YMEP 2017 - 058

TARGET EVALUATION FINAL REPORT

SIXTY MILE PROJECT

GLACIER CREEK & SIXTY MILE RIVER

DAWSON MINING DISTRICT

CLAIMS: BUD 1-24 (YC07222 – YC07245) KURT 3 & 4 (YB81762 & YB81763) TONI 1 – 7 (YC27146 – YC27152)

NTS 116C/ 02

UTM NAD 83, ZONE 7: 508000E, 7100000N

BY: ROGER HULSTEIN, P. GEO.

FOR: MR. MIKE MCDOUGALL

JANUARY 19, 2018

CONTENTS

Summary	
Location, Access and Topography	
Claim Status	
Previous Work	
2017 Program	7
Geology and Mineralization	
Property Geophysical data	
Property Geochemical Data	17
CONCLUSIONS AND RECOMMENDATIONS	
References	
Statement of Qualifications	

LIST OF FIGURES

Figure 1. Location	4
Figure 2. Claim Map	
Figure 3. Regional Geology	10
Figure 4. District Geology	11
Figure 5. Lithological Legend	12
Figure 6. Glacier Creek – Thrust Fault Zone, Gold Geochemistry, Au (ppm)	14
Figure 7. Sixty Mile Valley, Gold Geochemistry, Au (ppm)	16
Figure 8. Geochemistry Hg (ppm)	19

LIST OF TABLES

Table 1. List of Claims	5
Table 2. Graben Fault Zone, Significant Diamond Drilling Results for Gold	17
Table 3. Graben Fault Zone, Significant Diamond Drilling Results for Copper and Mo	17

LIST OF APPENDICES

Appendix A. Analytical Certificates Appendix B. Rock and Soil Sample Descriptions Appendix C. Field Station Descriptions Appendix D. Digital Data

SUMMARY

This report is submitted to fulfill requirements of the Yukon Mineral Exploration Program (YMEP), target evaluation module, Number 2107–059. This project covers quartz claims located in the Glacier Creek drainage and the Sixty Mile River valley, on NTS 116C/2 in the Sixty Mile Placer District. The district is located approximately 75 km due west of Dawson, adjacent to the Yukon-Alaska border. Access to the claims is by the posted 15-km long Sixty Mile road, from the Top of the World Highway.

The initial exploration plan was to explore by excavator trenching possible hard rock sources for the placer gold found in Glacier Creek. Due to equipment being unavailable, work in Glacier Creek was limited to prospecting the recently exposed bedrock in placer cuts. A short program of excavator trenching did take place in Sixty Mile River valley, in placer cut bedrock exposures, to better expose altered and mineralized andesites on the western margin of a unexposed Late Cretaceous mineralized granitoid pluton.

The target in the Glacier Creek drainage is an orogenic type gold target, similar to the White Gold deposit. Previous work by Mr. Mike McDougall, Kennecott Exploration and Radius Gold Inc. found northerly trending fault zones, part of the Thrust Fault Zone, cutting schists with clay gouge and quartz +/- carbonate veinlets mineralized with pyrite and arsenopyrite. Previous sampling had returned gold values in the several grams per tonne range.

The target in the Sixty Mile River valley, the Graben Zone, is a Late Cretaceous age porphyry – distal porphyry target hosted by Carmacks Group volcanics and granitoids in a graben - pull apart basin. This basin extends for approximately 8 km and is 1-2 km wide within the regional northeast trending Sixty Mile – Pika Fault zone.

A total of 17 rock samples were collected in 2017 while prospecting and sampling excavator trenches and submitted for geochemical analysis. Work in 2017 confirmed the presence of faulting and mineralization in bedrock in the Glacier Creek drainage but gold and silver values were low in 2017 rock samples. Prospecting and sampling in the Sixty Mile drainage located significant zones of disseminated pyrite and carbonate – pyrite veining, typical of distal porphyry style mineralization and alteration. Three rock samples of altered and mineralized andesites returned low values for gold and silver.

Additional trenching, prospecting, mapping and sampling are recommended in the areas near those explored in 2017 to find possible significant mineralization as indicated by results obtained during this and previous exploration programs.

LOCATION, ACCESS AND TOPOGRAPHY

The Glacier Creek and Sixty Mile River gold targets are covered by quartz claims owned by Mr's. Mike McDougall, Stuart Schmidt, Roger Hulstein, Mr. Frank Hawker and Rackla Metals. Claims in Glacier Creek cover an orogenic type gold target, the Thrust Fault Zone. Claims in the Sixty Mile Valley cover a Late Cretaceous age porphyry – distal porphyry target hosted by Carmacks volcanics and granitoids in a graben - pull apart basin. Both areas cover active placer claims in gold bearing drainages. This summary report describes the 2017 trenching program, prospecting and geochemical sampling, analytical results, and makes conclusions and recommendations for further exploration.

The property is located approximately 75 km due west of Dawson, adjacent to the Yukon-Alaska border (Figure 1). Access to the claims is by the 15-km long Sixty Mile road, from the Top of the World Highway, where the turn off is posted.

Topography in the region is typical of an incised peneplain with steep hillsides and rounded crests. The area was beyond the limits of the last two continental glacial events and minor evidence of glaciations in the region is a result of localized alpine glaciers. Alluvium in the valleys is mostly locally derived. Hillsides are covered with a veneer of colluvium also locally derived. Elevation ranges from 2,100 feet (640 m) in the Sixty Mile valley to approximately 4,700 feet (1433 m) on the west ridge near the Alaska – Yukon border. Permafrost (often as frozen black muck) is locally a serious hindrance to exploration on the hillsides, particularly northerly facing slopes and in poorly drained areas,

Rock outcrop in the area is restricted to ridges, small cliffs, creek bottoms and along road and trench cuts.

Vegetation in the valley bottoms consists of alder, dwarf birch, balsam fir, white and black spruce. Ground cover in areas of thin tree cover consists of alpine plants, 'buckbrush' (alder), dwarf willow and moss. Hillsides and ridges are covered with pine, spruce, birch and poplar on well-drained slopes and stunted black spruce in areas of permafrost. Treeline is at approximately 3,500 feet (1070 m). Vegetation is generally more abundant on east and south facing slopes. Grizzly and black bears as well as moose frequent the valley bottom, attracted by young vegetation on the placer tailings.

Climate is characterized by low precipitation and a wide temperature range. Winters are cold and temperatures of -30° C to -45° C are common. Summers are moderately cool with daily highs of 10°C to 25°C. Thunders showers are a common occurrence. Smoke from forest fires can be thick at certain times. The seasonal window for prospecting is from late May to mid-September.

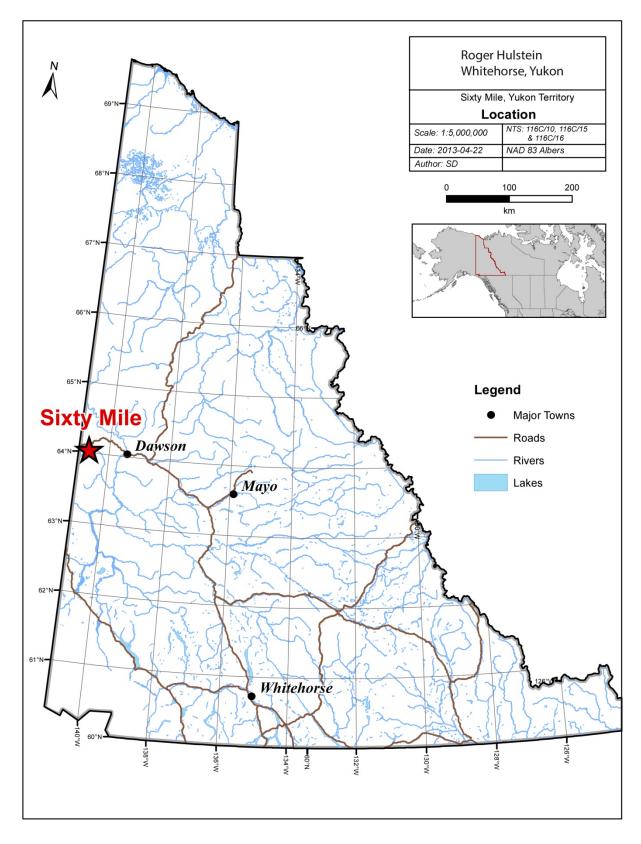


Figure 1. Sixty Mile Location Map

CLAIM STATUS

The claims worked on in this Report (Table 1) are owned by Rackla Metals Inc., Hawker family, co-owners Mr. Mike McDougall (50%) and Mr. Stuart Schmidt (50%) with Mr. McDougall is acting on their behalf. All claims were staked according to the Yukon Quartz Mining Act and are located in the Dawson Mining District (Figure 2). They are shown on claim sheet 116C/2. Roger Hulstein, the author of this report, has no interest in the claims, and has been employed occasionally by both Rackla and Mr. Mike McDougall as their geological consultant. There is no exploration agreement between Rackla Metals and Mr. Mike Dougall. Roger Hulstein carried out and supervised exploration activities outlined in this report.

Table 1. List of Claims

CLAIM NAME	GRANT		NUMBER	No.	REGISTERED OWNERS	NTS Map	EXPIRY DATE
Kurt 3 and 4	YB8176	&	YB81762	2	M. Hawker & D. Lanphear	116C02	31/03/2023
Bud 1 - 24	YC07222	-	YC07245	24	M. McDougall and S. Schmidt	116C02	31/03/2018
Toni 1 - 7	YC27146	-	YC27152	7	Rackla Metals Inc.	116C02	31/03/2019

PREVIOUS WORK

Historically and at present placer gold mining has been the most important mining activity in the Sixty Mile district. Placer gold production likely exceeds the recorded figure of 435,109 ounces won from the creeks during the period 1892-2005 (LeBarge, 2006). The bulk of the placer gold was mined from Miller, Glacier, Bedrock, Little Gold, Big Gold Creeks and the Sixty Mile River.

The following is a summary from Yukon MINFILE, in chronological order, of significant work and events carried out in Sixty Mile valley and nearby area since 1892 to 2011.

1892: Placer gold discovered in the Sixty Mile River area by C. Miller.

1896: Claims staked over the Miller galena occurrence located near the headwaters of Miller Creek.

Early 1900's: Placer miners found coal in Tertiary sedimentary rocks. 1915-1916: North American Trading and Transportation Co. dredged near the mouth of Miller Creek.

1920: (or prior), placer miners find galena, sphalerite and arsenopyrite veining discovered in Sixty Mile valley (Per occurrence – Yukon Minfile).

Figure 2 Claim Map

1929-1941: The dredge was refurbished by the Holbrook Dredging Co. which mined in the Sixty Mile Valley.

1947-1959: A new dredge was constructed by Yukon Exploration and Yukon Placer Mining Co. which mined the lower reaches of Glacier and Big Gold Creeks and part of Sixty Mile River.

