2.80	21.7	3.8	5.3	24	0.7	1.6	0.2	35	0.44	0.097	17
11KENOJR077	Boll		2.6	52.2	19.7	120	0.3	41.4	12.7	529	3.00	23.6	3.2	5.2	24	0.9	1.7	0.3	38	0.45	0.096	16
11KENOJR078	Boll		2.5	43.5	20.5	107	0.3	31.9	9,4	288	2.56	23.6	3.7	4.9	26	0.5	1.7	0.3	37	0.50	0.092	16
11KENOJR079	Boll		2.9	40.6	19.0	118	0.3	33.5	11.4	274	2.72	20.8	4.1	5.2	29	0.7	1.6	0.2	36	0.58	0.101	17
11KENOJR080	Boll		2.6	45.7	17.6	111	0.4	38.5	11.8	301	2.91	23.2	3.9	5.2	26	0.6	1.5	0.2	35	0.49	0.098	17
11KENOJR081	Boll		2.5	51.5	17.3	118	0.4	40.2	12.0	337	2.74	19.7	3.4	4.5	35	1.0	1.6	0.3	37	0.81	0.100	15
11KENOJR082	Boll		3.2	53.0	22.8	122	0.5	40.5	13.3	388	2.97	25.5	4.6	5.2	33	0.9	1.9	0.3	44	0.67	0.107	18
11KENOJR083	Boll		3.4	56.6	26.0	123	0.5	32.5	14.8	426	3.28	31.3	5.5	5.5	30	0.7	1.8	0.3	44	0.58	0.109	20
11KENOJR084	Boll		3.0	38.6	18.5	124	0.3	26.2	11.4	1641	2.11	67.1	4.8	1.8	69	1.8	1.6	0.3	24	1.42	0.088	12
11KENOJR085	Boll		4.7	40.9	13.4	125	0.3	28.8	8.9	687	1.92	82.0	5.8	12	83	2.3	2.0	0.2	18	1.80	0.098	12
11KENOJR086	Boll		1.3	31.0	18.6	86	0.2	26.4	10.9	224	2.55	12.7	2.1	3.8	30	0.4	0.9	0.2	36	0.43	0.078	14
11KENOJR087	Boll		1.4	29.7	18.0	78	0.2	26.1	11.3	271	2.54	12.8	5.6	2.9	41	0.3	0.9	0.2	36	0.64	0.083	13
11KENOJR088	Boll		2.5	68.2	40.2	147	0.3	51.5	18.6	418	4.16	40.0	6.8	6.3	16	0.5	2.4	0.4	34	0.27	0.076	19

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

7 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16															
	Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
	Unit	ppm	%	ppm	%	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOJR059 Boll		24	0.48	221	0.028	<1	1.05	0.008	0.05	0.1	0.06	3.6	<0.1	<0.05	3	0.6	<0.2
11KENOJR060 Boll		26	0.47	310	0.013	2	1.24	0.011	0.06	0.1	0.10	4.4	<0.1	<0.05	3	0.8	<0.2
11KENOJR061 Boll		25	0.67	279	0.022	<1	1.21	0.012	0.09	0.1	0.09	4.1	<0.1	<0.05	3	0.9	<0.2
11KENOJR062 Boll		24	0.45	360	0.014	<1	1.21	0.007	0.05	0.1	0.04	3.0	<0.1	<0.05	4	<0.5	<0.2
11KENOJR063 Boll		24	0.40	297	0.010	<1	1.22	0.005	0.05	0.1	0.03	2.8	<0.1	<0.05	4	0.7	<0.2
11KENOJR064 Boll		21	0.52	241	0.026	<1	1.20	0.008	0.09	⊲0.1	0.05	3.3	0.1	<0.05	4	<0.5	<0.2
11KENOJR065 Boll		18	0.54	207	0.035	1	0.97	0.009	0.10	0.1	0.05	2.9	0.1	0.08	3	1.2	<0.2
11KENOJR066 Boll		24	0.43	237	0.023	<1	1.26	0.007	0.05	0.1	0.05	3.5	<0.1	<0.05	4	<0.5	<0.2
11KENOJR067 Boll		22	0.43	196	0.025	<1	1.20	0.007	0.05	0.1	0.04	3.2	<0.1	<0.05	4	0.6	<0.2
11KENOJR068 Boll		22	0.48	199	0.029	2	1.00	0.009	0.08	0.2	0.06	3.1	0.1	0.06	3	1.0	<0.2
11KENOJR069 Boll		18	0.44	276	0.021	2	0.94	0.008	0.07	0.1	0.08	3.1	0.1	0.11	3	1.1	<0.2
11KENOJR070 Boll		14	0.35	310	0.015	2	0.71	0.008	0.04	⊲0.1	0.09	2.2	<0.1	0.33	2	1.4	<0.2
11KENOJR071 Bol		1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.
11KENOJR072 Boll		20	0.42	248	0.024	<1	0.90	0.007	0.04	0.2	0.06	2.9	<0.1	<0.05	3	1.0	<0.2
11KENOJR073 Boll		21	0.41	297	0.021	<1	0.95	0.007	0.04	0.2	0.07	3.0	<0.1	0.05	3	1.4	<0.2
11KENOJR074 Boll		22	0.45	323	0.028	2	1.02	0.009	0.05	0.2	0.08	3.3	<0.1	0.05	3	1.2	<0.2
11KENOJR075 Boll		21	0.41	269	0.023	<1	0.95	0.007	0.04	0.2	0.07	3.0	<0.1	0.06	3	1.0	<0.2
11KENOJR076 Boll		24	0.43	213	0.029	<1	0.99	0.008	0.05	0.2	0.08	3.2	<0.1	<0.05	3	0.6	<0.2
11KENOJR077 Boll		24	0.47	261	0.034	<1	0.98	0.011	0.06	0.2	0.06	3.5	<0.1	<0.05	3	0.8	<0.2
11KENOJR078 Boll		22	0.44	199	0.026	<1	1.00	0.008	0.05	0.2	0.07	3.0	0.1	<0.05	3	0.6	<0.2
11KENOJR079 Boll		23	0.45	192	0.035	1	0.98	0.009	0.06	0.2	0.07	3.1	0.1	<0.05	3	0.9	<0.2
11KENOJR080 Boll		22	0.44	212	0.031	<1	1.00	0.009	0.05	0.2	0.07	3.3	<0.1	<0.05	3	0.7	<0.2
11KENOJR081 Boll		23	0.51	228	0.030	<1	0.97	0.009	0.06	0.2	0.07	3.4	<0.1	<0.05	3	1.0	<0.2
11KENOJR082 Boll		27	0.54	212	0.043	1	1.18	0.012	0.07	0.3	0.07	3.5	0.1	<0.05	4	1.2	<0.2
11KENOJR083 Boll		26	0.53	197	0.045	<1	1.23	0.010	0.07	0.3	0.08	3.7	0.2	<0.05	4	1.6	<0.2
11KENOJR084 Boll		18	0.41	268	0.014	3	0.83	0.011	0.04	0.2	0.09	2.4	<0.1	0.52	2	5.0	<0.2
11KENOJR085 Boll		15	0.34	293	0.012	4	0.70	0.010	0.03	0.2	0.09	1.8	<0.1	0.52	2	5.7	<0.2
11KENOJR086 Boll		22	0.43	273	0.017	<1	1.10	0.007	0.04	0.2	0.06	3.0	<0.1	<0.05	3	0.9	<0.2
11KENOJR087 Boll		22	0.41	289	0.016	<1	1.04	0.006	0.04	0.1	0.07	2.8	<0.1	0.06	3	1.2	<0.2
11KENOJR088 Boll		24	0.51	149	0.029	<1	1.27	0.010	0.06	<0.1	0.09	3.9	0.1	<0.05	4	0.9	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

11/1/1/1001000

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

OFDIELOAT

McConnell

December 05, 2011

8 of 13 Part 1

I	CERTIFICAT	ΕÜ	PF AP	IALY	SIS													VV	HI11	1001	802	.3	
			Method	1DX16																			
			Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca	P	La
			Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
			MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
	11KENOJR089	Boll		2.8	73.8	32.2	157	0.4	51,4	19.9	429	4.36	44.9	7.1	5.9	16	0.7	2.8	0.4	33	0.28	0.078	18
	11KENOJR090	Boll		1.8	56.9	20.3	109	0.4	49.8	20.2	623	3.24	20.0	3.7	4.9	28	0.7	1.5	0.3	33	0.60	0.112	16
	11KENOJR091	Boll		1.7	42.3	21.1	92	0.2	31.0	11.4	225	2.89	19.9	4.7	4.5	22	0.3	1.4	0.3	32	0.43	0.094	16
	11KENOJR092	Boll		1.4	59.5	19.6	76	0.3	42.7	13.5	280	2.46	22.8	4.0	1.9	63	0.7	1.7	0.3	17	2.03	0.051	10
	11KENOJR093	Boll		1.7	61.5	24.7	115	0.4	45.2	18.7	756	3.22	26.6	5.2	3.4	39	0.7	1.7	0.3	25	1.14	0.077	12
	11KENOJR094	Boll		1.1	34.0	20.7	99	0.3	28.6	12.2	494	2.69	17.7	6.2	3.1	87	0.7	1.1	0.2	22	1.26	0.087	10
	11KENOJR095	Boll		0.8	27.5	15.7	83	0.2	23.3	11.7	872	2.00	14.9	2,4	1.9	108	0.7	1.0	0.2	18	1.52	0.068	9
	11KENOJR096	Boll		1.2	23,4	17.0	74	0.2	20.9	11.7	414	2.47	21.1	2.6	2.1	79	0.4	0.9	0.2	23	1.13	0.060	9
	11KENODR001	Boll		1.8	27.3	25.1	92	0.1	24.3	9.7	220	2.99	45.1	4.0	5.4	28	0.3	1.6	0.3	35	0.54	0.089	20
	11KENODR002	Boll		1.7	27.6	31.4	95	0.2	26.0	11.7	399	3.25	49.7	10.2	7.8	27	0.3	1.8	0.3	38	0.48	0.093	22
	11KENODR003	Boll		1.5	23.8	24.4	81	0.3	21.4	9.0	249	2.88	43.3	5.6	6.9	23	0.2	1.4	0.3	39	0.40	0.085	20
	11KENODR004	Boll		1.7	25.1	26.5	83	0.3	21.9	92	272	2.86	45.7	7.6	7.3	22	0.3	1.5	0.3	37	0.42	0.087	21
	11KENODR005	Boll		1.9	36.2	122.4	117	14.1	30.6	11.5	297	3.30	53.4	50.1	4.7	17	0.4	22.8	0.4	48	0.23	0.078	18
	11KENODR006	Boll		1.4	23.4	26.1	75	0.2	21.0	9.6	251	2.72	32.6	5.2	7.1	27	0.3	1.3	0.2	36	0.47	0.093	23
	11KENODR007	Boll		1.5	21.4	39.5	95	0.2	20.8	9.6	257	2.93	35.8	2.3	7.8	24	0.3	1.2	0.2	38	0.41	0.092	21
	11KENODR008	Boll		1.5	22.6	27.4	77	0.2	22.4	8.9	229	2.68	34.0	1.5	6.4	26	0.3	1.3	0.2	35	0.48	0.091	22
	11KENODR009	Boll		2.6	50.8	46.4	122	0.6	41.4	18.5	345	3.80	54.4	6.7	7.2	18	0.4	2.5	0.4	42	0.28	0.100	25
	11KENODR010	Boll		2.3	49.0	47.9	122	0.7	39.1	17.5	342	3.82	54.5	9.2	7.1	18	0.5	2.5	0.4	41	0.28	0.102	25
	11KENODR011	Boll		1.0	21.8	17.6	80	0.3	19.5	8.1	373	1.81	79.9	3.7	2.5	39	0.4	1.0	0.2	28	0.85	0.080	15
	11KENODR012	Boll		2.7	58.0	23.5	111	0.3	47.5	13.0	478	3.01	30.1	4.0	42	49	0.7	2.1	0.3	39	1.01	0.078	18
	11KENODR013	Boll		1.1	22.0	25.0	90	0.4	19.3	7.3	183	1.99	97.3	8.9	2.6	137	0.9	1.3	0.5	24	1.63	0.077	14
	11KENODR014	Boll		LS.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.
	11KENODR015	Boll		3.0	42.2	21.6	126	0.3	34.9	12.3	427	2.70	27.5	3.3	2.1	39	1.1	1.7	0.2	27	1.20	0.086	9
	11KENODR016	Boll		2.4	55.9	20.3	107	0.6	45.5	13.8	596	2.62	20.8	2.5	2.1	44	1.2	1.6	0.3	27	1.31	0.097	11
	11KENODR017	Boll		2.6	54.5	23.9	106	0.4	40.9	11.9	316	3.19	24.7	3.6	4.7	18	0.5	1.7	0.2	40	0.36	0.081	14
	11KENODR018	Boll		3.4	83.9	28.5	144	0.2	52.5	15.6	375	3.84	103.1	6.8	5.4	13	0.4	2.5	0.3	30	0.22	0.089	19
	11KENODR019	Boll		2.9	63.9	26.0	135	0.5	49.7	15.7	470	3.47	30.1	4.8	3.9	29	0.8	2.2	0.3	36	0.76	0.120	14
	11KENODR020	Boll		2.6	57.9	22.4	122	0.4	45.7	15.2	456	3.17	23.9	4.6	4.7	25	0.7	1.7	0.3	36	0.54	0.098	14
	11KENODR021	Boll		3.7	68.7	26.1	155	0.5	56.0	18.7	500	3.68	34.6	7.5	5.7	33	1.2	2.5	0.3	35	1.06	0.127	15
	11KENODR022	Boll		2.2	45.7	18.4	97	0.4	37.0	11.8	522	2.63	16.8	4.4	2.8	39	0.8	1.3	0.2	32	1.12	0.090	11

This report supernedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

8 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16															
	Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
	Unit	ppm	%	ppm	%	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOJR089 Bol		22	0.45	141	0.019	<1	1.08	0.007	0.05	0.1	0.11	3.6	<0.1	<0.05	3	1.2	<0.2
11KENOJR090 Bol		22	0.46	232	0.019	<1	1.10	0.008	0.04	⊲0.1	0.07	3.5	<0.1	<0.05	3	0.9	<0.2
11KENOJR091 Bol		23	0.44	185	0.017	2	1.06	0.008	0.04	0.1	0.08	2.6	<0.1	0.06	3	0.6	<0.2
11KENOJR092 Bol		13	0.42	214	0.013	3	0.70	0.004	0.02	⊲0.1	0.10	1.9	<0.1	0.20	2	1.6	<0.2
11KENOJR093 Bol		20	0.45	170	0.016	2	0.91	0.006	0.04	⊲0.1	0.10	2.6	<0.1	0.12	2	1.0	<0.2
11KENOJR094 Bol		17	0.45	148	0.016	2	0.74	0.005	0.04	⊲0.1	0.06	2.1	<0.1	0.13	2	0.9	<0.2
11KENOJR095 Bol		14	0.45	167	0.019	3	0.68	0.006	0.03	⊲0.1	0.05	1.7	<0.1	0.16	2	1.2	<0.2
11KENOJR096 Bol		15	0.41	131	0.016	2	0.69	0.005	0.03	<0.1	0.05	1.6	<0.1	0.13	2	1.0	<0.2
11KENODR001 Bol		20	0.52	196	0.052	2	1.23	0.007	0.06	0.3	0.03	2.6	0.1	0.06	5	<0.5	<0.2
11KENODR002 Bol		22	0.56	219	0.071	1	1.30	0.010	0.09	0.5	0.03	3.1	0.2	<0.05	5	<0.5	<0.2
11KENODR003 Bol		21	0.54	181	0.062	2	1.41	0.009	0.07	1.1	0.05	3.1	0.2	<0.05	5	<0.5	<0.2
11KENODR004 Boll		20	0.52	188	0.054	1	1.33	0.008	0.07	1.1	0.05	2.9	0.1	<0.05	5	0.6	<0.2
11KENODR005 Bol		24	0.44	161	0.028	1	1.27	0.006	0.05	0.2	0.05	2.4	0.1	<0.05	5	0.7	<0.2
11KENODR006 Boll		20	0.52	224	0.061	1	1.33	0.009	0.09	1.3	0.04	2.9	0.2	<0.05	5	<0.5	<0.2
11KENODR007 Bol		20	0.57	196	0.077	1	1.41	0.010	0.13	1.2	0.02	3.0	0.2	<0.05	5	<0.5	<0.2
11KENODR008 Bol		20	0.50	205	0.061	1	1.24	0.009	0.09	1.0	0.03	2.7	0.2	<0.05	5	<0.5	<0.2
11KENODR009 Boll		29	0.49	219	0.029	2	1.55	0.009	0.05	0.2	0.08	3.3	0.1	<0.05	4	0.9	<0.2
11KENODR010 Bol		29	0.49	211	0.027	1	1.54	0.008	0.05	0.2	0.07	3.3	0.1	<0.05	4	0.8	<0.2
11KENODR011 Bol		17	0.35	226	0.015	1	0.87	0.006	0.04	0.3	0.04	1.9	<0.1	0.09	2	0.6	<0.2
11KENODR012 Boll		27	0.55	252	0.019	3	1.31	0.009	0.10	0.2	0.09	3.2	0.1	0.08	3	1.1	<0.2
11KENODR013 Bol		18	0.53	207	0.021	4	0.85	0.008	0.05	0.2	0.07	2.2	0.1	0.32	3	5.4	<0.2
11KENODR014 Bol		1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.
11KENODR015 Boll		19	0.43	156	0.011	2	0.81	0.006	0.04	0.1	0.08	2.0	<0.1	0.12	2	1.7	<0.2
11KENODR016 Bol		20	0.42	256	0.010	2	0.96	0.006	0.04	<0.1	0.09	2.2	<0.1	0.10	2	2.4	<0.2
11KENODR017 Bol		26	0.45	208	0.016	<1	1.18	0.006	0.04	0.1	0.09	2.9	0.1	<0.05	3	0.8	<0.2
11KENODR018 Boll		22	0.35	136	0.015	<1	0.92	0.004	0.04	⊲0.1	0.13	4.1	<0.1	<0.05	2	1.2	<0.2
11KENODR019 Bol		25	0.54	223	0.018	<1	1.06	0.010	0.05	⊲0.1	0.13	2.9	<0.1	<0.05	3	1.1	<0.2
11KENODR020 Bol		26	0.48	225	0.015	<1	1.12	0.007	0.05	0.1	0.10	3.0	<0.1	<0.05	3	0.7	<0.2
11KENODR021 Bol		23	0.74	145	0.030	2	0.97	0.011	0.09	0.1	0.12	3.1	0.2	0.05	3	1.4	<0.2
11KENODR022 Bol		23	0.48	238	0.012	2	1.05	0.007	0.05	<0.1	0.09	2.4	<0.1	0.09	3	0.6	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

December 05, 2011

McConnell

9 of 13 Part 1

CERTIFICA	ATE O	f an	IALY	'SIS													W	HI11	001	802	.3	
		Method	1DX16																			
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENODR023	Boll		1.9	32.2	15.4	90	0.4	28.7	11.6	280	2.58	16.5	4.3	3.8	26	0.3	1.4	0.3	34	0.56	0.099	13
11KENODR024	Boll		2.2	52.1	44.2	99	0.7	41.0	12.3	264	2.83	24.0	4.3	3.6	27	0.6	1.5	0.3	32	0.65	0.089	13
11KENODR025	Boll		1.4	43.3	17.5	97	0.3	38.7	14.2	447	2.72	15.8	3.1	3.4	33	0.9	1.2	0.2	33	0.82	0.090	12
11KENODR026	Boll		1.3	36.6	17.7	91	0.3	27.7	10.7	455	2.34	13.8	2.7	3.1	25	0.6	1.1	0.3	36	0.53	0.091	11
11KENODR027	Boll		1.9	55.0	16.6	99	0.2	45.9	13.8	344	3.34	26.6	4.4	5.3	15	0.2	1.6	0.3	35	0.22	0.062	17
11KENODR028	Boll		2.0	52.8	19.6	97	0.1	43.7	12.5	270	3.49	24.3	5.7	6.8	11	0.2	1.6	0.3	39	0.13	0.049	20
11KENODR029	Boll		1.1	32.8	14.2	65	0.1	31.1	11.0	341	2.73	13.1	3.5	5.2	15	<0.1	0.8	0.2	44	0.21	0.039	17
11KENODR030	Boll		1.6	52.2	15.1	77	0.3	47.8	14.4	772	2.66	20.9	11.2	3.0	60	0.6	1.4	0.3	30	0.99	0.068	12
11KENODR031	Boll		1.6	42.0	17.5	94	0.3	36.3	15.5	318	2.93	19.8	5.4	3.6	28	0.5	1.1	0.4	33	0.47	0.077	14
11KENODR032	Boll		0.9	26.9	14.1	61	0.2	26.3	9.9	230	2.44	44.9	6.0	3.7	17	<0.1	0.8	0.2	39	0.28	0.062	15
11KENODR033	Boll		1.1	27.3	13.5	70	0.1	25.8	9.8	313	2.51	14.4	4.9	4.9	19	0.2	0.8	0.3	36	0.30	0.061	21
11KENODR034	Boll		0.9	26.5	12.5	59	0.2	22.6	9.8	248	2,40	38.3	3.9	2.7	39	0.3	0.7	0.4	32	0.71	0.072	15
11KENODR035	Boll		0.9	20.7	36.8	104	0.3	21.2	7.7	413	2.86	237.7	6.7	13.4	22	0.2	0.9	0.4	26	0.38	0.066	33
11KENODR036	Boll		0.5	19.6	12.2	77	0.1	20.7	7.4	315	1.70	31.2	3.4	3.2	48	0.3	0.7	0.3	30	0.88	0.072	13
11KENODR037	Boll		1.8	55.5	21.9	98	0.2	41.0	14.3	457	3.70	34.1	5.7	3.6	12	0.3	1.8	0.3	43	0.29	0.038	18
11KENODR038	Boll		0.9	14.9	11.9	53	0.3	17.2	6.5	154	2.07	23.0	1.5	3.4	14	0.2	0.5	0.2	39	0.19	0.035	14
11KENODR039	Boll		0.7	36.7	10.4	47	0.2	24.8	8.7	361	1.84	60.3	2.7	1.2	165	0.9	1.2	0.2	11	2.90	0.059	6
11KENODR040	Boll		1.7	50.7	19.2	88	0.3	39.3	16.5	376	3.09	37.0	7.2	3.4	32	0.3	1.2	0.3	32	0.52	0.047	14
11KENODR041	Boll		0.6	24.2	9.2	64	0.2	20.7	8.0	353	1.90	83.1	3.0	1.5	114	0.6	0.9	0.2	22	1.59	0.065	7
11KENODR042	Boll		0.8	32.0	13.7	80	0.2	25.6	8.8	354	2.06	21.0	3.8	2.8	38	0.4	1.0	0.2	32	0.78	0.082	12
11KENODR043	Boll		0.8	34.7	14.5	87	0.2	27.4	7.9	111	1.88	26.8	4.1	3.3	39	0.5	0.8	0.2	29	0.76	0.068	13
11KENODR044	Boll		0.8	32.6	16.0	78	0.2	24.0	33.5	1735	1.96	19.2	7.1	2.9	30	0.6	0.8	0.3	32	0.53	0.072	14
11KENODR045	Boll		1.6	82.9	20,4	134	0.4	49.7	16.2	411	3.58	59.5	16.8	3.9	21	0.5	3.2	0.3	33	0.40	0.070	15
11KENODR046	Boll		1.4	79.7	21.3	116	0.3	42.6	13.8	403	3.14	61.3	10.9	3.9	12	0.2	3.1	0.3	33	0.16	0.041	15
11KENODR047	Boll		0.7	27.5	13.8	62	0.1	26.5	9.3	343	2.29	10.0	2.3	3.6	16	<0.1	0.7	0.2	40	0.23	0.060	17
11KENODR048	Boll		1.5	100.3	21.9	159	0.4	50.6	14.0	402	3.80	80.7	10.2	3.5	14	0.3	4.5	0.5	37	0.20	0.052	17
11KENODR049	Boll		1.2	71.7	18.1	119	0.4	45.4	14.0	542	3.12	48.1	7.0	3.4	22	0.4	2.8	0.3	35	0.45	0.065	14
11KENODR050	Boll		1.4	74.7	18.0	123	0.4	48.7	14.9	609	3.22	51.1	8.0	3.8	26	0.4	2.9	0.3	35	0.77	0.067	15
11KENODR051	Boll		1.4	73.1	19.3	127	0.4	47.6	14.3	554	3.21	51.4	9.0	3.9	24	0.4	3.2	0.3	35	0.60	0.068	16
11KENODR052	Boll		LS.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8

This report supernedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

9 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

		Method	1DX16															
		Analyte	Cr	Mo	Ba	т	в	AI	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
		Unit	ppm	%	ppm	%	ppm	%	96	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENODR023	Boll		21	0.44	182	0.025	2	0.94	0.006	0.04	0.1	0.06	2.3	<0.1	<0.05	3	0.6	<0.2
11KENODR024	Boll		21	0.43	164	0.016	<1	0.87	0.006	0.04	0.1	0.08	2.4	<0.1	0.06	3	0.6	<0.2
11KENODR025	Boll		22	0.46	263	0.016	2	0.96	0.006	0.04	0.1	0.07	2.7	<0.1	0.09	3	0.9	<0.2
11KENODR026	Boll		22	0.41	255	0.013	<1	1.05	0.009	0.03	0.1	0.09	2.7	<0.1	0.08	3	0.8	<0.2
11KENODR027	Boll		23	0.44	181	0.028	<1	1.05	0.007	0.04	0.2	0.06	3.1	<0.1	<0.05	3	0.7	<0.2
11KENODR028	Boll		28	0.51	211	0.017	<1	1.36	0.006	0.05	⊲0.1	0.05	3.3	<0.1	<0.05	3	0.5	<0.2
11KENODR029	Boll		27	0.44	318	0.025	<1	1.43	0.006	0.04	0.1	0.04	3.1	<0.1	<0.05	4	<0.5	<0.2
11KENODR030	Boll		20	0.47	330	0.014	1	0.94	0.007	0.04	<0.1	0.08	2.5	<0.1	0.06	3	0.6	<0.2
11KENODR031	Boll		22	0.46	249	0.020	2	1.06	0.008	0.04	0.1	0.05	2.7	<0.1	<0.05	3	0.7	<0.2
11KENODR032	Boll		23	0.44	228	0.019	1	1.22	0.008	0.03	0.1	0.06	2.3	0.1	<0.05	4	<0.5	<0.2
11KENODR033	Boll		21	0.40	216	0.024	1	1.12	0.008	0.04	0.1	0.04	2.8	0.1	<0.05	3	<0.5	<0.2
11KENODR034	Boll		19	0.35	266	0.019	1	0.97	0.006	0.04	0.1	0.05	2.5	<0.1	<0.05	3	0.5	<0.2
11KENODR035	Bol		16	0.33	217	0.011	1	0.93	0.006	0.04	0.1	0.05	4.5	0.1	<0.05	3	<0.5	<0.2
11KENODR036	Boll		18	0.37	238	0.022	2	0.88	0.007	0.04	0.1	0.07	2.4	<0.1	<0.05	3	0.5	<0.2
11KENODR037	Boll		25	0.39	227	0.015	1	1.21	0.006	0.04	0.1	0.07	3.6	<0.1	<0.05	3	0.7	<0.2
11KENODR038	Boll		20	0.33	209	0.018	<1	1.18	0.005	0.03	0.1	0.04	1.8	0.1	<0.05	4	<0.5	<0.2
11KENODR039	Boll		10	0.34	290	0.011	- 4	0.46	0.006	0.03	<0.1	0.06	1.4	<0.1	0.20	1	1.6	<0.2
11KENODR040	Boll		21	0.40	187	0.022	1	0.93	0.007	0.04	0.1	0.06	2.8	<0.1	<0.05	3	0.7	<0.2
11KENODR041	Boll		16	0.35	254	0.015	3	0.70	0.006	0.03	<0.1	0.08	2.0	<0.1	0.14	2	0.9	<0.2
11KENODR042	Boll		20	0.48	263	0.018	2	0.93	0.008	0.04	<0.1	0.06	2.6	<0.1	<0.05	3	<0.5	<0.2
11KENODR043	Boll		19	0.41	221	0.017	1	0.95	0.007	0.05	<0.1	0.06	2.6	<0.1	0.06	3	0.8	<0.2
11KENODR044	Boll		20	0.40	236	0.014	1	1.05	0.006	0.04	<0.1	0.08	2.4	0.1	<0.05	3	0.7	<0.2
11KENODR045	Boll		21	0.33	237	0.011	1	0.89	0.007	0.06	<0.1	0.07	3.0	<0.1	<0.05	3	1.3	<0.2
11KENODR046	Boll		19	0.30	223	0.013	1	0.85	0.005	0.06	0.1	0.05	2.9	<0.1	<0.05	3	0.5	<0.2
11KENODR047	Boll		23	0.43	346	0.021	<1	1.25	0.006	0.04	0.1	0.03	3.0	<0.1	<0.05	4	<0.5	<0.2
11KENODR048	Boll		18	0.30	275	0.011	1	0.89	0.007	0.07	0.1	0.05	2.9	0.1	<0.05	3	0.8	<0.2
11KENODR049	Boll		21	0.38	304	0.012	1	0.93	0.006	0.06	0.1	0.08	3.1	<0.1	<0.05	3	0.7	<0.2
11KENODR050	Boll		20	0.49	279	0.013	2	0.96	0.006	0.08	0.2	0.06	3.0	<0.1	<0.05	3	0.7	<0.2
11KENODR051	Boll		22	0.46	293	0.014	1	1.00	0.007	0.08	0.2	0.05	3.1	0.1	<0.05	3	0.7	<0.2
11KENODR052	Boll		1.8.	1.8.	L3.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	1.8.	L3.	1.8.	1.8.	1.8.

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary sports are unsigned and should be used for reference only.

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CEDTIFICATE OF ANALVER

McConnell

December 05, 2011

10 of 13 Part 1

CERTIFI	CATE OF /	AN/	ALY	SIS													W	HI11	001	802	.3	
	Met	thod	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Ana	alyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	81	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENODR053	Boll		LS.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	LS.	1.8.	1.8.	LS.	1.8.	1.3.	1.8.	1.8.	1.8.	1.8.	LS.	1.8.	1.8.
11KENODR054	Boll		0.8	27.9	14.3	65	0.2	20.2	8,4	404	1.98	17.0	3.2	1.5	35	0.6	0.7	0.2	25	0.92	0.083	9
11KENODR055	Boll		1.0	28.9	13.5	66	0.2	24.1	10.0	268	2.30	11.8	2.7	2.7	25	0.2	0.7	0.2	35	0.59	0.067	13
11KENODR056	Boll		1.5	38.7	11.9	70	0.2	25.7	10.3	478	2.01	17.3	7.8	2.7	92	0.4	1.0	0.3	23	1.79	0.060	10
11KENODR057	Boll		1.7	64.7	21.1	102	0.2	43.2	18.7	471	3.83	36.4	9.7	5.0	17	0.3	1.7	0.4	41	0.27	0.053	19
11KENODR058	Boll		1.6	63.4	19.1	100	0.3	40.7	16.9	438	3.44	33.4	5.5	4.7	19	0.3	1.4	0.3	39	0.35	0.071	18
11KENODR059	Boll		1.2	37.7	16.1	90	0.2	28.5	9.6	275	2.20	13.7	3.9	3.6	25	0.5	1.0	0.2	36	0.44	0.085	15
11KENODR060	Boll		1.6	71.7	23.1	109	0.3	45.6	23.3	457	3.72	62.4	6.5	2.8	30	0.6	1.9	0.4	23	0.82	0.070	11
11KENODR061	Boll		L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENODR062	Boll		1.6	64.6	17.9	102	0.2	41.1	15.0	470	3.37	41.4	5.1	4.5	22	0.3	1.5	0.3	31	0.47	0.067	17
11KENODR063	Boll		1.5	37.9	15.8	73	0.1	27.5	12.5	368	3.01	30.7	3.1	4.1	15	0.1	1.0	0.3	42	0.26	0.025	19
11KENODR064	Boll		1.8	51.3	18.6	94	0.1	33.3	17.1	310	3.71	47.3	3.8	4.7	11	0.3	1.7	0.3	35	0.13	0.024	16
11KENODR065	Boll		1.5	12.5	12.3	56	⊲0.1	15.3	7.0	194	2.23	22.5	2.9	3.2	13	0.1	0.6	0.3	40	0.18	0.020	14
11KENODR066	Boll		1.5	53.0	17.7	95	0.3	33.3	13.1	590	3.11	50.3	6.8	3.7	34	0.4	1.5	0.4	32	0.72	0.071	18
11KENODR067	Boll		1.3	40.6	17.2	76	⊲0.1	24,4	9.7	191	2.86	35.7	5.1	6.1	9	0.1	1.1	0.3	39	0.09	0.020	26
11KENODR068	Boll		1.1	31.9	8.4	40	0.1	13.9	4.9	319	1.03	38.3	2.1	1.0	95	0.1	1.3	0.3	- 4	2.97	0.058	7
11KENODR069	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENODR070	Boll		2.3	36.8	15.4	104	0.3	29.8	10.1	281	2.30	17.0	3.3	4.7	29	0.7	1.3	0.2	10	0.61	0.094	16
11KENODR071	Boll		1.9	34.6	14.4	92	0.3	29.3	9.3	325	2.12	15.9	3.5	4.0	30	0.7	1.2	0.2	12	0.63	0.083	14
11KENODR072	Boll		1.7	35.7	14.2	89	0.3	29.4	9.8	379	2.19	13.9	3.8	3.9	31	0.7	1.1	0.2	14	0.65	0.083	14
11KENODR073	Boll		1.9	40.2	13.5	87	0.3	33.6	8.7	299	2.20	15.5	3.5	4.1	26	0.5	1.1	0.2	12	0.58	0.080	14
11KENODR074	Boll		1.4	32.2	12.7	78	0.2	27.5	10.0	351	2.17	13.5	3.0	3.6	27	0.6	1.1	0.2	12	0.58	0.077	14
11KENODR075	Boll		2.2	33.9	15.6	95	0.3	28.3	8.8	371	2.32	17.5	1.0	4.7	26	0.4	1.3	0.2	14	0.46	0.088	16
11KENODR076	Boll		2.1	40.7	15.6	96	0.4	34.0	10.0	391	2.32	17.4	3.3	4.4	27	0.8	1.4	0.2	11	0.61	0.090	16
11KENODR077	Boll		1.7	32.0	12.5	84	0.3	27.2	8.8	271	2.18	13.3	3.4	4.1	29	0.4	0.9	0.2	13	0.55	0.075	15
11KENODR078	Boll		2.1	32.7	13.0	97	0.3	27.6	8.6	270	2.22	15.8	3.2	3.9	33	0.6	1.2	0.2	11	0.70	0.084	14
11KENODR079	Boll		2.2	33.9	13.5	90	0.3	29.1	8.8	273	2.21	17.4	⊲0.5	4.2	30	0.5	1.2	0.2	14	0.62	0.083	15
11KENODR080	Boll		1.3	29.2	16.7	76	0.2	24.9	10.3	331	2.47	12.2	0.5	3.9	26	0.2	0.8	0.2	17	0.51	0.078	15
11KENODR081	Boll		3.2	63.4	23.2	113	0.3	46.8	13.0	342	3.18	31.6	5.4	6.5	15	0.3	1.8	0.3	14	0.25	0.045	23
11KENODR082	Boll		1.3	37.6	14.4	82	0.3	22,4	4.0	287	1.15	21.0	5.6	1.8	89	1.3	1.2	0.2	12	2.00	0.080	12

- T

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

10 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

.....

