

P.O. BOX 158, 107 FALLDOWN LANE, CARP, ONTARIO K0A 1L0

Final Report on the

Anderson-Davidson Property Describing Drilling the Anderson-Owl Target

YMEP 17-061

105M/ 10, 11, 12/14/15/16

Latitude 63.77963N, Longitude 135.30513E

In the

Mayo Mining District

Yukon Territory

By

T. B. Sutherland, M.Sc., P.Geo and V. N. Rampton, Ph.D., P.Eng January 11th 2018

Contents

1.0 Introduction	1
2.0 Location and Access	1
3.0 Previous Work	5
4.0 Geomorphology	8
5.0 Regional Geology and Mineralization	10
5.1 Mineralization Styles	11
6.0 Property Geology	15
6.1 Stratigraphy	15
6.2 Intrusions	15
6.3 Structure	
6.4 Mineralization	
7.0 Description of MLMøs 2017 Work	19
7.1 Drilling	19
7.2 Soil Sampling	20
8.0 Observations and Results	
8.1 Drilling	
8.2 Soil sampling	
8.2.1 Anderson-Owl Target	
8.2.2 Peak Target	
9.0 Discussion	
9.1 Drilling	
9.2 2017 Gold in Soils	
9.3 Property	
10.0 Conclusion and Recommendations	
10.1 Conclusions	
10.2 Recommended Future Exploration	
11.0 References	
Appendix A	
Statement of Qualifications	
Appendix B	47
Significant Drill Intersections and Drill Collar Locations	
Appendix C	

Summary Logs with Select Pathfinder Elements	
Intervals and Rock Types MLM17-001	
Intervals and Rock Types MLM17-002	
Intervals and Rock Types MLM17-003	
Intervals and Rock Types MLM17-004	54
Intervals and Rock Types MLM17-005	55
Intervals and Rock Types MLM17-006	57
Intervals and Rock Types MLM17-007	59
Intervals and Rock Types MLM17-008	61
Appendix D	62
Soil Sample site locations	62
Appendix E	68
Statement of Expenditures	68

Figure 1: Location of MLMøs claim groups
Figure 2: Location of claims in the Anderson-Davidson claim group
Figure 3: Previous work on the Anderson-Davidson Claim Group
Figure 4: Mayo Lake and Selwyn Basin Geology10
Figure 5: Idealized hydrothermal model for intrusion related gold systems
Figure 6: Geology of Mayo Lake showing MLM claim groups17
Figure 7: Soil sample locations from 2017
Figure 8: Plan section of RC drill hole traces projected to surface
Figure 9: Cross section 1 of drilling on Anderson-Owl looking east
Figure 10: Cross section 2 of drilling on Anderson-Owl looking east
Figure 11: Interpolated soil results from 2015 and 2017 for Au and Bi
Figure 12: Interpolated soil results from 2015 and 2017 for As and Sb
Figure 13: Interpolated soil results from 2015 and 2017 for K
Figure 14: Interpolated 2017 Au (values labeled) and As in soil from the Peak Target
Figure 15: Interpolated 2017 Sb and V in soil from the Peak Target

1.0 Introduction

Mayo Lake Minerals Inc. (õMLMö) owns five claim groups situated around Mayo Lake in the Yukon Territory: Anderson-Davidson, Carlin-Roop, Cascade, Edmonton, and Trail-Minto (Figure 1). The claim groups either host, or are the apparent source of significant placer gold deposits indicating nearby bedrock gold sources. They are located in the northeastern portion of the Tintina Gold Belt, a 2100 km long zone of gold and silver deposits extending across central Alaska and Yukon. Nearby deposits include intrusion related gold Dublin Gulch (6.4Moz Au) and Red Mountain (1.3Moz Au); Keno Hill polymetallic (200Moz Ag); and the Marge VMS (Au, Ag, Cu, Pb, and Zn).

This report describes drilling and soil sampling of the Owl-Anderson target and soil sampling of the Peak Target on the Anderson-Davidson claim group (the õPropertyö) completed during 2017 and the interpretation of the results. Parts of this report, where appropriate, are taken verbatim from Sutherland and Rampton 2015 and Barrie 2017.

Drilling was completed by Midnight Sun Drilling Inc. of Whitehorse Yukon utilizing their õgrasshopperö reverse circulation (RC) rig. Logging of chips was completed by Tyrell Sutherland, Vice President of Exploration for MLM. Drilling was completed between July 16th and 26th 2017. In total, 2080 feet were drilled in 5 foot sample increments, however for the majority of this report all lengths are in meters. Every 5 foot sample was submitted for analysis. Samples were processed by Bureau Veritas Commodities Canada Ltd. in Whitehorse and analyzed by Bureau Veritas Commodities Canada Ltd. in Vancouver B.C. using ICP-MS/ES following an Aqua Regia digestion (õICP-MSö). Mineralized intersections were reanalyzed using fire assay for more accurate gold values.

2.0 Location and Access

Anderson-Davidson consists of 627 claims totaling 129.4 sq. km and lies within the Yukon on NTS map sheets 105M/10, 11, 12, and 14. The west end of the Property is located 20km northeast of Mayo. The

claims are registered in the Mayo Mining district under the name of Mayo Lake Minerals Inc. and are listed in Table 1 below with their location shown on figures 1 and 2.

Access to the properties is provided by four-wheel drive trails and government-maintained gravel roads connecting to the Silver Trail highway. The Silver Trail connects with the Yukon's paved or chip-sealed highway network at Mayo (Figure 1).

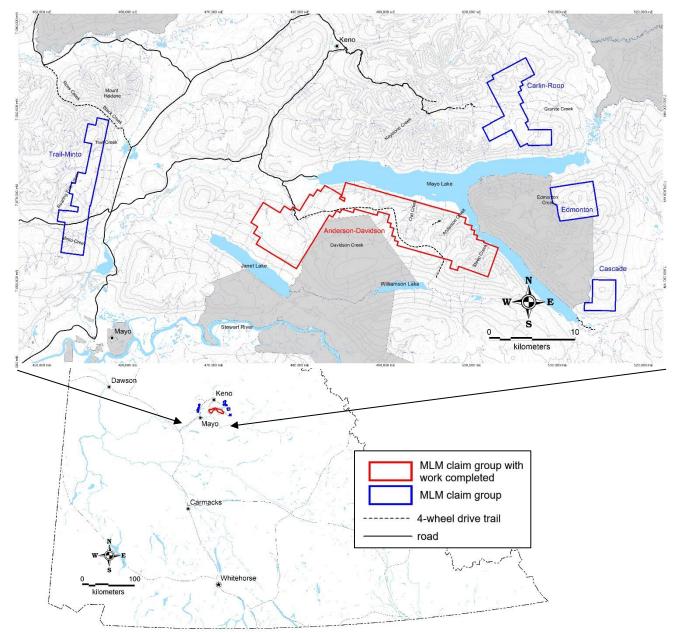


Figure 1: Location of MLM's claim groups

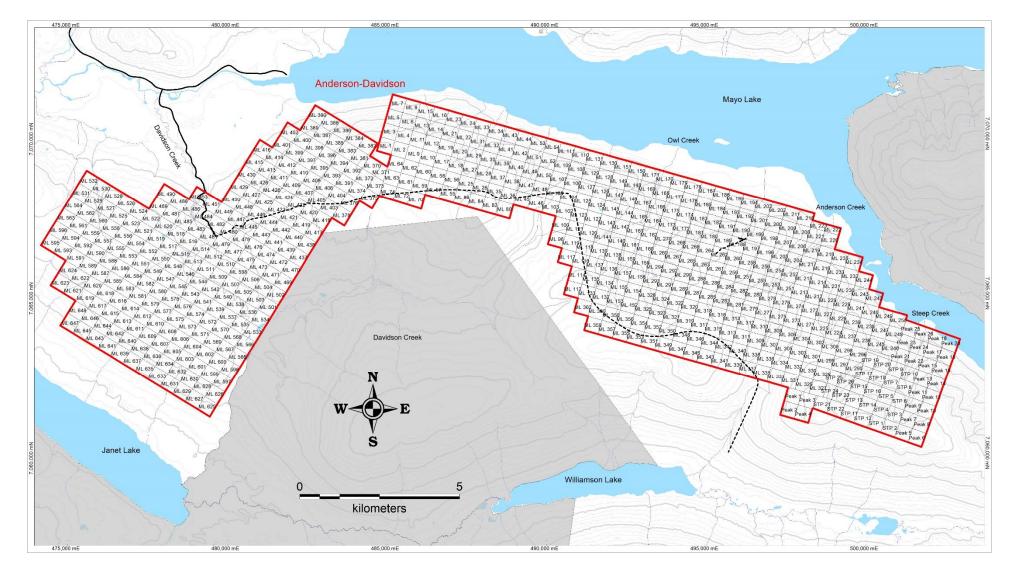


Figure 2: Location of claims in the Anderson-Davidson claim group

Table 1. Claims comprising the Anderson-Davidson Claim Group					
Grant number	Label	Expiry Date	NTS Sheet		
YD92295-YD92298	ML 295-ML 298	20220329	105M11		
YE24801-YE24830	ML 401-ML 430	20220329	105M 11, 14		
YE24837-YE24851	ML 437-ML 451	20220329	105M11		
YE24853	ML 453	20220329	105M11		
YE24869-YE24890	ML 469-ML 490	20220329	105M11		
YE24901-YE25000	ML 501-ML 600	20220329	105M 11, 12		
YE25301-YE25343	ML 601-ML 643	20220329	105M 11, 12		
YE25344-YE25348	ML 644-ML 648	20210329	105M11		
YE25370-YE25376	ML 370-ML 376	20220329	105M11		
YE25378	ML 378	20220329	105M11		
YE25381-YE25400	ML 381-ML 400	20220329	105M14		
YE31001-YE31064	ML 1-ML 64	20220329	105M 11, 14		
YE31070	ML 70	20220329	105M11		
YE31072	ML 72	20220329	105M11		
YE31074	ML 74	20220329	105M11		
YE31080	ML 80	20220329	105M11		
YE31082	ML 82	20220329	105M11		
YE31084	ML 84	20220329	105M11		
YE31086	ML 86	20220329	105M11		
YE31098	ML 98 20220329		105M11		
YE31100	ML 100	20220329	105M11		
YE31102-YE31112	ML 102-ML 112 20220329		105M 11, 14		
YE31114	ML 114	20220329	105M11		
YE31116-YE31200	ML 116-ML 200	20220329	105M 11, 14		
YE31301-YE31360	ML 301-ML 360 20220329		105M11		
YE31362	ML 362	20220329	105M11		
YE31390-YE31394	ML 290-ML 294	20220329	105M11		
YE31401-YE31489	ML 201-ML 289	20220329	105M 10, 11		
YE31499	ML 299	20220329	105M11		
YE31500	ML 300	20220329	105M11		
YE45851-YE45876	STP 1-STP 26	20220329	105M 10, 11		
YE55761-YE55786	Peak 1-Peak 26	20220329	105M 10, 11		

Table 1: Claims comprising the Anderson-Davidson Claim Group

3.0 Previous Work

The earliest regional mapping in the Mayo Lake area was undertaken by H.S Bostock in 1947. Early work by Bostock was followed from 1952 to 1965 by numerous workers who published geological maps; these included L.H Green et.al (1972), R.W Boyle (1964), and E.D Kindle (1962) with contributions by C.F Gleeson (Boyle 1964). Mapping was reinitiated in early 1992 by J.A Hunt et al. (1996), D.C. Murphy et al. (1996) and C.F Roots (1997); in addition to fieldwork they integrated numerous geological publications dating from 1920 to 1996. Rootsø work resulted in a regional map at 1:250,000 scale (Roots 1997). Surficial mapping was undertaken by Hughes (1983) in 1964 and 1979 and more recently by Bond (1999).

Operation Keno, headed by Dr. C.F. Gleeson of the Geological Survey of Canada (õGSCö), was completed in 1968 (Gleeson et al 1965-1968, Gleeson 1980a, Gleeson 1980b). It centered on Keno Hill and consisted of stream sediment, water, heavy-mineral and litho-geochemistry programs. Notably creeks draining in to Mayo Lake were sampled (Figure 3), yielding numerous arsenic, antimony and gold in heavy mineral concentrate anomalies. The area within, and adjacent to, the Properties were again sampled during a stream sediment program by the GSC in 1986-87 (Hornbrook 1987) with a low sampling density. This program yielded few anomalies.

There is evidence for historic placer mining on most of the tributaries to Mayo Lake and the Mayo River. Modern placer mining has been restricted to Anderson, Davidson, Duncan, Granite, Lightning, Owl, Ross, Roaring Fork, Steep and Minto creeks. Currently only Duncan, Granite and Lightning creeks are being worked; however placer claims in good standing remain on most creeks in the area.

The GSC carried out two geophysical programs in the Mayo Lake area; the first at 1207m spacing in 1968 and a second at 2000m spacing in 1990. These surveys are corroborated by similar results obtained by MLMøs geophysical program but with much lower resolution. These surveys delineate the Robert Service Thrust (õRSTö) and several major lineations likely representing thrust sheet imbrications or lithological marker horizons.

In 2004, W. Carrell carried out a till and silt sampling program south of the western arm of Mayo Lake to the Nelson Arm of Mayo Lake (Figure 3). This program had a good sampling density along the Williamson Lake road and at the outflows of several creeks into Mayo Lake. Most of Carrelløs till samples were taken above the McConnell glacial limit where there was time for the development of a primitive soil profile since the Reid glaciation (>100,000 BP). In most cases he collected samples from the top six inches. The linear distribution of sample sites limits their interpretation. Several of Carrelløs

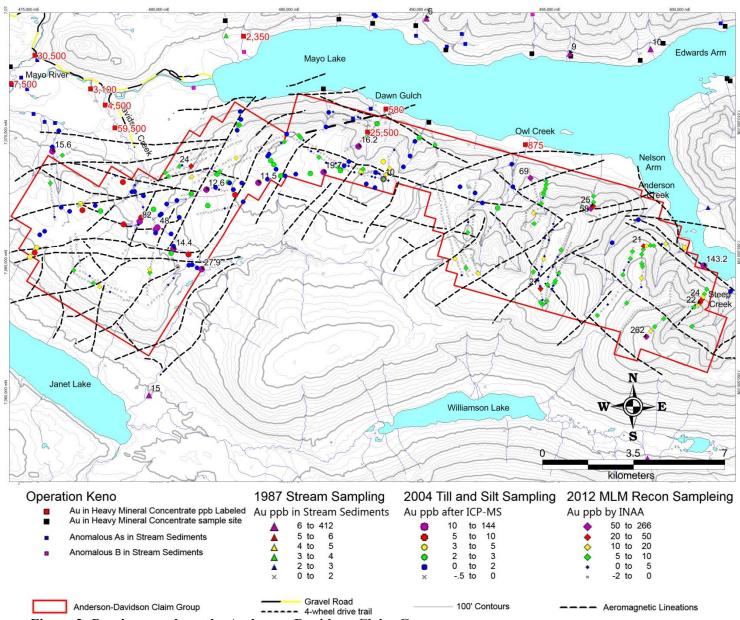


Figure 3: Previous work on the Anderson-Davidson Claim Group

arsenic and antimony anomalies were corroborated by the later sampling of MLM. Several of these samples were anomalous notably around the headwaters of Steep Creek and Dawn Gulch and the southern tributaries to Davidson Creek.

In 2012 MLM had an airborne geophysical survey flown over all of its claim groups between February and March by Precision GeoSurveys Inc. that saw the acquisition of high quality magnetic data. The survey was flown using a Bell 206 BIII jet ranger at 150 meter spacing. The average survey flight was 32 meters above ground. The survey data acquisition specifications and coordinates for the different claim groups can be found in Rampton and Sutherland (2012 a, b, c, d and e). Lineations from these surveys are plotted in Figure 3.

In 2012 MLM followed up with a ridge and spur type reconnaissance soil sampling program. This program delineated numerous geochemical targets on each claim group, which determined further sampling (Figure 3). Notable regional anomalies were the NE trending As-Sb-Au anomalies west of the Nelson Arm of Mayo Lake, numerous high Au⁺/. Sb values near the Roaring Fork Stock, high As+Sb values west of Davidson Creek and north of Janet Lake and high As values near the headwaters of Edmonton Creek.

In 2013 MLM followed up on the ridge and spur soil sampling with targeting soil grids on the As-Sb-Au anomalies west of the Nelson Arm of Mayo on the Anderson-Davidson. This program delineated a 2 km Au-As in soil anomaly between Anderson and Owl Creeks and a 600m Au-As-Sb anomaly above Steep Creek. Both of these anomalies contained Au in soil anomalies in excess of 100ppb and remain open in two directions. The targeting grids from 2013 were expanded and detailed in 2015.

In 2014 MLM pursued several anomalies from the ridge and spur soil sampling program near Davidson and Edmonton creeks. These consisted of targeting soil grids at variable sampling intervals, which delineated Au in soil anomalies up to 1km long near Davidson Creek with values up to 23ppb Au. A strong Sb anomaly north of Janet Lake on Anderson Davidson was also tested by a soil grid, which delineated a weak gold anomaly. On Edmonton a large As in soil anomaly defined an ellipsoid with intersecting radial Au anomalies. One was up to the 600m long with values up to 14ppb in soil. A 650m E-W Au and base metal anomaly with Au values to 11.2 ppb was also delineated near the head of Edmonton Creek.

In 2015 MLM further sampling at 30m x 30m spacing was completed to define trench and drill targets on Anderson-Davidson. Detailed soil grids with 30m x 30m spacing defined the Anderson-Owl and Steep Creek targets. Hand trenching of several targets encountered impenetrable permafrost prior to reaching bedrock. However, gold in soil values from samples along the base of the trench at the Anderson-Owl target were favourable. On Anderson-Davidson a new target, the Peak anomaly, was delineated with samples yielding up to 108ppb Au.

MLM also completed targeting soil grids in 2015 at variable sampling intervals on several anomalies from the ridge and spur soil sampling program on Carlin-Roop and Trail-Minto. MLM delineated Au in soil anomalies up to 1km long near Minto Creek with values up to 84ppb Au. A previously identified strong Sb anomaly west of Trail Creek was also tested by a soil grid, which delineated a weak gold anomaly. On Carlin, a large Au-Sb-As in soil anomaly with poorly constrained boundaries and values up to 89ppb Au was identified.