1953: First claims staked in WY Gulch to cover possible source of cinnabar veinlet fragments found in placer concentrates, hand trenching done.

1965: Per occurrence in Sixty Mile Valley, near mouth of Miller Creek, trenched and tested by 2 short drill holes. Northern Exploration Limited bulldozer trenched in WY Gulch area.

1970: Dawson Range Joint Venture staked and explored upper Poker Creek following the release of anomalous stream geochemical results by Alaska Department of Natural Resources.

1974: W. Yaremico staked first of the Mary Claims in Miller Creek.

1975-1977: W. Yaremico trenched in WY Gulch

1980: Jon Millhouse staked first of Vance claims.

1981: W. Yaremico staked WY claims. Fred Chudy (Chumar Placers Ltd., later Klondike Sand and Gravel Co. Ltd. and Klondike Underground Mining Ltd.) commenced underground placer operations on Miller Creek (upper adit). Lower adit completed later and U/G mining ended 1990.

1982: Territorial Gold Placers Limited trenched in WY Gulch. Homestake Mines Ltd. staked the ridge (Glac claims) between Miller and Glacier Creeks. Claims staked at head of Glacier Creek (fluorite vein occurrence?).

1983: Homestake mapped and sampled Glac claims.

1984: Noranda staked Glasmacher occurrence (Minfile No. 116C 153) and other areas (LGC claims). Jon Millhouse trenched Vance claims.

1985: Erwin Kreft restaked Per occurrence and area. Jon Millhouse trenched Vance claims. Noranda soil, stream sediment and rock sampled their LGC claims.

1986 - 1987: Erwin Kreft trenched Per occurrence, Esso Minerals Canada Limited tied onto Erwin Kreft's claims in Sixty Mile Valley.

1988: Klondike Gold Mining Corporation optioned Per occurrence from Erwin Kreft and drilled 7 holes (765m) and intersected 8.76 gpt Au over 10.5 m in DDH D4/88-02. The option was subsequently dropped and no follow-up was carried out. Jon Bergvinson (Layfield Resources) staked the Rod and Ney claims north and south of Miller Creek and sampled and mapped. Dawson Eldorado Mines Ltd. staked Gla claims (upper Glacier Creek) and mapped and sampled.

1989: Homestake Mineral Development Co. Ltd. optioned Esso's ground, then mapped and sampled it. Layfield Resources inc. diamond drilled seven holes (410.7 m) on their Headwaters project.

1990: Sixty Mile Placers Ltd. (G. Hakonson) auger drilled 205 holes from mouth of Big Gold Creek to 1.2 km below Five Mile Creek.

1991: Sixty Mile Enterprises Limited (W. Yaremico) trenched Mary claims. Jon Bergvinson built trails, trenched and diamond drilled (410.7 m) on Rod 32 and 34 claims.

1996: Madrona Mining Limited optioned the Cici, Uni and Creek claims located near the headwaters of Glacier Creek from prospector John Peter Ross and flew an airborne aeromagnetic and magnetic survey (Marchand, 1997).

1997: Madrona soil sampled their property (1700 samples).

1998 - 1999: Kennecott Canada Exploration Inc. staked and optioned most of the ground between Miller and Glacier Creeks and Sixty Mile River. Kennecott carried out a property mapping, property stream and soil geochemistry program, a gravity survey, a helicopter airborne magnetic & radiometric survey and trenched on the ridge southwest of Miller Creek. Teck Corp. Staked and explored the Glacier claims (covered Layfield's trenches and drill holes) and Mike McDougall (K-1 Mining and Services) the Bud claims.

2003-2004: Roger Hulstein staked the Rod 1-8, Paul 1-10 and Toni 1-8 claims and vended them to North American Gold Inc. (now Northland Resources Inc.). North American Gold Inc. carried out a small trenching program in 2003 in an (unsuccessful) effort to locate vein structure(s) at the Per Occurrence (Hulstein, 2004). In 2004 North American Gold Inc. optioned the Vance 1-5 claims from the estate of prospector Jon Millhouse.

2005 - 2008: Roger Hulstein staked the Toni 9-14 claims, Toni 15-28 claims and in 2008 the Toni 29-32 claims and carried out reconnaissance programs.

2009: Radius Gold Inc. acquired (by option and staking) most of the claims that cover the Sixty Mile River valley, Miller, Glacier Creeks to the Alaska border (Sixtymile placer gold camp).

2010 - 2011: Radius staked additional claims (Chol, Glac, Shy, Gabr, Bo, Cache), trenched and diamond drilled gold soil anomalies at the Kex Zone (on the ridge south of Miller Creek), Toni Zone (SE side of Sixtymile River) and one drill hole on the Walker Fork gold in soil anomaly. In addition Radius flew an airborne magnetic and radiometric survey, carried out soil sampling and geological mapping (Hulstein and Clark, 2011).

Radius Gold Inc. identified two separate targets on the property. Geological mapping, rock and soil geochemistry, geophysics and drilling identified the continuance of a northerly trending zone called the "Thrust Fault Zone" extending from south of Miller Creek through to Glacier Creek, a minimum length of 8 km. A second zone, the "Graben Fault Zone", a latest Cretaceous age porphyry – distal porphyry target hosted by Carmacks volcanics and granitoids was identified in the Sixty Mile Valley.

2017 PROGRAM

The 2107 Glacier Creek and Sixty Mile River Valley Gulch exploration program was carried out on August, 30, 2017 (Glacier Creek prospecting and sampling) and on September 2, 2017 in the Sixty Mile River Valley. Initial work on August 30 th focused on prospecting bedrock exposed in placer cuts in Glacier Creek and on a bench above Glacier Creek. On September 2nd an EX270 Hitachi excavator was utilized to trench bedrock exposed in placer cuts in the Sixty Mile River Valley.

Field stations describing the geology and cultural features are included in Appendix C.

GEOLOGY AND MINERALIZATION

The first geological investigation of the Sixty Mile River area was by J. E. Spurr in 1896-97 (Spurr and Goodrich, 1898), followed by Cockfield in 1917 (Cockfield, 1921). More recently the area was mapped at 1:250,000 scale by Tempelman-Kluit in 1970-1972 (Tempelman-Kluit, 1973), Green in 1961 (Green, 1972), Mortenson (1988, 1996) and most recently included in a regional study by Allan and Mortensen (2012).

The Sixty Mile Placer District lies between the Tintina and Denali Faults within the Ominica Belt (Wheeler and McFeely, 1991, Gordy and Makepeace, 2001). The area is underlain by two distinct lithotectonic (pre-accretion) assemblages: 1) medium to high grade, polydeformed metasedimentary and meta-igneous rocks of the Yukon-Tanana Terrane (YTNA and YTKS); and 2), deformed and metamorphosed rocks of the Slide Mountain Terrane (YTa) (Mortenson, 1988, 1996) (Figure 3). Both are mainly Paleozoic in age and were juxtaposed by regional scale thrust faults in early Mesozoic time, a period of terrane accretion that affected much of the northern Cordillera.

Most of the District is underlain by foliated Paleozoic metasedimentary rocks, minor Jurassic felsic intrusives and nonfoliated latest Cretaceous age Carmacks Group intermediate volcanics and felsic to intermediate intrusives. Minor amounts of various altered ultramafic rocks of the Paleozoic Slide Mountain Terrane (YTa) are found on the property including as discrete zones within the Thrust Fault Zone. The ultramafic rocks commonly denote thrust (and normal?) fault locations, are partially to wholly serpentinized and locally exhibit quartz-carbonate alteration. Jurassic quartz monzonite bodies intrude the Yukon Tanana Terrane and are mapped at the mouth of both WY and Owl Gulches. Mortenson (1996) noted that field relationships indicate that they intruded prior to both Early (?) Jurassic regional thrust imbrication and Early Cretaceous normal faulting.

Post accretion units of the Carmacks Group unconformably overly rocks of the Tanana Terrane and Slide Mountain Terrane. These units consist of a sequence of unmetamorphosed sedimentary and volcanic rocks of middle (?) and Late Cretaceous age (unit uKv) (Mortenson, 1996). The lower part of the unit typically consists of sandstone and pebble to cobble conglomerate that is overlain by massive andesitic flows and breccias that are correlated with the (68-76Ma) Carmacks Group.

Radius Gold Inc. identified two separate targets on the property (Figure 4). One is the northerly trending Thrust Fault Zone, an orogenic gold target hosted by foliated Paleozoic metasedimentary rocks between the Glacier and Miller creek drainages. The second is the Graben Zone, a latest Cretaceous age porphyry – distal porphyry target hosted by Carmacks volcanics and granitoids in the Sixty Mile River Valley.

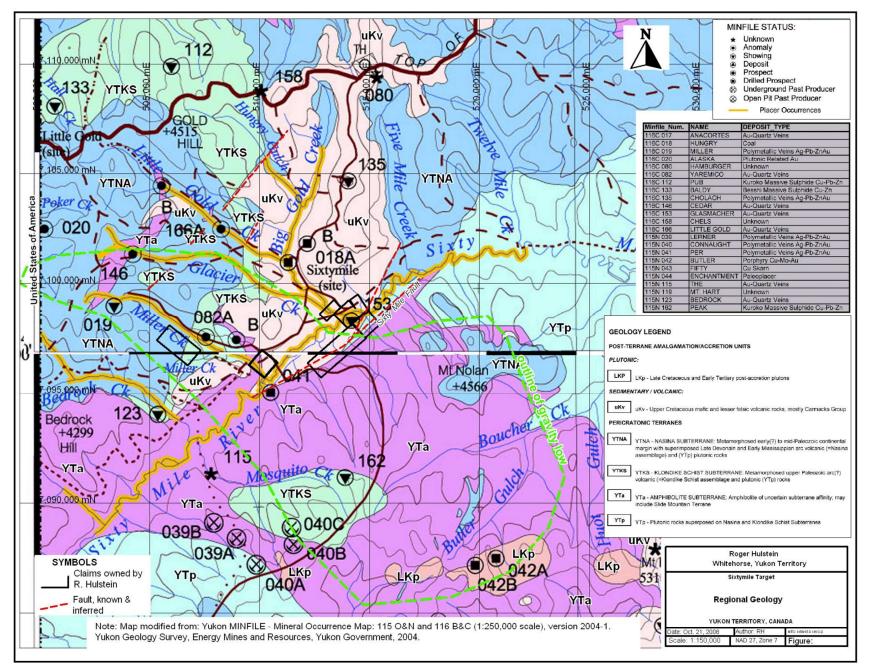


Figure 3. Regional Geology.