	Medilou 10X	6 10316	10316	10316	10316	10,16	10316	10316	10,16	10316	10716	10316	10316	10,16	10316	10716
	Analyte (ar Mg	Ba	т	в	AI	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
	Unit pp	m %	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1 0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENODR053 Boll	L.	B. I.S.	LS.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8.	1.8.	L8.	1.8.	1.8.	1.8
11KENODR054 Boll	1	8 0.31	271	0.014	1	0.71	0.006	0.03	0.1	0.05	2.0	<0.1	0.15	2	0.8	<0.2
11KENODR055 Boll		2 0.41	284	0.017	1	1.04	0.007	0.04	0.1	0.06	2.6	<0.1	<0.05	3	0.5	<0.2
11KENODR056 Boll	1	5 0.47	246	0.021	3	0.72	0.009	0.06	0.2	0.05	2.1	<0.1	0.13	2	0.9	<0.2
11KENODR057 Boll		5 0.39	237	0.019	1	1.17	0.009	0.05	0.1	0.08	3.7	<0.1	<0.05	3	0.7	<0.2
11KENODR058 Boll		5 0.44	253	0.022	<1	1.18	0.008	0.05	0.1	0.07	3.5	0.1	<0.05	3	<0.5	<0.2
11KENODR059 Boll		2 0.41	264	0.019	1	1.04	0.006	0.05	0.1	0.07	2.8	<0.1	<0.05	3	0.9	<0.2
11KENODR060 Boll	1	6 0.35	209	0.013	<1	0.71	0.005	0.04	<0.1	0.08	2.5	<0.1	0.06	2	0.8	<0.2
11KENODR061 Boll	L.N.	R. LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R
11KENODR062 Boll		1 0.45	243	0.012	<1	1.01	0.007	0.07	0.1	0.07	3.0	<0.1	<0.05	3	0.7	<0.2
11KENODR063 Boll		3 0.39	251	0.014	<1	1.31	0.006	0.06	0.1	0.02	2.8	0.1	<0.05	4	<0.5	<0.2
11KENODR064 Boll		1 0.38	148	0.012	<1	1.06	0.005	0.08	0.1	0.02	2.5	<0.1	<0.05	3	<0.5	<0.2
11KENODR065 Boll		0 0.34	179	0.022	<1	1.08	0.005	0.04	<0.1	0.01	1.9	0.1	<0.05	4	<0.5	<0.2
11KENODR066 Boll		0 0.42	271	0.018	1	1.03	0.008	0.07	0.1	0.05	2.9	<0.1	<0.05	3	<0.5	<0.2
11KENODR067 Boll		4 0.40	151	0.022	<1	1.33	0.007	0.05	0.2	0.03	3.2	0.1	<0.05	4	<0.5	<0.2
11KENODR068 Boll		9 0.33	258	0.011	7	0.43	0.008	0.04	<0.1	0.09	1.2	<0.1	0.28	1	<0.5	0.2
11KENODR069 Boll	L.N.	R. L.N.R.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENODR070 Boll	1	9 0.41	178	0.031	1	0.91	0.008	0.05	0.2	0.06	2.4	<0.1	0.09	3	1.3	<0.2
11KENODR071 Boll	1	8 0.40	212	0.026	<1	0.87	0.008	0.05	0.2	0.09	2.1	<0.1	0.07	2	0.8	<0.2
11KENODR072 Boll	1	8 0.41	245	0.023	<1	0.92	0.008	0.05	0.1	0.08	2.3	<0.1	0.06	3	0.5	<0.2
11KENODR073 Boll	1	8 0.39	242	0.024	1	0.90	0.009	0.05	0.2	0.07	2.3	0.1	0.07	2	<0.5	<0.2
11KENODR074 Boll	1	8 0.38	257	0.024	<1	0.88	0.008	0.04	0.2	0.07	2.2	<0.1	0.05	3	1.0	<0.2
11KENODR075 Boll	1	9 0.39	185	0.030	<1	0.91	0.009	0.05	0.2	0.07	2.2	<0.1	<0.05	3	<0.5	<0.2
11KENODR076 Boll	1	8 0.40	258	0.030	<1	0.87	0.010	0.06	0.2	0.08	2.6	<0.1	0.05	3	0.9	<0.2
11KENODR077 Boll	1	8 0.39	224	0.030	<1	0.90	0.009	0.05	0.2	0.06	2.2	<0.1	<0.05	3	0.9	<0.2
11KENODR078 Boll	1	8 0.39	187	0.030	<1	0.82	0.009	0.05	0.1	0.05	2.2	<0.1	<0.05	3	0.7	<0.2
11KENODR079 Boll	1	8 0.39	187	0.030	1	0.82	0.008	0.05	0.2	0.07	2.1	<0.1	<0.05	3	1.0	<0.2
11KENODR080 Boll		2 0.44	281	0.021	<1	1.24	0.007	0.04	0.3	0.07	2.8	<0.1	<0.05	3	1.0	<0.2
11KENODR081 Boll		5 0.50	170	0.028	2	1.25	0.010	0.07	0.2	0.11	3.7	0.1	<0.05	3	0.6	<0.2
11KENODR082 Boll	1	4 0.40	238	0.016	2	0.67	0.009	0.06	0.1	0.10	1.8	<0.1	0.33	2	5.7	<0.2

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

		rionic rinalytical	caboratories (vanoouver/ c
1020 Cordova St. East	Vancouver BC V6A 4A3	3 Canada		
Phone (604) 253-3158	Fax (604) 253-1716			

www.acmelab.com

OF DIFICATE OF ANALYCIC

McConnell

December 05, 2011

11 of 13 Part 1

CERTIFIC	CATE O	FAN	IALY	′SIS													W	HI11	001	802	.3	
		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENODR083	Boll		1.1	21.7	15.5	68	0.1	19.2	8.1	390	2.43	17.2	3.7	7.7	27	<0.1	0.8	0.3	11	0.51	0.074	21
11KENODR084	Boll		1.3	33.9	23.0	92	0.3	26.3	12.7	449	2.91	19,4	3.3	4.5	24	0.3	1.0	0.3	11	0.45	0.071	18
11KENODR085	Boll		1.5	36.2	19.2	91	0.3	30.3	12.0	363	2.81	20.0	2.9	5.7	27	0.4	1.1	0.2	13	0.47	0.076	19
11KENODR086	Boli		0.8	29.3	20,4	59	0.2	21,4	8.3	259	2.14	15.2	1.7	3.2	21	0.4	0.7	0.2	15	0.40	0.048	16
11KENODR087	Boll		1.2	40.1	17.7	79	0.2	28.9	11.5	288	2.59	18.9	⊲0.5	4.3	13	<0.1	1.4	0.2	15	0.18	0.048	18
11KENODR088	Boll		3.2	80.9	55.2	191	0.3	66.3	29.4	480	6.14	85.8	12.3	6.7	15	0.5	3.4	0.7	10	0.25	0.076	24
11KENODR089	Boli		1.7	47.0	20.9	104	0.4	39.8	14.7	560	2.96	21.2	3.2	4.5	25	0.4	1.5	0.3	13	0.55	0.090	18
11KENODR090	Boll		1.4	44.7	18.7	101	0.3	37.1	14.3	450	2.82	19.8	4.0	4.8	26	0.3	1.4	0.2	11	0.56	0.091	18
11KENODR091	Boll		1.6	48.2	17.3	107	0.4	41.3	13.5	440	2.77	19.8	8.4	4.8	28	0.7	1.3	0.3	11	0.60	0.090	17
11KENODR092	Boli		1.6	38.8	18.9	92	0.3	30.3	14.5	595	2.71	20.0	1.9	3.5	27	0.6	1.3	0.3	11	0.59	0.086	16
11KENODR093	Boll		1.6	41.3	19.3	74	0.4	33.8	22.2	1479	2.82	15.8	1.1	2.0	43	0.6	1.2	0.2	9	1.08	0.086	15
11KENODR094	Boll		1.2	34.7	18.7	83	0.4	28.1	11.3	535	2.29	15.9	1.6	2.9	29	0.4	1.0	0.2	11	0.78	0.086	15
11KENOMA001	Boli		1.1	29.3	14.2	58	0.2	26.1	8.2	257	2.33	14.9	⊲0.5	4.5	20	0.1	0.8	0.2	14	0.30	0.046	20
11KENOMA002	Boll		1.8	38.2	20.2	80	0.4	28.9	9.5	388	2.89	19.1	12.0	3.4	17	0.5	1.2	0.3	16	0.29	0.060	15
11KENOMA003	Boli		0.8	32.7	11.1	63	0.2	27.3	9.8	431	2.23	14.7	1.6	4.5	27	0.1	0.8	0.2	13	0.41	0.079	16
11KENOMA004	Boll		1.6	37.2	19.6	94	0.3	30.8	10.2	376	2.74	20.5	2.0	4.7	23	0.3	1.2	0.2	15	0.44	0.081	18
11KENOMA005	Boll		1.2	25.9	17.3	71	0.2	26.2	8.0	214	2.72	16.5	0.9	4.0	15	0.1	0.8	0.3	17	0.27	0.043	16
11KENOMA006	Boli		1.5	20.9	11.4	48	0.3	20.4	12.2	656	2.18	9.0	⊲0.5	0.9	58	0.6	0.7	0.2	10	1.38	0.101	8
11KENOMA007	Boll		1.9	28.9	17.7	75	0.1	27.1	7.9	170	2.89	21.5	⊲0.5	4.1	8	0.2	1.1	0.2	18	0.10	0.028	15
11KENOMA008	Boll		2.0	26.0	18.1	75	0.3	25.1	7.6	190	2.47	21.0	⊲0.5	3.5	16	0.1	1.0	0.2	17	0.28	0.049	15
11KENOMA009	Boll		1.5	33.6	15.2	68	0.3	27.1	9.3	516	1.96	13.8	13.9	2.0	86	0.5	1.0	0.2	12	1.49	0.062	10
11KENOMA010	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOMA011	Boll		1.4	33.7	17.6	94	0.3	26.3	8.3	234	1.98	11.9	⊲0.5	3.0	57	0.6	1.2	0.2	13	0.91	0.073	13
11KENOMA012	Boll		1.0	15.1	7.9	64	0.2	14.8	5.9	289	1.36	5.3	2.2	1.1	97	0.7	0.6	0.2	16	1.95	0.062	6
11KENOMA013	Boll		3.2	45.0	24.9	132	0.6	35.0	14.5	512	3.00	29.0	4.0	6.4	38	1.1	1.7	0.3	37	0.95	0.116	22
11KENOMA014	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOMA015	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOMA016	Boll		2.2	38.9	18.7	86	0.3	27.8	11.6	476	2.61	20.4	3.9	4.0	50	0.5	1.2	0.2	28	1.11	0.104	18
11KENOMA017	Boll		1.8	94.2	30.2	141	0.8	56.3	16.0	795	3.47	29.7	2.7	3.5	39	1.6	1.8	0.3	38	0.86	0.087	16
11KENOMA018	Boll		2.8	57.9	28.1	138	0.5	47.4	17.0	468	3.39	33.8	5.4	5.8	25	0.7	2.2	0.3	36	0.55	0.115	16

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

11 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	8e	Те
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENODR083	Boll		18	0.38	186	0.024	<1	1.00	0.008	0.05	0.3	0.07	2.7	0.1	<0.05	3	0.8	<0.2
11KENODR084	Boll		20	0.43	246	0.024	<1	1.10	0.007	0.05	0.1	0.06	2.6	<0.1	<0.05	3	<0.5	<0.2
11KENODR085	Boll		20	0.43	231	0.029	<1	1.02	0.009	0.05	0.1	0.08	2.6	<0.1	<0.05	3	0.6	<0.2
11KENODR086	Boll		16	0.34	233	0.018	<1	1.08	0.006	0.03	0.1	0.05	1.9	<0.1	<0.05	4	<0.5	<0.2
11KENODR087	Boll		20	0.39	225	0.023	<1	1.09	0.006	0.03	0.1	0.06	3.2	<0.1	<0.05	3	<0.5	<0.2
11KENODR088	Boll		24	0.48	216	0.020	<1	1.40	0.007	0.05	0.2	0.09	3.6	0.1	<0.05	4	1.9	<0.2
11KENODR089	Boll		20	0.43	251	0.021	<1	1.11	0.008	0.04	0.1	0.09	2.8	<0.1	<0.05	3	0.9	<0.2
11KENODR090	Boll		19	0.43	221	0.022	<1	1.03	0.007	0.05	0.1	0.08	2.6	<0.1	<0.05	3	0.6	<0.2
11KENODR091	Boll		18	0.45	201	0.024	<1	0.91	0.008	0.05	⊲0.1	0.08	2.5	<0.1	<0.05	3	<0.5	<0.2
11KENODR092	Boll		18	0.43	186	0.018	<1	0.91	0.007	0.04	0.1	0.08	2.2	<0.1	<0.05	3	0.9	<0.2
11KENODR093	Boll		16	0.40	240	0.016	2	0.87	0.007	0.04	0.1	0.10	2.1	<0.1	0.06	3	<0.5	<0.2
11KENODR094	Boll		18	0.46	186	0.018	<1	0.94	0.008	0.06	0.1	0.09	2.2	<0.1	0.05	3	0.8	<0.2
11KENOMA001	Boll		23	0.39	246	0.029	<1	1.21	0.007	0.04	0.3	0.05	2.9	0.1	<0.05	3	<0.5	<0.2
11KENOMA002	Boll		21	0.41	189	0.024	<1	1.20	0.007	0.04	0.1	0.07	2.1	0.1	<0.05	3	<0.5	<0.2
11KENOMA003	Boll		17	0.43	213	0.042	<1	0.91	0.013	0.04	0.2	0.05	2.3	<0.1	<0.05	3	0.6	<0.2
11KENOMA004	Boll		21	0.42	217	0.028	<1	1.09	0.008	0.04	0.2	0.08	2.8	0.1	<0.05	3	0.8	<0.2
11KENOMA005	Boll		20	0.42	249	0.024	1	1.42	0.012	0.04	0.1	0.05	2.5	0.1	<0.05	4	0.5	<0.2
11KENOMAD06	Boll		16	0.32	462	0.011	<1	0.92	0.007	0.02	0.1	0.07	1.7	<0.1	0.08	3	0.9	<0.2
11KENOMA007	Boll		24	0.39	160	0.026	<1	1.46	0.004	0.03	0.1	0.02	1.8	0.1	<0.05	4	0.6	<0.2
11KENOMA008	Boll		24	0.39	241	0.024	<1	1.33	0.006	0.03	0.1	0.04	2.2	0.2	<0.05	4	<0.5	<0.2
11KENOMA009	Boll		16	0.42	250	0.016	2	0.84	0.007	0.03	0.1	0.07	1.9	<0.1	0.07	2	1.1	<0.2
11KENOMA010	Boll		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA011	Boll		20	0.45	255	0.026	2	0.92	0.010	0.05	0.5	0.07	2.4	<0.1	0.06	3	1.1	<0.2
11KENOMA012	Boll		12	0.37	227	0.013	3	0.52	0.006	0.02	0.1	0.05	1.3	<0.1	0.12	1	0.8	<0.2
11KENOMA013	Boll		22	0.58	180	0.051	1	0.99	0.011	0.09	0.3	0.07	3.4	0.2	<0.05	4	1.2	<0.2
11KENOMA014	Boll		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LN.R.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMAD15	Boll		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA016	Boll		19	0.49	225	0.031	1	0.96	0.009	0.08	0.3	0.07	2.9	0.1	<0.05	3	1.0	<0.2
11KENOMA017	Boll		25	0.52	411	0.011	1	1.42	0.009	0.05	0.1	0.09	4.0	<0.1	<0.05	4	1.0	<0.2
11KENOMA018	Boll		27	0.63	218	0.023	2	1.19	0.015	0.08	0.2	0.13	3.8	0.1	<0.05	3	1.0	<0.2

Project:

Page:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICATE OF ANALYSIS

McConnell Report Date: December 05, 2011

12 of 13 Part 1 WHI11001802.3

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	81	Cd	8b	BI	v	Ca	P	La
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	56	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	56	ppm
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOMAD19 Boli		1.4	40.0	17.1	75	0.2	30.6	11.1	342	2.71	15.5	6.1	4.3	14	0.2	1.1	0.2	39	0.21	0.052	16
11KENOMA020 Boll		0.9	30.9	15.9	67	0.2	26.9	9.3	296	2.37	10.9	3.0	3.8	16	<0.1	0.8	0.3	43	0.24	0.054	15
11KENOMA021 Boll		2.0	54.4	26.2	102	0.3	42.5	14.4	297	3.30	31.7	6.3	4.4	17	0.3	1.7	0.3	35	0.37	0.078	15
11KENOMA022 Boll		1.8	42.7	21.1	100	0.4	32.7	10.8	283	2.76	22.4	5.4	4.1	24	0.3	1.4	0.3	32	0.41	0.094	15
11KENOMA023 Boll		1.3	48.7	19.8	82	0.4	36.7	12.5	639	2.25	16.1	3.5	2.1	39	0.9	1.3	0.3	24	0.99	0.090	10
11KENOMA024 Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA025 Boll		2.1	42.0	20.2	90	0.2	36.0	15.7	310	3.40	27.0	4,4	5.0	11	0.3	1.5	0.3	32	0.14	0.052	18
11KENOMA026 Boll		1.5	41.6	16.2	103	0.2	34.4	12.6	480	2.66	17.9	2.9	42	42	0.6	1.3	0.2	32	1.99	0.098	13
11KENOMA027 Boll		2.0	55.7	20.5	121	0.3	45.3	15.7	393	3.50	24.6	3.0	5.6	23	0.6	1.7	0.3	31	0.64	0.108	16
11KENOMA028 Boll		1.6	47.5	19.0	90	0.3	39.2	16.6	402	3.28	21.1	3.5	4.4	24	0.3	1.3	0.3	37	0.49	0.049	16
11KENOMA029 Boll		2.6	64.0	24.1	135	0.3	57.1	20.3	528	4.11	33.6	7.2	6.6	20	0.6	2.2	0.4	32	0.39	0.092	18
11KENOMA030 Boll		2.3	66.2	22.6	127	0.3	50.0	18.8	510	3.79	34.2	6.0	6.0	25	0.6	2.1	0.4	31	0.58	0.100	18
11KENOMA031 Boll		1.7	54.3	18.1	97	0.2	37.2	14.7	468	3.08	22,4	2.9	4.3	21	0.4	1.4	0.3	30	0.40	0.086	15
11KENOMA032 Boll		1.9	64.7	20.5	125	0.3	44.7	18.0	552	3.57	49.6	4.8	5.3	23	0.5	1.9	0.4	32	0.43	0.096	18
11KENOMAD33 Boll		1.1	55.9	15.2	103	0.2	42.5	14.3	662	2.79	17.3	4.2	3.5	39	0.9	1.4	0.2	20	1.04	0.080	11
11KENOMA034 Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA035 Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA036 Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA037 Boll		L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA038 Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA039 Boll		1.9	62.4	20.8	121	0.3	36.3	18.3	666	3.38	141.0	6.0	5.1	37	0.5	2.0	0.4	30	0.61	0.093	17
11KENOMA040 Boll		1.6	22.1	19.9	72	0.2	14.4	9,4	538	1.92	234.8	6.3	3.4	71	0.4	0.8	0.4	21	1.37	0.074	24
11KENOMA041 Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA042 Boll		L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOMAD43 Boll		0.8	32.8	20,4	80	0.2	22.6	9.7	176	1.69	24.2	4.5	3.3	28	0.5	1.0	0.3	28	0.50	0.070	14
11KENOMA044 Boll		0.7	29.6	14.2	82	0.2	19.2	7.8	234	1.49	22.8	3.7	3.1	31	0.5	0.8	0.2	23	0.52	0.079	13
11KENOMA045 Boll		L.N.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOMAD46 Boll		0.6	37.2	13.3	90	0.2	21.3	6.8	189	1.38	15.3	3.4	2.7	33	0.6	0.8	0.2	22	0.50	0.078	9
11KENOMA047 Boll		1.5	73.6	21.7	127	0.3	43.9	14.6	460	3.11	50.9	6.3	3.9	24	0.6	3.0	0.3	33	0.98	0.072	14
11KENOMAD48 Boll		1.1	57.4	17.4	87	0.3	31.0	10.9	454	2.53	37.6	10.2	2.6	22	0.2	2.2	0.3	31	0.53	0.067	12

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

12 of 13 Part 2

Project:	McConnell
Report Date:	December 05, 2011

Page:

WHI11001802.3

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	3e	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOMAD19 B	oli	29	0.40	272	0.016	<1	1.19	0.006	0.03	0.1	0.07	3.8	<0.1	<0.05	3	<0.5	<0.2
11KENOMA020 B	oli	26	0.41	334	0.020	1	1.26	0.006	0.04	0.1	0.06	3.5	<0.1	<0.05	4	<0.5	<0.2
11KENOMAD21 B	oll	24	0.44	225	0.012	<1	1.21	0.005	0.04	⊲0.1	0.08	3.4	0.1	<0.05	3	0.8	<0.2
11KENOMA022 B	oll	21	0.41	246	0.017	1	1.03	0.006	0.04	0.1	0.08	2.7	<0.1	<0.05	3	0.6	<0.2
11KENOMA023 B	oll	17	0.39	263	0.011	<1	0.82	0.006	0.03	0.1	0.09	2.3	<0.1	0.06	2	0.9	<0.2
11KENOMA024 B	oll	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA025 B	oli	22	0.41	207	0.008	<1	1.26	0.004	0.04	0.2	0.04	2.4	0.1	<0.05	3	0.6	<0.2
11KENOMA026 B	oll	20	1.13	305	0.029	2	0.87	0.010	0.06	0.1	0.05	2.9	<0.1	<0.05	3	0.5	<0.2
11KENOMA027 B	oll	22	0.58	193	0.018	1	1.00	0.008	0.07	⊲0.1	0.08	3.0	0.1	<0.05	3	0.8	<0.2
11KENOMA028 B	oli	23	0.45	251	0.010	1	1.27	0.007	0.06	0.1	0.06	2.9	<0.1	<0.05	4	<0.5	<0.2
11KENOMA029 B	oll	25	0.56	159	0.016	2	1.14	0.012	0.08	<0.1	0.09	3.7	<0.1	<0.05	3	<0.5	<0.2
11KENOMA030 B	oll	23	0.61	155	0.018	1	1.05	0.011	0.07	0.1	0.08	3.2	<0.1	<0.05	3	0.8	<0.2
11KENOMA031 B	ol	21	0.43	215	0.012	1	1.04	0.005	0.04	<0.1	0.07	2.9	<0.1	<0.05	3	<0.5	<0.2
11KENOMA032 B	ol	23	0.47	209	0.015	1	1.03	0.007	0.07	0.2	0.08	3.3	<0.1	<0.05	3	0.8	<0.2
11KENOMAD33 B	oll	16	0.37	228	0.008	2	0.74	0.005	0.04	⊲0.1	0.06	2.4	<0.1	0.06	2	0.6	<0.2
11KENOMA034 B	ol	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA035 B	oll	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA036 B	ol	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA037 B	ol	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMAD38 B	oll	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA039 B	ol	20	0.41	180	0.023	1	0.88	0.006	0.07	0.2	0.08	3.1	0.1	<0.05	3	1.0	<0.2
11KENOMAD40 B	oll	14	0.37	251	0.015	2	0.83	0.007	0.05	0.2	0.07	2.2	0.1	0.09	3	<0.5	<0.2
11KENOMAD41 B	oll	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMAD42 B	ol	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMAD43 B	oll	18	0.36	197	0.014	<1	0.89	0.006	0.04	⊲0.1	0.08	2.5	<0.1	0.11	3	0.8	<0.2
11KENOMAD44 B	oll	15	0.33	166	0.017	1	0.79	0.007	0.04	⊲0.1	0.06	2.2	<0.1	0.10	2	0.6	<0.2
11KENOMAD45 B	ol	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMAD46 B	ol	17	0.34	183	0.014	1	0.78	0.006	0.03	0.1	0.07	2.3	<0.1	0.16	2	0.9	<0.2
11KENOMAD47 B	ol	20	0.74	297	0.018	2	0.87	0.007	0.07	0.1	0.06	3.3	<0.1	<0.05	3	0.6	<0.2
11KENOMAD48 B	oll	19	0.34	279	0.012	1	0.86	0.005	0.04	0.1	0.06	2.8	<0.1	<0.05	3	0.6	<0.2

Project:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CEDTIEICATE OF ANALVSIS

Page: 13 of 13 Part 1

McConnell

December 05, 2011

CERTIFICATE OF ANALYSIS WHI11001802.3																						
		Method Analyte	1DX16 Mo	1DX16 Cu	1DX16 Pb	1DX16 Zn	1DX16 Ag	1DX16 NI	1DX16 Co	1DX16 Mn	1DX16 Fe	1DX16 A6	1DX16 Au	1DX16 Th	1DX16 Sr	1DX16 Cd	1DX16 Sb	1DX16 Bl	1DX16 V	1DX16 Ca	10X16 P	1DX16 La
		Unit	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	% 0.01	ppm 0.6	ppb 0.6	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 2	% 0.01	% 0.001	ppm 1
11KENOMA049	Boll		1.1	49.6	16.9	97	0.3	32.2	11.7	525	2.59	30.8	5.3	2.5	43	0.6	1.8	0.3	31	0.95	0.074	11
11KENOMA050	Boll		1.3	66.4	18.8	122	0.4	40.9	13.1	448	2.83	48.8	6.5	3.5	33	0.7	2.7	0.3	33	0.71	0.077	13
11KENOMA051	Boll		1.5	39.3	18.7	98	0.2	28.2	11.3	407	2.51	18.9	3.4	3.5	46	0.5	1.4	0.3	34	0.77	0.083	13
11KENOMA052	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.
11KENOMA053	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA054	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R.
11KENOMA055	Boll		1.3	52.7	20.2	116	0.3	37.0	16.0	754	2.91	20.5	5.8	3.3	33	0.9	1.4	0.3	25	0.78	0.107	12
11KENOMA056	Boll		0.6	28.7	19.7	80	0.2	21.1	11.5	609	2.27	22.5	3.0	4.1	69	0.4	0.7	0.2	25	1.26	0.072	15
11KENOMA057	Boll		0.7	34.7	15.4	91	0.2	26.1	10.5	603	2.23	11.1	5.2	2.8	41	0.8	0.8	0.2	30	1.07	0.095	11
11KENOMA058	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.
	Client:	Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	McConnell December 05, 2011
www.acmelab.com	Page:	13 of 13 Day 2

CERTIFICATE OF ANALYSIS

13 of 13 Part 2 WHI11001802.3

		Method Analyte	1DX16 Cr	1DX16 Mg	1DX16 Ba	1DX16 TI	1DX16 B	1DX16 Al	1DX16 Na	1DX16 K	1DX16 W	1DX16 Hg	1DX16 8e	1DX16 TI	1DX16 8	1DX16 Ga	1DX16 8e	1DX16 Te
		Unit	ppm	%	ppm	%	ppm	%	%	56	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOMA049	Boll		19	0.39	303	0.015	2	0.87	0.006	0.05	0.1	0.07	2.8	<0.1	0.06	3	0.6	<0.2
11KENOMA050	Boll		20	0.49	272	0.025	2	0.82	0.007	0.07	0.1	0.06	3.2	<0.1	<0.05	3	1.0	<0.2
11KENOMA051	Bol		22	0.50	362	0.026	2	0.98	0.007	0.06	0.1	0.06	3.2	<0.1	0.06	3	1.1	<0.2
11KENOMA052	Bol		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA053	Bol		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA054	Bol		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA055	Boll		19	0.38	270	0.013	1	0.82	0.006	0.03	⊲.1	0.08	2.9	<0.1	0.07	2	1.2	<0.2
11KENOMA056	Bol		16	0.47	206	0.015	1	0.89	0.007	0.07	0.1	0.06	2.6	⊲0.1	0.09	3	0.8	<0.2
11KENOMA057	Bol		20	0.53	400	0.021	2	0.90	0.008	0.04	0.2	0.06	2.8	<0.1	0.06	3	1.4	<0.2
11KENOMA058	Boll		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

Client Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

WHI11001802.3

Project:	McConnell
Report Date:	December 05, 2011

Page: 1 of 2 Part 1

	Method	1DX16																			
	Analyte	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	81	Cd	8b	BI	v	Ca	P	La
	Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
Puip Duplicates																					
11KENOFA007	Soil	1.8	43.0	19.8	107	0.4	34.0	11.3	411	2.67	23.8	4.5	3.3	30	0.6	1.5	0.2	35	0.58	0.093	14
REP 11KENOFA007	QC	1.9	43.8	20.5	106	0.4	34.1	11.4	424	2.71	23.9	5.2	3.4	31	0.5	1.5	0.3	34	0.60	0.094	15
11KENOFA023	Soli	1.9	53.2	24.5	100	0.5	41.6	17.5	557	3.03	26.7	3.6	2.9	45	0.6	1.7	0.3	27	1.13	0.084	13
REP 11KENOFA023	QC	1.8	52.8	24.2	101	0.4	40.9	16.7	552	2.93	26.1	3.2	3.0	45	0.6	1.7	0.3	28	1.09	0.082	13
11KENOFA052	Sol	1.3	37.4	14.3	81	0.2	25.0	8.8	508	2.38	17.6	3.2	3.6	48	0.8	1.1	0.2	25	1.14	0.102	12
REP 11KENOFA052	90	1.3	37.0	14.5	84	0.2	25.8	9.1	524	2,46	18.6	6.3	3.6	50	0.8	1.1	0.2	27	1.15	0.105	12
11KENOFA067	Soli	1.7	57.3	20.8	100	0.2	33.7	14.8	462	3.63	132.4	7.7	7.1	27	0.3	1.7	0.4	34	0.53	0.076	23
REP 11KENOFA067	80	1.7	56.8	21.4	100	0.2	33.5	14.6	441	3.61	134.9	18.7	6.7	27	0.3	1.6	0.4	34	0.51	0.074	22
11KENOFA087	Soli	1.4	45.7	18.4	91	0.3	35.9	12.8	456	3.06	24.2	6.6	3.7	28	0.3	1.3	0.2	34	0.77	0.094	14
REP 11KENOFA087	QC	1.7	45.8	18.2	91	0.3	35.6	13.1	444	2.97	24.1	3.6	3.5	28	0.3	1.4	0.2	32	0.76	0.087	14
11KENOJR013	Soll	1.1	33.2	15.3	101	0.4	27.6	8.9	325	2.17	15.6	3.0	2.5	43	0.7	0.9	0.2	29	1.11	0.076	13
REP 11KENOJR013	80	1.0	31.5	15.4	96	0.3	26.6	9.1	322	2.10	14.9	7.3	2.2	41	0.6	0.9	0.2	28	1.09	0.074	12
11KENOJR032	Soli	1.7	44,4	19.4	109	0.3	42.3	15.5	488	3.21	23.5	4.4	5.2	43	0.4	1.6	0.3	35	0.81	0.079	17
REP 11KENOJR032	QC	1.7	45.3	20.0	110	0.3	40.5	14.8	497	3.21	23.7	3.7	5.2	43	0.5	1.6	0.3	34	0.84	0.080	16
11KENOJR039	Soli	1.8	44.5	21.4	89	0.3	38.6	16.2	423	3.46	38.8	8.6	5.8	13	0.1	1.9	0.4	42	0.19	0.034	15
REP 11KENOJR039	QC	1.8	43.1	21.1	90	0.3	40.7	15.8	426	3.50	38.9	5.0	5.5	13	0.3	1.8	0.4	42	0.19	0.035	19
11KENOJR055	Sol	1.3	33.6	18.8	59	0.2	20.6	8.4	189	2.33	21.0	3.5	2.8	14	0.2	1.1	0.3	37	0.26	0.037	12
REP 11KENOJR055	QC C	1.4	34.6	18.8	59	0.2	21.1	8.8	197	2.42	21,4	4.8	3.0	15	0.3	1.1	0.3	41	0.27	0.037	13
11KENOJR079	Soll	2.9	40.6	19.0	118	0.3	33.5	11.4	274	2.72	20.8	4.1	5.2	29	0.7	1.6	0.2	36	0.58	0.101	17
REP 11KENOJR079	QC C	2.8	41.1	18.9	116	0.4	34.0	11.4	271	2.73	20.7	3.3	5.0	29	0.9	1.5	0.2	36	0.59	0.103	16
11KENODR009	Soll	2.6	50.8	46.4	122	0.6	41.4	18.5	345	3.80	54.4	6.7	7.2	18	0.4	2.5	0.4	42	0.28	0.100	25
REP 11KENODR009	QC	2.4	50.5	47.0	126	0.6	42.1	18.6	354	3.80	53.7	7.9	7.4	18	0.5	2.5	0.4	42	0.28	0.100	25
11KENODR023	Soll	1.9	32.2	15.4	90	0.4	28.7	11.6	280	2.58	16.5	4.3	3.8	26	0.3	1.4	0.3	34	0.56	0.099	13
REP 11KENODR023	QC	1.8	31.5	14.8	87	0.4	27.9	11.1	264	2.44	16.1	3.9	3.4	25	0.3	1.4	0.2	34	0.54	0.095	12
11KENODR038	Soll	0.9	14.9	11.9	53	0.3	17.2	6.5	154	2.07	23.0	1.5	3.4	14	0.2	0.5	0.2	39	0.19	0.035	14
REP 11KENODR038	QC	0.9	14.5	11.9	55	0.3	16.3	6.8	152	2.00	23.0	1.7	3.5	13	0.1	0.5	0.2	39	0.19	0.036	14
11KENODR055	Soll	1.0	28.9	13.5	66	0.2	24.1	10.0	268	2.30	11.8	2.7	2.7	25	0.2	0.7	0.2	35	0.59	0.067	13
REP 11KENODR055	QC	1.0	28.8	13.4	68	0.2	24.4	9.9	269	2.30	12.0	4.6	2.7	25	0.3	0.7	0.2	35	0.59	0.068	13

ort supervedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

QUALITY CONTROL REPORT

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Part 2

Project:	McConnell
Report Date:	December 05, 2011

1 of 2

Page:

WHI11001802.3

	Method	1DX16															
	Analyte	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	т	8	Ga	3e	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
Pulp Duplicates																	
11KENOFA007	Soll	22	0.44	321	0.025	<1	1.02	0.010	0.04	0.2	0.08	3.1	<0.1	<0.05	3	1.1	<0.2
REP 11KENOFA007	QC	22	0.45	335	0.025	1	1.09	0.011	0.04	0.2	0.10	3.2	<0.1	<0.05	3	0.8	<0.2
11KENOFA023	Soli	20	0.48	275	0.012	1	1.07	0.008	0.04	<0.1	0.09	2.7	<0.1	0.05	3	1.3	<0.2
REP 11KENOFA023	QC	19	0.46	271	0.012	1	1.03	0.008	0.04	<0.1	0.09	2.7	<0.1	<0.05	3	1.0	<0.2
11KENOFA052	Soll	16	0.38	266	0.025	3	0.74	0.008	0.04	0.1	0.06	2.6	<0.1	0.34	2	2.3	<0.2
REP 11KENOFA052	90	16	0.40	276	0.027	3	0.79	0.008	0.04	0.2	0.07	2.5	<0.1	0.37	2	2.1	<0.2
11KENOFAD67	Soli	21	0.54	194	0.040	2	1.14	0.011	0.12	0.2	0.05	3.1	0.2	<0.05	4	0.8	<0.2
REP 11KENOFA067	QC	21	0.53	190	0.038	1	1.10	0.010	0.12	0.2	0.05	3.2	0.1	<0.05	4	0.8	<0.2
11KENOFA087	Soli	22	0.68	244	0.028	2	1.03	0.011	0.06	0.1	0.07	2.9	<0.1	<0.05	3	<0.5	<0.2
REP 11KENOFA087	8	21	0.66	239	0.029	1	0.94	0.011	0.05	0.1	0.08	2.9	<0.1	<0.05	3	<0.5	<0.2
11KENOJR013	Soll	18	0.45	266	0.018	<	0.99	0.007	0.05	0.1	0.08	2.4	<0.1	0.06	3	0.9	<0.2
REP 11KENOJR013	QC	18	0.42	255	0.016	1	0.91	0.007	0.05	<0.1	0.07	2.4	<0.1	<0.05	3	0.8	<0.2
11KENOJR032	Soll	23	0.55	211	0.028	2	1.10	0.009	0.10	<0.1	0.08	3.0	0.1	<0.05	3	0.6	<0.2
REP 11KENOJR032	QC	22	0.55	216	0.026	1	1.10	0.011	0.09	<0.1	0.08	2.9	0.1	<0.05	3	0.6	<0.2
11KENOJR039	Soli	24	0.44	258	0.019	1	1.28	0.007	0.05	0.1	0.03	2.9	<0.1	<0.05	3	<0.5	<0.2
REP 11KENOJR039	QC C	25	0.44	260	0.020	4	1.33	0.007	0.05	0.1	0.03	2.8	0.1	<0.05	3	<0.5	<0.2
11KENOJR055	Soll	17	0.28	268	0.009	<	0.99	0.006	0.02	0.2	0.02	2.0	<0.1	<0.05	4	<0.5	<0.2
REP 11KENOJR055	QC	18	0.30	270	0.011	4	1.04	0.004	0.02	0.1	0.03	1.9	<0.1	<0.05	4	<0.5	<0.2
11KENOJR079	Soll	23	0.45	192	0.035	1	0.98	0.009	0.06	0.2	0.07	3.1	0.1	<0.05	3	0.9	<0.2
REP 11KENOJR079	QC	22	0.45	184	0.035	1	0.95	0.009	0.06	0.2	0.07	3.1	<0.1	<0.05	3	0.8	<0.2
11KENODR009	Soll	29	0.49	219	0.029	2	1.55	0.009	0.05	0.2	0.08	3.3	0.1	<0.05	4	0.9	<0.2
REP 11KENODR009	QC	29	0.50	225	0.028	<	1.55	0.009	0.05	0.3	0.07	3.2	0.1	<0.05	4	0.9	<0.2
11KENODR023	Soll	21	0.44	182	0.025	2	0.94	0.006	0.04	0.1	0.06	2.3	<0.1	<0.05	3	0.6	<0.2
REP 11KENODR023	QC C	21	0.42	174	0.022	4	0.87	0.007	0.03	0.1	0.06	2.2	<0.1	<0.05	3	0.5	<0.2
11KENODR038	Soll	20	0.33	209	0.018	<	1.18	0.005	0.03	0.1	0.04	1.8	0.1	<0.05	4	<0.5	<0.2
REP 11KENODR038	QC	20	0.33	213	0.016	<1	1.19	0.005	0.03	0.1	0.02	1.8	0.1	<0.05	4	<0.5	<0.2
11KENODR055	Soll	22	0.41	284	0.017	1	1.04	0.007	0.04	0.1	0.06	2.6	<0.1	<0.05	3	0.5	<0.2
REP 11KENODR055	QC	20	0.41	282	0.016	1	1.04	0.007	0.04	0.1	0.07	2.4	<0.1	<0.05	3	0.6	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

McConnell

December 05, 2011

Project:

Report Date:

QUALITY CO	ONTROL	REP	OR	Γ												WF	1111	0018	302.	3	
		1DX16	1DX																		
		Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	BI	v	Ca	P	
		ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	PP							
		0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	
11KENODR080	Soll	1.3	29.2	16.7	76	0.2	24.9	10.3	331	2.47	12.2	0.5	3.9	26	0.2	0.8	0.2	17	0.51	0.078	1
REP 11KENODR080	QC	1.3	28.3	16.7	76	0.2	25.1	10.3	327	2.50	12.1	2.4	3.7	27	0.1	0.8	0.3	15	0.50	0.074	1
11KENOMA006	Soll	1.5	20.9	11.4	48	0.3	20,4	12.2	656	2.18	9.0	⊲0.5	0.9	58	0.6	0.7	0.2	10	1.38	0.101	
REP 11KENOMA006	QC	1.5	21.5	10.9	50	0.3	21.0	11.7	658	2.17	8.8	0.6	1.1	59	0.6	0.6	0.2	12	1.40	0.101	
11KENOMA012	Soll	1.0	15.1	7.9	64	0.2	14.8	5.9	289	1.36	5.3	2.2	1.1	97	0.7	0.6	0.2	16	1.95	0.062	
REP 11KENOMA012	QC	1.0	16.5	8.7	68	0.1	16.1	6.0	299	1.43	5.6	<0.5	1.4	107	0.7	0.7	0.1	18	2.00	0.068	
11KENOMA032	Soll	1.9	64.7	20.5	125	0.3	44.7	18.0	552	3.57	49.6	4.8	5.3	23	0.5	1.9	0.4	32	0.43	0.096	1
REP 11KENOMA032	QC.	2.0	65.5	20.5	126	0.3	47.0	17.9	556	3.58	50.2	5.0	5.3	23	0.6	1.9	0.4	32	0.43	0.100	1
Reference Materials																					
STD DS8	Standard	12.8	105.2	118.6	310	1.8	37.0	7.6	624	2.47	24.8	113.8	6.5	70	2.3	5.3	6.5	43	0.66	0.076	1
STD DS8	Standard	13.8	116.0	126.3	319	1.9	38.2	8.0	611	2.47	26.6	121.8	6.7	69	2.5	6.0	6.9	43	0.71	0.082	1
STD DS8	Standard	13.4	109.5	117.0	294	1.7	38.0	7.6	620	2.52	25.3	114.4	6.9	67	2.6	5.5	6.2	44	0.67	0.082	1
STD DS8	Standard	13.6	109.1	125.3	314	1.7	39.0	7.7	612	2.43	25.0	116.6	7.5	79	2,4	6.3	7.5	44	0.68	0.077	1
STD DS8	Standard	14.6	118.0	132.0	333	1.8	41.5	8.0	633	2.57	25.0	119.3	7.3	69	2.3	5.6	6.3	45	0.73	0.084	1
STD DS8	Standard	13.4	120.5	123.2	316	1.8	40.8	7.9	606	2.48	25.1	118.8	7.0	64	2.4	6.1	6.9	46	0.67	0.076	1
STD DS8	Standard	13.4	112.1	127.3	297	1.7	37.6	7.5	573	2.33	24.2	109.6	6.8	67	2.4	5.7	7.1	41	0.67	0.084	1
STD DS8	Standard	13.7	119.3	128.2	321	1.9	41.1	8.0	629	2.56	25.0	113.0	6.8	71	2.7	5.7	7.0	46	0.70	0.079	1
STD DS8	Standard	13.9	108.8	120.8	296	1.7	37.3	7.4	593	2.38	23.4	104.4	7.0	69	1.9	5.0	6.7	45	0.68	0.072	1
STD DS8 Expected		13.44	110	123	312	1.69	38.1	7.5	615	2.46	26	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08	14
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<	<0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	•
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	⊲0.1	<	⊲0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	⊲0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	⊲0.1	<	<0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	•
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	⊲0.1	<	⊲0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	⊲0.1	<	⊲0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	⊲0.1	<	⊲0.1	⊲0.1	<0.1	<2	<0.01	< 0.001	
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	⊲0.1	<1	⊲0.1	⊲01	<0.1	<2	<0.01	< 0.001	-

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	Client:	Golder 11th Floor Vancouver
ACTICLE ACTICL	Project	McConnel
1020 Cordova St. East Vancouver BC V6A 4A3 Canada	Report Date:	December
Phone (604) 253-3158 Fax (604) 253-1716	-	

QUALITY CONTROL REPORT

n Predator Canada Corp. r, 888 Dunsmuir Street er BC V6C 3K4 Canada

Project:	McConnell
Report Date:	December 05, 2011

Page:

2 of 2 Part 2

WHI11001802.3

		10316	10316	10316	10316	10316	10316	10316	10316	10316	10316	10216	10316	10719	10316	10316	10716
		Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	т	8	Ga	3e	Те
		ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENODR080	Soli	22	0.44	281	0.021	<	1.24	0.007	0.04	0.3	0.07	2.8	<0.1	<0.05	3	1.0	<0.2
REP 11KENODR080	QC	22	0.44	285	0.022	4	1.25	0.007	0.04	0.2	0.08	2.9	<0.1	<0.05	4	0.6	<0.2
11KENOMA005	Soli	16	0.32	462	0.011	4	0.92	0.007	0.02	0.1	0.07	1.7	<0.1	0.08	3	0.9	<0.2
REP 11KENOMA006	QC	16	0.32	452	0.011	<	0.91	0.008	0.03	0.2	0.08	1.9	<0.1	0.09	2	0.8	<0.2
11KENOMA012	Soll	12	0.37	227	0.013	3	0.52	0.006	0.02	0.1	0.05	1.3	<0.1	0.12	1	0.8	<0.2
REP 11KENOMA012	QC	13	0.37	235	0.016	4	0.56	0.007	0.03	0.1	0.06	1.5	<0.1	0.13	2	0.7	<0.2
11KENOMA032	Soll	23	0.47	209	0.015	1	1.03	0.007	0.07	0.2	0.08	3.3	<0.1	<0.05	3	0.8	<0.2
REP 11KENOMA032	QC	24	0.47	206	0.015	1	1.03	0.006	0.06	0.2	0.09	3.4	<0.1	<0.05	3	0.7	<0.2
Reference Materials																	
STD DS8	Standard	121	0.60	285	0.122	3	0.92	0.100	0.42	3.1	0.20	2.6	5.4	0.13	5	5.2	5.4
STD DS8	Standard	118	0.61	291	0.131	3	0.94	0.095	0.42	3.1	0.21	2.4	5.5	0.18	4	4.3	4.9
STD DS8	Standard	120	0.61	281	0.123	2	0.97	0.109	0.42	3.1	0.19	3.4	5.2	0.18	5	5.6	4.9
STD DS8	Standard	116	0.62	276	0.117	3	0.97	0.108	0.43	2.8	0.19	2.6	5.3	0.14	- 4	4.8	5.2
STD DS8	Standard	127	0.64	277	0.125	3	0.96	0.107	0.43	2.9	0.18	2.9	5.7	0.12	5	5.4	5.2
STD DS8	Standard	128	0.60	268	0.124	2	0.89	0.092	0.41	3.1	0.20	2.0	5.4	0.18	5	5.2	5.4
STD DS8	Standard	118	0.58	274	0.118	3	0.93	0.105	0.42	3.1	0.20	3.4	5.6	0.18	5	4.7	5.3
STD DS8	Standard	126	0.64	288	0.124	2	0.99	0.131	0.45	2.8	0.19	2.9	5.6	0.14	5	5.7	4.8
STD DS8	Standard	110	0.59	267	0.117	2	0.93	0.096	0.40	2.7	0.19	2.1	5.2	0.06	5	5.0	4.6
STD DS8 Expected		115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	0.192	2.3	5.4	0.1679	4.7	5.23	5
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2

This report supermedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

		Client:	Gol 11th F Vance
ACME LADS	Acme Analytical Laboratories (Vancouver) Ltd.	Submitted By:	M. Bu
1020 Cordova St. East Vancouver BC V6A 4/	A3 Canada	Receiving Lab:	Cana
		Received:	Octob
	www.acmelab.com	Report Date:	Decer

Iden Predator Canada Corp. Floor, 888 Dunsmuir Street ouver BC V6C 3K4 Canada

WHI11001803.2

Test

15

Wat (a)

Report

Status

Completed

Lab

WHI

WHI

VAN

unke da-Whitehorse ber 24, 2011 Report Date: December 05, 2011 Page: 1 of 4

Dry at 60C sieve 100g to -80 mesh

1:1:1 Aqua Regia digestion ICP-MS analysis

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Dry at 60C

Number of Code Description

Samples

60

60

60

ADDITIONAL COMMENTS Version 2: Project McConell Included.

CERTIFICATE OF ANALYSIS

OIL IF MADE		IN ISON	ALC: NO. OF THE OWNER.
	1014		
	300		

Project: McConnell None_given Shipment ID: P.O. Number Number of Samples: 61

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
DISP-RJT-SOIL	Immediate Disposal of Soli Reject

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:	Golden Predator Canada Corp.
	11th Floor, 888 Dunsmuir Street
	Vancouver BC V6C 3K4
	Canada

CC: Andrew Caldwell Jack Cote Gilles Dessureau

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acres assumes the fiabilities for actual cost of analysis only. Results are solutioned and should be used for reference only. "In additional the involves the markficial result could not be provided due to unusually high levels of interference from other elements.

Method

Dry at 60C

Code

3380

1DX2

Client:

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 4

McConnell

December 05, 2011

Part 1

CERTIFI	CATE OF	FAN	IALY	′SIS													W	HI11	001	803	.2	
		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca	P	La
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOMA059	Boll		1.8	68.1	24.1	131	0.3	47.1	19.1	495	3.95	41.8	7.0	4.4	28	0.5	2.1	0.5	26	1.12	0.102	13
11KENOMA060	Boll		1.9	97.6	27.1	136	0.3	55.5	23.6	525	5.11	73.6	10.4	5.8	21	0.4	2.6	0.5	30	0.55	0.072	18
11KENOMA061	Boll		2.0	94.0	27.4	148	0.4	52.7	25.0	580	4.69	61.6	7.8	5.7	29	0.6	2.5	0.6	31	1.10	0.096	17
11KENOMA062	Boll		1.7	77.5	25.5	115	0.3	42.7	19.3	470	4.13	56.8	7.8	3.9	24	0.5	1.9	0.4	29	0.72	0.073	13
11KENOMA063	Boll		1.2	22.4	14.5	55	⊲.1	19.6	8,4	169	2.63	26.3	4.0	3.7	9	<0.1	0.9	0.3	38	0.10	0.016	16
11KENOMA064	Boll		0.9	52.5	14.7	81	0.3	31.2	11.3	412	2.50	33.0	5.1	2.8	44	0.4	1.1	0.4	27	1.30	0.069	15
11KENOMA065	Boll		1.8	14.4	15.6	59	⊲0.1	15.8	8.3	208	2.62	27.A	1.3	4.1	14	0.2	0.7	0.2	33	0.16	0.028	17
11KENOMA066	Boll		1.4	48.9	16.2	94	0.3	30,4	12.4	552	2.99	37.0	4.5	3.9	42	0.5	1.2	0.4	32	1.05	0.089	29
11KENOMA067	Boll		1.5	46.3	15.8	86	0.2	27.9	10.1	313	2.54	31.3	4.1	3.2	44	0.5	1.1	0.3	29	1.15	0.064	16
11KENOMA068	Boll		1.4	44,4	19.7	97	0.3	28.7	12.4	511	2.94	46.2	6.9	5.0	37	0.3	1.2	0.4	30	0.79	0.076	27
11KENOMA069	Boll		1.2	34.2	17.5	104	0.3	28.5	8.9	259	2.13	23.2	4.6	3.8	32	0.7	1.2	0.2	32	0.64	0.088	15
11KENOMA070	Boll		1.3	19.4	12.0	80	0.2	18.5	6.4	201	1.47	7.5	2.8	3.7	34	0.5	0.9	0.2	28	0.61	0.085	14
11KENOMA071	Boll		1.4	33.0	12.9	86	0.2	26.3	10.2	517	2.23	13.1	4,4	3.1	32	1.2	1.0	0.2	29	0.59	0.090	13
11KENOMA072	Boll		1.2	28.8	18.2	65	0.2	25.7	9.6	400	2.41	12.6	3.5	4.1	24	0.2	0.8	0.2	39	0.37	0.068	16
11KENOMA073	Boll		LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	L.N.R.	LN.R.	LNR.	L.N.R.	L.N.R.	LN.R
11KENOMA074	Boll		1.6	31.6	15.6	72	0.2	27.0	10.5	410	2.32	12.9	4.6	3.9	40	0.3	0.8	0.2	35	0.59	0.075	15
11KENOMA075	Boll		1.5	19.6	10.4	64	0.2	16.8	6.7	664	1.90	11.3	2.5	1.1	64	1.1	0.7	0.2	21	1.46	0.076	7
11KENOMA076	Boll		4.9	14.4	8.0	50	⊲0.1	12.3	42	957	0.94	2.0	1.3	0.4	319	1.5	0.7	0.1	3	3.26	0.067	2
11KENOMA077	Boll		2.4	60.7	28.2	133	0.5	43.2	15.0	439	3.62	36.3	6.3	5.7	16	0.7	2.1	0.3	30	0.28	0.082	19
11KENOMA078	Boll		2.3	49.0	25.6	118	0.4	40.4	13.8	484	3.20	26.5	6.0	6.5	22	0.7	1.9	0.2	32	0.48	0.086	20
11KENOMA079	Boll		1.3	39.8	16.3	88	0.3	30.5	10.3	441	2.29	14.1	3.7	3.6	41	0.6	1.2	0.2	27	1.06	0.080	13
11KENOMA080	Boll		1.2	42.6	20.3	84	0.4	26.7	10.5	213	2.49	14.5	11.7	5.2	29	0.3	2.7	0.2	33	0.56	0.081	18
11KENOMAD81	Boll		2.0	45.7	35.1	112	0.7	36.5	15.9	409	3.81	38.0	11.2	6.6	31	0.6	2.0	0.3	29	0.65	0.096	23
11KENOMA082	Boll		2.1	34.6	21.5	85	0.1	30.2	14.5	402	3.12	23.7	9.2	4.7	17	0.2	1.4	0.2	38	0.25	0.056	17
11KENOMA083	Boll		1.6	40.7	20.0	81	0.3	32.9	12.2	335	2.97	23.7	2.9	4.6	23	0.2	1.3	0.4	41	0.56	0.047	18
11KENOMA084	Boll		2.2	54.4	27.3	132	0.4	41.3	16.1	400	3.75	36.2	4.5	5.1	22	0.6	2.0	0.3	34	0.49	0.103	17
11KENOMA085	Boll		1.3	46.3	15.8	81	0.1	30.7	12.3	394	2.77	17.9	2.9	4.7	13	0.1	1.1	0.2	36	0.18	0.055	21
11KENOMA086	Boll		1.0	28.1	14.9	74	0.2	23.9	9.5	460	2.37	12.0	3.9	3.7	22	0.3	0.7	0.2	34	0.42	0.074	15
11KENOMA087	Boll		1.3	42.5	18.7	86	0.3	35.9	13.5	511	2.87	16.5	3.2	4.4	26	0.3	1.0	0.3	38	0.53	0.084	17
11KENOMA088	Boll		1.2	27.0	16.1	72	0.1	23.4	10.7	339	2.46	13.9	4.0	4.6	20	0.2	0.7	0.2	40	0.34	0.073	19

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

Part 2

Project:	McConnell
Report Date:	December 05, 2011

2 of 4

Page:

WHI11001803.2

		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
		Analyte	Cr	Mg	Ba	т	в	AI	Na	ĸ	w	Hg	80	т	8	Ga	3e	Те
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOMA059	Boll		19	0.70	181	0.014	2	0.86	0.007	0.06	0.1	0.07	2.7	<0.1	0.11	3	0.8	<0.2
11KENOMA060	Bol		22	0.56	216	0.015	2	0.98	0.009	0.08	0.1	0.10	4.0	0.1	<0.05	3	0.9	<0.2
11KENOMA051	Boll		21	0.77	176	0.018	2	0.93	0.010	0.11	0.1	0.09	3.5	0.1	<0.05	3	0.7	<0.2
11KENOMA062	Boll		19	0.50	212	0.011	<1	0.91	0.006	0.04	0.1	0.07	2.7	<0.1	<0.05	3	0.9	<0.2
11KENOMA063	Bol		20	0.36	130	0.022	<1	1.23	0.006	0.04	0.1	<0.01	1.9	0.1	<0.05	4	<0.5	<0.2
11KENOMA054	Boll		18	0.46	328	0.019	3	0.96	0.008	0.07	0.2	0.06	2.5	<0.1	0.09	3	0.9	<0.2
11KENOMA065	Bol		18	0.38	169	0.022	2	1.12	0.006	0.07	0.1	0.01	1.5	0.1	<0.05	4	<0.5	<0.2
11KENOMA066	Bol		20	0.50	334	0.019	2	1.18	0.009	0.08	⊲0.1	0.05	2.8	0.1	0.08	4	0.7	<0.2
11KENOMA067	Boll		19	0.44	274	0.019	2	0.94	0.009	0.08	0.1	0.06	2.4	0.1	0.10	3	0.5	<0.2
11KENOMA068	Boll		20	0.47	269	0.023	2	1.12	0.009	0.09	0.1	0.06	2.6	0.2	<0.05	4	0.7	<0.2
11KENOMA069	Bol		21	0.42	199	0.029	2	0.96	0.012	0.07	0.5	0.06	2.6	0.1	0.06	3	1.4	<0.2
11KENOMA070	Bol		18	0.36	163	0.034	2	0.81	0.011	0.05	0.5	0.04	2.0	<0.1	0.13	2	4.9	<0.2
11KENOMA071	Boll		17	0.36	388	0.021	1	0.85	0.009	0.04	0.1	0.05	2.3	<0.1	0.05	2	1.2	<0.2
11KENOMA072	Boll		23	0.40	289	0.029	1	1.07	0.009	0.04	0.2	0.05	2.8	<0.1	<0.05	3	<0.5	<0.2
11KENOMA073	Boll		L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.	LNR.	L.N.R.	LN.R.	L.N.R.	L.N.R.
11KENOMA074	Bol		21	0.40	288	0.029	1	0.98	0.010	0.04	0.2	0.06	2.6	<0.1	<0.05	3	0.7	<0.2
11KENOMA075	Boll		15	0.31	285	0.018	2	0.67	0.009	0.03	<0.1	0.05	1.7	<0.1	0.28	2	1.4	<0.2
11KENOMA076	Bol		8	0.35	297	0.007	11	0.36	0.010	0.03	⊲0.1	0.05	0.7	<0.1	0.60	<1	2.7	<0.2
11KENOMA077	Boll		23	0.42	145	0.026	<1	0.98	0.010	0.05	0.1	0.16	2.9	0.1	<0.05	3	1.0	<0.2
11KENOMA078	Boll		21	0.48	174	0.027	1	1.09	0.009	0.09	1.2	0.09	3.0	0.1	<0.05	3	0.9	<0.2
11KENOMA079	Bol		18	0.44	272	0.025	2	0.83	0.008	0.05	0.3	0.07	2.4	<0.1	0.09	3	1.1	<0.2
11KENOMA080	Boll		21	0.47	208	0.034	<1	1.05	0.009	0.07	0.2	0.07	3.0	<0.1	<0.05	3	0.6	<0.2
11KENOMAD81	Boll		19	0.44	151	0.029	1	1.13	0.010	0.07	0.3	0.10	3.8	0.1	<0.05	3	1.0	<0.2
11KENOMA082	Boll		22	0.36	210	0.020	<1	1.30	0.005	0.04	0.1	0.02	2.3	0.1	<0.05	4	0.6	<0.2
11KENOMA083	Bol		22	0.45	202	0.022	<1	1.24	0.007	0.05	0.2	0.05	3.2	0.1	<0.05	4	0.8	<0.2
11KENOMAB84	Boll		21	0.48	178	0.025	1	1.06	0.008	0.05	0.1	0.09	2.9	0.1	<0.05	3	1.0	<0.2
11KENOMA085	Boll		23	0.41	203	0.026	<1	1.13	0.007	0.04	0.1	0.08	3.8	<0.1	<0.05	3	0.5	<0.2
11KENOMA086	Bol		21	0.44	267	0.022	<1	1.13	0.008	0.04	0.1	0.05	2.5	0.1	<0.05	4	<0.5	<0.2
11KENOMA087	Boll		24	0.46	364	0.024	1	1.19	0.009	0.05	0.1	0.06	3.3	<0.1	<0.05	4	0.7	<0.2
11KENOMAD88	Boll		23	0.44	256	0.026	<1	1.24	0.008	0.04	0.1	0.04	2.5	0.1	<0.05	4	<0.5	<0.2

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client:

Project:

Page:

Report Date:

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

OF DIFICATE OF ANALYOIC

3 of 4

McConnell

December 05, 2011

Part 1

CERTIFI	CERTIFICATE OF ANALYSIS WHI11001803.2																					
		Method	1DX16																			
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca	P	La
		Unit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1
11KENOMA089	Boll		2.4	66.9	29.6	152	0.4	55.1	24.1	503	4.46	44.9	5.9	6.0	24	0.7	2.2	0.4	30	0.54	0.104	17
11KENOMA090	Boll		2.3	65.2	27.0	142	0.4	53.0	21.6	534	3.92	35.0	17.4	5.5	31	0.8	2.0	0.3	27	0.83	0.107	17
11KENOMA091	Boll		1.6	54.0	19.0	93	0.3	43.4	17.7	852	2.91	20.4	5.0	3.9	35	0.5	1.4	0.3	25	1.03	0.083	15
11KENOJB001	Boll		1.3	18.6	101.9	178	1.4	20,4	10.0	422	2.77	316.8	207.6	10.0	21	0.5	7.5	76.7	35	0.28	0.071	33
11KENOJB002	Boll		1.1	30.9	17.7	98	0.2	21.0	7.4	307	2.06	97.1	8.7	3.8	44	0.6	2.1	1.4	33	0.87	0.066	19
11KENOJB003	Boll		1.3	17.6	10.9	65	0.1	16.0	7.6	200	1.89	84.4	8.2	3.5	32	0.3	1.0	0.5	27	0.57	0.074	15
11KENOJB004	Boll		1.4	28.0	15.7	77	0.1	25.7	7.3	188	2.39	16.5	4.6	4.5	17	0.2	1.0	0.2	33	0.27	0.082	16
11KENOJB005	Boll		0.8	22.4	14.2	57	⊲0.1	21.6	7.7	223	2.23	10.5	3.4	3.5	12	<0.1	0.6	0.2	36	0.16	0.051	14
11KENOJB006	Boll		2.3	43.4	23.6	116	0.4	36.5	11.5	441	3.29	31.1	6.8	7.3	23	0.5	1.7	0.3	30	0.57	0.102	17
11KENOJB007	Boll		0.9	22.3	13.3	74	0.2	20.5	8.8	275	2.14	9.8	1.8	2.9	42	0.5	0.7	0.2	31	0.77	0.077	10
11KENOJB008	Boll		1.4	35.8	18.5	92	0.3	26.6	10.8	354	2.65	19.9	8.8	5.5	24	0.4	1.0	0.2	31	0.40	0.090	18
11KENOJB009	Boll		2.1	54.1	24.9	109	0.1	33.1	15.6	437	3.35	39.2	5.0	5.8	11	0.5	2.1	0.3	31	0.14	0.063	16
11KENOJB010	Boll		1.2	30.8	14.2	77	0.2	24.7	8.4	323	2.17	16.6	2.4	4.0	30	0.4	1.0	0.2	30	1.04	0.082	15
11KENOJB011	Boll		0.9	27.5	13.4	56	0.2	21.5	7.7	249	2.28	22.5	3.1	4.5	20	0.1	0.8	0.2	35	0.38	0.047	16
11KENOJB012	Boll		1.6	34.2	24.3	81	0.4	26.4	11.6	637	2,45	20.3	3.2	3.4	55	0.5	1.2	0.3	28	1.12	0.069	14
11KENOJB013	Boll		1.4	45.6	18.7	101	0.3	32.6	11.5	481	2.48	18.4	3.2	42	33	0.8	1.3	0.2	28	0.74	0.092	13
11KENOJB014	Boll		2.0	45.9	23.2	102	0.4	31.8	12.4	457	2.71	28.1	4.1	3.9	68	0.9	1.6	0.4	26	1.09	0.098	14
11KENOJB015	Boll		1.4	40.4	19.6	87	0.3	28.2	11.0	339	2.76	24.4	12.9	3.8	26	0.3	1.3	0.3	30	0.56	0.082	16
11KENOJB016	Boll		2.0	52.2	32.2	88	0.1	37.5	15.0	242	3.69	32.6	4.3	6.5	7	0.3	1.7	0.3	37	0.08	0.033	17
11KENOJB017	Boll		1.2	41.3	15.0	65	0.2	30.9	10.6	384	2.39	21.1	2.7	2.5	75	0.4	1.1	0.2	28	1.22	0.068	13
11KENOJB018	Boll		1.0	35.7	14.2	71	0.2	28.5	9.9	389	2.34	24.2	2.9	3.6	26	0.3	1.0	0.2	30	0.46	0.078	13
11KENOJB019	Boll		1.4	43.3	17.9	77	0.2	33.6	11.6	291	2.71	20.4	3.1	6.6	12	0.1	1.0	0.3	32	0.19	0.052	17
11KENOJB020	Boll		1.5	37.1	17.7	86	0.2	33.8	13.5	233	2.98	23.2	6.1	4.3	16	0.3	1.2	0.3	37	0.37	0.040	15
11KENOJB021	Boll		1.3	29.5	18.9	91	0.2	27.8	11.0	392	2.76	19.3	5.9	4.1	23	0.1	1.1	0.2	35	0.37	0.087	14
11KENOJB022	Boll		1.3	46.7	21.3	85	0.4	35.5	12.9	417	2.79	23.3	117.2	4.0	33	0.4	1.3	0.4	28	0.83	0.073	16
11KENOJB023	Boll		0.8	29.9	16.3	72	0.2	23.2	11.1	327	2.21	12.9	2.6	2.7	37	0.5	0.8	0.2	26	0.89	0.077	11
11KENOJB024	Boll		0.8	32.9	15.4	78	0.3	26.1	10.0	492	2.38	12.8	1.9	2.8	27	0.6	0.8	0.2	34	0.77	0.079	12
11KENOJB025	Boll		2.2	73.3	37.5	152	0.4	57.1	26.9	533	5.00	60.5	16.8	7.0	16	0.5	2.8	0.5	28	0.34	0.081	21
11KENOMA068-B	Boll		1.4	24.7	13.9	71	0.3	17.6	6.1	203	1.53	36.2	3.1	2.2	54	0.5	0.9	0.2	24	0.92	0.073	10
11KENOMA074-B	Boll		3.1	41.3	18.2	112	0.3	34.8	11.2	298	2.79	29.5	7.6	5.3	23	0.4	1.9	0.3	34	0.32	0.071	13

This report supervises an improvement of the important with this file number dated prior to the date on this certificate. Signature indicates final approval; pailminary reports are unsigned and should be used for reference only.

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

CERTIFICATE OF ANALYSIS

Client: Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V5C 3K4 Canada

Part 2

Project:	McConnell
Report Date:	December 05, 2011

3 of 4

Page:

WHI11001803.2

.....