In 2016 MLM expanded targeting grids on the Trail-Minto and Carlin claim groups as well as attempting to extend the Anderson Gold Trend southeast from Steep Creek.

4.0 Geomorphology

The Property extends from the Nelson arm of Mayo Lake in the east to the highlands south of the Mayo River in the west (Figure 1). It lies south of Mayo Lake and north of valleys occupied by Williamson and Janet lakes. Valleys containing Mayo and Janet lakes are broad and U-shaped due to glacier ice being funneled down them from east to west during Pleistocene glaciations. Most tributaries to the large valleys

are narrow and confined by moderate to steep slopes. Uplands generally have moderate slopes. Streams draining the property are all part of the Yukon River watershed.

The Property has been subjected to multiple glaciations (Hughes 1983). The youngest Pleistocene glaciation, the McConnell Glaciation, was confined to the trunk valleys occupied by Mayo, Janet and Williamson lakes (Bond 1999). These valleys were filled with fast flowing ice that scoured their bottoms and sides. The upper limit of the McConnell Glaciation is marked by lateral moraines and kame terraces along the sides of these valleys. Minor lobes penetrated the upper reaches of Davidson Creek; here their former extent is marked by end moraines and kames. The westward limit of the McConnell Glaciation is along the base of the highlands to the west of Halfway Lakes between Mount Haldane and the Minto River. Uplands above the McConnell glacial limit were covered by glacial ice during the earlier Reid glaciation. The ice was probably cold-based and transport of rock and debris was minimal as evidenced by landforms. Some uplands are mapped as a mixture of colluvium and till. Some patches of colluvium and alluvial benches at higher elevations may be representative of the Reid and older glaciations.

A lobe penetrating the upper reaches of Davidson Creek redirected drainage that flowed south to Janet Lake prior to the last glaciation. The lower reach of Davidson Creek prior to the redirection was a local drainage and the canyon was likely less developed or absent. When the McConnell ice sheet in the Janet Lake valley reached its maximum extent, meltwater was diverted over the low divide northward into the Mayo River valley (Lebarge 2002). Rapid erosion formed a canyon and fixed the northward course of the creek. Glacial outwash blankets the area near the diversion. The alluvium is a mixture of gravel, sand, silt and organics.

Outcrop is sparse on the properties, rarely exceeding 5% in any area. Soil development is immature, except on parts of the terrain above the McConnell glacial limit. Permafrost is likely pervasive on plateaus and north facing slopes but discontinuous on south facing slopes and at high elevations.

Vegetation is predominantly black spruce with willow and alder understorey. Lowlands, north facing slopes and plateaus below the treeline exhibit a thick cover of organic matter, moss and Labrador tea. South facing slopes are similarly vegetated but also include balsam and poplar groves.

5.0 Regional Geology and Mineralization

The Property is located within the Selwyn Basin of the Tintina Gold Belt. Simplified regional geology as shown on Figure 4 depicts Upper Proterozoic to Lower Cambrian Hyland Group stratigraphy in contact with Paleozoic metasedimentary units of the Ern Group and Keno Hill Quartzite along the Robert Service Thrust (õRSTö). Mid-Triassic mafic sills and greenstones are common within the Keno Hill Quartzite and Ern Group, but are rarely encountered in other units. All stratigraphic units have been intruded by the Mid-Cretaceous age Tombstone Plutonic Suite, which host several known gold deposits including the Eagle Deposit at Dublin Gulch, which hosts an open pit resource of 6.4 million ounces of gold at a grade



Figure 4: Mayo Lake and Selwyn Basin Geology. From Mair et al. 2006. Labeled stars indicate the claim groups where work was completed in 2016.

of 0.67g/t. The 100sq. km. Roop Lakes Stock, east of the Keno Hill Camp, is the largest member of the Tombstone Plutonic Suite and probably drove hydrothermal circulation leading to the mineralization at Keno Hill, as referenced by Roots (1997).

The dominant structural features in the area are a pair of imbricated thrust sheets; the RST and the Tombstone Thrust Sheet (õTTSö) have over 150km of combined NE directed transport of rock masses. The RST Sheet itself contains many internal thrusts that are commonly difficult to distinguish due to subsequent intense folding of faults and contacts and a strong penetrative structural fabric imparted by the later underlying TTS; the area deformed during this event is commonly referred to as the Tombstone Strain Zone. Intense folding is especially evident in units immediately around Keno Hill. Large open folds, the McQueston Antiform (E-W) and Mayo Lake Antiform (NW-SE), and several inferred brittle faults were developed after the large thrusting events (Roots 1997). A significant WNW geophysical lineation, which parallels the south shore of Mayo Lake appears to be a regional fault possibly demarcating segments within the RST Sheet.

Two major gold occurrences are located within 30 km of the properties. Both are located in the upper plate of the RS Thrust within Hyland Group metasedimentary rocks. Sheeted veins related to the Tombstone Plutonic Suite contain most of the gold at Dublin Gulch and Gold Dome (formerly Scheelite Dome). The most advanced project is Dublin Gulch where a definitive feasibility study has been completed; it hosts an open pit resource containing 6.4 million ounces of gold at a grade of 0.67g/t.

5.1 Mineralization Styles

Mineralization within the Tintina Gold Belt is primarily the result of intrusion related gold systems; these large epizonal systems result in variable deposits that on the surface may appear unrelated. The most distal mineralization associated with these felsic intrusives are polymetallic Ag-Pb-Zn veins similar to the locally developed Keno Hill Type veins. This mineralization represents the furthest extent of hydrothermal influence related to these intrusions and may occur many kilometers from the source stock

(Figure 5). Consensus is that Keno Hill Type Veins (õKHTVö) are the product of hydrothermal circulation in reactivated structures driven by the emplacement of the Roop Lakes Stock, up to twenty kilometers away. The veins are generally within the Keno Hill Quartzite, but are inferred to cut through the RST and continue into the overlying Hyland Group. Abundant narrow Cretaceous dykes (Murphy 1997) related to the Tombstone Suite near Keno Hill could be an alternate hydrothermal engine or fluid source. In addition to Ag, Pb and Zn, other vectors for KHTV include Ba and Cu and in some cases Sb, Fe and Ca. At intermediate distances from source plutons, As-Sb-Au veins develop and have been the subject of minor exploration around Van Cleaves Hill, west of Mayo Lake.

Proximal mineralization associated with Tombstone intrusives are sheeted gold veins or stockworks within the rim or immediately adjacent to Tombstone Suite plutons. Intrusion related mineralization itself is generally (i) enriched in Au-Bi-Te, possibly W; (i) depleted in base metals and (iii) situated in tensional

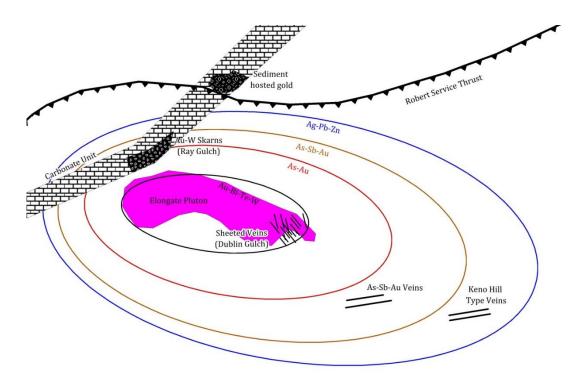


Figure 5: Idealized hydrothermal model for intrusion related gold systems in the Tintina Gold Belt (modified from Hart et. al 2002)

zones of the stock.

Where hydrothermal circulation contacts carbonate lithologies skarnification is common, such as at the Ray Gulch tungsten skarn near Dublin Gulch. These skarns are generally high in Au-W-Cu-Zn. Skarnification of rocks surrounding Tombstone suite intrusions will result in hydrothermal signatures different from those illustrated in Figure 5.

The Keno Hill silver camp has produced over two hundred million ounces of silver since 1921. Productive veins occur in the Keno Hill Quartzite and underlying Lower Schist. Although faults with associated mineralization (\tilde{o} mineralized faults \tilde{o}) are believed to cut through the RST and continue into the Hyland Group, no significant silver mineralization has been discovered above the RST. Ore shoots within the veins typically consist of galena, sphalerite and tetrahedrite with siderite or quartz gangue. The mineralized faults trend northeast and dip steeply to the southeast with left lateral offsets ranging from a few metres to over a hundred metres (Boyle 1965). Cross faults offsetting the mineralized faults trend perpendicular to them and dip 20° to 30° to the southwest.

A proximal relationship to crustal scale features appears to be common among deposits in the Tintina Gold Belt and is indicative of orogenic type gold deposits, the other major style of mineralization within the Tintina Gold Belt. Orogenic gold deposits typically occur localized along major crustal scale collisional suture zones and related splays. The major structures serve as conduits to pump deeply sourced metamorphic fluids to the secondary structures where mineralization takes place. Depth of emplacement is highly variable inflicting a strong control on vein morphologies which generally consist of gold bearing quartz-carbonate veins and veinlets with minor sulphides crosscutting varied host rocks. The wallrock is typically altered to silica, pyrite and muscovite within a broader carbonate alteration halo.

The following characteristics of the orogenic deposit model are modified from Ash and Alldrick (1996). Orogenic veins have a wide variety of morphologies dependent on the competency and depth of emplacement. Commonly enechelon veins and tabular fissure veins in competent host lithologies;

13

stringers forming stockworks in less competent lithologies; carbonate altered shear zones developed in ductile mineralization regimes and crustiform veining and epithermal characteristics in very shallow examples. Lower grade bulk-tonnage styles of mineralization may develop in areas marginal to veins associated with disseminated sulphides and may also be related to broad areas of fracturing.

Silicification, pyritization and potassium metasomatism generally occur adjacent to veins (usually within a metre) within broader zones of carbonate alteration, extending up to tens of metres from the veins. Carbonate alteration consists of talc and iron-magnesite in ultramafic rocks, ankerite and chlorite in mafic volcanic rocks, graphite and pyrite in sediments, and sericite, albite, calcite, siderite and pyrite in felsic to intermediate intrusions. Quartz-carbonate altered rock and pyrite are often the most prominent alteration minerals in the wallrock. Fuchsite/mariposite, sericite and scheelite are common where veins are associated with felsic to intermediate intrusions.

Ore minerals include native gold, pyrite, arsenopyrite, with lesser galena, sphalerite, chalcopyrite, pyrrhotite, tellurides, scheelite, bismuth minerals, cosalite, tetrahedrite, stibnite, molybdenite and gersdorffite (nickel, arsenic sulphide) in a gangue of quartz and carbonates (ferroan-dolomite, ankerite, ferroan-magnesite, calcite and siderite), and lesser albite, mariposite (fuchsite), sericite, muscovite, chlorite, tourmaline, graphite. Host rocks are varied including mafic volcanic rocks, ultramafic and mafic intrusions, fine clastic rocks, chert, and felsic to intermediate intrusions.

Elemental associations are gold, silver, arsenic, antimony, potassium, lithium, bismuth, tungsten, tellerium and boron, \pm (copper, lead, zinc and mercury). Geophysics is useful in outlining faults indicated by linear magnetic anomalies and areas of carbonate alteration indicated by negative magnetic anomalies due to destruction of magnetite. Associated deposit types include gold bearing sulphide mantos, silica veins and placer gold.

6.0 Property Geology

Anderson-Davidson is underlain by phyllites, schists and carbonates of the Hyland Group metasediments (Figure 6) occasionally intruded by felsic dykes. Most stratigraphy has bedding parallel or sub-parallel to foliation, which dips shallowly generally southeast except where modified by small scale isoclinal folding.

A quartz phyric schist that has been described from several locations on the property as sheared conglomerate is possibly a sheared felsic intrusive. This unit appears to have a spatial relationship to faulting and mineralization though at this time it is unknown whether it is causative.

6.1 Stratigraphy

Hyland Group is mapped as the Yusezyu Formation in the vicinity of the Property. It consists of compositionally layered medium to coarse-grained micaceous quartzose phyllite; muscovite-chlorite gritty phyllite; green and grey impure quartzite; metaconglomerate (Roots 1997). Locally metasedimentary rocks are comprised of interbedded variably quartzose arenaceous schists and commonly carbonates.

6.2 Intrusions

In the Mayo Lake area, Cretaceous (92 ó 94 Ma) Tombstone Suite intrusions are present: described as buff to grey weathering dykes, sills and small plugs with aplitic or granitic textures. Some of these bodies are locally quartz and feldspar phyric and mineralized with disseminated arsenopyrite (Becker 2000). Triassic mafic sills are common in the Keno Hill Quartzite and Ern Group but rarely penetrate into the Hyland group.

A 300m long granodiorite/monzonite stock is present at the head of Owl Creek on the Anderson-Davidson Claim Group as well as rare outcrop-scale felsic dykes. These are likely Cretaceous intrusions, possibly part of the Tombstone or McQueston suites. The local abundance of gabbro boulders on the uplands and within the valley containing Davidson Creek suggests a source of gabbro within or nearby the drainage basin of Davidson Creek.

Along Davidson Creek there is an outcrop with a 1.5m thick, conformable (?) unit of (felsic) quartz eye porphyry underlain by a 50cm thick unit of mafic/ultramafic schist with minor fuchsite. The provenance of these units is unknown and could be related to Cretaceous or Triassic suites.

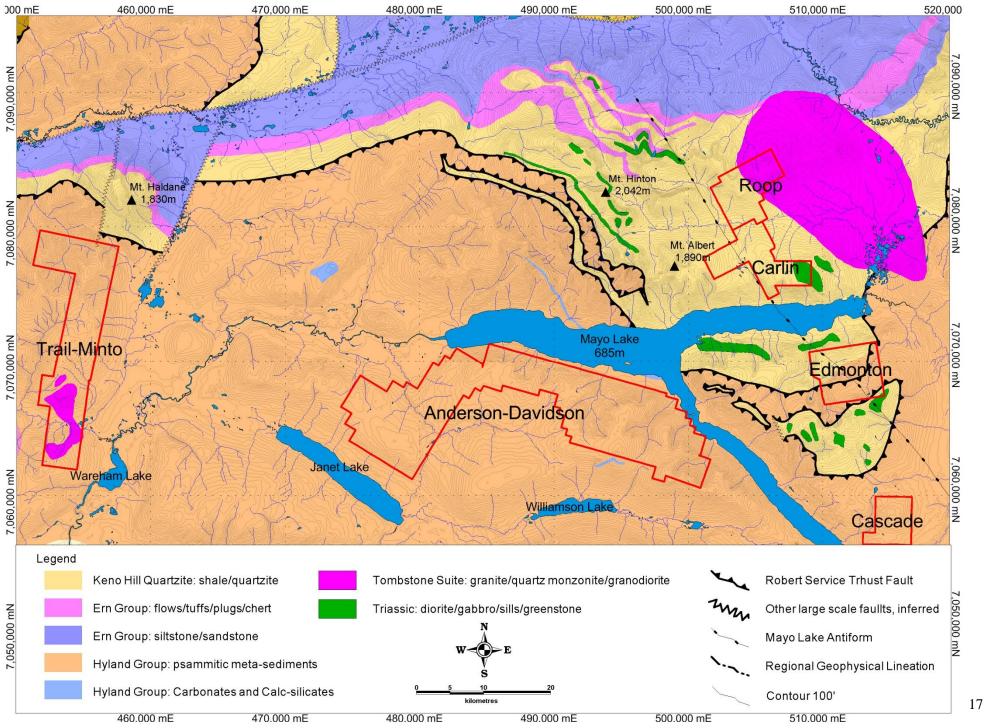


Figure 6: Geology of Mayo Lake showing MLM claim groups claim extents as of 2015.

17

6.3 Structure

Deformation on the properties is typical of the Tombstone Strain zone, including a strong penetrative fabric and intense large scale deformation (Roots 1997). Broad post-metamorphic folding is also present and is indicated by variable foliation dips. Foliation is generally shallow dipping southwest to southeast. Boudinaged quartz +/-carbonate veins are common within the Hyland Group and generally parallel to foliation. These veins likely predate the development of the Tombstone Strain Zone.

6.4 Mineralization

The Property is a prospective host to a variety of deposit styles related to the complex Mesozoic and Cenozoic metamorphic, plutonic and volcanic history associated with the formation of the northern Canadian Cordilleran orogeny. The most attractive of these are:

- Polymetallic veins; mainly Keno Hill Type, which are typically high in silver, lead and zinc and are related to the intrusion of the Tombstone Plutonic Suite and constitute the main ore at Keno Hill.
- Intrusion related gold; such as Dublin Gulch and Fort Knox. These deposits are related to postorogenic, mid-Cretaceous Tombstone Suite stocks that intruded Selwyn Basin sedimentary rocks.
- Orogenic gold veins; formed after peak metamorphism of the Yukon-Tanana Terrane; their erosion likely contributed to the Klondike placer deposits also prospects within the eastern Tombstone Plutonic Belt. These are narrow, high-grade deposits; the nearby Plateau Project and 3 Aces Project are in similar rocks of the Tombstone Plutonic Belt. They could be high grade, epithermal or mesothermal, structural end-members of the intrusion related gold model rather than typical orogenic veins.
- Skarns; like the Ray Gulch Tungsten Skarn at Dublin Gulch and a small skarn southeast of the Roop Lakes Stock.

7.0 Description of MLM's 2017 Work

Work was completed on the Property from June 22nd-30th, and July 16th-30th, 2017. In June work consisted of preparing drilling areas, a site visit to support preparation of a NI43-101 report, and minimal soil sampling and claim staking. In July work consisted of drilling and, while the rig was down, some minor soil sampling.

The crews were based out of Mayo for the work in June and out of a camp near the drill site for the work in July. The workers mobilized for the program are listed below and the drilling company was Midnight Sun Drilling.