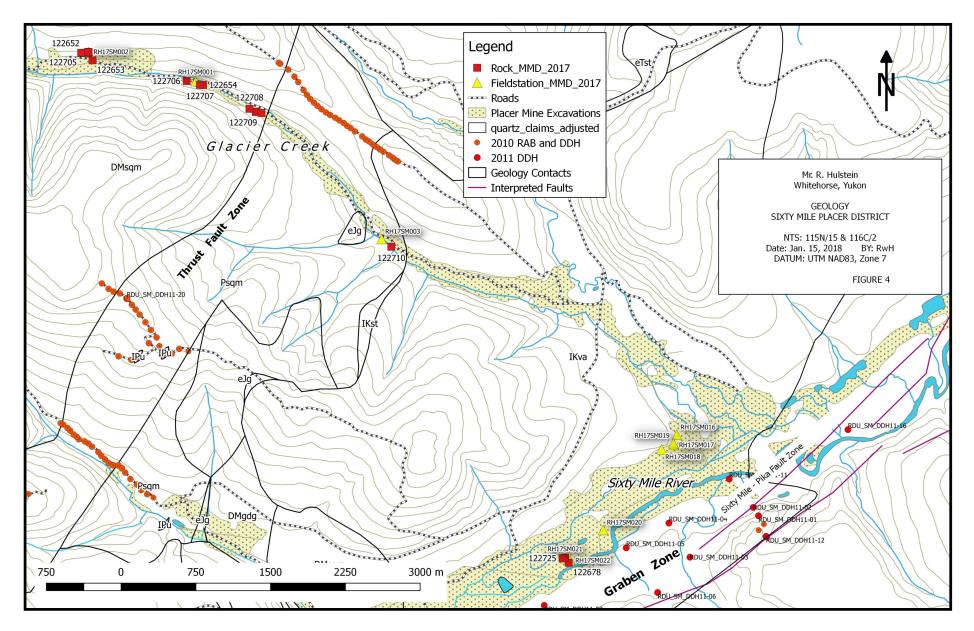


Figure 4. District Geology, for lithological legend see Figure 5.

* Kennecott rock o	
PALEOCENE - EOC	
eTst	Grey, dark grey to steel blue grey cross bedded siltstone (SLS); light greyish, well bedded grit and sandstone (SST). Local plant fossils noted. Ash tuff (?) (TUF), olivine basalt (?) also noted.
CARMACKS G	ROUP
IKcsi	Greenish grey calcareous tremolite-actinolite skarn like or calc- silicate rock.
IKvi	Greyish hypabyssal porphyritic latite/dacite (LAT). Medium coarse phenocrysts of plagioclase, lesser ones of hornblende, minor ones of quartz, and apatite in a fine grained ground mass.
IKva	Grey to brownish rusty and purplish grey porphyritic andesite and rare dacite (?); (AND, DAC). Medium to coarse grained pheno- crysts of plagioclase with lesser hornblende/augite and rare quartz.
IKst	White to light grey, subrounded to rounded, quartz pebble conglo- merate.
IKgdr	Off white to greenish grey, fine to medium grained granodiorite (GRD), dominated by plagioclase with lesser quartz, much less abundant K-feldspar, blotite, and accessory pyrite and apatite.
EARLY JURASSIC	
	Off white, fine to coarse grained, leucocratic, metamorphosed,
eJg	locally foliated, quartz monzonite to granite (GRN) with minor biotite and muscovite. Includes abundant aplite and pegmatitic phases. Also named "alaskite" (ALK).
	(
DAWSON / CL MIDDLE OR UPPER F	LINTON CK. ASSEMBLAGE (SLIDE MTNL TERRANE)
IPu	LINTON CK. ASSEMBLAGE (SLIDE MTNL TERRANE)
[] IPu	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) ALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted.
IPu I	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) ALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted.
KLONDIKE SCH MIDDLE TO LATE PER	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) ALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted.
IPu KLONDIKE SCH MIDDLE TO LATE PER Psgm NASINA ASSEM	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) PALEOZOIC Ton and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted. HIST ASSEMBLAGE MIAN Grey to rusty weathering quartz muscovite schist (QTZ MUS SCH) and phyllite (PHY).
IPu KLONDIKE SCA MIDDLE TO LATE PER Psqm NASINA ASSEM LATE (?) DEVONIAN T	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) PALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted. HIST ASSEMBLAGE MIAN Grey to rusty weathering quartz muscovite schist (QTZ MUS SCH)
IPu KLONDIKE SCA MIDDLE TO LATE PER Psqm NASINA ASSEM LATE (?) DEVONIAN T DMc DMsqm	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) ALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted. HIST ASSEMBLAGE MIAN Grey to rusty weathering quartz muscovite schist (QTZ MUS SCH) and phyllite (PHY).
IPu KLONDIKE SCH MIDDLE TO LATE PER Psqm NASINA ASSEM LATE (?) DEVONIAN T DMc DMsqm	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) PALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted. HIST ASSEMBLAGE MIAN Grey to rusty weathering quartz muscovite schist (QTZ MUS SCH) and phyllite (PHY). IBAGE 0 EARLY MISSISSIPPIAN Grey to brown grey recrystallized limestone (LST) and marble (MRB). Grey, pale green, to locally rusty weathering, fine grained, pre- dominantly non-graphitic, muscovite (+/- chlorite) quartzite (MUS CHL QTE), quartz muscovite (+/- chlorite) quartzite
IPu KLONDIKE SCA MIDDLE TO LATE PER Psqm NASINA ASSEM LATE (?) DEVONIAN T DMc DMsqm	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) PALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phyllites and schists (TAL MUS PHY/SCH). Local fucshite noted. HIST ASSEMBLAGE MIAN Grey to rusty weathering quartz muscovite schist (QTZ MUS SCH) and phyllite (PHY). HEAGE 0 EARLY MISSISSIPPIAN Grey to brown grey recrystallized limestone (LST) and marble (MRB). Grey, pale green, to locally rusty weathering, fine grained, pre- dominantly non-graphitic, muscovite schist (QTZ MUS SCH) and phyllite (PHY). Grey to dark grey, fine grained, predominantly graphitic, muscovite guartzite (GRA MUS QTE), quartz muscovite schist (OTZ MUS SCH)
IPu KLONDIKE SCA MIDDLE TO LATE PER Psqm NAS/NA ASSEM LATE (?) DEVONIAN T DMc DMsqm DMsqc DMsqc DMs	LINTON CK. ASSEMBLAGE (SLIDE MTN. TERRANE) PALEOZOIC Tan and light rusty weathering carbonatized ultramafic rock (ULM) and tale muscovite phylites and schists (TAL MUS PHY/SCH). Local fucshite noted. HIST ASSEMBLAGE MIAN Grey to rusty weathering quartz muscovite schist (QTZ MUS SCH) and phylitie (PHY). BAGE O EARLY MISSISSIPPIAN Grey to brown grey recrystallized limestone (LST) and marble (MRB). Grey, pale green, to locally rusty weathering, fine grained, pre- dominantly non-graphitic, muscovite schist (QTZ MUS SCH) and phyllite (PHY). Srey to dark grey, fine grained, predominantly graphitic, muscovite quartzite (GRA MUS QTE), quartz muscovite schist (QTZ MUS SCH) and phyllite (PHY). Wedium to dark green chlorite +(- biotite cabiat (CUL MUS SCH)

Figure 5. Geology legend to accompany Figure 4.

Thrust Fault Zone

Radius drilled eight diamond drill holes (2368.9 m), on the Thrust Fault Zone in 2010 and 2011 plus carried out RAB drilling, auger drilling, mechanized trenching and induced polarization - resistivity (IP) surveys over portions of the Zone. This work identified orogenic gold mineralization within a package of northeast trending brittle siliciclastic metasedimentary rocks cut by thrust faults. This zone is likely one of the sources for the extensive placer gold deposits that has been mined from the creeks that cut this unit. The host units are extensive with multiple beds of quartzite hosting cross cutting, gold bearing veins.

The Mineral Deposit Research Unit (MDRU) of the University of British Columbia concluded that the bedrock source for most of the placer gold is from orogenic type quartz veins. Anomalous gold values from trenches and diamond drill holes on the Thrust Fault Zone, extending from north of Glacier Creek to south of Miller Creek, a distance of approximately 6.0 km, indicate it is one of the sources. The most significant drill hole to date was drilled at the Kennecott Grid; DDH11-18 contained 507 ppb Au over 105.3 m including 1.57 g/t Au over 24.07 m. The regional geology, geochemical signature and structural setting points to an orogenic gold source similar to Kinross Gold Corporation's White Gold deposit¹.

The "Thrust Fault Zone" was identified by Dr. F. Colombo in 2010 (Hulstein and Clark, 2011). It is interpreted to be a tectonic sliver of different lithologies juxtaposed by thrust faulting. A distinctive lithology is a white quartz schist with lesser amphibole-bearing chlorite schist, small outcrops of quartzofeldspatic gneiss, leucogneiss, minor serpentinized ultramafic rocks and listwanite. The white mica-carbonate-quartz schist is believed to be the result of metasomatic transformation of an ultramafic protolith. These rocks are (in 2017) exposed in Glacier Creek.

From 2012 to 2015 Mike McDougall carried out bedrock exploration on his Bud claims in Glacier Creek by exposing bedrock (labelled MMD 2103 Placer Cut, Figure 6) during his placer mining and having it mapped and sampled. Individuals who have assisted him in this include; Gordan Gutrath, Jim Coates and Roger Hulstein. Rock samples over narrow zones of brecciated, sheared and variably oxidized schist – quartzite, often near listwanite, contained anomalous gold; up to 2.769 g/t. Mr. G. Gutrath collected a 'high grade' sample from the same area that contained 9.42 g/t Au and 139 g/t Ag (Gutrath, written comm., 2014). Taken together this work identified the continuance of the Thrust Fault Zone through Glacier Creek.

¹ Source: http://www.kinross.com/operations/dp-white-gold,-yukon.aspx

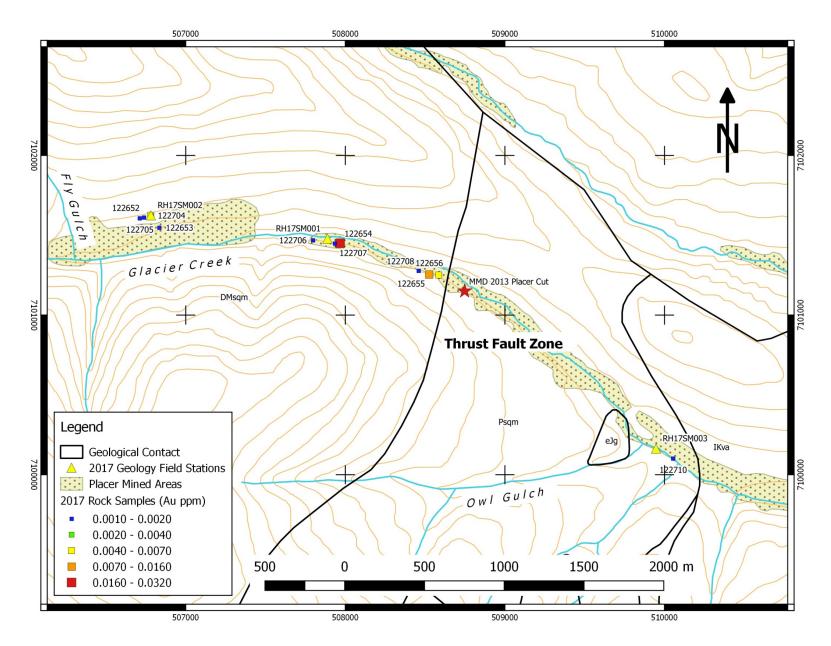


Figure 6. Glacier Creek – Thrust Fault Zone, Gold Geochemistry & Sample Numbers and Field Stations.