		Method	1DX16															
		Analyte	Cr	Mg	Ba	т	в	A	Na	ĸ	w	Hg	80	т	8	Ga	80	Те
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
11KENOMA089	Boll		21	0.52	155	0.024	<1	1.01	0.009	0.05	0.2	0.07	3.1	0.1	0.06	3	1.2	<0.2
11KENOMA090	Boll		21	0.60	139	0.021	<1	0.91	0.008	0.05	0.1	0.09	2.8	<0.1	0.07	3	1.1	<0.2
11KENOMA091	Boll		18	0.45	216	0.025	1	0.91	0.008	0.04	0.1	0.07	2.5	<0.1	0.12	3	0.9	<0.2
11KENOJB001	Boll		20	0.37	166	0.023	<1	1.28	0.008	0.04	0.9	0.04	2.8	0.1	<0.05	4	<0.5	<0.2
11KENOJB002	Boll		18	0.37	275	0.026	2	0.94	0.010	0.05	0.5	0.06	2.7	<0.1	0.14	3	0.9	<0.2
11KENOJB003	Boll		15	0.30	196	0.030	<1	0.76	0.009	0.04	0.3	0.05	1.9	<0.1	0.08	2	0.5	<0.2
11KENOJB004	Boll		21	0.39	136	0.026	<1	1.08	0.006	0.04	0.2	0.05	2.0	0.1	<0.05	3	0.5	<0.2
11KENOJB005	Boll		22	0.38	214	0.018	1	1.13	0.004	0.03	0.1	0.03	2.2	<0.1	<0.05	3	0.6	<0.2
11KENOJB006	Boll		19	0.54	170	0.033	2	1.00	0.011	0.07	0.5	0.07	3.5	0.1	<0.05	3	1.2	<0.2
11KENOJB007	Boll		18	0.40	301	0.021	2	0.90	0.008	0.04	0.2	0.05	2.3	<0.1	0.06	3	1.0	<0.2
11KENOJB008	Boll		19	0.41	192	0.026	2	1.05	0.007	0.06	0.4	0.06	3.0	0.1	<0.05	3	0.9	<0.2
11KENOJB009	Boll		18	0.32	104	0.025	<1	1.04	0.005	0.04	0.7	0.04	2.5	<0.1	<0.05	3	1.2	<0.2
11KENOJB010	Boll		17	0.58	190	0.024	<1	0.84	0.007	0.05	0.3	0.06	2.6	<0.1	<0.05	3	0.7	<0.2
11KENOJB011	Boll		20	0.37	290	0.022	1	1.07	0.007	0.04	0.2	0.04	2.8	<0.1	<0.05	3	0.7	<0.2
11KENOJB012	Boll		17	0.40	245	0.027	1	0.83	0.007	0.05	0.2	0.08	2.5	<0.1	0.05	3	1.2	<0.2
11KENOJB013	Boll		18	0.43	204	0.026	1	0.81	0.007	0.05	0.2	0.07	2.6	<0.1	<0.05	3	0.9	<0.2
11KENOJB014	Boll		17	0.46	214	0.027	3	0.89	0.008	0.09	0.1	0.07	2.6	0.1	0.06	3	1.5	<0.2
11KENOJB015	Boll		18	0.43	229	0.025	1	0.98	0.007	0.06	0.6	0.06	2.7	<0.1	<0.05	3	0.9	<0.2
11KENOJB016	Boll		23	0.38	139	0.019	<1	1.42	0.005	0.04	0.1	0.04	3.5	<0.1	<0.05	3	1.2	<0.2
11KENOJB017	Boll		17	0.44	248	0.017	2	0.90	0.005	0.05	0.2	0.06	2.4	<0.1	0.05	3	1.9	<0.2
11KENOJB018	Boll		17	0.42	216	0.025	1	0.83	0.009	0.04	0.2	0.04	2.3	<0.1	<0.05	2	1.0	<0.2
11KENOJB019	Boll		19	0.40	167	0.031	<1	1.13	0.005	0.05	0.1	0.03	3.1	0.1	<0.05	3	0.5	<0.2
11KENOJB020	Boll		21	0.43	177	0.014	<1	1.31	0.005	0.04	0.2	0.03	2.6	0.1	<0.05	4	0.7	<0.2
11KENOJB021	Boll		22	0.45	279	0.023	1	1.03	0.007	0.04	0.2	0.05	2.9	<0.1	<0.05	3	0.8	<0.2
11KENOJB022	Boll		18	0.47	257	0.023	1	1.02	0.007	0.05	0.2	0.07	2.6	0.1	<0.05	3	1.5	<0.2
11KENOJB023	Boll		17	0.40	240	0.019	1	0.81	0.006	0.04	0.1	0.06	2.2	<0.1	0.06	3	1.0	<0.2
11KENOJB024	Boll		21	0.45	448	0.021	1	1.02	0.007	0.04	0.2	0.05	2.7	<0.1	<0.05	3	0.8	<0.2
11KENOJB025	Boll		18	0.50	121	0.035	1	1.07	0.007	0.06	0.2	0.09	3.6	0.2	0.06	3	1.2	<0.2
11KENOMAD68-B	Boll		16	0.34	174	0.020	1	0.75	0.008	0.04	0.4	0.06	2.0	<0.1	0.13	2	1.0	<0.2
11KENOMA074-B	Boll		21	0.41	159	0.026	<1	0.99	0.009	0.05	0.5	0.04	2.4	0.1	<0.05	3	1.2	<0.2

This report supersides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	Ac	mal	٦ł	~									Clier	nt:	GO 11th Vanc	Iden F Floor, 88 ouver B	Predat 8 Dunsm C V6C 3R	OF Car uir Street (4 Canad	nada (a	Corp.			1
•	1020 Cordor Phone (604)	va St. East Vanco 253-3158 Fax (6	Ouver BC 204) 253	V6A 4 -1716	Acme A3 Car	e Analy 1ada	tical Lai	borator	ies (Var	ncouve	r) Ltd.		Projec Repor	t: t Date:	McCr Dece	mber 05,	, 2011						Ì
							**	w.acan	erab.co				Page:		4 of 4		Part 1						
C	ERTIFICA		IALY	′SIS													W	HI11	001	803	.2		
		Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	
		Analyte	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca	P	La	
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ppm	
		MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	
118	ENODR075-B	Boll	1.8	42.8	16.2	86	04	32.5	10.6	280	2.26	16.8	94	30	35	0.9	12	0.2	29	0.83	0.083	12	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only

Acmol	٦ŀ	~									Clier	nt:	Gol 11th Vanc	Iden F Floor, 88 couver B	Predat 38 Dunsm IC V6C 31	OF Ca uir Stree K4 Cana	anada Corp. et da
1020 Cordova St. East Vance Phone (804) 253-3158 Fax (6	Oliver BC 04) 253	V6A 4	Acme A3 Car	e Analy nada	tical La	borator	ies (Va	ncouve	r) Ltd.		Projec Repor	t: t Date:	McCa	onnell mber 05	i, 2011		
					ww	w.acm	elab.co	m									
											Page:		4 of 4	4	Part 2		
CERTIFICATE OF AN	JALY	'SIS													W	HI1	1001803.2
Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	
Analyte	Cr	Mo	Ba	т	в	A	Na	к	w	Hg	80	т	8	Ga	80	Те	•
Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	4
MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2	4
11KEN000076-0 268														-			

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

QUALITY CONTROL REPORT

Soll

Pulp Duplicates 11KENOMA069 Method

Analyte

Unit

MDL

1DX16

Mo

ppm

0.1

Cu

DOM

0.1

1.2 34.2 17.5

Pb

0.1

DOM

Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada

> 1DX16 1DX16

> > P

%

DDO

15

Ca

46

Part 1 Page: 1 of 1 WHI11001803.2 1DX16 Zn Ag NI Co Mn Fe As Au Th 81 Cd 8b BI v % ppm ppb DOM pom DOM DOM pom DOM DDM DOM DOM DDM DDm 1 0.1 0.1 0.1 1 0.01 0.5 0.6 0.1 1 0.1 0.1 0.1 2 0.01 0.001 104 0.3 28.5 8.9 259 2.13 23.2 4.6 3.8 32 0.7 1.2 0.2 32 0.64 0.088

REP 11KENOMAD69	QC .	1.3	33.2	17.7	106	0.3	28.4	9.0	256	2.14	23.2	7.4	3.9	33	0.7	1.3	0.2	32	0.64	0.090	1
11KENOMA087	Soll	1.3	42.5	18.7	86	0.3	35.9	13.5	511	2.87	16.5	3.2	4,4	26	0.3	1.0	0.3	38	0.53	0.084	1
REP 11KENOMA087	QC	1.2	42.2	18.2	86	0.3	35.5	13.4	502	2.83	16.0	4.9	4.4	26	0.3	1.0	0.3	39	0.51	0.079	1
11KENOJB015	Soll	1.4	40.4	19.6	87	0.3	28.2	11.0	339	2.76	24.4	12.9	3.8	26	0.3	1.3	0.3	30	0.56	0.082	1
REP 11KENOJB015	QC	1.2	39.8	19.5	83	0.3	26.9	10.7	313	2.70	23.8	7.7	3.8	27	0.4	1.2	0.3	29	0.56	0.082	1
Reference Materials																					
STD DS8	Standard	13.4	109.2	125.3	314	1.8	36.9	7.5	602	2.38	23.7	117.9	6.9	67	2.2	5.3	5.7	41	0.67	0.080	1
STD DS8	Standard	12.0	103.8	114.3	286	1.6	34.6	6.8	543	2.26	23.9	106.5	6.1	60	2.3	5.1	6.2	38	0.62	0.078	1
STD DS8 Expected		13.44	110	123	312	1.69	38.1	7.5	615	2.46	26	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08	14.
BLK	Blank	<0.1	<0.1	⊲0.1	<1	<0.1	<0.1	⊲0.1	<1	⊲0.01	⊲0.5	⊲0.5	⊲.1	<	⊲0.1	⊲.1	⊲.1	<2	<0.01	<0.001	<
BLK	Blank	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	⊲0.5	⊲0.1	<	⊲0.1	⊲0.1	⊲0.1	<2	<0.01	<0.001	<

ort supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	Client	Golden Predator Canada Corp. 11th Floor, 888 Dunsmuir Street Vancouver BC V6C 3K4 Canada
Acme Analytical Laboratories (Vancouver) Ltd.	Project	McConnell
1020 Cordova St. East Vancouver BC V6A 4A3 Canada	Report Date:	December 05, 2011
Phone (604) 253-3158 Fax (604) 253-1716		
www.acmelab.com		

QUALITY CONTROL REPORT

WHI11001803.2

1 of 1 Part 2

Page:

	Method	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16	1DX16
	Analyte	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	т	8	Ga	3e	Те
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2
Pulp Duplicates																	
11KENOMAD69	Soli	21	0.42	199	0.029	2	0.96	0.012	0.07	0.5	0.06	2.6	0.1	0.06	3	1.4	<0.2
REP 11KENOMA069	QC C	21	0.44	198	0.028	2	1.00	0.012	0.06	0.6	0.07	2.6	0.1	0.07	3	1.4	<0.2
11KENOMAD87	Soli	24	0.46	364	0.024	1	1.19	0.009	0.05	0.1	0.06	3.3	<0.1	<0.05	4	0.7	<0.2
REP 11KENOMA087	QC	25	0.45	365	0.023	4	1.15	0.009	0.04	0.1	0.06	3.3	<0.1	<0.05	4	0.6	<0.2
11KENOJB015	Soli	18	0.43	229	0.025	1	0.98	0.007	0.06	0.6	0.06	2.7	<0.1	<0.05	3	0.9	<0.2
REP 11KENOJB015	QC C	17	0.43	217	0.023	<	0.96	0.007	0.06	0.7	0.06	2.6	<0.1	<0.05	3	1.2	<0.2
Reference Materials																	
STD DS8	Standard	114	0.59	268	0.120	2	0.91	0.094	0.39	2.8	0.19	2.5	5.4	0.12	5	5.0	4.9
STD DS8	Standard	103	0.56	264	0.101	2	0.83	0.084	0.38	2.8	0.18	2.1	5.0	0.15	4	4.6	3.9
STD DS8 Expected		115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	0.192	2.3	5.4	0.1679	4.7	5.23	5
BLK	Blank	<1	<0.01	<1	<0.001	<	⊲0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
BLK	Blank	<1	<0.01	<1	<0.001	<	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unalgoed and should be used for reference only.

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

McConnell

102

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Client:

Received:

Page:

Report Date:

Procedure Code	Number of Samples	Code Decoription	Test Wat (a)	Report Status	Lab
PRP70-250	102	Crush, spilt and pulverize 250 g rock to 200 mesh			WHI
FA430	102	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
AQ200	102	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
G6Gr	2	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

William Koe-Carson

White Fox SK S0J 3B0 CANADA

WHI14000057.1

Box 387

July 24, 2014

1 of 5

August 13, 2014

Submitted By: William Koe-Carson Receiving Lab: Canada-Whitehorse

SAMPLE DISPOSAL

Number of Samples:

Project: Shipment ID: P.O. Number

CLIENT JOB INFORMATION

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 90 days

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

CANADA

Invoice To: William Koe-Carson Box 387 White Fox SK S0J 3B0

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acre assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** astarkis indicates that an analytical result could not be non-liabilities for actual cost of interference from other elements.

Client: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA Project: McConnell Report Date: August 13, 2014

Part: 1 of 2

WHI14000057.1

2 of 5

Page:

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	Method	WOHT	FA430	A@200	AQ200	AQ200	AQ200	AG200	A@200	A@200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AG200	A@200	AQ200	AQ200
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	
	MDL	0.01	0.005	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.6	0.1	1	0.1	0.1	0.1	2	0.01
14451	Rock	0.59	0.811	0.4	258.8	63.4	36	0.6	1.5	0.8	267	8.87	1768.5	180.4	2.8	10	0.2	4.8	41.2	<2	0.05
14452	Rock	0.77	0.010	0.6	9.2	3.0	54	<0.1	1.9	3.5	832	0.95	1277.0	13.0	16.0	74	0.3	0.8	0.5	<2	2.08
14453	Rock	0.75	0.008	0.2	27.3	1.7	55	<0.1	2.5	3.0	802	2.43	585.5	2.6	13.8	6	0.3	0.3	0.2	<2	0.09
14454	Rock	0.68	<0.005	<0.1	2.9	1.3	10	<0.1	1.4	0.6	327	0.51	80.8	2.0	1.8	10	0.1	0.3	<0.1	<2	0.60
14455	Rock	0.38	<0.005	0.2	5.6	2.5	17	<0.1	5.3	1.8	295	0.29	29.8	1.8	17.2	32	0.8	0.6	0.4	<2	0.85
14456	Rock	1.02	<0.005	0.3	18.6	7.6	34	<0.1	2.3	3.1	563	1.75	397.6	<0.5	15.7	63	⊲0.1	0.6	<0.1	8	1.94
14457	Rock	0.68	<0.005	0.4	1.7	4.2	19	<0.1	2.2	1.4	612	1.27	11.4	0.7	4.4	77	⊲0.1	0.1	<0.1	3	3.46
14458	Rock	0.36	<0.005	0.2	1.6	8.7	11	<0.1	3.3	1.3	291	0.92	7.8	<0.5	5.9	83	0.1	0.2	<0.1	3	2.80
14459	Rock	0.48	<0.005	0.2	1.3	18.0	46	<0.1	2.2	4.1	379	0.92	35.4	0.6	15.4	164	0.1	0.2	<0.1	3	3.27
14460	Rock	0.75	<0.005	0.3	1.0	3.7	16	<0.1	4.0	1.5	1933	2.76	16.0	0.6	6.5	228	0.2	0.2	<0.1	5	11.53
14461	Rock	0.25	0.010	<0.1	1.7	3.5	10	<0.1	2.7	1.5	60	0.30	343.7	20.6	0.7	30	0.2	0.4	0.8	<2	0.55
14462	Rock	1.08	0.012	<0.1	1.4	2.2	10	<0.1	3.2	1.4	2181	2.15	705.6	18.9	22.2	99	0.1	1.1	0.2	<2	3.85
14463	Rock	0.96	<0.005	0.1	2.1	1.6	12	<0.1	2.0	0.9	61	0.39	4.3	<0.5	0.8	6	0.2	0.3	<0.1	8	0.09
14464	Rock	0.47	<0.005	0.1	1.4	1.5	8	<0.1	0.5	0.2	28	0.19	1.1	<0.5	0.6	4	<0.1	0.1	<0.1	<2	0.02
14465	Rock	0.73	<0.005	<0.1	1.4	1.0	7	<0.1	0.5	0.1	69	0.20	3.5	<0.5	0.7	4	0.1	0.2	<0.1	4	0.13
14466	Rock	0.30	<0.005	0.5	1.0	13.1	34	<0.1	2.3	4.7	391	1.92	5.8	<0.5	20.6	51	0.2	0.7	<0.1	4	1.35
14467	Rock	1.08	0.039	0.3	19.1	3.4	120	0.1	2.7	0.9	1000	1.18	123.0	3.6	3.4	78	0.6	0.8	1.5	<2	1.67
14468	Rock	0.53	0.013	0.2	13.3	4.0	100	<0.1	3.0	1.9	369	1.18	418.2	<0.5	6.9	33	0.8	0.5	0.4	<2	0.58
14469	Rock	0.15	<0.005	0.2	2.0	0.9	7	<0.1	1.6	0.3	383	0.56	40.6	<0.5	2.6	20	⊲0.1	0.3	<0.1	<2	0.59
14470	Rock	0.61	0.005	0.5	56.9	4.5	21	<0.1	3.7	3.4	992	2.15	885.5	<0.5	15.2	7	0.3	0.5	0.2	<2	0.12
14471	Rock	0.35	0.013	0.9	218.2	13.9	49	0.4	6.1	5.1	924	5.89	521,4	7.8	12.5	8	0.1	1.4	1.2	3	0.15
14472	Rock	0.51	0.020	0.6	171.0	5.1	22	0.3	5.1	3.0	506	5.40	2314.4	18.7	8.9	10	0.2	2.0	5.3	<2	0.07
14473	Rock	0.61	<0.005	0.1	3.8	1.1	5	<0.1	1.8	0.4	420	0.61	238.5	<0.5	4.5	6	<0.1	0.1	<0.1	<2	0.11
14474	Rock	0.89	>10	2.5	50.2	514.8	8	7.7	19.0	63.3	26	19.64	>10000	35566.1	2.9	23	0.1	214.7	626.1	<2	0.02
14475	Rock	0.78	0.509	0.4	11.2	18.9	22	0.2	7.5	25.6	974	2.13	5111.6	325.8	16.0	9	0.1	3.8	25.0	<2	0.20
14476	Rock	0.58	0.023	0.5	3.5	4.1	12	<0.1	4.7	1.9	1634	2.30	501.3	11.5	7.7	64	<0.1	0.6	0.9	3	1.59
14477	Rock	0.55	0.016	0.2	6.4	5.3	65	<0.1	2.8	2.3	669	1.11	489.9	28.7	14.9	6	0.3	0.6	1.3	3	0.09
14478	Rock	0.32	<0.005	<0.1	0.3	0.1	<1	<0.1	0.6	0.4	23	0.04	14.4	6.3	<0.1	4122	<0.1	<0.1	<0.1	<2	34.70
14479	Rock	0.47	1.157	0.2	16.9	52.5	27	3.2	0.3	1.2	28	1.68	7454.6	1041.1	8.1	35	0.2	6.6	47.9	<2	0.23
14480	Rock	0.58	0.016	<0.1	1.1	1.3	3	<0.1	1.7	0.6	301	0.38	209.9	11.7	10.3	25	<0.1	0.2	0.5	<2	0.64

This report supermedies all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

AcmeLabs"
A Bureau Veritas Group Company

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Client: William Koe-Carson Box 387 White Fox SK 30J 3B0 CANADA Project: McConnell Report Date: August 13, 2014

Page: 2 of 5

Part: 2 of 2

WHI14000057.1

	Method	AG200	AG200	A@200	AG200	AG200	AG200	AG200	A@200	AQ200	AG200	AG200	AG200	A@200	AG200	AG200	AG200	AQ200	AQ200	FA630
	Analyte	P	La	Cr	Mo	Ba	п	в	AL	Na	ĸ	w	Hg	80	т	8	Ga	80	Те	Au
	Unit	56	ppm	ppm	%	ppm	56	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2	0.8
14451	Rock	0.009	3	1	0.02	34	<0.001	<20	0.12	0.007	0.07	<0.1	0.02	0.8	40.1	0.16	<1	1.1	<0.2	
14452	Rock	0.051	21	1	0.05	114	<0.001	<20	0.35	0.010	0.25	0.7	0.02	1.0	⊲0.1	0.10	<1	<0.5	<0.2	
14453	Rock	0.041	19	<	0.03	121	<0.001	<20	0.33	0.009	0.26	0.8	<0.01	1.0	⊲0.1	<0.05	<1	<0.5	<0.2	
14454	Rock	0.005	14	2	0.17	42	<0.001	<20	0.11	0.007	0.07	0.9	<0.01	2.0	⊲0.1	<0.05	<1	<0.5	<0.2	
14455	Rock	0.053	16	4	0.03	112	0.002	<20	0.37	0.010	0.25	0.2	0.01	0.7	⊲.1	<0.05	1	<0.5	<0.2	
14456	Rock	0.050	26	4	0.31	169	0.042	<20	0.85	0.026	0.38	0.4	<0.01	1.5	0.2	<0.05	3	<0.5	<0.2	
14457	Rock	0.016	41	2	1.08	40	0.002	<20	0.17	0.019	0.10	<0.1	<0.01	4.0	⊲.1	<0.05	<1	<0.5	⊲0.2	
14458	Rock	0.018	13	2	0.55	22	0.004	<20	0.17	0.023	0.05	<0.1	<0.01	1.8	⊲.1	<0.05	<1	<0.5	⊲0.2	
14459	Rock	0.050	26	2	0.34	103	0.002	<20	0.39	0.027	0.22	<0.1	<0.01	1.7	⊲0.1	<0.05	1	<0.5	<0.2	
14460	Rock	0.025	5	2	3.96	51	0.002	<20	0.20	0.020	0.14	<0.1	<0.01	18.3	⊲.1	<0.05	<1	0.8	⊲0.2	
14461	Rock	0.001	<1	1	0.03	20	<0.001	<20	0.06	0.005	0.04	<0.1	<0.01	0.1	⊲0.1	<0.05	<1	<0.5	<0.2	
14462	Rock	0.084	4	<	0.89	74	<0.001	<20	0.31	0.008	0.25	0.3	0.02	3.7	⊲0.1	<0.05	<1	<0.5	<0.2	
14463	Rock	0.004	2	2	0.19	8	0.026	<20	0.17	0.009	0.01	<0.1	<0.01	0.7	⊲.1	<0.05	<1	<0.5	⊲0.2	
14464	Rock	0.001	<1	1	0.02	4	0.002	<20	0.03	0.007	<0.01	<0.1	<0.01	⊲0.1	<0.1	<0.05	<1	<0.5	<0.2	
14465	Rock	0.003	2	1	<0.01	9	<0.001	<20	0.05	0.001	0.02	<0.1	0.01	0.1	⊲0.1	<0.05	<1	<0.5	<0.2	
14466	Rock	0.056	43	3	0.17	87	0.006	<20	0.48	0.035	0.20	<0.1	<0.01	2.5	⊲.1	<0.05	2	<0.5	<0.2	
14467	Rock	0.011	7	1	0.14	84	<0.001	<20	0.13	0.006	0.10	0.1	0.02	1.5	<0.1	<0.05	<1	<0.5	<0.2	
14468	Rock	0.023	27	2	0.03	84	<0.001	<20	0.22	0.007	0.15	0.1	0.01	0.7	⊲0.1	<0.05	<1	<0.5	<0.2	
14469	Rock	0.013	5	2	0.06	41	<0.001	<20	0.14	0.007	0.09	<0.1	<0.01	0.6	<0.1	<0.05	<1	<0.5	<0.2	
14470	Rock	0.047	16	1	0.03	147	<0.001	<20	0.38	0.011	0.30	0.4	<0.01	1.2	⊲0.1	<0.05	<1	<0.5	<0.2	
14471	Rock	0.035	15	2	0.04	140	0.001	<20	0.40	0.010	0.27	0.2	0.02	1.3	⊲0.1	0.15	<1	<0.5	<0.2	
14472	Rock	0.020	18	2	0.03	113	0.001	<20	0.27	0.008	0.20	0.6	0.02	1.2	<0.1	0.17	<1	0.7	<0.2	
14473	Rock	0.014	29	1	0.03	53	<0.001	<20	0.15	0.020	0.08	<0.1	<0.01	1.0	⊲0.1	<0.05	<1	<0.5	<0.2	
14474	Rock	0.010	14	1	<0.01	83	<0.001	<20	0.06	0.008	0.08	0.1	0.23	0.3	⊲0.1	3.74	<1	7.8	0.4	28.8
14475	Rock	0.040	19	1	0.03	126	<0.001	<20	0.39	0.010	0.29	0.1	0.02	0.9	0.1	0.22	<1	<0.5	<0.2	
14476	Rock	0.019	17	2	0.38	69	<0.001	<20	0.17	0.014	0.10	<0.1	0.03	2.4	⊲0.1	<0.05	<1	<0.5	<0.2	
14477	Rock	0.039	21	2	0.08	152	0.004	<20	0.49	0.018	0.29	0.2	<0.01	1.2	<0.1	<0.05	1	<0.5	<0.2	
14478	Rock	0.003	<1	<	1.91	3	<0.001	<20	0.02	0.003	<0.01	<0.1	<0.01	0.1	<0.1	0.09	<1	<0.5	0.4	
14479	Rock	0.039	13	1	0.02	126	<0.001	<20	0.26	0.015	0.26	0.2	0.02	0.4	<0.1	0.12	<1	<0.5	<0.2	
14480	Rock	0.032	19	1	0.08	62	<0.001	<20	0.24	0.033	0.13	0.3	<0.01	1.0	<0.1	<0.05	<1	<0.5	<0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

www.acmelab.com

Client: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA Project: McConnell Report Date: August 13, 2014

Part: 1 of 2

WHI14000057.1

3 of 5

Page:

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

		ſ																				
		Method	WOHT	FA430	AG200	AG200	AQ200	AG200	AG200	A@200	AG200	A@200	AG200	AG200	AG200	AG200	A@200	AG200	AG200	A@200	AG200	A@200
		Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
		Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*
		MDL	0.01	0.005	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
14481	Rock		0.58	0.010	<0.1	0.7	0.7	6	<0.1	3.4	0.9	168	0.42	207.5	24.2	1.8	21	<0.1	0.5	0.1	4	0.82
14482	Rock		0.48	0.007	<0.1	0.6	1.5	6	<0.1	3.6	1.5	618	0.60	376.3	4.8	9.8	111	<0.1	0.2	0.1	<2	3.33
14483	Rock		0.63	<0.005	0.1	1.0	2.8	19	<0.1	1.9	0.9	374	0.49	69.1	4.5	17.7	87	⊲0.1	0.6	<0.1	2	2.48
14484	Rock		0.62	0.159	0.5	25.3	7.8	31	0.3	2.3	3.1	600	1.30	23.0	43.8	12.4	38	0.5	0.5	3.2	<2	1.05
14485	Rock		0.36	0.028	1.2	75.4	2.8	18	<0.1	3.9	32.9	199	5.32	3438.7	19.3	8.5	17	0.3	1.4	0.8	3	0.09
14486	Rock		0.64	<0.005	0.2	16.7	1.8	14	<0.1	5.6	34.7	859	1.84	2002.0	<0.5	12.8	12	0.2	0.7	0.2	<2	0.17
14487	Rock		0.57	<0.005	0.1	3.8	3.4	25	<0.1	3.0	1.8	118	0.50	59.2	2.4	2.7	11	0.2	0.2	<0.1	2	0.10
14488	Rock		0.55	<0.005	0.2	3.2	9.4	42	<0.1	3.6	5.0	229	1.90	42.7	<0.5	15.9	48	0.2	0.2	<0.1	17	0.49
14489	Rock		0.88	<0.005	0.2	4.7	2.9	32	<0.1	2.6	3.9	604	1.55	17.9	<0.5	16.8	24	0.3	0.3	<0.1	4	0.53
14490	Rock		0.63	<0.005	0.2	11.7	3.3	21	<0.1	2.3	5.0	390	1.05	375.1	1.0	20.1	117	0.1	0.6	<0.1	6	3.07
14491	Rock		0.49	<0.005	<0.1	2.2	11.3	58	<0.1	3.4	5.4	345	2.23	6.2	<0.5	17.2	67	0.2	<0.1	<0.1	22	0.48
14492	Rock		0.41	0.043	0.8	60.7	3.1	11	<0.1	2.8	34.1	471	4.17	3494.5	15.6	13.6	20	0.2	1.4	0.2	<2	0.10
14493	Rock		0.53	<0.005	0.8	22.9	2.7	20	<0.1	2.9	16.4	604	1.93	641.8	1.1	15.1	15	<0.1	0.4	0.1	4	0.29
14494	Rock		0.17	<0.005	0.2	2.9	16.7	64	<0.1	3.8	4.6	404	2.24	31.4	<0.5	18.6	40	⊲0.1	0.2	0.3	17	0.36
14495	Rock		0.20	<0.005	0.2	3.1	16.4	37	<0.1	2.8	4.6	603	1.51	15.4	<0.5	19.9	33	0.2	0.3	0.1	5	0.55
14496	Rock		0.46	0.098	0.5	17.8	4.1	9	<0.1	1.8	3.9	853	1.81	1017.2	16.1	16.7	7	<0.1	0.4	0.4	<2	0.09
14497	Rock		0.24	<0.005	0.6	1.8	7.6	67	<0.1	1.9	1.2	544	0.92	34.3	<0.5	13.8	5	0.5	0.2	0.2	3	0.08
14498	Rock		0.55	<0.005	<0.1	1.2	0.4	5	<0.1	0.1	0.2	22	0.03	3.5	1.4	<0.1	4635	0.1	<0.1	<0.1	<2	34.02
14499	Rock		0.78	0.249	0.7	57.7	5.7	12	0.2	1.8	5.9	144	3.33	3917.0	983.9	0.5	13	0.1	2.0	0.5	<2	0.09
14500	Rock		0.38	0.049	0.7	20.9	2.6	23	<0.1	3.3	2.9	694	1.14	424.7	4.9	15.8	13	0.2	0.3	0.1	<2	0.41
14501	Rock		0.24	0.302	4.2	77.3	663.0	3934	14.3	39.3	12.1	7182	8.97	982.0	367.6	5.7	305	37.2	29.5	5.9	2	14.04
14502	Rock		0.49	0.017	0.2	2.4	10.1	148	0.1	1.4	0.8	682	0.80	44.0	7.5	19.6	81	1.2	0.2	<0.1	<2	2.52
14503	Rock		0.55	<0.005	<0.1	0.4	8.0	8	<0.1	1.0	0.5	432	0.25	5.6	<0.5	20.4	442	<0.1	0.2	<0.1	<2	12.88
14504	Rock		0.38	<0.005	<0.1	1.3	2.9	34	<0.1	23.6	1.2	331	1.62	12.9	2.6	2.8	22	<0.1	0.6	<0.1	47	0.56
14505	Rock		0.27	<0.005	0.2	0.6	21.2	35	0.2	3.3	1.4	362	0.64	17.3	0.5	18.2	40	<0.1	0.3	0.4	5	0.76
14506	Rock		0.38	0.022	1.2	56.5	36.3	122	0.3	5.7	6.8	822	3.78	186.0	9.9	15.1	32	0.3	0.6	1.0	<2	0.55
14507	Rock		0.30	0.038	0.6	42.2	4.8	14	<0.1	3.6	18.2	407	2.47	8861.1	33.7	15.2	17	0.2	3.1	0.7	<2	0.89
14508	Rock		0.17	<0.005	0.5	1.9	3.6	25	<0.1	2.0	0.7	773	0.94	23.6	0.8	1.6	8	0.2	0.2	<0.1	2	0.08
14509	Rock		0.43	0.006	0.4	3.1	2.6	8	<0.1	2.0	1.4	818	1.05	32.2	2.5	13.7	11	0.1	0.2	<0.1	<2	0.20
14510	Rock		0.36	<0.005	0.4	2.2	5.7	17	<0.1	3.7	4.7	520	1.51	15.7	<0.5	17.4	11	<0.1	0.4	<0.1	3	0.16

This report supermedies all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

AcmeLabs ^{**}
A Bureau Veritas Group Company

14481

14482

14483

14484

14485

14485

14487

14488

14489

14490

14506

14507

14508

14509

14510

www.acmelab.com

Client: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA Project: McConnell Report Date: August 13, 2014

Part: 2 of 2

FA63

am/

0.8

AQ200

Те A

0.2

<0.2

<0.2

<0.2

<0.2

⊲0.2

⊲0.2

<0.2

⊲0.2

⊲0.2

<0.2

⊲0.2

<0.2

<0.2

<0.2

<0.2

0.3

<0.2

<0.2

<0.2

⊲0.2

<0.2

<0.2

<0.2

<0.2

<0.2

⊲0.2

<0.2

<0.2

DOM

3e

0.6

<0.5

<0.5

<0.5

0.7

0.8 <0.2

<0.5

<0.5

0.8 <0.2

<0.5

<0.5

<0.5

<0.5

<0.5

<0.5

1.4

<0.5

<0.5

6 <0.5

3 <0.5

1 <0.5

1 <0.5

<1

<1 <0.5

1 <0.5

<1

1

1

6 <0.5

2 <0.5

1 <0.5

2 <0.5

<1 <0.5

1 <0.5

2 <0.5

DOM

3 of 5

Page:

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Rock

0.041

0.052

0.008

0.047

0.059

20

17

17

22

27

2 0.06

2 0.06

3 0.02

2 0.05

3

WHI14000057.1 Method AG200 AG200 AQ200 AG200 AG200 A@200 AG200 A@200 AG200 AG200 AG200 AG200 AQ200 AQ200 AQ200 AQ200 AG200 Analyti P La Cr Mg Ba П в AI Na к w Hg 80 П 8 Ga Unit 16 44 16 -44 44 % DDM DDM pom ppm DOM DDm. DOM DOM DOM MDL 0.001 0.01 0.001 20 0.01 0.001 0.01 0.1 0.01 0.1 0.1 0.06 1 1 1 1 0.007 2 1 0.16 34 < 0.001 <20 0.12 0.008 0.06 <0.1 < 0.01 0.5 ⊲0.1 < 0.05 <1 0.046 13 1 0.45 99 < 0.001 <20 0.28 0.012 0.24 0.3 <0.01 1.7 ⊲0.1 <0.05 <1 0.054 35 2 0.06 99 < 0.001 <20 0.36 0.029 0.19 0.2 <0.01 1.3 **40.1** <0.05 <1 0.050 21 2 0.05 179 0.001 <20 0.50 0.028 0.31 0.3 <0.01 1.0 **40.1** <0.05 1 0.019 20 <1 0.10 90 0.002 <20 0.38 0.012 0.22 0.1 <0.01 0.9 0.1 0.06 1 0.053 20 2 0.03 190 <0.001 <20 0.36 0.013 0.28 0.3 0.01 1.0 ⊲0.1 <0.05 1 0.013 5 2 0.08 29 0.002 <20 0.23 0.008 0.06 42.1 0.02 0.6 **40.1** <0.05 <1 6 0.052 34 8 0.53 256 0.117 <20 1.31 0.091 0.60 15.4 <0.01 2.8 0.4 <0.05 0.057 31 3 0.14 184 0.005 <20 0.55 0.025 0.27 0.4 0.02 1.3 ⊲0.1 < 0.05 2 0.077 35 3 0.21 115 0.014 <20 0.56 0.050 0.21 25.9 <0.01 1.8 ⊲0.1 <0.05 2 0.057 38 10 0.62 304 0.179 <20 1.71 0.151 0.90 0.4 <0.01 3.1 0.4 <0.05 7 0.040 15 2 0.04 127 0.001 <20 0.41 0.016 0.24 0.3 <0.01 0.9 0.2 0.05 1 2