Tyrell Sutherland	Senior geologist (MLM)
Richard Barrie	Assistant (MLM)
Tucker Barrie	CTBA Geoconsultants
Ian Stokes	Geologist (Geovector Project Management)
Jeff Moore	Sampling technician/Medic (Geovector Project Management)
Jim Harris	Sampling technician (Geovector Project Management)

7.1 Drilling

MLM drilled 2080 feet, targeting the Anderson-Owl geochemical anomaly in July 2017. It utilized a selfpropelled õGrasshopperö reverse circulation (RC) rig provided and crewed by Midnight Sun Drilling Inc. of Whitehorse, Yukon. The mobility of the Grasshopper allowed MLM to drill holes (RCHs) from seven pads providing two fences across the gold-arsenic-antimony in soil anomaly. MLM drilled eight 70-365 foot RC holes from seven locations. Sampling consisted of 5-foot (1 rod length) composites which were split using a three-tiered riffle splitter to collect both a sample and a duplicate. All holes were sampled from top to bottom except in case where no sample was returned. Drill samples were delivered to Bureau Veritas Ltd. preparatory laboratory in Whitehorse, YT. Samples crushed and pulverized samples were shipped to Vancouver B.C to undergo analysis code AQ201, which is an ICP-MS analysis after aqua regia digestion of a 15g sample for Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Au, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, Hg, Sc, Tl, S, Ga, Se, and Te. Mineralized zones were reanalyzed using fire assay of a 30g sample for Au.

Duplicate drill samples were stored in Mayo.

7.2 Soil Sampling

Two targets on the Property were sampled: the Peak Target was sampled at 30m x 30m spaceing to further delineate the drill target there. At the Anderson-Owl target a 30m x 30m grid was expanded to test the soil anomaly for a further 600m along strike and expanded to test a second anomaly 200m to the southeast (Figure 7).

Soil sampling was undertaken by a MLM geologist, and a geologist and technician from Geovector Project Management from Ottawa, Ontario under contract:

Tyrell Sutherland Senior geologist (MLM)

Ian Stokes Geologist (Geovector Project Management)

Jim Harris Sampling technician (Geovector Project Management)

At each sample site the soil and overburden is penetrated by an auger until the C horizon is reached. The next 10-15cms of soil is sampled and placed into a labeled paper sample bag. In areas where C horizon was sparse or nonexistent or frozen, B horizon was collected. Sample sites were located using the Garmin GPS Map 62s and recorded in a field book and sample book. An identification ticket containing the sample number is attached at each sample location. Samplers collected a duplicate sample every 33rd sample site. Sample data was entered into a database upon returning to camp at the end of each day.

Soil samples were delivered to Bureau Veritas Ltd. preparatory laboratory in Whitehorse, YT. Soil samples underwent modified preparation code SS80; dried for 24 hours at 40°C instead of 60°C then screened for 100g at -80 mesh; rejects were discarded. Samples from Carlin and one line of control samples from Trail-Minto were then sent to Bureau Veritas Ltd. in Vancouver B.C to undergo analysis code AQ251, which is an ICP-MS/ES analysis after aqua regia digestion of a 15g sample for Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Au, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, Hg, Sc, Tl, S, Ga, Se, Te, and U.

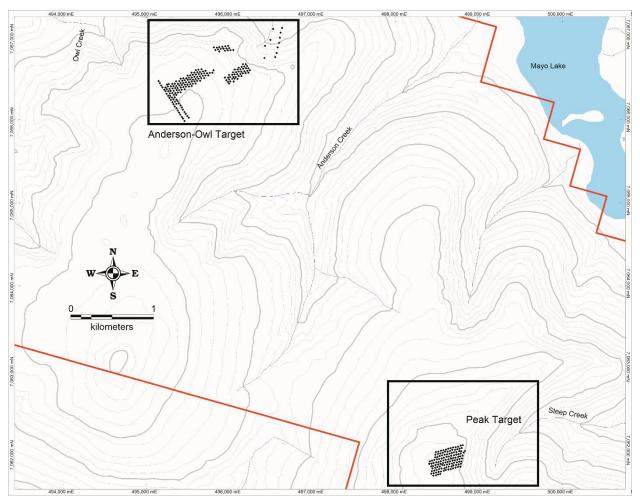


Figure 7: Soil sample locations from 2017

8.0 Observations and Results

8.1 Drilling

The ranges for significant pathfinder elements are shown in Table 2. Drilling intersections yielding significant results are listed in Table 3 and results for gold and select pathfinder elements are included in Appendix C. The standards and blanks used during sampling were CDN-CM-36 and CDN-BL-10. Analytical results for these were within the stated threshold for analysis of these standards. Results from sample duplicates tested were acceptable. Zones re-analyzed by fire assay fusion for gold have values 15-20% higher than the analysis using ICP-MS/ES after aqua-regia digestion.

0				1
	Element	Median	Minimum	Maximum
Au		18.9 ppb	<0.2 ppb	905 ppb
Ag		60.1 ppb	7 ppb	2123 ppb
As		104 ppm	0.6 ppm	4732.7 ppm
Hg		<5 ppb	<5 ppb	56 ppb
Sb		9.9 ppm	0.04 ppm	469.19 ppm

Table 2: Ranges of gold and some pathfinder elements from drill samples

Table 3: Anderson - Davidson 2017 RC drilling highlights

RC Drillhole	From m	To m	Interval*	Grade, in g Au/t
MLM17-002	76.2	80.9	4.7m	0.17
MLM17-003	57.9	64	6.1m	0.05
MLM17-005	4.6	21.3	16.7m	0.34
including	6.1	12.2	6.1m	0.77
including	9.1	12.2	3.1m	0.9
and	88.4	96	7.6m	0.1
MLM17-006	3.1	9.1	6.0m	0.36
including	3.1	6.1	3.0m	0.55
and	71.6	74.7	3.1m	0.09
MLM17-007	53.3	54.9	1.6m	0.27

*The true width in uncertain at this time, but reported intervals are likely close to true width.

Anomalous As, Sb and Hg values are spatially associated with elevated gold values. Values for base metals including Cu, Mo, Pb and Zn were not particularly anomalous. Fe and S values correlate primarily with pyrite bearing õdark schistsö and less strongly with elevated gold values.

Overburden in all areas is less than 3m and commonly less than 1.5m.

Figure 8 is a plan section of the drilling that shows results. Gold histograms are capped at 0.5g Au/t for presentation purposes. Summary logs and collar locations are attached in Appendices B and C.

The sections (Figures 9 and 10) indicate two main gold bearing structures, Alpha and Beta, as well as several smaller anomalous intervals. The gold bearing structures in bedrock strike 070° N and dip at about 40° to the southeast and are continuous on strike for at least 50m.

The upper structure (Alpha) was intersected by RCHs MLM17-005 and 006 at the interface where the holes enter bedrock. In RCH MLM17-005 the first 16.7m below the bedrock surface (4.6 m down-hole) yielded 0.34 g Au/t with the uppermost 6.1 m yielding 0.77 g Au/t and 9.1m-12.2m downhole assaying 0.9 g Au/t. In RCH MLM17-006 the first 9.1m below the bedrock surface (3.1 m down-hole) yielded 0.36 g Au/t with the uppermost 3.1 m assaying 0.55 g Au/t. The true width, dip and tenor of the Alpha structure cannot be determined as it is obvious that neither drill hole penetrated the full width of the structure.

A lower structure (Beta) containing mineralized intervals measuring 1.6-7.6 m in length (likely close to true width) were intersected in the bottom third of RCHs MLM17-003, 005, 006 and 007. The intersections graded between 0.05 and 0.27 g Au/t. The Beta structure appears to decrease in width northeast as shown on Section 2. The apparent vertical disruption may be because the true elevation difference was probably not realized by the GPS tools for the drill collars. The slope between RCH 002 and RCH 003 is much steeper than indicated on Figure 9 (determined by GPS).

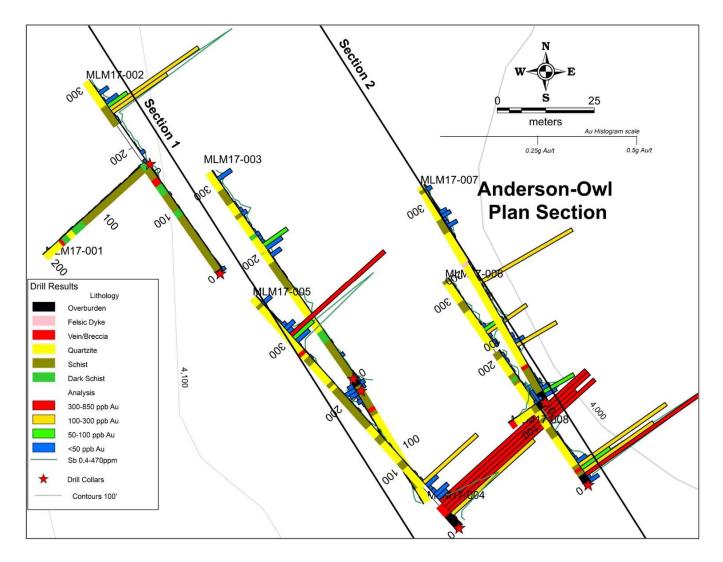


Figure 8: Plan section of RC drill hole traces projected to surface and locations of cross sections, gold histogram is capped at 0.5 g Au/t

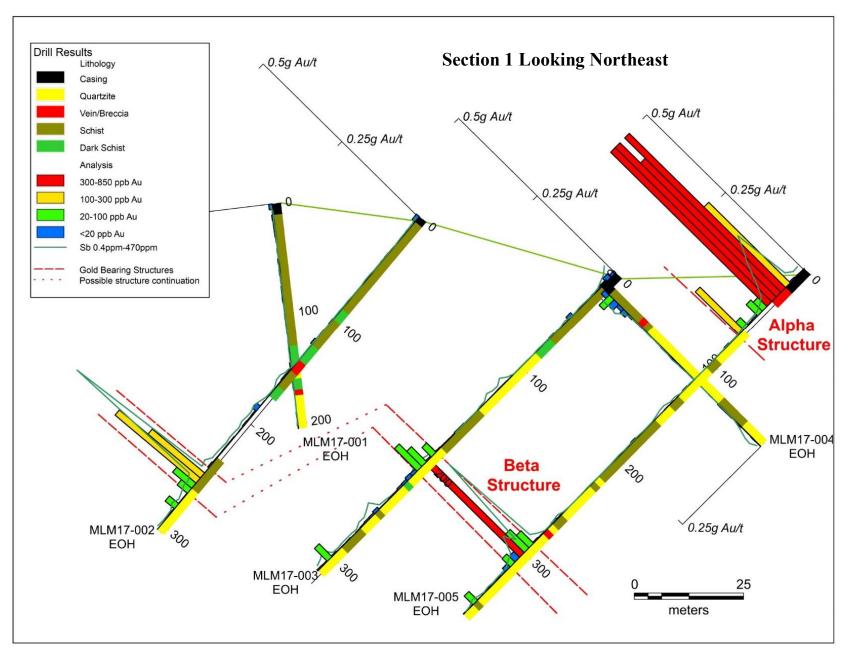


Figure 9: Cross section 1 of drilling on Anderson-Owl looking northeast.

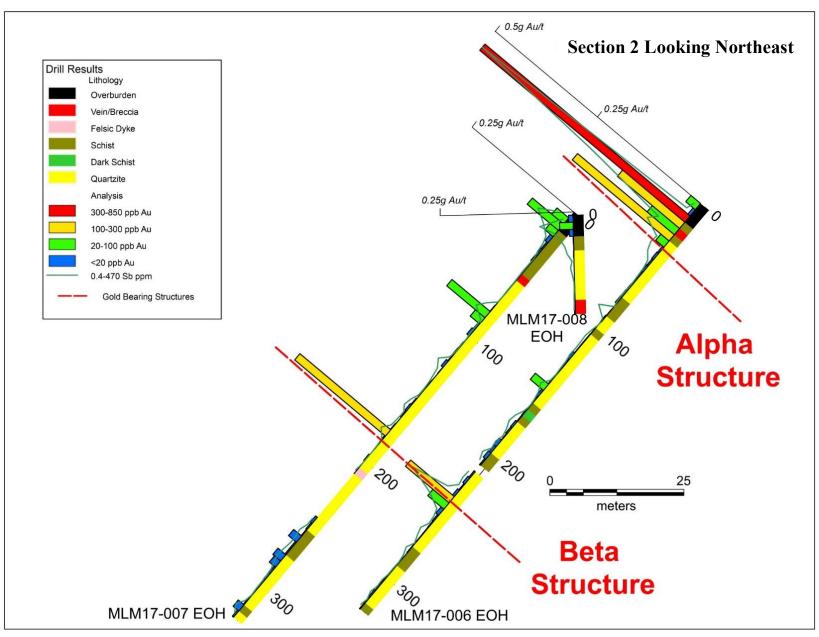


Figure 10: Cross section 2 of drilling on Anderson-Owl looking northeast.

The mineralization intersected likely is low temperature mineralization, based on the association of Au with As-Sb-Hg. The dark schists with abundant pyrite are interpreted as metamorphosed black shales with epigenetic pyrite.

MLMøs program established that gold in soil anomalies along the Anderson Gold Trend are viable vectors to gold mineralization and confirmed the presence of gold system similar to those encountered at the Plateau Project, which also lies in a similar geologic environment within the Tombstone Plutonic Belt some 60 km southeast of Mayo Lake.

It also has demonstrated that special care will be required in determining the position of bedrock mineralization relative to the soil anomalies. RCH MLM17-005 and RCH MLM17-006 were collared about 8.5 m outside the 10 ppb Au in soil contour and intersected the strongest mineralization at the bedrock interfaces. This indicates that the soil anomaly related to the strongest mineralization was transported systematically \pm 25 m from its bedrock source by periglacial or gravity process.

8.2 Soil sampling

Soil sample site locations can be found in Appendix D; and sample analysis can be found in the attached excel sheet. The locations of the Anderson-Owl and Peak target is shown on Figure 7. Values for most elements analyzed by the ICP-MS/ES technique show comparable values between field duplicates.

8.2.1 Anderson-Owl Target

There are some inconsistences in gold values where sampling from 2017 overlaps sampling from 2015. A battery of samples was resubmitted for fire assay analysis to investigate theses inconsistencies. The fire assay results correlated poorly with results by ICP-MS/ES after aqua regia. After discussions with the assay lab it was decided that the inconsistent results are most likely due a matrix effect relating to inconsistent graphite component of soils. The sampling in 2017 were also in areas with a gentler slope and less well drained, than those in 2015. This likely contributed to the overall matrix effect.

Anomalies of As, Sb and Bi suggest the structure extends for a further 600m to the southwest (Figures 11 and 12). The Au anomalies are not as consistent on areas sampled in 2017 areas when compared to those sampled during 2015 (Figure 11). Elevated Cu, Fe, Te and Hg are also associated with the As-Sb-Bi ±Au anomaly. Two K anomalies (Figure 13) are off-set by the As-Sb-Bi ±Au anomalies. The broad K anomaly in the southeasternpart of the 2015 soil grid appeared to be isolated and unrelated to the High K values in the wester part of the 2015 grid. The expansion of the area of high K values in the west with 2017 sampling and the axis of the As-Sb-Bi ±Au anomaly suggest that the K anomalies have been offset by movement along the As-Sb-Bi ±Au axis. The majority of samples from 2017 have elevated K compared to sampling from 2015 but this could be related to sampling on gentle slopes and targeting of the grid along where the As-Sb-Bi ±Au was likely to continue.

A second parallel As-Sb-Bi ±Au-Te anomaly was delineated 200m south east of the first anomaly determined in 2015 and follows the southeast edge of the strong K anomaly. This anomaly is somewhat

discontinuous, but it is on a significantly steeper slope and likely has more õnoiseö due to variations in the matrix on this part of the grid.

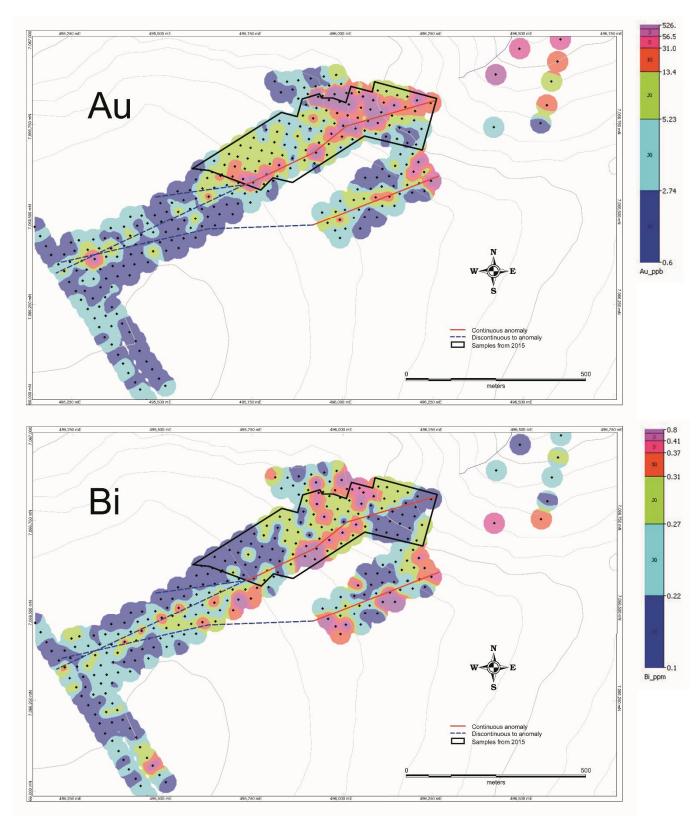


Figure 11: Interpolated soil results from 2015 and 2017 for Au and Bi

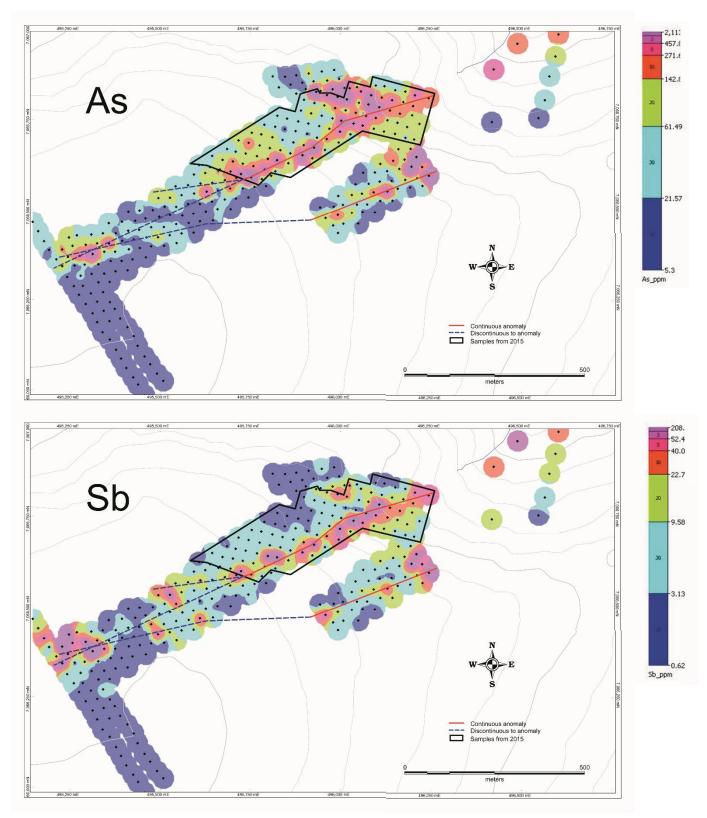


Figure 12: Interpolated soil results from 2015 and 2017 for As and Sb

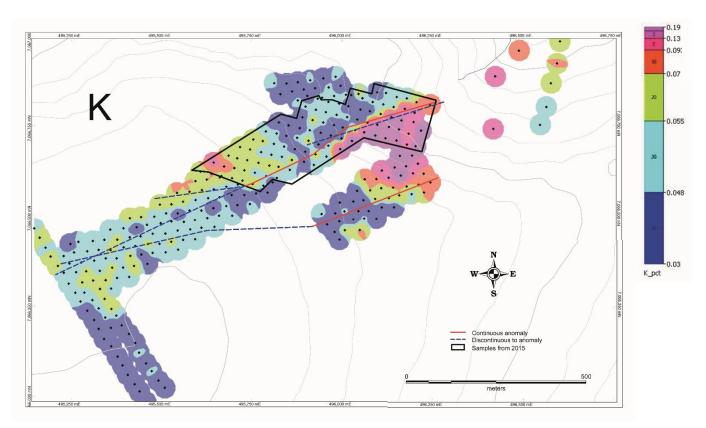


Figure 13: Interpolated soil results from 2015 and 2017 for K

8.2.2 Peak Target

Soil sampling at the Peak Target consisted of 30m x 30m spaced sampling covering the intersection of two Au in soil anomalies from MLMøs 2015 program. Samples were analyzed by ICP-MS after aqua regia only. The 2017 program defined a 350m northwest trending Au-As-Sb anomaly with a 120m long central zone with Au anomalies ranging between 49 and 340 ppb Au (Figures 14 and 15). The Au-As-Sb anomaly corresponds to depletion in Cr, Mo and V (Figure 15). Anomalies for most other elements show a roughly north south orientation and do not visibly related to Au.