Graben Zone

Regionally, the Late Cretaceous (67 - 71 Ma) age calc-alkaline Carmacks Group volcanics are a widespread igneous event with spatially- and temporally-related mineralization found throughout the west central Yukon (Smuk, 1999; Allan and Mortensen, 2012). Mineralization and mineral deposits associated with this event include the Prospector Mountain and Mt. Cockfield copper porphyry deposit prospects in the Dawson Range. A number of porphyry type Cu – Mo (Swede, Pluto and Sixtymile) and vein type Ag +/- Au-Pb-Zn-Cu occurrences (Pika, Connaught) are found along the Sixtymile – Pika Fault as defined by Allan and Mortenson (2012). This NE trending fault system or corridor is believed to be up to 140 km long with about 17 km of sinistral offset.

The Graben Zone is an eight km by approximately 1.0 km - 2km wide, north east trending, pull apart basin within the Sixtymile – Pika Fault zone. Alteration of the andesite volcanics in the Graben Zone ranges from weak to strong propylitic alteration (magnetite destruction, pyritization and interstitial calcite) to argillic (bleached, +/- pyrite, clay minerals). Propylitic alteration often includes development of significant Ca-Mg-Fe carbonate minerals (calcite, ankerite, dolomite), up to 5% coarse grained pyrite, increased chlorite and local epidote.

The andesites are intruded by one or more feldspar porphyritic plutons or subvolcanic stocks of andesitic composition. These rocks were intersected in drilling (drill holes DDH11-03, 04 and 05) and a crude outline of the granitoids is likely mimicked by anomalous molybdenum values in rock samples collected by auger drilling (Figure 7). A number of diamond drill holes around the margins of the plutonic rocks and near the Sixty Mile – Pika Fault returned significant values for gold.

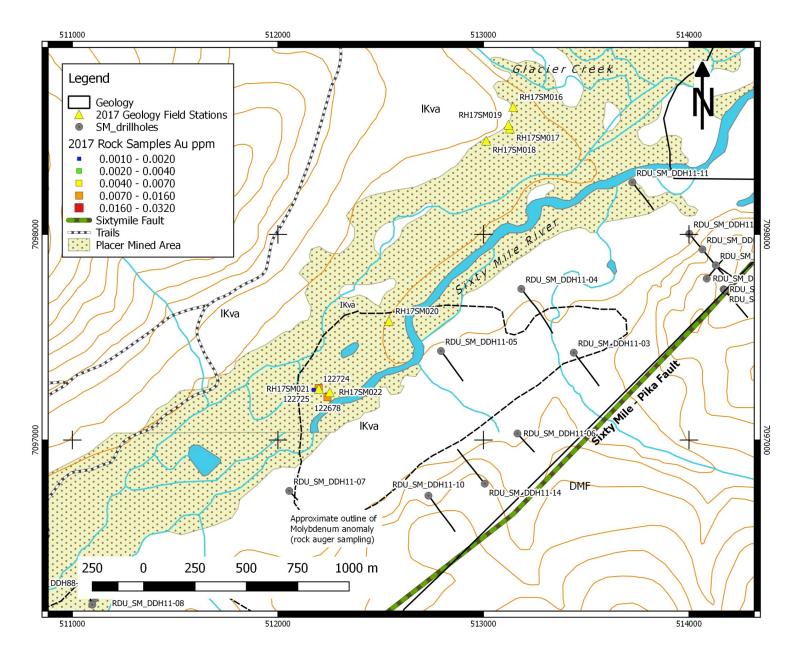


Figure 7. Sixty Mile Valley - Graben Zone, Gold Geochemistry & Sample Numbers and Field Stations.

Drilling Results

Significant results from the 2010 and 2011 diamond drilling programs are summarized below in Tables 2 and 3 below and in Hulstein and Clark (2011, 2012).

	, 5			5
DDH Number	From (m)	To (m)	Length (m)	Au ppb
DDH10-06	12.19	86.87	74.68	199
including	49.84	56.39	6.55	1645
DDH10-07	88.39	146.67	58.28	318
including	120.4	127.26	6.86	646
DDH10-07	206.6	208.07	1.47	4458
DDH11-08	193.5	194.5	1	19 g/t
DDH11-10	249	250.5	1.5	132.9 g/t
DDH11-14	32	33	1	5172

Table2. Graben Fault Zone; Significant Diamond Drilling Results for Gold*2.

Table3. Graben Zone; Significant Diamond Drilling Results for Copper and Molybdenum*³.

DDH Number	From (m)	To (m)	Length (m)	Cu ppm	Mo ppm
DDH11-03	25.5	320	294.5	380	21
DDH11-04	319	403.86	84.86	356	49
DDH11-05	8.8	262.47	271.27	542	41

Drilling to date has been widespread and the above results have not been followed up on.

PROPERTY GEOPHYSICAL DATA

In 2010 Precision GeoSurveys Inc. of Vancouver, BC was contracted to fly a helicopter magnetic and radiometric survey over the property. A total of 1902 line km were flown over the entire property. Lines were flown north – south, spaced 200 m, with Thrust Fault Zone, Sixty Mile Valley and bounding Sixty Mile Fault flown at a line spacing of 100 m. Sensor height was approximately 30 m. The full report by Precision on the survey is included as Appendix D in the 2010 assessment report (Hulstein and Clark, 2011).

The helicopter borne radiometric survey measured the radiation (total count) emanated by the radioactive elements potassium (K), uranium (U) and thorium (Th). The Thrust Fault Zone can be picked out as a weaker northeast trending band near the headwaters of Miller and Glacier Creeks. The Thrust Fault Zone is most clearly identified on maps of K/Th, where it is clearly

² Source: http://www.racklametals.com/s/Sixty_Mile.asp

³ Source: http://www.racklametals.com/s/Sixty_Mile.asp

and sharply delineated. The aeromagnetics highlight the Carmacks Group as a mottled area of mixed high and low magnetic susceptibility.

In April 2012, Rackla Metals received a report from Aurora Geosciences Ltd. detailing the results of the geophysics (IP and EM) carried out over the area of the Thrust Fault Zone that was drill tested by Radius in 2011(Hulstein and Clark, 2011 and 2012). The 2012 Aurora report concluded that the best drilling results obtained to date, 1.57 gpt Au over 24.07 m (141.93 m - 166.00 m) in DDH11-18, is found at the margin of a chargeable zone which is offset from a conductive zone. It is thought that this margin represents a contact or thrust plane which acted as a fluid contact. The report recommended that this contact be tested with additional drill holes along strike to the southeast. Additional geophysics and drilling was recommended to test this kilometer scale target model.

In the Sixtymile district the polymetallic vein occurrences, granitoid bodies, and the main placer gold creeks (Bedrock, Miller, Glacier and Sixty Mile River between the mouth of Little Gold and Miller Creek) are encompassed by or on the margins of the gravity low anomaly, outlined in Figure 3. (Hulstein and Zuran, 1999). This gravity low may represent an unexposed granitoid batholith. Small granitoid bodies south of Mosquito and Boucher Creeks, within the uplifted fault block, may be exposed apophyses of the larger buried granitoid body.

PROPERTY GEOCHEMICAL DATA

Almost all previous programs in the Sixtymile District have as at least part of the exploration activities undertaken some form of geochemical surface sampling be it rock, soil and or stream sediment sampling. The data from more recent programs by Kennecott (Hulstein and Zuran, 1999) and Radius Gold (Hulstein and Clark, 2011) are available as digital data.

A total of 17 rock samples were collected in 2017. All samples were submitted to ALS Canada Ltd. for gold analysis by fire assay (30 gram sub-sample) and ICP-AES finish (code AU-ICP21). A 0.5 gram sub-sample was also analysed by ultra trace aqua regia ICP-MS analysis (code ME-MS41) for an additional 50 elements. Analytical certificates are included in Appendix A. Rock and soil sample descriptions, locations and geochemical results are provided in Appendix B.

Gold values were less than 0.032 ppm Au and silver values were less than 1.21 ppm for all samples collected in 2017. Pathfinder elements are anomalous for arsenic in the Glacier Creek bedrock exposures (Figure 8) and on the placer bench just downstream of Fly Gulch (Station RH17SM002). Anomalous antimony values (Figure 9), from samples of quartz veined pyritic muscovite schists and gouge, highlight the sharpest contact within the broader Thrust Fault Zone that projects across Glacier Creek.

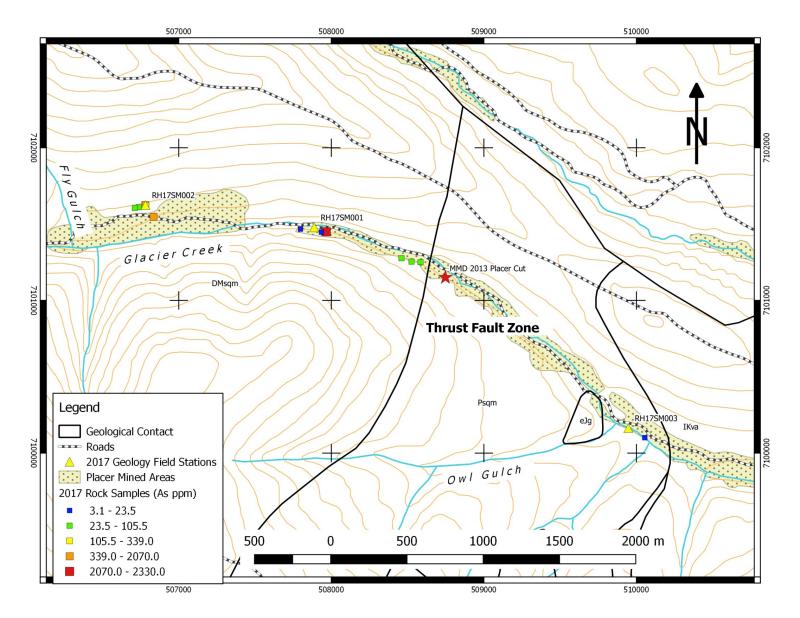


Figure 8. Glacier Creek, Arsenic Geochemistry.