14491 Rock 14492 Rock 14493 0.050 25 0.15 223 0.008 <20 0.58 0.021 0.34 0.1 <0.01 0.1 <0.05 Rock з 1.4 14494 Rock 0.050 37 8 0.58 191 0.114 <20 1.46 0.078 0.55 0.2 <0.01 2.2 0.3 < 0.05 14495 0.051 38 3 0.31 163 0.005 0.91 0.035 0.1 <0.01 0.1 <0.05 Rock <20 0.33 1.4 14495 Rock 0.035 18 2 0.04 149 0.001 <20 0.45 0.019 0.30 0.2 <0.01 1.0 **4**.1 <0.05 14497 Rock 0.041 3 2 0.02 139 0.001 <20 0.42 0.016 0.27 0.2 <0.01 0.8 **4**.1 <0.05 14498 0.003 1.85 4 < 0.001 0.10 Rock <1 < <20 0.02 0.003 < 0.01 <0.1 <0.01 0.2 ⊲0.1 14499 4 2 <0.01 Rock 0.003 21 < 0.001 <20 0.05 0.007 0.03 <0.1 0.01 0.2 ⊲0.1 < 0.05 14500 Rock 0.053 20 1 0.05 215 0.001 <20 0.46 0.015 0.32 0.3 0.01 0.8 0.1 < 0.05 14501 0.026 2 131 0.22 <0.05 Rock 14 0.54 0.001 <20 0.007 0.13 <0.1 0.16 7.2 0.1 14502 Rock 0.068 10 < 0.04 159 <0.001 <20 0.47 0.011 0.31 0.2 <0.01 0.8 0.1 <0.05 14503 Rock 0.062 141 0.14 34 0.002 <20 0.38 0.066 0.09 28.3 <0.01 1.4 **40.1** <0.05 1 14504 Rock 0.009 5 9 1.14 31 0.008 <20 0.92 0.016 0.08 <0.1 <0.01 6.4 **4.1** < 0.05 14505 Rock 0.069 32 3 0.17 112 0.004 <20 0.52 0.054 0.20 0.2 0.02 1.2 ⊲0.1 < 0.05

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

0.17

171 0.001

206 0.001

114 0.001

182 0.001

188 0.002 <20

<20

<20

<20

<20

0.42 0.021

0.57 0.011

0.16 0.007

0.45 0.016

0.60 0.028 0.30

0.35

0.09

0.31

0.35

0.2 <0.01

0.3 0.01

0.1 <0.01

0.2 <0.01

<0.1 <0.01 1.2

1.0

0.5

1.2 **40.1** <0.05

1.5 ⊲0.1 <0.05

0.2 <0.05

0.1 0.28

4.1 <0.05

Client:	William Koe-Carson Box 387 White Fox 8K 80J 3B0 CANADA	
Project: Report Date:	McConnell August 13, 2014	

4 of 5

Page:

Part: 1 of 2

WHI14000057.1

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	Method	WGHT	FA430	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ20
	Analyte	Wat	Au	Mo	Cu	Ph	70	An	NI	Co	Mo	Fe	As	Au	Th	81	Cd	8b	BI	v	
	Unit	ka	DOM	DOM	DOM	DOM	ppm	pom	pom	DOM	DOM	*	DOM	pob	DOM	ppm	pom	pom	DOM	DOM	
	MDL	0.01	0.005	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.0
14511 Rock		0.44	1,490	1.3	90.1	12.0	41	0.1	1.7	3.7	459	3.27	746.3	513.2	13.7	15	0.2	1.2	6.2	<2	0.0
14512 Rock		0.49	0.268	1.0	77.2	12.3	71	2.7	1.5	3.9	361	2.70	3710.8	84.2	14.0	19	0.7	2.2	8.7	<2	0.0
14513 Rock		0.47	0.118	0.6	246.7	104.1	37	0.8	8.0	4.8	1115	7.44	1465.7	37.2	15.7	19	⊲0.1	2.6	48.1	<2	0.0
14514 Rock		0.62	0.019	0.6	122.1	7.8	12	0.1	2.3	2.8	386	5.28	1988.6	16.1	22.7	42	⊲0.1	0.7	1.9	<2	0.0
14515 Rock		0.93	3,497	0.3	69.3	208.1	90	25.5	1.2	5.1	253	2.71	9914.1	3417.6	11.5	15	0.9	18.6	197.4	<2	0.2
14516 Rock		0.40	0.125	0.9	76.9	2.7	17	<0.1	0.7	7.4	302	2.52	1956.1	229.9	15.3	16	⊲0.1	0.8	1.6	<2	0.0
14517 Rock		0.22	0.006	1.4	25.6	5.0	93	<0.1	444.6	59.0	1095	7.23	108.2	6.6	4.6	611	0.2	0.2	0.7	113	5.2
14518 Rock		0.57	<0.005	<0.1	0.7	0.3	2	<0.1	0.6	0.4	17	0.02	7.8	<0.5	<0.1	4943	⊲.1	⊲0.1	<0.1	<2	34.5
14519 Rock		0.53	0.005	0.5	28.1	4.4	73	0.2	3.3	2.5	475	1.60	151.0	7.2	11.7	24	1.0	0.6	0.6	2	0.4
14520 Rock		0.42	0.051	0.8	25.7	10.2	207	0.1	1.4	1.4	1851	2.77	1022.3	93.0	8.1	45	3.5	0.9	1.6	<2	2.3
14521 Rock		0.76	0.841	0.5	46.1	91.6	24	0.9	1.0	2.5	127	2.00	1499.2	3178.7	4.8	12	0.2	2.1	37.6	<2	0.0
14522 Rock		0.29	3.582	1.8	165.0	51.2	11	0.8	3.4	6.9	184	6.20	564.9	4886.5	7.7	33	0.2	4.7	40.0	3	0.4
14523 Rock		0.68	0.112	0.7	41.9	1.4	40	<0.1	1.8	0.7	166	1.40	37.9	8.9	0.5	2	0.2	0.5	0.4	<2	0.0
14524 Rock		0.42	0.052	0.3	8.0	5.2	22	<0.1	2.2	3.3	766	1.69	52.8	316.7	13.8	59	0.1	0.3	0.9	4	1.1
14525 Rock		0.34	0.016	0.3	17.4	5.2	18	<0.1	2.3	2.4	608	1.72	29.5	7.1	13.5	128	⊲0.1	0.5	0.8	3	2.3
14526 Rock		0.29	0.134	0.5	84.6	2.2	5	0.1	1.4	1.4	520	2.72	253.1	18.6	12.3	- 4	⊲.1	0.3	1.0	<2	0.1
14527 Rock		0.35	0.942	0.5	123.4	14.5	18	<0.1	3.6	7.2	728	5.26	1437.1	29.7	9.7	5	⊲0.1	0.5	0.7	<2	0.1
14528 Rock		0.53	1.663	0.2	25.7	12.7	32	0.2	3.3	6.2	547	1.25	1499.2	1359.8	10.2	19	⊲0.1	0.8	28.1	<2	0.7
14529 Rock		0.40	0.028	0.4	12.6	8.1	29	<0.1	3.0	3.4	487	1.61	59.6	24.4	14.6	74	⊲0.1	0.4	1.9	6	1.3
14530 Rock		0.03	7.170	0.9	279.8	163.3	12	1.3	6.2	90.1	132	16.32	>10000	8734.9	6.6	52	0.2	74.4	197.1	<2	0.1
14531 Rock		0.21	2.612	0.7	213.6	27.3	34	0.3	1.1	2.1	226	4.70	3686.4	2358,4	6.4	18	0.1	3.5	24.8	<2	0.1
14532 Rock		0.40	2.722	0.4	85.7	29.5	13	0.3	1.0	2.1	153	3.41	5807.0	2868.4	5.5	16	⊲0.1	3.2	20.0	<2	0.1
14533 Rock		0.23	5.177	0.3	408.0	48.0	38	1.1	1.3	11.9	>10000	15.14	3731.1	1484.5	3.1	543	0.2	3.1	26.7	<2	17.6
14534 Rock		0.79	0.012	0.2	1.5	4.9	10	<0.1	1.0	1.4	576	1.99	24.7	10.9	1.9	415	⊲0.1	0.4	0.2	<2	10.8
14535 Rock		0.52	2.239	3.5	47.0	139.1	22	1.2	26.5	300.7	48	7.31	>10000	3046.6	18.7	28	0.2	26.4	11.3	<2	0.1
14536 Rock		0.30	0.015	2.7	7.0	16.8	113	<0.1	1.8	4.6	>10000	16.50	1960.6	16.9	1.9	280	0.4	1.4	0.2	<2	20.0
14537 Rock		0.18	0.035	1.6	127.9	177.0	37	1.7	10.6	25.3	798	6.49	319.8	7.3	11.5	5	0.2	7.9	292.3	<2	0.1
14538 Rock		0.52	<0.005	<0.1	0.3	0.3	<	<0.1	<0.1	0.4	24	0.03	18.2	<0.5	<0.1	3578	<0.1	<0.1	0.3	<2	36.9
14539 Rock		0.09	0.123	0.6	78.2	2.4	11	<0.1	0.7	3.0	232	2.77	2558.6	40.6	11.3	23	⊲0.1	0.7	1.8	<2	0.2
14540 Rock		0.40	0.032	0.7	25.4	8.7	27	<0.1	4.2	9.2	1012	2.29	1325.8	31.0	12.4	98	0.1	0.5	3.9	5	1.8

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

AcmeLabs ^{**}
A Hureau Veritas Group Company

Client: William Koe-Carson Box 387 White Fox SK 80J 380 CANADA Project: McConnell Report Date: August 13, 2014

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

4 of 5

Page:

Part: 2 of 2

WHI14000057.1

	Method	AQ200	AQ200	A@200	AG200	AG200	AG200	AQ200	AQ200	AQ200	A@200	AG200	AG200	AQ200	AQ200	AG200	AG200	AG200	AQ200	FA630
	Analyte	P	La	Cr	Mo	Ba	п	в	AL	Na	ĸ	w	Hg	80	т	8	Ga	80	Те	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	0.8
14511 R	ock	0.039	18	2	0.02	141	0.001	<20	0.35	0.012	0.28	0.2	<0.01	0.9	0.1	0.05	<1	<0.5	<0.2	
14512 R	ock	0.032	21	1	0.03	139	<0.001	<20	0.40	0.010	0.31	0.1	<0.01	0.7	⊲0.1	0.09	<1	<0.5	<0.2	
14513 R	ock	0.043	31	<	0.03	76	< 0.001	<20	0.29	0.013	0.24	0.5	<0.01	1.2	⊲0.1	0.07	<1	<0.5	<0.2	
14514 R	ock	0.047	34	1	0.02	111	<0.001	<20	0.33	0.013	0.32	0.2	<0.01	0.6	⊲0.1	0.10	<1	<0.5	<0.2	
14515 R	ock	0.035	13	1	0.05	130	<0.001	<20	0.33	0.012	0.27	0.2	0.04	0.6	⊲.1	0.18	<1	<0.5	<0.2	
14516 R	ock	0.047	23	1	0.03	141	0.001	<20	0.40	0.010	0.31	0.1	<0.01	0.8	⊲0.1	0.05	<1	<0.5	<0.2	
14517 R	ock	0.489	43	588	7.15	128	0.012	<20	4.27	<0.001	0.01	<0.1	<0.01	10.5	⊲0.1	0.08	14	1.0	<0.2	
14518 R	ock	0.004	<1	4	1.60	5	<0.001	<20	0.03	0.002	<0.01	<0.1	<0.01	0.2	⊲.1	0.08	<1	<0.5	0.3	
14519 R	ock	0.050	10	4	0.19	106	0.002	<20	0.55	0.006	0.28	<0.1	<0.01	0.7	0.1	0.07	1	<0.5	<0.2	
14520 R	ock	0.036	16	2	0.19	89	<0.001	<20	0.24	0.006	0.20	0.1	<0.01	1.2	⊲0.1	<0.05	<1	<0.5	<0.2	
14521 R	ock	0.017	4	1	0.01	61	<0.001	<20	0.15	0.006	0.15	0.3	<0.01	0.3	0.2	0.08	<1	<0.5	⊲0.2	
14522 R	ock	0.033	10	2	0.22	78	0.001	<20	0.41	0.004	0.22	0.5	<0.01	0.7	0.4	0.06	2	<0.5	<0.2	
14523 R	ock	0.002	2	1	<0.01	24	<0.001	<20	0.03	0.002	0.02	<0.1	<0.01	0.3	⊲0.1	<0.05	<1	<0.5	<0.2	
14524 R	ock	0.049	24	3	0.19	162	0.011	<20	0.49	0.017	0.32	<0.1	<0.01	1.2	0.1	<0.05	1	<0.5	<0.2	
14525 R	ock	0.051	22	3	0.35	97	0.004	<20	0.65	0.014	0.26	<0.1	<0.01	1.2	<0.1	<0.05	2	<0.5	<0.2	
14526 R	ock	0.047	10	<	0.02	86	<0.001	<20	0.27	0.006	0.23	0.1	<0.01	0.5	⊲0.1	<0.05	<1	<0.5	<0.2	
14527 R	ock	0.045	11	1	0.04	84	<0.001	<20	0.26	0.005	0.21	<0.1	<0.01	0.8	⊲.1	<0.05	<1	<0.5	<0.2	
14528 R	ock	0.046	14	1	0.06	175	0.001	<20	0.33	0.006	0.28	<0.1	<0.01	0.8	0.1	<0.05	<1	<0.5	<0.2	
14529 R	ock	0.051	28	4	0.28	160	0.022	<20	0.69	0.017	0.35	<0.1	<0.01	1.7	0.2	<0.05	2	<0.5	<0.2	
14530 R	ock	0.016	8	4	0.01	55	0.001	<20	0.18	0.006	0.26	0.1	0.01	0.5	0.5	5.83	<1	0.8	<0.2	
14531 R	ock	0.011	14	1	0.02	68	<0.001	<20	0.18	0.005	0.24	0.5	<0.01	0.5	0.1	0.06	<1	<0.5	<0.2	
14532 R	ock	0.012	12	1	0.02	65	<0.001	<20	0.18	0.005	0.24	0.4	<0.01	0.5	0.1	0.23	<1	<0.5	<0.2	
14533 R	ock	0.009	4	<	0.87	16	<0.001	<20	0.03	0.005	0.04	<0.1	<0.01	10.5	<0.1	0.25	<1	<0.5	<0.2	
14534 R	ock	0.007	6	<	2.66	229	< 0.001	<20	0.10	0.002	0.03	<0.1	<0.01	0.4	⊲0.1	<0.05	<1	<0.5	<0.2	
14535 R	ock	0.055	1	<	0.02	97	< 0.001	<20	0.21	0.019	0.16	0.2	<0.01	0.5	<0.1	2.42	<1	3.0	1.2	
14536 R	ock	0.002	4	<	1.31	20	<0.001	<20	0.02	0.003	0.02	0.4	<0.01	8.2	<0.1	<0.05	<1	<0.5	<0.2	
14537 R	ock	0.033	16	2	0.05	69	0.001	<20	0.29	0.032	0.18	0.1	<0.01	1.4	<0.1	<0.05	<1	<0.5	<0.2	
14538 R	ock	0.003	<1	<1	1.73	4	<0.001	<20	0.01	0.002	<0.01	<0.1	<0.01	0.1	<0.1	0.10	<1	<0.5	<0.2	
14539 R	ock	0.043	13	2	0.04	121	< 0.001	<20	0.38	0.008	0.30	<0.1	<0.01	0.6	<0.1	0.12	<1	<0.5	<0.2	
14540 R	ock	0.051	18	3	0.35	135	0.004	<20	0.77	0.020	0.27	<0.1	<0.01	1.7	0.2	0.06	2	<0.5	<0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

E 9	A Hureau Bureau Veritas (0050 Shaughor	Vertas Group Company Commodities Canada Lt ssy St Vancouver BC V)S [™] d. %P 6E5	CANAL		acmel	ab.com						Clier Projec Repor	nt: t: t Date:	Will Box : White McC Augu	liam k 387 e Fox SK onnell 1st 13, 20	Koe-Ca 380J 380	arson CANAD	•			
۲	2 HONE (604)	53-3158											Page:		5 of	5				Pa	rt 1	of 2
	CERTIF	ICATE OF AN	IALY	′SIS	;												W	HI14	1000	057	.1	
		Method	WOHT	FA430	A@200	A@200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	A@200	A@200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200
		Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
		Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*
		MDL	0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
ļ	14541	Rock	0.28	<0.005	7.6	45.8	11.6	37	<0.1	1.7	3.4	248	2.23	10.1	1.2	12.1	42	⊲0.1	0.1	1.3	15	0.35
L	14542	Rock	0.35	<0.005	0.1	2.0	1.7	7	<0.1	3.9	0.8	88	0.43	21.1	0.7	0.2	6	⊲0.1	0.3	0.2	6	0.13
ļ	14543	Rock	0.44	<0.005	0.9	27.8	2.6	16	<0.1	4.1	2.9	1107	1.55	538.1	1.3	14.5	7	⊲0.1	0.4	0.1	<2	0.15
ļ	14544	Rock	0.76	>10	1.8	44.4	122.0	16	3.7	31.5	216.2	30	16.93	>10000	15426.8	0.2	10	0.1	118.6	161.3	<2	0.04
ļ	14545	Rock	0.38	0.030	0.3	3.4	3.8	24	<0.1	2.1	4.1	534	1.31	655.6	45.2	15.4	10	0.1	0.5	0.3	2	0.22
ŀ	14546	Rock	0.20	0.106	0.6	119.4	11.7	12	0.2	1.9	1.1	199	4.10	1431.9	109.8	3.6	7	0.1	1.0	0.9	<2	0.03
ŀ	14547	Rock	0.21	0.023	0.5	74.8	3.0	6	<0.1	1.2	0.5	165	5.06	1583.5	12.5	8.7	21	0.2	0.8	0.6	<2	0.02
ŀ	14548	Rock	0.34	<0.005	6.8	1.7	121.3	131	0.1	2.4	2.7	956	1.22	38.6	0.9	19.3	9	0.7	0.3	1.7	<2	0.20
ŀ	14549	Rock	0.25	<0.005	0.1	1.4	8.1	40	<0.1	1.0	1.1	97	0.63	92.4	0.9	6.0	5	⊲0.1	0.2	0.3	<2	0.05
┟	14550	Rock	0.05	0.241	0.7	28.9	14.7	41	<0.1	6.4	5.3	1151	3.20	174.4	27.1	11.1	8	0.4	0.2	1.2	<2	0.18
ŀ	14551	Rock	0.08	5.318	1.9	124.4	108.3	40	0.3	4.0	7.6	782	5.50	1032.5	5765.2	8.8	7	0.3	1.5	111.4	4	0.10
	14552	Rock	0.26	0.012	0.6	7.9	15.3	22	0.1	17.2	5.3	532	1.01	82.5	12.1	14.2	27	0.2	0.4	0.8	<2	0.45

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

AHureau)S™		****	acmel	ab.com						Clier Projec	nt: :t: t Date:	Will Box 3 White McCo	liam k 187 Fox SK	Koe-Ca 80J 380	CANAD	•		
Bureau Veritas	Commodities Canada Lt	d.												rage.	at 13, 20					
9050 Shaughn PHONE (604) 2	essy St Vancouver BC V 253-3158	6P 6E5	CANAE	A								Page:		5 of 5					Pr	art: 2 of
CERTIF	ICATE OF AN	IALY	′SIS													W	HI14	1000	057	.1
	Method	AQ200	AQ200	AQ200	AG200	A@200	AQ200	AG200	A@200	AG200	A@200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	FA630
	Analyte	P	La	Cr	Mo	Ba	т	в	AL	Na	к	w	Hg	80	т	8	Ga	80	Те	Au
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	96	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	gm/t
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	0.8
14541	Rock	0.039	16	6	0.43	154	0.105	<20	1.06	0.081	0.56	0.1	<0.01	2.0	0.3	<0.05	5	<0.5	<0.2	
14542	Rock	0.002	<1	2	0.11	12	< 0.001	<20	0.07	0.005	<0.01	<0.1	<0.01	0.6	<0.1	<0.05	<1	<0.5	<0.2	
14543	Rock	0.055	18	2	0.04	163	0.001	<20	0.42	0.011	0.29	0.2	<0.01	1.1	⊲0.1	<0.05	<1	<0.5	<0.2	
14544	Rock	0.003	<1	<	<0.01	19	<0.001	<20	0.01	0.003	0.04	<0.1	0.04	0.3	⊲0.1	5.81	<1	6.5	0.3	16.5
14545	Rock	0.041	21	2	0.06	134	0.001	<20	0.39	0.016	0.24	0.1	<0.01	0.9	⊲0.1	<0.05	<1	<0.5	<0.2	
14546	Rock	0.008	8	2	0.01	55	<0.001	<20	0.18	0.007	0.11	<0.1	<0.01	0.4	⊲0.1	<0.05	<1	<0.5	<0.2	
14547	Rock	0.009	8	2	0.01	109	<0.001	<20	0.26	0.015	0.24	0.2	<0.01	0.6	0.1	0.13	<1	<0.5	<0.2	
14548	Rock	0.078	19	2	0.10	157	0.002	<20	0.63	0.022	0.35	0.1	0.03	1.5	0.2	<0.05	1	<0.5	<0.2	
14549	Rock	0.020	12	2	0.07	76	0.004	<20	0.29	0.014	0.17	<0.1	<0.01	0.4	⊲0.1	<0.05	<1	<0.5	<0.2	
14550	Rock	0.044	23	3	0.15	196	0.001	<20	0.52	0.006	0.30	0.1	<0.01	1.2	0.1	<0.05	1	<0.5	<0.2	
14551	Rock	0.041	19	4	0.31	162	0.002	<20	0.96	0.019	0.37	0.2	0.01	1.8	0.2	<0.05	3	0.6	<0.2	
44555																	-			

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	Box 387 White Fox SK S0J 380 CANADA
Project:	McConnell
Report Date:	August 13, 2014

William Koe-Carson

ipany www.acmelab.com

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

QUALITY CONTROL REPORT

Page: 1 of 3

Client:

Part: 1 of 2

WHI14000057.1

	Method	WOHT	FA430	AG200	AG200	AQ200	AQ200	AG200	A@200	AQ200	AG200	A@200	AQ200	AQ200	AQ200	A@200	A@200	AG200	A@200	AQ200	AG200
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*
	MDL	0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
Pulp Duplicates																					
14459	Rock	0.48	<0.005	0.2	1.3	18.0	46	<0.1	2.2	4.1	379	0.92	35.4	0.6	15.4	164	0.1	0.2	<0.1	3	3.27
REP 14459	QC			0.2	1.2	17.5	49	<0.1	3.0	4.2	376	0.92	39.6	1.6	15.0	168	0.2	0.2	<0.1	3	3.27
14463	Rock	0.96	<0.005	0.1	2.1	1.6	12	<0.1	2.0	0.9	61	0.39	4.3	<0.5	0.8	6	0.2	0.3	<0.1	8	0.09
REP 14463	QC			0.5	2.1	1.9	12	<0.1	4.5	0.9	65	0.38	3.6	<0.5	0.8	7	<0.1	0.3	<0.1	7	0.10
14465	Rock	0.73	<0.005	<0.1	1.4	1.0	7	<0.1	0.5	0.1	69	0.20	3.5	<0.5	0.7	4	0.1	0.2	<0.1	<2	0.13
REP 14465	QC		<0.005																		
14498	Rock	0.55	<0.005	<0.1	1.2	0.4	5	<0.1	0.1	0.2	22	0.03	3.5	1.4	⊲0.1	4635	0.1	<0.1	<0.1	<2	34.02
REP 14498	QC			<0.1	1.0	0.4	4	<0.1	0.8	0.2	20	0.03	1.4	0.9	⊲0.1	4586	⊲0.1	<0.1	<0.1	<2	33.56
14522	Rock	0.29	3.582	1.8	165.0	51.2	11	0.8	3.4	6.9	184	6.20	564.9	4886.5	7.7	33	0.2	4.7	40.0	3	0.42
REP 14522	QC		3.375																		
14533	Rock	0.23	5.177	0.3	408.0	48.0	38	1.1	1.3	11.9	>10000	15.14	3731.1	1484.5	3.1	543	0.2	3.1	26.7	<2	17.64
REP 14533	QC			0.3	399.3	46.7	39	1.2	1.6	12.3	>10000	14.85	3679.7	2130.8	3.1	535	0.3	3.2	27.2	<2	17.84
14537	Rock	0.18	0.035	1.6	127.9	177.0	37	1.7	10.6	25.3	798	6.49	319.8	7.3	11.5	5	0.2	7.9	292.3	<2	0.11
REP 14537	QC		0.033																		
14538	Rock	0.52	<0.005	<0.1	0.3	0.3	<1	<0.1	<0.1	0.4	24	0.03	18.2	<0.5	⊲0.1	3578	⊲0.1	<0.1	0.3	<2	36.98
REP 14538	QC		<0.005																		
Core Reject Duplicates																					
14474	Rock	0.89	>10	2.5	50.2	514.8	8	7.7	19.0	63.3	26	19.64	>10000	35566.1	2.9	23	0.1	214.7	626.1	<2	0.02
DUP 14474	QC		>10	2.0	49.5	494.1	6	7.8	16.4	59.1	20	18.88	>10000	33990.8	2.9	22	<0.1	207.2	684.9	<2	0.02
14512	Rock	0.49	0.268	1.0	77.2	12.3	71	2.7	1.5	3.9	361	2.70	3710.8	84.2	14.0	19	0.7	2.2	8.7	<2	0.07
DUP 14512	QC		0.148	0.9	78.2	11.4	75	2.3	2.0	3.8	355	2.61	3628.4	108.4	13.4	19	0.6	1.8	8.3	<2	0.07
14550	Rock	0.05	0.241	0.7	28.9	14.7	41	<0.1	6.4	5.3	1151	3.20	174.4	27.1	11.1	8	0.4	0.2	1.2	<2	0.18
DUP 14550	QC		LS.	0.6	27.2	13.2	38	<0.1	5.9	5.1	1111	3.10	164.2	72.3	10.6	8	0.1	0.3	1.2	<2	0.18
Reference Materials																					
STD AGPROOF	Standard																				
STD DS10	Standard			13.7	152.5	154.9	372	2.1	77.7	13.2	891	2.74	46.2	90.6	6.9	68	2.8	9.7	12.9	42	1.04
STD DS10	Standard			15.0	150.6	156.2	369	1.9	76.7	12.8	871	2.72	45.5	67.6	7.4	70	2.6	8.7	13.0	44	1.04
STD DS10	Standard			12.2	156.6	157.7	356	1.9	77.1	12.5	994	2.62	46.4	88.8	6.5	61	2.3	6.9	12.8	40	1.02

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

QUALITY CONTROL REPORT

Client: William Koe-Carson Box 387 White Fox SK 80J 380 CANADA Project: McConnell Report Date: August 13, 2014

1 of 3

Page:

Part: 2 of 2

WHI14000057.1

	Method	AQ200	AG200	AG200	AQ200	A@200	AQ200	A@200	A@200	AG200	AG200	A@200	AQ200	AG200	A@200	AQ200	AQ200	AQ200	AG200	FA630
	Analyte	P	La	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	He	80	п	8	Ga	80	Те	Au
	Unit	%	ppm	ppm	96	ppm	%	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	0.9
Pulp Duplicates																				
14459	Rock	0.050	26	2	0.34	103	0.002	<20	0.39	0.027	0.22	<0.1	<0.01	1.7	<0.1	<0.05	1	<0.5	<0.2	
REP 14459	QC	0.050	27	2	0.33	107	0.001	<20	0.41	0.026	0.22	<0.1	0.01	1.9	<0.1	<0.05	1	<0.5	<0.2	
14463	Rock	0.004	2	2	0.19	8	0.026	<20	0.17	0.009	0.01	<0.1	<0.01	0.7	<0.1	<0.05	<1	<0.5	<0.2	
REP 14463	QC	0.004	1	6	0.18	9	0.027	<20	0.18	0.009	0.01	<0.1	<0.01	0.7	<0.1	<0.05	<1	<0.5	<0.2	
14465	Rock	0.003	2	1	⊲0.01	9	<0.001	<20	0.05	0.001	0.02	<0.1	0.01	0.1	<0.1	<0.05	<1	<0.5	<0.2	
REP 14465	QC																			
14498	Rock	0.003	4	<1	1.85	4	<0.001	<20	0.02	0.003	<0.01	<0.1	<0.01	0.2	<0.1	0.10	<1	<0.5	0.3	
REP 14498	QC	0.003	4	<1	1.77	3	<0.001	<20	0.02	0.002	<0.01	<0.1	<0.01	0.2	<0.1	0.10	<1	<0.5	0,4	
14522	Rock	0.033	10	2	0.22	78	0.001	<20	0.41	0.004	0.22	0.5	<0.01	0.7	0.4	0.06	2	<0.5	<0.2	
REP 14522	QC																			
14533	Rock	0.009	4	<	0.87	16	<0.001	<20	0.03	0.005	0.04	<0.1	<0.01	10.5	<0.1	0.25	<1	<0.5	<0.2	
REP 14533	QC	0.010	3	<1	0.86	16	<0.001	<20	0.03	0.005	0.04	<0.1	0.01	10.1	<0.1	0.25	<1	<0.5	<0.2	
14537	Rock	0.033	16	2	0.05	69	0.001	<20	0.29	0.032	0.18	0.1	<0.01	1.4	<0.1	<0.05	<1	<0.5	<0.2	
REP 14537	QC																			
14538	Rock	0.003	4	<1	1.73	4	<0.001	<20	0.01	0.002	<0.01	<0.1	<0.01	0.1	<0.1	0.10	<1	<0.5	<0.2	
REP 14538	QC																			
Core Reject Duplicates																				
14474	Rock	0.010	14	1	⊲0.01	83	<0.001	<20	0.06	0.008	0.08	0.1	0.23	0.3	<0.1	3.74	<1	7.8	0.4	28.8
DUP 14474	QC	0.010	14	<1	⊲0.01	79	<0.001	<20	0.06	0.008	0.08	<0.1	0.24	0.4	<0.1	3.74	<1	9.8	0.5	35.1
14512	Rock	0.032	21	1	0.03	139	<0.001	<20	0.40	0.010	0.31	0.1	<0.01	0.7	<0.1	0.09	<1	<0.5	<0.2	
DUP 14512	QC	0.031	21	1	0.02	130	<0.001	<20	0.37	0.010	0.30	0.2	<0.01	0.7	<0.1	0.09	1	<0.5	<0.2	
14550	Rock	0.044	23	3	0.15	196	0.001	<20	0.52	0.006	0.30	0.1	<0.01	1.2	0.1	<0.05	1	<0.5	<0.2	
DUP 14550	QC	0.042	23	3	0.14	189	0.001	<20	0.51	0.006	0.30	0.1	<0.01	1.2	0.1	<0.05	1	<0.5	<0.2	
Reference Materials																				
STD AGPROOF	Standard																			<0.9
STD DS10	Standard	0.077	16	54	0.78	420	0.072	<20	1.00	0.065	0.33	3.1	0.39	2.6	5.0	0.28	4	2.4	5.1	
STD DS10	Standard	0.077	18	55	0.77	422	0.079	<20	1.04	0.069	0.34	3.2	0.28	2.8	4.9	0.27	4	2.1	5.2	
STD DS10	Standard	0.072	16	52	0.74	417	0.067	<20	0.93	0.059	0.32	3.2	0.33	2.6	5.0	0.29	4	2.1	5.0	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

A Bureau Veritas Gro Bureau Veritas Commodit 9050 Shaughnessy St. Va)S™ d.	CANAD	www .)A	acmela	b.com						Clien Project Report	t: : Date:	Will Box 3 White McCo Augus	iam K ⁸⁷ Fox SK 8 nnell t 13, 201	0e-Ca 80J 380 (4	FSON				
PHONE (604) 253-3158		0. 020												2-42					-		
												raye.		2013					Fait		-
QUALITY CO	NTROL	REP	OR	Т												WF	1114	0000	D57.′	1	
		WOHT	FA430	AQ200	AQ200	AQ200	AQ200	40200	AQ200	AQ200	40200	AQ200	AQ200	40200	40200	40200	40200	AQ200	40200	AQ200	40200
		Wat	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
		ka	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	96
		0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
STD DS10	Standard			14.7	154.7	163.4	372	1.8	77.8	12.7	910	2.79	44.3	59.3	8.0	75	2.5	8.3	12.6	43	1.10
STD OREAS45EA	Standard			1.4	667.2	13.9	31	0.3	368.9	49.4	381	23.94	10.9	56.4	9.0	4	<0.1	0.4	0.3	295	0.04
STD OREAS45EA	Standard			1.6	683.3	13.9	29	0.3	380.6	49.1	390	23.61	10.8	50.3	10.0	4	<0.1	0.4	0.3	295	0.04
STD OREAS45EA	Standard			1.4	616.0	13.8	27	0.3	332.9	47.7	359	22,41	8.8	57.1	9.3	3	<0.1	0.3	0.2	272	0.04
STD OREAS45EA	Standard			1.9	728.9	17.2	32	0.3	410.4	52.1	438	23.65	12.6	58.8	12.1	4	<0.1	0.3	0.3	332	0.04
STD OXD108	Standard		0.427																		
STD OXD108	Standard		0.412																		
STD OXD108	Standard		0.420																		
STD OXD108	Standard		0.421																		
STD OXI121	Standard		1.849																		
STD OXI121	Standard		1.837																		
STD OXI121	Standard		1.811																		
STD OXI121	Standard		1.935																		
STD OXN117	Standard		7.587																		
STD OXN117	Standard		7.748																		
STD OXN117	Standard		7.743																		
STD OXN117	Standard		8.007																		
STD SP49	Standard																				
STD SP49	Standard																				
STD AGPROOF Expected																					
STD SP49 Expected																					
STD OXD108 Expected			0.414																		
STD OXN117 Expected			7.679																		
STD OXI121 Expected			1.834																		
STD DS10 Expected				14.69	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	43.7	91.9	7.5	67.1	2.49	8.23	11.65	43	1.0625
STD OREAS45EA Expected				1.39	709	14.3	28.9	0.26	381	52	400	23.51	9.1	53	10.7	3.5	0.02	0.2	0.26	303	0.036
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this catificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