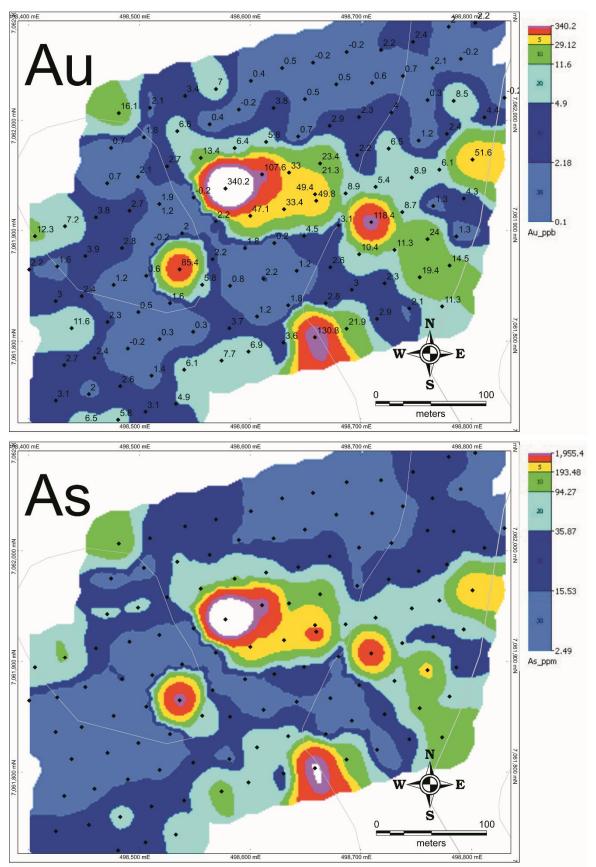


Figure 14: Interpolated 2017 Au (values labeled) and As in soil from the Peak Target

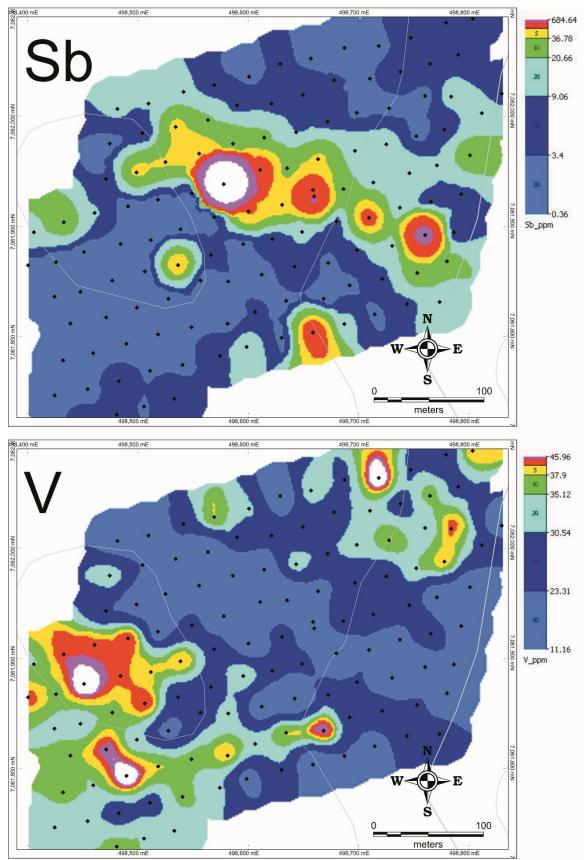


Figure 15: Interpolated 2017 Sb and V in soil from the Peak Target

9.0 Discussion

9.1 Drilling

Drilling of the Anderson-Owl Target intersected gold mineralization along two northeast trending structures over a distance just under 50m. The mineralized structures probably extend well beyond 50m. The Anderson-Owl soil anomaly, itself, is well defined along strike for a full 600m and can be well traced discontinuously for over 2000m. The discontinuous nature of the anomaly appears to be due to topography and drainage.

The tenor and width of the mineralization along the strongest mineralized structure, the Alpha structure, is also not yet fully defined. Both drill holes that intersected the Alpha structure were collared outside the well-defined Anderson-Owl gold in soil anomaly indicating that some surficial process has shifted the location of the soil anomaly relative to the bedrock mineralization.

The fact that two gold bearing structures were intersected by drilling indicate that mineralized structures do not occur independently. This suggest that many gold in soil anomalies in close proximity to defined targets are highly prospective for additional mineralization.

The strong relationship between Au-As-Sb and Hg in the mineralized zones indicate that mineralization occurred at relatively low temperatures at the Anderson-Owl. The actual tenor of any gold mineralization underlying the 2 km+ long Anderson-Owl soil anomaly remains undetermined. There are likely similar low temperature systems responsible for mineralization at both the Peak and Steep Creek soil anomalies as well as the several untested gold targets (isolated gold in soil anomalies located during ridge and spur sampling by MLM) within the 10km plus long Anderson Gold Trend.

Despite the epithermal temperatures the lack of observed volcanics or stocks nearby suggest that mineralizing fluids are probably õorogenicö in provenance. They likely follow a crustal scale fault imbrication indicated by geophysics parallel to the Anderson Gold Trend. These mineralized fluids can follow a structure from depth then precipitate gold in splays and joints oblique to the main structure.

The relative abundance of Sb in the mineralization suggests a more intrusion related provenance, even though the narrow and well-defined anomalies suggest a strong structural control on mineralization. No intrusion has been definitively identified within 3km of the Anderson Gold Trend. However, this does not rule out the presence of an intrusion at depth.

9.2 2017 Gold in Soils

Soil geochemistry and topography suggest that the major structure, at Anderson-Owl continues for a further 600m to the west. Where the slope becomes gentle to the southwest the gold anomalies become discontinuous. Gold in soils anomalies remain reliable proxies for gold in bedrock mineralization despite the soil anomaly at Anderson-Owl being shifted marginally.

The Peak detail grid is located at the intersection of east and northwest trending gold in soil anomalies from MLMøs 2015 program. While the detail grid at the Peak Target clearly defines a northwest trending gold in soil anomaly there is no apparent east trending structure. However isolated gold in soil anomalies of 50-130ppb Au in soil form notable outliers from the well defined northwest trending anomaly. These anomalies are several times the background variation for Au and suggest that there is more complexity at the Peak Target than a single northwest trending structure.

The variations in soil anomalies has major implications for the entire Anderson Gold Trend, the 10km long belt that contains numerous gold in soil anomalies; generally, at oblique angles to the Gold Trend. It is probable that inclination and orientation of the slope may both affect and be affected by the surface expression the underlying bedrock mineralization. For example, channelization/transportation of the gold soil anomalies in topographic depressions cause by adjacent (not underlying) mineralization may occur. Also, in areas away from slopes or where the margin of trunk valleys have different orientations relative to the bedrock mineralization. There is likely bedrock mineralization within the Anderson Gold Trend

where the gold in soil anomalies are patchy or discontinuous. This supports the need to have the entire Anderson Gold Trend sampled at closely spaced intervals to increase the probability of locating blind bedrock mineralization.

9.3 Property

Within the Tombstone Plutonic Belt there is a marked change from primarily orogenic style deposits in the southeast and intrusion related deposits in the northwest. The Anderson Gold Trend lies right at the junction between these two broad groups. It could contain deposits related to both styles or deposits that illustrate a degree of interrelationship between the two types of deposits.

10.0 Conclusion and Recommendations

10.1 Conclusions

Two gold bearing structures that continued for a strike length of just under 50m were located adjacent and parallel to the Anderson-Owl gold in soil anomaly, which itself has a length of 2km plus. The nature and tenor of this mineralization could not be fully realized as key drill holes were collared within thinly drift covered mineralized bedrock. The gold values within the strongest zone, the Alpha structure, increase towards the drill collars, suggesting that higher values may be present along the southwest edge of the Alpha structure. This structure yielded 0.34 g Au/t over 16.7m from the top of bedrock, including 0.77g Au/t over 6.1m and 0.9g Au/t over 3.1m in one hole and 0.36 g Au/t over 6.0m, including 0.55g Au/t over 3.1m, in a second hole. The strong relationship between Au-As-Sb-Hg and the structural setting indicate low temperature mineralization within an orogenic system.

Soil sampling along and adjacent to the Anderson-Owl gold in soil anomaly suggest that the anomaly is structurally oriented on a splay or joint within the Anderson Gold Trend and that it extends for at least 2000m and may continue for a total length in excess of 3km. There are some displacements within certain element plots that indicate some strike-slip movement along the anomaly.

The 2017 soil sampling program at the Peak anomaly has defined a 400m northwest trending gold in soil anomaly with a As-Sb association for drilling. This anomaly appears open to the southeast. A second strong Au-As-Sb anomaly appears to be present at the south end of the grid.

Review of the geology, geophysics and geochemistry indicate that gold in soil anomalies and their underlying sources extend well beyond the limits of the present sampled areas. For general vectoring to anomalous areas, geochemical sampling of regolith is an effective method. Intensity of gold in soil anomalies may not correlate directly with the intensity of bedrock mineralization in some areas because of variable topography and drainage. The 2017 program on the Anderson-Owl soil anomaly suggests that õblindö mineralization is also present within the Anderson Gold Trend, especially under gentle poorly drained slopes.

10.2 Recommended Future Exploration

About 1200 m of diamond drilling at the Anderson óOwl gold occurrence and the Steep Creek and Peak gold anomalies is recommended to determine their potential as gold deposits. At Anderson-Owl, drilling should focus on the total width, nature and strike of the Alpha Structure. With early success this could expand to a larger drill program.

Soil sampling at 60m x 120m spacing is recommended on those parts of the Anderson Gold Trend that the geophysics indicate some potential but that have not yet been sampled. Reconnaissance sampling with distances between samples of between 180 and 240m would be beneficial in all other areas. On defined anomalies, 30m x 30m soil grids are recommended in target areas to fine tune the location of drill collars. This sampling density is also recommended to extend established anomalies. Where overburden drainage or permafrost hampers the regular sampling of overburden, it may be necessary to utilize a small mechanized hammer type drill for soil sampling.

Hand trenching previously encountered significant difficulties in investigating mineral targets defined by geological, geochemical and geophysical programs. In lieu of trenching, investigations using a track

mounted percussion drill at 0.5 to 1.0m spacings to get samples of bedrock are recommended where trenching would be beneficial. Shallow scout drilling may be required to properly test anomalies as much of the terrain has been subjected to long periods of weathering under variable climatic regimes, which can lead to near-surface leaching of metals.

Ground geophysical techniques are not recommended at this time because of the high graphite content in many of the rock types.

11.0 References

Ash, C, and Alldrick, D. 1996. Au-quartz veins, in Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hõy, T, Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 53-56.

Becker, T.C. 2000 Assessment Report 094179 on the Black Property, Black Creek, Mayo Mining District, Yukon Territory for Archer, Cathro & Associates (1981) Limited (October, 2000).

Bond, J.D. 1999 Glacial limits and ice-flow map, Mayo area, central Yukon (1:250,000 scale); Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1999-13.

Bostock, H.S. 1947 Mayo, Yukon Territory; Geological Survey of Canada, Map 890A.

Boyle, R.W. 1964 Geology Keno Hill-Galena Hill Area, Yukon Territory, Geological Survey of Canada; Map 1147A.

Boyle, R.W. 1965

Geology, geochemistry and origin of the lead-zinc-silver deposits of the Keno Hill-Galena Hill Area, Yukon Territory; Geological Survey of Canada, Bulletin 11.

Carrell, W. 2004

Report of 2004 field activities funded under YMIP Grant #04-034, Mayo Lake focused regional program, Mayo, Yukon Energy, Mines & Resources Library, Whitehorse Yukon territory.

Gleeson, C.F. and Boyle, R.W. 1980a Minor and trace element distribution in the heavy minerals of the rivers and streams of the Keno Hill District, Yukon Territory; Geological Survey of Canada, Paper 76-31.

Gleeson, C.F. and Boyle, R.W. 1980b 1 The litho-geochemistry of the Keno Hill District Yukon Territory; Geological Survey of Canada, Paper 77-31.

Gleeson, C.F. et al. (9 Maps) 1965 (Ag, As, B, Cu, Ni, Pb, Sb, W and Sn, Zn) content of stream and spring sediments, Keno Hill area, Yukon Territory; Geological Survey of Canada, Maps 45-50, 52-53, 56-1965.

Gleeson, C.F. and Boyle, R.W. 1972 1 Gold in heavy mineral concentrates of stream sediments, Keno Hill Area, Yukon Territory; Geological Survey of Canada, Paper 71-51.

Goldfarb, R., Hart, C., Miller, M., Miller, L., Farmer, G.L. and Groves, D. 2000 The Tintina Gold Belt - A Global Perspective *in* the Tintina Gold Belt: Concepts, Exploration and Discoveries; Special Volume 2, British Columbia and Yukon Chamber of Mines Cordilleran Roundup, January 2000. Green, L.H. 1971

Geology of Mayo Lake, Scougale Creek and McQuesten Lake map areas, Yukon Territory (105M/IS, 1060/2, 106 D/3); Geological Survey of Canada, Memoir 357,72 p.

Green, L H; Roddick, J A. 1972 Geology of Mayo Lake, Yukon Territory; Geological Survey of Canada, "A" Series Map 1284A.

Hart, C.J.R., McCoy, D.T., Goldfarb, R.J., Smith, M., Roberts, P., Hulstein, R., Bakke, A.A. and Bunddtzen, T.K. 2002 Geology, exploration and discovery in the Tintina Gold Province, Alaska and Yukon *in* Marsh, E.E., Goldfarb, R.J. and Day, W.C. (eds.), Integrated Methods for Discovery; Global Exploration in the Twenty-First Century; Society of Economic Geologists, Special Publication Vol. 9, p. 2416274.

Hughes, O.L. 1983 Surficial geology and geomorphology, Mount Edwards, Yukon Territory; Geological Survey of Canada, Map5-1982 (1:100,000).

Hunt, J.A., Murphy, D.C., Roots, C.F., and Poole, W.H., 1996 Geological map of Mt. Haldane area, Yukon (105M/13); Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Map 1996-4, scale 1:50 000.

Kindle, E.D. 1962 Geology Keno Hill, Yukon Territory; Geological Survey of Canada, Map 1105A.

Lebarge, W.P., Bond, J.D. and Hein, F.J. 2002 Placer gold deposits of the Mayo Area, Central Yukon; Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Bulletin 13, p.209.

Lee, W.K. 1966 Arivaca Explorations Limited, Mayo Lake Area, Yukon Assessment Report # 017476; Yukon Energy, Mines & Resources Library.

Lynch, G. 2006 Sediment-hosted disseminated gold occurrence, northeast Mayo Lake area *in* Yukon Exploration and Geology 2005, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.), Yukon Geological Survey, pp. 327-339.

Mair, J.L., Hart, C.J.R., Stephens, J.R., 2006 Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism, GSA Bulletin; v. 118; no. 3/4; p. 3046323; doi: 10.1130/B25763

McIntyre, J.F. 1966 Arivaca Explorations Limited, Mayo Lake Area, Yukon, Assessment report # 017476, Yukon Energy, Mines & Resources Library.

Miles, W., Saltus, R., Haywood, N. and Oneschuck, D. In press Alaska and Yukon regional geophysical compilation project: Residual total magnetic field (1:1,100,000); GSC Open File X. Murphy, D.C. and Roots, C.F. 1996

Geological map of Keno Hill area, Yukon (105M/14); Exploration and Geological Services Division, Indian and Northern Affairs Canada, Map 1996-1, scale 1:50 000.

Murphy, D.C. 1997 Geology of the McQuesten River region, Northern McQuesten and Mayo Map areas, Yukon Territory (105P/14, 15, 16; 105M/B, 14); Exploration and Geological Services Division, Indian and Northern Affairs Canada; Bulletin 6, p. 122.

Rampton, V.N. and Sutherland, T.B. 2012a

Mayo Lake Minerals Inc. assessment report on the Anderson Claim Group;:Geophysical Survey; Yukon Energy, Mines & Resources Library, Whitehorse Yukon.