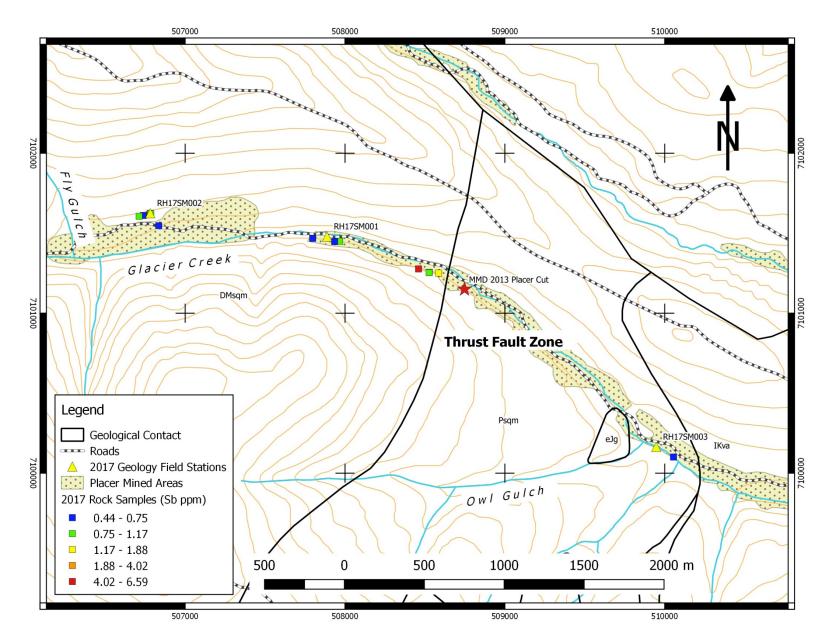


Figure 9. Glacier Creek, Antimony Geochemistry.

Rock samples from the placer bench, east of Fly Gulch, consisted of quartz mica schists, minor clay gouge zones and iron oxides. Rare disseminated pyrite, up to 3%, was noted in the minor quartz veining.

In the Sixty Mile valley three rock samples collected from trenches in strongly propylitic to phyllic altered andesites returned low values for precious metals. The andesite bedrock exposed in the placer cut area at the confluence of Glacier Creek and Sixty mile River (station RH17SM016 – 017), although not fresh, was only weakly altered and not visibly mineralized or veined and therefor was not sampled.

Although rock samples did not return anomalous values for economic mineralization, a number of samples returned elevated values for gold 'pathfinder' elements. Arsenic, as noted above, is anomalous in Glacier Creek drainage along with lead (up to 61.3 ppm), nickel (up to 318 ppm), manganese (up to 9610 ppm), iron (up to 13.15 ppm), zinc (up to 1090 ppm), antimony (up to 6.59 ppm) and sulphur (up to 5.27%). The nickel is likely related to the ultramafic rocks that help make up the Thrust Fault Zone. The three samples collected in the Sixty Mile Valley contained up to 443 ppm zinc, 69.4 ppm lead, 7.14 ppm iron, 7.73% sulphur and 1.44 ppm bismuth indicating possible close proximity to gold mineralization distal to the porphyritic pluton.

CONCLUSIONS AND RECOMMENDATIONS

No economic mineralization was observed or sampled in 2017. A number of excavator trenches or test pits were made in altered andesite bedrock exposed in placer cuts in Sixty Mile River valley. The alteration intensity increased from the confluence of Glacier Creek and Sixty Mile River towards the south where three geochemical rock samples were collected near the assumed margin of a weakly copper – molybdenum mineralized feldspar porphyry pluton. These samples, of carbonate – pyrite veined strongly propylitic to phyllic altered andesite, contained elevated values for zinc, lead, iron, bismuth and sulphur, a geochemical signature consistent with distal porphyry type gold mineralization.

Work in 2017 confirms that the Thrust Fault Zone extends through Glacier Creek. The area between Miller and Glacier Creeks can be considered prospective for orogenic type gold deposits. Most of this prospective zone remains poorly explored and untested.

Orogenic gold occurrences are indicated by the rock geochemical results from samples collected in the Glacier Creek drainage in 2017. Samples were anomalous for arsenic, nickel, iron, lead and zinc. This is consistent with the anomalous geochemical signature found elsewhere on the Thrust Fault Zone trend

Careful sampling by conventional soil auger, auger drilling (in permafrost areas) and prospecting/mapping may yield additional information on the location of significant orogenic gold type deposits in the Glacier Creek drainage along the Thrust Fault Zone.

The strongly altered andesites with significant carbonate – pyrite veining and disseminations trenched in 2017 indicate that there has been a significant hydrothermal system associated with the anomalous copper – molybdenum porphyry identified by drilling in 2011. Additional trenching and auger drilling is recommended in the Sixty Mile Valley near the presumed margin of the porphyry pluton in the strongly altered andesites. The target is distal porphyry precious metal bearing vein – disseminated mineralization.

REFERENCES

Allan, M.M., Mortenson, J.K., Hart, C.J. and Bailey, L.A., 2012. Timing, Nature, and Distribution of Jurassic Orogenic Gold Systems in the West – Central Yukon; *in* Yukon Gold Project Final Technical Report; Allan, M.M., Hart, C.J. and Mortenson, J.K., Editors, Mineral Deposit Research Unit, University of British Columbia, 196 p.

Allan, M.M. and Mortenson, J.K., 2012. Structure and Mineralization of the Sixtymile – Pika Fault System; *in* Yukon Gold Project Final Technical Report; Allan, M.M., Hart, C.J. and Mortenson, J.K., Editors, Mineral Deposit Research Unit, University of British Columbia, 196 p.

Cockfield, W.E., 1921. Sixty Mile and Ladue Rivers Area, Yukon. Geological Survey of Canada, Mem. 123.

Duk-Rodkin, A., 1996. Surficial Geology, Dawson, Yukon Territory; Geological Survey of

Green, L.H., 1972. Geology of Nash Creek, Larsen, and Dawson Map Areas, Yukon Territory. Geological Survey of Canada Memoir 364.

Hulstein, R. and Zuran, R., 1999. Report on the Geological, Geochemical and Geophysical Work on the the Sixty Mile Project. Yukon Energy, Mines & Resources. Assessment Report No. 094055.

Hulstein, R. and Clark, D., 2011. Report on the Sixtymile Property, 2010 Geological, Geochemical, Geophysical, Auger, RAB and Diamond Drilling. Yukon Energy, Mines & Resources. Assessment Report No. 096208.

Hulstein, R. and Clark, D., 2012. Report on the Sixtymile Property, 2011 Geophysical Survey and Diamond Drilling. Yukon Energy, Mines & Resources. Assessment Report No. 096256.

Keyser, H.J., 1989. Report on the 1988 Geological and Geochemical Assessment Work on the Headwaters Project. Yukon Energy, Mines & Resources. Assessment Report No. 092692.

LeBarge, W., 2006. Placer Geology and Prospective Exploration Targets of Sixty Mile River Area, West-Central Yukon. In: Yukon Exploration and Geology 2005, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.), Yukon Geological Survey, p. 155-174.

Mortenson, J.K., 1988. Geology, Southwestern Dawson Map Area, Yukon, 1:250,000 scale map. Geological Survey of Canada, Open File 1927.

Mortenson, J.K., 1996. Geological Compilation Maps of the Northern Stewart River Map Area, Klondike and Sixty Mile Districts, 1:50,000 scale. Indian and Northern Affairs Canada, Northern Affairs: Yukon Region, Open File 1996-1G.

Mortenson. J.K., Chapman, R., LeBarge, W. and Crawford, E., 2006. Compositional Studies of Placer Gold and Lode Gold from Western Yukon: Implications for Lode Sources. *In:* Yukon Exploration and Geology 2005, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.), Yukon Geological Survey, p. 247-255.

Smuk, K., 1999. Metallogeny of Epithermal Gold and base Metal Veins of the Southern Dawson Range, Yukon. Unpublished Thesis, McGill University, Montreal. Available at; Yukon Energy, Mines and Resources library, Whitehorse, Yukon.

Spurr, J.E., and Goodrich, H.B., 1898. Geology of the Yukon Gold District, Alaska. U.S. Geological Survey, Eighteenth Annual Report, 1896-97, Pt. III.

Tempelman-Kluit, 1973. Reconnaissance Geology of Aishihik Lake, Snag and Part of Stewart River Map-Areas, West Central Yukon. Geological Survey of Canada, Paper 73-41.

Wheeler, J.O. and McFeely, P. 1991. Tectonic assemblage map of the Canadian Cordillera and adjacent parts of the United States of America; Geological Survey of Canada, Map 1712A, scale 1:20,000,000.

Yukon MINFILE – A database of mineral occurrences. Available digitally: <u>www.geology.gov.yk.ca/databases/download/html</u>

STATEMENT OF QUALIFICATIONS

I, Roger W. Hulstein, of: 106 Wilson Drive Whitehorse, Yukon Territory Y1A 0C9,

do hereby certify that:

- 1. I am a mineral exploration geologist with over 35 years of experience working in the Yukon.
- 2. I am a graduate of Saint Mary's University, Halifax, with a degree in geology (B.Sc., 1981) and have been involved in geology and mineral exploration continuously since 1978.
- 3. I am a fellow of the Geological Association of Canada (F3572).
- 4. I am registered as a professional geoscientist (No. 19127) with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. I am the author of this report on the exploration program on the Sixty Mile Property in the Dawson Mining District, Yukon. The report is based on personal examination of the ground on starting in 1987 with the last work carried out between August 30th and September 3, 2017 and on referenced sources.

Roger Hulstein, B.Sc., FGAC, P.Geo.