A Bureau Veritas Gro	eLab	S™		www.	.acmela	ıb.com						Client	t :	Willi Box 38 White McCor	iam Ko 37 Fox SK S	0e-Ca	rson Canada			
Bureau Veritas Commodi	ties Canada Lt	d.										Report	Date:	Augus	t 13, 201	4				
0050 Shaughnessy St Va	ancouver BC V	RP RE5	CANAD	A																
PHONE (804) 253-3158			CANAL	~																
1110112 (001) 200-0100												Page:		2 of 3					Part	2 of 2
QUALITY CO	NTROL	REP	OR	Г												WF	1114	0000)57.'	1
		AQ200	AQ200	A@200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AQ200	AG200	AQ200	AG200	AQ200	AG200	AQ200	FA630
		P	La	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	п	8	Ga	3e	Те	Au
		%	ppm	ppm	96	ppm	96	ppm	56	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t
		0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2	0.9
STD DS10	Standard	0.078	20	54	0.79	430	0.085	<20	1.10	0.061	0.35	3.3	0.32	3.3	5.3	0.28	5	2.2	4.5	
STD OREAS45EA	Standard	0.029	7	799	0.10	140	0.091	<20	3.06	0.019	0.05	<0.1	0.02	74.1	<0.1	<0.05	13	1.1	<0.2	
STD OREAS45EA	Standard	0.027	7	796	0.10	136	0.091	<20	3.28	0.019	0.06	<0.1	<0.01	72.4	<0.1	<0.05	13	0.9	0.2	
STD OREAS45EA	Standard	0.026	6	822	0.09	134	0.084	<20	2.81	0.018	0.05	<0.1	<0.01	68.6	<0.1	<0.05	11	0.6	<0.2	
STD OREAS45EA	Standard	0.029	8	873	0.11	158	0.102	<20	3.52	0.008	0.05	<0.1	0.01	83.5	<0.1	<0.05	14	1.0	<0.2	
STD OXD108	Standard																			
STD OXD108	Standard																			
STD OXD108	Standard																			
STD OXD108	Standard																			
STD OXI121	Standard																			
STD OXI121	Standard																			
STD OXI121	Standard																			
STD OXI121	Standard																			
STD OXN117	Standard																			
STD OXN117	Standard																			
STD OXN117	Standard																			
STD OXN117	Standard																			
STD SP49	Standard																			18.5
STD SP49	Standard																			18.5
STD AGPROOF Expected																				0
STD SP49 Expected																				18.34
STD OXD108 Expected																				
STD OXN117 Expected																				
STD OXI121 Expected																				
STD DS10 Expected		0.073	17.5	54.6	0.775	359	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	4.3	2.3	5.01	
STD OREAS45EA Expected		0.029	6.57	849	0.095	148	0.0875		3.13	0.02	0.053			78	0.072	0.036	11.7	0.6	0.07	
BLK	Blank																			
BLK	Blank																			
BLK	Blank																			

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

AcmeLab A Bureau Veritas Group Company	S™		www	.acmela	ab.com						Client	t	Will Box 3 White McCo	iam K 87 Fox SK 8	0e-Ca	rson Canada	,			
Bureau Veritas Commodities Canada Ltd											Report	Date:	Augus	it 13, 201	4					
9050 Shaughnessy St Vancouver BC V6 PHONE (604) 253-3158	3P 6E5 C	ANAD	A								Page:		3 of 3					Par	E 10	12
OLIALITY CONTROL	DED		Т												W/F	111/	000	157	1	
QUALITI CONTROL			1													1114	0000	551.		
	WOHT	FA430	AG200	AG200	AG200	AG200	AG200	A@200	AG200	AG200	A@200	AQ200	A@200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	AG20
	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	c
	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	
	0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.0
BLK Blank		<0.005																		
BLK Blank		<0.005																		
BLK Blank		<0.005																		
BLK Blank			<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊴0.1	4	<0.01	⊲0.5	<0.5	⊲0.1	<1	⊲0.1	<0.1	<0.1	<2	<0.0
BLK Blank			<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊲0.1	4	<0.01	⊲0.5	<0.5	⊲0.1	<1	⊲0.1	<0.1	<0.1	<2	<0.0
BLK Blank																				
BLK Blank			<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊴0.1	4	<0.01	⊲0.5	<0.5	⊲0.1	<1	⊲0.1	<0.1	<0.1	<2	<0.0
BLK Blank		<0.005																		
BLK Blank		<0.005																		
BLK Blank			<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊴0.1	4	<0.01	⊲0.5	<0.5	⊲0.1	<1	⊲0.1	<0.1	<0.1	<2	<0.0
Prep Wash																				
G1-WHI Prep Blank		<0.005	0.2	51.7	19.9	322	0.8	3.0	4.6	559	2.05	2.8	1.7	6.1	54	2.9	4.0	0.2	37	0.5
G1-WHI Prep Blank		<0.005	<0.1	7.4	5.1	72	0.1	2.4	3.7	587	2.01	<0.5	<0.5	6.4	57	0.3	0.4	<0.1	37	0.5

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

A Bureau Veritas)S™		www	.acmela	ab.com						Client	E :	Willi Box 38 White McCor	iam Ko 37 Fox SK S nnell	ое-Са юл зво (rson Canada				
Bureau Veritas Comm	dities Canada I tr	d										Report	Date:	Augus	t 13, 2014	4					
Dureau ventas commi	Villes Ganada El		~~~~~																		
PHONE (604) 253-315	Vancouver BC V 8	OP OES	CANAL	A								Pager		3 01 3					Part		
												. oge.		2012							
QUALITY C	ONTROL	REP	POR	Γ												WF	1114	000	057 <u>.</u>	1	
		40200	40204	A (200	40200	40204	40200	40200	40394	40200	40200	A0200	40200	40200	40200	40200	40200	40000	40200	EACM	
		AULOU	ANAZON	A42200	Ma	Da	A02200	A0200	A42200	Mazou	AG200	A02200	Ha	A02200	AULZOU TI	A02200	A02200	A02200	Te	A	
			000	000		000		0000		-		000	0000	000	0000		nom	nom	0000	amit	
		0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	0.8	
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.001	<	<1	<0.01	<	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2		
BLK	Blank	<0.001	<	<1	<0.01	4	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	0.7	<0.2		
BLK	Blank																			<0.9	
BLK	Blank	<0.001	<	<1	<0.01	<	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2		
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2		
Prep Wash																					
G1-WHI	Prep Blank	0.074	14	6	0.54	168	0.136	<20	1.00	0.057	0.50	<0.1	0.04	2.7	0.4	0.09	5	2.6	<0.2		
G1-WHI	Prep Blank	0.072	15	5	0.54	164	0.130	<20	0.99	0.058	0.47	<0.1	0.02	2.5	0.3	<0.05	5	<0.5	<0.2		

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

WHI14000057M.1

Client:

Received:

Page:

Report Date:

CLIENT JOB INFORMATION

Project: McConneil Shipment ID: P.O. Number Number of Samples: 4

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wat (a)	Report Status	Lab
F8651	4	Metallic Pulverize and Sieve 500g to 150 mesh			VAN
F8651	4	Metallics Fire Assay for Au	30	Completed	VAN
DRPLP	4	Warehouse handling / disposition of pulps			VAN
FA550-Au	2	50g Lead collection fire assay - Grav finish	50	Completed	VAN
SPTPL	4	Splitting of pulp samples for extra analysis			VAN
PUL85	4	Pulverize to 85% passing 200 mesh			VAN

William Koe-Carson

White Fox SK S0J 3B0 CANADA

September 24, 2014

October 08, 2014

Box 387

Submitted By: William Koe-Carson Receiving Lab: Canada-Whitehorse

1 of 2

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: William Koe-Carson Box 397

Box 387 White Fox SK S0J 3B0 CANADA

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acre assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** astarkis indicates that an analytical result could not be non-liabilities for actual cost of interference from other elements.

Acme Labs [™]		Client	William Koe-Carson Box 387 White Fox SK 80J 380 CANADA		
A Bureau Veritas Group Company Bureau Veritas Commodities Canada Ltd.	www.acmelab.com	Project: Report Date:	McConnell October 08, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E5 CANAD PHONE (604) 253-3158	A	Page:	2 of 2	Part	1 of 1
CERTIFICATE OF ANALYSIS			WHI14000	057M	.1

		Method Analyte Unit	M160 TotWt Q	FA460 -Au gm/t	F8800 +Wt	FS800 +Au gm/t	FS800 TotAu gm/t	FA660 Au gm/t
		MDL	1	0.006	0.01	0.17	0.01	0.8
14474	Rock		331	>10	18.73	74.75	33.30	30.8
14515	Rock		642	2.385	19.18	23.57	3.02	
14521	Rock		486	0.410	18.99	0.68	0.42	
14544	Rock		440	>10	22.43	42.18	16.50	12,4

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

QUALITY CONTROL REPORT

	Method	M160	FA450	F8800	F\$600	F8600	FA660
	Analyte	TotWt	-Au	+Wt	+Au	TotAu	Au
	Unit	٩	gm/t		gm/t	gm/t	gm/t
	MDL.	1	0.006	0.01	0.17	0.01	0.8
Pulp Duplicates							
14544	Rock	440	>10	22,43	42.18	16.50	12.4
REP 14544	QC						13.4
Reference Materials							
STD AGPROOF	Standard						<0.9
STD OXD108	Standard		0.401				
STD OXI121	Standard		1.794				
STD OXN117	Standard		7.726				
STD OXP91	Standard			29.13	15.10		
STD OXP91	Standard			30.21	15.19		
STD SP49	Standard						18.2
STD SQ70	Standard						39.8
STD OXP91 Expected					14.82		
STD AGPROOF Expected							0
STD SP49 Expected							18.34
STD SQ70 Expected							39.62
BLK	Blank			30.00	<0.17		
BLK	Blank		<0.005				
BLK	Blank		<0.005				
BLK	Blank						<0.9
Prep Wash							
G1	Prep Blank	488	<0.005	22,42	<0.17	<0.01	
							_

Project:

Project:	McConnell
Report Date:	October 08, 2014

1 of 1

Box 387

William Koe-Carson

White Fox SK S0J 3B0 CANADA

Client:

Page:

Part: 1 of 1

WHI14000057M.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

			Client:	William Koe-Carson Box 387 White Fox SK 80J 380 CANADA	
VERITAS	MINERAL LABORATORIES Carada	www.bureauveritas.com/um	Submitted By:	William Koe-Carson	
Bureau Veritas	Commodities Canada Ltd.		Receiving Lab:	Canada-Whitehorse	
0050 Shauaha	essy St. Vancouver BC V&P &E5 C	ΔΝΔΠΔ	Received:	August 07, 2015	
DUONE (804)	253 9 31 Vancouver DO Vor 023 0		Report Date:	September 03, 2015	
FHOME (004)	203-3100		Page:	1 of 2	

CERTIFICATE OF ANALYSIS

McConnell

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Decoription	Test Wgt (g)	Report Status	Lab
PRP70-500	6	Crush, split and pulverize 500g rock to 200 mesh			WHI
FA430	6	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
AQ200	6	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
BAT01	6	Batch charge of <20 samples			WHI

SAMPLE DISPOSAL

Number of Samples:

Project: Shipment ID: P.O. Number

CLIENT JOB INFORMATION

07720

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 90 days

6

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

CANADA

Invoice To: William Koe-Carson Box 387 White Fox SK S0J 3B0

CC:

WHI15000139.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Survey Vertices assumes the liabilities for extual cost of enalysis only. Results apply to samples as submitted. "** astarks indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

												Clie	nt:	Wil Box Whit	lliam H 387 e Fox SK	(oe-C	arson CANAD	•			
BUREAU VERITAS	MINERAL LABORATOR Canada	JES	www.bureauveritas.com/um											McConnell							
Bureau Veritas	s Commodities Canada Lt	d.										Repo	rt Date:	Sept	ember 03	3, 2015					
9050 Shaughn PHONE (604)	essy St Vancouver BC V 253-3158	/6P 6E5	CANAI	DA								Page	:	2 of 2	2				Pr	art: 1	of 2
CERTIF	FICATE OF AN	IALY	′SIS	;												W	HI15	5000)139	.1	
	Method	WGHT	FA430	A@200	A@200	A@200	AG200	AG200	A@200	AQ200	AQ200	AG200	AG200	A@200	AG200	A@200	AG200	AG200	A@200	AG200	AQ200
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	56	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.005	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
15601	Rock	0.48	0.615	0.6	30.0	4.5	34	<0.1	16.4	30.0	888	3.00	3350.1	98.4	13.6	7	0.1	1.3	2.3	<2	0.13
15602	Rock	0.67	0.026	0.4	9.5	3.6	19	<0.1	5.2	9.9	870	1.98	883.6	13.1	16.2	7	0.1	0.8	1.1	3	0.12
15603	Rock	0.53	0.039	2.6	68.6	25.1	11	0.1	2.8	2.2	98	1.88	25.1	38.8	2.8	7	⊲0.1	0.5	97.5	4	0.06
15604	Rock	0.25	3.046	0.5	14.1	132.6	171	0.6	3.5	7.6	546	4.98	>10000	1191.7	9.1	28	0.9	13.4	108.3	<2	0.11
15605	Rock	0.72	0.094	0.4	12.8	6.3	144	0.1	3.1	3.5	442	2.32	1085.2	550.1	11.2	15	0.6	2.3	8.6	<2	0.07
15607	Bock	0.52	0.017	04	61.4	12.7	13	<01	19	4.2	228	4.57	3254.9	11.6	14.4	5	<11	13	17	<2	0.03

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

0.00

												Clier	ıt:	Will Box 3 White	lliam 387 e Fox SK	(oe-C	arson CANAD	•		
BUREA VERITA	BUREAU MINERAL LABORATORIES www.bureauveritas.com/um												Project: McConnell							
Bureau Ver	itas Commodities Canada Lí	td.										Repor	t Date:	Sept	ember 03	3, 2015				
9050 Shau PHONE (60	050 Shaughnessy St. Vancouver BC V6P 6E5 CANADA 2HONE (604) 253-3158											Page:		2 of 2	2				Part	2 of 2
CERT	CERTIFICATE OF ANALYSIS															W	HI15	5000	139.1	
	Method	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	A@200	AQ200	A@200	AQ200	AG200	AQ200	
	Analyte	P	La	Cr	Mg	Ba	т ж	В	AI	Na	ĸ	W	Hg	50	TI	8	Ga	3e	Te	
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2	
15601	Rock	0.054	18	6	0.10	139	0.001	<20	0.36	0.007	0.30	0.1	<0.01	1.0	0.1	<0.05	<1	<0.5	<0.2	
15602	Rock	0.051	23	5	0.10	151	0.005	<20	0.49	0.012	0.31	0.1	<0.01	1.1	0.1	<0.05	1	<0.5	<0.2	
15603	Rock	0.014	3	4	0.10	41	0.040	<20	0.25	0.017	0.13	<0.1	<0.01	0.5	⊲0.1	0.05	1	0.8	1.0	
15604	Rock	0.038	16	3	0.04	101	0.001	<20	0.32	0.008	0.24	0.3	0.02	1.1	0.3	0.18	<1	<0.5	<0.2	
15605	Rock	0.031	22	4	0.04	125	0.002	<20	0.38	0.008	0.31	0.1	<0.01	1.0	0.1	<0.05	<1	<0.5	<0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unalgoed and should be used for reference only.

C C												Clier	Client: William Koe-Carson Box 387 White Fox SK S0J 380 CANADA								
VERITAS Canada	L LABORATOR	IES		~~~	.burea	uveritas	.com/u	m				Projec	t	McCo	nnell						
Bureau Veritas Commod	lities Canada I t	a										Repor	t Date:	Septe	mber 03,	2015					
0050 Shoushporry St V	Intes Ganada Et	NRD REF	CANAL																		
PHONE (804) 253-3158	ancouver bo v	OF OES	CANAL	~																	
1110142 (001) 200-0100												Page:		1 of 1					Part	: 10	12
QUALITY CC	NTROL	REF	POR	Т												WF	1115	000 ⁻	139.	1	
	Method	WOHT	FA430	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AQ20
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	c
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	
	MDL	0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.0
Pulp Duplicates																					
15607	Rock	0.52	0.017	0.4	61.4	12.7	13	⊲0.1	1.9	4.2	228	4.57	3254.9	11.6	14.4	5	<0.1	1.3	1.7	<2	0.0
REP 15607	QC			0.6	62.8	13.3	14	⊲0.1	1.9	4.5	235	4.71	3344.9	9.4	15.3	5	<0.1	1.4	1.9	<2	0.0
Reference Materials	-																				
8TD D810	Standard			13.8	154.0	158.9	378	2.0	76.4	13.4	889	2.73	46.9	63.0	1.1	66	2.7	10.0	12.6	42	1.0
STD OREAS45EA	Standard			1.8	699.3	15.0	29	0.3	374.9	51.8	416	21.59	11.5	53.8	10.2	4	<0.1	0.4	0.3	302	0.0
STD OXD108	Standard		0.412																		
810 04121	Standard		1.840																		
STD OXN117	Stational		7.913	44.00	454.54	459.55		2.02	74.6	43.0		2 7400	43.7				2.40		44.00		4.000
STD DS10 Expected				14.69	154.61	150.55	3/0	2.02	74.6	12.9	8/5	2./188	43.7	91.9	10.7	67.1	2,49	8.23	11.65	43	1.062
OTD OVEROUSEN Expected			0.414	1.9	703	14.2	31.4	0.20	301	24	400	23.31	10.5		10.7	2.2	0.03	0.32	0.20	303	0.05
STD OXD105 Expected			7.679																		
8TD OXI121 Expected			1.834																		
BLK	Blank			<0.1	<11	<0.1	e1	411	ৰাণ	411	el	<0.01	415	<1 F	411	e 1		<0.1	<0.1	0	<0.0
BLK	Blank		<0.005			-0.1		-		-	-		~~~	-4.5			-			-	-0.0
BLK	Blank		<0.005																		
Prep Wash																					
ROCK-WHI	Prep Blank		<0.005	0.4	9.6	1.4	40	⊲0.1	14.7	4.5	483	1.79	0.7	<0.5	2.1	21	<0.1	<0.1	<0.1	20	0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only
												Clien	t	Willi Box 38 White	iam Ko 87 Fox SK S	0e-Ca	rson Canada			
VERITAS Canada	ABORATORI	IES-		www.	bureau	veritas	.com/u	m				Project	E	McCor	neli					
Bureau Veritas Commoditie	es Canada Lto	d.										Report	Date:	Septer	nber 03,	2015				
0050 Shaunhnessy St. Var	couver BC V	RP 6E5	CANAR	۵۵																
PHONE (604) 253-3158												Pager		1.011					Dart	2012
. ,												raye.		1011					rait.	202
QUALITY CON	NTROL	REP	OR	Т												WF	1115	0001	139.1	
	Method	AQ200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AG200	AQ200	AG200	AQ200	AG200	AQ200	AG200	AG200	
	Analyte	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	п	8	Ga	80	Те	
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
I	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	
Pulp Duplicates																				
15607	Rock	0.041	13	2	0.02	117	<0.001	<20	0.26	0.006	0.23	0.6	<0.01	0.7	<0.1	0.07	<1	<0.5	<0.2	
REP 15607	QC C	0.043	12	2	0.02	124	<0.001	<20	0.28	0.006	0.24	0.5	<0.01	0.8	<0.1	0.07	<1	<0.5	<0.2	
Reference Materiais																				
8TD D810	Standard	0.078	17	55	0.76	420	0.077	<20	0.98	0.064	0.33	2.9	0.33	2.8	5.1	0.28	4	2.0	5.2	
STD OREA345EA	Standard	0.028	7	834	0.09	146	0.098	<20	3.08	0.016	0.05	<0.1	<0.01	76.5	0.1	<0.05	12	0.9	<0.2	
STD OXD108	Standard																			
310 0X121	standard																			
SID OXN117	Standard		47.5	54.5	0.775		0.0047		4.0300	0.007										
STD OPEASIEEA Expected		0.075	7.05	24.0	0.095	412	0.0017		2.12	0.007	0.053	3.32	u.5	2.0	0.072	0.025	4.3	0.79	0.07	
9TD OVD108 Expected		0.025	1.00		0.000	140	0.0004		2.12	0.01					0.012	0.000	12.7	0.70		
STD OXD105 Expected																				
STD OXI121 Expected																				
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
BLK	Blank														-					
BLK	Blank																			
Prep Wash																				
ROCK-WHI	Prep Blank	0.041	5	6	0.57	50	0.065	<20	0.86	0.066	0.08	0.1	<0.01	2.4	<0.1	<0.05	4	<0.5	<0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

۲			Client:	William Koe-Carson Box 387 White Fox SK 80J 380 CANADA
VERITAS	MINERAL LABORATORIES Carada	www.bureauveritas.com/um	Submitted By:	William Koe-Carson
Bureau Veritas 9050 Shaughn PHONE (604)	Commodities Canada Ltd. essy St. Vancouver BC V6P 6E5 CAI 252-3158	NADA	Receiving Lab: Received: Report Date:	Canada-Whitehorse August 07, 2015 September 03, 2015
	00-0100		Page:	1 of 2

CERTIFICATE OF ANALYSIS

McConnell

1

CLIENT JOB INFORMATION

SAMPLE DISPOSAL

Project: Shipment ID: P.O. Number Number of Samples:

DISP-PLP DISP-RJT

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-500	1	Crush, split and pulverize 500g rock to 200 mesh			WHI
F8631	1	Metallic Sleve 500g to 150 mesh			VAN
Split +150 mesh	1	Analysis sample split/packet			VAN
Split -150	1	Analysis sample spil/packet			VAN
F8631	1	Metallics Fire Assay for Au	30	Completed	VAN
AQ200	1	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Dispose of Reject After 90 days

Invoice To: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA

CC:

WHI15000155.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Survey Vertices assumes the liabilities for extual cost of enalysis only. Results apply to samples as submitted. "** astarks indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

												Clier	nt:	Will Box 3 White	lliam H 387 e Fox SK	(0e-C 30J 380	arson CANAD	•			
BUREAU VERITAS	MINERAL LABORATOR Canada	JES		****	burea	uverita	s.com/	um				Projec	ct	McC	onnell						
Bureau Veritas Commodities Canada Ltd. Report Date: September 03, 2015																					
9050 Shaugh PHONE (604)	nessy St Vancouver BC V) 253-3158	/6P 6E5	CANAI	DA								Page:	:	2 of 2	2				P	art: 1	of 3
CERTI	FICATE OF AN	IALY	′SIS	;												W	HI15	5000	155	.1	
	Method	WOHT	M160	FA430	F8600	F8800	F\$600	AQ200	AQ200	AQ200	A@200	AG200	AQ200	AQ200	AQ200	A@200	AG200	AQ200	AQ200	AQ200	AQ20
	Analyte	Wgt	TotWt	-Au	TotAu	+Au	+Wt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	C
	Unit	kg	0	gm/t	gm/t	gmt	0	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	PP
	MDL	0.01	1	0.006	0.01	0.17	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0
15606	Rock	0.69	504	4.825	4.98	7.61	28.90	1.5	257.9	500.8	10	3.4	7.6	69.1	136	21.02	>10000	6289.4	0.9	9	0

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

(F)												Clier	nt:	Will Box 3 White	lliam 387 e Fox SK	(oe-C	arson CANAD	•			
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www	burea	uverita	s.com/	um				Projec	t	McC	onnell						
Bureau Verita	ureau Veritas Commodities Canada Ltd.									Repo	t Date:	Sept	ember 03	3, 2015							
9050 Shaughr PHONE (604)	nessy St Vancouver BC V 253-3158	6P 6E5	CANAI	A								Page:		2 of 2	2				P	art: 2	of 3
CERTI	FICATE OF AN	IALY	'SIS													W	HI1	5000)155	.1	
	Method	AG200	AG200	A@200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	A@200	AG200	AG200	AQ200	AG200	AG200
	Analyte	8b	BI	v	Ca	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	п	8	Ga
	Unit	ppm	ppm	ppm	%	%	ppm	ppm	56	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm
	MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
15606	Rock	125.0	357.1	<2	0.01	0.011	8	4	<0.01	65	< 0.001	<20	0.04	0.002	0.05	<0.1	0.02	0.3	<0.1	6.98	<1

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

			Client	William Koe-Carson Box 387 White Fox SK SDJ 3B0 CANADA		
VERITAS	MINERAL LABORATORIES	www.bureauveritas.com/um	Project	McConnell		
Bureau Veritas Commodities Canada Ltd.			Report Date:	September 03, 2015		
9050 Shaughn	essy St Vancouver BC V6P 6E	5 CANADA				
PHONE (604)	253-3158		Page:	2 of 2	Part	3 of 3
CERTIF	ICATE OF ANAL	YSIS		WHI150	00155.1	
	Method Ace	0 AG200				

AG200	AQ200	Method	
Те	Se	Analyte	
ppm	ppm	Unit	
0.2	0.6	MDL	
0.2	8.3	6 Rock	15606

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

													Clien	t	Will Box 3 White	iam K 87 Fox SK (0e-Ca	I FSON CANADA	i.			
VERITAS	MINERAL LAE Canada	ORATOR	IES		www	bureau	veritas	.com/u	m				Project	t.	McCo	nnell						
Bureau Veritas	s Commodities (Canada Lt	d.										Repon	Date.	Septe	mber 03,	2015					
9050 Shaughn PHONE (604)	essy St Vanco 253-3158	uver BC V	6P 6E5	CANAI	DA								Page:		1 of 1					Part	t 10	13
QUALI	TY CONT	ROL	REP	OR	Т												Wł	1115	000 ⁻	155.	1	
		Method	WOHT	M150	FA430	F\$600	F8800	F8800	AQ200	AQ200	AG200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AG200	AQ20
		Analyte	Wgt	TotWt	-Au	TotAu	+Au	+Wt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	Sr	C
		Unit	kg	a	gm/t	gm/t	gm/t		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppr
		MDL	0.01	1	0.005	0.01	0.17	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.
Reference Mate	erials																					
STD DS10	3	andard							13.8	154.0	158.9	378	2.0	76.4	13.4	889	2.73	46.9	63.0	7.7	66	2.
STD OREA345	SEA St	andard							1.8	699.3	15.0	29	0.3	374.9	51.8	416	21.59	11.5	53.8	10.2	4	<0.
STD OXD108	31	andard			0.412																	
STD OXI121	31	andard			1.840																	
STD OXN117	St	andard			7.913																	
STD OXP91	St	andard					14.98	30.25														
STD OXP91 Ex	pected						14.82															
STD DS10 Exp	ected								14.69	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	43.7	91.9	7.5	67.1	2.4
STD OREA345	EA Expected								1.6	709	14.3	31.4	0.26	381	52	400	23.51	10.3	53	10.7	3.5	0.0
BLK	BI	ank					<0.17	30.00														
BLK	BI	ank							⊲0.1	⊲0.1	⊲0.1	<	⊲0.1	⊲0.1	⊲0.1	<1	<0.01	⊲0.5	<0.5	<0.1	<1	<0.
BLK	BI	ank			<0.005																	
BLK	BI	ank			<0.005																	
Prep Wash																						
ROCK-WH	Pr	rep Blank	1	492	<0.005	<0.01	<0.17	23.42	0.6	3.3	2.3	32	<0.1	1.1	3.7	487	1.88	1.4	<0.5	2.1	20	<0.

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

													Clien	t	Will Box 3 White	iam K 87 Fox SK (0e-Ca	rson Canada	i.			
VERIT	AU MINERAL AS Canada	LABORATOR	IES		~~~	bureau	weritas	5.com/u	ım				Project	t.	McCo	nnell						
Bureau V	eritas Commoditi	ies Canada Lt	d.										Report	Date:	Septe	mber 03,	2015					
9050 Sha PHONE (ughnessy St Va 604) 253-3158	ncouver BC V	6P 6E5	CANAE	A								Page:		1 of 1					Part	: 20	13
QUA	LITY COI	NTROL	REP	OR	Т												WF	1115	000 ⁻	155.	1	
		Method	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AQ20
		Analyte	8b	BI	v	Ca	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	т	8	G
		Unit	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	56	ppm	%	56	%	ppm	ppm	ppm	ppm	%	ppr
		MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	
Reference	e Materiais																					
STD DS1	10	Standard	10.0	12.6	42	1.05	0.078	17	55	0.76	420	0.077	<20	0.98	0.064	0.33	2.9	0.33	2.8	5.1	0.28	
STD OR	EA845EA	Standard	0.4	0.3	302	0.04	0.028	7	834	0.09	146	0.098	<20	3.08	0.016	0.05	<0.1	<0.01	76.5	0.1	<0.05	1
STD OXI	D108	Standard																				
STD OXI	121	Standard																				
STD OX	N117	Standard																				
STD OXF	P91	Standard																				
STD OXF	P91 Expected																					
STD DS1	IO Expected		8.23	11.65	43	1.0625	0.073	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	- 40
STD OR	EA845EA Expected		0.32	0.26	303	0.036	0.029	7.06	849	0.095	148	0.0984		3.13	0.02	0.053			78	0.072	0.036	12/
BLK		Blank																				
BLK		Blank	<0.1	<0.1	<2	⊲0.01	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	⊲0.1	<0.1	<0.05	<
BLK		Blank																				
BLK		Blank																				
Prep Wat	sh																					
ROCK-W	/HI	Prep Blank	<0.1	<0.1	19	0.49	0.040	5	3	0.45	52	0.064	<20	0.88	0.076	0.09	<0.1	<0.01	2.5	<0.1	<0.05	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

			Client	William Koe-Carson Box 387 White Fox SK S0J 3BD CANADA		
U HEAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project	McConnell		
Bureau Veritas 9050 Shaughn	s Commodities Canada Ltd. Jessy St. Vancouver BC V6P 6E5 CA	NADA	Report Date:	September 03, 2015		
PHONE (604)	253-3158		Page:	1 of 1	Part	3 of 3
QUALIT	Y CONTROL REPO	RT		WHI1500	0155.1	

QUALITY CONTROL REPORT

	Method	AG200	AG200
	Analyte	8e	Те
	Unit	ppm	ppm
	MDL	0.6	0.2
Reference Materials			
STD DS10	Standard	2.0	5.2
STD OREAS45EA	Standard	0.9	<0.2
STD OXD108	Standard		
STD OXI121	Standard		
STD OXN117	Standard		
STD OXP91	Standard		
STD OXP91 Expected			
STD DS10 Expected		2.3	5.01
STD OREA345EA Expected		0.78	0.07
BLK	Blank		
BLK	Blank	₹.5	<0.2
BLK	Blank		
BLK	Blank		
Prep Wash			
ROCK-WHI	Prep Blank	⊲0.5	<0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this catificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

			Client:	William Koe-Carson Box 387 White Fox Saskatchewan S0J 380 Canada
BUREAU VERITAS	MINERAL LABORATORIES Carada	www.bureauveritas.com/um	Submitted By:	Willam Koe-Carson
Bureau Veritas	Commodities Canada Ltd.		Receiving Lab: Received:	Canada-Whitehorse August 17, 2015
9050 Shaughn	essy St Vancouver British Colu	mbia V6P 6E5 Canada	Report Date:	September 08, 2016
FHOME (004)	233-3130		Page:	1 of 3

CERTIFICATE OF ANALYSIS

McConnell

40

CLIENT JOB INFORMATION

Project: Shipment ID: P.O. Number

DISP-PLP DISP-RJT

Number of Samples:

SAMPLE DISPOSAL

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Decoription	Test Wat (a)	Report Status	Lab
PRP70-250	40	Crush, split and pulverize 250 g rock to 200 mesh			WHI
FA430	40	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
AQ200	40	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
SHP01	40	Per sample shipping charges for branch shipments			VAN
FA530	2	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Dispose of Reject After 90 days

Invoice To: William Koe-Carson Box 387 White Fox Saskatchewan S0J 3B0 Canada

CC: Andy Randell

WHI16000188.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Survey Vertices assumes the liabilities for extual cost of enalysis only. Results apply to samples as submitted. "** astarks indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