Rampton, V.N. and Sutherland, T.B. 2012b Mayo Lake Minerals Inc. assessment report on the Carlin Claim Group;:Geophysical Survey; Yukon Energy, Mines & Resources Library, Whitehorse Yukon.

Rampton, V.N. and Sutherland, T.B. 2012c

Mayo Lake Minerals Inc. assessment report on the Davidson Claim Group;:Geophysical Survey; Yukon Energy, Mines & Resources Library, Whitehorse Yukon.

Rampton, V.N. and Sutherland, T.B. 2012d

Mayo Lake Minerals Inc. assessment report on the Edmonton Claim Group;:Geophysical Survey; Yukon Energy, Mines & Resources Library, Whitehorse Yukon.

Rampton, V.N. and Sutherland, T.B. 2012e Mayo Lake Minerals Inc. assessment report on the Trail-Minto Claim Group;:Geophysical Survey; Yukon Energy, Mines & Resources Library, Whitehorse Yukon.

Rampton, V.N. and Sutherland, T.B. 2013a

Mayo Lake Minerals Inc. Assessment report on the Anderson Claim Group 2012: Geophysical Interpretation and Geochemical Surveys and Interpretation; Yukon Energy, Mines & Resources Library. Rampton, V.N. and Sutherland, T.B. 2013b Mayo Lake Minerals Inc. Assessment report on the Carlin Claim Group 2012: Geophysical Interpretation and Geochemical Surveys and Interpretation; Yukon Energy, Mines & Resources Library.

Rampton, V.N. and Sutherland, T.B. 2013c

Mayo Lake Minerals Inc. Assessment report on the Davidson Claim Group 2012: Geophysical Interpretation and Geochemical Surveys and Interpretation; Yukon Energy, Mines & Resources Library.

Rampton, V.N. and Sutherland, T.B. 2013d

Mayo Lake Minerals Inc. Assessment report on the Edmonton Claim Group 2012: Geophysical Interpretation and Geochemical Surveys and Interpretation; Yukon Energy, Mines & Resources Library.

Rampton, V.N. and Sutherland, T.B. 2013e

Mayo Lake Minerals Inc. Assessment report on the Trail-Minto Claim Group 2012: Geophysical Interpretation and Geochemical Surveys and Interpretation; Yukon Energy, Mines & Resources Library.

Roots, C. F. 1997

Geology of the Mayo Map Area, Yukon Territory (105M); Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Bulletin 7, 82 p.

Appendix A

Statement of Qualifications

Tyrell Sutherland M.Sc., P.Geo.

Mayo Lake Minerals Inc.

P.O. Box 158, 107 Falldown Lane

Carp, Ontario. K0A 1L0

Tel: (613) 884-8332; E-mail: tyrell.sutherland@outlook.com

I, T.B. Sutherland, M.Sc., do hereby certify that

- •I am Vice-President of exploration of Mayo Lake Minerals Inc.
- •I graduated with a B.Sc. Honors Specialization Geology, from the University of Ottawa in 2009. In addition, I have obtained an M.Sc in Geology from Queens University in 2016.
- •I am a member in good standing of the Association of Professional Geoscientists of Ontario.
- •I have worked as a geologist for approximately 10 years, specifically in mineral exploration, in Canada, Australia, Jamaica and China.
- •I fulfill the requirements of a "qualified person" for the purposes of N.I. 43-101.
- •To the best of my knowledge all data used in the preparation of the technical report titled "Final Report on the Anderson-Davidson Claim Group Describing the Drilling the Anderson-Owl Target" is correct and of good quality. The technical information contained within the report was collected under my supervision and I was primarily responsible for its interpretation.
- •Certain statements concerning the interpretations and discussion of the data maybe considered forward looking statements in that although conceived from the data as recorded to the best of my knowledge may prove in need of variation or changed to reflect changes or updates to the data.

Tystulle

Dated the 30^{th} day of January 2018

Tyrell Brodie Sutherland

Dr. V.N. Rampton, P.Eng.

Rampton Resources Group Inc.

P.O. Box 158, 107 Falldown Lane

Carp, Ontario. K0A 1L0

Tel: (613) 836-2594; E-mail: vrampton@rogers.com

I, V.N. (Vern) Rampton, Ph.D., P.Eng., do hereby certify that

- 1. I am President of Rampton Resource Group Inc. and President and CEO of Mayo Lake Minerals Inc.
- 2. I graduated with a B.Sc. Eng. (Geology) from University of Manitoba in 1962 and with a Ph.D. (Geology) from University of Minnesota in 1969.
- 3. I am a member of the Professional Engineers of Ontario.
- 4. I have worked as a geologist for over 50 years, specifically in mineral exploration for the last 40 years, in Canada, Slovakia, Finland, Spain, Burkina Faso, Jamaica and the United States of America.
- 5. By reason of my education, affiliation with a professional organization (as defined in N.I. 43-101) and past relevant work experience, I fulfill the requirements of a "qualified person" for the purposes of N.I. 43-101.
- 6. By reason of my being CEO, President and a Director and my shareholdings in Mayo Lake Minerals Inc., I am not an "independent qualified person" for the purposes of N.I 43-101.
- 7. I am a co-author of the technical report titled "Final Report on the Anderson-Davidson Claim Group Describing the Drilling the Anderson-Owl Target".
- 8. Certain statements concerning the interpretations and discussion of the data maybe considered forward looking statements in that although conceived from the data as recorded to the best of my knowledge may prove in need of variation or changed to reflect changes or updates to the data.

Dated the 30th day of January 2018

Van Ranf

Vernon Neil Rampton

Appendix **B**

Significant Drill Intersections and Drill Collar Locations

for 2017 Drilling

Hole	From m	To m	Interval	Grade*	Zone	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Fe %	As ppm	Sb ppm	S %
MLM17-002	76.2	80.9	4.7m	0.17 g Au/t	Beta	13.1	11.5	31.7	23.7	1.80	1716.8	130.0	0.63
MLM17-003	57.9	64.0	6.1m	0.05 g Au/t	Beta	18.5	16.6	45.1	34.8	2.57	596.0	11.3	0.66
MLM17-005	4.6	21.3	16.7m	0.34 g Au/t	Alpha	29.8	11.3	66.6	43.5	3.28	897.3	44.0	0.38
including	6.1	12.2	6.1m	0.77 g Au/t	Alpha	29.3	10.9	65.6	49.0	3.43	1968.2	72.9	0.71
including	9.1	12.2	3.1m	0.90 g Au/t	Alpha	30.3	12.4	66.3	47.5	3.30	2115.0	39.6	1.02
and	88.4	96	7.6m	0.10 g Au/t	Beta	13.1	16.1	42.3	23.2	1.83	514.6	74.0	0.17
MLM17-006	3.1	9.1	6.0m	0.36 g Au/t	Alpha	47.0	18.4	75.2	51.0	3.40	2196.5	193.1	0.23
including	3.1	6.1	3.0m	0.55 g Au/t	Alpha	41.5	11.3	69.0	50.5	3.43	3406.2	337.3	0.08
and	71.6	74.7	3.1m	0.09 g Au/t	Beta	25.3	19.1	36.5	47.0	2.19	589.2	64.1	0.46
MLM17-007	53.3	54.9	1.6m	0.27 g Au/t	Beta	27.2	21.8	50.1	61.0	2.77	1752.0	16.0	0.89
*	Cold data	mained	by fine o	agary all oth		mto hay I	CD MC	fton a ano	magin dia	action			

*Gold determined by fire assay; all other elements by ICP-MS after aqua regia digestion.

Drill Hole Collar Locations

Drillhole ID	Easting	Northing	RL Feet	Depth Feet	Dip	Azimuth
MLM17-001	496011	7066823	4092	205	-55	228
MLM17-002	496029	7066795	4056	305	-50	325
MLM17-003	496065	7066765	4049	325	-45	325
MLM17-004	496063	7066768	4044	170	-45	149
MLM17-005	496090	7066730	4052	365	-45	318
MLM17-006	496123	7066741	4007	325	-50	325
MLM17-007	496112	7066762	4002	325	-50	330
MLM17-008	496112	7066762	4002	70	-60	235

UTM WGS 84 Zone 8

Appendix C

Summary Logs with Select Pathfinder Elements

Drill results for 2017 Anderson ó Davidson Claims Reverse Circulation drilling

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-001	0	5	ovb	1890501	1.12	8.2	45.2	3.61	14
MLM17-001	5	10	ovb	1890502	1.98	2.1	9.6	0.46	<5
MLM17-001	10	15	schist	1890503	3.54	4.2	3.8	0.47	<5
MLM17-001	15	20	schist	1890504	1.56	2.9	2.9	1.38	<5
MLM17-001	20	25	schist	1890505	3.04	3	8.4	0.35	<5
MLM17-001	25	30	schist	1890506	2.58	2.5	3.4	0.47	<5
MLM17-001	30	35	schist	1890507	3.27	1.7	8.2	0.6	<5
MLM17-001	35	40	schist	1890508	2.32	0.6	6	0.51	<5
MLM17-001	40	45	schist	1890509	0.75	1.4	7.9	0.22	<5
MLM17-001	45	50	schist	1890510	2.78	0.8	12.6	0.33	<5
MLM17-001	50	55	schist	1890511	2.43	2.4	15.5	0.46	<5
MLM17-001	55	60	schist	1890512	2.54	1.7	1.4	1.88	<5
MLM17-001	60	65	schist	1890513	3.02	2.3	5.7	1.2	<5
MLM17-001	65	70	schist	1890514	3.26	1.6	1.7	0.93	<5
MLM17-001	70	75	schist	1890515	2.95	1.3	5.3	0.49	<5
MLM17-001	75	80	schist	1890516	2.86	2	17.6	0.6	<5
MLM17-001	80	85	schist	1890517	3.27	2.1	18.9	0.32	<5
MLM17-001	85	90	schist	1890518	3.18	2.3	16.8	0.28	<5
MLM17-001	90	95	schist	1890519	3.22	1	14.8	0.24	<5
MLM17-001	95	100	schist	1890520	3.43	1	10.4	0.2	<5
MLM17-001	100	105	schist	1890521	3.29	1.5	7.5	0.32	<5
MLM17-001	105	110	schist	1890522	2.99	1.1	16.6	0.19	<5
MLM17-001	110	115	schist	1890523	3.32	1.3	11.9	0.29	<5
MLM17-001	115	120	schist	1890524	3.19	0.8	9.1	0.18	<5
MLM17-001	120	125	schist	1890526	3.26	0.5	14.7	0.23	<5
MLM17-001	125	130	schist	1890527	3.3	1.1	3.7	0.22	<5
MLM17-001	130	135	dark schist	1890528	2.83	1.4	2.4	1.29	<5
MLM17-001	135	140	dark schist	1890529	3.46	1.2	0.9	1.2	<5
MLM17-001	140	145	dark schist	1890530	3.56	<0.2	3.4	1.2	5
MLM17-001	145	150	dark schist	1890531	3.17	3	11.8	0.19	<5

MLM17-001	150	155	quartzite	1890532	3.1	2.4	10.2	0.22	<5
MLM17-001	155	160	quartzite	1890533	3.38	1.4	11.9	0.2	<5
MLM17-001	160	165	dark schist	1890534	2.94	1.8	2.8	0.41	13
MLM17-001	165	170	dark schist	1890535	2.12	1.5	1.8	0.62	16
MLM17-001	170	175	vein	1890536	2.34	0.6	3.2	0.26	9
MLM17-001	175	180	quartzite	1890537	3.71	<0.2	4.7	0.16	<5
MLM17-001	180	185	quartzite	1890538	2.52	<0.2	6	0.13	9

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-001	185	190	quartzite	1890539	2.84	<0.2	7.7	0.25	7
MLM17-001	185	190	quartzite	1890539	2.84	<0.2	7.7	0.25	7
MLM17-001	190	195	quartzite	1890540	3.46	1.4	11.2	0.52	14
MLM17-001	195	200	quartzite	1890541	3.79	<0.2	7.2	0.64	9
MLM17-001	200	205	quartzite	1890542	3.29	0.5	22.9	1.74	10

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-002	0	5	ovb	1890551	1.24	9.1	131.4	6.37	<5
MLM17-002	5	10	schist	1890552	1.32	2.4	10.9	1.76	<5
MLM17-002	10	15	schist	1890553	4.04	2.1	7.1	1.53	<5
MLM17-002	15	20	schist	1890554	1.06	1.7	18.2	1.55	7
MLM17-002	20	25	schist	1890555	1.95	<0.2	14.3	1.33	<5
MLM17-002	25	30	schist	1890556	2.23	<0.2	8.1	0.39	5
MLM17-002	30	35	schist	1890557	2.22	0.8	8.9	1.04	<5
MLM17-002	35	40	schist	1890558	1.6	1.5	19.5	0.72	7
MLM17-002	40	45	schist	1890559	2.11	1.4	3.8	0.78	<5
MLM17-002	45	50	schist	1890560	1.89	1.1	7.1	0.6	6
MLM17-002	50	55	schist	1890561	2.16	1.2	9.2	0.89	<5
MLM17-002	55	60	schist	1890562	2.11	1.4	14.3	1.7	<5
MLM17-002	60	65	schist	1890563	1.87	1	15	1.68	6
MLM17-002	65	70	schist	1890564	1.87	<0.2	9	0.43	8
MLM17-002	70	75	schist	1890565	3.28	0.6	10.8	0.5	5
MLM17-002	75	80	schist	1890566	2.35	0.8	9	0.4	<5
MLM17-002	80	85	schist	1890567	2.39	1	13.4	1.44	6
MLM17-002	85	90	schist	1890568	2.49	0.7	12	0.79	5
MLM17-002	90	95	dark schist	1890569	1.86	0.6	2	1.39	15
MLM17-002	95	100	dark schist	1890570	2.45	1.4	2.9	1.22	12
MLM17-002	100	105	schist	1890571	3.05	2.1	6.2	0.34	<5
MLM17-002	105	110	schist	1890572	2.44	0.8	9.6	0.27	<5
MLM17-002	110	115	schist	1890573	2.23	1.3	17.4	0.43	<5
MLM17-002	115	120	schist	1890574	2.61	1.1	18.5	0.31	6
MLM17-002	120	125	schist	1890576	2.88	4.3	6.4	0.48	6
MLM17-002	125	130	dark schist	1890577	2.48	0.6	1.7	0.89	17
MLM17-002	130	135	dark schist	1890578	2.79	0.7	1.7	0.84	10
MLM17-002	135	140	dark schist	1890579	2.93	1.1	12.1	0.64	5
MLM17-002	140	145	vein	1890580	1.99	0.3	10	0.62	<5
MLM17-002	145	150	vein	1890581	2.72	0.8	16	1.96	6
MLM17-002	150	155	schist	1890582	3.02	2.2	14.6	5.02	<5
MLM17-002	155	160	schist	1890583	2.34	2.8	44	10.13	9
MLM17-002	160	165	schist	1890584	2.18	1.1	24	9.52	11
MLM17-002	165	170	dark schist	1890585	2.72	0.7	5.7	2.3	13
MLM17-002	170	175	dark schist	1890586	2.58	0.2	4.2	2.15	<5
MLM17-002	175	180		1890587	2.34	0.2	9.9	3.24	<5
MLM17-002	180	185		1890588	2.15	0.9	22.5	7.75	<5
MLM17-002	185	190		1890589	2.21	11.3	265.6	12.06	12
MLM17-002	190	195		1890590	2.42	2.8	29.9	7.5	<5

MLM17-002	195	200		1890591	2.95	2	20	7.63	9
Hole ID	From feet	To feet	Rock type	Sample ID	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-002	200	205		1890592	1.04	2.9	99.5	10	8
MLM17-002	205	210		1890593	1.56	1.1	35.7	5.69	<5
MLM17-002	210	215		1890594	1.41	0.6	13.2	6.92	<5
MLM17-002	215	220		1890595	1.99	1.5	12.8	7.82	<5
MLM17-002	220	225		1890596	1.93	1.5	11.6	5.78	9
MLM17-002	225	230		1890597	1.85	1.5	7	6.79	<5
MLM17-002	230	235		1890598	1.58	1.2	9.6	7.88	8
MLM17-002	235	240	schist	1890599	1.53	4	16.1	8.03	9
MLM17-002	240	245	schist	1890601	1.33	5	37.7	17.39	12
MLM17-002	245	250	schist	1890602	1.45	3	33.3	13.18	7
MLM17-002	250	255	schist	1890603	1.17	170	2128	349.64	7
MLM17-002	255	260	schist	1890604	1.19	275	2281.5	24.58	5
MLM17-002	260	265	schist	1890605	1.65	60	740.8	15.9	<5
MLM17-002	265	270	quartzite	1890606	1.81	37	461.2	17.09	<5
MLM17-002	270	275	quartzite	1890607	2.21	4	22	10.99	<5
MLM17-002	275	280	quartzite	1890608	2.47	1.1	12.1	6.2	<5
MLM17-002	280	285	quartzite	1890609	0.85	27.8	126.4	12.6	9
MLM17-002	285	290	quartzite	1890610	1.64	1.5	12.3	4.21	<5
MLM17-002	290	295	quartzite	1890611	1.66	1.4	7.7	2.94	<5
MLM17-002	295	300	quartzite	1890612	1.02	<0.2	4.7	2.82	<5
MLM17-002	300	305	quartzite	1890613	0.88	<0.2	8.5	4.09	<5