January 19, 2018

APPENDIX A

Analytical Certificates

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ****** See Appendix Page for comments regarding this certificate *****	To: HULSTEIN GEOLOGICAL SERVICES ATTN: ROGER HULSTEIN 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9				ROGER HULSTEIN MIKE MCDOUGALL	The following have access to data associated with this certificate:	This report is for 17 Rock samples submitted to our lab in Whitehorse, Y1, Canada on 5- SEP- 2017.		Project: Sixtymile2017MMD		CERTIFICATE WH17191001	ALS Canada Ltd. 2 103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry
ults apply to samples as		ME- MS41 Au- ICP21	ALS CODE		BAG- 01	SPL- 21	PUL- QC	CRU- OC	WEI- 21	ALS CODE		To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9
Signature: Colin Ramshaw, Vancouver Laboratory Manager		Ultra Trace Aqua Regia ICP- MS Au 30g FA ICP- AES Finish ICP- AES	DESCRIPTION	ANALYTICAL PROCEDURES	Pulverize 1000g to 85% < 75 um Bulk Master for Storage	Split sample - riffle splitter	Pulverizing QC Test	Sample login - Kcd w/o Barcode Crushing QC Test	Received Sample Weight	DESCRIPTION	SAMPLE PREPARATION	GICAL SERVICES Fe Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 14- OCT- 2017 This copy reported on 16- OCT- 2017 Account: HULGEO

D			
ſ]		•
N			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 14- OCT- 2017 Account: HULGEO

Project: Sixtymile2017MMD

Method Instruct WEI: 21 Native UDR Nu: UCP21 RedWL ME: MS41 <
WEI: 21 Au-ICP21 ME-MS41 ME <ms41< th=""> ME<ms41< th=""> ME<ms41< th=""> ME<ms41< th=""> ME<ms41< th=""> ME<ms41< th=""> ME ME ME ME MS1 ME ME</ms41<></ms41<></ms41<></ms41<></ms41<></ms41<>
Au-ICP21ME-MS41ME-MS41ME-MS41ME-MS41ME-MS41AuAgAlAsppmppmppmAlAsppm0.0070.821.342070c.002c.00011.210.1738.0c.002c.00010.450.1218.2c.002c.00010.450.1218.2c.002c.00010.041.3645.3c.002c.00010.031.1612.8c.002c.00040.141.356.8c.002c.00040.160.0941.1c.002c.00040.100.402330c.002c.00040.102.520.0555.5c.02c.00130.520.0555.5c.02
ME-MS41ME-MS41ME-MS41ME-MS41ME-MS41ppnAAppnppn0.010.010.10.021.210.17278<0.02
ME-MS41 ME-MS41 ME-MS41 ME-MS41 Ar. MS41 Ar. MS41 A ppm ppm ppm ppm 0.01 0.1 0.02 0.02 0.17 2770 <0.02
ME-MS41 ME-MS41 ppm As Au ppm 0.1 2070 C0.02 278 C0.02 7.6 C0.02 105.5 C0.02 12.4 C0.02 12.4 C0.02 12.4 C0.02 12.4 C0.02 12.4 C0.02 588 C0.02 23.5 C0.02 55.5 0.02 55.5 0.02
ME-MS41 Au 0.02 40.020 40.02 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ME-MS41 10 1200 10 10 10 10 10 10 10 10 10 10 10 10 1
Interms Interms Pppm Be 0.05 0.01 0.07 0.16 0.14 0.02 0.14 0.02 0.14 0.02 0.14 0.02 0.38 0.042 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.27 0.32 0.28 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.27 0.32 0.27 0.33 0.32 0.34 1.18 0.35 0.27 0.36 0.17 0.37 0.08 0.38 0.41 0.39 0.32 0.32 0.27 0.32 0.27 0.32 0.27 0.32 0.28 0.32 0.28 0.32 0.28 0.32 0.28 0.32 0.28 0.32 0.28 0.32 0.28 0.32 0.28 0.33 0.28
41 ME-MS41 ME-MS Ca Cd Cd Cd % ppm 0.01 0.01 0.47 0.07 0.47 0.08 0.09 1.46 0.28 0.14 0.28 0.14 0.28 0.14 0.28 0.14 0.29 0.28 0.49 0.22 0.49 0.23 0.19 0.22 0.41 0.25 0.19 0.22 0.42 0.44 0.23 0.44 0.45 0.22 0.44 0.45 0.45 0.22 0.44 0.45 0.45 0.45 0.45 0.22 0.45 0.45 0.45 0.22 0.45 0.45 0.45 0.22 0.45 0.45 0.45 0.25 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
ME-MS41 Cd 2.09 1.46 0.22 0.21 0.21 0.21 0.27 0.27 0.27 0.27 0.23 0.27 0.23
ME-MS41 Ce ppm 0.02 48.0 14.25 8.27 2.8.5 7.28.5 2.2.5 46.0 1.41 2.98 1.29 1.41 2.98 1.02
ME-MS41 ME-MS41 Ce Co ppm ppm 0.02 0.1 48.0 44.8 14.25 15.7 7.27 1.3 14.35 15.7 7.27 1.3 14.35 22.4 38.3 22.3 14.15 31.5 1.41 1.8 2.93 5.8 14.15 38.9 2.98 5.8 14.15 38.9 1.02 6.5
Mr. ppm 1 1 5 5 1 2 2 8 5 9 5 5 5 2 2 8 1 2 8 5 9 5 5 5 2 2 8 1 2 8 5 1 2 3 1 3 1

1 P

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 14- OCT- 2017 Account: HULGEO

Project: Sixtymile2017MMD

12200	122655	122654	122653	122651	122678	122725	122724	122709	122708	122707	122706	122704	122703	Sample Description			
														LOR	Units	Method	
	0.21	0.75	0.28	0.30	2.74	5.71	1.59	0.38	1.55	0.16	0.56	0.85	5.34	0.05	ppm	ME- MS41 Cs	
	17.5	117.5	246	14.4	88.6	10.1	38.5	12.0 53 3	76.8	37.4	53.1	15.8 24.2	64.8	0.2	ppm	ME- MS41 Cu	
	1.68 3.03	6.39	1.94	1 01	5.22	4.06	7.14	1.57	6.29	1.08	3.87	1.13	13.15	0.01	%	ME- MS41 Fe	
	0.48	1.81	0.41	0.53	3.62	2.23	2.91	0.61	1.55	0.56	2.14	0.47	4.05	0.05	ppm	ME- MS41 Ga	
	<0.05	0.07	<0.05	<0.05	0.08	0.05	0.06	<0.05	0.07	<0.05	<0.05	<0.05	0.10	0.05	ppm	ME- MS41 Ge	
	0.02	0.05	0.02	0.03	0.08	0.06	0.06	0.05	0.14	0.08	0.05	0.07	0.05	0.02	ppm	ME- MS41 Hf	
	<0.01	0.01	0.01	0.01	0.01	0.03	0.01	<0.01	0.01	<0.01	<0.01	0.01	0.05	0.01	ppm	ME- MS41 Hg	
	0.005	0.022	0.014	0.005	0.026	0.021	0.016	0.031	0.022	0.010	0.013	0.010	0.102	0.005	ppm	ME- MS41 In	CE
	0.05	0.14	0.04	0.02	0.58 0.10	0.42	0.68	1.70	0.21	0.07	0.20	0.05	0.33	0.01	%	ME- MS41 K	ERTIFIC
	0.5	7.0	1.3	0.9	21.1 8 1	11.9	5.9	3.2 16.6	11.9	5.2	14.4	4.9	22.1 8 8	0.2	ppm	ME- MS41 La	CATE O
	0.8	3.6	2.9	0.7	4.9 3.2	3.8	3.2	18.5	22.00	0.6	4.9	1.5	9.2 0	0.1	mdd	ME- MS4 1 Li	RTIFICATE OF ANALYSIS
	0.38 0.10	0.63	0.36	0.01	0.18	1.03	0.41	2.67	1.88	0.02	0.51	0.01	0.19	0.01	%	ME- MS41 Mg	SISA ⁻
	260 165	1280	1560	280	/8 454	563	103	422	453	80	1400	576	3040 9610	2	mdd	ME- MS41 Mn	WH17
	0.63 0.34	2.58	1.06	1.95	3.51	1.31	3.26	0.72	9.09 0 07	1.62	1.22	4.69	14.00 9.73	0.05	ppm	ME- MS41 Mo	WH17191001
	0.01	0.01	<0.01	0.01	0.02	0.02	0.03	0.13	0.02	0.01	0.01	0.01	0.01	0.01	%	ME- MS4 1 Na	

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 14- OCT- 2017 Account: HULGEO

Project: Sixtymile2017MMD

122655 122656	122654	22653	122652	122678	122725	122724	122710	122708	122707	122706	122704	122703	Sample Description			ALV
													LOR	Analyte	Method	
<0.05 <0.05	0.07	<0.05	<0.05	<0.07	<0.05	0.05	0.09	0.06	<0.05	0.06	<0.05	0.05	0.05	ND	ME- MS41	
10.8 25.3	140.5	13.8	17.4	8.1 61.9	13.5	4.7	17.3	109.0	14.8	72.2	10.9	318	0.2	maa	ME- MS41	
150 50	1050	90	210	1430 960	1370	0960	650	1400 180	1610	730	350	2750	10	mda	ME- MS41	
10.5 44.4	29.9	61.3	25.4	45.8 6.0	69.4	26.0	2.1	6.0 7.9	30.8	5.9	11.3	27.2	0.2	ppm	ME- MS41	
2.5 1.0	o.1	2.0	1.3	23.4 6.0	23.3	33.3	84.7	10.1 3.7	3.1	8.8	2.1	19.8 3 1	0.1	mdd	ME- MS41 Rb	
<0.001	0.012	<0.001	<0.001	<0.001	0.003	<0.001	<0.001	0.011	0.004	0.003	<0.001	<0.001	0.001	ppm	ME- MS41 Re	
0.33 2.06	1.20	0.20	0.03	0.04	0.91 F 07	7.73	1.87	2.35 0.21	0.18	0.43	0.01	0.01	0.01	%	ME- MS41 S	
0.63 1.17		0.44	0.56	0.96	л со	4.02	0.60	6.49 1.88	0.73	0.75	0.99	3.37	0.05	mdd	ME- MS4 I Sb	LE CE
0.5		2 J.9	0.7	3.0	י מ	3.4	19.8	0.7	0.6	2.8	0.6	7.6 1.8	0.1	mdd	ME- MS41 Sc	CERTIFICATE
2.2	0 0	0 1.1 3	0,6	<0.2	18	2.6 2.6	2.0	0.6	r 1.0	ι	0.4	<0.5	0.2	ppm	ME- MS41 Se	ATE OF
<0.2	20	<0 2	<0.2	0.7	0.4	0.4	0 1.3	<0.2	ол.4	0.4	<0.2	0.4	0.2	ppm	ME- MS41 Sn	F ANALYSIS
3.1 1	14 4	26.1	0 4.4	11.7	9.4	44.4	18.6	6.8	74.0	11.5	4.4	36.2 63.9	0.2	ppm	ME- MS41 Sr	SISA
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	ppm	ME- MS41 Ta	WH17
0.06	0.02	0.13	0.06	0.03	0.15	0.11	0.93	0.08	0.02	0.04	0.07	0.06	0.01	ppm	ME- MS4 I Te	WH17191001
0.2	0.4	1.2	0.2	1.6	2.6	1.3	1.0		2.9	0 4.Z	0.9	1.0	0.2	mdd	ME- MS41 Th	

	•
in	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 14- OCT- 2017 Account: HULGEO