												Clie	nt:	Wi Box Whit	lliam 387 re Fox Sa	Koe-C	arson Ian 80J 3	180 Cana	ida		
BUREAU M	INERAL LABORAT	ORIES		w	w.bure	auverita	s.com/	um				Proje	ct	Met	onnell						
VENTING C	anada											Repo	rt Date:	Sect	ember Di	2016					
Bureau Veritas C	ommodities Canada	a Ltd.																			
9050 Shaughnes	sy St Vancouver B	ritish Co	umbia	V6P 6E	5 Canad	a															
PHONE (604) 25	3-3158											Page		2 of	3				P	art: 1	of 2
			VO													14/	11147	2000	1400	4	
CERTIFI	CATE OF	ANAI	_YS	S												VV	HITE	5000	1188	.1	
	Met	od WG	HT FA	130 AQ2	00 AQ20	AQ200	AG200	AG200	A@200	AG200	AQ200	AG200	AQ200	AQ200	AG200	AQ200	AG200	AG200	AQ200	A@200	AQ200
	Ana	yte y	/gt	Au N	lo Ci	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
	L. L	Init	kg p	pm pp	m ppr	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*
	N	IDL 0	.01 0.1	06 0	.1 0.:	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.5	0.1	1	0.1	0.1	0.1	2	0.01
16700	Rock	0	16 <0.0	05 0	.1 2/	3.8	10	<0.1	2.3	0.7	79	0.45	4.9	<0.5	14.4	34	<0.1	0.1	<0.1	8	0.40
16701	Rock	0	23 <0.0	05 1	.3 2.3	3.4	5	<0.1	1.1	0.7	67	0.37	23.4	<0.5	0.6	2	⊲0.1	0.4	<0.1	<2	0.02
16702	Rock	0	13 <0.0	05 2	.6 3.8	1.6	7	<0.1	0.9	0.5	73	0.44	1.5	<0.5	2.3	5	⊲0.1	<0.1	<0.1	<2	0.05
16703	Rock	0	56 <0.0	05 0	.1 1.3	1.9	7	<0.1	2.7	0.5	228	0.52	22.5	<0.5	1.2	16	<0.1	0.4	<0.1	5	0.35
16704	Rock	0	55 <0.0	05 0	.1 1.6	5.7	25	<0.1	24.3	2.8	563	2.10	9.9	1.3	2.2	139	⊲0.1	3.5	<0.1	37	4.03
16705	Rock	0	19 <0.0	05 0	4 2.6	5 2.0	12	<0.1	1.4	0.3	302	0.52	5.7	<0.5	1.4	15	⊲0.1	0.2	<0.1	<2	0.62
16706	Rock	0	26 <0.0	05 <0	.1 2.3	2.0	4	<0.1	0.8	0.2	43	0.32	1.5	<0.5	0.5	7	<0.1	0.1	<0.1	<2	0.03
16707	Rock	0	61 0.0	05 0	.2 3.5	0.9	7	<0.1	1.4	0.4	24	0.25	154.6	<0.5	0.1	<1	⊲0.1	0.6	0.1	<2	<0.01
16708	Rock	0	26 <0.0	05 4	.6 2.3	2 0.8	3	<0.1	0.5	0.2	45	0.30	1.1	<0.5	0.3	5	⊲0.1	<0.1	<0.1	<2	0.10
16709	Rock	0	39 0.0	06 0	.1 1.3	0.6	3	<0.1	0.6	0.2	64	0.21	7.0	<0.5	<0.1	5	<0.1	0.1	<0.1	<2	0.15
16710	Rock	0	22 <0.0	05 <0	.1 1.2	2 0.8	2	<0.1	0.6	0.3	40	0.33	2.7	<0.5	0.7	3	⊲0.1	<0.1	<0.1	<2	0.02
16711	Rock	0	22 <0.0	05 0	.5 13.3	3 1.2	4	<0.1	0.5	0.3	63	0.90	226.7	<0.5	6.5	6	<0.1	0.4	1.6	<2	<0.01
16712	Rock	0	08 0.3	39 0	.3 18.9	1.1	9	<0.1	1.0	1.3	779	1.46	786.1	45.6	8.1	13	⊲0.1	0.8	1.5	<2	0.24
16713	Rock	0	13 2	10 1	.3 82.9	5 107.7	5	4.0	3.8	13.1	76	6.13	>10000	49473.2	5.0	25	0.1	31.9	270.5	<2	0.01
16714	Rock	0	19 9.8	53 2	4 133.9	72.9	5	6.6	3.6	19.9	41	16.35	>10000	9843.5	6.6	5	⊲0.1	105.8	756.7	<2	<0.01
16715	Rock	0	18 0.2	75 0	.8 25.2	2 26.4	10	0.2	1.1	0.7	115	2.23	649.7	128.7	10.4	9	<0.1	1.3	21.7	<2	<0.01
16716	Rock	0	45 5.8	69 2	.7 21.3	5.9	4	0.6	5.8	39.2	26	13.68	>10000	5566.0	7.7	6	<0.1	89.0	16.3	<2	<0.01
16717	Rock	0	31 2	10 1	.0 9.9	28.1	9	0.5	4.4	4.2	1009	2.55	222.8	17859.7	18.8	11	<0.1	20.3	695.9	<2	0.26
16718	Rock	0	25 8.	41 4	.9 4.8	15.1	5	0.4	6.0	147.2	70	24.27	>10000	6851.5	2.0	33	40.1	115.6	66.3	<2	0.21
16/19	ROCK		41 4.	28 0	3 273	558.4		5.6	3.2	31.0	66	8.24	>10000	1937.0	5./	16	0.1	108.5	1199.5	~	0.06
16/20	ROCK		23 01	16 0	1 14	2.2	9	<0.1	10.5	3.9	1111	2.07	505.4	10.8	3.0	120	40.1	0.4	2.0	10	6.28
16/21	ROCK		16 0.	131 0	1 20	5 6.4	- 11	<0.1	1.9	0.7	101	0.61	339.4	20.5	21	1/	40.1	0.9	10.8	4	0.17
16/22	Rock		45 01	12 0	2 54	3.1	14		2.2	1.5	147	0.52	314.7	14.3	3.0			0.3	0.0		0.45
16/23	ROCK		15 0.	0/ 16	0 3.	2.5	12	<0.1	1.3	4.7	108	0.65	130.3	3.8	7.0		40.1	0.1	0.3	- 4	0.73
16724	Rock		29 -01	05 <0	1 14	0.2	12	<0.1	10.5	1.4	40/	0.62	30.7	5.6	5.1	76		0.2	1.5	19	0.84
0416100	Dock		71 -01	05 0	3 34	11.5	24	-90.1	2.0	4.0	305	4.70	10.1	0.3	46.0			0.1	-92.1	10	0.04
CH16101	Pork		70 <0.0	05 0	2 3/	11.6	40	<0.1	4.9	4.3	345	2.19	21.0	0.7	20.0	50		0.1	<0.5	10	0.33
CH16107	Rock		83 00	16 0	3 12	163	40		4.2	47	269	1.50	59.9	2.5	17.7		-0.1	0.1		10	0.30
CH16103	Bock		91 00	05 0	4 123		57	<0.1	3.4	50	434	1.69	22.3	<0.5	20.9	49	0.2	0.5	0.1	11	1.14
	1000-0							-	100	-				-4.2			W. 2		M. 1		1.17

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

(?)												Clier	nt:	Wil Box Whit	lliam 387 e Fox Sa	Koe-C	arson van 80J 3	180 Canad	da	
BUREAU M	INERAL LABORATOR	RIES		www	burea	uverita	s.com/	um				Protec	+							
VEHITAS C	anada											Report	t Date:	Mec	onnell	2010				
Bureau Veritas Co	ommodities Canada L	td.												aept	ember us	5, 2016				
050 Shaughness	y St. Vancouver Britis	sh Colum	nbia V6	P 6E5 (Canada															
PHONE (604) 253	3-3158											Page:		2 of	3				Pa	art: 2 o
CERTIFI	CATE OF AN	NALY	′SIS													W	HI16	6000	188	.1
	Method	AG200	AG200	A@200	AQ200	AG200	AG200	AG200	AQ200	AG200	AG200	AG200	AG200	AQ200	AQ200	AG200	AG200	AG200	AQ200	FA630
	Analyte	P	La	Cr	Mo	Ba	п	в	AL	Na	к	w	Hg	80	т	8	Ga	80	Те	Au
	Unit	t %	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	0.8
16700	Rock	0.028	38	4	0.21	17	0.043	<20	0.39	0.073	0.02	0.4	<0.01	1.1	⊲0.1	<0.05	2	<0.5	<0.2	
16701	Rock	0.001	<1	5	0.02	10	0.001	<20	0.04	0.004	0.01	>100	<0.01	0.3	<0.1	<0.05	<1	<0.5	<0.2	
16702	Rock	0.007	4	4	0.04	34	0.009	<20	0.10	0.014	0.04	6.7	<0.01	0.3	⊲0.1	<0.05	<1	<0.5	<0.2	
16703	Rock	0.003	3	5	0.16	31	<0.001	<20	0.10	0.004	0.05	0.6	<0.01	1.3	⊲0.1	<0.05	<1	<0.5	<0.2	
16704	Rock	0.008	3	6	2.04	41	0.004	<20	0.83	0.004	0.09	0.1	<0.01	8.7	⊲0.1	<0.05	4	<0.5	<0.2	
16705	Rock	0.005	17	4	0.12	20	<0.001	<20	0.04	0.007	0.02	0.2	<0.01	0.7	⊲0.1	<0.05	<1	<0.5	<0.2	
16706	Rock	0.002	1	5	0.04	23	0.009	<20	0.06	0.015	0.02	0.3	<0.01	0.3	<0.1	<0.05	<1	<0.5	<0.2	
16707	Rock	<0.001	<1	8	⊲0.01	3	<0.001	<20	<0.01	<0.001	<0.01	0.4	<0.01	<0.1	⊲0.1	<0.05	<1	<0.5	<0.2	
16708	Rock	<0.001	1	4	<0.01	22	<0.001	<20	0.02	0.006	0.02	53.9	<0.01	<0.1	⊲0.1	<0.05	<1	<0.5	<0.2	
16709	Rock	<0.001	<1	4	⊲0.01	4	<0.001	<20	<0.01	0.003	<0.01	5.1	<0.01	<0.1	⊲0.1	<0.05	<1	<0.5	<0.2	
16710	Rock	0.003	<1	5	0.02	26	0.007	<20	0.05	0.007	0.02	11.1	<0.01	0.1	<0.1	<0.05	<1	<0.5	<0.2	
16711	ROCK	0.007	8	3	<0.01	75	<0.001	<20	0.16	0.006	0.14	1.1	<0.01	0.3	40.1	<0.05	<1	<0.5	<0.2	
16712	ROCK	0.017	9	5	0.02	113	<0.001	<20	0.22	0.006	0.16	1.3	<0.01	0.6	0.1	<0.05	<1	<0.5	<0.2	
16/13	ROCK	0.011	10	6	0.01	133	0.001	<20	0.29	0.015	0.21	1.6	0.05	0.4	0.2	1.63	<1	3.6	0.5	41.9
16/14	ROCK	0.011	1		40.01	33	<0.001	<20	0.07	0.005	0.08	1.3	0.02	0.4	40.1	3.18	<1	14.9	2.2	
16715	Rock	0.009	23	3	<0.02	135	0.001	<20	0.40	0.003	0.29	1.0	40.01	0.5	0.1	<0.05	<1	40.5	40.2	+
16717	Dock	0.010			-0.01	474	<0.001	<20	0.10	0.005	0.00	0.4	0.01	4.4		0.14		-0.5		33.0
15718	Bock	0.032	20	2	<0.03	42	<0.001	<20	0.34	0.005	0.2/	<0.4	<0.01	1.1	40.1	7.09	<u>्</u> य	11.7	12.6	33.0
16719	Rock	0.009		4	0.01	84	<0.001	<20	0.11	0.007	0.15	1.5	0.03	0.2	411	2.63	<1	6.9	1.1	+
16720	Rock	0.024		1	2.90	63	0.002	<20	0.22	0.021	0.11	0.2	<0.01	5.0	40.1	<0.05	<1	<0.5	<0.2	+
16721	Rock	0.007	6	5	0.11	19	0.004	<20	0.16	0.021	0.03	0.5	<0.01	0.5	40.1	<0.05	<1	<0.5	<0.2	1
16722	Rock	0.021	11	8	0.14	35	0.012	<20	0.42	0.075	0.10	2.3	<0.01	1.4	⊲0.1	<0.05	2	<0.5	<0.2	1
16723	Rock	0.021	16	6	0.12	38	0.033	<20	0.43	0.083	0.06	>100	<0.01	0.7	<0.1	<0.05	1	<0.5	<0.2	1
16724	Rock	0.029	22	6	0.19	46	0.090	<20	0.50	0.128	0.06	>100	0.01	0.8	<0.1	<0.05	2	<0.5	<0.2	\neg
16725	Rock	0.025	20	5	0.77	29	0.050	<20	0.56	0.031	0.02	26.0	<0.01	1.7	⊲0.1	<0.05	3	<0.5	<0.2	1
CH16100	Rock	0.039	29	8	0.43	227	0.164	<20	1.30	0.119	0.69	7.7	<0.01	3.1	0.4	<0.05	6	<0.5	<0.2	\neg
CH16101	Rock	0.049	40	11	0.55	260	0.178	<20	1.39	0.101	0.70	2.6	<0.01	3.1	0.4	<0.05	7	<0.5	<0.2	
CH16102	Rock	0.034	31	6	0.27	182	0.070	<20	0.82	0.055	0.38	1.0	<0.01	1.7	0.2	<0.05	3	<0.5	<0.2	
CH16103	Rock	0.043	41	6	0.30	197	0.055	<20	0.86	0.038	0.35	0.9	<0.01	2.1	0.2	<0.05	3	<0.5	<0.2	

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

													Clier	t	Wil Box 3 White	liam K 387 e Fox Sas	(oe-C	arson an 80J 3	80 Cana	da		
BUREAU	MINERAL LABO	RATOR	IES		-	burea	uverita	s.com/	um				Projec	t	McCa	onell						
Duran Varitar	Canada Comerciation Com												Repor	Date:	Sept	ember 08	, 2016					
bureau ventas	Commodities Ca	nada Lu	0.																			
9050 Shaughn PHONE (604) 2	essy St Vancouv 253-3158	er Britisl	h Colum	nbia V6F	9 6E5 C	Canada	1						Page:		3 of 3	3				P	stt 1/	of 2
CERTIF	ICATE O	F AN	IALY	′SIS													W	HI1€	6000	188	.1	
		Method	WOHT	FA430	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	A@200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AQ200	AQ200
		Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca
		Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*
		MDL	0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
CH16104	Rock		0.43	<0.005	0.2	2.4	10.2	36	<0.1	2.3	3.4	291	1.22	7.9	<0.5	14.0	33	0.1	0.1	0.1	10	0.30
CH16105	Rock		0.78	0.068	0.4	11.7	14.6	138	<0.1	5.0	6.8	624	2.97	636.0	24.7	21.5	18	0.5	0.9	2.4	8	0.27
CH16106	Rock		0.79	0.026	0.3	5.8	9.7	37	<0.1	5.4	6.8	376	2.00	19.7	<0.5	20.8	35	0.1	0.3	0.1	16	0.35
CH16107	Rock		0.61	5.266	0.6	8.2	25.5	25	0.6	7.8	30.1	242	4.96	>10000	5396.9	15.5	30	<0.1	17.3	32.1	16	0.26
CH16108	Rock		0.98	<0.005	0.2	5.6	8.1	31	<0.1	6.5	6.7	321	2.08	20.6	1.1	16.2	52	⊲0.1	<0.1	<0.1	20	0.40
CH16109	Rock		1.09	0.006	0.2	4.5	6.5	36	<0.1	3.7	5.6	328	2.08	94.2	3.2	14.9	57	⊲0.1	<0.1	<0.1	21	0.45
CH16110	Rock		1.07	<0.005	<0.1	8.9	10.6	37	0.1	3.4	6.2	285	1.46	42	<0.5	13.9	30	⊲0.1	0.1	<0.1	14	0.39
CH16111	Rock		1.14	<0.005	0.1	5.2	10.9	44	<0.1	3.3	5.7	380	1.63	15.4	<0.5	15.9	54	<0.1	0.1	<0.1	16	0.80
CH16112	Rock		0.80	<0.005	0.1	2.6	11.7	43	<0.1	2.8	5.0	337	1.61	5.0	<0.5	15.5	36	⊲0.1	<0.1	<0.1	15	0.51
CH16113	Rock		0.88	<0.005	0.1	3.9	13.9	37	<0.1	2.9	4.4	326	1.31	4.9	<0.5	10.0	27	⊲0.1	0.1	<0.1	16	0.44

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this catificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Mineral LABORATORIES Canada www.bureauveritas.com/um Project: McConnell Report Date: Benedet Date: Sureau Veritas Commodities Canada Ltd. Prove (604) 253-3158 VERTICAL MADORATORIES VARIONALIS VEP BES canada Prove (604) 253-3158 Sureau Veritas Sureau Veritas CERTIFICATE OF ANALYSIS Page: 3 of 3 VERTICAL MADORATORIES Method Anatyfe Ada200													Clier	t	Will Box 3 White	liam k 87 Fox Sas	(oe-Ci skatchew	arson an SOJ 3	BO Cana	da								
Report Date: Report Date: Bareau Veritas Commodites Canada Ltd. Superau Veritas Commodites Canada Ltd. PHONE (604) 253-3158 Page: 3 of 3 Term: 2 of: CERTIFICATE OF ANALYSIS Method Ac200	VERITAS	MINERAL LABORATOR	IES		www	.burea	uverita	s.com/	um				Projec	t	McCo	nnell												
<th barrier="" column="" contentec="" contro="" control="" control<="" th=""><th>Bureau Veritas C</th><th>Commodities Canada Lt</th><th>d</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Repor</th><th>Date:</th><th>Septe</th><th>mber 08</th><th>, 2016</th><th></th><th></th><th></th><th></th><th></th></th>	<th>Bureau Veritas C</th> <th>Commodities Canada Lt</th> <th>d</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Repor</th> <th>Date:</th> <th>Septe</th> <th>mber 08</th> <th>, 2016</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Bureau Veritas C	Commodities Canada Lt	d										Repor	Date:	Septe	mber 08	, 2016										
CERTIFICATE OF ANALYSIS WHItod Ada200 Ada200 <th <<="" colspan="6" th=""><th>9050 Shaughnes PHONE (604) 25</th><th>sy St Vancouver Britis 3-3158</th><th>h Colum</th><th>bia V6F</th><th>9 6E5 (</th><th>Canada</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Page:</th><th></th><th>3 of 3</th><th>1</th><th></th><th></th><th></th><th>Р</th><th>art: 2</th><th>2 of 2</th></th>	<th>9050 Shaughnes PHONE (604) 25</th> <th>sy St Vancouver Britis 3-3158</th> <th>h Colum</th> <th>bia V6F</th> <th>9 6E5 (</th> <th>Canada</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Page:</th> <th></th> <th>3 of 3</th> <th>1</th> <th></th> <th></th> <th></th> <th>Р</th> <th>art: 2</th> <th>2 of 2</th>						9050 Shaughnes PHONE (604) 25	sy St Vancouver Britis 3-3158	h Colum	bia V6F	9 6E5 (Canada							Page:		3 of 3	1				Р	art: 2	2 of 2
Method Analytic AG200	CERTIFI	CATE OF AN	IALY	'SIS									-				W	HI16	6000)188	.1							
Analyte P La Cr Mg Ba Ti B Ai Na K W Hg Bo Ti B Au MDL MDL </th <th></th> <th>Method</th> <th>AG200</th> <th>AG200</th> <th>AQ200</th> <th>AQ200</th> <th>A@200</th> <th>AQ200</th> <th>AQ200</th> <th>A@200</th> <th>AQ200</th> <th>A@200</th> <th>AG200</th> <th>AG200</th> <th>AQ200</th> <th>AG200</th> <th>A@200</th> <th>AQ200</th> <th>AQ200</th> <th>AQ200</th> <th>FA630</th> <th>ĺ</th>		Method	AG200	AG200	AQ200	AQ200	A@200	AQ200	AQ200	A@200	AQ200	A@200	AG200	AG200	AQ200	AG200	A@200	AQ200	AQ200	AQ200	FA630	ĺ						
MDL 0.001 % ppm ppm % % % % ppm		Analyte	P	La	Cr	Mo	Ba	т	в	AI	Na	ĸ	w	Hg	80	т	8	Ga	30	Те	Au							
MDL 0.001 1 1 0.001 1 0.001 20 0.001 0.001 0.01 <th0.01< th=""> <th0.01< th=""> <th0.01< th=""></th0.01<></th0.01<></th0.01<>		Unit	*	ppm	ppm	*	ppm	*	ppm	*	*	*	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	gm/t							
CH16104 Rock 0.027 22 6 0.29 159 0.089 <20 0.39 0.7 <0.01 1.9 0.2 <0.05 4 <0.29 <0.5 <0.29 CH16105 Rock 0.046 35 6 0.22 153 0.027 <20		MUL	0.001			0.01		0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2	0.8	ł						
CH16105 Rock 0.049 35 6 0.22 133 0.027 <20 0.13 0.023 0.30 0.5 <0.01 1.6 0.1 <0.05 3 <0.25 3 <0.27 <0.01 0.05 <0.01 1.6 0.1 <0.05 3 <0.05 <0.27 <0.21 <0.05 0.025 0.01 2.5 0.2 <0.05 5 <0.01 2.5 0.2 <0.05 0.01 0.5 0.01 2.5 0.2 <0.05 0.01 0.5 0.01 2.5 0.2 <0.05 0.01 0.5 0.01 2.5 0.2 <0.02 1.11 0.053 0.048 0.5 0.01 2.5 0.2 <0.02 1.11 0.053 0.48 0.5 0.01 2.5 0.2 <0.02 0.11 0.13 0.02 0.01 2.5 0.25 <0.2 CH16109 Rock 0.043 28 7 0.44 167 0.090 <20 <	CH16104	ROCK	0.027	- 22	6	0.29	159	0.089	<20	0.85	0.069	0.39	0.7	<0.01	1.9	0.2	<0.05	4	<0.5	40.2		1						
CH16100 Rock 0.043 30 9 0.47 2.69 0.099 <20 1.11 0.063 0.48 0.5 0.01 2.5 0.12 0.005 5 0.12 0.005 5 0.12 0.005 5 0.12 0.005 5 0.12 0.01 2.5 0.12 0.01 2.5 0.12 0.01 2.5 0.12 0.01 2.5 0.12 0.01 2.5 0.12 0.01 2.5 0.12 0.010 2.7 0.2 1.17 5 1.5 <0.2 CH16108 Rock 0.048 34 10 0.55 345 0.164 <20	CHIGIDS	Rock	0.046	35		0.22	153	0.027	<20	1.73	0.023	0.30	0.9	<0.01	1.6	0.1	<0.05		<0.5	<0.2		1						
CH10102 Rock 0.048 34 10 0.55 310 1.16 200 1.11 0.005 0.44 0.0 0.01 2.7 0.2 1.17 5 1.5 40.2 CH16108 Rock 0.048 34 10 0.55 310 0.156 <20	0410100	Port	0.043	20		0.40	214	0.089	<20	1.20	0.065	0.40	0.0	-0.01	2.5	0.2	4.47		-0.5	-40.2		1						
CH16109 Rock 0.052 34 10 0.55 345 0.164 <20 1.49 0.125 0.73 0.6 <0.01 3.3 0.3 <0.05 7 <0.5 <0.2 CH16109 Rock 0.052 34 10 0.55 345 0.164 <20	CH16108	Rock	0.043	34	10	0.55	205	0.055	<20	1.52	0.065	0.67	0.0	<0.01	3.4	0.2	<0.05	7	<1.5	-40.2		1						
CH16110 Rock 0.043 28 7 0.44 167 0.090 <20 1.00 0.063 0.44 0.2 <0.01 2.1 0.2 <0.05 4 <0.2 <0.2 CH16110 Rock 0.043 28 7 0.49 208 0.100 <20	CH16109	Rock	0.052	34	10	0.55	345	0.164	<20	1.49	0.125	0.73	0.6	<0.01	3.3	0.3	<0.05	- 7	<0.5	<0.2								
CH16111 Rock 0.044 33 7 0.49 208 0.100 <20 1.10 0.070 0.53 0.4 4.0.1 2.4 0.3 <0.05 4 <0.2 <0.2 CH16112 Rock 0.045 3.2 7 0.49 180 0.102 <20	CH16110	Rock	0.043	28	7	0.44	167	0.090	<20	1.00	0.063	0.44	0.2	<0.01	2.1	0.2	<0.05	4	<0.5	<0.2		1						
CH16112 Rock 0.045 32 7 0.49 180 0.102 <20 1.10 0.065 0.47 0.2 <0.01 2.2 0.3 <0.05 5 <0.2 CH16113 Rock 0.033 17 8 0.39 152 0.078 <20	CH16111	Rock	0.044	33	7	0.49	208	0.100	<20	1.10	0.070	0.53	0.4	<0.01	2.4	0.3	<0.05	4	<0.5	<0.2		1						
CH16113 Rock 0.033 17 8 0.39 152 0.078 <20 0.89 0.061 0.39 0.3 <0.01 2.1 0.2 <0.05 4 <0.5 <0.2	CH16112	Rock	0.045	32	7	0.49	180	0.102	<20	1.10	0.065	0.47	0.2	<0.01	2.2	0.3	<0.05	5	<0.5	<0.2		1						
	CH16113	Rock	0.033	17	8	0.39	152	0.078	<20	0.89	0.061	0.39	0.3	<0.01	2.1	0.2	<0.05	4	<0.5	<0.2		1						

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

(B)												Clien	t	Willi Box 38 White	iam K ³⁷ Fox Sasi	oe-Ca katchewa	I FSON In SQJ 38	i0 Canad	3		
UUREAU MINER VERITAS Canada	AL LABORATOR	IES		~~~	.bureau	veritas	s.com/u	m				Project	E	McCor	nell						
Burney Veriter Comm	- diffee Conside 14											Report	Date:	Septer	nber 08,	2016					
Bureau ventas Comm	odities Canada Lt	a.																			
9050 Shaughnessy St	Vancouver Britis	h Colum	ibia V6F	9 6E5 C	Canada																
PHONE (604) 253-315	58											Page:		1 of 2					Part	: 1 o	12
QUALITY C	ONTROL	REF	POR	Т												W	1116	000	188.	1	
	Method	WOHT	FA430	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AG200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ20
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	C
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	
	MDL	0.01	0.005	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.0
Puip Duplicates																					
16709	Rock	0.39	0.006	0.1	1.7	0.6	3	⊲0.1	0.6	0.2	64	0.21	7.0	⊲0.5	⊲.1	5	⊲0.1	0.1	<0.1	<2	0.1
REP 16709	QC		0.027																		
16717	Rock	0.31	>10	1.0	9.9	28.1	9	0.5	4.4	4.2	1009	2.55	222.8	17859.7	18.8	11	<0.1	20.3	695.9	<2	0.2
REP 16717	QC																				
16725	Rock	0.29	<0.005	<0.1	1.6	3.4	24	⊲0.1	10.5	1.9	143	0.81	30.7	0.9	6.4	35	<0.1	0.1	<0.1	18	0.8
REP 16725	QC			<0.1	1.4	3.2	22	⊲0.1	9.7	1.6	135	0.77	28.1	0.7	5.6	32	⊲0.1	0.1	<0.1	17	0.7
CH16113	Rock	0.88	<0.005	0.1	3.9	13.9	37	⊲0.1	2.9	4.4	326	1.31	4.9	<0.5	10.0	27	- 1 .1	0.1	<0.1	16	0.4
REP CH16113	QC		<0.005																		
Core Reject Dupicates																					
16/04	ROCK	0.55	<0.005	U.1	1.6	5.7	25	40.1	24.3	2.8	563	2.10	9.9	1.3	- 2.2	139	40.1	3.5	40.1	3/	4.0
DUP 16704	QC		<0.005	0.1	1.5	5.1	26	<0.1	25.3	3.1	572	2.19	9.8	<0.5	2.5	138	40.1	3.5	<0.1	41	3.8
DUR CH16112	ROCK	0.80	<0.005	0.1	2.6	11.7	43	40.1	2.8	5.0	337	1.61	5.0	<0.5	15.5	36	40.1	40.1	<0.1	15	0.5
Deference Materials	40		~0.005	0.2	3.0	11.4		50.1	2.3	4.3	337	1.91	2.2	-0.5	19.7	- 24	50.1	50.1	50.1	13	
STD AGPROOF	Standard																				
STD DS10	Standard			15.6	156.7	157.9	375	19	76.5	13.4	894	2.85	49.9	337.8	87	71	3.0	84	13.3	45	11
STD DS10	Standard			12.5	153.1	139.5	351	1.8	71.7	12.9	836	2.65	43.8	60.5	6.5	62	2.4	7.0	11.3	42	1.0
STD OREAS45EA	Standard			1.8	741.7	17.5	35	0.3	421.2	57.8	439	24.28	12.3	68.6	12.3	4	40.1	0.3	0.4	321	0.0
STD OREAS45EA	Standard			1.6	670.5	12.8	28	0.3	365.7	49.0	392	20.13	10.1	40.7	9.1	3	<0.1	0.3	0.3	283	0.0
STD OXD108	Standard		0.423																		
STD OXI121	Standard		1.832																		
STD OXN117	Standard		7.679																		
STD SP49	Standard																				
STD SQ70	Standard																				
STD OXD108 Expected			0.414																		
STD OXN117 Expected			7.679																		
STD OXI121 Expected			1.834																		
STD DS10 Expected				13.6	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	46.2	91.9	7.5	67.1	2.62	9	11.65	43	1.062

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

												Clien	t	Willi Box 38 White	iam Ko 87 Fox Sasi	oe-Ca tatchewa	FSON n 80J 3B	0 Canada		
VERITAS Canada	L LABORATOR	IES		-	.bureau	veritas	s.com/u	m				Project	:	McCor	nell					
Bureau Veritas Commo	dities Canada Lt	d										Report	Date:	Septer	nber 08,	2016				
0050 Chaushnorry Ct 1	Vancouver Britis	u. h Columi	hin Mer		-nada															
PHONE (604) 253-3158	vancouver brius }	Colum		- OED C	dildud							Page:		1 of 2					Part	2 of 2
QUALITY CO	ONTROL	REP	OR	Г												WH	1116	0001	188.1	
	Method	40200	40200	40200	AG200	A(2200	40200	40200	AG200	40200	40200	AG200	40200	40200	A0200	AG200	40200	AG200	40200	EA530
	Analyte	P	La	Cr	Ma	Ra	п	R	AI	Na	ĸ	w	Ha	80	т		Ga	20	Те	Au
	Unit		ppm	DOM		ppm		pom	56	56		ppm	DDM	DOM	pom		DOM	pom	pom	am/t
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2	0.8
Puip Duplicates																				
16709	Rock	<0.001	<	4	<0.01	4	<0.001	<20	<0.01	0.003	<0.01	5.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
REP 16709	00			-																
16717	Rock	0.032	26	3	0.03	174	<0.001	<20	0.34	0.005	0.27	0.4	0.01	1.1	<0.1	0.14	<1	<0.5	<0.2	33.0
REP 16717	QC											-								50.5
16725	Rock	0.025	20	5	0.77	29	0.050	<20	0.56	0.031	0.02	26.0	<0.01	1.7	<0.1	<0.05	3	<0.5	<0.2	
REP 16725	QC	0.023	17	4	0.73	28	0.047	<20	0.54	0.029	0.02	23.5	<0.01	1.5	<0.1	<0.05	3	<0.5	<0.2	\neg
CH16113	Rock	0.033	17	8	0.39	152	0.078	<20	0.89	0.061	0.39	0.3	<0.01	2.1	0.2	<0.05	4	<0.5	<0.2	
REP CH16113	QC																			-
Core Reject Duplicates																				\neg
16704	Rock	0.008	3	6	2.04	41	0.004	<20	0.83	0.004	0.09	0.1	<0.01	8.7	<0.1	<0.05	4	<0.5	<0.2	-
DUP 16704	QC	0.009	4	6	2.09	49	0.005	<20	0.90	0.005	0.11	0.1	<0.01	9.0	<0.1	<0.05	4	<0.5	<0.2	-
CH16112	Rock	0.045	32	7	0.49	180	0.102	<20	1.10	0.065	0.47	0.2	<0.01	2.2	0.3	<0.05	5	<0.5	<0.2	
DUP CH16112	QC	0.043	31	7	0.48	162	0.097	<20	1.05	0.056	0.45	0.3	<0.01	1.9	0.2	<0.05	4	<0.5	<0.2	
Reference Materials																				
STD AGPROOF	Standard																			<0.9
STD DS10	Standard	0.075	19	57	0.79	410	0.088	<20	1.07	0.074	0.34	3.0	0.29	3.1	5.2	0.29	5	2.0	5.2	
STD DS10	Standard	0.073	16	54	0.76	396	0.070	<20	0.97	0.065	0.32	3.0	0.28	2.9	4.9	0.28	4	1.8	5.3	
STD OREAS45EA	Standard	0.033	8	907	0.11	159	0.111	<20	3.49	0.027	0.06	<0.1	0.01	89.7	<0.1	<0.05	15	1.2	<0.2	
STD OREAS45EA	Standard	0.025	6	864	0.08	133	0.082	<20	2.97	0.021	0.06	<0.1	<0.01	73.2	0.1	<0.05	11	0.5	<0.2	
STD OXD108	Standard																			
STD OXI121	Standard																			
STD OXN117	Standard																			
STD SP49	Standard																			18.0
STD SQ70	Standard																			40.0
STD OXD108 Expected																				
STD OXN117 Expected																				
STD OXI121 Expected																				
STD DS10 Expected		0.0765	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	4.3	2.3	5.01	

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary sports are unsigned and should be used for reference only.