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-003	0	5	ovb	1890651	2.48	6.1	159.4	27.46	15
MLM17-003	5	10	ovb	1890652	3.03	11.7	131	15.27	9
MLM17-003	10	15	vein	1890653	0.61	4.8	72.3	9.75	18
MLM17-003	15	20	schist	1890654	1.31	3.2	79.5	3.59	<5
MLM17-003	20	25	schist	1890655	1.8	2.4	23.6	1.66	<5
MLM17-003	25	30	schist	1890656	2.98	<0.2	9.7	1.12	<5
MLM17-003	30	35	schist	1890657	2.69	<0.2	10	1.85	5
MLM17-003	35	40	schist	1890658	3.13	<0.2	18.2	2.09	5
MLM17-003	40	45	schist	1890659	3.37	<0.2	18.9	0.56	<5
MLM17-003	45	50	schist	1890660	2.4	8.3	14.8	0.88	<5
MLM17-003	50	55	schist	1890661	4.05	<0.2	17.7	3.54	6
MLM17-003	55	60	schist	1890662	2.43	<0.2	15.5	1.02	<5
MLM17-003	60	65	schist	1890663	2.92	<0.2	8	0.48	<5
MLM17-003	65	70	schist	1890664	2.58	2.2	10.8	1.1	<5
MLM17-003	70	75	dark schist	1890665	4.23	<0.2	7.2	1.08	6
MLM17-003	75	80	dark schist	1890666	3.32	<0.2	4.1	0.94	<5
MLM17-003	80	85	dark schist	1890667	2.6	<0.2	3.2	1.45	<5
MLM17-003	85	90	quartzite	1890668	3.03	<0.2	16.6	0.23	<5
MLM17-003	90	95	quartzite	1890669	3.4	<0.2	17.6	0.78	<5
MLM17-003	95	100	quartzite	1890670	2.89	0.2	12.8	0.83	7
MLM17-003	100	105	quartzite	1890671	3.96	<0.2	15	0.84	9
MLM17-003	105	110	quartzite	1890672	2.25	<0.2	16.7	0.61	<5
MLM17-003	110	115	quartzite	1890673		0.5	16.2	5.29	10
MLM17-003	115	120	quartzite	1890674		1.2	34.7	15.52	13
MLM17-003	120	125	quartzite	1890676		1.2	20.1	6.82	12
MLM17-003	125	130	quartzite	1890677		0.7	16	7.14	12
MLM17-003	130	135	quartzite	1890678		0.6	44	11.83	16
MLM17-003	135	140	quartzite	1890679		0.3	17.7	3.39	6
MLM17-003	140	145	quartzite	1890680		0.6	9.6	2.94	6
MLM17-003	145	150	schist	1890681	2.27	<0.2	13.6	0.53	<5
MLM17-003	150	155	schist	1890682	3.51	<0.2	12	0.59	<5
MLM17-003	155	160	schist	1890683	1.91	<0.2	6.2	0.61	<5
MLM17-003	160	165	schist	1890684	3.09	2.2	4.9	0.69	<5
MLM17-003	165	170	schist	1890685	4.16	2.3	6.7	0.4	<5
MLM17-003	170	175	schist	1890686	2.35	0.8	5.6	0.14	<5
MLM17-003	175	180	schist	1890687	2.63	1.1	6.5	0.12	<5
MLM17-003	180	185	schist	1890688	2.94	1.4	4.3	0.21	<5
MLM17-003	185	190	quartzite	1890689	1.46	2.2	2.5	0.92	<5

MLM17-003	190	195	quartzite	1890690	1.9	30.2	302	8.06	<5
Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-003	195	200	quartzite	1890691	2.11	3.1	21.1	9.17	6
MLM17-003	200	205	quartzite	1890692	2.04	48.8	945.2	14.65	<5
MLM17-003	205	210	quartzite	1890693	1.63	72.8	1115.6	13.12	<5
MLM17-003	210	215	quartzite	1890694	1.88	7.1	134.8	7.81	<5
MLM17-003	215	220	quartzite	1890695	3	8.3	87.8	3.9	<5
MLM17-003	220	225	dark schist	1890696	1.77	9	68	3.13	<5
MLM17-003	225	230	quartzite	1890697	1.74	4.4	36.6	2.41	<5
MLM17-003	230	235	quartzite	1890698	1.9	2	8.4	1.61	<5
MLM17-003	235	240	quartzite	1890699	1.58	4	11.5	2.75	<5
MLM17-003	240	245	quartzite	1890701	2.11	1	9.7	5.09	<5
MLM17-003	245	250	quartzite	1890702	1.83	3	32.8	6.34	<5
MLM17-003	250	255	schist	1890703	2.13	14	135.9	25.98	10
MLM17-003	255	260	quartzite	1890704	2.15	8	576	17.66	9
MLM17-003	260	265	quartzite	1890705	3.6	4	145.3	10.43	<5
MLM17-003	265	270	quartzite	1890706	2.04	4	58.1	11.16	<5
MLM17-003	270	275	schist	1890707	1.78	0.7	9.5	4.38	7
MLM17-003	275	280	schist	1890708	1.79	<0.2	7.9	5.49	12
MLM17-003	280	285	schist	1890709	1.76	1.1	8.4	5.82	7
MLM17-003	285	290	schist	1890710	1.99	0.6	7.1	5.46	<5
MLM17-003	290	295	quartzite	1890711	1.95	0.8	4.6	4.41	<5
MLM17-003	295	300	quartzite	1890712	1.66	2.2	6.1	5.25	<5
MLM17-003	300	305	quartzite	1890713	1.3	41.4	122.5	23.27	<5
MLM17-003	305	310	quartzite	1890714	1.87	2.2	21.4	13.38	7
MLM17-003	310	315	quartzite	1890715	2.04	2.8	22	8.67	<5

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-004	0	5		NSR					
MLM17-004	5	10	ovb	1890751	1.52	15	135.9	17.58	7
MLM17-004	10	15	schist	1890752	1.63	33	259	18.42	12
MLM17-004	15	20	schist	1890753	2.65	21	143.8	15.44	22
MLM17-004	20	25	schist	1890754	1.1	8	103.2	19.6	13
MLM17-004	25	30	schist	1890755	1.94	12	189.1	7.67	12
MLM17-004	30	35	schist	1890756	2.63	3.9	25.9	1.85	<5
MLM17-004	35	40	schist	1890757	3.12	1.9	12.9	0.92	5
MLM17-004	40	45	vein	1890758	3.97	1.7	11.7	0.71	<5
MLM17-004	45	50	schist	1890759	3.2	1.6	24.9	1.69	<5
MLM17-004	50	55	quartzite	1890760	4.14	2	15	1.38	<5
MLM17-004	55	60	quartzite	1890761	3.38	0.9	12.1	0.99	<5
MLM17-004	60	65	quartzite	1890762	3.74	1.5	13.5	1.42	5
MLM17-004	65	70	quartzite	1890763	3.73	2.7	33.7	1.78	<5
MLM17-004	70	75	quartzite	1890764	3.5	1	32.3	2.11	8
MLM17-004	75	80	quartzite	1890765	4.28	2.5	30.9	3.56	6
MLM17-004	80	85	quartzite	1890766	4.2	2.3	29.3	2.49	<5
MLM17-004	85	90	quartzite	1890767	2.76	1.8	18.7	2.16	7
MLM17-004	90	95	quartzite	1890768	3.67	0.4	6.1	0.95	<5
MLM17-004	95	100	quartzite	1890769	3.61	0.3	9.9	1.34	<5
MLM17-004	100	105	quartzite	1890770	3.76	0.8	5.4	0.2	6
MLM17-004	105	110	quartzite	1890771	4.36	0.6	16.9	0.38	<5
MLM17-004	110	115	quartzite	1890772	3.69	<0.2	11.5	0.27	<5
MLM17-004	115	120	quartzite	1890773	3.63	1.2	10.1	0.2	<5
MLM17-004	120	125	quartzite	1890774	3.71	0.2	12.5	0.55	12
MLM17-004	125	130	schist	1890776	3.15	2.8	27	0.92	9
MLM17-004	130	135	schist	1890777	2.37	2.6	30	0.87	5
MLM17-004	135	140	schist	1890778	2.75	2	25.2	0.45	6
MLM17-004	140	145	schist	1890779	3.14	0.3	10.1	0.87	<5
MLM17-004	145	150	schist	1890780	2.58	1.9	22.2	3.65	7
MLM17-004	150	155	quartzite	1890781	2.91	0.6	14.6	7.55	<5
MLM17-004	155	160	quartzite	1890782	2.89	0.6	22.1	11.49	11
MLM17-004	160	165	quartzite	1890783	2.67	1.5	18.9	12.75	9
MLM17-004	165	170	quartzite	1890784	2.4	0.8	34.6	5.43	9

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-005	0	5	ovb	1890801	0.91	2	35.6	13.41	15
MLM17-005	5	10	ovb	1890802	1.59	1.3	38.6	12.32	16
MLM17-005	10	15	ovb	1890803	0.78	3.1	85.2	23.48	10
MLM17-005	15	20	vein	1890804	2.14	282	1317.9	150.44	44
MLM17-005	20	25	vein	1890805	4.11	843	1815	119.3	45
MLM17-005	25	30	vein	1890806	1.63	446	1827.7	92.92	45
MLM17-005	30	35	vein	1890807	2.46	905	2012.4	55.15	55
MLM17-005	35	40	vein	1890808	2.38	902	2217.5	24.08	24
MLM17-005	40	45	vein	1890809	2.92	32	96.3	14.06	20
MLM17-005	45	50	schist	1890810	2.91	44	192.8	7.78	<5
MLM17-005	50	55	schist	1890811	3.14	11	29.2	6.46	15
MLM17-005	55	60	schist	1890812	3.34	9	21.8	5.69	<5
MLM17-005	60	65	schist	1890813	3.29	37	62.5	5.22	15
MLM17-005	65	70	vein	1890814	2.61	183	276.8	2.74	6
MLM17-005	70	75	quartzite	1890815	2.83	4	10.4	1.34	6
MLM17-005	75	80	quartzite	1890816	2.65	<0.2	12	1.53	9
MLM17-005	80	85	quartzite	1890817	2.82	3.4	20.1	1.39	7
MLM17-005	85	90	quartzite	1890818	2.99	1.1	22.2	0.66	7
MLM17-005	90	95	quartzite	1890819	2.84	<0.2	10.9	0.91	<5
MLM17-005	95	100	schist	1890820	3.64	0.6	15.9	0.58	11
MLM17-005	100	105	schist	1890821	2.92	0.8	5.7	0.5	<5
MLM17-005	105	110	quartzite	1890822	3.08	<0.2	5.5	0.21	6
MLM17-005	110	115	quartzite	1890823	3.05	<0.2	10.4	0.24	<5
MLM17-005	115	120	quartzite	1890824	2.88	0.2	15.8	0.5	10
MLM17-005	120	125	quartzite	1890826	2.92	<0.2	44	1.51	10
MLM17-005	125	130	quartzite	1890827	2.37	2.4	27.7	0.61	7
MLM17-005	130	135	quartzite	1890828	2.4	<0.2	9.6	0.43	8
MLM17-005	135	140	schist	1890829	2.31	<0.2	48.9	4.02	14
MLM17-005	140	145	schist	1890830	1.13	0.5	16.1	3.06	12
MLM17-005	145	150	quartzite	1890831	2.24	0.8	22.4	7.77	<5
MLM17-005	150	155	quartzite	1890832	2.06	<0.2	31.3	6.82	10
MLM17-005	155	160	quartzite	1890833	2.43	<0.2	26.2	3.63	12
MLM17-005	160	165	schist	1890834	1.87	0.9	10.2	1.22	10
MLM17-005	165	170	schist	1890835	2.1	<0.2	11.5	0.95	7
MLM17-005	170	175	schist	1890836	1.49	<0.2	15.4	0.81	11
MLM17-005	175	180	dark schist	1890837	1.36	<0.2	2.9	1.72	7
MLM17-005	180	185	dark schist	1890838	1.32	3.6	3.8	1.46	24
MLM17-005	185	190	dark schist	1890839	1.88	0.9	5.4	1.41	7
MLM17-005	190	195	dark schist	1890840	1.4	1.1	1.3	0.98	13
MLM17-005	195	200	dark schist	1890841	2.21	1.5	29.2	1.81	7

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-005	200	205	dark schist	1890842	2.9	0.4	7.3	1.23	7
MLM17-005	205	210	dark schist	1890843	1.71	0.8	1.9	0.69	14
MLM17-005	210	215	schist	1890844	1.93	0.9	3	0.62	<5
MLM17-005	215	220	schist	1890845	2.21	0.3	1.7	0.43	<5
MLM17-005	220	225	quartzite	1890846	2.54	<0.2	5.4	0.49	<5
MLM17-005	225	230	schist	1890847	1.79	0.3	4.9	1.1	7
MLM17-005	230	235	quartzite	1890848	1.3	0.5	5.4	1.23	11
MLM17-005	235	240	quartzite	1890849	1.76	<0.2	3	0.78	<5
MLM17-005	240	245	quartzite	1890851	1.57	0.7	4.7	0.32	9
MLM17-005	245	250	quartzite	1890852	1.45	0.2	5	0.37	11
MLM17-005	250	255	quartzite	1890853	2.11	0.6	2.4	0.53	<5
MLM17-005	255	260	quartzite	1890854	1.8	0.6	3	1.66	8
MLM17-005	260	265	schist	1890855	1.56	1.5	5	6.1	14
MLM17-005	265	270	schist	1890856	1.46	4	16.7	3.96	6
MLM17-005	270	275	quartzite	1890857	1.44	1.8	3.1	1.74	7
MLM17-005	275	280	vein	1890858	1.89	1.4	4	2.28	12
MLM17-005	280	285	quartzite	1890859	1.65	1.7	24.9	9.05	9
MLM17-005	285	290	quartzite	1890860	1.73	3	12.9	18.72	15
MLM17-005	290	295	quartzite	1890861	1.71	43	332.5	247.08	10
MLM17-005	295	300	quartzite	1890862	1.57	66	225.2	33.06	15
MLM17-005	300	305	quartzite	1890863	1.85	321	1661.1	56.24	13
MLM17-005	305	310	quartzite	1890864	1.73	15	181.5	20.2	7
MLM17-005	310	315	quartzite	1890865	2.11	30	172.6	13.28	11
MLM17-005	315	320	quartzite	1890866	2.05	12	61.5	5.23	10
MLM17-005	320	325	quartzite	1890867	1.54	4.2	16.6	4.12	6
MLM17-005	325	330	quartzite	1890868	1.6	2.4	7.9	3.79	<5
MLM17-005	330	335	quartzite	1890869	1.32	3	4.5	2.81	9
MLM17-005	335	340	quartzite	1890870	1.97	1.9	5.4	4	8
MLM17-005	340	345	quartzite	1890871	2.3	0.4	3.2	2.08	7
MLM17-005	345	350	quartzite	1890872	1.91	0.7	8.1	4.87	11
MLM17-005	350	355	schist	1890873	2.26	28	364	8.97	16
MLM17-005	355	360	quartzite	1890874	2.22	1.3	12	2.5	6
MLM17-005	360	365	quartzite	1890876	2.12	1.5	5.2	0.93	7

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-006	0	5	ovb	1890901	0.45	26	57.4	9.01	12
MLM17-006	5	10	ovb	1890902	0.84	8	286	13.7	14
MLM17-006	10	15	vein	1890903	1.27	876	4732.7	469.19	54
MLM17-006	15	20	schist	1890904	1.4	217	2079.7	205.44	56
MLM17-006	20	25	vein	1890905	1.87	89	479.4	41.94	39
MLM17-006	25	30	schist	1890906	1.94	271	1494.1	55.92	35
MLM17-006	30	35	quartzite	1890907	2.58	29	189.7	22.37	24
MLM17-006	35	40	quartzite	1890908	2.13	7	58.3	24.09	21
MLM17-006	40	45	quartzite	1890909	2.75	5	42.1	18.69	20
MLM17-006	45	50	quartzite	1890910	2.94	4	26.8	6.93	12
MLM17-006	50	55	quartzite	1890911	2.66	3.6	25.3	4.11	9
MLM17-006	55	60	quartzite	1890912	3.01	2.4	27.7	3.22	9
MLM17-006	60	65	quartzite	1890913	2.87	1.2	15.3	2.23	<5
MLM17-006	65	70	quartzite	1890914	2.66	2.8	9	1.54	9
MLM17-006	70	75	quartzite	1890915	2.67	3.3	18.5	2.64	<5
MLM17-006	75	80	schist	1890916	1.42	3.7	15.7	2.4	6
MLM17-006	80	85	schist	1890917	I.S				
MLM17-006	85	90	schist	1890918	1.65	0.4	26.7	23.34	<5
MLM17-006	90	95	quartzite	1890919	1.72	1.8	4.2	2.34	7
MLM17-006	95	100	quartzite	1890920	I.S				
MLM17-006	100	105	schist	1890921	1.6	0.6	7.4	3.3	<5
MLM17-006	105	110	quartzite	1890922	1.37	1	20.9	5.58	7
MLM17-006	110	115	quartzite	1890923	1.82	1	20.4	4.66	9
MLM17-006	115	120	quartzite	1890924	2.11	0.9	13.8	4.24	8
MLM17-006	120	125	quartzite	1890926	2.06	4.3	39.3	5.13	<5
MLM17-006	125	130	quartzite	1890927	1.61	1.3	20.3	2.62	5
MLM17-006	130	135	quartzite	1890928	1.16	0.9	6.3	2.02	<5
MLM17-006	135	140	quartzite	1890929	1.38	1.3	5.8	1.12	9
MLM17-006	140	145	quartzite	1890930	1.89	2	5.1	2	5
MLM17-006	145	150	quartzite	1890931	1.94	45	256.8	12.3	<5
MLM17-006	150	155	quartzite	1890932	1.39	5	24.1	5.28	<5
MLM17-006	155	160	quartzite	1890933	1.94	1.8	7.2	2.37	<5
MLM17-006	160	165	schist	1890934	1.43	0.8	3.8	1.19	<5
MLM17-006	165	170	dark schist	1890935	1.69	1.8	2.5	3.13	6
MLM17-006	170	175	schist	1890936	2.13	1.2	11.2	9.66	8
MLM17-006	175	180	quartzite	1890937	1.66	3.7	62.6	12.29	7
MLM17-006	180	185	quartzite	1890938	1.65	2.8	26.7	6.3	<5
MLM17-006	185	190	quartzite	1890939	1.33	1.1	9.9	3.19	<5
MLM17-006	190	195	quartzite	1890940	1.16	6.4	54.9	6.87	5
MLM17-006	195	200	quartzite	1890941	1.94	4.2	40.3	4.63	5