122655 122656	122054	122653	122652	122651	122678	122725	122724	122710	122709	122708	122707	122705	122704	122703	Sample Description				(ALS)	シリ	
															LOR	Units	Analyte				
<0.005	0.005	<0.005	<0.005	<0.005	0.010	<0.000	0.006	0.206	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	0.005	%	H	ME- MS41			www.alsglobal.com/geochemistry
0.02	co o	0.14		0.04	0.29	0.22	0.30	0.52	0.03	0.26	0.03	0.13	0.04	0.17	0.02	mdd	Н	ME- MS41			obal.com/g
0.08	0 15	1.47	0.00	2.12	1.71	0.00	оло ло	1.72	0.31	2.11	1.18	1.33	1.13	9.14 1.23	0.05	ppm	С	ME- MS41			geocnemis
ω	תי	32	ה כ	120 -	19	r.	27	10	, , ,	40	36	21	12	9 33 8		ppm	<	ME- MS41			UIY
0.16	0.27	0.43	0.05	0.08	0.47	0 47	0.23	0.07	0.07	0.99	0.20	0.08	0.20	0.45	0.03	ppm	W	ME- MS41			
0.44	1.39	13.00	2.77	2.02	7.30	40 ол	9.30	9.12	9 80	14.95	8.22	8.40	3.17	ວບ.ອ 12.15		ppm	Y	ME- MS41			
54	40	295	51	74	91 192	01	443	<u>3</u> i	27	33	8	131	30	127	1000	mdd	Zn	ME- MS4 1		Proje	
<0.5	0.8	2.8	1.3	1.5	2.2	3 1	2.9	2.4	1.6	2.1	0.1	2 N 2 N	о.	1.5	202	0.2	Zr	ME- MS4 1	CE	Project: Sixtymile2017MMD	
																			CERTIFICATE OF ANALYSIS	ile2017M	
																			ATE OF	MD	
																			ANAL		
																			11	1	
																			WH171		
																			WH17191001		

Applies to Method:	Applies to Method:	Applies to Method:		(ALS)	
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au- ICP21 ME- MS41	LABORATORY ADDRES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. BAG- 01 CRU- 31 CR PUL- 32 PUL- QC SPI	ANALYTICAL CO Gold determinations by this method are semi- quantitative due to the small ME- MS41	CERTIFICATE COMMENTS		ALS Canada Ltd. To: 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry
North Vancouver, BC, Canada.	LABORATORY ADDRESSES Whitehorse, YT, Canada. CRU- QC SPL- 21	ANALYTICAL COMMENTS ive due to the small sample weight used (0.5g).	OMMENTS	CERTIFICATE OF ANALYSIS	RVICES
	LOG- 22 WEI- 21			WH17191001	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14- OCT- 2017 Account: HULGEO

APPENDIX B

Rock and Soil Sample

Location & Descriptions

										Sample				
Station	Date	Time	Grid	Datum	Zone	East	North	Elevation	m	_ID	Location	Sampler	Type1	Type2
122651	30-Aug-17	2:54:14PM	UTM	NAD83	7W	506778	7101617	861	m	122651	mid Glacier ck bench	FA	rock chip	outcrop
122652	30-Aug-17	4:09:45PM	UTM	NAD83	7W	506739	7101611	836	m	122652	mid Glacier ck bench	FA	rock grab	subcrop
122653	30-Aug-17	3:59:52PM	UTM	NAD83	7W	506835	7101547	829	m	122653	road below bench of 651/652	FA	rock grab	float
122654	30-Aug-17		UTM	NAD83	7W	507967	7101450	780	m	122654	Glacier Ck at Owl Gulch	FA	rock chip	bedrock
122655	30-Aug-17	5:23:22PM	UTM	NAD83	7W	508527	7101256	768	m	122655	Lower Glacier Ck	FA	rock grab	bedrock
122656	30-Aug-17	5:36:12PM	UTM	NAD83	7W	508526	7101254	762	m	122656	Lower Glacier Creek	FA	rock grab	bedrocl
122678	2-Sep-17	6:54:39PM	UTM	NAD83	7W	512241	7097208	666	m	122678	60 Mile valley; Kurt claims	FA	rock grab	bedrock
122703	30-Aug-17	2:47:11PM	UTM	NAD83	7W	506781	7101625	844	m	122703	Glacier Creek	RH	rock chip	bedrock
122704	30-Aug-17	3:29:07PM	UTM	NAD83	7W	506785	7101623	851	m	122704	Glacier Creek	RH	rock grab	float
122705	30-Aug-17	3:22:28PM	UTM	NAD83	7W	506712	7101606	852	m	122705	Glacier Creek	RH	rock grab	outcrop
122706	30-Aug-17	4:24:19PM	UTM	NAD83	7W	507798	7101468	786	m	122706	Glacier Creek	RH	rock grab	outcrop
122707	30-Aug-17	4:45:18PM	UTM	NAD83	7W	507935	7101448	788	m	122707	Glacier Creek	RH	rock grab	outcrop
122708	30-Aug-17	5:25:28PM	UTM	NAD83	7W	508460	7101277	756	m	122708	Glacier Creek	RH	rock grab	float
122709	30-Aug-17	5:44:21PM	UTM	NAD83	7W	508585	7101251	762	m	122709	Glacier Creek	RH	rock grab	outcrop
122710	30-Aug-17	6:19:05PM	UTM	NAD83	7W	510055	7100101	727	m	122710	Glacier Creek	RH	rock grab	outcrop
122724	2-Sep-17	5:52:04PM	UTM	NAD83	7W	512198	7097253	664	m	122724	Miller Creek - WY Gulch	RH	rock grab	outcrop
122725	2-Sep-17	6:10:17PM	UTM	NAD83	7W	512174	7097244	669	m	122725	Miller Creek - WY Gulch	RH	rock grab	outcrop

			Au_ppm										
Station	Description	Sample_No.	_ICP21	Ag_ppm	Al%	As_ppm	Au_ppm_MS41	B_ppm	Ba_ppm	Be_ppm	Bi_ppm	Ca%	Cd_ppm
	site of K95289 sample; dk gy sulfidic glassy qv+white milky qv with or/bn+dk												
	bn clay after FeS; tr-1% fg sulfide-not aspy; wallrock is gy mica qzte to west												
122651	& dk gy bi+mus qz-fl schist to east	122651	0.004	0.64	0.33	339	0.02	10	420	0.32	0.05	0.19	0.21
	strong fract ms coated white glassy qz lens in graphitic qzte; dk bn to bk ox												
122652	vugs & cubic cavities to 2cm size	122652	0.001	0.16	0.09	41.1	0.02	10	60	0.08	0.17	0.01	0.27
	roadside pile from lower bench; well ceaved graphitic schist; white opaque												
122653	qv to 3cm w FeOx selvages cutting foln; up to 1% py+aspy diss in qv,	122653	0.001	0.86	0.08	588	0.02	10	40	0.09	0.62	0.79	0.6
	glassy opaque qz layers in orange clay decomposed schist; 3% fg py diss												
	along qz; mm vuggy qz+cb x-cutting veinlets w/o sulfide; entered as												
122654	654A/654B in GPS	122654	0.032	1.1	0.4	2330	0.02	10	130	0.32	0.21	1.61	1.59
	white opaque qz lens micro fract by graphite+mus+py in wide gouge clay												
122655	zone of dk gy qzte & mica schist; 3% py in qz	122655	0.004	0.1	0.1	23.5	0.02	10	80	0.07	0.06	0.7	0.23
	same gouge zone; white opaque rehealed qv w 5% diss py; includes												
122656	wallrock of clay wxd graphite schist w mass py on foliae	122656	0.013	0.52	0.05	55.5	0.02	10	20	0.05	0.26	0.18	0.32
122678	old bedrock cut; geenish grayandesite w mm py vn & 3% diss py	122678	0.016	0.41	1.35	6.8	0.02	10	30	0.34	1.18	0.32	0.42
	Sample 122703. Chip - grab, 0.4m, over brown - FeOx decomposed												
122703	muscovite schist, possible weathered out sulfides.	122703	0.007	0.82	1.34	2070	0.02	10	810	1.19	0.21	0.47	2.09
	Possible subcrop of grey quartzite - grey brecciated qtz, MnOx coatings. 6"		0.004		- ·-								
122704	qtz vein at 120/90 cutting 045/30 S foliation.	122704	0.001	1.21	0.17	278	0.02	10	1200	0.16	0.15	0.59	1.46
	Grey - brown weathering grey lamininated qtzite, weak fine grained pyrite on												
	fracture and on foliation - primary. Minor qtz lenses parallel to foliation -	100705	0.004										
122705	lamination.	122705	0.001	0.34	0.1	36	0.02	10	220	0.07	0.15	0.07	0.22
	West end of cut on South side of Glacier Creek. Slumped in but small												
400700	outcrops of grey qtz-muscovite schist with brown weathering grey py (0.5% fine grained disseminated), minor limonte on foliation.	400700	0.002	0.00	0.50	7.0	0.00	10	450	0.00	0.04	0.44	0.05
122706	Dark grey weathering gtzite - gtz-musc schist +/-1% fine grained pyrite,	122706	0.002	0.33	0.58	7.6	0.02	10	450	0.29	0.04	0.44	0.95
122707	minor gtz lense included, also with py.	122707	0.001	0.45	0.12	18.2	0.02	10	120	0.14	0.08	0.2	0.40
122707	Dump pile from placer cut drain, grey pyritic qtz - musc schist and pyritic	122707	0.001	0.45	0.12	10.2	0.02	10	130	0.14	0.06	0.3	0.49
122708	white qtz muscovite +/- fuchsite schist. Up to 5% py in grey schist.	122708	0.002	0.02	0.45	45.3	0.02	10	70	0.38	0.04	4.7	0.83
122706	Dark grey - grey brecciated gtz veined pyritic schist with irregular	122706	0.002	0.93	0.45	45.3	0.02	10	70	0.36	0.04	4.7	0.03
122709	discontinuous gtz veinlets.	122709	0.006	0.2	0.15	105.5	0.02	10	100	0.14	0.08	0.08	0.18
122709	massive medium grained crystalline hbl-biot-feld?-qtz-chloite. Exposed in	122709	0.000	0.3	0.15	105.5	0.02	10	100	0.14	0.06	0.08	0.10
	small bedrock 1x8m hump at east end of cut below Owl Gulch. No gtz vein in												
122710	sinali bedrock fxom nump at east end of cut below Owi Guich. No qiz vein in sample.	122710	0.001	0.00	3.36	3.1	0.02	10	70	0.43	0.60	0.28	0.12
1221 10		122710	0.001	0.00	5.50	3.1	0.02	10	70	0.43	0.09	0.20	0.12
122724	grab across pyritic (approx 5% diss and pyrite veinlets) andesite,	122724	0.014	0.38	1.16	12.8	0.02	10	30	0.28	1 44	0.49	0.2
122124	pyritic grey andesite with 5-120% diss pyrite, possible chalcopyrite and	122124	0.014	0.30	1.10	12.0	0.02	10	30	0.20	1.44	0.49	0.2
122725	maybe molybdenite.	122725	0.001	0.27	1.01	12.4	0.02	10	70	0.42	0.95	2.38	3.91
122120	maybe morybuenite.	122725	0.001	0.37	1.01	12.4	0.02	10	70	0.42	0.85	2.38	5.91