												Clien	t	Will Box 3 White	iam K 87 Fox Sasi	oe-Ca katchewa	rson n 80J 38	i0 Canada	3		
UUHEAU VERITAS Bureau Verit	MINERAL LABORATOR Ganada	ties.		****	.bureau	veritas	.com/u	m				Project Report	: Date:	McCo Septe	nneli mber 08,	2016					
9050 Shaug PHONE (604	hnessy St Vancouver Britis 4) 253-3158	sh Colum	nbia V6F	P 6E5 (Canada							Page:		2 of 2					Part	10	12
QUAL	ITY CONTROL	REF	OR	Т												WH	1116	000	188.	1	
		WOHT	FA430	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	A@200	AG200	AQ200	AG200	AQ200	AQ200	AG200	AG200	AQ200	AQ20
		Wat	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	C
		ko	pom	DOM	DOM	DOM	pom	ppm	DOM	DOM	pom	*	DOM	pob	pom	DOM	DOM	DOM	DOM	DOM	
		0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.0
STD OREAS455	LA Expected			1.6	709	14.3	31.4	0.26	381	52	400	23.51	10.3	53	10.7	3.5	0.03	0.32	0.26	303	0.03
STD AGPRO	DOF Expected																				
STD SP49 E	Expected																				
STD SQ70 E	Expected																				
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank			<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊲0.1	4	<0.01	⊲0.5	<0.5	⊲0.1	<1	<0.1	<0.1	<0.1	<2	<0.0
BLK	Blank			<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊲0.1	<1	<0.01	⊲0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.0
BLK	Blank																				
Prep Wash																					
ROCK-WHI	Prep Blank		<0.005	0.5	4.0	2.2	36	⊲0.1	1.2	3.8	437	1.70	0.8	<0.5	2.7	32	<0.1	<0.1	<0.1	23	0.6
ROCK-WHI	Prep Blank		<0.005	0.6	4.2	1.5	35	⊲0.1	1.2	3.7	413	1.66	1.1	<0.5	2.6	31	<0.1	<0.1	<0.1	23	0.7

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

												Clien	E	Willi Box 38 White	iam Ko 87 Fox Sasi	oe-Ca katchewa	rson n 80J 3B	0 Canada		
UUHEAU VERITAS Bureau Veritas (MINERAL LABORATOR Canada Commodities Canada Lt	ies d.		www	bureau.	veritas	.com/u	m				Project Report	: Date:	McCor Septer	nnell nber 08,	2016				
9050 Shaughnes PHONE (604) 25	ssy St. Vancouver Britis 53-3158	h Colum	bia V6F	96E5 C	Canada							Page:		2 of 2					Part	2 of 2
QUALIT	Y CONTROL	REP	OR	Г												WF	1116	000	188.′	1
		AG200	AG200	A@200	AG200	A@200	A@200	AQ200	AQ200	AG200	AQ200	A@200	AQ200	AG200	AQ200	AQ200	AG200	AG200	AG200	FA630
		P	La	Cr	Mg	Ba	п	в	AL	Na	ĸ	w	Hg	80	п	8	Ga	3e	Те	Au
		%	ppm	ppm	%	ppm	%	ppm	%	%	56	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t
		0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	0.8
STD OREAS45EA Exp	ecled	0.029	7.06	849	0.095	148	0.0984		3.13	0.02	0.053			78	0.072	0.036	12.4	0.78	0.07	
STD AGPROOF	Expected																			0
STD SP49 Expect	ted																			18.34
STD SQ70 Expect	ted																			39.62
BLK	Blank																			
BLK	Blank																			
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
BLK	Blank	<0.001	4	<1	<0.01	4	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
BLK	Blank																			<0.9
Prep Wash																				
ROCK-WHI	Prep Blank	0.040	6	3	0.41	73	0.094	<20	1.02	0.086	0.10	0.1	<0.01	2.9	<0.1	<0.05	4	<0.5	<0.2	
ROCK-WHI	Prep Blank	0.039	5	3	0.39	63	0.085	<20	0.97	0.059	0.07	0.1	<0.01	2.6	<0.1	<0.05	4	<0.5	<0.2	

This report supervises all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

			Client:	William Koe-Carson Box 387 White Fox Saskatchewan S0J 3B0 Canada
BUREAU VERITAS	MINERAL LABORATORIES Carada	www.bureauveritas.com/um	Submitted By:	William Koe-Carson
Bureau Veritas 9050 Shaughn	Commodities Canada Ltd. essy St Vancouver British Colu	mbia V6P 6E5 Canada	Receiving Lab: Received: Received:	Canada-Whitehorse August 31, 2016
PHONE (604) 2	253-3158		Page:	1 of 2

ADDITIONAL COMMENTS

CERTIFICATE OF ANALYSIS

McConnell

CLIENT JOB INFORMATION

Project: Shipment ID: P.O. Number

DISP-PLP

Number of Samples:

SAMPLE DISPOSAL

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Decoription	Test Wat (a)	Report Status	Lab
PRP70-250	19	Crush, split and pulverize 250 g rock to 200 mesh			WHI
FA430	19	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
AQ200	19	1:1:1 Aqua Regia digestion ICP-M3 analysis	0.5	Completed	VAN
SHP01	19	Per sample shipping charges for branch shipments			VAN
BAT01	19	Batch charge of <20 samples			VAN

DISP-RJT Dispose of Reject After 90 days

19

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Invoice To: William Koe-Carson Box 387 White Fox Saskatchewan S0J 3B0 Canada

CC: Andy Randell

WHI16000232.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Survey Vertices assumes the liabilities for extual cost of enalysis only. Results apply to samples as submitted. "** astarks indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

												Clie	nt:	Wi Box Whit	lliam 387 e Fox Sa	Koe-Ca	arson an 80J 3	80 Cana	da		
VERITAS Canada	LABORATO	RIES		www	.burea	uverita	s.com/u	m				Proje	ct	McC	onnell						
Bureau Veritas Commoditie	es Canada	Ltd.										Repo	rt Date:	Sept	ember 15	5, 2016					
9050 Shaughnessy St Var PHONE (604) 253-3158	ncouver Bri	tish Colun	nbia V6I	P 6E5 (Canada							Page	:	2 of	2				Pa	rt 1	of 2
CERTIFICATE	CERTIFICATE OF ANALYSIS WHI16000232.1															.1					
	Metho	MOHT	FA430	A@200	AG200	AQ200	AG200	AG200	A@200	AQ200	A@200	AQ200	AQ200	AG200	AG200	AQ200	AQ200	AQ200	AG200	AQ200	AQ200
	Analy	te Wgt	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca
	Ur	ilt kg	ppm a aos	ppm	ppm	ppm	ppm	ppm 0.1	ppm	ppm	ppm	56	ppm	ppb	ppm 0.1	ppm	ppm	ppm 0.1	ppm	ppm	*
16726	Rock	0.59	<0.005	0.7	0.9	24.3	23	0.1	64.3	3.6	332	1.96	20.1	0.9	15.6	137	⊲.1	0.3	<0.1	32	2.89
16727	Rock	0.58	<0.005	0.1	0.6	9.3	16	0.1	13.2	1.2	568	1.09	9.9	1.9	19.6	73	<0.1	0.1	<0.1	3	1.71
16728	Rock	1.05	<0.005	<0.1	1.2	13.7	8	0.2	4,4	1.9	215	0.50	15.4	0.8	17.5	158	⊲0.1	0.9	<0.1	<2	3.46
CH16114	Rock	0.77	0.009	0.3	4.7	12.9	25	<0.1	4.9	3.3	569	1.35	4.9	1.0	15.2	29	<0.1	0.3	0.6	7	0.77
CH16115	Rock	0.70	0.006	0.3	8.4	22.4	47	0.3	3.7	7.0	442	2.05	8.0	0.6	17.2	35	⊲0.1	0.2	0.2	15	0.40
CH16116	Rock	0.80	<0.005	0.3	8.4	24.2	49	0.3	4.1	7.5	407	2.14	2.7	0.8	15.1	41	⊲0.1	0.1	<0.1	18	0.40
CH16117	Rock	0.68	<0.005	0.4	7.9	13.4	42	0.2	4.3	6.1	390	2.02	42	<0.5	15.9	37	⊲0.1	0.2	<0.1	16	0.39
CH16118	Rock	0.39	<0.005	0.2	5.7	21.3	58	0.2	3.3	6.5	448	2.15	1.5	<0.5	16.3	55	⊲0.1	<0.1	<0.1	18	0.56
CH16119	Rock	0.73	0.016	0.4	6.6	23.7	45	0.2	2.8	5.3	348	2.03	97.2	1.1	14.6	31	⊲0.1	0.4	3.2	13	0.30
CH16120	Rock	0.90	0.158	0.4	16.5	15.0	41	0.2	10.6	9.7	430	2.14	4070.5	82.6	14.7	32	0.1	1.4	0.4	11	0.52
CH16121	Rock	0.70	<0.005	0.3	7.4	18.1	54	0.2	3.7	6.6	437	2.20	14.5	0.9	16.3	56	⊲0.1	<0.1	<0.1	20	0.45
CH16122	Rock	0.52	<0.005	0.2	1.1	22.0	47	0.1	3.3	4.5	348	2.15	4.7	1.8	14.6	40	⊲0.1	0.1	<0.1	18	0.35
CH16123	Rock	0.37	<0.005	0.4	1.5	8.4	44	<0.1	3.2	4.5	359	2.02	7.7	1.1	13.5	34	<0.1	<0.1	<0.1	17	0.32
CH16124	Rock	0.47	0.698	0.3	2.2	14.3	49	<0.1	3.0	4.6	467	2.20	5.1	2.5	16.7	37	⊲0.1	0.1	0.1	16	0.42
CH16125	Rock	0.55	<0.005	0.2	1.0	20.2	51	0.1	3.3	4.5	375	2.11	3.9	<0.5	16.0	33	<0.1	0.2	0.1	16	0.33
CH16126	ROCK	0.71	0.655	0.4	29.3	57.6	36	0.5	4.1	9.3	442	3.51	>10000	1/58.0	14.9	21	<0.1	5.9	18.2	9	0.41
0010127	Deck	0.71	-0.007	0.7	13.5	20.9	33	-41.1	3.1	4.1	425	2.43	8/.8	<0.5	16.2	12	-40.1	0.5	0.4		0.14
CH16120	Rock	0.78	<0.005	0.4	1.3	34.0	21	0.1	3.1	5.0	403	2.30	2./	<0.5	15.7	35		0.2		10	0.35

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

													Clier	nt:	Wil Box 3 White	liam H 387 Fox Sa	Coe-C	arson an 80J 3	BO Cana	da	
BUREAU VERITAS	MINERAL LABO Canada	RATOR	IES		****	.bureau	uverita	s.com/	um				Projec	tt.	McC	Innell					
Bureau Veritas	Commodities Ca	anada Lto	d.										Repor	t Date:	Sept	ember 15	6, 2016				
9050 Shaughne PHONE (604) 2	ssy St Vancouv 53-3158	ver Britisl	h Colum	bia V6F	P 6E5 C)anada							Page:		2 of 3	2				Part	2 of 2
CERTIF	ICATE O	FAN	IALY	′SIS													W	HI16	6000	232.1	
		Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AG200	AQ200	AQ200	
		Analyte	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	т	8	Ga	3e	Те	
		Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
		MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2	
16726	ROCK		0.051	65	56	1.91	63	0.001	<20	0.77	0.028	0.17	<0.1	<0.01	7.8	40.1	<0.05	3	<0.5	<0.2	
16727	Rock		0.073	14		0.32	143	<0.001	<20	0.40	0.046	0.05		<0.01	2.4	40.1	<0.05	1	40.5	<0.2	
CH15114	Rock		0.060	36		0.78	147	0.032	<20	0.71	0.051	0.03	0.1	<0.01	2.4	0.2	<0.05	-1	40.5	<12	
CH16115	Rock		0.049	36	9	0.49	253	0.111	<20	1.33	0.075	0.62	0.1	<0.01	2.7	0.4	<0.05	5	<0.5	<0.2	
CH16116	Rock		0.053	30	10	0.54	286	0.136	<20	1.52	0.098	0.75	<0.1	<0.01	3.1	0.5	<0.05	7	<0.5	<0.2	
CH16117	Rock		0.052	32	10	0.49	259	0.114	<20	1.37	0.088	0.62	0.1	<0.01	2.7	0.4	<0.05	6	<0.5	<0.2	
CH16118	Rock		0.050	35	10	0.57	326	0.151	<20	1.56	0.127	0.84	0.1	<0.01	3.3	0.5	<0.05	7	<0.5	<0.2	
CH16119	Rock		0.042	31	8	0.46	223	0.096	<20	1.19	0.066	0.59	0.1	<0.01	2.0	0.4	<0.05	5	<0.5	<0.2	
CH16120	Rock		0.045	29	7	0.35	224	0.060	<20	1.00	0.052	0.49	0.1	<0.01	1.7	0.3	0.14	4	<0.5	<0.2	
CH16121	Rock		0.050	33	11	0.58	329	0.156	<20	1.71	0.140	0.88	0.1	<0.01	3.2	0.5	<0.05	7	<0.5	<0.2	
CH16122	Rock		0.049	28	10	0.57	254	0.138	<20	1.50	0.105	0.72	0.1	<0.01	2.7	0.4	<0.05	7	<0.5	<0.2	
CH16123	Rock		0.047	25	10	0.54	225	0.118	<20	1.36	0.085	0.66	0.1	<0.01	2.5	0.4	<0.05	6	<0.5	<0.2	
CH16124	Rock		0.055	33	10	0.56	231	0.101	<20	1.39	0.075	0.62	0.1	<0.01	2.5	0.4	<0.05	6	<0.5	<0.2	
CH16125	Rock		0.054	32	10	0.57	209	0.113	<20	1.40	0.076	0.55	0.2	<0.01	2.3	0.3	<0.05	6	<0.5	<0.2	
CH16126	Rock		0.046	25	7	0.32	180	0.032	<20	0.91	0.031	0.39	0.2	<0.01	1.8	0.4	0.66	4	0.6	<0.2	
CH16127	Rock		0.043	28	7	0.25	168	0.037	<20	0.89	0.032	0.40	0.3	<0.01	1.7	0.2	<0.05	4	<0.5	<0.2	
CH16128	Rock		0.050	31	10	0.54	227	0.108	<20	1.50	0.090	0.60	0.6	<0.01	2.6	0.3	<0.05	6	<0.5	<0.2	
CH16129	Rock		0.049	30	9	0.43	207	0.078	<20	1.17	0.059	0.53	0.2	<0.01	2.2	0.3	<0.05	5	<0.5	<0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

											Clien	t	Will Box 3 White	iam K 87 Fox Sasi	oe-Ca katchewa	rson n 80J 3B	0 Canada	,		
UNEAU A	IINERAL LABORATOR	IES	-	bureau	veritas	.com/u	m				Project	E	McCo	onell						
											Report	Date:	Sente	mber 15	2016					
Bureau Veritas C	ommodities Canada Lt	d.																		
9050 Shaughnes	sy St Vancouver Britis	h Columbia	V6P 6E5 (Canada																
PHONE (604) 25	3-3158										Page:		1 of 1					Part	: 10	2
QUALITY	CONTROL	REPO	RT												WF	1116	0002	232.	1	
	Method	WOHT FA	430 AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AG200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG20
	Analyte	Wat	Au Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	c
	Unit	kg p	pm ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	
	MDL	0.01 0.	006 0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.0
Pulp Duplicates																				
CH16120	Rock	0.90 0.	158 0.4	16.5	15.0	41	0.2	10.6	9.7	430	2.14	4070.5	82.6	14.7	32	0.1	1.4	0.4	11	0.5
REP CH16120	QC	0.	148																	
CH16129	Rock	0.58 <0.	005 0.4	2.6	11.1	49	⊲0.1	3.6	4.9	503	2.01	29.7	<0.5	14.6	29	⊲0.1	0.3	<0.1	13	0.4
REP CH16129	QC	<0.	005 0.4	2.8	11.6	51	⊲0.1	3.7	4.9	503	1.99	31.0	<0.5	15.1	30	⊲0.1	0.2	0.1	13	0.4
Reference Materia	ís																			
STD DS10	Standard		14.5	137.2	151.6	341	1.7	72.2	12.5	871	2.68	46.4	61.7	7.0	66	2.3	7.5	11.6	39	1.0
STD OREAS45EA	Standard		1.5	680.8	14.0	31	0.2	378.0	52.3	420	21.69	10.7	55.0	9.7	3	⊲0.1	0.3	0.3	306	0.0
STD OXD108	Standard	0,	412																	
STD OXI121	Standard	1.	776																	
STD OXN117	Standard	7.	544																	
STD OXD108 Exp	ected	0,	414																	
STD OXN117 Exp	ected	7.	679																	
STD OXI121 Expe	cted	1.	834																	
STD DS10 Expects	ed		13.6	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	46.2	91.9	7.5	67.1	2.62	9	11.65	43	1.062
STD OREAS45EA Exper	ded		1.6	709	14.3	31.4	0.26	381	52	400	23.51	10.3	53	10.7	3.5	0.03	0.32	0.26	303	0.03
BLK	Blank	<0.	005																	
BLK	Blank	<0.	005																	
BLK	Blank		<0.1	<0.1	<0.1	<1	⊲0.1	<0.1	<0.1	<	⊲0.01	0.6	<0.5	<0.1	<1	⊲0.1	<0.1	<0.1	<2	<0.0
Prep Wash																				
ROCK-WHI	Prep Blank	<0.	005 0.7	3.3	13.7	29	0.2	1.4	3.6	421	1.71	1.1	1.7	2.1	21	<0.1	<0.1	<0.1	22	0.5
ROCK-WHI	Prep Blank	<0.	005 0.8	3.7	7.5	30	0.1	1.5	3.6	419	1.71	1.2	1.5	2.1	25	<0.1	<0.1	<0.1	22	0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

												Clien	t	Willi Box 38 White	iam K 87 Fox Sasi	oe-Cai	FSON n 80J 380	0 Canada		
BUHEAU MINERAL LA VERITAS Canada	BORATORI	ES			bureau	veritas	.com/u	m				Project		McCor	nell					
Burnau Veritar Commedition	Canada Ltr											Report	Date:	Septer	nber 15,	2016				
0050 Characterize Ch Vision	Canada Lit	1. O-11	- 1/05																	
PUOU Snaughnessy St. Vance	ouver British	Colum	bia vor	OESU	anada															
PHONE (604) 253-3158												Page:		1 of 1					Part:	2 of 2
QUALITY CON	TROL	REP	OR	Г												WF	1116	0002	232.1	
	Method	AQ200	AG200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AG200	AQ200	AQ200	AG200	AG200	
	Analyte	P	La	Cr	Ma	Ba	п	в	AI	Na	ĸ	w	Ha	80	т	8	Ga	80	Те	
	Unit	%	ppm	ppm	%	ppm	*	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	
Pulp Duplicates																				
CH16120 F	Rock	0.045	29	7	0.35	224	0.060	<20	1.00	0.052	0.49	0.1	<0.01	1.7	0.3	0.14	4	<0.5	<0.2	
REP CH16120 0	QC .																			
CH16129 F	Rock	0.049	30	9	0.43	207	0.078	<20	1.17	0.059	0.53	0.2	<0.01	2.2	0.3	<0.05	5	<0.5	<0.2	
REP CH16129 0	QC .	0.049	31	9	0.43	211	0.079	<20	1.16	0.057	0.52	0.3	<0.01	2.2	0.3	<0.05	5	<0.5	<0.2	
Reference Materials																				
8TD D810 8	Standard	0.075	16	54	0.76	426	0.067	<20	1.00	0.065	0.33	2.8	0.29	3.0	5.2	0.27	4	2.2	4.9	
STD OREAS45EA S	Standard	0.033	7	955	0.10	146	0.090	<20	3.10	0.019	0.05	<0.1	0.02	79.8	<0.1	<0.05	13	0.9	<0.2	
STD OXD108 S	Standard																			
STD OXI121 S	Standard																			
STD OXN117 S	Standard																			
STD OXD108 Expected																				
STD OXN117 Expected																				
STD OX1121 Expected																				
STD DS10 Expected STD OREAS45EA Exceded		0.0765	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	4.3	2.3	5.01	
Bir a	llask	0.025	7.00	043	0.095	140	0.0304		3.13	0.02	0.055			/0	0.072	0.036	12.4	u./o	0.07	
BLK	Blank																			
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
Pren Wash			-	-1		-						-					-1			
ROCK-WHI	Preo Blank	0.042	5	4	0.39	67	0.071	<20	0.85	0.070	0.07	0.2	<0.01	2.4	<0.1	<0.05	4	<0.5	<0.2	
ROCK-WHI	Prep Blank	0.042	5	4	0.39	77	0.072	<20	0.83	0.071	0.07	0.1	<0.01	2.3	<0.1	<0.05	4	<0.5	<0.2	
	-																			

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

Appendix 4: Environmental Certificate of Analysis

STRATA GEODATA SERVICES ATTN: Andy Randell 415-1035 Pacific Street Vancouver BC V6E 1S9 Date Received: 30-AUG-16 Report Date: 14-SEP-16 15:33 (MT) Version: FINAL

Client Phone: 604-349-2090

Certificate of Analysis

Lab Work Order #: L1821388 Project P.O. #: NOT SUBMITTED Job Reference: C of C Numbers: 14-470998 Legal Site Desc:

AMGlenni-

Heather McKenzie Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

NIGHT SOLUTIONS NIGHT PARTNER

L1821388 CONTD.... PAGE 2 of 7 14-SEP-16 15:33 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1821388-1 Water	L1821388-2 Water	L1821388-3 Water	
	Sampled Date	29-AUG-16	29-AUG-16	29-AUG-16	
	Sampled Time	13:24	19:18	19:42	
	Client ID	SAMPLE SITE #1	SAMPLE SITE #2	GAMPLE SITE #3	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	532	632	453	
	Hardness (as CaCO3) (mg/L)	323	389	255	
	Total Dissolved Solids (mg/L)	355	458	304	
Anions and Nutrients	Ammonia, Totai (as N) (mg/L)	0.0086	0.0083	0.0137	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0225	0.0199	0.235	
	Antimony (Sb)-Total (mg/L)	<0.00010	0.00017	<0.00010	
	Arsenic (As)-Total (mg/L)	0.00145	0.00496	0.00198	
	Barlum (Ba)-Total (mg/L)	0.0650	0.0717	0.137	
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Total (mg/L)	0.0000094	0.0000174	0.0000495	
	Calclum (Ca)-Total (mg/L)	80.1	96.8	63.8	
	Chromium (Cr)-Total (mg/L)	0.00013	0.00037	0.00042	
	Cobalt (Co)-Total (mg/L)	0.00013	0.00014	0.00066	
	Copper (Cu)-Total (mg/L)	0.00055	0.00087	0.00127	
	Iron (Fe)-Total (mg/L)	0.879	0.653	1.45	
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	0.000426	
	Lithium (LI)-Total (mg/L)	0.0040	0.0063	0.0065	
	Magnesium (Mg)-Totai (mg/L)	25.9	30.2	23.5	
	Manganese (Mn)-Total (mg/L)	0.0647	0.0757	0.574	
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Total (mg/L)	0.00120	0.00192	0.000206	
	Nickel (NI)-Total (mg/L)	0.00104	0.00063	0.00127	
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	
	Potassium (K)-Total (mg/L)	1.32	1.73	2.04	
	Selenium (Se)-Totai (mg/L)	0.000399	0.000485	<0.000050	
	Silicon (SI)-Total (mg/L)	4.53	4.92	4.46	
	Silver (Ag)-Total (mg/L)	<0.000010	0.000028	0.000020	
	Sodium (Na)-Totai (mg/L)	3.89	4.47	3.32	
	Strontium (Sr)-Total (mg/L)	0.340	0.361	0.225	
	Sulfur (S)-Total (mg/L)	19.7	40.0	22.7	
	Thailium (TI)-Totai (mg/L)	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	
	Titanium (TI)-Totai (mg/L)	0.00078	0.00065	0.00672	
	Uranium (U)-Totai (mg/L)	0.00614	0.00572	0.00180	
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	0.00083	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1821388 CONTD.... PAGE 3 of 7 14-SEP-16 15:33 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1821388-1	L1821388-2	L1821388-3	
	Description	Water	Water	Water	
	Sampled Date	29-AUG-16 13:24	29-AUG-16 19:18	29-AUG-16 19:42	
	Client ID	SAMPLE SITE #1	SAMPLE SITE #2	SAMPLE SITE #3	
Orevelas	t-state				
Grouping	Алаусе				
WATER					
Total Metals	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	0.0057	
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	0.0053	0.0035	0.0054	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	0.00011	<0.00010	
	Arsenic (As)-Dissolved (mg/L)	0.00096	0.00366	0.00099	
	Barlum (Ba)-Dissolved (mg/L)	0.0647	0.0719	0.128	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	
	Bismuth (BI)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050	<0.0000050	0.0000124	
	Calcium (Ca)-Dissolved (mg/L)	85.6	105	65.7	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Cobalt (Co)-Dissolved (mg/L)	0.00011	<0.00010	0.00029	
	Copper (Cu)-Dissolved (mg/L)	0.00122	0.00061	0.00050	
	Iron (Fe)-Dissolved (mg/L)	0.151	0.073	0.311	
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Lithlum (LI)-Dissolved (mg/L)	0.0044	0.0065	0.0063	
	Magnesium (Mg)-Dissolved (mg/L)	26.5	31.0	22.2	
	Manganese (Mn)-Dissolved (mg/L)	0.0406	0.0568	0.375	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.00120	0.00182	0.000166	
	Nickel (NI)-Dissolved (mg/L)	0.00102	0.00054	0.00062	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	1.34	1.73	1.82	
	Selenium (Se)-Dissolved (mg/L)	0.000442	0.000517	<0.000050	
	Silicon (SI)-Dissolved (mg/L)	4.46	4.82	3.87	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	4.03	4.66	3.43	
	Strontium (Sr)-Dissolved (mg/L)	0.346	0.362	0.220	
	Sulfur (S)-Dissolved (mg/L)	118	37.8	21.3	
	Thailium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Titanium (TI)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.00613	0.00556	0.00172	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1821388 CONTD.... PAGE 4 of 7 14-SEP-16 15:33 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Dab Sampled Tim Cilent ID	L1821388-1 Water 29-AUG-16 13:24 SAMPLE SITE #1	L1821388-2 Water 29-AUG-16 19:18 SAMPLE SITE #2	L1821388-3 Water 29-AUG-16 19:42 SAMPLE SITE #3	
Grouping	Analyte				
WATER					
Dissolved Metals	Zinc (Zn)-Dissolved (mg/L)	<0.0010	<0.0010	0.0035	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1821388 CONTD.... PAGE 5 of 7 14-SEP-16 15:33 (MT) Version: FINAL

Reference Information

C Samples with Qualifiers & Comm	enta:			For oroni.	- MAL
QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)		
Matrix Spike	Mercury (Hg)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Arsenic (As)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Barlum (Ba)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Barlum (Ba)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Barlum (Ba)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1821388-1, -2, -3		
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Sodium (Na)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Sodium (Na)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Strontium (Sr)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Strontium (Sr)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Strontium (Sr)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Splke	Uranium (U)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Uranium (U)-Dissolved	MS-B	L1821388-1, -2, -3		
Aatrix Spike	Calcium (Ca)-Dissolved	MS-B	1821388-1 -2 -3		
latity Spike	Calcium (Ca)-Dissolved	MS-B	11821388-1 -2 -3		
Aatrix Spike	Silicon (SI)-Dissolved	MS-B	1821388-1 -2 -3		
Astrix Spike	Silicon (SI)-Dissolved	MS-B	11821388-1 -2 -3		
Initia Splice	Aluminum (Al)-Total	MS-B	11821388-1 -2 -3		
Initia Splice	Badum (Ba) Total	MS-B	11821388-1 -2 -3		
auto spike	Manganese (Mn)-Total	MG-D MC-B	L1021300-1, -2, -3		
laint Opike	Sodium (Na) Total	MS-B	11821388-1 -2 -3		
latity Spike	Streetlum (Pr) Total	MO-D	14934399 4 0 3		
Initia Spike	Subruch (Sr)-Total	MG-D	L1021300-1,-2,-3		
Jaidy Spike	Sulfur (S)-Dissolved	MG-D	L1021300-1,-2,-3		
vaux opike	Sului (S)-Dissolveu	Marb	L1021300-1,-2,-3		
Qualifiers for Individual Parameters	Listed:				
Quaimer Description					
DTC Dissolved concentral	ion exceeds total. Results were confirm	ned by re-analys	l5.		
MS-B Matrix Spike recovery	y could not be accurately calculated du	e to high analyte	background in sample.		
st Method References:					
LS Test Code Matrix	Test Description		Method Reference**		
E-D-L-CCMS-VA Water	Diss. Be (low) In Water by CRC IC	PMS	APHA 3030B/6020A (mod)		
Water samples are filtered (0.45 um),	preserved with nitric acid, and analyzed	d by CRC ICPMS	i.		
Method Limitation (re: Sulfur): Sulfide	and volatile sulfur species may not be i	recovered by this	method.		
E-T-L-CCMS-VA Water	Total Be (Low) In Water by CRC IC	PMS	EPA 200.2/6020A (mod)		
Water samples are digested with nitric	and hydrochloric acids, and analyzed	by CRC ICPMS.			
Method Limitation (re: Sulfur): Sulfide	and volatile sulfur species may not be i	recovered by this	method.		
C-PCT-VA Water	Conductivity (Automated)		APHA 2510 Auto. Conduc.		
This analysis is carried out using proc electrode.	edures adapted from APHA Method 25	10 "Conductivity"	. Conductivity is determined using	a conductivi	ty
ARDNESS-CALC-VA Water	Hardness		APHA 2340B		
Hardness (also known as Total Hardn Dissolved Calcium and Magnesium co	ess) is calculated from the sum of Calc incentrations are preferentially used for	lum and Magnes the hardness ca	ium concentrations, expressed in liculation.	CaCO3 equi	valents.
G-D-CVAA-VA Water	Diss. Mercury In Water by CVAAS	or CVAFS	APHA 3030B/EPA 1631E (mod)	
				-	

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS.

L1821388 CONTD.... PAGE 6 of 7 14-SEP-16 15:33 (MT) Version: FINAL

Reference Information

Total Mercury In Water by CVAAS or CVAFS HG-T-CVAA-VA Water EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochioride prior to reduction with stannous chioride, and analyzed by CVAAS or CVAFS. MET-D-CCMS-VA Water Dissolved Metals In Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. MET-DIS-LOW-ICP-VA Water Dissolved Metals in Water by ICPOES EPA 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma -optical emission spectrophotometry (EPA Method 6010B). MET-T-CCMS-VA Water Total Metals In Water by CRC ICPMS EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. MET-TOT-LOW-ICP-VA Water Total Metals In Water by ICPOES EPA 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either holbiock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B) NH3-F-VA Water Ammonia in Water by Fluorescence APHA 4500 NH3-NITROGEN (AMMONIA) This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-Injection analysis with nuorescence detection for the determination of trace levels of ammonium in seawater", Rosiyn J. Waston et al. NH3-F-VA Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC Water This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-Injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Rosiyn J. Waston et al. S-DIS-ICP-VA Water Dissolved Sulfur In Water by ICPOES EPA SW-846 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from Test Methods for Evaluating Solid Waster SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotbiock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectropholometry (EPA Method 6010B) Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present in a particular sample. S-TOT-ICP-VA Water Total Sulfur in Water by ICPOES EPA SW-846 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either holblock or microwave oven, or flitration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B) Method Limitation: This method will not give total sulfur results for all samples. Sulfide or other volatile forms of sulfur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulfur represents all non-volatile forms of sulfur present. In a particular sample. Water Total Dissolved Solids by Gravimetric TDS-VA APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees ceisius. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA VA

L1821388 CONTD.... PAGE 7 of 7 14-SEP-16 15:33 (MT) Version: FINAL

Reference Information

Chain of Custody Numbers:

14-470998

GLOSSARY OF REPORT TERMS Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg milligrams per kilogram based on dry weight of sample. mg/kg wut - milligrams per kilogram based on uet weight of sample. mg/kg wt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre. < - Less than. D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR). N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

anni strata 6000 Data		~		Lf1821388	-CCF	с С					Fa	рс <u>.</u> .	сі	_		
onpens: Strata 6000 Data		Hepor: Formet	/ Lil-Inholion		י= ז	30	asi Serv	ice . mei O	e per - Cush		and i me(T	AT) Rectar	ha e karal a			
	Select Seport Pr	ann-l: 🔄 u	ve 📕 - socs. 🖡	500000000	R	- a g	ú v Koa	: ent "STU	nera atal m	v Jari						
crisel: And Randell	Outilly Control (ICC) Report with Rep	st 🔳 Ye	a 🔲 ha	P	1 7 -	$\gamma O \in$	an extern	t i merioa	र २२ वेल	וי					
W - 55 - 44 (100 - 100	C Olefeor	laporti i che cui di sette ad	kon Chreizhei Seil		[E [1.54	neeron (1-5 aut 1 46 3	de a 1 ma	a +ad 2/	⊒pr=l					
THIS IDSS FORME ST.	Sice a Cimilan	റു 🄳 🖷	enne 🛄 ver	<u> </u>	E2 (_ sa	ត ណ៍កូ ហ	weather the	ikiya iyi t	ا بخند ا	i Ly ICar	arks 41.57	a waqaas	e.		
Mine / All ZUA - TARA	án si 1 ci Fa•	ATA CONTRACTOR AND A CONTRACTOR					a Specify Catt Plagarot for 121- or F									
609-299-2070	Emai 2	nci 2					Ans you Request									
NVSKe To Serie as Report to DVM ns IT No		Inacles Distribution					Pader of 1022111112 (CC vol) 115414 and Panetod 11121 (Kon									
Convisi Invites with Report III TOMOS IT No	Feleci Mucica C	Biblidae 🖂 🖂	Terra 🗌 Ka	1 <u>Kv-</u>												
onp-y	mai 1 mr line	A-9465776	<u>9745,057.24</u>	FA COM	<u> </u>		- [•±	T				- 7		
o finel:	Emsi 2	insi 2						_ ==			!		i	1	ŝ	
Project liefor marion	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OU and Gas Require	d Fjelds (client u	5 C) 200 C (144	51 J	_	기공	اتجح ا		<u>-</u>	·		1		
L8 Gudea.	Approver (D.		Cost Center		l t'	HT:	μ.	 	12	!·	5				1	
di 🕷	BL Account		Routing Code		A.	∦n j	ti -	t Ŝ	5	51	പ	· ·		,	, ¥	
O/AFE.	Autivity Calle,				NF:	£11	H1 >	$\sim \infty$	[@ .	\geq	-3				Ē	
9n;	Location				ЮĽ,	ET.	Æl⊦	÷ċ	Ν÷	1	-4				1	
and a second and a second s	ALS Conjace		Sampler		a.	懰	₿¢	같던	[<u>'</u> _''	۱ <u>۱</u>	Š.		Ι	1	1	
ALXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	Date	Timo	Samele Type	131	14	<u>4</u> 71.~	්සි	で	∋jî	81				1	
alab (Dige description of the response of the	ti	[administration]	(96.41)	and her offer	14	24	1.00		<u> </u>	1		\rightarrow			L_	
Sample Site Ht		129-08-006	13:24	1 shoter				<u> </u>	¶	_	J				Ľ.	
Sample Site HZ		29-08-206	9.19.19	Wester						£ L					6	
C. 66. Site #3		79-08 20l	19.42	- بوهايمانيا				$\nabla \Psi$	W I	1	\$V				Ь	
				1		i			<u> </u>						·	
		·			+	+			1	-+		+		+-	-	
· •	· ·			1	+		-+-		- ·			+		- !		
···	· · · • • •			·	· · +		+		1 ·	- F	—	+		-	1	
······································			<u> </u>	•	+		+		╧╼┝	-+	-+	<u> </u>		<u> </u>	⊢	
			Į		+		-	I			-+			<u> </u>		
		!	1							-		•				
															<u> </u>	
<u> </u>		•	1	1	+				+	+		++				
			· · · · ·		1			AMPLEC	ONDITIO	iN AS I	RCCENT	:Dijlek mez	nnty),//		<u> </u>	
Driffking Weber (DW) Bamples' (dieni use)	Alexan Decision (1862	n iy : city-to to Addi o i	1.00 00 00 00 00 00 00 00 00 00 00 00 00		Frazen		- <u> </u>	<u> </u>	3	I = Obs	ervalians	Yes		No		
ne sémples Laters from a Reguleted CAP Spoken V					102 540	ts v	es R	₫, W	П	lusioev	saal mid	d Yss	П	Na		
ł'Yes 🖉 No					Cooking	Init area	<u>ا</u> ۱	<u> </u>								
ao solapies for human difaiking water use?					3.007	ny jaar	н төң	H-MARINE	54 av.)	24.2510	CSS HIM	.6201FT T	n aiv n	<u></u>		
F Yes 5prHa	A (1.3	5					-5			í.		
SHIPMENT RELEASE (allow use)	_> <u>∏ - </u>	1316 MENT STOPP	(ION (Ish) os arlı	0.27 0.27.20	22.35	6. j. j. j.	<u>.</u>	чыраЭ	HITMEN	TREC	еппо⊬	(95 1-96 00	<u> </u>		_	

I algorido de la contra de

* Pig within the device the completed Drinking Water (DW) System place when the or Auto tool DW GD2-level.

Appendix 5: QEMSCAN Images

Sample: QEM 1/MCJ/16

Sample: QEM 4/MCJ/16

Sample: QEM 5/MCJ/16

Appendix 6: Geochemical Maps – Rocks

Appendix 7: Geochemical Maps – Soils