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-006	200	205	schist	1890942	1.13	6.2	51	13.17	<5
MLM17-006	205	210	schist	1890943	0.97	2.5	31.3	7.69	<5
MLM17-006	210	215		NSR					
MLM17-006	215	220	quartzite	1890944	1.14	6	18	9.53	<5
MLM17-006	220	225	quartzite	1890945	1.43	6	27.4	10.42	<5
MLM17-006	225	230	quartzite	1890946	1.16	4	20.2	7.32	<5
MLM17-006	230	235	quartzite	1890947	1.82	8	48.1	21.11	<5
MLM17-006	235	240	quartzite	1890948	1.75	124	866.5	89.68	<5
MLM17-006	240	245	quartzite	1890949	1.47	50	311.9	38.58	<5
MLM17-006	245	250	quartzite	1890951	1.53	9	49.7	9.9	6
MLM17-006	250	255	quartzite	1890952	2	3	10.8	5.57	<5
MLM17-006	255	260	quartzite	1890953	2.39	1.6	9.1	3.94	<5
MLM17-006	260	265	quartzite	1890954	1.62	1.1	7.3	10.58	<5
MLM17-006	265	270	quartzite	1890955	2.1	0.8	5.2	6.6	<5
MLM17-006	270	275	quartzite	1890956	1.39	0.9	3.8	1.15	<5
MLM17-006	275	280	schist	1890957	2.02	0.9	3.2	7.78	<5
MLM17-006	280	285	schist	1890958	1.32	<0.2	3.8	2.84	<5
MLM17-006	285	290	schist	1890959	1.74	<0.2	3.1	0.84	<5
MLM17-006	290	295	quartzite	1890960	1.42	1.4	3.6	1.31	<5
MLM17-006	295	300	quartzite	1890961	1.37	0.6	2.3	1.33	<5
MLM17-006	300	305	quartzite	1890962	0.98	1.6	5.9	3.43	11
MLM17-006	305	310	quartzite	1890963	1.08	1.1	11.8	2.74	<5
MLM17-006	310	315	quartzite	1890964	1.14	2.8	18.8	5.77	<5
MLM17-006	315	320	quartzite	1890965	1.02	1	6.9	1.69	<5
MLM17-006	320	325	schist	1890966	1.76	1.5	6.7	4.41	7

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-007	0	5		NSR					
MLM17-007	5	10	ovb	1890001	0.89	32	200.4	27.57	21
MLM17-007	10	15	schist	1890002	0.77	89	380.1	52.65	28
MLM17-007	15	20	schist	1890003	3.5	23	132.5	28.28	15
MLM17-007	20	25	schist	1890004	1.64	7	37.5	10.27	<5
MLM17-007	25	30	schist	1890005	2.5	2.9	68.2	5.63	6
MLM17-007	30	35	schist	1890006	2.28	3.2	35.3	4.41	7
MLM17-007	35	40	schist	1890007	2.63	3.4	19.6	1.22	7
MLM17-007	40	45	schist	1890008	1.62	1.5	12.9	1.48	<5
MLM17-007	45	50	schist	1890009	2.06	2	6.8	1.35	<5
MLM17-007	50	55	vein	1890010	2.42	0.4	4.9	1.44	<5
MLM17-007	55	60	quartzite	1890011	2.71	0.8	8.7	0.71	<5
MLM17-007	60	65	quartzite	1890012	2.2	0.5	7.9	0.97	<5
MLM17-007	65	70	quartzite	1890013	2.93	0.6	6.3	0.41	<5
MLM17-007	70	75	quartzite	1890014	2.57	<0.2	7.3	0.54	<5
MLM17-007	75	80	quartzite	1890015	3.16	3	14.7	15.6	<5
MLM17-007	80	85	quartzite	1890016	2.59	117	1268.9	26.52	15
MLM17-007	85	90	quartzite	1890017	3.17	27	240.1	3.89	<5
MLM17-007	90	95	quartzite	1890018	2.99	6	14.3	2.27	<5
MLM17-007	95	100	quartzite	1890019	3.24	7	43.9	2.16	<5
MLM17-007	100	105	quartzite	1890020	2.51	0.5	7.4	0.68	<5
MLM17-007	105	110	quartzite	1890021	2.79	1.7	10.4	0.98	<5
MLM17-007	110	115	quartzite	1890022	2.29	2.2	24.6	0.87	<5
MLM17-007	115	120	quartzite	1890023	2.18	1.3	11.9	2.83	<5
MLM17-007	120	125	quartzite	1890024	3.08	4.7	208.3	16.9	12
MLM17-007	125	130	quartzite	1890026	2.81	0.6	16.3	6.99	7
MLM17-007	130	135	quartzite	1890027	1.71	<0.2	12.4	4.39	<5
MLM17-007	135	140	quartzite	1890028	2.31	0.6	3.9	2.36	<5
MLM17-007	140	145	quartzite	1890029	1.95	<0.2	7.6	1.67	<5
MLM17-007	145	150	quartzite	1890030	2.77	<0.2	5.5	1.68	<5
MLM17-007	150	155	quartzite	1890030	3.08	1.6	8.2	7.54	<5
MLM17-007	155	160	quartzite	1890032	2.35	4	12.4	10.56	<5
MLM17-007	160	165	quartzite	1890033	3.4	3	5.1	3.02	7
MLM17-007	165	170	quartzite	1890034	3.5	<0.2	4.1	3.62	, <5
MLM17-007	170	175	quartzite	1890035	3.1	2	19.7	4.74	<5
MLM17-007	175	180	quartzite	1890035	3.06	271	1752	15.97	6
MLM17-007	180	185	quartzite	1890030	3.44	3	17.52	2.22	6
MLM17-007	185	190	quartzite	1890037	2.33	0.8	8.1	0.7	5
MLM17-007	190	195	quartzite	1890038	2.55	0.8	4	0.16	7

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-007	195	200	quartzite	1890040	2.58	2.1	2.2	0.21	5
MLM17-007	200	205	quartzite	1890041	2.63	<0.2	3.2	0.3	<5
MLM17-007	205	210	intrusive	1890042	2.17	<0.2	22.3	2.05	<5
MLM17-007	210	215	quartzite	1890043	0.98	0.4	20.2	3.09	<5
MLM17-007	215	220	quartzite	1890044	2.31	<0.2	2.3	1.2	5
MLM17-007	220	225	quartzite	1890045	3.04	<0.2	2.5	1.62	<5
MLM17-007	225	230	quartzite	1890046	0.87	0.6	5.6	0.62	<5
MLM17-007	230	235	quartzite	1890047	2.15	<0.2	2.8	1.1	9
MLM17-007	235	240	quartzite	1890048	2.15	8	426.3	8.97	<5
MLM17-007	240	245	quartzite	1890049	1.19	5.1	17.9	9.19	<5
MLM17-007	245	250	quartzite	1890051	0.95	4.3	9.2	5.17	12
MLM17-007	250	255	quartzite	1890052	0.98	2.6	9.5	5.39	7
MLM17-007	255	260	schist	1890053	1.34	5	10.5	10.16	11
MLM17-007	260	265	schist	1890054	1.74	27	64.8	7.91	6
MLM17-007	265	270	schist	1890055	1.68	8	12.5	7.73	22
MLM17-007	270	275	schist	1890056	1.62	7	8.8	9.64	19
MLM17-007	275	280	quartzite	1890057	2.17	25	87.1	11.83	7
MLM17-007	280	285	quartzite	1890058	1.8	19	54.2	8.6	14
MLM17-007	285	290	quartzite	1890059	2.1	3	10	4.02	16
MLM17-007	290	295	quartzite	1890060	1.74	3.2	7.4	2.84	10
MLM17-007	295	300	quartzite	1890061	1.78	2	4.4	2.04	<5
MLM17-007	300	305	quartzite	1890062	2.46	1.7	5.3	1.81	7
MLM17-007	305	310	quartzite	1890063	1.53	0.4	4.6	0.91	7
MLM17-007	310	315	quartzite	1890064	1.32	1.8	12.3	3.33	15
MLM17-007	315	320	schist	1890065	1.62	14	94.6	12.45	13
MLM17-007	320	325	quartzite	1890066	1.21	3.1	20.2	3.58	14

Hole ID	From feet	To feet	Rock type	Sample ID*	Wgt	Au Best ppb**	As ppm	Sb ppm	Hg ppb
MLM17-008	0	5	ovb	1890101	1.23	10	120.1	17.94	14
MLM17-008	5	10	ovb	1890102	0.97	35	276.2	58.5	20
MLM17-008	10	15	schist	1890103	3.95	8	85.8	34.28	8
MLM17-008	15	20	schist	1890104	1.7	0.6	36.6	22.84	6
MLM17-008	20	25	schist	1890105	2.63	<0.2	62.9	15.44	7
MLM17-008	25	30	quartzite	1890106	2.35	0.4	27.5	11.65	<5
MLM17-008	30	35	quartzite	1890107	2.57	<0.2	19.9	3.43	<5
MLM17-008	35	40	quartzite	1890108	2.92	<0.2	28.9	6.46	<5
MLM17-008	40	45	quartzite	1890109	3.03	<0.2	10.8	3.45	<5
MLM17-008	45	50	quartzite	1890110	2.94	<0.2	4	0.94	<5
MLM17-008	50	55	quartzite	1890111	2.24	1	5.9	0.7	<5
MLM17-008	55	60	quartzite	1890112	2.67	1	13.5	1.58	<5
MLM17-008	60	65	vein	1890113	1.71	0.4	11.5	1.52	<5
MLM17-008	65	70	vein	1890114	1.95	1.6	26.1	2.08	13

*NSR=no sample return, I.S=insufficient sample. **Shaded cells in the Au Best column are results from fire assay; all other values are after aqua-regia digestion.

Appendix D

Soil Sample site locations

Sample ID	Analyte	Property	Easting	Northing
1544051	Soil	And_Dav	495762	7066563
1544052	Soil	And_Dav	496194	7066668
1544053	Soil	And_Dav	496210	7066645
1544054	Soil	And_Dav	496226	7066617
1544055	Soil	And_Dav	496245	7066593
1544056	Soil	And_Dav	496227	7066565
1544057	Soil	And_Dav	496212	7066586
1544058	Soil	And_Dav	496196	7066619
1544059	Soil	And_Dav	496177	7066638
1544060	Soil	And_Dav	496160	7066667
1544061	Soil	And_Dav	496146	7066635
1544062	Soil	 And_Dav	496163	7066612
1544063	Soil	And_Dav	496179	7066582
1544064	Soil	 And_Dav	496193	7066561
1544065	Soil	And_Dav	496158	7066557
1544066	Soil	 And_Dav	496158	7066557
1544067	Soil	And_Dav	496141	7066579
1544068	Soil	And_Dav	496109	7066577
1544069	Soil	And_Dav	496095	7066603
1544070	Soil	And_Dav	496129	7066606
1544071	Soil	And_Dav	496110	7066626
1544072	Soil	And_Dav	496063	7066602
1544073	Soil	And_Dav	496078	7066571
1544074	Soil	And_Dav	496092	7066548
1544075	Soil	And_Dav	496110	7066524
1544076	Soil	And_Dav	496130	7066550
1544077	Soil	And_Dav	496144	7066524
1544078	Soil	And_Dav	495258	7066398
1544079	Soil	And_Dav	495278	7066371
1544080	Soil	And_Dav	495291	7066346
1544081	Soil	And_Dav	495310	7066321
1544082	Soil	And_Dav	495329	7066297
1544083	Soil	And_Dav	495342	7066270
1544084	Soil	And_Dav	495360	7066298
1544085	Soil	And_Dav	495345	7066321
1544086	Soil	And_Dav	495329	7066347
1544087	Soil	And_Dav	495313	7066376
1544088	Soil	And_Dav	495294	7066401
1544089	Soil	And_Dav	495270	7066427
1544090	Soil	And_Dav	496046	7066839
1544091	Soil	And_Dav	496011	7066836

Sample ID	Analyte	Property	Easting	Northing
1355451	Soil	And_Dav	497176	7067064
1355452	Soil	And_Dav	497150	7067061
1355453	Soil	And_Dav	497121	7067064
127914	Soil	And_Dav	496098	7066843
127916	Soil	And_Dav	496061	7066732
127925	Soil	And_Dav	496204	7066694
127926	Soil	And_Dav	496219	7066737
127927	Soil	And_Dav	496244	7066808
1355391	Soil	And_Dav	496025	7066836
1355392	Soil	And_Dav	496017	7066805
1355393	Soil	And_Dav	496014	7066774
1355394	Soil	And_Dav	496002	7066746
1355395	Soil	And_Dav	496036	7066738
1355396	Soil	And_Dav	496042	7066768
1355397	Soil	And_Dav	496051	7066795
1355398	Soil	And_Dav	496056	7066827
1355399	Dup	And_Dav	496056	7066827
1355400	Soil	And_Dav	496085	7066816
1355501	Soil	And_Dav	496077	7066791
1355502	Soil	And_Dav	496070	7066759
1355503	Soil	And_Dav	496092	7066724
1355504	Soil	And_Dav	496098	7066753
1355505	Soil	And_Dav	496107	7066783
1355506	Soil	And_Dav	496114	7066810
1355507	Soil	And_Dav	496122	7066841
1355508	Soil	And_Dav	496151	7066830
1355509	Soil	And_Dav	496143	7066802
1355510	Soil	And_Dav	496137	7066774
1355511	Soil	And_Dav	496130	7066747
1355512	Soil	And_Dav	496120	7066716
1355513	Soil	And_Dav	496151	7066709
1355514	Soil	And_Dav	496158	7066740
1355515	Soil	And_Dav	496164	7066765
1355516	Soil	And_Dav	496174	7066797
1355517	Soil	And_Dav	496179	7066826
1355518	Soil	And_Dav	496206	7066816
1355519	Soil	And_Dav	496201	7066786
1355520	Soil	And_Dav	496198	7066761
1355521	Soil	And_Dav	496184	7066728
1355522	Soil	And_Dav	496180	7066698
1759734	Soil	And_Dav	496027	7066708

Sample ID	Analyte	Property	Easting	Northing
1544092	Soil	And Dav	495996	7066861
1544093	Soil	 And Dav	495982	7066886
1544094	Soil	And Dav	495948	7066882
1544095	Soil	And Dav	495963	7066857
1544096	Soil	And Dav	495978	7066833
1544097	Soil	And Dav	495945	7066828
1544098	Soil	 And Dav	495925	7066855
1544099	Soil	And Dav	495925	7066855
1544100	Soil	And Dav	495912	7066876
1544401	Soil	And Dav	495794	7066565
1544402	Soil	And Dav	495710	7066530
1544403	Soil	And Dav	495694	7066558
1544404	Soil	And Dav	495679	7066581
1544405	Soil	 And_Dav	495662	7066607
1544406	Soil	 And_Dav	495594	7066597
1544407	Soil	 And_Dav	495612	7066572
1544408	Soil	 And_Dav	495629	7066549
1544409	Soil	And_Dav	495644	7066522
1544410	Soil	And_Dav	495659	7066501
1544411	Soil	And_Dav	495610	7066467
1544412	Soil	And_Dav	495592	7066488
1544413	Soil	And_Dav	495578	7066515
1544414	Soil	And_Dav	495559	7066540
1544415	Soil	And_Dav	495543	7066564
1544416	Soil	And_Dav	495495	7066532
1544417	Soil	And_Dav	495513	7066507
1544418	Soil	And_Dav	495527	7066484
1544419	Soil	And_Dav	495545	7066459
1544420	Soil	And_Dav	495560	7066433
1544421	Soil	And_Dav	495511	7066398
1544422	Soil	And_Dav	495494	7066422
1544423	Soil	And_Dav	495475	7066450
1544424	Soil	And_Dav	495460	7066474
1544425	Soil	And_Dav	495443	7066497
1544426	Soil	And_Dav	495395	7066465
1544427	Soil	And_Dav	495412	7066440
1544428	Soil	And_Dav	495427	7066416
1544429	Soil	And_Dav	495444	7066392
1544430	Soil	And_Dav	495461	7066366
1544431	Soil	And_Dav	495410	7066331
1544432	Soil	And_Dav	495393	7066356
1544433	Dup	And_Dav	495393	7066356
1544434	Soil	And_Dav	495376	7066382
1544435	Soil	And_Dav	495359	7066405
1544436	Soil	And_Dav	495342	7066433
1544437	Soil	And_Dav	495310	7066430
1544438	Soil	And_Dav	495326	7066405

Sample ID	Analyte	Property	Easting	Northing
1759735	Soil	And_Dav	495998	7066715
1759736	Soil	And_Dav	495969	7066723
1759737	Soil	And_Dav	495941	7066731
1759738	Soil	And_Dav	495911	7066738
1759739	Soil	And_Dav	495883	7066744
1759740	Soil	And_Dav	495852	7066751
1759741	Soil	And_Dav	495825	7066759
1759742	Soil	And_Dav	495789	7066735
1759743	Soil	And_Dav	495819	7066729
1759744	Soil	And_Dav	495845	7066722
1759745	Soil	And_Dav	495875	7066717
1759746	Soil	And_Dav	495907	7066709
1759747	Soil	And_Dav	495935	7066699
1759748	Soil	And_Dav	495962	7066695
1759749	Soil	And_Dav	495995	7066686
1759750	Soil	And_Dav	495957	7066665
1759784	Soil	And_Dav	495992	7066812
1759785	Soil	And_Dav	495962	7066817
1759786	Soil	And_Dav	495932	7066826
1759787	Soil	And_Dav	495904	7066833
1759788	Soil	And_Dav	495899	7066804
1759789	Soil	And_Dav	495928	7066795
1759790	Soil	And_Dav	495955	7066788
1759791	Soil	And_Dav	495985	7066781
1759792	Soil	And_Dav	495978	7066752
1759793	Soil	And_Dav	495948	7066759
1759794	Soil	And_Dav	495919	7066766
1759795	Soil	And_Dav	495890	7066774
1759796	Soil	And_Dav	495855	7066628
1759797	Soil	And_Dav	495824	7066636
1759798	Soil	And_Dav	495799	7066640
1759799	Dup	And_Dav	495799	7066640
1759800	Soil	And_Dav	495769	7066648
1759801	Soil	And_Dav	495737	7066655
1759802	Soil	And_Dav	495709	7066660
1759803	Soil	And_Dav	495686	7066668
1759804	Soil	And_Dav	495608	7066623
1759805	Soil	And_Dav	495638	7066617
1759806	Soil	And_Dav	495666	7066611
1759807	Soil	And_Dav	495695	7066605
1759808	Soil	And_Dav	495724	7066598
1759809	Soil	And_Dav	495752	7066589
1759810	Soil	And_Dav	495782	7066584
1759851	Soil	And_Dav	495927	7066671
1759852	Soil	And_Dav	495898	7066678
1759853	Soil	And_Dav	495869	7066686
1759854	Soil	And_Dav	495839	7066693