Station	Ce ppm	Co ppm	Cr ppm	Cs ppn	Cu_ppm	Fe%	Ga_ppm	Ge ppm	Hf ppm	Hg ppm		K%	La ppm	Li ppm	Mg%	Mn_ppm	Mo ppm	Na%	Nb ppm	Ni ppm	P ppm	Pb ppm
															Ū							
122651	17.5	11.5	18	1.64	14.4	3.18	1.32	0.05	0.04	0.01	0.02	0.1	8.1	3.2	0.04	454	3.47	0.01	0.05	61.9	960	6
122652	1.41	1.8	24	0.3	8.9	1.91	0.53	0.05	0.03	0.01	0.005	0.02	0.9	0.7	0.01	280	1.95	0.01	0.05	17.4	210	25.4
122653	2.93	5.8	14	0.28	24.6	1.94	0.41	0.05	0.02	0.01	0.014	0.04	1.3	2.9	0.36	1560	1.06	0.01	0.05	13.8	90	61.3
122654	14.15	38.9	56	0.75	117.5	6.39	1.81	0.07	0.05	0.01	0.022	0.14	7	3.6	0.63	1280	2.58	0.01	0.07	140.5	1050	29.9
122655	2.98	2.2	16	0.21	17.5	1.68	0.48	0.05	0.02	0.01	0.005	0.05	1.5	0.8	0.38	260	0.63	0.01	0.05	10.8	150	10.5
122656	1.02	6.5	17	0.09	33	3.03	0.26	0.05	0.02	0.01	0.012	0.02	0.5	0.6	0.1	165	0.34	0.01	0.05	25.3	50	44.4
122678	46	15.3	5	2.74	88.6	5.22	3.62	0.08	0.08	0.01	0.026	0.58	21.1	4.9	0.18	78	3.51	0.02	0.07	8.1	1430	45.8
122703	48	44.8	23	5.34	64.8	13.15	4.05	0.1	0.05	0.05	0.102	0 33	22.1	9.2	0.19	3040	14	0.01	0.05	318	2750	27.2
122700	14.25	4.9	11				0.9						6.6						0.05	70		
122704	14.25	4.9	11	0.85	15.8	1.67	0.9	0.05	0.03	0.01	0.008	0.06	0.0	2.9	0.07	9610	9.73	0.01	0.05	70	2740	16.5
122705	8.27	3.5	15	0.2	24.2	1.13	0.47	0.05	0.07	0.01	0.01	0.05	4.9	1.5	0.01	576	4.69	0.01	0.05	10.9	350	11.3
122706	28.5	15.7	26	0.56	53.1	3.87	2.14	0.05	0.05	0.01	0.013	0.2	14.4	4.9	0.51	1400	1.22	0.01	0.06	72.2	730	5.9
122707	7.27	1.3	14	0.16	37.4	1.08	0.56	0.05	0.08	0.01	0.01	0.07	5.2	0.6	0.02	80	1.62	0.01	0.05	14.8	1610	30.8
122708	23.6	32.7	48	1.55	76.8	6.29	1.55	0.07	0.14	0.01	0.022	0.21	11.9	2.8	1.88	664	9.09	0.02	0.06	109	1400	6
122709	6.95	2.4	19	0.38	12	1.57	0.61	0.05	0.05	0.01	0.006	0.07	3.2	0.9	0.03	152	0.97	0.01	0.05	11	180	7.9
122710	36.3	22.3	60	2.83	52.2	6.34	12.4	0.15	0.04	0.01	0.031	1.7	16.6	18.5	2.67	422	0.72	0.13	0.09	17.3	650	2.1
122724	14.35	15.9	5	1.59	38.5	7.14	2.91	0.06	0.06	0.01	0.016	0.68	5.9	3.2	0.41	103	3.26	0.03	0.05	4.7	960	26
122725	22.5	33.6	9	5.71	10.1	4.06	2.23	0.05	0.06	0.03	0.021	0.42	11.9	3.8	1.03	563	7.31	0.02	0.05	13.5	1370	69.4

Station	Rb_ppm	Re_ppm S_9	% Sb_ppm	Sc_ppm	Se_ppm	Sn_ppm	Sr_ppm	Ta_ppm	Te_ppm	Ti%	Th_ppm	TI_ppm	U_ppm	V_ppm	W_ppm	Y_ppm	Zn_ppm	Zr_ppm	Certificate
122651	6	0.001 0.0	4 0.96	3	0.2	0.7	11.7	0.01	0.03	1.6	0.005	0.04	2.15	11	0.95	7.3	192	2.2	WH17191001
122652	1.3	0.001 0.0	3 0.56	0.7	0.6	0.2	4.4	0.01	0.06	0.2	0.005	0.02	0.88	18	0.08	2.02	74	1.5	WH17191001
122653	2	0.001 0.	2 0.44	1.9	1.1	0.5	8.3	0.01	0.24	0.4	0.005	0.06	0.32	6	0.05	2.77	51	1.3	WH17191001
122654	6.1	0.012 1.2	6 1	4.3	9.3	0.2	26.1	0.01	0.13	1.2	0.005	0.14	1.47	32	0.43	13	295	2.8	WH17191001
122655	2.5	0.001 0.3	3 0.63	0.8	0.6	0.6	14.4	0.01	0.02	0.4	0.005	0.02	0.15	5	0.27	1.39	40	0.8	WH17191001
122656	1	0.001 2.0	6 1.17	0.5	2.2	0.2	3.1	0.01	0.06	0.2	0.005	0.05	0.08	3	0.16	0.44	54	0.5	WH17191001
122678	23.4	0.002 5.2	7 6.59	2.5	1.8	0.4	9.4	0.01	0.15	2.6	0.01	0.29	1.71	19	0.47	13.35	91	3.1	WH17191001
122703	19.8	0.001 0.0	1 3.37	7.6	0.5	0.4	36.2	0.01	0.1	4.8	0.005	0.17	9.14	33	6.95	30.9	1090	3.9	WH17191001
122704	3.1	0.001 0.0	2 1.17	1.8	0.2	0.4	63.9	0.01	0.06	1	0.005	0.08	1.23	9	0.45	12.15	127	1.5	WH17191001
122705	2.1	0.001 0.0	1 0.99	0.6	0.4	0.2	4.4	0.01	0.07	0.9	0.005	0.04	1.13	12	0.2	3.17	30	3.5	WH17191001
122706	8.8	0.003 0.4	3 0.75	2.8	1.3	0.4	11.5	0.01	0.04	4.2	0.005	0.13	1.33	21	0.08	8.4	131	2.3	WH17191001
122707	3.1	0.004 0.1	8 0.73	0.6	1.5	0.4	12.5	0.01	0.05	0.9	0.005	0.03	1.18	36	0.2	8.22	88	3.7	WH17191001
122708	10.1	0.011 2.3	5 6.49	6.3	5.7	0.5	74.9	0.01	0.07	2.9	0.005	0.26	2.11	40	0.99	14.95	181	9	WH17191001
122709	3.7	0.001 0.2	1 1.88	0.7	0.6	0.2	6.8	0.01	0.08	1.1	0.005	0.03	0.31	9	1.5	1.63	33	2.1	WH17191001
122710	84.7	0.001 1.8	7 0.6	19.8	2	1.3	18.6	0.01	0.93	4	0.206	0.52	1.72	131	0.07	9.8	27	1.6	WH17191001
122724	33.3	0.001 7.7	3 <mark>4.02</mark>	1.4	3.3	0.3	12.8	0.01	0.34	1.4	0.006	0.35	0.6	10	0.24	9.12	31	2.4	WH17191001
122725	23.3	0.003 3.9	1 1.53	3.4	2.6	0.4	44.4	0.01	0.11	1.3	0.005	0.22	0.5	27	0.23	9.3	443	2.9	WH17191001

APPENDIX C

Field Station

Location & Descriptions

Station	Date	Time	Grid	Datum	Zone	East	North	Elevation	m	Sample_ID	Location	Sampler	Description
RH17SM001	30-Aug-17	11:56:41AM	UTM	NAD83	7W	507888	7101479	791	m	RH17SM001	Glacier Creek	RH	Claim Post No. 1. YC07232 and 233. At placer cut where Farrell took placer sample. Fol 020/25-30E. Photo at K952894 site.
RH17SM002	30-Aug-17	12:21:10PM	UTM	NAD83	7W	506782	7101625	849	m	RH17SM002	Glacier Creek	RH	Sample 122703. Chip - grab, 0.4m, over brown - FeOx decomposed muscovite schist, possible weathered out sulfides.
RH17SM003	30-Aug-17	6:35:39PM	UTM	NAD83	7W	509947	7100164	727	m	RH17SM003	Glacier Creek	RH	West end of cut below Owl Gulch, 10cm qtz vein (220/80W) cutting foliated (030/22E) qtz - musc schist.
RH17SM016	2-Sep-17	3:18:39PM	UTM	NAD83	7W	513144	7098620	672	m	RH175M016	Sixtymile	RH	Northwest corner of Mike's cut at start of drain going North - on West side of cut. Bottom of pit is weathered - variably limonitic, grey andesite, weak alteration (or just weathering?). Lots of clay and fne grained aphanitic looking clay. Lots of galena recovered in cut but no signs of galena bearing veins in cut.
RH17SM017	2-Sep-17	3:31:34PM	UTM	NAD83	7W	513128	7098515	673	m	RH17SM017	Sixtymile	RH	Road entrance to cut.
RH17SM018	2-Sep-17	3:54:03PM	UTM	NAD83	7W	513013	7098456	676	m	RH17SM018	Sixtymile	RH	Small cut south of stations 016 and 017. Hard bedrock, no clay (whyt not?), bedrock of maroon and grey andesite. NNW trending fracture veinlets. 048/90 falut palne - fractutre. 2 sets of fracture veining at 90 deg (Mike McDougall).
RH17SM019	2-Sep-17	4:23:05PM	UTM	NAD83	7W	513121	7098533	668	m	RH17SM019	Sixtymile	RH	Shallow 0.6-0.9 m deep trench in pit bottom looking for hard bedrock. Next to Sylvain Fleurant auger drill hole. Feldspar phyric andesite clasts in grey clay matrix.
RH17SM020		5:07:47PM		NAD83			7097579			RH17SM020			four sets of claim posts, replacement tags have been removed
RH17SM021	2-Sep-17	5:43:18PM	UTM	NAD83	7W	512199	7097249	665	m	RH17SM021	Sixtymile	RH	In old placer cut on Kurt claims (previously sampled) and area that Gerry Carlson likes. Pyritic andesite, <1 - 5+% pyrite ib fracutres and as disseminations. Pyritic fracture set at 000/70E.
RH17SM022	2-Sep-17	6:47:59PM	UTM	NAD83	7W	512252	7097233	673	m	RH17SM022	Sixtymile	RH	Gougy, weathered, clay rich andesite, disseminated pyrite <2 - 5% avg in trench. Photo at 220 deg down trench with hoe at end. Possible terraspec handsample.

APPENDIX D Digital Data