Sample ID	Analyte	Property	Easting	Northing
1544439	Soil	And_Dav	495345	7066382
1544440	Soil	And_Dav	495363	7066356
1544441	Soil	And_Dav	495377	7066328
1544442	Soil	And_Dav	495286	7066287
1544443	Soil	And_Dav	495308	7066267
1544444	Soil	And_Dav	495326	7066244
1544445	Soil	And_Dav	495280	7066315
1544446	Soil	And_Dav	495263	7066344
1544448	Soil	And_Dav	495245	7066368
1544449	Soil	And_Dav	495229	7066388
1544450	Soil	And_Dav	495248	7066421
1544451	Soil	And_Dav	495808	7066594
1544452	Soil	And_Dav	495745	7066533
1544453	Soil	And_Dav	495729	7066558
1544454	Soil	And_Dav	495711	7066588
1544455	Soil	And_Dav	495625	7066601
1544456	Soil	And_Dav	495645	7066574
1544457	Soil	And_Dav	495660	7066552
1544458	Soil	And_Dav	495679	7066528
1544459	Soil	And_Dav	495696	7066501
1544460	Soil	And_Dav	495647	7066469
1544461	Soil	And_Dav	495627	7066494
1544462	Soil	And_Dav	495610	7066515
1544463	Soil	And_Dav	495594	7066544
1544464	Soil	And_Dav	495577	7066567
1544465	Soil	And_Dav	495527	7066532
1544466	Dup	And_Dav	495527	7066532
1544467	Soil	And_Dav	495545	7066507
1544468	Soil	And_Dav	495562	7066483
1544469	Soil	And_Dav	495579	7066462
1544470	Soil	And_Dav	495593	7066435
1544471	Soil	 And_Dav	495546	7066406
1544472	Soil	 And_Dav	495527	7066428
1544473	Soil	 And_Dav	495511	7066450
1544474	Soil	 And_Dav	495498	7066479
1544475	Soil	 And_Dav	495480	7066498
1544476	Soil	And_Dav	495412	7066494
1544477	Soil	And Dav	495431	7066468
1544478	Soil	And_Dav	495442	7066443
1544479	Soil	 And_Dav	495463	7066422
1544480	Soil	And Dav	495475	7066397
1544481	Soil	And Dav	495424	7066361
1544482	Soil	And Dav	495414	7066389
1544483	Soil	And Dav	495395	7066412
1544484	Soil	And Dav	495377	7066433
1544485	Soil	And Dav	495358	7066461
1544486	Soil	And Dav	495147	7066465
101400	3011			, 000-100

Sample ID	Analyte	Property	Easting	Northing
1759855	Soil	And_Dav	495811	7066700
1759856	Soil	And_Dav	495780	7066708
1759857	Soil	And_Dav	495754	7066712
1759858	Soil	And_Dav	495745	7066685
1759859	Soil	And_Dav	495717	7066691
1759860	Soil	And_Dav	495776	7066677
1759861	Soil	And_Dav	495804	7066670
1759862	Soil	And_Dav	495833	7066664
1759863	Soil	And_Dav	495861	7066655
1759864	Soil	And_Dav	495895	7066650
1759865	Soil	And_Dav	495922	7066642
1759866	Dup	And_Dav	495922	7066642
1759867	Soil	And_Dav	495819	7066606
1759868	Soil	And_Dav	495790	7066611
1759869	Soil	And_Dav	495758	7066620
1759870	Soil	And_Dav	495729	7066627
1759871	Soil	 And_Dav	495702	7066633
1759872	Soil	 And_Dav	495673	7066637
1759873	Soil	And_Dav	495644	7066649
1544101	Soil	And_Dav	498718	7062064
1544102	Soil	And_Dav	498779	7062085
1544103	Soil	And_Dav	498747	7062071
1544104	Soil	And_Dav	498803	7062088
1544105	Soil	And_Dav	498790	7062056
1544106	Soil	And_Dav	498765	7062047
1544107	Soil	And_Dav	498738	7062040
1544108	Soil	And_Dav	498710	7062034
1544109	Soil	And_Dav	498697	7061968
1544110	Soil	And_Dav	498698	7062003
1544111	Soil	And_Dav	498728	7062007
1544112	Soil	And_Dav	498760	7062018
1544113	Soil	And_Dav	498784	7062018
1544114	Soil	And_Dav	498778	7061988
1544115	Soil	And_Dav	498752	7061982
1544116	Soil	And_Dav	498725	7061974
1544117	Soil	And_Dav	498680	7061905
1544118	Soil	And_Dav	498686	7061934
1544119	Soil	And_Dav	498713	7061940
1544120	Soil	And_Dav	498746	7061948
1544121	Soil	And_Dav	498771	7061955
1544122	Soil	And_Dav	498765	7061922
1544122	REP	And_Dav	498765	7061922
1544123	Soil	And_Dav	498737	7061917
1544124	Soil	And_Dav	498709	7061908
1544125	Soil	And_Dav	498672	7061867
1544126	Soil	And_Dav	498668	7061834
1544127	Soil	And_Dav	498658	7061804

Sample ID	Analyte	Property	Easting	Northing
1544487	Soil	And Dav	495162	7066439
1544488	Soil	 And Dav	495179	7066411
1544489	Soil	And Dav	495193	7066387
1544490	Soil	And Dav	495213	7066361
1544491	Soil	And Dav	495229	7066342
1544492	Soil	And Dav	495243	7066312
1544493	Soil	 And Dav	495261	7066287
1544494	Soil	And Dav	495276	7066263
1544495	Soil	And Dav	495294	7066237
1544496	Soil	And Dav	495313	7066212
1544497	Soil	And Dav	495326	7066187
1544498	Soil	And Dav	495360	7066190
1544499	Dup	And Dav	495360	7066190
1544500	Soil	 And_Dav	495344	7066218
1888501	Soil	 And_Dav	496041	7066570
1888502	Soil	 And_Dav	496031	7066540
1888503	Soil	 And_Dav	496059	7066544
1888504	Soil	And_Dav	496074	7066514
1888505	Soil	And_Dav	496095	7066492
1888506	Soil	And_Dav	496061	7066492
1888507	Soil	And_Dav	496045	7066514
1888508	Soil	And_Dav	496049	7066460
1888509	Soil	And_Dav	496031	7066490
1888510	Soil	And_Dav	496007	7066513
1888511	Soil	And_Dav	495994	7066537
1888512	Soil	And_Dav	495981	7066508
1888513	Soil	And_Dav	495993	7066484
1888514	Soil	And_Dav	496008	7066460
1888515	Soil	And_Dav	495993	7066434
1888516	Soil	And_Dav	495979	7066455
1888517	Soil	And_Dav	495959	7066476
1888518	Soil	And_Dav	495943	7066506
1888519	Soil	And_Dav	495894	7066851
1888520	Soil	And_Dav	495877	7066871
1888521	Soil	And_Dav	495846	7066868
1888522	Soil	And_Dav	495861	7066846
1888523	Soil	And_Dav	495877	7066821
1888524	Soil	And_Dav	495829	7066838
1888525	Soil	And_Dav	495812	7066868
1888526	Soil	And_Dav	495341	7066159
1888527	Soil	And_Dav	495361	7066139
1888528	Soil	And_Dav	495378	7066111
1888529	Soil	And_Dav	495392	7066086
1888530	Soil	And_Dav	495407	7066060
1888531	Soil	And_Dav	495425	7066034
1888532	Soil	And_Dav	495439	7066014
1888533	Soil	And_Dav	495457	7065985

Sample ID	Analyte	Property	Easting	Northing	
1544128	Soil	And_Dav	498687	7061811	
1544129	Soil	And_Dav	498714	7061820	
1544130	Soil	And_Dav	498744	7061830	
1544131	Soil	And_Dav	498773	7061831	
1544132	Soil	And_Dav	498780	7061868	
1544133	Soil	And_Dav	498780	7061868	
1544134	Soil	And_Dav	498786	7061894	
1544135	Soil	And_Dav	498793	7061929	
1544136	Soil	And_Dav	498760	7061892	
1544137	Soil	And_Dav	498753	7061858	
1544138	Soil	And_Dav	498721	7061852	
1544139	Soil	And_Dav	498730	7061882	
1544140	Soil	And_Dav	498698	7061878	
1544141	Soil	And_Dav	498692	7061846	
1544142	Soil	And_Dav	498801	7061964	
1544143	Soil	And_Dav	498812	7062003	
1544144	Soil	 And_Dav	498830	7062020	
1544201	Soil	 And_Dav	498601	7062036	
1544202	Soil	And_Dav	498590	7062010	
1544203	Soil	And_Dav	498586	7061975	
1544204	Soil	And_Dav	498578	7061938	
1544205	Soil	And Dav	498569	7061908	
1544206	Soil	And Dav	498566	7061874	
1544207	Soil	And Dav	498557	7061851	
1544208	Soil	And Dav	498548	7061809	
1544208	REP	And_Dav	498548	7061809	
1544209	Soil	And_Dav	498540	7061774	
1544210	Soil	And_Dav	498574	7061783	
1544211	Soil	And_Dav	498581	7061812	
1544212	Soil	And_Dav	498582	7061850	
1544213	Soil	And_Dav	498595	7061884	
1544214	Soil	And Dav	498600	7061913	
1544215	Soil	And_Dav	498611	7061951	
1544216	Soil	And_Dav	498614	7061980	
1544217	Soil	And_Dav	498621	7062011	
1544218	Soil	And_Dav	498629	7062047	
1544219	Soil	And_Dav	498657	7062052	
1544220	Soil	And_Dav	498649	7062019	
1544221	Soil	And_Dav	498643	7061985	
1544222	Soil	 And_Dav	498635	7061953	
1544223	Soil	 And_Dav	498631	7061919	
1544224	Soil	 And_Dav	498622	7061889	
1544225	Soil	 And_Dav	498612	7061856	
1544226	Soil	 And_Dav	498606	7061822	
1544227	Soil	 And_Dav	498598	7061791	
1544228	Soil	 And_Dav	498630	7061799	
1544229	Soil	 And_Dav	498634	7061832	
			-		

Sample ID	Analyte	Property	Easting	Northing	
1888534	Soil	And Dav	495509	7066025	
1888535	Soil	 And Dav	495491	7066045	
1888536	Soil	And Dav	495473	7066070	
1888537	Soil	And Dav	495457	7066092	
1888538	Soil	And Dav	495438	7066121	
1888539	Soil	And Dav	495427	7066148	
1888540	Soil	And Dav	495410	7066173	
1888541	Soil	And Dav	495389	7066197	
1888542	Soil	And Dav	495374	7066224	
1888543	Soil	And Dav	495361	7066242	
1888547	Soil	And Dav	496419	7066742	
1888548	Soil	And Dav	496424	7066888	
1888549	Soil	And Dav	496490	7066959	
1888550	Soil	 And_Dav	496523	7067091	
1888551	Soil	 And_Dav	496632	7067101	
1888552	Soil	 And_Dav	496614	7067045	
1888553	Soil	 And_Dav	496604	7066985	
1888554	Soil	And_Dav	496595	7066923	
1888555	Soil	And_Dav	496578	7066868	
1888556	Soil	And_Dav	496566	7066802	
1888557	Soil	And_Dav	496548	7066753	
1888543	REP	And_Dav	495361	7066242	
1544434	REP	And_Dav	495376	7066382	
1544471	REP	And_Dav	495546	7066406	
1888507	REP	And_Dav	496045	7066514	
1544062	REP	And_Dav	496163	7066612	
130746	Soil	And_Dav	497033	7067103	
130747	Soil	And_Dav	497032	7067049	
130774	Soil	And_Dav	497177	7067041	
130777	Soil	And_Dav	497197	7067178	
130777	REP	And_Dav	497197	7067178	
130777	REP	And_Dav	497197	7067178	
1355426	Soil	And_Dav	497123	7067183	
1355427	Soil	And_Dav	497094	7067186	
1355428	Soil	And_Dav	497065	7067187	
1355429	Soil	And_Dav	497034	7067183	
1355430	Soil	And_Dav	497005	7067189	
1355431	Soil	And_Dav	497004	7067157	
1355432	Soil	And_Dav	497033	7067155	
1355433	Soil	And_Dav	497033	7067155	
1355434	Soil	And_Dav	497063	7067159	
1355435	Soil	And_Dav	497090	7067155	
1355436	Soil	And_Dav	497121	7067154	
1355437	Soil	And_Dav	497155	7067154	
1355438	Soil	And_Dav	497183	7067150	
1355439	Soil	And_Dav	497181	7067119	
1355440	Soil	And_Dav	497152	7067121	

Sample ID	Analyte	Property	Easting	Northing	
1544230	Soil	And_Dav	498642	7061864	
1544231	Soil	And_Dav	498649	7061895	
1544232	Soil	And_Dav	498660	7061927	
1544233	Soil	And_Dav	498659	7061933	
1544234	Soil	And_Dav	498663	7061961	
1544234	REP	And_Dav	498663	7061961	
1544235	Soil	And_Dav	498672	7061995	
1544236	Soil	And_Dav	498678	7062033	
1544237	Soil	And_Dav	498687	7062062	
1544301	Soil	And_Dav	498534	7061990	
1544302	Soil	And_Dav	498541	7062022	
1544303	Soil	And_Dav	498569	7062028	
1544304	Soil	And_Dav	498481	7062006	
1544305	Soil	And_Dav	498474	7061975	
1544306	Soil	And_Dav	498471	7061943	
1544307	Soil	And_Dav	498461	7061912	
1544308	Soil	And_Dav	498451	7061877	
1544309	Soil	And_Dav	498448	7061841	
1544310	Soil	And_Dav	498439	7061812	
1544311	Soil	And_Dav	498432	7061779	
1544312	Soil	And_Dav	498424	7061747	
1544313	Soil	And_Dav	498449	7061725	
1544314	Soil	And_Dav	498481	7061729	
1544315	Soil	And_Dav	498454	7061752	
1544315	REP	And_Dav	498454	7061752	
1544316	Soil	And_Dav	498459	7061785	
1544317	Soil	And_Dav	498471	7061817	
1544318	Soil	And_Dav	498477	7061851	
1544319	Soil	And_Dav	498484	7061884	
1544320	Soil	And_Dav	498491	7061918	
1544321	Soil	And_Dav	498499	7061949	
1544322	Soil	And_Dav	498504	7061985	
1544323	Soil	And_Dav	498510	7062011	
1544324	Soil	And_Dav	498406	7061895	
1544325	Soil	And_Dav	498400	7061865	
1544326	Soil	And_Dav	498424	7061836	
1544327	Soil	And_Dav	498426	7061867	
1544328	Soil	And_Dav	498433	7061904	
1760483	Soil	And_Dav	498563	7061996	
1760484	Soil	And_Dav	498555	7061966	
1760485	Soil	And_Dav	498549	7061930	
1760486	Soil	And_Dav	498538	7061897	
1760487	Soil	And_Dav	498536	7061865	
1760488	Soil	And_Dav	498528	7061834	
1760489	Soil	And_Dav	498518	7061802	
1760490	Soil	And_Dav	498511	7061769	
1760491	Soil	And_Dav	498505	7061737	

Sample ID	Analyte	Property	Easting	Northing	
1355441	Soil	And_Dav	497120	7067123	
1355442	Soil	And_Dav	497093	7067123	
1355443	Soil	And_Dav	497061	7067125	
1355444	Soil	And_Dav	497032	7067127	
1355445	Soil	And_Dav	496994	7067121	
1355446	Soil	And_Dav	497091	7067066	
1355447	Soil	And_Dav	497089	7067101	
1355448	Soil	And_Dav	497120	7067092	
1355449	Soil	And_Dav	497150	7067094	
1355450	Soil	And_Dav	497183	7067093	

Sample ID	Analyte	Property	Easting	Northing	
1760492	Soil	And_Dav	498533	7061744	
1760493	Soil	And_Dav	498483	7061760	
1760494	Soil	And_Dav	498490	7061793	
1760495	Soil	And_Dav	498499	7061826	
1760496	Soil	And_Dav	498506	7061859	
1760497	Soil	And_Dav	498512	7061888	
1760498	Soil	And_Dav	498518	7061924	
1760499	Soil	And_Dav	498518	7061924	
1760500	Soil	And_Dav	498525	7061958	

Appendix E

Statement of Expenditures

	units	Cost/ Unit	Total
Personnel	Days		\$29,340.00
Senior Geologist	24	\$500	\$12,000.00
Assistant	17	\$170	\$2,890.00
Cook/medic	17	\$500	8,500.00
Geologist	7	\$475	3,325.00
Soil Sampler/claim staker	7	\$375	2,625.00
Equipment:	Days		\$6,337.00
Chain saws x 2, brush cutter, computers x 2, GPS x 4, first aid, cots x 7,	24	\$105-\$205	\$4,220.00
generator, soil augers x 3, misc camp gear			-
Radios x4, satellite phone x 2	24	\$9-\$142	\$2,117.00
Vehicles	Days/month		\$16,397.68
Truck half ton	7	\$206.05	\$1,442.35
Truck one ton	17	\$158.49	\$2,694.33
Side by side,	1	\$12,261.00	\$12,261.00
Drilling	Days		\$69,674.00
Rig	10	\$5,500	\$55,000.00
Costs			\$14,674.00
Lodging	Days/month		\$20,440.00
Camp	1	\$18,592	\$18,592.00
Hotels	8	\$230	\$1,848.00
Field Expenses			\$10,758.49
Food			\$4,130.00
Diesel (drums)	10	\$425	\$4,250.00
Gasoline			\$553.88
Field supplies: consumables, samples bags, bug spray, bear deterrents etc,			\$1,825.49
Helicopter	hours		\$85,795.25
Fireweed LR	18.9	\$1,552.5	\$29,342.25
Transnorth B3	13	\$1,955.62	\$25,423.00
Transnorth B4	13.3	\$2,333.08	\$31,029.95
Assays	samples		\$23,325.05
Drill Samples BVAQ251	426	\$25.55	\$10,884.30
Drill Samples BVFA330	106	\$25.01	\$2,651.06
Soil Samples	331	\$21.70	\$7,182.70
Rock Samples	2	\$25.55	\$51.10
QA/QC, re-runs, and rushes			\$2,555.89
Total			\$262,067.47
Drilled feet			2,080
Days			2,000
- mj 0	I	I	